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Preface

A broad spectrum of weeds, animal pests and pathogens – collectively referred to
here as pests – are known to cause considerable quantitative and qualitative losses
in crop production worldwide. These yield-limiting biotic stress factors have to be
appropriately managed in order to reduce their negative impact on the production
of food, feed, fiber and fuel. The world’s population is expected to expand to 9.1
billion by 2050. This growth in human population will require an increase in food
production of up to 70% over present day production levels. A shift in agricultural
production towards the use of biomass for energy and other types of renewable
resources will dramatically increase the demand for plant based products. In order
to meet this demand, crops have to be protected from pests in an effective, efficient
and environmental friendly way. Management in most cases can be accomplished by
a combination of mechanical, biological and/or chemical tools and other supportive
technologies in integrated control programs.

Pests as well as abiotic stress conditions commonly are heterogeneous in time
and space in a production field. In the past heterogeneities in soil, water and nutrient
distribution affecting crop growth have been managed by dividing the agricultural
area into small units with less heterogeneity. In modern large-scale farming, het-
erogeneity complicates targeted application of agricultural inputs such as pesticides
and fertilizers. Heterogeneity often is ignored, because of the lack of appropriate
technology to deal with it. Control options, such as the application of pesticides are
applied uniformly across the field and can result in over- and under-dosing which in
both cases is inefficient and uneconomical and can be an environmental burden.

Precision farming, including site-specific management (SSM), describes an
agricultural management system using computerized information technologies
(IT) – global navigation satellite systems (GNSS), geographic information systems,
remote sensing devices, data management systems and telecommunications – for
optimal use of nutrients, water, seed, pesticides and energy in heterogeneous field
situations. Precision farming relies upon (I) intensive sensing of environmental con-
ditions in the crop, (II) extensive data handling and processing, (III) use of decision
support systems (DSS), and (IV) control of farm machinery (actuators) in the field
(Fig. 1). Information from soil and/or crop maps or online information from remote
sensing on soil status and crop growth is typically used in combination with GNSS
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Fig. 1 Information technologies and data management for precision crop protection

data in order to optimize application and/or the timing of inputs to match the natural
heterogeneity in the field.

Awareness of potential negative side-effects of agricultural practices on the
environment has been a major driver of the concept of precision crop protection.
Site-specific management means doing the right thing, at the right place and at the
right time. Spatial and temporal variability of pests in the field is no longer ignored,
but used in a systematic approach that minimizes the amount of pesticide applied
by stipulating demand-oriented application without a reduction in the efficiency of
crop protection and crop productivity.

Information technology is used to tailor crop protection activities to achieve
effective control when and where needed by monitoring the crop during the crop
cycle using DSS for site-specific decision making and by controlling the actuators
during application of control options. Decision support systems are based on algo-
rithms that simulate crop growth, the epidemic spread of pests in space and time
and the final yield loss of the crop to be prevented by suitable control measures.
Information from various spatial scales – plant, canopy or growing region – may be
used to assess the variability of crop status.

Site-specific demand has to be assessed by detailed recording of spatial distri-
bution and development of the pest groups and the evaluation of their potential
economic impact on crop yield. This situation-specific, threshold-oriented and
environmental friendly form of pest management requires large-scale and geo-
referenced monitoring of pests in the crop for precise timing and application of
control measures. In addition to high capacities in data processing and exact regula-
tion of actuators, innovative sensors are crucial for SSM as they generate the input
information needed for decision making.

Sensing of heterogeneities in the field is the prerequisite for timely and spatially
adjusted management. Recent developments in sensor technologies have led to a
broadening of their capacity to detect pests and thereby improve application in crop
protection practice. These sensors can be space-borne (satellite), air-borne (airplane,
unmanned aerial vehicle) or ground-based (handheld, vehicle-mounted) and provide
spatial information that has added value to conventional methods of soil and crop
monitoring. Sensing and then reacting is linked by a powerful system of data man-
agement that includes DSS. The detection of within-field differences in crop status
or growth conditions would enable a farmer to streamline input factors thereby opti-
mizing his profit margin, while simultaneously improving the overall stability of the
agro-ecosystem.
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The pest groups that have to be monitored for precision crop protection dif-
fer greatly in size, patterns of incidence and epidemic spread within and between
growth periods of the crops. Heterogeneity of weeds is often obvious and applica-
tions for site-specific control of weeds by targeted mechanical or chemical control
have reached an advanced stage (Table 1). In contrast, the detection, identification
and quantification of pests groups which are highly variable in space and time, is
still in developmental stages.

A recent example for the use of information technologies for Integrated Pest
Management on a national scale is the Pest Information Platform for Extension and
Education (PIPE, http://sbr.ipmpipe.org/). This is a nationwide warning system to
help USA soybean growers protect their crop against Phakopsora pachyrhizi, an
invasive fungus causing Asian soybean rust (ASR). A website provides information
for the detection and management of ASR as well as maps of confirmed ASR inci-
dence across the USA and is an effective online warning system. The information
is used by farmers and scientists that monitor and analyze disease spread in rela-
tion to environmental conditions in order to predict disease spread and to decide
whether fungicide use is necessary or not. PIPE has created a high level of collab-
oration among governmental agencies, growers, agribusinesses, and scientists and
has proven the suitability of IT in crop protection.

The assessment and management of arthropod pest and disease heterogeneity
in crops is still a major challenge. Basic information is still required on: ground
truth patterns of major air-borne diseases; epidemiology; spread and impact of latent
infections; optimum time of spraying; (spectral) signatures of infected crops for the
identification of diseases and arthropod pests; data handling for on-the-go applica-
tions. The influence of SSM on the epidemiology of the pest or multiples thereof
over growing seasons also is required in order to evaluate the sustainability of
site-specific control concepts.

Table 1 Current status of the control of various pest groups using precision crop protection
technologies

Trait Weeds Nematodes Insects Pathogens

Size of organism [mm] 10–1,000 0.1–1 0.1–00 0.0001–1
Cycles per season 1 1–5 1–8 (?) 1–9 (?)
Mobility Very low Low Low to high High
Field heterogeneity XX(X) XX (X) X(X) X(-)
Detection Individuals

XX
Disease sympt.

X(X)
Individuals,

sympt. (X)
Disease sympt.

(X)
Identification XX – ? ?
Quantification XX (X) (X) (X)
Prognosis/DSS X(X) X (X) (X)
Data management Off/on-line Off-line
Application technique XX(X) X (X) (?)

XX advanced stage; X first steps/moderate knowledge; ? not known/not feasible; - knowledge low
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Future technical innovations, such as networked wireless sensors, meteorological
sensors as well as nano-sensors for recording plant status, scattered over fields are
expected to provide the farmer with site-specific data on crop and soil conditions.
The detection, identification and quantification of infections on plants by high pow-
ered optical sensors should result in an objective and automated assessment of pests
in the field. Automatic systems that use sensors and artificial intelligence to predict
the needs of crops and respond accordingly in order to control the primary incidence
of pests without human intervention (ambient intelligence) may be available in the
foreseeable future.

Since 2001, a Research Training Group at the University of Bonn, Germany, enti-
tled ‘Use of Information Technologies for Precision Crop Protection’ and funded by
the German Research Foundation (DFG) is investigating the potential and limita-
tions of SSM of weeds and pathogens. The Research Training Group organized a
workshop on Precision Crop Protection as a post-conference meeting of the 2005
European Conference on Precision Agriculture in Uppsala, Sweden and in 2007 a
scientific conference in Bonn, Germany. The number of active participants reflected
both an increase in scientific interest in precision crop protection, as well as progress
in developing appropriate strategies and tools for solving problems and developing
suitable systems for field application.

This book reviews the state-of-the-art of research on precision crop protection
and recent developments in the application of site-specific technologies for the
practical management of weeds, arthropod pests, pathogens and nematodes with
examples from the field. The chapters discuss a wide range of modern technologies
that includes information on: (I) the biology and epidemiology of pests, (II) new
sensor technologies, (III) application of sensors on different scales, (IV) sensor
detection of pests in growing crops, (V) data management, (VI) impact of pest
heterogeneity and (VII) precise mechanical and chemical pest control.

Examples for the use of precise application technologies are given for the man-
agement of weeds, arthropod pests and diseases which will enable growers to vary
application timing, dosage and optimize pesticide mixtures or intensity of mechani-
cal weeding according to the spatial and temporal variability of those pests. Sprayers
and mechanical weeders controlled via computer terminals coupled to differential
GNSS are described. In addition, decision algorithms developed for automatic reg-
ulation of application technology are presented that define the most effective and
selective control measure at each site-specific location in a field.

The chapters in this book demonstrate that technologies for precision crop pro-
tection had an impact on IPM in the past and will continue to contribute significantly
to improved plant health management. The technologies presented here will result
in targeted pest control, lower pesticide residues, reduced environmental impact and
lead to higher yields at a lower cost to the growers.

Bonn, Germany Erich-Christian Oerke
January 2010 Roland Gerhards

Gunter Menz
Richard A. Sikora
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Part I
Spatial and Temporal Heterogeneity

of Crops, Pests, Diseases
and Weeds – Causes and Implications



Chapter 1
Soil Heterogeneity and Crop Growth

Viacheslav I. Adamchuk, Richard B. Ferguson, and Gary W. Hergert

Abstract Producers around the world are considering the use of precision
agriculture technologies. One of the key factors encouraging this development is
the spatially varying performance of agricultural crops. In many instances, yield
variability can be associated with differences in soil attributes across agricultural
fields. Understanding and managing spatial variability in soils has become one of
the main strategies to optimize crop production, based on local needs for fertil-
izer, lime, water and/or other crop production inputs. This chapter presents some
basic concepts related to the formation of soil heterogeneity and discusses several
ways agriculturists can account for spatial variability in soils through differentiated
cultural practices and management.

1 Sources and Scales of Soil Heterogeneity

Since the last decade of the twentieth century, agriculturalists have become increas-
ingly interested in using information-based agriculture for agronomically and/or
economically optimized crop production systems (Sonka et al. 1997). One of the
most obvious strategies is site-specific management, or, more generally, precision
agriculture (Pierce and Nowak 1999), earlier termed farming by soil (Robert 1993).
To see the reasons soil variability is linked with inconsistent crop performance, it
is important to understand what causes even the best-managed agricultural fields to
provide significantly different growing environments from one location to another
(Webster 2000, McBratney et al. 2003).

The initial factors influencing variability in soils are related to five soil-forming
characteristics: parent material, climate, topography, organisms (including vegeta-
tion) and time (Jenny 1941). These factors result in soils which are unique and
varied on several scales – global, regional, among and within fields, down to the soil
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Fig. 1.1 Organic carbon in the top 1 m of soil throughout the contiguous United States provides
an example of soil heterogeneity on a regional scale.
Source: United State Department of Agriculture Natural Resources Conservation Service, State
Soil Geographic Database (STATSGO)

aggregates. These naturally occurring sources of variability dominate as primary
influences on soil heterogeneity on global and regional scales. Figure 1.1 provides a
good example, illustrating soil organic carbon in the top 1 m of soil across the con-
tinental United States. Soil organic carbon tends to be higher in regions with cool
and/or wet climates, as well as in areas dominated by forest or prairie vegetation. It
is lower in hot, dry regions.

On the field and sub-field scales, naturally occurring variability can remain quite
significant, but historic management enters in as another important factor influenc-
ing variability. Figure 1.2 is an example of both natural and management factors
affecting soil properties – in this case, soil color, which relates to soil organic mat-
ter and productivity in general. Located near the Platte River in central Nebraska,
the field contains alluvial soils, with patterns associated with repeated flooding and
deposition of sand and silt. The background aerial image obtained in the mid-1950s
can be used to identify field areas with relatively light and dark soils, originat-
ing from both natural processes as well as management. Some patterns of darker
soil are irregular or curved, resulting from silt deposition. Other patterns of darker
soil are regular and linear, resulting from historic use of the land. In this case, the
lighter-colored block in the eastern part of the image is an old field tilled and leveled
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Fig. 1.2 Aerial image and
soil series boundaries for a
field in Hall County,
Nebraska, USA. Vo = Volin
silt loam; Wm = Wann loam;
3Cs = Cass fine sandy loam,
deep; P-W = Platte-Wann
complex.
Source: Hall County
Nebraska Soil Survey, United
States Dept. of Agriculture,
January 1962. The dashed
line represents the current
field boundary

for furrow irrigation in the mid-1950s or earlier. The darker soil region surrounding
this block was not tilled until the mid-1980s. Consequently, the portion of the field
with a longer tillage history contains about half the soil organic matter of the more
recently tilled soil. This image illustrates field boundaries which may be evident in
patterns of crop growth many years later, when the entire field within the dashed
outline is managed as one unit.

Applying soil amendments such as fertilizer and lime can also impact the het-
erogeneity of soil properties. The effects can be short-lived or persistent. Figure 1.3

Fig. 1.3 Aerial image of a furrow-irrigated maize field at V12 growth stage, Clay County,
Nebraska, USA
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illustrates both natural and management-induced patterns of crop nitrogen status.
As nitrogen in soil is very dynamic, heterogeneity in soil’s N supply is dynamic as
well. Light areas within this field are deficient in crop nitrogen, while darker areas
have an adequate supply of nitrogen to meet crop requirements at this growth stage.
Irregular, curved patterns of N deficiency are associated with lower landscape posi-
tions in the field where water accumulated and caused denitrification. The regular,
linear stripes across the field are the result of uneven nitrogen fertilizer application.
Darker stripes received more fertilizer; lighter stripes received less. These regular
patterns of uneven fertilizer application are more pronounced in lower/wetter areas
of the field, where denitrification was greater.

Figure 1.4 is another example of management-influenced soil heterogeneity.
Currently, this field is managed as a 60 ha center-pivot irrigated field. This field
was subdivided into 11 smaller fields. At one time, a farmstead was located in the
southwest corner of the field. Livestock manure was spread on the field nearest the
farmstead. As a result, substantial immobile nutrients accumulated in places where
the manure application rate exceeded the rate of crop nutrient removal. Colored dots
in Fig. 1.4 represent soil phosphorus (P) measurements, with soil P concentrations
in the southwest corner exceeding 100 mg kg−1. Patterns of soil P concentration
throughout the rest of the field are to some degree associated with soil series pat-
terns. The Blendon soil series (Bed and BedA) are lower landscape position soils
than the Hord (Hd) soil series. The area of higher soil P associated with Blendon
soils periodically has lower crop yields due to saturated soil following heavy rains
and loss of plant population. The crop removes less phosphorus due to this saturation
in some years, which leads to the gradual accumulation of fertilizer P.

Fig. 1.4 Aerial image and soil series boundaries for a center-pivot irrigated field, Buffalo County,
Nebraska, USA. Soil sample locations with Bray-1 P (mg kg−1) concentrations in the upper 20 cm
are superimposed
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Figure 1.1 illustrates heterogeneity on the national scale; however, for purposes
of crop management, variability on the field and sub-field scale are of greatest inter-
est. Agriculturalists must sample thoroughly to accurately determine variability in
the soil properties of interest. When designing a sampling procedure for the field,
any known factors which may influence patterns of soil properties (e.g., historic
manure applications or the former presence of a farmstead) should be considered.
Figure 1.5 is a detailed section from the middle of the field illustrated in Fig. 1.4,
showing trends in soil P concentration with samples collected every 24 m. Trends
over distances of 100 m and greater are consistent with changes in soil series
and topography; variability at distances of 50 m or less are more likely related to
management.

Figure 1.6 illustrates soil P heterogeneity in both horizontal and vertical dimen-
sions. Created using a transect sampling of a ridge-tilled row in 5 cm increments
(horizontally and vertically), this graph illustrates the formation of a band of high
soil P concentration. With ridge-till systems, the row location is maintained from
year to year, often with repeated application of starter fertilizer at planting. Soil

Fig. 1.5 Transect subsection from Fig. 1.4, illustrating variability in soil Bray-1 P (mg/kg)
concentration every 24 m

Fig. 1.6 Cross-section across a ridge-tilled row, of Bray-1 P concentration (Clay County,
Nebraska, USA)
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Fig. 1.7 Different potential relationships between sample distance and variance

P concentration varies significantly in both horizontal and vertical dimensions, but
in a predictable pattern, given the history of ridge tillage and starter fertilizer use.
Knowing this, the agriculturalist can derive a sampling technique which accurately
represents the availability of soil P to the crop.

The spatial scale of variability for a given soil property of interest can differ with
the property (Fig. 1.7). Some properties, such as soil nitrate, are highly variable over
short distances (mm to m). Other properties, such as soil carbon, vary primarily
over distances of m to km. Table 1.1 lists ranges of semivariogram models (mea-
sures of soil spatial structure) and coefficients of variation for several influential soil
attributes (Mulla and McBratney 2000).

Soil properties can vary over time as well as space. Also, some properties are
highly dynamic, changing rapidly with time, while other properties are relatively
static, varying little from year to year. In assessing spatial variability, temporal vari-
ability can sometimes prove to be an important factor. Dynamic properties may
change at different temporal scales as well. For example, at shallow depths, soil tem-
perature follows one pattern diurnally and a different pattern seasonally. As depth
increases, these patterns are dampened until at some depth temperature is almost
constant. Other examples of highly dynamic properties are: soil moisture, microbial
activity, water soluble salts, nutrient concentration in soil solution, and soil redox
potential. Examples of relative static properties include: soil depth, texture, color,
cation exchange capacity, and bulk density.

2 Methods of Assessment

To properly account for existing soil heterogeneity, agriculturalists must assess and
interpret measures of mechanical, physical, chemical, biological and other phenom-
ena related to various processes occurring within the root zone. Traditionally this
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Table 1.1 Typical Variability of Soil Properties (Mulla and McBratney 2000)

Property

Range for
semivariogram
models [m]

Spatial
dependency

Coefficient of
variation [%]

Magnitude of
variability

Saturated hydraulic
conductivity

1–34 Short range 48–325 High

Percent sand 5–40 Short range 3–37 Low to moderate
Saturated water

content
14–76 Short to

moderate
range

4–20 Low to moderate

Soil pH 20–260 Short to long
range

2–15 Low

Crop yield 70–700 Moderate to
long range

8–29 Low to moderate

Soil Nitrate-N 40–275 Moderate to
long range

28–58 Moderate to high

Soil available
potassium

75–428 Moderate to
long range

39–157 High

Soil available
phosphorous

68–260 Moderate to
long range

39–157 High

Organic matter
content

112–250 Long range 21–41 Moderate to high

has been accomplished through soil sampling (extracting a fixed amount of soil from
a predefined depth) for off-site laboratory evaluation (Peck and Soltanpour 1990).
Equipment and methodology used to conduct laboratory soil analyses continue to
evolve, but a proper soil sampling scheme is equally important (Crepin and Johnson
1993, Tan 2005, de Gruijter et al. 2006).

To observe spatial heterogeneity in soils, samples from multiple locations within
a landscape must be obtained. A model-based principle of sampling is the most
promising when it comes to addressing spatial and temporal variability (de Gruijter
et al. 2006). Geostatistical methods are used to analyse variability and to predict
soil attributes in non-sampled locations using (Wollenhaupt et al. 1997). The major
drawback of these conventional strategies is that a relatively coarse sampling den-
sity is often deemed most economical. This might not suffice to reveal true spatial
variability in soils (McBratney et al. 2005).

To overcome the low spatial resolution of economically feasible sampling, both
remote and proximal sensing technologies have been used. Remote sensing relies on
acquiring imagery-type data using optical and radiometric sensors installed on an
aerial platform or a satellite. Proximal sensing systems are placed near the surface
or in contact with soil being tested. When proximal soil sensors are used while
traveling across the landscape (on-the-go), geo-referenced data can be used as it is
with yield maps to create high-density maps of sensor measurements.

The usefulness of remote sensing data in characterizing soil heterogeneity
(Frazier et al. 1997, Leon et al. 2003) depends on spatial, spectral, radiometric and
temporal resolution. Spatial resolution (pixel size) depends on the instrumentation
and altitude of the measurement platform. Spectral and radiometric resolution also
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depends on the type of instrument and may be related to imagery that is panchro-
matic (having light reflectance integrated over the entire visual part of spectrum),
multispectral (typically blue, green, red and near-infrared), or hyperspectral (typi-
cally more than 200 narrow spectral bands). Panchromatic and multispectral data
suffice to visualize the overall spatial variability of soil reflectance. Hyperspectral
data has been used to create various models used to predict individual soil parame-
ters of interest (Christy 2008). Temporal resolution of remote sensing data relies on
service availability. Images obtained on a clear day with minimal vegetation cov-
erage have been viewed as the most suitable for soil heterogeneity analysis. When
agriculturalists attempt to use remote sensing imagery to study soil variability, dense
crop residue resulting from no-till crop production is a source of noise.

On-the-go proximal soil sensing systems can be deployed in direct contact
with soil while mounted to a vehicle (Hummel et al. 1996, Sudduth et al. 1997,
Adamchuk et al. 2004, Shibusawa 2006). The design concepts are many and var-
ied, but most on-the-go soil sensors involve one of the following measurement
methods: (I) electrical and electromagnetic sensors that measure electrical resis-
tivity/conductivity or capacitance affected by the composition of the soil tested; (II)
optical and radiometric sensors that use electromagnetic waves to detect the level
of energy absorbed/reflected by soil particles; (III) mechanical sensors that measure
forces resulting from a tool engaged with the soil; (IV) acoustic sensors that quan-
tify the sound produced by a tool interacting with the soil; (V) pneumatic sensors
that assess the resistance to the air injected into the soil, and (VI) electrochemical
sensors that use ion-selective membranes producing a voltage output in response to
the activity of selected ions (e.g., hydrogen, potassium, nitrate, etc.).

Ideally, a soil sensor would respond to the variability of a single soil attribute
and would be highly correlated to a particular conventional analytical measure-
ment. Unfortunately, in reality, every sensor developed responds to more than one
soil property. Separating their effects is challenging; the process depends on many
region-specific factors. Figure 1.8 provides a classification summary of the main
types of on-the-go soil sensors with corresponding agronomic soil properties affect-
ing the signal. In many instances, an acceptable correlation between the sensor
output and a particular agronomic soil property was found for a specific soil type,
or was achieved when the variation of interfering properties was negligible.

Remote and proximal sensing data provide low-cost, high-density information on
spatial variability in soils. The resulting maps can be integrated along with digital
field elevation maps to delineate field areas with significantly different crop produc-
tion environments, and to prescribe locations for targeted soil sampling. Delineation
of relatively homogeneous areas within fields using sensor measurements allows the
producer to establish soil-based management zones (Fridgen et al. 2004, Simbahan
and Dobermann 2006). Targeted soil sampling can be used to investigate whether
soil properties of interest (e.g., soil nutrient content) relate significantly to field
topography and/or sensor measurements. If such relationships are found, sensor
measurements can be used to produce high-resolution maps of indirect predictions
of different agronomic soil properties. For example, maps of apparent soil elec-
trical conductivity (Allred et al. 2008) frequently reveal boundaries of soil series,
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including soil-forming anomalies such as eroded hillsides or landscape depressions.
Because of the differences in yield potential – and therefore, nutrient uptake – it’s
logical to assume that certain nutrients may vary according to the same patterns
(Corwin and Lesch 2003, Heiniger et al. 2003).

When looking at the family of remote and proximal soil sensing systems, it is
important to remember that crops themselves are the most effective sensors indi-
cating the quality of a local environment. The spatial distribution of the overall
crop performance that in many instances can be explained by soil heterogene-
ity can be revealed by remote sensing imagery taken during vegetation stages,
proximal sensing of crop canopy reflectance, and, ultimately, yield maps. Current
precision agriculture research is focused on the integration of various sources
of soil- and crop-based sensing technologies to discover and understand spatial
variability of soil attributes limiting yield potential. Variable rate application of agri-
cultural inputs according to local needs (economically optimized while considering
spatially variable crop production potential) can be the means to increase prof-
itability while preventing unnecessary environmental pressure in a given cropping
system.

3 Spatially Differentiated Crop Management

Providing differentiated crop management according to soil variability is a matter of
knowing what is manageable and what is not. As noted previously, spatial variability
arises from different sources that generally fall into two broad categories: natu-
ral and management-induced. The natural sources of variability are primarily those
associated with the soil formation processes. However, once we start managing land,
we induce additional changes in the crop-growing environment. These changes can
affect the soil, soil water, air, and soil temperature. The interactions among these
factors, along with changes in weather, also cause variability sometimes attributed
to soil heterogeneity.

Variability in soil properties can be categorized as either static or dynamic. The
appropriateness of addressing these variations changes, depending on the proba-
bility of achieving a positive economic return and the justification for using the
required time. Therefore, the list of economically manageable factors becomes
operation-specific, dependent upon the resources available and the benefit-to-risk
ratio. When producers begin to think about spatially differentiated crop manage-
ment, they must first determine the types and levels of soil variability they have. In
other words, they must ask which soil properties vary and how much? Secondly, pro-
ducers must determine the size of a manageable area (under one acre or hectare of
land versus large portions of a landscape). Regardless of the area of differentiated
management, producers must develop a qualitative selection method to define the
factors to be addressed. After the qualitative assessment, producers should carry out
a quantitative evaluation that measures the degree of variability with respect to the
available resources (money and time). It is also advisable to determine what is caus-
ing the variability and whether or not one can make a profitable change. In other
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words, will the increased income from site-specific management be significantly
greater than the costs involved?

Differentiated field management requires a significant commitment of both time
and money, including the cost of gathering and interpreting information as well
as any add-on costs affiliated with site-specific management technology. Producers
should consider seven steps: (I) data collection; (II) data management and storage;
(III) data processing; (IV) data analysis; (V) data interpretation; (VI) synthesis of
information; and (VII) decisions and changes in management.

All the changes in crop management fit into a decision framework made up of
three categories: strategic, tactical and operational decisions. Generally, strategic
decisions are those that will have effects lasting for 10 years or more. The economic
impact is experienced over the long-term and, therefore, the payoff is distributed
over many years. These decisions can affect not only current but future environ-
mental considerations related to land and input management. The main question is
whether the variability is great enough to warrant a change in management. Tactical
decisions are those that have an impact during the coming 5 years. They may involve
equipment as well as cropping systems, and may include data management. For
instance, producers can delegate information processing to a professional service
provider to give themselves needed time for farm-related work (marketing, equip-
ment repair, record keeping, etc.). Operational decisions affect management during
the upcoming year only. These primarily include: agronomic input needs, input costs
and purchases, equipment maintenance, management of hired labor, etc.

Implementing spatially differentiated crop management assumes that additional
information helps producers to make decisions that increase farming efficiency
and/or reduce negative environmental impact. Bear in mind that ‘data’ and ‘infor-
mation’ are not the same. The decision framework discussed above should illustrate
that differentiated field management frequently requires additional time and mon-
etary investments. As producers approach making changes in their management
process, they must determine which factors are most important. According to Covey
(1998) one must take care of the ‘big rocks’ before one worries about the ‘pebbles’.
In terms of managing and making operational versus tactical versus strategic deci-
sions, the major factors to be addressed depend on the producer’s situation. For
example, rain-fed production as compared to irrigated management. In a rain-fed
environment, the big management factors include: drainage (surface and internal),
soil erosion (resulting from mechanical soil and crop residue management), pH, soil
nutrients and compaction. Under irrigated conditions, the major factors include:
water management (both land preparation and irrigation water distribution) and
residue management (which affects both surface and internal soil water flow). The
other important factors in irrigated agriculture include compaction, soil nutrients,
pH, and salinity.

When approaching management changes, producers must perform qualitative
assessments of their operations. They should undertake this mental journey before
making any purchases of software or equipment. Simply think about a field or
an area, gathering and summarizing all the information available. Use available
soils maps, imagery downloadable from the Internet free of charge, and/or create
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Table 1.2 Qualitative assessment example

Problem
Yield
variability

Complexity of addressing
the problem

Expected yield
increase [%]

Expected
payback
(year)

Low spot
(topography)

High Hard (level the field) 10 4

Soil pH Low Easy (variable rate liming) 5 7
Sandy patches High Medium (variable rate

seeding and fertilization)
20 1

hand-drawn maps based on personal experience. Next, draw a map of the changes
anticipated once management is altered. As shown in Table 1.2, such information
can be summarized using a template to see what problems to address first. Figure 1.9
shows potential factors that can cause inconsistent crop-growing conditions accord-
ing to their influence on yield variability and complexity of remedy. Clearly the
factors that fall in the lower right corner of this grid should be dealt with first.

Also, producers must keep in mind that yield maps are the ultimate illustrators
of potential limitations associated with soil heterogeneity. Figure 1.10 shows the
process one might follow in deciding whether to invest in site-specific crop man-
agement, based on analysis of yield maps. If yield variability across the field cannot

Fig. 1.9 Decision grid with
factors that may affect soil
heterogeneity in a given
growing environment

Is significant spatial yield variability consistent from year to year?

Uniform field management

Site-specific field management

Is the cause for variability known?

Can the cause of variability be eliminated?

NoYes

Yes
No

No

Yes
Variable treatment to eliminate the cause

Fig. 1.10 Yield-based decision-making tree
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be explained by any spatially inconsistent soil property, uniform management may
be appropriate. Site-specific management becomes a promising strategy if yield pat-
terns are consistent from year to year and can be correlated to a layer (or layers) of
spatial data (e.g. nutrient supply, field topology, past management, etc.).

4 Summary

Soil heterogeneity is caused both by natural and management-induced processes,
and can be described in terms of static and dynamic variables. The manageabil-
ity of these variables is defined primarily using the rules of production economics.
Producers must understand the sources of soil heterogeneity and be able to make
qualitative, and, if appropriate, quantitative assessment of spatial variability in soils.
If the potential benefits exceed the necessary cost and time needed to address soil
heterogeneity, differentiated treatment of an agricultural field according to local
conditions may be appropriate and can potentially improve economic and environ-
mental outcomes of crop production. A variety of sensor-based technologies have
been transitioning from research into production agriculture that may improve our
understanding of soil heterogeneity and provide the technical means to optimize the
crop growing cycle.
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Chapter 2
Spatial and Temporal Dynamics
of Weed Populations

Roland Gerhards

Abstract Spatial and temporal variations in weed seedlings distributions often
occur in arable fields and can be assessed and mapped using modern sensor- and
information technologies. Both management and site-characteristics can result in the
heterogeneity of weed populations. When site-specific weed management decisions
were taken based on distribution maps a high potential for herbicide savings was cal-
culated. It was found that for many weed species distribution remained stable over
time when site-specific herbicides applications were realized based on economic
weed thresholds.

1 Introduction

Weed seedling distributions have been found spatially and temporally heteroge-
neous within agricultural fields. They often occur in aggregated patches of varying
size or in stripes along the direction of cultivation (Marshall 1988, Gerhards and
Christensen 2003, Christensen and Heisel 1998). The spatial distribution of weeds
has often been ignored in weed management because the techniques to measure the
spatial variation of weeds have so far not been implemented. With a large within-
field variation in weed occurrence, patch spraying, based on the need for weed
control reduces costs as well as herbicidal loading to the environment and the risk of
herbicide residues in the food chain (Dammer et al. 2003, Timmermann et al. 2003,
Gerhards and Oebel 2006). In many studies, weed species were grouped into grass
weeds, annual broadleaves and perennial weeds. Perennials such as Convolvulus
arvensis and Cirsium arvense were found to be highly aggregated in small annual
grains, maize and sugar beets with less than 20% of the field being infested. Grass
weeds covered on average 30–40% of the fields at infestation levels higher than the
economic thresholds and annual broadleaves between 20 and 90% (Timmermann
et al. 2003, Gerhards and Oebel 2006).
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2 Weed Mapping

Weed seedling distribution in the field was assessed using discrete weed mapping or
continuous-area sampling (Rew and Cousens 2001). In most studies, discrete weed
mapping was applied in a regular sampling grid that was established in the field. The
grid size varied from a few meters up to approximately 50 m and was dependent on
the width of the spray boom used for site-specific herbicide application. Density
and/or coverage of emerged weed seedlings were counted and measured prior to
and after post-emergence herbicide application in a sampling frame placed at all
grid intersection points.

A major step towards a practical solution for site-specific weed management was
the development of precise and powerful sampling techniques to automatically and
continuously determine in-field variation of weed seedling populations. Airborne
remote sensing was applied to identify Avena fatua L. and Avena sterilis ssp. ludovi-
ciana (Durieu) Nyman populations in wheat but could not detect densities of less
than 19 plants m−2 (Lamb and Brown 2001). A finer resolution of the sensor,
however, is required to detect low density weed seedling populations. Therefore,
optoelectronic sensors and digital cameras were mounted on the tractor to detect
weeds in the near range. Felton and McCloy (1992), Vrindts and de Baerdemaeker
(1997) and Biller (1998) used optoelectronic sensors to measure the reflectance in
the green, red and near-infrared light wave bands. Green leaves were characterised
by a high reflectance in the green and near-infrared and a low reflectance in the red
spectrum compared with the reflectance curve of bare soil.

Different methods to continuously record in-field variation of weed distributions
were to surround and record the borders of aggregated patches of weed species such
as Avena fatua using a data logger connected to a differential global positioning sys-
tem (DGPS) (Colliver et al. 1996) or to map weed patches during harvest operations
(Barroso et al. 2005).

However, the most promising approach for weed detection is a continuous
ground-based detection method based on image analysis (Weis et al. 2008). With
this method, weeds and crops were segmented from digital images in real-time using
a bi-spectral camera system connected to DGPS. Weed species as well as crops
were identified and counted based on automatic classification of shape features
(Fig. 2.1).

Different mapping programs have been applied to characterize spatial distri-
bution of weeds and soil parameters within fields. Maps differed based on the
interpolation method that was applied and the sample spacing. Johnson et al. (1995)
used geostatistical methods to quantify spatial dependence of weed seedling pop-
ulations. Kriging methods were then applied to estimate and map weed density
at unsampled positions in the field. Gerhards et al. (1997) found that a triangula-
tion interpolation method was more accurate than ordinary kriging to characterize
weed seedling populations with a directional pattern. This method overcomes the
problem of discontinuities between adjacent sampling points that result from grid
sampling. A plane is fitted through three sampling points that surround the point
being estimated. The equation of the plane can be expressed as:
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camera sampling (3 m * 12 m) visual grid sampling (7,5 m * 15 m)

< 10 m–2 10–19 m–2 20–29 m–2 > 30 m–2

Fig. 2.1 Distribution maps using camera sampling and visual grid sampling for broad-leaved weed
species on a 2.4 ha maize field, Dikopshof Research Station, in 2004 (modified after Gerhards and
Oebel 2006)

Z = a x + b y + c (1)

where Z is the observed seedling density, x and y are the coordinates in east-west
and north-south directions and a, b, and c are parameters that can be calculated by
solving the following system of equations:

Z1 = a x1 + b y1 + c
Z2 = a x2 + b y2 + c
Z3 = a x3 + b 3 + c

(2)

Starting with the density count at the first x, y intersection, weed density is
calculated for each pixel between the sampling points. Different from ordinary krig-
ing, equal weight was given to all sampling points with this interpolation method
(Isaaks and Srivastava 1989). Interpolated weed maps were reclassified based on
weed infestation levels (Gerhards et al. 1997). Density classes were equal for all
species in this study to facilitate the analysis of overlay maps. A weed treatment
map was created to provide a decision rule for the patch sprayer (Fig. 2.2).

3 Temporal and Spatial Dynamics of Weed Populations

The dynamics of weed populations are influenced by the biological characteristics of
weed species, farming practices such as tillage, crop rotation, time of seeding, har-
vesting competitiveness of the crop and direct weed control methods as well as soil
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Fig. 2.2 Distribution of different weed species (a−c) in a 3 ha spring barley field 2003 and
application maps as a decision rule for the patch sprayer (d−f). Maps were created according
to economic weed thresholds for all three weed species classes (Gerhards et al. 1997)

parameters (Mortensen et al. 1998, Nordmeyer and Niemann 1992, Timmermann
et al. 2002). The major weed species have developed specific adaption- and survival
strategies to persist in cropping systems (Radosevich et al. 1997). Those strategies
include the production of a high number of seeds over a long period of time and
seed dormancy (e.g. Chenopodium album). In addition, successful weed species
have the capacity to survive under variable environments based on high phenotypic
and genetic plasticity to invade new sites (e.g. Abutilon theophrasti). Many weeds
are able to strongly compete for space, light, water and nutrients with the crops by
high growth rates and efficiency in using water and nutrients. Several weeds pro-
duce mature seeds in a much shorter time than crops so that the seeds are spread
long before a dense crop stand has been established (e.g. Galinsoga parviflora).
Other weed species, such as Cirsium arvense and Agropyron repens have the ability
to persist and spread via seeds and vegetative reproduction tissues. Those perennial
weeds can emerge much faster than annual plants. These are only few reasons for
spatial and temporal dynamics of weed populations.
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Nordmeyer and Niemann (1992) found that blackgrass (Alopecurus
myosuroides) populations mostly occurred at locations in the field where the
clay content was relatively high. Timmermann et al. (2002) reported that the crop
rotation had a long-term effect on weed density and weed species composition. In
fields that had been planted with 50% maize in the rotation more than 20 years ago,
the density of C. album was still much higher than in fields with a high percentage
of winter annual grains in the rotation. The crop rotation had also a very strong
effect on the organic matter content. Fields that had been planted with potatoes
were lower in the organic matter content than fields where mostly grains were
planted. The difference in organic matter content again had a strong influence on
the weed species composition. Galium aparine predominantly occurred in fields
with high organic matter contents (Timmermann et al. 2002).

Krohmann et al. (2002) studied the dynamics of weed seedling distribution over
5 years in a rotation of maize, sugar beet, winter wheat and winter barley and in
continuous maize. They found that weed distribution maps obtained in maize and
sugar beet were suitable for site-specific weed control in winter wheat and winter
barley (Fig. 2.3).

Ritter and Gerhards (2008) reported that populations of Alopecurus myosuroides
did not significantly change in density, location and size when site-specific weed

Maize

Sugar beet

Winter wheat

Winter barley

0 –5 5 –20 20 –50 > 50    plants m–2

Fig. 2.3 Distribution of Viola arvensis in maize, sugar beet, winter wheat and winter barley in
5 ha arable field at Dikopshof Research Station near Bonn, Germany (modified after Krohmann
et al. 2002)
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control methods were applied over a period of 8 years in a rotation of winter annual
cereals, maize and sugar beet. In all of three field studied, weed seedling distribu-
tion was heterogeneous. Density was higher in maize and sugar beet than in winter
cereals. High density patches with densities higher than 25 plants m−2 consistently
recur over the years at the same areas in the fields. Weed density reduction due to
herbicides and other weed control methods was satisfying in each year indicating
that site-specific weed control methods are sustainable for long-term weed suppres-
sion. Herbicide savings against A. myosuroides ranged from 50% in sugar beet to
75% in winter barley.

Ritter and Gerhards (2008) also studied weed population dynamics of Galium
aparine and A. myosuroides under the influence of site-specific weed management.
It was found that most of the tested population parameters were weed density depen-
dent. It was presumed, that individual weeds without competition evolve better and
produce more seeds but this study showed opposed results. With increasing weed
density weed biomass and fecundity increased in this study (Figs. 2.4 and 2.5).
All findings support that weed density has to be considered in weed management
strategies.

An understanding of fundamental weed population biology would improve our
ability to develop site-specific management decisions. Weed populations mod-
els have been applied to quantify the effects of site-specific weed management
practices (Paice et al. 1997). However, the mechanism of weed patch stability is
rather untapped. A few results are reported that efficacy of weed control methods
was lower in weed patches that at low density locations (Mortensen et al. 1998).
Krohmann et al. (2002) found that the persistence of weed populations was also
attributed to weed seedlings that emerged after weed control methods had been
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Fig. 2.4 Weed density and seed production of Galium aparine and Alopecurus myosuroides in
various crops (Ritter and Gerhards 2008)
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Fig. 2.5 Correlation of weed biomass and seed production of Galium aparine and Alopecurus
myosuroides over all crops (Ritter and Gerhards 2008)

applied. Those individuals were able to produce viable seeds in maize and sugar
beet but not in winter wheat and winter barley. The authors assume that competition
of the crop was higher in winter annual grains and therefore late emerging weed
seedlings were suppressed.

Few studies have attempted to quantify spatial stability of weed patches in agri-
cultural fields. If weed patches were consistent in density and location over years,
maps from 1 year could be used to direct sampling plans and to regulate weed con-
trol methods in subsequent years. Wilson and Brain (1991) found that the pattern
of blackgrass (A. myosuroides Huds.) patches persisted during a 10 year study.
Persistence of patches was attributed to the poor ability of blackgrass to colonize
new locations when effective herbicides were applied. The pattern of patches was
most stable in fields planted to cereals. Pester et al. (1995) observed significant
stability for velvetleaf populations using Pearson, Spearman rank, and chi-square
correlation analysis to quantify year by year relationships between weed density
at individual X,Y-coordinates of the sampling grid in four fields. Walter (1996)
also used the chi-square correlation method and found that field violet (V. arvensis
Murr.), common lambsquarters (C. album L.) and prostrate knotweed (Polygonum
aviculare L.) distributions were stable in cereal grain fields over 3 years.

Gerhards et al. (1996) studied the spatial stability of velvetleaf (A. theophrasti
Medik.), hemp dogbane (Apocynum cannabinum L.), common sunflower
(Helianthus annuus L.), yellow foxtail (Setaria glauca L.) and green foxtail (Setaria
viridis L.) over 4 years (1992–1995) in two fields in eastern Nebraska. The first field
was planted to soybean in 1992 and corn in 1993, 1994 and 1995. The second field
was planted to corn in 1992 and 1994 and soybean in 1993 and 1995. Weed density
was sampled prior to post-emergence herbicide application at approximately 800
locations per year in each field on a regular 7 m grid. The same locations were sam-
pled every year. Weed density at locations between the sample sites was determined
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by linear triangulation interpolation. Weed seedling distribution was significantly
aggregated with large areas being weed free in both fields. Common sunflower,
velvetleaf, and hemp dogbane patches were very persistent in the east-west and
north-south directions and in location and area over the 4 years in the first field.
Foxtail distribution and density continuously increased in each of the 4 years in the
first field and decreased in the second field. A Geographic Information System was
used to overlay maps from each year for a species. This showed that 36% of the
sampled area was free of common sunflower, 62.5% was free of hemp dogbane and
11.5% was free of velvetleaf in the first field, but only 1% was free of velvetleaf in
the second field. The persistence of broadleaf weed patches observed in this study
suggests that weed seedling distributions mapped in 1 year are good predictors of
future seedling distributions.

Heijting et al. (2007) found strong spatial correlations for Echinochloa crus-galli,
C. album, C. polyspermum and Solanum nigrum in 3 years continuous maize cul-
tivation. They attributed spatial and temporal stability of weed populations to their
high recruitment capacity.

4 Conclusions

Knowledge of spatial and temporal variability of weed populations offers large
potential for precise control methods using less herbicides resulting in less herbi-
cide residues in the environment and food chain. Site-specific weed control methods
can be realized when automatic sensor technologies for weed detection and patch
spraying technologies are combined with precise decision algorithms.

In addition to this practical benefit, weed mapping helps to understand weed-
crop interactions and population dynamics of weed species. It allows quantifying
yield effects of different weed infestations in the fields and modelling the spa-
tial and temporal variability of weed populations under different crop management
systems.
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Chapter 3
Spatial and Temporal Dynamics of Plant
Pathogens

Forrest W. Nutter Jr., Neil van Rij, Sharon K. Eggenberger, and Noha Holah

Abstract Plant disease risk varies not only temporally, but also spatially. Adding
the spatial component to disease risk detection and disease risk assessment will
help farmers, researchers, and policy decision makers make informed, science-based
decisions. By integrating GPS, GIS, and remote sensing technologies (especially
satellite remote sensing platforms), new, quantitative information concerning dis-
ease risk can now be obtained. Moreover, ground-based methods and models
previously developed and used to detect and quantify disease gradients and healthy
green leaf area (HGLA) gradients can now be coupled with aerial and satellite
imagery datasets. Previously, remote sensing technologies have been used suc-
cessfully to detect, quantify, and map disease stress. However, the inability to
discriminate accurately among the causes of biotic and abiotic crop stress agents
has greatly limited the adoption of remote sensing-based technologies to improve
disease risk assessment and disease management. This chapter describes how
GPS, GIS, and remote sensing technologies can be integrated and used to extract
pathogen-specific temporal and spatial ‘signatures’ that have tremendous potential
to accurately identify the cause(s) of biotic and abiotic stress in crops. Moreover, we
describe a new paradigm in which remote sensing can be used to quantify, evaluate,
and compare specific disease management strategies, and tactics (or entire inte-
grated disease management programs) for their abilities to optimize and maintain
crop health (i.e., healthy green leaf area).

1 Introduction

The temporal and spatial dynamics of plant pathogens can be quantified by visually
assessing disease intensity (Nutter 2001, Nutter and Esker 2006, Nutter et al. 2006).
However, the accuracy and precision of visual disease assessments performed by
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different raters continues to be called into question (Guan and Nutter 2003, Nutter
et al. 2006, Pethybridge et al. 2008, Steddom et al. 2005). The integration of
remote sensing, global positioning systems (GPS), and geographic information sys-
tems (GIS) technologies provides new opportunities to obtain, process, and analyze
geospatially referenced data (Esker et al. 2006, 2007, Pethybridge et al. 2009). Thus,
data for pathogen and host populations, biotic and abiotic risk factors, and yield and
yield components can be mapped, overlaid, and displayed at multiple spatial scales
(plant, plot, field, farm, county, production region, etc.) to elucidate associations
and cause and effect (i.e., stimulus-response) relationships among data layers (Esker
et al. 2006, Gleason et al. 1994, Hijmans et al. 2000, Huang et al. 2008, Leckie et al.
2005, Nutter et al. 2002, Nutter et al. 2010, Pethybridge et al. 2009).

Remote sensing can be defined as the acquisition of data from an object using a
sensor that is not in direct contact with the object of interest (Nutter 1990). A GIS is
a computer (hardware and software) system that captures, stores, manages, queries,
analyzes, and displays geographically-referenced (or geospatially-referenced) data
(Wang 2006). Data is often geospatially-referenced using a GPS that provides users
with accurate positioning, navigation, and timing services (Burrough 1986, Chang
et al. 2007).

There is a need to develop metrics for evaluating and monitoring Integrated Pest
Management (IPM) performance (Hamerchlag and Kaplan 2007). Remote sensing,
when coupled with GPS and GIS technologies, has the potential to assess crop health
(rather than disease intensity) over time and space, with greater accuracy and pre-
cision (Nutter 1990, 2001, Nutter et al. 2009). Therefore, the integration of remote
sensing, GPS, and GIS technologies represents a new paradigm in that disease man-
agement strategies and tactics could, in the future, be evaluated and deployed based
upon the capability of a disease management program to produce and maintain (pro-
tect) healthy green leaf area (Lathrop and Pennypacker 1980, Nutter 1989, 1999,
2001).

2 Testing Conceptual Stimulus-Response Relationships Using
GPS, GIS, and Remote Sensing

One of the primary advantages in coupling GPS, GIS, and remote sensing technolo-
gies with geospatially-referenced data is that GIS maps can be produced for each
variable. Maps can then be rectified and overlaid upon each other to visually assess
which variables are likely to have associations with response variables (Burrough
1986, Chong et al. 2001, Gleason et al. 1994, Nutter et al. 2002, Pethybridge et al.
2007a). The predictive value of selected variables can then be used to evaluate
stimulus-response relationships. For example, a new, large-scale pathogen dissemi-
nation mechanism was found to play a critical role in the prevalence of Moko disease
of banana (caused by Ralstonia solanacearum) in the Amazon River Basin (Coelho-
Netto and Nutter 2005, Nutter et al. 2010). When a GIS map showing the locations
of subsistence farms subject to periodic river flooding was overlaid with another
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map showing locations of subsistence farms where Moko disease was present, the
two maps were found to be nearly identical. Using Chi square analysis, subsistence
farms that were periodically flooded had a significantly higher risk for Moko dis-
ease (X2 = 40.55, P < 0.0001) compared to subsistence farms not exposed to
periodic flooding (35 times higher risk). Moreover, k-function analysis revealed
that Moko-infected subsistence farms were negatively impacting the health status of
other subsistence farms with banana, up to a distance of several hundred kilometers.

In a recent study, Nutter et al. (2002) obtained geospatially-referenced data layers
to map remotely-sensed data obtained from three different platforms: a hand-held
CropScan multispectral radiometer (CropScan, Inc., Rochester, MN), an aerial plat-
form using color and infrared film, and a satellite platform using Landsat 7 imagery
(Fig. 3.1). The remote-sensing data layers were overlaid with GIS maps for a
1.2 ha soybean field located in Ames, Iowa, that showed soybean yield and soy-
bean cyst nematode population density. Relationships for stimulus-response models
were evaluated using linear regression in order to quantify the predictive power of
the three remote sensing platforms (i.e., the stimulus variables) to predict soybean
cyst nematode (SCN) populations and soybean yield (the response variables). The
satellite and ground based remote sensing platforms explained more of the varia-
tion in SCN population density (R2 = 58% and 48%, respectively), compared to
the aerial platform, which explained only 33% of the variation in nematode density
(Fig. 3.2, Nutter et al. 2002).

The ground-based and aerial remote sensing platforms had excellent relation-
ships with soybean yield, with ground-based platform data explaining 90% of the
variation in soybean yield (R2 = 90%), and aerial platform data explaining 84% of

Fig. 3.1 Overlay of GIS maps for three remote sensing platforms (satellite, aerial, and ground-
based), along with maps for yield and soybean cyst nematode population density for a 1.2-ha
soybean field located at Woodruff Farm, Ames, IA
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Fig. 3.2 Quantitative relationships between (a) ground-based, (b) aerial, and (c) satellite
(Landsat 7) remote sensing data (near-infrared wavelength band) in relation to the population
density of soybean cyst nematode for a soybean field located in Ames, Iowa. In (d), NIR data
obtained from the aerial platform had a strong linear relationship with NIR data obtained using a
ground-based multispectral radiometer (CropScan, Inc., Rochester, MN)

the variation in yield (Fig. 3.3). The fact that these two remote sensing platforms
accounted for approximately half of the variation in SCN population density, but
84–90% of the variation in soybean yield, indicates that not all of the variation in
crop stress, as measured by NIR reflectance values, was due to SCN population
density. Thus, these remote sensing platforms were likely detecting other biotic or
abiotic stresses affecting the health of the soybean canopy. One such abiotic stress,
which was present in this particular field, is iron chlorosis deficiency, which, like
SCN, causes plant stunting and chlorosis (Hartman et al. 1999). This points out an
important consideration for using only the NIR band when collecting remote sens-
ing data. Although this band has a strong relationship with healthy green leaf area
(HGLA), it quantifies the effects of all stresses in the field that affect HGLA. This
problem can be overcome, however, by taking advantage of high resolution sensors
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Fig. 3.3 a–d Quantitative relationships of (a) SCN population density (eggs 100−1 ccm soil),
(b) ground-based measurement of percentage of sunlight reflectance (810 nm), (c) aerial image
intensity (810 nm), and (d) Landsat 7 satellite imagery with soybean yield, for a soybean field
located in Ames, Iowa

that will allow researchers to extract pathogen-specific temporal and spatial signa-
tures, i.e. the unique temporal and spatial patterns when specific pathogens remove
or reduce HGLA over time and space within the crop canopy. It is well known that
iron chlorosis deficiency has a different temporal signature (due to chlorosis and
stunting) that occurs earlier in the growing season compared to symptoms caused
by SCN, and a spatial signature that is related to soil type and soil pH. Iron chlorosis
causes patches which vary little in extent from season to season, but which do vary
in symptom severity as affected by edaphic factors such as rainfall and soil mois-
ture. The effects of SCN on HGLA are seen in irregular to oval patches that tend to
enlarge from season to season, due to nematode dispersal by farm machinery.

The high resolution (<1 m2) of today’s satellite images, and those in the future,
will account for more of the variation in yield than was possible with the reso-
lution from earlier satellites, such as Landsat 7. In the SCN study, the Landsat 7
satellite platform explained 47% of the variation in soybean yield, but this satellite
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platform had only 4 m2 resolution, compared to 1 and 2 m2 resolution for the aerial
and ground-based platforms, respectively. In subsequent studies using IKONOS and
QuickBird satellite platforms with < 1 m2 resolution, we have been able to obtain
R2 values that are comparable or even higher than those obtained with ground-based
and aerial platforms.

3 The ‘Unique Spectral Signature’ Paradigm

Scientists have long hypothesized that for every new sensor developed (multispec-
tral, hyperspectral, etc.) and every new platform (hand-held, aerial, satellite, etc.),
specific biotic or abiotic stresses must elicit unique spectral signatures or spectral
indices or ratios that can be used to discriminate among specific biotic and abi-
otic stress agents. Although this approach has been tried for many decades (without
much success), and researchers continue to search for the silver bullet of pathogen-
specific spectral signatures (Apan et al. 2004, Girma et al. 2005, Malthus and
Madeira 1993, Sullivan and Holbrook 2007, Zhao et al. 2005), this paradigm has
met with less than satisfactory results. Most such investigations have used types of
correlation analyses to look for unique pathogen-specific spectral signatures, and
incorporated the most promising spectral indices/ratios with discriminant analyses
(Girma et al. 2005).

4 Use of Satellite Imagery to Detect and Quantify Healthy Green
Leaf Area Gradients (1-y) Versus Disease Gradients (y)

Disease gradients are the result of two biological processes: pathogen dissemina-
tion and pathogen infection (Fig. 3.4). The process of dissemination can be broken
down into three sub-processes: (I) removal/escape of dispersal units from a source
of inoculum, (II) transport (dispersal) of dispersal units from a source of inoculum to
distance (x), and (III) the deposition of dispersal units onto a susceptible host. A dis-
persal unit is defined as any device for the spread and/or the survival of a pathogen
that can be visually recognized and counted (Zadoks and Schein 1979). Dispersal
units may be pathogen (spores, cells, sclerotia, etc.) and/or potential inoculum car-
riers (insect vectors, pollen, infected/infested seed, cultivation, planting equipment,
infested soil, pots, etc.).

Once dispersal units are removed from a point line or an area source of inocu-
lum (Fig. 3.4), a dispersal gradient will result in which relatively more pathogen
dispersal units will be found close to an inoculum source and progressively fewer
dispersal units will occur as distance from the inoculum source increases. Larger
dispersal units (spores, etc.) will have steeper dispersal gradients relative to smaller
dispersal units due to their higher terminal velocities (Ward et al. 1999, Zadoks and
Schein 1979). Dispersal gradients of fungal and bacterial pathogens can be quanti-
fied by placing five or more spore or live plant traps with respect to distance from a
local source of inoculum (Parker et al. 1995).



3 Spatial and Temporal Dynamics of Plant Pathogens 33

Fig. 3.4 Processes (dissemination, infection, and pathogenesis) and sub-processes leading to
disease severity, defoliation, and healthy green leaf area (HGLA) gradients. Sub-processes of dis-
semination involving the pathogen (P), the host (H), and/or the environment (E) are shown in
parentheses. The symbol y represents a measure of disease intensity (e.g., severity or defoliation,
expressed as a proportion), the quantity 1-y represents the proportion of the crop that is healthy

The third sub-process of dissemination is deposition, defined as the land-
ing of dispersal units (P) onto a susceptible host (H) by one of two deposition
sub-processes: sedimentation or impaction (Zadoks and Schein 1979) (Fig. 3.4).
Deposition should, in theory, closely mirror the dispersal gradient. Deposition gra-
dients can be quantified using passive spore traps (such as glass slides coated with
silicon grease or petri dishes containing selective or semi-selective media), or, as in
the case of insect vectors, using yellow sticky or vacuum traps (Esker et al. 2004).

Once the process of dissemination has been completed, the host and pathogen
(HP) are now in direct contact, and dispersal units may then become infection
units, if and when environmental conditions are favorable for infection to occur
(Fig. 3.4). Once the environment (E) is favorable, the deposition gradient will give
rise to an infection gradient. One incubation period later, a primary disease gradient
(i.e., disease symptoms such as lesions, leaf spots, pustules, etc.) will be present.
The resulting disease gradient can be detected and quantified by visually assess-
ing disease severity (e.g. % severity, lesions/leaf), or by assessing disease incidence
(number of diseased sampling units/number of sampling units assessed) with respect
to distance from a source of inoculum (Esker et al. 2007; Nutter 1989, 2001; Nutter
et al. 2006). Thus, disease gradients result from the preceding infection, deposition,
and dispersal gradients.
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Epidemiologically, the presence of a disease gradient (change in disease intensity
with respect to distance) is important because this indicates the presence of a local
source of inoculum (Nutter et al. 1989, Zadoks and Schein 1979). Disease gradi-
ents often result in defoliation gradients (Fig. 3.4), as well as gradients of healthy
green leaf area, with HGLA being lowest close to an inoculum source and HGLA
increasing with respect to distance from an inoculum source (Nutter 1989, Parker
et al. 1995). Plant pathologists have long been interested in detecting and quantify-
ing disease gradients, but the concept of HGLA gradients (1-y) has received little
attention.

With regards to remote sensing, the distinction between disease and HGLA gra-
dients is critical, as there is often a misconception that remote sensing can be used
to detect and quantify disease stress (y), when in fact, most remote sensing instru-
ments are actually detecting and quantifying not disease intensity (y), but the effects
of disease intensity (y) on healthy HGLA, i.e. 1-y (Nutter 1990). We believe that the
NIR band is detecting HGLA, and not disease, because there are always very strong
(positive), linear relationships between percentage reflectance (or image intensity)
in the near infrared band with both yield and green leaf area index (Chong et al.
2001, Guan and Nutter 2002a, Guan and Nutter 2002b, Lathrop and Pennypacker
1980, Nutter 1989, Nutter et al. 2010). Vegetation indices that include a near infrared
band (e.g., NDVI, GDVI, etc.) are actually measuring 1-y, not disease (y) (Guan
and Nutter 2002a, Nutter 1989, 2006, Pethybridge 2007b, Pethybridge et al. 2008).
Thus, researchers who state that they are detecting and/or quantifying disease sever-
ity would be more correct to state that they are attempting to detect and quantify the
effects of disease (or disease stress) on HGLA.

5 Pathogen-Specific Temporal and Spatial Signatures – A New
Paradigm

As shown in Fig. 3.1, plant pathogens can create HGLA gradients by differen-
tially removing healthy green leaf area with respect to distance from a source
of inoculum (Nutter 1989). Based upon this concept, we have advanced a new
paradigm that quantifies the removal of HGLA within a plant canopy over time
and space as a means to extract unique, pathogen-specific, spatiotemporal signa-
tures. Some plant pathogens are r-strategists and produce tremendous numbers
of wind-dispersed spores, resulting in large dispersal, deposition, infection, dis-
ease, and HGLA gradients. Smaller dispersal units, such as rust spores, will result
in shallower HGLA gradients compared to HGLA gradients caused by larger-
spored pathogens (thereby resulting in unique HGLA gradients). Fungal pathogens
that are k-strategists produce fewer dispersal units per infection and will have a
slower rate of focal expansion than r-strategists. Pathogens that rely on splash
dispersal may result in very steep disease and HGLA gradients that expand at
relatively slow rates compared to expansion rates associated with wind-dispersed
pathogens. The rate of gradient expansion adds another potential ‘signature’ that can
be used to discriminate among biotic and abiotic causes of crop stress. The speed
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with which disease and HGLA gradients change from focal epidemics to general
epidemics, as well as differences in the general shapes of disease foci, contribute to
potential pathogen-specific temporal signatures that, collectively, could be used to
discriminate among the many biotic and abiotic stress agents that affect crop health.

6 Detecting and Quantifying Healthy Green Leaf Area (1-y)
Gradients

As plant pathogens spread over time and space within a crop canopy, HGLA is
removed; it is our hypothesis that the resulting temporal and spatial patterns are
unique to specific plant pathogens. The temporal and spatial spread of Asian soy-
bean rust (ASR) was quantified for an infected soybean field located in Cedara,
South Africa. Satellite imagery (IKONOS) with 1 m2 per pixel resolution was
obtained for 6 and 11 April in 2006 (Fig. 3.5). Image intensities in the near-infrared
band (recorded as grayscale values ranging from 0 to 255) were extracted and
geospatially-referenced using IMAGINE (ERDAS, Inc., Atlanta, GA) and ArcGIS
software (ESRI, Redlands, CA). Maps of image intensities in the NIR were created
and analyzed (Fig. 3.5a). Darker areas of the NIR image represent low image inten-
sities, which correspond with areas within the soybean canopy with low HGLA (due
to higher levels of disease severity). Lighter areas of the image represent areas of
the soybean field where HGLA is higher (due to lower disease severity).

The circled area in the northwest part of the soybean field was not treated with
fungicide at any time during the growing season, whereas the rest of the field
received a single application of fungicide early in the growing season (Fig. 3.5a).
The non-treated area developed a severe epidemic of ASR, which then served as a
small area source of soybean rust inoculum. This area source produced tremendous
numbers of dispersal units (spores) that resulted in large dispersal, deposition, and
infection gradients. As the fungicide application lost effectiveness over time, a large
disease gradient (nearly 300 m) was created, due to higher spore deposition close to
the area source. As a result, more new infections occurred close to the area source
of inoculum, and progressively fewer infections occurred as distances from the area
source increased (as illustrated conceptually in Fig. 3.4).

Consequently, the disease gradient produced a HGLA gradient. This HGLA gra-
dient was detected in NIR-band images obtained from the IKONOS satellite, and a
false-color map was produced by kriging (Coelho-Netto and Nutter 2005, Ellsbury
et al. 2001, Nutter et al. 2002, Wang 2006) to depict areas of low image intensity
(low HGLA) relative to areas of higher image intensity (high HGLA) (Fig. 3.5b).
In this false-color map, the darkest reds indicate the lowest image intensities (low
HGLA) and the darkest greens indicate the highest image intensity values (highest
HGLA). This false-color map clearly shows both the area source of inoculum (as
the dark red area) and the resulting HGLA gradient (as the progression from dark
red to dark green). Disease severity was visually assessed on the ground in twelve
1 m2 diameter quadrats established within the soybean field. These 12 quadrats
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Fig. 3.5 IKONOS satellite imagery (resolution 1 m2 per pixel) obtained on 6 April, 2006, of a
soybean field in Cedara, South Africa, infected with Asian soybean rust. Image intensities in the
near-infrared band (a) depict the presence of a healthy green leaf area gradient (HGLA); dark areas
represent low NIR image intensity and less HGLA due to high disease severity, and light areas
represent areas with higher image intensities (more HGLA and lower disease severity). A false-
color map produced by kriging (b) depicts the presence of a HGLA gradient with a progression
from dark red (low HGLA) to dark green (high HGLA). The false-color map in c depicts the
soybean rust disease gradient, with dark red values indicating high disease severity and dark green
values showing low disease severity

were geospatially-referenced using GPS, and the corresponding NIR-band image
intensities were extracted. Image intensity (x) was regressed against the correspond-
ing (GPS-referenced) disease severity assessments (y), resulting in the following
equation:

y = 113.2 − 0.691x (1)

where y = predicted disease severity (%), and x = image intensity, with image
intensity explaining 89.7% of the variation in disease severity. Using this equation,
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image intensity pixel values were converted into pixel values for disease severity and
then mapped, generating the soybean rust disease gradient map shown in Fig. 3.5c.

A potential pathogen-specific spatial signature might be developed by quanti-
fying the change in disease intensity (Y) with respect to distance from a source
of inoculum. Four disease gradient models have been proposed to quantify dis-
ease gradients: Gregory’s power law (ln x − ln y), Kiowsawa and Shiyomi’s model
(linear x − ln y), Fry’s model (linear x − logit y), and Berger and Luke’s model
(ln x − logit y), where x is linear or transformed distance and y is ln or logit disease
intensity (usually severity or incidence data) (Alderman et al. 1989, Nutter 1989).
However, these models have not been used to quantify the HGLA gradient (Nutter
1989, Pethybridge et al. 2007b).

The above models all utilize measures of disease intensity (y), but applying
these models to image intensity data has tremendous potential to detect and quan-
tify HGLA gradients. We applied the above disease gradient models using image
intensity data (1-y) with 1-m2 resolution extracted from IKONOS satellite images
obtained on 6 and 11 April, 2006, for the soybean field infected with Asian soybean
rust located in Cedara, South Africa (see Fig. 3.5 for GIS image intensity and disease
severity gradient maps). Image intensities were extracted from a 3 pixel wide tran-
sect (equivalent to 3 m wide), beginning from the northwest edge of the field (where
the area source of Asian soybean rust is shown circled in red), and continuing 398
m to the opposite edge of the field (along the transect shown in yellow), as shown in
Fig. 3.3a. Of the four gradient models, the Kiyosawa and Shiyomi model (linear x −
ln y) best explained the relationship between distance from the area source (x) and
image intensity (y), with R2 values of 78.9% and 93.8% for 6 April and 11 April,
respectively. The slopes for these two models indicate that soybean rust reduced
HGLA along a gradient where HGLA increases with respect to distance from the
area source. On 6 April, HGLA increased by 0.004 units of image intensity for each
1 m increase in distance from the source; on 11 April, HGLA increased by 0.003
units m−1. It is important to emphasize that these slopes provide quantitative spatial
signatures (HGLA gradient signatures) for Asian soybean rust, and that the flatten-
ing of the HGLA gradients over time also provides a spatiotemporal signature, i.e.,
the time required for the HGLA gradient to become undetectable because the dis-
ease foci have coalesced over time and space. The change in HGLA gradient slope
from 6 April to 11 April represents a flattening of the HGLA gradient by 0.0002
units m−1 day−1.

7 Lessons Learned from the Past: Quantifying Disease
and HGLA Gradients

Hand-held multispectral radiometers were first used in the 1980s to detect and quan-
tify disease and HGLA gradients (Nutter 1990) and to quantify injury from herbicide
drift (Adcock et al. 1990). In one such study, a CropScan multispectral radiome-
ter was used to quantify the primary gradient arising from a within-field source
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of inoculum that was deliberately introduced (Nutter 1989). Peanut leaves with
sporulating lesions caused by late leafspot of peanut (Cercosporidium personatum)
were sandwiched between 0.1 cm wire mesh screens and placed within a peanut row.
A travelling overhead sprinkler was used to irrigate the peanut field and provide
conditions favorable for the establishment of a primary infection gradient (which
arose from the primary dispersal and deposition gradients, as described in Fig. 3.4).
Three weeks later, the resulting disease and HGLA gradients were quantified. To
determine if four different raters could detect the exact position where the inocu-
lum source was placed within the peanut row, each of the four was asked to record
the percentage of sunlight reflected by the peanut canopy in the near-infrared wave-
length band (800 nm) using a CropScan hand-held multispectral radiometer. Each
rater recorded % reflectance at 1.8 m intervals beginning at one edge of the field
and continuing until the opposite side of the field was reached. Each measurement
covered a 0.6-m-diameter area of peanut canopy.

Without knowing the position of the initial source of inoculum (the wire mesh
with the inoculum source had been removed), all four raters were able to pin-
point the exact location where the inoculum source had been placed within the
peanut row (Fig. 3.6). The length of the HGLA gradient, as indicated by the reduc-
tion in % reflectance in the near-infrared band (800 nm), was approximately 8 m
(measured between outer edges of the focus). It is important to mention again
that higher % reflectance values at 800 nm indicate more healthy green leaf area

Fig. 3.6 Detection of a source of inoculum (leaves infected with Cercosporidium personatum,
the causal agent of late leaf spot of peanut) deliberately introduced into a peanut field in Plains,
Georgia, by recording the percentage of sunlight reflected by the canopy in the near infrared band
(800 nm) using a CropScan multispectral radiometer (Nutter 1989)
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(HGLA). Therefore, the multispectral radiometer (using the NIR band) was not
detecting disease severity, but was detecting the removal of HGLA, which is the
effect of plant disease. However, there was a very good relationship between per-
centage reflectance at 800 nm and percent defoliation of leaflets (R2 = 95%),
showing that disease gradients can result in defoliation gradients (y), which then
create HGLA gradients that can be quantified using remote sensing (Nutter 1989,
Nutter and Littrell 1990).

8 Quantifying Additional Temporal and Spatial Signatures
for Asian Soybean Rust

In the study in Cedara, South Africa, soybean rust disease foci were detected and
the rate of focal expansion was quantified. IKONOS satellite images for 6 April and
11 April, 2006 were rectified. A 20 × 20 pixel grid (1 pixel = 1.0 m2) was overlaid
on an image of the disease focus (Fig. 3.7a). Transects corresponding to the short
and long axes of the focus were identified, and image intensities (pixel values and
locations) were extracted along the transects. Changes in image intensity (1- y) with
respect to distance (pixel location) were plotted and inspected (Fig. 3.7b, c). The
lowest NIR pixel intensities represent areas within the disease focus where HGLA
is lowest, and are located at the x-coordinate for the epicenter of the short axis
(Fig. 3.7b) and the epicenter for the y-coordinate along the long axis (Fig. 3.7c).
The outer (healthier) edges of each focus along both the short and the long axes can
be determined by finding the pixel coordinates where pixel image intensities were
at their highest (representing where HGLA was highest). For example, the width of
the short axis for the soybean rust focus in Fig. 3.7b was 13 m wide, and the length
of the long axis of the focus was 17 m (Fig. 3.7c). The size of the focus (m2) can be
estimated using the equation for the area of an ellipse.

This process was repeated for the NIR image acquired on 11 April using a 40 ×
60 m grid (Fig. 3.7d). The larger grid size was used for the 16 April satellite image
because this focus had greatly expanded in just 5 days. Again, GPS coordinates
were used to find the epicenter of this focus by extracting image intensities along the
short and long axes of the focus and identifying pixel locations where NIR image
intensities were lowest (Fig. 3.7e, f). On 11 April, the distance between the outer
edges of the focus for the short axis measured 22 m and the long axis was 46 m. The
area of the rust focus expanded from 173.6 m2on 6 April to 794.8 m2 by 11 April.
The rate of focal expansion can be calculated by subtracting the size of the focus
on 6 April (173.6 m2), from the size of the rust focus on 11 April (794.8 m2), and
dividing by the change in time (5 days). Therefore, over the 5-day period, the rate
of focal expansion for this focus was 120.2 m2 day−1, a rate of focal expansion that
is surely unique to ASR relative to the rates of focal expansion by other soybean
pathogens.

It is important to note that the size, shape, and rate of focal expansion should
be extremely useful as ‘pathogen-specific’ signatures that are unique to ASR, as
no other plant pathogen of soybeans would possess such rapid temporal and spatial
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Fig. 3.7 a–f Quantifying the shape, size, and rate of focal expansion of a disease focus of Asian
soybean rust. Image intensities in the near-infrared band were extracted from IKONOS satellite
images (1 m2 resolution) obtained on 6 April and 11 April 2006 from a soybean field infected by
Asian soybean rust in Cedara, South Africa

signatures. The creation of a library of the temporal and spatial ‘signatures’ with
which different plant pathogens remove HGLA has tremendous potential for future
applications to identify the causes of biotic and abiotic stress agents using satellite,
GPS, and GIS technologies. The use of pathogen-specific temporal and spatial sig-
natures, when coupled with discriminant analyses (Girma et al. 2005), could serve
in much the same way that DNA fingerprints are used to detect and identify plant
pathogens.

In a similar study, Oudemans et al. (2008) also used NIR satellite imagery
(QuickBird Satellite, Space Imaging, Thornton, CO) to detect and quantify injury
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from fairy rings (caused by the fungus Psilocybe agrariella) in cranberry bogs
located in New Jersey. The change in the number of fairy rings detected each year
over a 10-year period and the change in area affected by fairy rings was determined
by integrating GPS, GIS, and remote sensing technologies. While the authors stated
that they used NIR imagery to detect and quantify the injury caused by fairy rings in
cranberry, the NIR wavelength band was actually depicting the removal of healthy
green leaf area by this disease. The size, shape, and rate of focal expansion of ‘rings’
provide pathogen-specific temporal and spatial signatures that are unique to the fairy
ring pathosystem.

9 Comparison of Pathogen-Specific Temporal and Spatial
Signatures to Differentiate Two Fungal Pathogens of Soybean

The ability to detect and quantify the shapes, sizes, and rates of focal expansion
using high resolution satellite imagery (when coupled with GPS and GIS technolo-
gies), has tremendous potential not only to detect disease stress in crops, but to
identify the causal organisms involved. Using the transect method to determine the
size, shape, and epicenters of disease foci, satellite imagery of disease foci caused
by Asian soybean rust were analyzed and compared to satellite imagery of disease
foci caused by Cercospora leaf blight (Fig. 3.8 a–d).

Cercospora leaf blight (CLB) is a disease of soybean in which initial inoculum
comes largely from infected seed and/or infested crop debris from previous crops
(Hartman et al. 1999). Infected/infested seed will result in a random spatial pattern
of Cercospora leaf blight disease foci early in the season (spatial signature), because
the temporal and spatial expansion of CLB disease foci is due to the dissemination
of fungal spores (dispersal units) primarily via splash dispersal.

Disease foci of CLB are circular in shape, and the kriged map of a single focus
clearly delineates the gradual, circular expansion of this pathogen over a 60-day

a b

c d
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20 m

Fig. 3.8 a–d Comparison of
temporal and spatial
‘signatures’ for disease foci
of (a and b) Cercospora leaf
blight, and (c and d), Asian
soybean rust. The shapes of
Cercospora leaf blight foci
were circular, whereas the
shapes of Asian soybean rust
foci were elliptical. The rate
of focal expansion for
Cercospora leaf blight was
6.9 m2 day−1, whereas the
rate of focal expansion of
Asian soybean rust was 120.2
m2 day−1
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period due to splash dispersal of Cercospora kikuchii spores (Fig. 3.8a, b). Focal
expansion in this pathosystem is often circular in nature, compared to the elliptical
shapes of disease foci produced by wind-disseminated spores. In contrast, disease
foci caused by ASR were elliptical in shape, with much larger foci and much faster
rates of focal expansion than are observed with CLB (Fig. 3.8c, d). This research
provides two additional criteria, pathogen-specific spatial signatures (foci shapes)
and spatiotemporal signatures (rate of focal expansion in m2 day−1), that can be
used to discriminate among biotic pathogens causing crop injury (i.e., removal of
HGLA over time and space).

Cumulatively, there are a number of unique temporal and spatial signatures that
could be used in logistic regression or Classification Regression Tree (CRT) models
(Esker et al. 2006), as well as a number of types of discriminate analyses that could
be employed to identify the causes of disease stress (Apan et al. 2004, Girma et al.
2005, Malthus and Madeira 1993, Schut et al. 2006, Zhao et al. 2005). Examples of
pathogen-specific temporal and spatial signatures that could be used to discriminate
ASR from CLB of soybean are shown in Table 3.1.

Table 3.1 Summary of temporal and spatial ‘signatures’ that can be used to discriminate Asian
soybean rust from Cercospora leaf blight of soybean, using GPS, GIS, and remote sensing (satellite
imagery)

Discrimination criteria Asian soybean rust Cercospora leaf blight

Origin of inoculum Outside the crop Within the crop
Seasonality Anytime, but usually after

anthesis
Any time after crop

emergence
Disease gradients present

within field
Likelya Not likely

Disease foci present Yes Yes
Shape of foci Elliptical Circular
Size of disease foci 794.8 m2 360 m2

Rate of focal expansion 120.2 m2 day−1 6.9 m2 day−1

Time from focal → general
epidemic

Fast Moderate

Temporal rate of infection 2.9–8.3 days Unknown, but much longer
Doubling time (temporal) Fast Moderately slow

aIf a local source of rust inoculum is present

10 Comparison of NDVI with the NIR Band to Quantify HGLA

A large volume of research has been conducted to try to find unique spectral sig-
natures (indices, ratios) that can discriminate among the many causes of biotic
and abiotic crop stress. Among the most widely used indices is the Normalized
Difference Vegetation Index (NDVI), which has been used in many plant pathosys-
tems to detect, quantify, and map crop stress. However, this index has not resulted
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in any real success in terms of accurately discriminating among the causes of
crop stress. Originally, NDVI was used to provide a measure of the percentage
of the ground that was covered by vegetation, and was not intended to pro-
vide a measure of HGLA. Several researchers have found that the near infrared
band alone can more accurately estimate HGLA over time, space, and different
vegetation types, than NDVI (Guan and Nutter 2002a, b, Moreira 2004, Nutter
1989, Nutter and Littrell 1990, Pethybridge et al. 2007b, 2008). For example, in
a study conducted in Quincy, FL, Nutter et al. (2009) compared the resolution
of NDVI and the NIR wavelength band (IKONOS satellite imagery) to deter-
mine which method of representation (image intensities, false-color, and kriging)
could most accurately determine the GPS coordinates of the epicenters of soy-
bean rust disease foci where the pathogen was deliberately introduced into field
plots. Kriged maps using the NIR wavelength band had slightly better accuracy
than NDVI kriged maps in determining the GPS coordinates where rust was
deliberately introduced into soybean field plots (Fig. 3.9). Moreover, the NIR
band explained more of the variation in crop yields, compared to NDVI and
most other indices (Guan and Nutter 2002a, Moreira 2004, Pethybridge et al.
2007b).

Fig. 3.9 Comparison of using the Normalized Difference Vegetation Index (NDVI) versus the
near-infrared wavelength band to detect and locate the GPS epicenters of disease foci caused
by Asian soybean rust. Using kriging, the NIR band had slightly better accuracy (1.8 ± 1.3 m)
in detecting the actual GPS coordinates (epicenters) where Asian soybean rust was deliberately
introduced by researchers, compared to NDVI (2.3 ± 1.2 m)



44 F.W. Nutter et al.

11 Implications for Plant Pathogen Forensics

The ability to accurately detect and geospatially-reference the exact GPS locations
of the epicenters of disease foci has important implications with regards to pathogen
forensics (Fletcher et al. 2006, Nutter 2005), given the potential threats associated
with the deliberate introduction of plant pathogens (Nutter and Madden 2008). After
the GPS coordinates of the epicenters of primary disease foci have been determined
(using integrated remote sensing, GPS, and GIS technologies), this information
can be passed immediately to law enforcement personnel on the ground to direct
forensic teams where to best search for physical evidence (such as the presence of
chemical surfactants (Tween 20), culture media residue or gelatin used as sticking
agents for spore deposition, spray bottles, syringes, and other pathogen delivery
tools). Thus, law enforcement personnel can direct their resources to intensely sur-
vey smaller areas for evidence, as opposed to expending additional time and money
to search much larger areas in affected fields (tens to thousands of hectares). The
GPS locations of primary foci could also be used to direct ground personnel where
to collect pathogen isolates (both within and among disease foci) to detect the pres-
ence of population genetic anomalies that might suggest that the new pathogen
threat was the result of a deliberate attack (biocrime) (Nutter and Madden 2008). In
a recent study, Nutter et al. (2009) used the transect method described in Section 8
(Figs. 3.6 and 3.7) to predict the precise GPS coordinates where Asian soybean
rust was deliberately introduced into nine soybean plots by researchers. Using this
technology, they were able to predict the actual epicenters accurately, to within
1.8 ± 1.3 m.

12 A New Paradigm for Crop Health Management

In the present paradigm, the efficient evaluation and/or application of today’s disease
management programs requires the acquisition of accurate and precise information
concerning the temporal and spatial dynamics of disease intensity assessments (y)
over time and space (Ellsbury et al. 2001, Nutter 2007, Nutter et al. 2010, Steinlage
et al. 2002). A new, emerging paradigm focuses on assessing both disease inten-
sity (y) and how effectively disease management practices maintain the health of
the crop canopy (1-y). The relationship between diseased and healthy plant tissue
is described by the equation 1.0 = y + (1-y), where 1.0 represents the crop canopy
as a whole, y is a measure (proportion) of disease intensity, and 1-y is the propor-
tion of the crop (healthy green leaf area) that is available to produce a crop (Nutter
1999, Nutter 2007). In the not too distant future, it is very likely that management
strategies and tactics will be evaluated based upon assessments of ‘1-y’ (healthy
green leaf area) as opposed to assessments of disease intensity ‘y’. Waggoner was
one of the first to propose that healthy leaf area duration, which is the integration of
healthy green leaf area over the growing season (time), would have a better relation-
ship with crop yield than visual estimates of disease intensity (Waggoner and Berger
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1987). Whether HGLA is measured destructively or is estimated using remote sens-
ing technologies, measurements of HGLA have nearly always explained more of the
variation in yield (and quality), compared to visual estimates of disease intensity (y)
(Guan and Nutter 2002a, Nutter 1989, Nutter and Littrell 1990, Nutter et al. 2002,
Pethybridge et al. 2008).

An example of the new paradigm in managing crops for maintaining ‘crop
health’, as opposed to assessing the impact of management practices by assess-
ing disease intensity, involves the Cercospora leaf blight of soybean pathosystem.
The image intensities (NIR) for 3-pixel wide (3 m) transects were extracted
from IKONOS satellite imagery obtained from a soybean field located in Chaco,
Argentina. The NIR image intensities were extracted from transects placed over
NIR images for each of three 50 × 95 m soybean plots that received different fungi-
cide management programs. Image intensities extracted from transects from one
edge of the field to the opposite edge of the field were graphed to look for spa-
tial anomalies that represented changes in HGLA with respect to distance. Most
notable is the lack of any HGLA gradients within the three soybean plots on either 7
February or 8 April (Figure 3.8a–c), indicating that pathogen inoculum most likely
originated from within-field sources of inoculum or from long distance dispersal of
fungal spores (which is highly unlikely for this fungal pathogen, because spore size
is quite large) (Hartman et al. 1999). Image intensities in the non-treated control
plot, displayed in grayscale (0–255), (Fig. 3.10) ranged from 119 (lowest HGLA)
to 139 (highest HGLA). Fluctuation in the image intensity signal from 119 to 139
likely represents areas where the transect passed through the epicenters and outer
edges of disease foci (see Fig. 3.7 for determining the epicenters and size of disease
foci).

Fig. 3.10 IKONOS NIR satellite image (1 m2 resolution) of soybean field in Argentina infected
with Cercospora leaf blight (caused by the fungus Cercospora kikuchii). The area of interest is a
soybean field with fungicide applied early in the reproductive growth stage of the crop (R1), late
in the reproductive growth stage (R5), or left untreated (no fungicide). The lighter areas represent
higher image intensities (healthier areas of the soybean canopy) and darker areas represent lower
image intensities (i.e., less healthy areas due to higher disease severities)



46 F.W. Nutter et al.

Image intensities from the 8 April IKONOS image were extracted (following the
same transect as was used for the 7 February image), graphed, and compared to
the image from the earlier date. Image intensities along the 8 April transect ranged
from 93 to 115, a reduction in 24–26 image intensity units, indicating an overall
decrease in HGLA from 7 February to 8 April. This drop in image intensity repre-
sents a ‘crop health’ gap in HGLA that needs to be narrowed through the deployment
of integrated disease management practices that are the most cost-effective. Nutter
(1999) first introduced the concept of ‘crop health gaps’ caused by biotic and abi-
otic stresses, but it is only recently that satellite imagery, GPS, and GIS technologies
have come together to quantify this gap.

In contrast to the non-treated control soybean plot, late-season fungicide appli-
cation resulted in a slightly flatter HGLA signal for the image intensity transects
graphed for 7 February and 8 April, but the ‘crop health gap’ was only slightly nar-
rowed by this treatment (Fig. 3.11b). Relative to the non-treated control plot and the
soybean plot that was treated with fungicide late in the reproductive growth cycle
(R5), the soybean plot that received a one-time application of fungicide early in the
reproductive growth cycle (R1) had a much narrower ‘crop health gap’, as indicated

Fig. 3.11 a–c Image intensity transects extracted from three soybean field plots on 7 February
(solid line), 8 April (dashed line), and the difference in image intensities for these two dates (dotted
line). Treatments applied to soybean plots were: (a) not treated with fungicide, (b) treated with
fungicide late in the reproductive growth stage (R5), and (c) treated with fungicide early in the
reproductive growth stage (R1). The lowest image intensities indicate the least healthy areas of the
soybean canopy (due to higher disease intensities within soybean plots affected by Cercospora leaf
blight, caused by Cercospora kikuchii)
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by a much smaller reduction in image intensities along the 7 February versus 8 April
transects (Fig. 3.11c). This indicates that the R1 fungicide application maintained a
high level of HGLA from 7 February to 8 April, which should translate into higher
yield. In fact, satellite image intensity explained 85% of the variation in soybean
yield in this experiment (data not shown).

13 Conclusions

The integration and use of GPS, GIS, and remote sensing technologies has tremen-
dous potential to obtain temporal and spatial information concerning disease risk
at multiple spatial scales. Moreover, integrated GPS, GIS, and remote sensing tech-
nologies using aerial and satellite platforms have cutting-edge applications to obtain
science-based, pathogen-specific temporal and spatial ‘signatures’ that can be used
to correctly identify the cause(s) of crop stress. Exciting opportunities are on the
horizon using GPS, GIS, and remote sensing technologies to develop new metrics
for evaluating and monitoring IPM performance. In the short to midterm future,
visual, ground-based assessments of disease intensity will continue to be employed
to quantify the temporal and spatial dynamics of pathogen and disease. Visual-
based methods will also be used to evaluate and deploy the most cost-effective
and environmentally-friendly disease management programs. However, the future
will likely rest on the use of high resolution satellite imagery (when coupled with
GPS and GIS technologies) to analyze spatially-referenced data for multiple spa-
tial scales, which can be extracted from a single satellite image. Remotely-sensed
data also provides more objective data related to crop health assessments (1-y),
as opposed to subjective visual-based disease intensity assessments (1-y). Finally,
imagery provides a permanent record that can be stored and re-analyzed as GPS and
GIS technologies advance in the future.
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Chapter 4
Spatial and Temporal Dynamics of Arthropods
in Arable Fields

Maarten van Helden

Abstract Pest distribution in an arable field is rarely homogeneous. As for diseases
and weeds many different abiotic and biotic factors can induce non-homogeneous
or even aggregated distributions. Moreover animal pests are able to respond actively
themselves to external factors such as small differences in local habitat quality
through their behaviour. The combined effects of variations in plant physiological
stage and local climate, arthropod behaviour and population dynamics, and (tri-)-
trophic interactions often result in aggregated spatial distributions of the pest, which
can evolve over time due to pest-plant interactions. The large number of poten-
tial interactions makes it almost impossible to foresee spatial distributions at the
field scale. In situ studies on spatial distribution of the pest can be used to reveal
(stable) distribution patterns. Then it can be tempted to correlate these to intra-
field variation in (plant, climate, etc.) characteristics. Stable (and/or predictable)
patterns will certainly not occur for all pests. Some examples are cited, mainly
occurring in perennial crops and/or for highly mobile pests. Knowledge of such sus-
tainable patterns can then be used to optimise field monitoring and/or management.
However, practical implementation of such knowledge in pest management seems
still very limited because of technical (equipment) reasons and impacts on working
methods

1 Introduction

In this chapter we will focus on the spatial distribution of arthropod pests in a crop
over time at the intra-field scale. The focus of this book being precision agricul-
ture we will not consider the population dynamics alone (without spatio-temporal
effects), such simple dynamics being described in many studies.
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On the field scale many different phenomena can be observed resulting in non
homogeneous distribution of arthropods. Larger ‘landscape’ scale phenomena are
being studied today (Thies et al. 2003, Schmidt et al. 2005, van Helden et al. 2006,
Tscharntke et al. 2007, Reeve et al. 2008) but these are beyond the scope of this
book.

I will mainly concentrate on phytophagous pest insects, but occasionally data
on the distribution of other phytophagous arthropods (mites) or of natural enemies
(insect parasitoids and predators, other arthropods as spiders, etc.) will be men-
tioned either as an illustration or because these can be an explanatory factor for
the pests’ distribution. The agronomical definition of a field is a ‘continuous and
uniform production area, where cultural practices are applied homogeneously’. As
is clear from this definition, farmers tend to handle the field as a single manage-
ment unit. This man-made ‘functional’ definition of a field is clearly not respected
by biotic factors such as pests, diseases and weeds. Spatial distributions of pests
in a field are rarely homogeneous (Dalthorp et al. 2000). Many different rea-
sons can explain a non-homogeneous distribution of pests, from pure and simple
stochastic effects of ‘passive’ colonization of wind-borne pests, to abiotic border
effects (temperature, humidity, wind) acting on the survival rate of the insect. In
spite of this non-homogeneous distribution the farmer will still use the field scale
for pest management decisions (monitoring, intervention thresholds) and interven-
tions (pesticide applications) whereas this is clearly not always justified. Pesticide
treatments, applied to the whole field whereas attacks are only local, represent a
substantial waste of pesticide, and an additional hazard for environment and health
(Bongiovanni and Lowenberg-Deboer 2004).

If we would understand the underlying mechanisms of such spatial heterogeneity
and/or if we could determine them in a reliable way, we then could in theory adapt
the management of the crop to either create a more homogeneous situation, or to
limit the management to those areas where an intervention is needed. This could
in theory reduce pesticide use in a very significant way (see also Chapters 19, 22,
and 23).

2 Field, Field Borders and Core Area

Defining a field as a ‘continuous and uniform production area, where cultural prac-
tices are applied homogeneously’ is a contradiction in terms since a field (habitat
patch for the pest) is not ‘continuous’ but inevitably has a ‘border’ and a central
part (core) (Fagan et al. 1999). In the ‘border’ of the field many biotic and abi-
otic parameters will show a gradient from the exterior of the field up to a certain
distance into the field. The range of this gradient and thus the width of the border
area depend on the system studied. For example some edge effects such as uneven
light exposure due to the presence of a hedge will not go beyond the length of its
shadow, but other effects, such as wind speed effects (Chojnacka-Ozga and Ozga
1998, Chen and Ruberson 2008) or the predation by syrphid flies ((highly mobile
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natural enemies) foraging for nectar and pollen outside the crop and entering in the
field seeking egg laying sites near aphid colonies), can have a much bigger range
(Cowgill et al. 1993a, Arrignon et al. 2007). It is only beyond this (variable) ‘border
area’ that conditions for a certain factor can be considered as really homogeneous
in the central part of the field. This central homogeneous area will be referred to
as ‘core area’ throughout this chapter. Straightforward metric definitions of ‘border’
and ‘core area’ are inappropriate and need to be defined for each case or each system
studied.

In the core area of the field the climatic growing conditions for the plants should
ideally be homogeneous. However, differences in soil quality (such as nutrient and
water availability) often occur, thus changing plant growth.

In perennial crops, or in fields where the same annual crop is grown in suc-
cessive years such as maize (Zea mays; Weisz et al. 1996, Kiss et al. 2005),
the effect of such small local abiotic differences tends to accumulate over years
(Bramley 2005), amplifying the differences in plants growth, resulting in clearly
non-homogeneous crops, in which pest insects will indeed encounter large habitat
quality differences (Decante and van Helden 2008). Therefore non-homogeneous
distributions of pests are more often observed in such (non-homogeneous) perennial
crops.

If the pest population can hibernate inside the field such small initial differences
in population levels will re-enforce themselves over time, especially for pests that
are of limited mobility (scale insects, nematodes). In such cases of ‘perennial’ field
(crop) and pest combinations, interactions can potentially accumulate over time and
evolve to comparable (perennial) spatial distributions over years, even if overall
population levels can vary according to annual conditions. Arthropods, being often
quite mobile, can be strongly influenced ‘passively’ by border effects during the
dispersal to, from, or inside the field. However, they are also potentially capable
of responding ‘actively’ to non-homogeneous conditions in the field (Couty et al.
2006).

In this chapter we will differentiate the two main phases of population dynamics
as distinguished by epidemiologist: the ‘primary infection’ (colonisation of the crop
by the migrating insect from outside the field) and the secondary spread (due to dis-
persal and/or reproduction of the arthropod inside the field). Since many arthropods
will leave the crop again at the end of season (for example to hibernate elsewhere:
complementation) the ‘emigration phase’ will also be illustrated.

The primary/secondary infestation process is often a ‘yearly’ process especially
in annual crops (where many of the pests will be ‘removed’ with the harvest, or (in
both annual and perennial crops) for pests hibernating outside the field).

For perennial crops, or for annual crops repeated several times on the same field,
pest insects that are capable of completing their whole cycle inside the field will
not show a ‘colonisation’ phase every year. As far as I am aware very few species
of arthropod pests have a diurnal (daily) ‘immigration/emigration’ behaviour such
as some mammals and birds (roe deer, sparrows). The only exceptions are social
insects when they have their colonies outside the field (wasps, bees). This seems no
viable strategy for most (non-social) arthropod pests.
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3 Primary Colonization of the Field

Let’s consider the (hypothetical) case of a homogeneous rectangular field contain-
ing a single crop, totally free of pest insects, and surrounded by bare soil. This
habitat patch is potentially a very interesting resource for a pest, much bigger and
with a higher resource concentration than in a natural situation, and therefore we
will probably observe the installation of the first ‘immigrants’ quite rapidly. The
way this immigration takes place depends on the pests’ behaviour. Most pests will
arrive ‘through the air’ and we will focus mainly on aerial migration in this chapter.
Colonisation can also happen through animals migrating over the ground (especially
larger mammals) or farmer operations using ‘contaminated inputs’ (soil transfer
during tillage, contaminated seed etc.).

3.1 Passive Migration

Many (smaller) pest arthropods will actually not be able to locate and move towards
the crop for the simple reason that their active migratory capacity is limited by their
flight speed (Ellington 1991). During migration these ‘air-borne’ pests will there-
fore behave as ‘aerial plankton’ transported passively by the wind. Wind speed is
correlated to elevation and active directed movement is only possible close to the
ground in what is often referred to as the ‘flight boundary layer’ (FBL; Gatehouse
1997). For an insect present above this FBL no orientation is possible, it will simply
be ‘gone with the wind’. For such wind borne pests showing purely passive migra-
tion the colonisation in the core area of the field will therefore be purely random
process (Fievet et al. 2007).

However border effects will occur. In the edge of our hypothetical field, where the
wind will encounter the field vegetation the (horizontal) air flow will be affected by
the border of the field. Aerial plankton moving horizontally into the crop will thus
be ‘sieved out’ by the crop, acting here as mechanical barrier (Fig. 4.1). Such effects
are for instance particularly visible for ‘ballooning’ small spiders that will clearly
accumulate at such borders because the silk threads that carry them get tangled up
in the vegetation (Thomas et al. 2007).

Moreover the wind speed will also be reduced by this mechanical resistance of
the crop (Fishpool et al. 1988, Pasek 1988, Chojnacka-Ozga and Ozga 1998) and
such an air speed reduction will increase passive deposit of aerial plankton. When
wind speed is sufficiently reduced, below the maximum flight speed of the pest, it
can even start ‘active’ orientated dispersal inside the field.

When field borders are not ‘bare soil’ but have a vertical structure (such as
hedgerows or lines of trees), wind speed changes due to mechanical effects of this
ruggedness of the area will not only change air flow speed but can cause turbulence,
resulting in more or less deposit of aerial plankton in certain areas (Yudin et al.
1991, De Guimaraes et al. 1997). These phenomena have been studied extensively
in agriculture on related ‘passive drift’ systems such as spore and seed dispersal
or pesticide drift (Lazzaro et al. 2008). The width of the ‘border area’ of such
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Fig. 4.1 Insect accumulation of an ‘air-borne’ pest due to wind speed reduction below its maxi-
mum flight speed inside the crop. The highest population density is observed at the upwind border
due to a combination of sieving out of passive leeward immigrants and upwind active dispersal
inside the crop, where wind speed under the canopy drops below flight-speed

phenomena can be quite important, up to several times the height of the structure
(Chojnacka-Ozga and Ozga 1998).

