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Preface

This book is in the first place a monograph, for a large part based on my
own research. The same notations are used throughout the text and a strict
unity of subject is attempted. On the other hand, care is taken that the book
can be used as a textbook for graduate students and as a reference text for
researchers.

The point of view adopted here is that statistical physics is statistics ap-
plied to physics. The essence of statistical physics is the statistical analysis
of models which approximate the physical reality. These models consist of
a probability distribution, or its quantum mechanical analogue, used to cal-
culate statistical averages. The probability distribution depends on a small
number of parameters which can be estimated from experimental data.

The roots of statistical physics lie in thermodynamics, a nineteenth century
science predating statistical physics. One of the goals of statistical physics is
to explain thermodynamical concepts in terms of a microscopic theory. But
thermodynamics is so generally valid that its relations still hold in a much
wider context than that of the traditional theory of statistical mechanics.
Therefore, some notions of thermodynamics appear as a skeleton throughout
the book.

Recent years, considerable efforts have been made to extend the statistical
physics formalism beyond the limits set out by Gibbs [5] in his book, pub-
lished in 1902. Traditional statistical physics focuses on systems with many
degrees of freedoms. The formalism becomes exact in the thermodynamic
limit, this is, the limit of infinitely many degrees of freedom. One motiva-
tion to go beyond the standard formalism is the current interest in relatively
small systems. Many new insights originate from Tsallis’ non-extensive ther-
mostatistics, a domain of research that developed during the past twenty
years. Let me mention in particular the notions of deformed exponential and
logarithmic functions, and of escort probability distributions, notions that
play an important role in Part II of the book.

The title of this book refers to the well-known book by Callen, “Thermo-
dynamics and an Introduction to Thermostatistics” [3], which is often cited
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in that part of literature which is concerned with non-extensive thermostatis-
tics.

The emphasis in the present work lies on the development of the formalism.
For applications of non-extensive statistical physics the reader is referred to
the book by Constantino Tsallis [7], to proceedings of conferences [4, 1], and
to some review papers [6, 2]. A number of topics, playing a central role in
traditional statistical physics, are not treated in the present text. Let me
mention the equivalence of ensembles, the thermodynamic limit, the central
limit theorem, large deviation theory. Time-dependent phenomena are not
discussed. The main reason for the latter limitation is that non-equilibrium
statistical physics is an active area of research with only recent understanding
of some, not all, of its fundamentals.

This book does not intend to review the research literature on non-
extensive thermostatistics. It rather situates this subject in a broader context
and aims at consolidating its results. The short notes at the end of each Chap-
ter try to indicate some aspects of the historical developments but fall short
of giving proper credit to all researchers active in the field.

I am grateful to all colleagues who helped me to improve the contents of
this book. I am especially indebted to Marek Chachor, who introduced me
to non-extensive statistical physics.

Antwerpen, September 2010 Jan Naudts
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Part 1
Parameter Estimation



The point of view developed in this part of the book is that statistical me-
chanics is statistics applied to classical mechanics or quantum mechanics. The
essential concept is that of the exponential family. It gives a mathematically
concise formulation of the Boltzmann-Gibbs distribution.

One of the goals of statistical physics is to give a microscopic basis to ther-
modynamics. Some notions of thermodynamics are introduced in the Section
3. Because of the essential role of the micro-canonical ensemble within sta-
tistical mechanics the emphasis lies on the entropy S(U) as a function of
the energy U, and its Legendre transform, which is Massieu’s function. This
function replaces the free energy F(T') which is a function of the temperature
T and which is the Legendre transform of the energy U(S) as a function of
the entropy S.



Chapter 1

Probability Distributions in Statistical
Physics

1.1 The Maxwell Distribution

A cubic meter of air contains of the order of 2.5 x 10?5 molecules (about
40 moles, one mole contains per definition N4 ~ 6 x 10?3 molecules — this
is Avogadro’s number). Because of this tremendously large number, it is a
good idea to do statistics on the speed v of individual molecules. For a gas of
identical molecules, each with mass m, one finds in very good approximation
that the probability density is of the form

3/2
fv) = (62—7::) Amrp2e—3PmY’ (1.1)

See Figure 1.1. In statistical physics, § is a shorthand notation for the inverse
of the temperature T', multiplied with Boltzmann’s constant kg ~ 1.38066 X
1022 J/K, to convert it from degrees Kelvin to energy units (Joule)

1
=—. 1.2
T (1.2)
The density function (1.1) is known as the Maxwell distribution.
Note that (1.1) is properly normalised

+o0
/0 dv f(v) = 1. (1.3)

The first moment of f(v) is the average speed (v). Its value is of the same
order of magnitude as the speed of sound, which for air is about 330 m/s
(about 1200 km per hour). The calculation of (v) requires the evaluation of
an integral. The second moment is easier to calculate. Indeed, by taking the
derivative of (1.3) with respect to 3, there follows

J. Naudts, Generalised Thermostatistics, DOI 10.1007/978-0-85729-355-8_1, 3
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Fig. 1.1 The Maxwell distribution with fm =1

o [T
02?/01 dv f(v)

-2 _ - 2y 1.4
55— 370 (14)
This can be written as
1
5m<v2> = %kBT. (1.5)

Now, %mv2 is in classical mechanics the kinetic energy of a particle with

mass m and speed v. Hence, (1.5) says that the average kinetic energy per
particle is proportional to temperature 7. The result (1.4) is known as the
equipartition law, and is related to the law of Dulong and Petit.

Expression (1.5) is quite often used as the definition of temperature T,
especially in the context of experiments. However, this cannot be the funda-
mental definition since we know that quantum mechanics brings corrections

to (1.5).

1.2 Probability Distributions in Phase Space

The Maxwell distribution is used for classical gases but considers only the
speed of one molecule of the gas. A powerful generalisation is obtained by
considering at once the positions and momenta of all molecules of the gas.
This involves probability distributions in phase space.

A probability distribution in the phase space I, is a positive function
f(gq,p) depending on the coordinates ¢i,- -, gy and momenta pi,---,py of
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all N particles of the system. Its normalisation

ﬁ/qudpf(q,p) =1 (1.6)

involves a constant i with the same dimensions as the product of a position
and a momentum variable. In this way the density function becomes dimen-
sionless. One often chooses h equal to Planck’s constant h ~ 6.625 x 10734
Joule Sec, although within classical mechanics there is no fundamental rea-
son to do so. Alternatively, h = 1 is used. This is equivalent with measuring
momenta in units of inverse length. For use later on, in the section on the
grand-canonical ensemble, a factor 1/N! has been added in the normalisation.
It reflects that all particles are identical and that each of the N! permutations
of particles describes the same system.

Given any such probability distribution one can calculate averages of other
functions of phase space A(g,p) using the obvious formula

(4) = v [ dadn S (a.0)Ala.p) (17)

1.3 The Boltzmann-Gibbs Distribution

In the second half of the nineteenth century, Boltzmann has generalised the
Maxwell distribution by introducing a probability distribution in phase space.
This generalised distribution is now called the Boltzmann-Gibbs distribution.
It plays a central role in the foundations of statistical mechanics. An account
of the latter is found in the book by J. Willard Gibbs [1], published in 1902.

The specific choice of probability distribution in phase space that carries
the name of Boltzmann and Gibbs is

1
Z(B)

The normalisation Z(3) is called the partition sum and is given by

F(q.p) = e PHED), (112)

1 _
2(8) = wiaw /qudpe BH(a.p), (1.13)

As before, (3 is the inverse temperature. The function H(q,p) is Hamilton’s
function. Its value is the total energy of a system where the particles have
positions ¢q1, g2, ---qny and associated momenta pi, p2, -+ py. A system
described by the Boltzmann-Gibbs distribution (1.12) is said to belong to
the canonical ensemble.

Note that averages calculated using the Boltzmann-Gibbs distribution do
not depend on time. See the Box 1.1.
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The state of a system of classical mechanics is described by a number of
coordinates q1, q2, - - - v and associated momenta p1, pa, - - - pn. Together they
determine a point (g, p) in the phase space I' C R%Y. The time evolution of
the system is determined by Hamilton’s equations of motion

i o OH

dtqja B Opja

d OH

—PDia = — . 1.8
dtpja ana ( )

The function H(g,p) is the Hamiltonian. Its value is the energy at the given
point (g, p) of phase space. The index a runs from 1 to 3, or from z to z.
Introduce now time-dependent functions by posing that

A¢(q(0),p(0)) = A(q(?), p(?)) (1.9)

(usually the time-dependence of ¢ and p is implicit — here it is written explic-
itly to make clear that the time-dependence is shifted from the coordinates
to the function). Then the Boltzmann-Gibbs expectation of the function A at
time ¢ is given by

1 1
(A0 = T /p dgdp Zoase™PH@P Auq ) (1.10)

Because the Hamiltonian H (g, p) is a conserved quantity one can write as well

1 1
(Ar) = W/qudp Z(ﬁ)eiﬁqu‘p)At((I:P)- (1.11)

By the theorem of Liouville, the integral over phase space of the function
e=PH:(0,P) A,(q, p) does not depend on time. One therefore concludes that
(A¢) = (A) does not depend on time.

Box 1.1 Classical mechanics

1.4 A gas of particles in the canonical
ensemble

A classical gas composed of N identical particles, all with identical mass m,
is described by a Hamiltonian of the form

N
H:%Z > .+ V(). (1.14)

j=1 a=x,y,z

The momentum and position of the particle labelled j each have three com-
ponents p; ., Pj.y,Dj,2, respectively q; o, ¢j,y, ¢j,-- The first contribution is the
kinetic energy of the particles. The potential energy V(q) is a function of po-
sitions only. It describes the interaction between the particles. The partition
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sum of this system is given by

N
Z(B)=w/Rwdp/VqueXP —%Z > - V()

j=1a=z,y,z

(1.15)

V C R3 is the region of space enclosing the particles. By abuse of notation
V will also denote the volume of this region of space. The integrations over
the momentum variables can be carried through. The result is

Z(3) @rmkpT)*™? Zeout (B), (1.16)

- 1
T N3N
with

Zeont(B) = /VN dg exp (—8V(q)) . (1.17)

The function Zeons(5) is called the configurational partition sum. For an
arbitrary function A(q) depending only on the positions of the particles is

(4) = dq exp (=8V(q)) A(q). (1.18)

It is now straightforward to show that the Maxwell distribution is a special
case of Boltzmann-Gibbs. See the Box (1.2).

If the interaction between the particles is absent (V(g¢) = 0) then the gas
is said to be ideal. Note that in that case one has Zeone(8) = V'V so that

1 3N/2 (N
Z(B) = NIV (2rmkpT) V. (1.22)

The trick (1.4), which, starting from the normalisation of the Maxwell distri-
bution, leads to the equipartition law, can now be repeated. It requires two
steps. At one hand, the explicit result (1.22) can be used to obtain

d 3N

On the other hand, a formal calculation starting from (1.13) gives

d 1 d 1
- - - = —BH(q,p)
In Z(B) Z(ﬂdﬂN!h?’N/qudpe

1 _
=——N,h3N/qudpe @R H (g, p)

= —(H). (1.24)
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For an arbitrary function A(p;) depending only on the momenta of the j-th
particle is

_ Jrsdpj exp (—% Za:z,y,zp?a) A(pj)

(A) = 5 2
fRs dpj €xp <_% Ea:x,y,zpja)

(1.19)

— 2

Note that the speed v of this particle satisfies > _ oz p?a = m?2v2. Hence,

if the function A depends only on v, then one obtains

(A) = fRS dp; exp (—%ﬁva) A(v)
fRS dp; exp (—%Bmvz) ’

(1.20)

Replacing the integration over Cartesian coordinates pj..pjy,pj- by an inte-
gration in spherical coordinates gives

_ JgFeo v dv exp (— 3 Bmw?) A(v)

(A) = f(j_oo v2dv exp (—%ﬁmvz) (1.21)

The latter expression implies that the speed v obeys a Maxwell distribution.

Box 1.2 Derivation of the Maxwell distribution

This shows that the average energy of an ideal gas in the canonical ensemble
equals (3N/2)kpT. This result is in agreement with (1.5) because for an ideal
gas, there is no potential energy. Hence, the total energy equals the kinetic
energy.

1.5 Additional Conserved Quantities

The Boltzmann-Gibbs distribution (1.12) depends on the single parameter [.
A straightforward way to further generalise this distribution is by introducing
more than one parameter. An argument for doing so in statistical physics
is the occurrence of additional conserved quantities in the study of certain
models. Indeed, the Hamiltonian H(q,p) that appears in (1.12) does not
depend on time. For that reason it is an important quantity characterising
the macroscopic state of the system. If an additional quantity exists which
is used to characterise the macroscopic state of the system then it is obvious
to include it somehow in the probability distribution (1.12).

Consider as an example a cylinder filled with gas, in the presence of a
uniform gravitational force. See Figure 1.2. The Hamiltonian is of the form
(1.14), with the potential energy V(q) given by
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N
V(g) =Vo(a) + gm Y dns- (1.25)
n=1

The first term describes the interactions between the molecules of the gas,
the last term describes a uniform acceleration of all particles in the nega-
tive z-direction. The quantity Q.(q) = % Zi:;l ¢n- 1s the average height of
a molecule and is a constant of motion. One can of course continue to de-
scribe this gas using the Boltzmann-Gibbs distribution (1.12). However, the
alternative is to rewrite (1.12) as

1
Z(8,9)

with Hy(q,p) the value of H(q,p) when g = 0. The model now depends
on two parameters § and g. One advantage of the two-parameter model is
that the trick, used to derive (1.5) and (1.24), can now be applied for both
parameters. Indeed, from the normalisation (1.6) now follows

f(g,p) = e~ PHo(a:p)=BgmNQ=(a) (1.26)

0= aa—ﬂ/{dngf(q,p)

= Z@.g05” Y _/qudpf(q,p)H(q,p), (1.27)

and similarly

),
0= — dgd ,
99 : qdp f(q,p)

0
- S Z(B.9) - /F dqdp f(q.p)BmNQ.(q).  (128)

These expressions can be written as

Fig. 1.2 A gas in a uniform field
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0
%—ﬁan(ﬁ,g) = —(H),
% InZ(B3,9) = —BmN{(Q.). (1.29)

Hence, by calculating the partition sum for the two-parameter model one gets
easy access to the average values of the two quantities H and Q.. From

)
InZ(3,9) = —§N1nﬁ — Nlng + constant (1.30)

follows (H) = 3NkpT and (Q.) = kgT/mg.

It may seem weird to calculate averages of conserved quantities since by
definition they have a constant value and their value does not fluctuate as a
function of time. However, quite often the exact value of a conserved quan-
tity is not known so that the uncertainty about its value can be treated in
a statistical way. Alternatively, one may say that a physical system is never
completely isolated. As a consequence of the interactions with the environ-
ment, called the heat bath , the quantity, which is conserved in the isolated
system, has a fluctuating value. In thermodynamics, these variables are called
extensive, because usually their value is proportional to the size of the system.
The average value of the extensive variable is then determined by a control
parameter, also called an intensive variable. In the previous example, the in-
verse temperature 3 controls the expected value of the energy, the strength
of the uniform field g controls the average height of the molecules.

1.6 The Grand-Canonical Ensemble

One special case of a situation with an additional conserved quantity concerns
the number of particles N. It is special because every time one changes N
one switches to another phase space I', and to another Hamiltonian H(q, p),
defined for points (g,p) in I'. To make this point explicit, we add an index
N to the Hamiltonian and to the phase space symbol, so Hy(¢,p) and I'y.
This index N makes clear that the argument (g, p) belongs to 'y, and hence
has 6N components.

The situation of interest is a system, for instance a gas, in which the
number of particles N is not known precisely and is therefore treated sta-
tistically. The corresponding control parameter is the chemical potential p.
In daily life, this parameter is less known than the temperature. Instead one
uses the pressure of a gas as the quantity controlling the number of particles.
As we will see below, the pressure has a different role in the formalism of
statistical physics.

Ideally, the number of gas particles in a container can vary between 0 and
infinity. In the grand-canonical ensemble, which is the formalism that is now
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described, all these possible values of N are considered simultaneously. This
goal is reached by considering an infinite row of density distributions fx (g, p),

N =0,1,2,---, normalised in such a way that
=1
1=> NN . dgdp fn(q,p)- (1.31)
N=0 N

Note that the first contribution to the infinite sum equals fy and is the
probability that the system contains zero particles. Using this row of density
distributions one can calculate averages of quantities which depend on the
number of particles N and, given N, on the point (g, p) in the phase space
I'y, by the expression

o0

(A=Y ﬁ/ dgdp fn(q,p)An(q,D)- (1.32)
N=0""" I'n

Examples of functions Ay(q,p) are the energy Hy(g,p) and the number of
particles N (the latter does not depend on ¢ and p).

The Boltzmann-Gibbs distribution in this case becomes, similarly to
(1.26),

1
Z(B, 1)

The grand-canonical partition sum must be such that the average of a con-
stant is the constant itself. Taking A =1 in (1.32) yields

fnlg,p) = e~ BUHN(q.p)—nN) (1.33)

o 1 -
Z(B,p) = Z e NIB3N / dgdpe AHN(a:p)
N=0 : I'y

= Z PPN 725 (8), (1.34)
N=0

with Zn () the canonical partition sum for a system with N particles (By
convention put Zy(8) = 1).
Now one calculates

e~ B(HN(a,p)—pN)

0 = 1 / 1
0=—5S — [ dg
8[3NZ:0N!h3N e V2B,

1 0
= —W%Z(ﬁ, p) — (H — uN), (1.35)

and similarly

0 ~— 1 / 1 LN
0=— S dgdp ———— e AHN(@p)=1N)
mez::ON!h“N Iy Z(B,p)
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1 0
Z(B, 1) Op

Hence, one has the identities

Z(B, 1) + B{N). (1.36)

aa—ﬂ In Z(8, 1) = —(H) + u(N), (1.37)
0
aan(ﬁ,u) = [B(N). (1.38)

In the case of an ideal gas one can calculate Z (0, u) explicitly. One finds (see
(1.22))

InZ(B,pn) =1n Z G'B#NZN(ﬂ)
N=0

— s 1 3N/2
=In Y N ey (2mmksT) /2y N
. N=0
— ﬁeﬁ“(QﬂkaT)?’/zV. (1.39)
This implies, using the identities (1.37, 1.38),

(H) — ju(N) = (SksT — )0 Z(5, )
BIN) = Ain Z(8, ). (1.40)

Eliminating In Z (3, 1) gives the equipartition law
3
(H) = §k:BT<N>. (1.41)

On the other hand, comparing (N) = In Z(3, 1) with the ideal gas law pV =
(NYkpT, where p is the pressure of the ideal gas, yields

pV =kpTInZ(0, ). (1.42)

The latter expression shows that the logarithm of the grand-canonical parti-
tion sum is proportional to the pressure of the gas.

1.7 Quantum Statistics

The observables of a quantum mechanical model are self-adjoint operators
of a Hilbert space H. Averages of observables are determined by a density
operator p (often called a density matrix). This is a trace-class operator
satisfying the two conditions of positivity and normalisation
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In quantum mechanics the Hamiltonian H is a self-adjoint operator in a
Hilbert space H. It is the generator of time evolution, which means it deter-
mines unitary operators U(t) by

U(t) = e~ 'tH, (1.43)

The state of the system is described by a normalised element i of H and is
called a wave function. Its time evolution is given by

w(t) = ULy, (1.44)
The time evolution of an operator A in the Heisenberg picture is given by
A(t) =U(t)*AU(t). (1.45)

Using the density operator of von Neumann one has

(A() = TrpA(t)
= TrpU(t)* AU (t)
= TrU(t)pU(t)" A
= TrpU@)U(t)*A
= TrpA = (A). (1.46)

One concludes that thermal averages calculated using the density operator
of von Neumann do not depend on time. To obtain this result we used
cyclic permutation under the trace, the fact that U(t) and p commute, and

U)U(t)* =L

Box 1.3 Quantum mechanics

p>0 and Trp=1. (1.47)

There exists always a basis of eigenfunctions ¢, of p: po, = A,¢,. In this
basis, p is diagonal and can be written as

MO0 -
0 Mg+ 0 ---
p= , (1.48)

0 0 -\,

with A, > 0and > A, =1.
The average of the bounded operator A is then defined by

(A) = TrpA. (1.49)

This definition of average generalises the concept of statistical averages to
the quantum context. It satisfies two basic axioms
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i) The average of a constant is the constant itself. More precisely, if the
operator A is a constant A times the identity operator I, then one has
(A) = (AI) = Tr pAI = X because the trace operation is linear and Trp =
1.

ii) The average of a positive quantity is non-negative. Indeed, If A > 0
then it has a square root A*/2. Hence, using cyclic permutation under the
trace, one obtains

(A) = TrpA = Tr AY2pAl/?
— Tr (A1/2p1/2)(A1/2p1/2)*
> 0. (1.50)

In quantum statistics, the notion of conditional probability does not exist in
the same manner as it exists in classical statistics. In particular, the Kol-
mogorov axioms of statistics are not satisfied. Hence, quantum statistics is a
genuine extension of Kolmogorovian statistics.

1.8 The von Neumann Density Operator

The obvious generalisation of the probability distribution of Boltzmann and
Gibbs to quantum mechanics is due to von Neumann. It assumes a density
operator of the form

p= %e‘ﬁH, with Z(3) = Tre 1. (1.51)

Note that e is a function of the operator H, not a function of a scalar
argument. See the Box 1.4.

(1.51) requires that the operator e ## can be normalised to become a
density operator. This is the case if

- the spectrum of the Hamiltonian H is purely discrete

with v,,,n = 1,2, - an orthonormal basis of the Hilbert space;
: Ze’BE" < +o00.

n

This conditions are always fulfilled for quantum systems enclosed in a
bounded box. Note however that part of the spectrum of the hydrogen atom
is continuous so that the von Neumann density operator does not exist for
this system.

Like in the classical case, one can derive an identity by taking the derivative
with respect to 3 of the normalisation condition Trp = 1. One finds
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If H is an operator then it is clear what H?1) means: one should simply
apply the operator H twice on the wave function 1. In this way one can easily
define all powers of H. This gives a first way of defining exp(—SH ), namely
by the power expansion

exp(~BHYY = Y —(~B)"H" . (1.52)
n=0 """

In reality it can be very inconvenient to calculate all powers of H. Therefore,
an alternative is needed.

The operators of quantum mechanics are generalisations of what matrices
are in the context of finite dimensional spaces. To calculate a function of an
Hermitean matrix H, one can first diagonalise the matrix by changing the
basis, and then taking the function of the diagonal elements. One can verify
easily for powers H™ of H that this gives the same result as applying n times H.
Hence, if H is diagonal, with diagonal elements F1, Es, Es, - - -, then exp(—8H)
is also diagonal and has diagonal elements exp(—BE1 ), exp(—BE2), - - -.

Box 1.4 Functions of operators

_d o, 4 Ly en
O—dBTrp dﬂd (ﬁ)Tre
= —@an(ﬁ) — (H). (1.54)

Hence, the same expression for the average energy holds as in the classical
case

<m:_%mmm. (1.55)

This average energy is often called the internal energy and is denoted U =
U(T). The heat capacity, is the derivative of U

L av

Cfd—T.

(1.56)

As an example, the harmonic oscillator is treated in the Box 1.5.
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The Hamiltonian of the quantum mechanical harmonic oscillator is

1 1
H=_—"—P% —mwiQ@?, (1.57)
2m 2

with momentum operator P and position operator @. It has a basis of nor-
malised eigenfunctions vy, (¢) with corresponding eigenvalues F,, = (%—l—n)hwo.
In this basis, H is diagonal and satisfies Hy, = Ept,. Hence, exp(—0H) is
diagonal as well, with eigenvalues

e PH Y, = e BBy, (1.58)
The partition sum can be evaluated explicitly in this basis
2(8) = Tr exp(~pH)
> (¥n] exp(—BH)|vn)

oo

0
3 e fEn

n=
n=0

oo
e—Bﬁw0/2 Z e—ﬁhwon

n=0
= 1ﬁ with @ = e~ #Rwo, (1.59)

The eigenvalues of the density operator p are then given by pY,, = A\p1, with
An = (1 — a)a™. The average energy of the harmonic oscillator equals

d
U(T) =(H) = —@an(ﬂ)
__d ([ ghwo | —BRw
= dﬁ( 8 5 In(1—e ))
— B (1+;) (1.60)
T 0N\ 2 T eBRwe — 1) '

Box 1.5 The quantum harmonic oscillator

1.9 Fermi-Dirac and Bose-Einstein Distributions

For systems of fermions or bosons the evaluation of the canonical partition
sum Z([3) is not very easy because the Hilbert space of wave functions is lim-
ited to functions which are either anti-symmetric or symmetric under permu-
tation of particles. This restriction makes it difficult to actually perform the
summation over a basis of N-particle states. In such cases the grand-canonical
ensemble is more convenient.

Important examples of quantum gases are the electrons in a metal or
a semiconductor, and the lattice vibrations in a harmonic crystal (called
phonons).
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The partition function of the grand-canonical ensemble is given by (see
(1.34))

ZB,m) = 3 PN Zy(8), (L61)
N=0

where now the N-particle partition sum is given by (1.51). By convention is
Zy(B) = 1. The parameter p is the chemical potential. It controls the average
number of particles.

In the grand-canonical ensemble the average of an operator A is given by

(4) =

1 oo

BuN —BHN

e Try e An. 1.62
P . (162)

Similar to the classical case the operator A must be defined for each possible
number of particles IV and is denoted Ay when acting on N-particle wave
functions, belonging to Hy.

The grand-canonical partition sum can be calculated explicitly for the ideal
Fermi gas and for the ideal Bose gas. Assume a one-particle Hamiltonian H;
with a basis of orthonormal eigenfunctions 1; and corresponding eigenvalues
€

HyYj = €j1;. (1.63)

A basis vector of the Fock space is then determined by specifying numbers
n1,ng2, -+ where n; is the number of particles in state ;. In the case of
fermions is n; either 0 or 1, for bosons all non-negative integers are allowed.
The total number of particles equals N = Zj n;. The energy of the state
is E =) 1€ (it is assumed that the particles do not interact with each
other; this is why the model is called ideal Fermi/Bose gas). The canonical
partition sum is therefore given by

Zn(B) =3 exp(=5)_nye;) (1.64)

where Z’ is the sum over all N-particle states, i.e., over all allowed choices of
nj such that N = )" 1 The evaluation of this sum is usually quite difficult.
However, when evaluating the grand-canonical partition sum the constraint
N =}, n; can be removed. Indeed, in the Bose case one has

ZeE(B, 1) = f: ePni Z’e*ﬁ ¥, nies
N=0

= i Z Te=BE;mi(e;—n)
N=0
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ISP I G

n1=0mn2=0

:H Ze Br(ej—p)

J n;=0
1
=11 (m) - (1.65)
J

In the Fermi case the occupation numbers n; take only the values 0 and 1.
Then the partition sum equals

Zep(B, 1) = Z Z Hefﬁn] 3—H)

ny= OTLQ 0

H Z e Bnj(ei—n)

j U =0

-11 (1 L 6—6@—#)) _ (1.66)

J

The average number of particles in state j can be obtained from the ex-
pression

10
(n;) = _Ba_ejlnz(ﬁ’ 1)- (1.67)
One gets
10 1
N2 2 Ble—mw)) =~
) =F 55, In (1:te ) P e (1.68)

The minus sign holds for bosons, and is the famous Bose-Einstein distribution.
The plus holds for fermions and is known as the Fermi-Dirac distribution.

Problems

1.1. Experimental determination of Boltzmann’s constant !

An ideal gas, consisting of N identical non-interacting particles with mass
m, is enclosed in an infinitely high half-open cylinder, which is placed in a
uniform gravitational field. See the Figure 1.2.

1 1 do not know who is the author of this problem. The original experiment was
done one hundred years ago by Jean Perrin using a colloidal solution of grains with
a diameter of 0.6um each.
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Determine the value of Boltzmann’s constant kg using following experi-
mental data: ¢ = 10 m/s?, T = 300 K, m = 107!7 kg (the mass of a small
polystyrene sphere). The number of particles detected between altitudes h;
and hj;q (measured in micro meters), is denoted n;, and is given by

hj U

0 [100

25 |55

50 |31

75 |17

100|9

1.2. A quantum spin
The simplest description of the magnetic spin of a particle is by means of the
Pauli matrices. These are given by

Oy = (?é) oy = (? _g>, o, = (é _(1)). (1.69)

They satisfy 02 = 05 =02 =Tand 0.0y = 10, and 0,0, + 0yo, = 0, and

cyclic permutations of these relations.

The Hamiltonian is given by H = —puo,. Calculate the average energy
of the spin as a function of temperature. Show by explicit calculation that
(04(t)) =0 at all times.

1.3. A quantum particle trapped between two walls

Consider a quantum particle of mass m, freely moving in one dimension
between two reflecting walls, say at positions x = 0 and * = L > 0. The
eigenvalues of the Hamiltonian are

22
home

nzmn, n:O71,2,-~-. (170)

Calculate the average energy and the heat capacity as a function of temper-

ature in a high temperature approximation.
Hint: Replace the sum over the spectrum by an integration.

Note: This problem treats the quantum ideal gas in dimension 1. Because the
problem is too difficult, an approximation is used.

1.4. Two fermions in the canonical ensemble
Calculate the partition sum Zs(0) for two non-interacting identical fermions
trapped in a parabolic potential (i.e. €, = hw(n + %), n=0,1,--).

Notes

The present Chapter can be used as an introduction in a second course of sta-
tistical physics, or in a first course for more mathematically oriented students.
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The contents is fairly traditional, but is usually dispersed over many chap-
ters. By bringing the material together in one chapter the relation between
the distinct distributions is clarified.

I learned about the work of the French physicist Jean Perrin (See the
Problem 1.1) from Henk Lekkerkerker.

Objectives

1) Classical statistical mechanics

Have an idea how many molecules are contained in one cubic meter of air.

Describe a system of classical mechanics in the canonical ensemble.

Derive the Maxwell distribution from that of Boltzmann-Gibbs.

Give a practical definition of temperature.

Describe a classical gas in the canonical ensemble.

Describe a classical gas in the grand-canonical ensemble.

Know the definition of the heat capacity in the canonical ensemble.

Calculate the partition sum of the classical ideal gas in the canonical en-

semble.

e (Calculate the partition sum of the classical ideal gas in the grand-canonical
ensemble.

e Know the ideal gas law.

e Calculate averages by taking derivatives of the logarithm of the partition

sum.

2) Quantum statistics

e Know what is a density operator (density matrix).

e Describe a quantum system in the canonical ensemble.

e C(alculate the average energy and the heat capacity of a harmonic oscillator
as a function of temperature.

e Derive the Bose-Einstein and Fermi-Dirac distributions for an ideal gas.

References

1. Gibbs, J.W.: Elementary principles in statistical mechanics. Reprint. Dover, New
York (1960) v, 5, 56, 66



Chapter 2
Statistical Models

2.1 Parameter Estimation in Statistical Physics

Linear regression is the statistical procedure most known by physicists. The
Figure 2.1 shows a linear fit on semi-logarithmic paper to the data of the
Problem 1.1. Less known is that linear regression is an example of what is
called a model belonging to the exponential family A definition of this no-
tion follows later on). The parameters of such models can be estimated by
measuring quantities, called estimators. In statistical physics these estima-
tors are called extensive variables because usually their average values are
proportional to the size of the system. The averages of extensive variables
are called extensive parameters. In contrast, the parameters of the model are
called intensive parameters.

A well-known model of statistical physics is the Ising model on a chain or
on a (finite part of a) square lattice. This model also belongs to the exponen-
tial family, by construction. It has 2 parameters, the inverse temperature
and the external magnetic field h. Its Hamiltonian, in the case of the chain,
is given by

N-1 N
H(o)=—-J Z OnOnt1 — h Z On.- (2.1)
n=1

n=1

In this expression the o, are stochastic variables that can take on the values
+1. This Hamiltonian is used to write down a probability distribution

pon(0) = m exp(—BH(0)). (22)

The normalisation Zy (0, h) is called the partition sum and is given by

N(B,h) = exp(—BH(0)). (2.3)

J. Naudts, Generalised Thermostatistics, DOI 10.1007/978-0-85729-355-8_2, 21
©) Springer-Verlag London Limited 2011
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In(height)

2 | | |

0 1 2 3 4
Fig. 2.1 Linear fit to the logarithm of the experimental data of the Problem 1.1

In this expression, the sum )  extends over all possible values of each of the
spin variables o,,.

It is our intention to put the linear regression model and the Ising model
on the same footing. To do so requires some work. For the linear regression
model we have to introduce a probability distribution p(y), which depends on
3 parameters, the slope a and intercept b of the fitted line, and the root mean
square error o of the fit. We also have to introduce a Hamiltonian H, like
that of the Ising model. More precisely, we will introduce 3 extensive variables
Hj., one for each of the intensive parameters. Indeed, the Hamiltonian of the
Ising model, with its 2 parameters, is the sum of two pieces, one related to
the interaction energy, the other due to the external field (here, the size N is
not considered as a parameter, although that is a possibility).

Next, the two above mentioned models are considered in the context of sta-
tistical parameter estimation. The extensive variables are used as estimators,
whose average value can be used to calculate the parameters of the model. In
case of linear regression this is clear: the empirical values of the three exten-
sive variables will be used to obtain the fitting parameters a, b, and ¢. In case
of the Ising model the interaction energy Hy = —J ) 0,0,41 and the total
magnetisation Hy = ) 0, can be used to estimate the inverse temperature
0 and the strength of the external field h. The latter looks a little bit strange
because experimental measurement of the interaction energy is usually more
difficult than measuring temperature. We will come back to this point later
on.
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2.2 Definition of a Statistical Model

A model, in the present context, is a probability distribution py, depending
on a finite number of parameters 8, - - -, 6™, together with a set of extensive
variables Hy,---, Hy,, which can be used to estimate the value of the model
parameters. The expectation value is denoted (-)p and is defined by

(A)g = /da:pg(z)A(z). (2.4)

In this expression, A(z) is an arbitrary quantity whose value depends on the
events x. In the mathematical literature it is called a stochastic variable.
We always assume the existence of a function @(6) such that

0P
<Hk>9:_Wa k=1---m. (2.5)

Such a function ¢(), called a potential, exists provided that

0 0

1 (Hr)o = W(

701 Hp)g for all &, 1. (2.6)

Its physical meaning is that of a Massieu function (this is a kind of free energy,
well-known in thermodynamics [2]). The precise definition of the Massieu
function follows in the next Section.

