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Foreword

Nearly 6 years have passed since the publication of my edited book, Phenology:
an integrative environmental science, in late 2003. During this time phenological
research has continued to increase both in visibility and importance within the
broader scientific community. For example, the latest Intergovernmental Panel on
Climate Change report stated that phenology “. . . is perhaps the simplest process in
which to track changes in the ecology of species in response to climate change.”
(IPCC 2007). Further, an initiative that has been a passion of mine for several
decades has finally come to fruition over the past four years, namely the creation
of a National Phenology Network in the United States (USA-NPN, which you can
read more about in Chapter 2, Section 3.7).

However, not surprisingly, despite these and many other notably advances,
phenological science still faces a number of long-term challenges. Thus, I was
extremely pleased to learn of the plans to develop this book, focusing on phenolog-
ical research methods, and to accept Marie Keatley and Irene Hudson’s invitation to
write this foreword, as it affords me an opportunity to briefly review these challenges
in the context of this volume’s contributions.

I see a three-fold set of major challenges facing phenology as we move forward
in the coming decades:

1. broadening the methodological “tool kit” used in phenological studies;
2. expanding the scope of research questions addressed by phenology; and
3. expanding the depth, diversity, and geographic extent of in situ and remotely

sensed phenological data collection, as well as integration of existing (and
creation of new) national phenology networks into a global monitoring system.

The first and the second challenges are really two aspects of the same issue.
Phenological research is still very often conducted through regression-based studies
that look for temporal trends. While there is power and elegance in these findings
to-date, which underscore the impacts of a warming world on phenological timing,
the scientific community needs the perspective of phenology to address other crit-
ical issues in species interactions, population dynamics, and ultimately adaptation
strategies within managed and natural ecosystems. The majority of the chapters in
this book are designed to broaden the “phenological thinking” of both students and
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viii Foreword

established scholars alike, not only through exposure to new methodologies, but also
by expanding the range of research questions that they see possibilities to consider.

The third challenge is in many ways unending (i.e. you rarely have too much
data), but Chapter 2 reports on the current status of phenological data collection
around the world, and offers several worthwhile perspectives and approaches to
advance the objectives of coordinated global phenological monitoring. In the near
future, I want to use the structure of the International Society of Biometeorology
(ISB) Phenology Commission (of which I am currently Chair) to help us con-
tinue moving forward with the long-term work of coordinating and expanding
phenology observations and networks around the world. We (Elisabeth Koch, Jake
Weltzin, and I) aim to lead this effort through a Group on Earth Observations (GEO)
sub-Task, and possibly a World Meteorological Organization Expert Team.

So in conclusion, I call phenology an integrative (rather than integrated) environ-
mental science, because I see it as a field of study that brings together researchers
from many different disciplines, rather than being a unique discipline unto itself.
Clearly, phenology’s multi-disciplinary perspective is a powerful approach for
addressing real-world problems. However, we can only achieve this objective
fully if there is enough “cross-training” so everyone can “speak the same lan-
guage.” With this text, Marie, Irene, and their contributing colleagues have both
broadened and deepened our world-wide phenological research “conversation.”

Mark D. Schwartz
Milwaukee, May 2009

References

Intergovernmental Panel on Climate Change (2007) Climate change 2007: impacts, adaptation,
and vulnerability, chapter 1: assessment of observed changes and responses in natural and
managed systems. IPCC Secretariat, http://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-
wg2-chapter1.pdf

Schwartz MD (ed) (2003) Phenology: an integrative environmental science. Tasks for vegetation
science, vol 39. Kluwer Academic Publishers, Dordrecht, The Netherlands



Contents

1 Introduction and Overview . . . . . . . . . . . . . . . . . . . . . . 1
Marie R. Keatley and Irene L. Hudson

2 Global Framework for Data Collection – Data Bases, Data
Availability, Future Networks, Online Databases . . . . . . . . . . 23
Elisabeth Koch