In a few cases the passively migrating insect can slightly influence its landing
moment (and thus to a lesser extend the landing site). While the migrant can actively
‘maintain height’ during long range dispersal by wing flapping movements, it can
also fold its wings, thus reducing its air resistance resulting in a ‘crash landing’
without precise selection of the landing area. Such phenomena have been described
for aphids and colonisation could even be influenced by changing crop or soil char-
acteristics (Stapleton and Summers 2002), apparently interfering with the visual
observation of the pest.

3.2 Active Migration

Larger insects, capable of flying at speeds above wind speed (inside the FBL, often
closer to the ground) can, at some stage during the migration, orient themselves
actively to the resource, using some ‘long distance’ indication such as odour or
vision (Visser and Nielsen 1977, Szentesi et al. 2002, Fernandez and Hilker 2007,
Carde 2008, Carde and Willis 2008, Spencer et al. 2009). In the absence of such
stimuli many insects will attempt to move both upwind and slightly perpendicu-
lar (Visser and Nielsen 1977, Colvin et al. 1998) probably to ‘cover’ the largest
possible area during host plant localisation. When the insect does perceive host
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plant stimuli it will show directed upwind movement towards the field. Since odour
‘cones’ are wind dispersed upwind movement will normally result in localisation
and immigration of the crop from the ‘downwind (lee) side’, this will result in an
initial colonisation of this lee side border. However these phenomena are not easy
to observe because of changing wind directions and because of continuing dispersal
inside the crop (see below).

4 Dispersal of Immigrants Inside the Field

Once the arthropod has invaded the field it can start dispersing actively. Wind speed
inside the crop is often below flight speed so the arthropod is free to move around
inside the FBL, in search of appropriate habitat characteristics. In a natural situa-
tion but even in our ‘unnatural’ field (high density monoculture) such dispersal is
a natural risk factor for mortality (for instance by spider-predation), and will have
energetic costs, so the pests should optimise its foraging behaviour.

Here the evolution of the eco-ethology of the pest will determine its behaviour
and preference for specific habitat types or environmental conditions.

If the field is perfectly homogeneous (our hypothetical case) and if the arthro-
pod has no preferential direction of migration, the pest-plant interaction should not
result in any preferential distribution. However the migration of insects inside the
field is often still preferentially upwind (Fishpool et al. 1988, Colvin et al. 1998,
Decante and van Helden 2008, Hsu et al. 2009). The combination of downwind
passive immigration and upwind active dispersal inside the field can cause pest
accumulation in the upwind field border (Fig. 4.1; Fishpool et al. 1988, Colvin et al.
1998).

In contrast to our hypothetical case many different factors will vary inside a
field resulting in non-homogeneous habitat quality and this can influence pest dis-
tribution. Soil characteristics, fertilizer levels, water availability and many other
factors can vary. The pest individual is potentially able to respond to these fac-
tors, again in relation to its mobility. Leafhoppers such as Empoasca vitis in Europe
or Erythroneura sp. in North America (Martinson et al. 1994, Decante and van
Helden 2008) are highly mobile insects that clearly show a preferential distribution
in the fields, preferring higher plant vigour (Fig. 4.2, correlated to nitrogen lev-
els and water availability; Bentz and Townsend 2003, Daane and Williams 2003,
Decante et al. 2009).

Even the pest itself sometimes has an advantage in showing an aggregated dis-
tribution. The classic example is that of bark beetles, unable to attack a pine tree
individually, using an aggregation pheromone (combined with kairomones from the
attacked plant) to accumulate on certain trees and overcome its defence due to a
‘group attack’ (Wermelinger 2004), resulting in a much aggregated distribution of
these immigrants. The fact that the same compound, above a certain concentration
will become a dispersal pheromone avoids intra-specific competition on the indi-
vidual plants, the late arrivals focussing on nearby, less attacked trees (Sun et al.
2006).
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Fig. 4.2 (a) Adult spatial distribution of Empoasca vitis as observed on yellow sticky traps
(legend = number of adults trapped during a 1 week interval) compared with (b) Plant vigour
(as measures by chlorophyll content through an N-tester) in a 25 ha vineyard (data from Decante
et al. 2009). Insect distribution has a high significant correlation with plant vigour, especially in
the core area, but edge effects occur especially in the north-west border

5 Population Build-Up and Dispersal Inside the Field

As most pests will show a population increase once they are in the field the ini-
tial distribution of the new-born individuals (less mobile non-winged larval stages)
should be linked to the reproduction (egg lying) site of the females. Since egg lay-
ing sites are abundant inside the field, dispersion of the egg-laying female is not
necessary – it can still occur as part of the reproductive strategy – and this will
potentially lead to a population increase in these areas. The population levels can
lead to direct (population density) crowding effects that, in certain arthropods, will
induce dispersal activities (Mackay and Lamb 1996).

Moreover, since we are considering phytophagous pests these will generally
increase to population levels damaging the plant, this will decrease plant growth
or alter its physiology, thus changing – often reducing- its quality as a resource for
the pest. According to the pest species this will induce dispersal of individuals to
other higher quality areas, generally present close by in the field.

In the case of ‘low’ to ‘moderately’ mobile pests such as aphids and mites, not
able to disperse actively over long distances to find their host, this population build-
up will result in a gradual spread of the pest from the initial infestation spot into
a larger infestation patch. If the effect of the pest on the plant does reduce the
plants’ growth, these infestation foci can be observed in the field. Because of the
reduction in resources in such a patch this is not always the area with most pest
individuals. The highest infestation levels are often found on the edge of the infes-
tation patch, where new, not yet damaged, plants are being colonized (Logan 1997).
Population levels can build up to high numbers on these so far healthy plants before
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they start to suffer from the pest attack. In this case it is the pest that will induce
‘non-homogeneous’ conditions inside the field. Population levels observed at one
moment in the field will often not be linked directly to the severity of the observable
symptoms because there often is this lag between population and damage (Decante
and van Helden 2008).

6 Border Effects on Dispersal and Emigration

Just like the arthropods immigrating to the field, the arthropods dispersing inside
the crop can be influenced by the border. For a pest insect dispersing inside the high
quality habitat of the field leaving the habitat patch can be considered as a major
risk. Therefore individuals might perceive the border as a natural barrier. The insect
might be moving preferentially into a certain direction (upwind) inside the field until
it is confronted with the field edge. It might be reluctant to leave the field, especially
if the transition from habitat to non habitat is very abrupt. When a whole popula-
tion of pest insects is migrating in a certain direction and ‘hampered’ by this border
effect, population density can build up close to the border as observed for popu-
lations of E. vitis (Decante and van Helden 2008) and Bemisia tabaci (Gatehouse
1997, Colvin et al. 1998). The higher wind speed observed at field borders can re-
enforce this phenomena, if the insects are unable to keep flying upwind beyond
the border of the field as observed for B. tabaci in cassava fields (Colvin et al.
1998).

7 Effects of the Plant Physiology

The (physiological) state of the plant can influence the acceptance of the plant by
the pest insect, or its reproduction rate. Nitrogen availability and water stress are
considered as the major factors that will influence insect population dynamics and
distribution. Uneven nitrogen fertilisation of the field will in most cases favour
insect development in those areas where nitrogen is more abundant (thus having
a higher nutritional value). Especially piercing-sucking homopterous insects such
as aphids are known to respond strongly to this parameter (Kyto et al. 1996, Bentz
and Townsend 2003, Bongiovanni and Lowenberg-Deboer 2004, Hogendorp et al.
2006, Chen and Ruberson 2008), even though this correlation is not always positive
(Zehnder and Hunter 2009).

Host plant quality will vary over the growing season since phenology of the plant
(from budding to seed ripening and leaf shedding) will change. If, for whatever
reason, the phenology of the plant varies in the field, this can influence the pests’
distribution or reproduction rate. Border effects and slope/exposure effects will often
induce differences in phenology, and plants in this area might therefore be more or
less attractive or acceptable than the core area (Fagan et al. 1999).
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8 Effects of Natural Enemies

So far we have only considered the interaction of the pest (second trophic level) with
abiotic factors and the first trophic level (plant). For the natural enemies (NE: the
third trophic level) of the pests the field itself is not an exploitable resource when the
pest (or any other possible food source) is not present in the crop. In most cases the
NE will not overwinter in the crop and when it migrates into the crop ‘accidentally’
it will leave (or die in) the field when no resources are present. Orientation of the
migrating NE to stimuli (odour, vision) from the pest or the attacked crop – or a
combination of them – from outside the field is possible, but have rarely been shown
to play a role at this spatial scale (Williams et al. 2007).

8.1 Immigration

The fate of the NE entering the crop is depending on its ecology. Some very mobile
NEs being able to ‘explore’ a crop patch over large distances from the border
to locate their prey (syrphid flies, dragonflies), others being more ‘clumsy’ fliers
(lacewings) or too small to be able to compensate wind speed (many microscopic
parasitic wasps). A strong ‘border effect’ of NEs can be expected, especially during
the period when the natural enemy has not located its prey and reproduced inside
the crop.

Even with the prey present the habitat quality of the crop patch might not be
sufficient to provide all resources for the NE survival. Complementation of the NE
diet with pollen and nectar (increasing mobility, fecundity and longevity) is often
necessary for the adult NE (Cowgill et al. 1993), whereas only the larvae will attack
the prey. In such cases a ‘sustainable’ colonization of the field is not even possible
and floral resources will need to be available in the vital space of the NE (Cowgill
et al. 1993, van Helden and Decante 2001, van Helden et al. 2003, 2006). Many
studies and projects aim at creating flower strips at the field border containing food
resources for natural enemies such as pollen and nectar and thus increase its poten-
tial impact on the pest. However, offering good resources in strips bordering the
crop might also reduce the motivation to enter the more hostile environment inside
the field or – even worse – attract the few NE present in the field towards the flower
strip outside of the field. Few results illustrate the migrations between surrounding
vegetation and the crop or the real impact (predation rate, range of action) of nat-
ural enemies coming from such border strips in the field itself (Lovei et al. 1993,
Robinson et al. 2008). It seems clear that additional resources (such as flowers)
should better be located throughout the field to be most efficient to increase natural
enemies. In perennial systems (orchards, vineyards) and even some annual crops the
undergrowth can play such a role (White et al. 1995), even though unwanted effects
can occur (Irvin et al. 2006).
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8.2 Functional and Numerical Response

Inside the crop, when directional movement is possible, functional response through
tri-trophic communication occurs. At this finer scale the NE can be attracted by
kairomones from its host or synomones emitted by the attacked plant, guiding
it towards the pest infestation focus. Literature on the role of semiochemicals is
numerous and many examples do exist, but cannot be mentioned here. See Dicke
(1995) for a review on this fascinating part of chemical ecology.

Once a NE has located its host inside the crop it can start predation and repro-
ducing (numerical response). If the NE has a real impact (being able to reduce the
pest population level while increasing its own population) at this local level, the pest
population is condemned to local extinction. This will result in high local NE popu-
lations with insufficient resources that will spread out in search for new populations.
Dispersing pest individuals (sometimes these are even migrating as a response to the
presence of NE (Fievet et al. 2008)) might have started new populations elsewhere in
the field, which will be discovered with a certain lag, thus creating strong local vari-
ations (Sabelis et al. 1999, Ellner et al. 2001). The phytophagous mites/predatory
mite system in greenhouses as studied by Sabelis (2005) is a beautiful example with
a global equilibrium (efficient biological control) in spite of such very strong local
fluctuations.

9 Overall Effects

As illustrated in the preceding paragraphs many different phenomena can influence
the pest distribution inside the field. It is not possible to predict any form of pest
distribution without sufficient knowledge of the pest biology and eco-ethology and
the crop/pest combination. It seems impossible to understand all factors influencing
spatial distribution in order to predict the final outcome. Therefore, in situ observa-
tions are needed to describe population dynamics and spatial distribution (Decante
and van Helden 2008, Decante et al. 2009). From such descriptive work a more
general conceptual model can then be developed for each case and this can be tested
by more precise observations (multiple sites or several years) (Colvin et al. 1998,
Decante and van Helden 2006, Fievet et al. 2007, Fishpool et al. 1988, Decante
and van Helden 2008, Decante et al. 2009). This allows identifying the main factors
(Fig. 4.2), and – if these seem to be able to explain the patterns observed – this might
lead to changes in management practices (Daane and Williams 2003).

10 Practical Implications for Precision Farming

When aiming at precision farming for pest control at the intra-field scale, we want to
characterise the pest distribution in order to be able to adapt management locally. As
explained in the introduction to this chapter this concept is clearly not yet habitual
for the farmer/manager.
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As a first step we will have to be able to predict or observe the (unequal) pest
distribution at this scale. This requires time and money intensive multi-site observa-
tions inside the field (Alexander et al. 2005, Decante and van Helden 2008, Fievet
et al. 2007). It seems quite unlikely that this can be done in a ‘real time’ approach
since the time needed for the observation is probably long, and economic consider-
ations will limit this option. Moreover, since pest damage often occurs with some
time lag after the attack, observation of damage or symptoms often is not appropriate
to localise the ‘target’ for spraying.

However, in the case of more predictable distributions, sustaining from one year
to another, or when general understanding of the factors influencing pest distribution
is precise enough to predict where the highest population levels will occur, moni-
toring can focus on such historical ‘high-risk’ areas to be able to decide on the need
for intervention (Decante and van Helden 2008). In the case of the green leafhopper
leaf scorching is located in the same area of the field each year. This allows starting
observations in these ‘sensitive’ areas, to be able to decide on the need to spray (or
not spray).

If the intervention threshold is not exceeded in such ‘more sensitive’ areas, then
monitoring can end, but if it is surpassed, observations should also include less
sensitive areas. Then the farmer has to decide if he has to spray the whole field or
just the most attacked area. The application of such decision rules often remains
hypothetical since spraying equipment is not designed to spray only some parts of
a field. In most cases the smallest decisional level is the field or the ‘size of the
spraying tank’, generally larger than just the field size. Monitoring techniques and
spraying equipment will have to be re-designed if aiming at the economically viable
implementation of precision pest management (Krell et al. 2003, Bongiovanni and
Lowenberg-Deboer 2004, Patzold et al. 2008).
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Chapter 5
The Use of Laboratory Spectroscopy and Optical
Remote Sensing for Estimating Soil Properties

Joachim Hill, Thomas Udelhoven, Michael Vohland, and Antoine Stevens

Abstract The success of precision agriculture requires accurate methods for
monitoring the state and health of crops. An additional key issue is the availability
of accurate and efficient techniques for in-situ determination of soil properties.
Reflectance spectroscopy, a technique which can be applied in the laboratory, in the
field and from remote observation systems has attracted the attention of scientists
in a variety of disciplines. In soil science, this technology as it relates to precision
farming is rapidly developing and has triggered new research initiatives. Although
a number of studies are available where soil properties have been derived from
reflectance spectra the approach involves substantial scaling problems when trans-
ferring methods from laboratory spectroscopy to optical sensor systems onboard
satellites and aircrafts. The analysis of reflectance images also requires dealing with
data having limited signal-to-noise level, being distorted by atmospheric effects and
largely affected by bidirectional effects in reflectance distribution. Starting with a
short review of the state-of-the-art we present the potential use of reflectance spec-
troscopy for retrieving useful soil parameters based on several case studies. These
studies serve to illustrate the existing limitations for retrieving soil properties over
large heterogeneous areas.

1 Introduction

The success of precision agriculture not only depends on accurate methods for
monitoring the state and health of crops buts also relies on accurate and efficient
techniques for in-situ determination of soil properties. Soil parameters are neither
static nor homogenous in space and time, however analytical costs are often a limit-
ing factor when attempting to address spatial soil variability especially in large-scale
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applications (Plant 2001, Viscarra-Rossel and McBratney 1998). Some applica-
tions, such as precision farming, even require the diagnosis of short or medium
term changes in the nutrient content of soils. The traditional way to explore in field
soil variation is grid-sampling, which is time consuming, labor intensive and lacks
spatial exhaustiveness. Schnug et al. (1998) identified the development of actual
physico-chemical soil maps as one of the major bottlenecks for continuous soil mon-
itoring at the farm level. When a new technology saves time and results in greater
profitability and reduced environmental risk, it will be rapidly adopted by farmers
(Schepers and Francis 1998). Thus, the demand on new techniques for soil monitor-
ing is to find a compromise between analytical speed and precision (Shepherd and
Walsh 2002).

The first scientists who systematically investigated the relationship between soil
spectral information and soil properties were Condit (1970) and then Stoner and
Baumgardner (1981). Their soil spectral library quickly became a classical tool for
soil scientists and was further used as a fundamental reference source for future stud-
ies. Over the past few years, it has been shown that soil spectra across the Visible
(VIS, 0.4–0.7 μm), Near Infrared (NIR, 0.7–1.1 μm) and Short-Wave Infrared
(SWIR, 1.1–2.5 μm) spectral regions are characterized by significant spectral fea-
tures that enable quantitative analysis of several soil properties (e.g. Ben-Dor et al.
1999, 2008, Nanni and Demattê 2006, Schnug et al. 1998, Shepherd and Walsh
2002, Viscarra-Rossel et al. 2006). Pure soil minerals and soil organic matter exhibit
distinct spectral fingerprints caused by electronic transitions in the VIS and by over-
tones and the combination modes of functional groups in the NIR and SWIR, which
derive from their respective C-H, N-H and O-H fundamental vibrations bonds in the
MIR (2.5–25 μm) region (Salisbury 1993). In general, these overtones and combi-
nation modes have reflectance peaks that are less clear than those at the fundamental
frequencies. A linkage between the two spectral domains can be established using
2D- correlation analysis (Barton and Himmelsbach 1993). Respective models are
useful to interpret broad spectral features in the NIR selected by some multivariate
statistical calibration model by means of the related primarily absorption features
in the middle infrared. A wide range of soil constituents can be identified from
the VIS, NIR and SWIR spectral regions under laboratory conditions if advanced
analytical techniques such as artificial neural networks and partial least-squares
regression analysis are used (e.g. Ben-Dor and Banin 1995a, b, Udelhoven et al.
2003, Viscarra-Rossel 2007).

It was also suggested that methods which are successful for analyzing spec-
tra recorded in the laboratory or in the field, including traditional quantitative
approaches that successfully work for laboratory spectrometry of minerals (Clark
and Roush 1984), also may be applicable for analyzing the spatially continuous
reflectance data provided by multi- or hyperspectral imaging systems. For the
emerging discipline of precision agriculture, optical remote sensing and imaging
spectrometry in particular were expected to provide soil parameters before and after
the growing season, and thus provide farmers with a spatially explicit quantitative
overview of the soil properties and phenomena in question. In this way, farmers
may be able to control resources such as irrigation, nutrients and cultivation, as well
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as obtain better yields per hectare and gain substantial savings through optimized
fertilizer, herbicide and pesticide application.

2 Background

Bi-directional soil reflectance in the wavelength range between 0.4 and 2.5 μm is a
cumulative property, which derives from the inherent spectral behaviour of the het-
erogeneous combination of minerals, water, organic matter and other chromophores
(Udelhoven et al. 2003). A chromophore – a part of a molecule that causes it to
be colored – is a parameter or substance (physical or chemical) that significantly
affects the shape and nature of a soil spectrum. A single soil sample usually features
a range of chromophores, which may vary with the environmental conditions and
soil forming processes.

Soil chromophores can be divided into chemical and physical categories
(Ben-Dor et al. 1999). Chemical chromophores are those materials that absorb inci-
dent radiation in discrete energy levels (Fig. 5.1). Usually the absorption process
appears on a reflectance spectrum as a feature whose position is attributed to specific
chemical groups in various structural configurations, overtone, combination modes,
and electronic processes. All features in the VIS- NIR- SWIR spectral regions have
a physical basis. In soils, three major optically active chemical chromophores can be
roughly categorized as follows: (I) minerals, mainly clay, iron oxide, primary min-
erals feldspar, salt, and hard to dissolve substances such as carbonates, phosphates;
(II) fresh and decomposing organic matter; and (III) water in solid, liquid, and gas
phases (Fig. 5.1). Minerals, for example, exhibit distinct spectral fingerprints caused
by electronic transitions in the VIS and NIR (0.4–1.1 μm) and by overtones and
combination modes of OH-, SO-, and CO-groups in the SWIR (1.1–2.5 μm) (Hunt
and Salisbury 1970). Often the spectral signals related to a given chromophore over-
lap with the signals of other chromophores and thereby render the assessment of a
specific chromophore difficult.

Physical chromophores are properties that affect the overall spectral region and a
particular waveband position, or in other words, do not relate to the chemical func-
tional group. Examples of these are particle size variation and refraction indexes of a
material that changes from one illumination condition to another. A comprehensive
review of chemical and physical chromophores in soil and elaborating more gener-
ally on minerals, some of which are important in the soil environment is given in
Irons et al. (1989), Ben-Dor et al. (1999), Clark (1999) and McBratney et al. (2006).

Soil color is one of the most useful attributes for characterization and identi-
fication of soil types that can also be derived from most operational multi- and
hyperspectral sensor systems (Torrent and Barron 1993). Its relevance is mainly
attributed to the fact that soil color can be correlated to important soil properties
(Mulders 1987). Traditionally, soil color is measured using the Munsell soil color
chart (Munsell Colour Company 1975), which is a useful system for categorizing
soil color, but does not lend itself to statistical analysis (Viscarra-Rossel et al. 2006).
Therefore, Melville and Atkinson (1985) recommended the use of the CIE-LAB
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Fig. 5.1 Active groups and mechanisms of chemical soil chromophores. For each possible group,
the wavelength range and absorption feature intensity are given (Ben-Dor et al. 1999, modified)

color system instead, and more recently, Jarmer et al. (2009) successfully applied the
CIE (Commission Internationale de l’Eclairage) color system from 1931 to assess
soil organic carbon concentrations from Landsat TM data on a regional scale level.
In the CIE system, color is calculated from reflectance values. In addition the pos-
sibility of using statistical analysis of the calculated color values provides another
substantial advantage. Satellite data are often characterized by redundant informa-
tion leading to high correlation among spectral data recorded in various spectral
bands, especially those data in the visible domain. Transforming reflectance into
the CIE color values leads to a substantial de-correlation of spectral data which is
an important advantage for statistical data analysis. Additionally, this transforma-
tion additionally allows comparison of soil color derived from different sensors and
sensor independent use of developed prediction models.
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Major drawbacks for scaling from point (laboratory) to imaging systems are
the large size of the pixels that results in a significant mixed pixel problem and
the wide spectral band response function and incomplete capture of specific spec-
tral features of the chromophore. While the latter can be efficiently compensated
for by using high spectral resolution imaging systems, surface roughness effects
cause substantial bidirectional effects which are not straightforwardly controlled.
Additional problems arise from the necessity to correct atmospheric distortions in
the reflectance signal (Ben-Dor et al. 2009).

3 Retrieval Methods

The general concept for retrieving soil properties requires that a spectrum is pro-
cessed to provide quantitative information about its chromophores. This can be an
index, an equation or a model that is extracted from the spectral information, usu-
ally combined with the traditional chemical information. This is usually done by
selecting a group of samples, followed by traditional chemical analysis and spec-
tral measurements. Manipulations are done between the two data sets in order to
derive a parameter or set of parameters that can describe the property solely from
the reflectance readings. Theoretical or empirical models are allowed, whereas val-
idation of each model is essential using external samples (Ben-Dor et al. 2008).
This technology is termed Visible and Near-Infrared Spectroscopy (VNIRS) and
was adopted from a strategy developed about 40 years ago in food science. In this
approach, the reflectance measured from powder or aggregates, across the VIS-
NIR- SWIR region, is modeled against constituents determined by wet chemistry
methods. After this theoretical chemical model is validated, it can be applied to
unknown samples (e.g. Awiti et al. 2008).

In soil science the VNIRS concept has provided promising results for rapid
determination of several soil properties. Optically active soil components comprise
organic matter (Dalal and Henry 1986, Krishnan et al. 1980, Wilcox et al. 1994, iron
oxide minerals, Kosmas et al. 1984, clay and sand content, Al-Abbas et al. 1972,
Selige et al. 2006, Waiser et al. 2007), specific surface, hygroscopic moisture, metal
and carbonate content (Ben-Dor and Banin 1995a, b). These soil attributes play a
decisive role in assessing topsoil characteristics e.g. soil aggregation, aggregate sta-
bility and resistance to water and wind erosion (Selige et al. 2006). Recently, He
et al. (2007) demonstrated that macronutrients could be predicted via VNIRS for
precision farming purposes, although not all are optically active substances. This
phenomenon deserves special attention and will be discussed in more detail in one
of the next sections. A comprehensive literature review summarizing the VNIRS
optical concept and its achievements in soil science can be found in Malley et al.
(2004). Another recent review was provided by Nanni and Demattê (2006), who
elaborate on the current utilization of this technique for soils, whereas Viscarra-
Rossel et al. (2006) provided a detailed list where all soil constituents successfully
predictable by VNIRS are presented.
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In fact, laboratory VNIRS is accepted as a fast and non-destructive approach
(Chang et al. 2001, Shepherd and Walsh 2002), and more recently a number of
advanced methods have been suggested to transform reflectance spectra into quanti-
tative estimates of soil constituents. These include multivariate adaptive regression
splines (Shepherd and Walsh 2002), radial basis function networks (Fidêncio et al.
2002), and artificial neural networks (Daniel et al. 2003). An important require-
ment for advanced statistical methods is the ability to handle large sets of collinear
predictor variables and to deal with noisy patterns.

3.1 Artificial Neural Networks

The application of artificial feed-forward neural networks (ANNs) is one of the
standard methods in spectroscopic applications (Udelhoven and Schütt 2000). A
three-layer ANN represents a universal approximator able to fit any continuous
function, linear or non-linear, between independent and dependent variables to a
pre-defined arbitrary degree of accuracy. A major drawback of ANNs is that they
appear to be black boxes due to their high degree of flexibility and the variety of
learning parameters and network architectures. ANNs require a learning function to
adjust all the weights and biases of a given neural network. There exists a variety
of different training algorithms for feed-forward ANNs, including gradient descent
methods, conjugate gradient methods, the Levenberg-Marquardt algorithm, to men-
tion only a few. A detailed mathematical description can be found, for example, in
Bishop (2005).

Udelhoven and Schütt (2000) tested several variants of feed-forward ANNs for
chemical characterization of sediments based on reflectance measurements in a lab-
oratory approach. Ten chemical properties including inorganic carbon, Fe, S, Al, Si,
Ca, K, and Mg from 214 samples from various drilling locations all over the central
part of the Iberian Peninsula were simultaneously estimated using one ANN model.
They concluded that the combined methodology of diffuse reflectance spectroscopy
evaluated with a trained and representative neural network can be applied as a rapid
and cost-effective screening method to characterize solid samples provided that a
representative set of analytical data for the network training is available. A similar
conclusion has been drawn by Kemper and Sommer (2002) who used an ANN to
predict heavy metals in soils contaminated by mining residuals using reflectance
spectroscopy.

3.2 Partial Least Squares Modeling (PLSR, PLSR Combined
with a Genetic Algorithm)

Partial least squares regression (PLSR) is an extension of the multiple linear regres-
sion and principal component regression models. PLSR projects the data into a
low-dimensional space (i.e. a set of orthogonal variables, called latent variables).
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It maximizes the covariance between the spectral matrix (X) and chemical con-
centration matrix (Y) by accomplishing eigendecomposition of both matrices (Otto
1998, Wold et al. 2001). The objective is to model X in such a way that the informa-
tion in Y can be predicted as precisely as possible. The first latent variable, which
is extracted from the matrix X, explains a maximum of the variance of matrix Y.
The second latent variable describes a maximum of the residual variance, which has
not been described by the first latent variable, and so on. The optimum number d of
latent variables to be used in the analysis is determined by comparing the root mean
square errors of cross-validation (RMSEcv) of the predictions with different values
of d. Alternatively, a validation data set can be used to determine an appropriate
number of latent variables.

In the following, one example for using PLSR to estimate soil clay content from
spectroradiometric measurements is briefly documented. In total 64 soil samples
with prevailing loamy sand texture were collected in a floodplain in Central Europe.
An ASD FieldSpec II Pro FR instrument (Analytical Spectral Devices, Boulder,
USA) was used for the spectral readings of these samples after air drying and grind-
ing. Measured reflectance data were resampled to 10 nm resolution over the 0.4–2.5
μm wavelength range (211 spectral predictor variables). In the PLS approach an
optimum number of seven latent variables was found. For this model, the influence
of the original spectral variables is reflected by the PLS regression coefficients.
The coefficient profile (Fig. 5.2b) exhibits several peaks throughout the complete
wavelength range, and thus does not represent the intrinsic spectral features of clay
minerals e.g. illite with two strong absorption bands at 2.2 and 2.34 μm. The PLS
model provides estimates with an r2

cv value of 0.68 (Fig. 5.2a). RMSEcv amounts
to 43.3 g kg−1 (relative RMSEcv = 0.33), and the RPD (ratio of standard devia-
tion of measured samples to RMSEcv) is 1.77. According to the guideline of Malley
et al. (2004) these results may be categorized as moderately useful for screening
purposes, such as distinguishing low, medium and high values.

Fig. 5.2 Partial least squares regression (PLSR) for calibrating soil clay contents: Predicted vs.
measured values (a) and PLS regression coefficients (b)
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An important factor that contributes to the performance and robustness of a
statistical prediction model is its parsimony. The parsimony of PLSR is to use
a limited number of latent variables for the prediction of a dependent variable.
Nevertheless, the number and prediction quality of the relevant latent variables
strongly depends on the spectral information that is used to calculate these factors.
Therefore improved prediction by PLSR may be achieved by applying some form
of variable selection to optimize the quality of the latent variables.

With a large number of features it is not feasible to test all possible subsets
for an optimal calibration model. Several techniques can be employed to iden-
tify a near optimal solution, among which genetic algorithms allows an efficient
search in high-dimensional and complex response surfaces. The overall goal is to
identify the most informative variables that allow an improved predicitive capac-
ity of the calibration model, or at least a simplified model with less variables and
without loosing prediction accuracy (Leardi and González 1998, Yoshido et al.
2001).

The genetic algorithm used in our example mainly follows the principles
described by Leardi and González (1998). Each chromosome of the initial pop-
ulation is composed of 211 genes (corresponding to the 211 original spectral
predictors), each gene being formed by a single bit or binary coding, where each
spectral variable can be switched on or off. Chromosomes with an above-average
fitness (fitness criterion: cross-validated variance explained by the PLS-regression)
are selected as parents. Offsprings are obtained by reproduction (cross-over method)
and mutation, and the responses of the new chromosomes are evaluated with the
decision to be included in the population or to be discarded. At the end of each run
each with 200 evaluations, the selected variables of the fittest chromosome are iden-
tified. Selection frequencies at the end of all runs (100 runs per cycle, and then ten
repetitions of the complete cycle), decide on the most predictive variables that are
accepted for the final PLS calibration (Fig. 5.3).

In this case, only 29 of the 211 original variables are selected. Based on now
6 latent variables, the PLS regression model provides estimates with an r2

cv value

Fig. 5.3 Partial least squares regression with genetic algorithm (GA-PLSR): Predicted versus
measured values; based on the averaged frequency of selection per 100 runs (10 repetitions), 29
spectral variables are selected by GA
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of 0.82 (Fig. 5.3), and a RMSEcv of 32.0 g kg−1 (relative RMSEcv = 0.24). In
comparison to PLS without feature selection the RPD value of 2.40 proves a con-
siderable improvement of GA-PLS up to useful levels for quantification purposes
(Malley et al. 2004).

3.3 Support Vector Machine Regression

Support vector machine regression (SVM-R) represents a different model class com-
pared with PLSR techniques since it is based on statistical learning theory (Vapnik
1995). SVM-R has recently be successfully applied for the retrieval of soil organic
carbon in Luxembourg based on airborne AHS imaging data (Stevens et al. 2010).
The most valuable properties of SVMs are their ability to handle large input spaces
efficiently, to deal with noisy patterns and multimodal class distributions, and their
restriction to only a subset of training data in order to fit a non-linear function. The
SVM-R methodology is described in detail in Schölkopf and Smola (2002). In prin-
ciple an input vector X is mapped from the input domain into a higher dimensional
feature space via a kernel function, where data are spread out in a way that facilitates
the finding of an interpolation function (Vapnik 1995). This function is identified by
fitting a tube with radius ε to the training data using boundary samples, the so-
called support vectors (SV). The optimization problem is solved using Quadratic
Programming (QP) techniques (Schølkopf and Smola 2002). This requires fixing
a free regularization parameter C beforehand that confines the influence of criti-
cal training patterns. As kernel the Gaussian radial basis function (RBF) is often
selected due to computational convenience. The RBF kernel requires only selecting
one free parameter (σ) beforehand that controls the smoothness properties of the
interpolating function.

3.4 Penalized-Spline Signal Regression (PSR)

Penalized-spline Signal Regression (PSR) is a novel technique that has been devel-
oped by Marx and Eilers (1999, 2002); PSR is – like PLSR – able to solve a
multivariate calibration problem in which the predictors are highly correlated and
their number exceeds the number of observations. The main difference between the
PLSR and the PSR is that in the former the order of the predictor variables i.e.
wavelengths in spectrometry, does not influence the model, whereas PSR forces
the coefficient of the regression to vary smoothly across the wavelengths. This is
attained by projecting the coefficients onto a set of smooth functions (B-splines).
There are several PSR parameters that must be fixed beforehand, including the
degree of B-splines and the number of intervals between knots, the point where
B-splines join. Stevens et al. (2010) found PSR to be superior to PLSR in the esti-
mation of soil organic carbon from airborne hyperspectral AHS-160 data in an area
in Luxembourg.
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4 Applications

One soil parameter that is of special relevance in precision farming applications is
soil organic carbon (SOC), since it plays an important role with respect to chemi-
cal and physical processes in the soil environment (Ben-Dor et al. 1999). Together
with clay content and composition, it has a major effect on major soil properties
such as the stability of soil aggregates and water retention (Stevens et al. 2010).
Furthermore, soil organic carbon strongly influences soil fertility, plant nutrient
supply, microbial activity and soil physical properties (Wilcox et al. 1994). The
following examples focus on the assessment of organic carbon at different scales.

4.1 Scale Dependencies in the Assessment of Chemical Soil
Constituents

Soil monitoring using VNIRS has been applied on different scales, ranging from
laboratory measurements, field approaches to airborne and satellite hyperspectral
imaging devices. At a field scale VNIRS has been used to estimate chemical soil
constituents with portable spectrometers (Kooistra et al. 2003, Odlare et al. 2005,
Udelhoven et al. 2003). At the regional scale soil properties were assessable by
multispectral satellite systems (Hill and Schütt 2000, Jarmer et al. 2009), airborne
imaging spectrometry (Ben-Dor et al. 2002, Stevens et al. 2010, 2006), and recently
also from the hyperspectral satellite platform HYPERION (Gomez et al. 2008).

Udelhoven et al. (2003) evaluated soil chemical properties from different loca-
tions in the Trier region (Rhineland-Palatinate, Germany) under field and laboratory
conditions using a portable spectrometer and PLSR. Generally, laboratory spectrom-
etry using air dried and sieved samples performed better than field spectrometry.
This was probably due to strong interferences of soil surface properties such as
moisture content, roughness and crusting. In a plot experiment they investigated the
accuracy in the retrieval of chemical soil parameters such as Ca, Mg, Fe, Mn, K and
SOC. In Fig. 5.4 a spline interpolation is shown for organic and inorganic carbon
for both measured and estimated contents from the data set. The prediction accuracy
of the SOC-model with the best performance corresponded to a mean square error
for cross-validation (RMSECV) of 0.14, and to a coefficient of determination (r2

cv)
of 0.6, respectively. Although statistically significant, Fig. 5.4 illustrates that at this
level of accuracy measured spatial concentration pattern in the plot are not sus-
tained. In contrast, PLS estimations of inorganic carbon were more accurate (r2

cv=
0.93), resulting in a much better representation of the inorganic carbon values in the
plot. This demonstrates that a statistically significant relation between dependent
and spectral variables does not guarantee that the spatial patterns in concentration
can be well reproduced. This is due to the fact that the spatial interpolation also fits
the prediction errors of the target variable.

Airborne imaging spectrometry has an even greater potential to overcome the
restrictions of ground based or laboratory spectroscopy as spatial interpolation is
circumvented and upscaling over large areas is possible. These systems provide high
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Fig. 5.4 Spline interpolation of measured and estimated (cross-validation) inorganic carbon and
organic carbon contents at field scale (plot ‘Dietrichskreuz’, Helenenberg, Rhineland-Palatinate,
SW Germany; Udelhoven et al. 2003)

spatial and spectral resolution along with flexible temporal resolution which is ide-
ally suited for soil monitoring in the context of precision agricultural applications.
Major constraints include atmospheric absorptions interfering with the spectral mea-
sure, spatial variation in surface properties and a lower signal-to-noise ratio, which
might result in an incompatibility between field and airborne spectroscopic mea-
surements (Ben-Dor et al. 2008, Chappell et al. 2005, Stevens et al. 2010). Hill
and Schütt (2000) could demonstrate that meaningful spatial patterns of soil organic
matter which exhibited a positive correlation to crop productivity could be derived
from multispectral satellite systems. Gomez et al. (2008) estimated SOC from
reflectance data from vertisols in Australia using HYPERION data and a portable
field spectrometer and partial least squares regression (PLSR).

Ben-Dor et al. (2002) could explain 83.3% of the variability of SOC using
DAIS-7915 airborne data (400–2,500 nm) of clay soils in Israel. Uno et al. (2005)
and Stevens et al. (2006) found between 74 and 85% common variability of SOC
and spectrometry data from the CASI airborne hyperspectral sensor (400–950 nm).
Selige et al. (2006) achieved slightly better results (r2 = 0.9) with the HyMap sen-
sor (420–2,480 nm). Less satisfactory prediction models of SOC were obtained by
Bajwa and Tian (2005) with the RDACS/H-3 sensor (471–828 nm; r2 = 0.66) and
De Tar et al. (2008) with the AVNIR sensor (429–1,010 nm; r2 = 0.48).

Whereas the majority of these studies addressed comparably small areas or
homogeneous soil types, Stevens et al. (2010) analyzed hyperspectral images
acquired with the AHS-160 sensor to predict variation in SOC content in
Luxembourg (Fig. 5.5), a country which is covered by different soil types and
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Fig. 5.5 Locations of bare
soils within five parallel flight
stripes using the AHS-160
sensor in Luxembourg

a large variation in SOC contents. Reflectance data were related to surface SOC
contents of bare croplands (n = 325) by means of 3 different multivariate calibration
techniques: PLSR, PSR and least square support vector machine (SVM-R). Their
performance was tested under different combinations of global and local calibra-
tions stratified according to agro-geological zone. Figure 5.6 illustrates the results
for the global calibration and for four separate sub-models obtained for the different
agro-geological zones and for each statistical model using an internal validation data
set. The measure of accuracy is related to the root mean squared error of prediction
(RMSEP).

Nevertheless, a substantial spread in observed versus predicted SOC values above
30 g C kg−1 indicates a higher degree of variability in the reflectance data. This is
not solely attributed to the organic carbon content, but to other soil chromophores
such as soil moisture and ferrous oxides that differ between the agro-geological
regions. These chromophores disturb the global correlation with SOC.

Figure 5.6, right, shows the results obtained for the local calibrations over each
agro-geological subset separately. This strategy allowed considerable improvement
in the accuracy of the models. In addition the problem of non-linearity of PLSR and
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Fig. 5.6 Plots of measured versus predicted SOC as obtained by PLSR (top), PSR (middle) and
SVR (bottom) using AHS-160 data validation data set
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PSR models at high SOC content no longer occurs when applying local calibrations
for each of the agro-geological regions. Other attributes used to stratify the data set
e.g. soil type and image number also led to an improvement when compared to the
global models (Stevens et al. 2010). For the stratified samples PSR demonstrated
the best ability to predict SOC content in the stratified samples. These findings are
in line with the conclusions of Marx and Eilers (2002) who showed that PSR offers
greater stability in predictions under changing experimental conditions compared to
PLSR.

4.2 Estimation of Optically Featureless Soil Components

A number of studies suggest that it is possible to estimate even optically non-active
chemical soil properties with featureless spectra. This is possible in that these ele-
ments are bonded to active soil components such as Fe oxides, organic matter and
clay and these bonds provide a major predictive mechanism (Kemper and Sommer
2002, Kooistra et al. 2003, Vohland et al. 2009, Wu et al. 2007). In statistics this phe-
nomenon is known as spurious correlation. Martínes-Carreras et al. (2010) predicted
different chemical properties of suspended sediments from the small catchment of
the Wollefsbach, (4.4 km2), a sub-catchment of the Attert River catchment located
in the NW of Luxembourg, from spectroradiometer data through PLSR. Apart from
major suspended particle components such as organic carbon, calcium and iron
oxides they were able to predict trace minerals, such as Li, Sc, Cr, Ni and Cs and
even rare earth elements like La, Ce, Pr, Nd, Sm, Eu and Dy. This is due to indirect
correlation with spectra caused by optically active background variables, in particu-
lar iron oxides, organic matter and clay and clearly reflects the mineralogical nature
of the investigated catchments. Spurious correlation can be detected by statistical
techniques. Wu et al. (2007) used Principal Component Analysis (PCA) with vari-
max rotation to clarify the relationships between different chemical tracers. The
conception is that highly correlated variables might be estimated from reflectance
data if at least one of these properties is optically active.

Another approach is to analyze patterns in the correlation spectra for each soil
constituent of interest. The value of the correlation coefficient at a single wavelength
describes the univariate importance of a wavelength for the prediction of the given
constituent. Another possibility is to analyze factor loadings or regression coeffi-
cients in PLSR or related statistical calibration models (Malley and Williams 1997,
Vohland et al. 2009). An example is given in Fig. 5.7 which shows the correla-
tion spectra (correlograms) for the sediment properties from the study of Udelhoven
and Schütt (2000). The two correlograms are grouped according to the correlation
structure of the considered chemical compounds. The first class consists of Fe, K,
Al and Si while the second of C, LOI, Ca and calcite. Within both groups the cor-
relation structure is to some extent redundant, however only Fe, C (in carbonates)
and calcite have direct optical features. The prediction of the remaining properties
is based on spurious correlation. It can be assumed that these patterns cannot be
attributed to only one dominant chemical characteristic in these groups, but to the
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Fig. 5.7 Correlograms of selected soil properties in a plot experiment (Udelhoven and Schütt
2000)

collective occurrence of several optically active minerals in the samples from a spe-
cific petrography. The explanatory optically active components in the first groups
are iron oxides and clay minerals.

This example demonstrates that spurious correlation of chemical soil constituents
with the soil reflectance pattern is often caused by the soil’s geological and miner-
alogical nature. By no means can statistical regression models based on spurious
correlation be transferred to other regions beyond the study area with different
underlying geology or to soil parameters that are highly variable in space and time.
This excludes VNIRS as a diagnosis tool of short or medium term changes of the
soil’s nutrient status e.g. potassium or phosphorus.

5 Conclusions

Arable soils are important resources which should be preserved for present and
future human needs by sustainable agriculture. The monitoring of environmen-
tal processes on large-scales requires up-to-date maps of physico-chemical soil
properties. Soil reflectance is determined by soil chromophores that are basically
determined by soil chemical composition and to soil albedo that is related to soil
physical characteristics. Consequently, soil mapping in the context of precision
agriculture applications may largely benefit from imaging and non-imaging diffuse
reflectance spectrometry, which has the potential to overcome the current problems
of high costs, labor and time. Soil mapping should aim to represent the temporal
and spatial variability of soil properties at different scales using in-situ and labo-
ratory methodologies. There are still some restrictions that hinder the transfer of
visible and infrared spectroscopic methods from the laboratory to the field scale.
Two of the most disturbing factors for in-situ spectral measurements are soil rough-
ness and moisture content that must be taken into account to enable models to work
accurately under a variety of conditions.
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The spectral prediction mechanism may be a direct one that is based on diag-
nostic spectral fingerprints of the studied parameter, or indirect when variables
of interest are without spectral features but correlated with spectrally active soil
components. Airborne imaging spectrometry has the advantage that spatial inter-
polation is circumvented and upscaling over large areas is possible. The spectral
range of current and forthcoming airborne (e.g. HyMap, APEX, ARES, AISA,
HySpex) and satellite imaging spectrometers (HYPERION, EnMAP) is excellent
for detecting electronic transitions in minerals e.g., iron oxides, Fe2+ bearing miner-
als, and vibrational absorptions due to lighter elements e.g. OH, SO4, CO3, CH,
etc.. Therefore, the spatial distribution of OH-bearing minerals, carbonates, sul-
fates and organics can be mapped on bare soil surfaces. A substantial restriction in
regional soil monitoring is that the related statistical models to retrieve soil param-
eters from spectroscopic data are applicable only to geological homogeneous areas
or ‘soilscapes’. Otherwise a stratification of the soil samples according to geological
conditions and the calibration of respective sub-models are suggested due to the cor-
relation of the strata with important chromophores like soil moisture or ferrous oxide
content.

Despite many encouraging results, the exploitation of chemical soil property
maps derived from imaging spectrometry data should still be considered with some
caution. In particular, a post-validation over fields not covered by the existing cal-
ibration/validation sets would be necessary to assess the actual accuracy of the
statistical models. This is important particularly in cases of the prediction of fea-
tureless soil properties. Another critical issue is the representativeness of statistical
models in case of varying surface and illumination conditions.

Beyond the increasing number of airborne systems, spaceborne hyperspec-
tral imagers provide a viable coverage for large-scale studies of bare soils for
future operational applications. HYPERION, a hyperspectral imaging instrument
on the EO-1 platform is currently the only operational spaceborne hyperspectral
sensor. The sensor measures the radiance with 242 continuous spectral bands,
ranging from 356 to 2,577 nm with approximately 10 nm of spectral resolu-
tion and 30 m of spatial resolution. HYPERION collects image data for an area
of about 7.7. km in the across-track direction and 42 km in the along-track
direction.

In 2014 the German Hyperspectral Environmental Mapping and Analysis
Program (EnMAP) satellite will be launched. This sensor is expected to provide
a higher signal-to-noise ratio than that of HYPERION. However it will not solve
the problem of the rather limited spatial resolution of 30 m. Thus, the recorded
reflectance is often the mixed result of several surface components. This makes it
necessary, especially in heterogeneous landscapes, to apply spectral unmixing tech-
niques to isolate the reflectance signals of soils from disturbing influences especially
from green vegetation and crop residues.
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Chapter 6
Sensing of Photosynthetic Activity of Crops

Uwe Rascher, Alexander Damm, Sebastian van der Linden, Akpona Okujeni,
Roland Pieruschka, Anke Schickling, and Patrick Hostert

Abstract The light use efficiency of photosynthesis dynamically adapts to envi-
ronmental factors and is one major factor determining crop yield. Optical remote
sensing techniques have the potential to detect physiological and biochemical
changes in plant ecosystems, and non-invasive detection of changes in photo-
synthetic energy conversion may be of great potential for managing agricultural
production in a future bio-based economy. Here we give an overview on the
principles of optical remote sensing in crop systems with a special emphasis on
investigating hyperspectral reflectance data and the sun-induced fluorescence sig-
nal. Especially sun-induced fluorescence as a parameter, which becomes important
in remote sensing research may have great potential quantifying the physiological
status of the photosynthetic apparatus. Both remote sensing principles were applied
during the CEFLES2 campaign in Southern France, where the structural and func-
tional status of several crops was measured on the ground and using state-of-the-art
optical remote sensing techniques. Sun-induced fluorescence measurements over
a variety of crops showed that additional information can be retrieved also over
dense canopies, where classical remote sensing signals often saturate. With a view
to the future, we discuss how hyperspectral reflectance and sun-induced fluores-
cence can quantitatively be related to photosynthetic efficiency and help to measure
and manage productivity of natural and agricultural ecosystems.

1 Background on Optical Spectroscopy of Plant Canopies

Solar radiation that interacts with plant tissues or plant canopies is either reflected,
absorbed or transmitted (Fig. 6.1, left). The spectral characteristics of the three
components at leaf or canopy scale are a function of (I) leaf level absorption and
scattering, (II) the optical properties of other canopy components and the canopy
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Fig. 6.1 Left: Conceptual scheme of light absorption, transmission and reflection in plant tissues.
Right: Spectral characteristics of absorption, reflection, and transmission illustrated at a winter
wheat leaf (Tritium aestivum L.)

architecture itself, and (III) external effects (illumination, observation geometry)
(Goel 1988, 1989, Chen et al. 2000). Optical spectroscopy mainly focuses on the
reflected part of radiation as a measure to derive information about the biochemical
and structural properties of plants at leaf and canopy level (Fourty and Baret 1998,
Liang 2004), whereas the optical properties of leaf tissues significantly determine
the canopy optical parameters (Asner 1998, Otterman et al. 1995). For instance,
the low intensity reflectance of plant leaves in the visible (400–700 nm) part of the
light spectrum results from strong absorbance by the photosynthetic foliar pigments,
while the high reflectance in the near infrared (700–1,100 nm) is due to low absorp-
tion of light by the internal leaf mesophyll tissues, and the reflectance intensity in
the shortwave infrared (1,100–2,500 nm) is strongly affected by the amount of water
in plant tissues (Curran 1989) (Fig. 6.1, right).

During the phenological cycle, in response to an adaption of plants to environ-
mental conditions, or between different species, leaf biochemical components vary
and cause variations in the interaction of solar radiation with leaf tissues (Gausman
and Allen 1973, Grant 1987). This, in turn, results in changing optical properties
of leaf tissues. Figure 6.2 exemplarily shows the variation of reflected radiation in
response to varying chlorophyll and water content.

Fig. 6.2 Leaf reflection in response to the varying leaf biochemical components chlorophyll
(left) and water content (right). Simulations were performed using the leaf reflectance model
PROSPECT (Jaquemoud and Baret 1990)
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2 Remote Sensing of Photosynthesis

Sensing the state of photosynthetic activity, however, is much more complex and the
sole information about pigment content is insufficient to predict the current photo-
synthetic rate. In fact, plant photosynthesis is a dynamically regulated process that
quickly adapts to environmental conditions and is affected by the ecological plastic-
ity of each species (Turner et al. 2003b, Rascher and Nedbal 2006). Consequently,
photosynthetic rates may greatly vary between different species with similar pig-
ment composition and, additionally, both photosynthesis and pigment composition
is dynamically adjusted in diurnal and seasonal cycles (Schurr et al. 2006). Most
of the time, natural canopy photosynthesis is not operating at its maximum poten-
tial rate and may be largely reduced under prevailing environmental conditions. For
example, Bergh et al. (1998) estimated that the CO2 uptake by a frost stressed boreal
forest over a growing season reached only 44% from its potential rate or, Rascher
et al. (2004) observed a 30% decrease in photosynthesis as response of drought
stress in a tropical ecosystem. These reductions of photosynthetic rates cannot be
tracked by the pigment content and the pigment composition itself.

The remote observation of photosynthetic rates can principally be grouped into
two approaches: methods that indirectly relate photosynthesis to environmental
stresses and approaches that estimate photosynthesis directly from remote sens-
ing data. Recent research effort has focused on estimating the physiological status
of photosynthesis directly from remotely sensed data because remote sensing pro-
vides the only practical approach to characterize photosynthesis and productivity
of vast crop and natural ecosystems. The efficiency of photosynthesis is controlled
on various levels involving biophysical and biochemical mechanisms (see Schulze
and Caldwell 1995 for a summary on the ecophysiology of photosynthesis). Light
absorbed by chlorophyll can be used to (I) drive photosynthesis, and (II) excess
energy can be dissipated by a variety of non-photochemical processes usually as
heat or, (III) it can be reemitted as fluorescence at longer wavelengths. These three
processes compete with each other and an increase in the efficiency of one will
result in the decrease of yield in the other two. The major component of the Non-
Photochemical Quenching (NPQ) is related to a transthylakoid pH gradient, which
activates enzymes altering the epoxidation state of xanthophyll molecules associ-
ated with the light harvesting complex and this affects the energy dissipation as heat
(Demmig-Adams and Adams 1996, Müller et al. 2001, Baker 2008).

In the following two state-of-the-art remote sensing approaches (based on
hyperspectral reflectance data and on the emitted sun-induced fluorescence sig-
nal) are described for the potential to directly measure the functional status of
photosynthesis.

2.1 Photochemical Reflectance Index (PRI)

The Photochemical Reflectance Index (PRI) is related to NPQ and was developed
to serve as an estimate of photosynthetic light use efficiency. This normalized
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difference reflectance index uses two wavebands (Eq. 1): 531 nm, which is corre-
lated with the xanthophyll pigment composition during the NPQ energy dissipation,
and 570 nm, which serves as a reference waveband (Gamon et al. 1992).

PRI = R531 − R570

R531 + R570
(1)

PRI has been used in a variety of case studies and positively correlates with
photosynthetic efficiency. It has been successfully used to detect changes in photo-
synthetic efficiency at the leaf level (see Rascher et al. 2007, for an overview of the
literature).

However, PRI values vary greatly between species with the same photosynthetic
capacity (Guo and Trotter 2004). Additionally, the PRI is greatly affected by the
geometry of the sun, the leaf, and the detector (Barton and North 2001). As natu-
ral canopies are an assembly of differently oriented leaves that additionally change
their orientation during development of the plant and as a response to environmen-
tal conditions, canopy measurements of PRI often were greatly affected by seasonal
changes in canopy structure (Filella et al. 2004). Thus, challenges remain to transfer
the very promising results from the laboratory to the canopy and field scale. One
of the first successful demonstrations of field measurements was performed in a
Siberian forest (Nichol et al. 2002). Since then several groups have further evalu-
ated the potential of PRI and are currently identifying procedures to scale and use
the PRI on natural canopies (Hall et al. 2008).

2.2 Fluorescence

Light energy that is absorbed in photosynthetic pigments is partly re-emitted as
fluorescence light with well defined wavelength characteristics. Chlorophyll fluo-
rescence is emitted in two broad, overlapping bands with peaks at 685 nm and
around 740 nm (Fig. 6.3a; Lichtenthaler and Rinderle 1988). However, the total
amount of the emitted fluorescence signal is small in comparison the reflected light
(Fig. 6.3b). The intensity of the emitted fluorescence signal is reversely correlated
to the energy used for photosynthesis and thus can serve as an indicator for pho-
tosynthetic light conversion (see Baker 2008 for a recent review). Fluorescence
approaches for analysis of photosynthesis have been developed over the past couple
of decades. The most commonly used technique is the Pulse Amplitude Modulation
(PAM) fluorometry, which uses the saturating light pulse method (Schreiber and
Bilger 1993, Schreiber et al. 1995, Genty et al. 1989, Maxwell and Johnson 2000).
PAM data can be analyzed to determine the efficiency with which absorbed photons
are being used for photosynthesis, the rates of electron transport, and the degree of
non-photochemical protection. This approach requires measurements very close to
the leaf as a saturating light pulse has to be applied and is therefore not practical
for measurements of plant canopies. However, processes within canopy with mil-
lions of leaves – each in its unique environment and all contributing to the overall
performance of the canopy – provide many challenges and cannot be derived from
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Fig. 6.3 (a) Fluorescence and reflectance spectra of a sugar beet leaf. (a) Fluorescence emission
spectrum in the region between 650 and 820 nm. (b) Reflectance with and without fluorescence,
i.e. real and apparent reflectance. Measurements were performed on a sugar beet leaf under solar
illumination with an ASD FieldSpec Pro coupled with the FluoWAT leaf clip (Alonso et al. 2007),
which enables the extraction of the fluorescence spectrum by selectively filtering the incoming
light. For details see Meroni et al. (2009)

single leaf measurements. Therefore, techniques and instruments for measurements
on canopy scale are required and several approaches are currently being developed
for application from a distance for the remote quantification of plant canopies and
fields (Osmond et al. 2004, Rascher et al. 2009).

One way of remote quantification of photosynthesis by fluorescence relies on
making it possible to measure and analyze fluorescence transients at a distance from
the target leaf. A newly developed Laser Induced Fluorescence Transient (LIFT)
instrument makes use of a telescope to collect light from target leaves and a low
power laser to manipulate the light regime of the target. Constraints on the power
of lasers for use in open environments make it impossible to use the same proto-
cols that have been used with PAM fluorometers. New approaches make use of the
laser to make much smaller but highly replicated modification of the light regime to
analyze the efficiency of photosynthesis (Kolber et al. 2005). The LIFT instrument
is required to make measurements that are at the noise limit and computer assisted
fitting of the data to a theoretical model are substituted for brute force and sim-
ple analysis used in PAM fluorometery (Ananyev et al. 2005, Kolber et al. 1998).
The LIFT approach was successfully used to monitor spatial and temporal dynam-
ics of the photosynthetic properties of leaves in the inaccessible outer canopy of
trees (Osmond et al. 2004, Rascher and Pieruschka 2008). However, it is limited to
measurements at a distance of 5–50 m from the canopy.

2.3 Retrieval of Remotely Measured Sun-Induced Chlorophyll
Fluorescence

Fluorescence measurement of large ecosystems relies on passive measurements of
solar induced fluorescence (Fs). The approach uses Fraunhofer lines with reduced
incoming solar radiation reaching the Earth surface in three main absorption bands
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in the red and near infrared spectral domain: the Hα line at 656.3 nm is due to the
hydrogen absorption by the solar atmosphere whereas two bands at 687 nm (O2-B)
and 760 nm (O2-A) are due to the molecular oxygen absorption by the terrestrial
atmosphere. Fluorescence originated from the canopy occurs in these otherwise
‘black’ absorption bands and, therefore, can be selectively quantified. Especially the
O2-A and O2-B bands overlap with the chlorophyll fluorescence emission spectrum
and are wide enough to allow quantifying fluorescence from air- and space-borne
platforms. The Fraunhofer Line Discrimination method (FLD) has been proposed
for this purpose (Plascyk and Gabriel 1975) and was used with success in different
works (Carter et al. 1990, Moya et al. 2004, Meroni et al. 2009).

Retrieval of sun-induced fluorescence takes advantage of the great difference
in incoming radiation in a small spectral window around the atmospheric oxygen
absorption lines. Incoming and outgoing radiance is measured on the shoulders
outside of the absorption lines and inside the absorption lines. Fluorescence is a
spectrally comparably broad signal which is added to the reflected signal and by
comparing values inside and outside of the oxygen absorption feature sun-induced
fluorescence can be quantified (Fig. 6.4).

Approaches to quantify Fs can be divided in two major categories: radiance-
and reflectance-based approaches. Radiance-based approaches exploit the narrow
absorption feature of a Fraunhofer line and so make use of high spectral resolution
data (from few nanometres up to 0.03 nm Full Width at Half Maximum (FWHM)).
The main methods proposed in the literature require 2–3 spectral channels near
the investigated absorption line, while other three methods require a set of con-
tiguous channels covering the whole spectral range of interest. Reflectance-based
approaches on the contrary compute optical indices related to Fs but cannot pro-
vide direct Fs estimates, neither in physical nor in auxiliary units. In fact, these

Fig. 6.4 Principle of retrieval of sun-induced fluorescence in the atmospheric absorption lines,
where I is incoming radiance and L is reflected, i.e. outgoing radiance, the subscripts ‘in’ and ‘out’
refer to radiance inside and outside of the atmospheric absorption lines (courtesy Jose Moreno,
University of Valencia)
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methods exploit the effect of Fs on the apparent reflectance spectrum in the red-
edge region (from 650 to 800 nm) and several indices have been proposed for this
purpose (Meroni et al. 2009).

Taking the advantages and disadvantages of the different approaches into account
and considering several sensitivity studies, the method proposed by Maier et al.
(2003) may be a good compromise between low complexity and stability among a
wide range of applications. According to the common measurement procedure of
field spectroscopy, this method needs the hyperspectral reflectance measurement of
a white (non-fluorescing) reflectance standard (e.g. a calibrated SpectralonTM panel)
that is mounted on the same height as the vegetation or alternatively if applied on
the larger scale non-fluorescent surfaces, such as fields of bare soil that are large
enough to be not-influences by diffuse fluorescence from adjacent fields. Radiance
measurements from the non-reflecting surface are compared with radiance measure-
ments of the fluorescing canopy. Fluorescence can then be calculated according to
Eq. (2)

Fs =
Iin − Lin

Lout
· Iout

1 − Lin

Lout

(2)

with I being the incoming radiance, L is the radiance of vegetation, and the sub-
scripts ‘in’ and ‘out’ indicate the wavelengths within and outside of the absorption
line, respectively (see also Fig. 6.4).

The magnitude of fluorescence emission is primarily driven by the amount of
absorbed light in the photosynthetic ‘machinery’ and secondly depends on the phys-
iological properties of the photosynthesis. If one is interested in the physiological
status, the fluorescence signal (Fs) has to normalize by incoming or absorbed light.
This can be achieved by rationing the number of photons emitted (Fs) and the
number of photons absorbed by the plants (APAR). The resulting signal is termed
fluorescence quantum yield (Fsyield). Changes in Fsyield are independent of the light
level and thus reflect the functional status of photosynthesis.

3 Case Studies

3.1 CEFLES-2 Campaign

Field data were acquired as part of the European Space Agency (ESA)
supported CEFLES-2 campaign in April, June and September 2007 (http://
www.esa.int/esaLP/SEMQACHYX3F_index_0.html). The campaign was perfor-
med in the Les Landes area, Southwest France. The main site is located in a plain
of the Garonne valley and dominated by intensive agriculture (Fig. 6.5). CEFLES-2
was designed to provide extensive and spatially resolved validation of photosynthe-
sis estimates based on remote sensing fluorescence measurements obtained by using
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Fig. 6.5 Aerial view of the main study site Les Landes in Southern France. The RGB false color
image was derived from the Airborne Hyperspectral Scanner (AHS) airborne sensor (R: 855 nm,
G: 652 nm, B: 539 nm) on September 15, 2007, around 11:44 local time, close to Marmande. The
image dataset was acquired in a flight height of 2,840 m above ground with a spatial resolution
of 6 m. Several corn fields (MC) and selected sunflower (SF), potato (MP), grass (MG, MBU),
Kiwi (MK) and Rapeseed (MR) field that were intensively characterized for their structure and
photosynthetic function are marked

airborne instrumentation. Remotely sensed fluorescence parameter were validated
by extensive ground measurements of structural parameters (leaf area index (LAI)),
canopy height or fractional cover (fcover), biochemical characterizations (chloro-
phyll, water and dry matter content), physiological parameters (PAM fluorometry,
gas exchange) and standard field spectroscopy. These more traditional measure-
ments were complemented with novel set-ups aimed to quantify fluorescence at
the canopy level. Winter wheat and maize were chosen as species of major interest
in April and September, respectively. Additionally, investigations were expanded to
rapeseed, grassland, pine, maize, potato, sunflower, bean, kiwi, grapevine and oak
forest. A detailed overview of the campaign is published in Rascher et al. (2009).

3.2 Characterization of Spatial and Species Dependent Variability
of Photosynthesis Using Fluorescence Estimates

Some basic information about the spatial and species dependent variability of
canopy fluorescence was investigated covering 36 individual fields in 8 different
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crop types, including bare soil. Main focus of this analysis was to investigate the
variability of sun-induced fluorescence within the same field, of the same crop, and
in different canopies (Fig. 6.5). A comparison of the well established Normalized
Difference Vegetation Index (NDVI) and Fs was performed to investigate the plau-
sibility of the derived Fs values. The NDVI typically shows the ‘greenness’ i.e.
the index is a measure for green biomass or canopy chlorophyll content (Goetz
and Prince 1999). As fluorescence is also a function of canopy chlorophyll con-
tent, we expect that low Fs values correspond to low NDVI values and high Fs

values go along with high NDVI values respectively. Important is the dependency
of Fs to photosynthesis and Fs covers complementary information about photo-
synthetic activity. Hence, we also expect a non linear relationship between both
parameters.

A first relative evaluation of the data showed that the Fs signal exponentially
increases with increasing NDVI (Fig. 6.6). A clear difference in the inter- and
intra-field variation was obvious for both parameters. This result is mirroring the
heterogeneity of cultivation, nutrient availability, or simple species composition
within one field being much lower compared to different fields. Principally, the

Fig. 6.6 Comparison between the NDVI and sun-induced fluorescence (Fs). Measurements were
taken over a wide range of agricultural crops and surface classes. During the three campaigns in
April, June, and September 2007, 8 different crops and bare soil were characterized. To cover
the spatial heterogeneity of each field, four representative places were selected and three mea-
surements per place were performed. Measurements were taken top-of-canopy using a FieldSpec
Pro high resolution spectroradiometer (Analytical Spectral Devices, Boulder,USA), which mea-
sures reflected radiation within the spectral domain of 350–2,500 nm with a spectral resolution
(FWHM) of 3.0 nm (350–1,050 nm) and a field-of-view (FOV) of 25◦. A calibrated SpectralonTM

panel (25 × 25 cm) served as white reference to estimate incident irradiance. The fluorescence sig-
nal was quantified using the FLD method according to Maier et al. (2003) in the O2-A band. At
each place in the field, the instrument’s fibre optic was mounted on a tripod, approximately 1 m
above the canopy. Three different spots with a circular area of 0.5 m diameter each were recorded
moving the fibre optic manually over the canopy
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results seem to describe the status of vegetation: the vital and dense winter wheat
fields reach the highest Fs values, slightly senescent corn field medium Fs values and
dry stressed grassland and senescent sunflowers have lowest Fs values (Fig. 6.6).
Moreover, the sensitivity of both parameters differs especially at the boundaries of
the parameter range. On the one hand, the classical vegetation index saturated in
dense canopies (e.g. when LAI is higher than 4) at a NDVI value of 0.9, where Fs

still provided a differentiation of values (e.g. Fig. 6.6, for winter wheat). On the
other hand, NDVI showed a significant variability for non vegetated surface classes
(e.g. bare soil or water). Fs values of non-vegetated surfaces, such as bare soil and
burned grass were close to zero, or greatly senescent sunflower field also showed Fs

slightly below zero (Fig. 6.6).
The relationship between Fs and NDVI indicates that both parameters are driven

by canopy chlorophyll content, but also that the fluorescence signal is complemen-
tary driven by other parameters and may support the theory that Fs is sensitive to
photosynthetic activity. The results clearly show that the observed canopy Fs signal
is affected by various structural effects, e.g. canopy structure, fractional cover, or
canopy height. A comparison of Fs values from canopies with different structural
characteristics and the linkage of derived Fs values to photosynthesis necessitate a
proper normalization for the mentioned structural effects.

4 Conclusions

Quantum yield of photosynthetic energy conversion can be related to photosyn-
thetic light use efficiency (LUE), which represents photosynthetic processes, by the
amount of fixed carbon per unit of absorbed solar radiation (Genty et al. 1989).
Estimation of plant productivity is often based on the linear relationship between
net primary productivity (NPP) and the fraction of absorbed PAR (fAPAR), with
LUE as the slope of this relationship (Monteith 1972, 1977). However, LUE is
often estimated from physiological models or look-up tables, and LUE can vary
greatly among different vegetation types (Gower et al. 1999, Ruimy et al. 1995, Weis
and Berry 1987). Monitoring of LUE by measurement of sun-induced fluorescence
could greatly improve these models.

Crop productivity varies within fields and between fields due to various environ-
mental factors, diseases, and management practices. Photosynthetic efficiency may
be a promising parameter to detect limitations or down-regulation of photosynthesis
regardless of its cause on thus may serve as an early indicator for reduced pro-
ductivity. Air- and space-borne fluorescence or hyperspectral sensors may provide
spatio-temporal information for better response and managing of crops.

Different studies have shown that fluorescence is somehow related to photosyn-
thesis or LUE, respectively (Damm et al. 2009, van der Tol et al. 2009, Meroni
et al. 2008). However, the existence of non-photochemical quenching mechanisms
may influence the relationship of Fs and LUE within a diurnal course and between
different species. Understanding the relation of sun-induced fluorescence and photo-
synthetic efficiency in structurally complex and diverse canopies and ecosystems is
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extremely complex and challenging but it may provide a very useful tool to quantify
productivity of natural and agricultural ecosystems.
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Chapter 7
Remote Sensing for Precision Crop Protection –
A Matter of Scale

Kerstin Voss, Jonas Franke, Thorsten Mewes, Gunter Menz,
and Walter Kühbauch

Abstract Management strategies for precision crop protection necessitate spatially
and temporally explicit knowledge about crop growth heterogeneity within fields.
Remote sensing techniques are appropriate tools for the derivation of relevant crop
parameters. However, even for a first discrimination between stressed and produc-
tive crop stands, several aspects related to phenomenon and sensor characteristics
need to be considered. The question of which prerequisites a sensor must fulfil at
specific scales for an effective identification of within-field heterogeneities arises.
Besides scale-related issues of the observed phenomenon, the scale of remote sens-
ing data needs to be differentiated into the sensor-defining dimensions: spatial,
temporal and spectral. This chapter examines each dimension in detail. For the
spatial dimension, different landscape metrics were calculated and a threshold of
the minimal spatial resolution of remote sensing data for crop stress detection could
thus be defined. The temporal scale of remote observations is rather phenomenon-
dependent, as various factors such as the crop stress type produce different temporal
dynamics, which determine the sensor-technical prerequisites. With respect to the
spectral scale, its characteristics strongly depend on the given spatial and tempo-
ral dimensions. Different spectral wavebands need to be considered at different
spatial scales (e.g., near-range sensing vs. remote sensing) as well as temporal
variances (e.g., different phonological stages). The chapter demonstrates the impor-
tance of scale-related issues for precision crop protection and highlights that various
perspectives have to be taken into account by using remote sensing.

1 Introduction

Precision crop protection requires spatially explicit information on the within-field
heterogeneity of crop growth conditions at particular times. Remote Sensing
offers the possibility to identify these heterogeneities with comparatively small
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expenditure. However, using remote sensing as a tool to provide decision support for
precision crop management necessitates focusing on aspects of the spatial, temporal
and spectral scale of the data and the scale of the observed phenomena.

The aim of this chapter is to discuss the influence of scale of remote sensing data
on precision crop protection. In general, scale can be defined in a number of ways.
‘The term ‘scale’ has a variety of meanings and has been used in different con-
texts in various disciplines, such as spatial, temporal or spatiotemporal scales’(Cao
and Lam 1997). The definition of scale must consider scale as a quantity, giving
the physical dimensions of observed phenomena, and should at least imply mea-
surements or measurement units (O’Neill and King 1998, Turechek 2006). Dungan
et al. (2002) related the term ‘scale’ to the three categories: (I) the scale of the phe-
nomenon; (II) the scale of the experimental or sampling units; and (III) the scale of
the analysis that is used to describe a phenomenon. Scale primarily refers to extent
and grain, whereby both parameters can refer to space and/or time (Turner et al.
1989, Musick and Grover 1991, Quattrochi and Pelletier 1991, O’Neill et al. 1996,
O’Neill and King 1998, Gustatfson 1998, Blaschke and Petch 1999). Depending
on which of the three categories should be addressed, ‘extent’ and grain can have
different meanings. In the context of Remote Sensing, extent describes the spatial
expansion of an observed area, duration of measurements or the spectral range,
whereas grain is defined by the spatial resolution, sample frequency or spectral res-
olution of the data. To address the influence of scale of remote sensing applications
on precision crop protection, the three dimensions of spatial, temporal and spectral
scale are considered, as well as the scale of the observed phenomena.

2 The Spatial Dimension of Remote Sensing

Many precision crop protection-related studies address issues concerning the spatial
scale of either crop stress factors, sensors that are used to detect a plant’s stress
symptoms or application techniques, to assess the potential of a site-specific crop
management. The hypothesis is that due to the decrease of the spatial resolution
of remote sensing data, the information content of the images will be reduced. In
the context of implementing remote sensing data in precision crop protection, the
question arises whether the spatial resolution of the image has any influence on the
recognition of site-specific plant stress. Also, which spatial resolution is necessary
for identifying site-specific stress?

The objective of this subsection is the formulation of a threshold value of spatial
resolution, from which site-specific plant stress can no longer be assessed correctly.
For the formulation of the threshold, a new technique is proposed to quantify spatial
pattern changes of an agricultural test site, depending on changing resolution. In
the vegetation period 2001/2002, winter wheat was cultivated on an agricultural test
site of the University of Bonn. The surface of the test site was 5.22 ha, which was
divided into 12 plots with a size of 44.85 × 45 m (Fig. 7.1). For the determination
of healthy and diseased patches, 4 different agrochemical treatments were applied.
In 9 of the 12 plots, plant stress arose, caused by a lack of nitrogen, an infestation
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Fig. 7.1 Description of the Dikopshof test-site in 2001/2002

with fungal decay, or the combination of nitrogen deficiency and fungal decay (Voß
2004).

The assessment of the influence of spatial resolution is based on a QuickBird-
2 satellite image. To identify the minimum resolution that is necessary to estimate
site-specific plant stress, QuickBird images were systematically degraded in spatial
resolution from originally 0.7 to 30 m. After the implementation of a maximum like-
lihood classification for these datasets, different landscape metrics were calculated
to quantify the influence of spatial resolution on the assessment of site-specific plant
stress. Landscape metrics offer the possibility to compare changes of the landscape
structure with changes of the spatial resolution. They are defined as quantitative
indices to describe structures and patterns of a landscape (O’Neill et al. 1988). The
development of the landscape metrics is based on information theory (Shannon and
Weaver 1964) and the theory of fractal geometry (Goodchild and Marks 1987, Xia
and Clarke 1997). Landscape metrics can be computed for three levels: patch, class
and landscape. The changing values of the landscape metrics reflect the change of
spatial resolution.

The calculation of the landscape metrics was accomplished with the public
domain Fragstats program (Version 3.3; McGarigal and Marks 1994). For all clas-
sification results, seven landscape metrics at the class and landscape level were
calculated. The criteria for selecting the landscape metrics was based on the infor-
mation content of the metrics with regard to the spatial structure and their sensitivity
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Table 7.1 Overview of calculated landscape metrics to analyze raster images using
FRAGSTATS 3.3

Metrics Range of values Level

Percentage of Landscape (PLAND) 0 < PLAND ≤ 100 Class
Number of Patches (NP) NP ≥ 1 Class & landscape
Total Edge (TE) TE ≥ 0 Class & landscape
Area-Weighted Mean-Shape-Index (AWMSI) 1<=AWMSI<=2 Class & landscape
Patch Richness (PR) PR ≥ 1 Landscape
Mean Nearest-Neighbor Distance (MNN) MNN > 0 Class & landscape
Contagion (CONTAG) 0 < CONTAG ≤ 100 Landscape

in relation to resolution-dependent changes. Table 7.1 gives an overview of the
calculated landscape metrics.

The first metric, PLAND, represents the different surface portions of the patches
of different land cover classes. The specification of this index is measured in per-
cent. The index Number of patches (NP) represents the extent of subdivision of
the patch type and represents the patch number of a specific land cover class or
the entire landscape. Also, the number of the existing edges influences the struc-
ture of the landscape. The metric Total edge (TE) computes the total edge length
both for all patches of each land cover class and for all patches of the entire land-
scape. The indication of the edge length is counted in meters. The Area Weighted
Mean Shape Index (AWMSI) describes the shape complexity of the patches. The
shape complexity of smaller patches is affected by pixel size rather than by real
characteristics. Therefore, this index performs better for larger patches than for triv-
ial patches consisting of 1–3 pixels. Patch richness (PR) is a simple measure of
landscape composition and diversity. The basis of the calculation is the number
of land cover classes in the entire landscape. On the basis of the distance metric
Mean Nearest Neighbour Distance (MNN), specifications about the configuration
of landscape features can be derived. This index calculates the middle distance of
neighbouring patches belonging to the same land cover class. The Contagion index
(CONTAG’) measures the degree of clumping of all landscape patches and is based
on two probabilities: (I) The probability that a randomly chosen cell belongs to
patch type i, and (II) the probability that – given a specific cell is of patch type i –
one of its neighbouring cells belongs to patch type j. The product of these proba-
bilities equals the probability that 2 randomly chosen adjacent cells belong to patch
type i and j (McGarigal and Marks 1994). The Contagion index measures both patch
type spreading as well as patch type dispersion. The values are indicated in percent,
approaching 0 when the patch types are maximally disaggregated, and approach-
ing 100 when all patch types are maximally aggregated, i.e., when the landscape
consists of a single patch type only.

Since landscape metrics offer the possibility to describe the spatial pattern of
a landscape, the changes of these metrics in relation to changing pixel size were
analysed. The analysis results of the landscape level are displayed in Fig. 7.2 for
the spatial resolutions 0.7, 2.8, 4, 15, 20 and 30 m. The PR values show no changes
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Fig. 7.2 Variation of selected landscape metrics by changing spatial resolution form 0.7 to 30 m
(all calculations were performed on the landscape level and the results were normalized)

between the resolutions of 0.7 and 4 m, as all land cover classes are identified up to
a spatial resolution of 4 m. Similar to the PR value, the other five calculated metrics
decrease with the reduction of the spatial resolution as well but are more sensible at
primary reduction stages. Between a resolution of 0.7 and 2.8 m, NP values decrease
from 0.75 to 0.15. That means that the number of identified patches of the test site
is reduced from 750 to 150 patches. These results indicate a loss of information
about structural characteristics of the test site, as the aggregation of the pixels led to
an incorrect representation of the pixels with plant stress. The AWMSI values also
decrease with resolution changes from 0.7 to 15 m. This decrease of information
about the shape complexity occurs especially between a spatial resolution of 2.8
and 15 m. In this range, the shape complexity of the individual patches is more and
more characterized by the pixel size than by the real characteristics. The decrease
of the Indices CONTAG and MNN is smaller than the decrease of AWMSI. This
indicates that the spatial distribution of several land cover classes is seized over a
larger range of different spatial resolution than the shape complexity.

The change of the values permits a conclusion about the change of the infor-
mation content of the images in comparison to the spatial structure of the test site.
A significant loss of information about the structure of the test site is identified,
indicated by the decrease of values for the spatial resolution classes of 0.7–15 m.

The analysis of the landscape metrics at class level between 1 and 15 m allows a
specification of this statement (Fig. 7.3). The PLAND values show that the surface
portions of the analysed land cover classes are relatively constant up to a spatial
resolution of 5 m. At a spatial resolution of 6 m, all diseased land cover classes
exhibit variations of the surface portions. This indicates that the surface portions
of the three land cover classes are not identified correctly with resolutions beyond
5 m. The analysis of the metrics NP and TE shows a reduction of values between
a spatial resolution of 1 and 5 m. Due to the aggregation of the pixels, it is not
possible to differentiate all patches, and particularly small patches are no longer
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Fig. 7.3 Variation of the landscape metrics (LSM) by changing spatial resolution (class level) –
LSM-Values are normalized between 0 and 1

recognizable. This explains the decrease of the TE values as well, because the edge
length correlates with the number of patches.

The separation of different land cover classes on the basis of their shape com-
plexity is possible up to a spatial resolution of 5 m. A further decrease of the spatial
resolution leads in similar AWMSI values for all three land cover classes.

Both the correctness and detailedness of the information content on the structure
of the agricultural test site decline with decreasing spatial resolution.

The results indicate that in general terms, the structure of the test site cannot be
identified any longer correctly at resolution levels of 5–6 m and beyond (Fig. 7.3).
The analysis of the landscape metrics suggests a mean threshold value of 6 m spatial
resolution. Consequently, the identification of site-specific plant stress with remote
sensing techniques requires very high spatial resolutions. Thus, the requirement of
a spatial resolution of 10 m – claimed by Wiltshire et al. (2000) – is assessed as not
sufficient for the identification of site-specific plant stress.

At present, these very high spatial resolutions are provided only by airborne sen-
sors or very few satellite systems (e.g., Ikonos or QuickBird-2). The disadvantages
of these satellite systems are the very small Instantaneous Field of View (IFOV)
and a low temporal and spectral resolution. However, the recently launched satellite
sensor RapidEye does not exhibit these disadvantages. With a spatial resolution of
5 m, the IFOV contains an extent of 77 × 1,500 km by a daily repetition rate. For
the identification of site-specific plant damage, this satellite will therefore play an
important role.
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3 The Temporal Dimension of Remote Sensing

In contrast to the multitude of studies addressing the spatial dimension, only a
few studies highlight the temporal dimension of precision crop protection, even
though crop stresses are generally dynamic phenomena in spatial as well as temporal
aspects. Therefore, the importance of the temporal scale of crop growth phenomena
and sensor systems as well as temporal adjustment of within-field operations should
come into focus (McBratney et al. 2005, Franke and Menz 2008). Management
actions are not only adjustable in space, but also to the date on which they are most
effective. Time-specific crop management thus may improve efficiency and even
reduce the number of agrochemical applications (Moran et al. 1997, Franke et al.
2009). Similar to site-specific crop protection, which requires sensor systems that
detect crop stress symptoms with an appropriate spatial resolution, time-specific
crop protection has requirements on temporal resolution or repetition rate of sen-
sor data. In general, two different sensing-based crop stress detection approaches
exist: satellite-/air-borne sensors and near-range sensors. Moran et al. (1997) and
West et al. (2003) provided detailed overviews of sensor-based crop stress detection.
Concerning the suitability of sensor systems for precision crop protection in general,
however, many limitations exist, depending on the temporal scale of each system.
These limitations as well as further constraints with respect to temporal aspects of
crop stress control are here addressed. Temporal scale aspects are distinguished in
three categories: (I) the inherent phenomenon scale (PSt) that describes the tempo-
ral scale on which a crop stress phenomenon operates, (II) the sensor observation
scale (OSt) that is defined by the potential sample frequency of a sensor system and
the duration for data pre-processing, and (III) the management scale (MSt), which
is affected by the duration of information extraction from sensor data and the time
efficiency of agrochemical applications. In the following section, each aspect will
be separately addressed for plant diseases as an example of a crop stress factor.

3.1 The Temporal Scales of Crop Stress Phenomena

Various crop stress phenomena basically operate on different spatiotemporal scales
depending on their physiological characteristics and environmental conditions. On
the one hand, there are comparatively spatiotemporally stable stress factors such
as soil characteristics and, on the other hand, highly dynamic crop stress phenom-
ena such as plant diseases. With respect to the temporal phenomenon scale (PSt) ,
each stress factor therefore requires a different temporal resolution of stress mon-
itoring and adjusted time-specific crop protection. A higher level of complexity
results if several crop stress phenomena with different PSt coincide, which fur-
ther affects aspects of temporal scaling of monitoring or management actions. Only
detailed analyses of the temporal characteristics of each stress factor can provide
relevant information for a time-specific crop protection. To exemplify the PSt of
crop stresses, their driving factors and the resulting requirements on precision crop
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Fig. 7.4 Disease progress curves (boxplots with median, quartiles and extrema) of powdery
mildew and leaf rust in wheat as observed at 28 sample points in a test plot where no fungicides
were applied in 2005 (modified from Franke et al. 2009)

management, plant diseases as temporal dynamic phenomena are described in the
following section.

There are various approaches to quantify and describe the temporal dynamics of
plant diseases such as the disease progress curve, the area under the disease progress
curve or the linear, monomolecular, exponential, logistic, and Gompertz population
model. Each of them can serve as an interpretive tool to analyze temporal occurrence
of plant diseases (Nutter 1997). For instance, Fig. 7.4 shows disease progress curves
used to analyze the temporal dynamics of leaf rust and powdery mildew in wheat
(Franke et al. 2009). This case demonstrates that the onset of stress factors may
temporally defer, but fungal diseases may also coincide at higher growth stages with
additionally different severities. In addition, a differing disease trend is obvious with
an approximately exponential trend of leaf rust and rather high temporal dynam-
ics/different PSt of powdery mildew. Depending on the pathogen species, driving
factors such as soil characteristics, micro-topography, plant density, host resistance,
host growth stage, amount of existing spores, microclimatic conditions etc. affect
the spatial and temporal development of plant diseases (Nelson and Campbell 1993,
Tubajika et al. 2004). Hence, such complex and multi-factorial bio-physiological
systems such as fungal crop diseases necessitate adjusted time-specific detection
methods and stress control strategies. Savary and Cooke (2006) as well as Madden
(2006) stated that plant disease epidemiology leads to specific disease control rec-
ommendations and conceptual innovations in the management of plant diseases.
Regarding all spatiotemporal facets of stress factors and their determining factors, a
time-specific crop management strategy seems to hold a high potential for precision
crop protection.

3.2 The Temporal Sensor Observation Scale

Previous studies demonstrated the potential and limitations of disease mapping with
satellite-/airborne remote sensing data (e.g., Apan et al. 2004, Shaw and Kelley
2005, Franke and Menz 2007) and with near-range sensors (e.g., Bravo et al. 2003,
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Moshou et al. 2006). The still cost-intensive use of sensor data for disease mapping
is only reasonable if the phenomenon to be observed is detected at appropriate times
and with a temporal resolution that is required to reproduce its trend adequately. An
efficient agrochemical application can only be assured if there is an early detection
of stress incidence. Hence, the time of sensor-based stress identification is a crucial
and restrictive factor.

Besides the sensor repetition rate, the temporal resolution of remote sensing sen-
sors is additionally affected by cloud cover (Jackson et al. 1986, Moran et al. 1997).
All time-related parameters have to be taken into consideration, to avoid tempo-
ral over- or under-sampling of the phenomenon. Whereas temporal over-sampling
via sensor data impairs the cost-benefit ratio due to additional data acquisition
and processing costs, temporal under-sampling may result in a reproduction of a
pseudo-phenomenon, i.e. aliasing (Fig. 7.5). Aliasing is a common problem in sig-
nal processing that often occurs in audio and video signals (Flaten and Parendo
2001). Temporal aliasing may occur when the sample frequency (fs) or OSt – for
instance, due to low temporal resolution of the sensor – does not match the fre-
quency of the phenomenon (fp), i.e. the PSt. Hence, considering a disease progress
curve, as exemplarily shown in Fig. 7.5, sensor-based stress monitoring could miss
infection peaks and disease trends could be inaccurately reproduced, since OSt is
not suitable. To avoid temporal aliasing or inappropriate sampling dates, knowledge
about the PSt is essential. In temporal respects, the suitability of a certain sensor
system for precision crop protection thus primarily depends on the temporal scale
of the monitored phenomenon.

Fig. 7.5 Example for temporal aliasing. Generalized temporal frequency of powdery mildew
severity (fp) derived from in-field observed extremes in 2005 (solid line), and an alias (dashed line)
that would result from exemplarily shown sample dates (boxes). The temporal sample frequency
fs (or temporal observation scale) would not be suitable in this case to reproduce the phenomenon
correctly
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Maximum temporal frequency of coverage – affected by repetition rate of the
sensor and constraints such as cloud cover, time of the day and data availability
(e.g., conflicts with other users) – as well as timeliness are the major limitations
for a utilization of optical sensor data for farm management (Jackson et al. 1986,
Moran et al. 1997). Timeliness implies the time between data acquisition and data
delivery to the farmer (duration of data pre-processing). Moran et al. (1997) gave
an overview of repetition rates of satellite sensors and discussed the delivery times
for the data and stated that, at that time, satellite sensors were inappropriate for
intensive agricultural management due to low temporal resolution and long periods
between data acquisition and delivery. Unfortunately, these limitations have not yet
been overcome in the meantime. However, with recently launched satellite sensors
such as RapidEye or future missions as EnMap with improved repetition rates, as
well as with near-range sensors, limitations for the use of sensor data due to temporal
aspects can be overcome.

3.3 The Temporal Management Scale

Agrochemical applications are generally limited to defined crop growth stages and
additionally require certain weather conditions (West et al. 2003),which implies
that the MSt is temporally constrained. In addition, crop protection applications
are most effective when applied early after stress incidence. For instance, the con-
trol of polycyclic pathogens with fungicides depresses lesion expansion and reduces
sporulation. The disease cycle is slowed down since the latent period between infec-
tion and sporulation is increased by preventing the pathogens from generating fresh
inoculums (Lucas 1998, West et al. 2003). Since crop disease progress depends
on environmental conditions, however, this slowdown of the disease cycle can also
be used to bridge periods with favourable environmental conditions for pathogens,
which would impede disease progress. The knowledge about temporal character-
istics of crop stresses is important for a determination of their impact on plants
and may allow for a stress-specific application. This is particularly the case when
different stress factors coincide and the total stress effect on the crop exhibit an
assimilated impact. In these cases, a site-, time- or stress-specific crop management
is challenging and decision support systems might be helpful. The number of agro-
chemical applications per season could be reduced and their effectiveness improved
by an optimal timing of disease control.

The MSt is also affected by the duration of sensor data processing. Besides
the temporal aspects of data acquisition, pre-processing and delivery to the user,
which were discussed above, there are further limitations due to the duration of the
actual data processing, i.e., the information extraction about crop stress occurrence.
Even though several analysis techniques exist, such as temporal mixture analysis
(e.g., Asner 2004) or time series analysis (e.g., Hill 2004), the duration for pro-
cessing is particularly extended with multi-temporal data, because these require
inter-calibration procedures due to different image characteristics for a temporal
comparability (Moran et al. 1997).
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In conclusion, the temporal dimension of precision crop protection is a multi-
factorial subject, affected by multifold factors such as the crop stress type and
their different temporal dynamics (onset, trend and coincidence), crop growth char-
acteristics, trend of environmental conditions, type of sensor which is used to
monitor stress impact (repetition rate, duration of data pre-processing and delivery),
data processing time as well as weather conditions and applicable growth stages
for agrochemical applications. Hence, to find appropriate times for sensor-based
crop stress detection and optimal stress control dates, decision support systems
are fundamental, considering every single temporal aspect affecting crop stress.
For example, Dammer et al. (2008) presented a decision support system, which
provides information on crop stress probabilities, application time and application
rates.

From the sensor side of view, near-range sensors, particularly imaging sensors,
allow for a sensing of crop stress symptoms in greater temporal and spatial detail
and thus have basically a higher potential for use in precision crop protection than
remote sensing. However, monitoring of complex biochemical systems such as crop
stresses, particularly crop diseases, is limited by spatiotemporal scale issues of sen-
sor systems. Assessments of the temporal dimension of crop stresses demonstrated
that required temporal resolution of stress detection systems OSt and the temporal
scale of crop protection management MSt are primarily dominated by individual
characteristics of stress phenomena PSt, i.e., the PSt dictates the requirements on
technical systems used to detect (OSt) and to control (MSt) them.

4 The Spectral Dimension of Remote Sensing

Besides spatial and temporal preconditions, a third factor needs to be considered for
precision crop protection: the spectral dimension. Nowadays, several near-range-,
airborne- and satellite-based remote sensing systems with different temporal, spatial
and also spectral resolution are available for data acquisition. To prove their poten-
tial for precision crop protection, or rather to build up an optimal sensor system,
all three interrelated dimensional prerequisites need to be known before focusing
on specific phenomena. Since the early 1970s, the use of spectral reflectance of
different vegetation types has been studied at leaf scale. Researchers demonstrated
that the concentration of several organic compounds can be estimated by the use
of reflectance measurements, because plant elements like starch, lignin or pigments
determine specific absorption features within the electromagnetic spectrum (Curran
1989). Those absorption features can only be detected by sensor systems that cover
phenomenon-specific wavelengths with an adequate spectral resolution. Recent
hyperspectral spectrometers usually gather reflectance data in the range between
400 and 2,500 nm in many contiguous bands. They are suitable for the detection
and quantification of plant-related spectral features (Curran 1989, Carter and Estep
1994, Yoder and Pettigrew-Crosby 1995, Blackburn 1998). However, the identifi-
cation of relevant bands and thus a reduction of redundant information of adjacent
bands without loss of significance are essential for a rather phenomenon-focused use
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of hyperspectral data. This may speed up the data supply and accuracy for precision
agriculture.

A study by Yoder and Pettigrew-Crosby (1995) focused on prediction-
possibilities of chlorophyll and nitrogen concentrations of bigleaf maple trees at
leaf scale. Relevant bands for the estimation were thereby found. At the canopy
scale, different bands needed to be used and the prediction was less successful due
to measurement noise and environmental variations in atmospheric conditions and
canopy structure. At canopy scale, Blackburn (1998) identified relevant wavebands
for pigment estimations, i.e., 664.3 nm for chlorophyll a, 658.4 nm for chlorophyll
b and 452 nm for carotenoids, using first and second derivative pseudoabsorbance.
Different wavelengths were optimal at leaf scale. The study showed high poten-
tial for estimations of chlorophyll concentration at leaf and canopy scale using near
range reflectance measurements. Asner and Martin (2008) verified that multiple leaf
chemicals can be estimated from canopy reflectance spectroscopy if different LAIs
and viewing geometries are considered. Nonetheless, there is still a gap in predic-
tion accuracy between near-range and airborne- or satellite-based remote sensing
data. It is necessary to know which wavelengths are the most suitable for detecting
a specific spectral crop stress phenomenon, at specific spatial scales and specific
times.

4.1 Near-Range Spectroscopy for Crop Stress Detection

Moran et al. (1997) stated a promising vision for the use of hyperspectral sensors
for determination of the cause of plant stress for making application management
decisions. Until now, an operational implementation of these data could not yet
be realized in practice, but several works have shown possibilities and limitations
(Carter and Estep 1994, West et al. 2003, Jain et al. 2007). Reflectance data have
been widely used as a tool for the detection of nitrogen deficiencies (e.g., the Yara
N-Sensor, Agri Con GmbH, Ostrau, Germany) and optimal spectral wavebands of
near-range hyperspectral data have been identified (Jain et al. 2007). In contrast, less
attention has been paid to the detection of diseases, but it is known that diseases can
affect the optical properties of crops.

Lorenzen and Jensen (1989) studied the spectral changes of barley leaves at
leaf scale after an inoculation with mildew. Six days after inoculation, a spectral
discrimination between control plants and infected plants was possible using a Li-
cor spectroradiometer. Their study showed that spectral differences first occur in
the visible region of the electromagnetic spectrum. The NIR region, however, is
clearly more affected by changes in leaf or canopy structure (Lorenzen and Jensen
1989). Bravo et al. (2003) investigated the potential of early disease detection of
foliar diseases in wheat at canopy scale using spectral reflectance. Optical data of
healthy and yellow rust-infected plots were obtained with a near-range spectrograph.
Five wavebands could be identified for optimal discrimination after first physiolog-
ical changes of the plant occurred. Mewes et al. (2008) focused a study on band
selection techniques for the detection of powdery mildew and leaf rust on wheat
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using a spectrometer in a greenhouse experiment. A semi-automated derivative anal-
ysis technique was applied on all recorded spectra to localize general positions of
reflectance minima and maxima. Finally 13 wavebands were identified for signif-
icant disease detection via decision tree analysis also at early disease stages. The
used band selection technique has shown that only a few bands within the VIS/NIR
spectrum were needed for spectral separability between healthy and infected crops.

West et al. (2003) stated that the use of hyperspectral data leads to a very large
amount of data handling, which is impractical for practical farming systems. The
identification of phenomenon-specific wavebands or combinations of wavebands
and thus a data reduction will therefore be necessary.