The estimators Hy, are said to be unbiased if (Hy)p = 0*. For example, the
kinetic energy of a particle in a classical’ gas, multiplied with an appropriate
constant, is an unbiased estimator of temperature T. However, most extensive
variables of statistical physics are biased estimators.

A quantum model exists of a density operator? pyg, depending on a finite
number of parameters 6, - -, 0™, together with a set of self-adjoint® opera-
tors Hy,---, H,,, which can be used to estimate the value of the model param-
eters. These operators are the extensive variables of the quantum model. The
expectation value of an arbitrary operator A is denoted (-)¢ and is defined
by

<A>9 =Tr peA. (2.7)

Characteristic for quantum models is that the operators Hy, ---, Hp,,
used to estimate the parameters 6, do not necessarily commute between
themselves. See the example of Box 2.1.

1 this means, neglecting quantum effects
2 see Chapter 1
3 this is, Hermitean (neglecting some mathematical details)
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The simplest quantum-mechanical example concerns a magnetic spin de-
scribed in terms of Pauli matrices o,k = 1,2,3. These are defined by

a=QD) w=() oG e

They satisfy the relations 0% = 0'% = a% =1, 0102 = —0201 = i03, and cyclic

permutations of the latter.
An arbitrary density operator in the Hilbert space C? can be written as

pr == (I—=rF0y), (2.9)

N | =

with parameters ri,r2,rs satisfying |r|2 = Y r2 < 1. See the Figure 2.2.
The Pauli matrices are the extensive variables of this model, which is known
as the Bloch representation of the Pauli spin: Hy = o,k = 1,2,3. A short
calculation gives

1
(ok)r = 5 Tr (I— nal) oK = —Tk. (2.10)
The potential ®(r) is given by

1
&(r) = 5|r|2 + constant. (2.11)

Box 2.1 Quantum spin example

Fig. 2.2 The Bloch sphere. The top point corresponds with the pure state vector

(?), the bottom point with <(1)>
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2.3 The Exponential Family

Here we show that the linear regression model belongs to the (curved)
exponential family. Let

91:% Hl(y):_znxnyn
9220—% Ha(y) = =32, Yn
03 = -5 H3(y) =3, 9n

Then one calculates

N
/dy1 "'/dyN e~ 0" Hi(y) — H /dyn e—#(yi—?yn(azn—}—b))
n=1
o 1
— (2702)N/2 b2,
(2mo”) nl;[lexp 202(@:5 +b)

Hence a properly normalised probability distribution pg(y) is obtained when
the normalisation is fixed by

1

N N
D(0) N In 20?2 + —r Zl(a:tn + b)2
n=
N

20

N 63 1 2 PR

2 T

Three identities are now obtained by taking derivatives

b N N
<H1>9 = _ﬁ:_azxi_bzx"
n=1 n=1
b al
(H2)p = ——= = —a Z Ty — N
002 =
oD al
(Ha)o = =225 = No® + ) (azn +b)°.
m=1l

These imply the famous fitting formulae

_ 1 (@)(H2) = (H1) _ 1 (zy) = (@)(y)
N (z?) = (x)? N (2?) = (z)?

b=~ (H2) — ala) = {y) — a(a).

Box 2.2 Linear regression
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The notion of a statistical model has been explained in the previous sec-
tion. Some statistical models are much easier to analyse than others. This is
the case for models belonging to the exponential family. A good understand-
ing of this property, shared by many models, is essential for the present book.
It is the corner stone of the first part of the book and is generalised in the
second part. The reason why it is so important is that it is the mathemat-
ical characterisation of the Boltzmann-Gibbs distribution as it is known in
statistical physics — see Chapter 1. The second part of the book deals with
generalisations of Boltzmann-Gibbs. These generalised probability distribu-
tions are characterised by the property that they belong to a generalised
exponential family.

A statistical model is said to belong to the exponential family if its prob-
ability distribution can be written into the form

po(z) = c(x) exp(—D(0) — 0% Hy.(z)). (2.12)

Note the use of Einstein’s summation convention (the summation over the
index k is implicit). It is essential that the prefactor ¢(z) and the extensive
quantities Hg(x) do not depend on the parameters § while the normalisation
function @(f) does not depend on the random variable z. Of course, the
prefactor ¢(x) may not be negative. It plays the role of a prior probability,
although )" c(x) is not necessarily normalised to one. Therefore, it is a
weight, rather than a probability distribution. In the physics literature the
normalisation ¢(f) is usually written as a prefactor and is then called the
partition sum Z(6). The relation between these functions is @(0) = In Z(6).

It might be necessary to introduce new parameters to bring a statistical
model into the canonical form (2.12). Indeed, consider for example the Poisson
distribution

n

@
pn)=—e %  n=012--, (2.13)

n!
with parameter o > 0. Introduce a new parameter § = —Ina. Then the

distribution can be written into the form (2.12), with

c(n) = % (2.14)
&(0) = exp(—0) (2.15)
H(n) =n. (2.16)

This shows that the Poisson distribution defines a 1-parameter model belong-
ing to the exponential family.

It is clear that the Ising model belongs to the exponential family. In fact,
from the definition of the canonical ensemble follows that all its models belong
to the exponential family as well. To see that the linear regression model
belongs to the exponential family requires some work. See the Box 2.2. An
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example of a probability distribution not belonging to the exponential family
is the Cauchy distribution

1 a
T2+ a?’

p(z) = (2.17)

where a is a positive parameter. This function is also called a Lorentzian.

A nice property of models belonging to the exponential family is that it
is easy to calculate the averages (Hy)p in terms of the parameters 6. Indeed,
from the normalisation condition 1 = | dz pg(x) follows

= g% /dl‘pe

= /dxpe(x) <—% - Hk(x)) ) (2.18)

op
00k

This implies
= 7<Hk>g. k= 1,~~,m. (219)

This is a well-known formula of statistical physics: extensive parameters are
obtained by taking derivatives of the logarithm of the partition sum with
respect to control variables. This expression also shows that ®(6) is the po-
tential function mentioned earlier in (2.6). In the next Chapter on thermo-
dynamics it will be argued that the function @(8), as appearing in (2.12), is
Massieu’s function.

In the linear regression model the empirical values of the estimators Hy are
used as a best guess for the average values (Hy). Next, (2.19) is used to obtain
estimated values of the model parameters. One can wonder whether this is
an optimal procedure. This kind of question is addressed in the maximum
likelihood method. In this approach one poses the question what is the most
likely value of the model parameters, given a sample of the total population.

In statistical physics, it is tradition to proceed in a different manner. Mod-
els (like the Ising model) can be so complex that most effort goes into the
evaluation of @(#) as a function of §. The result is then used to calculate av-
erages (Hy)g as a function of the parameters . This functional dependence
is finally compared with experimental results, often in an indirect manner.

2.4 Curved Exponential Families

As said before, a probability distribution of the form

pe(x) = e(z) exp(~D(0) — 0% (¢) Hy(x)), (2.20)
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The probability density function of the normal distribution is

fa,o(u) = \/2;7 exp <—%(u — a)2) . (2.21)
It can be written as
f(u) = exp (—=9(0) — 61 H1(u) — 02 Hz(u)), (2.22)
with
Hi(u) = %:2 Ho(u) =u, 6= % i = _g%’
B(9) = %Z—f - %1n(27r91). (2.23)

The curved coordinates are o = (1(6) = 1/v/01 and a = (2(0) = 02/60;. One
verifies that

1 o 1, 1,

5(u2> = (H1) = %%1 70+ 50
(u) = (H2) = “26; = (2.24)

Box 2.3 The normal distribution

involving functions 6% (), is still considered to belong to the exponential fam-
ily because reparametrisation is allowed. If the transformation 6(¢) is nonlin-
ear then the model with probability distribution p, is said to belong to the
curved exponential family. A well-known example of the curved exponential
family is the normal distribution, also called the Gauss distribution. See the
Box 2.3. Also the linear regression model is curved. See the Box 2.2.

Now, the normalisation condition implies

0
0= 8—@/dmp<(x)

= /dxpg(x) (_88—5“ — g—g,iHl(x)) . (2.25)

oo 6"

ack = —@<Hz><,

Hence,

(2.26)

l
ack

erate then this set of equations is underdetermined and it is not possible to

which is not of the form (2.5). If the matrix with components is degen-
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obtain the extensive parameters (H;)y as a function of the intensive ¢* just
by solving this set of equations.

2.5 Example: The Ising Model in d=1

It is easy to calculate the partition sum of the Ising chain with A = 0.
Introduce new stochastic variables 7, = 0,0,+1. Then the partition sum
reads

N—-1
ZN(B,h=0)=2> exp(BJ > Tn)
T n=1

N—1
= 9 H Z exp(BJTy)

n=1r1,=+1
= 2(2cosh(B8J)N 1. (2.27)

Box 2.4 Partition sum of the Ising chain with h =0

The probability distribution pgj of the one-dimensional Ising model is
given by (2.2) in terms of the stochastic variables o, n = 1..N (called spin
variables). The actual probability space is the set I' of all configurations.
Each configuration assigns the value £1 to each of the spin variables. See
Figure 2.3 for an example of a configuration with NV = 6. The normalisation
condition is

> pan(z) =1 (2.28)

xzel’

The number of configurations is 2V and increases exponentially with increas-
ing value of N. Hence, one can expect that individual probabilities pg (z)
are very small numbers.

The Ising model, as defined by (2.2), is called the model with open bound-
ary conditions, or still, the Ising chain. Its partition sum Zy (8, h) can be

Fig. 2.8 Configuration of spins
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Here, we calculate the partition sum of the d = 1-Ising model with periodic
boundary conditions, using the transfer matrix method.
Write the partition sum as

N
ZN(ﬁ, h) E Z H exp <ﬂJO’n0'n+1 aF %ﬁh(an +O’n+1) 9 (229)

o n=1
where o1 is identified with o1. Next, notice that this is still identical with
N . eBI+BR =8I
Zn(B,h) = Tr T with T = o—BJ  GBI—Bh ) (2.30)

The two eigenvalues of this matrix are

At = eP7 cosh(Bh) £ \/6_25“1 + €287 sinh?(Bh). (2.31)
The result is
Zn(B,h) =AY + AN, (2.32)

In the limit of large N, the so-called thermodynamic limit, only the largest
eigenvalue is important. The result then simplifies to

InZn(B,h) = NIn A +---. (2.33)
Expansion for small values of h then gives

In Zn(B,h) = Nlncosh(BJ) + NIn (2 +e*7(Bh)% +---).  (2.34)
Box 2.5 Partition sum of the d = 1-Ising model with periodic boundary conditions

calculated in closed form when h = 0. See the Box 2.4. A slight modification
of the model allows to calculate Zn (8, h) in closed form for all values of the
parameters. Adding one term to the Hamiltonian, (2.1) becomes

N-1 N
H(o)=—=J > 0nops1 —Jonor —hy_ on. (2.35)
n=1 n=1

The probability distributions, defined by (2.2) with the modified Hamilto-
nian, are called the Ising model with periodic boundary conditions, or, the
Ising model on a circle. Its partition sum Zx (3, h) can be calculated in closed
form by the transfer matrix method. See the Box 2.5.

By taking derivatives of In Zx (8, h) with respect to 3, respectively h, one
obtains the averaged quantities —(H) and (M), with M(c) = Zgil On
the total magnetisation. The resulting expressions are rather complicated. A
series expansion for small values of (3h)2, together with the approximation
that the system size N is large, gives
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<H> :—NJtanhﬂJ—N(571+J)62BJ(ﬂh)2+”'

(M) = Ne?PT(Bh) + - --. (2.37)

Some observations can be made here.

e Both (H) and (M) are linear in the size of the system N. For this reason,
H and M are called extensive variables.

e The average energy (H) is a decreasing function of 8 at constant h. Hence
it is an increasing function of the temperature T (the relation between
both is 8 = 1/kpT, where kp is Boltzmann’s constant; it converts degrees
Kelvin into energies, measured in Joule). (H) is also called the internal
energy. Its derivative with respect to temperature is the heat capacity. A
system with negative heat capacity is unstable. Its temperature drops while
heating the system. Examples of such behaviour are known in astronomy.

e The average magnetisation (M) vanishes when h = 0. The derivative of
(M) with respect to h is called the static magnetic susceptibility.

e The Massieu function In Zn (0, h) is a real analytic function of § > 0 and
h. The occurrence of a singularity in the function

6(8.h) = Jim % In Zn (5, h) (2.38)

would be associated with a phase transition. These are discussed in a
later chapter. The Ising model on a square lattice exhibits such a phase
transition.

2.6 The Density of States

Let be given a continuous distribution pg(z) of the form (2.12), belonging
to the exponential family. It quite often happens that one is only interested
in calculating average values of quantities which depend only on the average
values Fj, of the Hamiltonians H(z). In such a case it is advantageous to
introduce the density of states

w(E) = / dac(x) [ [ 6(H(x) — Ex). (2.39)

k

Indeed, the average of a quantity A, which depends only on the Hy(z), is
then obtained by

() = [ dopola) A(H(z)
= /dEw(E)e’ds(e)’ekE’“A(E). (2.40)
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=
-

Fig. 2.4 Constant energy lines in the phase space of a harmonic oscillator

Take for example the classical harmonic oscillator. Its Hamiltonian is

Lo 1 59
H(z) = H(p,q) = 5" + ;mwq” (2.41)
The states of equal energy F in the two-dimensional phase space I' form
an ellipse — see the Figure 2.4. Intuitively, one would then guess that the
density of states increases with the energy E. However, this is wrong. A
careful calculation gives

1
_h/ /dp(5 —p +2mw0q —FE)
:i/ /dv§ + 12— E)

= hwo/ rdr 6(r® — E)

[ee]

1
— _E
ﬂhwo ; dsd(s )

- T 2.42
T (2.42)

w(E)

This shows that the density of states of the classical harmonic oscillator is a
constant, independent of the energy £ > 0.

2.7 The Quantum Exponential Family

A quantum model is said to belong to the quantum exponential family if its
density operator can be written into the form

po = exp(—0FHy) = exp(—®(0) — 6% Hy,), (2.43)

1
Z(0)

with self-adjoint operators Hj and with normalisation
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Consider the Bloch representation of the Pauli spin — see the Box 2.1. Let
us show that one can write
1

= — X, 0oy 2.45
Z(r)e (2.45)

Pr
with 0% = 0% (r) and

Z(r) = Tre %% = 2cosh ). (2.46)

In particular, this model belongs to the curved quantum exponential family.

In order to prove (2.45, 2.46), chose a basis in which p, = % (I — r"’ok) is
diagonal. This is equivalent with assuming r1 = r2 = 0. In that case it is clear
that pr = % exp(—0s03) with tanh 03 = r3 and Z = 2 cosh 03. By going back
to the original basis §303 transforms into a matrix of the form #* . The trace
of a matrix does not depend on the choice of basis. Hence,

Z = 2coshf3 = 2/y/1 — tanh? 5 = 2/4/1 — r2. (2.47)

Under a change of basis the length of the Bloch vector does not change. Hence,
(2.46) follows.

Box 2.6 The Bloch sphere belongs to the quantum exponential family

Z(9) = Tr exp(—6*Hy),  @(0) =InZ(H). (2.44)

Note that in the example of the ideal gas of bosons or of fermions, dis-
cussed in Chapter 1, the relevant observables Hy, N, and n;, two-by-two
commute. However, in general, the operators Hy do not mutually commute,
except of course in the one-parameter case. As a consequence, several prop-
erties, which hold classically or when the Hj; mutually commute, cannot
be easily generalised. But thanks to the property called ‘cyclic permutation
under the trace’ the basic relations (2.19), with @(0) = In Z(6), still hold.
Indeed, one has

o6 1 0 - _gn
= - _—— T 1
a0 — Z(0) 9%  ©
1 - 10 ! n
= 2@ 2 wagr O
LS LS oty i) oy
Z(0) o n! =
1

Z—G) HTL’I‘I'(—GZHI)H_l(—Hk)

1
- Z(0)

I
| =
gt

l
Tre™* H’Hk
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= —<Hk> (2.48)

A reparametrisation of the parameter space is allowed. In this case the
expressions become

exp(—0*Hy), (2.49)

1
p¢ = Z(0)
with self-adjoint operators Hj, with 6% = 6¥(¢), and with normalisation
Z(0) = Tr exp(—6*Hy). (2.50)

The model is said to be curved if the transformation 6(¢) is non-linear. For
an example, see the Box 2.1.

Note that one cannot add a prior weight (the ¢(z) in (2.12) and (2.20)) in
the definition of the quantum exponential family because it would spoil the
property of cyclic permutation under the trace, essential in the calculation of
(2.48).

Problems

2.1. Correlations in the one-dimensional Ising model

Calculate {010, for the one-dimensional Ising model with periodic boundary
conditions, in absence of an external field (this means h = 0). A quantity like
(o10,,) is an example of a two-point correlation function *

2.2. The Gamma distribution
The density function of the Gamma distribution is given by
pk—1 efa:/b

T (2.51)

p(z) =
It coincides with the exponential distribution when ¥ = 1. Show that the

Gamma distribution belongs to the exponential family with two parameters
Glzlfkand%:l/b.

2.3. Example of the quantum exponential family
Show that the density matrix

0 0
p9<01_9), 0<f<1, (2.52)

belongs to the curved quantum exponential family.

4 In fact, (c10n) — {01) (o) is a correlation function. But (1) = {o5) = 0 holds
when h = 0.
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2.4. Density profile of the earth — See [1].
The mass density of the earth p(r) decreases as a function of the distance r
to the centre of the earth. Assume a perfect sphere. The radius R, the mass
M, and the moment of inertia J are experimentally known. Experimental
numbers are R ~ 6.36 x 10° m, M ~ 6.0 x 10%* kg, and J ~ 4.0 x 10%7 kg
m3. Predict the density at the centre of the earth.

Hints Discretise the density p(r) by dividing the sphere into N shells of
equal volume V = 47 R?/3N. This introduces N variables py, - - px, satisfy-
ing

1 3M
Hi(p) = 5D pn = (2.53)
N — 47 R3
N
1 ) )
Hy(p) = ~575 2 pu(n* = (n = 1)) = 15, /4n .
n=1

(2.54)

Next assume a probability distribution py(p) belonging to the two-parameter
exponential family with Hamiltonians H;(p) and Hs(p). Fix the parameters
61,62 so that (H;) = 5568 kg/m® and (Hs) = 4588 kg/m?. Finally, integrate
po(p) over all p; but that of the most inner shell to obtain the probability
distribution of the latter.

Result The predicted density at the center of the earth is 17140 kg/m?
(do not take this result too serious!).

2.5. Binomial distribution
Fix an integer n > 2. The binomial distribution is given by

pa<m>=(;;)am<1—a>”m7 m=01 - m0<a<l.

(2.55)

Show that as a function of the parameter a it belongs to the curved expo-
nential family.

2.6. Weibull distribution
Fix positive parameters k and A\. The Weibull distribution is defined on the
positive axis by

s =3 () e (2.56)

For k = 1 this is the exponential distribution, for k = 2 this is the Raleigh
distribution. Show that as a function of A it belongs to the curved exponential
family.
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Notes

The present chapter is inspired by a paper [3] on parameter estimation in
the context of generalised thermostatistics. But most of the contents of this
Chapter is fairly standard.

The problem of estimating the state of a quantum system has started only
recently — see for instance [4] and the references quoted there.

Objectives

Explain the notion of an estimator.
Know how to describe an n-parameter model of statistical physics, both
classically and quantum mechanically. Give an example of each of these.
e Give the definition of the exponential family, with and without curvature.
Give examples.
Show that the linear regression model belongs to the exponential family.
Calculate the average value of an estimator of a model belonging to the
exponential family, by taking a derivative of the Massieu function.
e Solve the 1-dimensional Ising model both with open and with periodic
boundary conditions.
e Give the definition of the quantum exponential family.
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Chapter 3
Thermodynamic Equilibrium

3.1 Thermodynamic Configuration Space

Thermodynamics assumes that the experimental measurement of average val-
ues is limited to only a few extensive variables. In the example of the Ising
model (see the previous Chapter) only two such variables, total energy E
and total magnetisation M are considered. These are the thermodynamic
variables. We will use the generic notation Uy, k = 1,---,s for them. It is
obvious to let coincide these thermodynamic variables with the expectation
value (H})g, used before to estimate model parameters 6%

The set of values attained by the average values of the thermodynamic vari-
ables is the thermodynamic configuration space'. In the simple setting of two
thermodynamic variables, referred to above, the set of values ((E)g, (M)g)
forms a subset of the plane R?. This subset of the plane is the thermodynamic
configuration space.

We assume that the knowledge of the average values Uy suffices to deter-
mine the parameters 6% of the statistical model. Hence, there exists a unique
po such that Uy = (Hg)p. In the present Chapter it is assumed that the
probability distributions pg of the statistical model coincide with the ther-
modynamic equilibrium states. The notion of thermodynamic equilibrium is
discussed further on. It is related to that of thermodynamic stability. For
further use, let us introduce the space £ of all physically allowed probability
distributions. These are the distributions that yield the same expectation of
the variables Hy as one of the model distributions py. In formulae this reads

1 It is common to add entropy S as a coordinate of the thermodynamic configuration
space and then to consider in this space a manifold of equilibrium states. See for
instance Callen [1], Section 4.2. But then the statement that “each point in the
configuration space represents an equilibrium state” is not correct. For that reason
we will not consider entropy as a thermodynamic variable but give it a special status
as a function of the thermodynamic variables.

J. Naudts, Generalised Thermostatistics, DOI 10.1007/978-0-85729-355-8_3, 37
©) Springer-Verlag London Limited 2011
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E = {p: there exists # such that
> " p(7)Hi(j) = (Hy)o for all k}.
jeJ
(3.1)

Of course, the py themselves belong to £, as well as many other probability
distributions. Stability concerns the question what happens when the equi-
librium distribution py is replaced by some arbitrary probability distribution
p in &, reproducing the measured values Uy = (Hy)g of the estimators Hy.

3.2 Maximum Entropy Principle

In statistical physics, the maximum entropy principle, proposed by Jaynes
[4, 5], is a means to select one probability distribution out of the set & of
all physically allowed probability distributions. It relies on the concept of
entropy, which is a difficult notion, almost 150 years old (Clausius, 1865 —
see [6]).

The origin of entropy lies in thermodynamics. It is most known from the
second law of thermodynamics, which roughly states that entropy of a closed
system can only increase with time. Entropy is now used in many domains of
science, not always with the same meaning. Here we will distinguish two def-
initions, that of thermodynamic entropy and that of the entropy functional,
which is used in statistical physics, in information theory, as well as in other
areas of science.

The entropy functional S(p) is a real concave function, defined on the
convex set € of probability distributions p. From these probability distribu-
tions p one selects the probability distribution that maximises S(p) under
the constraint that the average values (Hy), have the desired values Uj. This
selected p is denoted p* and is called the equilibrium state of the model for
the given values U}, of the thermodynamical variables.

Jaynes justified the maximum entropy principle with arguments from in-
formation theory. The entropy S(p) can be interpreted as a negative infor-
mation content of the probability distribution p (Shannon, 1948). See the
Box 3.1. Hence the maximum entropy principle proposes to select that prob-
ability distribution which has the lowest information content. In this way, no
biased information is added to the available information that the (Hy) have
the desired values Uy.
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Shannon’s source coding theorem states that in the most efficient way of en-
coding messages, called entropy encoding, the number of bits used to encode a
given message is proportional with the logarithm of 1/p, where p is the prob-
ability with which this message occurs. The less probable a message is, the
more information it contains. Hence, In(1/p) is a measure for the amount of
information contained in the message. If the logarithm with base 2 is used then
Inz (1/p) is the number of bits that is needed to encode the message. To see
this, note that with n bits one can encode 2™ different messages. Giving each
of them equal probability p = 27" the quantity Ins(1/p) indeed equals n.

The entropy S(p) = — Y, piIn2(p;) is then the average amount of infor-
mation contained in a message i, selected randomly with probability p; from
the set of all possible messages.

Box 3.1 Entropy in information theory

3.3 The Boltzmann-Gibbs-Shannon Entropy Functional

The entropy functional that is most often used is that of Boltzmann and
Gibbs. Later on, Shannon used it to establish information theory. The rea-
son for this general use of this entropy functional is that it is intimately
related to the exponential family. Indeed, any discrete probability distribu-
tion belonging to the exponential family automatically is the solution of a
maximum entropy principle involving the Boltzmann-Gibbs-Shannon (BGS)
entropy functional. See the Box 3.2.

Let us start with a discrete probability distribution. Events j € J have
probabilities p(j). They must be properly normalised

S pG) = 1. (3.5)

jeJ

Then the entropy functional S(p) is defined by

() = —ka 3 p(5) 0 20, (3.6)
JjeJ

where ¢(j) is a weight satisfying ¢(j) > 0 for all j € J. This weight can be
used to encode information which does not depend on the parameters of the
model. One often gives the previous definition with ¢(j) = 1. However, in
what follows, the more general definition (3.6) is needed.

The function f(z) = —xInx is positive in the interval (0,1). See Figure
3.1. Hence, if p(j) < ¢(j) for all j € J, then each of the terms in (3.6) is non-
negative. In that case, the sum either converges or diverges to +o00, and the
value of the entropy S(p) belongs to the interval [0, +oc], infinity included.

The fundamental property of any entropy functional is its concavity. By
definition, this means that for any pair of probability distributions p and ¢
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Theorem 3.1. Assume that the discrete probability distribution pg belongs to
a curved exponential family with a weight ¢ and estimators Hy. Then any
probability distribution p which satisfies 3. ; p(§)Hy(§) = (Hi)o for all k,
also satisfies S(p) < S(pg).

Proof

Assume that

po(4) = c(j) exp(—=2(0) — C*(O)Hr(j)), je€ (32)
Then one has, denoting f(z) = —zInz, and using the concavity of f(z),
S(p) = Z:paﬁ(po)) Z:() mU)
=

<[ So6) | - TrGmPL. (3.3)
jed i °(7)
Note that f(3°.c ;p(4)) = f(1) =0 and

=Y p() Pe((ﬂ)) 3" p(5) (®(6) + C*(O)Hi(5))
JEJ JEJ
= &(0) + ¢"(0)(Hx)o
=" po(j) (8(0) + ¢*(O) Hy ()
jeJ

= S(po). (3.4)

Hence, S(p) < S(pg) follows.

Box 3.2 Theorem stating that any discrete probability distribution belonging to the
(curved) exponential family automatically is the solution of a variational principle

one has

SAp+ (1 =X)gq) =2 AS(p) +(1-=A)S(g), 0<A<L
(3.7)

The Boltzmann-Gibbs-Shannon entropy functional inherits this property
from the function f(z) = —zlnz. For a smooth function f(x) to be concave
it is enough to check that its second derivative f”(x) = —1/x is negative. The
concavity of the entropy functional is fundamental because it implies that by
taking averages the entropy cannot decrease. Note that a function is said to
be convex if minus the function is concave.



3.4 Applying the Method of Lagrange 41

Fig. 3.1 The function —zInx

3.4 Applying the Method of Lagrange

The direct application of the maximum entropy principle is not very easy.
What one needs is a method to find the probability distribution that max-
imises the entropy functional within a set of distributions all having the right
expectations for the thermodynamic variables. Of course, in the case of the
BGS-entropy we know (part of) the answer because the probability distribu-
tions belonging to the exponential family maximise this entropy. But for other
entropy functionals, or, when additional constraints are present, a technique
is needed to find the maximising probability distribution.

The method of Lagrange parameters is most suited to solve this problem.
One introduces Lagrange parameters 8%, k = 1,---, s, and «, and maximises
the function

L(p) = S(p) — 0" (Hy), — azp(j)- (3.8)

The parameter o must be chosen in such a way that the normalisation con-
dition »_; p(j) = 1 is satisfied. The parameters 6% must be chosen in such a
way that the averages (Hy), have the desired values Uy.

In the case of the BGS-entropy functional one has

Zp 9'“219 )Hy(j —aZp

Variation with respect to p(j) yields the condition

0=—In %;— —a— 0" Hi(5). (3.10)
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This can be written into the form

p(j) = c(j) exp (=@ — 0¥ Hy.(5)) - (3.11)

with @ = 1+ «. Hence, the solution of the optimisation problem found by the
method of Lagrange is precisely the exponential family pg with parameters
6% and with estimators Hj,.

3.5 Thermodynamic Entropy

The thermodynamic entropy is a function S(U), with real values, possibly
infinite, defined for points U in the thermodynamic configuration space. It is
defined by

S(U) =sup{S(p) : p € € and (Hy), = Uy, for all k}.
(3.12)

The probability distribution p that maximises (3.12), when unique, is the
equilibrium distribution at the given values of the thermodynamic variables
Ug.

In the case that the entropy functional S(p) is that of Boltzmann-Gibbs-
Shannon then we know that the distributions pg of the exponential family
with parameters 0% and with estimators Hj maximise S(p). Hence, in that
case it is true that for each choice of 6%, if (Hy)g = Uy, then S(U) = S(ps).
In particular, pg is the equilibrium distribution in the point U of the ther-
modynamical configuration space.

Tt is not very common to express thermodynamic entropy S(U) as a func-
tion of energies Uy. Usually, this is done only in the context of what is called
the microcanonical ensemble, where the conserved quantities Hy have pre-
cisely known values. This is not the present context since here we only re-
quire in (3.12) that the averages (Hy), have specific values Uy, while in the
microcanonical ensemble one requires that all events j with non-vanishing
probability p(j) have values Uy. Instead of working with S(U), one works
with its contact transform, also called the Legendre transform. For doing so,
it is important to note that S(U), as defined by (3.12), is automatically a
concave function. This follows from the concavity of the entropy functional
S(p) — see the Box 3.3.

By definition, the Legendre transform of the entropy S(U) is the Massieu
function ¢(6)

9(0) = sup{S(U) ~ 0T}, (3.15)

The supremum runs over all points U of the thermodynamic configuration
space. The resulting function is automatically convex. Because S(U) is con-
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Let U; and Uz be two points in the thermodynamical configuration space,
and choose X in [0,1]. For any pair of probability distributions p1 and pa,
satisfying (Hy)p, = Uik, ¢t = 1,2, is

S(U) > S(Ap1 + (1 — N)p2)
> AS(p1) + (1 = A)S(p2)- (3.13)

Because p1 and p2 are arbitrary there follows

S(U) > AS(U1) + (1 — \)S(Ua). (3.14)

Box 3.3 Concavity of entropy as a function of energy

cave, the inverse transform
S(U) = inf{e(9) + 0* UL} (3.16)

yields back the function S(U). For each U in the thermodynamic configu-
ration space for which S(U) is finite there exists usually a unique 6 such
that the minimum in (3.16) is reached. This correspondence between U and
0 defines a function 8(U). Moreover, it is known from the theory of contact
transforms that this function is explicitly given by

oS
oF = ——. 3.17

a0, (3.17)
This function 6(U) solves the estimation problem what parameter values
0% correspond with the thermodynamic values Uy. Similarly, for each set of
parameters 6% there exists usually a unique point U in the thermodynamic
configuration space such that the maximum in (3.15) is reached. Then these

functions Uy () are given by

oo

Uk - <Hk)>9 - _W

(3.18)

In any case, given a matching pair (U, 8) one has the thermodynamic relation

S(U) — &(8) — 68U, = 0. (3.19)

The relations (3.17, 3.18) together form a pair of dual identities.

The Massieu function @(6), although of respectable age (1869), is not very
well known. The notion used instead is that of free energy, which is a contact
transform of the energy, not of the entropy. The link between both is usually
straightforward. For example, in the Ising model, the free energy F(T,h) is
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given by

F(T,h) =U — TS — hM (3.20)
while the Massieu function ®(8, h) is given by

&(B,h) =5 —pU + phM. (3.21)

In this case, the thermodynamic entropy S = S(U, M) is a function of the
energy U and the total magnetisation M. The relations (3.17) become

1 0S 08

ﬂ:— and ﬂh:iﬁ—M

=37 (3.22)

The former equation is often used as definition of the temperature T.

3.6 Relative Entropy

Let us from now on assume that the entropy functional S(p) is that of
Boltzmann-Gibbs-Shannon. As discussed in the previous Section, this im-
plies that S(U) = S(pg) with parameters 6% such that (Hy)g = Uy, and with
pe belonging to the exponential family. Then one calculates

D(0) + 08 (Hy)g
= o(0) + 0*U,. (3.23)

Comparison with the thermodynamic relation (3.19) shows that &(6), which
enters the definition of the exponential family as the normalisation constant,
does indeed coincide with the Massieu function as defined in (3.15).

For any probability distribution p in £ holds that (see the Box 3.2)

S(p) S S(pg) = S(U) with Uk = <Hk>9 = <Hk>p

(3.24)
From the definition (3.15) then follows that
S(pe) — 0" (Hi)g = ®(6)

> S(p) — 6" (H),. (3.25)

Hence the quantity D(p||pg), defined by
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D(pllpo) = (S(po) — 6*(Hy)o) — (S(p) — 6" (Hy)p) (3.26)

cannot be negative. The r.h.s. of (3.25) can be considered to be a non-
equilibrium value of the Massieu function, given that the state of the sys-
tem is described by the probability distribution p instead of the equilibrium
distribution py. Then the positivity of (3.26) means that, once the set of pa-
rameters 6y, is fixed, the non-equilibrium Massieu function is maximal for the
equilibrium distribution pyg.

The expression (3.26) can be written as

D(pl|po) Zp ) (3.27)

See the Box 3.4. This is the definition of the relative entropy of p with respect
to pg. In the mathematics literature it is called divergence, or also Kullback-
Leibler distance. However, it is not a distance function in the strict sense, in
the first place because in general it is not symmetric under the interchange
of its arguments.

Write (3.26) as

D(pllps) = 5(6) + meln pf; Lo meHk(a (3.28)

Eliminate Hy,(j) from this expression using Inpg(j) = —®(0) — 0% Hy.(5). This
gives the desired result (3.27).

Box 3.4 Derivation of the relative entropy expression

The relative entropy D(pl||ps) is a convex function of its first argument p.
It vanishes if and only if p = py. These properties will be proved later on in
a more general context — see Section 11.2.

3.7 Thermodynamic Stability

The variational principle is the statement that the non-equilibrium Massieu
function

S(p) — 0" (Hy)p (3.29)

is maximal for the equilibrium distribution py — see the previous Section.
More traditionally, as formulated by Gibbs [2, 3], it states that the non-
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equilibrium free energy is minimal in equilibrium. The physical meaning of the
principle is that of thermodynamic stability of the equilibrium distribution
po- Any perturbation of py leads to a decrease of the Massieu function, or an
increase of the free energy. This thermodynamic stability is now rephrased
in thermodynamical terms.