3 Seasonality as a Core Business of Phenology . . . . . . . . . . . . . 63
François Jeanneret and This Rutishauser

4 Societal Adaptation Options to Changes in Phenology . . . . . . . 75
Arnold J.H. van Vliet

5 The Influence of Sampling Method, Sample Size, and
Frequency of Observations on Plant Phenological Patterns
and Interpretation in Tropical Forest Trees . . . . . . . . . . . . . 99
L. Patricia C. Morellato, Maria Gabriela G. Camargo,
Fernanda F. D’Eça Neves, Bruno G. Luize, Adelar Mantovani,
and Irene L. Hudson

6 Regression and Causality . . . . . . . . . . . . . . . . . . . . . . . 123
Tim Sparks and Piotr Tryjanowski

7 Combining Messy Phenological Time Series . . . . . . . . . . . . . 147
Jörg Schaber, Franz Badeck, Daniel Doktor, and Werner von
Bloh

8 Phenology for Topoclimatological Surveys and Large-Scale Mapping 159
François Jeanneret and This Rutishauser

9 Spatio-Temporal Statistical Methods for Modelling Land
Surface Phenology . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Kirsten M. de Beurs and Geoffrey M. Henebry

10 Climatic Influences on the Flowering Phenology of Four
Eucalypts: A GAMLSS Approach . . . . . . . . . . . . . . . . . . . 209
Irene L. Hudson, Susan W. Kim, and Marie R. Keatley

ix



x Contents

11 Bayesian Methods in Phenology . . . . . . . . . . . . . . . . . . . . 229
Christoph Schleip, Annette Menzel, and Volker Dose

12 Smoothing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Adrian M.I. Roberts

13 Accounting for Correlated Error Structure Within
Phenological Data: a Case Study of Trend Analysis of
Snowdrop Flowering . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Natalie Kelly

14 Modelling the Flowering of Four Eucalypt Species Using
New Mixture Transition Distribution Models . . . . . . . . . . . . 299
Irene L. Hudson, Susan W. Kim, and Marie R. Keatley

15 Life History Mediated Responses to Weather, Phenology
and Large-Scale Population Patterns . . . . . . . . . . . . . . . . . 321
Esa Ranta, Jan Lindström, Veijo Kaitala, Elizabeth Crone,
Per Lundberg, Tatu Hokkanen, and Eero Kubin

16 Applications of Circular Statistics in Plant Phenology:
a Case Studies Approach . . . . . . . . . . . . . . . . . . . . . . . . 339
L. Patricia C. Morellato, L.F. Alberti, and Irene L. Hudson

17 Wavelet Analysis of Flowering and Climatic Niche Identification . 361
Irene L. Hudson, In Kang, and Marie R. Keatley

18 Singular Spectrum Analysis: Climatic Niche Identification . . . . . 393
Irene L. Hudson and Marie R. Keatley

19 Herbarium Collections and Photographic Images:
Alternative Data Sources for Phenological Research . . . . . . . . 425
Fran MacGillivray, Irene L. Hudson, and Andrew J. Lowe

20 Meta-Analysis and Its Application in Phenological
Research: a Review and New Statistical Approaches . . . . . . . . 463
Irene L. Hudson

Color Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513



Contributors

Ahas, Rein Institute of Geography, University of Tartu, Tartu, Estonia,
rein.ahas@ut.ee

Alberti, Luis F Grupo de Fenologia e Dispersão de Sementes, Laboratório de
Fenologia, Departamento de Botânica, UNESP – Universidade Estadual Paulista,
Rio Claro, SP, Brasil, nuandii@hotmail.com

Badeck, Franz Potsdam Institute of Climate Impact Research, Potsdam,
Germany, badeck@pik-potsdam.de

Beaubien, Elizabeth Department of Renewable Resources, University of Alberta,
Edmonton, Canada, e.beaubien@ualberta.ca

Betancourt, Julio Desert Laboratory, U.S. Geological Survey, Tucson AZ, USA,
jlbetanc@usgs.gov

Camargo, Maria Gabriela G Departamento de Botânica, Laboratório de
Fenologia, UNESP – Universidade Estadual Paulista, Grupo de Fenologia e
Dispersão de Sementes, Rio Claro, SP, Brasil, gabicamargo@yahoo.com

Chambers, Lynda E Centre for Australian Weather and Climate Research -
Bureau of Meteorology, Melbourne, Australia, L.Chambers@bom.gov.au