4.2 Airborne Hyperspectral Imaging for Crop Stress Detection

Compared to near-range measurements, only a few studies have been focused on
the potential use of hyperspectral airborne and satellite-borne data for precision
crop protection. Fungal diseases often appear in patches, resulting in field het-
erogeneities. For the localization of those patches, sensor-based techniques are of
increasing importance (Franke and Menz 2007). Remote sensing data has the bene-
fit of mapping vegetation over a large spatial area and the use of multispectral data
has been proven for site-specific identification of fungal infections (Shaw and Kelley
2005, Jacobi and Kühbauch 2005, Franke and Menz 2007). Hyperspectral data may
enhance the detection with phenomenon-specific sensor technology and analysis.

Apan et al. (2004) proved the use of EO-1 Hyperion hyperspectral data for the
discrimination of fungal infected sugarcane crops. Different hyperspectral indices
were tested all related to stress influenced plant parameters, i.e., pigments, leaf
structure, water content. Highest separability could be obtained by the use of
band combinations of wavebands within the green range of the electromagnetic
spectrum combined with bands of the NIR and SIWR (Apan et al. 2003, 2004).
Franke et al. (2008) proved the potential of airborne hyperspectral imagery for
early disease detection. Figure 7.6 shows the result of a Mixture Tuned Matched
Filtering (MTMF) conducted on 126 spectral bands between 450 and 2480 nm of the
Hyperspectral Mapper sensor (HyMap, HyVista, Sydney, Australia). A map of the
test site with differently treated plots giving the fractions of fungal-infected wheat,
non-infected wheat and soil was derived, which might be useful information for
precision crop protection. A regression analysis of fraction estimates of infected
wheat and in-field-observed powdery mildew severities showed promising results
(r2 = 0.67).

In 2008, another field campaign was carried out at the University of Bonn. The
study focused on the derivation of different disease severities using hyperspectral
data. A field with 4 ha in size was divided into 12 subplots with 40 × 60 m each, with
different disease severities. Multitemporal measurements at randomly distributed
sample points were taken with a near-range spectrometer. In addition, hyperspectral
image data was acquired by the Airborne Imaging Spectrometer for Applications
(AISA, Specim, Oulu, Finland). For the derivation of severity estimations, optimal
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Fig. 7.6 False-color composite of an experimental field showing fractions of the spectral endmem-
bers ‘infected wheat’ (R), ‘healthy wheat’ (G) and ‘soil’ (B) as estimated by the MTMF (Franke
et al. 2008)

wavebands and waveband combinations are identified. Temporary changes in wave-
band compositions will be observed, as well as the difference between near-range
and airborne hyperspectral data to bridge the gap between both scales. Figure 7.7
shows the experimental setup on the left and a false-colour-composite with hyper-
spectral data on the right. The composite shows high potential of the data with high
spectral resolution. Different variants within the 4 ha field can even be visually iden-
tified. Further analyses point out which bands are relevant to discriminate stressed
and vital wheat areas at specific phonological stages. In addition, the spectral reso-
lution of the data will be resampled to get an idea about the optimal bandwidth for
crop stress detection.

The ongoing research focuses on band selection methods to reduce data redun-
dancy which should result in a minimum number of spectral bands relevant for
precision crop protection. To use scale-related terminology, a reduction of the extent,
i.e. the spectral range, will be analyzed. First results show that not only bands in the
visible spectrum but also wavelengths in the SWIR are suitable for a discrimina-
tion of stressed wheat areas (Mewes et al. 2009). A combination of bands in the
visible with bands in the NIR and SWIR enhances the classification results in this
study. However, not all bands of hyperspectral data are needed for this purpose.
In addition, the grain of the spectral dimension, i.e., spectral resolution, has to be
considered, whereby the optimal spectral sample frequency should be defined.
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Fig. 7.7 Map of a winter wheat field with subplots differently treated with agrochemicals (vector
data over true-colour RGB from AISA data) (left), false-colour AISA image taken on 01/07/2008
(R: 490 nm, G: 552 nm, B: 810 nm) (right). Dark lines represent the tractor lanes

5 Conclusion

Precision crop protection has specific requirements on spatial, temporal and spec-
tral characteristics of sensor data used to derive relevant information on crop status.
Studies that focus on the effect of these characteristics on the detection accu-
racy of crop growth heterogeneities are fundamental to implement remote sensing
techniques in precision crop protection. The objective of the present chapter was
therefore to highlight relevant analyses with respect to these dimensions of sensing
data. The analysis of the influence of spatial scale of remote sensing data on preci-
sion crop protection suggests a threshold value of 6 m spatial resolution. As a result,
the identification of site-specific plant stress with remote sensing techniques requires
extremely high spatial resolutions. At present, these high spatial resolutions are only
provided by airborne sensors or very few satellite systems. The disadvantages of
these satellite systems are the very small Instantaneous Field of View (IFOV) and a
low temporal and spectral resolution. However, the RapidEye satellite sensors with
spatial resolutions up to 6.5 m that were launched in 2008 do not exhibit this spatial
disadvantage so that restriction for the use of remote sensing data concerning spatial
resolution can be resolved.

The temporal scale of precision crop protection exhibits a dimension with high
complexity. It is affected by various factors such as the crop stress type and their
different temporal dynamics, crop growth characteristics, trend of environmental
conditions, type of sensor for stress monitoring, data processing time, weather con-
ditions and specific times for agrochemical applications. Due to this complexity,
the use of sensor-based techniques such as remote sensing in precision crop pro-
tection is rather challenging. The results of this chapter demonstrated that required



116 K. Voss et al.

temporal resolution of stress detection systems OSt and the temporal scale of crop
protection management MSt is primarily dominated by individual characteristics of
stress phenomena PSt. Hence, the phenomenon of interest dictates the requirements
on temporal scale-related characteristics of remote sensing techniques and stress
control mechanisms.

Concluding the considerations about the spectral dimension of sensor data for
precision crop protection, it can be stated that hyperspectral data, either near-range
or remote sensing, have a high potential for detection of crop stress symptoms. There
are obvious interdependencies between the spatial and the spectral resolution; i.e.,
for near-range and airborne/satellite-borne data different wavebands are relevant.
The interdependencies between temporal and spectral resolution, or which wave-
bands are relevant at specific phenological stages, have to be considered as well.
However, further work is needed to explore the spectral scale in detail, i.e., spectral
extent and spectral grain of the data.

To control spatiotemporally dynamic systems such as crop stress in precision
crop protection, decision support systems are necessary that integrate all relevant
driving factors. Either for an experimental design or for the implementation of cer-
tain techniques in precision crop protection, the importance of scale-related issues
always has to be taken into consideration.
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Chapter 8
Detection and Identification of Weeds

Martin Weis and Markus Sökefeld

Abstract This chapter reviews the approaches for the automation of weed
detection. Site-specific plant protection needs to address the varying weed infes-
tation, but the automation is only partially solved and research is still ongoing.
The properties for plant species distinction as well as approaches that use them
are presented. The focus is on image based methods, of which an example is given.

1 Introduction

The detection of weeds is the prerequisite for successful site-specific weed man-
agement. For a uniform treatment the average weed infestation level, weed species
composition and growth stages of weeds and crop have to be known. Herbicides or
mechanical weed control methods are applied uniformly across the total field, if the
economic weed threshold is exceeded. The spatial and temporal variation of weed
populations needs to be assessed, if the treatment should vary within a field. It is
also needed to select and adapt the herbicide mixture. Commonly, the number of
weeds per square meter and/or the weed coverage for each species are measured.
This data can be used to estimate the expected yield loss and to decide for each part
of the field which weed control method is warranted.

Different methods have been proposed to assess the weed infestation within a
field. The most common approach is the weed scouting by human experts. This
approach can be done by the experienced farmer or a consultant. An expert can
take the history of the weed infestation over the years into account and focus on
the most prominent weed species, which are relevant for the yield loss. Different
sampling schemes for the within-field estimation were used. Weed infestation can
be measured by regular or irregular sampling. Positions of the sampling points can
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be determined using a local coordinate system and regular distances between the
sampling points, or their coordinates can directly be measured with GPS (Global
Positioning System) technology. Most studies used a sampling scheme which was
constrained by the time and manpower available. The effect of different grid sizes
and interpolation techniques have been discussed by Backes et al. (2005), Hamouz
et al. (2006), and Heijting et al. (2007). Many weed patches remained undetected, if
the grid size exceeded a distance of 15–30 m between the sampling points. An eco-
nomic evaluation of the manual sampling versus an automatic approach was done by
Oebel and Gerhards (2005), estimated costs are about 60C/ha for the manual sam-
pling at regular spaced grid points (8×8 m). The use of a mobile GIS (geographic
information system) to map the infestation reduced the costs to 26C/ha.

Since the manual weed sampling is too expensive for practice-oriented manage-
ment, automatic methods to assess the infestation have been developed (Brown and
Noble 2005). Automatic weed sampling provides a way to increase the amount
data gathered in the field (smaller sampling intervals) at lower overall costs of
6–11C/ha (Oebel and Gerhards 2005). Sensor technology has already been used to
apply herbicides site-specifically, resulting in 30–70% reduction of herbicide use.
Depending on the application technology the sensor design has to be adapted; if
small robots are used to manage weeds, the driving speed may be lower than with a
boom-sprayer.

2 Properties to Distinguish Plant Species

To distinguish plant species from each other, certain characteristic properties have
to be identified, which can be measured automatically. Experts identify species by
their shape and plant morphology. The location of a plant is a useful property to
distinguish species, on the large scale there are several habitats, on the small scale
there are locations within a field with a higher probability of occurrence, e.g. at
the borders of a field, on certain soil types or between the rows in row cropping
systems. In the following sections useful properties for distinguishing plant species
are evaluated.

2.1 Spectral Properties

Intact green plants transform the incoming light by their chlorophyll pigments,
which absorb mostly red as well as violet and blue light. Only a fraction of the
green and most of the near infrared light is reflected. The spectral reflectance of
plants has a minimum in the visible wavelengths of about 650 nm and increases
towards the invisible near infrared above 700 nm. The steep part of the curve is
called the ‘red edge’ (Fig. 8.1; Guyot et al. 1992). Plant characteristics – chloro-
phyll content, leaf area index LAI, biomass and water status, age, plant health levels
(Shafri et al. 2006) – can be derived from the position of the red edge (REP), usually
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Fig. 8.1 Reflectance curves for soil (filled dots) and different plant species with the typical steep
incline (red edge) between 680 and 750 nm wavelength

determined by the position of the turning point (point of maximum slope). The spec-
tral curves of different plants have a similar nonlinear shape, but the soil curve in
Fig. 8.1 is linear. The local extremes of the plant curves are within the green band
(550 nm, maximum), the red band (660 nm, minimum) and near infrared (750 nm,
maximum).

Several spectral indices have been proposed that make use of the different
reflectance in the green (G), infrared (IR) and red (R) part of the spectrum. Ratios
or subtraction of the values at the extremes lead to the highest differences for plants
and soil and are therefore useful for the discrimination of plants against their back-
ground. From Fig. 8.1 we can conclude, that the highest difference exists in the
near infrared and red spectrum (see also image example in Fig. 8.4). One important
index is the normalised difference vegetation index NDVI (Eq. 1), the values are
normalised to the interval [−1, 1], with values near one meaning a high amount of
chlorophyll. This index correlates well with the biomass and LAI and has been used
in remote sensing applications (Godwin and Miller 2003, López-Granados et al.
2006, Reyniers et al. 2006) and for near-range sensors to measure plant biomass
production, crop vitality and to forecast crop yield. A few commercial products for
weed control with optoelectronic equipment exist that use this spectral information:
DetectSpray R© (evaluated by Biller 1998) and WeedSeeker R© (used by Sui et al.
2008).

Depending on the availability of the measured wavelengths several indices have
been used and compared to identify living plant material against the background
(Woebbecke et al. 1995, Meyer and Neto 2008). The soil adjusted vegetation index
(SAVI, Eq. 1) introduces a variable L into the formula of the NDVI. L can be used
to adjust for the soil component; values near 0 are used for high vegetation cover.
Variations of these indices exist; Haboudane et al. (2004) compared several indices
for an estimation of the leaf area index. Langner et al. (2006) developed an index
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called DIRT (difference index with red threshold) to improve the contrast between
plants and background in mulched areas (DIRT = sign(β - R) NDVI, with β = 0.12).

NDVI = (IR − R)/(IR + R)
SAVI = [(IR − R)/(IR + R + L)](1 + L); L[0, 1]
EGI = 2G − R − B
NDI = (G − R)/(G + R)

(1)

Transforming RGB colour space images into the HSI (hue, saturation, intensity)
colour space leaves the brightness in the intensity channel and colour information
in the hue and saturation channels, which then can be used to identify green parts.
For standard RGB images the excess green index EGI has proven to be useful for
the enhancement of green plant material in many studies (Rasmussen et al. 2007,
Burgos-Artizzu et al. 2008). An example for the EGI is shown in Fig. 8.2. Equation
(1) contains the formulae for the most important indices.

The spectral reflectance is influenced not only by the plant characteristics, but
also depends on the illumination conditions. Atmospheric changes lead on the one
hand to different spectral characteristics of the illumination, on the other hand the
amplitudes can vary much; direct sun and cloudy conditions differ by factors of
1,000 or more in the amount of light. Therefore some approaches use controlled
conditions with artificial lighting and exclude the natural illumination. Artificial
lighting equipment has the advantage to make the measurement independent of the
external illumination conditions.

Piron et al. (2008) evaluated 22 wavelength bands for weed and crop (carrots) dis-
crimination, and found an optimum with three wavelengths at 450, 550 and 750 nm,
reaching a classification accuracy of about 65% for carrots and 80% for weeds. They
used artificial lighting to reduce the variability of the natural light conditions in the
field. Paap et al. (2008) used a line sensor and LED illumination (635, 670 and
785 nm) to distinguish plants from background. Several approaches explored the
spectrometric properties to distinguish different species. Zwiggelaar (1998) found
the spectral properties alone not to be able to discriminate all weed species. In more
specific cases the spectral information was successfully used to discriminate weed
and crop. Borregaard et al. (2000) used a line scanning spectrometer with artificial

Fig. 8.2 Green, red and blue components of a standard RGB camera combined to EGI image
(from left to right), enhancing the plants (bright) against the background (dark). Gray values were
stretched for better contrast in print
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light and were successful in discrimination of plant and soil as well as crops (sugar
beet and potatoes) and three weed species. They used stepwise linear discriminant
analysis to select six wavelengths (694, 970, 856, 686, 726 and 897 nm), of which
they found the first three to be able to discriminate the five species with an accuracy
of 60% and crop and weeds with an accuracy of 90%. Girma et al. (2005) selected
five bands between 515 and 865 nm and ratios of them (515/675, 555/675, 805/815,
and 755) to distinguish two weed species and winter wheat under controlled condi-
tions (greenhouse). Two trials led to classification accuracies of 64 and 90%. Wang
et al. (2001) also selected five wavelengths (496, 546, 614, 676, and 752 nm) and
reached 62–86% classification accuracy for the discrimination of nine grouped weed
species, soil and wheat. Okamoto et al. (2007) use a spectrometric line sensor with
420 channels of 10 nm to distinguish sugar beet and four weed species with a suc-
cess rate of about 75–89%, if the data were transformed by a wavelet decomposition
and classified using selected wavelet coefficients.

2.1.1 Remote Sensing

Lamb and Brown (2001) reviewed the use of remote sensing (RS) imaging for weed
detection. They conclude, that the use of remote sensing is limited in general due to
the low spatial resolution, which does not permit the analysis of weeds on a sub-field
scale.

A high infestation level of weeds within patches is accompanied by locally
increased biomass production. Early in the season the effect can be used to locate
the patches, if the weeds germinate earlier than the crop. Backes and Jacobi (2006)
explored remote sensing techniques to detect patches of dicotyledonous weeds in
sugar beet using the NDVI.

Thorp and Tian (2004) identified the problem, that the spectral measurements
are mixed signals of soil and plant material. The proposed analysis methods for
weed detection have to be improved and further developed to reliably detect dif-
ferent weed species, not only local changes in biomass density. Another problem
remains the availability of up-to-date imaging material, since RS sensors need clear
sky conditions (without clouds) and their update cycles might be of too large inter-
vals. Later in the season patches can be identified using RS: López-Granados et al.
(2006) used hyperspectral RS to map grass weed infestations in wheat late in the
season. Their accuracies for the grass weed patch detection were about 90%.

2.1.2 Fluorescence

Chlorophyll fluorescence of the plant photosystem is an indicator for the effec-
tiveness of the photosynthesis. The fluorescence intensity shows a typical temporal
change after saturation of the photosynthesis system with light, called the Kautsky
effect. Kautsky functions indicate healthiness of the plants but can also be used
to distinguish different species due to the different leaf structure and leaf angle of
grasses and dicotyledons. The fluorescence effect can be used to distinguish living
plants from other objects and may lead to methods for species discrimination in
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the future. A problem for online weed identification is the time of measurement,
since the effect can be explored best when the measurements are taken over a cer-
tain period of time (seconds to minutes). Current research tries to explore shorter
measurements, which may lead to suitable sensing equipment for online species
discrimination in the future. Keränen et al. (2003) reduced the measurement time
by reducing the pre-measurement dark adaption period to practicable times under
field conditions. They were able to distinguish six species using a neural network
classifier.

2.2 Location and Temporal Properties

The location of plant species can be used to identify them. Most weeds occur in
patches within a field (Heijting et al. 2007) and their location was found to be stable
over years. This effect is due to persistent seed banks in the soil and variable germi-
nation conditions. The germination rate is higher in areas with a high seed density.
Perennial weeds have additional vegetative reproduction organs such as rhizomes,
tubers and roots, from which the plants regenerate (e.g. Convolvulus arvensis,
Cyperus esculentus, Cirsium arvense, Agropyron repens). Therefore, patches of
perennial weeds were found to be most aggregated and stable. Historical maps can
be used to predict the occurrence of weeds (Dille et al. 2002, Mortensen 2002). This
information is especially useful for preemergence herbicide applications.

The position of weeds can also be helpful on a smaller scale, the plant level. In
row crops weeds can be detected between the rows, since no crop plant is expected
to grow there. Sensors detecting green plants between the rows have successfully
been used for this purpose (Åstrand and Baerveldt 2004). Slaughter et al. (2008)
described the robust weed detection as a primary obstacle for robotic weed con-
trol technology and review the approaches for weed detection as well as actuator
technology.

Several image processing approaches for row detection have been proposed, most
of them using standard RGB images. Bossu et al. (2009) determined crop rows for
intra-row weed detection and Jones et al. (2007) developed a system to create arti-
ficial images to test weed detection algorithms in crop rows. Bakker et al. (2008)
used a Hough transformation to detect linear structures in images to find the rows.
Åstrand and Baerveldt (2004) modelled Gaussian location probability functions for
the crop plants in the row and locate the weed plants at locations with low proba-
bility values, either between the rows or within the row at locations between crop
plants. Burgos-Artizzu et al. (2008) used large row spacing (barley) and the column
sums of the intensities to determine crop rows. They determined crop rows and used
additional (expert) knowledge about the scenes to determine optimal parameters for
the image processing and feature extraction process.

2.2.1 Morphological Properties

The morphology of the plants is important for the determination of the species by
a human expert. Dicotyledons and monocotyledons have a different morphology,



8 Detection and Identification of Weeds 125

e.g. the number of cotyledons and the structure, compactness and diameter of the
leaves, which contribute to the overall appearance.

The third dimension can provide information about the orientation of the leaves
and the height above ground and leaf structure. The three-dimensional (3D) struc-
ture of the plants is a feature, which has not yet been investigated often. Reasons are
that the acquisition of suitable 3D data is computationally intensive or requires spe-
cial 3D measuring equipment, which became available in the recent years. Chapron
et al. (1999) and Andersen et al. (2005) proposed a stereo vision method, extracting
height information from two aligned images. The height information can be used to
detect overlapping of leaves and can be helpful to separate leaves above others from
the ones below.

2.2.2 Overlapping

Occlusion and overlapping is one of main problems for all image processing
approaches. The plants in the images, especially the long-leaved ones like cereals
and grass weeds, tend to overlap. Overlapped leaves are segmented as one object,
since they lead to connected regions, of which parts belong to different plants. It is
difficult to detect and separate these leaves from each other, since therefore context
information is necessary to assemble occluded leaf shape and assign these to plants.
The mentioned 3D approaches provide segment information directly, and a few 2D
image processing techniques have been used to overcome this situation (Søgaard
and Heisel 2002, Manh et al. 2001, Neto et al. 2006a). These approaches are based
on heuristics about the occluded parts. Piron et al. (2009) combine stereoscopic mul-
tispectral images with height information from a coded structered light technique,
which uses a projected known pattern to derive the distance to the camera.

2.2.3 Texture

More general approaches distinguish plant species based on the texture, which is
different for overlapped broad leaved and narrow leaved plants in cluttered condi-
tions. Ishak et al. (2009) present a texture analysis for images of two weed species
(a broadleaved and a grass weed) in late growth stage. Weeds in grassland require
different approaches, because the plants cannot be separated to single plants from
the background (soil), because the overall coverage is very high and the plants
overlap. But the most important weeds in grassland have leaves with a different mor-
phology (bigger, broader and more homogeneous surface). These properties can be
quantified by textural analysis of 2D images. Gebhardt and Kühbauch (2007b) seg-
mented the image according to a homogeneity criterion and use a textural and colour
features to find Rumex obtusifolius, Taraxacum officinale and Plantago major in a
grassland plant community with an accuracy of over 70%. Van Evert et al. (2009)
used a partial 2D Fourier transformation to determine homogeneous regions, which
were identified to be the broadleaved weed leaves of R. obtusifolius. From 3D sensor
data Šeatović (2008) segmented broad leaves and classified them as weeds in grass-
land. Klose et al. (2008) developed a robot with weed detection capabilities in maize
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using a sensor fusion approach: A vertical laser triangulation sensor measuring the
thickness of the maize plant stem is combined with a horizontally mounted camera
viewing the maize row from above to find weeds within the row.

Morphological properties can also be explored with 2D shape features, which is
the focus of the following image processing part.

3 Image Processing for Automatic Weed Species Identification

In the following the general image processing steps will be outlined. Fig. 8.3 shows
the workflow of the basic steps image creation, segmentation, feature extraction and
classification.

Imaging sensors like cameras or line sensors deliver 2D images of agricultural
fields. These images are the input for the following image processing procedures.
Depending on the type of imaging sensor the resulting images may have to be pre-
processed to normalise the values or reduce noise. Noise can be reduced in the
original images before segmentation into foreground and background objects takes
place. Typical pre-processing steps of the original images include filtering with a
low pass filter to minimise the effect of Gaussian noise or the use of median filters
to suppress pixels with outlier values (zero or maximum values).

3.1 Segmentation

A segmentation of the image into regions with homogeneous properties is the next
step, which results in a separation of the image according to the measured prop-
erties. One or more intermediate images can be created that enhance the contrast
between object and background. In this step homogeneous regions with different
gray or colour values are created. This image can be computed using one of the
colour indices mentioned before, if colour images are the input, or texture features,
if the image should be segmented according to the texture (e.g. grassland images).
Fig. 8.4 gives an example for an IR and R difference image (IR-R), the resulting
image enhances the plants (bright) and the background objects have been suppressed
(dark). The enhanced image is then separated into foreground and background
objects, resulting in a binary image (black/white).

Fig. 8.3 General image processing steps leading from the image to a classification
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Fig. 8.4 Example for the difference (right) of an infrared (left) and red (middle) image. Plants
are bright due to the spectral difference in the red and infrared, background objects like dead
material (mulch, stones) disappear in the difference image. Gray values were stretched to increase
the contrast for the print version

A threshold can be used to label the enhanced regions (e.g. white), which are
above the threshold and the background (e.g. black). More advanced methods use
spatial homogeneity criteria to improve the segmentation (Gorretta et al. 2005). If
the foreground regions have been identified, connected foreground regions can be
assembled to objects. Noise may have lead to small regions in the thresholding step
and can now be filtered using either a size criterion or morphological image process-
ing (Soille 2003). Figure 8.5 shows the result of a segmentation using a threshold
and pre-processing steps to reduce noise. Mathematical morphology provides ero-
sion and dilation operators as basic filters for regions. Erosion of region leads to a
shrinking, the borders of the region are cut. If an object has a hole (inner borders),
this hole will grow bigger. The dilation operation does the opposite: the region grows
around the border and small holes can be closed this way. Both operators can be
combined to the so called opening (erosion, then dilation) and closing (dilation, then
opening) operators. Since both operators are nonlinear the results of the opening and
closing are different: opening tends to separate an object at small connections and
prune small elongated spikes, closing can combine regions with little distance into
one, e.g. leaves which have been separated by the thresholding. It may also happen
that small regions disappear in the opening step, which are then gone in the dilation
step of an opening. Figure 8.5 (right) shows the result of a morphological closing,
leading to connected regions for the dicotyledonous leaves near the centre of the
image and the elongated leaves in the top left.

Fig. 8.5 Binarisation and preprocessing of the difference image in Fig. 8.4. Left: the result of the
thresholding, right: the result after applying morphological operators (closing with circle of 5 pixel
diameter) and area size selection (regions with more than 30 pixel), as well as discarding regions
which are cut by the image border. Foreground objects are black, the background is white
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Morphological operators were used by Hemming and Rath (2001) to extract
broad leaves from scenes with overlaps. Pérez et al. (2000) used morphological
operators to separate the germination leaves of dicotyledonous weeds and analyse
the shape of each leaf.

The resulting blobs are the objects of interest for the following feature extraction.
Shape, texture or colour features (the latter derived from the input image) describe
the properties of each foreground object in the image. These features are used for a
classification of each object in the image.

3.2 Shape-Based Weed Discrimination

Several researchers used shape features to discriminate weed and crop (Gerhards
and Christensen 2003, Åstrand and Baerveldt 2004, Berge et al. 2008). The shape
features were derived for each connected foreground region. Image processing tech-
niques provide a set of commonly used shape features. To describe the shape of a
region one of the simplest feature is the size, expressed either in number of pix-
els or scaled by the ground resolution. There may be objects of different size,
but with similar overall shape characteristics (geometrically congruent). Therefore
shape descriptors have been developed which are invariant to the size of the region.
Two other properties are often not relevant for the shape description: the position
and the orientation of a region within the image. Certain shape descriptors are nor-
malised and invariant to translation, rotation and size. Some well known invariant
features are derived from statistical moments of the pixel distribution (Hu features;
Hu 1962). This type of features is called region-based, since they are derived from
the spatial distribution of the region pixels.

Other features are computed from the outline of a region, given by the border
pixels that have neighbouring background pixels. Since the border of an object is a
closed contour, a periodic representation can be derived (either using a chain code
or polar coordinates; see Jähne 2001 for details). Fourier analysis can be used to
analyse the periodic representation (Neto et al. 2006b). The resulting parameters
are phases and amplitudes of periodic functions, which can easily be normalised to
translation, rotation and size invariant parameters, since this information is located
only in the first two of them. The lower order parameters contain the overall shape
of the object and the higher order parameters contain information about the small
scale curvature changes of the contour (notches and small convexities). A curvature
description can be derived from the contour, if it is computed for different scales
(by smoothing), then this is called a CSS (curvature scale space) representation
(Mokhtarian et al. 1996). Zhang and Lu (2004) review shape description techniques
and distinguish between region-based and contour- based ones.

We found also skeleton features helpful for the discrimination of plant species
(Weis and Gerhards 2007). The skeleton is the central line (also called core) of a
region, and can be derived from a distance transform of the region or by morpho-
logical operators (Soille 2003). A distance transform assigns a distance value to each
region pixel: the shortest distance to the contour. Local maxima form a line which
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Fig. 8.6 Left: skeleton of image in Fig. 8.5. Right: two skeleton features (size and mean dis-
tance to leaf border) for Hordeum vulgare (HORVU), monocotyledons (MOKOT), Brassica napus
(BRSSN) and dicotyledonous weeds (DIKOT) in the feature space

is located in the middle of the object and with maximum distance to the borders.
Statistical measures (mean, maximum, variance, number of pixels) of these maxima
yield a thickness description of the shape, which is especially useful to discriminate
broad and narrow leaved species, since the core of a broad leaf has a bigger distance
to the border than elongated, thin leaves. Figure 8.6 shows the distribution of four
different classes in the feature space of two skeleton features. These features are well
suited to discriminate these classes, since the classes have a clustered occurrence in
the feature space.

There exist also ‘high level’ shape descriptions, that involve models for the
shape description and try to fit the model to the shape. Søgaard and Heisel (2002)
and Manh et al. (2001) used active shape models respectively deformable tem-
plates for the species discrimination. Templates of various shapes are generated and
parametrised (these parameters are the features) and the deformations necessary to
match the templates to the shape lead to a similarity measure. The more a model
has to be deformed to fit the shape, the higher is the dissimilarity. One problem with
these models is the comparably high complexity of the description, leading to a high
dimensional search space of the parameters and therefore a high computational load.
On the other hand these models can deal with partial occlusion.

3.3 Classification

All numeric features can be combined to feature vectors. The according feature
space has as many dimensions as there are features and is usually high dimensional.
A high dimensionality of the feature space opposed to the relatively low number of
training samples exposes the problem that the samples are ‘vanishing’ in the space
and can decrease the performance of a classifier, this is known as the ‘curse of
dimensionality’. Features without discriminative abilities to the problem introduce
noise into the classification process. Therefore a feature selection process should



130 M. Weis and M. Sökefeld

be performed before classification, aiming at the reduction of the number of fea-
tures to the most relevant ones. Combinations of features can lead to new features
with higher discriminative abilities. An example for the combination of features
are the spectral indices (see Eq. 1), combining the amplitude values of different
wavelengths to a new value. A popular feature selection algorithm is discriminant
analysis (Cho et al. 2002, Borregaard et al. 2000, Gebhardt and Kühbauch 2007a,
Neto et al. 2006b).

The classification is the last step of the analysis. Classification algorithms can
be grouped into unsupervised classifiers, also known as clustering, and supervised
classifiers. Unsupervised classifiers use the feature vectors without additional infor-
mation and create groups of similar objects according to a distance measure of the
vectors in the feature space. These groups are called clusters and may refer to classes
of the problem. A supervised classifier has to be trained with prototype informa-
tion, which are selected feature vectors of known class. Classifiers compare the
features of the unknown objects to the trained ones and assign a class. The num-
ber of classification algorithms is large, ranging from simple algorithms like kNN
(k-nearest-neighbour), that uses the training data directly, to complex functions and
function systems like neural networks, tree classifiers or support vector machines,
which generate a classifier model from the training set and use that for the classi-
fication. Cho et al. (2002) successfully trained neural networks, Pérez et al. (2000)
used Bayes rules and a nearest neighbour classifier with shape features. Burks et al.
(2005) used neural networks to classify texture features.

A shape based approach was tested by Oebel (2006) under field conditions,
the classification accuracies were suitable for the creation of application maps.
Table 8.1 shows the detailed results for Zea mays and Hordeum vulgare crops using
discriminant analysis.

Table 8.1 Confusion matrices (predicted and true class in percent) for Zea mays (corn, ZEAMX,
left) and Hordeum vulgare (spring barley, HORVS, right), taken from Oebel (2006)

pred\true ZEAMX DICOT MOCOT CHEAL pred\true HORVS DICOT MOCOT GALAP

ZEAMX 100 0 0 0 HORVS 97 4 4 4
DICOT 0 98 1 1 DICOT 0 87 9 5
MOCOT 0 6 90 4 MOCOT 0 4 93 0
CHEAL 0 11 0 89 GALAP 0 0 0 100

DICOT: dicotyledonous weeds, MOCOT: monocotyledonous weeds, CHEAL: Chenopodium
album, GALAP: Galium aparine. The test sets were independent from the training data with
more than 500 samples each

An example for a classification with shape features (region-based, Fourier and
skeleton features) is shown in Fig. 8.7. The image was composed of samples from
several IR-R difference images. A small training set was created containing proto-
types of the species. Nine different species have been classified using a radial basis
function network classifier. The objects in the image were labelled according to the
classification result.
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Fig. 8.7 Labelled image, each region is labelled with the classification result (the species)

The shape based approach has its limitations due to the number of plant species
and the shape variability within different growth stages of each species. A class
scheme was developed (Weis and Gerhards 2007) for these variations and used to
create training data for various weed and crop species.

4 Conclusions

The automation of weed detection in the field is a very challenging topic, which is a
current research topic of several working groups. The complexity of this task origi-
nates in the variability of the plant species in the field. Several plant properties have
been presented, which can be used to distinguish species. Approaches and results,
achieved with available sensor technology, were reviewed. Some sensors were
already used successfully for weed detection and discrimination under controlled
conditions and also in field experiments, but yet there is no general best practice to
achieve this, especially under changing conditions within the field. The combination
of different techniques might lead to robust solutions in the future. Sensor fusion and
integrative analysis of multiple sensor data could improve the weed detection rate
and also influence other precision-farming technologies. Commercial products like
special sensors and analysis equipment for this task are to be developed. If such
systems are available, the weed infestation can be assessed for site-specific manage-
ment and population dynamics research. These will add valuable data for precision
farming applications and decision support systems.
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Chapter 9
Detection of Fungal Diseases Optically
and Pathogen Inoculum by Air Sampling

Jonathan S. West, Cedric Bravo, Roberto Oberti, Dimitrios Moshou,
Herman Ramon, and H. Alastair McCartney

Abstract Practical solutions to measure temporal and spatial differences in the
epidemics of specific fungal plant diseases are described here. For diseases that
develop from widespread airborne inoculum, timing of disease control methods are
key. Air sampling, integrated with appropriate diagnostic methods can be used to
identify and quantify the presence of pathogen inoculum in order to guide spray
decisions. Where diseases are already established but with spatially variable sever-
ity (disease foci), spatially selective spraying of crops is possible using different
optical disease detection methods and knowledge of pathogen biology to estimate
an area of latent (invisible but developing) infection around disease foci. Spatially-
selective spraying mediated by optical sensors may also be beneficial when there are
crop patches that have low yield potential due to other factors such as poor emer-
gence, moisture or nutrient stress, or soil compaction. Precision agriculture methods
to improve the efficiency of fungicide applications in terms of timing and selective
spatial application can optimise the use of fungicides in integrated crop produc-
tion systems to provide the lowest environmental impact per unit of produce while
maintaining a high protection efficacy.

1 Introduction

The importance of understanding temporal and spatial differences in the develop-
ment of plant disease epidemics is discussed in other chapters (see Chapter 3). Here,
we investigate practical solutions to account for these differences and improve dis-
ease control by using precision-agriculture. Such spatial and temporal differences
in plant disease epidemics occur due to variation in factors that drive disease epi-
demics, such as weather and arrival or survival of inoculum. As a result, farmers
need to react to seasonal and site-specific differences in disease epidemics. Methods
already exist to improve disease control by pinpointing the timing of airborne
inoculum or by mapping the spatial location of infected plants, which often act as
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foci for the development of further disease and which make accurate assessment of
disease levels and therefore spray decisions difficult. Both approaches can deliver
economic and environmental benefits and are becoming increasingly feasible due
to advances in diagnostics and biosensors, global positioning system (GPS), and
variable rate spray technology.

2 The Opportunity for Optical Detection of Disease

Variability in environmental conditions (microclimate) needed for infection, patch-
iness of inoculum or variation in crop growth (where the coincidence of inoculum
and a susceptible crop growth stage is important for disease development) can
lead to spatially variable diseases in crops (Waggoner and Aylor 2000). In many
polycyclic diseases (diseases caused by many successive cycles of sporulation and
re-infection), the dispersal of spores around the original foci, intensifies the devel-
opment of visible patches of disease (McCartney et al. 2006, Zadoks and van den
Bosch 1994). If these foci of infection can be detected and treated, particularly at
early stages, it may be possible to curtail disease development without needing
to spray entire fields. Optical methods, using satellite, aircraft, model aircraft or
tractor-mounted sensors, enable such foci of diseases to be detected and mapped.
Disease maps can then be used to direct spray equipment to deliver fungicides to
prevent further disease development around the disease foci. Recent developments
in computer processing speed and in agricultural machinery that can spatially adjust
spray applications (Audsley and Beaulah 1996, Secher 1997), along with GPS allow
the prospect of Precision Pest Management (PPM) (West et al. 2003). PPM aims
to target chemicals where and when needed and at an appropriate dose. Recent
increases in grain prices have encouraged spray applications to be applied to whole
fields. Crop protection practices generally have a relatively low carbon footprint
compared to field operations such as ploughing and nitrogen application which rep-
resents a carbon cost in production and due to subsequent emission of N2O – a
powerful greenhouse gas (Berry et al. 2009). However, the use of sprays to remove
early foci of certain diseases, such as rusts, would avoid the farmer needing to ‘chase
the disease’ through the rest of the growing season and will reduce the total amount
of spray applied, which could reduce residue levels in food and water. Applications
of the methods to greenhouse crops have great potential since the indoor microcli-
mate and high crop canopy density typically results in very favourable conditions
for disease epidemics. In this situation, early detection of disease foci would have a
great impact on the amount of pesticide used.

3 Effects of Diseases on Plants

Disease can cause changes in leaf colour and shape, transpiration rate, crop canopy
morphology and density. This section explains how these changes affect the optical
properties of the canopy and allow the prospect of diseases to be detected optically
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Fig. 9.1 Summary of spectral reflectance from a healthy (a) and diseased (b) plant canopy

(Fig. 9.1). Changes in the quality of light emerging from a crop canopy may be
measured by spectroscopy or by imaging methods, which are explained below.
Spectroscopy measures the ‘average’ intensity of light at narrow selected wavebands
within the field of view of the light sensor (which may be deliberately or acciden-
tally biased towards the light arriving from the centre of the field of view). An entire
spectrum of light can be measured and the light intensity in one or a few wave-
bands may then be used for diagnostic purposes. Imaging methods on the contrary,
record the light intensity at one, a few or hundreds of wavebands for each individual
pixel forming a focussed image. Therefore, imaging methods take up much more
processing resources than spectrophotometric methods and require more sophisti-
cated optical sensors but provide more information. This can be important, as some
disease symptoms can only be distinguished from other stresses, such as nutrient
deficiency, when imaging with high spatial-resolution is used.

Light diffusely reflected from a crop canopy is influenced not only by the qual-
ity of the illuminating light but also by numerous reflections, transmissions, and
absorptions, within the tissues of the crop, which gives the canopy a specific spec-
tral signature. The spectral reflectance is the ratio of the intensity of reflected
light to the illuminated light for each wavelength. Standard optoelectronic sen-
sors allow the investigation of visible (VIS = 400−700 nm), near-infrared (NIR =
700−1,200 nm) and shortwave infrared (SWIR = 1,200−2,400 nm) spectral bands.
A healthy canopy typically exhibits low reflectance at VIS wavelengths, due to
strong absorption by photoactive pigments (Fig. 9.1). These photoactive pigments
(e.g. chlorophylls, anthocyanins, and carotenoids) collectively absorb blue, yel-
low, and red bands but reflect green light (ca 550 nm), so healthy plants appear
green. Healthy canopies also exhibit high reflectance in the NIR due to the absence
of absorbers and due to multiple scattering at the air-cell interfaces in the leaf
internal tissue, and low reflectance in most parts of the SWIR due to absorption
by water, proteins, and other carbon constituents (Ceccato et al. 2001, Wooley
1971, Fig. 9.1a). The substantial change from low reflectance in the VIS range,
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to high reflectance in the NIR, is known as the red edge, and occurs at wavelengths
around 730 nm. Leaves also emit radiation in the thermal infrared band (TIR ≈
(8,000−14,000 nm)) according to their temperature.

In diseased plants, by contrast, disfunction or destruction of the photochemical
pigments lead to the appearance of necrotic or chlorotic lesions on leaves, which,
along with the possible presence of pathogen spores on the leaf surface, lead to
an increased reflectance in the VIS range, especially in the chlorophyll absorption
bands (Fig. 9.1b). In particular, reflectance changes at wavelengths around 670 nm,
causes the red edge to shift to shorter wavelengths. In addition, biomass reduction
linked to tissue senescence, reduced growth, and defoliation decreases the canopy
reflectance in the NIR band (Fig. 9.1b).

Subtle changes in leaf water content can be detected in the SWIR range
(1,400–1,600 and 1,900–2,100 nm), while changes in the transpiration rate can be
detected in the TIR (8,000–14,000 nm), both of which can be caused by root and
stem base diseases in addition to foliar pathogens (Berliner et al. 1984, Mottram
et al. 1983, Pinter et al. 1979). For example, Lili et al. (1991) suggested that the
diseases, eyespot (due to Oculimacula yallundae) and cereal cyst nematode (due to
Heterodera avenae), in winter wheat, could be detected and mapped using aerial
instant thermal imagery.

In addition to changes in light reflected directly from crop canopies, the photo-
chemical efficiency of a plant, i.e., its health status, can be indicated by measurement
of chlorophyll fluorescence (450–550 nm; 690–740 nm). Not all absorbed light is
used in photosynthesis, some is dissipated as fluorescence and re-emitted at VIS-
NIR wavelengths (peak emission at 690 nm) and as radiative heat in the TIR region.
Increases in chlorophyll fluorescence intensity can indicate early stages of disease
or other stresses as plants react by decreasing photosynthesis, thus increasing flu-
orescence and heat emissions (Scholes 1992, Wright et al. 1995). Spots of high
fluorescence emission occurring on leaves are often small e.g. spots of high emis-
sion < 1 mm in diameter were caused by tobacco mosaic virus on tobacco (Daley
1995), by bean rust on beans (Peterson and Aylor 1995) and initially (2–5 days after
inoculation) by brown rust of wheat (Fig. 9.2; Bodria et al. 2002). Spots of high
fluorescence may be adjacent to positions of low fluorescence emission, as found in
the case of wheat brown rust several days after inoculation (Fig. 9.2; Bodria et al.
2002). The low emission spots were found to be locations of small chlorotic spots
where pustules of spores (still beneath the epidermis) were developing and these
were surrounded by a halo of high fluorescence emission. Therefore, detection of
stresses by fluorescence emission lends itself to imaging methods rather than spec-
troscopy (discussed later) since with spectroscopy, the overall light intensity of the
field of view, measured at a specific wavelength, may appear ‘normal’ when it in fact
includes spots of high and low fluorescence emission. Although, in general, changes
in fluorescence emission do not provide a precise and unambiguous indication of the
cause of specific stress factors, fluorescence does enable anticipation of disorders,
such as disease in plants, since the photosynthetic process is affected before tissue
modifications occur.



9 Detection of Fungal Diseases Optically and Pathogen Inoculum by Air Sampling 139

Fig. 9.2 Changes over time
in fluorescence emissions
from a wheat leaf inoculated
with brown rust recorded by
fluorescence imaging. A
spectrographic method would
not differentiate the dark and
bright areas from the normal
healthy leaf-reflectance at
early stages of disease
development

4 Fusion of Optical Factors to Diagnose Diseases from Other
Stresses

The previous section discusses how different diseases may affect the optical prop-
erties of plant canopies in different ways. Hence different wavebands may be
indicative of different diseases (Bryson et al. 1998, Dudka et al. 1998, Lorenzen
and Jensen 1989, Nutter et al. 1993, Nutter and Littrell 1996, Polischuk et al. 1997,
Sasaki et al. 1998). Practical systems tend not to measure high-resolution spec-
tra over wide spectral ranges, as this causes large amounts of data handling while
discriminating information are often concentrated at relatively few wavebands. For
each crop-disease system, canopy reflectance data collected by spectroscopy or by
imaging methods may be processed to simplify and automate disease detection.
This can be based on simple formulae, algorithms or done by neural networks e.g.
Moshou et al. (2004) and Bravo et al. (2003) used image analysis algorithms to dis-
criminate between background and wheat canopy (based on reflectance at 675 and
750 nm) and then by classification of combinations of spectral wavebands to dis-
criminate between healthy leaf tissue and disease lesions (West et al. 2003). This
algorithm was used under a wide range of field conditions and the output correlated
well with manual disease severity assessments (Fig. 9.3; Bravo et al. 2003, Moshou
et al. 2004). Further improvement resulted from multi-sensor fusion of spectral and
fluorescence features (Moshou et al. 2005), where a spectrograph provided a com-
bination of reflectance intensities at selected wavebands. These data, in turn, were
combined or ‘fused’ with lesion indices resulting from fluorescence imaging of the
same plants.



140 J.S. West et al.

1

2

3

4

5

6

7

8

9

0            1            3            5 0             1            3            5
1

2

3

4

5

6

7

8

9

Disease mapped by
manual assessment 

Disease mapped by
optical sensors 

Fig. 9.3 Maps of the severity of stripe rust on wheat in early June, produced by manual assessment
(bottom left) of disease severity on ten tillers located 1 m apart or by optical sensors (bottom right)
mounted on a tractor boom (top). The disease focus was mapped half-way up the right-hand side
of the plot and had been established in late-winter by hand planting a pot of inoculated wheat

Therefore for practical reasons it is best to identify wavebands or combina-
tions of wavebands that can discriminate between diseased and healthy plants. The
light intensity measured in different wavebands, either by imaging or by spec-
trophotometric methods, may be processed to produce a ratio between two different
wavebands, which is associated with a particular spatial reference point, allowing
a map of the ratio to be produced. For example, the ratio between reflectance at
700 nm and at 550 nm, which is highly correlated with total leaf chlorophyll content
(Carter and Knapp 2001, Gitelson and Merzlyak 1996), could be used to produce
a chlorophyll content map of the field. However, Carter (1993) and Carter and
Knapp (2001) found that the same canopy optical signature was found in nitrogen-
deficient plants due to reduced chlorophyll content. A possible solution arose since
the nutrient deficient plants were found to have a relatively uniform pattern of high
reflectance symptoms compared to localized, discrete lesions caused by many dis-
eases (Bausch and Diker 2001, Bausch and Duke 1996, Wiesler et al. 2002, Yoder
and Pettigrewcrosby 1995). Therefore imaging methods with associated sophisti-
cated processing methods, such as those described by Moshou et al. (2006) and
Bravo et al. (2002), can be used to distinguish disease symptoms from nutrient
stresses and classify images to estimate a percentage area affected by the principal
disease or diseases.
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5 Measurement Techniques

Different methods are available for each type of measurement described above:
spectrophotometry, spectral line imaging (or spectrographic imaging), and mul-
tispectral imaging can be used for canopy reflectance measurements; fluores-
cence kinetics, spectrometry, and imaging can be used to measure canopy flu-
orescence; and thermoradiometry and thermography can be used for thermal
sensing.

5.1 Reflectance

Disease detection based on canopy reflectance requires measurements in one or
more wavebands to be made simultaneously. Spectrophotometers are the simplest
equipment to use for this purpose as they measure the spectrum of light reflected
from the whole (mostly circular) field of view of the instrument, but do not provide
any spatial information on canopy reflectance data. The reflectance spectra can be
measured in narrow (0.5–5 nm) or broad (20–100 nm) wavebands. A large field of
view reduces the sensitivity of spectrophotometers as diseased areas may represent
only a small part of the reflection combined with reflection from healthy leaves and
soil.

Spectral line or spectrographic imaging can be used to provide spatial resolution
by measuring individual spectra along a target line in the canopy. Light reflected
from the target line is split by a spectrograph into individual wavelengths that are
focused onto a camera sensor to create an image with a spectral and a spatial axis.
The spatial resolution along the line depends on the optics used, but can be as small
as 0.5 mm (Jørgensen 2002). The system used by Bravo et al. (2003) to detect wheat
diseases had a spatial resolution of 0.65 mm, a target line length of 0.5 m and a
spectral resolution of 7 nm over a range of 450–900 nm.

Spatial resolution can be increased by using array-sensors. Multispectral cam-
eras can be used to capture images in different spectral bands to give both spatial
and spectral information, but unfortunately, the spectral resolution is generally low
with a low number of possible working spectral bands. However, these can be
chosen among the most discriminating wavelengths, and the images can be pro-
cessed to provide information about the measured area to identify crop features and
remove background information from the signal; e.g. pixels representing reflectance
from plants or soil in an image can be separated using two wavebands (NIR and
red or green and red) or even a single NIR waveband because of the high reflec-
tivity of plant tissue compared to soil at this waveband (Andersen et al. 2000,
Marchant et al. 1998). If a relatively small number of wavebands can be used
to identify the presence of disease symptoms robustly, detection equipment could
be made cheaper by using simple digital cameras equipped with suitable optical
filters.
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5.2 Fluorescence

Disease detection by fluorescence requires the sensed crop area to be exposed to
an excitation pulse of light and equipment to detect the resulting fluorescence. The
excitation sources are typically lasers or UV lamps. Images of fluorescence can be
recorded by digital cameras either fitted with a single bandwidth filter (usually at
690 nm) or by multispectral cameras if many fluorescence wavebands are used for
diagnosis. Due to their low intensity, fluorescence signals can be masked by back-
ground ambient light, and pulsed sources coupled with synchronized gated detectors
or, alternatively, less complex differential systems can be used, by subtracting an
image acquired with an exciting source on, from a background image acquired with-
out the excitation. The latter method was used at night to detect brown rust infections
in a wheat canopy under field conditions (Bodria et al. 2002). Pulsed gated systems
have been used in daylight to obtain multispectral fluorescence images of leaves
over several tens of metres, by integrating the fluorescence signal over numerous
(≈100) excitation exposures (Johansson et al. 1996, Saito et al. 1997). A proto-
type system to measure chlorophyll fluorescence in the field, based on multispectral
imaging, comprised a xenon arc lamp, fitted with a 420 nm low-pass filter, as an
excitation source, an opaque shield to reduce background illumination. Images were
acquired with the excitation off and on and the data processed to form a ‘fluores-
cence map’ (the difference between the two images). Research is progressing to
develop faster measurement systems for use on moving platforms such as tractors
and aircraft (Cecchi et al. 1994, Corp et al. 1997, Ludeker et al. 1996, Flexas et al.
2000, Morales et al. 1999). However, practical field-based fluorescence detection
is currently limited due to the complexity of equipment required for operation in
daylight, the energy demand for the excitation source when used on a reasonably
wide measurement area, and the costly equipment necessary for the high resolution
needed to detect relatively small differences in fluorescence. Remote-sensed kinetic
fluorescence techniques offer potential for future use in the field as these methods
are not affected by variations in ambient light.

5.3 Thermal Radiation

Infrared thermometers or thermoradiometers can be used remotely to measure ther-
mal radiation, allowing the temperature of a surface to be estimated in the field of
view of the instrument. The field use for disease detection is very limited as they do
not provide any spatial information. Thermal imaging however, has great potential
although equipment is still expensive, and this is reviewed in Chapter 11.

6 Practical Considerations for Disease Mapping

Spectral reflectance is affected by the quality and quantity of the illuminating light
in addition to the reflection characteristics of the target leaves. Therefore it is best
practice to normalize reflectance spectra to account for variations in illumination,
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so practical reflectance measurement systems usually monitor the spectral content
of incident illumination (Price 1994, Borel and Gerstl 1994).

Furthermore, reflectance spectra are also affected by the angle between the direc-
tion of illumination (usually the direction from the sun) and the viewing direction of
the sensor. For a large angle, i.e. when the sensor is orientated towards the light (for-
ward scattering), the measured spectra will include a significant proportion of light
transmitted through leaves as well as reflected from them, which will complicate
the interpretation of the image. As a result, vehicle mounted optical sensors need
to be mounted to minimize the influence of solar elevation on the measured signal.
Alternatively, interpretation algorithms may be used to account for solar angle and
proportions of direct to diffuse radiation (e.g. BRDF correction). In addition, the
viewing angle of any vehicle-mounted optical sensors must be chosen (a) to reduce
the impact of reflections from background soil (which are transmitted through leaves
to augment reflections directly from the canopy), and (b) to avoid too shallow an
angle, which will view predominantly the top leaves of the canopy – these leaves
usually have little or no disease symptoms visible in actively growing crops as they
will have only recently unfolded and relatively long incubation periods mean that
disease symptoms will not yet have developed.

In addition to practical tractor-mounted optical sensors, other platforms such as
satellite, aircraft or model aircraft may be used. These alternative platforms also
have their own technical problems and interpretation difficulties. Satellite systems
tend to have pixel sizes representing 10–1,000 m2 compared to less than 0.5 mm2

for tractor mounted systems (Blakeman et al. 2000, Bravo et al. 2002). As a result, it
is difficult for satellite systems to allow identification of the cause of patches of plant
stress, or to detect very small (early) patches of disease, but they can prompt a visual
inspection and so serve a useful purpose in scouting for diseases and other stresses.
Satellite-based optical sensing has proven very effective in identifying foci of pas-
ture infected with wheat streak mosaic virus (Rush et al. 2008). Satellite systems can
be expensive but are likely to reduce in price over coming years (see Chapter 24 for
further examples). Nevertheless, imaging from satellites also has problems due to
revisit frequency and cloud cover at key times of the year in some locations. Cloud
cover may also be a problem for aircraft systems and to model aircraft-mounted sen-
sors but the latter has added flexibility (in locations where it is allowed). Improved
spatial resolutions (down to < 0.1 m) are possible from aircraft compared to satellite
platforms (Blakeman et al. 2000) but costs are also increased since data acquisition
equipment needs to be faster than that for terrestrial vehicle-mounted systems. An
alternative approach is to use more than one sensor technology and to integrate mea-
surements in order to obtain a more sensitive and discriminating system than could
be obtained using a single sensor.

Currently, limitations in computer processing power mean that spectral data,
from remote sensors or from tractor-mounted sensors, cannot be collected and used
in real time to direct spray equipment. For real-time sensing and spray operation,
sensors, algorithms and spray application systems would need fast response times
(Giles et al. 2002), which has only been achieved for control of targets that are easy
to identify, e.g. weeds – often growing against contrasting backgrounds (Miller and
Stafford 1993, Ramon et al. 2002, Slaughter et al. 1999). For identification of patchy
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diseases, it is likely that manned vehicles operating at currently acceptable speeds
would need to pre-map the site (other operations may be done while the optical data
are collected) before returning for spray application with equipment directed using
GPS or a local reference system.

7 Limitations to Precision Disease Control

Control of many arable crop diseases may not be improved by disease mapping.
Control of diseases that occur uniformly over the field (e.g. Septoria leaf blotch
of wheat), that appear and spread quickly (i.e. with a high epidemic rate), or that
manifest themselves too late for control measures to help (e.g. root and stem-base
diseases), may still be best controlled by sprays to protect certain growth stages
of the crop or when inoculum-based (discussed later) or weather-based decision
support systems suggest that there is a high risk of disease (West et al. 2003). There
would be an advantage to mapping the locations of soilborne diseases that produce
relatively static foci, such as the potato cyst nematode (Globodera rostochiensis and
G. pallida), so that future treatment programmes could be targeted. Optical sensing
and mapping may be better suited to improving disease control in protected crop
systems, where conditions may be manipulated to improve disease detection (e.g.
detecting fluorescence at night) and where sensors may be moved above the crop
on a system of cables to scout for diseases and other stresses. See Chapter 25 for
examples of precision disease control in bed-grown crops.

In practical arable crop systems, since many latent infections will not be
detectable, patches of disease will often be underestimated by disease mapping
and since many fungicides are curative, not eradicative, for polycyclic diseases,
applications to patches of disease and a surrounding area of the crop at risk of
receiving propagules from the existing patch may still need a repeated follow-up
application to a larger zone at a later date as latent infections mature to sporu-
late (West et al. 2003). The estimation of the zone of latent infection and area at
risk of receiving enough inoculum to cause economic damage requires an under-
standing of the temporal and spatial dynamics of disease foci development for
each disease. Prediction of disease patch expansion is complex [for reviews see
Zadoks and van den Bosch 1994, McCartney et al. 2006, Waggoner and Aylor
2000], but simple empiric estimations of areas at risk of developing disease around
a detected patch of disease could be built into the maps used to control spray
equipment.

Despite improvements in technology that now enable precision disease manage-
ment to be realised, there is likely to be a case for adopting precision disease control
only in a limited number of systems, where there is a demand for reduced spray
applications but a relatively high value crop to justify the outlay for equipment.
Currently, many arable crops are at relatively high values and as a result, farm-
ers are more likely to spray entire fields to ‘protect their investment’. Although
weather-based disease forecast models and crop-growth stage-based decision sup-
port systems exist to aid farmers to spray entire fields, an approach that has been
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neglected to improve the precision of the timing of spray applications is that of
inoculum-based disease forecasting, which is described in the next section.

8 Precision Pest Management by Air Sampling

Precise detection of inoculum can assist disease control in systems where disease
development is usually widespread but where the timing of epidemics may vary. Air
dispersal is one of the main ways for many plant pathogens to reach new locations
with some fungal spores able to travel great distances and remain viable to cause
disease (Brown and Hovmøller 2002, McCartney et al. 2006). Spores released from
sources either a long distance from the crop or from multiple sites throughout a
region result in well dispersed airborne inoculum, which, if infection conditions
are suitable, lead to a relatively uniform distributions of disease. However, seasonal
differences in weather patterns, which influence the production of spores, affect the
timing of onset of epidemics and therefore the optimal time for control strategies to
be deployed. Although there is potential for weather-based models to predict spore
release, this has not been developed for some pathogens or may be inaccurate due to
wide diversity of responses to environmental cues in pathogen populations or a wide
diversity of microclimates in certain systems. Inoculum detection has been used as
a component of disease warning schemes to guide disease control measures in some
systems (West et al. 2008), and is of particular value if the disease incubation period
is long.

Interest in the use of air sampling in precision disease detection has increased
recently because DNA-based diagnostic methods such as quantitative PCR (qPCR)
have been demonstrated to be applicable to samples collected on many different
types of traditional air samplers (Rogers et al. 2009, West et al. 2008; Fig. 9.4).
Some newly developed air samplers (miniature cyclone, MicroTitre Immuno Spore
Trap, and the Ionic spore trap) have been, designed specifically for analysis using
non-visual methods such as immunological and molecular diagnostics (West et al.
2009, Anonymous 2009). The fusion of air sampling and analysis of appropriate
genetic markers is now enabling genetic traits within populations to be monitored
in an unbiased way. This can provide information on whether resistance to cer-
tain fungicides may be widespread within a particular species of pathogen, whether
the pathogen strains present are likely to produce food-spoilage mycotoxins, and
even which cultivars may be at risk of infection by the predominant pathogen races.
This level of information was not available previously by analysis of air samples by
microscopy or even by immunology.

The optimal location of air samplers depends on how widespread the host crop
is and how common the pathogen is, since air samples, particularly if collected at
ground level, are heavily weighted in favour of spores produced nearby. Further
work is required to investigate the spatial variability of spore production and the
resulting air spora at different scales and at different sampling heights above or dis-
tances away from crops in order to guide disease control decisions regionally. A key
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(a) Spore traps - air particles 
impacted onto waxed tape 

(b) Air particles
on waxed tape  

(c) Disruption and
   DNA extraction 

(d) Quantification of 
target DNA by qPCR 

Fig. 9.4 Example of processes currently used to detect airborne inoculum of fungal plant
pathogens. Burkard 7 day spore trap (a), daily air sample on waxed tape (b) processing for DNA
extraction from all spores, pollens and other particles on the tape (c) quantification of the number
of target spores present by quantifying the pathogen’s DNA by qPCR. Various genetic traits of the
pathogen population can be monitored if suitable genetic markers are available

factor to enhance this approach further is to develop methods, such as biosensors,
that can detect pathogens rapidly and on site.

9 Discussion

For optical disease detection systems to be useful, it is essential to understand
whether detected foci are still compact and can be treated discretely, or whether
spore dispersal conditions will mean that the entire field needs to be sprayed. New
modelling approaches (Aylor and Ferrandino 2008) are allowing predictions of the
spread of inoculum and disease patch expansion. Optical techniques can now be
used for disease detection and reflectance measurement offers the most cost effec-
tive method for field-based systems with spatial resolutions superior to that available
from aircraft- or satellite-systems. This can allow discrimination between diseases
and other stress factors but further improvements are required to overcome prac-
tical problems such as vibration, variations in illumination, sun/sensor orientation,
background soil reflection, mechanical stress, and dust. Promising, sophisticated
methods, such as fluorescence measurement may be more feasible in protected crop
systems. In arable systems, a barrier to the uptake of this technology is that there
are relatively few patchy diseases that are likely to be detected in time for spatially
variable spray application to be effective.
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Inoculum-based disease forecasting could be viewed as an additional form of
precision pest management and offers great potential for future information-driven
disease control systems as biosensors able to detect inoculum become available for
use on-site or as lab-based methods become cheaper, quicker and able to detect and
quantify inoculum of a wide spectrum of pathogens.
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Chapter 10
Remote Sensing for the Detection of Soil-Borne
Plant Parasitic Nematodes and Fungal
Pathogens

Christian Hillnhütter, Astrid Schweizer, Volker Kühnhold, and Richard
A. Sikora

Abstract This chapter reviews past developments and the present state-of-the-art
remote sensing for the detection of soil-borne nematodes and plant pathogens.
Nematodes and soil-borne pathogens are considered ideal targets for the applica-
tion of precision agriculture with non-contact sensing methodologies. The clustered
occurrence and low level of mobility of nematodes and pathogens in the soil and the
induction of symptoms in the leaves make them perfect targets for remote sensing
detection. Data obtained with infrared thermography and hyperspectral reflectance
for the remote sensing of plant parasitic nematodes and root rotting fungi in sugar
beet as well as delineation of complex-disease interactions is also presented. The
management of these two pest groups usually relies on full field pesticide treat-
ments, even when only a small section of the field is infested. This underscores
the need for remote sensing of disease clusters and the resulting application of
site-specific management.

1 Introduction

Remote sensing (RS) for the detection of damage caused by plant parasitic nema-
todes and/or soil-borne pathogens for optimization of integrated pest management
is a ‘best-fit technology’. There are a number of biological and technical factors that
favor the use of RS for these two pest groups: (I) damage caused by root infections
is visible in the foliage at different times in the growing season; (II) nematode and
disease infestations are clustered in the field; (III) movement out of a cluster is slow
due to low nematode and pathogen mobility; (IV) introduction of new infection loci
into a field are rare; (V) precision detection used in one season can be applicable for
future crops and (VI) chemical and biological control technologies are available that
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allow site-specific treatment. These control methodologies include: granular pesti-
cides for targeted treatment, single and combined fungicide and nematicide seed
treatments, biopesticide soil and seed treatments as well as resistant and tolerant
varieties. The use of this knowledge to develop site-specific plant health manage-
ment can significantly reduce yield losses due to these two pest groups and can lead
to a high cost/benefit return for the grower.

Plant parasitic nematodes have been estimated to cause crop losses of up to 20%
or approximately 100 billion US$ annually worldwide on crops such as cotton, soy-
bean, cereals, tuber crops, legumes as well as fruits and vegetables (Cai et al. 1997,
Luc et al. 2005). Crop losses due to fungal and bacterial pathogens, many of them
soil-borne, also are reported to inflect annual losses of 7–15% in major field crops
such as wheat, rice, potato, maize and soybean (Oerke 2005).

A major limiting factor in the use of precision crop protection technology has
been the complex soil-ecosystem itself and the difficulty involved in prediction of
nematode or disease occurrence. The analysis of soil samples to determine whether
or not nematode densities exceed the action threshold is expensive and in some
cases for technical reasons not feasible. In Germany the cost for analysis of a soil
sample for the sugar beet cyst nematode Heterodera schachtii ranges from 24 to
61C, whereas in Iowa (USA) analysis of a soil sample for the soybean cyst nematode
H. glycines can cost 15–60 US$ (Tylka 2006). The cost of analysis of soil samples
to estimated pathogen thresholds by ELISA or PCR can range from 25 to 100C.

The number of samples and follow-up laboratory examinations needed on a per
hectare basis to give a reasonable estimate of potential damage when the nema-
tode or pathogen has a cluster distribution is large and costly. Therefore, in many
instances threshold estimation is limited to one extraction from a single compos-
ite soil sample that produces an average infestation level over the entire field.
Considering the total cost of sampling and lab analysis, the true dimension of crop
loss and the cost of conventional full scale field application of a pesticide – the use
of RS that leads to site-specific variable rate application would be more efficient,
economical and environmentally friendly.

The use of newly developed and/or refined components of current precision agri-
cultural technology such as RS and soil electric conductivity (ECa) coupled with
geo-information systems (GIS) allows instant detection and generation of digital
maps that clearly represent the heterogeneous distribution of soil-borne nematodes
and pathogens. Based on the information obtained with these measurements, either
from previous crops in a rotation or prior to planting, precision crop protection
decisions can be made and proper site-specific plant protection applied.

The use of high resolution RS equipment for the detection of insect and foliar
pathogens in traditional field crops and agro forestry and has been reviewed else-
where (Nutter 1990, Nilsson 1995, Stafford 2000, Zhang et al. 2002, Pinter et al.
2003, Lu et al. 2004). Our knowledge regarding the use of RS for detection and
management of soil-borne plant parasitic nematodes and pathogens, however, is still
poorly developed.

This chapter will: (I) review the state of the art of RS based on measurement of
leaf and canopy reflectance for detection of nematode and pathogen damage; (II)
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present recent findings on RS for nematode and crown-rot in sugar beet; (III) give
data on the discrimination of complex nematode-pathogen interactions; and (IV)
discuss the need for future research in RS.

2 Review of Research on Remote Sensing of Plant Parasitic
Nematodes and Soil-Borne Pathogens

Steddom et al. (2005) stated that RS is the practice of gathering information on an
object without touching it and that most such technologies measure different parts
of electromagnetic radiation such as heat or light. Plants depend on radiant energy
for conversion of solar energy into organic substances. The leaf can absorb light
in the visible part (VIS) of the electromagnetic spectrum (400–700 nm), where the
spectrum of reflectance is quiet low, with a peak at about 550 nm in the green region.
In the near infrared (NIR) short-wave region (700–1,400 nm) reflectance increases
up to 50%, whereas in the long-wave (1,400–2,500 nm) reflectance decreases due to
water absorbance. Leaves not only absorb and reflect light but light also is transmit-
ted through the leaf. The far infrared (FIR) which starts at a wavelength of 5,000 nm
is important in thermometry.

Disturbance or destruction of normal root functioning induced by soil-borne
nematodes or pathogens causes decreases in the content of water, chlorophyll,
carotinoids and anthocyanin levels in the leaves which simultaneously leads to shifts
in reflectance of the electromagnetic spectrum or changes in leaf temperature. The
use of reflectance in the NIR and FIR spectrum, therefore, can be effectively used
to detect disease symptoms even before they are visible.

The first aerial images of damage caused by a soil-borne plant disease were made
in the year 1927 when Taubenhaus et al. (1929) took pictures from an US Army air-
plane at an altitude of 75–150 m to detect symptom development of cotton root rot
caused by Phymatotrichum omnivorum. Black and white panchromatic film sensi-
tive to all wavelengths of VIS light and a light yellow filter were used for estimation
of damage and yield loss. Once the use of aerial photography was established as
a technique, false color infrared (IR) film, new cameras, films and filter combina-
tions were developed and available for experimentation. The films were called false
color, because healthy green vegetation appears red or pink on the positive photo-
graphic transparency. Infrared film is sensitive to light in the green and red regions
at wavelengths of 500–700 nm and in the NIR region at 700–950 nm (Tarkington
and Seren 1963). The first use of IR imagery for detection of plant parasitic nema-
todes was conducted in the early 1960s in citrus plantations by Norman and Fritz
(1965) to detect the burrowing nematode Radopholus similis in citrus trees before
visible symptom development. This work resulted in a reduction in sampling and
the introduction of site-specific nematicide treatment. Heald et al. (1972) took IR
aerial images of Texas cotton fields and were able to detect the reniform nema-
tode Rotylenchulus reniformis as well as early symptoms of P. omnivorum root
rot. Brodrick et al. (1971) examined the use of multispectral sensors that had a
combination of four or more spectroradiometers. Each sensor records one scene



154 C. Hillnhütter et al.

of a small band which are then all combined to obtain the multispectral image.
With this technique avocado trees infected with Phytophthora cinnamomi root rot
were photographed from an altitude of 1,500 m which resulted in 100% identifica-
tion of diseased trees verse only 80% with IR film. Gausman et al. (1975) using a
spectroradiometer detected differences in cotton leaf reflection levels in nematode
infested compared to control plants. Plants with high populations of R. reniformis
showed lower leaf reflectance compared to the control plants in the wavelengths
500–2,500 nm. Leaves of the nematode parasitized plants were thinner and more
compact in the inner cellular layers and therefore caused lower light reflection.

Pinter et al. (1979) conducted the first experiments on the detection of biological
stress in plants by IR thermometry. The soil-borne root rotting pathogens Pythium
aphanidermatum on sugar beet and P. omnivorum on cotton caused a measurable
increase in leaf temperature of 3–5◦C before visible disease symptoms occurred.
Toler et al. (1981) and Lee (1989) published two short reviews on aerial IR imagery,
economic cost-benefits and future perspectives of remote sensing. They summarized
most of the work conducted on soil-borne organisms up to 1980.

Based on earlier work, Gebhardt (1989) demonstrated differences in water
availability in agricultural crops by aerial thermometry. Plant parasitic nematodes
and many soil-borne pathogens cause reduced water uptake in infested plants.
A decrease in water uptake results in decreased leaf transpiration and influences
overall plant temperature which is usually lower than the surrounding environ-
ment. The decreased transpiration due to biotic stress causes an increase in leaf
temperature that is detectable by IR thermometry.

IR thermometry has been sporadically used in nematology. Berg (1980) working
in nematode infested sugar beet fields in Germany and in Italy was able to dif-
ferentiate H. schachtii infested symptomless patches from healthy areas. Gebhardt
(1984) also showed differences in canopy temperature of potato plants infested
with the potato cyst nematode Globodera rostochiensis. On winter wheat Nicolas
et al. (1991) detected significantly higher canopy temperatures in areas moderately
infested with H. avenae as compared to low infestations and considered this effect
to be caused by increased stomatal resistance.

Using multispectral video imagery Cook et al. (1999) were able to discriminate
between damage by the root-knot nematode Meloidogyne incognita and root rot due
to P. omnivorum alone as well as in combination. This was the first attempt to detect
a complex-disease interaction with RS.

Heath et al. (2000) conducted experiments to predict the number of G. pallida
and G. rostochinensis parasitizing potato plants using non-destructive hyperspec-
tral measurements. High correlations were found between the numbers of juveniles
per gram of potato roots and the Normalized Difference Vegetation Index (NDVI)
values calculated from handheld FieldSpec R© FR (Analytical Spectral Devices Inc.,
Boulder, USA) spectroradiometer reflectance data. Hyperspectral sensors offer con-
tiguous band placement over a wide spectral range and are superior to multispectral
sensors with fewer spectral bands (Schowengerdt 1997).

The development of narrowband hyperspectral sensors was an important devel-
opment in RS due to the greater amounts of data obtained. With the combination of
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GIS and RS technologies Nutter et al. (2002) was able to map the spatial distribution
of soybean cyst nematode, H. glycines, in soybean fields. Appropriate calibra-
tions were made for different atmospheric conditions by collecting data at different
times in the growing season simultaneously by satellite, aircraft and ground-based
multispectral sensors. With the same nematode and crop but increasing nematode
densities, Asmus and Ferraz (2002) tried to detect differences in leaf area, leaf
color, photosynthetic rate and chlorophyll fluorescence in greenhouse trials. Leaf
area, chlorophyll content and photosynthetic rate were reduced by H. glycines.

Wheeler and Kaufman (2003), however, obtained negative results in the predic-
tion of M. incognita damage in cotton by IR aerial imagery. At that time, multiple
flight campaigns and data analysis for variable-rate nematicide application was more
expensive than uniform treatment of the entire field. Using multispectral canopy and
hyperspectral leaf reflectance data Steddom et al. (2003) were unable to differenti-
ate differences between yellowing of sugar beet leaves due to a lack of nitrogen and
the yellowing caused by rhizomania, a soil-borne virus disease.

Lawrence et al. (2004) using aerial and handheld hyperspectral sensors to detect
R. reniformis in cotton and data analysis with the MATHLAB program in combina-
tion with self-organizing maps developed by Kohonen (1998), obtained a prediction
accuracy that ranged between 83 and 97%. They suggested the need for research
on the effects of different soil types and in scaling leaf level measurements into a
commercially viable orbital or suborbital system to validate the robustness of this
approach (Lawrence et al. 2007).

Hyperspectral data is highly adaptable to the identification of soil-borne pests
and diseases because of the higher amount of data available as a result of the nar-
rower bands and the possible use of hyperspectral vegetation indices. In addition,
the identification of the most sensitive bands of hyperspectral data for a specific
pest group seems promising. Rupe et al. (2005) for example, isolated four bands out
of 300 which were most responsive to H. glycines in soybean fields. These bands
were found in near range reflectance by the Maximum R2 procedure. Hillnhütter and
Mahlein (2008) noted the importance not only of high spectral resolution, but also
that spatial resolution and the temporal factor are important in detection of small
areas in a field before yield loss increases.

3 Remote Sensing of Nematodes and Fungal Root Rot
in Sugar Beet

The European Union is one of the world’s most important sugar producers with a
yearly harvest of 19–20 million tons. The vast majority of this sugar is obtained from
the sugar beet Beta vulgaris. Sugar beet covers 2.1 million hectares and is 1.4% of
the agricultural area (European Commission 2006). Sugar beet will become even
more important as the need for bioethanol production increases.

The cyst nematode H. schachtii is a major constraint to the sugar beet crop in
most European countries. The nematode is found in all sugar beet growing regions
and losses of up to 50% have been reported. Management of the nematode is very
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important, but varies from country to country and includes the use of: rotation with
non-hosts, resistant and tolerant cultivars, resistant green manure break crops and
the use of nematicides (Schlang 1991). Rhizoctonia solani crown and root rot is
the most important soil-borne disease impacting yield (Kiewnick et al. 2001). Yield
losses can range from 5 to 10% in the EU and USA (Büttner et al. 2004). Control is
usually attained by planting tolerant cultivars or through the use of fungicides even
though the latter are only partially effective. In most cases field symptoms develop
in patches due to the clustering nature of the pest and the disease. In some cases both
pests occur simultaneously in a field. This makes H. schachtii and R. solani ideal
for RS and site-specific application of pesticides, biopesticides and the site-specific
sowing of resistant cultivars to reduce input costs and increase yield.

The sugar beet crop is highly suited for RS analysis because it is a complanate
growing plant with a planophile leaf structure. Furthermore, there is a direct rela-
tionship between root development and plant vitality (Nowatzki et al. 2009). This
makes B. vulgaris a good target for research into the use of RS for control of
nematodes and fungi. In addition, damage to the root has direct effects on the
leaves (Franke 1997). The sugar content of the beet also is negatively affected
by root damage or direct damage to the root by both pest groups. The develop-
ment of complex-diseases when these two pests simultaneously infect the plant
also can lead to synergistic interactions and additional root damage and crop
loss.

Very few studies have been conducted on the use of RS for the detection of soil-
borne pests in sugar beet. Heterodera schachtii, studied by Sanwald (1979) using IR
aerial images resulted in the lack of significant changes in spectrometric reflectance.
Using high spatial resolution digital multispectral video Hope et al. (1999) detected
root rot in sugar beet caused by R. solani. Their goal was to use reflectance data to
determine the most valuable vegetation index for classification of sugar beet root
rot. The NDVI developed by Rouse et al. (1974) was considered the best predictor
of root rot infestation and is the most commonly used vegetation index. Spatial and
temporal distribution as well as the economic impact of R. solani on sugar beet
using multi- and hyperspectral, airborne and handheld data was successfully used
to differentiate infected areas within a field (Laudien et al. 2004). The integration of
a multi-temporal knowledge based approach might increase detection of a disease.
The use of an internet based spectral library for diseases is also important and was
simulated by Laudien et al. (2006).

Investigations in the field, greenhouse and climate chambers were conducted in
Germany on the use of IR thermography and leaf reflectance for the detection of
H. schachtii, Ditylenchus dipsaci and R. solani in sugar beet. The use of thermal
imaging has been shown to be suitable for the detection of foliar plant pathogens
elsewhere (Chaerle et al. 2004, Lindenthal et al. 2004, Oerke et al. 2006, Lenthe
et al. 2007) and is discussed in Chapter 11. Research using IR thermometry to
detect soil-borne organisms is less developed (Pinter et al. 1979). Schmitz (2005)
showed significantly higher leaf temperatures in sugar beet varieties susceptible to
H. schachtii (Table 10.1). The nematode parasitizes the roots of the plants over
the entire growing season, producing a cell syncytium responsible for disruption
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Table 10.1 Mean leaf temperature of the nematode susceptible sugar beet cultivar Monza inoc-
ulated with increasing densities of Heterodera schachtii over time (growth period 2003, Schmitz
2005)

Nematode density
[eggs and juveniles
per 100 ml soil]

Time of assessment

June 13th July 17th July 29th August 7th

<500 21.45◦C a 24.87◦C a 25.30◦C n.s 35.63◦C n.s
500–1,500 21.86◦C ab 25.08◦C ab 25.41◦C n.s 36.37◦C n.s
>1,500 22.28◦C b 25.28◦C b 25.76◦C n.s 36.53◦C n.s

Means with different letters in one column are significantly different, Tukeys HSD-Test (p < 0.05;
n = 10), n.s. = not significant

of the xylem tissue and reduction in nutrient and water uptake. Nematode damage
results in stunted growth, leaf yellowing and wilting under water stress conditions.
Nematode infestation, therefore, is responsible for a significant reduction in leaf
transpiration which leads to increased leaf temperature. These symptoms usually
appear in elongated patches in the field or in bands caused by soil cultivation later
in the growing season.

Significant differences also were detectable between the lowest and highest
nematode density in greenhouse tests (Table 10.1) as well as in field experiments
(Schmitz et al. 2004a, Schmitz 2005). These results confirmed those obtained by
the European Community in Germany and Italy in the early 1980s (Berg 1980). On
potato Gebhardt (1984) showed significant canopy temperature differences induced
by G. rostochiensis. However, Schmitz et al. (2004a) were the first to show these
canopy temperature differences in sugar beet induced by H. schachtii by aerial
images taken with a helicopter from an altitude of 200 m at a correlation of
r = 0.6 (Fig. 10.1).

Fig. 10.1 Digital RGB picture (a) and digital IR thermography picture (b) of a field infested with
pre-adjusted Heterodera schachtii population densities in the rectangular plots (Schmitz 2005)
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Laser-induced chlorophyll fluorescence (LIF) and also pulse amplitude
modulated chlorophyll fluorescence (PAM) are two other non-contact methods used
to detect biotic and abiotic plant stress (Lichtenthaler and Miehé 1997, Apostol
et al. 2003, Asmus and Ferraz 2002, Cervantes-Martínez et al. 2002, Chaerle et al.
2004). LIF and PAM are methods that gather data on photosynthesis and chloro-
phyll content (Tartachnyk and Rademacher 2003). Schmitz et al. (2006) conducted
greenhouse experiments to test LIF and PAM for the detection of damage caused
by increasing densities of H. schachtii on sugar beet. Plants showed a strong reduc-
tion in CO2 assimilation with increasing nematode densities. Nematode infection
led to a degradation of leaf chlorophyll in later stages of infestation and led to an
increase in the F680/F740 ratio and ground fluorescence (Fo) and a decrease in photo-
chemical efficience (Fv/Fm) (Schmitz et al. 2004b). Discrimination analysis of the
combined data from LIF and PAM resulted in a 100% correct classification of con-
trol plants and 60–100% classification of nematode infested plants at all sampling
dates (Schmitz et al. 2006).

A sugar beet field study using IR picture was conducted in an experimental field
with pre-adjusted preplant nematode densities in an attempt to estimate damage in
the growing season and this damage to the preplant densities (Schmitz et al. 2003).
The field was divided into 4 × 5 m quadrates, whereby each quadrate had a different
infestation level of H. schachtii. The NDVI was calculated by using the near IR
and the red bands of the IR picture with a spatial resolution of 70 cm for each
pixel. Their results showed differences in spectral patterns between the infested and
healthy sugar beets by supervised classification of the IR picture, but were unable
to detect differences caused by the pre-adjusted nematode densities. The preplant
densities were probably not sufficiently large enough for this type of separation
(Fig. 10.2).

The use of precision agriculture techniques to detect H. schachtii damaged sugar
beets for site-specific treatment can be complicated by the simultaneous infesta-
tion with the stem nematode D. dipsaci. This nematode causes high yield losses in

Fig. 10.2 IR airborne image (a) of a sugar beet field infested with Heterodera schachtii in
1999 (provided by LIZ: Landwirtschaftlicher Informationsdienst Zuckerrübe/Elsdorf), (b) Spectral
classification into high and low nematode infestations (Schmitz et al. 2003)
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central European sugar beet production areas (Kühnhold et al. 2006). Symptoms
include malformed and bloated cotyledon petioles and swollen stem tissue. As
the season progresses the beet develops cankers and secondary fungal infections
(Dunning 1957, Griffin 1974). A correlation between soil clay content and the
occurrence of D. dipsaci was observed by Seinhorst (1956).

Mapping of spatial nematode distribution by electric conductivity (ECa) values
and variable rate nematicide application for precision plant protection were success-
fully used in the USA for the root-knot nematode (M. incognita) and the ectoparasite
Hoplolaimus columbus by Muller et al. (2002) and for root-knot and the reniform
nematode (R. reniformis) on cotton (Wolcott et al. 2004, Davis et al. 2008, Lawrence
et al. 2009) see Chapter 24. Estimation of the effects of soil type on the spatial dis-
tribution of the stem nematode, D. dipsaci, and the cyst nematode H. schachtii were
investigated for the first time in field trials in Germany (Kühnhold, Kiewnick and
Sikora unpublished data) using EM38 (Geonics Limited, Ontario, Canada) mea-
surements. The EM38 measures apparent ECa of the soil and leads to production
of geo-referenced maps of ECa (Mertens et al. 2008). According to Sudduth (2005)
and Friedmann (2005) the main parameters which correlate directly or indirectly
with ECa values are clay and sand content, soil moisture, soil salinity and organic
carbon.

In 2005, Kühnhold, Kiewnick and Sikora (data unpublished) used Spatial
Analyses by Distance Indices software (SADIE R©, Perry 1995) to analyze aggrega-
tion and spatial correlation of nematodes with soil properties. The nematode count
data and the cluster indices obtained with SADIE R© are presented in Fig. 10.3 in a
geo-referenced map. The results provided new insights into the spatial distribution

Fig. 10.3 Sample points and apparent electrical conductivity (ECa) of the sampling area (a),
spatial distribution of Ditylenchus dipsaci counts and the interpolated SADIE cluster analysis (b)
(Kühnhold, Kiewnick and Sikora, unpublished data)
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of D. dipsaci and H. schachtii in sugar beet. The data demonstrated that site-
specific management is an appropriate tool for H. schachtii management. However,
no clear correlation was found between ECa values and the nematode densities of
the two species. The differences in ECa values characterizing soil properties (range
8 mS s−1; Fig. 10.3) is considered to be low (Domsch and Giebel 2004). In con-
trast, Scholz et al. (2009) established a good correlation between the density of
H. schachtii and EM38 values in sugar beet fields. This discrepancy may be due
to the greater range of ECa values within the field investigated by Scholz et al.
(2009). They detected the highest density of cysts of H. schachtii in the sandy soils
as identified by EM38 values.

The number of interactions that can occur between nematodes and pathogens
in the sugar beet rhizosphere is great and such interactions can distort RS efficacy
if only a single pest is targeted. To determine whether or not RS can be applied
to complex interactions Hillnhütter et al. (2009) used hyperspectral data acquisi-
tion on sugar beet plants grown in the greenhouse inoculated with H. schachtii
or R solani alone and in combination. Similar experiments were conducted with
D. dipsaci and R. solani. Data was recorded with a handheld spectrometer with
a foreoptic contact probe and a leafclip holder (ASD FieldSpec R© Pro, Analytical
Spectral Devices Inc.). The results showed that disease-complexes can be detected
by hyperspectral measurements. The plants treated with H. schachtii and R. solani
exhibited accelerated disease development over the plants inoculated with only one
pathogen (Fig. 10.4). In addition, a Rhizoctonia crown and root rot rating index was
developed to detect correlations between disease etiology and vegetation indices in
order to find the most suitable index for pathogen development and disease severity.
IR thermal images also were recorded. The results supported the findings obtained
with hyperspectral measurements (Fig. 10.5).

Further experiments with an imaging hyperspectral line sensor in combination
with a mirror scanner (ImSpector V10, Spectral Imaging Ltd., Oulu, Finland) also
were conducted with the nematode-fungal disease complex. ImSpector captures
a line image of a target and disperses light from each line image pixel to spec-
trum. Each spectral image then contains line pixels in the spatial axis and spectral
pixels in the spectral axis. With this imaging system, a more detailed analysis of
etiopathology was obtained (Hillnhütter et al. 2010).

Fig. 10.4 Effect of Heterodera schachtii, Rhizoctonia solani alone and in combination on spectral
reflectance of sugar beet plants, (a) 0 dpi, (b) 14 dpi (Hillnhütter et al. 2009)
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Fig. 10.5 Infrared thermographic images of sugar beet plants inoculated with Rhizoctonia solani
showing orange and yellow leaf coloring (a) compared with non-inoculated green to blue control
plants (b) 9 days after inoculation

4 Outlook

Experience obtained in the past with remote sensing to determine temporal and
spatial distribution of nematodes and soil-borne diseases has produced a signifi-
cant amount of baseline information. The development of new sensor technology
will stimulate fundamental and applied research that will significantly improve
RS and site-specific treatment methodologies for integration into plant protection
programs. The research results presented here for two sugar beet nematodes and
fungal crown rot demonstrated that RS and the use of site-specific application of
crop protection is feasible in sugar beet production. In addition to economic bene-
fits of this technology, improved environmental protection would be considerable.
Nematodes and soil-borne fungal pathogens are good targets for site-specific con-
trol, because of clustered forms of aggregation, limited mobility and characteristic
aboveground symptoms. Detection and localization of these organisms in clearly
delineated patches in a field and the fact that these patches are reasonably stable
in long term rotations over many years makes site-specific management to prevent
yield losses a long term proposition.

However, improvements in the analysis of hyperspectral data are still required.
This will require evaluation of larger amounts of data and the need for expanded
computer capacity (Lawrence et al. 2004). The detection of spectral wavebands for
specific symptoms caused by soil-borne pathogens and nematodes is also required.
Such wavebands could be identified by simple or multiple regressions, principal
component analysis or by partial least squares regression analysis. These disease-
specific wavebands could be derived from spectra obtained under environmentally
controlled conditions and then adapted to field situations. Based on these wave-
bands, indices could be calculated in order to predict the damage of each organism
in the growing season. In addition, disease-specific wavebands also may allow
detection of complex-disease interactions.

Collecting and analyzing soil and root samples for quantitative determination of
nematode and pathogen action threshold levels is extremely expensive and in many
cases still impractical. The costs incurred through sampling and the waste often
associated with full scale field application of pesticides could be greatly reduced if
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multiple biotic stress factors and the clusters could be effectively detected by sen-
sor technology. The future use of new megaspectral sensors coupled for example
with PCR or ELISA would also improve site-specific plant protection acceptability
(Ophel-Keller et al. 2008). These technological developments could make preci-
sion plant protection of soil-borne nematodes and pathogens a reality in the near
future.
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Chapter 11
Potential of Digital Thermography
for Disease Control

Erich-Christian Oerke and Ulrike Steiner

Abstract Infrared thermography is highly suitable for the detection of disease-
induced changes in plant transpiration and water status. Depending on the host-
pathogen system diseases can be detected at various stages of development.
Pathogens attacking plant roots or colonizing the vascular system affect water
uptake and translocation within the plant and cause a decrease in transpiration asso-
ciated with an increase in leaf temperature. Diseases causing early malfunction of
stomatal regulation produce pre-symptomatic modifications in transpiration, some
affect cuticular transpiration when visible symptoms appear or only in later stages
when tissue is severely damaged. Diseases without or with only minor effects on
transpiration cannot be detected thermographically. In some host-pathogen systems
a close relationship between disease severity and thermal effect exist which may be
used for disease quantification. The low specificity of the signal limits the use of
thermography for disease identification, however, this may be compensated by the
use of patterns of leaf temperature. IR remote sensing has a large potential in disease
forecasting and the definition of management zones because of its high sensitivity
to changes in plant water relationships.

1 Introduction

With shrinking resources for arable land and water, the optimization of crop produc-
tivity by early detection of biotic (and abiotic) stress factors and the remediation of
these perturbations by effective disease control become more and more important.
Technical sensors for non-destructive detection, identification, quantification, and
monitoring of biotic plant stress(ors), therefore, are highly needed.
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The visual assessment of plant diseases is often tedious and expensive and
is fraught with variations among assessors. Technical sensors for non-destructive
remote sensing are more objective and should improve accuracy as well as sensi-
tivity of disease assessment as sensors are not limited to the visible range of the
electromagnetic spectrum. Non-destructive, pre-visual detection and quantification
of diseases can contribute to facilitate and limit the timely application of appropriate
control activities to the specific sites where needed.

Digital infrared thermography permits remote recording of plant surface tem-
perature as affected by disease development on different scales – leaf, shoot, crop
canopy, field, and region – without interfering with plants. Imaging thermography is
able to produce spatial and temporal patterns of plant temperature. Its – potential –
use in plant pathology and crop protection is summarized.

2 Temperature of Plants

The temperature of plants largely depends on temperature of the environment; only a
few thermogenic species – members of the Araceae, such as Philodendron selloum,
Symplocarpus foetidus and Dracunculus vulgaris and non-aroids such as Nelumbo
nucifera – are able to actively increase tissue temperature well above air temper-
ature by a mitochondrial respiratory pathway that is distinct from the cytochrome
chain (Wagner et al. 2008); volatile compounds are released by the inflorescences
in order to attract insects for pollination. In all other plants, the metabolic activity is
described to have no effect on leaf temperature (Chaerle and Van der Straeten 2000)
and transpiration reduces tissue temperature below air temperature.

Transpiration rate has been shown to be negatively correlated to leaf temperature
(Inoue et al. 1990) physically linked to its stomatal resistance (= 1/stomatal con-
ductance). Leaf temperature results from the incoming irradiation, the water status
of the plant and the functionality of the epidermal layer (cuticle and stomata) to
regulate the transpiration of leaves, as well as from environmental conditions like
air temperature, relative humidity (RH) and wind speed (Jones 1992). Unintentional
transpiration is prevented mainly by the coverage of leaf surfaces with the cuti-
cle which is an effective barrier against water loss (Schönherr 1982) whereas the
water status of the shoot tissue determines the temperature of plants via stomatal
transpiration. Leaf temperature increases as transpiration rate decreases. There is a
correlation between leaf temperature and water status (Farquhar and Sharkey 1982,
Cohen et al. 2005, Jones and Schofield 2008).

Leaf temperature is a highly sensitive indicator of stomatal aperture as latent
heat loss is a large component of the overall leaf energy balance that determines leaf
temperature (Jones 1992). The transition of liquid water into water vapor requires a
high amount of energy because of the high latent heat of vaporization of water – the
energy required for the vaporization of 1 mg H2O is able to cool 600 mg H2O by
1 Kelvin (K). Transpiration at the cell walls below stomata, therefore, is accompa-
nied by a significant cooling of the plant tissue and the surface. As leaf temperature
is directly related to the rate of evapotranspiration from the canopy surface, infrared



11 Potential of Digital Thermography for Disease Control 169

sensing of the canopy temperature may be used to monitor the transpiration rate of
plants (Jones 1999, Jones et al. 2002, Merlot et al. 2002). Digital infrared ther-
mography allows the quantitative analysis of spatial and dynamic physiological
information on the plant status at the canopy and leaf level without interfering with
plants (Jones 2004). In plant sciences, the method has been applied to study the
relationship between stomatal conductivity and leaf temperature, to visualize tem-
perature stress of plants or plant parts, the drying of fruits and for yield estimations
as well as for scheduling irrigation.

Control of transpirational water loss through stomata on plant leaves is an
important mechanism for maintaining leaf surface temperature. Stomatal transpi-
ration accounts for 94–99.7 % of the total gas exchange of leaves under normal
conditions (Körner 1994). The transpiration rate of astomatous cuticles isolated
from the adaxial leaf surface of Prunus laurocerasus was two to three orders
of magnitude lower than that of the abaxial leaf side (Schreiber and Riederer
1996). Furthermore, the cuticular permeance of astomatous and stomatous leaf
surfaces has been reported to differ by a factor of 11 in Hedera helix, indicat-
ing pronounced differences in barrier properties between cuticles (Santrucek et al.
2004).

In addition to the abiotic environment, pathogenic organisms may affect both
cuticular and stomatal conductance of plant tissue resulting in significant modifica-
tions of leaf temperature (Ayres and Jones 1975, Smith et al. 1986, Wright et al.
2000, Chaerle et al. 2001, Bassanezi et al. 2002). Depending on the site of attack –
roots, vascular system, photosynthetic active tissue – water relations of crops are
affected directly or indirectly, localized to (some parts of) organs or the whole plant.
Perturbations of transpiration may be used as cues for the development of plant
diseases affecting stomatal aperture and functionality of cuticle integrity.

3 Principles of Infrared Thermography and Instrumentation

All objects above 0 K emit electromagnetic radiation, especially infrared (IR)
radiation allowing the measurement of their surface temperature. IR radiation
is part of the electromagnetic spectrum and spans a range – 0.75–1,000 μm –
between the visible light and radio waves. It may be divided into several bands
of interest to disease detection: NIR (near infrared, IR-A) 0.75–1.4 μm; SWIR
(short-wavelength infrared, IR-B) 1.4–3 μm; MWIR (mid-wavelength infrared,
IR-C) 3–8 μm (3–5 μm, atmospheric window used by ‘heat-seeking’ missiles);
LWIR (long-wavelength infrared, IR-C) 8–15 μm (thermal infrared TIR); FIR (far
infrared) 15–1,000 μm (according to International Commission on Illumination).

According to Planck’s Law and Wien’s displacement Law the wavelength at
which the maximum amount of energy is emitted increases from hot to colder
objects (Fig. 11.1). Sensors for biological samples in their natural environment,
therefore, should have a maximum sensitivity in the range from 9.5 to 10 μm.
Stephan Boltzmann Law allows calculation of the object’s temperature from its total
radiated energy. Atmospheric attenuation of radiation caused by water vapor and
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Fig. 11.1 Emission spectra of surfaces with temperatures ranging from 100 K (= −173◦C) to
1,000 K (= 727◦C). The maximum of surfaces with temperatures from 0 to 40◦C ranges from 9 to
10.5 μm

other gases strongly depends on the wavelength; for thermography the mid-wave
window (3–5 μm) and the long-wave window (8–14 μm) may be used.

Emissivity is the ability of a material to emit or absorb thermal radiation; it
ranges from 0.0 – no emission − to 1.0 – complete emission (of a Black Body).
Infrared radiation of real-world objects tends to be less than the actual temper-
ature; the rate between infrared radiation and contact temperature of an object
is its emissivity. For plant physiological experiments emissivity of plant tissue is
often set to fixed values from 0.95 to 1. However, differing emissivities of various
plant tissues and reflections from other surfaces – like the soil – interferes with IR
measurements.