Consider a smooth path ¢ — 6(t) in the space of model parameters, with
initial values 6% = 6%(¢ = 0) and final values 0’; = 0F(t = 1). A transition of
the system from the state described by py, to the state described by py, via
the probability distributions pg(;) is called a quasi-stationary process. The
change of entropy between initial and final states can be calculated using the
formula

S(0;) — S(6;) = /0 " 0~ dU,. (3.30)

i

It does not depend on the actual choice of the path ¢ — 8(t), but only on its
initial and final points. The formal proof of this statement is

ds = (8915( )) A0 = S5 g1 0" = 0"V (3.31)

Here, we used (3.17) to evaluate the derivatives of S(U). By integrating this
expression, (3.30) follows. Because of (3.31), one says that #'dU; is an exact
differential.

Essential in the above argumentation is the validity of (3.17). More pre-
cisely, there should exist a unique tangent plane to the thermodynamic en-
tropy S(U) in each point U of the thermodynamic configuration space. This
is automatically the case when py belongs to the exponential family. In-
deed, from the properties of the exponential function follows that the func-
tional dependence of Uy = (Hy)p can be inverted. The result is the func-
tion 6% = 0F(U). It is then straightforward to see that the derivatives of
S(U) = S(pg) with respect to the 8% and hence with respect to the Uy, exists
unambiguously.

Consider now a model belonging to the exponential family and whose single
parameter is the inverse temperature §. The internal energy U is minus the
derivative of the Massieu function @(3), and the latter is a convex function.
Therefore, the heat capacity C satisfies

v dau ﬁQ d2

C= —f— =

P TRAPT: > 0. (3.32)

For this reason, the positivity of the heat capacity is often considered to be
a sign of the stability of the model.
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3.8 Entropy of Probability Densities

Up to now, the entropy S(p) of discrete probability distributions p has been
considered. The obvious generalisation of the BGS-entropy (3.6) to probabil-
ity densities is

f(z)
c(x)’

This expression can be obtained from (3.6) by a limiting procedure. Consider
a partition of the configuration space into sets I; with the property that, up
to some epsilon, the function f(x)/c(z) is constant on each of the I;. Take
in each of the I; an arbitrary point ; for which f(x;) > 0. Then (3.33) can
be approximated as

S(f):—/dacf(x)ln (3.33)

S(f)

12
|
~—
o
8
~
—
&
5

&

—Zp(j)ln@ = S(p), (3.34)
with

p(j) = /1 de f(z) (3.35)

e(j) = p(j) X2 (3.36)

These relations are demonstrated in the example of the Box 3.5.

3.9 Quantum Entropies

John von Neumann generalised the Boltzmann-Gibbs entropy functional to
the quantum context. The von Neumann entropy of a density operator p in
a Hilbert space H is defined by

S(p) =—Trplnp, (3.42)

and is taken equal to +oc if —pIn p is not trace class*. Choose an orthonormal
basis of eigenfunctions 1, of p, with corresponding eigenvalues A,,. Then one
has

2 A positive operator is trace class if its spectrum is purely discrete and the sum of
the eigenvalues is finite.
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The exponential distribution is given by

f(z) =ae™ %, x>0, (3.37)
with ¢(z) = 1. Let z; = j/n, j =0,1,- -, for some fixed n. Let I; = [z, x;+1].
Then one obtains

p(j) = / e f(@) = (1-eme/m) emoin (3.38)

&y

. p(]) 1 —a/n
= - —_(1- . 3.39
D) = fray =2 (1=e7") (3.39)

This discrete distribution p converges to the continuous f as n becomes large.
A short calculation gives

1
S(p)=—lna+2—— . (3.40)
nes/m —1
In the limit of large n it converges to
S(f)=—Ina+1. (3.41)
Box 3.5 Entropy of the exponential distribution
S(p) == Anln), < +o0. (3.43)

n

Because all eigenvalues A, lie between 0 and 1, and the function f(z) =
—z Inx is positive on the interval (0, 1), the entropy S(p) cannot be negative.
It shares this property with the discrete probability distributions of the non-
quantum case, provided that the weights ¢(¢) all equal 1.

The von Neumann entropy is concave. This means that for any pair of
density matrices p ans o and for any A in [0, 1] one has

SO+ (1= N)a) > AS(p) + (1 — N)S(o). (3.44)

The proof of this statement will be given in a more general context, in Section
11.7.

According to the maximum entropy principle the entropy S(p) must be
maximised given the constraints (Hy), = Tr pH}, = Uy. The solution to this
optimisation is the quantum exponential family py with estimators Hy and
parameters 6% = ¢¥ — See the Box 3.6. The most elegant way to prove this
statement involves the relative entropy

D(pllo) = S(o) — S(p) — Tr(p—o0o)lno. (3.48)



3.9 Quantum Entropies 49

Theorem 3.2. Let pg belong to the quantum exponential family with estima-
tors Hy. Assume a density operator p satisfies Tr pHy = TrpoHy = Uy for
all k. Then the inequality S(p) < S(pe) holds.

Proof. One has
0 < D(pllpe) = S(po) — S(p) — Tr(p — pe) In pe. (3.45)
Using TrpHy = TrpoHr = Uy, Trp= Trpg =1, and
—Inpg = (6) + 6% H,, (3.46)
there follows
Tr (p — pe) In pg = 0. (3.47)

Hence, (3.45) implies S(p) < S(po)-

Box 3.6 Quantum variational principle

It satisfies D(o||p) > 0. This inequality is a straightforward consequence of
Klein’s inequality and is discussed later on in a more general context — see
Section 11.2. The difficulty in proving this inequality is that p and ¢ do not
necessarily commute. Therefore, there need not exist a basis in which both
are simultaneously diagonal.

Problems

3.1. Binomial distribution revisited

The variable = has an integer value n between 0 and N with probability p(n).
Known is that (n) = Zﬁ;o np(n) has the value 7. Calculate the distribution
that maximises the BGS-entropy.

Note that if the weights ¢(n) are given by

o(n) = (N ) (3.49)

n
then the result is the binomial distribution — see Problem 2.5 of Chapter 2.

3.2. g-deformed distribution
Repeat the previous problem but now with the entropy function
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st <Zp <<Z> 1). (3.50)

This is Tsallis” entropy — see Chapter 8.

3.3. Entropy in the Bloch representation
The density matrix of a Pauli spin in the Bloch representation is written as
(see the Box 2.1)

pr == (I—ray). (3.51)

DN | =

Calculate the von Neumann entropy S(p,) as a function of r.

3.4. Approximate product measure

Consider two classical spins 07 = £1 and o3 = +1. Try to approximate an
arbitrary probability distribution p of the two spin system by a probability
distribution ¢ in which the two spins are independent of each other and each
have probability a to have the value +1 and 1 — a the value —1. Do this
in such a way that the relative entropy D(p||q), which is a kind of distance
between p and ¢, is minimal.

3.5. Maxwell relations
In the constant pressure/constant temperature ensemble one uses the Gibbs
potential

G(T,p) = I;‘ll‘;l{U —TS+pV}. (3.52)

0 08
Show that in this ensemble the Maxwell relation T o holds. (Similar

dp

relations derived in other ensembles are called Maxwell relations as well).

Notes

The contents of the present Chapter is fairly standard, although the Massieu
function is used instead of the free energy because it is the more natural
concept. Indeed, in the context of statistical physics and, in particular, of
the maximum entropy principle, it is obvious to start from the entropy S(U)
as a function of energy U rather than energy U(S) as a function of entropy.
The Massieu function ¢(3) is the Legendre transform of S(U) while the free
energy F(T') is the Legendre transform of S(U).

The discussion of thermodynamic stability, based on the notion of an exact
differential (see (3.31)), goes back to the statement that dS = (dU+pdV) /T,
with U the internal energy, p the pressure, and V the volume, is an exact
differential.
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The influence of Edwin Thompson Jaynes (1922-1998) on statistical physics

has been tremendous. The maximum entropy principle is the basis for much
of the progress both in generalised thermostatistics and in non-equilibrium
statistical physics. In the present work it is a theorem rather than an axiom.
The notion of relative entropy was introduced in mathematics by Kullback
and Leibler who called it the divergence. It was used in the 1980’s to prove
the maximum entropy principle and the variational principle for models of
statistical mechanics.

A nice book on the history of thermodynamics has been written by Ingo

Miiller [6]. A recent discussion of the work of Ludwig Boltzmann has been
given by Jos Uffink [7].

Objectives

Be able to apply the maximum entropy principle to concrete problems.
Know the BGS-entropy functional and some of its properties.

Apply the method of Lagrange to optimise the entropy.

Know the statistical definition of the thermodynamic entropy.

Explain the use of Legendre transforms.

Know the relation between the Massieu function and the free energy.
Know the definition of relative entropy and its relation to the non-
equilibrium Massieu function.

Discuss thermodynamic stability.

Make the transition between entropy functionals for discrete and for con-
tinuous probability distributions.

Know von Neumann’s entropy functional.
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Chapter 4
The Microcanonical Ensemble

4.1 Introduction

The basic concept of this book is the statistical model, which is a parametrised
family pg(z) of probability distributions. The present part of the book deals
with methods to construct statistical models.

The notion of ensembles was introduced long ago as a tool to derive the
fundamentals of statistical physics. This traditional approach is not followed
here. But the meaning of the word ‘ensemble’ is filled in in a way which
corresponds with its present day use. In particular, a model treated in the
canonical ensemble is nothing but a statistical model belonging to the ex-
ponential family (see Chapter 2). On the other hand, a model treated in
the microcanonical ensemble is analysed in the context of mechanics, either
classical mechanics or quantum mechanics.

A system in the microcanonical ensemble is considered to be isolated from
the rest of the world. Of course, such an isolation is an idealisation, which
in practice can only be realised on short time scales. In our daily life we en-
counter mostly systems which are badly isolated. Therefore the results of the
microcanonical ensemble may be counter intuitive. But they can be verified
experimentally by doing measurements in short enough time so that interac-
tion with the environment through leaks in the isolation can be neglected.

The microcanonical ensemble is important because the validity of a model
in the canonical ensemble relies on its mechanical roots and should therefore
be derived from the microcanonical ensemble. There are several ways to make
such a derivation. This topic is discussed later on. But note that such deriva-
tions are easier for classical than for quantum mechanical systems. This is
the only point in the present book where the quantum mechanical treatment
requires extra care.

J. Naudts, Generalised Thermostatistics, DOI 10.1007/978-0-85729-355-8_4, 53
©) Springer-Verlag London Limited 2011
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54 4 The Microcanonical Ensemble

4.2 The Ergodic Theorem

Consider a system of classical mechanics with N particles. The state of
the system is described by coordinates ¢i,---qny and conjugate momenta
p1,---pn. Together they determine a single point ¢,p in phase space I' —
See the Section 1.2. The time evolution ¢(t), p(t) of the state is determined
by the Hamiltonian H (g, p). See the Box 1.1 in Chapter 1.

Of interest are time averages of functions A(q,p) that depend on the state
q, p of the system. They are defined by

T
(A) = lim l/ dt A((q(t), p(t)). (4.1)
T—oo T 0

For instance, one would like to know the average kinetic energy of the sys-
tem. The total energy H(q,p) is a conserved quantity. Hence its time average
(H) equals H(q(t), p(t)) and does not depend on time, but only on the initial
conditions. But the kinetic energy fluctuates in time because energy is trans-
ferred between the kinetic and the potential energy contributions. Hence, the
calculation of the average kinetic energy is a non-trivial problem.

The calculation of time averages is a hard problem because it requires
the solution of Hamilton’s equations of motion. In addition, the position and
momentum as a function of time of each of a large number of particles (typi-
cally N ~ 10?2 in one litre of air) is such a large amount of information that
it is often difficult to handle. Therefore the time average of thermodynamic
quantities is seldom calculated. Thanks to the ergodic theorem it is possible
to replace the time average by an integration over phase space. The latter is
exactly what one does in statistical physics — for instance, the Boltzmann-
Gibbs distribution (1.12) contains an integration over phase space instead of
an integration over time. The ergodic theorem can therefore be seen as the
corner stone of statistical mechanics.

The main assumption for the ergodic theorem to hold is the ergodic hy-
pothesis. One way of formulating this hypothesis is that one assumes that
there exist initial conditions g, p such that the orbit ¢, p; comes arbitrary
close to any point of the phase space I'. Given this orbit, one then has for
any function A(g,p) that

1T
tim [ deA((a(0) p(1)) = /F dgdp A(g,p) (4.2)

T— o0 0

The proof of this theorem would lead us too far away of our main topic.
The ergodic hypothesis is not often satisfied because of the existence of
conserved quantities. In particular, the Hamiltonian H(q,p) is a conserved
quantity. Hence, an orbit with initial conditions ¢,p corresponding with a
given value of the energy H(q,p) can never come close to a point in phase
space with a different value of the energy (assuming that the energy depends
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continuously on ¢, p). The solution to this problem is to restrict the phase
space I to the small part where the relevant conserved quantities are constant
and have given values. But, it is not always possible to take all conserved
quantities into account. The attitude of statistical physics is then to prefer
the average over the phase space above the time average, even if they are not
equal to each other. The justification for this attitude is that often the time
evolution of a mechanical system is not stable under small perturbations.
Adding a little bit of noise to the system can have a dramatic effect on time
averages while averages over phase space are usually not much affected.

4.3 Example: The Harmonic Oscillator

The classical harmonic oscillator has been considered in Section 2.6. The
phase space equals I' = R2. For any initial condition ¢, p, different from the
ground state ¢ = p = 0, the orbit is an ellipse, which is uniquely defined by
the value E of the energy H(q,p). Hence, to make the system ergodic, the
phase space I' must be restricted to this ellipse. The average over phase space
of a function A(q,p) is then given by

1
A =——+— [ dgdpé(E — H A 4.3
e = gy [ daded(E — H(a.p)Ale.p) (43)
with w(E) = 7/hwy the density of states — see (2.42). For instance, if A
equals the kinetic energy K = p?/2m this expression can be evaluated

2

(K)e = gy [ Aedpd(E = Hlap) =55 (44)

Next, let us calculate the time average of the kinetic energy K. The solu-
tion of the equations of motion is

p(t) = pcos(wot) — mwog sin(wot) (4.5)
q(t) = qcos(wot) + e sin(wot). (4.6)
Hence one obtains
K(t)= ﬁ [p cos(wot) — muwoq sin(wyt)]” . (4.7)
The time average of this expression is
(K) = 5o [ 397 + gmet] = 300 = 5. (48)

in agreement with (4.4).
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4.4 Definition

The probability distribution of the microcanonical ensemble, given values
Ey,- -, Ex of the conserved quantities Hq(x), -, Hi(x), equals

_ o)
w(E)

qe(v) H §(Ex — Hi(x)), x in phase space, (4.9)
K

with normalisation factor

w(E) = / dac(z) [ [ 6(Ex — Hi(x)). (4.10)

k

The justification for this probability distribution is that it assigns the same
probability to all states that have the right values of the conserved quantities.
Correspondingly, the Boltzmann entropy of the microcanonical ensemble is
defined by

S(E) = kplnw(E). (4.11)

Note that w(F) is the density of states, already introduced in Section 2.6.
There it was seen that the density of states of the harmonic oscillator is con-
stant. Hence, also the microcanonical entropy S(E) of the harmonic oscillator
is constant, this means, does not depend on the energy F.

Note the hacek (or wedge) on top of the symbol S(E). Standard textbooks
do not put any accent or diacritic on this symbol and identify it with the
thermodynamic entropy S(U). However, there is no consensus in the litera-
ture that this identification is justified. The problem is related to the question
whether one can define the notion of temperature in a microcanonical ensem-
ble. One point of view is that temperature 7' is defined only in the canonical
ensemble where it is the dual parameter of the energy U — see (3.22). On
the other hand, it is clear that quite often one can measure experimentally
the temperature of an isolated system and that it is desirable to have a defi-
nition for the quantity that one measures. And in addition, thermodynamics
is valid for isolated systems as well. As mentioned above, the microcanonical
entropy S(F) of the harmonic oscillator is constant. Identification with S(U),
in combination with the thermodynamic definition (3.22) then implies that
the temperature of an isolated harmonic oscillator is always infinite instead
of being given by the canonical equipartition result that the kinetic energy
of the harmonic oscillator equals %kBT. Note that the identification of the
thermodynamic energy U with the microcanonical E is obvious.

An alternative proposal for the microcanonical entropy, formulated long
ago [12, 18, 29, 25], is

S(E) = kg In Q2(E) (4.12)
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where (2(F) is the integrated density of states

Q(E) = /E dBw(E). (4.13)

It is immediately clear that S(F) is an increasing function of the energy F.
In addition, the derivative may be interpreted as the inverse temperature 3.
Indeed, from the definition (4.12) follows

1 dS w(E

T~ dE ~ Q(B)

~—

(4.14)

For the harmonic oscillator this ratio equals 1/E, which is the expected result.
In fact, it is proved later on that for a gas of IV interacting particles the
average kinetic energy (K) is proportional to the ratio 2(E)/w(F). More
precisely one has always

3N 2(E)
(K) = 7@ (4.15)
so that
<%>_ = %(K) (4.16)

In the classical (i.e. non-quantum) canonical ensemble the equipartition theo-
rem assigns to the kinetic energy a value of %N kgT. From (4.16) then follows
that the alternative definition S(E) can be identified with the thermodynamic
entropy. This seems to settle the problem.

Note that anyhow the difference between the two definitions (4.11) and
(4.12 is not extensive (this is, does not increase linearly with the number of
particles N) so that the difference between the definitions is not important
for large systems.

4.5 Microcanonical Instabilities

A phenomenon known to occur in isolated systems is that of a negative heat
capacity. This means that the temperature drops when energy is added to
the system, which contradicts our intuition which is based on our extensive
experience with badly isolated systems. When the heat capacity is negative
then 8 = 1/kgT is an increasing function of the energy U. The thermody-
namic relation

ds
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then implies that the entropy S(U) is locally convex instead of concave.
The thermodynamical requirement of stability is the concavity of the en-
tropy S(U) as a function of energy U — see Chapter 3. More generally,
the microcanonical entropy S(7) as a function of microcanonical parameters
M1,72, -, N, must be concave.

In a perfectly isolated system the unstable state of the system may continue
to exist. The only way out is to partition the system into two regions, one
of low energy and one of high energy. In each of the regions the entropy
is concave. This can happen when the energy and entropy of the boundary
between the two phases is negligible. Such a separation into two regions with
rather different characteristics is called a separation of phases. It is then
obvious to characterise a microcanonical phase transition by the appearance
of a non-concavity of the microcanonical entropy S(n) of the system as a
whole.

The non-concavity of the microcanonical entropy S(n) must be related to
special properties of the density of states w(n). Two examples are discussed
below. In the example of the Ising model the density of states vanishes in
certain regions of the parameter space. When certain states of the system
cannot be physically realised then the entropy S(n) cannot be concave in
that region. In the example of the pendulum (see below) the density of states
diverges at a given value of the energy E = E.. The pendulum clearly has
two phases: an oscillatory phase at low energy, and a rotational phase at high
energy. The energy value E. separates these two phases.

The Ising Model

Let us now consider the two-dimensional Ising model in the microcanonical
ensemble. We know that this model exhibits a phase transition in the thermo-
dynamic limit. The obvious question is then whether the finite model already
shows some indications of this phase transition.

Two configurations of the Ising model have the same energy and the same
magnetisation when they have the same number m of upspins and the same
number n of nearest neighbour spin pairs with unequal values. The number
of such equivalent configurations is denoted C'(m,n). For very small systems
these counts C(m,n) can be evaluated easily by enumerating all configu-
rations. See the Figure 4.1. In general, these counting numbers have to be
estimated by numerical methods. They determine the Boltzmann entropy by

S(m,n) = kplnC(m,n). (4.18)

From Figure 4.1 one notes immediately that the domain where the C(m,n)
do not vanish is not convex.
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Fig. 4.1 Number of configurations of a 2x2 and a 3x3 Ising lattice as a function of
energy and magnetisation. On the vertical axis is the number of upspins m, on the
horizontal axis the number of non-matching neighbour pairs n

Example of a Microcanonical Instability

The Hamiltonian of the pendulum is

— 1 2
H= 57, P mk cos(), (4.19)

with m > 0 the mass, and with & > 0 a constant. As long as the energy
FE is below mk then the pendulum cannot rotate but librates around ¢ =
0. At E = mk there is a transition from the librational phase to one of
the two rotational phases, rotating either left or right. See the Figure 4.2.
Already in the mechanical treatment the system has a bifurcation from one
librational to two rotational phases. Hence, one expects a phase transition in
the microcanonical ensemble.

The density of states of the pendulum can be calculated analytically. It is
given by

W(B) = 2\/% wo(E/km), (4.20)

€

with
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A

-3.14159 0 3.14159
phi

Fig. 4.2 Orbits in the phase space of the pendulum
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wo(u) = — dr ———. 4.21
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See the Figure 4.3. The constant € has been introduced to give w(E) the
appropriate dimensions. The Boltzmann entropy S (F) is piecewise convex
instead of concave. The modified entropy S(E), defined by (4.12), has both
concave and convex pieces and is discussed below.

Let us first have a look at the kinetic energy U™ as a function of the
total energy E. See the Figure 4.4. Note that it is not a strictly increasing
function. When the total energy is slightly below the threshold for rotational
motion then the pendulum is very slow on most of its orbit, so that the
average kinetic energy is very small. This is a nice example of a negative
heat capacity. Slightly increasing the total energy leads to a decrease of the
average kinetic energy, which is taken as measure for the temperature of the
pendulum.

As a consequence of this unusual behaviour, the free energy F =U — TS
is a multi-valued function. See the Figure 4.5. When a fast rotating pendu-
lum slows down due to friction then its energy decreases slowly. The aver-
age kinetic energy, which is the temperature %kBT , tends to zero when the
threshold U, is approached. In the Figure 4.5, the continuous curve is fol-
lowed. The pendulum goes from a stable into a metastable rotational state.
then it switches to an unstable librating state, characterised by a negative
heat capacity. Finally it goes through the metastable and stable librational
states. A first order phase transition, directly from the stable rotational phase
to the stable librational phase, cannot take place because in a nearly closed
system the pendulum cannot get rid of the latent heat. Neither can it stay
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Fig. 4.4 Kinetic energy UX® as a function of the total energy U = E

at the phase transition point because a coexistence of the two phases cannot
be realised.
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Fig. 4.5 Free energy of the pendulum

4.6 The Quantum Microcanonical Ensemble

In most textbooks the quantum microcanonical ensemble is defined as the
set of eigenvectors v,, of the Hamiltonian H satisfying

E<E,<E+3, (4.22)

where Hip, = Et, and § > 0 is a given small number. Already Erwin
Schrédinger in his booklet, dated 1948 [30], remarks that this is not an ac-
ceptable definition. There is no reason why the state of an isolated system
should be an eigenstate of the energy operator. In fact, it is even not neces-
sarily described by a wavefunction. Indeed, we know that two distinct and
non-interacting isolated systems can be described together by a single wave-
function that cannot be written as a product of two wavefunctions, each
describing one of the isolated systems. In such a case one says that the two
systems are entangled. The correct way to describe the state of an isolated
system is therefore by means of a density matrix.

An additional difficulty is that quantum mechanics itself gives already a
statistical description of the real world. Any density matrix p gives automati-
cally rise to a statistical interpretation because its eigenvalues \; are positive
and normalised ), A\; = 1. On top of this quantum probabilities we should
add classical probabilities due to our lack of knowledge about the details of
the quantum system. In other words, what we need is a distribution function
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f(p) describing the probability of the density operator p. The average of a
function g(p) is then defined by

(g) = / dp £(p)a(p). (4.23)

Observables of the quantum system are linear operators. Fix such an op-
erator A. It defines a function ga(p) by the relation ga(p) = TrpA. The
average of this function can then be written as

(9a) / dp f(p) Tr pA

TrppA, with  pp = / dp f(p)p- (4.24)

Hence, the average over all density operators p can be replaced by a calcula-
tion involving the average density operator pg.

The Two-level System

The calculation of the density operator pg requires specific information about
the ensemble of microcanonical states under consideration. However, in the
case of the two-level atom there is only one possible candidate for pg. It is
uniquely fixed by the requirements that pg is invariant under time evolution
and that it predicts the average energy F in a correct manner.

The two-level system is described in terms of Pauli matrices. The Hamil-
tonian is

H= f%Aaz. (4.25)

The gap between the two energy levels equals A. The average density matrix
pe should be invariant. Therefore it is of the form

o= (0 _p) =5 T+ @ 1), (4.26)

From the requirement Tr pp H = E then follows
1
E=TrpgH = —5(2p —1A. (4.27)

This fixes the value of p.
The von Neumann entropy function (see (3.42)) of pg equals

S(E)=—kgTrpglnpg
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= —kBplnpl— kp(1 —2]2 In(1 — p)2E
*ikB(lJFZ)ln(lﬂL Z)' (4.28)

By taking the derivative one obtains an expression for the temperature

1 ds 1. A-2F

= = —fkp—Iln—/——— 4.29

T de AT A2E (4.29)
This can be written into the familiar form

A BA

Taking the derivative with respect to temperature yields

(4.31)

At low temperatures, this is, large (3, the heat capacity goes exponentially fast
to zero. One of the early successes of quantum mechanics was precisely that it
explains why the heat capacity of a crystal tends to zero at low temperatures,
while the classical law of Dulong and Petit predicts that it is constant.

4.7 The Coherent State Ensemble

Another example of a non-conventional microcanonical ensemble is the en-
semble of coherent states.

Let H be the Hamiltonian of the quantum harmonic oscillator and let
Un,n =0,1,2,--- be the eigenstates. They satisfy

Hiy, = Bty with B, = (% + n) huwo. (4.32)

The coherent wave functions are of the form

oo

Galg) =4S %zwn@, (4.33)

|
n—o VT

where z is an arbitrary complex number. A short calculation gives

2= 1 1
(H), = (¢, |H[1p,) = e *] nz:% E|Z‘2nEn = (5 + |z2) hwo.  (4.34)
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Hence, the set of wavefunctions 1, with |z|? = % — 5 forms a microcanonical

ensemble of wave functions with quantum expectatlon of the energy equal to
E.

The time evolution of a coherent wave function can be written down ex-
plicitly as

e~ (/MHy, (g) = e~ 3127 Z 2Me Ry (q). (4.35)

The expectation of an arbitrary observable A, when averaged over time, be-
comes

T
(A), = lim %/ dt <e*(it/h)HwZ‘A|67(it/h)H¢Z>
O

— 00

T
o212 Znm i 1A . l/ gt it (Bu—Eu) /1
Z[M— (Wl Alm) Jim 7 | dte

S Y el Al

n=0
= TrpgA (4.36)
with
=2 Z 122" [0) () (4.37)
n= 0
Remember that [2|? = % — 5. Hence, pgp depends only on the energy E and

not on the choice of initial btate P,
For small E, the result (4.37) can be expanded in series. One obtains

pr = (1= =)o) (ol + |2 [v1) (¥n]- (4.38)

This is also the result of the two-level atom discussed before, with p = 1—|z|2.
The gap A equals hiwgy. Note the shift in the energy scale.

Problems

4.1. Thermodynamic entropy of an ideal gas
a) For an ideal mono-atomic gas of N particles of mass m enclosed in a
container of volume V' the density of states equals

1

“(E) = NN N )

VN (2mm)3N/2 E3N/2-1 (4.39)
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Verify this result, using c¢(x) = 1/(N!h3Y) in (4.10), and using that the
volume of a sphere of radius 1 in dimension n equals 7"/2/I'(n/2 + 1). The
constant h is arbitrary but has the same units as Planck’s constant.
b) Starting from the definition (4.12) of the thermodynamic entropy S, show
that it is of the form

3. 2nE eV

S~ kN 5 In ~Ne +Iln N + constant | , (4.40)

where € and a are constants with units of energy, respectively length. Expres-
sion (4.40) is known as the Sackur-Tetrode equation. Use Sterling’s approxi-
mation InI'(2) = (z — 1/2)Inz — z + $ In27 + o(z).

¢) Use this result to derive the equipartition law F = %kBN T.

4.2. The quantum harmonic oscillator

Calculate the thermodynamic entropy S(E) of a quantum mechanical har-
monic oscillator in the ensemble of the coherent states (see the Section 4.7).
Show that it is an increasing and concave function.

Notes

The ergodic theorem of Birkhoff dates from 1931, the version of John von
Neumann of 1932. However, von Neumann claims that Birkhoff knew about
his result when formulating the theorem.

The importance of microcanonical instabilities has been stressed in par-
ticular by Dieter Gross [15, 16] and by Alfred Hiiller [20].

The use of the integrated density of states {2(F) instead of w(E), when
defining the microcanonical entropy, is usually attributed to Pearson et al
[25]. But it was used already in the early works of Gibbs [12] and of Hertz
[18], and is treated for instance in the handbook of Becker [3]. It was proposed
again [29, 25] in 1948 and in 1985.

The section on the Ising model is partly inspired by [26]. The discussion
of the pendulum has been taken from [1]. Other models have been studied as
well. In particular, the inequivalence of microcanonical and canonical ensem-
bles has been shown for the infinite-range Blume-Emery-Griffiths model [2].
Hilbert and Dunkel [19] discuss an exactly solvable one-dimensional model.
Campa et al have considered a mean field model in the microcanonical en-
semble [9, 10, 17]. Further models, treated microcanonically, are the spherical
model [4, 23], the Baxter-Wu model and the 4-state Potts model [5].

The definition of quantum statistical averages by integration over wave-
functions has been used recently by Brody and Hughston [8] and by Goldstein
et al [14, 13] in the context of the quantum canonical ensemble. Brody et al
have considered integration over wavefunctions also for the microcanonical
ensemble (8, 7]. Independently, Jona-Lasinio and Prescilla [21, 22] discussed
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this idea. Other proposals were made in [24, 27|, and [11]. However, there is
clearly not yet a consensus about the different proposals [24, 6, 28].

An important topic, not discussed here is the equivalence of ensembles.
A decent treatment of this topic would require a separate Chapter. But the
equivalence of ensembles can only hold in the thermodynamic limit, which is
also not discussed in this book. Hence such a Chapter is out of focus. Note
that most textbooks see the canonical ensemble as a Legendre transform of
the microcanonical ensemble. This is only correct in the thermodynamic limit
because then the canonical probability distribution can be approximated by
the microcanonical distribution corresponding to the most likely value of the
energy.

Objectives

Know what the ergodic theorem is about.

Give the definition of the classical microcanonical ensemble.

Explain and criticise the definition of Boltzmann’s entropy for a model of
classical mechanics.

Discuss the possibility of microcanonical instabilities. Give examples.
Discuss the two-dimensional Ising model in the microcanonical ensemble.
Discuss the quantum microcanonical ensemble.
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Chapter 5
Hyperensembles

5.1 Introduction

The primary goal of the present Section is to derive the canonical ensemble
from the microcanonical one discussed in the previous Section. The tradi-
tional method of constructing ensembles will not be followed. Instead, the
recent ideas of superstatistics and of hyperensembles are adapted to suit our
purposes. Later on, the approach will be generalised to derive other than
canonical ensembles and, in the next Section, to discuss the mean field ap-
proximation.

Starting point is a family ¢, (z) of probability distributions depending on
parameters 11,2, - - -, N,. However, they do not describe the statistical model
one is interested in. Instead they are a means to construct the statistical
model. How this is done is now explained.

An obvious way to construct a new probability distribution out of the
given ¢, (z) is by assuming that the parameters n are themselves stochastic
variables obeying some probability distribution f(n)

py(z) = / an £ (m)an (). (5.1)

Hereafter, the distribution f(n) is called the hyperdistribution. Averages with
respect to ps(x) are denoted

mwz/mm@m@. (5.2)

Averages with respect to g, (x) are denoted (A), instead of (4),, . One has

;= [ ansea, (53
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Assume now that the hyperdistribution f(n) depends on some parameters
61, - 0x. Then the distribution ps(x) is also parametrised by 6 and hence
can be denoted py(x). It forms the statistical model that we are interested in.
Several choices of hyperdistributions will be discussed. The point is to choose
them in such a way that the resulting pyp(z) describes a statistical model of
interest.

5.2 The Canonical Ensemble

The micro-canonical ensemble, discussed in the previous Chapter, is the cor-
ner stone of statistical mechanics because it makes the link with the under-
lying mechanical theory, either classical mechanics of quantum mechanics.
However, it requires the exact knowledge of a number of conserved quanti-
ties such as the total energy U. In reality, the total energy is usually not
known. One rather measures the temperature, which is only an indirect mon-
itor for the total energy. For this reason, one often works in the canonical or
the grand-canonical ensemble. In addition, micro-canonical calculations are
known to be more difficult than canonical or grand-canonical ones.

The probability distribution ¢g(z) of the micro-canonical ensemble is given
by (4.9). Assume now a hyperdistribution f(E). Then the statistical model
reads

py(z) = / dE f(E)qp(z)

f(E)

= dE———=6(F — H

(o) [ ap LEoe - )

f(H(z))

= c(z)———=%. (5.4)
w(H (x))
The distribution f(E) of the energy F is unknown. But it is obvious to use the
maximum entropy principle to fix f(E) under the constraint that the average
energy has a given value U. The entropy to be considered here contains two
contributions: the microcanonical entropy S(E) and a contribution due to
the lack of information about the actual value of the energy. For the latter,
it is obvious to use the Boltzmann-Gibbs-Shannon entropy functional

SBG(f) = —kB/dE f(E) ln%. (5.5)

Note the prior weight m(F) which has been inserted.
The optimisation involves a Lagrange parameter § controlling the aver-

age energy, and a parameter o needed to ensure the normalisation of the
distribution function f(E). The quantity to be optimised is
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£=5"(f)+ [ABFE)S(E) - hua [ AES(B) ~ ku(H);. (50

Variation with respect to f(F) gives

_ g SE)

Hence, one obtains the optimal choice

(E) = e ob e, 6.9
with
Z(B) :/dEm(E)eS(E)/kB_ﬁE. (5.9)

The resulting family of probability distributions pg(z) is then

c(z) m(E) sg)y/ks —pE

palx) = ——e Be . (5.10)
T Z(5) w(E) =)

This reduces to the Boltzmann-Gibbs distribution (1.12) provided that we

make the choice

m(E) = w(E)e SE)/ ke, (5.11)

If now S(E) equals the Boltzmann entropy S(F) = kplnw(E) (see (4.11))
then the prior weight m(F) equals 1, which is what one expects. In the case of
the modified entropy S(E), given by (4.12), the weight m(FE) is not constant
and depends on the system at hand, which is unnatural. Of course it is also
possible to defend the point of view that m(E) = 1, and that S(F) differs
from the Boltzmann entropy S(F) = kg Inw(FE), but that the Boltzmann-
Gibbs distribution (1.12) is only exact in the limit of a large system. Some
evidence for the latter point of view will be given later on.