Chen, Xiaoqiu College of Urban and Environmental Sciences, Peking University,
Beijing, China, cxq@pku.edu.cn

Chmielewski, Frank-M Sub-division of Agricultural Meteorology, Institute of
Crop Sciences, Faculty of Agriculture and Horticulture, Humboldt-University,
Berlin, Germany, chmielew@agrar.hu-berlin.de

Crone, Elizabeth Wildlife Biology Program, University of Montana, Missoula,
USA, elizabeth.crone@umontana.edu

de Beurs, Kirsten M Department of Geography, Virginia Polytechnic Institute
and State University, Blacksburg, VA, USA, kdebeurs@vt.edu

D’Eça Neves, Fernanda F Departamento de Botânica, Laboratório de Fenologia,
UNESP – Universidade Estadual Paulista, Grupo de Fenologia e Dispersão de
Sementes, Rio Claro, SP, Brasil; Universidade do Sul de Santa Catarina, Unidade
Pedra Branca, Naturologia Aplicada, Palhoça, SC, Brasil, fephlor@gmail.com

xi



xii Contributors

Defila, Claudio Biometeorology, MeteoSwiss, Zürich and Payerne, Switzerland,
claudio.defila@meteoschweiz.ch

Demaée, Gaston Royal Meteorological Institute of Belgium, Brussels, Belgium,
gaston.demaree@oma.be

Doktor, Daniel Department of Biology, Imperial College, London, UK,
daniel.doktor@ufz.de

Dose, Volker Max-Planck-Institut für Plasmaphysik, München, Germany

Gangaram, Poonam Mauritian Wildlife Foundation, Vacoas, Mauritius,
pgangaram@mauritian-wildlife.org

Henebry, Geoff Geographic Information Science Center of Excellence, South
Dakota State University, Brookings, SD, USA, Geoffrey.Henebry@sdstate.edu

Hokkanen, Tatu Vantaa Research Unit, Finnish Forest Research Institute, Vantaa,
Finland, tatu.hokkanen@metla.fi

Hudson, Irene L School of Mathematics and Statistics, University of South
Australia, Adelaide, South Australia; Institute for Sustainable Systems and
Technologies, University of South Australia, Mawson Lakes, South Australia,
irenelena.hudson@gmail.com

Jeanneret, Francois Institute of Geography, University of Bern, Research Group
PHENOTOP, Bern, Switzerland, francois.jeanneret@giub.unibe.ch

Jones, Carl Mauritian Wildlife Foundation, Vacoas, Mauritius,
cjones@mauritian-wildlife.org

Kaitala, Veijo Integrative Ecology Unit, Department of Biological and
Environmental Sciences, University of Helsinki, Finland, veijo.kaitala@helsinki.fi

Kang In, Department of Mathematics and Statistics, University of Canterbury,
Christchurch, New Zealand, I.Kang@math.canterbury.ac.nz

Keatley, Marie R Department of Forest and Ecosystem Science, University of
Melbourne, Creswick, Victoria, Australia, mrk@unimelb.edu.au

Kelly, Natalie CSIRO Mathematical and Information Sciences, Castray
Esplanade, Hobart, Tasmania, Australia, natalie.kelly@csiro.au

Kim, Susan W School of Mathematics and Statistics, University of South
Australia, Adelaide, South Australia; Institute for Sustainable Systems and
Technologies, University of South Australia, Mawson Lakes, South Australia,
susanw.kim@gmail.com

Koch, Elizabeth Zentralanstalt für Meteorologie und Geodynamik, Hohe Warte
38, 1190 Wien, Austria, elisabeth.koch@zamg.ac.at

Kubin, Eero Muhos Research Unit, Finnish Forest Research Institute, Muhos,
Finland, eero.kubin@metla.fi



Contributors xiii

Lindström, Jan Division of Environmental and Evolutionary Biology, Institute of
Biomedical and Life Sciences, University of Glasgow, Glasgow, UK,
J.Lindstrom@bio.gla.ac.uk

Lipa, Wolfgang Zentralanstalt für Meteorologie und Geodynamik, Vienna,
Austria, wolfgang.lipa@zamg.ac.at