Non-contact thermometers (pyrometer, radiothermometer) have been applied in
agricultural sciences since the 1980s. Their use is limited as they provided no spa-
tial information and comparative measurements are affected by transient changes in
environmental conditions. Originally developed for military use – forward looking
infrared (FLIR) imaging technology –, thermographic cameras (thermal imaging =
thermography) have a wide area of application ranging from firefighting, assess-
ment of thermal insulation of buildings to industrial applications like online quality
control.

Thermographic cameras detect electromagnetic radiation in the range of
3–15 μm and produce images of that radiation. Thermal energy is emitted by all
objects based on their temperatures. As the amount of radiation increases with
temperature variations in temperature in space and time may be detected. Thermal
sensors are specialized focal plane arrays (FPAs) and non-cooled microbolometers.
FPAs with low thermal resolution require cryogenic cooling by liquid nitrogen or a
miniature Sterling cycle refrigerator.
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Table 11.1 Bands of thermal infrared and suitable sensors for thermal imaging

Band Wavelength [μm] Sensor(s)

Short-wavelength infrared (SWIR) 1 – 3 InGaAs
Mid-wavelength infrared (MWIR) 3 – 5 InSb, HgCdTe
Long-wavelength infrared (LWIR) 8 – 14 HgCdTe, microbolometer

The imaging system is a scanner – a single detector in combination of rotating
mirrors or oscillating refractive elements which scan the field of view (FOV) in hor-
izontal and vertical directions – or a focal plane array – a matrix of detectors to
resolve the FOV (Meola and Carlomagno 2004). The detectors are photon detectors
requiring cooling by liquid nitrogen or Stirling coolers for rapid scanning, high sen-
sitivity and low noise. Infrared systems may use the mid-wave (MW, 3–5 μm) and
the long-wave (LW, 8–12 μm) IR range with mercury cadmium telluride (HgCdTe)
photon detectors being used for both ranges (Table 11.1). Sensors may be used on
handheld systems, ground-based equipment or may be airborne.

The performance of an infrared camera is expressed in terms of thermal
sensitivity, scan speed, image resolution and intensity resolution. Thermal sensi-
tivity – expressed as noise equivalent temperature difference (NETD) – is typically
80–200 mK for uncooled detectors and approaches 10 mK for cooled photon detec-
tors. The rate at which an image is acquired may be higher than 1,600 Hz for new
systems. Pixel resolution may reach 15 μm in microscope applications and the num-
ber of pixels per image is often 640 × 512. Modern systems provide 14-bit recording
for a broad dynamic range (= intensity resolution). New detector systems may be
also used for spectral analysis of radiation resulting in multispectral IR signatures.

In passive thermography the object is measured in its environment without any
additional influence; in active thermography, an additional energy source is used
and the thermal response of the object to this energy is recorded.

4 Detection of Disease Symptoms

4.1 Use of Radiometers in the Field

Early reports on the use of hand-held IR thermometers for quantifying the effect of
root and vascular diseases on field crops have been summarized by Nilsson (1995).
He pointed out that the radiometric response of crops to diseases may be divided into
two groups: (I) a modification of the plant–water relationship, and (II) the expression
of symptoms of senescence. Various diseases caused by bacteria, fungi, oomycetes,
and nematodes affect the water supply of crops and result in an increase of canopy
temperature, often in the range from 1 to 4 K, however, sometimes exceeding 10 K
above air temperature (Pinter et al. 1979, Nicolas et al. 1991, Nilsson 1991). In
contrast, stripe rust caused by P. striiformis reduced leaf temperature of wheat in
early disease stages by 0.2–1.0 K (Smith et al. 1986).
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The results obtained for several pathosystems made it difficult to quantify an
attack in a reliable way, but led locally to good relationships between remote sensing
data and indicators of the severity of the attack (Lili et al. 1991, Duchesne et al.
1992).

4.2 Infrared Imaging

As radiothermometers provide no spatial information, their use is limited because
of influences of environmental conditions like sunlight, wind, soil, etc. (West et al.
2003). The development of thermal imaging systems, although more expensive, has
increased considerably the potential of IR thermography in plant stress detection.
The investigations have focused on the – sometimes pre-symptomatic – detection of
diseases caused by viruses, bacteria, oomycetes and fungi infecting leaves. Imaging
systems allow, however, the assessment of spatial heterogeneities on various scales,
from the leaf level to canopies and landscapes.

4.2.1 Leaf Level

Localized changes in leaf temperature have been used as indicator of several
biotic stresses (Chaerle and Van der Straeten 2000, Chaerle et al. 2001, 2006).
Hypersensitive reaction of tobacco to tobacco mosaic virus (TMV) infection was
preceded by a local, rapidly expanding increase in tissue temperature because of the
accumulation of salicylic acid, a pivotal compound in plant resistance to pathogens,
also known for its stomatal closing activity (Chaerle et al. 1999). During estab-
lishment of hypersensitive response of Nicotiana sylvestris to Erwinia amylovora
3–4 h after harpin-infiltration, tissue temperature decreased associated to stomatal
opening. The marked drop in temperature reached 2 K and preceded necrotic symp-
toms for several hours (Boccara et al. 2001). Toxins released by pathogens are also
described to alter stomatal behavior (Chaerle and Van der Straeten 2001); they may
also cause tissue degradation associated to a localized decrease in tissue temperature
in early stages of Cercospora leaf spot of sugar beet (Chaerle et al. 2004).

The oomycete Pseudoperonospora cubensis causing downy mildew of cucumber
and fungi of the genus Phyllosticta acting on two tree species caused an increase in
overall leaf temperature at early stages of infection (Lindenthal et al. 2005, Aldea
et al. 2006, Oerke et al. 2006). Leaf spot due to Phyllosticta sp. increased temper-
ature of surrounding leaf tissue of Quercus velutina, in contrast to a cynipid gall
wasp which resulted in a spatially very limited decrease of temperature (Aldea et al.
2006). Transient decreases in temperature of infected leaf areas due to the evapora-
tion of leaf water resulting from damage of plant cuticle or degradation of cells have
been also described for downy mildew of cucumber, late stages of TMV infection
and apple scab (Chaerle et al. 1999, Lindenthal 2005, Oerke et al. 2005).

In greenhouse experiments Plasmopara viticola caused a pre-symptomatic
increase in leaf temperature at the site of infection in irrigated grapevine, whereas
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drought-stressed plants showed a localized drop in temperature 2–3 days before
typical symptoms of downy mildew appeared (Stoll et al. 2008b). Spatial and tem-
poral analysis of leaf temperature improved the differentiation between healthy and
infected leaves irrespective of their water status (Stoll et al. 2008a).

Single mature rust colonies may reduce temperature by up to 0.7 K compared to
the non-diseased surrounding tissue (Lenthe 2005). The cool spots have a clear tem-
perature gradient with the center displaying the lowest temperature. This thermal
signal can be detected only when cuticular transpiration is largely uncontrollable
because of the cuticle perforation by the urediniospores (Fig. 11.2). Healthy and
diseased plants may differ also in the pattern of leaf temperature. Bean rust due
to Uromyces phaseoli caused a greater heterogeneity in small-scale temperature
variability in later stages of the disease (Lenthe 2005). Dense colonies of pow-
dery mildew, in contrast, were associated with a temperature only slightly lower
(0.2 K) than healthy tissue. In later stages, powdery mildew tends to slightly
increase tissue temperature because of reduced water potential of diseased leaf areas
(Fig. 11.3). These results also reflect the subtle way biotroph pathogens maintain the
functionality of host tissue they are living from.

The fungus Venturia inaequalis causes scab of apple, a hypostomatous plant
species. Despite of the limitation of this pathogen to subcuticular colonization of
leaf tissue, scab symptoms on one leaf side significantly reduced temperature of
both, adaxial and abaxial leaf surface. Scab lesions are associated with a localized
increase in intercellular free water which results in a significant increase of stomatal
conductivity and a spatially limited cooling effect for the complete leaf profile. This
effect stresses the correlation between leaf temperature and water status – water is
the primary source of infrared absorption in plant tissue (Kümmerlen et al. 1999).

Fig. 11.2 Effect of leaf rust caused by Puccinia triticina on leaf temperature of wheat leaves.
Reflectance image (left), thermographic image with low (centre) and maximum contrast displaying
areas with similar temperature (right)
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Fig. 11.3 Temperature
response of apple leaf to
well-established powdery
mildew on the adaxial surface

Root diseases due to bacteria, oomycetes, fungi or nematodes may be detected
by an increase in shoot temperature as all these pests affect water uptake and trans-
port, ultimately reducing transpiration of shoots (Jones 2004, Schmitz et al. 2004).
Mechanical wounding and tissue loss to chewing arthropods feeding on crops may
result in a short temperature increase, followed by a localized decrease due to water
loss from damaged cells, that progressively disappears again upon wound healing
(Chaerle et al. 2002, Aldea et al. 2006).

The leaf area assessed thermographically for disease may be larger than that with
visible symptoms. The leaf area affected by fungal colonization and its effect on host
plant physiology – transpiration – often exceed the size of the visible damage. For
other diseases like rusts thermographic anomalies linked to the impairment of cuticle
function become only detectable after the appearance of symptoms. As powdery
mildews seem to have only a very limited effect on stomatal transpiration and almost
no effect on cuticular transpiration, thermography proved to be rather insensitive for
this type of disease (see Table 11.2).

An effect of disease stage on leaf temperature – decrease for colonized, but living
tissue, temperature rise (above the level of non-diseased tissue) for necrotic tis-
sue – has been reported for various host-pathogen interactions (Chaerle et al. 2004,
Lindenthal et al. 2005, Oerke et al. 2005).

Measurements of absolute temperatures are inappropriate for disease assessment,
especially under varying environmental conditions. The use of the temperature dif-
ference between air temperature and leaf tissue (= transpirational cooling) and the
assessment of spatial heterogeneity of temperature within leaves are more suitable.
Similar, the maximum temperature difference (= range, MTD) of a leaf may be
used as a sensitive parameter for an early detection (Lindenthal et al. 2005). MTD
of leaves is more sensitive to pathogen-induced alterations than the mean, minimum
or maximum of leaf temperature because this parameter assesses spatially restricted
rare modifications in early disease stages. As it is less dependent on environmental
conditions and does not significantly exceeds 1 K in healthy leaves, MTD may be
used as a threshold level for disease detection (Lindenthal et al. 2005, Oerke et al.
2006).
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Table 11.2 Effects of diseases on canopy/leaf temperature studied by infrared thermography

Response

Crop Disease Intensity Effect Level Source(s)

Apple Powdery mildew + L See above
Scab +++ �1 L, F Oerke et al. (2005)

Barley Leaf stripe +++ � F Nilsson (1991)
Net blotch + F Nilsson (1991)
Nematodes + F Nilsson (1991)
Powdery mildew ++/+++ � F Nilsson (1991)

Cotton Root rot +++ � F, L Pinter et al. (1979)
Cucumber Downy mildew +++ �,� L, F Lindenthal et al.

(2005)
Powdery mildew + L See above

Grapevine Downy mildew +++ �,� L Stoll et al. (2008a, b)
Oats Crown rust + F Nilsson (1991)

Oat red leaf (BYDV) + F Nilsson (1991)
Oak Phyllosticta leaf spot ++ � F Aldea et al. (2006)
Oilseed Clubroot + F Nilsson (1991)
Rape Stalk rot +++ � F Nilsson (1991)

Verticillium wilt +++ � F Nilsson (1991)
Potato Early blight + F Nilsson (1991)

Late blight + F Nilsson (1991)
Virus disease + F Nilsson (1991)

Sugar beet Beet yellows +/++ � F Nilsson (1991)
Black root +++ � F, L Pinter et al. (1979)
Cercospora leaf spot +++ �,� F, L Chaerle et al. (2004),

Stenzel et al.
(2007)

Cyst nematodes ++ � F Schmitz et al. (2004)
Powdery mildew +/++ � L, F Nilsson (1991)
Rust +++ L Stenzel et al. (2007)

Rose Rust ++ � F Nilsson (1991)
Tobacco Bacterial leaf spot ++ � L Boccara et al. (2001)

Tobacco mosaic +++ �,� L Chaerle et al. (1999)
Wheat Fusarium ear blight +++ � L, F See above

Leaf stripe ++ � F Nilsson (1991)
Leaf rust + �,� L, F Lenthe (2005),

Nilsson (1991)
Powdery mildew ++/+++ � L, F Nilsson (1991)
Septoria leaf blotch +/++ � F Nilsson (1991, 2004)
Nematodes ++ � F Nicolas et al. (1991)
Stripe rust ++ �,� L, F Smith et al. (1986 )
Take-all +++ � F Nilsson (1991)

+, + + and + + + = weak, moderate and strong effects on temperature; 1 � , � = decrease or
increase of temperature compared to non-infected; L, F; experiments under laboratory or field
conditions
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ylin = 1.231 + 0.017 x
R² = 0.459

ysq= 1.059 + 0.040 x – 0.0003 x²
R² = 0.542
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Fig. 11.4 Regression between diseased leaf area of apple scab and maximum temperature
difference of apple leaves

Oerke et al. (2006) showed a correlation between disease severity (= percent-
age of leaf area affected) and MTD with a maximum at about 60–70% both for
downy mildew of cucumber and apple scab (Fig. 11.4). MTD of leaves not only
increased with the size of scab lesions but also with their number per leaf indi-
cating that the probability of large lesions increases with their frequency. The
increase of MTD with colony size may be explained by the high thermal conduc-
tivity of water. Small lesions have a very limited effect on transpiration/increase
of leaf water content and the cooling effect dissipates very soon because of
high lateral thermal flow which restricts the effect on tissue temperature in mag-
nitude and size. With large lesions, the cooling effect is greater and even the
largest lesions displayed a temperature gradient from the margin to the center of
colonies.

Spatial patterns of temperature abnormalities due to pathogen development may
be used for the differentiation of stress factors affecting the plant.

4.2.2 Canopy Level

The detection of primary disease spots in the field is one prerequisite for an efficient
disease control. Hatfield (1990) postulated that patterns of reflectance or (thermal)
radiation may be used for the identification of disease-induced changes that have
within-field heterogeneity. In field experiments, the severity of Septoria tritici infec-
tion was associated with a decrease of the normalized difference vegetation index
(NDVI) and an increase of the canopy surface temperature (<1 K) relative to ref-
erence plots (Nicolas 2004). Sensors for the optical range, however, proved to give
better results for decision making of fungicide timing.

The complexity and heterogeneity of crop canopies due to varying plant den-
sities, different leaf layers, leaf orientation, etc., restrict the informative value of
temperature measurements as well as spatial resolution does. Early detection of
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primary disease foci on lower leaf levels is impeded by the upper leaf layers, high
relative humidity (RH) at lower levels reducing overall transpiration, and the pre-
ponderance of healthy tissue often resulting in mixed pixels for diseased tissue.
Significant thermal effects, therefore, can be obtained from crops only at later stages
of disease development.

Under specific conditions, however, these obstacles play a minor role. In inocu-
lation experiments – for resistance screening of crop varieties, tests on fungicide
efficacy, etc. – disease intensity has to be assessed later in the growth period
for a large number of plots. In this mono-factorial experiments disease severity
may be quantified by areal thermography (Fig. 11.5). Earlier, Eyal and coworkers
(1989) successfully used a hand-held thermometer for the differentiation of vari-
eties’ response to Septoria leaf blotch of wheat. Also diseases affecting only plant
parts at the top of the canopy may be localized and quantified by thermographic
imaging (Fig. 11.6). Thermograms were used to localize Fusarium infected ears in
wheat and may be also used for the quantification of Fusarium head blight severity
in screening plot experiments.
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Fig. 11.5 Assessment of plant vitality of 10 wheat varieties depending on the frequency of fungi-
cide applications (none, low, moderate, high). Reflectance image (a), thermographic image (b)
taken at growth stage 75 from a helicopter; relationship between temperature difference between
untreated and fungicide-treated plots and yield increase due to fungicide activity (c, different colors
depict different varieties) (Lenthe 2005)
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FHB:

Ave. 25.66 C
Min. 24.04 C
Max. 26.94 C

Without symptom:

Ave. 25.16 C
Min. 23.98 C
Max. 26.27 C

Fig. 11.6 Detection of Fusarium head scab infected ears in wheat (GS 77–79). Reflectance image
(a); thermographic image of the same area with broad (b) and narrow temperature range (c); effect
of infection on absolute temperatures of ears, MTD 2.90 K (infected) and 2.29 K (healthy) (d)

Schmitz et al. (2004) were able to differentiate between sugar beet varieties
susceptible and resistant to the nematode Heterodera schachtii by using aerial ther-
mography. Only the susceptible variety exhibited a significant correlation between
canopy temperature and the density of nematodes in the soil.

5 Canopy Temperature and Management Zones

On the field level digital thermography has been evaluated for its potential in the
definition of management zones (Lenthe 2005, Stenzel et al. 2007). Canopy tem-
perature is the result of the temperature of the crop – the evaporation increases
with crop biomass – and the environment, notably air and soil. Dense canopies with
high biomass have lower temperatures than sparse crops when the soil is rather dry
(Fig. 11.7). In contrast, when the soil is wet and cool and a reasonable proportion of
soil is included in the thermogram, dense crops result in higher temperatures than
poor plant stands. The differences in biomass depended on soil type and quality and
were rather stable over time.

Even with relative homogenous soil conditions the microclimate within crop
canopies may be heterogeneous. Comparing canopy temperature before and after
rainfall, a promising degree of spatial similarity between leaf wetness and wheat
temperature was detected by Lenthe et al. (2007). It may be possible in the
near future to monitor spatial heterogeneity in crop temperature and leaf wetness
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Fig. 11.7 Assessment of plant vitality and crop density of wheat before flowering (GS 59) and
at soft dough (GS 75) by thermography from a helicopter (Lenthe 2005). Thermographic patterns
display a high level of similarity

(duration), factors related to the incidence and spread of diseases in fields, by using
thermograhic imaging.

6 Conclusions and Perspectives

Digital infrared thermography is suitable for the detection and quantification of dis-
eases directly affecting plant transpiration by their activity on stomatal functionality
and the integrity of the cuticle. Modifications in the plant’s water status may be
detected several days before the appearance of visible symptoms. The method, how-
ever, is less sensitive to ectoparasitic diseases like powdery mildews and diseases
rupturing the leaf cuticle only in late stages of development (like rusts). It largely
lacks diagnostic potential because of the uniformity of the stomatal response of plant
tissue to various pathogens (and abiotic stressors) and its modulation/variation dur-
ing various stages of the disease. Environmental factors, especially air temperature,
irradiation, relative humidity and wind speed, affect leaf temperature complicat-
ing the interpretation of results, notably for images taken under field conditions.
Abiotic stressors like water deficit resulting in stomatal closure may interfere with
effects of diseases and arthropod pests affecting leaf temperature and compromise
the detection and quantification of the primary stress factor. The large diversity
of factors affecting stomatal aperture highlights the challenge of identifying and
differentiating the cause.

Additional information is required for the identification of the cause. Temporal
and spatial dynamics of (canopy) temperature may give additional information –
areal thermographs taken at noon and in the evening were used to differentiate per-
manent wilting of sugar beet due to nematode attack from transient wilting due
to circadian water shortage, stresses on leaf level tend to have a more heteroge-
neous response pattern than root level stresses (Chaerle et al. 2009) – nevertheless,
non-specificity of temperature is limiting its application in disease detection and
quantification.

Thermal imagery has potential for use in early disease detection which is
very important for efficient and environmental friendly disease control since late
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detection of plant diseases may result in ineffective control reducing the quantity
and quality of crop yield. In inoculation experiments when the pathogen is known,
IR sensor systems may be used also for the quantification of diseases. Moreover,
the technology can be used for the definition of management zones and the moni-
toring of environmental factors – temperature, leaf wetness – at the canopy level. It
has also the potential to assess the quality of spray coverage within a canopy, hence
optimizing pesticide application efficiency (Stoll et al. 2008b).
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Chapter 12
Geographical Approaches for Integrated Pest
Management of Arthropods in Forestry
and Row Crops

Jeffrey L. Willers and John J. Riggins

Abstract With the proper technology and access to geographical information, it
is more important to spend time developing an excellent classification scheme of a
remotely sensed attribute of crop and forest vigor than to spend that time collecting
multiple samples of insect counts. The ability to define zones from remote sens-
ing images of crop or forest systems provides a vastly improved capacity to assess
the sample variability of insect counts. Perspectives on defining zones from remote
sensing information, including an examination of some relationships between these
zones and insect sample counts, are discussed.

1 Introduction

Mankind’s interest in controlling insects that attack crop and forest resources
has existed since antiquity (Shaw and Willers 2006). Applications of Geographic
Information Systems (GIS) and remote sensing (RS) capabilities are among the
latest frontiers of this old conflict. Riley (1989) provided an excellent review of
many earlier works involving RS. Similarly, Liebhold et al. (1993) provided an
early review of the role of geo-statistical methods and GIS applications in ento-
mology. They stated that the lack of adequate analytical and data management tools
have been a major impediment to researching spatial processes in insect ecology.
They concluded that habitat susceptibility to insect pest outbreaks can be investi-
gated with GIS to better study relationships between biological and physiographic
features of the landscape and identified the importance of scale in understanding
ecological systems. Parameters and processes important at one scale are often not
important or predictive at another scale. In addition, they made the point that insect
populations often have spatially heterogeneous densities, which affects sampling
procedures, assessment of predator-prey relationships, and pest management. As a
consequence, the spatial location of collected samples is an important consideration.
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Jackson and Huete (1991) provided an early review of important remote sensing
concepts. They discussed two general classes of vegetation indices: ratios and lin-
ear combinations. Their paper addressed the effects of sensor type, soil background,
viewing angle of the sensor, solar angles, atmospheric effects, and canopy archi-
tecture on a vegetation index. Entomologists not familiar with RS might consider
beginning their exploration on the subject with this paper.

The concept of an ecological basis for insect pest management has a long history,
as early addressed by Stern et al. (1959). Smith and McSorley (2000) stated that the
key to pest management could be the relationship between insect behavior and their
host plants. The example of Kerr et al. (2001) showed the value of RS for insect
habitat categorization over a large landscape. The articles by Moran et al. (1997)
and Pinter et al. (2003) are other excellent reviews.

Building on these early investigations, recent applications of various sensors
installed on near or far RS platforms are leading to innovative efforts for insect
pest control. This trend is possible because RS information is geo-referenced to
coordinates on the earth at ground spatial distances (GSD) of 4.0 m or smaller. This
capability offers an advantage that previous generations of entomologists did not
have – specifically, data representing a complete census of one or more attributes
of the crop or forest. However, estimates of insect abundance utilizing exclusively
RS are still difficult to obtain and require concomitant collection of samples on the
ground. As a consequence, the value of RS is the capability of dividing a traditional
field or forest tract into smaller pieces, which can be categorically grouped into
similar ecological units to control sampling error due to environmental variability.
Insecticides can then be applied as needed to only the high risk units within the
larger field or forest tract.

Precision agriculture is a new arena where advancements depend on the coop-
eration of diverse disciplines (Seelan et al. 2003), including entomologists, geog-
raphers, mathematicians, computer scientists, hardware or software engineers, and
many others. Principal technologies involved include Global Positioning Systems
(GPS), GIS, variable-rate controllers and yield monitors.

Forestry and row crop systems have inherent similarities but different goals and
problems. Pest damage is often economically important in annual crops at or before
the time the best RS technologies can begin to resolve pest effects on plant phys-
iology (Willers et al. 2005), while the longer time horizon in forestry makes the
predictive benefits of RS more useful.

The objective of this chapter is to briefly review several concepts of RS process-
ing and then link that information with insect sampling in forests and row crops to
promote site-specific Integrated Pest Management (IPM).

2 Forestry Applications

The rugged and inaccessible nature of forest systems promoted early adoption of RS
and other geoinformatic applications. Also, due to the relatively long rotation age
in agro-forestry, IPM practices in forested settings often tend towards prediction
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and protection rather than damage reduction or avoidance through direct control
measures.

Early foresters typically relied on topography and their vision to detect forest
pest activity at a distance. With the advent of the modern airplane, aerial sketch
mapping became commonplace, allowing extremely large areas of forest to be cov-
ered yearly, or as often as needed, while personnel recorded approximate locations
of pest activity on paper maps. This form of scouting progressed to include GIS and
is now known as digital aerial sketch mapping. Both types of mapping are valuable
tools for collecting cost effective, real time data regarding ongoing pest activity.
However, detection of forest health problems often lags at least a year behind the
initiation of insect activity. The damage to tree health is often irreversible by the
time the human eye can detect when tree crowns begin to fade. Passive reflectance
sensors are valuable for forest health assessments since their high spectral resolution
provides early detection of changes in pest activity and/or forest health.

Advances in RS, at times, have caused problems of their own. For example, data
storage and processing of geomatic information necessitated using more advanced
computing resources and analysis algorithms. Since an image contains several lay-
ers of information about each square meter in the image (Jähne 1997), the number
of bytes of data in one scan of a landscape of interest is tremendous. Also, with
increased spatial resolutions, problems associated with variability of reflectance data
arise. The possibility of multiple pixels capturing attributes about the crown of an
individual tree leads to several questions. Are leaves on all branches the same? If not,
how do we account for this variation and explain its causes? Solutions to these and
other processing conundrums are still in the future. Nonetheless, these bottlenecks
are not an excuse for avoiding the exploration of other RS frontiers for IPM.

2.1 Remote Detection of Vegetation Vigor

Reflectance imagery has been used to detect plant stress for years and is well estab-
lished in the literature (Kasischke et al. 2004). Both multispectral and hyperspectral
sensors show promise in early detection of forest health decline before symptoms
are detectable by the human eye (Cibula and Carter 1992, Carter 1993, Carter and
Miller 1994, Sampson et al. 2003, Pontius et al. 2005b). Early detection of dam-
age in some forests has been successful using a narrow waveband centered near
700 nm (Hoque et al. 1992, Sampson et al. 2003, Campbell et al. 2004, Pontius
et al. 2005a, b, White et al. 2007).

Hyperspectral sensors with greater spectral resolutions continue to be introduced.
However, more bands greatly complicate analyses and can lead to problems with
autocorrelation and poor signal to sample size ratios. Careful consideration must
be given to determine if gains in detection outweigh the added complexity of data
analyses with hyperspectral sensor systems.

Remote detection of weakened trees before insect outbreaks occur allows land
managers to shift from a reactionary mentality to one of prevention. Proactive
management utilizing silvicultural practices can avoid many forest pest problems.
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RS of forest insect pest activity has significant potential to increase efficiency when
choosing areas for pest control actions.

2.2 Importance of Spatial Variation of Biophysical Variables
in Integrated Forest Pest Management (IFPM)

Forest pests are difficult to detect, sample, and treat due to the sheer size and height
of the trees (Lu 2006). Most importantly, the long rotation age of forest commodi-
ties can sometimes make it impossible to calculate standard IPM variables like EIL
(Economic Injury Level) and AT (Action Threshold) because it is difficult to reli-
ably predict the value of the commodity several decades or more into the future,
or economically impractical due to the invested cost of treatment over such a long
period of time. Therefore, IFPM strategies rely on prediction or prevention rather
than direct control measures. Prevention and prediction strategies often utilize a syn-
ergy of relatively sparse ground sampling and dense remotely sensed data to make
predictions regarding the hazard of future pest outbreaks.

Preventative IFPM strategies often involve silvicultural treatments, such as
commercial thinning or prescribed burning to reduce stand density and increase
productivity. Collecting data to estimate these conditions using traditional ground-
based methods is time consuming, laborious, expensive, and does not provide a
continuous estimate across the landscape, like one produced by RS. Often, the
remotely sensed variables are stand parameters that describe an important aspect
of stand ecology, such as diameter at breast height (DBH), basal area, or above-
ground forest biomass. Once these ecologically important variables are estimated
through RS, decisions regarding preventative management activities are made and
implemented.

Aboveground forest biomass is an estimate of the sum of the aboveground mass
(biomass) of all the individual trees in a given area (Parresol 1999). Biomass is
perhaps the single most powerful descriptor of structural information about forest
stands. Once the biomass is reliably estimated, most other forest parameters (DBH,
stand density, age, height, leaf area index, etc.) can be estimated. Therefore, above-
ground forest biomass is emerging as an extremely important biophysical variable
for use in modeling and predicting forest disturbances, such as insect outbreaks and
fire. Monitoring biomass change over time is an integral tool for managing forest
health. Measurement of forest parameters by RS allows development of geographi-
cal risk models or change maps to prioritize preemptive control measures or identify
patterns.

However, often little thought is given to the effects of errors introduced by arbi-
trarily assigning sampling schemes, analyses, and predictive algorithms to a study
area without taking into account the spatial variation in the landscape. (The similar
problem exists in row-crop IPM.) In forestry (and row crops), environmental factors
such as topography and soil can drastically affect the ecology of the hosts and pests
as those factors vary across the study site. Traditional randomized completed block
designs, or other randomized methodologies, will mask valuable spatial patterns
because they lump spatial variation into random error.
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2.3 Specific IFPM Examples: Red Oak Borer and Southern Pine
Beetle

Red oak borer (Enaphalodes rufulus) and the southern pine beetle (Dendroctonus
frontalis) are two destructive forest insect pests that gravitate towards densely-
stocked, overmature trees. In fact, the outbreaks of many forest pests are linked to
the relative density of trees on a given site. Therefore, mechanically thinning dense
stands is practiced to reduce the hazard associated with future insect outbreaks.

Sampling for red oak borer, southern pine beetle, or other forest pests is often
undertaken through random or arbitrary establishment of many sampling locations,
without consideration of the biophysical variables that ecologically effect the dis-
tribution of the pest. Traditionally, it was thought that many samples were needed
to overcome the unaccounted-for spatial variation in the environment. But, image
classification or segmentations provide frameworks that allow researchers to greatly
reduce the number of field samples; particularly, if the RS information describes the
spatial variation of relevant biophysical variables. Image classification or segmen-
tation divides the data into structurally homogeneous units, decreasing variability
of subsequent biomass estimates. These predictions are theoretically more precise
because the analytical models take spatial variation of the environment into account,
rather than treating it as random error and ‘sweeping it under the table’.

Segmentation techniques can yield more precise forest biomass estimates than
other methodologies. Riggins et al. (2009) utilized object-based segmentation algo-
rithms to take into account structural heterogeneity at multiple levels within the
forest canopy before computing a total aboveground forest biomass model. Similar
spatial aggregation techniques that allow the researcher to segment, classify, or oth-
erwise divide the study site into biophysically meaningful zones decrease random
error in statistical models and potentially reduce the number of field samples needed
to adequately describe the variability present in the system.

The use of object-based image segments derived from remotely sensed imagery
is a powerful method for forest attribute prediction. Object level processing divides
the data into homogeneous units based on the values of neighboring pixels, mini-
mizing many sources of error during modeling steps. The resultant image segments
represent optimized functional units for use during the development and application
of forest parameter modeling or forest sampling methodologies.

Figure 12.1 represents total aboveground forest biomass predictions reported
by Riggins et al. (2009) for a 1,400 m × 1,400 m study area in Ozark National
Forest in northwest Arkansas. Panel A shows the results of an object-based seg-
mentation procedure (Riggins et al. 2009), while panel B shows the results of the
same model applied on a per pixel basis. While many areas within these two images
exhibit similar trends in aboveground forest biomass distribution, the two tech-
niques provide vastly different results. The difference between each method is best
seen by comparing the None and High categories between the two panels. If these
two different methods were not attempted and compared, the fact that the object-
based methodology yielded more accurate results than a pixel based methodology
(R2 = 0.72 vs. 0.54, respectively) would not have been identified (Riggins, personal
observation).
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Fig. 12.1 Comparison of object-based (a) and pixel-based (b) representations of biomass

It is important to consider these techniques not only during the analysis or model-
ing phases of a project, but perhaps more importantly during the design phase of an
experiment. Upfront utilization of segmentation techniques to account for the spa-
tial distribution of aboveground forest biomass allows researchers to biophysically
attenuate and optimize a sampling scheme to minimize the number of field samples
needed to adequately describe the variability in the system.

3 Row Crop Applications

The major difference between forest and row crop RS applications for site-specific
IPM is the time horizon. The ability to estimate the extent of different density dis-
tributions of insect populations among crop zones derived from RS fundamentally
addresses the short time window problem in row crop IPM (Willers et al. 2005).
In general, this is accomplished by (I) utilization of imagery to define appropriate
crop zones to support insect scouting (sampling), (II) integration of all informa-
tion (e.g., experience, field data and image information) to generate a ‘map’ of
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areas at risk for economic loss from insect pests, and then (III) uploading the geo-
referenced map file to instruct a Differential Global Positioning System (DGPS),
variable-rate ground sprayer to apply pesticides at spatially variable rates. The first
goal is emphasized in this section by demonstrating several concepts. Additional
details for the second and third goals are found in Campenella (2000), Dupont et al.
(2000), McCarter et al. (2007), McKinion et al. (2009) and Willers et al. (2005,
2009a, b).

Other important considerations for geographical IPM are to recognize that
attributes of biological populations (i.e., the insects and the crop) are juxtaposed
with (I) the concepts and properties of various statistical distributions (D’Agostino
and Stephens 1986), (II) the sampling concept of a statistical population (Thompson
1992) versus a parametric population, and (III) principles involving the various ways
to classify multispectral (or hyperspectral) images of farm landscapes (Jensen 2007,
Pouncey et al. 1999, Richards and Jia 1999).

3.1 Image Classification

The first RS analysis step for site-specific IPM is to complete an unsupervised clas-
sification (Jensen 2005, Pouncey et al. 1999) of the image pixels for the current
state of the annual crop, using 20–25 classes. Such a large number of classes enable
field consultants to recognize the correspondence between small scale changes in
crop vigor seen on the ground with those shown on the map. This correspondence
assists them in choosing the locations to sample for insects. After collecting the
insect counts, an iterative, supervised classification (Jensen 2005, Pouncey et al.
1999) step regroups (rebins) the initial unsupervised classes into a smaller set of
ordinal categories that describe the relationship between crop zones and insect abun-
dance. These ordinal categories are then used to derive the prescription map for
the variable-rate controller on the field spraying equipment. Ordinal categories are
defined with only the pixels that fall inside the field boundary polygon. It is impor-
tant to exclude pixel values that do not belong exclusively to the crop of interest
in both the unsupervised or supervised classification steps because pixel values not
belonging to the crop skew results.

3.2 A General Approach for Linking Remote Sensing Information
and Insect Sampling in Row Crops

The importance of the choice for the size of the sample unit on observing sample
counts with a value of zero is discussed in Willers et al. (1999, 2005). The relation-
ship among pest density, sample unit size and dispersion within a geographical zone
is discussed in Willers et al. (2006). These papers provide further insight when used
in conjunction with the following two concepts.

Each concept is illustrated with data obtained from Veris R© cart soil electro-
conductivity (ECa) measurements (Corwin and Lesch 2003). These ECa values
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(mS m−1) were collected from a USDA-ARS research cotton field on the North
Farm Complex of Mississippi State University. The Veris R© sensor data was cho-
sen to illustrate these concepts because soil properties are typically more static than
RS readings involving flora or fauna and because the areal extents of the shallow
readings are nested within the deep readings for each ECa swath element area (i.e.
points in the GIS). This nesting trait is similar to the collection of insect counts from
a smaller sized sample unit nested in a collection of adjoining pixels belonging to
a particular habitat zone (Willers et al. 2005) (or within a feature object, similar to
Panel A in Fig. 12.1). Figure 12.2 presents a 25 class, equal interval classification
map, using a gray-scale color ramp, where the lighter colors represent higher ECa
values for the Deep profile. The geographical coordinates of these values are pro-
vided in the Universal Transverse Mercator (UTM) grid system (Bugayevskiy and
Snyder 1995), Zone 16, in the WGS84 datum.

For Concept 1, the Shallow and Deep attributes are examined through simulation
experiments to show how estimates of correlation vary if two attributes are sampled
from identical geographic locations with different sample sizes. For Concept 2, a
second sampling experiment assumes one attribute is measured by RS (i.e. the Deep

Fig. 12.2 Map of Deep ECa values (mS m−1) used for classification
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attribute) and assumes that the second attribute (i.e. the Shallow) is measured by
field sampling and has a small sample size.

Concept 1 – Within practical limits, increasingly larger field sample sizes of
one attribute, sampled at the same location as a RS attribute, will not improve the
estimate of the correlation between them.

The Pearson correlation between the Shallow and Deep ECa values is 0.765
(P < 0.0001). This value is used later to represent the parametric population value
for the correlation between these two attributes within the boundary of this field
(N = 5,786). This estimate is considered to represent the population correlation for
this field because the GSD between successive Veris R© readings is only a few meters
(Fig. 12.2).

This concept assumes the two attributes are being sampled from a homogenous
population, such as a crop of the same cultivar, planting date, and growth rate within
a single field. However, examination of Fig. 12.2 indicates that some spatial struc-
ture exists (a convenient way to address effects of spatial structure, without using
geostatistics, is to employ an ordinal classification scheme for the Deep attribute, as
shown in Concept 2).

Using SAS R© data step programming (SAS R© Institute, Cary, NC), a simple ran-
dom sampling model (Thompson 1992), under the conditions of sampling with
replacement, was created using these Veris R© readings. The size of the sampling
unit (see Willers et al. 2005) was fixed to correspond to the areal size of a single
Shallow reading. This sampling model simulated 1,000 runs each for sample sizes
of 7, 14, 21, 28 and 35. The sample size was stopped at 35 because obtaining sam-
ple sizes larger than 35 on large production farms is not practical due to the cost of
sampling and availability of labor.

Table 12.1 presents the minimum, maximum, mean, and median statistics for
Pearson correlation between the Shallow and Deep attribute, for 1,000 runs of
each sample size. Examination of this table indicates that repeated sampling of this
population of Veris R© readings at different sample sizes results in a range of cor-
relation estimates that vary widely. With the larger sample size of 35, the range is
between about 0.1 and 0.9, indicating that pure sampling error can still mislead
investigators a large percent of the time if only a single ‘sampling experiment’
is conducted. Improving estimates of the parametric population correlation value
would result only for extremely large sample sizes – which in commercial fields is
not economically possible.

Table 12.1 Summary statistics for the correlation estimates between shallow and deep readings
of different sample sizes

Sample size Runs
Minimum
correlation

Maximum
correlation Mean

Standard
deviation Median

7 1,000 −0.896 0.996 0.561 0.356 0.671
14 1,000 −0.460 0.964 0.610 0.231 0.659
21 1,000 −0.100 0.949 0.626 0.178 0.661
28 1,000 −0.038 0.916 0.639 0.150 0.666
35 1,000 0.107 0.900 0.639 0.131 0.659
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The results of this sampling experiment show the traditional view of using larger
sample sizes to improve the accuracy of estimates of insect or crop attributes is
unnecessary if RS information is available. It also shows the problem of trying to
estimate the simple correlation between a field sample attribute and a RS attribute.

Concept 2 – Appropriate classification of a densely sampled attribute measur-
able by RS eliminates the requirement for large field sample sizes of a second
geo-referenced attribute.

The issue addressed by this concept is rather simple but leads to a useful result: If
crop phenology is densely sampled by RS and geographically classified (zoned) into
ordinal categories, then the means of geographically sparse, simple random samples
of insect counts obtained from each zone are mutually exclusive.

Here, the Shallow ECa readings mimic an attribute not measurable by RS. This
attribute will be used to derive sparse sample sizes as would arise with sampling
insect counts in the field at geographic coordinates within zones established from a
RS attribute. The Deep ECa readings serve as the surrogate for the intensely sampled
RS attribute. Consequently, the Shallow attribute, by simulation, was sparsely sam-
pled at geographic coordinates within zones established from the Deep attribute. The
use of these two Veris R© attributes provide a certain level of control since the val-
ues for Shallow and Deep attributes are essentially known at each simulated sample
location.

The first step of this exercise was to establish 25 equal interval unsupervised clas-
sification classes (de Smith et al. 2007) of the Deep readings similar to the legend of
Fig. 12.2. Using these unsupervised class limits, an initial supervised classification
of the Deep ECa values was completed to create 5 zones.

These five ordinal, supervised, classification zones were utilized for 1,000 runs
of simple random samples of Shallow readings in each zone with sample sizes = 7
(Concept 1 demonstrated little advantage with larger sample sizes). The results are
shown as comparative histograms in Fig. 12.3. For these 5 zones, the distributions
of sample means do not overlap for Classes 1 and 5, but do for the middle 3 classes.
At first look, this result seems to contradict Concept 2 because 5 mutually exclusive
distributions of sample means were not obtained.

This result suggests that RS may have nothing to offer the entomologist since the
distinctiveness of the distribution Shallow ECa means across the Deep ECa zones is
not clear cut, even with the effort of 5,000 independent samples. This conclusion is
not valid since it fails to recognize the art of establishing supervised classes in RS. In
entomological applications of RS, whenever sample means of the sparsely sampled
attribute span one or more adjoining ordinal supervised classes, the first choice of
action is to pool two or more supervised classes. Therefore, the Deep attribute was
rebinned into 3 new ordinal classes by another iterative supervised classification
process whose criteria were based upon the rate of areal change as new class limits
were inspected in the GIS.

The SAS R© simulation exercise was repeated with these three Deep ECa zones.
The results (Fig. 12.4) now show an appropriate classification of a remotely sensed
attribute that eliminated the need for large sample sizes of the sparsely sampled
attribute. The means of seven random samples from each of these three zones
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sufficiently describe the ‘state of nature’ in each zone. Any one of these 1,000 sets
of 7 samples per zone could be utilized to determine the management actions in that
particular zone. This implies, in light of the results from Concept 1 (Table 12.1), that
any additional information obtainable from additional samples of the sparsely sam-
pled attribute is already represented by the information content of the classification
scheme of the RS attribute. Therefore, it is important to spend more time developing
the appropriate classification scheme of the RS information as opposed to spending
that time in collecting more field samples.

3.3 Application of Concepts in Cotton

Figure 12.5 shows a map product for a cotton field located in Bolivar County,
Mississippi, USA. This map was built by combining a vegetation index from June
2004 multispectral imagery with a digital surface elevation model (DSM) produced
from a 3 June 2003 Light Detection and Ranging (LiDAR) acquisition for the same

Fig. 12.5 Revised categorical, pseudo-likelihood classification map of cotton during June 2004
(after Strahler 1980 and Willers et al. 2009b). The figure has a spatial resolution of 2 m × 2 m
per pixel. Graduated symbols show pre- and post-insecticide application counts of Tarnished Plant
Bugs at various sample sites during June 2008
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fields. Fusion of these two raster layers to produce this illustrative scouting map
follows after Strahler (1980) and Willers et al. (2009b).

To illustrate several points in this section, Fig. 12.5 is used with a June 2008 data
set for the cotton insect pest, the Tarnished Plant Bug ( Lygus lineolaris (Palisot
de Beauvois)). The fused map and the georeferenced insect counts are used in
this section to establish a hypothetical task that examines whether this map prod-
uct (Fig. 12.5) provides a useful description for the geographical distribution of the
sample insect counts from another year. This hypothetical task is of practical interest
because current research on the site-specific management of this pest is examining
the seasonal stability of cotton vigor zones among production seasons in relation-
ship to the geographic distribution of Tarnished Plant Bug (TPB) abundance over
years.

Overlaid on the figure are graduated symbols to show how the 2008 counts of
TPBs vary among georeferenced sampling sites just prior to a blanket spray appli-
cation (17 June 2008) and at sample sites for 2 weeks following the application
(24 June and 7 July 2008). Using these counts and figure, another goal of this sec-
tion is to demonstrate the applicability of Concepts 1 and 2 to obtain answers for
the hypothetical task.

The Pearson correlations between the count values of TPB and the zonal max-
imum of the pixel values contained within a 7 m circular buffer centered at
the coordinates of the sample site, pre- (rc = −0.11; P = 0.56) and post-spray
(rc= −0.06; P = 0.65) are non-significant. These results do not indicate that there
is nothing useful to be found. Instead, they indicate that correlation techniques (i.e.
ordinary least squares methods) are not useful for questions involving insect sam-
ple counts and RS information. The low correlations between these TPB counts and
zonal maximum of pixel values within circular buffers at the corresponding sites
arose not only because of the differences between years, but also because of causes
as shown in Section 3.2, Concept 1. A different analysis approach is necessary.

Concept 2 demonstrated there should exist a RS classification scheme such that
the means of a sparsely sampled attribute (i.e. insect counts) obtained from different
zones are mutually exclusive. This idea is now employed as the first step toward a
different analysis approach that examines relationships across years for stability of
cotton vigor zones and TPB counts. To revise the classification shown in Fig. 12.5,
GIS processing created two new variables in the attribute table of the insect sample
counts. The first new variable, named SAMPL_ID, was coded as ‘1’ for pre-spray
sample sites and as ‘2’ for post-spray sample sites. The second new variable, named
SPLIT, was coded ‘1’ for pixel values < 4.1 and coded ‘2’ for pixel values ≥ 4.1. The
zonal maximum function (de Smith et al. 2007, Willers et al. 2009a) was applied
to a 7 m circular buffer at each sample site to extract this information from the
mapping layer. The selection of the value, 4.1, is based upon experience and a
detailed understanding of the revised process that produced Fig. 12.5 (Willers et al.
2009b).

Inspection of Fig. 12.5 generally indicates that pixel values ≥ 4.1 form a zone
consisting of blue-green to blue hued pixels. In Table 12.2, sample sites associated
with this zone (Categorical Label = 4) involve collections of pixels whose values



196 J.L. Willers and J.J. Riggins

Ta
bl

e
12

.2
D

is
tr

ib
ut

io
n

of
co

un
t

fr
eq

ue
nc

ie
s

fo
r

ta
rn

is
he

d
pl

an
t

bu
gs

pe
r

sa
m

pl
e

du
ri

ng
17

Ju
ne

20
08

(\
ta

lly
),

pr
e-

sp
ra

y,
an

d
24

Ju
ne

an
d

7
Ju

ly
20

08
(x

ta
lly

),
po

st
-s

pr
ay

,f
or

th
e

fo
ur

ha
bi

ta
tz

on
es

fr
om

20
04

pr
es

en
te

d
in

Fi
g.

12
.5 Ta

rn
is

he
d

pl
an

tb
ug

co
un

tp
er

sa
m

pl
e

(N
o.

of
sa

m
pl

es
pe

r
co

un
tv

al
ue

by
zo

ne
b
)

Z
on

ea
C

at
eg

or
ic

al
la

be
lf

or
ha

bi
ta

tz
on

es
0

1
2

3
4

5

L
ow

es
te

le
va

tio
n,

lo
w

es
tv

ig
or

1
\\

H
ig

h
el

ev
at

io
n,

L
ow

vi
go

r
2

\ xx
x

\ xx
\ x

\

L
ow

el
ev

at
io

n,
hi

gh
vi

go
r

3
\\

\\
\\

\\
\\

xx
xx

xx
xx

xx
xx

x
x

xx
x

\ xx
x

\ x

H
ig

he
st

el
ev

at
io

n,
hi

gh
es

tv
ig

or
4

\\
\\

\\
\\

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

x

\ xx
x

xx
x

\ x
x

a Z
on

es
re

la
te

to
th

e
po

si
tio

n
of

im
ag

e
pi

xe
ls

w
ith

re
sp

ec
t

to
a

ce
nt

ro
id

co
m

pr
is

ed
of

th
e

gl
ob

al
m

ea
n

A
TA

N
N

D
V

I
on

th
e

or
di

na
te

ax
is

an
d

th
e

gl
ob

al
m

ea
n

el
ev

at
io

n
on

th
e

ab
sc

is
sa

fo
r

th
e

en
tir

e
fie

ld
in

Fi
g.

12
.5

b
Fr

eq
ue

nc
y

of
co

un
ts

in
ea

ch
sa

m
pl

e
fr

om
a

zo
ne

is
ba

se
d

on
33

sw
ee

ps
pe

r
sa

m
pl

e
(s

ee
W

ill
er

s
et

al
.2

00
5)

.‘
\’

re
pr

es
en

ts
co

un
ts

pr
e-

sp
ra

y,
‘x

’
re

pr
es

en
ts

co
un

ts
po

st
-s

pr
ay



12 Geographical Approaches for Integrated Pest Management of Arthropods 197

are greater than the global mean for the vegetation index and elevation. This zone,
while producing numerous sites of ‘0’ counts and several sites with counts between
‘1 and 3’, is the only zone having a site with a count ≥ 5 (one tally). While the
range between a count of ‘0’ and ‘5’ is small, inspection of Fig. 12.5 shows that
non-zero counts seem to cluster primarily in the green and blue zones and that the
highest counts (> 3) are only found in hues associated with a class limit > 3.21. Thus,
the geographical distribution pattern of the counts, determined by visual inspection,
indicates the TPBs reside in this cotton field with at least two population density
distributions – one within the zone comprised of classes somewhat larger than the
class value of 4.1 (increasingly deeper blue hues (see legend, Fig. 12.5)) and a sec-
ond within the remaining zones comprised of class values < 4.1 (the green, yellow,
orange and red hues). Thus, the class limit value of 4.1 functionally recodes Fig. 12.5
into two zones (similar to steps illustrated in Concept 2) to correspond to these two
population density distributions of TPBs. A preliminary interpretation is that there
is some evidence that the dispersion of TPBs follows a pattern of stability in crop
vigor over production seasons.

However, the TPB sample counts in these two recoded zones have evidence of
many ‘0’ counts (Table 12.2). To complete a further analysis in the presence of these
‘0’ counts, a count model regression method (Long 1997, Willers et al. 2009a) was
employed. With a count model, the dependent variable takes on only nonnegative
integer (count) values and it is assumed that the conditional mean E(yi|xi) of the
dependent variable, yi, is a function of a vector of covariates, xi. A first step in such
a test is to determine if there is evidence of over-dispersion among the collection
of TPB counts (Long 1997). The answer determines which type of count model
to apply (Long 1997, SAS Institute 2008): Poisson regression, Negative binomial
regression, Zero-Inflated Poisson (ZIP) regression, or Zero-Inflated Negative bino-
mial regression. A direct way to test for over-dispersion is to first fit a Negative
binomial regression model to the counts of Table 12.2, using SAMP_ID and SPLIT
as the co-variates. From this model, a parameter named α is estimated, which,
if significant, is evidence for over-dispersion. For these data, it was found that
α = 2.65, which is significant (P = 0.013).

Since these data exhibit over-dispersion, the decision was then made to fit the ZIP
regression model. The ZIP model assumes there are two processes at work which
give rise to the data. One process is describable by a Poisson distribution and the
other process accounts for the excess zeros (Long 1997, SAS Institute 2008). The
estimates of the ZIP parameters and other statistics are presented in Table 12.3.
The following interpretation is offered. Since the inflated covariate, Inf_Split, is
marginally significant (P = 0.06), there are too many zero counts within the blue
hued zone compared to the other zones, using a threshold of 4.1.

A further look at the data finds that three of these zero-valued counts, associ-
ated with pixels > 4.1 are enclosed within the ellipse at the top of Fig. 12.5. The
cotton planted in this field during 2008 was comprised of several different sets of
planting date by cultivar combinations. Thus, many of the zero counts arise in the
youngest cotton (about 600 m south of the northern most tip) or in another area of
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Table 12.3 Parameter estimates for the Zero-Inflated Poisson Regression model

Parameter DF Estimate SE t Value Approx Pr > |t|
Intercept 1 1.07 0.74 1.43 0.15
SAMPL_ID 1 −0.22 0.39 −0.58 0.56
SPLIT 1 −0.15 0.42 –0.36 0.72
Inf_Intrcept 1 –0.05 1.19 –0.04 0.97
Inf_Sampl_id 1 –0.56 0.64 –0.87 0.38
Inf_Split 1 1.18 0.62 1.90 0.06

cotton planted late with a nectariless cultivar (about 480–680 m north of the south-
ern edge). The regions of the field having the highest counts (>2) are where the
cotton was planted first (oldest) and did not have the nectariless trait. Thus, while
the years 2004 and 2008 had similar planting dates, they did not have similar spatial
assignments of cultivars. Therefore, the conclusion of the analysis at this point is
to stop. The occurrence of these three zero counts indicates that the planting and
cultivar combination could be another influencing effect.

A final point to consider is the effects of geographic mis-registration. A poten-
tial example is the sample location referenced by the black arrow at the southeast
edge of the field. This location had a pre-spray count of ‘3’ within the low vigor,
high elevation class (Categorical Label = 2 in Table 12.3). Experience suggests that
observing a ‘3’ count in this class prior to first bloom is unusual. There are two
likely explanations for finding this value in this zone and both are related to mis-
registration effects: one possible cause is GPS error while the second possible cause
is the year difference between the two data layers. The coordinates of the 2008 sam-
ple sites were obtained by a low cost GPS unit having a positional accuracy of 3–5
m, 95 % of the time. To the east and south of the posted coordinate location reside
pixels belonging to the Label 3 category. While this ‘3’ count could be the result of
a coding error due to mis-registration by the GPS, the more likely cause is a weather
effect captured by the 2004 imagery. Thus, while several areas of these fields indi-
cate stability in vigor across years, there are some other areas of the field where
vigor is not stable among years. Therefore, in the practice of site-specific IPM and
analyses of geo-referenced data, always keep in mind the geo-positional and tempo-
ral accuracy of the map product and the accuracy of the sample coordinates obtained
by hand-held GPS units.

The simulation exercises developed for Concepts 1 and 2 demonstrated that
the analyses of RS data and another field attribute (such as insect counts) sam-
pled with small sample sizes requires concomitant processing steps of data in both
the numerical and geographical coordinate systems. These practical realities were
demonstrated here by a hypothetical, but near, real-world field example.

These examples show how analysis choices influence the ability of entomologists
to discover principles for geographical IPM. Specifically, while of historical signif-
icance, ordinary least square approaches should be avoided because (I) attributes
of RS data layers are typically not normally distributed, (II) geographical zones
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of the classification map frequently need to be recoded into ordinal categories,
(III) insect counts are integers and often include zero values, and (IV) correlations
based on sample counts involving small sample sizes are often low and vary widely
between sampling experiments. In situations involving geo-referenced attributes
such as insect counts, count model regression methods (Long 1997, Willers et al.
2009a), binary (or multinomial) logistic regression models (Long 1997, Hosmer and
Lemeshow 2000), or data mining approaches (Riggins et al. 2009) are better alterna-
tives. On the other hand, if both the dependent and explanatory variables are densely
sampled by RS, linear mixed models with covariates (Gotway et al. 1997, Milliken
and Johnson 2002, Littell et al. 2006, Willers et al. 2008) provide alternative analysis
methods.

4 Conclusion

An entomologist must never abandon a search for useful classifications of RS
attributes simply because results at first do not conform to initial expectations or
tradition. The search for better ways to process RS information and discern the rela-
tionship of RS information to sparsely sampled attributes such as insect counts is an
on-going process.

On-site field sampling efforts often take place before, concurrently, or just after
RS data acquisition. Field sampling efforts can be optimized if RS collection occurs
first; however, weather and other factors often disrupt RS acquisition schedules.
Nevertheless, today’s RS techniques provide entomologists the capacity to make
more informed decisions and interpretations about information derived from their
on-site field sampling locations. We anticipate many geographical methods for IPM
are still undiscovered. The nascent status of the current knowledge about geograph-
ical IPM is obvious when considering the diversity in sensors (active, passive or
thermal), bit-depth, and the spectral, spatial and temporal resolution of numerous
sensor systems, along with the diversity of processing techniques currently avail-
able. Thus, despite the apparent sophistication of current hardware, software and RS
technologies, entomologists must consider that large amounts of knowledge about
geographical approaches, methods and tools regarding IPM are undiscovered. For
these reasons, our progress is rather slow at present. Similar to the centuries of
exploration necessary to discover the Northwest and Northeast passages (Stefansson
1947) from Europe to the Orient, once a body of knowledge is mature and matched
by appropriate changes in technology, additional discoveries happen rather quickly.
Therefore, the opportunity for discovery by today’s entomologists working with
RS is just as vast and unknown as it was for those exploring our world in the cen-
turies past. Similarly, the science of designing and analyzing experiments to evaluate
precision agricultural practices for insects in row crops and forests is currently in
transition and requires the development of new concepts and techniques. We look
forward to the advancements and development of geographical solutions for insect
control created by motivated investigators.
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Part III
Modelling and Decision Support Systems



Chapter 13
Spatial Data Handling and Management

Georg Bareth and Reiner Doluschitz

Abstract Spatial data management and handling is very important in precision crop
protection. Such data is collected by remote and proximal sensing. Additionally,
soil, elevation, topographical, weather, management data is needed. Here, exter-
nal data providers play an important role. Nowadays, farmers have to handle huge
amount of data which is used for spatial decision support. Besides the farmer’s
domain, we identified in this contribution, four important domains to develop spatial
data management concepts: (I) spatial data service domain, (II) precision farming
service domain, (III) spatial modeling and analysis domain, and (IV) communi-
cation and server domain. Considering communication and data flow between the
domains, the design for a potential data management architecture for precision crop
management is introduced.

1 Background

Spatial data handling and management is of key importance in precision agricul-
ture (PA) and therefore in precision crop protection (PCP) which is considered a
part of precision crop management (PCM). Such management activities have a spa-
tial nature (compare Chapters 1–4) and technologies which provide tools to capture,
manage, analyze, provide, and visualize such data have to be applied (Pokrajac et al.
2002). In Chapters 1–12, spatial sensor and sensing technologies are described in
detail and are the important technologies to collect spatial data for plant vitality, pest
monitoring and identification etc. However, for the management and handling of
spatial data, Geographic Information System (GIS) technologies are the most impor-
tant of the technologies in PA and are described by Srinivasan (2006) as ‘geospatial
information and communication technologies’, which enabled the implementation
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Fig. 13.1 Components of implementation of precision agriculture (modified from Srinivasan
2006)

of PA techniques in the 1990s. Consequently, GIS is of central importance for
precision crop management (Fig. 13.1).

As mentioned above, the GIS component is centered in Fig. 13.1. Remote sens-
ing (satellite, aerial imagery) and proximal sensing data (soil, crop parameter) are
collected and must be georeferenced. For this purpose, Global Positioning Systems
(GPS) are used. Via the communication component, these spatial data flow into
the GIS component for further analysis for which additional geodata from offi-
cial sources (e.g. digital elevation model, topographic data) might be integrated
in the system (Rösch et al. 2007). Spatial analyses (e.g. hyperspectral vegetation
indices) or simulation results from e.g. plant growth or matter flux models serve
as the knowledge base for the variable rate application component in the field. The
interaction between this component and the GIS, the spatial data handling and man-
agement component is again implemented by the communication component (e.g.
wireless data exchange).

Precision agriculture and precision crop management are well investigated
research areas as documented in chapters of this book, by the journal Precision
Agriculture (e.g. Nash et al. 2009a), several textbooks, and annual conference series
on this topic. Additionally, many commercial applications and products are already
implemented (e.g. John Deere’s GreenStar R©; Yara N-Sensor R©) or are available as
services and software packages on the market (e.g. Agri Con Precision Farming
Company). Even products for automated remote sensing data and GIS analyses
are commercially available (e.g. Infoterra’s Overland R© software). Consequently it
is not surprising that software solutions for spatial data management of precision
farming purposes are on the market, too. All up-to-date plot record software sys-
tems for applications for farm management purposes include GIS components and
features to document and analyze PA and PCM data. They also provide interfaces to
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acquire data from remote mobile data collection devices, which are widely available
in agricultural crop production.

Since 2005, the European Union (EU) asks for spatial information in terms of
GIS data when farmers apply for subsidies (EU regulation 335/2004). This reg-
ulation boosted the implementation of GIS documented land use and land cover
system for agriculture in Europe and the establishment of spatial data in terms of
field border features. This high demand for spatial data solutions led not only to
the incorporation of spatial data handling tools in farm software packages, but also
supported the development of open source products for spatial data handling and
management for agricultural purposes (Kielhorn et al. 2007, Watermeier 2006).

In this chapter on spatial data handling and management for PCP, the focus is not
on giving a review on precision agriculture methodologies or available products.
Relevant contributions are available in the literature by Srinivasan (2006), Rösch
et al. (2007) and many more; and are even available for farmers from relevant agen-
cies (KTBL 2007, 2004, Noack 2007). The objective of this contribution is to focus
on the demand of farmers for spatial data, for which software, standards, and ser-
vices are available, and finally to introduce a design of how spatial data handling
and management could be organized on the farm level within the next few years. For
latter considerations, the farmer will be centered as the spatial mobile agent acting
with diverse devices and tasks for spatial services, data, analyses, spatial decision
support (SDSS), and communication systems.

2 Software and Data Standards

It is well known and documented which data are necessary for PCM. For example,
in the period 1999–2008 the pre agro project (www.preagro.de) focused on data
management issues. Nash et al. (2009a) describe data flow concepts for precision
agriculture approaches in this project. The data not only comprise spatial data but
also farm management data, which are usually organized by a farm management
information system (FMIS; Steinberger et al. 2009). Software products are available
(e.g. www. agrocom.de). The growing importance of mobile devices for data col-
lection in precision farming in connection with wireless technologies is documented
by e.g. Steinberger et al. (2009) and Luis et al. (2009). In Fig. 13.2 the user interface
of Agro-Net is shown (Oetzel 2008). The interface clearly shows the complexity of
data management. Besides a spatial data viewer that is centered in Agro-Net, in the
left menu bar farm data, field administration, planning, etc. are accessible. In this
context, Oetzel (2008) describes the importance of combining spatial data services
like OGC’s Web Map Service (WMS) with farm office products and introduces
an interface library based on Microsoft’s net technology to combine such services
within a farm management system and agroXML applications.

For spatial data storage in general, GIS software products are available e.g.
ESRI’s product family (www.esri.com) or open source software developments are
integrated in farm management software products like Farm Works Software R©
(www.123farmworks.com). The latter offers complete farm management and
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Fig. 13.2 AGRO-NET with process data from Agricultural Process Data Service (APDS) of WP8
of the pre agro project (source Oetzel 2008)

includes accounting, field record keeping, mapping tools, GPS mapping, livestock
and herd management, etc. Additionally, mobile applications for portable/mobile
guidance, mapping, and data collection are included. Similar products are available
from e.g. PROGIS (http://www.progis.com) and many more.

Traditional GIS software resellers like ESRI provide products and services for
agricultural application and especially for PA. In the latest ESRI Newsletter ‘GIS
for Agribusiness’ for example, the USDA’s 2007 harvested corn acreage map is
presented (ESRI 2009). In general, the combination of ESRI’s GIS products can be
used to implement complex server-client based spatial data management systems for
mobile and desktop applications. Developments in the last 5–10 years led to numer-
ous open source GIS software libraries and products (http://www.osgeo.org/). Those
also enable setting-up complex server-client based solutions for farm management
and PA (Kielhorn et al. 2007, http://openlayers.org/).

In combination with open source or commercial software products, various web
services can be used and are important for spatial data access and further analy-
ses in a SDSS context (Bareth 2009, Nash et al. 2009b). Spatial web services are
based on standards of the Open Geospatial Consortium (OGC) OpenGIS R© stan-
dards (www.opengeospatial.org) and represent nowadays the most important spatial
data services. For PA and especially PCM, the most relevant standards are Web Map
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Service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS), Web
Processing Service (WPS), Keyhole Markup Language (KML), Location Service
(OpenLS), Sensor Observation Service (SOS), Sensor Model Language (SML),
and Catalogue Service (CAT). These standards are described in detail by the OGC
(www.opengeospatial.org/standards) and are shortly introduced in the next Section 3
Spatial data and data services.

For spatial data interoperability, OGC’s standards and services are the most
important. Many GIS and (remote) sensing software products use their own data
format, which is not compatible with other software. Before OGC’s interoperabil-
ity activities, this was a severe problem. Quasi standards for spatial data were e.g.
ESRI’s .shp and .e00 formats. The latter was the file exchange format and was also
often used by official agencies to deliver data.

Deficits and barriers for adequate data integration on a horizontal level, in par-
ticular in internal areas and vertically along the supply chain, still exist through
unavailable or insufficiently developed industry-specific data standards. Standards
are otherwise indispensible when it comes to communication between distributed
mobile data collection devices, software solutions and data sets, as they are
widespread in the area of agriculture (Doluschitz 2007, Kunisch et al. 2009,
www.agroxml.de). The standardized data exchange format agroXML has been
under development for several years. It is fairly complete for agricultural crop pro-
duction and still is under development for livestock farming. At the same time, the
existing standards, such as ISOagriNet in the field of internal husbandry and/or inte-
grated with agricultural animal husbandry, were created as corresponding interfaces.
For external communications with third parties, the agroXML standard will then
be used, which is increasingly being established in the industry (Doluschitz and
Kunisch 2004, Doluschitz et al. 2005).

Connections of remote mobile data collection devices shall be provided as well
as connections of distributed data sources and software tools along supply chains
at a vertical direction. The agroXML standard defines the smallest possible infor-
mation unit which should be considered for data exchange. agroXML orients itself
completely at the W3C specification and is therefore open for processing by XML-
technologies such as XSLT, XPATH, XLINK, etc.. agroXML is publicly available
and is under supervision of a KTBL working group. It allows formal descriptions
of agricultural knowledge areas using standardized terms and relationships to apply
common understandings. Adjustments to different application fields are done by
profiling. Such profiles describe compulsory data inputs, which are required by
specific applications.

The elaboration of concepts, structures, and architectures is done by indepen-
dent third party partners. The benefit for potential users is that redundancies are
minimized. Documentation and reporting duties are covered by agroXML and addi-
tional information for farm management purposes is provided and communication
with partners is optimized. The so far high interest of all kind of members of the
agricultural and agribusiness sector indicates a high future adoption rate of the
standard.
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3 Spatial Data and Data Services

The importance of spatial data increased in the context of PA and PCM. The first
question should therefore be what data are really necessary for such applications.
Because spatial data very often is the most valuable component in a GIS (Bill 1999),
it needs to be considered also in a cost-benefit context (Bachmaier and Gandorfer
2009, Lambert et al. 2006, Tozer 2009). In many publications, the core data for PA
and PCM are listed. Hence, we only provide short information on the heterogeneous
data sets. According to Rösch et al. (2007) and Srinagar (2006) the following spatial
data are required:

• Management data
• Yield maps
• Nutrient maps
• Rating surveys
• Soil maps

• Weather data
• (Remote) Sensing data
• Cadastral maps
• Digital Elevation Model (DEM)
• Topographic maps

Management data are usually generated by the farm itself and, in PA are highly
depending on agronomy aspects. Important issues here are the type of management
(e.g. weeding), time (e.g. sowing date), amount (e.g. fertilizer application rate), crop
rotation, etc. Usually the data are stored for control and documentation, supporting
management improvement strategies. For the application of fertilizer and chemicals
for crop protection, rating data are required. Ratings include weeds, plant diseases,
and plant vitality and are carried out by the farmer or extension specialists. The
results answer the questions as to where and how much should be applied. Ratings
provide spatial data of within-field variability. Further data collected in the farm
domain are yield maps. Nowadays, yield maps are created by combined harvesters
in real time during harvest and are available directly after harvest for spatial analysis.
Besides amount per unit, water content and ingredients are detected. Combine har-
vesters can be owned by the farmer himself or are used by machinery co-operations.
Proximal and remote sensing applications and their importance for PA and PCM
are described in detail in the previous chapters. Such methods are used to derive
information for precision crop management. Yield maps are closely connected to
nutrition maps. The latter are required to analyze reasons for spatial yield variability
and to spatially adjust respective fertilizer applications. Besides plant nutrient con-
tents, available spatial data of soil nutrients are important. These data are usually
not collected by the farmer. Extension services can provide such data and usually
do this for soil nitrogen content. In this context, soil maps are important and are
available from soil surveying companies. Large-scale data provide soil horizons,
clay content, soil texture, pH, etc. In Germany for example, such data are available
from the official geological and soil survey offices in a scale of 1:5,000 to 1:25,000
(e.g. www.lbeg.niedersachsen.de). The large soil data sets are in some countries
combined with cadastral maps like land registers. Such land evaluation maps are
used for agricultural taxation purposes. In Germany, the Bodenschätzungsgesetz
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‘BodenSchätzG (BGBl. I S. 3150, 3176)’ (soil evaluation law) was modified in 2008
(www.bundesfinanzministerium.de). Digital elevation models (DEMs) are usually
provided by the official surveying and mapping agencies. With GIS software, it
is possible to derive relief parameters like inclination, exposition, curvature, slope
length, and morphology. This information is of high importance for minimizing soil
erosion potentials. Like DEMs, topographical maps and aerial imagery are provided
by WMS and are usually delivered by the surveying and mapping bureaus. These
data are mostly used for background information in mapping applications.

It is very obvious that the before mentioned data, which is necessary for PA and
PCM, are extremely heterogeneous in terms of data formats, spatial and time scales,
sources and authors, etc. A conclusion from this fact which is also described in
literature is interoperability. The only way to use all these different types of spatial
information in the process of PA and PCM is by applying defined data standards, ser-
vices, and interfaces. Such activities for interoperability are in the focus of the Open
Geospatial Consortium which was founded in 1994 (www.opengeospatial.org). In
the next paragraphs the OGC standards which are of key importance for PA and
PCM are shortly described.

WMS (Web Map Service) is a HTTP-based interface which provides requested
spatial data from a single or multiple spatial data server(s) as a map image
(OGC 2006). Popular examples are the Landsat Imagery WMS (http://wms.jpl.
nasa.gov/wms.cgi), where the server is regularly overloaded or e.g. in Germany,
official WMS for topographic, aerial imagery, and surveying data (e.g. http://www.
geoserver.nrw.de/home/gbdaten.html).

WFS (Web Feature Service) does not provide, in contrast to WMS, map images.
The real map features are accessed which are then represented as vector data and
several WFS operations are included (OGC 2005). Hence, it is possible to create,
update, or delete map feature instances and to query in a spatial or non-spatial
context. For example, the USDA offers WFS for soil data access of soil survey spa-
tial and tabular data (http://sdmdataacess.nrcs.usda.gov/). Another example is the
web maps server of the FAO which is hosted by the Environmental Assessment
and Management Unit (NRCE) of the FAO (http://dwms.fao.org). At the FAO-
NRCE Web Maps Server page, a link to spatial information management for food
and agriculture provides general information on the importance of geo-referenced
information (http://www.fao.org/spatl/).

WCS (Web Coverage Service) is limited to so-called grid coverage which sup-
ports the retrieval of raster data for space-varying phenomena (OGC 2008a). The
difference between WCS and WMS is that no static web maps are delivered. It
is more comparable to the WFS, but is limited to grid coverage. The Integrated
CEOS European Data Server (ICEDS), for example, provides WCS for satellite
data retrieval (http://iceds.ge.ucl.ac.uk).

KML (Keyhole Markup Language) is an xml-based spatial data format and was
developed for the Keyhole Earth Viewer by Keyhole Inc. Google R© acquired the
company in 2004 and the technology was used to launch Google R© Earth in 2005.
With the overwhelming success of Google R© Earth and Google R© Maps, KML
became a very popular data format and nowadays it is readable or importable by
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most GIS software. Additionally, KML data are easily implemented with open
source resources in web pages e.g. OpenLayers (http://openlayers.org/). Google R©
submitted KML in 2008 to the OGC R© to become an OGC R© standard (OGC
2008b). According to OGC (2008b), ‘the KML Version 2.2 will be an adopted OGC
implementation standard’.

WPS (Web Processing Service) defines the standard of web-based geoprocess-
ing such as buffering or polygon overlay (OGC 2007a). Important issue here is
that no specific data are required for input or output. And the data are delivered
from across the network or are available from a server. This includes data retrieved
by WFS or WCS. Several companies, e.g. 52north (http://52north.org), which pro-
vide open source services, are pushing this standard to include geo data analysis
functionalities in Spatial Data Infrastructure (SDI) development like INSPIRE
(http://ies.jrc.ec.europa.eu/SDI) and are very active in the geoprocessing commu-
nity. The benefit for agricultural applications in the context of PA or PCM is obvious.
Spatial questions like what soil parameters are related to low yield could be easily
answered online and further investigated.

CAT (Catalogue Service) is also an OGC interface standard. The objective is to
provide a service to publish and search metadata collections ‘for data services, and
related information objects’ (OGC 2007c). For finding or providing relevant spatial
data, CAT is very important and for example applied by the German SDI initiative
(www.gdi-de.org).

SOS (Sensor Observation Service Interface Standard) is a programming inter-
face. Such application programming interfaces (APIs) are used to enable software
interaction. ‘SOS provides an API for managing deployed sensors and retriev-
ing sensor data and specifically ‘observation’ data. Whether from in-situ sen-
sors (e.g., water monitoring) or dynamic sensors (e.g., satellite imaging), . . .’
(http://www.opengeospatial.org/standards/sos). SOS is a result/standard of the OGC
Sensor Web Enablement (SWE) activities (OGC 2007b), which already imple-
mented and defined several components needed for a sensor web. These components
are Observation & Measurement (O&M), Sensor Alert Service (SAS), Sensor
Model Language (SensorML), Sensor Planning Service (SPS), Transducer Markup
Language (TML), and Web Notification Service (WNS), which are described in
detail by OGC (2007b). Besides the before mentioned spatial service standards like
WFS, the OGC standards for Sensor Webs are of key importance for PA and PCP
in the future. The interoperability of data acquired by mobile or static soil and plant
sensors in combination with spatial data (services), especially WPS, are the basis
for spatial analyses, which provide knowledge for SDSS in PA or PCM, and can
communicate via agroXML with application devices.

OpenLS (Open Location Services Interface Standard) defines the OGC inter-
faces for applications in the field of Location Based Services (LBS) (OGC 2008c).
LBS are especially important for mobile applications and therefore, these concepts
are of central importance for the communication with mobile clients within the
farm domain. The core services of OpenLS are also defined as GeoMobility Server
(GMS) and are shown in Fig. 13.3. The location of a mobile client is identified by
Positioning Determination Equipment (PDE) (Peng and Tsou 2003) and is provided
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Fig. 13.3 Role of the GeoMobility Server (OGC 2008c)

to the GMS by a location server which communicates with the Gateway Mobile
Location Center (GMLC)/Mobile Positioning Center (MPC). The GMS provides
content like maps, routes, addresses etc. Core services of OpenLS are e.g. navigation
and tracking. The latter are essential applications in PA and PCP.

Besides the before mentioned OGC spatial service standards like WFS, the stan-
dards for Sensor Webs and LBS are of key importance for PA and PCP in the
future. The interoperability of data within the farm domain in combination with
provided external data are in the focus. Acquired data by mobile or static soil and
plant sensors in combination with spatial data (services), especially WPS, are the
basis for spatial analyses, which provide knowledge for SDSS in PA or PCP and
can communicate via agroXML with application devices. Consequently, such stan-
dards and technologies have to be integrated and combined for developing new data
management approaches for PA or PCP.

4 Potential Concept of Spatial Data Management

The professional handling and management of all space related data – and in terms
of PCP every management task is in a spatial context – is a must for successful
PA and PCM. Various approaches have been established and are described in PA
textbooks or reviews (e.g. Bramley 2009, Rösch et al. 2007, Srinagar 2006) or are
included in latest technologies (e.g. Ambrosio et al. 2009, Bareth 2009, Fountas
et al. 2009, Nash et al. 2009b, Oetzel 2008). The objective of this sub-chapter is
to summarize and extend the existing ideas of spatial data handling and manage-
ment for PCM to conclude and suggest an up-to-date architecture that considers
the discussions of the Data Management Workshop. This was held in Cologne in
October 2009 and focused on latest scientific approaches in interdisciplinary data
management projects (Curdt and Bareth 2010).

In Fig. 13.4, the domains involved in farm data management are character-
ized. The farmer’s domain is centred in this figure because all data management
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Farmer‘s Domain

Spatial Data
Service Domain
- GPS
- Remote sensing
- Weather
- Soil 
- Cadastral
- etc.

Precision Farming
Service Domain
- Yield
- Diseases
- Nutrients
- Soil Parameters
- etc.

Communication
and Server Domain
- Internet/phone
- External storage
- Standards
- Services
- Extension
- etc.

Spatial Modeling and
Analysis Domain
- Yield
- Management
- Marginal Income
- SDSS
- etc.

wireles data exchange

Fig. 13.4 Domains of spatial data management for PA and PCM

efforts should focus on supporting his work flow and decision making (compare
Chapters 14 and 15). Within the farmer’s domain, communication will be based on
wireless technologies (Matese et al. 2009). Sensor networks for example can pro-
vide their data e.g. via GSM (e.g. Jiang et al. 2008) or ZigBee radio network (e.g.
Bogena et al. 2009, Morais et al. 2008) to a data server within or outside the farmer’s
domain. But all mobile (e.g. machinery or PDA) and desktop devices within the
farmer’s domain must be linked with each other in real time for communication and
data exchange.

The spatial data service domain comprises spatial data products, which are exclu-
sively not collected within the farmer’s domain and are available from extension,
official bureaus, or companies. Such data are accessible by farmer’s domain via
internet and usually OGC standards, services, and interfaces. The latter are part of
the communication and server domain. Only standards and services which support
interoperability between systems and products should be included. Data storage and
backup should not be located within the farmer’s domain and are provided by spe-
cialized companies. This ensures data access and system performance. The database
can be mirrored into the farmer’s domain for cases when communication networks
are down.

The precision farming domain provides all mentioned technologies for data col-
lection, especially from sensor devices. Many of those data are not collected by the
farmer himself and are provided from external management activities. All acquired
and collected data will be accessible by the FMIS which provides all necessary
inputs for analyzing and modeling approaches. The results are finally disseminated
by a SDSS. The interfacing of all data from the farmer’s domain and external
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sources, from sensor webs and sensing devices, and the access via mobile or desktop
client interfaces is part of the communication and server domain.

The organized distribution of data, services, and computing capabilities also
arrived in agricultural applications as it is outlined by before mentioned literature
and summarized in Fig. 13.4. For spatial modeling and computing purposes, grid,
parallel, and cloud computing approaches are in development (Birkin et al. 2009,
Li 2008, Padberg and Greve 2009, Procari 2009, Stanoevska-Slabeva et al. 2010,
Werder and Krüger 2009). In this context, distributed file management and data
standards are more and more important (e.g. www.dcache.org). Consequently, a
potential design of an architecture for spatial data management for PC and PCM
must consider these current developments. Hence, the distributed components and
the related data flows for communication processes with selected data standards and
servers are summarized and outlined in Fig. 13.5.

The core of the presented concept is that the farmer accesses his data via inter-
net through a webpage. This webpage is his access to his FMIS, which with all data
and interfaces is implemented, organized, managed, and maintained by an extension
service or a company. For additional backup, the farmer can mirror the content to
a hardware component within the farmer’s domain. This can be important in cases
where the internet is not working properly or is even down. For special desktop or
mobile applications, direct access to the file management system or the database
should be implemented. Every communication from the farmer’s domain must be

Fig. 13.5 Design of a data management architecture for PA and PCM (modified from Curdt et al.
2009)
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protected and secure. The only not password protected link is to the one to the spa-
tial data services, which are available with WMS, WFS, etc. Additionally PA data
may be required again from extension or companies and must be available. In the
presented structure, such data – equal to similar data from the farmer’s domain – is
stored in a file management system. The latter is interfaced with the farm database
which stores and manages data locations in terms of data paths, metadata, further
(spatial) spatial data, content and structure of the webpage. The farm database also
manages the user accounts and provides different user views. For example, a mobile
client for collecting rating data has online access to all available field data and also
data which supports the mapping task, e.g. topography via a WMS. While mapping
within the farmer’s domain, the data are directly stored in the file management sys-
tem. This then gives an ‘alert’ to the farm database that a new data set is uploaded.
Afterwards, the mobile client is immediately asked by the farm database to upload
metadata for the data set.

An example of an integrated WegGIS user interface which is discussed in
Fig. 13.5 is established for the Transregional Collaborative Research Centre
‘Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling and Data
Assimilation’(www.TR32.de) which is funded by the German Research Foundation
(DFG). The WebGIS is implemented by the data management sub-project of the
TR32 (www.TR32DB.de). The system provides most of the before mentioned spa-
tial data for the TR32 study region that are needed for PA and PCM (Curdt et al.
2010). In Fig. 13.6, two screenshots of the WebGIS user interface, which is acces-
sible via standard web browsers, are shown. The upper screenshot shows a land use
classification map obtained from ASTER multispectral satellite imagery in combi-
nation with topographic data of Germany’s administrative topographic-cartographic
information system (ATKIS). ATKIS provides base topographic data and can be
used for map production for a scale of 1:10,000 called the DTK10 (www.adv-
online.de). Administrative unit borders like village, township, counties etc. are also
included and are important for linking agricultural statistic surveys to map units
(Bareth and Yu 2002). In Fig. 13.6, ATKIS is in the background and the land
use classification is set online in a transparent display mode. Additional GIS lay-
ers are weather stations and sub-watershed boundaries. In the lower screenshot
of Fig. 13.6, a larger scale is selected. Activated spatial data layers are the soil
information system 1:50,000 (ISBK50) in a transparent viewing mode on top of
ATKIS. The black boundary layer represents the land parcel map (ALK) which is
used for map scales up to 1:500. The ALK borders do not correspond with field
borders because it represents ownership and land parcel units. Therefore one land
use can comprise several land parcels or one land parcel can have several land
uses.

In Fig. 13.7, two more screenshots of the system in larger scales are shown. In the
upper screenshot, again the land parcel map with single building features is drawn.
The backround RGB images are digital orthophotos (DOPs) from airborne remote
sensing campaigns. The DOPs have a spatial resolution of 30 cm and are used for
map products in a scale of 1:5,000 (www.bezreg-koeln.nrw.de). The DOPs are also
used to produces a DEM with a 10 m resolution. Nowadays DEMs are produced
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Fig. 13.6 WebGIS interface of the TR32 project: weather stations (German Weather Service),
land use classification (ASTER imagery) in transparent mode, and topographic (ATKIS) data in
the background (top); soil data (ISBK50) in transparent mode, cadastral land parcel map with
building features (ALK), ATKIS (bottom; http://www.tr32db.de)

by airborne LIDAR campaigns. In North Rhine-Westphalia, Germany, a 1 m and
a 10 m DEM are available. In the TR32, an additional airborne LIDAR campaign
was carried out in 2008 and the derived digital surface model (DSM) has a 15 cm
resolution and is displayed in the lower screenshot of Fig. 13.7. On top of the DSM,
the ALK is drawn. Such a service for PA and PCM could easily provide the farmer
with actual changes in topography in a cm scale.

Up to now, the TR32 WebGIS provides several basic functionalities with which
most users are familiar from other web mapping pages like Google R© Maps. In
Fig. 13.7 (top) the navigation menu is open and provides users zoom in, zoom out,
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Fig. 13.7 WebGIS interface of the TR32 project: aerial imagery (DOP), cadastral land parcel map
with building features (ALK), and ATKIS (top); official elevation model from airborne LIDAR
campaigns (DEM5L) and ALK (bottom) (http://www.tr32db.de)

pan, and zoom to full map extent icons. Additionally, the map coordinates of the
mouse position can be chosen for display. In Fig. 13.7 (bottom) the help menu is
open. Via the help icon, the online help for using the TR32 WebGIS opens. The
open tools menu is shown in Fig. 13.6 (top). The location icon allows the direct
search for a map location by typing in the map coordinates. In this menu, the user
can load the point layer of the DWD weather stations which are available in the
project database. A draw tool for the current session enables the users to draw on
the map for print purposes. And finally, in the tools menu, spatial database queries
with the identify icon are enabled. In the right part of the screenshots, the table of
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Fig. 13.8 WebGIS interface of the TR32 project ‘Soil-Vegetation-Atmosphere Patterns’: Aerial
imagery (DOP), ALK, ATKIS, and for within-field variability of plant growth a plant height differ-
ence map of sugar beet from May to July 2008 obtained by terrestrial laser scanning (Hoffmeister
et al. 2009, http://www.tr32db.de)

content pops up and allows the activation of map layers and e.g. display settings like
transparency can be set here, too.

Spatial data which comes from various sensors for supporting PA and PCM could
easily be integrated in such a WebGIS. In Fig. 13.8, a spatial data set of terrestrial
laser scanning (TLS) campaigns of a sugar beet field in summer 2008 is incorpo-
rated. In the TLS campaigns, crop canopy surfaces at different growing stages were
captured (Hoffmeister et al. 2009). The results of such campaigns are plant height
maps with a spatial resolution of 20 cm. In Fig. 13.8, the difference in plant height
between June and July is presented and clearly shows a very high spatial within
field variability of plant growth. As soon as data has a georeference, it could be
immediately served online.

5 Conclusions and Outlook

Under the pressure to increase yield and marginal income, farmers rely in farming on
PA technologies which enable PCM. Furthermore, sustainable issues have nowadays
to be considered. Consequently, a central task in PCM is PCP. Hence, the contribu-
tion of information technology has to be optimized. In PCM, various spatial data
are needed and are collected by remote and proximal sensing. Additionally, many
different sources for spatial data are used to provide the needed data. This results in
a strong heterogeneity of data formats. Consequently, well accepted data standards
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and services have to be adopted (e.g. OGC standards, agroXML). Beside the infor-
mation needs of operators (within and outside of their operation), the challenges
encountered by management, resulting from efforts in sustainable resources protec-
tion, quality assurance and traceability, as well as the requirements of agricultural
and food industry laws with their requests for data and information (e.g. the cross
compliance regulation within the EU-CAP), have to be considered. The demand for
often spatially distributed data and information must be compared with informa-
tion availability (both technical feasibility and practical application), through which
deficits can be identified.

Given the current potentials, it can be stated that PA technology, from a techno-
logical perspective, can deliver almost unlimited amount of data with highest spatial
resolution. However, on the other hand, comparably large deficits exist in the fields
of data management, analysis, goal-oriented pre-processing, and interpretation of
this data. These issues are investigated in the fields of software development, spatial
decision-making, and distributed database implementation. The latter is suggested
in this contribution for spatial data management in PCM.

Countless studies have demonstrated that, both on the national and international
levels, the degree of penetration of agriculture and equally agriculture-related enter-
prises with hardware infrastructure are high and continue to grow. The question
arises if it is economical to organize the complex data management of PA within
the farmer’s domain. And it is obvious that with more available sensing devices the
amount of data in the PA process will exponentially increase. Consequently, new
concepts for spatial data management and handling are needed to disburden farmers
and to improve decision making. Furthermore, the need for improvement exists with
respect to the implementation of spatial data analysis, e-business strategies and, in
general, in the field of IT education. It can be clearly stated that research for spa-
tial data management and handling in PCM should be more interdisciplinary and
should involve cost-benefit analysis. The factors influencing acceptance, as well as
the possibilities and limitations for the integration of IT services within FMIS and
SDSS as well as supply chains should be studied.
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Chapter 14
Decision Rules for Site-Specific Weed
Management

Christoph Gutjahr and Roland Gerhards

Abstract For precision weed management decision rules are needed that take into
account spatial and temporal variability of weed populations and weed-crop interac-
tions. The following chapter describes different decision rules for online and offline
site-specific weed management. Those decision rules use crop-weed competition
models, dose-response functions, weed population models and cost functions to
calculate the best intensity of weed control for each field section. It is shown that
herbicide input and weed control costs can be significantly reduced when farmers
use those models in combination with modern sensor and application technologies.

1 Introduction

The heterogeneous distribution of weeds in agricultural fields allows for site-specific
weed management, resulting in significant herbicide savings as well as economic
and ecological benefits. The aim of weed management is to keep the density of weed
communities on an acceptable level for both the current and forthcoming vegetation
periods. The acceptable weed density level depends on several biological, cultiva-
tion and economic conditions that have to be considered for creating decision rules
for site-specific weed management. To this point, decision support systems give a
recommendation for uniform weed control applications across the total field based
on the average weed infestation level. Since weed populations have been found to
be heterogeneous in their time and location in most arable fields, decision rules need
to be developed that take the spatial and temporal variability of weed populations
into account. The following chapter gives an overview of already existing decision
support systems and describes experiences with decision support systems for patch
spraying.
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2 Decision Rules for Conventional Herbicide Application

In literature, economic thresholds for the control of weeds in small grains vary con-
siderably. The threshold for Galium aparine (L.) ranged from 0.1 to 2 plants m−2,
while for Cirsium arvense (L.) Scop. and Polygonum convolvulus (L.) it ranged
from 1 to 2 plants m−2. For most broad-leaved weed species, the range is closer to
40–90 plants m−2. Threshold densities of 25–35 plants m−2 have been reported for
Alopecurus myosuroides (Huds.) as compared to 10–20 plants m−2 for Apera spica-
venti (L.) (Niemann 1986). Economic threshold values have not been consequently
adjusted to the actual grain price and therefore need to be used as an approximate
for making decisions about weed control methods.

Instead of using fixed threshold values, Cousens (1985) applied models to relate
yield loss to weed density. Based on early observations of the relative leaf area of
the weeds, Kropff and Spitters (1991) developed a simple model to estimate yield
loss caused by weed competition. A different approach was to calculate competitive
indices for different weed species in order to estimate the expected yield loss due to
weed competition (Pallut 1992).

However, none of these decision rules have considered the spatial variation of
weed populations within a field. The use of a field-scale means that density estimates
in spatially heterogeneous weed populations result in yield loss predictions that are
too low in locations where weed density is high and predictions that are too high
in parts of the field where weed densities are low or weeds are absent altogether
(Lindquist et al. 1998, Brain and Cousens 1990). Spatial variation in weed density
must therefore be considered in the development of economic weed thresholds.

3 Offline and Online Site-Specific Weed Management

There are two approaches for site-specific weed management in arable crops. In
the offline (or map-based) approach, weed distribution is first measured at georef-
erenced points. Interpolation methods are applied to create weed distribution maps.
A weed threshold is set to determine sections in the map where weed control meth-
ods will be applied. Those application maps are then used to direct a patch sprayer
or vehicles for mechanical weed control. In many studies, this map-based (offline)
approach of site-specific weed management has been applied successfully, result-
ing in herbicide savings of 20–90% (Timmermann et al. 2003, Gerhards and Oebel
2006, Dicke and Kühbauch 2006).

In order to vary the herbicide dose between 0 and 100% of the recommended
dose (Table 14.1), Gerhards and Oebel (2006) used simple weed density thresholds
for three classes of weed species. When these thresholds were applied, 6–81% of
all herbicides against broad-leaved weed species were saved, while savings ranged
from 20 to 79% (Table 14.2) for grass weed herbicides.

The results of these experiments show that site-specific weed management
reduced costs for weed control and did not impact the environment as much.
However, for a broader acceptance of site-specific weed management in practical
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Table 14.1 Applied herbicide doses (100, 85, 70 and untreated 0%) depending on the weed den-
sity (plants m−2) for different classes of weed species in spring barley, winter barley, winter wheat,
maize, sugar beet and winter rape; the herbicide dose was adjusted to the number of weeds m−2

Weed density [plants m−2]

Weed
species

Herbicide
dose [% of
full]

Spring
barley

Winter
barley

Winter
wheat Maize Sugar beet

Winter
rape

Galium
aparine

0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
70 <1 <1 <1 <1 <1 <1
85 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1

100 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1
Grass
weeds

0 <5 <5 <3 <2 <1 <3
70 <10 <10 <5 <5 <2 <5
85 <15 <20 <10 <10 <5 <10

100 ≥15 ≥20 ≥10 ≥10 ≥5 ≥10
Other
weeds

0 <10 <10 <10 <2 <1 <3
70 <15 <15 <15 <5 <3 <5
85 <25 <25 <25 <10 <5 <10

100 ≥25 ≥25 ≥25 ≥10 ≥5 ≥10

Table 14.2 Savings [%] for herbicides using site-specific weed control in 2004 and 2005

Year Crop (field size)
Savings for herbicides
against broad-leaves

Savings for herbicides
against grass weeds

2004 Spring barley (17.5 ha) 18 42
2004 Winter rape (11.5 ha) 20 22
2004 Winter barley (8.1 ha) 38 34
2004 Maize (4.6 ha) 6 46
2004 Winter wheat (5.3 ha) 77 69
2004 Sugar beet (5.8 ha) 57 46
2004 Winter barley (8.5 ha) 39 56
2005 Spring barley (8.4 ha) 26 71
2005 Winter rape (6.6 ha) 19 20
2005 Winter wheat (20.0 ha) 58 65
2005 Spring barley (2.4 ha) 40 76
2005 Winter wheat (5.3 ha) 81 79

agriculture, an online system which combines the detection of weed species and
herbicide application in one operation would be needed.

Figure 14.1 shows an approach for controlling C. arvense patches in sugar beets
with an online application. Due to its high competitiveness and the general aim
to suppress perennial weeds in arable fields, the application threshold for thistle
plants was one plant m−2. The focus of this experiment was to identify and spray
all patches of C. arvense. The experiment shows the differences between offline
and online patch spraying. According to manual sampling, thistle patches covered
5% of the field. With automatic camera-based weed detection (Weis et al. 2008),
almost all patches were identified and marked with red points (Fig. 14.1). Images
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Manually detected
thistle patches
5% of the area

Sensor signal
"thistle"

- Online-application
  on 19% of the area
- With buffer zone of
  5 m sidewards and
  10 m behind sensor
  signal "thistle"
- 94% of the thistle
  patches controlled
- 81% herbicide savings

Sprayed outside of
thistle patches
13,5% of the area
Undetected patches
0,5% of the area

- Offline-application
  11% of the area
- With buffer zone of
  5 m arround each
  sensor signal "thistle"
- 86% of the thistle
  patches controlled
- 89% herbicide savings

Sprayed outside of
thistle patches
5% of the area 
Undetected patches
1% of the area

Fig. 14.1 Comparison of manual sampling (map 1) for offline (map 2 and 3) and online patch
spraying (map 4 and 5) against C. arvense in sugar beets

were taken in a grid of six meters across and three meters along a driving direction.
In order to avoid C. arvense patches being left unsprayed, a 5 m buffer zone around
each thistle was created in the application map. For online application, the buffer
zone could only been drawn five meters beside and behind each thistle. However,
94% of all thistle patches were sprayed with online patch spraying; compared to
uniform application, 81% of the herbicides were saved. This experiment shows that
the success of patch spraying depends on the accuracy and spatial resolution of
weed detection. Obviously, the grid size chosen was suitable to recognize C. arvense
patches within the field. It can be assumed that the higher the sampling resolution,
the more exact the patch spraying would be (Wallinga et al. 1998, Hamouz et al.
2006).

4 Decision Support Systems

For more than 20 years, weed scientists have been dealing with decision support
systems for weed control (Hoffman et al. 1999). The first steps of these systems
were ‘herbicide dose response models’, which aimed at giving advice in herbicide
selection as according to their expected efficacy against a given weed infestation
(Swinton et al. 2002). The next step was the development of ‘bioeconomic’ models
for weed control (Berti et al. 2003). The basis of these models is the optimization of
a herbicide application’s net return. Until now, bioeconomic models have contained
a voluminous amount of issues with weed management. Crop weed competition,
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weed seedling emergence, population dynamic aspects, herbicide costs and appli-
cation costs are often used as input factors. Some of the actual decision support
systems combine a herbicide dose response model as well as a bioeconomic model.
In the following, some of these models are described.