5.3 Superstatistics

Before generalising the construction made in the previous Sections, let us
digress for a moment into superstatistics.

Given a Hamiltonian H(x), the obvious choice for the probability distri-
butions ¢, (z) is the Gibbs distribution — see (1.12).

qs(x) = %e‘“"x)- (5.12)
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Up to now, the inverse temperature 3 was always considered as one of the
parameters 6% of a statistical model. In superstatistics, one considers the
possibility that the model parameter § is not constant but is itself a ran-
dom variable which has some probability distribution. To justify this point
of view one refers to inhomogeneous systems out of equilibrium, where the
temperature is not a global constant but varies spatially over macroscopic dis-
tances. One can then establish experimentally a distribution function f(3) on
[0, 4+00), which indicates the probability to find a given inverse temperature
B at a given spot in the system. Such macroscopic fluctuations have been
studied for instance in the context of turbulence — see [4].

Introduce the Laplace transform of the ratio f(8)/Z(03)

— oo f(ﬁ) —0z
PKz)—-Jg a9 Je (5.13)
Then the probability distribution ps(x) of the hyperensemble becomes
pi@)= [ a8 Bas(o)
= c(z)F(H(x)). (5.14)

Consider for instance a variable A(F) which depends only on energy F and let
p(E) be the density of states introduced by (2.39). Then the superstatistical
average of A equals

mﬁz/mm@mmu»
= /dE p(E)F(E)A(E). (5.15)

See the Box 5.1 for an example.
Because f(3) and Z(3) are both positive, all derivatives F*)(z) of F(z)
exist and have alternating signs. A positive function F'(z) satisfying

(-1)FF®(2) >0 for 2 > 20,k =0,1,2,--- (5.22)

is said to be completely monotonic on the interval (zp, +00). By the theorem
of Bernstein, such a function is the Laplace transform of a positive function.
Hence, if p(x) is any probability distribution which can be written into the
form

p(z) = c(z)F(H(x)) (5.23)

for some completely monotonic function F(z), then there exist a hyper-
distribution f such that p(x) = ps(x). One concludes that all probabil-
ity distributions of superstatistics are characterised in this way. Hereafter,
these probability distributions will be called superstatistical distributions.
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Let the hyperdistribution f(8) on [0,+0c0) be given by f = f, with a > 0
and

fo(8) = Le=p1, (5.16)
a
With this choice of function f the probabilities pf(x) depend again on a single

parameter a > 0.
The partition sum of a classical harmonic oscillator with frequency w equals

fla,p) = Gl CEIR (5.17)

Z(B)
with
H(q,p) = #pZ < %w2q2 and Z(B) = 2n/hfw. (5.18)

Then the function Fy(z), as given by (5.13), is found to be

Fo(z) = /0+Oo dﬂhﬂi %e_ﬁ/ae_ﬁz

2 a
haw 1
_ . 5.19
7 (14 az)3 ( )
The resulting family of probability distributions is
haw 1
Pa(q,p) = (5.20)

7 (1+aH(q,p)*
Using (5.15), the expression for the superstatistical average energy becomes
/ e dE -~ haw 1 5

0 ho 7 (14 aFE)3

1

=5 (5.21)

(H)a

Box 5.1 Simple example of a superstatistical distribution

Of course, the Boltzmann-Gibbs distribution (5.12) is of the form (5.23),
with F(z) = e7##/Z(3). Hence, the notion of superstatistical distribution is
a generalisation of the notion of Boltzmann-Gibbs distribution.

Not all probability density functions have a completely monotonic Laplace
transform. Examples of such probability distributions will follow in later
chapters.
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5.4 The Hyperensemble

In superstatistics, the hyperdistribution f(n) is determined by the physical
problem that one wants to model. In a more general context the distribution
of the parameters 7 may be unknown. It is then obvious to use the maximum
entropy principle to determine the hyperdistribution f (7). The resulting fam-
ily of probability distributions pg(z) will then be called the hyperensemble
of the family ¢, (z). With this terminology, the canonical ensemble is the
hyperensemble of the microcanonical ensemble. In the quantum case, the hy-
perensemble of the ensemble of coherent states coincides with the quantum
canonical ensemble, but only for linear functions of the density operator, this
is, for functions of the form g4(p) = TrpA.

Because the lack of knowledge about the hyperdistribution f(n) is a prob-
lem of information theory it is indicated to use the Boltzmann-Gibbs-Shannon
entropy

s() =~ [ an s % (5.24)

for the entropy contribution due to the uncertainty about the parameters 7.
Note the prior weight m(n) has been inserted.

The choice of the constraints is crucial because it determines the resulting
statistical model. We want to allow a finite number of parameters 61, - - -, 0.
Correspondingly, we need Hamiltonians Hi,---, Hy which can be used to
estimate these parameters ;. In addition, one can take into account that the
distributions ¢, () are weighed by some entropy functional S(n), which for
the moment is not further specified. Then, the quantity to be optimised is

c=s)-a [ s+ [anrmSm - ot G2
Variation with respect to f(n) gives

0= I _ —a+8(n) — 08 (Hy),. (5.26)

m(n)
This can be written as f(n) = fo(n) with

m(n)
Z(0)

fo(n) = exp (S(n) — 6 (Hy)y) , (5.27)

with Z(0) the appropriate normalisation constant. This fy(n) is the hyper-
distribution of the hyperensemble, given the Lagrange parameters 61, - - -, 0.

The hyperdistribution fy(n) belongs to the exponential family. Hence,
identities are obtained by taking derivatives of the logarithm of the parti-
tion sum Z(#). One obtains
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% nZ(8) = —(Hy)e. (5.28)

This shows that
$(0)=1nZ(0) (5.29)

is the Massieu function of the hyperensemble. One then has

% = —(Hk)so- (5.30)
Note that
2
O (e = (Hu)o) (Hy — (o (5.31)

This implies that the matrix of second derivatives has positive eigenvalues.
Hence &(0) is a convex function, as it should be.

5.5 Properties of the Hyperensemble

00— T T 7777171
5 10 15 20
inv temp

Fig. 5.1 Average energy as a function of inverse temperature for the two-state model

Let us assume that for each vector U there exists a unique set of parameters
# such that

Uk = (Hg)e- (5.36)
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The coin tossing experiment has two outcomes, tail and head. These are
numbered 0 and 1 and have probabilities 1 — n and 7, with 0 < n < 1. Let
qn(0) =1 —n and g, (1) = n. The Hamiltonian corresponding with this unique
parameter 7 is chosen to satisfy H(0) =0 and H(1) = 1. One has

8(n) =8S(qn) = —nlnn— (1 —n)In(1 —n) (5.32)
(H)qn 7. (5.33)

Hence, the hyperdistribution equals (using 3 as parameter instead of 6)

fan) = exp (—nlnn — (1 —n)In(1 —n) — Bn), (5.34)

Z(B)
with

Z(B) = /01 dn exp (=nlnn — (1 —n)In(1 —n) — Bn). (5.35)

The evaluation of U = (H)g has to be done numerically. See the Figure 5.1.
It is a monotonically decreasing function, as expected. There is a one-to-one
mapping between U and (8 for 0 < U < 0.5. The model is thermodynamically
stable because the entropy increases with increasing energy and the energy U
increases with increasing temperature.

Box 5.2 The two-state example

Then one can define the thermodynamic entropy S(U) by
SW) = 8(a) + [ dn fo()So. (537

It has two contributions. The average of the entropy S (n) is augmented with
the entropy S(fg) due to the uncertainty about the value of the parameters
7.

From (5.27) follows

S(f0) = 2(6) ~ [ dn foln)S(o) + (i, (539
Hence one has the thermodynamic relation
S(U) = ®(0) + 6*Uy. (5.39)
Using (5.30) one obtains
oS _gy (%3 L9 o0k

U, ou,  oU;
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_g 0 a¢+aekU
- ou, |oom " ogm F
=4 (5.40)

This is the dual relation of (5.30). It generalises (3.17). In the case of one
parameter this implies that 6 equals the inverse temperature (3, as defined
by (3.22).

In the previous Chapter it was shown that S(U) and &(f) are each others
Legendre transforms. The same result holds here for hyperensembles. Indeed,
because @(#) is convex one has for all 7 that

S(U) = d(0) + 65U, < &(n) + n*Uy. (5.41)
To see this, note that
g(n) = 2(6) + Uy (n* — 6") (5.42)
defines a plane tangent to the convex @(n) surface. One has therefore

S(U) = inf{®(0) + 0k, (5.43)

This shows that S(U) is the Legendre transform of &(6). A well-known con-
sequence is that S(U) is a concave function. The inverse relation

&) = sgp{S(U) —0*U,} (5.44)

is automatically satisfied because @(6) is convex.
See the Box 5.2 for an example.

Notes

The notion of superstatistics is due to Christian Beck and Eddie Cohen [2, 3].
Further references are [1, 7]. The notion of hyperensembles has been intro-
duced by Gavin Crooks [5] as a tool for describing systems out of equilibrium.
Part of the Chapter is an adaptation of results taken from the latter paper.

Up to now, superstatistics has been discussed almost exclusively in a non-
quantum context. A quantum generalisation was proposed by A.K. Rajagopal
[6]. In his approach the hyperdensity distribution fy(n) is replaced by a pos-
itive operator-valued measure.
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Objectives

e Describe the probability distribution of superstatistics using Laplace trans-
forms.

e Characterise the probability distributions of superstatistics by means of
the theorem of Bernstein.

e Derive the hyperdistribution of a hyperensemble using the maximum en-
tropy principle.

e Show that the thermodynamic entropy S(U) and the Massieu function
@(0) of a hyperensemble are related by a Legendre transform.
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Chapter 6
The Mean Field Approximation

6.1 The Ideal Paramagnet

Consider a number of spin variables 01,09, -+, 0N, which each can take the
values £1. A one-parameter family of probability distributions is defined by

N
qe(o) = H e%(H”")(l - e)%(l_"”), 0<e<l. (6.1)
n=1

This probability distribution is of the product type. Each spin is independent
of all others and has the value +1 with probability €, the value —1 with
probability 1—e. In the mathematics literature such a probability distribution
is often called iid, which stands for independent and identically distributed.

The distribution (6.1) belongs to the exponential family. Indeed, one can
write

ge(0) = exp (=(0) — 0Ho(0)) (6.2)
with
1 €
0= —1 )
2h 1 —€ (6:3)
N N
d(0) = -5 Ine(l —e) = ) In4 4+ N In cosh(h0), (6.4)
and
N
Ho(o)=—hM  with M = o,. (6.5)
n=1
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The constant h > 0 is arbitrary. It has the meaning of an external mag-
netic field favouring the value +1 of the spin variables. To obtain the above
relations we used that the inverse function of (6.3) is

1 1
CZW and 1—€:W (66)

The average energy equals

U= (Hy) = _g_g;*) = —Nhtanh(h6)
— _Nh(2e - 1). (6.7)

The Boltzmann-Gibbs-Shannon entropy of (6.1) is

S(Qg) = _ZQE hl(k
= —N [elne+ (1 —¢€)In(1 —€)]. (6.8)

The inverse temperature is given by

dS  dS de

p= dU de AU
€

In
2h N%z_ v
1 _
=—In——. 6.9
oh " Nh+U (6.9)
This is positive when U < 0, which is the case if 1/2 < € < 1, or equivalently,
6 > 0. ! Inverting this relation gives

U = —Nhtanh(hpj). (6.10)
Comparison with (6.7) shows that 8 = 6. The heat capacity equals

d
C= d—g = N3*h*(1 — tanh® Bh)). (6.11)
See the Figure 6.1. The positivity of the heat capacity (C' > 0) confirms
that the entropy S(U) is a concave function of energy U, as it should be for
thermodynamic stability reasons.

L Alternatively, one can change the definition of Ho by taking h < 0 in (6.5). Then,
0 < € < 1/2 corresponds with positive temperatures.
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Fig. 6.1 Heat capacity of the ideal paramagnet as a function of temperature 7T
Plotted is 1 — tanh?(1/z) — see (6.11)

6.2 The Mean Field Equation

The energy of an interacting system of Ising spins is

N N
1
H(U) = 75 E Jm,no—mo—n —h E Om. (612)
m=1

m,n=1

The first term of this expression is the interaction term. It is absent in the
Hamiltonian Hy(o) of the ideal paramagnet — see (6.5).

The relevant thermodynamic quantities are now U = (H) and M =
(Zivnzl om). However, let us keep the same family of probability distribu-
tions as in the previous section, this is, the distributions of the product form.
The main argument to do so is that it is very convenient to work with prod-
uct measures. The price one pays is that correlations between different spins
are neglected. Indeed, such correlations are produced by the interaction term
but are not present in the ideal paramagnet. In this situation, the thermo-
dynamic variable H (o) is not the variable Hy(o) appearing in the canonical
expression (6.2). Hence the stability results of the previous chapter are not
any longer guaranteed. This point will be clarified later on.

Because the distributions g, are of the product form one has for m # n

<0'm0'n>e = <Um> <Un>e = (26 - 1)2~ (613)

Without restriction one can assume that Jy, ,,, = 0. With this assumption
the average energy equals



82 6 The Mean Field Approximation

1
(H), = —§NJ(26 —1)? = Nh(2¢ — 1), (6.14)
where J = (1/N) szzl Jim,n- This result is used to maximise the expression

S(qe) — B{H)c = —Nelne — N(1 — €)In(1 — ¢)
—i—%ﬂNJ(Ze — 1) 4 BhN (2¢ — 1), (6.15)

for given values of the control parameters 3 and h (that § is indeed the
inverse temperature will be checked later on). In this way one looks for the
optimal value of the parameter e.

Variation of (6.15) with respect to e gives

€

0= —In— +26J(2 — 1) +25h. (6.16)

—¢
This can be written as (using (o) = 2¢ — 1)
(on) = tanh 8 (J{on) + h). (6.17)

This is the well-known mean field equation. It is an implicit equation for the
average value (o, ) of the spin variable ,,. The solutions of this equation are
discussed below.

6.3 Phase Transitions

Note that in (6.15) the entropy functional S(p) is not maximised over all
probability distributions having the right average energy, but only over the
model distributions ¢., which are probability distributions of the product
form. As a consequence, the optimal value of S(g.), which is assumed to co-
incide with the thermodynamic entropy S(U), does not have the properties
that have been proved in Chapter 3 for the solution of the variational prin-
ciple. In particular, the relation between the partial derivatives 9.5/9U; and
the model parameters € does not necessarily hold. But the relation (3.17)
is essential for thermodynamic stability to hold — see the discussion at the
end of Section 3.7. It is therefore not a surprise that in mean field models
a thermodynamic instability can occur. In the context of Chapter 3, this is,
assuming a model belonging to the exponential family, thermodynamic sta-
bility is automatically satisfied. In that context phase transitions can only
occur as limiting cases.

By definition, a phase transition of order n is a discontinuity in the n-th
derivative of the free energy with respect to the thermodynamic variables.
A well-known example is the phase transition in the two-dimensional Ising
model in absence of an external magnetic field. It is not possible to write the
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free energy Fn(T,h = 0) of the Ising model in a closed form for arbitrary
size N = L x L of the square lattice. However, Kramers and Wannier [3]
succeeded in showing that, in order to calculate the free energy per spin in
the limit of large N

F(T) = Jim L Fx(T,h=0) (6.18)

it suffices to calculate the largest eigenvalue of a matrix of dimensions 2V x 2,
the so-called transfer matrix. Subsequently, Lars Onsager [6] succeeded to
calculate this largest eigenvalue. The result is that f(T") is known in closed
form. It turns out that it is a real analytic function on the interval (0,T;), as
well as on the interval (T, +00), with a singularity at the critical temperature
T., determined by

sinh(265.J) = 1. (6.19)

Numerically, this gives kT, ~ 2.2692.J. See for instance [10], Section 5.5.

6.4 A Mean Field Phase Transition

Let us return to the mean field model. The solution of the mean field equation
(6.17) yields the average magnetisation M(3,h) = N{oy) as a function of
inverse temperature  and external field h. For convenience, introduce the
notation m(8,h) = M (5, h)/N. The Massieu function ¢(S, h) follows using
(6.15). The result is

1+m., 1+4m 1—-m_, 1—m
— In — In

L2 2 2 2
+§5Jm2 + Bhm. (6.20)

1

First consider the situation without external field, i.e. Bh = 0. Then the
obvious solution of the mean field equation is m = 0. This gives

1
5 P(3,h=0) =12, (6.21)

independent of 8. However, at low temperatures, this is, for § large enough,
the mean field equation has two other solutions as well. The graphical solution
of the mean field equation

m = tanh(8Jm), h=0, (6.22)

makes this clear. In Figure 6.2 the left and right hand sides are plotted as a
function of m. The intersection points of the two curves are the solutions of
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(6.22). One sees that there is only one intersection point when the slope of
tanh(8Jm) in the point m = 0 is small. There are three intersection points
when the slope is larger than 1. The Taylor expansion of the tanh function is

tanh(u) = u — %u“s +O0(u?). (6.23)

Hence the transition from one to three solutions occurs when gJ = 1. One
concludes that the mean field model is able to predict the phase transition
that actually occurs in the 2-dimensional Ising model. However, the prediction
of the value of the phase transition temperature is way off. One can argue
that the interaction strength J of the mean field model is not the same as
that of the Ising model and should be corrected by a factor 2. But even then
there remains a difference of about 10% between the mean field prediction
BedJ = 0.5 and the result of the Ising model 8.J ~ 1/2.2692.

0.54

0.5

’1.5_.
Fig. 6.2 Plot of z, of tanh(x/2), and of tanh(2z)
Note that (6.14) can be written as
U=—L g —nm (6.24)
- 2N '

Hence, U and M are not independent thermodynamic variables, as it should
be. This means that, by restricting the family of probability distributions to
certain product measures, only one line in the two-dimensional thermody-
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namic configuration space is probed. Indeed, with a single parameter ¢ one
can only probe a one-dimensional subset of this two-dimensional space. As
a consequence, the dependence of entropy S(U, M) on energy U, and sepa-
rately on magnetisation M, cannot be determined in a unambiguous manner.
However, one can calculate the Massieu function ¢(3, h) as a function of in-
verse temperature § and external field h (or, equivalently, the free energy
F(T,h) = =T®(B,h) as a function of T" and h). It is equal to the maximum
value obtained in (6.15). Let M (3, h) be the solution of the mean field equa-
tion (6.17) which maximises (6.15). By substituting e = (1 +m)/2 in (6.15)
one obtains

1 1 1 1 1
Né(ﬁyh) = —5(1 +m)In 5(1 +m) — 5(1 —m)ln 5(1 —m)

1
+3 BJm? + Bhm. (6.25)
This function has a singularity in the point 8 = 8, and h = 0. Indeed, for
0 < B < f.and h = 0 one has m(5,h) = 0 so that &(8,h)/N is constant,
equal to In2. For § > (. and h = 0 it is not constant.

Let us evaluate this singularity. From the mean field equation (6.22) and
the series expansion (6.23) there follows

1
mzﬁJm—g(ﬂJm)g—i—---. (6.26)
This implies that either m = 0 or

VT, (6.27)

The latter solutions are real only when T < T,.. See the Figure 6.3.

5J3/2

1 4

Fig. 6.3 Plot of the spontaneous magnetisation m as a function of the temperature
T
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It will become clear in the next Section that the solution m = 0 is not
acceptable when 7' < T.. Hence, the sudden change from m = 0 above
the phase transition temperature to m # 0 below implies that the Massieu
function (6.25) is not an analytic function in the point 8 = 8.,h = 0.

6.5 A Hyperensemble of Product States

Consider now a hyperensemble of the product states ge(0), defined by (6.1).
The entropy S(e) is taken equal to the Boltzmann-Gibbs entropy S(pe). The
hyperdistribution f(e), after optimisation, becomes — see (5.27) and (6.15)

fonle) = ﬁ exp (S(pe) — B(H).)
= Z(ﬁl ) exp <—Nelne—N(1 —¢e)In(l—¢)
+%5NJ(26 —1)% 4+ BhN (2¢ — 1)). (6.28)

The partition sum equals

Z(B,h) :/0 de exp (—Nelne—N(l —€e)ln(l —¢)

Jr%ﬂNJ(Qe —1)2 4+ BN (2¢ — 1)>. (6.29)

In the limit of large N this integral can be evaluated because the only contri-
bution comes from the value of e for which the argument of the exponential
function in (6.29) is maximal. But this search for a maximum is precisely
what has been done in Section 6.2 and what leads to the mean field equa-
tion (6.17). The result is that pg (o) ~ ge(o), where € has the value which
optimises (6.15). This shows that for large systems the approach using hy-
perensembles reproduces the mean field approximation. In fact, for h = 0
and 8 > Oy the hyperdistribution fs(e) has two maxima while for high
temperatures it has a single maximum at ¢ = 1/2. See the Figure 6.4.

6.6 Generalised Mean Field Theories

The mean field theory starts from an ensemble of product states g, together
with an entropy functional S(n), which is for example the Boltzmann entropy
or its modification. However, the approach with hyperensembles allows for
more general choices of ¢, and S (n). To illustrate this point let us consider the
two-state Markov chain. This looks very much like a one-dimensional Ising
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Fig. 6.4 Hyperdistribution fg,5(€) with N =5 for h =0, 3 =0.6 and § = 1.2

chain. It consists of a stochastic variable ¢ and of transition probabilities €
and p. The stochastic variable takes on two values +1 and —1. The transi-
tion probabilities determine the conditional probability that the stochastic
variable o,, at time n has the same value as at time n — 1. See the Figure 6.5.

1-p

~
u C = +1 DE

-

1-€

Fig. 6.5 State diagram of the two-state Markov chain

Consider now a path of length n of the Markov chain. This is a sequence
of values £1 taken on by the stochastic variables o, 01, -+, 0,. For example,
4+ 4+ — + —+ is a path of 5 steps, where a plus stands for +1, a minus for
—1. The probability of such a path is the probability of the starting element
times a polynomial of the form

e (1 — e)fr=ph—— (1 — p)F-+, (6.30)

where k,; counts the number of times that a state with value r is followed by
a state with value t.

The interesting quantities are now the total time spent in each of the two
states and the number of transitions from one state to the other. The former
is related to
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M=> o, (6.31)
i=0
the latter to
H = —Zdiflo'i. (632)
i=1

Let qé,jf) (z, E) denote the probability that M —oq (neglecting the initial state)
has the value z and H has the value E, given that the Markov chain starts
in og = s. It can be written as

¢ (2, B) = Cu(k)e ™) (6.33)
k

with
U(k)=—kyslne—ky_In(l—€)—k__lnp—k_4yIn(1—p), (6.34)

where Cs(k) is a counting factor that keeps track of the number of times that
a certain k-vector occurs. Now note that

n = ]43++ + k'+_ + k_+ + k__
xr = k++ — k?+_ + k_+ — :ZC__
—E =k +k_,. (6.35)

Introduce the variable A = ky_ —k_4. One has A = 0 or A = +1. Then
one can write

1 1 1
U(k)=—-nln(eu) — “eln S — “Ehn e

2 2 p 2 (1-9(l-p)
P Gl
27 p(l—p)

(6.36)

The results obtained so far have two drawbacks. The calculation of the
counting factors Cs(k) is possible [11] but rather cumbersome. In addition,
the expression (6.36) still depends on & via the function A(k). These problems
can be circumvented by adopting stationary initial conditions. These are
given by Prob(oo = +£1) = p(io) with

1—pn (0) 1—e€

©_ __—— & a pV=_—"" 6.37
Dy S p— and po S — (6.37)

Let

Gen (2, B) = pV g (@, B) + p0¢8) (x, B). (6.38)
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Let (-)c,, denote the expectation value with respect to ¢.,(x, E). Then by
symmetry one has (A). , = 0. By taking derivatives with respect to € and

of the identities 1 = 5 qgf)(:z:, E), one obtains (see [12])

_, Tk

o S

1—€e)(1—p
(B)aw = —2m—g = . (6.39)

This leads to
1 1 e 1 0
(W)ep = —§nln(e,u) ~3 (x)In L2 (E)1In A—o0—n
= npV[—elne—(1—€)In(1 —¢)]
+np O [—pln g — (1= p) In(1 — po)].

(6.40)

This quantity is the dynamical entropy of the Markov chain — see [5]. Taking
S = (¥),, the hyperdistribution becomes (omitting the dependence on the
parameters 3 and SF)

Fle) = 5 D)y = BE)ey — BF(w)ey). (6.41)

Extrema of this distribution occur when

_ e
= glnu—e)(l—u)
9F = —3In i (6.42)

These equations have a unique solution satisfying € > 0 and p > 0.

6.7 The Quantum Case

The equivalent of product measures in the quantum case are tensor products
of density operators. However, this works only for distinguishable particles.
For example, the spins of atoms in a lattice can be distinguished by there
positions. The electron exchange between neighbouring atoms can be mod-
elled phenomenologically as an interaction between spins. This leads to the
quantum Heisenberg model — see the Box 6.1. The mean field equations of
this model reduces to the classical mean field equation, discussed above. The
mean field treatment is in agreement with a hyperensemble based on the von
Neumann entropy S(n) = — Tr oplno,.
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Consider quantum spins, labelled 1,2,---, N, described by Pauli matrices
01,02,03. The three Pauli matrices of the n-th spin are placed together in a
3d-vector &,. The matrices 0po and o~ with m # n commute with each
other. With these notations, the Hamiltonian of the Heisenberg model is

1 N N
H=—- Jm,nOm - 0n —h n3- 6.43
. nOm 0 > ons (6.43)

m,n=1 n=1

Without restriction, assume Jp, = 0.
The single-spin density matrix

po =5 (1-6ay) (6.44)

has been introduced before — see (2.9). Let p(;@N denote the tensor product of

N copies of pg. It is again a density matrix. One has Tr prNUna = Trpgoa =

—0% and, for m # n, Trp?NEm “On = Z(Trpe?a)2 = |0|2. Therefore, the
[e7

average energy equals
1
U= TrpVH = —§NJ|(9|2 + hNG?, (6.45)

with J = 3N Jm.n/N. On the other hand, the von Neumann entropy of

m,n=1
this density matrix equals

S(eEY) = —1]\\7]Trpe In pg : N :
—5(1 + 16]) In 5(1 +16]) — 3(1 —16]) In 5(1 —16]) (6.46)

(to obtain this result, first diagonalise pg before calculating pg ln pg). Now
optimise S(ng)N) - ,@Trpg?NH. This leads to the mean field equations
10> 1+ 6]
=Y Im =
216]  1-16|

—2BJ0% — héu 3. (6.47)

These equations reduce to 81 = §2 = 0 and 62 = tanh(8J63 + Bh). The latter
coincides with the classical result (6.17).

Box 6.1 The Heisenberg model

The situation is different for indistinguishable particles, either fermions
or bosons. They are usually discussed in Fock space. The density operators
that are easy to treat then correspond with quasifree states. These should
replace the product states as starting point for the mean field approximation.
However, it seems that such an approach has not been tried out.
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Notes

A traditional exposition about the mean field approximation is found in [9],
Chapter 6. However, the use of product measures as a way of doing mean
field theory is known since long. The translation in terms of hyperensembles
is of course new.

The treatment of the two-state Markov chain is taken from the papers
[11, 12, 5, 13].

The notion of quasifree states is often used in the physics literature. How-
ever, they are usually not called quasifree. Rather they are associated with
a Gaussian approximation. Sometimes they are called Gaussian states. In
the boson case the quasifree states are related to the coherent states. The
latter are usually defined either by a condition of minimal uncertainty or by
wavefunctions that are eigenstates of the annihilation operator. The name
of quasifree states comes out of the mathematical physics literature and was
introduced in 1965 [8, 4, 1]. A mathematical introduction to quasifree states
is found in volume IT of Ola Bratteli and Derek Robinson [2], or, in the boson
context, in the book of Dénes Petz [7].

Objectives

Calculate the heat capacity of the ideal paramagnet.

Derive the mean field equation for a ferromagnet.

Know the definition of first and second order phase transitions.

Discuss the graphical solution of the mean field equation for a ferromagnet.

Know that Lars Onsager succeeded in finding an exact expression for the

phase transition temperature of an Ising model with nearest-neighbour

interactions on a square lattice.

e Show that the mean field approximation is a hyperensemble of an ensemble
of product states.

e Know the definition of a two-state Markov chain.

e Apply the hyperensemble construction to other than ensembles of product
states.

e Treat the quantum Heisenberg model in the mean field approximation.
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Part 11
Deformed Exponential Families



This part of the book deals with the notion of a generalised exponential
family. It grew out of the research in the area of non-extensive thermostatis-
tics. For that reason Tsallis’ non-extensive thermostatistics is treated in the
Section 8.

One of the conclusions is that the g-deformed exponential family occurs in
a natural way within the context of classical mechanics. The more abstract
generalisations discussed in the final chapters may seem less important from a
physics point of view. But they have been helpful in elucidating the structure
of the theory of generalised exponential families.



Chapter 7
qg-Deformed Distributions

7.1 gq-Deformed Exponential and Logarithmic Functions

An obvious way to generalise the Boltzmann-Gibbs distribution is by replac-
ing the exponential function of the Gibbs factor by a function with similar
properties. This function is then called a deformed exponential. The inverse
of the deformed exponential function is the deformed logarithmic function.
It turns out to be advantageous to start with deforming the logarithm.

Fix a number ¢ > 0. The g-deformed logarithmic function is denoted
Ing(u). It is only defined for u > 0 and is the unique solution of the differential
equation

d 1

— Ing(u) = wl

= (7.1)

which satisfies Iny(1) = 0. Note that this definition implies that the g-
logarithm is an increasing function.

One recognises immediately for ¢ = 1 the well-known property of the
natural logarithm (d/du)lnu = 1/u. Hence, In;(u) = In(u). For arbitrary

qg#1is

Ing(u) = / dyy™?
1
1 1—q
= —-1). 2
i G (72)
The second derivative of (7.1) is
d? 1
T Ing(u) = —qu™77". (7.3)

This is negative if ¢ > 0 (remember that u > 0). A function with negative
second derivative is concave, with positive second derivative it is convex. The
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Fig. 7.1 The g-deformed logarithm Ing(u) for g-values (from top to bottom) of 0.5,
1, and 2

natural logarithm In(u) is concave. Since the g-deformed logarithm should
look somewhat similar to the natural one, it is obvious to require that ¢ is
positive. However, sometimes negative g-values will be used.

Note that for large uw and for 1 < ¢ the g-deformed logarithm does not
diverge but goes to 1/(¢ — 1). Similarly, for small v and for 0 < ¢ < 1 it does
not diverge to —oo but tends to —1/(1 — ¢). Hence, the natural logarithm is
the only ¢-logarithm that diverges both for small and for large values of its
argument. See the Figure 7.1. As a consequence, the inverse function, which
is the g-deformed exponential function, and which is denoted equ(u)7 is not
everywhere defined, except when ¢ = 1. Since this is rather inconvenient, it
is obvious to extend the definition of exp,(u) to the whole of the real axis
with a value of zero or 400, whatever is appropriate, in such a way that it is
an increasing function on all of the real axis. More precisely, exp,(u) = +o0
holds when 1 < ¢ and u > 1/(q — 1); exp,(u) = 0 holds when 0 < ¢ < 1 and
u < —1/(1 — ¢). By inverting (7.2) one obtains

expy(u) = [1+ (1 — q)u] /7. (7.4)
The symbol []; is the positive part and is defined by
[u]+ = max{0, u}. (7.5)

In particular, the g-deformed exponential function is never negative. But it
can be 4+o00. The latter is indeed the case if the argument of [-]; is negative
or zero and the exponent 1/(q — 1) is negative. See the Figure 7.2. With this
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Fig. 7.2 The g-deformed exponential exp,,(u) for g-values (from top to bottom) 2.0,
1, and 0.5

extended definition of exp,(u) one still has that for all u
exp,(Ing(u)) = u (7.6)
However, the relation
Ing(exp,(u)) = u (7.7)
is only defined when exp,(u) is neither 0 or +oo.
The basic properties of the g-deformed exponential, needed further on,

are that exp,(0) = 1 and that it is an increasing and convex function. Note
further that

;—u exp, (u) = [equ(u)]q . (7.8)

7.2 Dual Definitions

The well-known relations

1
In o= —Ilnu and exp(—u)= oxp () (7.9)



98 7 g-Deformed Distributions

are in general not valid for deformed exponential and logarithmic functions.
Introduce therefore dual functions

N _ 1
exp, (u) = 7equ(—u) (7.10)
and
I} (u) = —Ing(1/u). (7.11)

A short calculation shows that exp}(u) = expy_,(u) and Inj(u) = Ing_q(u).
These are again deformed exponential and logarithmic functions provided
that 0 < ¢ < 2.

The q <« 2 — g-duality plays an important role in what follows. It should
not be confused with the ¢ < 1/g-duality which is related to the notion of
escort probabilities, discussed later on in the present Chapter.

7.3 The g-Exponential Family

The obvious definition for a family of probability distributions pg to belong
to the g-exponential family is that it can be written into the form

po(x) = c(x) exp, (—(f) — 0% Hyy(z)) . (7.12)

Like in the ¢ = 1l-case, it is essential that the prior weight ¢(z) and the
Hamiltonians H(x) do not depend on the parameters 6, while the normali-
sation a(#) must not depend on the variable z. We write «(6) instead of &(6)
because the normalisation does not necessarily coincide with the Massieu
function. The parameter g is the deformation index of the family.

Using the explicit definition of the g-deformed exponential one can write
(7.12) as

po(@) = ef) [1 = (1 = )(a(0) + 0°Hi(a))] |~
- 2((5767)) [1-(1- Q)Uka(x)}i/(l_q)
= % exp, (=" Hy(x)) (7.13)
with
k 0* k 1—q
T =T 0= gal) 0%Z(n) (7.14)

and
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Here we prove the statement that a probability distribution pg(z) belonging
to the g-exponential family is a distribution of superstatistics if and only if
g > 1 and (7.17) is satisfied.