Lowe, Andrew J School of Earth and Environmental Sciences, Australian Centre
for Evolutionary Biology and Biodiversity, The University of Adelaide, South
Australia, Australia, andrew.lowe@adelaide.edu.au

Luize, Bruno G Departamento de Botânica, Laboratório de Fenologia, UNESP –
Universidade Estadual Paulista, Grupo de Fenologia e Dispersão de Sementes, Rio
Claro, SP, Brasil, brunoluize@hotmail.com

Lundberg, Per Department of Theoretical Ecology, Lund University, Lund,
Sweden, per.lundberg@teorekol.lu.se

MacGillivray, Fran School of Earth and Environmental Sciences, Australian
Centre for Evolutionary Biology and Biodiversity, The University of Adelaide,
South Australia, phyllis.macgillivray@adelaide.edu.au

Mantovani, Adelar Departamento de Botânica, Laboratório de Fenologia,
UNESP – Universidade Estadual Paulista, Grupo de Fenologia e Dispersão de
Sementes, Rio Claro, SP, Brasil; Universidade do Estado de Santa Catarina, Centro
Agroveterinário, Lages, SC, Brasil, mantovani@cav.udesc.br

Menzel, Annette Lehrstuhl für Ökoklimatologie, Technische Universität
München, Freising – Weihenstephan, menzel@forst.tu-muenchen.de

Minin, Alexandr Andreevich, Rojdestvensky bulvar 5\7-28, Moscow,
aminin@pochtamt.ru

Morellato, L Patrícia C Departamento de Botânica, Laboratório de Fenologia,
UNESP – Universidade Estadual Paulista, Grupo de Fenologia e Dispersão de
Sementes, Rio Claro, SP, Brasil, pmorella@rc.unesp.br

Pinto, Antonio Moçambite INPA – Instituto Nacional de Pesquisas da
Amazônia, Centro de Pesquisas em Silvicultura Tropical CPST, Manaus, Brazil

Rane, Amruta N Mauritian Wildlife Foundation, Vacoas, Mauritius,
amrutarane@hotmail.com

Ranta, Esa Integrative Ecology Unit, Department of Biological and
Environmental Sciences, University of Helsinki, Finland

Roberts, Adrian M I Biomathematics and Statistics Scotland, JCMB, King’s
Buildings, Edinburgh, UK, EH9 3J2, adrian@bioss.ac.uk

Rutishauser This, Institute of Geography, University of Bern, Research Group
PHENOTOP, Bern, Switzerland, sthis@creaf.uab.cat



xiv Contributors

Schaber, Jörg Theoretical Biophysics, Humboldt University Berlin, Berlin,
Germany, schaber@biologie.hu-berlin.de

Schleip, Christoph, Fachgebiet für Ökoklimatologie Technische Universität,
München, Germany, schleipc@wzw.tum.de

Schwartz, Mark D Department of Geography, University of
Wisconsin-Milwaukee, WI, USA, mds@uwm.edu

Sparks, Tim Institute of Zoology, Poznan University of Life Sciences, Wojska
Polskiego, Poznań, Poland, thsparks@btopenworld.com

Tatayah, Vikash Mauritian Wildlife Foundation, Vacoas, Mauritius,
vtatayah@mauritian-wildlife.org

Tryjanowski, Piotr Institute of Zoology, Poznan University of Life Sciences,
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Chapter 1
Introduction and Overview

Marie R. Keatley and Irene L. Hudson

1.1 History

The term phenology was first introduced by Charles Morren in 1849 in a public
lecture on the 16th of December entitled “Le globe, le temps et la vie” (Morren
1849, 1851). Phenology which he took from the Greek ϕαινoμαι, (Morren 1849),
was defined as “apparaître, se manifester: phénologie, la science des phénomènes
qui apparaissent successivement sur le globe.” This translates as: to show, to appear:
the science of phenomena that appear successively on the globe.

The term, phenology, grew out of Morren’s work on the “periodic phenom-
ena of vegetation” with articles being published in the Les Annales de la Société
Royale d’agriculture et de botanique de Gand (Annals of the Royal Society of
Agriculture and Botany of Ghent). These articles were apparently compiled under
one title “Traité historique de Phénologie” (de Selys-Longchamps 1853). It is, how-
ever, Morren’s paper “Souvenirs phénologiques de l’hiver 1852–1853” published in
1853 which is credited with the term’s introduction (Demarée and Curnel 2008) and
the reason that 1853 is the date usually cited for this (Abbe 1905, Hopp 1974, Grove
1988, Puppi 2007).