4.1 Crop Protection Online

The Danish support system Crop Protection Online (CPO) is based on a model
which runs in three main model steps (Rydahl 2004). The output of model step one
is the level of control needed. It is expressed as a percentage of biomass reduction
for each weed species 4–6 weeks after the herbicide application. The required per-
centage of weed biomass reduction depends on the potential influence of weeds on
crops, which is again based on expert knowledge (Rydahl and Thonke 1993). The
expert knowledge considers information about the biomass and seed production of
the weeds, differences in different crops’ ability to compete, crop fitness at the time
of spraying, the time of sowing and the expected yield. In model step two, a dose-
response model function is used to calculate the herbicide doses needed to achieve
the required weed biomass reduction. The dose-response function uses data from
Danish field experiments in which the efficacy of over 5,000 combinations of herbi-
cide, crop, season and weed species have been measured. Furthermore, in order to
estimate the required herbicide dose, the influence of the weed growth stage and the
climatic conditions are considered.

If required, model step three offers the possibility for calculating herbicide mix-
tures. An Additive Dose Model (ADM) (Streibig et al. 1998) is able to create
herbicide mixtures for controlling the actual weed composition.

Since 1987, CPO has often been implemented by scientists, advisors and farm-
ers in Denmark and other European countries. In all experiments, CPO was able
to maintain grain yields and keep residual weeds on a low level (>10%). When
compared to a common herbicide application, the Treatment Frequency Index (TFI)
could be reduced considerably (Rydahl 2004).

4.2 WeedSOFT

WeedSOFT is a bioeconomic decision support system that helps farmers and
advisors in Nebraska select an economically and ecologically optimized weed man-
agement strategy (Neeser et al. 2004, Hock et al. 2007). It contains two modules
that asses the environmental risks of several herbicides depending on the properties
of active ingredients and soil conditions. WeedSOFT helps farmers avoid the use of
herbicides which may cause groundwater contamination under current conditions.
The main component of WeedSOFT is a model which determines yield loss based
on inputs provided by the user. The user input contains information on crop species,
the crop growth stage, estimated precipitation, the weed density of up to eight weed
species and weed growth stages.
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A competitive index (CI) is used to transform the densities of the single weed
species into a common weed pressure unit in order to determine the percentage
yield loss. The CI values have been established through locally conducted field
experiments and expert knowledge. Depending on the growth stages of weeds and
crops, the CI values can be modified. Through this modification, it is possible to pay
attention to a crop’s competition advantage, which, for example, is in a later growth
stage as compared to weeds which are in an earlier growth stage. The total compet-
itive load (TCL) prior to herbicide treatment can finally be estimated by adding the
products of the modified competitive indices (ACIi) and the densities of the present
weed species (Di). In WeedSOFT, the percentage yield loss caused by the TCL is
estimated by a modified rectangular hyperbolic yield loss function with both linear
and nonlinear components. The change between the linear and nonlinear component
of the function is defined by the specific crop. The absolute yield loss (t ha−1 and
ha−1) can then be calculated by multiplying the expected weed-free yield with the
estimated percentage yield loss and the attainable crop selling price.

After querying a database containing several weed control treatments and a rank-
ing of different criteria, the most effective herbicide treatment is selected. The
database querying considers crop rotation restrictions, soil properties and environ-
mental guidelines. The possible treatments are ranked in an order of economical,
biological and environmental factors. The calculation of the economical use of a her-
bicide treatment also considers the reduced fitness of weeds that survive a herbicide
treatment.

WeedSOFT is used by more than 500 advisors and farmers in the USA. The pro-
gram makes it easier to find an appropriate and cost-effective weed control strategy.
It also helps the user understand biological conditions of weed control and shows
how different input factors influence, for example, yield loss or the effectiveness of
a given herbicide treatment.

4.3 HERB and HADSS

HERB and HADSS (Herbicide Application Decision Support System) are both deci-
sion support systems that assist weed managers who are evaluating several weed
control strategies in row crops such as corn, cotton, peanut and soybean (Bennett
et al. 2003). HERB is a bio-economic decision support system for post-emergence
herbicide treatments. It was developed in North Carolina (USA) (Bennett et al.
2003). In HERB, the determination of the total competitive load of the weed before
and after herbicide treatment is based on competitive indices of the single weed
species. These indices are appointed through expert knowledge. Expected yield loss
that is caused by weed infestation is estimated using a simple linear relationship
between the competitive load and percentage yield loss at low weed densities – as
densities increase, a hyperbolic relationship is assumed. Finally, net return is cal-
culated using expected crop and herbicide prices. In HERB, the determination of
herbicide efficacy depends on the growth stages of weeds (three classes) and soil
moisture (two levels). As such, six efficacy levels are given for each herbicide and
weed species.



14 Decision Rules for Site-Specific Weed Management 229

HADSS not only includes post-emergence strategies, as it also offers decision
support for preplant and pre-emergence application strategies. For pre-emergence
treatments, herbicide efficacy depends on the weed species and soil characteristics,
such as the content of organic matter and the texture of the soil surface. Organic
matter content and soil texture are divided into three categories. As such, there are
nine efficacy values for pre-emergence treatments – one for every combination of
organic matter content and soil texture. Expected net returns for herbicide treatments
are calculated as described above for HERB (Bennett et al. 2003).

4.4 Weed Manager

Weed Manager is a model-based decision support system which assists scientists,
advisors and farmers in selecting weed control strategies for winter wheat on two
time scales: within a single season and with different crop rotations over several
years (Parsons et al. 2009). The ‘single season part’ of ‘Weed Manager’ contains
models of the growth of wheat and weed species as well as models for estimating
the competitive load of the present weed infestation. The competition parameter for
each weed species is estimated according to the relative green area indices of crops
and weeds. Therefore, the green area index (GAI) of wheat and weeds is measured
when the total GAI is 0.75 (Kropff et al. 1995). Weed Manager also contains a model
for simulating the emergence characteristics of weed species. The crop is regarded
as a single cohort of plants, whereas the germination of weed species can occur
in several cohorts. Finally, the growth of the leaf area of crops and weed species
between germination and canopy closure can be simulated by using an ecophysi-
ological model (Kropff et al. 1995). As a result, weed-induced yield loss can be
predicted. For the estimation of absolute yield loss, the user has to set an expected
yield. The effect of herbicides is simulated by the ability of the active ingredient(s)
to reduce the GAI of the single weed species. The ‘over season part’ of the ‘Weed
Manager’ consists of a rotational planning tool that allows users to consider weed
control options over several years. This tool is based on the life cycle model devel-
oped by Moss (1990). The main component of this population dynamic model is
the estimation of changes in the soil seed bank. The soil seed bank is divided into a
shallow layer and a deep layer. The model considers the consequences of different
crop rotations, cultivation strategies and weed control treatments for weed germina-
tion, weed growth, seed fecundity and survival as well as for the changes of the soil
seed bank in the two different layers. Implementing costs for herbicides, cultivation
strategies and crop prices in both the ‘in season part’ and ‘over season part’ of Weed
Manager as well as margins of different production strategies can be calculated.

5 Use of Site-Specific Weed Management as a Function of Weed
Distribution and Application Techniques

The results of six field experiments conducted by Gutjahr et al. (2009) showed
that all three different weed classes (dicots, grass weeds, special weeds) were
distributed heterogeneously with a high variation in density (Table 14.3). Similar
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Table 14.3 Minimum, maximum and averaged weed densities [plants m2] of the three weed
classes. Areas without weeds for the single weed classes and areas without weeds at all [% of
area]

Crop

Dicots [n m−2]
average density
area without [%]

Grass weeds
[n m−2] average
density area
without [%]

Special weed
[n m−2] averaged
density area
without [%]

Weed-free
area [%]

Winter barley 0 – 176
22
10%

0 – 160
10
58%

– 8%

Winter wheat 0 – 49
7.3
30%

0 – 19
1
29%

– 22%

Spring barley 0 – 216
42
59%

– Brassica napus
0 – 108
20
3%

4%

Maize 1 – 150
28.1
0%

0 – 70
15.8
28%

– 0%

Winter wheat 0 – 113
17.8
10%

0 – 95
27.8
10%

Galium aparine
0 – 43
7
41%

0%

Maize 0 – 183
27.1
28%

0 – 43
1.3
88%

Convolvulus
arvensis

79%

9%

observations were made by Cousens et al. (2002), Gerhards and Christensen (2003)
and Nordmeyer et al. (2003). They also found that weeds were mostly aggregated
in patches. Therefore, site-specific weed management is feasible and may even have
economic benefits when herbicide savings compensate for weed mapping and patch
spraying costs (Schwarz et al. 1999). Since the distribution of weed species varies
within the field, application technologies that allow a variation of active ingredi-
ents in real-time are needed (Vondricka 2007). The comparison of the percentage
area without any weeds and the percentage area without weeds from a single weed
class (Table 14.3) shows that in the case of tank mixture application, individual
active ingredients would have been sprayed without indication on 8–79% of the
field. Patches of perennial weeds including C. arvensis and C. arvense covered 20%
of the experimental fields. Reduced tillage practices increase the problem of peren-
nials in arable crops (Albrecht and Sprenger 2008). Consequently, effective control
units against those weed species are needed. In this case, 80% of the area would not
have been sprayed with a herbicide against C. arvensis (Table 14.3, maize 2008).
Besides significantly saving herbicides, it also avoids crop herbicide stress which
is often caused by herbicide mixtures. Kleimann and Vogel (2008) compared the
application of different herbicide mixtures in maize. Tank mixtures containing more
than two active ingredients often resulted in herbicide stress symptoms and a yield
loss of up to 25%.
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6 Decision Support System for Patch Spraying

Due to the results described in Chapter 0, a decision support system for online patch-
spraying should be able to create suitably optimized economic application decisions
for at least two or three separate weed classes. Most decision support systems give
a recommendation for uniform weed control applications across the entire field as
based on the average weed infestation level. Therefore, their databases have a lot
of herbicides available to advise farmers on which herbicide strategy would be the
best. During online patch-spraying, the amount of available herbicides is limited to
a maximum of four different herbicides. Thus, a decision support system for online
patch spraying does not need a tool to choose the correct herbicide. Before herbi-
cide application, the farmer has to select a single herbicide or a mixture of active
ingredients to control each weed class. During herbicide application, the decision
support system has to adapt the dose of the given herbicide to the density of the weed
species of the explicit weed class. Figure 14.2 describes a possible architecture of a
decision support system for online patch spraying. The central component of a suc-
cessful decision support system for patch spraying is the linkage of different models
that describe the yield effect of weeds, estimated weed biomass reduction caused by
herbicides and the estimated change of the soil seed bank. Using the cost function,
it is finally possible to generate an economically optimized herbicide application
decision. The firmness of patches with perennials enables one to implicate historical
information about weed distribution in the decision making process.

Fig. 14.2 Possible architecture for a decision support system for patch spraying. The main com-
ponent is the linkage of contained models and finally the economic optimization of the application
decision via a cost function



232 C. Gutjahr and R. Gerhards

6.1 Decision Algorithm for Patch Spraying

Until now, there have been few decision support systems that enable online patch
spraying. Decision Algorithm for Patch Spraying (DAPS) consists of a competi-
tion model, a herbicide dose-response model and an algorithm that estimates the
economically optimal doses (Christensen et al. 2003). The potential yield loss of
uncontrolled weeds is calculated by using the density equivalent model from Berti
and Zanin (1994). Therefore, according to their competitiveness, the main weed
species are divided into five categories that describe the percentage yield loss per
weed plant at low weed densities and the maximum percentage yield loss per weed
plant at high densities. Using a hyperbolic relationship between yield loss and weed
density, it is possible to convert the density of a given weed species into a density
equivalent that describes the expected yield loss. The DAPS user has to predict the
crop yield without weeds. Under the assumption that a herbicide treatment reduces
weed competition to zero, it is possible to calculate the potential yield gain from
weed control.

An important part of DAPS is the link between the herbicide dose model and
the yield gain calculations. This link is realised by a 1:1 linear relationship between
grain loss and accumulated weed biomass (Fig. 14.3). It is expected that 1 g m−2 of
accumulated weed dry matter during grain filling causes a 1 g m−2 grain yield loss.
Under this assumption, the dose response model not only describes the relationship
between herbicide dosage and weed biomass reduction, but also the relationship
between yield gain and the realised herbicide dose (Userd).

Use[t/ha]rd = Use[t/ha]fd(1 − 1

1 − exp(−2(α + β log(rd)))
) (1)

Usefd is the yield gain expected with the full herbicide dose, α is the horizontal
displacement of the curve and ß is the slope of the curve. Streibig (1988) showed
that α varies between weed species and herbicides, whereas ß only varies between
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Fig. 14.4 Relationship
between use of herbicide
application and herbicide
dose for three different weed
species (dotted lines) (Eq. 1).
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weighted relationship of this
weed composition
(N = recommended dose)

herbicides. Since an active ingredient of a herbicide is able to control a mixture
of several weed species, a dose response curve is needed for a mixed weediness.
Therefore, α can be weighted by the relative yield loss of the single weed species –
the new α is the sum of these α–values. Due to the fact that α changes the horizontal
displacement of the curve, the position of the new weighted curve will be closest to
the curve of species that dominates competition with the crop (Fig. 14.4).

The third step of DAPS is the estimation of the economically optimized herbicide
dose profit (rd). Therefore, the anticipated crop price (cp) and the costs of herbicide
application as a function of the realised dose (costs(rd)) are used:

Profitrd = Userd ∗ cp − [cos ts(rd)] (Eq. 2)

The economically optimal herbicide dose is calculated by differentiating Eq.( 2).
An essential approach in DAPS is the simple weighting of α-parameters by the

relative yield impact of the weed species. In combination with an appropriate sen-
sor system for weed recognition and classification (Weis and Gerhards 2007) as
well as an improved application technology that allows variable rates and herbicide
mixtures in real-time (Vondricka 2007), DAPS enables an economically optimized
online site-specific herbicide application. However, there are still a few points of
view that are not considered or could be improved.

6.2 HPS-ONLINE

Expert and researched knowledge concerning herbicide application can be divided
into two parts: knowledge before herbicide application and knowledge during her-
bicide application. The decision support system HPS-ONLINE integrates both parts
in its decision making. Similar to DAPS, one of the essential approaches is the
link between the weed competition model and dose response model as well as
the creation of a dose yield gain curve for a mixed weed composition through
the weighting of the α-parameter. Since the output of the weed competition model
depends on the actual infestation of several weed species, this part can be considered
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Fig. 14.5 Model of HPS-ONLINE. Linkage of dose response curve and weed competition model.
Creating a dose response curve for a mixed weed composition by weighting of α with the relative
yield loss caused by the single weed species. Implementation of expert knowledge, ‘knowl-
edge before herbicide application’ and historical information about weed distribution (control of
perennials)

as knowledge during the herbicide application. A further important component of
HPS-ONLINE is the implementation of users’ expert knowledge and experience
on herbicide application. This knowledge can be considered as knowledge before
herbicide application (Fig. 14.5).

6.2.1 Knowledge During Herbicide Application

A 1: 1 linear relationship between crop yield loss [g m−2] and accumulated weed
biomass [g m−2] during grain filling is used in DAPS to link the weed competition
model with the dose response model. Since the main crop yield loss caused by weed
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competition is induced during grain tillering or before the canopy soil coverage of
row crops, HPS-ONLINE uses the weed coverage at the time of weed control for
the estimation of weed competition.

A bispectral sensor system (Sökefeld et al. 2007) gives information on the total
GAI (Green Area Index) at the time of weed control. In the next step, shape features
are calculated for each plant and arranged in the image. Those features are used for
automatic plant species classification (Weis and Gerhards 2007). It is now possible
to appoint the contingent of the single plant species on the measured GAI. The
species are therefore divided up into four classes, while one class consists of the
crop. The composition of the other weed classes depends on the competitiveness of
weeds as well as the possibility to control them with the same herbicides.

As described in Section 5, a decision support system for online patch spraying
should be able to create suitable application decisions that are economically opti-
mized for at least two or three separate weed classes. In combination with a multiple
boom sprayer, it is possible to control each weed class separately (Oebel et al. 2004).
For this reason, a separate application decision is realized for each weed class in
HPS-ONLINE.

For estimating the total competitive load of the weed species’ composition within
a weed class, a relationship between the single weed species’ GAI and the yield loss
still has to be determined. It should be possible to translate the GAI of a single weed
class into a yield loss percentage. Under the assumption that a full herbicide dose is
able to avoid total weed competition, full herbicide dose’s usage can be estimated.

The dose response model described by Streibig (1988) gives information on the
weed biomass reduction potential of several dosages of a herbicide. Stamps (1998)
found a high correlation between weed coverage and weed biomass. Thus, it is pos-
sible to describe the output of the dose response model as a percentage of weed
coverage reduction instead of a percentage of weed biomass reduction. Under this
assumption, the same sigmoid relationship between yield gain and herbicide dosage
that is used in DAPS can be used in HPS-ONLINE.

In order to control the mixture of weed species within a weed class, a weighting
of α – as is done in DAPS – is necessary (Fig. 14.4). The dose response curve
with the weighted α parameter finally shows the relationship between the herbicide
dose and the herbicide application. Using a cost function and depending on the
product prices, HPS-ONLINE calculates costs for herbicides and the application of
the economically optimized application decision.

6.2.2 Knowledge Before Herbicide Application

Compared to the possible architecture of a decision support system for online patch
spraying that is shown in Fig. 14.2, DAPS does not offer a possibility for the imple-
mentation of population dynamic aspects for weed control. Kropff (1996) declared
that an improvement of weed management strategies, including reduced herbicide
doses and patch spraying, is only possible when the population dynamics of weeds
as well as the interactions between crops and weeds are considered and understood.
The aim of site-specific weed management is the sustainable reduction of herbicide
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doses over multiple years. Thus, for example, it must be guaranteed that high weed
control efficacy as well as herbicide savings can be achieved in the following seasons
(Ritter and Gerhards 2008). Realising site-specific herbicide application in combi-
nation with crop rotations Christensen et al. (2003), Dicke and Kühbauch (2005)
and Ritter and Gerhards (2008) found that weed density remained relatively sta-
ble and no new weed patches appeared. Dicke and Kühbauch (2005) observed that
site-specific herbicide application resulted in an increased density of broad-leaved
weeds in continuous maize over a period of 6 years. As such, a well balanced crop
rotation seems to be beneficial for the sustainability of patch spraying.

Research indicates that there is a good potential to reduce herbicide doses without
the risk of increasing the soil seed bank. Diverse crop rotations, competitive crops,
cultivation practice, higher crop seed densities, reduced row spacing and specific
fertilizer placement can be regarded as measurements that increase the competi-
tiveness of crops and enable a reduction in herbicide doses (Fernandez et al. 2002,
Blackshaw et al. 2006, Beckie et al. 2008, Kristensen et al. 2008). In addition, it
can be assumed that weeds that survive a reduced herbicide dose are less compet-
itive than untreated weeds. Thus, they can be completely suppressed by the crop
or at least unable to finish their life cycle. Reduced herbicide doses often lead to a
decreased amount of produced seeds as well as a decreased fertility of the seeds that
are produced (Berti et al. 2003). Thus, an implementation of a specific population
dynamic model to estimate the changes in a soil seed bank doesn’t seem to be nec-
essary. The HPS-ONLINE user is able to choose the importance of the population
dynamic aspects himself. This can be realized through horizontal displacement of
the dose response curve (Fig. 14.5). If the user wants reduced tillage to be realised,
short or even no crop rotation intervals as well as population dynamic aspects
are more important. On the other hand, long crop rotation intervals, narrow row
spacing or well developed crops enable farmers to disregard population dynamic
aspects.

The impact of weather conditions during and after herbicide application is very
important for its efficacy. Depending on the herbicide and its mode of action, differ-
ent weather conditions are required. If the user finds the application conditions to
be optimal, HPS-ONLINE offers the possibility for a general reduction of herbicide
doses. Under unfavourable application conditions, the reduction of herbicide doses
can be inhibited or limited.

Experiments by Dicke and Kühbauch (2005), Ritter and Gerhards (2008) and
Gutjahr et al. (2008) showed that herbicide application reduced grain yield in areas
with little or no weed infestation. Thus, the question of whether the effect of herbi-
cides on the crop should be considered in a decision algorithms for site-specific
weed control arises. The selectivity of many herbicides is caused by different
kinetics of metabolism in the plant. Herbicides could damage the crop when the
uptake and translocation within the crop is increased due to less favorable weather
conditions for the formation of cuticles (Hock et al. 1995). However, it is very
difficult to give a general estimate of the yield effect of the herbicide. It differs sig-
nificantly between active ingredients, herbicide doses, weather conditions before,
during and after application, crops and growth stages (Donald 1998, Kleimann
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and Vogel 2008). Therefore, HPS-ONLINE offers the possibility to take the yield
effect of herbicides into account by horizontally displacing the dose response curve
(Fig. 14.5).
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Chapter 15
Modelling Plant Diseases for Decision Making
in Crop Protection

Vittorio Rossi, Simona Giosuè, and Tito Caffi

Abstract A plant disease model is a simplification of the relationships (between
a patho-gen, a host plant, and the environment) that determine whether and how
an epi-demic develops over time and space. This chapter describes an approach
for de-veloping mechanistic, weather-driven, dynamic models which are suitable
to be applied in precision crop protection. Model building consists of four steps:
(I) defi-nition of the model purpose; (II) conceptualization; (III) development of
the mathe-matical relationships; and (IV) model evaluation. Conceptualization is
based on systems analysis; it assumes that the state of the pathosystem can be
quantitatively determined and that changes in the system can be described by mathe-
matical equations. A conceptual model describes the system (both conceptually and
mathematically), and a set of driving models accounts for changes caused by the
external variables. Two main types of conceptual models are described: plant- and
pathogen-focused models. Model evaluation is the judgement of the overall ade-
quacy of the model, which includes: verification, validation, uncertainty analysis,
sensitivity analysis, and judgement of utility. Finally, the chapter briefly considers
how models can be used as tools for decision making at different scales of time and
space: from warning services to precision agriculture.

1 Introduction

A model is a simplified representation of reality (De Wit 1993). A plant disease
model is then a simplification of the relationships between a pathogen, a host plant,
and the environment that cause an epidemic to develop over time and/or space. There
are numerous kinds of models and of modelling approaches (Campbell and Madden
1990, De Wolf and Isard 2007, Fry and Fohner 1985, Hardwick 1998, Krause
and Massie 1975, Maloy 1993, Shrum 1978, Zadoks 1984). Madden et al. (2007)
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distinguished models based on their uses; in botanical epidemiology, models are
used to describe, understand, predict, and compare epidemics and their components.

Prediction of a disease allows growers to respond in a timely and efficient man-
ner by adjusting crop management practices (Krause and Massie 1975, Maloy 1993,
Rabbinge et al. 1989, Zadoks 1979); a prediction of low disease risk may result
in reduced pesticide application with positive economic and environmental effects.
Most reviews of plant disease prediction models show that far more models have
been developed than applied in operational plant disease protection systems (Butt
and Jeger 1985, Krause and Massie 1975). A recent work (De Wolfe and Isard 2007)
shows that the imbalance between the number of models developed and deployed
may be changing, and also indicates that the research effort directed toward evalua-
tion and practical application of disease prediction models is currently much greater
than just a few decades ago.

In this chapter, we briefly describe the basic elements we have used for devel-
oping several plant disease models (Battilani et al. 1996a, 1997, Rossi and Giosuè
2003, Rossi and Racca 1996, Rossi et al. 1994, 1996, 1997b, 2003, 2007, 2008,
Spada et al. 2001) that are extensively used in some Italian warning systems for
decision making in crop protection.

Our modelling approach is fundamental, where “fundamental” is the alterna-
tive to “empirical” (Madden and Ellis 1988). Empirical models describe observed
behaviour of the system on the basis of observations alone and explain nothing of
the underlying processes; fundamental (also referred to as explanatory, theoretical,
or mechanistic) models explain the same behaviour on the basis of what is known
about how the system works in relation to the influencing variables (Wainwright
and Mulligan 2004). Distinction between empirical and fundamental approaches is
often academic because many empirical models have a fundamental basis, and fun-
damental models usually have many empirical elements (Madden and Ellis 1988).
The latter concept is valid for our modelling approach, where the “conceptual
model” is mechanistic while the “driving models” are drawn from experimental
data. Conceptual and driving models are defined in paragraph 3.

Our modelling approach is dynamic. In fact, fundamental models analyse com-
ponents of the epidemic and their changes over time due to the external variables
influencing them (Teng et al. 1980). Dynamic modelling is based on the assumption
that the state of the pathosystem in every moment can be quantitatively charac-
terised and that changes in the system can be described with mathematical equations
(Rabbinge and de Wit 1989).

Also, our models are weather-driven, because the weather variables are the main
inputs of the model. When growth and/or development of the host plant play a rele-
vant role in the pathosystem considered, and need to be incorporated into the model,
weather-driven models predicting the plant’s behaviour are developed and coupled
with the disease model (Rossi et al. 1997b).

Finally, our models are tools for simulation and prediction, a category of mod-
els used for extrapolation beyond measured times and spaces (Anderson 1974,
Wainwright and Mulligan 2004). In this context, prediction is the process of
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estimation in unknown past or current situations, which is different from forecast-
ing, the latter term being reserved for extrapolations at future times. Nevertheless,
these prediction models can be used as forecasters by using weather forecasts as
input factors, or by linking past or current conditions of the epidemic to the future
conditions (Campbell and Madden 1990, de Vallavieille-Pope et al. 2000, Madden
and Ellis 1988).

In our modelling approach, there are four main steps: (i) definition of the model
purpose, (ii) conceptualization, (iii) development of the mathematical relationships,
and (iv) model evaluation (Fig. 15.1). In this work, we will discuss some aspects of
these steps in depth while other aspects that have been treated in previous reviews
are only mentioned.

Define the
model purpose

Conceptualize
the model 

Develop the
mathematical

framework

Evaluate 
the model 

verification
validation

uncertainty analysis 
sensitivity analysis 
judgement of utility 

problem to be addressed
stakeholders
intended use

model boundaries

Draw the model 
diagram

Making 
assumptions

Define 
complexity Testing

conceptual 
model

driving 
models

Fig. 15. 1 Flow diagram of the processes leading to the production of mechanistic, weather-driven,
dynamic models for plant diseases

2 Defining the Model’s Purpose

Defining the purpose of the model implies definition of: (i) the problem to be
addressed, (ii) the model’s stakeholders (e.g., growers, advisors, policy-makers);
(iii) the intended use (e.g., the model should produce information about the disease
or the pathogen status, produce warnings, guide the scheduling of fungicide sprays);
(iv) the model boundaries. Stakeholders are the main actors in defining the model’s
purpose; their practical experience makes it possible to delineate the problem. If the
problem is not properly identified, then it will not be possible to arrive at a useful
solution through modelling (Wainwright and Mulligan 2004).

Model boundaries in time and space must be defined to determine which times
and spaces will be modelled and which must be supplied as data. These boundaries
also determine the practical constraints under which environmental data must be
collected (Pascual et al. 2003).
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3 Conceptualizing the Model

The gestation phase of the model building consists in understanding and rational-
izing the process to be modelled and the important factors that govern the process.
A critical review of the information available in the literature supplies the back-
ground knowledge for conceptualizing the system. Pathosystems include pathogens,
host plants, weather, human interferences (i.e., cultural practices), and their relation-
ships. Therefore, information must be acquired concerning the pathogen, the plant,
the environment influencing the pathogen and host, and the crop growing system.

3.1 Use of Systems Analysis in Model Conceptualization

Systems analysis is a useful tool for conceptualizing the model (Leffelaar 1993).
Through the use of systems analysis, the totality of relations within the pathosystem
is organized in a relational diagram representing the “system structure” (De Wit
1993). The relational diagram shows the status of the system at a certain moment
and its dynamics over time. The building of a model by starting with a relational
diagram is based on the assumption that the state of the system at any moment
can be quantified and that changes in the state can be described (Rabbinge and de
Wit 1989). Main components of the systems analysis approach are: state variables,
flows, rate variables, auxiliary variables, driving (external) variables, constants, and
parameters.

A variable is a value that changes freely in time and space. A state variable is
one that represents a state of the system (e.g., the number of spores, the amount of
infected host tissue). A rate variable (or rate) indicates the rate at which a state vari-
able changes. A rate depends on state and driving variables according to rules based
on the knowledge of processes in the system. A constant is an entity that does not
vary within the system; it represents known and unchanging physical, biological, or
ecological activities (Pascual et al. 2003). A parameter is a value that is constant in
a particular case but may vary from case to case, where a case can represent a dif-
ferent model run or a different situation. Driving variables are external factors that
influence the system but are not influenced by the processes within the system (e.g.,
the weather variables). Switches, which were introduced as additional components
in the symbolism of systems analysis by Rossi et al. (2008), account for logical
operators with the following syntax: if “condition” then “go to”, else “go to”.

Model building involves a conceptual model that describes the system (both con-
ceptually and mathematically) and a set of driving models that account for changes
caused by the external variables.

3.2 Types of Conceptual Models

There are two main types of conceptual models: one type focuses on the affected
plant and the other focuses on the pathogen. In the plant-focused models, the state
variables of the system are the stages of host tissue with respect to the disease, as
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follows: (i) healthy tissue; (ii) tissue carrying latent (not yet visible) lesions; (iii)
tissue with visible (but not yet sporulating) lesions; (iv) tissue with visible, spore-
bearing lesions (i.e., infectious lesions); and (v) tissue with visible lesions that are
no longer sporulating (i.e., removed lesions or removals) (Hau 1985). Transition
from one stage to another depends on the rates at which: (i) healthy tissue become
infected; (ii) latently infected lesions become visible (i.e., reach the end of incu-
bation period); (iii) visible lesions become sporulating lesions (i.e., reach the end
of latency period); and (iv) sporulating lesions become no more sporulating lesions
(i.e.) reach the end of infectious period. Quantities can be expressed as densities of
individuals in the different states (e.g., number of lesions per leaf) or as percentages
or proportions of the plant tissue in the different stages (e.g., percentage of leaf area
covered by lesions).

The POWDEP model (Rossi and Giosuè 2003) is a plant-focused model for
the epidemics of Blumeria graminis, the causal agent of the powdery mildew of
wheat (Fig. 15.2). The model calculates the daily progress of disease severity on
individual leaves. The model considers four categories of affected leaf tissue: (i)
leaf area (LA) with latent infection (LLA), where symptoms of powdery mildew
are not yet visible; (ii) LA with powdery lesions that have yet to produce spores
(PVLA); (iii) LA with powdery, sporulating lesions (PILA); and (iv) LA with
powdery lesions that are older and nonsporulating (PNLA). The amount of LA sus-
ceptible to infection (SLA) is the spatial limiting factor for the epidemic growth.
Three different rate variables determine changes from one state to the next: INC,
LAT, and REM, in order. These rates depend on the length of incubation, latency,
and sporulation (or infectious) periods (IP, LP, and SP, respectively), which are all
temperature-dependent.

The basic concept of the model is that, on each day, the disease severity (or
total LA with powdery mildew, PLA) is the sum of the disease severity of the day
before and of the current day. This daily increase results from two compartments:
(i) the growth of fungal colonies already present on the leaves, regulated by the
colony growth rate (CGR); and (ii) the appearance of new colonies, determined by

Fig. 15.2 Relational diagram
of the model simulating
powdery mildew epidemics
on wheat (Rossi and Giosuè
2003). The WHEGROSIM
sub-model accounts for plant
growth and development
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the infection rate (INF). INF is a function of the density of airborne conidia (DAC),
the time required for the conidia to infect (IEP), and the capability of conidia to
survive during IEP (SUR). SUR depends in turn on the possibility that conidia are
blown from the leaf surface (BLO) by air currents (W), washed off (WAS) by rain
(R), dried out (DRY) by dryness (VPD, vapour pressure deficit), or burst (BUR) by
moisture.

In the pathogen-focused models, the state variables of the system are the stages
of the life cycle of the pathogen. These models partition the epidemic into general
biological stages (or components) including dormancy, reproduction, dispersal, and
pathogenesis (Campbell and Madden 1990, De Wolf and Isard 2007). Conceptually,
these stages can be divided into a seemingly infinite numbers of events, each hav-
ing a unique relationship with the environment and host (Kranz 2003). Following
DeWolf and Isard (2007), the dormancy stage can be further divided into colo-
nization and survival components; dispersal can be divided into release, transport,
survival, and deposition; while pathogenesis can be divided into infection, incu-
bation, latency, and senescence components. Although every step in the biological
process is potentially important, it is often unnecessary to model all details of the
system to produce a useful model. Stages can be considered as occurrences (e.g.,
the pathogen has infected the plant) or quantities (e.g., number of spores that have
caused infection per unit of plant surface). When only the occurrence of stages is
considered, the model can be defined as “phenological”.

An example of a pathogen-focused model is that of Rossi et al. (2008), which
simulates primary infections of Plasmopara viticola on grapevine. The oospores
(i.e., the overwintering spores) formed in the affected leaves of the previous season
form the seasonal oospore dose, SOD. These oospores enter the morphologically
mature stage (MMO) depending on the day of the year (DOY), and then become
physiologically mature (PMO) in the following spring depending on the physio-
logical time (hydro-thermal time, HT), which regulates the breaking of dormancy
(DOR). HT depends both on temperature (T) and on moisture in the leaf litter (M),
which depends in turn on rain (R) and vapour pressure deficit (VPD). When a rain-
fall wets the leaf litter containing oospores, the oospores in the PMO stage move to
the GEO stage (germinated oospores, i.e., oospores that have produced sporangia)
according to a germination rate (GER), which also depends on HT; the oospores
that have broken dormancy at the time of the rainfall form a cohort that develops in
a similar way. Sporangia germinated from oospores can survive for a certain period
of time (SUS), which depends on T and relative humidity (RH). Living sporangia
release zoospores (REL) as soon as the environmental conditions of T and wetness
duration (WD) are favourable. At this stage, zoospores are swimming in the film
of water (ZRE) and survive there (SUZ) as long as the water film persists; during
this period, any rain that occurs splashes zoospores to grape leaves (ZDI). Based
on T and WD, these zoospores can dry out on the leaf surface or infect the host; in
the latter case, the zoospores move from the ZDI stage to the infection stage (ZIN).
Finally, oil spots appear on leaves (OSL) at the end of a T-dependent incubation
period (Fig. 15.3).
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Fig. 15.3 Relational diagram of the model simulating primary infections of grapevine downy
mildew (Rossi et al. 2008)

3.3 Complexity Versus Simplicity

The dualism between complexity and simplicity is an important concern. Addition
of detailed process descriptions, with increased numbers of variables and param-
eters, may support a theoretical or biological point of view in that it will more
completely describe the complex interactions between pathogen, plant, and envi-
ronment. The added details, however, may not necessarily increase the model’s
practical capability to predict disease and to guide management. From a practical
perspective, models should be parsimonious: a parsimonious model is usually the
one with the greatest predictive power and the least process complexity (Wainwright
and Mulligan 2004). Although complexity may make the model more accurate, it
can also make the model less manageable (Kranz and Hau 1980). Thus, simplicity
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should be strived for in developing the conceptual model but not at the cost of model
performance.

Managing imperfect knowledge. Frequently, the modeller faces the problem of
imperfect knowledge and the lack or ambiguity of information regarding aspects of
the pathosystem. This deficiency can be solved by collecting additional information
or by explicitly accepting (at least temporarily) assumptions about processes; bio-
logically plausible values and empirical probability distributions can be taken from
similar pathosystems.

Making assumptions. Whenever assumptions are made, they must be explicitly
stated with reference to the conditions under which they are valid and, more impor-
tantly, the conditions under which they are invalid (Wainwright and Mulligan 2004).
The key to successful modelling is to know which assumptions are likely to be
wrong and to ensure that they are not important for the model’s stated purpose.
Further, one should only use the model for that purpose and should ensure that oth-
ers do not use the model for purposes that render incorrect assumptions significant
or correct assumptions invalid.

4 Developing the Mathematical Model

After an appropriate conceptual model framework (appropriate for answering the
problem posed) has been devised, the next stage is to build the model mathemati-
cally. Development of the mathematical structure of the model consists of stringing
together sets of equations for which an analytical solution will be derived. A possi-
ble approach is to build the model graphically by adding compartments and flows,
linking them with dependencies, and entering the appropriate equations into the rel-
evant compartments, flows, or variables. When a systems analysis approach is used
to conceptualize the model, this process is greatly simplified. Otherwise, PowerSim
(Powersim Software AS, Bergen, Norway) and other model-building environments
with easy-to-use graphical interfaces and syntax are available.

4.1 Formulation of Conceptual Models

Mathematical principles for the plant-focused models have been described by
Madden et al. (2007) when quantities are expressed as densities, and by Vander-
plank (1963) when quantities are expressed as proportions. Both models have the
same levels of biological detail and biological realism (Madden et al. 2007).
For instance, a possible mathematical derivation when the model considers
densities gives the following system of equations: dH(t)/dt = −βH(t)I(t); dL(t)/
dt = βH(t)I(t) − λV(t); dV(t)/dt = λV(t) − ωI(t); dI(t)/ dt = ωL(t) − μI(t); dR(t)/
dt = μI(t); dY(t)/dy = dL(t)/dt + dV(t)/dt + dR(t)/dt + dI(t)/dt; Y(t) = L(t) + V(t)+
R(t) + I(t) where: Y is the total density (i.e., number per unit area) of individuals
that have become infected at time t since the start of the epidemic; dY/dt =
rate of change in the density of infected individuals; H, L, V, I, and R are the
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densities of healthy, latent, visible, sporulating and no more sporulating individuals,
respectively; β is the transmission rate; λ is the probability per time unit that a
latently infected individual transfers into the visible category; ω is the probability
per time unit that a visible non-sporulating individual transfers into the sporulating
category; μ is the probability per time unit that a sporulating individual transfers
into the no more sporulating category (modified from Madden et al. 2007).
A general mathematic framework for the pathogen-focused models has not been
developed, because such a framework strongly depends on the life cycle of the
specific pathogen. Therefore, it must be created for each model. An example is
given by Salinari et al. (2008).

4.2 Formulation of Driving Models

The mathematical structure of the conceptual model links together the state variables
of the system through their rates of change. How the system changes over time
(i.e., the dynamic component of the model) depends on the rates, which depend in
turn from external variables. Driving models express changes of the rate variables
quantitatively. Logical operators, numerical thresholds, and different methods of
calculus can be used for developing the driving models.

In most cases, definition of these quantitative relationships is based on the
data available, in the literature or from specific experiments. Phases in performing
experiments to obtain data about relationships between the variables acting in the
pathosystem were described by Rossi et al. (1997a), while experimental techniques
were widely reviewed (Campbell and Madden 1990, Kranz 1974, Kranz and Rotem
1988, Leonard and Fry 1986, Madden et al. 2007, Zadoks and Schein 1979).

Model fitting is the procedure used to identify the mathematical function that best
explains the experimental data. General functions for describing incubation, latent,
and infectious periods are available in the literature, as are functions for describ-
ing the developmental rates of the pathogen, e.g., spore germination, mycelium
growth, spore yield, etc. (Analytis 1980, Friesland and Schröedter 1988, Hau et al.
1985, Hildebrand and Sutton 1984). Parameters of these functions are estimated by
regression analysis, as recently described by Madden et al. (2007). Other compu-
tationally intensive methods, such as the jackknife and bootstrap methods, can be
used to derive estimators for equation parameters (Lehoczky 1990). When a general
equation for the data is not known, or when these equations poorly fit the data, the
general model of multiple regression can be applied, where all the possible linear
combinations of the independent variables are included and selected through any
stepwise selection procedure. The process of parameter estimation is often referred
as calibration (Pascual et al. 2003). Properly, calibration is the process of adjust-
ing model parameters within physically or biologically defensible ranges until the
resulting predictions give the best possible fit to the observed data (Camase 1996).

When the dependent variable is dichotomic (e.g., presence/absence, yes/no) or a
grouping variable (e.g., low, intermediate, high), either discriminant analysis (DA)
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or logistic regression analysis (LRA) can be applied. DA allows the identification of
a set of independent variables providing the best distinction of a dependent variable
in groups established a priori (see an example in Salinari et al. 2006). LRA deter-
mines the probability that an event occurs (for example, ascospore ejection) based
on the values of one or more independent variables (see an example in Rossi et al.
2009).

Derivatives are used to calculate rates of change over time. When the mathemat-
ical function has been defined, the first derivative of the dependent variable with
respect to the independent one can be easily calculated. When rates must by cal-
culated from observed data, it is necessary to assume that there is a straight-line
relationship between two successive measurements; accuracy of the calculated rate
depends on the validity of the linearity assumption and on the distance between the
two measurements (Rossi et al. 1997a).

Integration is used to calculate the area under the function relating two variables
or the area under two observed points, and thresholds are used when the biological
process considered does not occur when the influencing variable is below a mini-
mum level or above a maximum level. The influencing variables can be qualitative
(e.g., presence or absence of rain for spore dispersal) or quantitative (e.g., minimum
duration of wet period for causing infection).

4.3 Testing the Driving Models

Each driving model must be tested to determine whether its behaviour reason-
ably represents the relationship under study (Teng 1981). A number of different
goodness-of-fit measures can be used for this purpose (see paragraph 5). When the
driving models are based on experiments conducted under environmentally con-
trolled conditions, they must be verified under natural conditions to ensure that
additional environmental variables (different from those considered in the con-
trolled conditions) have a relevant impact on performance of the driving model
(de Vallavieille-Pope et al. 2002). Testing is very important because errors in the
driving models can distort the performance of the whole model, which is difficult to
check during model evaluation (see 12.5).

4.4 Introducing Stochasticity

Errors in estimating model parameters are possible sources of uncertainty and are
sometimes termed “uncertainty regarding model variables” (Camase 1996). Models
accounting for this source of uncertainty include a probability distribution for the
estimated parameters and use stochastic procedures to select iteratively the param-
eter values to be used in each model run (Giosuè et al. 1995, Rossing et al. 1994,
Sall 1990). These models are stochastic (Lehoczky 1990), and their output is not a
unique value but a set of values whose variance is a measure of model uncertainty.
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5 Evaluating the Model

Evaluation is the judging of the overall adequacy of the model. Evaluation includes:
(I) verification; (II) validation; (III) uncertainty analysis; (IV) sensitivity analysis;
and (V) judgement of utility (Camase 1996, modified).

5.1 Model Verification

Verification is the inspecting of the internal consistency of the model. It includes
the analysis of dimensions and units, checks on mass conservation, detection of
violation of natural ranges of parameters and variables, etc. (Camase 1996).

5.2 Model Validation

In a broad sense, validation is the establishment of the usefulness and relevance of a
model for the defined purpose; for predictive models, a major part of the validation
consists of a comparison of model output (the prediction) with a data set of real-
world observations (Camase 1996). Accuracy is the closeness of a predicted value
to its “true” value, while robustness is the capacity of the model to perform equally
well across the full range of environmental conditions for which it was designed
(Pascual et al. 2003).

Rykiel (1996) provided an overview of how validation has been used in mod-
elling, and distinguished: (i) operational or whole-model validation (correspondence
of model output with real-world observations); (ii) conceptual validation (evaluation
of the underlying theories and assumptions); and (iii) data validation (evaluation of
the data used to test the model). He classified thirteen different types of validation
procedures that are commonly used, whether explicitly or implicitly. At least two of
these validation methods are useful for plant disease models: (i) event validity, i.e.,
whether the occurrence and pattern of a specific event are reproduced by the model;
(ii) predictive validation, i.e., comparison of model output with actual behaviour of
the system in question. Irrespective of the validation procedure used, the real data
used for validation must be independent (i.e., the data must not be used in model
building) and representative for the situations in which the model is to be used
(Battilani et al. 1996b, Caffi et al. 2009, Jesperson and Sutton 1987).

Notwithstanding the developments in the methods for validating models, Teng
(1981) correctly stated that “validation will remain much the undefinable phase of
modeling” and “issues on subjectivity and objectivity are not likely to be resolved”.
Therefore, model validation is an iterative process, and the final judgement on model
validity comes from a mixture of statistical and intuitive procedures.

Evaluation of event validity. This validation can be performed using Bayesian
theory (Yuen and Hughes 2002). For this purpose, model predictions must be
divided into positive (P+, the event is predicted) and negative (P−, the event is
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not predicted); real observations too must be divided in positive (O+, the event
occurs) or negative (O−, the event does not occur). Numbers of correct (P+/O+,
P−/O−), false positive (P+/O−), and false negative (P−/O+) cases must be orga-
nized in a 2×2 contingency table, and correspondent frequencies calculated as: true
positive proportion (TPP or model sensitivity), true negative proportion (TNP or
model specificity), false positive proportion (FPP), and false negative proportion
(FNP). Accuracy of the model is given by the overall accuracy index (correct/total
cases) and by the Youden’s index (J=TPP-FPP), both of which are equal to 1 in
case of perfect model prediction. Furthermore, likelihood ratios of positive (LR(+))
and negative (LR(−)) predictions can be calculated: an accurate model has a large
LR(+) value and an LR(−) value close to 0. Posterior probabilities can be calculated
that express the probability that the event occurs when predicted (P(P+,O+)), that
the event occurs when not predicted (P(P−,O+)), that the event does not occur when
not predicted (P(P−,O−)), or that the event does not occur when it has been pre-
dicted (P(P+,O−)). Comparison of posterior probabilities with prior ones gives an
evaluation of the practical value of the model (see [Madden et al. 2007] for further
details).

Evaluation of goodness-of-fit. This validation can be performed by using dif-
ferent goodness-of-fit measures (Snedecor and Cochran 1973), each of which is
sensitive to different aspects of model behaviour. The choice of an appropriate
measure is therefore vital to a robust model validation. These methods are suit-
able for comparing quantitative model predictions with observed data for numbers
of lesions, disease incidence or severity, numbers of spores, etc. Statistics for
evaluation of goodness of fit can be divided into two groups: (i) those measuring cor-
relation between observed and predicted values, and (ii) those considering residues
(differences between observed and predicted values).

Regression analysis is a widely used method: model output is regressed against
field data, and the properties of the linear model are examined. For each set of
results, representing pairs of simulated and field data, the null hypotheses that “a”
(intercept of regression line) is equal to 0 and “b” (slope of regression line) is equal
to 1 are tested using a t-test. If the t-tests for “a” and “b” are not significant, then
both null hypotheses are accepted and the model is considered a statistically accu-
rate predictor of the real data. If the t-test for “a” or “b” is significant, then both
null hypotheses are simultaneously tested using the F-test (Teng 1981). When sim-
ulated values are very close to the actual ones, this test can lead to misinterpretation
(Rossi et al. 1997a) that can be overcome by introducing the concordance correlation
coefficient (Lin 1989), as suggested by Madden and Nutter (1995).

The analysis of residues avoids some problems of the regression analysis (Green
and Stephenson 1986). The NS model-efficacy is a measure of the mean square error
to the observed variance: when the error is zero, NS=1 and the model represents a
perfect fit; when the error increases, the NS values become negative. The W index of
agreement is the ratio between mean square error and total potential error; W ranges
between 0 (total disagreement between model and reality) and 1 (perfect fit). The
root mean square error (RMSE) is the square root of the mean square error and rep-
resents the average distance of real data from the fitted line. RRMSE (relative root
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mean square error) is RMSE divided by the average of observed values. MAE (mean
absolute error) is very similar to the RMSE but is less sensitive to large prediction
errors. The ratio RMSE/MAE is an indicator of the extent to which outliers are
affecting the model evaluation. Model efficiency (EF) is a dimensionless coefficient
taking into account both the index of disagreement and the variance of the observed
values; as its value increases toward 1, the fit of the simulated process increases. The
coefficient of residual mass (CRM) is used to measure thetendency of the model to
overestimate or underestimate the measuredvalues; a negative CRM indicates a ten-
dency of the model towardoverestimation. Further details are available in Nash and
Sutcliffe (1970).

5.3 Evaluation of Model Uncertainty

Uncertainty always exists in model formulation and for model parameters (see para-
graphs 3 and 4, respectively) and inputs. Input uncertainty is caused by natural
variation (e.g., weather and genetic variation) as well as by imperfection of input
data measurement. Although the causes of uncertainties may differ, their effect is the
same, namely uncertainty about the model output. Uncertainty analysis is the study
of output uncertainty as a function of a careful inventory of the different sources of
uncertainty in the model, often expressed as variance.

5.4 Evaluation of Model Sensitivity

Model sensitivity is the dimension of changes in model output due to changes in
input variables. Sensitivity analysis is the study of model properties through changes
in the input variables and the analysis of its effect on model output (Camase 1996).
An important question asked is, for instance, whether some output is affected at
all by some input. If a small variation of any input variable results in a greater
than proportionate deviation of the model output, the input variable is considered
sensitive: it is retained in the model and must be measured as accurately as possible.
If significant change in the input variable causes little change in output (i.e., if the
input variable is insensitive), either the variable should be removed from the model
or its measurement can be simplified. There are several methods for performing
sensitivity analysis that have been reviewed by Frey and Patil (2002).

6 From the Model to Practice

In this chapter, we have described a fruitful approach for developing plant disease
models and for evaluating their accuracy and robustness. Implementation of such
models in practical crop protection is outside the aim of our treatment. This imple-
mentation requires additional work, which is only summarised in the following
paragraphs.
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6.1 Developing a Computerised Version of the Model

Translation of the original model into a computer code is only possible for trans-
parent models. Model transparency is the clarity and completeness with which data,
assumptions, and methods used in model development are documented (Pascual
et al. 2003). According to the level of transparency, the model is termed “black
box” or “white box”. Development of a computer model requires: (i) coding the
model in high level computer programming language (e.g., Basic, Fortran, Pascal,
C++, or Java); (ii) determining whether the computerized model truly represents the
original model and that there are no inherent numerical problems with obtaining the
solution; and (iii) verifying that the two (original and computerized) models produce
the same output when run with the same input.

6.2 Collecting Input Data

Weather-driven models must be operated using precise measurements of the input
variables in representative locations. Therefore, it is necessary to create a net-
work of agro-meteorological stations for collecting weather data at a territorial
scale or a net of wireless sensors to collect data at the within-crop scale. Details
for environmental monitoring have been discussed by Friesland and Schrödter
(1988).

6.3 Designing a Strategy for Decision-Making Based on Model
Output

Madden et al. (2007) developed the concept of risk algorithm as “any calculation
that uses observations of identified risk factors from the host crop, the pathogen
population and the environment to make an assessment of the need for crop pro-
tection measures”. Plant disease models produce predictions on the epidemic or
on single epidemic components that can be used as risk indicators. Nevertheless,
strategies for decision-making based on model output must be designed and their
accuracy assessed. Use of Bayesian analysis for this purpose was clearly described
by Madden et al. (2007).

6.4 Developing Tools for Supporting Decision-Making

Models can be incorporated in decision support systems (DSSs) that assist tactical
and operational decision making in crop protection at the farm, field or intrafield
scale. Alternatively, models can be part of disease warning systems (DWSs) at a
territorial scale (Rossi et al. 2000).
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6.5 Building User Confidence in the Model

Even a perfect model will be not used in practical disease control if the final users
lack confidence in the information derived from the model. The probability that
potential users will use the model and trust the information derived from the model
depends on model reliability and on model performance in comparison to best
available practice (Pascual et al. 2003). Therefore, efforts are necessary to foster
the model and to demonstrate the advantages of its use in comparison with the
alternative, currently used options.

7 Conclusion

Initially, plant disease models were developed as simple rules, graphs, or tables, and
later as descriptive tools. Advances in environmental monitoring, automatic data
processing, and botanical epidemiology enabled the development of a new class
of models, the mechanistic (explanatory) models, which have better accuracy and
robustness. These models explain mathematically the relations within a pathsystem
by means of linked differential equations, and describe how the system changes over
time and space as a consequence of external variables. Thus, the model output varies
according to influencing weather conditions.

These models produce predictions of plant disease epidemics and can be used
for decision making concerning plant disease management in production fields at
different scales of complexity. Scales of time and space may differ according to
the application of the model: from warning services, which use models to produce
crop protection information at the collective level on a territorial scale, to precision
agriculture, which uses models at a within-plot scale. While the use of plant dis-
ease models in warning services for crop protection is well established, their use in
precision agriculture has yet to be developed.

Precision crop protection is based on the reality that intra-field variation exists for
disease and crop conditions (Bjerre et al. 2006). Precision crop protection implies
that intra-field variation exists for disease and crop conditions (Bjerre et al. 2006).
Spatial variation in disease severity is a prerequisite for site-specific disease man-
agement: disease variation must have an appropriate magnitude and occur on spatial
and temporal scales that make site-specific management relevant. For this purpose,
disease must either be directly observable by automatic monitoring devices or be
predictable (Bjerre 1999). Intra-field variation of disease levels is mainly caused by
spatial variability of the inoculum dose, of crop conditions (due to variability in soil
properties and availability of water and mineral nutrients), and of environmental
conditions at the canopy level. Disease models described in this chapter incorporate
the above-mentioned sources of variability and can therefore be used as predic-
tors of intra-field disease variation. For instance, these models could be used to
draw dynamic maps of the current and future spatial distribution of both visible
and latent infections within a field, so that timing, active ingredients, and rates of
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fungicides could be defined accordingly. The main obstacle that must be overcome
before this can be accomplished is the measurement of input variables (concern-
ing both weather and crop) at the within-field level. Wireless sensors are a possible
solution. Wireless sensor technologies and standards for wireless communications
have been developed in recent years, and the cost of sensors has been continuously
declining. Nevertheless, the reliability of wireless systems must be demonstrated for
different cropping and disease systems (Wang et al. 2006).
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Chapter 16
Model Validation and Use of Geographic
Information Systems in Crop Protection
Warning Service

Paolo Racca, Thorsten Zeuner, Jeanette Jung, and Benno Kleinhenz

Abstract Validation is an essential part of the model development process if
models are to be accepted and used in decision support systems. Validation ensures
that the model meets its intended requirements in terms of the methods employed
and the results obtained. The ultimate goal of model validation is to make the model
useful in the sense that the model: addresses the targeted problem, provides accurate
information about the system being modelled, and makes the model acceptable for
practical use. This chapter describes the main validation methods used for models
which are validated and currently used in the field by the German Plant Protection
Service. Furthermore, the results of a study how to increase the accuracy of simu-
lation models by using Geographic Information Systems (GIS) are presented. The
influence of elevation, slope and aspect on temperature and relative humidity were
interpolated with GIS methods, whereas precipitation data was obtained from radar
measurements; these meteorological data were used as input for the simulation mod-
els. The output of these models is presented as spatial risk maps in which areas
of maximum risk of a disease are displayed. The use of GIS methods to increase
accuracy is expected to increase system adoption by farmers.

1 Validation of Forecasting Models in Crop Protection

There are several definitions of model validation considering generically mathemat-
ical simulation of real events (Sargent 1998, Schlesinger 1979) or specific models
for plant disease epidemiology (Teng 1985, Kranz and Royle 1978, Reynolds
et al. 1981, Welch et al. 1981). The validation process can be summarised as the
comparison between the virtual (simulated) and the real (actual) system.

According to Balci and Sargent (1984), model validation of a generic model may
be divided into subjective and statistical validation techniques. In other words, the
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model validation strictly depends on the modelled system, the model output and the
availability of field data for the validation.

Simulation models can be differentiated into four types according to the classifi-
cation of the Central Institution for Decision Support Systems and Programmes in
Crop Protection (ZEPP) in Germany (Racca et al. 2009):

• Type 1: Models to predict the first appearance of symptoms of a specific disease
or a pest in a field.

• Type 2: Complex simulation models able to predict the epidemiological devel-
opment, population dynamics (e.g. disease severity, disease incidence) or pest
abundance.

• Type 3: Models able to predict a target event such as action thresholds (AT) or
periods with high risk for an epidemic development.

• Type 4: Ontogenesis models that simulate crop growth which can be used in
combination with disease or pest models.

The validation of these different types of models requires different data sets; (I)
the time of first incidence of disease in the field for type 1; (II) surveys of disease
development for type 2; (III) type 3 predicts the date of passing the AT; and (IV) type
4 simulates data on crop development. Paradoxically, the simulation model must be
constructed to provide an output based on available data for its validation. For each
model a subjective and/or a statistical validation is possible.

1.1 Validation of Type 1 Models

Type 1 models forecast the first appearance of a disease or a pest in the crop.
Although they are simply constructed they also have great impact on the end user.
They are mainly used by advisors to determine the beginning of regional monitor-
ing activities and by farmers to conduct initial checks in their fields. In some cases,
e.g. quarantine diseases like blue mold of tobacco or areas with high disease risk,
the date of first occurrence is also the date the disease exceeds the AT for the first
treatment. The results are generally given on a regional level considering the region
as the area surrounding a weather station.

Models currently used by the German Crop Protection Services (CPS) are
CERCBET1 used to predict the first appearance of Cercospora leaf spot (due to
Cercospora beticola) on sugar beet (Roßberg et al. 2000), SIMBLIGHT1 for potato
late blight (Phytophthora infestans; Kleinhenz et al. 2007), SIMPEROTA1 for
blue mold of tobacco (Peronospora tabacina; Racca et al. 2007) and, for pests,
SIMLEP1-Start to forecast the appearance of the over wintering adults of the
Colorado potato beetle (Leptinotarsa decemlineata; Jörg et al. 2007).

The output of the CERCBET1 model is disease appearance expressed as per-
centage of infected fields in a region (Rossi and Battilani 1991). The model was
slightly modified and introduced into grower fields in 2000 (Roßberg et al. 2000).
The subjective validation of CERCBET1 took place retrospectively with monitoring
data of the years 1995–2008 in all German sugar beet growing areas.
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Validation was made in using data on:

• First disease occurrence predicted by the model and observed in the field.
• Date when 50% of the fields in one region were infected, which represents the

50th percentiles in the distribution of disease occurrence in several fields in the
region, at a time when the probability to detect Cercospora infections in the field
is very high and the disease has been established in this region.

• Data are grouped into “regions” near a representative meteorological station.
• In order to detect the distribution of infected fields, only regions with data from

more than four sugar beet field surveys were considered.

Forecasting with the model was considered (I) correct when the difference
between the predicted and the observed date was in the range of ±7 days; or (II)
early and late when the difference exceeded this range. In this case the subject of
the validation method was to consider a period of ±7 days correct for such kind of
model results. The data for the validation were provided from regional surveys con-
ducted in weekly intervals and a 1 week of delay or earlier forecast was acceptable
for model validation.

The model was able to predict disease occurrence correctly in approximately
65% of the forecasts, in 32% the date was too early and in 4% the forecasted time
of disease occurrence was late. The model had higher levels of accuracy when pre-
dicting the time when 50% of fields showed infection. The validation indicated a
trend to anticipate the occurrence of disease. This trend can be explained by ana-
lyzing the data set used for the validation. Sometimes the sample size used in
the surveys is not appropriate for detecting a rare event, like the appearance of
first necrotic spots (Roßberg et al. 2000), but then the first spots of C. beticola
may be confused with spots due to Alternaria sp., Phoma sp. or bacterial leaf
spots.

For an appropriate statistical validation (Balci and Sargent 1984, Rossi et al.
1997) simulation and field data were regarded as two independent random sam-
ples in order to compare their distributions. The use of parametric tests like
the t- (comparison of means) and F-test (comparison of standard deviation) as
well as a non-parametric method like the Kolmogorov-Smirnov test (computing
the maximum distance between the cumulative distributions of two samples) is
applicable. The null hypothesis of such tests is that simulated and actual data
have, within a certain probability level, the same distribution (not significant) or
a different distribution (significant). In this case the data were separated by year
(Table 16.1).

Statistical analysis of model results revealed significant differences between the
distributions indicating a poor correlation between the data in about 50% of the
cases. However, when we applied the subjective validation method, and when con-
sidering the principal aim of the model to determine the time of initiating disease
monitoring in the field the model was acceptable. An early forecast also may be
acceptable, since only in 12% of all cases the forecast was more than 3 weeks before
the first disease observation.



262 P. Racca et al.

Table 16.1 Statistical tests on the CERCBET1 Results for the simulation years 1999–2008

First appearance 50% Infected fields

Year N t-test F-test Kol.Smirn. test t-test F-test Kol.Smirn. test

1999 25 n.s. ∗ ∗ n.s. ∗ ∗
2000 16 n.s. n.s. n.s. n.s. n.s. n.s.
2001 16 n.s. n.s. ∗ n.s. n.s. n.s.
2002 27 n.s. ∗ ∗ n.s. n.s. ∗
2003 30 n.s. n.s. n.s. n.s. n.s. n.s.
2004 22 n.s. n.s. ∗ n.s. n.s. ∗
2005 35 ∗ ∗ ∗ ∗ ∗ ∗
2006 36 ∗ n.s. ∗ ∗ n.s. ∗
2007 28 ∗ ∗ ∗ n.s. ∗ ∗
2008 28 n.s. n.s. ∗ n.s. n.s. n.s.

Kol.Smirn.: Kolmogorow-Smirnov test, n.s. not significant, ∗ = significant with p < 0.05

1.2 Validation of Type 2 Models

The models of type 2 are examples of classical simulation models. Generally, they
are very complex. The ultimate goal is to predict epidemic development, expressed
as disease severity and/or disease incidence, or to predict the phenological stages
of insects. These models are used in the development phase as a basis for identi-
fying the parameters and variables for the construction of models of type 1 and 3.
Examples of these epidemiological models are CERCODEP for Cercospora leaf
spot on sugar beet (Rossi et al. 1994), RUSTDEP for leaf rust (Puccinia triticina) on
winter wheat (Rossi et al. 1997), SIMPHYT2 for potato late blight (Roßberg et al.
2001), and SIMLEP2 to forecast the phenological development of the Colorado
potato beetle (Roßberg et al. 1999). Two recent models are used here as examples
of the validation methods: PUCREC for leaf rust of winter rye (Puccinia recondita)
and PUCTRI for leaf rust of winter wheat (Puccinia triticina).

The models simulate the epidemic development of rust on the different leaf layers
expressed as disease incidence (Räder et al. 2006, 2007, Racca et al. 2008). Models
were validated with both subjective and statistical methods using field data collected
from 2002 to 2005. In total, 51 data sets for PUCREC and 37 for PUCTRI were
available to investigate the predictive ability of the models.

Subjective validation consisted of comparisons of simulated disease incidence
with disease incidence data recorded in the field (Fig. 16.1). The simulation
was accepted as correct when simulated disease incidence was within the confi-
dence interval of the recorded disease incidence. Overestimation was given when
simulated values exceeded the highest level of the confidence interval whereas
underestimation occurred when simulated values were below the lowest level of
the confidence interval. Both models were validated for each leaf layer, F (flag leaf)
to F-3 (Table 16.2). In 71–86% of fields, the progress of disease incidence was sim-
ulated correctly. The high proportion of overestimations in winter wheat indicated
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Fig. 16.1 Simulation of leaf rust incidence on the flag leaf (F) of winter rye using PUCREC:
— simulation; • field data; + confidence interval of the field data in 2003 (meteorological station
Herxheimweiher, Rhineland Palatinate, Germany)

Table 16.2 Validation of PUCREC (n = 51) and PUCTRI (n = 37). Share (%) of underestimated,
correct and overestimated leaf rust epidemics in winter rye and winter wheat, respectively, on
different leaf layers (2001–2005)

PUCREC – Winter rye PUCTRI – Winter wheat
Leaf
layer Underestimation Correct Overestimation Underestimation Correct Overestimation

F 8 74 18 0 82 18
F-1 2 86 12 0 76 24
F-2 6 84 10 0 71 29
F-3 0 80 20 0 76 24

that epidemics simulated by PUCTRI started earlier and progressed faster than in
reality.

Statistical validation was carried out with two parametric tests (regression
analysis, test of hypothesis) and one non-parametric test (Kolmogorov-Smirnov).
Simulated disease incidence (dependent variable) was linearly correlated with the
recorded data (independent variable). Student’s t-test demonstrated that a (intercept
of the regression line) was equal to 0 and b (slope of regression) was equal to 1
(Table 16.3).

Statistical validation gave very satisfactory results with both parametric and
non-parametric methods. The highest values of the non-significant cases of the
regression parameters and the Kolmogorov-Smirnov test indicated that the model
is considered a statistically accurate simulator of field data.
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Table 16.3 Validation of PUCREC (n = 51) and PUCTRI (n = 37). Regression analysis and
Kolmogorov-Smirnov test (2001–2005), share (%) of not significant and significant cases

PUCREC – Winter rye PUCTRI – Winter wheat

Regression parameters Regression parameters

t-a t-b
Kolm.-
Smirn. t-a t-b

Kolm.-
Smirn.

Leaf layer ns ∗ ns ∗ ns ∗ ns ∗ ns ∗ ns ∗

F 93 7 59 41 96 4 95 5 90 10 95 5
F-1 91 9 77 23 98 2 94 6 87 13 94 6
F-2 91 9 68 32 96 4 100 – 100 – 92 8
F-3 88 12 79 21 91 9 100 – 67 33 100 –

t-a: hypothesis t-test for regression intercept, t-b: hypothesis t-test for regression slope,
Kol. Smirn.: Kolmogorov-Smirnov test, ns not significant, ∗ = significant with p < 0.05

1.3 Validation of Type 3 Models

Type 3 models are derived from models of type 2. The development of diseases is
often simulated to forecast the passing of the action threshold (AT) and is linked to
recommendations for pesticide applications. Models of type 3 are sometimes com-
bined with knowledge on the effectiveness of active ingredients. These models often
include agronomic parameters such as crop rotation, fertilization, irrigation and cul-
tivar resistance which can influence disease progression. Sometimes type 3 models
also include features of type 1 models that are able to predict disease occurrence.

Type 3 models can be used on regional and field-specific levels. Some examples
of the most successful type 3 models are: CERCBET3 for Cercospora leaf spot on
sugar beet (Racca and Jörg 2007), SIMPHYT3 for potato late blight (Gutsche 1999),
PUCREC and PUCTRI for cereal leaf rusts (Racca et al. 2008) and SIMLEP3 for
Colorado potato beetle (Jörg et al. 2007).

CERCBET3 simulates the progress of Cercospora leaf spot incidence on sugar
beet, expressed as disease incidence (DI) and the passing of an AT which leads to
recommendations for fungicide treatments (Racca and Jörg 2007). In Germany, the
AT is based on both time and disease incidence and the strategy for decision making
is: AT 5% DI until the end of July; 15% DI before August 15; and 45% DI later than
August 15 (Jörg et al. 2003).

The data for model validation were collected from 3 years of trials in the major
sugar beet growing regions. For a subjective validation the weekly DI assessment
was compared with simulated data. The difference between observed and simulated
dates when passing the three ATs was classified as follows:

• Early: the model forecast exceeded the threshold more than 7 days earlier than
the observed date

• Accurate: the model forecast exceeded the threshold within a period of ± 7 days
compared to the observed date

• Late: the model forecast exceeded the threshold more than 7 days later than the
observed date.
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The results of this subjective validation are summarised in Table 16.4. The same
data pool was also used for a statistical validation. For the three ATs the simulated
date of threshold passing was linear regressed with the observed date.

Table 16.4 Validation of the type 3 model CERCBET3: Comparison of the observed and the
forecasted date of exceeding the three action thresholds

Mean 2001–2003 (n = 71)

Action threshold Early Accurate Late

5% DI 8.80 89.92 1.28
15% DI 13.23 82.72 4.06
45% DI 10.60 80.04 9.37

The results of the statistical analysis differed from the subjective validation.
There was only a strong correlation for AT 5% (r2 = 0.72), whereas the correlations
for the other ATs were weak (r2= 0.31 and 0.19). For all regressions, the intercept
and the slope were significant at p < 0.05. The concordance correlation coefficient
ρc (Lin 1989, Madden et al. 2007) was used to avoid problems with misinterpreted
results in the regression analysis (failed t-test for a and b). The values of ρc range
from 1, perfect agreement, to −1, total lack of agreement. Validation of the AT 5%
DI showed a high ρc (0.82) value indicating strong agreement between simulated
data and field observations.

Another example for the validation of a type 3 model is illustrated for the model
SIMLEP3 which simulates the development of L. decemlineata from the begin-
ning of egg laying to the occurrence of the old larvae at a field-specific scale (Jörg
et al. 2007). SIMLEP3 was validated simultaneously in Germany and in several
other European countries. For the subjective validation, predicted dates of maximum
abundance of egg clusters and young larvae were compared to field observations.
The model output was considered accurate when the forecast was within an interval
of 1 week compared to the observed date.

In general, SIMLEP3 validation results were very consistent. The first occurrence
of young larvae was predicted correctly in most instances. Nevertheless, differences
between forecasting and observed date ranging from 18 days too early up to 10 days
too late were registered. Positive results were also obtained for the prediction of
maximum egg cluster occurrence. In Germany, Poland and Italy the share of correct
forecasts given from SIMLEP3 amounted to 92%. In Austria, the share of correct
predictions was only 71%. Predictions of the maximum occurrence of young larvae
were accurate in 89% of the cases for all countries combined. Optimum results were
obtained in Italy and Poland, whereas in Austria and Germany the share of accurate
forecasts exceeded 85%. SIMLEP3, therefore, is able to give precise forecast for
the most important development stages of L. decemlineata needed for effective and
sustainable control. The validation also demonstrated the suitability of using the
model throughout Europe.



266 P. Racca et al.

1.4 Validation of Type 4 Models

Ontogenetic models simulate the development of crops over time expressed as
BBCH-growth stages (Hack et al. 1982). SIMONTO-models are based on the
modelling approaches of CERES-Wheat (Mirschel et al. 1993) and ONTO-models
(Wernecke et al. 1996). Ontogenetic progress in SIMONTO is reflected by a devel-
opmental rate which is a function of temperature and photoperiod. Parameters
for the different models in winter oilseed rape and winter cereals were estimated
by employing the Monte-Carlo-method (Falke et al. 2006, 2008, Roßberg et al.
2005).

More than 13,800 observations of BBCH growth stages for winter cereals
from 2003 to 2008 were available for a statistical validation of the model val-
idation. In the first step of the validation, the observed BBCH growth stages
were regressed linearly with the model and a concordance correlation coefficient
was calculated. A high coefficient of determination suggested a good correlation
between the data. Both regression parameters, a and b were significant and the con-
cordance correlation coefficient of 0.93 demonstrated a good agreement between
the data.

Unfortunately, BBCH growth stages are not strictly arithmetically dependent.
Some stages can appear very early in the season and stay constant for a long period
of time. The simple arithmetic difference between two BBCH growth stages may be
minimal but the difference in days between the two stages may be considerable. For
example, the arithmetic difference between BBCH 21 (beginning of tillering) and
22 (2 tillers detectable) is only 1, but sometimes BBCH 21 is recorded in the fields
in autumn and simulated by the model in spring. This means a time difference of
90–150 days.

Therefore, the model should also be validated using a subjective method. A scor-
ing model approach was used for SIMONTO (Morvin 2006, Roßberg et al. 2005)
whereby the difference in days between the simulation and the observation was
classified with the following subjective weighted error:

• model more than 7 days early or more than 7 days late: weight = 7;
• model early or late by 4–7 days: weight = 3;
• model early or late by 1–3 days: weight = 1;
• no difference between simulation and observation: weight = 0;

The sum of the weights was classified in a weighted error coefficient with val-
ues varying from 0 (accurate) to 7 (simulation extremely early or extremely late).
Table 16.5 shows that the coefficient ranged from 1.26 to 3.10. Values were clas-
sified acceptable when the simulation results were within a period of ± 3 days;
values > 3 indicate a larger time difference between simulation and reality. Since
most of the coefficients of error were < 3 it was concluded that the model accu-
rately simulates reality within an acceptable time range. In this case, the subjective
validation was essential, because the statistical validation could lead to misleading
results.
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Table 16.5 Validation of SIMONTO. Weighted errors and weighted error coefficient for some
BBCH growth stages in winter cereals (seasons 2003–2008)

N◦ of case ∗ weighted error
Growth
stage n Weight 7 Weight 3 Weight 1

Sum of
weights

Weighted
error
coefficient

BBCH 23 22 28 0 0 28 1.27
BBCH 25 62 70 6 2 78 1.26
BBCH 31 1,368 2,233 957 310 3,500 2.56
BBCH 32 1,490 1,764 846 320 2,930 1.97
BBCH 39 1,070 980 684 188 1,852 1.73
BBCH 61 703 1,512 609 60 2,181 3.10
BBCH 65 732 1,288 636 142 2,066 2.82

2 Use of Geographic Information Systems in Crop Protection

During the last 40 years, a number of weather-based forecasting models have been
developed for the control of plant diseases and pest attacks (Kleinhenz and Jörg
2000). Several forecasting models have been established and introduced into prac-
tice to support the decisions in the control of diseases in Germany (Kluge and
Gutsche 1984, Gutsche 1999, Kleinhenz and Jörg 1999, Kleinhenz and Jörg 2000,
Roßberg et al. 2001, Hansen et al. 2002). However, in some agricultural areas, the
distance between meteorological stations (MS) exceeds 60 km. Forecast models
did not give satisfactory results for fields separated by such large distances to MSs
(Zeuner 2007).

With the help of Geographic Information Systems (GIS) a plot-specific classifi-
cation of temperature and relative humidity (RH) has been developed using complex
statistical interpolation methods described by Heller (1996). The method, however,
cannot be applied to the parameter precipitation. Especially in the case of fre-
quent spatially and temporally limited rainfall (so-called convective rainfall event,
CRE), the interpolation for precipitation does not give plausible results (Zeuner and
Kleinhenz 2008). Precipitation data with a high spatial resolution may be obtained
from radar measurements.

Using these spatial input parameters for the currently available disease forecast
models should lead to accurate forecasting for areas in-between two or more distant
MSs. With the use of GIS, daily spatial risk maps for diseases and pests can be
created in which the spatial and the temporal process of first appearance and regional
development are documented. These risk maps may lead to improved control and a
reduction in fungicide use.

In the following study the new method to calculate the input parameters for fore-
cast models with GIS was validated on the first appearance of potato late blight.
The models SIMBLIGHT1 and SIMPHYT1 predict the date of first fungicide treat-
ment for late blight control, and are used in practical agriculture (Kleinhenz et al.
2007). Whereas SIMPHYT1 depends on a statistical approach forecast, the result
of SIMBLIGHT1 is based on the current infection pressure and is displayed in
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three classes (Fig. 16.2). The results of the geo-referenced approach are presented
in spatial maps and graphs showing the risk of late blight primary infections. The
SIMBLIGHT1 calculated risk of late blight infection is presented in three infec-
tion classes symbolized by different colours. Later, risk maps will be adapted to
an internet application to provide comfortable access to the system for farmers and
advisers.

Fig. 16.2 Current and future presentation of SIMBLIGHT1. Currently, forecasting are shown for
the sites of the meteorological stations with cloud symbols (a). The new presentation is a spatial
risk map for late blight (b)

2.1 Use of GIS to Prepare Model Input

2.1.1 Workflow

The following steps have to be taken to build spatial risk maps:

• Step 1: data management
• Step 2: interpolation of meteorological data
• Step 3: calculation of the forecasting model using the results of the interpolation
• Step 4: display of the results as a risk map

In step 1 hourly meteorological data which are necessary for the forecast models
SIMPHYT1, SIMPHYT3 and SIMBLIGHT1 are imported from a weather database.
Then a geographic reference is set to the meteorological data because the weather
database is not geo-referenced. Step 2 which is the main and the most difficult step,
requires comparison of different types of interpolation methods to identify a method
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which gives optimum interpolation of the meteorological data. Step 3 uses the inter-
polated data as input parameters to calculate the forecasting models. In step 4, the
results are connected to an internet application in which spatial information is dis-
played as a risk map of first disease appearance, and then the daily infection risk of
late blight.

2.1.2 Data Base

Meteorological Data: The meteorological data are collected by 570 automatic sta-
tions operated by the German Meteorological Service (DWD) and CPS. The stations
are equipped with sensors for temperature, RH, precipitation and global radiation.
All data are tested fot plausibility and stored in a database called AGMEDAWIN
(Keil and Kleinhenz 2007).

Geodata: A digital elevation model (DEM) published by Behrens and Scholten
(2002) was used to obtain all necessary relief information. The DEM describes the
landscape as a three-dimensional grid. It represents the earth’s surface through dig-
itally stored x, y, z values, where the x and y values specify the horizontal position
and the z-value the vertical height of the grid cell (Bill 1999). Mathematical and
statistical methods are used to calculate derivatives, e.g. slope, slope direction, or
slope edges. DEM and various derivations provide a basis for the characterization
of the meteorological parameters.

Spatial Join: In order to store the results of interpolation, a grid was laid out over
Germany. At present, the CPS use about 570 MSs to represent an agricultural area
of approx. 200,000 km2, or an average of one MS per 350 km2. With the new GIS
method, grid cells have a size of 1 km2 and, after interpolation, are represented by
virtual meteorological stations (Liebig and Mummenthey 2002).

Radar Measurements: The DWD records precipitation all over Germany by 16
radar stations. These stations do not measure the amount of precipitation at ground
level but the signal reflected from the rain drops in the atmosphere. These measure-
ments at first only allowed calculation of an unspecific “precipitation intensity”,
a shortcoming. In the system RADOLAN, intensity is now calibrated online with
data from a comprehensive network of ombrometers, using complex mathematic
algorithms. As a result, the amount of precipitation can be provided in a spatial res-
olution of 1 km2 (Bartels 2006). For the sake of readability, these calibrated amounts
of precipitation based on radar measured rainfall intensities are called “radar data”
below. The validation of precipitation data took place in intensely used agricultural
areas, for which the DWD radar grid was spatially joined with the meteorological
network. In this way, it was possible to relate each station to a grid cell.

The radar derived precipitation at the station’s grid cell and the actually mea-
sured data formed the basis for the statistical verification. Because rain events
differ throughout the year, two representative months (May and August 2007) were
selected to analyse both uniform rainfalls in spring and CREs in summer. This
resulted in a validation dataset of 1,488 h for each MS. Depending on the region,
the number of MSs ranged from 9 to 29. In addition, the influence of the distance
between radar station and MSs was analysed.
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Furthermore, a leaf wetness simulation model used by ZEPP was run on data
from both methods of precipitation measurement and the results were compared.

2.1.3 Interpolation Methods

Two groups of methods have been tested to identify the best interpolation for mete-
orological data. Deterministic interpolation methods, e.g. inverse distance weighted
(IDW) and spline interpolation (SI) based on distance analyses were compared
to geostatistical interpolation methods like kriging and multiple regression (MR)
which uses mathematical and statistical procedures.

MR is an interpolation method that allows simultaneous testing and modelling of
multiple independent variables (Javis et al. 2002, Cohen et al. 2003). Parameters that
have an influence on temperature and RH, e.g. elevation, slope, aspect, can, there-
fore, be tested simultaneously. MR uses matrix multiplication and only variables
with a defined minimum influence that will be included into the model. The result of
MR is a formula (x = const+A1

∗const1+A2
∗const2 +A3

∗const3 +. . .+Ax
∗const)

which allows a calculation of a parameter set for each grid cell from which
independent variables are known (Javis et al. 2002, Zeuner 2007, Mense-Stefan
2005).

2.2 Validation of Spatial Input Parameter

2.2.1 Interpolation of Temperature and Relative Humidity

The first calculations with the four interpolation methods showed that deterministic
interpolation methods were not suitable. IDW and SI have been rejected because
differences in elevation are not accounted for, despite of the fact that the elevation
has been identified as a major factor for interpolation of the meteorological param-
eters needed. Although producing similar results, kriging required more calculation
time than MR and slow performance limits the production of daily risk maps in the
internet. Multiple regression was, therefore, chosen for interpolation and the results
are summarised below.

To validate the results of the interpolation, 13 MSs were ignored in the inter-
polation process. After interpolation, the deviation between calculated values and
measured data of these stations was compared. The study was conducted from
January to August in the years 2003–2006. For all stations, MR gave results with
highest accuracy (Table 16.6). In all cases, the coefficient of determination (CoD)
ranged between 96 and 99% for temperature and 92 and 96% for RH, respectively.
For the 13 MSs, the mean deviation for temperature was less than 0.1◦C and for RH
less than 0.6% as calculated with MR. The absolute maximum and minimum for
temperature was less than 4.7◦C and for RH less than 32.6%. The data also were
tested for significance between calculated and measured data using a t-test. The test
indicated that for all stations the differences between the calculated and measured
values were random. The MR method gave plausible results, so it was chosen to
interpolate the meteorological data to be used as input for the forecasting models.
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Table 16.6 Validation of data on temperature and relative humidity; deviation between calculated
values and measured data with MR (n = 92,160 h)

Temperature [◦C] Relative humidity [%]

Year 2003 2004 2005 2006 2003 2004 2005 2006

CoD (%) 96 96 99 98 94 96 95 92
Mean dev. 0.0 0.0 0.0 0.1 0.3 0.1 0.1 −0.6
Maximum 4.4 4.1 4.3 4.7 19.6 32.6 21.6 21.2
Minimum −3.8 −4.5 −4.5 −4.1 −18.9 −21.9 −22.8 −22.8
T-test n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

n.s. = not significant

2.2.2 Results from Radar Data

The parameters for amount of precipitation, hours with precipitation and leaf
wetness showed high correlations between radar values and measured data. The
maximum of the hourly deviation of the amount of precipitation was 0.06 mm. In
hours with rainfall the deviation was slightly higher (0.36 mm). No correlation could
be detected for the distance between radar stations and MSs. For hourly rainfall pat-
tern, a correlation of 91.4% between stations and validation areas was measured.
The best correlations were obtained for the leaf wetness model for which values
> 99.9% were achieved.

A very good correlation between the data of meteorological and radar stations
was found for the amount of precipitation, hours with precipitation and calculated
leaf wetness duration. The results clearly show that the use of radar data as an
input parameter in disease forecast models is valid. By adding data of tempera-
ture and RH with high spatial resolution, an optimal basis for site-specific forecasts
has been established. Moreover, this system allows for exact detection of localised
convective rainfall events, which at the moment often go undetected in meteorolog-
ical networks. Significant improvements of the spatial forecasting by plant disease
simulation models can be expected from the use of radar data.

2.3 Creating Risk Maps with Spatial Input

Results of the forecast models SIMBLIGHT1 and SIMPHYT1 running on calcu-
lated meteorological data were validated against a set of field data collected between
2000 and 2007 in Germany. The prediction was defined as accurate when the date
of late blight appearance, given by one of the models was earlier than the date of the
first outbreak observed in the field. In Fig. 16.3 (A to D) the results of this study are
displayed in box-whisker-plots. The results of the model with interpolated input are
denoted with “a −v” and those with measured input with “a −m”.

More than 90% of all calculations over all years have been classified as accurate.
Only for 2002, less than 60% of the calculations were accurate due to a high amount
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Fig. 16.3 Box-Whisker-Plots of differences between the first appearance of late blight in the field
and the model result of SIMBLIGHT1-v-m (1 and 2) and SIMPHYT1-v-m (3 and 4) in Germany
in 2001 (a), 2002 (b), 2003 (c) 2004 and 2005 (d)

of precipitation during the spring and summer months. The various data sets yielded
a similar percentage of accurate results.

In all years, the mean deviation of the model outputs with −v gave better results
for the first appearance of late blight detected in the field than the results with −m.
For example, in 2001 the mean results of SIMBLIGHT1-v showed a 5–8 days higher
accuracy than the calculations based on data measured by a distant MS. In all other
years, the results for mean deviation were similar.

The largest differences between the minimum and maximum deviation (range)
were demonstrated for SIMBLIGHT1 in 2002. The range of SIMBLIGHT1-m
exceeded that of SIMBLIGHT1-v by more than 30 days. In all other years and
also with the model SIMPHYT1, the range of results with −v was 5–20 days less
than −m. The results showed that calculations based on interpolated data have a
higher accuracy for late blight forecast than field data because of their spatial index.
Therefore, precise determination of the first fungicide treatment is possible and
should result in high efficiency of disease control.

In other forecast models, additional meteorological input data play an impor-
tant role. It would, therefore, be necessary to analyse whether MR is also able to
calculate parameters such as soil temperature, leaf wetness or precipitation with
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high accuracy. Whereas with soil temperature MR is useful, it is not useful for leaf
wetness and precipitation because of regional variation in precipitation especially
during summer months. For these parameters, other sources have to be identified,
e.g. radar measurements of DWD may be used to classify precipitation.

3 Conclusions

The validation of a simulation model is a critical point in the development of the
model itself. Unfortunately, there is no set of specific tests or decision-making algo-
rithms which can determine the best method to validate a model. The procedures
for the validation described above can be grouped into two categories: subjective
and statistical methods (Table 16.7). In spite of producing numerical outputs, the
most common statistical tests not always provide adequate answers. Moreover, the
interpretation of the test can be at times misleading.

Subjective methods are more intuitive and provide answers with easy interpreta-
tions. In this case, the decision for the method depends on the experience of the
person validating the model. It is important to know, for example, what weight
should be assigned to the overestimation, but especially to the underestimation of the
results of a model. Careful attention must be paid to the quality of data available for
validation. They should certainly be adequate in number and represent the different
environments involved.

Table 16.7 Some subjective and statistical methods useful for model validation

Model
type Data needed Subjective methods Statistical methods

1 Date of disease
appearance

Comparison of simulated
and observed
appearance with
subjective early/late
criteria

Distribution sample
comparison, t- and
F-test,
Kolmogorov-Smirnov
test

2 Disease development data
(Incidence or severity)

Comparison of simulated
and observed data with
confidence interval
and/or subjective
under-overestimation
criteria

Regression analysis,
hypothesis test,
Kolmogorov-Smirnov
test

3 Date of threshold
overriding

Comparison of simulated
and observed
appearance with
subjective early/late
criteria

Regression analysis,
hypothesis test,
concordance
correlation coefficient

4 Crop development data Scoring model approach
with subjective
early/late criteria

Regression analysis,
hypothesis test,
concordance
correlation coefficient
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The combination of forecast models for plant diseases and the analyses and
interpolation methods based on GIS may allow significant advancement in advice
to farmers. GIS methods will help to obtain more detailed calculations and result
with higher accuracy and validity than before. Spatial maps will show hot spots of
maximum risk which will make the results of forecast models easier to understand
and to interpret. This moves decision support systems a step closer to the aim of
economical and environmentally friendly crop protection strategies.

The results and methods of this study will lead to the introduction of risk maps
in the German crop protection warning service. The internet platform www.isip.de
is currently implementing a web GIS application to make use of the new methods.
The new components will comply with all relevant standards (OGC, INSPIRE) to
ensure interoperability with other geoservices. GIS presentation methods will make
DSS results easier to understand and will lead to a higher acceptance of warning
systems by farmers.
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Chapter 17
Mechanical Weed Control

Victor Rueda-Ayala, Jesper Rasmussen, and Roland Gerhards

Abstract Side effects of herbicides and increasing prevalence of organic farming
induce the need of further developments in mechanical weed control. Mechanical
weed control is mainly associated with cultivating tillage (e.g. tertiary tillage), but
also primary and secondary tillage influence weeds. Cultivating tillage is performed
in growing crops with harrows, hoes, brushes and a number of special tools for
intra-row weed control. Inter-row cultivations have been used in many decades in
row crops and perform in general well. To increase their capacity and accuracy,
guidance systems are important to steer the hoes along the rows. The success of
inter- and intra-row cultivation is highly influenced by selectivity factors. The con-
trol mechanisms of all cultivating tillage methods are burring in soil, uprooting,
and tearing plants into pieces. Especially for whole crop and intra-row cultivators,
successful weed control is highly influenced by appropriate adjustment of the inten-
sity (aggressiveness) of cultivation according to the variations of soil resistance,
crop and weed resistance to cultivation and the competitive interactions between
crop and weeds. Site-specific weed management aims to identify the spatial and
temporal variability of weeds and manage them correspondingly. New technologies
for sensing crops and weeds in real-time and robotics allow a precise operation of
mechanical tools, to improve efficacy of control and reduce operation costs. Hence
in this chapter, implements for mechanical weeding are described together with their
options for site-specific weed control strategies. Harrows and rotary hoes are used
for whole crop treatment, but it is essential to find the right timing and intensity
to obtain the best selectivity and yield response. Different implements attached to
the same vehicle are combined together attempting more selective weed control,
like the in-row cultivator, the rotary harrow, and the precision hoe. Lately, there
are prototypes intending automatic adjustment of the aggressiveness for the spring-
tine harrow and autonomous guidance for hoes, thus getting closer to a real-time
site-specific weed management approach.
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1 Introduction

A crucial element in farm management is the control of weeds, mainly due to
their negative implications on crop yield and quality. Conventional farming heavily
depends on herbicides, whereas organic farming depends on interactions between
preventive methods and mechanical weed control. Efficacy of herbicides is high in
many important crops and non-chemical alternatives like mechanical weed control
are in general not able to compete due to lower efficacy and higher costs. However,
continuous use of herbicides with the same mode of action may cause selection
of herbicide resistant weed populations. Herbicides may also show negative side
effects like contamination of soils and groundwater as well as herbicide residues in
the food chain. These side effects and the increasing prevalence of organic farm-
ing have induced the need of further developments in mechanical weed control,
which constitutes a key element in non-chemical weed management (Upadhyaya
and Blackshaw 2007).

Mechanical weed control is mainly associated with cultivating tillage, often
referred to as tertiary tillage, but also primary and secondary tillage as well as mow-
ing and cutting have strong impacts on weeds. In organic farming, a 1–2-year period
of grass-clover or alfalfa in the crop rotation is more or less required to suppress
weeds including perennials such as Cirsium arvense (Peigne et al. 2007, Gruber
and Claupein 2009). Perennial weed species such as C. arvense, Calystegia sepium
and Agropyron repens are difficult to manage in crop rotations dominated by annual
crops, and crop rotations dominated by cereals often result in a strong increase of
root/rhizome biomass, especially if conservation tillage is practiced (Hacker 1984,
Peigné et al. 2007). A combination of repeated stubble tillage in the summer under
dry soil conditions using a cultivator or rototiller combined with inversion tillage
using the double-layer plough or a deep mouldboard plough may be successful in
terms of weed control (Pekrun and Claupein 2004, Gruber and Claupein 2009), but
this control tactic can only be used occasionally in an organic cropping system,
otherwise soil fertility will decline.

Cultivating tillage is carried out after crop sowing/planting to control weeds and
consists of shallow tillage with a variety of equipments often categorized as hoes or
harrows. It includes whole crop cultivation, inter-row cultivation and intra-row cul-
tivation. The action mechanisms are through tearing weeds into pieces, uprooting
and covering them with soil (Kurstjens and Kropff 2001). The primary aim of culti-
vating tillage is to control seed propagated weed species in the earliest development
stages. Perennial weeds with vegetative propagation are more or less unaffected by
cultivating tillage.

Cultivating tillage is carried out both as pre-emergence and post-emergence cul-
tivation. The primary control mechanism in pre-emergence cultivation is complex
and little studied but in post-emergence weed harrowing, burying of weed seedlings
in soil has been determined as the primary control mechanism (Kurstjens and
Perdok 2000, Jensen et al. 2004). Plants should be covered totally to be killed; the
required burial depth depends on plant size and growth habit (Baerveldt and Ascard
1999).
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Crop and weed populations are often not uniform in the field, which challenge
the use and settings of cultivators. Weeds may occur in patches of varying size,
densities and growth stages; some areas may have few or even no weeds within
a weedy field. Also soil characteristics such as soil texture, soil moisture content
and organic matter may vary significantly within a field. Therefore, there is need
to vary the intensity (aggressiveness) of mechanical weed control according to the
variations in the field. The objectives of site-specific weed management are to iden-
tify the variability, and to analyse and manage weeds according to their spatial and
temporal variability (Blackshaw et al. 2007). Lately, new technologies for sens-
ing crops and weeds in real-time with image analysis, global positioning systems
(GPS), mapping tools in a geographical information system (GIS) and robotics using
autonomous vehicles allow a precise operation of mechanical weeding tools. This
may increase the efficacy of weed control and reduce operation costs (Gerhards et al.
2002).

The objectives of this chapter are to give an overview of the various imple-
ments for mechanical weed control with their benefits and constraints. Secondly,
this paper describes options to use existing mechanical weed control in a more
precise way taking into account the heterogeneous weed distributions and soil con-
ditions, i.e. under the precision weed management approach. In order to examine the
potential of site-specific mechanical weed management, emphasis is given to culti-
vating tillage, which includes control of seed propagated weeds in early crop growth
states.

2 Implements for Mechanical Weed Control

A large variety of implements are used for mechanical control of weeds, from basic
hand tools to sophisticated tractor pulled or self-propelled implements (Dierauer and
Stöppler-Zimmer 1994, Van der Weide et al. 2008). In general they are classified
into two main groups: cultivating tools like hoes and harrows; and cutting tools like
mowers and strimmers. For cultivating tillage only the first group is relevant.

Cultivating tillage may cover the crop row (intra-row weeding), strips between
crop rows (inter-row weeding) or the full surface (whole crop weeding) (Vanhala
et al. 2004), and it is mainly carried out with harrows, hoes and brushes (Dierauer
and Stöppler-Zimmer 1994, Pallutt 2002).

Inter-row and intra-row cultivation require precision in terms of steering. The
highest precision is required for intra-row weeders but also inter-row weeders
that operate close to the crop rows require precision. In practice, it is possible
to leave about 10 cm wide uncultivated strips around the crop row if steering is
highly accurate (Gupta et al. 2008). Most inter-row cultivations are carried out
in row crops with rows spaced 50–90 cm apart. Inter-row cultivation, however, is
also possible in cereals and other crops normally established in narrow-row sys-
tems. Row spacing of about 20 cm is considered as a minimum to allow inter-row
cultivation.
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2.1 Whole Crop Cultivation

2.1.1 Harrows and Rotary Hoes

Weed harrowing and rotary hoeing imply whole crop cultivating and risks of crop
damage. However, mechanical weeding may also favour crop growth due to soil
loosening, reduction of evaporation, soil aeration and induction of mineralization
(Steinmann 2002). The challenge is to achieve a high degree of weed control without
unacceptable crop damage. Spring tine harrows, also called flexible tine harrows, are
the most utilized implements for whole crop cultivation in Europe, but other types
of harrows like the chain harrow, are also used. In North America rotary hoes are
commonly used pre-emergence or in very early growth stages (Place et al. 2009).

Weed harrowing in cereals can be performed at pre-emergence, at early post-
emergence, and during tillering until the crop becomes about 40–50 cm high
(Rasmussen and Svenningsen 1995); the latter is called selective harrowing. Early
post-emergence harrowing is estimated to involve the highest risks for crop dam-
age. However, if broadleaved (annual) weeds are at cotyledon stage and the crop
has reached at least three true leaves stage, weed harrowing can be highly selective
due to higher crop resistance to cultivation (Rasmussen et al. 2008). Under such
conditions, 80–90% weed control may be achieved (Rasmussen et al. 2008, Van der
Weide et al. 2008). In later growth stages, more aggressive cultivation is required
which may involve several passes with the harrow, more aggressive setting of the
tines or higher speed (Kurstjens and Perdok 2000). Re-growth of weeds or late ger-
minating weeds may require repeated cultivations, especially in row crops with open
canopy structure and low competitive ability (Van der Weide et al. 2008).