The function f (z) must clearly be given by

F(z) = expy(—a(B) — Bz) = [1+ (¢ — 1)(a(B) + B2)]Y/ =9 . (7.18)

The first derivative of this function is
al = _
/) == (@B +2) [L+ (a = D) + 621577 (7.19)

This must be strictly negative if f(z) is completely monotonic. Hence, the
requirement (7.17) is necessary.
A short calculation shows that the prefactor of the n-th derivative is

a1 —2)(2 —3q) - (n — 2 — (n — 1)q). (7.20)

If ¢ > 1 then this factor has alternating sign. However, if 0 < ¢ < 1 then
there exists n such that n —2 — (n — 1)g > 0. When this is the case, then the
n-th derivative has the same sign as the n — 1-th. This is impossible if f(z) is
completely monotonic. Therefore, g > 1 is needed.

Box 7.1 Superstatistics and g-exponential families

2() = m — exp(a(0))

dx c(x) exp, (—nka(cE)) . (7.15)

Both formulas (7.12) and (7.13) are useful. The former expression implies
Ing(pe(x)/c(x)) = —a(0) — 0" H(x), (7.16)

which will be used below. On the other hand, (7.13) allows for an easy cal-
culation of the normalisation Z(n). Once Z(n) is known, the 6% follow from
(7.14).

A probability distribution pg(x), which belongs to the g-exponential family
with one parameter §, and with Hamiltonian H(x), is a distribution of super-
statistics, this means, it is of the form (5.23), with a completely monotonic
function f(z), if and only if ¢ > 1 and

a(B) + BH(z) >0 for all . (7.17)

See the Box 7.1. Note that for ¢ > 1 the condition (7.17) is usually satisfied
because Hamiltonians of physics are assumed to be bounded from below.
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7.4 Escort Probabilities

Let us try to express that pg(z) is normalised to 1 for all choices of #*. This
will lead us to the notion of escort probabilities.
From (7.16) and the definition of the g-logarithm follows

_ Oa (z)iinpe(x)
ook — TRV T gk e ()
= <210((;))> ﬁ%pg(x). (7.21)

Hence, one finds

= /dx 89kp9(x)
~ [aseto) () (- 25 )
= —2(9)% — [ dze(2) (f’c“’(f))> Hy(x), (7.22)
with
2(60) = / dz c(z) (ie((j)))q. (7.23)

Introduce now a new parametrised family of probability distributions, de-
noted Py(z), and defined by

_c(z) (po(x)\*
Poe) = (C(x) > . (7.24)

Averages with respect to this new family will be denoted with double
brackets

() = / dz Py(z) f(x). (7.25)

This new family is called the escort probability distribution.
Now, one can write (7.22) as

Oa

oo = —{{Hio. (7.26)
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This shows that the variables Hy, still can be used as (biased) estimators to
estimate the parameters . However, in evaluating the empirical average of
the Hj one should use the escort probabilities instead of the original pg.

Expression (7.26) should be compared with (2.19), which involves the av-
erages (Hy)p with respect to the py instead of the escort family and which
holds for the Massieu function ¢(6) instead of the normalisation a(f). Only
when ¢ = 1 both functions coincide.

The explicit expression of the escort probability family is

(x

Py(z) = Z(—e) [1— (1= q)(a(8) + 6" Hy())]

~—

q/(1—q)

i (7.27)

Note that it produces quantities relevant for comparison with experimental
data! Indeed, the average energies ((Hy))y are calculated using the escort
probabilities and are used to estimate the parameters via (7.26).

7.5 g-to-1/q Duality and Escort Families

The definition (7.24) of the escort probability can be inverted to give

2 1/q
po(x) = c(2)z(0)/1 (ie(—i))> . (7.28)

This suggests that the escort of Py(x) is again pg(x). To make this meaningful,
Py(z) should belong to the deformed exponential family with deformation
index 1/q instead of ¢. Note that one can write

~

Q

Py(a) = S22 1+ (1 — g)(—a(6) — 0% Hy ()]

) 1
= 200) oxpy g 00 (0) T 0 H (@) (7.29)

q/(1-q)
+

SRS

This equals exp; /,(—a(f) — 0% Hy(x)) only if ¢ = 1, in which case Py(x)
and pg(z) coincide. Hence, in general, Py(z) does not belong to the 1/¢-
exponential family.

If ¢ > § then the dual exponential function exp}(u) = exp,_,(u) is a
deformed exponential. This makes it possible to write

~

Py(z) = % exp’lk/q [—qa(@) — quHk(x)}
% eXPy_1/q [—qa(0) — 0" Hy,(2)] . (7.30)

ISE e

o
o

N

~—
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In this case Py(x) belongs to the deformed exponential family with defor-
mation index 2 — 1/q. Its escort probability is therefore proportional to
Pp(x)?>~1/9 and hence to pg(x)?9~1. Only for ¢ = 1 is the latter equal to
po(z).

One concludes that replacing pg () by its escort Py(x) is not a symmetry of
the deformed exponential families. Rather, pp(z) and its escort Py(z) should
be seen as two equivalent descriptions of the same model. The probability
distribution pg(x) belongs to the g-deformed exponential family if and only if
its escort Py(x) belongs to the escort family with deformation index 1/q. The
latter is defined by the fact that after reparametrisation it can be written
into the form

1
= e @ O @) e
The relation with (7.29) is then
¢* = q2(0)6"
0’(Q) = L (2(0) = 1) + g2(0)a(0). (7.32)

7.6 Dual Identities

A nice property of a probability distribution belonging to the exponential
family is that the average energies (Hy)g can be calculated by taking par-
tial derivatives of the logarithm of the partition sum — see (2.19) in Chap-
ter 2. This property can be generalised to distributions belonging to the
g-exponential family and will be generalised in Chapter 11 to an even larger
class of models. However, as noted above, the partial derivatives of the nor-
malisation function (@), although the latter plays the role of the logarithm
of the partition sum, do not return the average energies but rather the av-
erages with respect to the escort probability — see (7.26). This raises the
question whether a function ¢(6) exists such that (2.19) holds.

Let us start with the observation that the pdfs pg(z) of the g-exponential
family maximise the expression

I(p) — 56" (Hy),p, (7.33)

with s = 2 — ¢, where the entropy functional I(p) is given by

I(p) = —1—iq /dwp(w) l(%)l_q - 1]

_ / dz p(x) In, (JZEQ) . (7.34)
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The proof of this statement is given in the more general context of Chapter
11 — see Section 11.5. The constant s is introduced to allow that entropy
functionals are defined up to a constant positive factor. The alternative of
forcing s = 1 in (7.33) requires that I(f) should be divided by 2 — ¢. But
when ¢ > 2 this means multiplying the entropy functional with a negative
constant, which is not desirable.

It is now obvious to define the entropy S(U) by

S(U) =I(ps) where U= (Hg)g. (7.35)
A short calculation gives
S(U) = I(pg) = a(0) + 6~ Uy. (7.36)
The Legendre transform of S(U) is the function ¢(6). It is given by

() = S(U) — s6*U,
= a(f) — (1 — q)8"Uy. (7.37)

Because it is a Legendre transform one has automatically the validity of the
relation

o
W = —SUk, (738)
and of the dual relation
oS
— = sh*. 7.39
ou, ~° (7.39)

In the standard case ¢ = 1 Massieu’s function equals the logarithm of the
partition sum. Hence, to know the expected values Uy it suffices to calculate
the partition sum. When ¢ # 1 the expression (7.37) contains a correction
term. Hence, in general it is not enough to know the normalisation «(6) to
obtain expressions for the Uy. Indeed, as we have seen in (7.26), the deriva-
tives of the normalisation «a(f) yield averages w.r.t. the escort probability
distribution instead of the pg(x).

7.7 The g-Gaussian Distribution

The g-Gaussian distribution in one variable is given by

f(2) = - exp,(~27/0?), (7.40)

q

with
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rted;)
_ /1iqr(g+11+2) if g<1. (741)

It belongs to the g-exponential family. Indeed, it can be brought into the
form (7.12) with c(z) = 1/cy, H(z) = 22, 0 = 0973, and

=1Iny_4(0). (7.42)

The q = 1-case reproduces the conventional Gauss distribution. For ¢ < 1
the distribution vanishes outside an interval. Take for instance ¢ = 1/2. Then
(7.40) becomes

, (7.43)

a-52]-2]

g

This distribution vanishes outside the interval [—o, o]. In the range 1 < ¢ < 3
the ¢g-Gaussian is strictly positive on the whole line and decays with a power
law in |z| instead of exponentially. For ¢ = 2 one obtains

1 o
T2 402’

fl@) = (7.44)
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This is the Cauchy distribution. The function (7.44) is also called a Lorentzian
and is often used in physics to fit the shape of spectral lines. For ¢ > 3 the
distribution cannot be normalized because

1

is not integrable any more.

The g-Maxwellian

The most important example of g-Gaussians in statistical physics is the ve-

locity distribution in a classical gas with N particles. It is a ¢-Maxwellian

which only in the limit of large N converges to the Maxwell distribution (1.1).
The Hamiltonian of an N-particle classical ideal gas is given by

N
1
H(p) = m Z \pj\za (7.46)
j=1

where m is the mass of the particles and p; is the momentum of the j-th par-
ticle. Given the value E for the total energy, the microcanonical phase space
consists of all points on the surface of a 3/N-dimensional sphere with radius
V2mE. Let B,(r) denote the volume of a sphere with radius r in dimen-
sion n. The probability distribution for the momentum of a single particle
becomes

1
GBS | T S iE - HO)
1 By y(VE—InP/2m)
(2m)72 Bi(VE)

- <2UA)/ exp,(—Ip1 2/20%) (7.47)

f(p1) =

with normalisation constant A and with

3N -6
T 3N —4

2 2mE
T 3N —4°

and o (7.48)

q

This is a g-Gaussian with ¢ < 1. The appearance of a cutoff can be easily
understood. Arbitrary large momenta are not possible because of the obvious
upperbound |p;|? < 2mE. The probability distribution of the scalar velocity
v = |p1|/m becomes
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fav) = diq (m)3/2 v? exp, (—%Tmﬂ) , (7.49)

o2

with d, = / duu? exp,(—u/2). Only in the limit of large systems this
0
distribution converges to the Maxwell distribution. One concludes that the

Maxwell distribution is an approximation and is only valid in the limit of
large systems (N — o0).

7.8 The configurational probability distribution of a
mono-atomic gas

The proof, given above, that in a finite and isolated gas of particles the
probability distribution of the scalar velocities is a g-Maxwellian rather than
a Maxwellian, can be generalised to show that in the microcanonical ensemble
the configurational probability distribution of any mono-atomic gas belongs
to the g-exponential family.

The microcanonical ensemble is described by the singular probability den-
sity function (see Chapter 4)

1
qe(q,p) = @6@ — H(q,p)), (7.50)

where 0(+) is Dirac’s delta function. The normalization is so that

1
= ey /RgN dps---dpw /RSN dai---dayge(q,p).  (7.51)

For simplicity, we take only one conserved quantity into account, namely the

total energy. Its value is fixed to FE. The density of states equals

1
w(E) = NN /RSN dp; - -dpn /st dq; ---daqn 6(E — H(q, p)). (7.52)

It is in principle possible to integrate out the momenta. This leads to the
configurational probability distribution, which is given by

conf a\3N
(@ = (5)" [ dpidpwaslap) (7.53)
R3N
The normalization is so that
_ 1 conf
= N1aiN /RSN dq; - - -dgng®E™ (q). (7.54)

The constant a has been introduced for dimensional reasons.
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In the simplest case the Hamiltonian is of the form
X
H = — |2 7.55
(a,p) = 5 ; Ip;|° + V(a), (7.55)

where V(q) is the potential energy due to interaction among the particles
and between the particles and the walls of the system. Then the integration
over the momenta can be carried through explicitly. One obtains

N
@0 = (3)" Spyap fo. o don o Bovie -5 2 Ipif

where B,,(r) is the volume of the sphere with radius r in dimension n. Because
B, (r) =r"B,(1), one can continue with

(@ = (7)) Sgrap () En(E - Ve
- (5™ ﬁme(zm)M% B~ V(@M. (157)

In order to write this in the form of a member of the g-exponential family
one has to bring the E-dependent factor 1/w(FE) inside the expression to the
power 3N/2 — 1. In addition, let

1 3N—4

T (7.58)

q=1-

Then the above result becomes

(@) = (5) Bav(em™ 228 [w(E) (B - V@) 7. (1.59)

Introduce the parameter

1 (2ma?\**
=1, (%) w(B)I L. (7.60)

The extra factor in front of w(F)?~! has been chosen so that # is an in-
verse energy and that (7.59) can now been written as a g-exponential with a
dimensionless argument. Indeed, one has now

4"(@) = 2 Byn(1) exp,(~a(E) — 0V(q) (7.61)
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with

(7.62)

o ()

It is now clear that the configurational probability distribution q%o“f(q) be-
longs to the g-exponential family.

7.9 Average Kinetic Energy

Because the configurational density function belongs to the g-exponential
family, it satisfies the dual identities (7.38, 7.38). In the present example
they reproduce the statement that the ratio 2(F)/w(E) of the integrated
density of states too the density of states equals the average kinetic energy
— see relation (4.15).

The entropy I(py) evaluates to — see (7.36),

Sconf(Uconf) = [(pg) — 04(9) + aUconf

1 .
=_—— _gukn 7.63
T4 , (7.63)

with U¥? = F — U, The corresponding Massieu function is then given by

@(9) — Sconf(Uconf) _ SeUconf

1 .
=i oUs™ — soUeon (7.64)

Using the dual identities (7.38, 7.39) one obtains

oD : dyeent dFE
conf kin conf
peenf — 7= _ pkin 4 gpyeonf 4 _ '
§ ol y (1= dé o de (7.65)
and
dSeonf kin 40 dFE
0= T = 0 {9 + UM E] et (7.66)

Since both identities imply the same result we continue with one of them.
Using
1d6 W' (E
e =
0dE w(E)

(7.67)

the latter can be written as
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dyreent o 11 Ukinld_e
dE 1—¢q 1 —q 0dE
_ _i + Z((];E)) grkin (7.68)
Use this result to calculate
dd—Ew(E)Uki“ =W (E) U™ + w(E) [1 - dzznf}
2 — N
~ = u(B) - S w(B). (7.69)

By integrating this expression one obtains the average kinetic energy

3N Q(B) (7.70)

kin __
Ut = 2 w(E)

This expression gives the relation between the average kinetic energy and
the total energy E via the density of states w(FE) and its integral 2(FE).
The integration constant must be taken so that 2(E) = 0 when E = Ep;p
(implying that the kinetic energy vanishes in the ground state).

7.10 The Quantum Family

The quantum model with density operators pg belongs to the quantum g¢-
exponential family if there exist self-adjoint operators Hy, such that

po = exp,(—a(f) — 0k Hy,). (7.71)

The function «(0) is used for normalisation. It is possible to take the nor-
malisation in front of the deformed exponential. One has

po = exp, (—a(6) — 0" Hy)
= [1- (1 qa(0) — (1 - q)p* 1]}/

— % [1 _ (1 _ Q)nka} i/u*Q)
_ % exp, (—n" Hy), (7.72)

with 1" as in Section 7.3 on the quantum exponential family, equations (7.14,
7.15), and with Z(n) given by

Z(n) = Tr equ(—nka). (7.73)

It is obvious to define escort density operators o, by
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__* q
Oq = Z(g)p(% (774)

with
z(0) = Tr pg. (7.75)

(Assume that Trpj < oo, which is not necessarily the case). As in the
Section 7.5 on the ¢ < 1/g-duality, one can wonder whether the escort density
matrix o4 belongs to some g-deformed family. However, this need not always
be the case. We do not repeat this discussion here.

The basic property of the escort density operators is their relation with the
0*-derivatives of pg. However, as before, in Section 2.7, the operators Hj, do
not necessarily commute between each other. Hence, it is not straightforward
to calculate the derivatives of pg. But using cyclic permutation under the
trace one calculates

0
OZWTrpg

0
=Tr 0% exp, (—a(f) — 0k Hy,)

Trpga—eg [—a(0) — 6'H,]
= 2(0) | =557 — ((H)a| - (7.76)
with

((Hi))o = TrogHy. (7.77)
This implies

e (H. (7.78)

Hence, the quantum expectation of the estimators Hj with respect to the
escort density operator can be used to estimate the parameters 6*.

Problems

7.1. The kappa-distribution

The following distribution is known in plasma physics as the kappa-distrib-
ution (see for instance [5]). It is also called the generalised Lorentzian distri-
bution.
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o) = 1 c(v) .S
fr( )—A(K)v0 (1+ ) ﬁ)HH, > a. (7.79)

K—a ’Ug

Usually is c(v) = v?/v3. Write the kappa-distribution in the form of the

2 1k —
g-Maxwellian (7.49), with ¢ = 1 I : 2 = 3 I; n va%.

and o

7.2. The Student’s t-distribution
The density function of the Student’s t-distribution is usually written as

1 I'((n+1)/2) 2\ e
N CYE) (”n) |

The parameter n must be positive, not necessarily integer, and is called the
number of degrees of freedom. (Often one writes the Greek letter v instead
of the Latin n. Here this would lead to confusion with the letter v used for
the velocity).

The distribution arises in a natural manner when variables with normal
fluctuations are added together. Show that the distribution gy(v) = Af(A\v)
is a kappa-distribution with x = (1+n)/2, c¢(v) = 1, vo = V2/\, and a = 1/2
(see the previous Problem).

fa(t) = (7.80)

7.3. Order statistics
Select n numbers wuy, ug, - -+, Uy, uniformly chosen from the interval [0, (n —
1)T]. Show that the probability distribution pr(u) of v = min{uy,ug, -, u,}
belongs to the curved g-exponential family with ¢ = (n —2)/(n—1) < 1 and
H(u) = u.

Similarly, select n positive numbers according to the distributions

c . 1
flu) = Ara)? with ¢ = T OT (7.81)

Then pr(u) belongs to the curved g-exponential family with ¢ = (n+2)/(n+
1) > 1 and H(u) = u.

These examples are taken from [13] and belong to the domain of Order
Statistics [4].

7.4. Stationary solutions
Let be given a potential V(z) on the real line. Show that the probability
distribution

p(z) = exp,(—a(f) — 0V (z)) (7.82)
is a stationary solution of the Fokker-Planck equation

dp 0 v 9?
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Determine A and pu. See [2] for the relation with multiplicative noise.

7.5. The ground state wave function of the relativistic harmonic oscillator
reads

w r

2 9 ) —(1/4)—mc?/2hw

Py(z) = Ae™™h (Bomme)t <1 + — , (7.84)
c
with normalisation constant A and with
1 1
Ey = ihw + \/Z(P’Lw)Q + (mc?)2. (7.85)

Show that the spatial dependence of |1/, (z)|? is a ¢-Gaussian with ¢ > 1 given
by

+— (7.86)

See [1, 11].

7.6. Second moment of the g-Gaussian
a) Show that the second moment of the escort probability of the g-Gaussian
is given by

((z))o = 5—0". (7.87)

Use (7.26) to obtain this result.
b)Show that the second moment of the ¢-Gaussian itself satisfies the equation

du 1
(1-q)f 7=V~ 3—9—2/<3—q> with U = (2%)g and § = 0973(7.88)
—q

To find this result, make use of the identity (7.38).

Notes

The idea of g-deformed logarithmic and exponential functions was first pro-
posed by Constantino Tsallis [9]. A more systematic treatment, introducing
the notion of dual deformed functions, is found in [6]. They are at the origin
of the ¢ < 2 — ¢ duality. The g-exponential family, together with a fur-
ther generalisation, which is studied in Chapter 10, were introduced in [7].
The g <> 1/q duality was discussed in [10]. The same paper also introduced
the escort probability distributions into nonextensive statistical physics. This
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concept of escort measures was borrowed from a book on fractals [3], where
however it plays a different role.

The ¢-Gaussians have been discussed by many authors. Christophe Vi-
gnat has pointed out [12] that ¢-Gaussians appear when, starting from a
uniform distribution on a hypersphere, some of the variables are integrated
out. This is essentially the reason why the g-exponential family appears in
the microcanonical ensemble. That the configurational density can be writ-
ten as a g-exponential is known since long. The remark that it belongs to the
g-exponential family is found in [8].

Objectives

e Know the definitions of g-deformed logarithms and exponentials; under-
stand the problem of defining exp,(u) when wu is not in the range of In,;
understand the notion of dual deformed functions.

e Know the definition of the g-exponential family, both classically and quan-
tum mechanically.

Why are escort probabilities needed?

What is at the origin of the g <> 1/¢q and the ¢ « 2 — ¢ dualities?

The probability distributions of the g-exponential family are distributions
of superstatistics only when g > 1.

e Know that the g-exponential family appears in a natural way in the context
of the classical microcanonical ensemble.
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Chapter 8
Tsallis” Thermostatistics

8.1 The Tsallis Entropy Functional
The Tsallis entropy functional is defined by

S;Irba““(p) = —/dxp(x) Inj, ]L

S

(See the definition of the dual function In(u) in Section 7.2).
In the discrete case, without a prior weight ¢(z), this reads

Il
O,
8
!
—~
S
~
—
=}
<

Sg‘sallis(p) — ZP(J) lnq -
J

=— | pG)-1]. (8.2)

This entropy functional was introduced in the Physics literature by Con-
stantino Tsallis in 1988 [15], but was mentioned before by mathematicians
[6, 5].

Note that

$75 ) = Zp -

- Zp ) Ing(p (8.3)
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This expression coincides with (7.34).
In the ¢ = 1-limit Squanis(p) reduces to the Boltzmann-Gibbs-Shannon
entropy functional. To see this, use the theorem of de I’'Hopital

iy (S 1] = iy 2P P

qg—1 —1

= —Zp )Inp(y (8.4)

The concavity of the Tsallis entropy functional follows from the explicit
expression of (8.1). The function which maps p(z)/c(z) onto (p(x)/c(x))? is
convex if ¢ > 1 and concave if 0 < ¢ < 1. But the sign of the prefactor
1/(1 — q) is negative in the former case and positive in the latter. Hence, the
total expression is always concave.

If ¢ > 1 then the g-logarithm has an upper bound In,(u) < 1/(¢—1). This
implies an upper bound for the Tsallis entropy

. 1
Tsallis () < p— g>1. (8.5)

If 0 < ¢ < 1 then Ing(u) > —1/(1 — ¢) for all w > 0. This implies

allis 1
Squdlllb(p) > _1—_q, 0< q < 1. (86)
Hence, in this case the Tsallis entropy functional is bounded from below.
However, this lower bound can be improved in the discrete case, in absence
of prior weights ¢(j). Indeed, for 0 < ¢ < 1 is

1—gq

s 1 .
Squalhb(p) _ ZP(J)Q _
J

> 1 Zp(j) -

1—-g¢q
=0. (8.7)

Hence, in the case 0 < g < 1 the discrete Tsallis entropy functional cannot
become negative. To obtain this result, explicit use is made of the fact that
the probabilities p(j) cannot be larger than 1. In the continuous case the den-
sity p(z)/c(z) can take on any positive value. For this reason, the argument
working in the discrete case cannot be used in the continuous case.

A special case of the Tsallis entropy functional corresponds with ¢ = 2, and
is known as the linear entropy. It can be written as S3 31 (p) = > p()(1—

p(j)-
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The Tsallis entropy functional is non-additive when ¢q # 1. The Boltzmann-
Gibbs-Shannon entropy is additive. This means that the entropy of a system
composed of two independent subsystems A and B is the sum of the entropies
of the two subsystems. More precisely, let p(x,y) = pa(z)ps(y). Then one
has S(p) = S(pa)+ S(ps) The name of non-extensive thermostatistics, given
to the domain of research to which the Tsallis entropy belongs, refers to
the situation that the Boltzmann-Gibbs-entropy of a system does not grow
linearly with the size of the system.

8.2 A Historical Reflection

In the early works on non-extensive thermostatistics the existence of dual def-
initions of deformed exponentials and logarithms was not noticed. As a con-
sequence, it was not clear that the Tsallis entropy (8.1) is not naturally asso-
ciated with the g-exponential family introduced in the previous Chapter. The
natural candidate is (use that the dual logarithm satisfies Inj (u) = Ina_4(u)
to see this)

STballlh( ) — /dxp(x) ln:; p_

Indeed, using the definition (7.12), one finds immediately, see (7.36),

STsalhs /dxpe ( )—eka( ))
0) + 0% (Hy)s. (8.9)

This expression looks like the result of a Legendre transform of a(f) and
therefore suggests that the thermodynamic entropy S(U), with energies Uy,
taken equal to (Hy)g, equals ST““”(pg). However, this cannot be correct
because this would imply that the derivatives of a(f) equal —(Hy)g. But we
know that they are equal to the escort averages —((Hy))o — see (7.26). The
solution to this paradox is the constant s = 2 — ¢, introduced in the Section
7.6. The correct relation between the Massieu function ¢(6) and the entropy
S(U) = 535315 (pg) is S = &+ 0% (Hy)g. As a consequence, the normalisation
a(6) is given by

a(f) = P(0) + (1 — q)8" (Hx)s. (8.10)

One sees immediately that o(f) and @(#) coincide in the limit ¢ = 1.
In non-extensive thermostatistics, as formulated in the fundamental article
[17], the entropy S(;Fsauls(pg) is associated with the escort energy ((Hy))g.
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More precisely, the Tsallis entropy functional ST (p) is maximised under
the constraint that the average of a given Hamiltonian H(z) with respect
to the escort probability P(z) has some prescribed value U. The result of
this rather peculiar procedure is a probability distribution, called the Tsallis
distribution. This distribution belongs to the curved g-exponential family.
The fact that it turns out to be curved explains why there has been quite some
confusion in the literature about the correct definition of the thermodynamic
temperature in Tsallis’ thermostatistics. Indeed, in a curved g-exponential
family the connection between the parameter # and the inverse temperature
0 is further complicated by this curvature.

8.3 Maximising the Tsallis Entropy Functional

For simplicity, discrete probabilities are used in the present section and the
prior weights ¢(j) are omitted.

Consider the problem of maximising the Tsallis entropy functional S ; sallis ()
under the constraint that the escort probabilities

((Hr))p =

J)IH,(7) with z4(p Zp (8.11)

have given values Uj. This problem is solved by introducing Lagrange pa-
rameters #* and «, the latter to control the normalisation. The functional to
be optimised is then

L(p) = S;Fsalhs aZp — 0k (( ((Hg))p- (8.12)

Variation with respect to p(j) gives

_ 4 N1 p@(j)q_
0=— qpa(y) (ar

with
=Y nl)" (8.14)

This expression can be written as

1
2,(0)

ka(j)_ 7 (815)

po(j) = {1 —(1—¢q)0

with the partition sum given by
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Z,(0) = <aﬁ> v . (8.16)

Here, we have silently assumed that the argument between square brackets
is not negative so that it can be raised to the power 1/(1 — ¢). This result
can also be written in terms of a g-exponential

)= ko, [[ATBO ]

This probability distribution is the Tsallis distribution.
The partition sums Z,(6) and z,(f) are linked by an identity. Multiply
(8.13) with pg(j) to obtain

0= f —po(i)" = apo(j) = qp;q((]g)q 0% [Hy(j) — ((Hi))].  (8.18)

This can be written as

po(j) = (Z4(0)" " Po(5) [2(0) — (1 — @)0" (Hi(j) = ((H))o)] - (8.19)

Summing over j, and using that both the pg(j) and the escort Py(j) are
properly normalised, yields the identity

24(0) = Z,(0)' 71 = a——. (8.20)

Then, (8.19) simplifies to

poli) = o) |1 (1 = g U= Lkl (5.21)
2¢(0)

A nice property of the Tsallis distribution is that it is manifestly invariant
under shifts of the energy scales: Adding a constant to the definition of any of
the Hamiltonians Hy(z) does not alter the probability distribution because
only the difference between actual value and average value ((Hy))g enters the

expression.

8.4 Thermodynamic Properties

Note that (8.17) gives an implicit definition of the probabilities pg(j) because
both sides of the equation depend on them. Nevertheless, the solution, when
unique, defines a parametrised family of probability distributions. It belongs
to the curved g-exponential family. This means that it can be written into
the form
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Let
Zq4(0)3—1 1
kg) = =2 ok = 0, 8.23
CO="0 " T ner (529
and
1— Z,(0)9~1
ao(®) = L 2O cx o) (a1, (8.24)
Then (8.22) reduces to (8.17).
From the conservation of probability then follows
o}
0= 0% ZPG (4)
J
0
= Z 5% “Pa ( ao(0) — ¢*(0)Hy (5))
= —Zpe(J) e [a0(®) + @) Hi()]
o ¢t
= 2(0) {_W’S ~ 3% (Hi))eo| - (8.25)
This can be written as
lo] ¢t
200 = — (e, (8.26)

and shows that the escort averages of the Hamiltonians Hy are not obtained
simply by taking derivatives of the normalisation function with respect to the
parameters 6. One needs in addition the matrix of coefficients 9¢!/96%.

Box 8.1 Proof that the Tsallis distribution belongs to the curved g-exponential
family

po(j) = exp, (—ao(8) — C*(0)Hi(4)) (8.22)

with ag(6) and ¢*(#) some functions of 6. See the Box 8.1.
Note further that there exists a simple relation between the value of the
Tsallis entropy functional at equilibrium and the partition sum z(6). Indeed,

one calculates
P = g | f (lle((x;)q‘l]
- { [ aesra 1]

= 7= =) 1. (8.27)




8.5 Example: The Two-Level Atom 121
Consider now a one-parameter model. Then the previous identity implies
that

d 1 dz

 Tsallis — - 2
S ) = (3.25)
On the other hand, one can show that
dU 1 dz
0— = ———. 2
de 1—qdf (8.29)
Indeed, from (8.24) and (8.26) follows
d 1 1 d
— i (8.30)

a9 1—q2(0)2d6°

Using (8.23) this simplifies to (8.29).
Identify now S;Fsallis (pp) with the thermodynamic entropy S(U). Combin-
ing both expression then yields (putting kg = 1)

ds isTsallis(pe)
ﬂE—:dquza. (8.31)
do

This proves that the parameter 8 coincides with the inverse temperature 3
(assuming that S sallis (10 ) coincides with the thermodynamic entropy S(U)).

8.5 Example: The Two-Level Atom

Consider a model with two states, described by a Hamiltonian with values
H(0) = 0 and H(1) = A > 0. This model is so simple that the step of
maximising the entropy is unnecessary because the probability distribution
is already fixed by the constraint. Indeed, from the constraint

U = ((H)) = Py(1)A (8.32)

follows Py(1) = U/A. From Py(j) = pe(j)%/2(0) then follows

(0) = (1-5)" (8.33)
Ty ) |
I
po(1) = ) () (8.34)
2(6) = ! (8.35)




122 8 Tsallis” Thermostatistics

n w
T T T

—_

(N

o @

.0 0.1 02 03 04 05
U

Fig. 8.1 Inverse temperature 3 as a function of the escort energy U, for ¢ = 0.8 and
A=1

Hence, the probability distribution and its escort are known as a function of
U. The Tsallis entropy of this probability distribution equals

S;[‘sallis(pe) — %ﬂ] [pe(o)q +p9(1)q _ 1]
1
= 7o O -1, (8.36)

Taking the derivative of the thermodynamic entropy S(U) yields the inverse
temperature 8 (taking kg = 1). Identifying S(U) with S;Fsa“is(pg) then gives

A, 1 -5 o

(
BA=2A = .
dU 1—q[(1_%)1/q+(%)1/q}Q+1

(8.37)

This expression gives 3 as a function of U. See the Figure 8.1

Using the above expressions it is now a straightforward but tedious calcu-
lation to verify that py can indeed be written as a Tsallis distribution with
0 = . Hence, the example seems satisfactory. However, for smaller values
of g, for instance ¢ = 0.5, the inverse temperature § is not any longer a
monotonic function of the escort energy U. This means that the heat capac-
ity dU/dT is negative and that the model is thermodynamically unstable.
This is totally unexpected for such a simple model. It indicates that it is not
correct to identify the escort energy U with the thermodynamic energy, and
the Tsallis entropy Squallis (pe) with the thermodynamic entropy S(U), as we
have done up to now. This point is further investigated in what follows.
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8.6 Relative Entropy of the Csiszar Type

The f-divergence, or Csiszar type divergence, is defined for an arbitrary
convex function f(u) by

1ol = Y riw s (2. (8.38)

k

The choice f(u) = ulnu yields

N (20
101 = Spthn (F ). (5.39)

This quantity is the Kullback-Leibler distance, see Section 3.6. In statistical
physics, it is called the relative entropy of the distribution p with respect to
the distribution r.

Make the choice

Flu) = ——(1 —u?Y) = —uln, <i) (8.40)

1—g¢

This function is convex for ¢ > 0. It gives

Illr) = T > o) [1 - (]%) i ] | (8.41)

In the continuous case this becomes

I(plr) = —qu /da:p(x) [(%)1_q _ 11 . (8.42)

This expression is the g-deformed relative entropy used in Tsallis’ thermo-
statistics. It has been introduced by several authors [2, 16, 13].

The basic property of the f-divergence, with f(u) a convex function sat-
isfying f(1) = 0, is its positivity. Indeed, using convexity one shows

p(k)
1llr) > f <§k:r(k)r(,€)>

= (Zp(k)) =f(1)=0. (8.43)
k

The positivity of the relative entropy has been used in the Section 3.6 to
discuss the stability properties of probability distributions belonging to the
exponential family. Let us try to generalise this to g-exponential families.

One calculates
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ollon) =~ [ drp) [(7;(;))) 7 1]

Tsallis ﬂ L 1 _
-; Ep;+z(0) [apte) (S5) o) -

_ _ QTsallis
Sq

+ s |22k, - (e (3.44)
Introduce
7°0) = 57(0) — L (1)), (8.45)
Then one obtains
I(pllpe) = 5°(po) — P4 (p)- (8.46)

In this way, one shows that the Tsallis distribution py maximises the non-
equilibrium Massieu functional @3°(p).

The expression (8.45) is not fully satisfactory. The thermodynamic defi-
nition of the Massieu function is @ = S — SU. Comparing this expression
with (8.45) then suggests that the thermodynamic parameters are not the
6% but namely 6% /z(0)?, and that the thermodynamic forces are z(p)((Hy))p
instead of ((Hy))p. In order to clarify the situation an alternative definition
of relative entropy is investigated in the next Section.