Phenology, in its adjectival form, was introduced into the English language in
1875 (Lynn 1910, Egerton 1977) when instructions were issued by the Council of
the Meteorological Society for recording phenological events (Anon 1875). The
first definition of phenology published in English “is the observation of the first
flowering and fruiting of plants, the foliation and defoliation of trees, the arrival,
nesting, and departure of birds, and such like” was in 1884 (Anon 1884, Oxford
English Dictionary 2008).

In 1972 as part of their contribution to the International Biological Program (IBP)
the United States of America established a committee on phenology (Leith 1974).
This Committee defined phenology as:

M.R. Keatley (B)
Department of Forest and Ecosystem Science, University of Melbourne, Creswick, Victoria
e-mail: mrk@unimelb.edu.au
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2 M.R. Keatley and I.L. Hudson

the study of the timing of recurring biological events, the causes of their timing with regard
to biotic and abiotic forces and the interactions among phases of the same or different
species (Leith 1974 p4).

The committee suggested further refinements of the definition, to add a spatial
and temporal framework:

the unit of study may vary from a single species (or variety, clone etc.) to a complete ecosys-
tem. The area involved may be small (for intensive studies on all phenostages of entire
ecosystems) or very large (for interregional comparison of significant phenostages). The
unit of time is usually the solar year with which the events to be studied are in phase. The
events themselves may cover variable time spans, often shorter than the solar year (Leith
1974 p5).

Regardless of its definition, and whether phenology includes seasonal events such
as snow thaw (see Chapter 3 by Jeanneret and Rutishauser), phenology has a long
history with agricultural phenological calendars dating from 1700 BC (Kramer 1963
in Aitken 1974), the longest phenological recording of flowering dating from 705
AD in Japan (Menzel 2003a) and Carl Linnaeus, outlining methods for collecting
“calendrier florae” phenological data in 1751 (Linne 1751). Indeed, prior to the
invention of thermometers the observation of agricultural phenological phases was
used to judge whether a particular year’s climate was different to a so-called normal
year (Pfister 1980).

In what follows we review and give the phenological, mathematical and statistical
context of each chapter of this book (with broad references for the reader to glean
the areas of research and publication and application; and choice what best interests
him or her). This introduction and overview aims to inform the reader also of the
scope of the topics discussed, as well as to provide a conceptual framework for past,
new and ongoing and future developments in the field of phenological research.

With the exception of agricultural phenology, phenology has been regarded by
the wider scientific community as the domain of natural historians (Sparks and
Menzel 2002), and therefore lacking scientific rigour. This is despite many signifi-
cant scientific contributions over the years to phenological methods and modelling
(e.g. Bassett et al. 1961, Caprio 1966, Dierschke 1972, Caprio et al. 1974, Leith
1974, Idso et al. 1978, Pfister 1980, Alm et al. 1991, Kramer 1995, Degrandi-
Hoffman et al. 1996, Linkosalo et al. 1996, Cenci et al. 1997, Chen et al. 1999). This
view started to change in the 1990s (Fig. 1.1 and Schwartz 2003b) when the inher-
ent value of phenology, primarily driven by the insights into the impacts of climate
change which phenological observations and analyses can provide, was recognised
(Sparks and Carey 1995, IPCC 2001, Root et al. 2003, Parmesan and Yohe 2003,
Parmesan 2007). Changes in phenological processes have significant consequences
for human health, biodiversity, forestry, agriculture, the economy etc (de Vries 1980,
McMichael 1993, IPCC 2001, Walther et al. 2002, van Vliet et al. 2003, World
Health Organisation 2003, Mackey 2007, Thuiller et al. 2008). Chapter 4 by van
Vliet details these impacts on human health and primary production and presents
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Fig. 1.1 No. of papers published between 1990 and 2008 (indexed in the ISI web of science) in
which both phenology and climate change are topics (ISI accessed on 26/02/09)

ways for these sectors to adapt to climate change. As noted by him in Chapter 4
the IPCC (Schneider et al. 2007) conclude that market and social systems have a
considerable adaptation potential but that the economic costs are potentially large,
for the most part unknown and unequally distributed, as is the adaptation potential
itself. van Vliet also highlights the contribution that phenological monitoring con-
tinues to make, the need to improve the analysis of phenological time series and
quantify both the societal and environmental impact, as well as the communication
of the results.