Harrowing is a common practice to control weeds in organic small-grain cereals
(Fig. 17.1a) and seed legumes (Fig. 17.1b). Early crop emergence, high competitive
ability, and high tolerance to cultivation make cereals and seed legumes suitable
for mechanical weed control (Jensen et al. 2004, Rasmussen et al. 2009). Weeds
in maize (Zea mays L.), potato (Solanum tuberosum L.), and transplanted veg-
etables may also be controlled by harrowing, and sensitive row crops like onions

Fig. 17.1 Whole crop cultivation in cereals with a 27 m wide spring-tine harrow (a), harrowing in
faba beans (b). Photos Einböck, Agritechnika 2005
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(Allium cepa L.), sugar beet (Beta vulgaris L.), and carrots (Daucus carota L.) can
be harrowed after the 3–4-true-leaf stage of the crop (Van derVan der Weide et al.
2008).

Weather and soil conditions are important for successful weed harrowing.
Relatively dry soil conditions are preferred, but there is little experimental evidence
to quantify the importance of dry weather conditions. It is, however, important that
mechanical weeding is not constrained by poor soil workability (Van der Weide et al.
2008). Favourable soil conditions are crucial for the shallow tillage operations. Soil
structure must be fine and soil texture light; stone free and plane topography are
also desired (Dierauer and Stöppler-Zimmer 1994). Harrowing on windy or hilly
areas increases the risk of soil erosion. Additionally, harrowing in late autumn or
early spring may provoke frost damage to the crop after treatment mainly due to
root injury and reduced drought resistance.

The weed control mechanism of harrowing is mainly by soil burying (crop soil
cover), but also uprooting plays a role when weeds are small (Kurstjens and Kropff
2001). If cereals and seed legumes are damaged, it is mainly caused by crop soil
cover (Rasmussen et al. 2009, Jensen et al. 2004). A high selectivity means that a
high degree of weed control is associated with a small percentage of crop soil cover,
which is the percentage of the crop that has been covered by soil. The success of
harrowing depends on the balance between weed control and crop soil cover, which
is reflected in the selectivity (Rasmussen 1991).

Originally, selectivity was defined as the ratio between percentage of weed con-
trol and the percentage of crop soil cover immediately after harrowing (Rasmussen
1990). This definition does not consider recovering or re-germination of weeds after
treatment and until recently, crop soil cover was visually assessed due to lack of
objective assessment methods. Recently, however, it has been possible to make reli-
able estimations of the crop soil cover based on digital image analysis (Rasmussen
et al. 2007), and a new protocol for the estimation of selectivity has been proposed
(Rasmussen et al. 2008).

It is important to distinguish between quantitative and qualitative aspects of
selectivity, because the more aggressive the cultivation the lower selectivity. This
applies for all implements and it is considered a quantitative aspect of selectiv-
ity. Therefore, comparisons of different treatments in terms of selectivity have to
be done at the same level of weed control, in order to evaluate whether the treat-
ments represent different qualities of selectivity. In general, the construction and
use of cultivators are not considered to influence the qualitative aspects of selectiv-
ity (Rasmussen 1992, Rasmussen et al. 2008), whereas the difference between crop
and weed plants (i.e. large crop plants and small weeds) is crucial.

Adjustment of the aggressiveness of harrows can be achieved by increasing
the working depth (e.g. deeper penetration of the tines into the soil), the forward
speed and the number of passes (Søgaard 1998, Engelke 2001, Cirujeda et al. 2003,
Rasmussen et al. 2008).

With the use of sensor technology and automatic plant species discrimination,
crop and weed responses can be estimated and included in the objective determina-
tion of selectivity (Weis et al. 2008, Rueda-Ayala and Gerhards 2009). The curve
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for leaf cover decline of the crop relative to increasing intensity with the cultivator
(Fig. 17.2a) allows the calculation of the percentage of crop soil cover, and the

Fig. 17.2 Leaf cover index
(Symbols: ◦= BBCH 13, �=
BBCH 21, += BBCH 24) (a);
weed density as function of
increasing intensity (b);
selectivity curves response of
three timings and two driving
directions of harrowing in
spring barley (c)
(Rueda-Ayala and Gerhards
2009). Solid lines indicate
harrowing across and dashed
lines along the crop rows.
(Symbols b, c: �= BBCH 13
along, ◦= BBCH 13 across,
×= BBCH 21 along, +=
BBCH 21 across, ∇= BBCH
24 along, ♦= BBCH 24
across)
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curve for weed density decline (Fig. 17.2b) allows the calculation of the percent-
age of weed control. The selectivity (Fig. 17.2c) is calculated as the relationship
between crop soil cover and wed control.

After the data acquisition with the sensors, real-time adjustment of the aggres-
siveness of cultivation (intensity) of the harrow may be possible, according to the
site-specific demand for weed control (Søgaard 1998, Weis et al. 2008). To make
the adjustments, a predictive model is required to estimate the positive and nega-
tive crop yield contributions from harrowing relative to the intensity of cultivation.
This model requires site-specific knowledge about (I) the competitive ability of the
weeds, (II) selectivity and (III) recovery as outlined in Rasmussen (1991).

Figure 17.3 shows the prototype for automatic adjustment of the harrow. A digital
sensor (a) measures the resistance force of the soil to the forward movement of the
harrow; the data are transmitted to a control unit (b) that generates an algorithm
for the motors (c) to change the tine angle and perform more aggressive treatments
according to the soil characteristics. Positioning of the whole system is detected
with a real-time kinematic differential global positioning system (RTK-DGPS) (d).

The rotary hoe used for pre- and early post-emergence weed control without
regard to crop rows, is a non-powered weeder with curved steel spokes radiating as
a flat wheel from a hub. The spikes are rotated forward by ground contact (Bowman
1997).

Rotary hoes are mainly used in maize and soybean (Glycine max). They are less
aggressive than most harrows, but have a high capacity due to high operation speed
ranging from 8 to 24 km h−1 (Cloutier et al. 2007). The control mechanism is by

Fig. 17.3 Prototype of an automatically controlled flexible tine harrow containing soil sensor (a),
computing control unit (b), motor to change the tine angle (c), and RTK-DGPS for positioning (d)
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pulling weed seedlings after the hoes penetrate and come up of the ground; also
movement of the soil towards or away from the crop row generates a burial action.
The selectivity of this tool is given when the crop seeds are placed deeper than its
working depth – i.e. crop plants are deeper rooted than weed seedlings.

2.2 Inter-Row Cultivation

Inter-row cultivators have been commonly used in row crops like sugar beets and
vegetables for many decades. They are manufactured in many different designs, but
they are all constructed to kill weeds on their path, which mean that they are oper-
ating in a non-selective way between rows. Most inter-row cultivators have sweeps,
weed knives or shovels working in a depth of 2–4 cm. The ordinary hoe blades (e.g.
duck foot or goosefoot) are mounted on rigid or vibrating shanks. Usually, three
to five shanks constitute a gang that is munted on a toolbar, and each gang cultive
an inter-row spacing. However, inter-row cultivation may also be carried out with
rolling cultivators and PTO-driven cultivators (Melander 2006).

As for harrowing, success of hoeing depends on dry weather conditions and a
workable soil. Unlike harrows, hoes can be used rather in late growth stages and
timing is not crucial (Melander et al. 2005). If the hoe is too deeply operated fibrous
rooted weeds may grow again when enough moisture is available in the soil.

Instead of cutting blades, horizontal rotating brushes are used for special soil
conditions. The weeds are brushed by rotation of hard polypropylene fibres and the
control mechanisms are mainly by burial with soil and uprooting of weeds so they
stay exposed to desiccation, stripping leafs and breaking stems (Melander 1997).
Manual guidance or autonomous guidance system of the brushes between the rows
is indispensable. The first inter-row brush was developed in 1985 to be used in
cereals with 17 cm row distance (Dierauer and Stöppler-Zimmer 1994). For optimal
weed control, the inter-row distance must be at least 17 cm. The main advantage of
the brush weeders is that they can effectively be operated on higher soil moisture
conditions than for harrows or hoes. The risk of using brushes is that soil structure
is destroyed and the soil becomes very sensitive for compaction after rainfall.

Hoes are mainly used in row-crops but may also be used in cereals as a sup-
plement to whole crop cultivation with harrows. For instance in cereals, the effect
of weed harrowing is often poor in heavy soils and a combination of inter-row
hoeing and whole crop harrowing may improve weed management (Rasmussen
and Svenningsen, 1995). Thus, an additional pass with the hoe might be more
effective to control problematic weeds such as Galeopsis tetrahit, Galium aparine,
Matricaria chamomilla and Vicia hirsuta (Dierauer and Stöppler-Zimmer 1994).
The crop row distance must not be < 20 cm (Melander 2006). Two passes with the
hoe in maize and peas (Pisum sativum) may reduce inter-row weed density by 90%
and intra-row density by 75% (Dierauer and Stöppler-Zimmer 1994).

An accurate steering of the hoe is required, since its shares undercut everything
when being pulled. Therefore precise seeding of the rows eases the guidance of the
hoe between the rows (Griepentrog et al. 2006). Manual steering has been the most
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common guidance method to direct the hoeing implements and reduce crop dam-
age. Some electronic guided hoeing systems based on computer vision technology
have been introduced. These systems aim to reduce the concentration needed by the
tractor driver (Melander et al. 2005).

2.3 Intra-Row Cultivation

There exist a number of implements for intra-row weeding. Most are low-tech,
which means that they are simply pulled along the rows and the success of their
performance is highly dependent on crop-weed selectivity factor. Among the most
common low-tech implements are finger weeders and torsion weeders, which orig-
inate from North America but have been simplified by several companies (Van der
Weide et al. 2008).

The cycloid hoe (Fig. 17.4) is a high-tech device for intra-row cultivation. It was
developed by the University of Osnabrück, Germany, together with Amazon Werke
for weed control in maize (Kielhorn et al. 2000). The machine had a multi-sensor
system for plant recognition composed by three sensors: height-profile sensor, area-
allocation sensor and soil-plant sensor. A cylindrical rotor works as actuator and
contains eight tines placed around a vertical axis. The tines rotate in a circular
motion, at a rotational diameter of 0.234 m (Griepentrog et al. 2006). This trans-
lation movement of the rotor together with the forward straight-line movement of
the implement generates a cycloid. The cyclic movement can be regulated by adjust-
ing the translation and rotation speed. Every single tine can be in- and out-folded
by an electromagnetic circuit to avoid crop plants, once the sensors have recognized
them. The forward speed of the vehicle is 8.5 km h−1.

The cycloid hoe has been further developed, tested and problems have been
reported such as high crop damage and low control efficacy (Griepentrog et al.
2007). Gobor (2007) designed a rotary intra-row hoe in combination with realt-
time sensors for robotic weeding which is expected to be fast and effective in weed
control.

Fig. 17.4 The cycloid hoe (a, Griepentrog et al. 2007); forward movement of the cycloid hoe
(b, after Kielhorn et al. 2000)
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Fig. 17.5
Bezzerides-cultivator for
in-row and intra-row weed
control in maize

Schweizer et al. (1992) carried out an investigation to perform more selective
weed control through post-planting cultivating tillage with a so-called Bezzerides
in-row cultivator (Fig. 17.5), as an attempt to site-specifically manage weeds. The
in-row cultivator has tools that move the soil away from the rows and later into
rows, thus uprooting and burying in-row weeds. Rotary hoes at the first gang of the
implement move soil away from the crop row in the first cultivation and into the row
on the second cultivation, covering small weeds. The following gangs are composed
by torsion weeders, spinners (rotary harrows), and spring hoe weeders. The torsion
weeders and rotary harrows were used during the first pass; the torsion weeders and
spring hoes (which replaced the spinners after the first cultivation) were used for the
second and third passes.

Brush weeders also exist for intra-row weeding. However, they are designed
with vertical brushes that are powered by hydraulic motors. The brushes can be
assembled at any desired width and spacing for the crop; the working depth is about
20–30 mm (Melander 1997).

3 Innovative Implements for In-Row Crops

Innovative strategies for weed management in organic farming have been developed
with several operating machines in Italy since the year 2000 in carrots, leaf-
beet (Beta vulgaris var. cicla), fresh tomato (Solanum lycopersicum), and cabbage
(Brassica oleracea). Weed control is carried out with a rolling harrow, a preci-
sion hoe and flame weeders. All machines were built, tested and patented by the
University of Pisa (Peruzzi et al. 2007, Carlesi et al. 2009, Fontanelli et al. 2009,
Raffaelli et al. 2009).

The rolling harrow (Fig. 17.6a) was used for shallow tillage and showed effi-
cient weed control. It is a modular machine, which means it can be built with
different working depths to adapt it to the soil conditions (Raffaelli et al. 2009).
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Fig. 17.6 Rolling harrow (a) with a scheme of different working widths adaptation for whole crop
cultivation (b), and inter-row cultivation (c). Parts: Three-point hitch (3H); frame (FR); front axle
with spike discs (SD); rear axle with cage rolls (CR); chain drive (CD), (d) vibrating tines (VT)
and torsion weeders (TW). After (Peruzzi et al. 2007), courtesy images by Carlesi et al. 2009,
Fontanelli et al. 2009, Raffaelli et al. (2009)

A square frame carries the working tools and has three points for linkage to the trac-
tor (Fig. 17.6b, c). Spike discs of 30–35 cm diameter are placed in the front axle and
cage rolls of 27–33 cm diameter placed in the rear axle; these axles are connected
one another through a chain drive of an easily adjustable ratio.

The mode of action of the rolling harrow comprises the passage of the spike
discs that till the soil at shallow layer of 4 cm; immediately, the gage rolls pass at a
high peripheral speed as the rear axle is powered by the front axle, and generate an
overdrive tilling and crumbling of the soil at a depth of 1–2 cm.

The discs and rolls may be arranged in a miscellaneous way and also changed
with a simple blocking system. When the discs are narrowly distributed along the
axle and the whole area is cultivated, a non-selective weed control for seed-bed
preparation is obtained; whereas a wider arrangement of the discs allows an efficient
selective inter-row weed control at post-emergence weeding. The minimum row
distance to operate this machine is 15 cm.

Additionally, couples of elastic tines (Fig. 17.6d) may be attached on the back of
the frame (vibrating teeth and torsion weeders) in order to control weeds nearer or
even in the crop row (inter-row control).

The precision hoe is a 2–3 m wide experimental inter-row weeder which shows
promising results in organic horticulture in Italy (Peruzzi et al. 2007, Fontanelli
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Fig. 17.7 Scheme of the precision hoe containing an operating seat (OS), steering handle (SH),
articulated parallelogram (AP), directional wheel (DW), support wheel, lateral disc (LD), rigid
elements with horizontal blade (HB) and elastic tines (ET) (a); precision hoeing in cabbage (b),
in cauliflower (c), and in processing tomato (d). After (Peruzzi et al. 2007), courtesy images by
Carlesi et al. (2009), Fontanelli et al. (2009), Raffaelli et al. (2009)

et al.2009, Raffaelli et al. 2009). This implement is structured on a square draw
frame which bears up to 11 working tools (Fig. 17.7a); each tool is placed on artic-
ulated parallelogram equipped with a small wheel that allows adjustment of the
working width. The working tools consist of rigid elements which have attached a
9 cm wide triangular horizontal blade each, pairs of concave discs and two types of
elastic tines: vibrating and torsion (Fig. 17.7d). The steerage is manually performed
by a back-seated operator. With this machine it was possible to achieve a more
selective weed control on the row in crops like cabbage, cauliflower and tomato
(Fig. 17.7b, c, d).

4 Hand Weeding

The highest level of site-specific weed management is achieved through manual
weeding with hand hoes, push hoes or simply through pulling weeds by hand. The
major constraint is the low capacity (ha hour−1). Nevertheless, hand weeding tools
are still used in small-scale horticultural crops especially in organic farming. In
crops like carrots and onions they often serve as the last resort control method.
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Uprooting of perennial weeds in grassland is still carried out with hand tools such
as the spudder (Bond et al. 2007), which is very effective at removing deep rooted
weeds.

Bond et al. (2007) describe some hand hoes used in Europe and still produced in
a wide range of traditional and improved designs. Hoes with tough blades for cutting
large weeds or with plough-shaped blades to move soil and cover small weeds are
available. The draw hoe, swan-necked hoe, onion hoe, draw swan-necked, collinear
hoe, Dutch hoe, Swiss oscillating, stirrup hoe are some examples. These tools cut
and move the soil while the operator works standing or kneeling on vegetable crops.
Their blades may be V-, L- or circle-shaped; they are mounted at right or slight
angles to the short or large handles and are pushed, pulled or both to achieve the
cutting action.

In developing countries, hand tools are of more readily acceptance and use due to
low purchase costs. They are often used in combination with animal drawn hoeing
or human pushing the wheeled hoe between the rows. In this way, manual weeding
with hand tools is reduced only to intra-row level, reducing the labour per hour
(Benzing 2001).

5 Cutting and Mowing

Cutting involves the mechanical removal of the above-ground portions of weed
plants only (Hatcher and Melander 2003), however plant damage by ordinary
mechanical weeding on weed suitability for pest and diseases are also considered.
This control method is better suitable for crops were the row distance is wide such
as potato, maize, beets, and most of vegetables (Pallut 2002); cereals, rapeseed, peas
and beans can be included when the row distance is > 16 cm.

Weed control by cutting or mowing may be complicated due to the adaptation
mechanisms to continuous defoliation of some weeds, especially perennial ones
in grasslands like Rumex obtusifolius, Cirsium arvense (L.) Scop and Pteridium
aquilinum (L.) Kuhn. A high frequency of cutting of these weeds is required to
achieve high degrees of weed control. Graglia et al. (2006) achieved about 75%
weed biomass reduction of Cirsium arvense in spring barley, when 6 mowing per
growing season were performed in preceding grass/clover leys.

6 Conclusion

Mechanical weed control plays an important role in organic weed management;
nevertheless conventional farming may also integrate mechanical weeding into its
management plans. Efficacy and selectivity of mechanical weeders can be improved
when variations in weed species distribution and soil characteristics are objectively
assessed, and taken into account for the regulation of the instruments. Sensors
to measure site-specific weed and crop responses to cultivation as well as soil
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resistance have been developed and combined with steerage and guidance systems.
However, only few agronomic results are available showing the potentials of inte-
grating advanced technology into mechanical weed control. So far, little is known
about the interactions between soil characteristics in the upper soil layers, weed/crop
densities, growth stages, weather conditions and mechanical weed control efficacy.
Site-specific weed control may not only increase overall efficacy and selectivity but
may also improve crop growth due to positive effects of soil tillage others than weed
control. However, intensive studies need to be conducted to quantify positive and
negative effects on crops from cultivating tillage to get decision support algorithms
for precise mechanical weed control.
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Chapter 18
Direct Injection Sprayer

Peter Schulze Lammers and Jiri Vondricka

Abstract This chapter describes past and present direct injection systems (DIS).
The systems are structured into central (CDIS), boom section (BDIS) and nozzle
injection systems (NDIS). A major motivation to develop DIS is to extend the flex-
ibility of applying different pesticides, to advance precision of application, and to
enhance the operator comfort and safety. The ultimate goal is to develop a system
that works together real-time with detection systems and only treats infested areas.
As the injection of pesticides near to the nozzle would be most acceptable technol-
ogy, further optimisation is required. Based on a response time analysis, a control
algorithm is proposed for quicker response of the injection system and new injection
valve covering the full range of treatment rates is described. Results of the mixing
process are presented as well as the effect of using different supply devices i.e. gear
and diaphragm pumps, and air tanks for pesticide injection. In addition, switching
of carrier in a DIS to save water and enlarge the capacity of sprayer is discussed
along with the aspect of operator safety and tubing system rinsing.

1 Introduction – Direct Injection Systems

Several types of Direct Injection Systems (DIS) have been designed and tested.
Amsden (1970) described various methods of direct pesticide injection, including
the famous “spray train”. Walker and Bansal (1999) defined direct injection as a
technique to accomplish variable rate application by spraying the carrier at a prede-
termined constant flow rate while varying the concentration of the active ingredient
on-the-go. Landers (1999) characterised the injection system as a system in which
carrier (water) and pesticide are kept in separate containers (Fig. 18.1). When the
sprayer is activated, a metered flow of pesticide is injected into the carrier (water)
stream at a point situated between the main water tank and the nozzles.
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Fig. 18.1 Scheme of a direct injection sprayer

Depending on the injection point, the injection systems are defined as follows:

• Central direct injection system (CDIS)
• Injection in the sprayer boom sections (BDIS)
• Direct nozzle injection system (NDIS)

1.1 Central Direct Injection System (CDIS)

In the CDIS, pesticides are injected into the system downstream from the main
water tank and prior to branching of the distribution hoses carrying the solution to
different boom sections (Fig. 18.2). The primary disadvantage of the CDIS is the
lag time from changes in the flow rate of pesticide into the system to corresponding
changes in its concentration at delivery points (Walker and Bansal 1999).

Several systems that have been proposed and launched at agricultural exhibitions
which are briefly described on below:

LECHLER SYSTEM (Wichmann 2003) delivers two different pesticides in a
range of 0.2–5.0 l ha−1by hydraulically driven piston pumps. This wide range of

Water

Pesticide

Boom
section Nozzles

Fig. 18.2 Scheme of a
central direct injection
system
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application rates is provided by different piston sizes and electronically controlled
timing. This system is also used to return unused chemicals to their containers and
to rinse the tubing system. He solved the problem of dosing discontinuity through
development of a two step mixing chamber. In the first step, the pesticide is pre-
mixed with small amount of carrier to obtain a continuous flow. In the second step,
it is further mixed with the main flow using a static mixer. However, using the same
control of dosing can cause problems with mixing and concentration continuity.

DOS-INTRO was a user fitted system using a needle valve for metering the pes-
ticide into the carrier water in front of the boom section valves. The needle valve
was motor driven and controlled by a wheel flow meter for adjusting the pesticide
flow into a mixing chamber. The pesticide is delivered by a pressure tank supplied
by the tractor’s air pressure system (Peisl and Estler 1992).

AGROINJECT was the predecessor of the MSR system developed by CIBA
GEIGY. The carrier drives hydraulically a dosing pump metering up to four pesti-
cides. By this means the concentration of the pesticides in the carrier is kept constant
when the application rate is changing. The MSR system was improved by adjustable
orifices of the piston pump able to meter the pesticides in the required range.

SPRAYING SYSTEMS has developed technology for direct injection of pesti-
cides under the Mid-Tech brand. The first system uses a peristaltic pump for dosing
and injecting of pesticides, the second system is based on a newly developed piston
pump. Both systems are to be combined with a mixing chamber including a static
mixer that is 5.08 cm (2′′) in diameter.

AMAZONE prepares the injection by mixing the pesticides with water in a con-
tainer of 10% volume of the carrier tank (Ehlen et al. 2006). This premixing limits
the dimensioning of the injection device because adjusting of the pesticide doses
is already done by preparing the composition of pesticides diluted with water. As a
consequence the injected amount is highly constant. The premixed solution of pesti-
cides is injected into the carrier downstream of the carrier pump in front of the boom
section valves. To achieve a homogeneous concentration the system uses a mixing
chamber.

Many CDI-Systems have been developed, however no one system is widely used.
The main problem of CDIS is caused by the long distance between the injection
point and nozzle. It can cause a time delay of more than 20 s, resulting in an appli-
cation error of more than 100 m on the ground (Koo et al. 1987, Peisl and Estler
1993). Therefore, CDIS is generally not suitable for precision farming.

1.2 Injection in the Sprayer Boom Sections (BDIS)

A boom injection system injects pesticides into the carrier downstream from the
branching of the distribution hoses carrying solution to the different boom sec-
tions and prior to the branching of boom section hoses carrying solution to different
nozzles (Fig. 18.3).

In comparison with CDIS the distance between injection point and nozzle is
reduced and the response time also is reduced. The fastest system response times
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Fig. 18.3 Scheme of
pesticide direct injection in
sprayer boom sections

measured by Hloben (2007) were less than 4 s, resulting in an application error
of less than 20 m on the ground. Such a system is adequate for offline controlled
application. Furthermore, BDIS is not as complicated as NDIS (presented in next
chapter) and therefore an interesting alternative to direct injection systems.

However, BDI-System is still too slow for real-time controlled application. To
reduce the response time the injection point needs to be closer to the nozzle.

1.3 Direct Nozzle Injection System (NDIS)

An alternative to injecting pesticides into the central carrier in the hydraulic system
of a field sprayer or in every boom section is to inject the pesticide at each nozzle
(Fig. 18.4). Direct nozzle injection has an advantage over boom section injection due
to its reduced transport lag time. However, there are problems with the homogeneity
of the mixture using direct nozzle injection (Zhu et al. 1998). In boom injection
systems, mixing is not a major concern because the pesticide has sufficient time
to mix with the carrier before being discharged through the spray nozzles. With
direct nozzle injection the time for mixing is significantly reduced (Rockwell and
Ayers 1996). An important disadvantage of NDIS is the increase in cost as compared
to boom injection due to the equipment required to deliver the pesticide to each
nozzle. However, this is the only system setup that will make real-time controlled
application practical. For this reason the next chapter deals in more detail with NDIS
in order to point out possible means to achieve the required response time.

For comparison of different spraying systems Table 18.1 outlines the mayor char-
acteristics with quality marks. Application flexibility is the weak point of common
sprayers as they are only able to spray uniformly over an entire field. This restric-
tion is the motivation behind the development of application systems with more
flexibility. Reducing the response time of a direct injection system increases appli-
cation accuracy and simultaneously reduces time needed for the mixing preparation.

Nozzle 
body Pesticide

Water

Fig. 18.4 Scheme of a
pesticide direct injection in
sprayer nozzle
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Table 18.1 Comparison of spraying systems application features (CS: common sprayer)

CS CDIS BDIS NDIS

Application flexibility --a 0 + ++
Response time ++ -- 0 ++
Mixing quality ++ ++ + 0
System costs ++ 0 - --

a Impact of factor: ++ very positive; + positive; 0 neutral; - negative; --
very negative.

These counteracting aspects are considered in Table 18.1 as response time and mix-
ture quality. In addition the technical complexity of direct injection systems causes
higher costs, which is an important drawback for commercialisation.

2 Direct Nozzle Injection Process

The task of a DIS is to prepare a homogenous mixture of the carrier with the selected
pesticide concentration. This is achieved by two independent systems: (1) the injec-
tion system, which creates the required concentration of the selected pesticide in the
carrier flow, and (2) the mixing chamber, which ensures the mixture homogeneity.
The impact of these two stages can be seen in the curve of concentration develop-
ment after the start of a pulse (Fig. 18.5). The lag time before pesticide appears at the
nozzles is caused mainly by the flow delay in the mixing chamber called transport
and mixing time (Ttm). A small part of the lag time is the time delay (Tdel) of the
injection device. When these two phases have elapsed the concentration increases
from zero to full rate, characterised by the concentration increase time (Tc), which
depends directly on the design of the injection assembly.

Fig. 18.5 Concentration development in the NDIS after the start of a pulse
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2.1 Injection System – Response Characteristic

An injection system is a complex assembly of devices, transporting and adding
appropriate quantities of the pesticide from the container directly into the carrier
flow. The transport and dosing functions can be provided by two separate devices,
a delivery pump and an injection device. They can also be integrated into one
dosing pump. Dosing pumps are high precision devices suitable only for systems
with a limited number of injection points (e.g. CDIS or BDIS). The NDIS requires
injection flow control on every nozzle. The use of dosing pumps on every nozzle
is not acceptable in terms of cost. The use of central delivery pump and dosing
valves on each nozzle reduces system cost assuming that valve design is not overly
complicated.

2.2 DIS Response Time Analysis

The system response time (TR; Equation 1) consists of the time delay of the injec-
tion device (Tdel), transport and mixing time (Ttm), and concentration increase
time (Tc).

TR = Tdel + Ttm + Tc (1)

The response characteristic of the DIS (concentration vs. time) is divided in two
parts: (a) injection, and (b) transport and mixing: The injection system injects a
metered flow of additive into the carrier. The place where the pesticide meets the
carrier is called the injection point (IP) (Fig. 18.6). The injected flow should be
constant and fast in achieving demanded concentration changes.

The mixing chamber is the area where the carrier and injected fluid are homog-
enized and transported to the nozzle. The task of the mixing chamber is to create a
uniform mixture of all liquids.

Fig. 18.6 DIS nozzle body
cross section
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The response delay is called transport and mixing time (Ttm). This time delay is
caused by transporting and mixing the pesticide flow from the injection point (IP)
to the nozzle orifice (Fig. 18.5).

The system response time (TR) is a sum of the injection time (Tinj) and the
transport and mixing time (Ttm) (Equation 2).

TR = Tinj + Ttm (2)

2.2.1 Injection Time

The injection time (Tinj) is the response time of injection device and is specified as a
sum of the injection device delay and concentration increase time (Equation 3). The
time delay (Tdel) can be characterized as the time after the start of pulse to the first
response at the injection point (IP).

Tinj = Tdel + Tc (3)

The time delay (Tdel) is a constant feature of the injection device (e.g. valve)
determined by the device design:

Tdel = const. (4)

The concentration increase time (Tc) is the time from the first response of the
injection device until reaching the demanded concentration flow. The course of the
increase time is an exponential function (Fig. 18.7):

Tc = C · (1 − e−t/T) (5)

Fig. 18.7 Unit-pulse control signal and first order step response of injection device (Mertz and
Jaschek 1993)
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where C is the desired concentration [%] and T is a characteristic time constant
[s]; as the response on the unit-pulse signal x(t) = 1(t) on the input (Fig. 18.7),
commonly used in the automatic control engineering (Merz and Jaschek 1993). This
function is characterized by the proportional coefficient C and the time constant T
depending on the DIS features. The time constant T is given by the cross points
of turn tangent and desired concentration level. This response characteristic, also
called “the step response” reaches 98% of concentration final value approximately
in time 4 . T (Merz and Jaschek 1993).

To reduce the concentration increase time t (Fig. 18.7), the injection process
has to be optimised to reach the desired pesticide concentration as fast as possi-
ble. Therefore, the unfavourable exponential form of concentration increase shown
in Fig. 18.7 has to be optimised by another control process that aims to improve
the elasticity of the injection device. (The optimisation of the control process is
discussed further in Section 2.2).

2.2.2 Transport and Mixing Time

The transport and mixing time (Ttm) is the time delay caused by transport of the
injected flow through the mixing chamber up to the nozzle orifice (Fig. 18.6). The
transport and mixing time is a dominant part of the response time of CDIS and
BDIS. It can be generally calculated from the volume between the injection point
and the nozzle orifice, and from the carrier flow rate:

Tm = Vm/Q (6)

where Vm is the volume [m3] and Q the carrier flow rate [m3 s−1]. Consequently,
the time delay can be affected by changing the volume of the space between injec-
tion point and nozzle orifice when the carrier flow rate is given by the application
process. Hence, to reduce the transport and mixing time, the volume between the
injection point and nozzle orifice have to be minimized by ensuring desired mixing
result.

2.3 Control Process of the Injection System

The easiest way to enhance the reaction of the DIS is through electronic control.
The aim is to modify the exponential form of concentration increase into one that
enables the target concentration to be reached faster. The finite injection time control
algorithm presented in Fig. 18.8 is a system that uses the full potential of a vari-
able control injection device to reach the desired concentration and to stabilise the
injected flow afterwards. The injection process occurs in two steps: (I) the injection
device starts to inject pesticide at the maximum rate (full control signal), (II) when
the required concentration is reached, the signal is reduced and the flow stabilises. If
an injection device with sufficient maximum flow is used, the desired concentration
can be reached quickly.
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Fig. 18.8 Step control function x (t) for finite injection time control and related concentration
increase

Applying the finite injection time control process to the valve, the elasticity of the
assembly can be described as a linear function by the concentration growth coeffi-
cient cg[% s−1]. The higher the coefficient the greater the elasticity of the system and
thus the shorter the time of concentration increase. Different injection assemblies
were studied to determine the main factors affecting the concentration change speed
(Vondricka et al. 2008). As stated above, the speed of the change depends directly
on the design of the injection assembly. Three different delivery devices (air pres-
sure tank, diaphragm pump and gear pump) and two different injection pressures
(1 and 5 bars) were tested.

Figure 18.9 illustrates the concentration growth coefficient for three delivery
devices and two injection pressures. The lowest values of 2–2.3% s−1 are gen-
erated by the air tank system. The coefficients for the gear and the diaphragm
pump are three to four times higher. The relative differences of the growth coef-
ficients between measurements with 1 bar and 5 bar injection pressure for the air
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Fig. 18.9 Concentration growth coefficients for different delivery devices and injection pressures
(error bars represent the scatter between min and max values)
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tank, gear pump and diaphragm pump were 0.8, 1.6 and 2.3% s−1 respectively.
Thus, the injection elasticity increases with more powerful delivery devices, indi-
cating that a powerful pump is more suitable for fast injection systems than an air
pressurised tank. However, the main advantage of the air-pressurised tank for the
transport of additives is that mechanical elements do not come into contact with the
chemicals.

Generally, the higher the available NDIS metered flow the faster the concentra-
tion increase. Hence, the injection system has to be designed with a powerful pump
and low pressure loss.

2.4 Injection Device

DIS makes high demands on the injection device when used for direct nozzle injec-
tion. The device has to be small, reliable, chemical resistant and has to be able to
administer a wide range of pesticide doses according to the speed of application.
Depending on the dosage and application speed the metered flow rate per nozzle
will be in the range from 0.01 to 1.25 ml s−1. To meet these requirements a spe-
cial injection valve (V 200, German Aerospace Center, Cologne) was developed
(Vondricka et al. 2007). This valve (Fig. 18.10) is characterized by high chemical
resistance, fast reaction time (< 1 ms) and a wide range of dosing rates. The flows
metered by this valve meet the required volumes with both low viscosity and high
viscosity liquids.

Fig. 18.10 Photograph of the
fast reacting injection valve
V200 for direct nozzle
additive injection
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2.5 Homogeneity and Mixing

An effective water-pesticide concentration is needed before the mixture enters the
nozzle and before application on to the target area. There are no standards for the
homogenisation process in crop sprayers today. The German Federal Biological
Research Centre (Julius Kühn Institut) states that “the mixture in the sprayer tank
has to have less than a 15% deviation in homogeneity.” Though, this only consid-
ers the pesticide distribution in the sprayer tank and not in the hoses (Anonymous
2005). For a continuous mixing process, the desired mixture quality is characterized
by the coefficient of variation (CoV) (Paul et al. 2003):

CoV = σ/x (7)

where σ is the standard deviation of concentration measurements and x is the
mean concentration. This function, most often reported in percent, is also often
called intensity of mixing or degree of segregation. To define an acceptable coeffi-
cient of variation for the direct injection process a typical industrial mixing process
could be considered. When applying additives well mixed is defined at 5% CoV,
whereas in more critical applications, such as addition of colour to an extruded
sheet, the product might require 0.5% CoV (Paul et al. 2003). The mixing process in
the direct injection system for agriculture chemicals should reduce the inhomogene-
ity in order to achieve effective concentration in the flow cross-section by diluting
small clusters of highly concentrated chemicals in the carrier. Søgaard et al. (2006)
stated that only 4% of the official label recommendation for glyphosate is effec-
tive for highly efficient weed control. Therefore in a direct injection system the 5%
CoV industry level is sufficient and can be taken as the target for a well mixed
homogenous mixture.

The mixing chamber is an additional space between the injection point and noz-
zle. The time the carrier and pesticide requires to flow through the chamber is called
transport and mixing time and depends directly on the volume of this chamber,
assuming a constant carrier flow rate (Equation 6). Hence, the volume of this cham-
ber should be small. However, the homogeneity of the mixture has to be ensured
under all conditions. Consequently, the mixing process has to be intensified to obtain
the best mixture with smaller mixing chamber volume. Static mixers are suitable for
mixing under the difficult conditions of NDIS. They are small and highly efficient
in continuous mixing processes. Three different static mixers, shown in Table 18.2
have been compared by Computer-Fluid-Dynamics (CFD) software and have been
tested experimentally (Vondricka 2008).

Figure 18.11 presents the output mixture homogeneity measured for mixer length
8, 12 and 16 times mixer diameter (L/D). The additive viscosity was 600 mPa s
and the concentration set to 0.8, 1.0 and 1.3%. According to the presented results,
the extension of the mixer significantly improves the mixture homogeneity, the
concentration level and mixing quality.
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Table 18.2 Static mixers tested for DIS

DescriptionType

KMS Twisted ribbon or bowtie type, with alternating 
left- and right-hand twists. Each element has the 
length of the diameter. (ESSKA, Hamburg, D) 

SMX Several stacked sheets of corrugated metal run-
ning at 30° or 45° to the pipe axis. Each element 
has the length of the diameter and adjacent ele-
ments are rotated 90° relative to each other. 
(Sulzer, Chemtech, Winterthur, CH) 

QUADRO Square-shaped mixer, adjacent elements are ro-
tated 90° relative to each other. One element has 
0.75 side size in length. (Sulzer, Chemtech, 
Winterthur, CH)  
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Fig. 18.11 Homogeneity of KMS static mixer for different concentrations, mixer lengths and
on additive viscosity: 600 mPa s (error bars represent the scatter between min and max values)
(Vondricka 2008)

3 Carrier Saving

To measure the response characteristics of the pesticide direct injection process, a
constant carrier flow has been used by Hloben (2007) and Downey et al. (2006).
Miller and Watt (1980) studied the effect of carrier switching on spray pattern
development. The authors stated that the response time for spray establishment at a
distance of 3 cm below the nozzle was 44.7 ms.

The combination of carrier switching and a direct nozzle injection system leads
to a potential saving of carrier when switching off over non-infested areas. The
efficiency of the crop sprayer increase and therefore the operating cost decrease.
The effect of carrier switching on the direct nozzle injection process was studied
by Vondricka et al. (2009) using an electro-pneumatic carrier valve. A conven-
tional concentration increase with a constant carrier flow has been recorded as a
reference whereby an electro-pneumatic carrier valve was open before the injection
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Fig. 18.12 Concentration development at the nozzle orifice after start of control pulse.
Comparison of steady carrier flow and electro-pneumatic (EP) valve switched carrier flow

process started. The same injection process with synchronised carrier valve opening
where the injection valve and the carrier valve were open at same time, has been
measured. The carrier flow was set at 0.02 l s−1. The detected difference in concen-
tration increase was in the early phase only (Fig. 18.12) and the difference in time
between the starting points of both processes for the concentration increase was less
than 31 ms. The response characteristic showed a faster concentration increase for
constant carrier flow in the first 250 ms after the start of the pulse.

The response time of the tested electro-pneumatic valve depended on the operat-
ing air pressure. Using an air pressure higher than 4.5 bar (lowest specified pressure)
the response of the system was fast and the concentration development was stable
in comparison to the injection in a constant carrier flow.

4 DIS Rinsing

Sprayers must be thoroughly cleaned inside and out after use. Pesticide residues
left on the outside of the sprayer can cause operator contamination. Residues on the
inside of the tank or left-over pesticides trapped inside the sprayer plumbing system
can contaminate the operator and possibly lead to crop damage. In some cases, only
a small amount of a pesticide remaining in the sprayer can cause significant crop
damage (Anonymous 2002a). Crop contamination can even occur several months
after a sprayer has been improperly cleaned.

Sprayers can also retain tremendous amounts of pesticide solution. Depending on
the size and design of the sprayer, the total tank mix retained in the sprayer ranged
from just under 10 l to over 46 l (Anonymous 2002b). The parts that retained the
chemical solution are the chemical induction bowl, booms, tank, and the pump and
its related piping.
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If a premixed solution is used as a carrier in DIS, the whole system has to be
cleaned like a conventional sprayer. If clean carrier is used, the premixed solution
contaminates only the space between the injection point and the nozzle orifice. This
small volume can be easily cleaned by spraying clean carrier. However, there are
pesticide supply lines contaminated by high concentrated pesticide on the DIS crop
sprayer. Because of relatively large volumes of concentrated chemicals inside the
system, the DIS has to be able to reuse the residues within the supply lines at a later
time. Thus, all residues have to be sucked back to the pesticide container before
rinsing the tubes. Highly concentrated residues inside the tubes can plug the system
and even small amounts can cause significant crop damage. Therefore an analysis of
rinsing of DIS supply lines is still required to define the requirements on cleaning.

5 Environmental and Operator Protection

One aim of the new DIS development is the reduction of environmental pollution
and limiting operator exposure to pesticides. Falber (1993) and Parrymann (1993)
reported that refillable containers were successfully used for crop protection prod-
ucts in the US and Canada. Landers (1999) proposed this technology as suitable
for the direct injection systems. However, transfer of this technology to Europe has
not been overly successful (Falber 1993). The combination of refillable containers
and a coupling system makes a positive contribution to on-farm health and safety as
follows:

• The container is returned to the supplier for cleaning and refilling, thus dan-
ger from on-farm rinsing and removal and the problem of container disposal is
eliminated.

• The safety neck in container disables any unauthorised access or farmer exposure.
• The lifetime of the package/coupling system should be up to 25 years and use of

bar coding or similar technology provides optimum container traceability.

6 Conclusions

The direct injection systems (DIS) for crop sprayers have been developed to enhance
operator safety and comfort and to improve application accuracy and flexibility.
DIS is required to improve application techniques in agriculture in the future. The
main parts of the DIS are the injection system, which creates the desired concentra-
tion of pesticides and the mixing chamber, which homogenises the pesticide-carrier
mixture.

The closer the injection point to the nozzle, the faster and more flexible the sys-
tem. However, higher complexity increases system costs. Central direct injection
systems are an alternative to common crop sprayers since these systems enhance
operator safety and comfort and decrease environmental side-effects. Systems
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injecting into the boom section or directly into the nozzle significantly enhance
system flexibility and enable site-specific application of pesticides. The real-
time controlled application is possible with well-designed direct nozzle injection
systems.
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Chapter 19
Delivery Optimization for Pesticides

Jürgen Langewald, Helmut Auweter, and Cedric Dieleman

Abstract In the past 15 years spray application technology developed at an
incredible pace. In this chapter we describe progress in areas independent of spray
equipment that can largely improve the efficacy of pesticide applications and reduce
risk to the environment and to human health. The efficacy of foliar application,
which is still the predominant pest control method, depends very much on the prop-
erties of spray formulations. Not only nozzle types but also formulation adjuvant
and solvents can help to optimize droplet size and properties. Encapsulation tech-
nologies are described that allow the control of release of active ingredient from a
spray formulation after application to the foliage. Pest organisms or diseases often
are not evenly distributed across a target crop. Diseased or infested plants can be
treated individually, while healthy plants are left untreated through trunk injection.
Finally target organisms, particularly insects can be lured to a treated area that is
several magnitudes smaller than the area protected, thus reducing the amount of
pesticide necessary for effective control.

1 Introduction

The objective of pesticide application is to deliver only those amounts of active
ingredients which are necessary to achieve the desired biological effect on the tar-
get organisms. Furthermore, economic control must be achieved, and risks to the
environment through for instance drift or run-off of plant protection agents must
be mitigated (Matthews 1992). Foliar application is still the predominant pesticide
application technology, because practical alternatives are often not available. On
the basis of data on the global crop protection- and seed treatment market, foliar
application can be estimated to cover more than 90% of the crop pesticide treatments
(Phillips McDougall 2009, AGROW Report 2006). However, in order for foliar
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sprays to reach the targets, surfaces several magnitudes larger than the target surface
need to be treated (Graham–Bryce 1977).

There are several causes why only small portions of the spray liquid might reach
the target and contribute to the biological effect. When, for example, the whole
area of a crop field is sprayed, many droplets may fall down in-between the foliage
(endodrift), especially in the inter-row spaces and may impinge on the soil. Droplets
which impact on foliage may also coalesce to such an extent that they cannot be
retained, and the surplus liquid may then drip down to lower leaves and thence to the
soil. Droplets drifting outside the target area (exodrift) are wasted and might have
negative effects on adjacent sensitive ecosystems. Pesticides collected on the target
may be washed off later by rain, in some cases even by overhead irrigation. Earlier
estimates have suggested that up to 80% of the total pesticides applied to plants
may eventually reach the soil (Courshee 1960). Although novel pesticide formula-
tions and current application technologies have improved the grade of application
accuracy considerably, there is still potential to further enhance the efficiency of
dose transfer to the target.

Generally speaking, the target of foliar pesticide applications is an area occupied
by an insect pest, by pathogens or by weeds. Optimizing a dose transfer in terms of
percent spray droplets reaching the target organism through improved spray equip-
ment can only be one aspect in optimizing transfer. From a biological point of view,
the active ingredients are aiming at molecular targets, at cellular level inside a target
organism (Ebert and Downer 2006).

In this chapter we describe examples for ways of improving pesticide applica-
tions by adjusting the properties of formulations of the still predominant foliar spray
technologies. The range of possibilities is large and multifaceted. On one hand, there
are formulation technologies available improving the uptake of active ingredients
and their distribution inside the target organism. Such technologies can be more
target-specific. Active ingredients can provide greater persistence when protected
from sunlight or wash-off through incorporation into the soil or into a bait material,
or when they are hidden inside a trap. At the same time, exposure of the environ-
ment, of operators or bystanders to the active compounds can be drastically reduced.
On the other hand, pesticides can be used much more efficiently when only a fraction
of a planted area needs to receive a dose of pesticide. Pesticides can be physically
placed with much more precision and closer to the target organism through tech-
nologies like seed treatment or target plant injections, or in the case of insect pest
control by taking advantage of insect behaviour.

2 Improving the Efficacy of Foliar Sprays of Herbicides,
Fungicides, and Insecticides

A successful modern pesticide formulation must provide ample environmental pro-
tection and precision delivery of the active ingredient to the target species. Among
the existing application methods, foliar sprays are one of the most challenging
application technologies available. Many factors – some formulation related – play
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an important role in determining whether the pesticide application will be success-
ful: (I) location of pests and/or diseases on the crop; (II) water volume and quality;
(III) tank-mix partners and adjuvants; (IV) spray equipment (nozzles, spray boom
and pattern); (V) weather conditions (sun, rain, wind). All these factors, when prop-
erly managed help maximize product coverage on the leaf resulting in enhanced
biological performance and reduced off-target effects.

Formulation can be used as a complementary tool to the machinery tools to min-
imize the impact of the factors mentioned above. Each formulation is composed of
a blend of one or more active ingredients and several inert materials. The composi-
tion is optimized for stability, biological activity, and application characteristics.
Specific additives are developed and incorporated into pesticide formulation to
reduce potential drift and to enhance the biological performance through maximiz-
ing leaf surface coverage while avoiding run-off and environmental contamination.
In addition, additives can reduce the speed of photodegradation of the active ingre-
dients and increase rainfastness for a better persistence of the active ingredient on
the leave surface.

2.1 Optimizing Chemical and Physical Properties of Spray
Formulations

The major objectives of optimizing the physical-chemical properties of spray for-
mulations are to minimize spray drift, to achieve good spray retention and foliar
coverage, and to optimize the uptake of active ingredient(s) into plant tissues. This
holds true for post-emergence herbicides, for curative fungicides, and for systemic
insecticides. Spray drift, spray retention and deposition are directly related to droplet
size. Unfortunately, the optimum size for reduced drift is not the same as for opti-
mal deposition. Large droplets (well above 100 μm in diameter) are desired for
reducing spray drift. However, large droplets have a high tendency to bounce off
leaves at first contact, reducing product deposition. Small droplets are desired for
high adhesion on leave surfaces, for extensive leaf coverage and for good bio-
logical performance, but are carried away by the wind more easily. Optimizing
physical-chemical properties of spray formulations carefully will circumvent these
problems.

First, the process of droplet formation at the spray nozzle outlet has to be con-
sidered. The atomization process is primarily controlled by the nozzle type. There
are drift-reducing air induction nozzles producing coarse droplets, which are able to
reduce spray drift by 99%. However, surface-active additives will also have some
effect on droplet formation. Hydrophilic surfactants may decrease droplet size,
whereas properly chosen polymers and lipophilic surfactants may increase droplet
size.

Large, drift-reducing droplets have a high kinetic energy which either leads to
quasi-elastic bouncing off the leaves or to splashing. The challenge is to modify
the physical-chemical properties of the large droplets such that they stick to the
leaves. Further, the surface tension must be adjusted to the leaf surface properties
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of a specific crop to allow perfect wetting and spreading. The desired formulation
properties are obtained by using additives that lower the surface tension during
the very short moment of impact (few milliseconds). The dissipation of excess
kinetic energy of large droplets is best achieved by applying combinations of surfac-
tants and oils or solvents, or by applying functional polymers which work through
transient viscosity effects caused by polymer entanglement (Bergeron 2003).

Finally, uptake of active ingredients into leaves can be enhanced by lipophilic
adjuvants. These “accelerator” molecules increase the permeability of active ingre-
dients into the plant cuticle. Recent investigations have shown that the mechanism
of uptake enhancement by accelerator molecules is due to a plasticizing effect of
the plant cuticle (Schreiber and Schönherr 2009). Thus recent advances in formula-
tion optimization by means of well-designed adjuvants and polymers can overcome
contradictory requirements for spray droplet size distributions, leading to highly
targeted and superior performing pesticide formulations.

2.2 Encapsulation and Controlled Release Technologies

Encapsulation is an effective way of combining one or several active substances
in a capsule and controlling the release of the contents until they are required.
Although there are standard types of encapsulation technologies available, it
remains a challenge to develop an encapsulation solution for specific products
and/or applications.

Many factors are prohibiting the development of such capsules: active ingre-
dient’s physical and chemical properties, application method, or target selectivity.
The main drivers for encapsulation technologies are: protection of active ingredi-
ent from environmental degradation, extended activity, reduced toxicity, reduced
phytotoxicity, and reduced leaching and persistence in the environment.

The controlled release of an active ingredient can be successfully achieved by
using different capsule systems, like a polymer shell or polymer matrix (cage)
functioning as a reservoir for the active ingredient (Fig. 19.1).

The release of active ingredient into the environment can be characterized as
follows:

• Slow or fast release; the capsule releases its content over a defined period of time
• Quick release; the capsule shell breaks upon dilution or contact with a surface

a b

Fig. 19.1 Types of
encapsulation for the
formulation of active
ingredients of pesticides.
Core shell encasing active
compound (a). Polymer
matrix or cage with absorbed
active compound (b)
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• Moisture release: the capsule is designed to break down and releases its contents
in the presence of water

• Heat-release: the shell releases ingredients only when the environment warms
above a certain temperature

• pH release: the capsule breaks up only in a specific acid or alkaline environment
• Release due to degradation of the film (biological or chemically assisted degra-

dation).

The release properties can be controlled through adjustments like the crystallinity
of the active ingredient, the polymer cross-linking properties, by using fillers and
different solvents or oils. Physical properties like the capsules size, wall thickness
can be adjusted. Finally, multiple capsule layers with different properties may be
combined. Capsule sizes usually range from 2 to 10 μm; nanocapsules are smaller
(200–800 nm).

Through encapsulation, unstable active ingredients can be formulated into stable
formulations. In addition, two or more actives can be combined inside a polymer
case and even delivered to the plant at different times to provide greater protection
against a broad spectrum of pests or diseases.

A number of technologies exist to make capsules, but the main method used is
to emulsify the active ingredients in water, either alone or together with oil or an
organic solvent which is immiscible in water. A capsule is then made around the
droplets of the emulsion by using specific monomers which react and bind together
to form a polymer wall. By doing this the active ingredient is contained within an
oil droplet surrounded by a polymer shell or cage.

Encapsulation technology is an essential part of the toolbox available to the
farmer in order to reduce the environmental impact of pesticides, but also in ensur-
ing that the active ingredient is delivered safely and consistently to the crop or pests
that it is targeting.

2.3 Moving Closer to the Target: Plant Injections

Trunk injection is a technology, whose efficacy is gained through applying products
closer to the target. Systemic herbicides, fungicides or insecticides and also liquid
fertilizers can be applied this way. Regardless of the treatment application, the pes-
ticide is dispersed through the tree’s vascular system. For the pesticide to become
systemically active, access to the xylem needs to be provided through drilling or
cutting a hole into the sap wood of a tree trunk and applying pesticide concentrate
into the cavity. Obviously, such application methods require target plants of a certain
size.

In Malaysia, a very simple method is used for injecting fertilizer into oil palm
(Elaeis guineensis) trees. A power drill is used to drill a hole into the palm tree trunk.
Then a PVC tube is inserted and liquid fertilizer applied into the tube using a knap
sack sprayer. Other types of macro-injections are usually fed from one common
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product holding container and a system of tubing with injector ends that are attached
at intervals around the tree. Some methods of macro-injection require excavation at
the trunk-soil interface to expose roots allowing access to this preferred injection
site. Macro-injection is defined by the hole diameter being greater than 1.5 cm.
Required application volumes can reach several litres.

More sophisticated micro-injection makes use of individual pre-measured dosage
capsules, normally spaced at 15 cm intervals around a tree trunk. These capsules are
inserted into drilled holes smaller than 1.5 cm diameter and contain less than 10 ml
of formulated pesticide.

Pesticides can be injected into trunks under pressure. Low pressure systems are
operating with less than 0.5 bar. Chemjet R© Injector (Chemjet R© Trading Pty Ltd,
Bongaree Qld, Australia) works like a syringe the chemical is drawn into the cham-
ber of the injector in 10, 15 or 20 ml quantities. In most cases there is just enough
pressure to drain the container. The speed of uptake by the tree depends on soil mois-
ture, temperature, wind speed, time of year, and tree species. High pressure is typical
of macro-injected methods. Large volumes of formulation are moved into a tree very
quickly (Arborjet VIPER, Arborjet Revolutionary Plant Health Solution, Woburn
MA, USA). Some devices are a combination of a power drill and an injection pump
(Sidewinder R©, Sidewinder Pty Ltd, Noosaville, Australia).

The choice of equipment will depend upon an individual tree species, size, loca-
tion, and specific problem. With all of the various injection methodologies available
today, there are now products available for just about any insect, disease or mineral
problem encountered in trees (Shaw and Cortese 2005).

In case of herbicide applications however, also smaller plants like invasive non-
native Japanese knotweed (Fallopia japonica), giant hogweed (Heracleum man-
tegazzianum), Canada thistle (Cirsium arvense) or Himalayan balsam (Impatiens
glandulifera) can be controlled using herbicidal stem injections. The stem injection
system delivers a given dose of concentrate herbicide into the centre of the plant.
The weed will also absorb the concentrate into its rhizome at a much faster rate than
with foliar spraying, providing faster control than foliar sprays. Hypo-Hatchet R©
Tree Injector (Forestry Suppliers Inc., Jackson, MS, USA) is a modified hatch with
a blade that fuels 1–2 ml of any amine herbicide into a wound of a tree applied
through its use. It can be used to control trees with a diameter greater than 15 cm.
In the southern US, Hypo-Hatchet is used to remove unwanted hardwood trees like
red maple, white oak, hickory and common privet form pine plantations (Kossuth
et al. 1980).

For the application of fungicides and insecticides tree injections have to be car-
ried out more carefully, since the aim of the application is to protect the plant. The
hole drilled into the trunk usually needs to be sealed carefully with a fungicidal
material to prevent infection of the wound by plant pathogens.

Elms can be protected from Dutch elm disease by routine, preventive fungicide
injections. This technique is more effective than therapeutic injection. Several dif-
ferent injection methods are currently being used. The most widely used method
involves injecting a fungicide diluted in water (20–150 l). For prevention of Dutch
elm disease, shallow-pit injection under pressure of fungicide is superior to other
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methods because it selectively injects the fungicide into the tissue layer attacked by
the fungus. In contrast, conventional injections, commonly 10 cm deep, place much
of the fluid into non-conducting xylem (Holmes 1982). Annual injections in June
protected against infections for the duration of the year, as well as infections during
spring of the following year (Rhairl and Ellmore 1984).

Fungicide injections can also be applied for treatment like sudden oak
death (Phytophthora ramorum) in oaks (Quercus spp.) and tanoaks (Lithocarpus
densiflorus). Two application methods are currently available. Injections use usu-
ally about 10–80 ml, to treat a tree. In northern California two applications per year
are recommended, one treatment in November or December and a second treatment
6 months later. As for Duch elm disease, preventative treatments, before infection,
are more effective than curative treatments. At least 4 weeks are necessary for the
applied chemical to take full effect (Garbelotto et al. 2007).

The Asian longhorned beetle Anoplophora glabripennis (Motschulsky) is subject
of a high-profile USDA eradication program since 2001. This pest is very common
in maple, elm and ash trees. It tunnels through tree stems and branches, causing
dieback and eventually death. In spring 2008, the US Department of Agriculture’s
Animal and Plant Health Inspection Service (USDA-APHIS) treated 77,688 trees
susceptible to the beetle with insecticide in New York and New Jersey. This pest is
potentially one of the most destructive and costly invasive species to enter the United
States. Removal and destruction of infested host trees are expensive. Therefore, in
addition to cutting and removal of infested trees, the Asian longhorned beetle coop-
erative eradication program also employs chemical methods such as tree injections.
Such treatments are part of an effort to prevent further infestation of this invasive
insect and reduce beetle populations (USDA-APHIS 2008).

The emerald ash borer Agrilus planipennis (Fairmaire) is a pest in ash trees
(Fraxinus spp.). It has probably arrived in the United States through commercial
trade, in much the same way as the Asian longhorned beetle. This pest has already
wiped out millions of trees since its discovery in Michigan in 2002. Infestations
have spread to parts of Ohio, Indiana, Illinois, Maryland and Pennsylvania, creat-
ing widespread devastation throughout parks and entire neighbourhoods. Similar
control methods to those of the Asian longhorned beetle program are effective at
preventing new infestations from wood products imported from China. They should
be similarly effective against the emerald ash borer. Field tests conducted in China
indicate that the chemical treatments including tree injections are suitable for cost-
effective control of the beetle in the United States. USDA-APHIS proposed an
emergency eradication program in the lower Michigan peninsula (Cappaert et al.
2005).

Another exotic forest pest originating from Japan, the hemlock woolly adelgid
Adelges tsugae (Annand) was first discovered in western North America in 1924.
This pest killed hemlocks from New England to Georgia, in the Appalachians, and
in urban areas as well. Adelgid feeding disrupts the normal flow of fluids in trees.
Twigs and branches die quickly, and trees can die in as little as 2 years. This insect
pest attacks both eastern (Canadian) and Carolina hemlock. Hemlock woolly adel-
gid is now established from north-eastern Georgia to south-eastern Maine and as
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far west as eastern Kentucky and Tennessee. Microinjection of insecticide shows
promise in reducing hemlock woolly adelgid population densities in affected trees
(Doccola et al. 2005).

Approximately 10 years ago, in parts of Europe the leafminer Cameraria
ohridella Deschka and Dimic (Lepidoptera: Gracillariidae) became established in
the horse chestnut trees. Single systemic tree injection treatments with neonicotinic
insecticides during May, immediately after blossom, are an effective control tool.
The number of mines on the treated plants decreases significantly. Generally, the
infestation can be reduced by up to 80% (Ferracini and Alma 2008).

2.4 Turning the Tables: Luring Targets Toward the Site
of Application

Unlike plants and plant pathogens, insects can actively move within their environ-
ment. In addition, sensory organs allow insects to carry out targeted movements in
response to acoustical, visual, or chemical signals. In other terms, insect behaviour
can be manipulated using traps or baits, luring the pest organism towards a device
that renders it innocuous. Trapping and baiting can reduce the amount of pesticide
applied per hectare by several orders of magnitude and reduce environmental and
bystander exposure, particularly if the active ingredient is enclosed into a little con-
tainer. Depending on the specificity of the attractive stimulus provided, traps can
be highly species-specific devices, reducing non-target effects to a minimum. Mass
trapping has high potential for the suppression or eradication of low-density, iso-
lated pest populations (El-Sayed et al. 2006). In many cases lures or traps might not
be efficient enough to control insect pest populations, though they can be used as
population monitoring devices, allowing a more efficient use of insecticide.

Acoustic signals, particularly mating calls, are common means of communica-
tion between conspecific insects. It was, for instance, demonstrated that female
Mediterranean fruit flies were attracted to sites near speakers emitting male fruit fly
calling song and synthetic sound more than to sites without sound (Mizrach et al.
2005).

Visual stimuli are more commonly used for insect control. Female tsetse fly
(Glossina spp.) is a vector of the sleeping disease in cattle and humans. Its host
finding is influenced by visual keys like shape, orientation, brightness, contrast
movement and colour. Biconical black insecticide coated traps have been devel-
oped for tsetse fly control (Colvin and Gibson 1992). But the addition of chemical
stimuli like acetone and CO2, increases the attractiveness of such traps significantly
(Vale et al. 1988).

Yellow sticky traps are a popular tool for integrated pest management of green-
house pests like Trialeurodes vaporariorum Westwood (Gillespie and Quiring
1987). They are particularly popular for the control of different species of
Tephritidae (fruit flies) in non-commercial small holder orchards. The visual sig-
nal, however, is usually not sufficient for fruit fly control and needs to be combined
with chemical attractants (Foster and Harris 1997). In addition, yellow sticky traps
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can be more attractive for beneficials than for the target fruit fly species, causing
more harm than benefit (Neuenschwander 1982).

Mediterranean fruit fly (Ceratitis capitata Wiedemann) is the most serious
Tephritid pest. Many trapping and baiting methods have been developed for its con-
trol or monitoring. Mediterranean fruit flies are attracted by visual and chemical
stimuli. Yellow reflecting between 500 and 580 nm is highly attractive. International
Pheromone McPhail plastic traps combine the colour yellow with the shape of a
fruit. In addition, chemical stimuli are needed for trapping programs to become
sufficiently effective for fruit fly control. The female fruit fly requires a source of
protein for the maturation of her eggs (Gazit et al. 1998).

In the past, most trapping systems made use of fermenting sugars and protein
hydrolysates. Recently it was demonstrated that McPhail traps in combination with
dry food based synthetic lures based on ammonium acetate, putrescine and trimethy-
lamine, are very efficient (Epsky et al. 1999). While food based lures are attractive
to both, female and male fruit flies, baited, male-targeted trapping systems are often
preferred because they are more C. capitata specific and attract flies over a greater
distance. These baits may contain trimedlure or ceralure parapheromone (synthetic
compounds, closely related to the natural pheromones) (Jang et al. 2001). A close
relative of the Mediterranean fruit fly, the olive fly Bactrocera oleae (Gmelin) can
be controlled using a very similar system, based on the female sex pheromone
(1,7-dioxaspiro[5.5]undecane; Speranza et al. 2004).

More efficient and less expensive than mass trapping are spot sprays with a foliar
bait combining a source of protein and sugar with an insecticide attractive for male
and female flies. The bait is usually applied in the morning hours as a spot applica-
tion in the middle of the trees. Many serious infestations of Mediterranean fruit fly
were eradicated successfully in the Southern US, using bait spray mixtures applied
by ground and/or air (Burns et al. 2001).

Most semiochemical (compounds playing a role in chemical communication)
based attract and kill approaches are based on purely chemical stimuli, involving
the combination of a semiochemical’s lure with an insecticidal effector (Howse
et al., 1998). Examples for the application of such baiting strategies are numer-
ous, particularly in the non-crop area for instance in ant control (Silverman and
Brightwell 2008) and in the control of cockroaches (Appel and Smith 2002). Outside
the non-crop area, semiochemicals are popular in pest control in orchards. In addi-
tion to the Mediterranean and the olive fruit fly, “attract and kill” systems based on
female sex pheromones have also been developed for codling moth control (Cydia
pomonella L.; Charmillot et al. 2000).

Malaria control with insecticide treated bed nets can be regarded as “attract and
kill” technology, too. In this particular case, the “bait” and the “organism to be pro-
tected”, a person sleeping under the bed net, are identical. The bed net concept can
be considered as a mass trapping strategy and coverage of a high percentage of
members of malaria-endemic communities is necessary to provide effective protec-
tion from malaria infections (Curtis et al. 2006). Especially long-lasting bed nets in
which insecticide is incorporated into the net fibres provide a simple but effective
means of preventing malaria (Greenwood et al. 2005).
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3 Conclusions

In this book chapter we presented only a small number of examples of how pesticide
applications can be optimized to strongly reduce environmental and health risk
exposure through means that are independent of spray application technology.
Technologies which were not covered here like seed treatments or drip application
of fungicides and insecticides are well described elsewhere (Biddle 2009; Lamm
et al. 2006). We hope this digression from the main focus of the present book might
help to develop a holistic view on pesticide application.
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Chapter 20
Autonomous Systems for Plant Protection

Hans W. Griepentrog, Arno Ruckelshausen, Rasmus N. Jørgensen,
and Ivar Lund

Abstract Advances in automation are demanded by the market mainly as a
response to high labor costs. Robotic outdoor systems are ready to allow not only
economically viable operations but also increased efficiency in agriculture, horti-
culture and forestry. The aim of this chapter is to give examples of autonomous
operations related to crop protection probably commercially available in the near
future. Scouting and monitoring together with the efficient application of chemi-
cals or mechanical treatments are operations which can be successful automated.
Drawbacks are that current systems are lacking robust and safe behaviors. In gen-
eral the potential of saving e.g. of herbicides are huge when high precision targeting
based on individual weed plant detections is used.

1 Introduction

In industrialized countries advances in automation are demanded by the market
mainly as a response to high labor costs. Developments in hardware and software
systems are ready to be modified and implemented in robotic outdoor systems to
allow not only economically viable operations but also increased efficiency in agri-
culture, horticulture and forestry. Furthermore, negative impacts on the environment
will be reduced and a higher quality of products will be achieved by more effective
and efficient use of management inputs. Due to minimized exposure time of humans
to dust, noise and pesticide the working conditions will improve and reduce health
risks.
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Unmanned, supervised, small machines in semi-public agricultural or horticul-
tural areas will be common in the foreseeable future. The considerable complexity
of semi-natural outdoor environments found in agriculture and horticulture and
of the mobile robot itself, result in substantial challenges to achieve acceptable
performance under unmanned and/or unattended operation.

A mobile robot operating in semi-natural environments like fields, orchards
or plantations must cope with a high degree of diversity. The machine must be
‘aware’ of its close environment to carry out operations efficiently and also to
avoid collisions with other objects that could damage the machine and other objects
(infrastructure, plants, humans and animals). To meet these performance goals auto-
mated perception capabilities are required, and the robot must react promptly and
appropriately when unexpected objects are detected or when faults of various sever-
ity do occur. A main direction of outdoor robot research is on the development
of agent-based architectures suitable for unmanned, possibly unattended, but still
supervised systems (Granot 2002).

A number of highly automated machine prototypes exist for outdoor applications
mainly at research institutions (Garcia-Alegre et al. 2001, Aastrand and Baerveldt
2002, Pilarski et al. 2002, Zeitzew 2007, Sorensen et al. 2007, van Evert et al. 2007,
Griepentrog and Blackmore 2007).

The aim of this chapter is to give examples of autonomous operations related to
crop protection which are having these or similar features probably commercially
available in the near future. The described machines can be categorized as mobile
outdoor robots. Other terms are synonymously used as e.g. autonomous operations,
automatic vehicles or unmanned machines.

2 Scouting and Monitoring

2.1 Requirements and State-of-the-Art

Timely and accurate information about the growing crop is a requirement for opti-
mizing crop management. The availability of quantified data is often expensive due
to labor intensity of sampling efforts. Scouting robots promise to be less expensive
and timelier. An automated system carrying advanced sensors could continuously
monitor the crop canopy for later crop status analysis. Due to the task complexity
so far no field scouting robot platform is commercially available.

Much effort in mobile robotics has already been focused on Simultaneous
Localisation And Mapping (SLAM) of objects, used when a mobile robot collects
perceptual information and constructs or updates a local map while navigating.

Advanced actuator-based robots for particular operations have the highest con-
trol complexity and expect to have lowest reliability and robustness. This has led
to early visions for first applications of robots in agriculture in terms of scouting
and monitoring. The concept is already more than 25 years old (Krutz 1984). Geo-
referenced data from scouting roots can be used for vehicle navigation purposes
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(SLAM), but also for optimizing crop management and for decreasing sampling
costs for further data logging. Due to progress in Information and Communication
Technologies (ICT) the idea of a robotic field scout has recently been implemented
in future concepts of agricultural mechanization (Blackmore et al. 2007, Grift et al.
2008).

Especially when Precision Farming principles shall be considered spatial and
temporal monitoring is necessary for minimizing negative environmental impacts
and increasing economic returns.

The main tasks for a scouting robot are:

• Exploring terrain: Logging and mapping of data of an unknown field as boundary,
elevation, topography, soil properties, crop and non-crop plant occurrence, plant
density and structure

• Targeted sampling: Monitoring crop growth status and stress at predefined loca-
tions during field experiments for breeding purposes (plant phenotyping) as crop
characteristics, leaf area index (LAI), crop height, growth stage, biomass, crop
nutrient status, weeds, diseases, pests etc.

A field scouting mission focuses on sensing and data logging including some
basic data analysis. The mechanical design of a vehicle is mainly defined by
its application. For example if the height of crop plants should be measured,
the clearance of the robot could be adaptable during the growth stages. In a
field scout typically several sensors for robot navigation as well as for moni-
toring of agro-information from plants, soil and environment are implemented.
Moreover, positioning information from GPS or landmarks and further a-priori
information such as crop row width can support the navigation and monitoring
operation.

First experimental platforms for monitoring use image processing as major
sensor information. Examples are the vision-based detection of potato in corn
crops using a low-cost robotic platform (Van Evert et al. 2007) or the location of
crops and weeds using a camera and GPS for geo-referencing (Bak and Jakobsen
2004). Astand and Baerveldt (2002) as well as Klose et al. (2008) have combined
crop/weed detection with the direct control of an implemented weed control actua-
tor. Sensor fusion based on a Camcorder, GPS and laser scanner has been applied
to measure growth stages in crop rows (Nagasaka et al. 2004). Iidia et al (2008)
have developed a hexapod robot with an implemented gas sensor for detecting CO2
sources in agricultural fields.

System architecture, sensor and data fusion algorithms as well as data handling
are important aspects for the development of a field scout. For the robot naviga-
tion real-time information has to be supplied, while for the monitoring information
a complete and traceable storage of a large amount of data has the priority. These
aspects are relevant for the concept of the system architecture, data handling pro-
cesses and interpretation of measurement data (Mitchell 2007, Siciliano and Khatib
2008, Noack et al. 2006, Jorgensen et al. 2007b).
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2.2 The Scouting Robot ‘BoniRob’

In order to be able to support breeding processes the characterization of the crop
status at different growth stages is a target parameter. As compared to the state-of-
the-art phenotyping of plants based on sampling methods in field trials (Thomas
2006), a crop scout would be a fundamental step towards an automatic data
generation for all individual plants (Ruckelshausen 2007, Jorgensen et al. 2007b).

The interdisciplinary project BoniRob (Ruckelshausen et al. 2009) is focusing
on the development of an autonomous field scout for plant phenotyping of maize
(Zea mays) in growth stages based on the Extended BBCH scale as described by
Meier and Bleiholder (2007). Plant parameters are the crop density, spacing, height,
steam thickness, spectral reflection (VIS/NIR), ground coverage or biomass. The
plant characterization concept is based on a multisensory concept for intra-row
crop/weed detection in maize fields (Ruckelshausen et al. 1999) with improved
sensor technologies (CCD imaging, VIS/NIR spectral imaging, 3D time-of-flight
cameras, light curtains and distance sensors). The internal system documentation
(control units, sensors, documentation, user interface) is based on Ethernet and thus
allows a real-time implementation at high data rates. Sensor data for the navigation
are necessarily treated in real-time, some other data are less time critical and are
stored for off-line plant phenotyping.

In order to correlate the data of different growth stages to each individual plant a
high-resolution RTK-DGPS system is used. The accuracy of such systems is higher
as compared to the distance of two maize plants (Fender et al. 2006, Griepentrog
et al. 2005), as a consequence each individual plant can be labeled and redetected
during measurements at different growth stages.

Due to the combination of partners from agricultural and electronic companies,
research institutes and plant breeders the goal of the BoniRob-project is the devel-
opment of a robust system, which will offer options for other applications and robot
swarm concepts. The prototype is shown in Fig. 20.1. The robot allows various
movement options, such as turning, changing height or 2- and 4-row movement, a

Fig. 20.1 Autonomous
monitoring and scouting
robot (BoniRob)
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safety concept is included. The navigation is based on methods of the probabilistic
robotics (Thrun et al. 2005), taking into account the uncertainties that arise from the
application. SLAM uses measured data to ensure correct navigation. As for example
positions of maize plants, edges of fields or curvatures of rows can be used for ori-
entation. The real robot as well as the sensor characteristics are implemented in the
3D simulator “Gazebo” to test the robot behavior prior to field tests and to perform
hardware-in-the-loop tests.

3 Application of Herbicides

3.1 Requirements and State-of-the-Art

Plant protection is essential for preventing a decline in yields, because of pests,
diseases and weeds. Unfortunately the present methods of application of pesticides
are always associated with some soil surface losses and spray drift, which may cause
pollution of surface- and groundwater, contamination of non-target organisms as
well as human hazards.

The most common pesticide application method is the boom sprayer equipped
with nozzles each 50 cm. This technology has been optimized during the years
and after the introduction of precision farming in the beginning of the 1990s, the
sprayer was equipped with computerized variable dose technology for site-specific
weed control and several research projects have shown the potential reduction of
herbicides by spatially adjusted application to the local need for weed control
(Christensen et al. 2003, Gerhards and Oebel 2006).

The aim of the following subchapters is to describe different autonomous tech-
nologies used in connection with site-specific application of herbicides and to
describe a real-time sensor based system for detection and application of areas con-
taining weed plants only. The objectives are to reduce the herbicide usage as well as
the contamination of the surrounding environment.

Several researchers have developed site-specific weed control technologies with
different spatial resolution within the field. A review on site-specific weed control
technologies is described by Christensen et al. (2009). Research has been conducted
in sprayer technology for treatment of weed patches or subfields with clusters of
weed plants. Most of the sprayers operate spatially by selective control of small
sections of the spray boom. Herbicide dosages are mostly regulated by the pres-
sure in the hydraulic system and standard nozzles. The patch sprayer developed by
Gerhards and Oebel (2006) had three separate tanks, with one or more herbicides,
three delivery lines and a control system that applies the herbicide and dosage appli-
cable for the three treatment categories. The sprayer had a 21 m boom divided into
seven 3.0 m sections that are controlled separately.

Another category of precision sprayers is also reported by Christensen et al.
(2009) which is the direct injection sprayers that can apply different herbicides
and dosage, e.g. using maps of weed species occurrence to control a series of
nozzles, a boom section or the whole boom. Several companies have developed
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direct injection systems that inject concentrated pesticide solutions into a water
stream. Injection pumps have mostly been placed in front of the carrier pump.
Consequently, a reaction time of several seconds was required until the pesti-
cide mixture reached the nozzles. Currently, sprayer injection systems that apply
concentrated pesticide solutions directly into the nozzles of the sprayer are being
investigated.

Lee et al. (1999) developed a real-time robotic weed control system designed for
spraying intra-row weeds; the objective of the system is to apply herbicides only to
the weed plants without spraying the crop plant or the soil. This precision spraying
system has been used in field experiments with an application rate of 37.0 μL liquid
spray mixture per spray cell of 0.65 × 1.25 cm. The biological performance of a
micro-dosing system was evaluated by Giles et al. (2004). The system was evalu-
ated for the control of weeds growing between tomato plants, using a non-selective
herbicide at 0.25, 0.375, and 0.5% concentrations of active ingredient (glyphosate)
in the spray solution. Polymer added to the spray solution gave sufficient micro-drift
control, thus limiting crop damage.

Sogaard and Lund (2007) describe a prototype micro-dosing system, consisting
of a micro boom with a linear array of 20 evenly spaced pieces of tubing cover-
ing a 100-mm wide treatment swath at a right angle to the travel direction. The
tubes producing the jets were 250 mm long with an inner diameter of 0.5 mm; they
were individually controlled by 12 V DC solenoid valves. The volume of the jet
emitted from the tubing was 2.5 μL at a pressure of 40 kPa using a 10-ms pulse
duration.

The biological efficacy of the application of glyphosate droplets to single
seedlings (Solanum nigrum) has been studied by Graglia (2004). Doses in the
range of 0.125–1.0 μg per plant were tested, and it was found that by apply-
ing 0.8 μg or 1.0 μg per plant efficacies of 94% or 95%, respectively, could be
achieved.

Drop on demand (DOD) inkjet printers was used to apply very low volume
(smaller than 1 μL) of glyphosate to weed plants (Mathiassen et al. 2008).

3.2 The Plant Nursing Robot with Cell Sprayer (HortiBot)

The HortiBot is an autonomous vehicle developed for the use in agriculture
(Jørgensen et al. 2007a) (Fig. 20.2). It is equipped with a commercial downward-
looking camera from Agrocom Vision, which enables it to navigate using visible
rows in the field. In areas with no rows the robot is positioned by use of a real-time
kinematic (RTK) global positioning system (GPS). The HortiBot is a lightweight
four-wheeled robot and it is based on a modified framework of a commercial
available remote-controlled slope mower called “Spider ILD01”.

The use of a vision-based row guidance system and RTK-GPS ensures that the
robot covers the whole field very accurate, which means that it is possible to work
with implements for precision field application, like e.g. a cell sprayer.
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Fig. 20.2 Autonomous application of herbicides (HortiBot with Cell Sprayer)

A cell sprayer is a vision-based spraying system for field crops, which only
sprays in areas (cells) in the field where weeds are detected. All other areas without
weed plants are not sprayed at all.

Application of cells detected with weeds only will also reduce the contamination
of the soil surface. Jensen et al. (2003) has quantified the soil surface loss for broad-
cast spraying in different arable crops. They measured a soil surface loss of 66% in
cereals and up to 99% in sugar beet.

The cell sprayer system is described by Lund et al. (2008). It has a set of video
cameras in a vision system which takes images of the soil surface immediately in
front of the spraying boom. The images are analyzed for the occurrence of weeds.
When one or more weeds are found in the image, the information about their
location is saved.

The image is divided into rectangular units (cells) of 30 mm in the driving direc-
tion and 107 mm at a right angle to the driving direction. Since the cameras are
fixed in relation to the spraying boom, the cells are placed so that the nozzles – with
a certain time lapse – pass over the middle of each cell.

The cameras are placed at a height above the soil so that the images include six
cell strips in the driving direction and where each strip contains seven cells at right
angles to the driving direction. Each image is thus divided in 6 times 7 = 42 cells,
which are analyzed individually.

If weeds are detected, then the cell in question is marked for later spraying. On
the basis of this information a small spraying map is prepared. This information
is used to control an on/off cell sprayer system consisting of separate nozzles for
each corresponding cells in the spraying map. It means that cells containing weed
plants will be sprayed with the same precision and dosage as if it was applied by
conventional uniform application methods.
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4 Autonomous Mechanical Weeding

4.1 Requirements and State-of-the-Art

Hoeing of weeds in row crops is one of oldest, highly matured and most com-
mon non-chemical weeding operation. According to Laber (1999) its weed control
principle can be defined as:

• Operational: Soil engaged treatment (tillage) between crop rows
• Physical: Soil coverage of weeds, weed root/stem cutting and uprooting of weeds

(whole plant or partly)
• Physiological: Reduction of photosynthesis and reduction of water transpiration

The first hoes were horse pulled and the ones today are tractor mounted or still
tractor pulled. Currently often a second operator is controlling the hoe laterally by
hand and based on operator’s vision. Tines or rotating discs (rotary hoes) are fixed
to a frame and penetrate the upper crust of the soil. The treatment is effective on dry,
compact soil and a stable working depth is maintained by ground wheels.

As for most mechanical weeding operations crop plant losses always occur, espe-
cially when high weed control efficiencies are aimed at. Crop losses result from
soil coverage, crop leaf damage, root damage and disturbance. The standard hoe
setting for the untreated crop row strips is 10 cm which gives approximately a max-
imum of 80% area treatment e.g. in sugar beet. A conflict of aims appears between
(I) maximizing treated area to increase weeding efficiency, and (II) minimizing crop
losses by keeping a sufficient distance to crop rows. Therefore the adjustment of the
hoe unit working width becomes an important factor for achieving an acceptable
cultivation result.

Several developments and investigations have been done to automate the lateral
control of hoes (Tillett 1991, Home 2003). Today the most promising automation
principles are based on GPS (Van Zuydam et al. 1995; Dijksterhuis et al. 1998) and
computer vision (Tillett et al. 2002, Sogaard and Olsen 2003, Astrand and Baerveldt
2005). A fusion of both is seen today as the most promising strategy, because advan-
tages and disadvantages of absolute and relative referencing principles compensate
each other (Pilarski 2002, Downey et al. 2003).

4.2 The Autonomous Mechanisation System (AMS)

An autonomous tractor was used to operate the inter-row hoe (Fig. 20.3). The 20 kW
tractor (Hakotrac 3000) was retrofitted with an RTK-GPS (Trimble MS750) and a
controller system for navigation. The tractor navigation controller was designed to
follow a predetermined route plan accurately and repeatable e.g. across a field with
planned action points for implement control (Blackmore et al. 2004).
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Fig. 20.3 Autonomous inter-row hoeing (AMS with inter-row hoe)

A conventional inter-row hoe was used (Baertschi-Fobro, Switzerland) consisting
of five units to treat four crop rows. The hoe units including toolbar are light to be
operational for a small autonomous tractor.

An electro-hydraulic side-shift system was used to center the hoe units between
the rows and parallel to the crop rows with a minimum of lateral deviations (cross
track error). Furthermore, the idea was to keep the side-shift somehow independent
from the motion behavior of the pulling tractor. The side-shift controller was config-
ured to keep the GPS antenna of the hoe on the same planned route as the automatic
tractor was using for its navigation. This setup enables a somehow independency of
the implement from the pulling tractor.

The lateral control of the inter-row hoe was based on an RTKGPS (Trimble
MS750) and a dual axis tilt sensor (Applied Geomechanics, MD900). The GPS was
connected to a local reference station via an FM radio modem (Satel 3ASd). The
GPS antenna was mounted at a height of 1.3 m in the middle of the second tool-
bar and functioned as a closed-loop feedback for keeping the hoe on the planned
route.

The weeding cultivation has to be planned prior to the operation. The route way
points can be generated from geo-referenced seed positions. The geo-referenced
seed positions are determined from the seeding operation of the cultivated crop
plants by logging and processing GPS and seeder attitude data (Griepentrog et al.
2005).

Field experiments were conducted to assess the operational performance of the
system. The cross track errors were characterized by values of the bias (mean devi-
ation) and the variability (standard deviation). The range of the mean values altered
quite low between – 0.016 and 0.011 m. Home (2003) analyzed the cross track errors
for different row guidance systems as with a tractor driver, a second operator and
a computer vision system. The investigations included no GPS system. The author
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observed a similar small range of the bias (– 0.017 m and 0.009 m). The range of
the standard deviations altered between 0.009 and 0.028 m for the inter-row hoe
(ground measurements). Home (2003) published a range for the standard deviation
of 0.009–0.022 m for a tractor driver, a second operator and a computer vision sys-
tem. The best results were obtained by using a computer vision system as a row
guidance (0.009 m).

The treated or hoed surface areas were determined based on the analysis of the
cross track errors acquired from the field experiments. Small standard deviations of
the track errors resulted in wider width of the hoeing units and in high effected field
surface areas. The hoe system enables hoeing up to 83% of a field surface area with
a speed of 2 km h−1 and up to 79% by driving with 4.3 km h−1.

The row guidance method based on a GPS system showed its potential to be
used for high accurate crop row guidance e.g. with an inter-row hoe. The mean as
well as the standard deviations of the cross track errors were comparable with other
row guidance systems as traditional tractor mounted and computer vision systems.
Due to its high level of automation the unmanned system is regarded as having high
potential in saving labor costs while achieving also high levels of working quality
and weed control efficiency.

5 Conclusions

In the near future in industrialized countries outdoor robots allow not only econom-
ically viable operations but also increased operational efficiencies. Drawbacks are
that current systems are lacking robust and safe behaviors. In general the potential
of saving e.g. herbicides is huge when high precision targeting based on individual
weed plant detections is used. Furthermore, negative impacts on the environment
will be reduced and a higher quality of products will be achieved by more effective
and efficient use of management inputs. Due to minimized exposure time of humans
to dust, noise and pesticides the working conditions will improve and reduce health
risks.
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Chapter 21
Variable Rate Technology for Herbicide
Application

Markus Sökefeld

Abstract Variable rate technology (VRT) is used for the application of various
agricultural inputs in order to respond adequately to the within-field variability of
environmental factors like soil properties, incidence of pests and crop parameters.
The areas in plant production in which VRTs are used are highlighted. For the vari-
able rate application of herbicides commercial as well as research solutions are
described. The use of VRT for herbicide treatment with regard to pre-emergence
and post-emergence applications and the requirements are described. The potential
of further herbicides savings due to an additional variation of herbicidal ingredients
in consideration of herbicide sensitivity of single weed species and groups of weed
species, respectively is shown and evaluated.

1 Introduction

Variable rate technology (VRT) or variable rate application (VRA) are synonyms
for a technique to vary the application rate of agricultural inputs in adaptation to
heterogeneous features like soil properties or plant density. The range of application
covers the whole area of plant production like seeding, fertilization, irrigation and
plant protection. Adequate sensors are needed to obtain spatial information about a
field, like soil parameters, estimated crop yield, weed density or weed species com-
position. Collected data are used for the control of the application rate of agricultural
machinery like seeders, spreaders or sprayers.

1.1 Seeding

Variable rate seeding is based on the adaptation of the seeding rate to the yield poten-
tial. Reduced populations should be established in zones with lower yield potential.
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Higher seeding rates are recommended for sites with high-yield potential with high
soil-fertility levels and water-holding capacity (Barnhisel et al. 1997). Variability
in top soil depth which can be estimated by soil electrical conductivity measure-
ments (Kitchen et al. 1999) is also an actuating variable for the variation in seeding
rate (Bitzer et al. 1996). The variation of the seeding rate can be realized by seed-
ers equipped with a microprocessor controlled hydraulic motor which replaces a
path-dependent metering mechanism (Maguire et al. 2003).

1.2 Fertilizing

Concerning variable rate technology for fertilizer application, nitrogen fertilization
has to be distinguished from the application of phosphate, potassium and lime.
Sensor signals of several systems, which provide information about the nitrogen
status of the plant or plant biomass, can be used for the variable rate application of
nitrogen (Schächtl et al. 2005, Link et al. 2002, Ehlert et al. 2004).

For the variable rate application of the other fertilizers like phosphate, potassium
and lime, mainly maps are used which are based on soil test information from grid
soil sampling (Wollenhaupt et al. 1994). Predominantly spreaders with additional
controller are used for a map-based variable rate fertilizer application as well as for
sensor based application.

1.3 Irrigation

Normally center pivot irrigation systems apply a more or less uniform amount of
water to a whole field or even several fields with no respect to non-uniform envi-
ronment like variable soil types, multiple crops or changing topography. Perry et al.
(2003) described a control system for variable rate center pivot irrigation which
takes changing environmental conditions into account. To divide fields in manage-
ment zones concerning to their estimated water application rate inputs like aerial
images of soil or crops, soil and yield maps and farmer’s knowledge of the field was
used. The created application maps were realized by a special variable rate irrigation
controller which varies the application rate by cycling sprinklers on and off and by
varying the travel speed of center pivot irrigation system. Application rates between
0 and 200% were achieved by using this technique.

1.4 Plant Protection

Variable rate technology in plant protection can be divided according to the appli-
cation of fungicides, growth regulators and herbicides. Dammer and Ehlert (2006)
described a technique for variable rate fungicide spraying in cereals. For the con-
trol of the sprayer information on the heterogeneity in plant biomass was used.
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The concept was based on the idea to apply the same concentration of active
fungicidal substance per unit of crop canopy surface area in order to achieve a
homogeneous wetting and coverage of the foliar surface. A good indicator for
the density of the crop canopy surface is the leaf area index. The crop meter, a
real-time sensor for crop biomass density was used for the measurement (Ehlert
2000). Between the sensor signal and the leaf area index, which was measured by
an optical handheld sensor, R2 values from 0.61 to 0.84 were detected. An auto-
matic detection of the fungus or the estimation of the quantity of the disease is not
possible.

A similar approach was used for the application of growth regulators in wheat by
Volk and Leithold (2006). The sensor signal of the Yara N-sensor R©, which analyzes
the spectra of the reflected light of the crop surface, was utilized for the calculation
of the crop biomass in order to obtain an application rate of the growth regulators
proportional to the biomass.

Factors which influence the optimal dose rate of herbicides are diverse. For soil-
applied herbicides Williams et al. (2002) mentioned the importance of the amount of
active ingredients which are available for the plant. The potential uptake depends on
several soil properties which influence the sorption capacity like soil organic mat-
ter, soil pH, soil texture, water content and cation exchange capacity. Other authors
didn’t used soil properties for the adjustment of the optimal herbicide dose rate but
they used parameters like weed density or weed species composition. Possible tech-
niques for the automatic inspection of the weed flora within agricultural fields are
digital image analysis (Gerhards and Christensen 2002, Weis and Gerhards 2007)
remote sensing (Brown et al. 1994) or opto-electronic devices like the commercially
available systems WeedSeeker R© and DetectSpray R©.

2 Technical Solutions for the Control of Application Rate
of Sprayers

Since several decades engineers develop techniques for the constant output of
sprayers depending on a changing velocity of the sprayer. A regulation of the noz-
zle flow rate compared to the traveling speed ensures a constant distribution of
the spray mixture on the entire plant canopy and thus a uniform wetting of the
leaf surface. If a homogeneous plant canopy or weed distribution is assumed this
goal is absolutely worthwhile. Many scientific papers showed however that both the
weed density and the weed species composition in arable land are usually hetero-
geneous (Marshall 1998, Gerhards et al. 1997, Christensen and Heisel 1998). The
possibility to use sensors for the detection of these heterogeneities resulted in the
development of pesticide sprayers with the ability to modify the application rate
with regard to the detected weed population. The variation of the application rate
has to be achieved without an extreme shift of droplet size spectra or spray distri-
bution pattern. Commercial solutions as well as scientific approaches are known for
the selective dose control of sprayers.
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2.1 Total Flow Control

From the technical point of view total flow control systems also known as pressure
based control systems, are the easiest to realize. In this concept standard sprayers
are used to alter the application rate over the entire spraying width (Walker and
Bansal 1999). The flow rate of the premixed solution is controlled by adjusting the
system pressure. Since the application rate directly depends on the system pressure
a good regulation is provided. Changes of the flow rate by means of pressure are
subjected to a square root relationship. In order to double the flow rate, the sys-
tem pressure has to be quadrupled. Flat fan nozzles which are commonly used for
the spraying of agro-chemicals have an operating pressure between 2 and 4 bar,
thus the possibility to alter the flow rate is limited. Going beyond or below this
pressure range is leading to suboptimal droplet size and thus to the risk of drift or
an non-uniform wetting of the leaf surface. Depending on the used pressure con-
trol valves (e.g. motorized or solenoid) response times are rather long (Stone et al.
1999).

2.2 Pulse Width Modulation Control

Pulse width modulation (PWM) is a common technique for controlling an elec-
trically actuated device by turning the device on and off very quickly (pulsation).
The speed at which the device is pulsed is its frequency. The proportion of time
during which the device is “on” during each full cycle is the duty cycle, which is
expressed as a percentage. To use this technique for sprayers an electrically driven
solenoid valve is directly coupled to the inlet of the spray nozzle (Giles et al. 1996).
GopalaPillai et al. (1999) stated that duty cycles from 10 to 100% provide a flow rate
control in the ratio from 9.5 up to 1 without a significant change in the spray pat-
tern. They observed a constant droplet spectrum for duty cycles between 50 and
100%. A significant change in the droplet spectrum was observed at 10% duty
cycle.

2.3 Twin Fluid Nozzles

Twin fluid nozzles use spray liquid and air, both are feed in the nozzle body under
pressure to create a spray. Apart from a compressor which is mounted on the
sprayer to provide the required air supply, a standard sprayer can be employed
with these nozzles. By means of a separate control of spraying pressure and com-
pressed air, nozzle output and droplet size can be adjusted independently from each
other (Western et al. 1989). With these commercial available nozzles (e.g. AirJet R©
by TeeJet, AirTec R© by Cleanacres) a flow rate control in the ratio from 2 to 1 is
achievable.
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2.4 Variable Orifice Nozzles

Another alternative of variable rate application using standard sprayers is to employ
nozzles with variable orifices. These nozzles adjust orifice size during a pressure
variation automatically (Walker and Bansal 1999). Hereby a constant spray angle
and a uniform droplet size is achieved over a wide range of flow rates. A commer-
cial version of this nozzle type is the TurboDrop R© VR by agrotop. According to
the company’s data sheet an extended range of application rates from 100 up to
420 l ha−1 at a speed of 7 km h−1 and 2–8 bar operating pressure may be realizable.
Thus, with this technique doubling the pressure results in doubling the flow rate.

A variant of the variable orifice nozzles is the VariTarget nozzle which was devel-
oped by Bui (2005). The concept of the VariTarget design is that the area of the
pre-orifice and the spray orifice vary at the same time during operation for vari-
ous flow rates. This keeps the droplet size optimized over the range of flow rates
and maintains a constant spray angle. Using the VariTarget nozzle at an operating
pressure from 1 to 3.5 bar a nozzle output of 0.57–3.03 l min−1 is obtained; this
corresponds to an application rate of 85–455 l ha−1 at a speed of 8 km h−1 and a
distance between the nozzles of 0.5 m.

2.5 Multiple Nozzle Holders

Multiple nozzle holders like the VarioSelect R© system by Lechler allow the adapta-
tion to varying spraying conditions on-the-go. Up to four nozzles can be combined
at one nozzle holder. Nozzles can be used individually or simultaneously to achieve
a range of application rates from 50 up to 600 l ha−1. The control of the individual
spray tips is realized by pneumatic control valves directly in front of each nozzle.
Thus quick changes in the application rate are feasible.

2.6 Injection Metering Systems

In direct injection systems the active ingredient and the carrier (water) are kept sep-
arately. Pesticides are metered into the carrier at the time of application. The rate
can be varied, giving the desired concentration at the injection point in accordance
with the given operating conditions (see Chapter 19). A major advantage of direct
injection systems is the wide range of application rates according to the used meter-
ing device and the possibility to change not only the application rate but also the
type of pesticide on-the-go.

3 Pre-emergence Herbicide Application

At the time of application of pre-emergence herbicides normally no information
about the later weed infestation is available. Thus pre-emergence herbicides are
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typically used at a uniform rate as broadcast or band applications. In order to use
pre-emergence herbicides in a variable rate manner, spatial field information about
soil properties or weed maps from previous years (historical weed maps) have to be
available.

The amount of soil-applied herbicide needed to control weeds depends on the
soil texture and soil organic matter content. Field soil variability can be determined
by measuring soil electrical conductivity or using soil survey data. Weber et al.
(1987) developed algorithms for herbicide application rates based on soil prop-
erties. Humic matter content of the soils was highly correlated (r = 0.89−0.97)
with herbicide bioactivity. Blumhorst et al. (1990) investigated the efficacy of
selected herbicides as influenced by soil properties. They demonstrated that her-
bicide activity was highly correlated to soil organic matter content, and suggested
that herbicide application rates should be determined in accordance with soil
properties.