8.7 Relative Entropy of the Bregman Type

The f-divergence, discussed in the previous section, is only one possible gen-
eralisation of the notion of relative entropy. An alternative definition is known
as the Bregman type divergence. Given a convex function f(u) with deriva-
tive f’(u), it is defined by

D(pllr) = Z [f(p() = () = (p(G) —rGN S (rG)]. (8.47)

The relation D(p||p) = 0 is clearly satisfied. The positivity D(p||r) > 0 is
obvious if one interprets the expression in a geometric manner. The term
Fr()+ ) —r() f'(r(4)) describes a tangent in the point (). Because
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A

Fig. 8.2 Geometric interpretation of the Bregman divergence

f(u) is convex, the tangent stays below the function value f(u). See the
Figure 8.2. Hence the inequality follows.
Let

fu) = ulng(u). (8.48)

It is a convex function for g < 2. The corresponding expression for the diver-
gence is

Dipllr) = > [p() g p(5) = () Ing ()] - sZ ) ng(r ()
_ _SQTE?;hs( )+ STS%IIN i:z Z j)l_q~ (849)

In the ¢ = 1-limit this expression coincides with the relative entropy, as given
by (8.39). In general the two types of divergence D(p||r) and I(p||r) do not
coincide. In the continuous case, with weight function ¢(z), (8.49) becomes

Dipllr) = —SF=(p) + S22 (1)
2—q r(z)\'
_Tq /dm [p(z) — r(x)] (c—x)> ) (8.50)

Introduce the alternative definition of non-equilibrium Massieu functional
2—q

@rele( ) STballlb( )7 Z(9)2

0% (Hy),. (8.51)

It satisfies

D(pllpo) = 4°(po) — P4°(p)- (8.52)
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Let pg be Tsallis distribution as given by (8.22). One calculates using (8.50)
D(pllpe) + 83535 (p) — 5323 (po)

221 [ o o) - o) (22
9 _

—=2 [ da (o(e) = po(@) [1 = (1 = )ao(®) = (1 = )" (9) Hi(@)]
(2= )G (0) (i) — (ol (85

Hence, the definition of the non-equilibrium Massieu functional, alternative to
(8.45), is

D7 (p) = 53°%°(p) — (2 — 9)C*(0)(Hi)p- (8.54)

Using the expression (8.23) for ¢*(0) this becomes (8.51).

Box 8.2 Derivation of the relation (8.52)

See the Box 8.2. The positivity of D(p||pg) (assuming 0 < ¢ < 2) implies
that @3°(p) is maximal when p = pg. The only differences between (8.51) and
(8.45) are that the Tsallis entropy functional has index 2 — ¢ instead of ¢ and
that z(p){(Hy)), is replaced by (2 — q){(Hyg)p.

The expression (8.51) leads to an alternative interpretation of Tsallis’ ther-
mostatistics, one which is closer to the conventional wisdom of statistical
physics. In this interpretation, the thermodynamic forces are (derivatives of)
the averages (Hy),, not those involving escort probabilities. The correspond-
ing thermodynamic variables are proportional to

¢"(0) = (8.55)

and have been introduced before - see (8.22) and the Box 8.1. The ther-
modynamic entropy S(U) is identified with the entropy Sg_s?lms(pg). With
these changes a fully consistent formalism is obtained in which the Tsallis
distribution py is thermodynamically stable in the sense that it optimises
the non-equilibrium Massieu functional as defined by (8.51). The modified

expressions of the thermodynamic quantities are
S(U) = 53240 (py)
Ur = (Hy)o
P(0) = P4 (po)- (8.56)

The formalism obtained in this way is that of the previous Chapter.
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8.8 Quantum Expressions

Here, one finds quantum mechanical analogs of the main expressions of the
present Section. A more profound treatment is given in the more general
context of the final Chapters.

Given a density operator p, the Tsallis entropy is defined by

. 1
Sq 28 (p) = ¢ (Trp?—1). (8.57)

In the ¢ = 1-limit this expression reduces to the von Neumann entropy (3.42).
Note that

5353 (p) = = Tr plng p. (8.58)
The quantum Tsallis distribution is the density operator pg given by

Lo [ g e = (i)
®) pq“ 20) }

pe =~ (8.59)

q
with

2(0) = Trpg and  Z,(0) = Tr exp, {—MW} . (8.60)

The relative entropy of the Csiszar type is defined by
I(p|lo) = Trp(lng p — Ing o). (8.61)
The relative entropy of the Bregman type is given by
_ 2-4q 1—q
D(pllo) = Trplnqp—Trolnqo—l—Tr(p—a)a .
—q
(8.62)

Clearly, one has I(p||p) = D(p|lp) = 0. The proofs that I(p|lc) > 0 and
D(plle) > 0 are not so easy because it can happen that p and o do not
commute. The proof of D(p||c) > 0 will be given later on in a more general
context — see the Section 11.7.

8.9 More General Entropies

A general class of entropy functionals will be discussed in Chapter 11. The
entropies discussed below are somehow linked with the Tsallis entropy func-
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tional, and for that reason are mentioned already here. The Sharma-Mittal
entropy functional is discussed in the next Chapter.

A two-parameter entropy was introduced in the field of non-extensive ther-
mostatistics by Borges and Roditi [3]

Sq.r(p) =

>opl) =Y op)? ] (8.63)

J
One has clearly
1
q—r

Note that S,.-(p) = Sy 4(p) and S,1(p) = S;[‘Sallis(p).
The entropy functional (8.63) generalizes the entropy S, ,-1(p), introduced
by Abe [1]

qur(p) _ [(1 o 7A)S;AI‘sallis o (1 o q)S;[‘sallis] ) (864)

Zp BRI 0D (8.65)

q_q

It also generalizes the entropy Si(p) introduced by Kaniadakis [7]

Surle) = 5o [ 3w = S pti) | (5.66)

Landsberg and Vedral [8] introduced the following variation on Tsallis’

entropy
o1 e -1 1
S0 =1-4 >Sp()  1-g (1 - ij(j)q> 86D

This entropy has been further studied in [12, 18, 19].

Problems

8.1. Conventional energy constraints
Assume that 0 < g < 2. Show that the Tsallis entropy S;Fsalhs (p) is maximised
by a probability distribution of the form

po(j) = expy(—a(8) — 0" Hi(j)) (8.68)
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when the constraints are of the conventional type (Hy), = Uy, instead of
those involving the escort probability. Remember that the dual exponential
function expy is defined by (7.10).

8.2. Identity

Let be given a probability distribution p(j), together with its escort P(j), de-
fined by (7.24). Prove that the Tsallis entropy functional satisfies the identity
(see Theorem 13 of [14])

exp, (S;rsams(p)) = expy (SF/S;IIiS(P)) . (8.69)

Notes

There is a huge literature about Tsallis’ thermostatistics, most of which is
not covered here.

There have been different versions of Tsallis’ thermostatistics. The Tsallis
probability distribution, presented here (8.17), is that of the third version
of the theory, proposed in [17]. This paper claims that the parameter 6,
appearing in (8.17) when only one Hamiltonian H(j) is involved, coincides
with the inverse temperature § and justifies this claim by citing [11]. In my
opinion, this claim is not justified because the Tsallis distribution falls out of
the scope of [11].

The mean field character of non-extensive thermostatistics was noted in
[9]. It explains why Tsallis’ thermostatistics exhibits thermodynamic insta-
bilties in situations where they are totally unexpected. These can be un-
derstood as being consequences of the Tsallis distribution belonging to a
curved g-exponential family. The parameter 6 is an effective temperature.
After reparametrisation

The Tsallis distribution has been considered as a parametrised family in
the recent work of Campisi and Bagci [4]. They study the formalism in the
context of Boltzmann’s concept of orthodes.

The definition (8.49) of the g-deformed relative entropy, is a special case of
that introduced in [10] and discussed in the Chapter 11. See also the Problem
11.1 of the latter Chapter.

Objectives

e Know the Tsallis entropy functional and its properties.

e Know the Tsallis distribution.

e Show that the Tsallis distribution with deformation parameter ¢ belongs
to the curved g-exponential family.
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e Know about the existence of two different notions of ¢-deformed relative
entropy, one of the Csiszar type, the other of the Bregman type.

e Be aware that unexpected thermodynamic instabilities may occur in Tsal-
lis” thermostatistics as found in the literature. Know how to cure these
problems.

e Replace the classical expressions by their quantum analogs.
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Chapter 9
Changes of Scale

9.1 Kolmogorov-Nagumo Averages

Experimental data are often plotted on logarithmic paper. In particular, if
the data obey a power law relation

Yi X —5, (9.1)

AN

then
Iny; ~InA — alna;. (9.2)

Hence, on the logarithmic paper the data points fall roughly on a straight line.
By linear regression one can then estimate the constants In A and «. Note
however that linear regression on (9.2) does not produce the same results as
fitting (9.1) directly to the data using non-linear fitting software. The reason
is that the experimental errors are weighed differently. This means that the
procedure of estimating parameters is sensitive to the scale on which the
experimental data are presented. It is therefore of interest to study the role
of scale changes in a systematic manner.

The only requirements for a scaling function ¢(u) are that it is continu-
ous and strictly monotonic. It can be either increasing or decreasing. But
only increasing functions are considered here because this is the obvious
choice. Given a scaling function ¢(u), and a discrete probability distribution
P1, P2, Pn, the Kolmogorov-Nagumo average of the sequence of numbers
Z1,T2,- - Ty is defined by

(x)p =07 (Zpk¢(xk)> : (9.3)
k=1
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The data points zj are scaled with the function ¢(u). Next, the average is
calculated using the probabilities pi. Finally, the average is scaled back using
the inverse function ¢! (u).

Two basic properties of linear averages still hold for Kolmogorov-Nagumo
averages.

- If all 23, have the same value = then also the average (), has the value
x.
- If @, < yi for all k then (z)y < (y)g. In particular, if 0 < y; then

0 < (y)g-

9.2 Rényi’s Alpha Entropies

The Kolmogorov-Nagumo averages have been used by Alfréd Rényi [2] to
introduce a family of entropy functionals, called the alpha entropies, or Rényi
entropies. The index ¢ is used instead of « to stress the link with the Tsallis
entropy functional Squanis7 but also to avoid a conflict of notation in the
Section on fractals. The definition is

$) = =t | S00)") (94)

It is a decreasing function of g. See the Box 9.1.

Here we show that the Rényi entropy functional S4(p) is a decreasing func-
tion of the parameter gq.
One calculates

o) 4S9 : : .
(-7 (p0)) G =7 (Xp@7) + 0 -0 X p() (o),
(9.5)
with f(z) = xlnz. The function f(z) is convex. Hence one has
1 (3p)7) < Y p@ 6

= 3 (@) Inp(i)
= (g—1))_p(i)? Inp(i). (9.6)

This shows that (9.5) cannot be positive.

Box 9.1 g-dependence of Rényi’s entropy functional
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The Rényi entropy functional can be written as a Kolmogorov-Nagumo
average

p

S9(p) = <ln 1>¢q (9.7)

with ¢q(z) = In, e”. Indeed, one evaluates

1/(1-q)
= | > p()”
— b >y
= 5°(p). (9.8)

It is also clear that in the limit ¢ = 1 this entropy reduces to the Boltzmann-
Gibbs-Shannon entropy. Indeed, the scaling function becomes linear ¢ (z) =

x so that
1
St(p) = <1n>
=—Zp ) In p(j

= SBGS<p>. (9.9)

9.3 Rényi or Tsallis?

There is a straightforward relation between Rényi’s S%(p) and the Tsallis’
entropy functional Sy (p). Indeed, one has
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Here we show that Rényi’s entropy functional S9(p) is additive.
Let p(¢,7) = pa(i)pr(j). Then one has

S(p) = = In (Zp(i,jw)

] - et (ZPA@)q) (Zmeq)
1 . 1 .
- L (me) i (zpsw)
i J

1—gq 1—gq
= S%(pa) + S%(ps)- (9.10)

This shows the additivity.

Box 9.2 Additivity of Rényi’s entropy

SQ<p) - : iq In (1 + (1 _ q)S(;l“sallis(p)) =< [Squallis(p)] ; (9_11>

with

1
E(u) = - In(1+ (1 - q)u) (9.12)
Note that the function &(u) is well-defined when 1 + (1 — g)u > 0 and is
strictly increasing because

1
!/

&'(u) = T > 0. (9.13)
Hence, when the entropy is maximized in a variational principle, it cannot
make any difference whether the Tsallis entropy functional is used or Rényi’s,
because when one of the two reaches its maximum then also the other is max-
imal. However, the thermodynamic entropy S(U) is a concept which differs
from that of the entropy functional. This raises the question whether S(U)
equals S%(p) or ST (p), when evaluated for the probability distribution
p which optimizes the entropy functional under the constraint that the av-
erage energy equals U. This question has already been touched upon in the
previous Chapter. Here two arguments are given which indicate that Rényi’s
entropy functional is better suited for this purpose.

A well-known property of Rényi’s entropy functional is that it is additive,
while Tsallis’ entropy functional is not. This means that when the system
is composed of two independent subsystems A and B, and consequently, the
probability distribution p is the product of the distributions p4 and pg, then
the entropy S?(p) is the sum of S%(p4) and S%(pp). See the Box 9.2. Now,
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additivity of the thermodynamic entropy S(U) is one of the corner stones of
thermodynamics. hence it is clear that Rényi’s entropy functional is better
suited for this role.

A further argument in favour of Rényi’s entropy functional comes from
the properties that one expects the temperature to hold. Let us assume that
the temperature T is defined by the thermodynamic relation

1 ds

- = —. 9.14

T dU ( )
It is then clear that a different result for T will be obtained whether Tsallis’
or Rényi’s entropy functional is used. Both options are now compared in an
example.

9.4 Configurational Temperature

The monoatomic gas has been treated already in the Section 7.8. Here we
show that the temperature of the configurational subsystem equals that of
the kinetic energy subsystem provided that Rényi’s entropy is used.

It was shown already in the Section 7.8 that the configurational probability

conf

distribution ¢%™ (q) belongs to the g-exponential family, where ¢ = 1 —

SN 2 is determined by the number of particles N. More precisely, it can
be written as

a5 (q) = ey exp,(—a(E) — 0V(q)) (9.15)

with

(9.16)

3
and with ¢y = 733]\](1), where B, (1) is the volume of a unit sphere in

n dimensions. The function V(q) is the potential energy term of the Hamil-
tonian. The function w(FE) is the density of states as a function of the total
energy F. The parameter 6 depends on F via

9 1 <2ma2

=i h?) w(E)I L. (9.17)

The constants a and h are arbitrary and are introduced for dimensional rea-
sons.
The pdf (9.15) maximises the entropy functional I(p), given by (7.34), and

which coincides with SQTE?;“S (p). Let us therefore calculate the Rényi entropy
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3 1 1 qconf(q) 1-¢
2—q(confy _ 1 conf E
s = Lol [ |29
1 1 conf
— i [ dag (@)1 - (1 - )a(B) - (1~ )V(a)

- i Tl = (1= g)a(E) - (1-9)0(V)e]

3N Ukin

where UK" = E — U is the average kinetic energy, U = (V), is the
average potential energy, and € = h?/2ma? is a constant with the dimensions
of an energy.

Assume now that the Rényi entropy (9.18) coincides with the thermo-
dynamic entropy S (U°") of the configurational subsystem. Then the
configurational temperature is calculated as follows

1 - dsconf
T d[?J)]C\Ofnf 1 dF '(E) dFE
w
- <2 B 1) [/kin {1 B dUconf:| B w(E) dyyconf (9'19)

The derivative dE/dU™ can be obtained from the relation

; 3N 2(E)
E— Uconf _ Ukln _ = 9.20
2 w(E) (9:20)
— see (4.14) and (7.70). This relation implies
dU 3N aw (EF)
— =1-" 4 U : 9.21
dE > TY L) (9:21)
Expression (9.19) now simplifies to
1 w(E)
— =7 9.22
T~ o) (9.22)

But this is precisely the expression (4.14) for the temperature T as obtained
from the modified Boltzmann entropy (4.12)— note that here kg = 1 has
been used. It also coincides with the temperature of the subsystem of kinetic
energies (assigning %k‘BT to each degree of freedom). One therefore concludes
that the use of Rényi’s entropy functional for the configurational subsystem
leads to a value of the configurational temperature which coincides with the

one of the total system and the one derived from the speed of the atoms.
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9.5 Fractal Dimensions

Let us now consider an important application of Rényi’s entropy functional,
with the intention to find out whether there is any relation with the main
topic of this book, which is the (deformed) exponential family. It will turn
out that this is not the case, at least not in an obvious manner..

The Rényi entropies have been introduced in physics in the context of
multifractals. A fractal subset of R? has a vanishing (hyper)volume in d
dimensions, while the volume becomes finite in some non-integer dimension
v less than d. This finite volume is then related to the linear size [ of the set
as [“. This exponent « says how the volume scales with the linear size of the
set.

A related concept is that of fractal measures, see the Box 9.3 for an ex-
ample. For simplicity of notations only fractal measures on the interval [0, 1]
are considered. Also, the coarse graining of the interval [0, 1] is limited to the
regular partition into 2" intervals of equal length. More general partitions
could be considered and can simplify the applications. This is not done here
because this would obscure the exposition.

The fractal measure p on the interval [0, 1] determines a discrete probabil-
ity distribution p(™ by

(D2
p™ () = / dp(z). (9.23)

2—n

Assume that the Rényi entropies S9(p(™)) are extensive quantities in the sense
that they diverge linearly with n. Then the Rényi dimension (also called the
generalised dimension) Dy of p is defined by

, 1
Dy(p) = lim. 3

S49(p(M). (9.24)

The Rényi entropy of a discrete probability distribution cannot be negative.
Hence, the dimension satisfies Dy(p) > 0. It is a decreasing function of g.
See the Figure 9.1 for an example. The value at ¢ = 0 coincides with what
is known in the literature as the box dimension of the fractal set which
supports the probability distribution. It usually coincides with the Hausdorff
dimension, although the latter is defined in a different manner, involving
more partitions of [0, 1] than only those in intervals of equal length.

The limit of large n in (9.24) looks like a thermodynamic limit. This re-
semblance is made hard in what is known as multifractal analysis. Its main
result is that (9.24) can be rewritten as

7(q) = (¢ = 1)Dy(p) = inf (g — f()), (9-29)
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0.5
0.25
T T T T T T T T T T
-5 0 5 10
q

Fig. 9.1 The Rényi dimension D, of the asymmetric Cantor set of the Box 9.3, with
lh=1/2.1=1/4,and a = 0.8

1 ] n=0
a 1-a
[ ] | I—
a2 a(1-a) a(1-a) (1-a)?
[ ] [ ] — O n=2

Fig. 9.2 Construction of a Cantor set with {; = 0.5 and I3 = 0.25. Probabilities are
assigned with py =aand p2o =1—a

for some function f(«). This expression enforces the analogy with the ther-
modynamic formalism — see (3.15). The parameter « plays the role of the
energy, the parameter ¢ that of the inverse temperature 8. Hence, 7(q) is
minus the Massieu function, and is proportional to the free energy. The func-
tion f(«) then corresponds with the thermodynamic entropy S(U). Further
support for this identification follows when the escort probability distribution
is introduced. Let

W) = g (070)" (9:30)

with



9.5 Fractal Dimensions 139

The fractal measure p (0 < a < 1) with support in the asymmetric Cantor
set is constructed as a limit of probability distributions ry, (z). It starts with
the interval [0, 1] at level n = 0. The corresponding probability distribution is
ro(z) = 1, uniformly. Next divide the interval in two pieces [0, l1] and [1—I2, 1],
where ;1 and l2 are positive constants satisfying l1 +1l2 < 1. The corresponding
probability distribution is

al

Tl(m):l— ifo<x<ly,
1
:(C)L flhi<z<l1l-—Is
:l—2 ifl—ly<az<l. (9.25)
2
The probabilities a1 and a2 satisfy a1 = a and a2 = 1 — a. This division

step is repeated infinitely many times — See the Figure 9.2. At level n the
probability distribution 7, (z) gives probability af*a5 ™™ to (::z) intervals of

length {715~ "". One verifies that

/01 dzrn(z) = Xn: (:2) aTal ™™ = 1. (9.26)

m=0

The fractal measure p(z) is now defined as the limit of 7, (z) for n tending to
infinity.

Next consider a partition of [0, 1] into 2™ intervals of equal length. Assume
li1 = 1/2 and lo = 1/4 for simplicity. Then the probability of the interval
[F27™, (j+1)2~™] is fixed during the above construction at a level n’ depending
on j and does not anymore change when n’ increases. This makes it possible
to write the following recursion relation

24 (g) = a2 (9) + (1 - )72~ (g) (9:27)

with 2™ (q) = exp [(1 —q)S? (p<"))]. By induction one then shows that

1 n 2l+Hm<n-+1 I
59(p(™) = my > ("‘ )aqm(l —a)®.  (9.28)

l-—q = = m
For ¢ = 0, the recursion relation (9.27) defines the Fibonacci numbers
1,2,3,5,8,13,---. From their asymptotics one derives Do(p) = In((1 +

v/5)/2)/1In 2, which is approximately 0.694.

Box 9.3 Example of a fractal measure

N\ 4
X(g) =3 (p () (9.31)
J
Then the Rényi entropy becomes
1

S‘I(p(")) =1 In z(")(q). (9.32)
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Note that the escort probability is used here to turn the probability distribu-
tion p(™ (j) into a one-parameter family of probability distributions, with ¢
being this parameter. This is conceptually different from its use in the previ-
ous Chapters, where ¢ is fixed and refers to the g-exponential family to which

the probability distribution belongs.

By construction, pgn)( j) belongs to the exponential family. Indeed, one can

write
Py (5) = exp (~2) () — aH ™ () (9.33)
with
o™ (q) =nz"(g) and H"(j) = —Inp™(j). (9.34)
From the variational principle of Chapter 3 then follows that

(¢ —1)S1(p™) = -2 (q)
= inf{qg(H™), — $5(p)}. (9.35)

This expression is already similar to (9.29), but is not yet the same.

9.6 Microcanonical Description

Up to here the description of fractal measures corresponds to that of a canoni-
cal ensemble. Let us now introduce a microcanonical description. Write (9.31)
as

2 (g) = / da p(™ (@)e o2, (9.36)

with
2" -1 .
In p(") ()
(n) _
P () = 7206(04—&— T2 . (9.37)

The expression (9.36) is the analogue of (5.9). A corresponding microcanon-
ical distribution is

1
(n) (s — : (myra\
a0 (j) = (@) if Inp"™(j) = —naln2,

=0 otherwise, (9.38)

where ¢(™)(a) is the number of j for which In p(™(5) = —naIn2 holds. Indeed,
one has now
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1 —nqgo in n .
™ /dap(”)(a)e w26 ()

z (q)
= - (n) i / da 5< 1“5;?) e 2g( ()
- Z(”i(q) 2;1 <p(n>(z)) /da5 (a + mﬁ#) a5 (7)
_ 2i1p51n>(1) /da6 (a + %) a8 (4)
_ p((ln)( ). (9.39)

This is the decomposition of p((ln) (j) into the microcanonical distributions
a5 (5).
From (9.35) now follows
(g —1)89(p™) < ngan2 — In ™ (a). (9.40)

Here we used that <H(”)>q<n) = naln2 and SBES(g{") = Inc™(a). Let

fla) = liTan %. (9.41)
Then (9.40) becomes
7(q) < g — f(a). (9.42)

This proves part of (9.29).
It remains to show that there exists an « for which the equality is reached.
This is the value of o which maximises the hyperdistribution

(n) —ngoln2
ey (q)p (a)e . (9.43)

However, note that p(")(a) is a singular function. This makes the proof non-
trivial. The reader is referred to [13]. A numerical verification in the context
of the asymmetric Cantor set is discussed in the Box 9.4.
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Use the notations of the Box 9.3, with {; = 1/2 and Iz = 1/4. There are
(n; l) intervals of length 2~ ™ with probability a™(1 — a)! — see (9.28).
They contribute to ¢(™ (a) with o given by

aln2=—zlna —yln(l — a), (9.44)

with = m/n and y = I/n. Using Stirling’s approximation,

1 1
Ina! ~ —In2ra+alna—a+ — +---, (9.45)
2 12a

the contribution to f(«) equals

fla)In2 = 1131%1112 ("ﬂ:l)
=max[(l—y)In(l—y)—zlnz—(1—z—y)In(1 —z—y)].
(9.46)

The sum in the first line and the maximum in the second line are restricted to
z and y satisfying (9.44). This is at the border of the index range when 2l +m
equals n or n + 1. Working this out gives

z=1-—-2y
In2+1
e DG (9.47)
2Ina —In(1 — a)

The function goe — f(e) is minimal when g = f’(ca). This gives

_ 2In(1 —2y) —Iny —In(1 —y)
- 2lna —In(1 — a) i

(9.48)

1 q

Inverting this relation gives y = 5(1 = a—) with w = y/a?9 4+ 4(1 — a)?. One
w

finally obtains

7(¢)In2 = (goo — f(@)In2 = —Inw — In(1 — y). (9.49)
This quantity, divided by (¢ — 1) In2, has been plotted in the Figure 9.1. Its

agreement with the result obtained from (9.28) has been verified numerically.

Box 9.4 Microcanonical treatment of the asymmetric Cantor set
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9.7 Sharma-Mittal Entropy Functional

Sharma and Mittal [14] introduced the two-parameter family of entropy func-
tions

(r=1)/(a-1)
1 .
Sort(p) = > p()e -1. (9.51)
j

1—r

The parameters g and r are assumed to be positive and different from 1.
Tsallis’ entropy functional is recovered when r = g. Rényi’s g-entropy follows
in the limit r = 1.

The entropy functional of Sharma and Mittal can be written as a Kolmog-
orov-Nagumo average. Indeed, one has [5]

SoM(p) = <lnr @) >¢ (9.52)

() = Ing exp,.(z)
_ 1 ([1 (1= )]0 1)_ (9.53)

with

To see (9.52), one calculates

(o (3)), = e (S ()

= In, exp, (1iq Zp(j) [p(j)qfl _ 1})

1/(1—a)

= In, exp, (lnq Zp(j)q )
Jl/(l—q)
)

1 (1-r)/(1—q)
(o] )

= S5M(p). (9-50)

Box 9.5 Derivation of (9.52)
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See the Box 9.5. Note that Tsallis’ entropy, which requires r = ¢, involves a
linear average instead of a Kolmogorov-Nagumo average. From the calcula-
tion (9.50) in the Box 9.5 follows also that

SSM(p) = In, exp, Sy (p). (9.54)

Since both In,(z) and exp, () are strictly increasing functions, it follows that
Ssy increases if and only if S;Fsanis increases. Hence, a probability distribution
which maximises S;Fsa“is also maximises .S, ETM and vice-versa. This will be used
below.

Consider now the problem of optimising the Sharma-Mittal entropy S5 (p)
with the constraint that the non-linear average energy (H), has some given
value U. Here, ¢(x) still equals Ingexp,(z). Because the inverse function
¢~ 1(x) = In, exp, () is strictly increasing, the problem is equivalent with
optimising

STsallis (p) Z p(j 1nq (9.55)

with constraint

Zp $(BoH (5)) = ¢(5oU)- (9.56)

The constant 3y has been inserted for dimensional reasons. The solution to
this problem is of the form (see (8.1))

pp(i) = expy (=P(8) — Bo(BoH (7)) , (9.57)

where &() is the normalisation, and where 3 should be adjusted so that
(9.56) is satisfied.
Note that (9.57) in the limit » = 1 becomes

ps(j) = exp; (—915(6) + q_il [ amDiorG) 1D . (9.58)

This coincides with the probability distribution postulated in [15] on an ad
hoc basis in order to improve theoretical fits to experimental protein-folding
data. On the other hand, in the limit ¢ = 0 expression (9.57) becomes

ps(j) = . /(-] (9.59)
[1+¢([3) =B+ B+ (1 —7)BoH()]Y }

+

This expression is used in the example below.
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9.8 Zipf’s Law

The following application belongs to the domain of quantitative linguistics.
Consider the complete works of Shakespeare. These are freely available in
electronic version on the Internet [1], together with the works of many other
authors. This makes it easy to do the following experiment. Count how many
times the same word occurs in the collected body of text. Next make a ranking
of the most frequently used words and plot their frequency f versus their
ranking r on semi-logarithmic paper. This gives a plot like that of Figure 9.3,
based on data from a corpus of 2606 books in English, containing 448,359
different words (see [12]).

Zipf, in 1932, observed that curves f(r) obtained in this way decay by a
powerlaw

fr)y~=— (9.60)

with exponent « slightly larger than 1. Benoit Mandelbrot used this in 1966 as
an example of fractal behaviour in society. He proposed [9] the more general
relation, involving an additional fitting parameter,

Log(p,)-Log(4)

Log(k)

Fig. 9.3 Log-log plot of the frequency of words as a function of their ranking.
Comparison of experimental data (solid line) and fitted curve (dotted line). Taken
from [5]
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A
~N— 9.61
10)= G5 (9.61)
Note that ) f(r) = N, the total number of words in the text. Hence, the
function f(r)/N is an empirical probability distribution. In fact, it belongs
to the g-exponential family with

e(r)y =1,
q= 11—|— 1/a,
jiei i 69-0{,
o N 1/«
9:a0(2> . (9.62)

If Zipf’s law holds then the Figure 9.3 should show a straight line. This is
only approximately the case. The experimental data show a cross-over from
powerlaw decay with exponent about 1.05 to powerlaw decay with exponent
about 2.3 — see [12] and the Figure 9.3. This requires a more complex mod-
elling of the data, more complex than Zipf’s law or Mandelbrot’s modification.
One possibility, considered here, is to rescale the data. In [5], a satisfactory
fit of the 448,359 data points was obtained with the probability distribution

A
1= A+ AL+ (1= p)Bok]t/(=p)

p(k) (9.63)
The exponent p was found to be p = 0.568. The expression can be written as
(9.59), with

1

A . .
—Z—l,ﬁ—z, and H(j) = j. (9.64)

r=p,P(5)
In other words, it maximises the Sharma-Mittal entropy with » = p and
q=0.

Problems

9.1. Equivalent entropies

The two parameter Sharma-Mittal entropy functional was introduced in Sec-
tion 9.7. It generalises Rényi’s alpha entropy. Show that it also is a function
of Tsallis’” entropy functional. More precisely, show that a monotonically in-
creasing function &(u) exists such that Sy (p) = & (S35 (p)).
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Notes

Part of this Chapter follows the work of Marek Czachor and the author [5].
The calculation of the temperature of the configurational subsystem of a
classical gas is taken from [3]. The Sections on fractals have been influenced
by the work of Rudolf Riedi [13] and by the book of Christian Beck and of
Friedrich Schlogl [4].

The notion of fractals and their importance for the description of nature
have been pioneered by Benoit Mandelbrot [10]. The thermodynamic the-
ory of dynamical systems was initiated in a series of mathematical papers
by Ruelle, Bowen, Sinai. The multifractal analysis dates from the 1980s. In
particular, the paper of Thomas Halsey et al [8] had a great influence.

The calculation of the generalised dimension of the asymmetric Cantor
set, as presented here, is not the most elegant one. The partition of [0, 1] into
sets of equal length 27" is not compatible with the arbitrary lengths {; and
lo used during the construction. For that reason a two-parameter generating
function was introduced in [8], see Section 11.4 of [4]. The notion of escort
probability distributions is due to Beck and Schlogl [4].

Frank and Daffertshofer [6] and Frank and Plastino [7] introduced the
Sharma-Mittal entropy in the physics literature. Marco Masi [11] relates the
Sharma-Mittal entropy to what he calls the super-extensive entropy.

Objectives

e Explain the definition of non-linear Kolmogorov-Nagumo averages.

e Know about the definition of Rényi’s alpha entropies by means of non-
linear averages.

e Understand the construction of an asymmetric Cantor set.

e Know the definition of the generalised dimensions of a fractal measure
with support in the interval [0,1].

e Use the notion of escort probabilities to make a one-parameter family of
probability distributions. Show that it belongs to the exponential family.

e Know about multifractal analysis. Explain how to derive a microcanonical
description of a fractal measure.

e Explain the calculation of the generalised dimension of a Cantor set both
using the canonical and the microcanonical description.

e Use Kolmogorov-Nagumo averages to show that the Sharma-Mittal en-
tropy is a generalisation of Rényi’s alpha entropies.

e Link the problem of optimising the Sharma-Mittal entropy to that of op-
timising the Tsallis entropy.

e Explain Zipf’s law by means of an example.

e Relate Zipf’s law to probability distributions belonging to the g-exponen-
tial family.
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Chapter 10
General Deformations

10.1 Deformed Exponential and Logarithmic Functions

What now follows is a further generalisation of the g-deformed exponential
and logarithmic functions, discussed in Chapter 7.

Fix a strictly positive non-decreasing function ¢(u), defined on the positive
numbers (0, +00). It is used to define a deformed logarithm by

v 1
Ingu = /1 dv o) (10.1)

Then Ing(u) is a concave monotonically increasing function, satisfying Ing (1) =
0 and

1
;—u Ing(u) = o) (10.2)
In particular, Ing(u) is negative on (0, 1) and positive on (1, +00).

The natural logarithm is obtained with ¢(u) = u, the a-base logarithm
log, (u) is obtained with ¢(u) = wlna. The Tsallis g-logarithm (see (7.1))
is obtained with ¢(u) = u?. The condition ¢ > 0 is needed to make ¢(u)
increasing.

The inverse of the deformed logarithmic function is the deformed expo-
nential function exp,(u). It can be written with the help of some function

P(u) as

expy(u) =1 —|—/ dvp(v). (10.3)
0
By writing it in this way it is clear that exp,(0) = 1 and
d
T exp,(u) = ¥(u). (10.4)

J. Naudts, Generalised Thermostatistics, DOI 10.1007/978-0-85729-355-8_10, 149
©) Springer-Verlag London Limited 2011
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The function % (u) can be calculated once the function ¢(u) is given. Indeed,
by taking the derivative of

u = exp,(Ing(u)) (10.5)
one obtains
1
This can be written as
¢(u) = (Ing(u)). (10.7)

In other words, v = Ing(u) implies ¥(v) = ¢(u). If v is smaller than Iny(u)
for all u then one can define ¢ (v) = 0. If v is larger than Iny(u) for all u then
one can define ¢ (v) = +o0.

Note that ¥ (v) cannot be negative and is an increasing function. From
(10.4) then follows that exp,(u) is an increasing convex function of u. For
further use, note also that

P(u) = ;—u expy(u) = ¢ (expd,(u)) ) (10.8)

This relation generalises the well-known property that the derivative of the
natural exponential is the exponential function itself.

10.2 Dual Definitions

Let us define dual deformed functions by

exply (1) = %ﬁ (10.9)
and
Ing(u) = —Ing(1/u). (10.10)

These dual functions not always satisfy the requirements for being again a
deformed exponential or deformed logarithm. Indeed, from

d .. .1
—Inj (u) = Zo(1/0) (10.11)

follows the requirement that the function
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6 () = w26(1/u) (10.12)
should be an increasing function of u. From
d
o (u) = (exp(u))? ¥(—u) (10.13)
then follows that
expy(u) =1+ /“ dv ™ (v), (10.14)
0
with
O (u) = (expl(u)” (—u). (10.15)

In the case of the natural logarithm is ¢*(u) = ¢(u) = v and ¥*(u) = ¥(u) =
e". Therefore, the natural logarithm is said to be self~dual. However, there
exist non-trivial examples of self-dual deformed exponential and logarithmic
functions — See the Box 10.1.