Chapter 2 on phenological networks compiled by Elizabeth Koch, with contribu-
tions from authors from both hemispheres, confirms that there is now a worldwide
recognition that phenology can be used as an integrative indicator not only for
regional impacts of climate change but also at the global level (Donnelly et al.
2004, Parmesan 2006, Cleland et al. 2007, Rosenzweig et al. 2008). Chapter 2
supplements and updates the information on networks and databases provided in
Schwartz (2003a) and Nekovář et al. (2008) as well as adding information for
countries where phenological information was previously lacking (e.g. Africa and
Russia).

The publication of “Phenology: An Integrative Environmental Science”
(Schwartz 2003a) also heralded a new age of acceptance of phenological practice,
application and research. This book builds on the book of Leith (1974) and following
a similar format contains detailed information on: (1) phenological data, networks
and research (2) the phenology of various bioclimatic zones, (3) phenological mod-
elling, (4) remote sensing phenology; as well as (5) applications. It also highlights
the multidisciplinary nature of phenology.
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1.2 Current Issues in Phenology

The accelerated interest in phenology is highlighted by the fact that since the pub-
lication of “Phenology: An Integrative Environmental Science” (Schwartz 2003a),
there has been a growing awareness, as expressed in the recent phenological liter-
ature, that popular analytical methods used in phenological research, whilst useful,
have their limitations (Dose and Menzel 2004, Hudson et al. 2005, Sparks and
Tryjanowski 2005, Cleland et al. 2007). Phenological studies almost certainly
are observational and therefore often rely on correlation analysis for inference
(Parmesan and Yohe 2003, Sparks and Tryjanowski 2005).

One example is the popular practice of analysing phenological records by sim-
ple linear regression (which has a correlational basis) - often used to determine
whether there has been a change in the commencement time of a phenostage; indi-
cated by a significant estimate of the slope. It has been highlighted (Sparks and
Menzel 2002, Menzel 2003b, Hudson et al. 2005, Sparks and Tryjanowski 2005)
that the slopes of the resultant regression lines are influenced by when the series
commences and finishes and, also by the length of the series. Menzel et al. (2008)
also noted that when utilising simple linear regression, the length of a time series
and its start and end dates are crucial in correct detection of changes, and in esti-
mating their magnitude. This is particularly so when highly variable, multi-decadal,
phenological time series are analysed (Dose and Menzel 2004). As temperature in
the last 12 years (1997–2008) encompasses the warmest period recorded (Goddard
Institute for Space Studies 2009), this also impacts on the slope of the regression
lines and on the ability of regression methods to accurately estimate the true rate of
change over time of a phenological stage (Sparks and Tryjanowski 2005). However,
this analysis is robust and has a role to play in phenology. In Chapter 6, Sparks
and Tryjanowski present ways to ensure that the method is applied appropriately
and provide examples of alternate methods: polynomial and multiple regression.
Multiple linear regression (MLR) or stepwise regression (Draper and Smith 1981)
are regularly used to investigate the influence of temperature on the first day of
flowering or to relate a phenological response to weather measurements (Fitter
et al. 1995, Sparks and Carey 1995, Keatley and Hudson 2000, Roy and Sparks
2000, Lu et al. 2006). To date, MLR or stepwise methods have delineated sim-
ilar results across different regions (Fitter and Fitter 2002, Roberts et al. 2004).
Stepwise regression is a procedure that selects the subset of the regressors that best
explains the variation in the phenological response. Stepwise regression, however,
has limitations in studies relating a phenological response to weather data. Firstly, it
does not accommodate for large numbers of highly correlated regressors. This is an
issue if daily or weekly measurements are used as regressors (see also Chapter 12
Roberts). In practice monthly aggregates of weather data are then used and clearly
information is lost. Stepwise regression, like simple linear regression, does not take
into account the marked auto-correlated structure in the regressors. Indeed what
has not often been highlighted in the phenological literature is that phenological
series (or fine time scale weather series) are correlated by nature, an aspect not
accounted for by linear, MLR, nor stepwise regression methods (Chapter 13 Kelly,
Hudson et al. 2005).
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Roberts in Chapter 12 describes a recently introduced approach, penalized signal
regression (PSR), to examine the relationship between phenology and weather (fol-
lowing Roberts 2008). PSR is based on linear regression, and thus retains the benefit
of flexibility, but can be used with weekly or daily weather data and gives intu-
itively appealing and interpretable results.The penalised regression method avoids
difficulties due to multicollinearity (correlated regressors) and illustrates the concept
of penalising differences between regression coefficients so as to obtain a smooth
profile. Roberts discusses how the PSR approach can also be expanded to investi-
gate the effect of one or more covariates, for example latitude, on the regression
coefficients (Eilers and Marx 2003) or to study how two or more banks of predic-
tors, such as daily temperature and rainfall measurements, affect the phenological
response.