Mohammadzamani et al. (2009) conducted a field trial for site-specific her-
bicide application using soil parameters. Considering differences in soil organic
matter content and soil texture a field was divided into four management zones.
Different rates of a pre-emergence herbicide were applied in the zones. Herbicide
application could be decreased by up to 13% in comparison to a uniform
application rate, retaining successful weed suppression in most management
zones.

Due to the stability of soil properties over a long period of time, application maps
based on these parameters can be used for variable rate application of herbicides for
many years. Weed patches in agricultural fields have been found stable over sev-
eral years (Wilson and Brain 1991, Wyse-Pester et al. 1995, Jurado-Expósito et al.
2004). Weed seedling emergence, and thus weed density within the weed patches
is dependent on parameters like weather conditions, soil properties, planted crop
species and crop cover. Walter et al. (1997) suggested that weed maps from previ-
ous years could be used for the calculation of herbicide dose maps in the current
year.

Koller and Lanini (2005) used weed counts of the previous year to develop
maps for pre-emergence herbicide application in the current year. Two types of
weed density maps were used for the calculation of the application maps provid-
ing zones with three different herbicide rates: one created from seedling counts
in the growing crop and another based on mature-weed counts. The authors
employed a variable rate sprayer for the application of pre-emergence herbicide
in the marked zones. An effective weed control comparable to a uniform one-
rate herbicide application was achieved. The seedling map approach resulted in
a 47% herbicide reduction compared to a uniform full rate application. A 34%
reduction in herbicide use was achieved with the approach based on mature-
plant weed maps. They stated that variable-rate spraying based on estimations of
weed density in the previous year crop just before harvest gave the best weed
control.
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4 Post-emergence Herbicide Application

For the site-specific application of post-emergence herbicides information on the
weed infestation is needed. Common parameters for the description of weed
infestation level and thus the amount of herbicide application are weed density,
development stage of the weeds and weed species composition.

Kudsk (1989) stated that the effect of herbicide treatment is dependent on fac-
tors like weed species spectrum and development stage of the weeds. Dogan and
Hurle (1998) studied the efficacy of reduced herbicide doses subjected to the devel-
opment stage of weeds, they demonstrated a significantly higher herbicide efficacy
at the two-leaf stage than at the four- or six leaf-stage. At the two-leaf stage her-
bicide reduction up to 63% without loss of efficacy was possible. Dose-response
curves describe the effect of herbicide dose on plant growth. The shape of the curve
depends on the mode of action of the herbicide, while the performance of the herbi-
cide, which is influenced by weed species and weed growth stage, can be described
by a parallel shifting of the dose-response curve (Jensen and Kudsk 1988) The adap-
tation of the herbicide rate according to the weed density takes into account that the
efficacy of foliar-applied herbicides is reduced with an increasing infestation level
due to an overlapping weed canopy and reduced spray interception (Dieleman and
Mortensen 1998). Christensen (1994) pointed out, that reduced herbicide doses are
often not lethal but they lead to a reduction of competitiveness and dry matter pro-
duction of the weed. Mortensen et al. (1998) stated that the efficacy of herbicide
treatments is lower in areas with high weed density than in areas with low weed
density. Several studies on variable rate application of post-emergence herbicide
have been carried out.

Heisel et al. (1999) conducted two field trials on variable rate herbicide applica-
tion in winter wheat and winter barley, respectively. Weeds were counted visually
at the intersection points of a regular 20 m by 20 m grid. The economically optimal
herbicide dose at each sampling point was calculated by a decision support sys-
tem for patch spraying which took weed density, weed species and expected mean
yield for every sampling point into account. The application rate varied between
0 and 100% of the recommended dose. The patch spraying resulted in a 62 and 47%
reduction in the two fields. Assuming a weed cover at harvest less than 10% as a
sufficient weed control the treatment was successful in the main parts of the field.

Wartenberg and Dammer (2002) used an opto-electronic sensor for weed counts
within the tramlines. The speed of the measuring principle of the sensor allowed a
real-time weed control. According to the sensor signal the herbicide application rate
was reduced by up to 50%. Depending on the cultivated crop herbicide savings up
to 30% compared to a 100% application were reached without differences in yield.

Gerhards et al. (2002) performed site-specific herbicide application based on
weed grid counts over a four year crop rotation in four fields. Depending on the
counted weed numbers they defined infestation levels: weed free (<0.1 seedlings
m−2) low (>0.1–1 seedlings m−2), medium (>1–5 seedlings m−2), high (>5–20
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seedlings m−2) and very high (>20 seedlings m−2). In areas with a very high weed
infestation the full herbicide rate (300 l ha−1) was applied, the rate was stepwise
reduced to 200 l ha−1 in areas with low weed infestation. Areas with weed level
“weed free” remained untreated. Herbicide reductions from 0% in sugar beet up to
98% in maize and winter wheat have been reported.

5 Variable Rate Technique or Variation of Active Ingredients?

In addition to the use of variable rate technology for the application of herbicides
the variation of the herbicide ingredients according to weed species composition
is a possibility to lower the amount of herbicide applications. Gerhards and col-
leagues investigated the combination of variable rate application based on weed
density with a variation of herbicides based on weed species composition in field tri-
als over several years (Gerhards et al. 1999, Gerhards and Sökefeld 2001, Gerhards
and Sökefeld 2003). For the application of post emergence herbicides an experi-
mental sprayer with a 18 m boom divided in 3 sections of 6 m each was used.
The regulation of the herbicide rate was carried out by pressure control. During
herbicide application, the sprayer was linked to an on-board computer loaded with
the treatment maps. First, the application of selective herbicide was realized by up

Fig. 21.1 Schematic configuration of the multiple sprayer with: 1 board computer with application
map, 2 control unit for spray computer, 3 spray computer, 4 tank, 5 manometer, 6 pressure valve,
7 pump, 8 solenoid valve, 9 boom sections with nozzle (Gerhards and Oebel 2006)
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to three field crossings with different herbicides. The three herbicides were active
against monocotyledons, dicotyledons and a selective herbicide against thistles or
Galium aparine for example. Later a multiple field sprayer for herbicide variation
on – the-go with three autonomous hydraulic circuits was developed (Fig. 21.1).
Each of the three sprayer circuits had a boom width of 21 m divided into 7 sections
of 3 m. Each sprayer circuit and each boom section were turned on and off separately
via solenoid valves. This sprayer allowed a separate control of each hydraulic circuit
according to information from herbicide application maps. The application rate was
regulated from 200 to 290 l ha−1 over the whole boom width of each sprayer by
pressure variation (Gerhards and Oebel 2006).

Figure 21.2 shows application maps for four different groups of weed species
according to their sensitivity to post-emergent herbicides (a–d) of a 3 ha sugar beet

Fig. 21.2 Application maps for a sugar beet field (3.0 ha) subdivided according to herbicide
sensitivity of weeds (Gerhards and Sökefeld 2003)
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field. The fifth map (e) is an overlay of the maps a-d and represents an application
with an herbicide mixture against all weed species within the field. Using map e
for site-specific herbicide application only 19% of the field remained unsprayed. By
varying the applied herbicides according to the information in the application maps
(a to d) herbicide savings on a much higher level was achieved. 71% of the field was
sprayed with the combination of desmedipham, ethofumesat and phenmedipham,
44% with metamitron, only 14% with clopyralid and 10% with fluazifop-P. This
example shows the huge potential of savings due to herbicide variation and the
necessity for the development of sprayers which are able to realize several applica-
tion maps during one field crossing. Furthermore for a fast and reliable identification
of weed seedlings within the field powerful techniques are important. An ideal
solution is the combination of weed detection and classification with a spraying
device for variable rate and variable herbicidal ingredient application for an online
site-specific weed control.

Long-term studies on the implementation of VRA in conjunction with herbicide
variation approved, that a higher weed pressure in the subsequent years is not to be
suspected. Figure 21.3 shows the changes of the average weed infestation prior to
herbicide treatment, split up in monocotyledons and dicotyledons, under the influ-
ence of site-specific herbicide application. The weed density of 52 dicotyledons
m−2 and 11 monocotyledons m−2 in the initial year 1997 wasn’t exceeded in the
following years. In fact the weed density tended to be lower. Certainly, the good
efficiency of site-specific herbicide application in this case can be attributed to the
crop rotation with its possibility for an intensive weed regulation in maize and sugar
beet.

As shown in Table 21.1 in both crops almost the whole field was sprayed with
herbicides against dicotyledons. This is due to low competitiveness of sugar beet
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Fig. 21.3 Average weed density in one field over 7 years prior herbicide application under
the influence of variable rate application and herbicide variation according to weed species
composition (SB sugar beet, WW winter wheat, WB winter barley)
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Table 21.1 Herbicide savings over several years in one field using variable rate technology and
herbicide variation according to weed species composition

Year Crop Monocotyledons (%) Dicotyledons (%)

1997 Maize 65 13
1998 Sugar beet 75 0
1999 Winter wheat 92 72
2000 Winter barley 92 54
2001 Maize 91 8
2002 Sugar beet 80 0
2003 Winter wheat 49 52

and maize during the juvenile stage. However looking at the cereals the amount
of herbicides savings against dicotyledons are much higher. This is attributed to
the high competitiveness of cereals which allows the application of economic weed
thresholds. Up to 90% savings were achieved in the use of herbicides against mono-
cotyledons. Gras weeds were much more aggregated within the test field. Thus,
in sugar beet and maize as well as in cereals large areas of the field remained
unsprayed.

The different herbicide saving potential for the two groups of weed species in
this field trial is an argument for the application of different selective herbicides in
one field according to the present weed species. Combining this with variable rate
application depending on developmental stage of the weeds and competitiveness of
weeds and crop is promising the highest herbicide savings.
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Chapter 22
Variable Rate Application of Fungicides

Karl-Heinz Dammer

Abstract Plant diseases often occur in patches within the field. But real-time
sensor technology for automatic disease detection which would be a prerequisite
for demand related fungicide application is commercially not yet available. In het-
erogeneous fields growth conditions vary greatly due to soil quality differences.
Consequently there exist subareas with varying biomass which affect yield at har-
vest time. In high biomass and yield subareas the Leaf Area Index (LAI) is greater
than in low biomass subareas. In cereals LAI can serve as a parameter to adapt
application rate to the growth differences in fields. Sensor controlled variable rate
field sprayer technology therefore meets the economic and ecological demands of
process optimisation in the production of primary plant goods.

1 Introduction

The uniform application of fungicides over an entire field is common practice in
crop protection. However, uniform spatial distribution of fungal pathogens which
would warrant a uniform application in a field is an exception and often only occurs
at the end of a fungal epidemic (Van der Planck 1963, Jeger 1989). At this stage
in plant growth yield loss cannot be prevented and fungicide spraying is basi-
cally unwarranted. Especially at the beginning of fungal epidemics plant pathogens
often are distributed randomly and diseases may develop in patches (Campbell and
Madden 1990, Hughes and Madden 1995). A uniform fungicide application over
the entire field at this time is not appropriate. In subareas of the field with no disease
a fungicide application would not be necessary.
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Fungicides have to be applied in early stages of disease development in order to
prevent negative effects on yield formation of the crop. Therefore the green leaf area
has to be protected from pathogen infection with fungicides. Only healthy leaves can
effectively produce photosynthetic products the major source of subsequent yield
formation.

Beside the heterogeneity in disease occurrence the economics of fungicide use
is another aspect that needs consideration. When soil conditions are heterogeneous
within a field it is likely that due to differences in water and nutrient availability, crop
growth is also heterogeneous. A well established crop produces higher yield than a
crop suffering from malnutrition or water stress. This results in largely differing
subarea yield. Consequently crop losses prevented by fungicide applications and
final marginal income can vary significantly. Marginal income is higher in high yield
subareas than in low yield areas. This positive correlation has also been reported by
Paveley et al. (1996) and Oerke and Dehne (1997). Fungicide spraying according to
disease occurrence will optimize the use of production inputs and would reduce the
costs of disease control and energy input. In addition, the impact of biocides on the
environment would be reduced.

A prerequisite for fungicide application according to disease occurrence is the
determination of the within-field distribution of diseases. An assessment of disease
symptoms by visual monitoring is time consuming. When a critical threshold for a
disease is exceeded, fungicides have to be sprayed immediately, because if weather
conditions are favourable pathogens can quickly spread throughout the crop canopy.
Therefore, the collection of data on percentage diseased plants or diseased leaf area
is time sensitive. To overcome this problem, research is being conducted to replace
visual disease assessment by technical sensors. Sensors may be able to detect dis-
eased plants within the crop in all subareas reliably and in early stages of crop
development. These sensors would allow gathering of data on the spatial distribu-
tion of fungal pathogens efficiently and quickly and in time to avoid crop loss. To
date, however, no real-time sensor technology for automatic disease detection is
commercially available that provides data on diseases in the subareas of the field
before the pathogens reach critical thresholds. Plant parameters like leaf area index,
green biomass or coverage level are commonly used for demand-related fungicide
spraying in practice.

This chapter focuses on the variable rate application of fungicides in cereals,
because of the world-wide area cultivated and the high potential to reduce fungicide
and energy.

2 Off-Line and On-Line Fungicide Application
with Variable Rates

The off-line approach is usually based upon disease or crop density maps (Bjerre
and Secher 1998). Disease inspection has to include a GPS based recording of
the site, the size of disease patches in the field, and disease incidence. Although
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spatial sampling schemes (Dammer 1999, Fleischer et al. 1999) using the underling
mathematical distribution function exist (Campbell and Madden 1990, Hughes and
Madden 1995), grid-based disease sampling to compile a reliable map is very labo-
rious. Also the time lag between disease monitoring and spraying is unfavourable.
If critical thresholds of disease occurrence are exceeded and weather conditions are
favourable, fungal diseases can spread quickly over the entire field. Since time sen-
sitivity is crucial and disease maps are not available in time this technology has
not been introduced into practice, but is limited to experimental sites (Secher 1997,
Bjerre 1999).

Alternatively, crop density may be used as a parameter for variable rate fungicide
application. Maps of crop density can be produced using Geographic Information
Systems (GIS). Information can be derived from the following sources:

• Farmers knowledge
• GPS to determine position
• Yield maps
• Vehicle-mounted spectral reflectance or mechanical sensors
• Aerial photography
• Satellite imagery

Crop density maps based on farmers knowledge or yield maps can be drawn in
advance. These maps, however, may not represent the actual crop density at the
time of spraying. Weather conditions varying from year to year often result in dif-
ferent growth conditions and thus in different within-field patterns of crop density.
A more exact map can be obtained by real-time sensors. They can be mounted on
tractors, aeroplanes or in satellites. The availability and quality of areal and satellite
images, however, largely depends on cloud cover. In addition, long processing times
to obtain georeferenced data, especially from imaging sensors, often prevents their
use in plant production management processes (Moran 2000). Variable rate fungi-
cide application based on application maps derived from crop density or disease
assessment was investigated by Bjerre (1999) and Secher (1997) in experimental
fields.

The extent of variable rate fungicide spraying by farmers in the field is unknown,
but is still likely to be on a small scale. Lisso et al. (2003) used yield potential maps
to generate reference input maps for sowing, nitrogen fertilization and fungicide
application.

The on-line approach of variable rate fungicide application has significant
advantages over the off-line approach:

• Detection of diseases or plant parameters and variable rate spraying in one
operation

• No time lag between data gathering and spraying
• Except for sensor costs no additional costs for data gathering, management,

software and computer technology.
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3 Leaf Area Index as a Parameter for Variable Rate Application

The on-line technology of applying variable rates of fungicides in cereals described
in this chapter uses the Leaf Area Index (LAI) for the characterization of the crop
canopy surface to be sprayed. This crop parameter is used for adapting the appli-
cation volume within the field to crop density in subareas. The LAI quantifies the
area of crop surface per area of ground (m2 m−2). The time necessary for direct
destructive measurements (Stroppiana et al. 2006) or the use of hand-held optical
instruments (Welles and Norman 1991) exceeds the time available to realize dense
sampling over a narrow grid. The costs for hand held instruments like LAI2000 or
SunScan (Hiks and Lascano 1995, Wilhelm et al. 2000) are not acceptable for use
by most farmers.

Dynamic crop growth models have been used to simulate the LAI (Basso et al.
2003, Guerif et al. 2003). Although the models are used for scientific experi-
ments such complex models for production of georeferenced estimates of LAI for
application maps cannot be used by farmers.

A very simple method for estimating the LAI in cereals which can use by farmers
is based on a deterministic model (Dammer et al. 2008). Only crop height and the
number of tillers per area are used as parameters and works well from stem elon-
gation to flowering. With this method dense sampling within the whole field is not
possible.

Real-time sensors also can be used to record the spatial distribution of LAI within
the field. Spectral reflectance measurements in the near-infrared and red light zones
and the derived vegetation indices are related to LAI values up to 6 (Wiegand et al.
1992). In other words, from stem elongation up to maturation, when multiple leaf
layers exist, reflectance measurements for LAI estimation are not suitable, because
the measured reflectance comes only from the upper leaf layers. However when
maturation of cereals begins and healthy leaves start to senesce, reflectance sensors
may again be suitable.

This problem does not exist when using mechanical sensors like the CROP-
Meter, a real-time sensor to measure crop biomass density in cereals. It can be used
beginning with growth stage GS 35 or stem elongation. While driving through the

a b

Fig. 22.1 CROP-Meter controlled field sprayer
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crop a horizontally pivoted metal rod is deflected by the bending moment of cereal
stem resistance (Ehlert and Dammer 2006). The sensor is mounted in front of the
tractor (Fig. 22.1). A low deflection angle occurs in areas of the field with low
crop density and vice versa. The deflection angle of the CROP-Meter is correlated
with the LAI measurements of the above mentioned hand held optical instruments
(Dammer et al. 2008).

4 Sensor-Controlled Field Sprayer

Burth et al. (1990) reported that fungicide dosage can be reduced when weather con-
ditions at spraying are favourable. The efficiency of disease control by the reduced
dosages was similar to the recommended dosage. It is common in practical agricul-
ture to use lower dosages in disease control. Farmers however have to be aware that
any guarantee which comes with the fungicide product can be lost. A second reason
to use variable rates is the reduction of the off-target deposition of the spray liquid
especially in low crop density areas of the field. The third aspect supporting variable
rate technology is the positive economic impact. In heterogeneous fields there are
within-field yield differences which result in differences in marginal income. This
means that in low yield areas costs have to be reduced to make plant production
effectively.

The application rate can be varied by variation of tractor speed while spraying
or by changing the spray pressure. With conventional flat fan nozzles a variation of
about 1:2 can be reached. Air-liquid nozzles allow a variation of about 1:3 of the
application amount, whereas multiple nozzles systems can reach a variation of 1:8
without changing the tractor speed. The best technology for variable rate applica-
tion – not only for fungicides, but also for herbicides – would be the direct-injection
technology (Rockwell and Ayers 1996, Hloben et al. 2006). Direct-injection tech-
nology is not affected by the lack of information on the heterogeneity of crop
density. No spray liquid is left after application compared to common field sprayers.

For an on-line variable rate application of fungicides in cereals the computer
of the CROP-Meter is connected to the on-board terminal of the tractor. Using the
agricultural bus system (LBS) based on ISO 11783 the field sprayer is controlled
by the CROP-Meter. A potentiometer which is connected to the pendulum body
generates a voltage between 1 and 4 V which is the input signal to control the flow
rate of the field sprayer.

Because of the linear relationship between the deflection angle of the CROP-
Meter and LAI, the volume of fungicide application is adapted linearly according
to the deflection angle. Figure 22.2 illustrates the distribution of the deflection
angle from the CROP-Meter in a winter wheat field on 18 May 2000. The rate
of flow is measured from an additional flow meter in the main liquid pipe of the
field sprayer. Based on this value the application rate is calculated and mapped in
Fig. 22.3.

The areas with high deflection angle match the areas with high application rates.
A similar approach, to adapt the dosage according to crop density in order to attain
sufficient disease control, was also investigated by Ewaldz (2000).
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Fig. 22.2 Map of CROP-Meter deflection angle in winter wheat while spraying (Dammer et al.
2008)

Fig. 22.3 Map of application rate measured by a flow meter of the field sprayer (Dammer et al.
2008)

The field operation is explained briefly below (for details see Dammer et al.
2008):

1. The farmer prepares his standard fungicide dosage in the field sprayer tank.
2. He chooses a typical tramline, which represents the heterogeneity in crop

density. A uniform application is carried out along this tramline.
3. The lowest and highest deflection angle is recorded by the on-board terminal.
4. The lowest application rate is assigned to the lowest deflection angle and

the highest application rate is assigned to the highest deflection angle at the
calibration display.

5. While spraying the application rate is adapted to the deflection angle linearly
between the lowest and highest application rate.

The values of the lowest and highest application rate depend on the users past
experience with the fungicide product. Whereas minimum and maximum LAI may
be used as indicators of the range of application rates, he can estimate these two
extremes rapidly with the simple model mentioned above: crop height [m] x number
of tillers per [m2]/100 at the two sites where the lowest and highest deflection angle
of the CROP-Meter were measured (Dammer et al. 2008).
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Fig. 22.4 Standardised variogram of the deflection angle from CROP-Meter measurements for
eight fields (Dammer and Ehlert 2006)

The reliability of the CROP-Meter readings (operated between the tramlines)
representing crop density also outside the tramlines was tested (Dammer and
Ehlert 2006). A geostatistical analysis (standardised experimental variogram) of the
deflection angle from eight cereal fields showed a spatial dependency from about
25–40 m. This means a change from low to high crop density occurred within a
range of 25–40 m (Fig. 22.4).

From the results of these field trials it was demonstrated that crop density outside
the tramlines was similar to in between. A section control of the field sprayer was
not necessary, because the autocorrelation range was higher than the working width
of the spray boom of the CROP-Meter controlled field sprayer.

5 Economic Benefits from Variable Rate Applications

Farmers will accept variable rate fungicide application technology only if the eco-
nomic benefit is obvious. The most important benefit is savings in fungicides. In
eleven field trials conducted with a CROP-Meter controlled field sprayer in commer-
cial cereal fields from 2000 to 2004, savings ranging from 7 to 38% were obtained
(Dammer and Ehlert 2006). The level of savings depends on the heterogeneity of
crop density and the decision of the farmer concerning the lower and upper limits of
application rate. When his strategy is to apply variable rates of fungicides not only
at reduced dosages, but to spray more than his standard dosage up to that recom-
mended on the product label in high crop density areas fungicide savings may not
be as high.

A reduction in fungicide dosage may not result in yield reduction. The yield
effect of variable rate application was investigated in field strip trials in commer-
cial cereal fields. Variable rate application was done in one tramline and a uniform



356 K.-H. Dammer

application with the standard fungicide dosage in the neighbouring tramline. With
the treatment plot locations next to each other soil influence could be minimized.
A combine harvester with a yield monitoring system measured yields along a har-
vested strip. Depending on the tramline distance and the cutting unit width of the
combine harvester, up to two strips per treatment were harvested. From the near-
est neighbour pairs of variable rate and uniform application, yield values could
be extracted. The local yield values were compared statistically by the “Difference
Method” for controlled treatment comparison (Anonymous 1972). The mean of the
differences were tested against zero using the t test. All local differences of a field
experiment were analyzed graphically using the box-whisker-plots. In Fig. 22.5 the
box-whisker-plots of six field trials are summarized. The median and the quartile
of the local yield differences between the variable rate and the uniform plot were
located around zero, indicating that no yield reduction occurred by a CROP-Meter
controlled fungicide application.

In those cases where the strategy is to apply more than the farmers stan-
dard dosage in dense cereal canopies Secher (1997) observed a yield increase of
0.3 t ha−1 compared with a conventional application. According to Paveley et al.
(1996) an explanation could be the positive relation between yield potential of dif-
ferent areas in the field and yield response of a fungicide application. In contrast
Bjerre (1999) demonstrated no yield effects in his experiments with variable rate
fungicide applications.

Beside fungicide savings there is the effect of saving machine costs. Due to the
reduction of the application volume in areas with low crop density more area can
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Table 22.1 Economic evaluation of machine costs of CROP-Meter controlled variable fungicide
application in a winter wheat field (Dammer 2005)

Savings Increased

Year Area [ha]
Spray liquid
[l]

Filling tours
[n]

Filling time
[h]

machine
efficiency
[ha]

Machine cost
savings
[C ha−1]

2000 49 1,979 1 0.75 9.37 4.21
2001 27 2,025 1 0.75 9.37 7.64
2002 49 853 1 0.75 9.37 2.10
2003 27 2,241 2 1.50 18.75 7.64
2004 (field 1) 23 1,092 1 0.75 9.37 4.48
2004 (field 2) 26 2,470 2 1.50 18.75 3.96

be sprayed with each tank load. Therefore, there are fewer trips to fill the sprayer
tank with water. The filling time also can be reduced. The economic calculations in
Table 22.1 are based on CROP-Meter controlled variable rate fungicide spraying in a
winter wheat field for the period 2000–2004 in Saxony-Anhalt, Germany (Dammer
2005). The calculation basis was a typical filling time of a 2,000 liter field sprayer
of 0.75 h, an output of 12.5 ha per hour and machine costs of 9.50C per hectare.
In 5 years, beside product cost savings of 2.64–12.94C ha−1, machine cost savings
of 2.10–7.64C ha−1 were obtained. Assuming a 1,000 ha farm with 60% cereals in
the crop rotation the additional costs of the CROP-Meter and on-board terminal of
about 13,000C will be paid off within 2 years (Dammer 2005).

6 Combining Decision Support Systems with Sensor-Controlled
Variable-Rate Fungicide Application

Several crop and environmental parameters can have an influence on the intra-field
variability of disease occurrence:

• Soil type
• Topography
• Crop density
• Leaf area index
• Nutritional status of plants
• Water stress.
• Surroundings (hedgerows, forest, etc.).

These parameters can change the microclimate in certain parts of the field.
Especially shading by forested areas or hills can lead to longer periods of leaf wet-
ness which can stimulate spore germination and the infection success of pathogens.
Shading may result also in lower temperatures in the affected subareas of the field.
Fungal pathogens can respond differently to the same microclimatic parameter, and
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be either inhibited or stimulated. For example a higher crop density due to different
seeding rates or higher nitrogen fertilization can lead to higher severity of powdery
mildew (Blumeria graminis) in spring and winter cereals (Sentelhas et al. 1993,
Rozalski et al. 1998) or eyespot disease (Oculimacula yallundae) in winter rye
(Dammer 1988). Park et al. (1992) and Murray et al. (1994) reported that stripe
rust (Puccinia striiformis f. sp. tritici) occurrence in wheat is correlated with higher
temperature. This is the case in field areas with low crop density, because they warm
up faster. While Bjerre (1999) observed a negative correlation between leaf blotch
(Septoria tritici) severity and crop density, Broscious et al. (1985) and Sentelhas
et al. (1993) demonstrated that dense canopies were more likely to become diseased
in the absence of precipitation.

In the field different fungal pathogens may occur simultaneously or sequentially.
The optimum conditions for infection and the length of incubation periods may
vary greatly. A further problem is latent infection – the lag phase between success-
ful penetration of the plant and the formation of visible symptoms. The complex
relations between disease occurrence, crop development, microclimate and weather
parameters for variable rate fungicide spraying cannot be managed effectively by the
farmer, but requires special disease forecast models. Simulation models for disease
forecast in decision support systems mainly use weather data from meteorologi-
cal stations (Kleinhenz et al. 1995, Newe et al. 2003). The output is a field-specific
decision on crop protection. An intra-field specific forecast for areas in the field with
different crop density incorporating parameters on crop and microclimate impacting
to the problems mentioned above has not yet been produced.

In heterogeneous crops the amount of crop loss prevented by fungicide appli-
cations depends on the site-specific yield potential of the different sub areas of
the field. Expert systems like proPlant also incorporate economics as suggestions
about the fungicide product to be used (Newe et al. 2003). Economics, especially
the different yield potential, mainly due to differences in soil quality within a hetero-
geneous field, is another reason to identify management zones within the field. As
pointed out in Section 2 these zones are the basis in the mapping approach not only
in variable rate fungicide spraying but also for other measures of precision plant pro-
duction. Sowing and fertilization can be done at different rates in these management
zones. Within the research project “preagro2” the decision support system proPlant
expert.classic was modified for variable rate fungicide application in winter wheat.
The developed prototype proPlant expert.precise takes into account different infec-
tion probabilities of plant diseases and different marginal factors such as pesticide
and nitrogen fertilizer rates. As a result the system generates a spraying map with
different application rates of a specific fungicide for up to three management areas
separately (Wollny et al. 2007). This map in XML format can be imported to the
on-board terminal. Analogous to Section 4 the maximum application rate recall-
ing from the map is assigned to the highest deflection angle from the CROP-Meter
for each management zone. The minimum application rate assigned to the lowest
deflection angles is decided by the farmer. Between the maximum and the mini-
mum application rate the spraying volume is adapted linearly to the deflection angle
of the CROP-Meter (Fig. 22.6).
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Fig. 22.6 Sprayer control algorithm for three management areas (Dammer et al. 2009)

The application system recognizes the borders of the management areas by GPS.
An example of how the system works is shown in Fig. 22.7.

The spray volume is linked to the deviation angle. It cannot exceed the maximum
in the respective management zone (200, 250, 300 l ha−1). The proPlant system
sets the maximum of the application rate and the CROP-Meter does the fine tuning
within the management areas. The CROP-Meter with map overlay system was tested
in three winter wheat fields in 2007 (Dammer et al. 2009). The fungicide savings

Fig. 22.7 Angle of the CROP-Meter, application rate of the field sprayer and maximum
application rate defined by the spraying map along a tramline (Wollny et al. 2007)
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increased from the management zone with high yield potential to the zone with low
potential. They were higher in the treatment using the CROP-Meter with map over-
lay than in that with the CROP-Meter only. Savings when compared to a uniform
application were 13.9, 21.7 and 32.6%, verse application with CROP-Meter only of
11.9, 11.1 and 20.3%. Similar to Section 5 there were neither yield reductions nor
higher disease severities in the plots with variable rate fungicide application.

7 Perspectives

The development of sensors for disease detection would advance progress towards
variable rate fungicide application according to disease occurrence. Detection has to
be successful in an early stage of disease epidemics and fungal spread. Symptoms
on the plant surface are minute and may occur in the crop at random. Moreover,
fungal infections may be present even without visible symptoms. Several optical
methods for detecting fungal diseases are being developed but are now still used
under laboratory conditions where interfering factors can be controlled and image
analysis can be applied more easily than under field conditions. In the field environ-
mental factors can change very rapidly. Research has to be conducted to eliminate
their influence on detection. Varying levels of illumination under field conditions
still prohibits practical implementation of reflectance sensors for disease detection.
The reflection behaviour of different wavelengths may vary independently under
sunny and shady conditions. Drought or nutrient deficiencies may lead to symptoms
similar to diseases. The main problem is distinguishing between plant diseases and
other stress symptoms or even among different disease symptoms, which may differ
in colour depending on pathogen isolate, disease stage, weather, microclimatic fac-
tors and crop variety. Nielson (1995) and West et al. (2003) concluded that remote
sensing, which uses optical sensors, is not suitable to detect symptoms of plant
diseases.

Farmers generally apply fungicides with broad-spectrum activity for the control
of several diseases especially when only one application in cereals is carried out.
They attempt to control a spectrum of diseases, including those which may occur
a few days after spraying. The differentiation of diseases becomes interesting if
two or more fungicide applications are necessary, especially under humid weather
conditions. In these cases a demand related spraying of pathogen-specific fungicides
would attract more attention by farmers. In order to spray two or more chemicals,
spray equipment with fast direct injection systems becomes necessary.

Crop yield reduction caused by plant disease depends on the time of infection.
Disease infections at early growth stages reduce crop yields stronger than later infec-
tions. At a certain growth stage, protection of plant tissue by fungicides for the
production of assimilates is no longer necessary. For cereals Gent (1994) reported
that assimilates accumulated in the leaves are transported into the ear starting at
grain filling. Chlorophyll in the plant tissue is degraded, senescence begins and
plants go into ripeness. Obligate pathogens like fungi causing powdery mildew and
rust depend on living cells and can no longer grow. In heterogeneous fields low
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Table 22.2 Ontogenetic development of winter wheat in field areas with low (LAI < 4) and high
crop density (LAI > 6) (Dammer 2005)

Time BBCH-growth stage Description

28.04.04 32 Node 2 appears
06.05.04 34 Node 4 appears
13.05.04 37 Flag leaf just visible
18.05.04 39 Flag leaf fully enrolled
25.05.04 41–43 Early/mid boot stage
28.05.04 45–47 Flag leaf sheath opening

Areas with LAI
> 6

Areas with LAI
< 4

Areas with LAI
> 6

Areas with LAI
< 4

03.06.04 49 55 First awns visible Middle of heading
09.06.04 51 61 Beginning of

heading
Beginning of

flowering
15.06.04 61 69 Beginning of

flowering
End of flowering

21.06.04 69 75 End of flowering Medium milk
29.06.04 73 83 Early milk Early dough
07.07.04 83 87 Early dough Hard dough
21.07.04 87 92 Hard dough Overripe

crop density areas may become senescent earlier than high crop density areas by up
to 1 month. Table 22.2 summarizes the growth stage development of winter wheat
within a field in Saxony-Anhalt, Germany.

Until the end of May crop development was very similar. Then water became
the limiting factor for crop growth and wheat in sandy subareas suffered from
drought stress. As of beginning of June, crop development in areas with low LAI
was faster. Consequently these plants had to be protected against plant pathogens
for a shorter period of time than wheat plants in subareas with higher LAI. In this
context research work is necessary to investigate the interaction between pathogens
and host when senescence starts.

Because of the difficulties in direct detection of diseases and latent infections the
combination of disease forecast models and sensors is important. Beside the hori-
zontal dispersion dynamics of diseases within a field, research should focus on the
inclusion of the vertical dispersion dynamics of diseases on plants into disease fore-
cast models. The main factors for the vertical dispersion dynamics are the age of
the leaves and their disposition to fungal colonization. The spores are often splash-
dispersed by rain drops from older infected leaves onto younger healthy leaves.
Lovell et al. (1997) found a negative correlation between crop density and the occur-
rence of leaf blotch due to Septoria tritici. The splash dispersal of the spores from
lower infected leaves to the upper leaves was blocked.

Against the background of decreasing energy resources, rising production costs
and environmental protection becoming more and more important, the variable rate
application of fungicides is one technology of precision farming which helps the
farmer to run his business effectively at all levels.



362 K.-H. Dammer

References

Anonymous (1972) Biometrische Versuchsplanung. VEB Deutscher Landwirtschaftsverlag, Berlin
Basso B, De Vita P, Basso F et al (2003) Assessing and modelling spatial variability of yield and

grain quality of durum wheat under extreme dry conditions. In: Stafford JV, Werner A (eds),
Precision agriculture. Wageningen Academic Publishers, Wageningen, pp 53–59

Bjerre KD (1999) Disease maps and site-specific fungicide application in winter wheat. In: Stafford
JV (ed.) Precision agriculture. Sheffield Academic Press, Sheffield, pp 495–504

Bjerre KD, Secher BJM (1998) Field experience with site-specific application of fungicides to
winter wheat. In: Brighton crop Protection Conference – Pests and Diseases. British Crop
Protection Council, Farnham, pp 987–992

Broscious SC, Frank JA, Frederick JR (1985) Influence of winter wheat management practices
on the severity of powdery mildew and Septoria blotch in Pennsylvania. Phytopathology 75:
538–542

Burth U, Hartleb W, Hartmann W, Hamann W (1990) Zur variablen, situationsbezogenen
Bemessung der Aufwandmenge bei der Applikation von Pflanzenschutzmitteln. Nachrichtenbl.
PflSchutzd. DDR 44:194–196

Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley Interscience,
New York

Dammer KH (1988) Untersuchungen zur Auslese von Einzelpflanzen im Winterroggen mit
Resistenz gegenüber Pseudocercosporella herpotrichoides (Fron) Deighton. PhD thesis,
Martin-Luther-Universität Halle-Wittenberg

Dammer KH (1999) Analyse und Darstellung der Dispersion von Schaderregern sowie
Möglichkeiten der Stichprobenahme bei aggregiertem Auftreten. Eigenverlag, Kropstädt

Dammer KH (2005) Demonstration der Langzeitwirkung bedarfsorientierter Fungizidbehandlung
mit dem CROP-Meter. Bornimer Agrartechnische Berichte, Heft 41, Leibniz-Institut für
Agrartechnik, Potsdam-Bornim

Dammer KH, Ehlert D (2006). Variable-rate fungicide spraying in cereals using a plant cover
sensor. Prec Agric 7:137–148

Dammer KH, Thöle H, Volk T, Hau B (2009) Variable-rate fungicide spraying in real time by
combining a plant cover sensor and a decision support system. Prec Agric 10:431–442

Dammer KH, Wollny J, Giebel, A (2008) Estimation of leaf area index in cereal crops for variable
rate fungicide spraying. Eur J Agron 28:351–360

Ehlert D, Dammer KH (2006) Widescale testing of the CROP-Meter for site-specific farming. Prec
Agric 7:101–115

Ewaldz NAT (2000) Radiometric readings as a tool for predicting optimal fungicide dose in winter
wheat. Z PflKrankh PflSchutz 107:594–604

Fleischer SJ, Blom PE, Weisz R (1999) Sampling in precision IPM: when the objective is a map.
Phytopathology 89:1112–1118

Gent MPN (1994) Photosynthate reserves during grain filling in winter wheat. Agron J 86:
159–167

Guérif M, Hollecker D, Beaudoin N et al (2003) Site specific calibration of a crop model by
assimilation of remote sensing data: a tool diagnosis and recommendation in precision agricul-
ture. In: Stafford JV, Werner A (eds.), Precision agriculture. Wageningen Academic Publishers,
Wageningen, pp 253–258

Hiks SK, Lascano RJ (1995) Estimation of leaf-area index for cotton canopies using the LA-COR
LAI-2000 plant canopy analyzer. Agron J 87:458–464

Hloben P, Sökefeld M, Schulze Lammers P (2006) Untersuchungen der Verzögerungszeiten
von Direkteinspeisungssystemen für die teilflächenspezifische Applikation von Herbiziden.
Agrartech Forsch 12:14–18

Hughes G, Madden LV (1995) Some methods allowing for aggregated pattern of disease incidence
in the analysis of data from designed experiments. Plant Pathol 44:927–943

Jeger MJ (1989) Spatial components of plant disease epidemics. Prentice Hall, Englewood Cliffs



22 Variable Rate Application of Fungicides 363

Kleinhenz B, Jörg E, Kluge E, Rossberg D (1995) PASO – Rechnergestützte Entscheidungshilfen
für den Pflanzenschutz. Ges Pflanzen 47:222–230

Lisso H, Trunk K, Jäger S (2003) Drei Beispiele für die Umsetzung. In: Haser G (ed),
Zukunftsträchtiger Ackerbau – Systeme der Computer- und GPS-gestützten teilflächenspezi-
fischen Bewirtschaftung praxisnah bewertet. Deutscher Bauernverlag, Berlin

Lovell DJ, Parker SR, Hunter T et al (1997) Influence of crop growth and structure on the risk
of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat. Plant Pathol
46:126–138

Moran MS (2000) New imaging sensor technologies suitable for agricultural management. Asp
Appl Biol 60:1–10

Murray GM, Ellison PJ, Watson A, Cullis BR (1994) The relationship between wheat yield and
stripe rust as affected by length of epidemic and temperature at the grain development stage of
crop growth. Plant Pathol 43:397–405

Newe M, Meier H, Johnen A, Volk T (2003) proPlant expert.com: the online consultation sys-
tem on crop protection in cereals, rapeseed, potatoes and sugar beet: a concept that meets the
requirements of farmers and consultants in both Germany and Europe. EPPO Bull 33:443–449

Nielson HE (1995) Remote sensing and image analysis in plant pathology. Annu Rev Phytopathol
15:489–527

Oerke EC, Dehne HW (1997) Global crop production and the efficacy of crop protection – Current
situation and future trends. Eur J Plant Pathol 103:203–215

Park RF, Ash GJ, Rees RG (1992) Effect of temperature on the response of some Australian wheat
cultivars to Puccinia striiformis f.sp. tritici. Mycol Res 96:166–170

Paveley ND, Clark WS, Sylvester-Bradley R et al (1996) Responding to inter- and intra-field vari-
ation to optimise foliar disease management in wheat. Brighton Crop Protection Conference,
Pests and Diseases, Brighton, pp 1227–1234

Rockwell AD, Ayers PD (1996) A variable rate, direct nozzle injection field sprayer. Appl Engin
Agric 12:531–538

Rozalski K, Pudelko J, Skrzypczak G (1998) Disease incidence in winter wheat and spring triticale
as influenced by crop protection and nitrogen. Progr Plant Prot 38:551–554

Secher BJM (1997) Site specific control of diseases in winter wheat. Aspects Appl Biol 48:57–65
Sentelhas PC, Pedro MJ, Felicio JC (1993) Effects of different conditions of irrigation and crop

density on microclimate and occurrence of spot blotch and powdery mildew. Bragantia 52:
45–52

Stroppiana D, Boschetti M, Confalonieri R et al (2006) Evaluation of LAI-2000 for leaf area index
monitoring in paddy rice. Field Crops Res 99:167–170

Van der Plank JE (1963) Plant diseases: epidemics and control. Academic Press, London
Welles JM, Norman JM (1991) Instrument for indirect measurement of canopy architecture. Agron

J 83:818–825
West JS, Bravo C, Oberti R et al (2003) The potential of optical canopy measurement for targeted

control of field crop diseases. Annu Rev Phytopathol 41:593–614
Wiegand CL, Maas SJ, Aase JK et al (1992) Multisite analyses of spectral-biophysical data for

wheat. Rem Sens Environ 42:1–21
Wilhelm WW, Ruwe K, Schlemmer MR (2000) Comparison of three leaf area index meters in a

corn canopy. Crop Sci 40:1179–1183
Wollny J, Dammer KH, Hau B et al (2007) Site-specific disease control in wheat by combining the

CROP-Meter with the decision support system proPlant. In: Stafford JV (ed) Precision agri-
culture ’07. Proceedings of the 2nd european conference on precision agriculture, Wageningen
Academic Publishers, pp 783–789



Part V
Current Use of Precision Crop Protection

in Practice



Chapter 23
Providing Precision Crop and Range Protection
in the US Northern Great Plains

George A. Seielstad, David E. Clay, Kevin Dalsted, Rick L. Lawrence,
Douglas R. Olsen, and Xiaodong Zhang

Abstract Faculty, students, and staff from eight universities in the U.S. Northern
Great Plains formed the Upper Midwest Aerospace Consortium (UMAC) to lead a
regional transition to sustainability. One major focus was on agriculture, an impor-
tant part of the region’s economy and social structure. By forming a learning
community in concert with farmers and ranchers, UMAC has made information
an asset as valuable as land, labor, and capital. One primary source of information
combined with traditional sources is remotely sensed imagery. UMAC has created
an end-to-end operation, starting with data acquisition by airborne and orbiting
sensors customized to acquire data needed to meet producer demands, proceeding
to development of value-added products, and finally making them readily acces-
sible on the WWW to non-expert users whom we also train. A specific example
of the operation in action illustrates the economic and environmental benefits that
result.

1 Introduction

Humanity has arrived at a moment of historic change. The number of people in the
world and their collective ability to modify the planet and its living inhabitants have
introduced the Anthropocene (Crutzen 2002), a geologic epoch dominated by the
single species, Homo sapiens. Decisions we make now at the onset of this epoch will
have consequences for many generations beyond ours. The historic transition the
times demand is one to sustainable practices. Since food is a basic human need, agri-
culture is and will continue to be a foundation of civilization. It follows, therefore,

G.A. Seielstad (B)
Bay Area Environmental Research Institute, Missoula, MT 59808, USA
e-mail: g.seielstad@nserc.und.edu

367E.-C. Oerke et al. (eds.), Precision Crop Protection - the Challenge and Use
of Heterogeneity, DOI 10.1007/978-90-481-9277-9_23,
C© Springer Science+Business Media B.V. 2010



368 G.A. Seielstad et al.

that agriculture, too, must change, and that decisions about how to transition it
toward sustainability cannot be delayed (Brown 2009).

With that in mind, researchers and educators at eight universities in the
northern Great Plains of the United States organized a collaboration called the
Upper Midwest Aerospace Consortium (UMAC). The member institutions are the
Universities of North Dakota, Montana, Idaho, and Wyoming; South Dakota and
Montana State Universities; Sinte Gleska University; and the South Dakota School
of Mines and Technology. A driving purpose for the consortium was to assemble
both the depth in numbers and breadth in expertise needed for the multi-disciplinary
cause of sustainability. A second purpose was to have the capability to customize
products and services to specific locations within the wider region. Finally, by form-
ing a distributed organization, UMAC offers access nodes throughout the region so
that residents can interact with familiar, local institutions.

Interaction with residents is crucial to the consortium’s core mission of sustain-
ability. The challenge is to foster actions that deliver economic benefits now to
people who undertake them, while simultaneously delivering benefits to generations
not born by sustaining a healthy environment. The method was to create a learn-
ing community in which people were encouraged to share their expertise without
regard to whether it was acquired through formal education or practical experience
(Seelan et al. 2003). A major difference, then, is that agricultural producers are
treated as research partners, not as clients. The actual applications that emerge from
this inclusive partnership are carried out on farms and ranches in for-profit produc-
tion. That entails working with agroecosystems, with all their complexity but also
with none of the artificiality of controlled experiments. The weakness of the latter
is that knowing how components of a system behave when examined individually
does not necessarily indicate how the full system will behave when all components
are unconstrained. In essence this philosophy accepts crops or livestock as the true
biophysical integrator of their environment.

Building a learning community focused on initiating sustainable practices in
agriculture was a four-step process. First, UMAC had to create an Environmental
Information Bridge. The analogy with a bridge indicates that information flows both
ways between producers and researchers. Crucial is to work on challenges or oppor-
tunities that producers identify. Knowing the needs of producers leads to a second
step, research and development of a kind that is benefits-driven, not purely curiosity-
driven. Research relies on use of data, so the consortium’s third step was to design,
build, and operate data acquisition and data dissemination technologies. Finally,
training has to be provided so that consumers of the research and its developments
know how to turn them into profitable and environmentally benign actions (Seelan
et al. 2007).

The following sections describe how information was incorporated into farm and
ranch management strategies, which is to say they describe how precision agricul-
ture was encouraged. A report by the U.S. National Research Council (Sonka 1997)
“defines precision agriculture as a management strategy that uses information tech-
nologies to bring data from multiple sources to bear on decisions associated with
crop production.” This became UMAC’s working definition.
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A significant thrust of UMAC was to synthesize remotely sensed information
with that from many other sources to enable wiser decision-making by farm-
ers and ranchers. ZoneMAP (Section 2) automatically characterizes farms’ and
ranches’ heterogeneity. Heterogeneity in evapotranspiration on a farm exemplifies
site-specific management of corn yield (Section 3). Methods to assist ranchers to
make informed decisions about livestock carrying capacity are described in Section
4. Critical to all UMAC’s decisions is Digital Northern Great Plains (Section 5), a
system for providing convenient access to the information generated. Since an ulti-
mate goal is to customize products and services to each individual producer’s needs,
UMAC developed and operates sensors designed specifically to meet the agricul-
tural needs of our region (Section 6). A farm that may be a harbinger of precision
crop protection (Section 7) illustrates how all the consortium’s activities are brought
together. Lessons Learned (Section 8) concludes the chapter.

2 ZoneMAP: Defining Heterogeneity in Crop and Range Lands

Precision agriculture has been made possible by modern technologies on farm
implements that permit treatments applied to farms or ranches to be varied. The
Global Positioning Satellites (GPS) system allows specification of precise location
within a field, and onboard computers can regulate the flow of the treatment being
applied. In addition, combines and other harvesting implements can record yields
as a function of location. Farming has become, to a large extent, management of
variations rather than management of average properties.

The power of the new technologies can only be utilized if a producer knows
what the appropriate rate at which an input – of seeds, fertilizer, herbicide,
pesticide, irrigated water, or other – should be applied at every location. Zone
Mapping Application for Precision Farming (http://zonemap.umac.org) is a web-
based decision-support tool developed to meet this need. ZoneMAP can automati-
cally determine the optimal number of management zones and delineate them using
satellite imagery and field survey data provided by users. ZoneMAP is linked to a
rich archive of satellite imagery called Digital Northern Great Plains (see Section 5).

Remote sensing for precision agriculture is based on the relationships between
surface spectral reflectance and various soil properties and crop characteristics
(Moran et al. 1997). Satellite observations provide measurements of surface
reflectance with ∼15–60 m spatial resolution (e.g. SPOT, Landsat or ASTER) at
least a few cloud-free times during a growing season. Objectives of ZoneMAP
for using satellite imagery to delineate zones included: (I) streamlining format
conversion, reprojection, and gridding of data obtained from a variety of sources,
(II) providing straightforward access to satellite images, (III) allowing selection of
a specific area of interest within the much larger image, (IV) creating an output map
that could be directly ported into farm machinery, and (V) running computing algo-
rithms on a UMAC server to free users from the need to buy expensive, complicated
software for which they would need powerful computers.
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2.1 ZoneMAP’s Classification System

Fuzzy c-means (FCM) (Burrough 1989, Burrough et al. 1992, Fridgen et al. 2004)
was the clustering algorithm selected for ZoneMAP. The algorithm determines the
degree of similarity between an observed value (say, a surface reflectance point) and
a cluster center. The first step was to determine the optimal number of zones into
which a field should be divided. To determine this, within-cluster variability for a
number n of clusters was compared with that for n–1 clusters. Figure 23.1 illustrates
that generally the percentage of total within-cluster variability with respect to the
total initial variability decreases as the number of clusters increases. A similar trend
was found by Brock et al. (2005). After an initial rapid decrease the total within-
cluster variance typically approaches an asymptotic value as the number of clusters
increases. The optimal number of zones is therefore the number of clusters that
reduces the variance significantly as compared to the initial variability, yet changes
little when the number of zones is further increased. Two criteria capture this turn-
ing point in a relatively consistent manner: (1) overall reduction of variance >50%;
and (2) consecutive reduction of variance <20% or a break at which within-cluster
variability begins increasing instead of decreasing.

Such vegetation indices as Normalized Difference Vegetation Index (NDVI) and
Green NDVI (GNDVI) have been widely used for developing management zones
(Metternicht 2003, Moran et al. 1997). ZoneMAP automatically calculates NDVI
and GNDVI on-the-fly. Since a canopy’s reflectance changes during a growing
season as vegetation goes through stages of emergence, maturity, reproduction,
and senescence, zone classifications are improved if more than a single image
is used.

A remote sensing image covers a much bigger area than a single farm or ranch
field. Instead of processing the entire image, ZoneMAP automatically crops the

Fig. 23.1 Total within-cluster variability as a percentage of initial variance. For case shown,
optimum number of zones is five
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image to an area of interest defined by the user. ZoneMAP also automatically
reprojects and resamples different images to a common projection plane with an
equal ground sampling distance determined by the user.

Properties other than surface reflectance can assist classification into manage-
ment zones. These include electrical conductivity, soil samples, yield maps, often
for multiple years and crops, and other parameters. Usually, though, various data
sources come in different formats, projections, and spatial resolutions. ZoneMAP
invokes subsetting, reprojecting, and resampling procedures to project them onto
the same grid as the one for images.

All users’ data are saved in a secure online database so that within-season or
multi-year comparisons of management zones can be performed. For each creation
of a set of management zones, metadata is generated describing the procedure and
datasets used. Users can download their results in three formats, raster image, grid
text, and shape file. For each format, one can choose from multiple projections.
In addition, users can input application rates for each zone to generate a variable
rate application map.

2.2 Sample Map for Production Field

Figure 23.2a shows management zones determined by ZoneMAP from two NDVI
images of a 97-ha field in Minnesota, acquired in successive years at the time of

a b

c

Fig. 23.2 Management zones (a) and corresponding scatter plot (b) created using reflectance
measurements at NIR by Landsat on 26 July 2004 and 13 July 2005. Histograms of SOM within
each zone and for the entire field are plotted in (c)
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maximum canopy cover. The 2004 crop was soybeans and the 2005 crop, wheat. The
optimal number of zones was determined to be three. Each zone was clearly defined
into distinctive domains defined by NDVI values of 2004/07/26 versus 2005/07/13
(Fig. 23.2b). Histograms of soil organic matter (SOM) within each zone (Fig. 23.2c)
show clear separations, with means for each class of 3.15, 2.95, and 2.42. The means
of pH values for each zone were 8.42, 8.19, and 8.36, respectively.

These results confirm that remote sensing can be effectively incorporated into
delineation of management zones (Zhang et al. 2010a). However, field surveys of
soil attributes and nutrient conditions are important and cannot always be replaced
by current remote observations. At a minimum, though, a preliminary mapping
of subfield zones using remote sensing helps to design a cost-effective survey
plan.

3 Mapping Evapotranspiration for Site-Specific Farm
Management

Since the global demand for food is projected to double by 2030–2050 (Bruinsma
2003), pressure to increase yields from the Northern Great Plains will mount. The
existing delicate balance among crop and livestock production, wildlife, soil sus-
tainability and other goods and services provided by natural resources will be
challenged. UMAC is confronting this challenge by integrating spatial technolo-
gies fully into production systems. The ability to develop appropriate site-specific
algorithms has been limited by the difficulty of quantifying the yield-limiting factors
over landscapes and watersheds. Three young technologies, remote sensing, yield
monitors, and molecular biology, can provide the information needed to better refine
weed, nutrient, and pest management decisions.

Although many factors influence yields, much of the current precision crop pro-
tection research has concentrated on evaluating the impact of water and nutrient
availability on yields (Clay et al. 2001, Clay et al. 2003). This work has shown
that water is scarcer, and therefore yields lower, in summit/shoulder areas. These
areas can be defined using a combination of simulation models, remote sensing,
and ground-collected data. For example, Mishra et al. (2008) used a Landsat scene
acquired on 4 August 2001, ground-based weather station data, and the METRIC
(Mapping Evapotranspiration at High Resolution and with Internalized Calibration)
model (Allen et al. 2005) to estimate evapotranspiration (ET) over a 65 ha corn (Zea
mays L.) field in South Dakota. The year 2001 was drier and slightly warmer than
average in July and August compared with the 30-year average (1971–2000) of pre-
cipitation and temperature for May through August. No precipitation was recorded
during the week before the satellite overpass, which suggests soils were not at field
capacity when ET was estimated. Soil samples, collected (0–15 and 15–60 cm)
periodically during the growing season, were analyzed for gravimetric soil water.

Evapotranspiration values calculated with a spatial resolution of 30 m correlated
strongly with corn yield (r = 0.85∗∗), and with apparent electrical conductivity, ECa
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Fig. 23.3 Evapotranspiration based on the METRIC model (a). Yield maps draped over the digital
elevation map (b; Mishra et al. 2008)

(r = 0.71∗∗). In the footslope positions, high ET values were associated with high
corn yields, while in the summit/shoulder areas low ET values were associated with
low yields. The strong relationship between evapotranspiration and productivity
shown in Fig. 23.3 was attributed to landscape processes that influenced plant-
available water. Remote sensing-based ET data were most successful in identifying
areas where water stress reduced corn yields, while ECa was most successful in
identifying high-yielding management zones.

4 Uses of Satellite Imagery in Range Protection

The arid Northern Great Plains of the United States have a sizable west-to-east pre-
cipitation gradient, from approximately 30 cm year−1 in the rain shadow of the
Rocky Mountains in the west to twice that amount in its extreme east. The region’s
ranchers must accordingly make critical decisions at the beginning of the cattle-
grazing season (Holechek 1988, Sankey et al. 2008). First is the decision about
livestock grazing intensity permissible in each pasture based on the best estimates
of forage available during the upcoming season. Next is a decision whether cer-
tain pastures require differential treatment or can withstand more intensive grazing.
These decisions have historically been based on a rancher’s sometimes unreliable
personal knowledge of the grazing lands. Remotely sensed data provide more reli-
able information upon which to base grazing decisions, as shown in the following
two examples.

4.1 Soil Water Estimation

Remote sensing has been shown to be powerful for estimating forage quantity (see
e.g. Maynard et al. 2007a), but most approaches require individual parameteriza-
tion for each scene. Gathering ground reference data for such parameterization is
not practical. An alternative is to focus on water availability, because it is directly
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correlated to forage amount (Sankey et al. 2008). Rainfall during the season is
inherently unpredictable, but it has proved possible to model the amount of water
stored in the soil at the beginning of a growing season.

The procedure for modeling soil water was carried out at two ranches, the
Decker/Bales Ranch in southeast Montana and the BBar Ranch in south central
Montana. To make a practical system that ranchers would use, collection of field
data had to be limited to a single day. One hundred samples were collected on
the Decker/Bales Ranch and 82 on the BBar Ranch, both with the use of a hand
auger. Complementing the field data were Landsat 5 Thematic Mapper images from
the previous growing season to represent the potential for evapotranspiration occur-
ring the previous year. Remote sensing successfully quantifies vegetation leaf area
(Qi et al. 1994), which is highly correlated with evapotranspiration (Obrist et al.
2003). Other spatial variables important for modeling soil water include topographic
slope and aspect, which can be derived from digital elevation models (DEMs), and
soil characteristics, which can be derived from soil surveys (Landon 1995). Analysis
consisted of least squares regressions with the response variable of water content
and the potential predictor variables of spectral, topographic, and soils data.

For both ranches the models predicted soil moisture within 0.04 gravimetric
water content, within the predicted margin of error for our sample sizes of 7.6 cm of
moist soil (Fig. 23.4). The variables included in the models had both similarities and
differences, indicating the method is ad hoc. However, it requires only a reasonable
level of parameterization. Red and near infrared bands were important as expected,
given the established relationship between these two bands and vegetation amount.
One might expect that, where vegetation was abundant, evapotranspiration would
be correspondingly greater and soil moisture therefore less. Instead, the correlation
of the red and near infrared bands to soil water indicated that where biomass was
most abundant in one year is where soil water content would be greatest the fol-
lowing spring. Evidently areas were producing more vegetation because there was
more water, and this water was either not exhausted or was recharged in the ensuing
season.

Fig. 23.4 Soil water content on BBar (a) and Decker/Bales (b) ranches
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Slope and percent clay content were also important model variables at the BBar
Ranch. Aspect, percent clay content, and the thermal band were important model
variables at the Decker/Bales Ranch. The conclusion, though, is that with a mini-
mum level of parameterization on an annual basis, remotely sensed data combined
with other spatial data can model soil water within predicted levels of precision.
Knowledge of pastures’ available soil water can be used to decide upon livestock
grazing intensity.

4.2 Rangeland Condition Evaluation

U.S. ranchers can obtain permits allowing their cattle to graze on public lands.
Federal government managers, though, are responsible for stewardship of these
lands. Remote sensing is almost the only tool for gathering information over large
territories with limited personnel (Maynard et al. 2007b, Hunt et al. 2003). Medium
resolution satellite imagery provides large fields of view, but at the expense of
inadequate spatial detail to quantify factors such as biomass, percent bare soil,
species and community types, and soil condition. Consequently, a hybrid method
was developed, combining remotely sensed imagery with traditional field-based
evaluations.

Remote sensing allowed categorization of rangelands according to their general
condition. Then field sampling was conducted in subsets of the various categories.
The approach added statistical power to a field-based sampling design. Land man-
agers could either greatly reduce the extent of rangeland they visited on the ground
to obtain the same information content, or for the same effort could gather much
more information from field sampling.

Stratification was according to ecological site description (ESD) polygons. ESDs
are map units of similar soil and climate characteristics. Using them allowed dis-
tinction between inherent variability in productivity among differing ecosystems
from that caused by management practices. Spectral anomalies in images were not
attributed solely to anomalies in rangeland management (Maynard et al. 2007b).

Data were collected from 263 sites on five Montana ranches with respect to
two critical measures of rangeland condition, productivity and exposed bare soil.
These were then compared to overall measures within each of 24 distinct ESDs to
determine whether the site was within or outside the norm for that particular type.
Thirteen Landsat ETM+ scenes were acquired to evaluate all 263 sampled sites.
Each scene was converted to tasseled cap components, which are standard spectral
indices that relate to each pixel’s brightness, greenness in terms of vegetation quan-
tity, and wetness in terms of leaf or surface water content. The means and standard
deviations were computed for each of these components within each ESD, and the
sample sites were evaluated to determine whether they were within or outside the
norm for the particular ESD with respect to any of the three components. Only one
of the 263 sites was evaluated as not anomalous in the field data but anomalous in
the spectral data, and only three sites were evaluated as anomalous in the field data
but not in the spectral data (overall accuracy 98.4%).
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Remote sensing greatly increases the efficiency of field-based evaluations of
rangeland condition. If 75% of an ESD is considered within the norm for its
type, it would be grossly inefficient to spend 75% of an evaluator’s time in fields
that were essentially alike, which is what a random sampling would dictate. If
instead only 33% of the field evaluation time were spent on “normal” sites, with no
change in the time spent on anomalous sites, then the total effort would be reduced
by 42%.

5 Digital Northern Great Plains: A Decision-Support System

Information in both spatial and temporal dimensions is what makes management
by precision agriculture possible. Of course, information is valuable only to the
extent it is timely, accurate, and can be (I) easily accessed, (II) straightforwardly
integrated with multiple sources, (III) analyzed with software and hardware a typi-
cal information-seeker possesses, and (IV) used with a minimum of training. These
challenges are amplified in the case of precision agriculture by the digital dimen-
sions of satellite scenes and the limited bandwidths available to producers in many
rural areas.

A single Landsat scene covers ∼300,000 ha and contains about 500 MB of data.
For a 56 k dialup connection to the Internet, still used by some rural residents in
the U.S., downloading one scene would take 20 h. A typical farm field of 1,200 ha
only occupies 1/250th of a scene. Obviously, if an image can be partitioned, even
a slow connection can provide enough bandwidth. A second difficulty associated
with sophisticated information technologies and complex scientific datasets can be
overcome by providing value-added products that can be easily interpreted. Finally,
to be truly useful, the data and products derived from it have to be compatible with
other data and products regardless of format.

Digital Northern Great Plains (DNGP, Zhang et al. 2010b) is designed to over-
come all these challenges. Its major functions are to subset images, add value to
them, and present them in a format compatible with data systems farmers and
ranchers already use.

UMAC has collected a rich archive spanning more than 30 years of remote sens-
ing imagery over the northern Great Plains, including the states of North and South
Dakota, Minnesota, Montana, Wyoming, and Idaho. Data include high resolution
(20–250 m) multispectral images from Landsat MSS, TM and ETM+, ASTER,
medium resolution MODIS, surface relief from SRTM, and very high resolution
(1–2 m) images from AEROCam (see Section 6.1). To ensure consistency in tem-
poral and spatial comparisons, all images have been atmospherically corrected.
The final product is reflectance at the surface. All images are managed through a
database system with capability in spatial operation.

Raster and vector data are processed using an Open Source Geospatial Data
Abstraction Library (GDAL). Another open source package, MapServer, is the
presentation platform. A “thin-client” design ensures the minimum footprint on a
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client computer; all computing and analyzing are carried out on the server side,
with results presented through a web interface accessible via a web browser. The
computing power needed by a typical individual can therefore be minimized.

Features that make the Digital Northern Great Plains system (http://dngp.
umac.org) attractive include the following:

• Searches can be conducted via spatial coordinates through an intuitive user
interface.

• Remote sensing images can be subset either spatially or spectrally.
• Products (e.g., sugar beet yield) are generated on the fly, both simplifying the

database design and providing dynamic update capability.
• Images or products can be downloaded in a variety of formats to ensure

compatibility with other application software.
• A multitude of identifying vector layers is incorporated into the system.
• “One interface” design ensures a smooth user experience and simplifies the

learning curve.

To promote use of the DNGP system by end users UMAC followed the model
of Rogers (2003) on adoption and diffusion of innovation. A cadre of early
adopters provided feedback that improved the system iteratively. Endorsement of
the technology by these early adopters accelerated its widespread adoption.

Two peaks in usage occur annually. The first occurs in March or April, when the
growing season begins. The second occurs in late August and early September, the
time for harvest. This suggests the system is particularly useful for planning and
production.

6 Sensors Customized to Precision Agriculture’s Needs

Landsat’s value for analysis of vegetation derives from its sun-synchronous orbit
and fixed pattern of paths and rows. The result is well-controlled imagery, repeating
on a 16-day revisit time, well-suited for scientific investigations over inter-annual
and multi-decadal time scales. However, analysis of rapidly changing phenomena
on crop and range lands is equally valuable for in-season production management
decisions. For critical times or geographic locations prone to frequent cloudy days,
typically only a few Landsat scenes can be captured during a growing season,
often not when optimal; short northern growing seasons exacerbate this problem.
In addition, Landsat’s spatial resolution is fine for many agricultural applications,
but higher resolution imagery is needed for others.

To meet farmers’ and ranchers’ requests for higher spatial resolution, more fre-
quent images, and shortened latency, UMAC designed and built two sensors, one
operated on an aircraft and the other soon to be operating on the International Space
Station.
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6.1 Airborne Environmental Research Observational Camera
(AEROCam)

AEROCam is flown on one of the University of North Dakota’s light aircraft.
The sensor consists of a Redlake MS4100 multi-spectral (B, G, R, NIR) area-scan
camera. Images can either be RGB (red, green, blue), offering true color, or CIR
(near-infrared, red, green), false color. Spatial resolution depends on altitude: 1 m is
typical for production agriculture applications, but 0.5 and 2 m are also frequently
requested, as is 0.25 m for special purposes. Available products include both indi-
vidual scenes and mosaics, georeferenced and radiometrically corrected. In addition
to superb resolution, AEROCam images can be acquired at the time they are most
valuable, not just when a satellite orbit dictates.

The majority of AEROCam requests are from farmers and ranchers directly
engaged in production agriculture. Their uses include establishing fine-scale zonal
mapping of highly variable soils, assessing effectiveness of variable rate fertility and
crop treatments, improving drainage, and identifying areas of soil compaction and
salinity. The immediate, in-season decision support made possible with AEROCam
often is served by analyzing relative variations within a single scene or mosaic
captured at the appropriate time. An example of the degree of detail available in
AEROCam images is illustrated in Fig. 23.5. Much of the heterogeneity evident in
this image would have been lost in a satellite image with resolution ∼30 m.

6.2 International Space Station Agricultural Camera (ISSAC)

AEROCam’s successes led to a desire for sensor capabilities in low Earth orbit.
A sensor called International Space Station Agricultural Camera, or ISSAC (Hulst
et al. 2004), soon to be launched to the International Space Station (ISS) is the
result. The sensor will collect two bands, red (630–690 nm) and near-infrared
(780–890 nm), such that the Normalized Difference Vegetation Index can be pro-
duced. A pointing system allowing off-nadir look angles of up to 30◦ will enable

Fig. 23.5 AEROCam image
collected in northeast North
Dakota, August 2008. The
image, a false color
composite (G, R, NIR), is
approximately 1 km wide
with 1 m resolution.
Heterogeneity effects are due
to management practices (red
shading differences on left)
and natural variability
(blue/red mottling on right)
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images of particular areas to be acquired frequently. ISSAC will be installed on the
ISS in 2011 and testing, validating, and verifying its output will occupy much of the
2011 growing season.

ISS’s altitude varies between 350 and 420 km; when at a nominal 400 km the size
of a scene will be about 57 × 57 km, with a ground spatial resolution comparable
to Landsat’s. Radiometric calibration will significantly reduce noise and imaging
artifacts. Since long-ray paths due to variable sun and look angles will make atmo-
spheric effects more apparent, we will apply correction techniques that will utilize
concurrent measurements made by other orbiting NASA sensors of ozone and water
vapor. Primary science target area is the UMAC region; secondary science targets
could be imaged anywhere under the ISS orbit (inclined 51.6◦).

During the growing season, primary targets will have occasional 3–4 week
‘blackout’ periods when ISS overflights of the northern Great Plains occur either at
night or in low-light conditions. Between blackout periods ISSAC imaging oppor-
tunities will occur several times per week. A Science Operations Center at the
University of North Dakota will convert end user’s tasking requests into camera
commands; after acquisition, the same operations team will process received teleme-
try into imagery for distribution via Digital Northern Great Plains (Section 5). The
goal is to disseminate corrected, calibrated, geo-located imagery within 24 h of
acquisition. For the first time, agricultural producers will have information about
crop and range health frequently and in near-realtime throughout the evolution of
their fields, from emergence through maturation to senescence.

7 Precision Crop Protection: Its Promise Demonstrated

The Cronin Farms near Gettysburg, South Dakota serves as an example of how the
Upper Midwest Aerospace Consortium is bringing about positive changes in agri-
cultural practices. The example verifies the approach of conducting “experiments”
in actual producing fields under prevailing conditions.

The first step was to create management zones, the very basis for any differential
treatments. The collaborating farmer did this by combining Landsat images, yield
maps, and soil surveys into an ArcView Geographic Information System. This took
advantage of UMAC’s Digital Northern Great Plains data dissemination system and
its ZoneMAP product. The resulting zone map for a single 44.5-ha field classified
into three zones is shown in Fig. 23.6. By knowing the characteristics of each zone,
specific goals for yields of spring wheat could be set. To meet the goals the rate of
application of synthetic fertilizer needed in each zone to supplement the nutrients
known to be present from soil samples was calculated. The result of this careful
management was that actual yields exceeded the goal by 9%.

The enhanced yields, of course, increased income. Using 2008 spring wheat
prices, the incremental income from boosting yield in this 44.5 ha field was
US$1,870. At the same time, costs were significantly reduced. In the absence of
site-specific information, neighboring farms applied as much as 250 kg more urea
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Fig. 23.6 Corn field of 44.5-ha classified into three zones on the basis of previous years ‘Landsat’
images, yield maps, and soil surveys

fertilizer per hectare. By comparison, the Cronin Farms saved US$1,750. The third
benefit was environmental: 2,840 kg less fertilizer entered the environment.

One major reason why the fertilizer applications could be less than a standard
(i.e., non-precision) prescription was use of no-till practices on Cronin Farms, not
just on a single 44.5-ha field but instead on the full 3,620 ha of the farm. A disad-
vantage of tilling soil is that organic matter contained within it is oxygenated when
exposed to air. By not overturning soil, no-till prevents oxygenation and instead
increases soil’s concentration of organic matter – from 2.1% in 1991 to 3.2% in
2007 on the Cronin Farms. Each increase of 1% in SOM reduces the necessary
application of nitrogen by 22–34 kg/ha, of phosphorus by 5–7 kg/ha, and of sulfur
by 2–3.5 kg/ha.

Benefits accrue if these practices are followed for several years. Table 23.1 com-
pares yields obtained in 1991, before either precision, variable rate treatments or
no-till were being practiced, with those in 2007. The increases are exceptional.

Wise crop-protection strategies offer additional benefits. At the same time one
crop is harvested, another is planted atop the residue. Such cover-cropping protects
soil against wind and water erosion. It also helps cycle nutrients and retain water.
If the rotation of crops includes legumes or other nitrogen-fixing plants, fertilizer
requirements can be reduced even more, in one specific case by 90 kg ha−1. At the
close of the crop-growing season, one final cover crop is planted. It could be oats,
or turnips, radishes, or lentils. This crop and the other residues on the field serve as
fodder for cattle that are allowed to graze until the onset of winter. Manure thereby
is fed back into the nutrient supply.

Table 23.1 Productivity increases from no-till precision agriculture, Cronin Farms, South Dakota
USA

Crop 1991 Yield 2007 Yield

Winter wheat 50 bushels/acre 70 bushels/acre
Spring wheat 40 bushels/acre 60 bushels/acre
Corn 60 bushels/acre 145 bushels/acre
Sunflowers 2,250 kg/ha 2,915 kg/ha
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A UMAC-partnering farmer has conducted a crop-protection program that
improves soil fertility, prevents its erosion, fixes atmospheric nitrogen, recycles
nutrients, retains water and facilitates its infiltration, reduces compaction by
minimizing passages of farm machinery over the soil, and does all this while cutting
costs and increasing yields or equivalently income – in addition to significantly
improving stewardship of the environment (D. Forgey, private communication
2008). Table 23.2 compares how much progress has been made, progress that is
strikingly evident in the satellite image (Fig. 23.7), showing fields farmed with
precision and no-till for 0, 3, 6, and 13 years.

Fig. 23.7 2003 Landsat false-color image identifying sunflower crops grown traditionally and with
3, 6, and 13 years of variable-rate treatments and no soil tillage. The deeper the red, the greater the
productivity

Table 23.2 Crop protection progress, Cronin Farms, South Dakota, USA

1991 2007

Area farmed 2,085 ha 3,620 ha
Number of farmers 4 2
Tractors 3 (525 hp) 1 (255 hp)
Crops raised 6 12
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8 Lessons Learned

Producers have made many management decisions in addition to the few we have
described. They have been able to delineate acreage damage caused by hail and
windstorms, quantify the effectiveness of chemical applications, identify and rectify
drainage problems, spot damage caused by drift of applications sprayed on adjacent
fields, locate invasive species, detect plant diseases, and many more uses.

From these experiences those in the Upper Midwest Aerospace Consortium have
learned several lessons.

• Techniques that work in one region may not be applicable in all others.
Agroecosystems are complex and intimately connected to their local environ-
ment. In the northern Great Plains they are subjected to short growing seasons,
potentially extreme variations in temperature and precipitation, competition
between crops for food or for fuel, and limited use of irrigation. Other regions
could make similar lists of peculiarities. Nevertheless, the principles of precision
crop protection described do have general applicability.

• Imagery from sensors on satellites or aircraft is extremely valuable. But images
are not magical solutions that replace all other sources of information. When they
are combined with other sources – e.g., electrical conductivity measurements,
yield maps, weather data, soil ecology, topography, etc. – their value is greatly
amplified.

• Precision crop protection requires a commitment. The rewards come only after a
few to several seasons. Knowledge about agroecosystems accumulates over each
crop grown each season. Comparisons of geospatial information at various times
within a season, between seasons, and between the current season and the average
of several give a context upon which to base sound decisions.

• An organization that sets out to empower farmers and ranchers to make informed
decisions also must be committed for a long term. With so much income at stake,
producers are slow to change practices, and initially new technologies are bewil-
dering to many of them. Unless support has the prospect of continuing, producers
are unlikely to begin relying on it.

• UMAC has demonstrated the value of breaking down boundaries: between
academia’s traditional disciplines, between various academic institutions, and
between academia and the public. The world of tomorrow cannot be created by
perpetuating the world of yesterday.

Economics, the environment, and depletion of natural resources such as the oil
on which industrial agriculture is based, are all converging on a pressing need for
change in agriculture. Social pressures also bear heavily. More people are continu-
ally added to the planet and among them are many whose improving circumstances
allow them to demand richer diets. The consequence is immense pressure to grow
more food, even though the best arable lands are already in production. Along with
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humanity’s desire for more food is one for different energy sources. Among the
potential new sources are biofuels, the growth of which is a competing use for
the same arable land. There is no doubt that agricultural practices will be differ-
ent in the near future. Precision management is almost certain to be one of the new
strategies.
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funded by a series of grants from NASA. The authors are reporting the work of a much larger
team, without whose contributions there would have been little to report. The list is too long to
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Chapter 24
Site-Specific Detection and Management
of Nematodes

John D. Mueller, Ahmad Khalilian, W. Scott Monfort, Richard F. Davis,
Terrence L. Kirkpatrick, Brenda V. Ortiz, and William G. Henderson

Abstract Nematode distribution varies significantly throughout a field and is
highly correlated to soil texture and other edaphic factors. Field-wide application
results in nematicides being applied to areas without nematodes and the applica-
tion of sub-effective levels in areas with high nematode densities. Efforts to use grid
maps as a guide to site-specific application have proven to be too expensive to be
cost effective. Recently, the availability of GPS–GIS has allowed the use of soil elec-
trical conductivity systems to rapidly and inexpensively develop cost effective soil
texture maps. These maps are used to project where nematodes are likely to occur
within a field. Variable-rate application systems for granular and fumigant nemati-
cides have been developed and tied via software to soil texture maps providing a
mechanism for the effective delivery of nematicides in a site-specific, variable-rate
manner in individual fields. Efforts in South Carolina, Georgia, and Arkansas are
further developing this system and refining our knowledge of how soil texture and
other edaphic factors affect the distribution of cotton nematodes.

1 Introduction to Cotton Nematology

1.1 Species Distribution and Yield Losses

Plant-parasitic nematodes are important pests on cotton in the southern and south-
eastern United States: each year up to 10% of all US cotton production is lost
to nematodes (Blasingame and Patel 2005, Koenning et al. 1999). Nematodes are
particularly problematic in the southeastern states (Blasingame and Patel 2005).
Meloidogyne incognita, the southern root-knot nematode (SRK) and Rotylenchulus
reniformis, the reniform nematode (RN), are the most common nematodes on cotton
in most states (Koenning et al. 2004). SRK occurs from North Carolina to California
and has been reported across a wide range of soil types in almost every cotton
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production area in the world. Distribution and survival of RN is linked to soil types
with higher levels of silt and clay than those favored by SRK (Koenning et al. 1996,
Robinson et al. 1987). RN is a major pest of cotton in Brazil causing up to 40%
yield losses in some years (Farias et al. 2002), and in the southern US from North
Carolina to Texas (Koenning et al. 2004). A third major nematode species on cot-
ton is the Columbia lance nematode (CLN), Hoplolaimus columbus (Koenning et al.
2004). This nematode occurs primarily in the sandy, coastal plains’ soils of Georgia,
North Carolina and South Carolina. It is the most common plant-parasitic nematode
in South Carolina cotton fields occurring in almost 66% of all fields (Martin et al.
1994). CLN is found most frequently in coarse textured, sandy soils (Lewis and
Smith 1976).

1.2 Nematicide Usage

US cotton growers rely heavily on preplant and at-plant applications of nematicides
for nematode control due to limited crop rotation and host resistance options (Starr
et al. 2007). Although nematode-induced yield losses can easily exceed 15% in a
given field, the relatively narrow profit margin for cotton production allows growers
to budget only a limited amount for nematode control. The carbamate nematicide
aldicarb, applied as Temik 15G R©, has filled the role of an inexpensive, generally
efficacious nematicide in cotton for over 30 years. Aldicarb is applied to as much
as 30% of the total US cotton acreage (Koenning et al. 2004). Aldicarb is applied
in-furrow at uniform field-wide rates of 0.50–1.18 kg a.i./ha at an estimated cost
of $22.25–$51.90/ha. Unfortunately, these rates of aldicarb may provide only par-
tial nematode control, especially where densities are high. These rates do, however,
provide systemic activity against early-season thrips, contributing to the popular-
ity of the product among growers (Thomason 1987). Higher rates of aldicarb to
improve efficacy against nematodes cannot be used safely since the potential exists
for phytotoxicity. Greater efficacy against nematodes has been demonstrated with
in-row treatment with the soil fumigant 1,3-dichloropropene (1,3-D) marketed as
Telone II R©. This nematicide is more efficacious than aldicarb (Kinloch and Rich
1998, Noe 1990) but due to its higher cost has not been utilized as widely by
growers.

1.3 Spatial Distribution of Nematodes

Although nematicides are generally applied field wide at a single rate, the popula-
tion densities and overall distribution of SRK, RN, and CLN can be highly variable
and spatially aggregated in fields (Barker and Olthoff 1976, Monfort et al. 2007,
Starr et al. 1993, Wrather et al. 2002, Wyse-Pester et al. 2002). The field-wide
uniform rate approach to nematicide application is highly inefficient because some
areas in these fields may have nematode population densities below economic or
damage threshold levels while other areas may have a severe problem. Therefore,
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nematicides are either over- or under-utilized in many areas throughout the field.
Historically, growers have always utilized field-wide nematode management strate-
gies because of their inability to locate and identify areas of differing nematode
densities and then deliver nematicides in a site-specific manner within fields (Evans
et al. 2002).

Site-specific application of nematicides offers an opportunity to improve nema-
tode management efficiency. A system that could identify areas within fields with
potentially high or low nematode population densities, providing guidance for more
efficient, targeted sampling, combined with the technology to deliver a nemati-
cide in a site-specific manner would significantly improve nematode management
efficiency, profitability, and environmental stewardship.

1.4 Effects of Soil Texture on Nematode Population Density

In most fields in the southern US, soil types vary significantly. Since soil type
and texture are closely correlated with nematode distribution (Monfort et al. 2007,
Wyse-Pester et al. 2002), soil texture could be an effective predictor of potentially
high or low nematode population densities. In microplots, reproduction of SRK
was greater in coarse-textured than in fine-textured soil, and population densities
were inversely related to the percentages of silt and clay (Koenning et al. 1996).
In the same study RN reproduced best in loamy sand with a silt plus clay con-
tent of approximately 28%. Similarly, in South Carolina there was a strong positive
correlation between increasing incidence of CLN and increased sand content both
at planting and at harvest (Khalilian et al. 2001). An increase of nine percent in
clay content of a sandy loam soil resulted in a 57% reduction in nematode popula-
tion density. In the same study, ring nematodes (Criconemella spp.) were found at
significant numbers only from plots with the highest levels of sand.

1.5 Early Research on Site-Specific Nematicide Applications

Early studies on site-specific nematicide application were based on establishing
mean nematode numbers in grids that were arbitrarily established within fields.
A field could be divided into grids of any size from several square meters to
several hectares. A soil sample was then taken within each grid and a mean nema-
tode population density value for the grid was developed. Nematicide application
decisions could then be made for each grid in the field. Wheeler et al. (1999) in
Texas compared variable-rate aldicarb applications to the single rate applications
normally applied by growers in eight tests over three years. Baird et al (2001)
conducted field trials on site-specific 1,3-D applications based on grid sampling
in Georgia cotton fields. While both studies obtained greater economic returns for
their site-specific treatment than for uniform rates of either 1,3-D or variable or uni-
form rates of aldicarb, the costs associated with grid sampling made site-specific
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applications unfeasible. Wrather et al. (2002) had similar results comparing site-
specific applications of aldicarb to uniform aldicarb application rates in a Missouri
cotton field. Yields for the two application methods were essentially equivalent, but
the site-specific application approach resulted in 46% less aldicarb used in 1997
and 61% less used in 1998 compared to a uniform application rate. Again, the costs
associated with grid sampling superseded the savings provided by the variable rate
applications; using a 0.10 ha sampling grid cost $220 per ha. In all of these cases,
a cost effective system that could be used to construct nematode distribution maps
would have made the site-specific approaches much more affordable for growers.
Similar constraints to using a site-specific approach to nematicide application have
been noted by Evans et al. (2002) in trying to control potato cyst nematode. In a
relatively high value crop, potato, yield and quality demands justify high nemati-
cide inputs. The availability of a mechanism to predict where nematode densities
are high would be especially valuable in such a system.

2 Site-Specific Nematicide Application Systems

Development of successful variable-rate or site-specific nematicide application sys-
tems is dependent upon the development and availability of several key tools
including GIS/GPS guided mapping sensors and software and nematicide appli-
cators that can deliver the chemicals with precision according to a prescription.
Recently, Clemson University has developed a site-specific application system for
nematicides. The Site-specific Nematicide Placement (SNP) system is appropriate
for use with either 1,3-D or aldicarb (Mueller et al. 2001, Khalilian et al. 2001,
2003a, b and 2004), and consists of the following components: (I) a soil electrical
conductivity meter is used to generate accurate, inexpensive geo-referenced, field-
level soil ECa maps showing zones of similarity in soil texture; (II) the soil EC
zones are then used to develop a nematode management map for each field based
on targeted sampling for assay and quantification of nematode population densities;
(III) geo-referenced nematicide application prescription maps are generated based
on ground truthing nematode assays; and (IV) nematicides are applied to the field as
appropriate for each management zone using GPS-guided equipment for controlling
the nematicide delivery.

2.1 Soil Electrical Conductivity

Predicting nematode distribution by utilizing its strong correlation to soil texture has
been common to most precision application projects (Monfort et al. 2007, Wrather
et al. 2002). An efficient and economical technique for determining soil texture with-
out the immense cost and time required by grid sampling was needed. Soil ECa is
strongly correlated to soil particle size and texture (Williams and Hoey 1987). Sand
exhibits a low electrical conductivity, silts a medium conductivity, and clays a high
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conductivity. Equipment is now commercially available through Veris Technologies
(Lund et al. 1999) for rapid and accurate determination of soil texture within fields.
The mapping system consists of a sensor cart on which three pairs of straight-blade
disk coulters are mounted. These coulters serve as electrodes from which soil ECa
measurements are made as the sensor cart travels through the field. The Veris unit
can map soil ECa at two depths from 30 to 91 cm, and can be linked to a GPS system
to generate a continuous soil texture map of a 40 ha field in less than 3 h.

2.2 Developing Prescription Maps

Before a prescription map for a nematicide application can be constructed, a set
of guidelines to determine what nematicide rate goes where is necessary. Research
during the past 8 years has shown that soil type and texture significantly affect the
distribution of most nematode species and population densities and their damage
potential (Khalilian et al. 2001, 2003b, Monfort et al. 2007, Wrather et al. 2002).
Therefore, the soil ECa meter can be used to divide a production field into soil
textural zones (Fig. 24.1) used to predict the distribution of nematode species at a
fraction of the cost of grid sampling. The nematicide rate that would then be applied
within a single zone would be constant and would be determined by the nematode
density determined from samples taken from the zone. Geo-referenced nematicide
application prescription maps then can be developed using standard GIS software,
i.e. Farm Works or SSToolbox.

2.3 Site-Specific Nematicide Delivery System

The third component needed for a functional site-specific nematode management
program was a delivery system that allowed precise delivery of the nematicide
and the ability to change rates in a relatively short distance. Delivery systems for

Fig. 24.1 Nematode
management zones
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both 1,3-D and aldicarb with these capabilities have been developed at Clemson
University. These GPS-guided systems allow site-specific application of either gran-
ular or liquid nematicides following a prescription map. All of the technologies
related to site-specific nematicide applicators are fairly new and still need to be
validated by researchers and growers for effectiveness and practicality.

3 Current Research

Researchers in Arkansas, Georgia, Louisiana, Missouri and South Carolina work-
ing both independently and cooperatively over the last 10 years have successfully
developed cost-effective, variable-rate, site-specific application systems that are
now being adapted by their cotton growers. The following is a summary of their
progress to date.

3.1 Research in South Carolina

3.1.1 Relationship of Soil ECa to Soil Texture and Nematode Distribution

The accuracy of the Veris 3100 soil ECa meter in predicting soil textural charac-
teristics was tested in six production fields in South Carolina that were naturally
infested with CLN. Each field was divided into 1,300 plots and the Veris EC meter
was used to map each plot for soil ECa. Soil samples were then collected from each
plot and analyzed for soil texture. Comparisons of the soil ECa maps with the actual
soil texture data indicated a very high correlation at several different soil moisture
contents. For each level of soil moisture studied, there was a negative correlation
between percent sand and soil ECa and a positive correlation between percent clay
and soil ECa with correlation coefficients >0.91. Soil texture was the major fac-
tor affecting soil ECa. While soil moisture affected EC values to some degree with
the overall soil ECa values higher with increased soil moisture, the relative values
remained consistent (Fig. 24.2).

The high correlation of soil ECa with soil texture in the Southeastern Coastal
Plain soils allowed us to predict the distribution of CLN, spiral nematodes
(Helicotylenchus spp.) and ring (Criconema spp.) nematodes in production fields.
Each test field was arbitrarily divided into four ranges, and each range was desig-
nated as a management zone. Each zone showed distinct distribution patterns for
CLN, spiral and ring nematodes. Population densities of CLN both at planting and
at harvest decreased as soil ECa increased, indicating increasing clay content of the
soil (Fig. 24.3).

3.1.2 Variable Rate Application Equipment

GPS-based equipment for controlling the application rates of 1,3-D or aldicarb
according to a prescription map were developed at Clemson University. These
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Fig. 24.2 Effects of moisture
on soil ECa

Fig. 24.3 Effects of soil ECa
on Columbia lance nematode
Hoplolaimus columbus

systems were developed with the capability of being adapted to existing farming
equipment. For injecting 1,3-D, three different systems were used:

• A conventional 4-row, 1,3-D injection rig was modified by adding a variable-rate
pump and appropriate electronics to control the pump. This system uses a 4-row
squeeze-type metering pump, (modified by Chemical Container Corporation,
Lakeland, FL) to control the rate of 1,3-D that is injected into the soil. The
pump is powered by a 12 V-DC variable-speed electric motor (Rae Corporation,
McHenry, IL) with rotational speed ranging from 0 to 50 rpm. An onboard
computer with variable rate application software and GPS support provide rate
information to the controller system. Prescription application maps, based on
nematode population densities in the soil EC management zones, can be loaded
on this computer. A Trimble DGPS receiver with “fast rate” option is used to
determine the position of the applicator in the field. A Mid-tech rate-controller
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(TASC-6500, Midwest Technologies, Inc., Springfield, IL) was used to control
the speed of the electric motor.

• A self contained nitrogen gas pressurized 1,3-D injection system (Mid-Tech
Legacy-6000) was used to deliver the 1, 3–D. The Legacy 6000, which is
a complete system, replaces both the TASC-6500 and the onboard computer.
Application rate is controlled by a voltage-regulated butterfly valve.

• A map-based nematicide controller was retrofitted on a grower’s existing 1,3-D
application equipment. This controller replaces the manual on-off switch for
applying 1,3-D, and is attractive to growers because it can communicate with
most GIS software (i.e., Farm Site Mate (Farm Works Software LTD)) for pre-
cise, map-based application of the fumigant. This affordable system consists of
solid-state relays and electronic circuits which can turn the injection pumps on or
off based on a prescription map.

A prototype site-specific, variable-rate Temik 15G applicator was developed.
This system uses a 12V-DC variable-speed electric motor, to open or close the ori-
fice of the hopper boxes on a Gandy (Gandy Company, Owatonna, MN) granular
insecticide-nematicide applicator. The motor can be controlled either by the Legacy-
6000 system or using the TASC-6500 and the onboard computer. In our system, one
granular applicator hopper was used for every two rows of cotton. These hoppers
were equipped with a Lock & Load R© system and a positive displacement, gear-
type metering device. The hoppers were attached together with a hex-rod so that all
were driven by one variable-speed motor.

3.1.3 Field Tests for Application Uniformity

All the applicators were evaluated under field conditions. The 1,3-D and aldicarb
systems were calibrated to apply different rates of nematicides. Seven target rates
(11.0, 16.6, 22.1, 27.6, 33.2, 38.7 and 44.2 kg a.i. ha−1) were selected for 1,3-D
application to test uniformity of application across a range of rates. The test field
was divided into 60 × 3.8-m grids and a nematicide rate was assigned at random
to each grid. A geo-referenced nematicide application map was developed using
SSToolbox GIS software and transferred to the system’s on-board computer. A sim-
ple device was developed to collect 1,3-D samples as the chemical was being applied
to test uniformity. This device consisted of a 3-way solenoid valve inserted at the
discharge end of each chemical hose just before the injectors. In normal solenoid
mode, the system performed normally, injecting the 1,3-D 36-cm deep in the crop
row. However, by energizing the solenoid, the 1,3-D was directed into a collection
cup. Samples were collected for 30-m in each grid and the measured rate of 1,3-D
was compared to the target nematicide rate assigned to the same grid. To determine
uniformity of application within rows, all four rows were sampled. Each test was
repeated four times. A similar procedure was used for the aldicarb application uni-
formity test. Six different rates (0.34, 0.50, 0.67, 0.84, 1.01 and 1.18 kg a.i. ha−1)
were selected for this test and were repeated four times.
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All applicators closely followed the prescribed nematicide application-rate maps.
For the aldicarb system, the measurement errors ranged from –3 to 4.2% with mean
error of 1.1 indicating a high correlation between targeted and measured rates.
Results for the 1,3-D were similar: there was a very good correlation between tar-
geted and measured rates with an average overall error of 2.1% with maximum
absolute error of 6.7%. These results indicate that it is possible to accurately match
nematicide rate with the spatial distribution of nematodes. Our trials also indicated
that rates can be changed within 0.33–2.0 m of distance traveled, depending upon
the frequency of the GPS output (i.e. either 1, 2, 5 or 10 Hz).

3.1.4 Efficacy of Variable Rate Applications in the Field

Tests were conducted during 2002 and 2003 in the cotton fields described earlier to
compare the yield of the crop following site-specific nematicide application based
on soil EC management zones with conventional uniform, single-rate application.
The soil ECa maps were used to designate four nematode management zones. In
each zone, a minimum of 10 replications of 20-row blocks 15 m long on 0.97 m
row centers were established. This large number of replications for each treatment
allowed observations to be made on naturally occurring combinations of nematode
densities and soil types. Each block was divided into five 4-row plots. Each plot was
identified using GPS to allow observations from identical sites during the growing
season. The following treatments were assigned randomly in plots of each block:
(I) uniform rate aldicarb (1.01 kg a.i. ha−1) applied in-furrow at planting (ifap);
(II) variable-rate aldicarb (0.50–1.18 kg a.i. ha−1) applied ifap; (III) uniform rate
1,3-D (33.2 kg a.i. ha−1) injected 36 cm deep 10 days before planting plus 0.50 kg
a.i./ha aldicarb ifap; (IV) variable-rate 1,3-D (0.0–44.2 kg a.i. ha−1) injected 36 cm
deep 10 days before planting plus 0.50 kg a.i. ha−1 aldicarb ifap; and (V) control
(no aldicarb or 1,3-D).

Clemson University’s current nematode threshold levels for CLN nematodes per
100 cm3 soil were used for decisions as to the zones that received the site-specific,
variable-rate nematicide application (Dickerson et al. 2000). Treatments per zones
were: (I) < 51 CLN received 3.4 kg aldicarb ha−1; (II) 51–125 CLN received 5.6 kg
aldicarb ha−1 or 18.7 L ha−1 1,3-D; (III) 125–200 CLN received 7.8 kg aldicarb
ha−1 or 28 L ha−1 1,3-D; and (IV) > 200 CLN received 7.8 kg aldicarb ha−1 or
37.4 L ha−1 1,3-D. Nematicide application maps were developed and loaded on
the onboard computer. The nematicide rate within a single plot was constant and
was based on nematode density from the samples taken in the previous year. Cotton
(Delta Pine 458 RR) was planted and carried to yield using recommended practices
for seeding, fertilization, and insect and weed control. Yield was recorded using
cotton yield monitors mounted on a spindle-type picker. A yield map for the test field
was developed and the average yield for each plot was determined using geographic
information systems.