10.3 Deduced Logarithms

When using a deformed logarithm to define entropy one notices that the
following property of the natural logarithm gets lost

i (ulnl> = —Inu—1. (10.22)

du u

This is the reason to introduce the notion of deduced logarithm wg(u). It
requires the additional condition that the possible divergence of Iny(u) at
u = 0 is weak enough so that the integral

—/O du Ing(u) :/0 dvm < 400 (10.23)

converges (use partial integration to obtain the above relation).
The deduced logarithm is defined by

1w v ! v 1
we(u) = u/o dv o) 7/0 dv o)~ Ing " (10.24)

One verifies immediately that we(1) = 0 and that

gl_u““"’) <%) — “lny(u) - /Oldv % (10.25)
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An example of self-dual deformed exponential and logarithmic functions is
found in the work of Kaniadakis [2, 3]. Let —1 < k < 1, and define

exp,, (u) = (nu +V1+ fe?u?)l/” . (10.16)

It is strictly positive and finite for all real u. The inverse function is
In, (u) = S (u® —u™"). (10.17)
2K

In the limit k = 0 these functions coincide with the usual definitions of log-
arithmic and exponential functions. By taking the derivative of (10.17) one
finds that In, (u) = Ing(u) with ¢(u) given by
2
plu) = ——— (10.18)

The derivative of this function is

(1—r)u™+ (1+ n)u_".

¢ (u) =2 (ur + u—"r)2

(10.19)

Hence ¢(u) is a positive increasing function, given —1 < k < 1. Therefore,
In, (u) is a deformed logarithm. One verifies that

exp,, (—u) exp,. (u) = <—f¢u + 1+ f¢2u2>l/'i (f{u +v1+ f§2u2)l/H
— i (10.20)

The latter implies that the functions are self-dual.
Next calculate x(u) using (10.27)

— 2 . 2(1 _ I'i}2)’u,2
x(u) = JL/% Qo (v +v=r) T Ot r)utte + (1= mui—r (10.21)

d K — K
One verifies that d—x(u) = %X(u)2 > 0. Hence, the logarithm de-

u u
duced from In, (u) is Iny (u) with x(u) given by (10.21).

Box 10.1 Example of self-dual deformed functions

In fact, wg(u) is again a deformed logarithm — see the Box 10.2.

The relation (10.25) generalises (10.22). In the case of the natural loga-
rithm is ¢(u) = u so that wy(u) = Inw. In the case of a g-deformed logarithm
is ¢(u) = u9 so that (using the notation w, instead of wy)

1 1 1, 1
wq(u) = - In, o= 7 ¢ Inj u = p— Inp_q u. (10.26)
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Here we prove that the deduced logarithm wg(u) is again a deformed log-
arithm. This means that there exists a increasing positive function x(u) such
that wg(u) = Iny (u). Let x(u) defined by

1

x(u) = T (10.27)
Jo!* dv #(v)
Then one verifies that
d 1
— = —— 10.28
() = — (10.28)
and
d x(u)?
— = ———>0. 10.29
ot = 5> (10.29)

Hence, one concludes that wg(u) = Iny (u) is a deformed logarithm.

Box 10.2 Proof that the deduced logarithm wg(u) is again a deformed logarithm

10.4 The Phi-Exponential Family

Given a strictly positive monotonically increasing function ¢(u) the family of
probability distributions pg(z) is said to belong to the ¢-exponential family
if it can be written into the form

po(x) = c(x) expy (—a(f) — Gka(x)) . (10.30)

The function a(#) is needed to guarantee the normalisation of the probability
distribution. Its physical meaning is that of a Massieu function. However, in
general it does not coincide with the Massieu function ¢(¢). One can show
that it is always a convex function of the parameters § — see the Box 10.3.

If the function ¢(u) is linear then the definition coincides with the standard
definition of the exponential family. If ¢(u) = u? then it coincides with the
definition of the g-exponential family, given in Chapter 7.

The function ¢(u) in (10.30) may be stochastic. This means that it may
also depend on the variable z. An example where this is needed follows in
Section 10.7.

10.5 Escort Probabilities

Inspired by the definition in the case of the g-exponential family it is obvious
to define the escort probability distribution Py(x) of a probability distribution
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Here we prove that in the case of the ¢-exponential family the function
() is always convex.

Fix two sets op parameters # and 7 and a number A between 0 and 1.
Because the deformed exponential function exp(u) is convex one has

c(z) expy [—Aa(6) — (1 = Ne(n) — (A6F + (1 — An*)) H (z)]
< Ae(@) expy[—a() — 6% Hy (x)] 4 (1 — A)e() exp g [—a(n) — n* Hi (z)]
= Apg(z) + (1 — N)pn (). (10.31)

Integrating this expression over the phase space gives
/dx c(x) expy [—Aa(0) — (1 — N)a(n) — (A" + (1 — Ap*)Hy(z)] < 1.
(10.32)
On the other hand one has
1= /dfﬂpxe+(1—>\)n($)

= /dm c(z) expy [—a(A0+ (1 — N)n) — Nk + (1 — )\nk)Hk(ac)] .
(10.33)

Comparing (10.32) with (10.32), and using that exp, () is an increasing func-
tion, one concludes that

—da(d) — (1 —Na(n) < —a(A0+ (1 —A)n). (10.34)

This means that «(6) is a convex function.

Box 10.3 Proof of convexity of the function «(6)

po(z), belonging to the ¢-exponential family, by

L) (pol)
Py(z) = 2(9)¢ ( (@) > : (10.35)
Here, z(f) is the normalisation
= ze(x po(z)
(0) = [asctys ( ol ) , (10.36)

assuming that this integral is convergent. Using ¢(exp,(u)) = 1(u) and the
definition of py(x) one obtains

2(0) = / de e(2)d (—a(0) — 0" Hy()). (10.37)
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Clearly, in the linear case ¢(u) = u the escort probability Py(x) coincides
with pg(z) and the normalisation z() is identically 1. If ¢(u) = u? then the
definition (7.24) is recovered.

The derivatives of the probability pg(x) with respect to the parameters %
are proportional to the escort probability. To see this, use (10.8) to calculate

%pg(az) _ () (]19((5))) {_% - Hk(l'):|

AORo) |~ g -

5o Hk(:c)} . (10.38)

This expression can be used to find out whether a probability distribution
belongs to the ¢-exponential family and what the correct choice is of the
function ¢(u) — See the next Section.

Integrating (10.38) gives

0= %/dxpg(x)
— (0) [—37“ - <<Hk>>e} . (10.30)

As before, ((Hy))o denotes the average of Hy(x) with respect to the escort
probability Py(z). Expression (10.39) shows that minus the derivative of the
function «(f) equals the expectation of the estimator Hy(z) with respect
to the escort probability distribution. Hence, averages with respect to the
escort probability can be used to estimate the parameters ¥ — see Chapter
2, equation (2.5).

A more explicit expression for the escort probability Py(z) involves the
function ¢ (x) associated with ¢(z) by 10.8. From the definition (10.35) fol-
lows

c(x)

Po(w) = S8 (exp,[-a(0) — 0" )
= ——p[—a(f) — 0% Hy)]. (10.40)
This implies the following expression for the normalisation z(6)

z(0) = /dx c(x)y[—a(f) — 6% Hy). (10.41)

10.6 Method to Test Phi-Exponentiality

Expression (10.38) can be used to determine whether a given probability dis-
tribution belongs to the ¢-exponential family. The method, described below,
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will be demonstrated for the Cauchy distribution, which is known not to
belong to the exponential family — See (2.17).

1) Calculate the derivatives of the probability distribution.

From

1 w
w(Z) = ————= 10.42
Pole) = — g (10.42)
follows
d 1 2w
apw(fc) = pu() [; - m} (10.43)

2) Try to separate the z-dependence from the parameter dependence. Use
the freedom to introduce an escort probability distribution and, if needed,
new parameters.

The first term within the square brackets of (10.43) depends only on w,
not on the variable z. Hence it is in the right form. However, the second term
still depends on both w and x. Write (10.43) therefore into the form

d m 2 2 2
@pw(x) = ﬁpw(x) [—w® +27]. (10.44)
Now the separation within the square brackets is accomplished. The factor in
front of the square brackets must be the escort probability distribution, mul-
tiplied by its normalisation. Choose therefore ¢(x) = x2. The corresponding
deformed logarithm and exponential functions are

1

lng(u):l—a u >0,
expsy(u) = 1—a u <1,
= +00 otherwise. (10.45)
The escort probability is then
1
P,(z) = —pu(z)? 10.46
@) = S (10.46)

with

) = / de—1 (10.47)

w2 (22 + w?)?’
Expression (10.44) then becomes

dd—wpw(x) = %z(w)Pw(x) [—w® +2?] . (10.48)
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This is almost (10.38). Introduce the parameter § = —7/w. Then one obtains
(10.38) with H(x) = —2? and da/00 = w?.

The final step of the method is the verification that py(z) belongs indeed
to the ¢-exponential family. This verification is necessary because integration
of (10.38) may produce integration constants which depend on the variables
x. If this is the case then py(x) is not of the form, desired to belong to the
¢-exponential family. Then one can try to introduce extra parameters 6% in
such a way that the integration constants become additional Hamiltonians
Hy.

In the case of the Cauchy distribution the verification is straightforward.
Indeed, equating

1

—p C) [ — 10.4
expy (—P(0) + 0x*) 15 3(0) 022 (10.49)
to (10.42) yields the condition
1+ ®(0) — 02 = garz + Tw. (10.50)

This is satisfied with § = —7/w and ®(0) = 7w — 1 = —72/6 — 1. This shows
that the Cauchy distribution belongs to the curved ¢-exponential family with
o(u) = u2.

10.7 Example: The Site Percolation Problem

)_
_(

Fig. 10.1 Occupied sites of a square lattice

Consider a lattice, for instance the square lattice. Colour the sites of the
lattice black with probability p, white with probability 1 — p in an iid man-
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ner. See the Figure 10.1. The origin of the lattice belongs to a cluster of s
black sites with a certain probability which depends on p, or is white with
probability 1 — p. If the probability p is large enough then there exists a
non-vanishing probability p(co) that the origin belongs to an infinite black
cluster. Then the lattice is said to percolate. See the Figure 10.2. The critical
probability p.. is the lower limit of p-values for which p(co) # 0. For a square
lattice numerical simulations show that p. ~ 0.593.

\ J

0 R 1

Fig. 10.2 Sketch of the probability of percolation as a function of the probability p
of occupying a lattice site

Two clusters with the same number of black sites n can have a different
shape. These shapes are called lattice animals. All possible shapes will be
numbered 7 = 1,2,3,---. The label 5 = 0 is reserved for the empty cluster.
The number of clusters with the same shape is denoted ¢(j). The number of
sites in clusters of shape j is denoted s(j). Some of the sites of the shape are
internal, others are at the perimeter. The number of white sites that touch
the cluster at one of its perimeter sites is denoted ¢(j). The probability that
the origin belongs to a cluster of shape j is then given by

p(j) = c(j)p*P (1 - p)'V). (10.51)
This result is also valid for j = 0 if we adopt the conventions that ¢(0) = 1,

s(0) =0, and ¢(0) = 1.
The normalisation condition can be written as

p(o0) + ip(j) =1 (10.52)
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This expression can be used to calculate the percolation probability p(co).
Let us now try to write (10.51) in the form of an exponential family. One
has

_ B D PN (i
= c(j) exp [(—a(B) — BH(H)) (s(4) + t(5))], (10.53)
with
08 =1In —
N t)
HO = Sy
a(f) = —Inp. (10.54)

Introduce now a stochastic function ¢(u) defined by

¢j(u) = (s(4) + t(4))u- (10.55)
Then exp,,, (v) = exp[(s(j) + t(4))v] so that
p(j) = c(j) expy, [=a(B) — BH(j)] - (10.56)

Assume now for simplicity that p < p. so that p(co) = 0. Then the p(j) sum
up to 1 and form a probability distribution belonging to the ¢-exponential
family.

The escort probability distribution is given by

P(j) = ——d; (p(4)

Z(lﬂ)
mp(j)(S(j) +1(7)), (10.57)

with

2(B8) =Y p(i)(s() +t(5))
j=0
= (s)g + (t)s. (10.58)
From expression (10.54) follows

() = -5
1-p. (10.59)

On the other hand is
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1 t
() = @<><s+t>s+t>g
___Bg
=T+ 05 (10.60)
One has therefore the identity
({t)s=(1—p)([(s)p+{t)s), P <pe (10.61)

10.8 Generalised Quantum Statistics

Fix a strictly positive non-decreasing function ¢(u)!. The quantum model
with density operators py belongs to the quantum ¢-exponential family if
there exist self-adjoint operators Hj such that

po = expy(—a(f) — 08 Hy). (10.62)

The function «(f) is used for normalisation. In the case ¢(u) = u? it is
possible to take the normalisation in front of the deformed exponential —
see the Box 10.4

In the case that ¢(u) = u? then (10.62) yields
po = exp, (—a(f) — 0% Hy,)
=[1-(1-qa0) — (1 — 0" Hy] /79
1 1/(1-q)
=~ [1-1-qn"H
0 [ I
= 7ty exp, (—n" Hg), (10.63)

with ¥ and Z(n) as in Section 7.3 on the quantum exponential family, equa-
tions (7.14, 7.15). The normalisation Z(n) can be calculated from

Z(n) = Tr exp,(—n"Hy). (10.64)
Box 10.4 The deformed quantum exponential family in the case ¢(u) = u?

It is obvious to define escort density operators oy by

1
o9 = Teyb (po) (10.65)

! In the quantum case the function ¢(u) must not be stochastic.
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with
2(0) = Tr¢(pg) - (10.66)

The basic property of the escort density operators is their relation with the
0*-derivatives of pg. However, as before, in Section 2.7, the operators Hj, do
not necessarily commute between each other. Hence, it is not straightforward
to calculate the derivatives of pg. But using cyclic permutation under the
trace and (10.8) one calculates

0= % aTr Po
= Tr oo exg¢(—a(9) — 0% Hy)
= T p(p) sy [~al6) - 0'H]
= +(0) |- g~ (CFla. (10.67)
with
((Hk))o = TrogH. (10.68)
This implies
e (. (10.69)

Hence, the quantum expectation of the estimators Hj with respect to the
escort density operator can be used to estimate the parameters 6%,

Problems

10.1. Heine’s distribution
See for instance [1]. Fix 0 < ¢ < 1. Then Heine’s probability distribution is
given by

n(n—1)/2

pa(n) = )\”eq(—/\)q[T, n=0,1,2,---,A>0, (10.70)
q!
with eq(—\) the g-deformed exponential function introduced by Jackson

oo

eg(-N) =[] I A(ll_q)qj_l, (10.71)

Jj=1
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and [n],! the ¢g-deformed factorial given by
[n]g! = [1g[2lg -~ [ng] with [ng]=1+q¢+--+ q" (10.72)

Show that py(n) is a special 1-parameter case of a 2-parameter exponential
family.

10.2. Lambert’s W function

Let W (u) be the solution of u = W (u) exp(W (u)) which satisfies W(u) > —1
on the interval —1 < u. Introduce a deformed logarithm defined by Iny (u) =
W ((u — 1)/e). Verify its properties. Verify that the corresponding deformed
exponential function is given by expy,(v) = 1+ vexp(v+ 1) if v > —1 and
by exp(v) =0 for v < —1.

Notes

The generalisation presented in this Chapter was developed by the author in
a series of papers [4, 6, 7, 10, 5, 8]. The percolation problem was treated in
[9].

A general reference concerning the percolation problem is the book of
Dieter Stauffer [11].

Objectives

e Know the definitions and properties of ¢-deformed logarithmic and ex-
ponential functions, where ¢(u) is an arbitrary positive non-decreasing
function on the positive axis.

e Know the definition of the ¢-exponential family, and of the corresponding
escort probability distributions.

e Be able to test whether a parametrised family of probability distributions
belongs to a ¢-exponential family.

e Give an example of a parametrised family of probability distributions with
a non-trivial escort family.

e Know about the percolation problem.

e Know about the quantum ¢-exponential family.
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Chapter 11
General Entropies

11.1 The Entropy Functional

The definition of deformed entropy needed in the present context is the one
which most naturally adapts to the definition of the ¢-exponential family in
the previous Chapter. We have seen in Section 8.2 that the Tsallis entropy
S;fsa”is (p) is not associated in a natural way with the probability distributions
of the g-exponential family. It is desirable that a generalised entropy S, (p) is
maximised by probability distributions belonging to the ¢-exponential family.
For that reason, it is defined below using the deduced logarithmic function
wg(u) — see (10.24) for the definition of this concept.
The ¢-deformed entropy functional is defined by

Ss(p) = SZp(J)% (ﬁ)
’ p(5) v 1 )
zz/ de—s;pm ng(p(j)) — 1

p(5)
- _SZ/O dv Ing(v) — 1, (11.1)

J
with

¢(v)’

The last line of (11.1) is obtained by partial integration. Throughout this
Chapter it is assumed that the integral in (11.2) converges. This is the condi-
tion for the deduced logarithm wy(u) to exist, but is for instance not satisfied
when ¢(u) = u?.

By definition, Sy (p) is a sum of non-negative terms. Hence, it either con-
verges or it diverges towards +oo

- = / dv Ing(v) = [ dv (11.2)
S 1 0
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0 < Sy(p) < +00. (11.3)

It is a concave function of p — see the Box 11.1.
In the continuous case, the definition becomes

s [ deplares (pg;)

p@)/e
:s/dxc(m)/o de

—s/dxp(x) Ing (%) -1
s / dz () /0 N () - 1 (11.4)

Se(p)

It still is a concave function of the probability distribution p. However, it is
not necessarily positive because p(z)/c(x) can exceed 1, resulting in negative

contributions to the integral in the first line of (11.4).

Concavity of S¢(p) means that
Se(Ap+ (1 = A)a) =2 ASe(p) + (1 = X)Ss(q) (11.5)

for all A in [0, 1]. This follows from the last line of (11.1). Indeed, Iny(v) is an
increasing function of v. Hence the second derivative of

u
fuw) :/ dv Ing (v) (11.6)
o
cannot be negative. This means that f(u) is convex, so that
Ap(3)+(1=X)q(5)
dv Ing(v)

0
p(J) a(4)
< )\/ dv Ing (v) + (1 — )\)/ dv Ing (v). (11.7)
0 0

In combination with (11.1) this implies (11.5).

Box 11.1 Concavity of the ¢-deformed entropy functional

11.2 Relative Entropies

The relative entropy (or divergence) used below is the relative entropy of the

Bregman type — see (8.47).
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The function f(u) in the definition (8.47) of the relative entropy is taken
equal to

Flu) = s/lu dv Ing(v) + 1 — u, (11.8)

Note that this function is convex. Its second derivative equals f”(u) = s/d(u).
The result is

Dy(pllg) = SZ[f(P(j))*f(Q(j))*(p(j)*Q(j))f/(Q(j))]

’ p(5)
s3It =5 ) 4] a9

(5)
_ s; / v o) ~ g (a()
o (11.9)

Positivity Dy (pl|lg) > 0 follows because In,(v) is an increasing function. In-
deed, if p(j) > ¢(j) then v > ¢(j) and hence Ing(v) —Ing(g(j)) > 0. Hence,
the contribution to the last line of (11.9) is positive. On the other hand, if
p(j) < q(j) then the argument of the integral is negative. But the integration
is in the negative sense. Hence, also in this case the contribution is positive.
One concludes that all terms of (11.9) are positive.

Note further that Dy (p||p) = 0 and that Dy(p||g) = 0 implies that p = q.
Finally, Dy(p||g) is convex in the first argument. This follows immediately
from

Dy (pllg) = Ss(q) — Ss(p) — SZ[p(j) = q(j)]1ng(q(5))
’ (11.10)

because Sy4(p) is concave.

11.3 The Variational Principle

The relative entropy Dy (p||g) can be used to prove the variational principle,
stating that

Ss(p) — 50" (Hi)p (11.11)

is maximal if and only if the probability distribution p equals py as given by
(10.30). See the Box 11.2 for a proof of this statement. This characterizes the
generalized exponential family as the family of pdfs which maximize (11.11).
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From (11.10) and the definition of ps follows
Dy (pllpe) = S(po) = So(®) = s >_[p(3) = po (7)) Ins (P ()
= S4(po) — So(p) — s i[p(j) — ()] [~ (6) — 0" Hi ()]
= 54(p0) — S(p) + 0¥ [(Hi)p — (ol (1112
Because Dy (p||ps) > 0, this shows that for all p
Se(pe) — s6% (Hy)e > Sy(p) — s0* (Hy)p. (11.13)

Moreover, the equality holds if and only if p = pg.

Box 11.2 Proof of the variational principle

By definition, the Massieu function ®(#) is the Legendre transform of the
entropy Sgs(pg). But note that we use s0% as the transformation variables
instead of the #¥. Hence Massieu’s function is equal to the maximal value
attained by (11.11), this is,

B(0) = Sy(pe) — 50" (Hy)g (11.14)
and
% = —s(Hy)o. (11.15)

The Massieu function ®(f), because it is a Legendre transform, is automati-
cally a convex function of the parameters 6*.

The thermodynamic entropy S(U) is by definition the value attained by
Sy(pe) when (Hy)g = Uy, for all k. A short calculation gives

05 _ gk
o =" (11.16)

See the Box 11.3. This relation is the dual of (11.15) — see (3.17, 3.18).
Finally, note that S(U) is the inverse Legendre transform of ¢(¢). In for-
mulae,

S(U) = inf{®(0) + s0FUL}. (11.20)

This implies that S(U) is a concave function of U, showing that the ¢-
exponential probability distributions are always thermodynamically stable.
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First calculate, using (10.38),

S Sa(pe) = =5 3 na(pa(3)) P
— s 3 [-a(0) = O )] O P 5) |~ o~ F()|
= _szge)elglk(a), (11.17)
with
g1k (0) = (HiHi))o — ((Hi))o ((Hi))o- (11.18)
Next calculate, also using (10.38),
% = ;sze(j)Hl(j)
0L 7o) [- 22 - 1.0)| 1)
— —(O)gur- (11.19)

Combining both results yields (11.16).

Box 11.3 The derivatives of the thermodynamic entropy

11.4 Complexity

In the context of game theory the probability distributions p and ¢ are the
strategies of two players. The relative complexity C(p||q) of these strategies
has been defined [6, 15] as

C(pllg) = S(p) + D(pllq)- (11.21)

The basic property of a complexity C(pl||q) is that C(p||l¢) > C(ql|q), with
equality if and only if p = ¢q. From the complexity function one can deduce
the entropy functional S(p) by taking both arguments equal: S(p) = C(p||p).
Next, the relative entropy follows as the difference between actual complexity
and minimal complexity. Hence, complexity is the more fundamental of the
three quantities.

From the definitions of ¢-deformed entropy and relative entropy follows
(see (11.10)

Cs(plla) = Sp(p) + Dy (pllq)
= Sp(q) —s ) _[p(4) — a(4)] Ing(a(4))- (11.22)

<.
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In particular, when ¢ is a member of the ¢-exponential family, this is, ¢ = py
as given by (10.30) (assuming c¢(x) = 1), then one obtains

Cs(pllpe) = Sy (po +SZ 716" Hi (j)
=o(0) + 59k< )p- (11.23)

As discussed before in Section 3.1, the variational principle expresses the
stability of the physical system with respect to perturbations. In the con-
text of game theory the relevant notion is that of robustness. By definition,
the strategy ¢ is robust within the set P of strategies if C(p||q) has a con-
stant value not depending on the choice of p in P. From (11.23) then follows
that each member py of the ¢-exponential family is robust within the set of
strategies p which have the same expectation (Hy), of the estimators Hj, as
Po.

The complexities Cy(pl||g) can be written as (see (11.22))

Cy(pllg) = &(q) + (59),, (11.24)
with
€(q) )+ SZ ) Ing (g

n(q)( ) = —slng(q (])) (11.25)

In the undeformed case (¢p(u) = u) is Sp(q) = — > 4 q(k)Ing(k) so that in
this case &(q) = 0. Then the only contribution is the expectation of (@ (j) =
—1In(g(4)). This is the amount of information encoded in event j. The function
#(u) = —Inw is the coding function. Hence, (£(9)),, is the coding contribution
to the complexity. The term £(¢) has been called the corrector.

11.5 Application to g-Deformed Distributions

Let us now apply the theory to the case that ¢(u) = u? with 0 < ¢ < 2. The
condition ¢ < 2 is needed to assure the existence of the deduced logarithm
wg(u). The condition ¢ > 0 is needed to make that ¢(u) is an increasing
function. The corresponding deformed logarithmic and exponential functions
are those introduced in the Chapter 7. The g-exponential family was studied
in the Section 7.3, the escort family in the Section 7.4.

The constant s is given by

1 ! 1
- / e (11.26)
S 0 q
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The deduced logarithm wy(u) equals

Vw o1 1
wq(u):u/o de—g—lnqa
1 1 1
=—u?t— = —In, -
s, % u
=——In, —. 11.27
s ey, ( )

The entropy functional Sg(p) becomes (see (8.3))

510 = 5 Sl (-5)
= - Zp ) Ing p(4)
_ (), (11.28)

The thermodynamic entropy S(U) therefore equals

S(U) = Sq(pe)
—sZp —Gka}

=s[a ( )+0kUk], (11.29)

with Uy = (Hp)g. This implies (8.9).
The relative entropy of the Bregman type Dy (p||¢) reduces to (8.49) (Prob-
lem 11.1).

11.6 Deformed Fisher Information

In the present Section the assumption s = 1 is made — see (11.2 for the
definition of the constant s. Note that this is not a loss of generality since
s =1 can be arranged by multiplying the function ¢(u) with a constant.
Note that the matrix gg;(6), introduced during the calculations found in
the Box 11.3, is positive-definite (its eigenvalues cannot be negative). It there-
fore has the meaning of a metric tensor. associating with each choice of the

parameters 0¥ a point of a manifold. From (11.19) and (11.15) follows
0’®
il . 11.

Hence, the geometry of the manifold, determined by the value of the Massieu
function ¢(0), is characterised by the metric tensor z(6)gx;. The relevance of
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this observation follows from the link with information theory and is worked
out below.

In the present context of parametrised models of statistical physics the
Hamiltonians Hj, are used to estimate the parameters #* of the model. More
precisely, it was pointed out in the previous Chapter that the escort prob-
abilities ({(Hy))p can be used to this purpose. When they are known then
the derivatives of the Massieu function ®() are known via (11.15). By con-
structing a tangent plane with these derivatives one obtains the parameter
form the knowledge of the tangent point. The accuracy by which this tangent
point # can be determined depends on the curvature of the manifold at 6,
this is, on the metric tensor gg;(6). The more curved the surface is, the more
accurate is the determination of the tangent point.

A mathematical expression of this relation is the inequality of Cramér and
Rao. Its generalisation to pairs of families of probability distributions reads

Theorem 11.1. Let pg(j) and Py(j) be two families of probability distribu-
tions with a common domain of definition. Let (-)o and ({-))¢ denote the
averages with respect to pg(j), respectively Py(j). Let be given Hamiltonians
Hy, and a function ®(0) such that

o
Introduce the information matrix
1 Ope(j) Ope(j)
I(0) = . 11.32
u(6) ZPg(j) a0k o0 (11.32)

J
Then for all choices of the real numbers u* and v* is

uPul [((HyHp))g — ((Hi))o ((Hy))o] > 1

[ i) R

(11.33)

If po(j) belongs to the ¢-exponential family and Py(j) is the corresponding
escort family then the inequality becomes an equality whenever v = v. In that
case one has

L (0) = 2(0)?gri (0). (11.34)

The proof is given in the Box 11.4.

The expression (11.32) can be seen as a generalisation of the Fisher in-
formation matrix. The quantity ((HyH;))e — ((Hg))e ((H;))e is usually inter-
preted as a measure for the inaccuracy of the estimated values ((Hy))g. In the
case of unbiased estimators the denominator of the L.h.s. reduces to (u*vy)?.
Then the inequality gives a lower bound for the inaccuracy of the estimation.

The knowledge of the r.h.s. is then important to have an idea whether the es-
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1 9pe(j)
Po(j) 00F
inequality implies (((ukkale»g)Q < <(ukqulYl>>g((kaklel»g. The
I.h.s. can be written as

Let Xk(]) =

and Y% (j) = Hi(j) — ((Hk))e. Then Schwartz’s

2
(Vi Xa))o)* = (“ Sl - <<Hk>>e]8’;iﬁ”)

k, 1l ? k,l 82@ ?
(u (%l(Hk)) =(u 89k601) . (11.35)

The first factor of the r.h.s. equals

Rul [((HeHi)yo — ((Hi))o ((Hi))o) - (11.36)

The second factor equals

1 9pe(j) Ope(j)
Pa(j) 00% 06"

ol (X X1))e = vFo! Z = vPulI(0). (11.37)

Hence, the three pieces together prove the inequality (11.33).
Assume now that pg(j) belongs to the ¢-exponential family and Py(j) is
the corresponding escort family. Then one calculates using (10.38)

da
I (0) = 2(0 P, — Hi(j —H
(0) = 0)° SR ) (~ 55— 10) (0~ 0)
= 2(0)? gkz(G)- (11.38)
This proves (11.34). Using in addition (11.30), the inequality(11.33) becomes

uPulgrl(0) 1
2(0)2 [ukvlgri(0)] ~ 2(0)%vFvlgri(6)’

(11.39)

which indeed becomes an equality when u = v.

Box 11.4 Proof of the generalised inequality of Cramér and Rao

timation is optimal. In the case of a ¢-exponential distribution, the accuracy
is optimal when the parameters 6% are estimated using the escort family.

11.7 Quantum Entropies

Fix a non-decreasing function ¢(u), defined for v > 0, and strictly positive
for u > 0. Let wy(u) be the deduced logarithm. Then the classical definition
(11.1) suggests to define the quantum ¢-deformed entropy functional by
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Se(p) = s Tr pwy(p™ ') = —s Tr p (p)- (11.40)

Remember that the constant s is defined by (11.2). The deduced logarithm

wg(u) is positive for u > 1 while the eigenvalues of p are smaller than one.

Hence, wy(p~!) is a positive operator. There follows that 0 < Sg(p) < +oc.

The proof of the concavity of S4(p) is postponed to the end of this Section.
Expression (11.40) can be written as

Se(p) = —s/o du Trplng(up) — 1. (11.41)

To see this, note that

we G) - i/oudv%—é—ln(ﬁ(u)

! w 1
= Jy Y oy T 5 e
1
=— [ dw lng(uw) — % (11.42)

0

Partial integration was used to obtain the last line.
The corresponding quantum expression of the relative entropy is

Dy(pllo) = Su(0) — Sulp) = Tr (p — o) Ing(0). (11.43)

Its basic property is that Dy (p||o) > 0. The difficulty in proving this inequal-
ity is that p and o do not necessarily commute. Therefore, there need not
exist a basis in which both are simultaneously diagonal. See the Box 11.5.
An immediate consequence is that S,(p) is concave — see the Box 11.6.

11.8 Quantum Stability

Let pg be the quantum ¢-exponential family, given by (10.62). Then one finds
D(UHpg) = S¢(U) —S¢(p9)+89k’ﬁ(p9 —U)Hk. (11.49)

The positivity of the relative entropy D(c||ps) > 0 then implies the varia-
tional principle, stating that the non-equilibrium Massieu functional

Sy(0) — s0% Tr o Hy, (11.50)

is minimal when o = py.
The Massieu function is defined by

@(9) = S¢(p9> - Ok Tl“per. (11.51)
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The following result is known as Klein’s inequality.

Lemma Let A, B and C be self-adjoint operators with discrete spectrum.
Assume that C > 0 and BC' = CB. Let f(x) be a convex function. Then one
has

Tr C[f(A) — f(B) — (A= B)f'(B)] 2 0. (11.44)

Proof Let (¢n)n be an orthonormal basis in which A is diagonal. Let
(¥m)m be an orthonormal basis in which B and C are simultaneously di-
agonal. Let A¢n = andn, Bm = bmt¥m, and Cthn, = cmt®m. Denote
Anm = (¢m|1n). Then the convexity of f(x) implies that

(¢m|C(f(A) — f(B) = (A= B)f'(B))|¢m)
=Y cnlAmnl?[f(@m) = F(bn) = (@m — bn)f' (bs)]

n
> 0. (11.45)

To see the inequality, use that a tangent line to a convex function always lies
below the function.
Klein’s inequality now follows by summing over m.

Consider now the function f(u) = —uwg (%), in combination with C =1,
A = p, and B = o. From the basic property of deduced logarithms, (10.25),
follows f’(u) = Ing(u) + Fy(0), so that f'/(u) = 1/¢(uw) > 0. Hence, f(u) is
convex and Klein’s inequality may be applied. The result is

— Sp(p) + Sp(0) —sTr(p— o) lng (o) > 0. (11.46)
Box 11.5 Positivity of the relative entropy

Let 7 = Ao+ (1 — A)p with 0 < A < 1. One has

0 < D(pl|7) = Sg(1) = Sg(p) — s Tr (p — 7) Ing(7),
0 < D(o||r) = S¢(1) — S¢(0) — sTr (o — 7) Ing (7). (11.47)

By multiplying the first equation with 1 — A, the second with A, and summing,
one obtains

0.< Si(r) = Ay (@) — (1 — NSp(p). (11.48)

This proves the concavity of the entropy functional S (p).

Box 11.6 Concavity of the quantum entropy functional

175
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Using (10.25) and the invariance of the trace Tr AB = Tr BA, one obtains

0 0 _
WSAPG) = S50k Tr pows(py ')

0
= Tr [=slng(pe) — 1] 2077

= Tr [sa(0) + s0'H, — 1] 5570
0
_ ol
Therefore one has, as expected,
P
% = —sTrpeHy = —s(Hg). (11.53)

Problems

11.1. g-deformed relative entropy
Show that the g-deformed relative entropy (8.49), introduced in Chapter 8 is
a special case of the ¢-deformed relative entropy (11.9).