Kelly in Chapter 13 points out that whilst multiple-location phenological data is
reasonably uncommon, the impetus of expanding phenological networks will ensure
data of this type will be available in the future (Cleland et al. 2007). Results from
studies of trends in phenophases at a regional (rather than local) level provide more
power to detect climate change. The representativeness of locations of phenophase
observations is, however, an important issue (Rötzer et al. 2000, Thompson and
Clark 2006, Siljamo et al. 2008), in that data from an individual location may unduly
influence or bias models of phenological change, through factors that cannot be con-
trolled for nor quantified. As Kelly cautions, data containing phenophase time series
from multiple locations has an inherent correlated error structure which standard sta-
tistical methods cannot accommodate. She advocates and demonstrates alternative
modelling approaches to account for both multiple localities and for the longitu-
dinal nature of phenological data - data resolution and random effects modelling,
both extensions of simple linear regression (see Verbeke and Molenberghs 2000
and Diggle et al. 2002).

Non-linear modelling has not been addressed much to date in phenology. Indeed
it will be difficult to find a linear regression model that fits the data well for
essentially non-linear processes. This is true particularly as the range of the data
increases (Schleip et al. 2008). The pertinent question is how can we accommodate
for non-linear responses of phenology to time and/or to climatic factors? This has
been addressed by Hudson and her colleagues in Chapter 10, by the application
of Generalised Additive Models for Location, Scale and Shape (GAMLSS) (see
Rigby and Stasinopoulos 2005, and Hudson et al. 2009). Hudson et al. illustrate the
advantages of GAMLSS to phenology is that GAMLSS: [1] can identify the main
drivers of the event of interest from a multiplicity of predictors such as temperature
and rainfall; [2] allow for non-linear impacts of time and/or the explanatory vari-
ables; [3] can statistically detect thresholds; for example, the lowest temperature
for the commencement of flowering; and [4] can model the auto-correlated nature
inherent in the phenological series (see also Chapter 13 of Kelly). In Chapter 19
MacGillivray’s et al. present the GAMLSS approach to show its greater accuracy
and relevance to the assessment of non-linear trends over time (year) for herbarium
records.

Modelling nonlinear phenological responses with time have been addressed in
the context of meta-analytic studies in phenology by Hudson (Chapter 20) and from
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a Bayesian viewpoint by Schleip and his colleagues (Chapter 11). Bayesian analy-
sis offers the possibility to overcome the pitfalls of linear regression models. Indeed
Bayesian statistical methods have been applied to date in climate change detec-
tion, analysis and attribution (e.g. Hobbs 1997, Hasselmann 1998, Leroy 1998,
Berliner et al. 2000), and also in climate reconstructions (Robertson et al. 1999,
Schoelzel 2006). Recently various studies show that Bayesian analysis offers huge
benefits in the analysis of varying changes, model probabilities and change-point
probabilities of time series, when nonlinear changes in phenological and climate
time series exist. Along with these rates of change, rigorously calculated uncer-
tainties of model-averaged rates of change and linear trends can be described by
Bayesian statistics (Dose and Menzel 2004, Menzel et al. 2008, Schleip et al.
2008).