All of the nematicide treatments increased cotton yield compared to untreated
plots (Fig. 24.4). The yield increased with nematicide application compared with
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Fig. 24.4 Effects of soil ECa
and nematicide application
method on lint yield

Table 24.1 Effects of variable-rate nematicide application on lint yield and chemical use

Treatment Aldicarb [kg ha−1] 1,3-D [liter ha−1] Lint yield [kg ha−1]

Uniform rate aldicarb 6.7 0.0 728
Variable rate aldicarb 4.4 0.0 770
Uniform rate 1,3-D 3.4 28.0 743
Variable rate 1,3-D 3.4 5.6 780
Control 0.0 0.0 634

the untreated control in sandy management zones (lower soil ECa), where nema-
tode population densities were higher, and was significantly higher than where
there was higher soil clay content. Variable-rate aldicarb applications improved lint
yields by 5% compared to the standard uniform-rate application of 6.7 kg ha−1

Temik 15G (Table 24.1). The variable-rate aldicarb approach also resulted in 34%
less nematicide applied on a field wide basis than with the single rate application.
Similar results were obtained with 1,3-D where the variable-rate application strategy
resulted in 5% higher yield and 78% lower nematicide usage than the conventional
single rate approach.

3.2 Research in Georgia

Nematode management decisions typically are based on results from soil samples
which are collected from an entire field or large sections of a field. If the area rep-
resented by a sample has significant nematode aggregation or is non-uniform for
factors that influence nematode population levels, crop productivity, or the interac-
tion of the nematodes and the crop, then the assay results may lead to inappropriate
or inefficient management decisions. One way to improve the accuracy of infor-
mation used in making management decisions is to reduce the variability within
the area being sampled for factors which affect the variables being measured.
Management zones, sub-regions of a field for which a single rate of a specific input
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is appropriate (Doerge 1999), have been used to study variability in crop yield and
variable application of inputs (Aaron et al. 2004, Basnet et al. 2003, Fridgen et al.
2000). A method based on field physical characteristics for delineation of nematode
management zones (NMZ) which minimize variability within a zone and maximize
the differences among zones was developed in Georgia (Ortiz 2008).

Soil texture, moisture, fertility and terrain may affect nematodes. Monfort et al.
(2007) found a strong relationship between cotton yield, SRK levels, and percent
sand. Levels of SRK also have been related to changes in soil pH (Melakeberhan
et al. 2004) and soil moisture (Wheeler et al. 1991). Evaluation of 26 soil physical
and chemical properties (e.g., soil texture, acidity, base saturation, cation-exchange
capacity, percent organic matter) found that 50% of the variability in nematode
population density was related to high levels of clay, organic matter, low copper con-
centration, and small changes in percent soil moisture (Noe and Barker 1985). Ortiz
(2008) used data from 11 cotton fields infested with SRK to develop and validate
the procedures described below for creating NMZ maps.

The delineation of NMZ was based on: (I) the identification of the field physical
characteristics correlated with the variability of nematodes, and (II) the evaluation
of the best combination of variables and number of zones to represent the vari-
ability of nematodes. The relationship between nematode population density and
field characteristics was evaluated using canonical correlation analysis (CCA), a
procedure which accounts for multicolinearity of variables (Jaynes et al. 2005) and
evaluates the correlation between two sets of variables (Johnson and Wichern 2002).
The strength of association between SRK population density and edaphic and ter-
rain properties (soil ECa 0–30 cm deep, soil ECa 0–90 cm deep, NDVI, elevation,
and slope) measured from cotton fields was evaluated by CCA. Elevation data was
collected using a real-time kinematic (RTK) GPS at the same time that soil ECa data
was collected using the electrical resistivity method (Corwin and Lesch 2005), and
slopes of the terrain were calculated from changes in the elevation. Eigenvalues, the
squared canonical correlation from the CCA, were used to assess the proportion of
variance in the canonical predictor variable explained by the canonical correlation.
Those eigenvalues indicated that in most fields more than 50% of the variability
was explained by the canonical correlation between the edaphic terrain variable and
nematode counts. The inputs with the greatest influence on the canonical predictor
variable (those which had the greatest loading values) were soil ECa (either 0–30 cm
values or 0–90 cm values), elevation, and slope.

The next step after determining which variables optimized the canonical corre-
lation with nematode levels was to determine how to group them and the optimum
number of clusters into which they should be divided. Cluster analysis provides a
mechanism to identify areas of a field which have similar edaphic and terrain char-
acteristics and to quantify the variability in patterns (Fraisse et al. 2001). A type
of cluster analysis using fuzzy c-means can be useful in pattern recognition and
in analyzing data with the sort of continuous variability found in nature (Fridgen
et al. 2000). Fuzzy c-means classification has been used with data such as soils
(Fridgen et al. 2004, McBratney and DeGruijter 1992, Tarr et al. 2003), crop yield
(Doberman et al. 2003, Fridgen et al. 2000, Jaynes et al. 2003, Li et al. 2007), and
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remotely sensed images (Boydell and McBratney 2002, Sullivan et al. 2005), and it
is appropriate for use in identifying and optimizing NMZ. The predictor variables
previously derived in the CCA were entered into a fuzzy c-means algorithm.

Fuzzy clustering analysis was accomplished using Management Zone Analyst
(MZA) software (Fridgen et al. 2004), though other software could be used. MZA
separates the data into clusters to maximize the uniformity within a zone. MZA gen-
erates multiple scenarios for each data set in which the number of zones is increased
incrementally from two to the maximum number chosen by the user. MZA calcu-
lates two performance indices, the normalized classification entropy (NCE) and the
fuzziness performance index (FPI), which can be used to determine the optimum
number of zones which is generally the scenario having the lowest values of FPI
and NCE with the least number of clusters (Fridgen et al. 2004). Because several
performance measures are being assessed simultaneously, there is some subjectivity
in selecting the most appropriate number of zones. A user may choose to reduce
the number of zones if one or more zones are deemed too small or discontiguous
to be practical. MZA can create maps to visually depict the zones, or the resulting
clustering data can be exported for use in other mapping software. An example of a
nematode management zone map is shown in Fig. 24.5.

Ortiz (2008) documented that NMZ with the lowest soil ECa typically had the
greatest SRK population levels and zones with the greatest soil ECa values generally
had the fewest nematodes. Because of the strong relationship between soil ECa and
nematode levels, NMZ based only on soil ECa generally resembled zones which
also considered elevation, slope, and NDVI, although including the other variables
did improve the relation between the zones and nematode levels. The greater the
variation in elevation, slope, and NDVI is in a field, the greater the contribution of
those variables is expected to be in creating NMZ.

Fig. 24.5 Nematode management zones created based on soil ECa, elevation, slope, and NDVI
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The greatest utility of delineating NMZ based on field edaphic and terrain
properties is to provide a guide for directed nematode sampling regardless of prior
knowledge of nematode presence or distribution. Because we now know that soil
ECa, elevation, slope, and NDVI are related to levels of SRK, the canonical correla-
tion analysis does not need to be performed for each field, and those variables can be
used to create NMZ zones which cluster those factors to minimize variability within
a zone while maximizing variability among zones. The resulting zones can then
be sampled independently of each other and management decisions for each zone,
including site specific nematicide applications, can be made based on those sam-
ples. This method of creating zones with homogenous features should be of value in
managing any nematode species for which those factors affect its population levels
or the damage it causes to the crop.

3.3 Research in Arkansas

In 2001, studies were initiated in a commercial cotton field in Arkansas to more fully
understand the relationship between soil texture and SRK population densities and
damage potential. As with CLN, our results indicated that SRK population densities
were strongly impacted by soil texture, especially changes in percent sand content
(Monfort et al. 2007). Nematode population densities increased with increasing sand
content across a range from roughly 28–65% sand and declined where soil texture
exceeded 65% sand (Fig. 24.6). Although population densities declined at higher
sand contents, the damage potential of the nematode continued to increase as sand
content increased, likely due to both the influence of texture on nematode survival
and reproduction and on the growth of the host crop. Figure 24.6 represents the

Fig. 24.6 Relationship
between Meloidogyne
incognita, the southern
root-knot nematode (Pi), %
sand and cotton lint yield
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combined effects of both nematode population density and soil sand content on
cotton yield where two yield target lines (1120 and 841 kg ha−1 lint yield potential)
have been constructed.

The relationship between nematode population density (y axis) and percent sand
(x axis) are illustrated by these lines. For example, the target yield of 1,120 kg/ha
can be maintained at lower soil sand content with considerably higher nematode
population densities, whereas at higher percent sand, the plant can maintain the tar-
get yield at only a fraction of the population of nematodes. This may be the result
of decreased water holding capacity and available fertility at higher sand contents,
resulting in greater overall plant stress, but a strong relationship between sand con-
tent of the soil and SRK population density was consistently evident over a three
year period (Monfort et al. 2007).

3.3.1 On-Farm Experience in Arkansas

A commercial cotton field in northeast Arkansas was chosen as a model to evalu-
ate the potential for site-specific application of 1,3-D for SRK management using
precision agriculture technologies at a farm level. An arbitrary composite sample
of the field and inspection of roots as well as a history of disappointing yields pro-
vided initial indication that the field would be a good model. A soil ECa map of
the field was developed after harvest in 2004 using a Veris 3,100 mobile EC cart as
described above, and a soil management zone map was constructed by interpolating
the point data using the Kriging interpolation method in SSToolbox (Fig. 24.7). The
soil management zone map was then loaded into a handheld computer and used as
a guide for taking nematode samples. Each zone sample was a 100 cm3 subsam-
ple of a composite of 20–30 cores collected randomly from the management zone.
As expected, the SRK population densities were not uniform across soil manage-
ment zones (Fig. 24.7). Using the nematode distribution and population densities for

Fig. 24.7 Management zones based upon ECa and nematode density corresponding 1,3-D
application map
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each zone, a site-specific nematicide application prescription was devised based on a
nematicide action threshold of 500 juveniles per 500 cm3 of soil (T.L. Kirkptatrick,
personal communication). The population densities ranged from 0 to 2,000 juve-
niles per 500 cm3 of soil with the nematode being absent or below threshold in an
estimated 37% of the field (Fig. 24.7).

Our initial approach in 2005 was to manually turn the nematicide applicator
off and on guided by the application prescription map displayed on a hand-
held field computer with GPS software to locate zones within the field. When
the experiment was repeated in the same field using the same map in 2007, a
Legacy 6000 system as described above was installed on the farmer’s 1,3-D appli-
cator and delivery of the material was as previously described according to the
prescription map.

To measure the efficacy and the potential economic benefits of site-specific appli-
cation of 1,3-D in the model field, a series of paired comparisons was established
in the field in 2005 (10 comparisons) and 2007 (7 comparisons). Each comparison
consisted of 6-row field length strips that received the uniform rate of 1,3-D, the site-
specific application, or no 1,3-D (control). In 2005, the mean yield for the uniform
rate treatments was 127 kg ha−1 greater than the control, and the yield for the site-
specific application was 104 kg ha−1 greater than the control. In 2007, mean yield
for the uniform rate was 113 kg ha−1 greater than the control while the yield in the
site-specific treatments was 143 kg/ha greater than the control. Utilizing the man-
agement zones to focus 1,3-D applications in specific areas resulted in a reduction
of about 40% in 1,3-D compared to the uniform rate.

4 Discussion

4.1 Summary

Utilization of SEC-GPS and GIS technology allows accurate, efficient and eco-
nomical development of geo-referenced soil texture maps which, in turn, make
site-specific nematicide application systems possible. Application technology and
equipment has advanced to the point that cost effective systems that can be used
by cotton growers are feasible. SEC maps are capable of predicting where nema-
todes will occur with a relatively high degree of accuracy, and they also may be
useful in predicting where nematodes either will not occur, or where the yield
potential of a site is sufficiently high that treatment with a nematicide is not
going to be cost effective. Promising results have been obtained across a wide
range of soil types and production environments in Arkansas, Georgia, Louisiana
and South Carolina. In most instances site-specific application of either aldicarb
or 1,3-D resulted in a decrease in the amount of nematicide applied by 30–50%
across the field while crop yields were maintained or increased. This reduction
in overall nematicide usage is desirable from both economic and environmental
perspectives.
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4.2 The Future of Site-Specific Nematicide Applications

Utilization of site-specific nematicide application systems likely will continue
to grow as researchers and growers gain practical experience with this system.
Although we used cotton production systems as our model, this concept is appli-
cable to any agronomic crop that is susceptible to nematode-induced yield losses,
and where nematicides are labeled and available. It is likely that the cost associ-
ated with the technology and equipment will decrease as the systems become more
familiar and are utilized more widely by growers and crop consultants. The potential
also exists for interfacing other technologies such as vegetative indices (e.g. NDVI),
spectral analysis, SEC-generated soil textural maps, and geo-referenced crop yield
maps to create even more efficient and precise maps of problem areas within fields.

Our ultimate goal is to develop a system to identify nematode species and den-
sities in the soil as precisely and rapidly and easily as we now do soil texture.
Use of quantitative PCR or a related technology may eventually make this possi-
ble. However, for now, the ability of site-specific nematicide application systems to
minimize nematode damage while reducing nematicide loading of the environment
ensure its utilization as long as soil-applied pesticides are used.
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Chapter 25
Precision Disease Control in Bed-Grown Crops
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Hein Stallinga, and Pleun van Velde

Abstract Matching spray volume to crop canopy sizes and shapes can reduce the
use of plant protection products, thus reducing operational costs and environmental
pollution. Developments on crop adapted spraying for fungal control are highlighted
in arable crop spraying. A plant-specific variable volume precision sprayer, guided
by foliage shape and volume (canopy density sprayer; CDS) was developed for bed-
grown crops to apply fungicides. Sensor selection to quantify crop canopy and spray
techniques to apply variable dose rates are evaluated based on laboratory measure-
ments. Based on the laboratory experience a prototype CDS sprayer was built using
either a Weed-IT R© or a GreenSeeker R© sensor to detect plant place (fluorescence) or
size (reflectance). Variable rate application was either done with a pulse width mod-
ulation nozzle or a switchable four-nozzle body. Spray volume could be changed
from 50 to 550 l ha−1 in 16 steps. Spray deposition, biological efficacy and agro-
chemical use reduction were evaluated in a flower bulb and a potato crop during
field measurements using a prototype CDS sprayer. Spray volume savings of a pro-
totype plant-specific sprayer are shown to be more than 75% in early late blight
(Phytophthora infestans) control spraying in potatoes. In flower bulbs (lily) it was
shown that in Botrytis blight control on average spray volume could be reduced by
45%. In a potato crop biological efficacy was maintained at the same good level
as of a conventional spraying. In a flower bulb crop biological efficacy of the CDS
was lower than of conventional spraying, which means that spray strategy and dose
algorithms need further research.

1 Introduction

In crop spraying the goal is to achieve a uniform spray deposition all over the crop
canopy structure or soil surface. Losses to the soil underneath the crop and out-
side the field, through spray drift are to be minimised. It is known that sprayer
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settings are important for spray distribution in crop canopy. Matching spray vol-
ume and direction to crop size and shape can reduce chemical application, thus
reducing operational costs and environmental pollution. Manual or sensor actuated
sprayers have shown potential reductions in agrochemical use of 30% and more.
Sensors quantifying crop parameters such as quantity of biomass and photosyn-
thesis activity are already commercially available. Sensors to evaluate the plant
stress (MLHD 2004, Polder 2004) or spectral analysis of the crop canopy parame-
ters (Bravo et al. 2003, Schut 2003, Vrindts et al. 2003, Scotford and Miller 2004,
2005) open the potential for more target oriented spraying in crop protection. Spray
systems treating individual plants based on fluorescence (Weed-IT R©, Rometron,
Doorwerth, NL) as used on pavements (Kempenaar et al. 2006) or canopy reflection
information (GreenSeeker R©, Ntech Industries, Ukiah, USA) used for fertilising are
already developed. Precise application techniques recently developed able to vary
dose rates are obtained by Pulse Width Modulation nozzles (Weed-IT R©) and multi-
nozzle holders (VarioSelect R©, Lechler, Metzingen, D) with switchable number of
nozzles varying in flow rate (Dammer and Ehlert 2006); respectively in a continu-
ous (50–300 l ha−1) and a stepwise way (50–600 l ha−1 in 16 steps). Based on these
possibilities smaller units of treatment can be achieved in the field. In spraying crop
protection products this will lead from a full boom width treatment to section wise
and even nozzle wise variable applications.

An example in which the different elements of precision farming are combined
is a Canopy Density Sprayer for bed-grown crops like flower bulbs and potatoes
(Zande and Achten 2005). This chapter presents an overview of recent develop-
ments and introductions in agricultural practice of crop adapted spraying for crop
protection in bed-grown crops.

2 Potential Use Reduction

In order to quantify the potential of crop adapted spraying in arable crops an inven-
tory of crop development in flower bulb growing was made. For a bed-grown crop
like lilies it is obvious that easiest savings in spray volume can be made by not
spraying the paths between the beds. As beds are created at 1.50 m spacing and the
planted area of the bed is 1.0 m wide, about 30% of the area should not to be sprayed
against fungal diseases. Canopy development and potential spray volume saving for
the 2002 growing season of a lily crop (var. Stargazer) is shown for crop coverage
on the bed and between beds on the paths and crop height on the bed (Fig. 25.1).
Potential spray volume savings in the early season are possible by only spraying
the individual plants. More than 90% is not to be treated at first sprayings against
leaf blight (Botrytis spp.) based on green area coverage. This reduction potential
decreases as the canopy develops to about 25% when the bed is fully covered with
green canopy and only the paths in between the beds are not treated. Based on
canopy height, savings can be generated up until the maximum height of the crop
is reached which is the moment of removing the flowers. As the crop is grown to
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Fig. 25.1 Coverage with crop canopy (lily cv. Stargazer) of the bed and the path between the
beds during the growing season and potential spray volume reduction by only spraying green parts
(left) and crop height during the growing season and potential spray volume reduction (right) by
adapting spray volume to crop height (full dose at maximum crop height)

produce flower bulbs the flowers are cut after initiation of flowers. Based on crop
height the potential reduction in spray volume could be more than 90% for the early
sprayings and on average around 45% for the entire growing season (Fig. 25.1).

To verify spray volume reduction in practice, a field experiment was performed
applying the reduced spray volumes before full growth situation at reduced doses.
Normally from the first spraying onwards a full dose is applied (1.6 l ha−1 Allure R©;
active ingredients chlorothalonil + prochloraz). First spraying was reduced to 0.1,
0.2, 0.4 or 0.8 l ha−1 and then doubled at each of the next group of applications
until full dose was attained. This scheme showed that even starting the first spraying
in the season with only 1/16th of the recommended dose did not affect average
lily bulb weight significantly (Table 25.1). Nor was average disease infected leaf
area at harvest time significantly affected except with the lowest starting dose of
1/16th of that recommended. Similar results were obtained for a tulip crop in three
growing seasons. These measurements show the potential of using lower doses at
early sprayings. Automating the adaptation of dose to the crop canopy density would
be a challenge.

Sensors on the market, currently used for advising on fertilizer use could be uti-
lized also for canopy density characterization. Therefore in the laboratory different
plant densities and heights of a lily crop were used to evaluate a GreenSeeker R©
sensor for determining the reflection of different canopy densities. Results of the
Normalised Differential Vegetation Index (NDVI) are presented in Table 25.2 for
the three crop heights and two plant densities. There is little difference in NDVI
for the middle and high crop irrespective of plant density. Only the low crop height
shows a difference in reflection between plant densities.

The laboratory results show that the GreenSeeker R© sensor is limited in use for
adapting the dose to canopy density or crop height. The high values for the low crop
height suggests an influence of soil surface (organic matter) on reflectance. However
the sensor can be used in the early growth stages to adapt spray dose based on its
canopy reflection signal (NDVI).
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Table 25.1 Effect of crop adapted spraying against Botrytis blight on yield (relative bulb weight)
of a lily crop and infected leaf area at harvest time (%) with reduced doses at early spraying and
increasing dose to full dose (Allure R©, 1.6 l ha−1) at flower cutting (maximum crop height 60 cm)

Fungicide application [l ha−1] 2006 2007

Treatment
1st/
2nd 3rd

4th/
5th

6th/
7th

8th/
etc. Bulb Leaf Bulb Leaf

Aver.
leaf

Height (cm) 10 20 30 40 60

1 0 0 0 0 1.6 99 53 da 100 43 cd 48 d
2 0 0.2 0.4 0.8 1.6 92 33 c 98 45 d 39 cd
3 0.1 0.2 0.4 0.8 1.6 96 30 bc 99 40 bcd 35 bc
4 0.2 0.4 0.8 1.6 1.6 96 18 ab 105 23 a 20 a
5 0.4 0.8 1.6 1.6 1.6 96 20 abc 103 30 abc 25 ab
6 0.8 1.6 1.6 1.6 1.6 95 20 abc 109 28 ab 24 a
7 Standard 1.6 1.6 1.6 1.6 1.6 100 15 a 100 30 abc 23 a
8 Control 0 0 0 0 0 79 100 e 74 95 e 98 e
LSD (0.05) 6 6 6 7 10

asame letter in column means no significant difference.

Table 25.2 NDVI values for a lily crop with different plant densities and crop heights in a
laboratory test measured with a GreenSeeker R©

Crop height
Plant density
[plants m−2] Low Medium High

120 0.72 0.88 0.88
180 0.80 0.89 0.89

3 Canopy Density Spraying in Practice

A Canopy Density Sprayer for bed-grown crops like flower bulbs and potatoes is
under development. This CDS prototype spraying system combines detailed crop
information (fluorescence and spectral reflectance) with very accurate application
techniques. The system sprays only when there are crop plants under the spraying
nozzle(s) (Fig. 25.2). When leaves emerge from the soil only the leaves are sprayed:
i.e. the sprayer operates as a patch sprayer. When the crop develops it forms rows
and the CDS becomes a band sprayer. When the crop canopy covers the whole bed,
only the bed will be sprayed but not the paths in between. When the crop develops to
its maximum height (flowering) spray volume will be adapted to crop height or total
leaf area to cover total leaf area with spray liquid uniformly. Expected reductions
in agrochemical use vary from 25% in the full-developed canopy to more than 90%
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plant row bed

Fig. 25.2 Schematic
presentation of the
development of a Canopy
Density Sprayer for
bed-grown crops

in the initial leaf stage based on crop growth development evaluations during the
growing season of flower bulb crops grown on beds (Zande et al. 2008).

Canopy adapted spraying systems are momentarily tested in prototype versions
in potato and flower bulb crops to apply fungicides against late blight in an early
potato crop and Botrytis blight in a lily flower bulb crop.

4 Plant-Specific Spraying Against Late Blight in Potatoes

The first experiments with plant-specific spraying against late blight in potatoes
were done in autumn 2007 (WUR-PPO experimental farm, Lelystad) and were
repeated in the 2008 and 2009 growing season. It was shown how much fungi-
cide can be saved by switching on and off nozzles when spraying against late blight
(P. infestans) and whether the biological efficacy remained comparable with conven-
tional application. A prototype using Weed-IT R© sensor-spray elements was built for
this purpose enabling the spray to be placed in 10 cm bands with 5 cm length direc-
tion accuracy. The machine was prepared to work at a width of 2.25 m, on the top of
three potato ridges (Fig. 25.3, left). The conventional spraying machine (Fig. 25.3,
right) used TeeJet XR11004 nozzles (3 bar spray pressure) at 50 cm nozzle spacing

Fig. 25.3 Canopy density spraying with pulse width modulation nozzles (left), and conventional
sprayer applying 300 l ha−1



408 J.C. van de Zande et al.

applying a spray volume of 300 l ha−1 (5 km h−1). Boom height between the soil
and the crop canopy was 75 cm. The fungicide applied (Shirlan R©, active ingredient
fluazinam) was prepared as a tank mix in a jerry can and placed on a ‘Spider 15’
balance with an accuracy of ten grams. The amount of spray volume used was deter-
mined by weighing the jerry can with the chemicals before and after every treated
field (2.25 × 10 m). The average used dosage (l ha−1) of every field was compared
to that used in conventional spraying.

The experiment contained seven treatments; untreated, plus six treatments
sprayed with fluazinam to protect the crop against P. infestans. Fields were sprayed
with both conventional and Weed-IT R© spray techniques at dose rates of 75% (0.3 l
ha−1) and 25% (0.1 l ha−1) of recommended dose (0.4 l ha−1).

After the treatments, leaves were picked to analyze them in the laboratory for
protection against late blight. The leaves were inoculated with a few drops of a
Phytophthora spore suspension and Phytophthora development on the leaves was
visually evaluated after 6 days.

First experiments of late planted potatoes in autumn 2007 showed that the mea-
sured quantity of sprayed volume during applications on the different dates varied
between 75 and 84%. These savings coincided with measured crop coverage of the
soil surface. No differences in protection against late blight were found between the
spray techniques and dose rates, except for the Weed-IT R© 75% dose on October
23 which was significantly lower than the other techniques. From these first experi-
ments it was concluded that individual plant spraying gave equally good protection
against late blight with use of less than 25% of the standard applied amount of
fungicide.

In the 2008 experiments early season sprayings resulted in a reduction of sprayed
volume of the Weed-IT R© application of between 25 and more than 50% for
individual sprayings (Fig. 25.4) compared to the conventional applications.
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Fig. 25.4 Use reduction of fungicide (% compared to conventional) in early potato late blight
control using a Weed-IT R© sprayer for plant specific application
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Table 25.3 Spray deposition for conventional and plant specific Weed-IT R© application of fungi-
cides in potatoes early in the season on different places of the plant, top of plant canopy and on the
soil surface underneath

Spray deposition [μl/cm2]

On plant Soil surface

Spray
technique Front Centre Left Right Back Sum

Above
crop
canopy

Top
ridge

Between
ridge

Conventional 0.89 1.00 0.82 0.78 0.72 0.85 1.34 0.55 1.08
Weed-IT R© 0.65 0.78 0.65 0.46 0.62 0.63 0.36 0.40 0.49

Measured spray deposition on the plant canopy differed between the Weed-
IT R© application and conventional spraying as average spray deposition was lower
(Table 25.3). However variation between deposits on plant parts related to the
switching of the nozzles of the Weed-IT R© showed no larger variation than of the
conventional spraying. As expected spray deposit on the soil surface was lower for
the Weed-IT R© spray system.

There was no difference in biological efficacy in late blight control during
early sprayings between conventional and Weed-IT R© sprayings for the 75% dose
(Table 25.4). The 25% dose gave a lower protection level for both applications
techniques after the first treatment. After two additional sprayings the difference
in protection level was less for the conventional spraying but still effective for both
dose rates of the Weed-IT R© sprayings. This suggests that at reduced dose rates there
is a higher risk of blight infection with the plant-specific spraying, which probably
is related to the difference in spray deposit. Further research is needed on this sub-
ject to determine optimised dose-effect algorithms based on sensor output. However,
using the recommended dose will give no reduced efficacy of the CDS compared to
the conventional spraying.

Table 25.4 Protection against late blight (Phytophthora infestans) expressed as % infected
potato leaf area for conventional and Weed-IT R© plant-specific application of 75 and 25% of
recommended dose (0.4 l ha−1) of Shirlan R© (fluazinam) at early season spraying dates

Percent infected leaf area

Treatment 5 June 12 June 19 June 26 June

Untreated 99.7 98.6 97.8 99.1
Conventional 75% 12.1 13.9 3.4 0.6
Conventional 25% 22.9 29.8 5.8 3.1
Weed-IT R© 75% 20.0 14.5 3.8 1.6
Weed-IT R© 25% 23.4 29.5 10.8 7.4
LSD0.05 6.8 7.1 3.8 2.8
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5 Plant-Specific and Canopy Reflection Dependent Spraying
Against Botrytis Blight in Flower Bulbs

In the flower bulb crop lily (at WUR-PPO, Lisse, NL) a prototype CDS sprayer was
used to apply the fungicide Allure R© (1.6 l/ha) in a plant-specific way using Weed-
IT R© elements and a canopy density manner using a SensiSpray element of 1.5 m
wide working width (Fig. 25.5, Zande et al. 2009). Maximum dose rates were varied
between full dose and half dose by adapting tank mix concentration. In the Weed-
IT R© sprayer TeeJet R© 400067 flat fan nozzles were used with a nozzle spacing of
0.10 m. Individual plants were sprayed based on the Weed-IT R© green detection sen-
sor. The SensiSpray sprayer was equipped with VarioSelect R© nozzle bodies at 0.50
m spacing containing 4 Lechler ID9001 venturi flat fan nozzles, able to switch and
therefore apply spray volumes in steps of 130, 260, 390 and 520 l ha−1 depending
on the measured NDVI of the GreenSeeker R© sensor. For the conventional appli-
cation one of the nozzles of each VarioSelect R© nozzle body was replaced with a
TeeJet R© XR11004 flat fan nozzle. All systems operated at 3 bar spray pressure.
Driving speed was 3.6 km h−1 for the conventional and SensiSpray applications
and 3.0 km h−1 for the Weed-IT R©, thereby all applying around 530 l ha−1.

During the growing season crop protection against Botrytis blight sp. was done
with weekly scheduled fungicide applications of the conventional, Weed-IT R© and
SensiSpray spray techniques at two maximum dose rates with 4 replications. Used
spray volume per individual field (1.5 × 7 m) was quantified by weighing the
sprayed amount on the sprayer. Botrytis spp. infection was monitored during the
growing season using a 0–10 scale; 10 = no infection, 9 = 5% of plants infected,
6 = 40% of plants infected, and 0 = complete desiccated crop, with no green
area left.

The prototype CDS sprayer equipped both with a Weed-IT R© and a SensiSpray
spray boom was used in 2008 for a season long spraying of fungicides against
Botrytis blight in a lily crop. The canopy related dosing of both systems was active
throughout the season. For all applications between early June and mid August spray

Fig. 25.5 Prototype canopy density sprayer for bed grown crops used in a lily crop; left in early
growth stage with individual plants; right in late growth stage with fully covered bed
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and SensiSpray CDS spray techniques during the 2008 growing season of a lily crop

volume reduction (Fig. 25.6) for the Weed-IT R© system was between 40 and 55%
compared to conventional application (530 l ha−1). The two late August sprayings
could not be done because no green tissue was left.

The SensiSpray system resulted in a 10% reduction in spray volume during early
season sprayings. The set NDVI (GreenSeeker R©) and dose relation (spray volume)
algorithm turned out to be inappropriate for lily crop development. Also at final
sprayings in August there was an increase in spray volume reduction because of a
decrease of green leaf tissue at the end of the season. Desiccation of the lily crop
was however greater for both the Weed-IT R© and the SensiSpray applications than
for the conventional applications.

Spray deposition (μl cm−2) in the lily crop was measured in early July when
crop height and soil coverage was maximum. On top of the canopy there was little
difference between the spray techniques (Fig. 25.7). In the middle leaf level the
Weed-IT R© had a higher sprayer deposition than the conventional spraying and the
SensiSpray was lowest. At the lowest leaf level spray deposition of the Weed-IT R©
and the conventional spraying were comparable and the SensiSpray lowest.

Biological efficacy was evaluated throughout the growing season. First detec-
tion of Botrytis blight was late July in all plots (Table 25.5). In the Weed-IT R© and
SensiSpray fields there was a rapid decline in green area because of Botrytis blight
infestation.

This resulted at harvest time in lower average bulb weights, especially of the
SensiSpray system. As the dose-spray volume algorithm of the SensiSpray was used
throughout the season it is now considered possible for adaption in order to improve
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Table 25.5 Protection against Botrytis blight expressed as scale infected lily leaf area for con-
ventional, SensiSpray and Weed-IT R© plant-specific application of 100 and 50% of recommended
dose (1.6 l ha−1 Allure R©) at last season spraying dates and relative bulb yield

Botrytis blight development

Spray technique
Dose
(%) 25 June 23 July 14 Aug 26 Aug

Bulb yield
[rel.]

Untreated control

no
di

se
as

e

9.8 1.8 0.0 77
Conventional 100 9.8 8.5 6.8 100
Conventional 50 9.8 8.8 7.5 97
Weed-IT R© 100 9.8 6.5 2.0 89
Weed-IT R© 50 9.8 7.3 4.0 87
SensiSpray 100 9.8 7.8 5.5 51
SensiSpray 50 9.8 8.0 6.8 50

spray deposition depending on growth stage and GreenSeeker R© NDVI signal. This
is subject for further research.

6 Future Developments

Canopy Density Spraying on bed-grown crops, like potatoes and flower bulbs, have
shown a potential reduction in use of plant protection products, especially with
first sprayings of the crop early in the growth season. Furthermore, when the crop
covers the soil surface completely but the crop still develops in height and leaf
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mass, a reduction in pesticides is possible while maintaining biological efficacy.
Further development of Canopy Density Spray systems and more target oriented
spraying can be realised when diseases are detectable before the development of
visual symptoms. Sensor evaluation shows potential in this direction. The evalu-
ation of combinations of sensor and spray systems on the market show that the
potential of Canopy Density Spray system for effective application is close to prac-
tical use (Zande et al. 2008). First field tests of a prototype plant-specific fungicide
application with a CDS-prototype (Weed-IT R©) show a reduction of 75–84% in
agrochemical use for the first three fungicide applications while maintaining good
control of late blight in potato. Potato plants were still individually standing and
crop coverage during these applications was around 30%. In lily flower bulb spray-
ing use reductions were obtained between 10 and 50%. However biological efficacy
of CDS spraying decreased compared to conventional spraying. Algorithm develop-
ment to improve relations between crop reflection measurements and required dose
need further research.

7 From Prototype to Practice

In order to deal with variations in crop development and site-specific variations
in the field, the sensor-based spray technology system SensiSpray was developed.
The system was built on a boom sprayer and consists of sensors to detect crop
variation and a spray system to automatically change spray volume and therefore
pesticide dose depending on the sensor signal (Fig. 25.8) and an application specific
dosing model. The sensors used were GreenSeeker R© sensors that measure crop
reflection. The NDVI output signal of these sensors was used (Schwab et al. 2005).
A control unit, electronics and software were developed to use this output signal
of the GreenSeeker R© sensors to adapt spray volume. To vary the spray volume
VarioSelect R© nozzle bodies were used fitted with four different low-drift venturi
flat fan nozzles (Böttger and Langner 2003). Seven sensors were placed on a 27 m

Fig. 25.8 Varioselect R© nozzle holder (upper right) and GreenSeeker R© sensor placed on the spray
boom (bottom right), sprayer sprays a high volume above green grass (right in left picture,) and a
low volume above desiccated grass (left)



414 J.C. van de Zande et al.

working width boom sprayer. Each sensor controlled the spray volume of a boom
section 3–4.5 m wide.

Spray deposition measurements (Zande et al. 2009) were performed to test the
sprayer’s accuracy in adapting spray volume based on the crop reflection signal
per section. A grassland field was prepared in 24 m wide strips next to each other
with differences in biomass production by extra N fertilization, mowing and herbi-
cide treatment. Treatments resulted in distinct differences in biomass and vegetation
colour and therefore reflection. The sprayer passing across the strips at an angle of
45◦ at a speed of 6 km h−1 gave a clear view on the individual section changes on
the sprayer boom. Measured spray deposit using a fluorescent dye (Brilliant Sulpho
Flavine) added to the water in the spray tank showed that the individual section
sensor reacts on the change in reflection and spray volume was adapted per boom
section at an accuracy of 1 m in the driving direction.

To demonstrate the potential use of the SensiSpray system in practice it was
used in potato haulm killing spraying (Kempenaar and Struik 2007). The variation
in the field of the greenness (amount and activity of green biomass) of the potato
canopy at desiccation spraying before harvest was used to vary spray volume of
the herbicide used. The spray volume and dose adaptation was based on dosing
algorithms of the Minimum Lethal Herbicide Dose Potato Haulm Killing system
(MLHD PHK) relating reflection measurements with minimum dose needed to kill
off potato canopy (Kempenaar et al. 2004). In the 2007 and 2008 season different
potato fields were sprayed and a general use reduction in pesticides for potato haulm
killing was circa 50%.

The experienced variation in crop canopy and NDVI reflection resulted in dose
variation sprayed for a high and a low variable field of potatoes. Average dose for the
high variation potato field was 0.85 l ha−1 of herbicide and for the low variation field
0.77 l ha−1. Lowest dose was 0.5 l ha−1 for both fields and the highest dose 1.9 l
ha−1 for the high variation field and 1.5 l ha−1 for the low variation field, respec-
tively, resulting in coefficients of variation of 25 and 20% respectively. Conventional
dose of potato haulm killing herbicide for the field was 2 l ha−1 because of the
desiccation stage of the crop canopy whereas the label dose was 3 l ha−1.

During the 2008 season tests were conducted in late blight control in potatoes
adapting spray volume to crop development at the beginning of the growing sea-
son. Spray volume and dose was reduced for the first three fungicide applications.
No difference occurred in disease development between conventional spraying and
canopy adapted dose spraying with the SensiSpray system, both giving good control
of late blight.

The NDVI measurements in the SensiSpray project yielded much information
on spatial and temporal variation of crop biomass in potato, wheat, tulip and onion
crops. How to use this information successfully in a site specific pesticide dosing
system needs more research on the development of dose-effect algorithms for sensor
based systems

Inputs of plant protection products for Canopy Density Spraying systems are
lower than for conventional systems. Risk to the environment therefore, is also
reduced as less pesticide is deposited besides the target and less is emitting as
spray drift. The variation in spray drift increases alongside the field boundary due
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to the variation in spray volume but will in general be lower than for conven-
tional spraying as spray volume is lower with similar tank concentrations. Canopy
Density Spraying systems have a significant potential for reducing agrochemical
inputs while maintaining biological efficacy.
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Chapter 26
Economic Evaluation of Precision Crop
Protection Measures

Jan Ole Schroers, Roland Gerhards, and Martin Kunisch

Abstract This chapter analyzes the economic benefits of precision crop protection
based on experimental data for site-specific application of herbicides in winter cere-
als, maize and sugar beets in Western Europe. Despite of additional costs for weed
sensing and application technology, site-specific weed control resulted in higher
economic return compared to conventional uniform applications even over periods
of several years.

1 Introduction

An important effect of technological progress may be a decrease in the production
costs per unit. The reduction of unit costs can either be attained with lower operating
input with the same yield level or with a higher yield level with the same operating
input.

The objective of precision herbicide application is to save operating inputs, by
treating only subareas of a field where the economic weed threshold has been
exceeded. Areas below the economic weed threshold, i.e. with low or no weed
infestation remain untreated.

Furthermore, weed species can be controlled selectively with different her-
bicides and herbicide mixture can be varied during the application with a
multiple tank sprayer or direct injection system (Miller et al. 1995, Heisel
et al. 1996, Gutjahr et al. 2008, Gerhards and Oebel 2006, Timmermann et al.
2003).
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2 Subject of Investigation – Description of Process Flows

For winter wheat, maize and sugar beet the costs of chemical weed control using
three different methods – conventional uniform application (C), map-based site-
specific (MB) and sensor-based site-specific (SB) were investigated (Table 26.1).

Every weed control method includes a sampling process and an application pro-
cess. In the conventional weed sampling process only the average weed density
and the weed species observed are measured based on approximately 20 counts per
hectare in a 0.1 m2 sampling frame. The disadvantages of conventional technology
compared to precision farming technologies are that spatial and temporal variations
in weed populations cannot be taken into account for weed management decisions.
The advantages of conventional technology compared to precision farming tech-
nologies are that no additional technology – sprayer, camera system, GIS etc. – is
required and no separate passage for site-specific weed sampling is needed in the
map-based process.

As described in Chapters 2, 15, and 22, a three-chamber sprayer with three sepa-
rate tanks, each filled with a different herbicide, which is applied via a separate spray
line, is used for herbicide application in a map-based approach. Weeds are sampled
in this approach in a separate work process. A camera system, mounted on the car-
rier vehicle, samples information about quantity and distribution of various weed
species through high-resolution images during passage. The information is pro-
cessed with image processing software and transformed into a digital geo-referential
weed distribution map.

Before application the geo-referenced information on the distribution and quan-
tity of weed classes is transferred to the sprayer controlling software. Based on
this, the site-specific and selective treatment is carried out in combination with the

Table 26.1 Machinery – sprayers and spray booms in different systems for herbicide application
(interest rate 4% per year)

Process: Conventional application Map-/Sensor-based application

Name/type Unit

Sprayer
without
boom

Single spray
boom

Three-chamber
sprayer without
boom

Threefold spray
boom

Tank volume l 3,000 – 800/300/300 –
Working width m – 24 – 24
New price C 23,000 16,000 46,000 32,000
Useful life a 10 10 10 10
Useful

employment
ha 18,000 9,600 18,000 9,600

Repair costs C ha−1 0.55 0.50 0.95 1.50
Annual use ha a−1 1,800 1,800 1,800 1,800
Variable costs C ha−1 0.55 0.50 0.95 1.50
Fixed costs C ha−1 1.53 1.07 3.07 2.13
Total costs C ha−1 2.08 1.57 4.02 3.63
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GPS system installed on the tractor, which determines the sprayer position. The
disadvantages of map-based technology compared to conventional technology are
the additional costs for weed sampling and site-specific application of herbicides.
The advantage of the map-based compared to conventional technology is that less
herbicides are used resulting in less costs and less risk for the environment.

In the sensor-based process the three-chamber sprayer with three spray booms,
which reacts to the signals of the controller software is also used. However, weed
identification, image processing and site-specific treatment are performed within
one passage. A sensor system on the camera for automatic weed identification deliv-
ers information of weed density, weed cover and species. A decision for real-time
weed control separately for each weed class is calculated and realized in one pas-
sage. Weed species are grouped into grass weeds, annual broadleaved weed species
and other weeds such as perennials. The advantage of the sensor-based process
compared to the map-based is that no separate work process for site-specific weed
sampling and map-based spaying is needed. Therefore, also a GPS system is not
required. The disadvantages of the sensor-based process compared to the map-based
are that it cannot be calculated how much herbicide solutions are used before filling
the sprayer. Therefore, direct injection technology with premixing and central water
tank would be beneficial.

The various processes in precision crop protection generate different costs, which
can be deducted from the technology applied and the working time involved. The
derivation of costs per measure will be explained in the following chapter.

3 Costs of Precision Crop Protection Technology

The costs of a plant protection measure consist of the herbicide costs and operat-
ing costs (labour, machinery) for the work processes of sampling and application
(KTBL 2008/2009). The monetary output of the precision crop protection technol-
ogy is equivalent to the herbicides saved. In this investigation it is assumed that with
all processes the same efficacy is achieved.

The technical and economic parameters of the technology being applied in the
respective processes of sampling and application significantly determine the operat-
ing costs and are presented in Table 26.1. Since the three-chamber sprayer used in
the map-based and in the sensor-based processes is not commercially available yet,
but available as prototype, the price was calculated based on the machine elements
(water tank, control software, spray boom, etc.).

For the application the following technology is used with the specified technical
and economic parameters shown. The costs for the sprayer are 3.65C ha−1 in the
conventional method and 7.64C ha−1 in the precision crop protection methods.

For weed sampling in the sensor-based and map-based processes, a system of
high resolution bi-spectral cameras is used for weed identification. In the map-based
process the images and image processing software create a digital weed distribution
map. In the sensor-based method the information is directly processed by the image
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processing system and is transferred to the control system of the three-chamber
sprayer.

The machine costs for the site-specific weed imaging are derived from the
investment and camera costs, including the image processing software, and for
the map-based method additionally for the GPS and GIS software which results
in the digital weed distribution map. The software for controlling the sections of
the sprayer boom is included in the sprayer costs. The parameters for assessing the
machine costs in the sampling methods are listed in Table 26.2.

The operating costs for the sampling processes consist of the labour requirements
and machine costs (tractors, carrier vehicles, sprayers with the appropriate spray
booms), implements, hardware and software (Table 26.3). A wage rate of 15C man-
hour−1 is assumed for all processes. All prices do not include value-added tax.

The working time in the map-based process consists of the labour requirements
for weed sensing and additional 0.125 man-hours/ha for evaluating and creating

Table 26.2 Machinery – hard and software for weed sampling

Process:
Map-/Sensor-based
application Map-based application

Name/type Unit
Camera system with
image processing

GPS + GIS software for
weed mapping

Working width m 24 –
New price C 25,000 5,000
Useful lifetime a 5 10
Useful employment ha 5,000 50,000
Repair costs C ha−1 3.00 0.00
Annual use ha a−1 1,000 1,000
Variable costs C ha−1 3.00 0.00
Fixed costs C ha−1 5.50 0.60
Total costs C ha−1 8.50 0.60

Table 26.3 Work processes – operating costs of weed sampling (wage rate 15C/man-hour)

Sampling process: Conventional Map-based
Sensor-
based

Name:
Visual
sampling

Camera
offline

Camera
online

Labour requirements Man-hours ha−1

measure−1
0.16 0.25 0

Variable machine costs C ha−1

measure−1
0.46 9.00 3.00

Fixed machine costs C ha−1

measure−1
3.99 11.07 5.50

Operating costs C ha−1

measure−1
6.85 23.82 17.00
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the weed distribution map. The additional GIS software and the GPS mounted
on the tractor cause higher machine costs in the map-based sampling procedure.
The sampling in the sensor-based process has no labour requirements, because it is
completely included in the same application work process.

In Table 26.4 the labour requirements and machine costs of the specific applica-
tion processes are itemised.

The higher labour requirements for applying the precision weed control pro-
cesses result from the marginally higher assumed preparation time (importing the
weed distribution map, etc.) and by probably having to fill the tanks more often,
because of the smaller tank volume of the three-chamber sprayer, which is gener-
ally not completely compensated for by the reduced consumption of the herbicide
mixture.

The operating costs for crop protection processes consist of the labour and
machine costs for weed sampling and herbicide application. In Table 26.5, the
operating costs of the processes are summarized and the additional costs of the
map-based and sensor-based processes are compared to the conventional reference
method. A sampling process is allocated to each application method. In practice, a
maximum of two applications can be based on the result of one sampling process.

Table 26.4 Work processes – operating costs of herbicide application (wage rate 15C
man-hour−1)

Application process: Conventional Map- or sensor-based

Labour requirements Man-hours ha−1

measure−1
0.19 0.30

Variable machine costs C ha−1 measure−1 3.54 6.69
Fixed machine costs C ha−1 measure−1 3.29 5.35
Operating costs C ha−1 measure−1 9.68 16.54

Table 26.5 Work processes – operating costs of various weed control technologies (wage rate
15C man-hour−1)

Weed control process Conventional Map-based
Sensor-
based

Labour requirements Man-hours ha−1

measure−1
0.35 0.55 0.30

Variable machine costs C ha−1

measure−1
3.75 14.35 8.35

Fixed machine costs C ha−1

measure−1
7.53 17.76 12.19

Operating costs C ha−1

measure−1
16.53 40.36 25.04

Additional costs C ha−1

measure−1
– 23.83 8.51
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It is apparent that the sensor-based process results in significantly lower costs,
compared to the map-based process, by saving an extra passage. Additionally there
are no costs for the GPS system attached to the carrier vehicle and no costs for the
following creation of a digital geo-referential weed distribution map.

In assessing the economic profitability of different weed control strategies, the
output of precision plant protection strategies in the form of herbicide reduction
should – at least – compensate for the additional operating costs.

4 Output of Precision Weed Control Technologies

Herbicide savings result from leaving areas untreated where the weed popula-
tion is below the economic weed threshold and from applying selective herbicides
with only active ingredients against one group of weed species (monocotyledonous
weeds, dicotyledonous weeds, etc.).

These statements on herbicide savings in the individual treatment for maize (one
herbicide application), winter wheat (two herbicide applications) and sugar beet
(three herbicide applications) are based on evaluations of various investigations on
precision weed control (Oriade et al. 1996, Schwarz and Wartenberg 1999, Miller
et al. 1995, Timmermann et al. 2003). The savings potential depends widely on
the types of other crop management practices (e.g. type of tillage: inversion tillage,
reduced tillage and no-till), on the crop rotation and weed infestation level and spa-
tial variability. In each individual field there can be significant deviations from the
assumptions made here.

In Table 26.6 the assumed costs for herbicides for uniform applications and site-
specific chemical weed control in maize for the weed species grouped into grass
weeds, annual broadleaved weeds and bindweeds (Convolvulus spp.) are listed.

It is apparent that the savings in herbicide quantities for maize can be attained for
grass weeds and for bindweeds. The figures imply that annual broad-leaved weeds
occur more homogeneously. All in all, 41.55C ha−1 herbicide costs can be saved by
applying herbicides site-specifically.

Table 26.6 Herbicide costs in maize (1 application in May/June)

Conventional
application Map- or sensor-based application

Product group
controlling Product costs [C ha−1] Treated area [%] Product costs [C ha−1]

Grass weeds 30.00 40 12.00
Annual broad-leaved

weeds
55.00 85 46.75

Bindweeds 18.00 15 2.70

Product costs,
total

103.00 61.45

Savings 41.55
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Table 26.7 Herbicide costs in winter wheat (1 application in autumn, 1 application in spring)

Conventional
application Map- or sensor-based application

Product group
controlling Product costs [C ha−1] Treated area [%] Product costs [C ha−1]

Application in autumn:
Grass weeds 15.00 60 9.00
Annual braod-leaved

weeds
20.00 50 10.00

Special weeds (e.g.
Galium aparine)

15.00 10 1.50

Product costs, total 50.00 20.50
Savings 29.50

Application in spring:
Grass weeds 35.00 60 21.00
Product costs, total 35.00 21.00
Savings 14.00

Overall product costs 85.00 41.50
Overall savings 43.50

In winter wheat, one herbicide is applied in October and one in March. The weeds
are sampled once in autumn, shortly before application. Herbicide savings are sum-
marized in the Table 26.7. Altogether herbicide costs of 43.50C ha−1 were saved
through site-specific application.

The highest herbicide savings were attained through intensive chemical weed
control with precision crop technology in sugar beet production (Table 26.8). Weeds
were sampled in the beginning of March and at the end of April/beginning of May.
Special herbicide savings were made by controlling grass weeds and creeping this-
tle (Cirsium arvense) site-specifically. For sugar beet, site-specific weed control
resulted in savings of 77C ha−1 for herbicides.

5 Economic Evaluation – Results

Precision weed control is assessed with a crop-specific cost benefit analysis
(Schwarz and Wartenberg 1999, Wagner 2000). Map-based processes are basically
more expensive than online applications. Compared to the conventional method,
online-sensor technology for weed sampling and patch spraying increased operat-
ing costs by 8.51C ha−1 application−1. Map-based technology, due to the additional
passage and the GPS – GIS technology needed, had operating costs of 23.83C ha−1

application−1 higher than the conventional method. Since one weed sampling can be
used for several applications, the sampling costs can be divided between a maximum
of two applications.
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Table 26.8 Herbicide costs in sugar beets (three herbicide applications in a growth period)

Conventional
application Map- or sensor-based application

Product group
controlling

Product costs
[C ha−1] Treated area [%] Product costs [C ha−1]

Herbicide application 1:
Annual broad-leaved

weeds (soil-active
herbicide)

20.00 90 18.00

Annual broad-leaved
weeds (leaf-active
herbicide)

20.00 90 18.00

Product costs, total 40.00 36.00
Savings 4.00

Herbicide application 2:
Broad-leaved weeds

(soil-active herbicide)
20.00 80 16.00

Broad-leaved weeds
(leaf-active herbicide)

20.00 80 16.00

Grass weeds 30.00 15 4.50
Product costs, total 70.00 36.50
Savings 33.50

Herbicide application 3:
Weeds (soil-active

herbicide)
20.00 80 16.00

Weeds (leaf-active
herbicide)

20.00 80 16.00

Creeping thistle 35.00 10 3.50
Product costs, total 75.00 35.50
Savings 39.50

Overall product costs 185.00 108.00
Overall savings 77.00

The lower cost of online-sensor technology increases the monetary benefit of
site-specific weed control. For winter wheat the monetary benefit for map-based
technology is 12.81 and 28.14C ha−1 for online-sensor technology. For maize the
benefit for map-based technology is 17.72 and 33.04C ha−1 for online-sensor tech-
nology. For sugar beets the benefit for map-based technology is 22.48 and 53.13C
ha−1 for sensor technology.

6 Critical Overview and Conclusions

The economic benefit of precision weed control technology depends on a series of
plant site-specific and technical-economic parameters. The most important effect are
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the savings of herbicides, which depend on spatial and temporal weed variability,
crop yield potential and prices of herbicides.

Technology costs for weed sampling and patch spraying are another important
factor. More investigations in efficient application technologies for patch spraying
(e.g. direct injection systems) in combination with online-weed detection system
would reduce operation costs for site-specific weed control. In addition, this tech-
nology would make chemical weed control safer for the farmer and consumer and
reduce the herbicide load into the environment.

The economical use of highly complex and expensive technology requires suffi-
cient machine utilisation. In the calculations presented above, an annual utilisation
rate of 1,800 operating hectares is assumed (KTBL 2008/2009). Due to multi-
ple applications per hectare farmland per year, this is equivalent to a 600–900 ha
cropping area or to a contractor with a moderate to good annual utilisation of the
technology (Table 26.9).

With sufficient utilisation an investment in map-based technology can be eco-
nomically advisable, even when the price for the plant protection technology is
twice as high as the price of a conventional sprayer. Savings of herbicides of 25C
ha−1 per application would make the investment in the map-based technology listed
above (three-chamber sprayer with appropriate boom, soft and hardware for weed
sampling) worthwhile.

Table 26.9 Production process – economic key figures for winter wheat, maize, and sugar beet

Economic key figures
Map-based
application

Sensor-based
application

Winter wheat:
Number of samplings 1
Number of applications 2
Additional operating costs [C ha−1] 30.69 15.36
Savings of herbicides [C ha−1] 43.50 43.50
Benefit of precision control [C ha−1] 12.81 28.14

Maize:
Number of samplings 1
Number of applications 1
Additional operating costs [C ha−1] 23.83 8.51
Savings of herbicides [C ha−1] 41.55 41.55
Benefit of precision control [C ha−1] 17.72 33.04

Sugar beet:
Number of samplings 2
Number of applications 3
Additional operating costs [C ha−1] 54.52 23.87
Savings of herbicides [C ha−1] 77.00 77.00
Benefit of precision control [C ha−1] 22.48 53.13



426 J.O. Schroers et al.

A ready-to-use sensor technology, which makes site-specific weed control pos-
sible in one passage, under the assumption stated above, would be profitable
with herbicide savings of about 9C ha−1 per application and would increase the
economic efficiency of the crop production processes investigated.
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Chenopodium polyspermum, 24
Chi square analysis, 29
Chlorophyll

content, 57, 95–96, 120, 140, 155, 158
fluorescence, 90–93, 123–124, 138, 142,

155, 158
Chlorothalonil, 405
Chromophores, 69–71, 78, 81–82
Cirsium arvense, 17, 20, 224, 280, 291,

316, 423
Citrus, 153
Classification

supervised, 130, 158, 189, 192
unsupervised, 130, 189, 192

Classification regression tree, 42
Cluster analysis, 159, 395
Colonization, 52, 54–56, 59, 173–174,

246, 361
pests, 52, 54, 56, 174

Color infrared (CIR), 153, 378
Columbia lance nematode, see Hoplolaimus

columbus
Combination modes, 68–69
Commission Internationale de l’Eclairage

(CIE), 69–70
Common lambsquarters, see Chenopodium

album

Computer
technology, 351
vision, 287, 331–332

Computer-Fluid-Dynamics (CFD), 305
Conservation tillage, 280
Constant

BBCH growth stages, 266
concentration, pesticides, 297, 300
depth temperature, 8
flow rate, direct injection, 295, 301,

305–307
landscape metrics, 105
nematicideapplication, 389, 393
sprayer, output, 337–339
in system analysis, 244

Convolvulus arvensis, 17, 230
Correlation

assessment method, 10, 23–24
canonical correlation analysis (CCA),

395–397
crop productivity, 77
2D- analysis, 68
disease severity and MTD, 176
estimates, 190–192
fungicide usage, 350, 358
insect distribution, 57–58
leaf temperature and water status, 168, 173
and model validation, 252, 261, 266, 273
nematodes, 159–160, 178, 387–388, 393
normalized difference vegetation index

(NDVI), 154
Pearson’s, 195–196
radar data, 271
in regression analysis, 265
satellite data (spectral), 70, 82
spurious, 80–81
unique spectral signature, 32
Veris EC meter, 390
weed biomass, 23, 235, 374

Cotton (Gossypium sp.), 152–155, 159, 190,
194–195, 197–198, 228, 385–388,
392–393, 395, 397–400

root rot, 153, 175
Counts

insect, 183, 189–190, 192, 194–199
nematode, 395, 418
spatial distribution, 159
weed, 340–341

Coverage level, 305
Cranberry, 41
Creeping thistle, see Cirsium arvense
Criconema spp., 390
Criconemella spp., 387



430 Index

Critical thresholds, 350–351
Crop

canopy, 12, 31, 35, 44, 136–137, 168,
219, 324, 337, 350, 352, 403–406,
408–409, 414

damage, 282, 287, 307–308, 328
density, 179, 292, 326, 350–358, 361
development, 260, 273, 350, 358, 361, 404,

411, 413–414
growth models, 352
health gap, 46
height, 325, 352, 354, 404–406, 411
rotation, 19, 21, 210, 228–229, 236, 264,

280, 341, 344, 357, 386, 422
soil cover, 283–285
stress phenomena, 107–108

Crop Protection Online (CPO), 227
Cross-validation, 73, 76–77
Crowding effects, 57
Crown and root rot, 156, 160
Cultivation tillage, 280–281, 288, 292
Cuticle, 168–169, 172–174, 179, 236, 314
Cutting, 280–281, 291, 315, 317, 330, 356,

381, 406
blade, 286

Cycloid hoe, 287
Cydia pomonella, 319
Cyst nematodes, 29–30, 138, 144, 152,

154–155, 159–160, 175, 388

D
Data

communication, 206–207, 209,
214–215, 318

flow, 206–207, 215
fusion, 325
management architecture, 215
spatial, 15, 205–220, 376
spatial data service, 207–208, 214–216
spatial modeling, 214–215
standards, 207–209, 211, 215, 219–220

Daucus carota, 283
Decision

rules, 19–20, 61, 223–237
support, 12

Decision algorithm for patch spraying (DAPS),
232–235

Decision making, 14, 176, 214, 231, 233,
241–255, 264, 369

process, 231
Decision support system (DSS), 110–111,

144, 205–220, 223–237, 241–255,
259–273, 341, 357–360, 376–377

Dendroctonus frontalis, 187

Deposition
gradient, 33, 38
pesticides, 314, 413–414

Detection, weeds, 18, 24, 123–125, 225–226,
325–326, 344, 425

Diameter at breast height, 186
1,3-Dichloropropene (1,3-D), 386–388,

390–394, 398–399
Dicotyledonous weeds, 123, 128–130, 422
Dicotyledons, 123–125, 343–345
Digital aerial sketch mapping, 185
Digital elevation model (DEM), 206, 210, 211,

216–217, 269, 374
Digital image analysis, 283, 337
Digital Northern Great Plains, 369, 376–377,

379
Digital orthophoto (DOP), 216, 218–219
Digital surface model (DSM), 194, 217
Dimensions: spatial, temporal and spectral,

101
Direct injection

boom section (BDIS), 296–300, 302, 327,
342–343, 414

central injection, 296–297
delivery device, 303–304
mixing process, 305
nozzle injection, 299–306
rinsing, 308

Direct injection systems (DIS), 295–300, 302,
304–308, 328, 339, 360, 417, 425

Discriminant analysis, 32, 40, 123, 130, 249
Disease

assessments, 27, 168, 174, 350–351
control, 108, 110, 135, 144–146, 167–179,

255, 272, 350, 353, 403–415
epidemiology, 108, 259
foci, 35, 37, 39, 41–45, 136, 144, 177
forecast models, 144, 267, 271, 358, 361
gradients, 32–37, 39, 42
incidence, 33, 44, 252, 260, 262–264, 350
maps, 108–109, 140, 142–144, 351
monitoring, 261, 351
occurrence, 152, 261, 264, 350–351,

357–358, 360
patches, 144, 146, 350
severity, 33–39, 45, 113, 139–140, 160,

176–177, 245–255, 260, 262,
264, 360

Disease warning system (DWSs), 254
Dispersal gradient, 32–33
Distribution

aggregated, 56
function, 351
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Ditylenchus dipsaci, 156, 159
Dormancy, 20, 246
DOS-Intro, 297
Dracunculus vulgaris, 168
Dragonflies, 59
Drift, 37, 54, 311–313, 327–328, 338, 382,

403, 413, 415
endodrift, 312

Drop on demand, 328
Droplet size, 313–314, 337–339
3D structure, 125
Dutch elm disease, 316–317
Dynamic range, 171

E
Echinochloa crus-galli, 24
Ecological site description, 375
Economic evaluation, 120, 357, 417–426
Economic Injury Level (EIL), 186
Economic profitability, 422
Economic threshold, 17, 224

level, 17
weeds, 20, 119, 224, 345, 417, 422

Edge effects, 52, 57
Eigenvalues, 395
Elaeis guineensis, 315
Electric/electrical conductivity, 10, 152, 159,

336, 340, 371–372, 382, 388–389
Electronic guidance, 208
Electronic transitions, 68–69, 82
ELISA, 152, 162
Elms, 316
Emerald ash borer, see Agrilus planipennis
Emissivity, 170
Empoasca vitis, 56–57
Enaphalodes rufulus, 187
EnMAP, 82, 110
Entomology, 183–184, 192, 198
Environmental impact, 13, 315, 325
Environmental Information Bridge, 368
Environmental pollution, 308, 404
Epidemic rate, 144
Erwinia amylovora, 172
Erythroneura sp, 56
Estimation of selectivity, 283
Evapotranspiration, 168, 369, 372–374
Excess green index, 122
Excitation, 142
Expert knowledge, 124, 227–228, 234
Extent, 31, 81, 102, 104, 106, 114, 188,

190, 218, 253, 312, 351, 369,
375–376

Eyespot, see Oculimacula yallundae

F
Fairy rings, 41
Fallopia japonica, 316
Far-infrared (FIR), 153, 169
Farm management information system (FMIS),

207, 214–215, 220
Fertilizer, 5–8, 56, 69, 210, 236, 315, 336, 358,

369, 379–380, 405
level

nitrogen, 6, 358
Field

border, 11
core, 10
sprayer, 298, 343, 353–355, 357, 359

Field violet, see Viola arvensis
Finger weeders, 287
Flame weeder, 288
Flat fan nozzles, 338, 353, 410, 413
Flight boundary layer, 54
Flow rate, 295–296, 302, 304–305, 337–339,

353, 404
Fluazinam, 408–409
Fluorescence

map, 142
sun-induced, 89, 91–93, 95
quantum yield, 93

Focal plane arrays, 170–171
Foci, 35, 37, 39, 41–45, 57, 136, 143–144,

146, 177
Forecasting, 145, 147, 243, 259, 261, 265,

267–271
Forestry, 152, 183–199, 316, 323
Forward scattering, 143
Fourier

analysis, 128
transformation, 125

Fragstats, 103–104
Fraunhofer Line Discrimination method, 92
Fraunhofer lines, 91–92
Fraxinus spp., 317
Fry’s model, 37
Fungal epidemics, 349
Fungicides

curative, 313
dosage, 353–356

Fusarium head blight, 177
Fuzziness performance index, 396
Fuzzy clustering analysis, 396
Fuzzy c–means (FCM), 370, 395–396

G
Galeopsis tetrahit, 286
Galinsoga parviflora, 20
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Galium aparine, 21–23, 130, 224–225, 230,
286, 343, 423

GDVI (Green Difference Vegetation Index), 34
Genetic algorithm, 72–75
Geodata, 206, 269
Geographic information system (GIS), 24, 28,

120, 152, 183, 205, 259–273, 351,
379, 393

Geomatic information, 185
Geo-referenced, 9, 159, 184, 192, 198–199,

211, 268, 325, 331, 388–389, 392,
399–400, 418, 422

Geostatistics, 9, 18, 191, 270, 355
Giant hogweed, see Heracleum mantegazz-

ianum
Global positioning system (GPS), 18, 28, 120,

136, 184, 189, 206, 281, 285, 328
real-time kinematics, 285, 328, 395

Globodera pallida, 144
Globodera rostochiensis, 144, 154, 157
Glossina spp., 318
Glyphosate, 305, 328
Goodness-of-fit, 250, 252
Grain, 17, 21, 23–24, 102, 114, 136, 224, 227,

232, 234, 236, 282, 360
Grapevine, 94, 172, 175, 246–247
Grassland, 94, 96, 125–126, 291, 414
Grass weeds, 17, 123, 125, 224–225, 229, 419,

422–424
Gravimetric water content, 374
Green area index (GAI), 229, 235
Green foxtail, see Setaria viridis
Greenhouse, 60, 113, 123, 136, 155–158, 160,

172, 318
Green leafhopper, 61
Green NDVI (GNDVI), 370
GNDVI, see Green NDVI (GNDVI)
GreenSeeker, 404–406, 410–413
Gregory’s power law, 37
Grid maps, 351
Growth conditions, 101, 351

H
HADSS (Herbicide Application Decision

Support System), 228–229
Hand hoe, 290–291
Hand weeding, 290–291
Harrows, 279–286, 288–289
Haulm killing, 414
Healthy green leaf area (HGLA), 28, 30,

32–38, 40, 44
Helianthus annuus, 23
Helicotylenchus spp., 390

Hemlocks (Tsuga spp.), 317–318
Hemlock woolly adelgid, see Adelges tsugae
Hemp dogbane, see Apocynum cannabinum
Heracleum mantegazzianum, 316
HERB, 228–229
Herbicides

application, 18, 23, 224–228, 231,
233–236, 335–345, 417–418,
421–422, 424

dose response models, 226–227, 232
post-emergence, 18, 23, 228, 313, 341–342
pre-emergence application, 229
residues, 17, 24, 280
savings, 22, 223–224, 230, 236, 344–345,

422–423
side effects, 280
site-specific application, 327, 341, 419, 423

Heterodera avenae, 138
Heterodera glycines, 152, 155
Heterodera schachtii, 152, 156–158, 160, 178
Himalayan balsam, see Impatiens glandulifera
Hoeing, 282, 286–287, 290–291, 330–332
Hoe, rotary, 279, 282–286, 288, 330
Hoplolaimus columbus, 159, 386, 391
Hordeum vulgare, 129–130
Horse chestnut (Aesculus hippocastanum), 318
Host plant, resources, 55, 58, 241
HPS-ONLINE, 233–237
Hu features, 128
Hyperspectral sensor, 69, 77, 82, 96, 112,

154–155, 185
Hyperspectroscopy, 10, 32, 68–69, 76–77, 82,

87, 89, 93–94, 96, 111–114, 123,
154–156, 160–161, 185, 189, 206

Hypo-Hatchet R© Tree Injector, 316

I
Image analysis

classification, 187, 189
supervised classifiers, 130
unsupervised classifiers, 130

Image processing, 124–128, 325, 418–420
curvature scale space, 128

Image segmentation
reduction, field samples, 187
regions, 126–127
upfront techniques, 188

Imaging, line, 141
Imaging spectrometry, 68, 76, 82
Impatiens glandulifera, 316
Incubation periods, 33, 143, 145, 245–246, 358
Indirect correlation, 80
Infection gradient, 33, 35, 38
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Information-based agriculture, 3
Information and Communication Technologies,

205, 325
Infrared (IR)

imaging, 172
long-wave, 153, 169–171
long-wavelength, 169, 171
midwave, 170–171
mid-wavelength, 169, 171
near, 40, 43, 68, 71, 88, 120–121, 137, 153,

169, 352, 374, 378
See also Near-infrared (NIR)

radiation, 170
short-wavelength, 169, 171

See also SWIR (Shortwave infrared)
thermal, 138, 169, 171

Injection system, 295–300, 302, 304–306, 316,
328, 339, 360, 392, 417, 425

Innovative strategies, 288
Inoculum source, 32, 34, 38
In-row cultivator, 279, 288
Insects, 32–33, 52–55, 57–58, 152, 183–190,

192, 195, 198–199, 312, 316–318,
393

Insecticides, 184, 194, 312–319, 392
Integrated Pest Management (IPM), 28, 151,

183–199, 318
Interactions, 12, 24, 53, 56, 59, 88, 153–154,

156, 160–161, 174, 206, 212, 235,
247, 279, 280, 361, 368, 394

competitive, 279
International Space Station, 377–378
Interpolation, 18–19, 24, 75–77, 82, 120, 224,

267–270, 398
Inter-row cultivator, 286
Inter-row weeder, 281, 289
Intra-row weeding, 281, 287–288

J
Japanese knotweed, see Fallopia japonica

K
Kairomones, 56, 60
Kautsky effect, 123
Keyhole Markup Language (KML), 209,

211–212
K-function, 29
Kinetic fluorescence, 142
Kiowsawa and Shiyomi’s model, 37
Kiwi, 94
Kolmogorov-Smirnov, 261, 263–264, 273
Kriging, 18–19, 35–36, 43,

270, 398

L
Labour requirements, 420–421
Lacewings, 59
Landsat, 29–31, 70, 211, 369, 371–372,

374–377, 379–381
Landsat 5 Thematic Mapper, 374
Landsat ETM+, 375
Landscape metrics, 103–106
Laser-induced fluorescence (LIF), 158
Laser Induced Fluorescence Transient

(LIFT), 91
Latent heat, 168
Latent infection, 110, 135, 144, 245, 249,

255–256, 358, 361
Latent variables, 72–74, 245
Leaf

blotch, 144, 175, 177, 358, 361
cover, 284, 313
hoppers, 56, 61
rust

wheat, 108, 112, 173, 175, 262–263
temperature, 153–154, 156–157, 167–169,

171–175, 179
wetness, 178, 180, 270–273, 357

Leaf area index (LAI), 34, 94, 96, 112,
120–121, 186, 325, 337, 350,
352–353, 357

LECHLER system, 296
Leptinotarsa decemlineata, 260, 265
Light Detection and Ranging (LIDAR), 194,

217, 218
Light use efficiency, 89, 96
Lily (Lilium sp.), 403–407, 410–413
Lithocarpus densiflorus, 317
Location Service (OpenLS), 209, 212–213
Lygus lineolaris, 195

M
Machine costs, 356–357, 420–421
Maize (Zea mays), 5, 17, 19, 21, 23–24, 53,

94, 125–126, 130, 152, 225, 230,
236, 282, 285–288, 291, 326–327,
342, 344–345, 372, 417–418, 422,
424–425

Management data, 207, 210
Management zones, 10, 178–179, 336, 340,

358–360, 369–373, 379, 388–391,
393–396, 398–399

Map-based application, 392, 420, 425
Mapping Evapotranspiration at High

Resolution and with Internalized
Calibration, 372

MapServer, 376
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Marginal income, 214, 219, 350, 353
Mathematical structure, 248–249
Matricaria chamomilla, 286
Maximum temperature difference, 174, 176
Mean Nearest Neighbour Distance, 104
Mechanical weed control, 119, 224, 280–282,

289
Mechanical weeding, 279, 281–283,

291, 330
Median, 108, 126, 191, 356
Mediterranean fruit flies, see Ceratitis capitata
Meloidogyne incognita, 154, 385, 397
Meteorological data, 268–271
METRIC, see Mapping Evapotranspiration

at High Resolution and with
Internalized Calibration

Microclimate, 136, 145, 178, 357–358
Migration, 54–56

upwind movement, 56
Mites, 52, 57

predatory mite, 60
Mixing chamber, 297, 299–300, 302, 305
Mixture quality, 299, 305
Model

boundaries, 243
conceptual, 60, 242–249
driving, 242–244, 249–250
dynamic, 229, 236, 242–243
evaluation, 243, 250–252, 253
fitting, 249
fundamental, 242
mechanistic, 242
parsimonious, 247
pathogen-focused, 246, 249
plant diseases, 241–242, 251, 253–255
plant-focused, 244–245, 248
purpose, 243
sensitivity, 252, 253
testing, 250
validation, 251–253, 259–274
verification, 243, 251
weather driven, 242, 254

MODIS (Moderate Resolution Imaging
Spectroradiometer), 376

Moko disease, 28–29
Monitoring

pests, 205
Monocotyledons, 124, 129–130, 343–345, 422
Mowing, 280, 291, 414
Multiple boom sprayer, 235
Multiple field sprayer, 343
Multiple nozzle holders, 339
Multiple regression, 161, 249, 270

Multisensor, 326
Multispectral imaging, 141–142

N
NASA, 211, 379
Natural barrier, 58
Natural enemies, 52–53, 59
NDVI, see Normalized difference vegetation

index (NDVI)
Near-infrared (NIR), 10, 18, 30, 34–36, 38–43,

45, 68–69, 71, 112–114, 137–138,
141, 153, 169, 326, 352, 371, 378

Near-range
sensing, 121
spectroscopy, 112–113

Nematode population density, 29, 387,
395, 398

Neural networks, 68, 72, 124, 130, 139
Nitrogen, 6, 56, 58, 102–103, 112, 136, 155,

170–171, 210, 336, 351, 358,
380, 392

availability, 58
Non-photochemical quenching, 89, 96
Normalized classification entropy, 396
Normalized difference vegetation index

(NDVI), 34, 42–44, 95–96,
121–123, 154, 156, 158, 176, 196,
370–372, 378, 395–397, 405–406,
410–414

No-till, 10, 380–381, 422
Nozzles

twin fluid, 338–339
variable orifice, 339

Nutrient map, 210
Nutrition map, 210

O
Oaks, 94, 175, 187, 316–317

forest, 94
Observation scale (OSt), 107–110
Oculimacula yallundae, 138, 358
Odour, 55–56, 59
Off-line, 326, 350–351
Offline approach, 224
Oil palm, see Elaeis guineensis
Olive fly, see Bactrocera oleae
Onions (Allium cepa), 282, 290–291, 414
Online patch-spraying, 231
On-line, 350–353
On-the-go sensing

RTK-DGPS, 285, 326
RTK-GPS, 320, 330, 395

Open Geospatial Consortium (OGC), 208–209,
211–214, 220, 274
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Open Source Geospatial Data Abstraction
Library, 376

Operating costs, 306, 419–423, 425
Optical disease detection, 146
Optical filters, 141
Optical instruments, 352–353
Optical properties, 87–88, 112, 136, 139
Optical sensors, 110, 137, 140, 143, 360
Optical signature, 140
Optimisation, 302
Organic farming, 280, 288, 290
Overtones, 68–69

P
Parameter

abiotic, 52
ANN (artificial neural networks)

learning, 72
biotic, 52
crop/plant, 335, 350–351, 357–358
crop protection, remote-sensing, 101–102,

109, 113
disease assesment, infrared thermography,

174–175
dosing, herbicide, 235
ecological (forest), 183, 186–187
economic, 419–420, 424–425
image processing, 124, 128–129
leaf area index, 352–353
meteorological, 269–270
model, 247, 249–251, 253, 262–264, 266
nematode distribution, 159
phenolgy, plant, 58, 326
photosynthetic activities, 87–88, 94–96
PSR (penalized-spline signal regres-

sion), 75
quadratic programming (QP) techniques,

75
soil, 10, 18–20, 67–69, 71, 76, 81–82, 206,

212, 214, 335, 340–341, 373
spatial data, 210, 267, 269–272, 375
system analysis, 244
weed population, 22, 229, 233, 337
ZIP (zero-inflated poisson) regression,

197–198
Parasitoids, 52
Partial least squares regression (PLSR), 68,

72–80, 161
Pathogens

dispersal, 32
dissemination, 28, 32
infection, 32, 350
k-strategists, 34

r-strategists, 34
soil-borne, 151, 153–155, 161
spatial dynamics, 19–24, 27, 44, 144, 179
temporal dynamics, 27–47

PCR (Polymerase Chain Reaction), 145,
152, 400

Peanut (Arachis hypogaea), 38, 228
Peanut leafspot, 38
Pea (Pisum sativum), 286, 291
Penalized-spline signal regression (PSR), 75,

78–80
Peronospora tabacina, 260
Pesticides, 52, 54, 152, 156, 161, 189, 242,

264, 295–302, 304–308, 311–316,
318, 323, 327–328, 337, 339, 358,
369, 413–414

active ingredient, 311
application

droplet size, 313
application, 52, 69, 242, 264, 311–313, 327
baiting, 318–319
controlled release, 314
drift, 54
encapsulation, 314–315
flow rate, 296, 305
foliar application, 311
formulations, 312–314
injection, 295
tank-mix, 313
trapping, 318–319
use reduction, 414

Pests
distribution, 56, 60–61
management, 28, 52, 136, 145, 151,

183–199, 318, 372
monitoring, 205
primary infection, 53
secondary spread, 53
vision, 59, 185

Pheromone, 56, 319
Philodendron selloum, 168
Photoactive pigments, 137
Photochemical Reflectance Index (PRI), 89–90
Photon detectors, 171
Photosynthesis, 89–97, 123, 138, 158, 330, 404

canopy photosynthesis, 89
Phyllosticta spp., 172
Phymatotrichum omnivorum, 153
Phytophagous, 52, 57, 60
Phytophthora cinnamomi, 154
Phytophthora infestans, 260, 403, 409
Phytophthora ramorum, 317
Pine (Pinus sp.), 56, 94, 187–188, 316, 393
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Pisum sativum, 286
Pixel, 9, 19, 35–37, 39, 45, 71, 104–105,

126–128, 137, 141, 143, 158, 160,
171, 177, 185, 187–190, 194–198,
375

Planck’s Law, 169
Plant

pathogen forensics, 44
pathogens, 27–47, 145–146, 156, 316, 318,

349, 361
phenology, 58
phenotyping, 325–326
physiology, 58, 174, 184

Plantago major, 125
Plasmopara viticola, 172, 246
Polycyclic, 110, 136, 144
Polygonum aviculare, 23
Polygonum convolvulus, 224
Population density, 29–31, 55, 57–58, 197,

387, 395, 398
Population dynamics, 22, 24, 51, 53, 58, 60,

131, 235, 260
Post-emergence cultivation, 280
Post-emergence herbicides, 18, 23, 228, 313,

341–342
Potato (Solanum tuberosum), 21, 94, 123,

144, 152, 154, 157, 175, 260, 262,
264, 267, 282, 291, 325, 388, 404,
406–409, 412–414

Potato cyst nematode, see Globodera spp.
Powdery mildew, 108–109, 112–113, 173–175,

179, 245, 358, 360
wheat, 108, 112–113, 175

Precipitation, 227, 267, 269–273, 358,
372–373, 382

Precision
agriculture, 3, 12, 51, 67–68, 81, 112,

135, 158, 184, 205–207, 368–369,
376–380, 398

of application, 388
hoe, 288–290
management, 382
weed management, 281

Precision crop management (PCM), 102,
205–206, 208, 210–220

Predators, 52, 60, 183
Prediction, 10, 70, 73–74, 76–81, 112, 144,

146, 152, 155, 184, 186–187, 224,
242–243, 249, 251–254, 265, 271

Pre-emergence cultivation, 280
Pre-emergence herbicides, 339–340
Preprocessing, 127
Prescription map, 189, 388–390, 392, 399

Prochloraz, 405
Product cost, 357, 422–424
Prostrate knotweed, see Polygonum aviculare
Prunus laurocerasus, 169
Pseudoperonospora cubensis, 172
Psilocybe agrariella, 41
Pteridium aquilinum, 291
PTO-driven cultivators, 286
Puccinia recondita, 264–266
Puccinia striiformis, 358
Puccinia triticina, 173, 264–266
Pulse amplitude modulation, 90
Pulse width modulation, 338, 404, 407
Pyrometer, 170

Q
Quantitative PCR, 145, 400
Quantum yield, 93
Quartile, 108, 356
Quercus, 172, 317

R
Radar, 267, 269, 271, 273
Radiothermometer, 170, 172
RADOLAN, 269
Radopholus similis, 153
Ralstonia solanacearum, 28
Rapeseed (Brassica napus), 94, 291
Rating survey, 210
Real-time sensing, 143
Recovery, 285
Red edge, 120–121, 138

position, 121
Red oak borer, see Enaphalodes rufulus
Reflectance, 10, 12, 18, 30, 34, 38–39,

68–73, 77, 78, 80, 88–93, 111–113,
120–122, 137–142, 146, 152–156,
160, 173, 176–178, 185, 351–352,
360, 369–371, 376, 403, 405–406

Regression, 29, 42, 68, 72–75, 77, 80, 113,
161, 176, 197–199, 249–250, 252,
263–266, 270, 273, 374

analysis, 68, 113, 161, 249–250, 252,
263–265, 273

Relative humidity, 168, 177, 179, 246, 267,
270–271

Remote sensing (RS), 9–10, 12, 18, 28–30, 34,
39, 41–42, 44–45, 67–82, 89–94,
101–116, 121, 123, 151–162, 168,
172, 183–184, 189, 206, 209–210,
214, 216, 337, 360, 369–370,
372–377

weeds, 3
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Reniform nematode, see Rotylenchulus
reniformis

Response time, 143, 297–302, 306–307, 338
Retention, 76, 313

pesticides, 313
Retrieval methods, 71–72
RGB images, 122, 124, 216
Rhizoctonia solani, 156, 160–161
Rhizomania, 155
Risk algorithm, 254
Risk map, 267–273
Robotics, 279, 281
Robots

actuator-based, 324
autonomous field scout, 326
scouting (monitoring), 124–125, 324–327

Robustness, 74, 155, 251, 253, 255, 324
Rolling cultivators, 286
Rolling harrow, 288–289
Root diseases, 174
Root-knot nematode, 154, 159, 385, 397
Rotary harrows, 288
Rotary hoes, 282, 285, 288, 330
Rotylenchulus reniformis, 153, 385
Row crops, 120, 124, 183–199, 228, 235,

281–282, 286, 288–290, 326, 330
R-strategists, 34
Rumex obtusifolius, 125, 291
Run-off, 311, 313

S
Sampling

insects, 184, 189
plan, 23
weeds, 120, 418–421, 423, 425

Satellite imagery, 31–36, 40–43, 45–46, 216,
351, 369, 373–376

Scale
inherent phenomenon, 107
insects, 53
management, 107, 110–111
sensor observation, 107–110
temporal, 8, 102, 107–111, 115–116, 255

Scouting, 119, 143, 185, 188, 195, 324–327
Section control, 355
Seed dispersal, 54
Segmentation, 126–127, 132, 187–188
Selective weed control, 279, 288–290
Selectivity, 236, 283–287, 291, 314
Semiochemicals, 60, 319
Senescence, 96, 137–138, 171, 246, 360–361,

370, 379
Sensing data, 9–10, 29–30, 89, 102, 108,

112–113, 115, 172, 206, 210

SensiSpray, 410–414
Sensor

acoustic, 10
electrochemical, 10
fusion, 4
hyperspectral, 69, 77, 82, 96, 112, 154–155,

185
mechanical, 10, 351–352
multispectral, 153–155
network, 214
optical, 110, 137, 140, 143, 360
pneumatic, 10
radiometric resolution, 30
spatial resolution, 115, 141
spectral resolution, 106, 185
technology, 113, 120, 131, 143, 161–162,

283, 350, 423–424
temporal resolution, 9–10, 107, 109, 111,

116, 199
Sensor Model Language (SML), 209, 212
Sensor Observation Service (SOS), 209, 212
Septoria tritici, 176, 358, 361
Setaria glauca, 23
Setaria viridis, 23
Shallow tillage, 280, 283, 288
Shortwave infrared, 88, 137
Sidewinder R©, 316
SIMBLIGHT1, 260, 267–268, 271–272
SIMLEP3, 264–265
SIMONTO, 266–267
SIMPEROTA1, 260
SIMPHYT, 262, 264, 267–268, 271–272
SIMPHYT3, 264, 268
Simulation, 88, 190, 192, 198, 206,

242, 259–263, 266, 270–272,
358, 372

models, 260, 262, 270–271, 273,
358, 372

Simultaneous Localisation And Mapping
(SLAM), 324

Single rate application, 387, 393–394
Site-specific application, 156, 161, 327, 341,

387–388, 390, 398, 419, 423
Site-Specific Farm Management, 372–373
Site-specific management (SSM), 3, 13, 22, 24,

131, 161, 195, 255, 369
Site-specific weed management, 18, 22,

223–224, 230, 235, 281, 290
SLAM, 324–325, 327
Software, 13, 28, 35, 159, 184, 199, 206–209,

211–212, 220, 248, 305, 323, 351,
369, 376–377, 388–389, 391–392,
396, 413, 418–419
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Soil
characteristics, 55–56, 71, 107–108, 229,

281, 285, 291, 374
color, 4, 69–70
ECa, 388–391, 393–398
electrical conductivity, 10, 336, 340,

388–389
heterogeneity, 3–15
historic management, 4
map, 68, 81, 84, 210
minerals, 68
moisture

content, 281, 390
organic carbon (SOC), 4, 70, 75–79
organic matter, 4–5, 68, 77, 337, 340, 372
properties, 4–5, 7–10, 12, 15, 67–82,

159–160, 190, 228, 325, 335, 337,
340, 369

sampling, 7, 9–10, 68, 336
seed bank, 229, 231, 236
spatial variability, 9–10, 12
temporal variability, 9
texture, 210, 229, 281, 283, 337, 340,

387–390, 395, 397, 399–400
water, 12–13, 372–375

Soil adjusted vegetation index (SAVI), 121
Solanum lycopersicum, 288
Solanum nigrum, 24, 328
Solanum tuberosum, 282
Solar angle, 143, 184
SOM, see Soil, organic matter
Southern pine beetle, 187–188
Southern root-knot nematode, see Meloidogyne

incognita
Soybean (Glycine max), 23, 29–31, 35–37,

39–47, 152, 155, 228, 285, 372
Soybean cyst nematode (SCN), see Heterodera

glycines
Spatial aggregation, 187
Spatial Analyses by Distance Indices, 159
Spatial Data Infrastructure (SDI), 212
Spatial data management, 206, 208, 213–219
Spatial decision support (SDSS), 206–208,

212–214
Spatial distribution

arthropods, 51–61, 188
nematodes, 159, 387–388, 390

Spatial resolution
AEROcam images, 378
from air craft, 143
array sensors, 141
canopy level, 176
digital multispectral video, 156

DOPs (digital orthophotos), 216
evapotranspiration value, 372
high, 137
hyperspectral data, 155
issues, 185
landsat’s value, 377, 379
low, 9, 123
management zones, 371
measurement platform, 9, 82
NDVI calculation, 158
optical techniques, 146
PA (precision agriculture) technology, 220
radar measurements, 267, 269, 271
remote sensing application, 102–107,

115, 369
spectrographic imaging, 141
terrestrial laser scanning (TLS)

campaigns, 219
weed detection, 226, 327

Spatial signature, 31, 34, 37, 39–42
Spatiotemporal signature, 34, 37, 42
Spectral bands, 10, 70–71, 82, 113–114, 137,

141, 154
Spectral dimension, 111–116
Spectral indices, 32, 113, 121, 130, 375
Spectral reflectance, 111–112, 120, 122, 137,

142, 160, 351–352, 369, 406
Spectral signature, 32, 42, 137
Spectrograph, 112, 139, 141
Spectrophotometric methods, 137, 140
Spectrophotometry, 141
Spectroscopy, 67–82, 87–88, 93–94, 112–113,

137–139
Spectrum, 10, 18, 69, 71, 88, 91–92, 111–114,

121, 137, 141, 153, 160, 168–169,
315, 338, 341, 360

Spiral nematodes, 390
Spores, 32, 34–35, 41–42, 45, 108, 136, 138,

145–146, 173, 244–246, 252, 361
germination, 249, 357
trap, 33, 145–146

SPOT (Satellite pour l’Observation de la
Terre), 369

Spray
application, 136, 143–146, 195, 410–411
deposition, 403, 409, 411–412, 414
distribution, 337, 404
volume, 358–359, 404–406, 408, 410–411,

413–415
Sprayer injection systems, 328
Spraying map, 329, 358–359
Spring tine harrow, 282
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SRTM (Shuttle Radar Topography
Mission), 376

Steering, 281, 286, 290
Stem nematode, 158, 159
Stephan Boltzmann Law, 169
Stochastic, 52, 250
Stomatal aperture, 168–169, 179
Stomatal conductance, 168–169
Strip trials, 355
Sudden oak death, 317
Sugar beet (Beta vulgaris), 17, 21–23, 91, 123,

152–161, 172, 175, 178–179, 219,
225–226, 260–262, 264, 275, 283,
286, 329–330, 342–345, 377, 418,
422–425

Sunflower (Helianthus annuus), 23–24, 94, 96,
380–381

Support vector machine regression, 75
Surfactants, 44, 313–314
Sustainability, 236, 368, 372
SWIR (Shortwave infrared), 68–69, 71, 114,

137–138, 169, 171
Symplocarpus foetidus, 168
Symptoms, 31, 33, 58, 61, 102, 107, 111, 137,

140–141, 143, 153–154, 159, 161,
167, 171–174, 178–179, 185, 230,
245, 260, 350, 358, 360, 413

Synomones, 60
Syrphids, 52, 59
Systems analysis, 244, 248

T
Tank mixture application, 230
Tanoaks, see Lithocarpus densiflorus
Taraxacum officinale, 125
Tarnished plant bug, see Lygus lineolaris
Tasseled cap components, 375
Technology

crop protection, 419–422
encapsulation, 315
forward looking infrared (FLIR)

imaging, 170
fugicide application, variable rate,

350–351, 353, 355
GIS (geographic information system),

28–32, 41–42, 44, 47, 120, 155,
183–185, 205–210, 212, 399

GPS (global positioning system), 27–28,
36, 39–44, 46–47, 120, 419

herbicide application, variable rate,
335–345

information, 207, 211, 219–220, 287, 377
pesticide injection and application, 297,

308, 311, 327

phenomenon-specific sensor, 113
remote sensing, 151–152, 161–162
SEC-GPS, 399–400
semiochemical, 319
sensor, 143, 206, 233, 283
site-specific management, 13
trunk injection, 315
variable rate spray, 136, 144, 413
visible and near-infrared spectroscopy

(vnirs), 71
weed control, 124, 418, 422–425

Temperature, 8, 12, 52, 138, 142, 153–154,
156–157, 168–179, 245–246,
266–267, 269–272, 315–316,
357–358, 372, 382

Temporal dimension, 107–111, 376
Temporal management scale (MSt), 107,

110–111, 116
Temporal phenomenon scale (PSt), 107–109,

111, 116
Temporal signature, 31, 34–35, 37, 42
Temporal variability, 8–9, 223, 281
Tephritidae, 318
Terrestrial laser scanning (TLS), 219
Thermal imagery, 138, 179
Thermal imaging, 142, 156, 171–172
Thermal infrared, 138, 169, 171
Thermal radiation, 142, 170, 176
Thermal sensing, 141
Thermal sensitivity, 171
Thermogenic species, 168
Thermography, 141, 156–157, 167–180
Thermometry, 153–154, 156
Thermoradiometry, 141
Threshold

economic, 224
intervention, 52, 61
numerical, 249–250
pathogen, 152, 349–350
weed, 17, 20, 224, 345
See also Action threshold

Thrips, 386
Tillage, 5, 8, 19, 54, 230, 236–237, 280–281,

283, 288, 330, 381, 422
Tobacco mosaic virus (TMV),

138, 172
Tomato (Lycopersicum esculentum), 288,

290, 328
Topographic/Topographical map, 210–211
Torsion weeders, 287–289
Total flow control, 338
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Transpiration, 136, 138, 154, 157, 168–169,
173–174, 176–177, 179, 330, 369,
372–374

rate, 136, 138, 168–169
Treatment plot, 356
Trialeurodes vaporariorum, 318
Trimedlure, 319
Tsetse fly (Glossina sp.), 318
Tulip (Tulipa sp.), 405, 414

U
UMAC, see Upper Midwest Aerospace

Consortium
University of North Dakota, 378–379
Upper Midwest Aerospace Consortium, 368,

379, 382
Uromyces phaseoli, 173

V
Validation, 71, 73, 76–79, 82, 93, 243,

251–253, 259–274
Variable

dose technology, 327
driving, 244
orifice nozzles, 339
rate application, 12, 152, 206, 295,

335–336, 339–342, 344–345,
349–361, 371, 388–391, 393–394

seeding, 335–336
state, 244, 246, 249

Variable rate technology (VRT)
crop protection, 335–345
fertilization, 14, 336
irrigation, 335–336

Variation of herbicides, 342
Variogram, 355
Vascular diseases, 171
Vegetables, 152, 282, 286, 291
Vegetation

index/indices, 34, 42, 95–96, 121, 154–155,
156, 160, 176, 184, 194, 197, 206,
352, 370, 378, 405

leaf area, 374
Velvetleaf, see Abutilon theophrasti
Venturia inaequalis, 173
Vicia hirsuta, 286
Video cameras, 329
Viewing angle, 143, 184
Viola arvensis, 21
Visible light (VIS), 68–69, 113, 137–138, 153,

169, 326
Visible and Near-Infrared Spectroscopy

(VNIRS), 71–72, 76, 81
VRT, see Variable rate technology (VRT)

W
Water status, 120, 168, 173, 179
Waveband, 69, 90, 112–114, 116, 137,

139–142, 161, 185
Weather data, 210, 254, 270, 358, 382
Web Coverage Service (WCS), 209, 211–212
Web Feature Service (WFS), 209,

211–213, 216
WebGIS, 216–219
Web Map Service (WMS), 207, 209, 211, 216
Web Processing Service (WPS), 209, 212–213
Web services, 208
Weeds

biomass, 22–23, 227, 231–232,
234–235, 291

classes, 230–231, 235, 418–419
control

application map, 224
inter-row, 289
intra-row, 288
site-specific, 21–22, 24, 225, 236, 279,

327, 344, 423–426
treatment map, 19, 342

density, 18–19, 21–23, 223–225, 227, 232,
236, 284, 286, 335, 337, 340–342,
344, 418–419

detection
image analysis, 18, 281, 337
intra-row, 124
texture, 125–126, 340

distribution
maps, 21, 224, 418–422

epidemiology, 108
harrowing, 280, 282–283, 286
identification

morphology, 419
shape, 127
skeleton features, 128

management
site-specific, 18, 22, 119, 223–225, 235,

279, 281, 290
maps/Mapping, 18–19, 24, 230, 340, 420
overlapping, 341
patches, 18, 22–24, 120, 123, 236, 327, 340
perennial, 17, 20, 225, 230, 280, 291
populations, 17–24, 119, 223–224,

280–281, 337, 418, 422
sampling

automatic methods, 120
scouting, 119
seed production, 227
spatial distribution, 17–18
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species composition, 21, 119, 235, 335,
337, 341–342, 344

Weed-IT, 404, 408–413
Weed SOFT, 227–228
Wheat (Triticum aestivum), 18, 21–23, 88,

94, 96, 102, 108, 112–115, 123,
138–144, 152, 154, 171, 173,
175, 177–179, 225, 229–230,
245, 264–266, 268, 337, 341–342,
344–345, 353–354, 357–359, 361,
372, 379–380, 414, 418, 422–425

stripe rust, 140, 175, 358
Whole crop cultivation, 280, 282–286, 289
Whole crop weeding, 281
Wien’s displacement Law, 169
Within-field heterogeneity, 101, 176
Within-field variation, 210, 219
Wind speed, 52, 54–56, 58–59, 168,

179, 316

Winter rye (Secale cereale), 262–264, 358
Working width, 289–290, 330, 355, 410, 414,

418, 420

Y
Yellow foxtail, see Setaria glauca
Yield

losses, 119, 152–153, 155–156, 158,
161, 224, 227–230, 232–235, 349,
385–386, 400

map, 9, 12, 14, 210, 336, 351, 371, 373,
379–380, 382, 400

variability, 14, 210

Z
ZoneMAP, 369–372, 379
Zone Mapping Application for Precision

Farming, 369
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