11.2. A two-parameter family
Borges and Roditi [4] introduced into the physics literature the entropy func-
tional

Sar(p) =3 pi(j); — Z;(j)q (11.54)

(see the Section 8.9). It is a ¢-deformed entropy functional with ¢(u) given
by

— q—rT
o) = q(q— Dus=2 —r(r — Dur—2" (11.55)

The latter is a positive increasing function of v € (0,400) when 0 <r <1<
qg<2o0r0<g<1<r<2. The corresponding deformed logarithm is

q—1 __ r—1
Ing(u) = q“qf:“ ~ 1. (11.56)

Verify these statements.

11.3. Kaniadakis’ entropy functional

The deformed exponential and logarithmic functions of Kaniadakis have been
introduced in the Box 10.1. On the other hand, the entropy function postu-
lated by Giorgio Kaniadakis and Antonio Scarfone [7] is a special case of the
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two-parameter family discussed in the previous Problem. It reads

5.0 = 5 [ e (70~ = 1@)*%) = [[a@o fan, (15 ) ansn

This means, in the formalism of the present Chapter, that In,(u) is the de-
duced logarithm wg(u) corresponding with some monotone function ¢(u).
Determine this function and show that it satisfies the relation ¢'(u) =

L5 ).

Notes

Most of this chapter is based on my papers [8, 9]. I learned about Bregman
type relative entropy from Christophe Vignat and proposed its generalisation
in [10]. The mathematical properties of these generalised entropy functionals
are discussed in more detail in these papers.

The definition of entropy functional used by Chavanis [5] is slightly differ-
ent from the one introduced here. In (11.4), he replaces the integrand Ing(y)
by an arbitrary increasing function, not necessarily concave.

The discussion of Fisher’ s information in the context of g-deformed en-
tropies goes back to Sumiyoshi Abe [1, 2] and Pennini et al [12]. The geometric
aspects of the exponential family are known in the mathematics literature un-
der the name of geometry of the statistical manifold [3]. The connection with
Amari’s information geometry was the starting point of [8] and is worked out
in [11].

Klein’s inequality can be found for instance in [13], 2.5.2, or [14], 2.1.7.

Objectives

e Know the definition of the generalised entropy functional in terms of the
deduced logarithm.

e Use the relative entropy of the Bregman type to prove the thermodynamic
stability of the phi-exponential family.

e Apply the general formalism to the case that ¢(u) = u?. Know why ¢ is
limited to lie between 0 and 2.

e Discuss the Fisher information and the inequality of Cramér and Rao in
the context of phi-deformed functions.

e Translate the classical expressions into quantum mechanical expressions.

e Know about Klein’s inequality.
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Solutions to the Problems

Problems of Chapter 1

1.1 Experimental determination of Boltzmann’s constant

Let z; denote the height of the j-th particle above the bottom of the cylin-
drical vessel. The potential energy of N particles is then Zj\;l mgz;. The
probability density of the altitudes of the particles is then

1 _gyen oo
p(z1, 22, -, 28) = 705)° AL jmmaz; (12.1)

The normalisation Z(3) is given by

Z(p) = ﬂ (/Ooo dzj) eXp(—ﬁimgzj)

-(/ - dzexp(—ﬁng)>N
= (Bmg)~". (12.2)

The expected number of particles between altitudes h and h + Ah (Ah > 0)
is then

N

00 N
([ o) St o
0

Jj=1 Jj=1
o0

= Nﬁmg/ dz Ln<z, <n+an) exp(—Bmgz)

=N [exp(—oﬁmgh) — exp(—pmg(h + Ah))]
= Nexp(—fBmgh) [1 — exp(—BmgAh)]. (12.3)

The logarithm of this expression is of the form constant — Bmgh. By fitting
to the logarithm of the measured particle counts one gets an estimate for

J. Naudts, Generalised Thermostatistics, DOI 10.1007/978-0-85729-355-8_12, 179
©) Springer-Verlag London Limited 2011
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the slope Smg. See the Figure 2.1. Since m and g are known this yields
B = 1/kgT. But also T is known. Hence one obtains an estimate for kp.
Using a spreadsheet one can do the fit quickly. The result of 1.4 x 10723 J/K
is not far from the best known value, which is about 1.38065 x 10723 J/K.

1.2 A quantum spin
Introduce the notation ¢; = ut/h. One has

U(t) = e+ = e7H7: = cos(¢y )T + i sin(¢y )0 (12.4)
The latter step follows because o2 = I. Therefore

ot ) Ut)o,U(t)

(t) 01 [cos(¢:)I + isin(¢py)o.]

[005(¢t)1 —isin(¢g)o..] [cos(dy)or + sin(er)oy]

= cos(2¢¢)o, + sin(2¢;)oy,. (12.5)

On the other hand is

o esH eBulo- _ cosh(Bu)I + sinh(Bu)o. (12.6)
P~ TreBH ~ Tyepulo. — 2 cosh(Bp) ’
All together is
sh I+ sinh
(02(t) = Trpog(t) = Tr “ (5510;(5;;)(5#)02 [cos(2¢¢ )0, + sin(2¢y)oy |
= Tr [cos(2¢:)os + sin(2¢;) oy
+itanh(Bu) Tr [cos(2¢4)oy, — sin(2¢4) o]
=0. (12.7)
1.3 A quantum particle trapped between two walls
The partition sum equals
7 — E, _
@)= z oxv (-9
™ 2
:/0 dz exp (—ﬂmm )
= Lym . (12.8)
h/2m 3
The average energy then follows from
U(T)=(H)= —ian(ﬂ)
dg
1 1
= — = —kpT. (12.9)
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1.4 Two fermions in the canonical ensemble
One of the fermions is in the eigenstate m, the other in the eigenstate n, with
n # m. Hence one has

Z Z Blemten) — —Bhw Z Z e~ PhwmEn) (1910)

m=0n=m+1 m=0n=m-+1

Introduce the new summing variable p = n —m — 1. Then one gets

Z2(ﬁ) _ e—ﬁhw Z e—ﬁhw(m-{-p—i—m—i—l)

m,p=0
o0 o0
_ e—Qﬁhw § :e—QBFMmE e—ﬁhwp
m=0 p=0
_ 1 1
e 2Bhw

1 — exp(—26hw) 1 — exp(—Fhw)

1 1 2
1 + exp(—fhw) (exp(ﬂhw) — 1) '
(12.11)

Problems of Chapter 2

2.1 Correlations in the one-dimensional Ising model
Introduce new variables 7,, = 0,041, 7 = 1,2,--- N. Then the partition sum
ZnN(8,0) can be evaluated as follows

N
ZN(ﬂvo): Z Z exp (ﬂjzo—no—n+1>

o1==*1 on==%1 n=1

Y Y ew (mz )

7'1 :tl TN = :tl

= H Z exp (BJ1,)

n=171,=

=2N (cosh(ﬁj)) . (12.12)

Next note that one can write for n > 1
o10n = [[ 7 (12.13)

so that
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<0'10'n> = Z Z €Xp (ﬂjzapap+l> H Tm

’ o1==+1 on==+1
- ZN 5, Z mzﬂexp (ﬂJZTP> H ”
HZL:11 i1 Tm exXp (B Tm)

[T ey 03D (B 7m)
= (tanh(3.))" " (12.14)

2.2 The Gamma distribution
It is obvious to write

xk—le—x/b

pe) = S = O (—klnb (k) + (k—1)lnz — %) . (12.15)

Introduce the Hamiltonians H;(x) = Inz and Ha(xz) = x. Then, using the
proposed definition of the parameters 6; and 6o, the density p(x) has the
right form for a member of the exponential family. The Massieu function
&(0) equals

SO)=klnb+InI'(k) = (61 — 1) Infs+1InI"(1—6;). (12.16)

2.3 Example of the quantum exponential family
Let us try to write

px =exp(—P(0) —0H) with H = —0,. (12.17)

From the identification of

2+ (A - ;) os (12.18)
with
exp(—®(0) — 0H) = e~ *® (cosh(f) + o sinh(h)) (12.19)

follows that tanh(f) = 2A — 1 and &(6) = In(2 cosh(6)). This shows that it is
possible to write py in the form (12.17).

2.4 Density profile of the earth
The Massieu function is given by

@(0) — ln/ooo dpy - - /O°° dpn exp (791H1(,0) - 92H2(p))

N 00
= 1n/0 dpn exp (=mpn = ma(n™* = (n = 1)),
n=1
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N
= - Z In (771 + 0o (n®® — (n — 1)5/3)) . (12.20)

n=1

with 171 = 61 /N and 1, = 65/N®/3. There follows

9 1 1
(Hi)o _w_ﬁzm + n2(nb/3 — (n — 1)5/3)

7 8¢ 1 5/3 (TL* 1)5/3
(Ha)o = =505 = 573 Z T — (= 1) (12.21)

In the limit of large IV this becomes

1
1
Hi)g=N dy —————
< 1>0 / u91 T 592u2/3

_ 5N u?/3
/ o 502u2/3 (12.22)

Note that 91<H1>9 + 92<H2>9 = N. Using

1 1
/0 du P TE \/>arctan (12.23)
9N 360, 50,
Hy)g = — [1— /2L arct 22| 12.24
(Hi)o = 2o [ \ 56, Y 391] (12.24)

The numerical solution of these two equations gives 6 /N ~ 0.000058 and
02 /N ~ 0.000147.
The probability distribution for the inner shell is proportional to

0, 0
exp < [A} + N;/J pl) . (12.25)

In the limit of large NV the second contribution may be neglected. Then an
exponential distribution results, with average value N/¢; ~ 17140 kg/m?.

one finds

2.5 Binomial distribution
Write

n mina n—m)in —a
pa(m)_<m)e Inat+((n—m)ln(l=a) (12.26)
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This shows that p,(m) is of the form (2.12), with ¢(m) = (Z), H(m) =m,
6 =—Int%, and ®(0) = —nln(l +e7?).

2.6 Weibull distribution

Take c¢(z) = x*~1. Then one writes

f(@)=c(x)exp (Ink — kIn X — A"Fz") . (12.27)

It is now obvious to choose H(x) = ¥ and § = A=*. Then the distribution
takes on the form needed for a member of the exponential family.

Problems of Chapter 3

3.1 Binomial distribution revisited
The quantity to be optimised is (choose units for which kg = 1)

3 () 5 ;
L(p)=—> _p(n) lni(—n) —aY p(n) =B pnn. (12.28)
n=0 n=0 n=0

Variation w.r.t. p(n) yields
0= -2 g (12.29)
c(n

This can be written as
p(n) = c(n)e 2=, (12.30)

The parameters « and § must be fixed in such a way that the conditions
Zf:;op(n) =1 and Eflvzop(n)n =7 are satisfied.

N
Assume now that ¢(n) = n ) Then one evaluates

N N
1= pn)=>" (g) eimemBn — olme (14 MY (12.31)
n=0 n=0

Using this result one can write the probabilities p(n) in the following way

p(n) = <N> (eﬁn)N _ (N) a"(1—a)N ", (12.32)

n)(14eh n
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-8
In the latter line the notation a = 1-7—7—5 has been introduced. The result
e

is indeed the binomial distribution.

3.2 ¢-deformed distribution
The quantity to be optimised is

1 pn)\ . >
L(p) = T4 Zp(n) (m> -1 -« Zp(n) -0 Zp(n)n.(12.33)

n=0 n=0
Variation w.r.t. p(n) yields
qg—1
q p(n
This can be written as

pt) =t [ (11 o] a2

The parameters o and 0 must be fixed in such a way that the conditions
ZLVZO p(n) =1 and Zﬁ;o p(n)n =T are satisfied. However, this now seems

to be a difficult task, even when we make the choice ¢(n) = (]7\17)

3.3 Entropy in the Bloch representation
The evaluation of the operator function —p, In p, is best done in a basis in
which the density matrix p, is diagonal. Using the explicit expression

1 _ - .
e = = (1 3 1 +ZT2> ’ (12.36)

2 —Tl—i’)"g 1+T3

it is straightforward to determine the eigenvalues of p,. The secular equation
(this is, the characteristic equation) is

(1—=r3—=A) (1473 —A) = (r1 +ir2)(r1 —ir2) = 0. (12.37)

Hence, the eigenvalues are A = 2 (1 & |r|). The entropy therefore equals

1
2
1 1 1 1

S(pr) = = (1 + el In = (14 [rf) = (1 = [ In > (1 — |el).  (12:38)
2 2 2 2
Note that this entropy vanishes when r approaches the surface of the Bloch

sphere and that its maximal value In2 is reached when r = 0.

3.4 Approximate product measure
Because ¢ is a product measure one can write g(o1,02) = q1(01)g2(02). Then
the relative entropy D(pl||q) becomes
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Dol = Y plor,on) 27172

o1.092E1 CI(0'170'2)
= Y plon,02)n _p(o1,02)
01,091 q1(01)q2(02)
p(+,+) p(+, )
=p(+,+)In ———— +,—)In
o e+ >) P ) aEN-wt)
p(—,+ p(=, —
p(77+>1n +p(7,7)ln .
(1= aq(+))a2(+) (I =@ (+)A = g2(+))
(12.39)
Variation w.r.t. ¢1(4) respectively ¢g2(+) yields the pair of equations
0= _p(+7 +)+p(+7_) +p(_a+)+p(_7_)7 (1240)
q(+) L—q(+)
0= _p(+a+) +p(_a+) p(+a_)+p(_a_). (12.41>
q2(+) 1—qa(+)
The solution of this set of equations is
01 (+) = Vp(+,+) +p(+, ), (12.42)
G2(+) = Vp(+, +) +p(— +). (12.43)
3.5 Maxwell relations
Because G(T),p) is a contact transform of U — T'S + pV/, one has
oG oG
— == . 12.44
5T S and o =V ( )
From
0’G 0*G
_— = —— 12.4
opdT  OTOp ( )
now follows that
as oV
-5, = T (12.46)

This is the desired result. Hence, a Maxwell relation is nothing but a conse-
quence of Clairaut’s theorem (or Schwarz’s theorem) that the order of partial
derivatives does not matter — they commute.
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Problems of Chapter 4

4.1 Thermodynamic entropy of an ideal gas
a) The integrated density of states £2(F) of the ideal gas is given by

1
AE) = g [ dprdpy [ day--day 0(E - Ha.p)
1 N 1 & )
= NV, AP ey E—%Z:llpnl . (1247)

The constant A is inserted for dimensional reasons. Now use that the volume
of a hypersphere of radius » = vV2mFE in dimension 3N equals

3N/2,.3N 3N
volume = % with z = - +1. (12.48)
Hence one obtains
1 N 1

Q(E) 2rmE)*N/? . (12.49)

T N3N (N 1)

Taking the derivative with respect to E yields the result for w(FE).
b) By taking the logarithm one obtains

VvV 3 1 3N
S(E)=kgln2(F) = kgN [lnﬁ + 51n2ﬂ'mE — NIHN!F(T + 1)] .
(12.50)
Using Sterling’s approximation there follows
S(E) ~ kgN [ln % + gln 2rmE — gln N} . (12.51)

Finally, introduce constants € and a to make the arguments of the logarithms
dimensionless. The term —% In NV is split into two parts to compensate for
the extensiveness of both V' and E. The result can then be written as (4.40).
c¢) Using

ds 1
AE-T (12.52)
as the definition of the temperature T', one finds immediately
1 3 N

which is the equipartition law E = 3 NkgT.
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4.2 The quantum harmonic oscillator
One calculates

S(E) = fTrpElani X
= —Ze“z‘2—|z\2" 1ne‘|z|2—|z|2"

1
= |22 +e7I? =l Z |z|2" Inn! — e 7 Z —|\z|2” In |z|*"
n!

n

= |2)> + e 12 Z —'|z|2" Inn! — |22 In |2 (12.54)
n

The series appearing in this expression is convergent. Indeed, using Inn! <
n(n — 1), there follows

S(E) < |z + e Z |Z|2” = 1) = [ In 2]
= 2>+ |2* - |,z|2 In|z|?. (12.55)
Remember that |z|2 = h—fo — £. Hence, the derivative becomes
as _ 1 as
dFE hwo d|z|?

= (—11r1|z|2 e 7l Z .|z|2"ln n+ )) (12.56)

For |z|> < 1 this expression is manifestly positive. For |z|* > 1 some extra
work has to be done.

With modern technology it is easy to convince oneself that this derivative
is a positive and decreasing function by making a plot of it. A more for-
mal argument goes as follows. Introduce positive coefficients \,,, satisfying
> o An =1, given by

|21

Ap = e I7 |z|2” (12.57)

Next write

1 1 2 — 1
s _ 1 (—ln|z|2 + We_M > (—|z|2<"+1>(n+ 1) In(n + 1))

dE  huwg < (n+1)!
1 s 1 e= 1l
= oo (—1n|z| +W€ =] ZEM nlnn)
n=2
L In|z|® + L iA 1 (12.58)
=—|—-In — anlnn | . :
oo z P 2 nlnn
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Now use the convexity of the function nlnn to estimate
ds 1 , 1 [S >
n=0 n=0
=0. (12.59)

To obtain the latter, > >~  A,n = |z|> has been used. One concludes that the
first derivative of S(FE) cannot be negative.
The second derivative equals

d2s 1
-2 - —|z? 2"1
B2 (hw0)2< |z|2 Z I (e 1)

euz

nl

1 1 2= 1 n+2
_ - —|z| 121271
(hwo)? ( |2|2 te Zn'|z| nn—i—l)

n=0

- (hio)Q # <—1 + i Apnln <1 + %) - )\0> . (12.60)

n=0

|z|2(" Yin(n + 1))

Now use that the function nln(1 + 1/n) is concave to estimate

d2s 1 1 1
it 1 2In(1 -
dB% = (huo)? |z|2{ el “( TRE > O]

0. (12.61)

IN

IN

The latter follows because of zIn(1+1/z) < 1+e~*. One concludes that the
second derivative is negative.

Problems of Chapter 7

7.1 The kappa-distribution
One clearly needs the identification —(1+x) = 1/(1—g). This can be written

2
as ¢ = ﬁ From the identification of
1+k
1 1 1

eXPq(—u) = 15 (g— a /@D = i HL,{]H” with [ £ ’U2:| T
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1 2 1 1
then follows that u = e v_2 Hence, 22 = St — is needed. The result
K—a v§ 20 K—a v§
is then
c(v) 1 2
w(v) = - . 12.63
) = 05 expy (=g g ) (12.6)

Finally, comparison of the prefactors gives

lk—a 3/2
7.2 The Student’s t-distribution
Note that
—(n+1)/2
A I((n+1)/2) A2 O
= 1 . 12.
w0 = e T U (12.65)

Identification of the exponents gives k = (1 + n)/2. From the v-dependence
then follows

n

1
T 12.66
2 (12.66)

Make the ansatz that a = 1/2. Then one obtains \>v3 = 2. Finally one can
identify the prefactors. This yields

c(v) 2 I'((n+1)/2)

=4/— ———— . 12.67
A(r) nt  I'(n/2) ( )
7.3 Order statistics
Solution of the q < 1-case
The probability that u < ug is
G(up) = Prob(u; < ug) + Prob(u; > ug) Prob(ug < ug) + -
_ Zn: <1 _ Uo >k1 Uuop
= (n—1)T : (n—1T
up
=1—-|1-—] . 12.68
(1- & 257) 1269
By taking the derivative one finds
d n Uo n—l
=—G(u) = T(1— —— . 12.69
pr(v) du () n—1 ( (n— 1)T) ( )

This can be written into the form



Solutions to the Problems
pr(u) = (1- (1 - q)d(0) — (1 - q)fx)"/ 77,
with ¢ = (n —2)/(n —1) and
0=(2—¢q)l 1T

Solution of the q > 1-case
First calculate

u

F(u) = ; dv f(v) = T

cu

The probability that u < ug is

By taking the derivative one finds

nc

_ n—1 _
pr(u) =n(l—F(u)"" f(u) = W
This can be written into the form

) 1@
pr{u) = (1 T %0 1 (a- 1)9m> ’

with ¢ = (n+2)/(n+1) and

1/(n+1)
e (Y e,
nd—

(g—1)

7.4 Stationary solutions
Let us calculate

n

= V@V @)+ (4 )

= (u—DV'(@)p() + A+ pV)pi(z) [-60V'(2)]

= [—1=00\+ pV)p? ()] V'(z)p(x)
A+ uV

1+ (g —1)a(f) + (¢ — 1)0V(2)

= [u—l—ﬁ

This vanishes when

V' (x)p(x).

191

(12.70)

(12.71)

(12.72)

(12.73)

(12.74)

(12.75)

(12.76)



192 Solutions to the Problems

1
= = g1+ (@~ Da(®)
q—1
=——. 12.
i Y (12.78)
7.5 One has
2 o _ 1 m,c2
wx 27 Thw
[e(@)]? = A7 (1 a2 ) : (12.79)
Compare this with
1 22 1 227"V
One concludes that
1 1 mc?
— ==+ — 12.81
qg—1 2 + hw ( )
and
z? w?x?
1) =—. 12.82
(- 15 = (12.82)
The latter implies
1 1 mc?\ w?
—=(z4+—-—] = 12.
o? <2+ hw) c? (12.83)
7.6 Second moment of the ¢-Gaussian
a) From (7.42) and (7.26) follows
da do?7l-1
= ((z))o = a4 A0 -1
1 d g—1
By Y
q—1dé
1 2
=———0 5a, 12.84
In the limit ¢ = 1 this becomes (z%) = 1/20 = 102, as it should be.
b) From (7.42) and (7.36) follows
S(U) =~ [a(6) + 6U] = — ARt AP (12.85)
T2-¢¢ C2-q| ¢-1 ' '

Hence one has
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i1 Loayy, (12.86)

P0) =SU) - = ey " 2-4

Taking the derivative w.r.t. § gives

do 1 1- 1-¢q,d
B A I ¥y G | _U (12.87)
do B-9(2-q) 2—q 2—q df
This can be written as (7.88). Note that in the limit ¢ = 1 one obtains again
U=1/20.

Problems of Chapter 8

8.1 Conventional energy constraints
Let us first verify that the pdf ps(j) is an extremum of the function of La-
grange

L= 5"5(p) - & Zp(j) A Zp(j)Hk(j)- (12.88)

Taking the derivative w.r.t. p(j) gives the condition

q

- 1——qp<j)Q‘1 —a—0"Hy(j). (12.89)

There follows
1— -
PO == (a+ 0 H)) (12.90)

This can be written as (8.68), with a(f) = %& and 6% = %ék

Next, let us show that this extremum corresponds with an absolute max-
imum. Because of expj(u) = expz—q(u) the pdf py(j) belongs to the (2 — g)-
exponential family. It therefore maximizes the entropy function I(p), given
by (7.34), with ¢ replaced by 2 — q. But the latter equals the Tsallis entropy
Syeallis(p). Therefore, the extremum realised by pg(j) corresponds with an
absolute maximum within the set of all pdfs giving the same expectations for
the energies (Hy)p.

8.2 Identity
From the definitions of the g-exponential family and of Tsallis’ entropy one
obtains

allis 1 ‘
exp, [Squ‘r"”‘b (p)] = exp, T—¢ E p(j)* -1
J
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r 1/(1—q)
= |1+ (D pG) -1

J

= Zp(j)q

—1/0-9  with 2= p()’  (1291)
J

1/(1-q)

Substituting p by P and g by 1/q this yields
1/(1-1/q)
€XPy /g [SlT/S;ms(P)} = | > PGV . (12.92)
J

Using P(j) = p(j)/z and >, p(j) = 1 the latter becomes

1/(1-1/q)
exP1 /g |:SlT/S;HiS(P):| _ szl/qp(j) — 1/0-0), (12.93)
j

This shows that (12.91) and (12.93) are equal.

Problems of Chapter 9

9.1 Equivalent entropies
Use that 3, p(j)? =1+ (1 — q)SES'd“is (p) to write

1 . r—1)/(g—1
SN (p) = — ([1 + (1 — g)Teattis(py) V@D 1) o (12.94)

Hence, it is obvious to define the function &(u) by

£(u) = %_7, (11 + (1 = @)/ — 1) (12.95)

Its first derivative equals

€(u) =1+ (1~ gl " (12.96)

and is always positive. Hence, S;{\/I (p) is a monotonically increasing function
of STsallis(p)
q .
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Problems of Chapter 10

10.1 Heine’s distribution
This is a simple Problem once one knows the answer. Let us assume that we
do not know it. Taking the derivative w.r.t. A gives

%Px(n) = pa(n) ; —(1-q) H)\(fﬁ . (12.97)

j=1
Hence one has, after multiplication with —\,

¢t
(I-q)g!

g =) | <k (- 0N Y

. (12.98)

Note that within the square brackets a separation has been obtained be-
tween the variable n and the parameter dependence. This shows that the
escort probability of py(n) is px(n) itself, that the appropriate parameter is
6 = —1In A, and that the corresponding Hamiltonian is H(n) = n. The proba-
bility distribution therefore belongs to the exponential family. However, after
integration of (12.98) the integration constant depends on the variable n. It
is therefore necessary to introduce a second parameter 62, which in the case
of the Heine distribution equals 1.

Now let §' = 6 = —In X and Hy(n) = H(n) = n. Taking the logarithm of
(12.98) gives

1
Inpy(n) = = —nb' +Ine,(—\) + in(n —1)Ing —In[n],!. (12.99)
Introduce therefore
Hy(n) = —%n(n —1)Ing + In[n],!. (12.100)

Then one can has py(n) = pg(n)
po(n) = exp(—D(0) — 6% Hy.(n), (12.101)

with 81 = X, 2 =1, and
P(O) =Y e Ml (12.102)
n=0

10.2 Lambert’s W function
From W(0) = 0 follows that Iny (1) = 0. From W(—1/e) = —1 follows
Iny (0) = —1. The derivative is
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d d u—1 1 an(u)
| Yy _ . (121
du mw () du ( e ) u—114Iny(u) >0 (12.103)

This means that Iny (u) is a strictly increasing function on the positive real
axis. From the series expansion

W (u) = i " (12.104)
n! '
follows
nw (u) = (_7;)‘"71 (u ;nl)n. (12.105)
n=1 :

In particular, the singularity at v = 1 in (12.103) is only apparent. One has

d 1
—1 = —. 12.1
)| = (12.106)
The second derivative is
d? -1 Inw(u)3(2 + Inw (u))
—1 = . 12.1
a2 ) = T T v < (12.107)

Hence the function Inyy (u) is concave.

The range of Iny (u) is the interval [—1, 400), with Iny (0) = —1. Hence,
the inverse function expy, (v) is put equal to 0 on the interval (—oo, —1]. On
the interval [—1,400) the inverse function expy, (v) is obtained by solving
Iny (u) = v < u = expy, (v). But from

v =T (1) = W(E(u— 1)) = - (u— 1) exp(-TW (2 (u~ 1))
1 .
= —(u—1)e™" (12.108)
follows
expy (v) = 1 +ve't  ifo > —1. (12.109)

Problems of Chapter 11

11.1 g-deformed relative entropy
The deformed logarithm equals

= uvif um;q: 1 ul=1 —
ln¢(u)—/1 d ¢(U)_/1 d T ( 1). (12.110)
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Hence, (11.9) becomes

p(5)
@l =537 [ )~ Ing(r(7)
_] p(5)
~2-¢ ‘-’Z / do [0'7 = ()]

1=q ()
—Z - qZLp )= (e

sallis sal% 2_q N1—
— ST 11()+ST 11i 1_qz (])1 q,

(12.111)

The latter is (8.49).

11.2 A two-parameter family
Comparison of (11.54) with (11.1) yields s = 1 and

we(u) = (' —u'9). (12.112)

Hence one has,

uw(b(%) = qir (u" —u?). (12.113)

Taking the derivative, using (10.25), one obtains

n + onstan w
) u Ci duu

u
= 4 et T 1 (12.114)
q-—r q-—r
Taking a further derivative gives
1 -1 -1
BRI (Ul W A Gl (12.115)
d(u)  q-—r q-r
This can be written as
.2
d(u) = lg = r)u . (12.116)

q(g— Du? —r(r — Dur

The corresponding deformed logarithm is

' 1 ! ’ =2 _p(r—1u" 2
o) = [ dv o = —— [T autala =1t = r(r = 1w
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1
= (qui™t —ru"1) — 1. (12.117)

q—r

11.3 Kaniadakis’ entropy functional
From the previous Problem, using ¢ =1+ k and r = 1 — k, there follows

2u

(T et (12.118)

$(u) =

It is straightforward to verify that u¢’(u) = (1 — k)¢(u) holds.
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additivity, 134
alpha entropies, 132

BGS-entropy functional, 39

bias, 23

binomial distribution, 35

Bloch representation, 24, 50

Boltzmann entropy, 56

Boltzmann’s constant, 3, 18, 31

Boltzmann-Gibbs distribution, 5, 71

Boltzmann-Gibbs-Shannon entropy
functional, 70

Boltzmann-Gibbs-von Neumann density
operator, 14

Borges-Roditi entropy functional, 128

Bose-Einstein distribution, 18

box dimension, 137

Bregman type divergence, 124, 166

canonical ensemble, 5, 53
Cantor set, 139

Cauchy distribution, 27, 156
central limit theorem, vi
chemical potential, 10

Clausius’ notion of entropy, 38
coarse graining, 137

coding function, 170

coherent states, 91

completely monotonic, 72
complexity, 169

concave function, 39, 42, 48, 95
configurational partition sum, 7
configurational pdf, 106
configurational temperature, 136
conserved quantities, 54
contact transform, 42, 77
control parameter, 10

convex function, 40, 95

corrector, 170

correlation function, 34

Cramér and Rao inequality, 172
curved exponential family, 28

curved quantum exponential family, 34

deduced logarithm, 151, 165, 177

deformation index, 98

deformed exponential function, v, 95,
149

deformed logarithmic function, v, 95,
149

density matrix, 12

density of states, 31, 55, 56, 65, 106

density operator, 12, 23

divergence, 45, 51, 123, 124, 166

dual identities, 43, 168

dynamical entropy, 89

effective temperature, 129

Einstein convention, 26

entanglement, 62

entropy, 38, 42

entropy encoding, 39

entropy functional, 38, 39

equilibrium distribution, 42

equilibrium state, 37, 38

equipartition, 4, 7, 12, 56

equivalence of ensembles, vi, 67

ergodic hypothesis, 54

ergodic theorem, 54, 66

escort density operators, 109, 160

escort probability distribution, v, 100,
102, 138, 153, 172

exact differential, 46

exponential distribution, 35, 48
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exponential family, 21, 26, 140
extensive variables, 10

f-divergence, 123
Fermi-Dirac distribution, 18
Fibonacci numbers, 139
Fisher information, 172
fractal, 137

free energy, 43, 138

game theory, 169

Gamma distribution, 34

Gauss distribution, 28

generalised dimension, 137

generalised Lorentzian, 110

Gibbs distribution, 5, 71

Gibbs’ principle of minimal free energy,
45

grand-canonical ensemble, 10

grand-canonical partition sum, 11

Hamilton’s equations of motion, 6
harmonic oscillator, 16, 32, 55, 73
Hausdorff dimension, 137

heat bath, 10

heat capacity, 15, 46

heat capacity, negative, 57
Heine’s distribution, 161
hyperdistribution, 69, 74
hyperensemble, 74, 77

ideal Bose gas, 17, 33

ideal Fermi gas, 17, 33
ideal gas, 7, 12, 18, 65
ideal gas law, 12

iid, 79, 157

information matrix, 172
intensive variable, 10
internal energy, 15, 46
inverse temperature, 44, 77
Ising model, 21, 29, 43, 58, 81
isolated, 53

Jackson’s g-deformed exponential
function, 161

Kaniadakis’ deformed logarithm, 152
kappa-distribution, 110
Kolmogorov-Nagumo average, 131
Kullback-Leibler distance, 45, 123

Lagrange optimisation, 41
Lagrange parameter, 70
large deviation theory, vi

Index

lattice animals, 158

law of Dulong and Petit, 64
Legendre transform, 42, 77
linear entropy, 116
Lorentzian, 27

Markov chain, 86

Massieu function, 23, 42, 75, 138, 168

maximum entropy principle, 38, 48, 70,
74

maximum likelihood, 27

Maxwell distribution, 3, 105

Maxwell relation, 50

mean field equation, 82

method of Lagrange, 41

metric tensor, 171

microcanonical ensemble, 42, 53, 56, 105

mono-atomic gas, 106

multifractal analysis, 137

negative heat capacity, 57

noise, 55

non-additive entropy, 117, 134
non-equilibrium Massieu function, 45
non-equilibrium statistical physics, vi
non-extensive thermostatistics, 117
normal distribution, 28

number of degrees of freedom, 111

open boundary conditions, 29

partition sum, 5, 26

Pauli matrices, 19, 24, 63

Pauli spin, 50

pendulum, 59

percolation, 158

periodic boundary conditions, 30

phase separation, 58

phase space, 4, 32, 54

phase transition, 58, 82

phi-deformed entropy functional, 165

phi-exponential family, 153

Poisson distribution, 26

positive operator-valued measure, 77

potential, 23

POVM, 77

pressure, 12

prior probability, 26

prior weight, 26

probability distribution in phase space,
4

product measure, 79

g-exponential family, 98
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g-Gaussian distribution, 103
g-Maxwellian, 105

quantum exponential family, 32
quantum microcanonical ensemble, 62
quantum phi-exponential family, 160
quantum g-exponential family, 109
quantum variational principle, 49
quasi-stationary process, 46

quasifree states, 90

Rényi dimension, 137

Rényi’s entropy functional, 132
Raleigh distribution, 35

real gas, 106

relative complexity, 169
relative entropy, 45, 48, 123
robustness, 170

Sackur-Tetrode equation, 66

scaling, 137

scaling function, 131

self-dual, 151, 152

Sharma-Mittal entropy functional, 143
source coding theorem, 39

stability, 37, 46, 58, 80, 82, 123, 126, 170
stationary state, 88

statistical manifold, 177

Stirling’s approximation, 142
stochastic variable, 23

Student’s t-distribution, 111
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superstatistical distribution, 73
superstatistics, 77, 99
susceptibility, 31

temperature, 44, 77, 135

theorem of Liouville, 6

thermodynamic entropy, 38, 42, 76, 138
thermodynamic equilibrium, 37
thermodynamic forces, 126
thermodynamic limit, v, vi, 30, 67, 137
thermodynamic relation, 43, 76
thermodynamic stability, 37, 46
thermodynamic variables, 37

time average, 54

trace class operator, 47

transfer matrix method, 30, 83

Tsallis distribution, 118, 119

Tsallis’ entropy functional, 50, 115, 133
Tsallis’ thermostatistics, v

two-level atom, 63

unbiased estimator, 23

variational principle, 45, 140, 167, 174
von Neumann density operator, 14
von Neumann entropy, 47, 50, 63

wave function, 13
Weibull distribution, 35
weight, 26, 39
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