A handful of papers have used other methods to account for the possible
non-linearity and for the complex interdependencies and changing structure in phe-
nological time series: namely dynamic factor analysis (by Gordo and Sanz 2005)
and chronological clustering (Doi 2007, Doi and Katano 2008). These methods
prove valuable in separating out underlying components of a univariate (single) time
series that show significantly different patterns; aspects achievable by the techniques
of wavelets and singular spectrum analysis discussed by Hudson and her colleagues
in Chapters 17 and 18, respectively.

Much focus has gone into developing a better definition of phenophases and
provision of greater precision and accuracy for data collected across phenological
networks and stations (see Chapter 2; Meier 2003, COST 725 2008). However, the
influence of sampling method, sample size and the frequency of observations on
the analysis and interpretation of plant phenology has been rarely addressed in the
phenological literature (Fournier and Carpantier 1975, Chapman et al. 1992, 1994,
Hemingway and Overdorff 1999, D’Eça Neves and Morellato 2004). Such issues of
sampling method, sample size and the frequency of observations are discussed by
Morellato and her colleagues in Chapter 5 via a case study of tropical forest trees,
where direct observations on transects are compared with those from litter traps.
The lack of a coherent set of sampling rules and methods, if not analytic meth-
ods and procedures, is even more evident in tropical phenology, where there is a
high diversity of species and complex ecosystems (Frankie et al. 1974, Newstrom
et al. 1994, Sakai 2001, Morellato 2003). In Chapter 5 Morellato et al. advocate the
combination of presence/absence data and a quantification method to estimate plant
phenology, and recommend careful estimation of indices (Fournier intensity index
(Fournier 1974) and activity index (Bencke and Morellato 2002)) and a cautious
generalisation of pattern(s).

Reaching some concensus on design, method of collection and comparable ana-
lytic methods is much needed to advance the generalisability of phenological results.
What has also been recently discussed is the need for the phenological community to
reach a consensus on inclusion criterion for studies selected for phenological meta-
analytic studies (Parmesan 2007). As noted by Hudson in Chapter 20 in a discussion
of meta-analysis in phenology – these criteria likewise relate to sampling and obser-
vation frequency, that is length of observations (length of the time series) and pertain
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to selection criteria of studies for inclusion into the synthetic analysis; this based in
part on whether a reported neutral, negative or positive result was exhibited in regard
to climate change impact on phenology (see Chapter 20 of this book and Parmesan
2007).

Phenological time series are often incomplete and of limited temporal range. As
Schaber and his colleagues point out in Chapter 7 with ongoing efforts to expand the
databases of phenological observations by data mining it is likely that more data sets
with sparse data and data gaps will become available in the near future (see Aono
and Kazui 2007). The problem of the uncertainty of individual time series and gaps
is often accommodated for by averaging a set of phenological time series over a
geographical area of interest or a time period of interest (Estrella and Menzel 2006,
Menzel et al. 2006, 2008). To date, there are applications of methods for combining
phenological time. One application is to obtain a reliable series from several time
series (Häkkinen et al. 1995, Linkosalo et al. 1996, 2009, Linkosalo 1999, Schaber
and Badeck 2002). Another is to construct a long time series for trend analysis,
where data gap filling is of primary interest (Schaber and Badeck 2005). In addi-
tion combined time series can also be used to find outliers in individual time series
(Linkosalo et al. 2000, Schaber and Badeck 2002, Doktor et al. 2005). Schaber and
his colleagues in Chapter 7 present a method for combining phenological time series
which imputes missing data within records as well as detecting outliers. Schaber et
al. also quantify the effect of the extension of the outlier detection algorithm using
Gaussian Mixture Models. Their outlier detection method is based on Gaussian
Mixture Models (Doktor et al. 2005) and accounts for year-location interactions.
The approach of Gaussian mixtures, discussed in Chapter 7 which allows for station
x year effects, can be further developed by assigning stations to tentative mixture
components before checking for outliers. Schaber et al. (Chapter 7) point to the
future application of Bayes statistics as an alternative way of analysing messy phe-
nological datasets (see Dose and Menzel 2004), and suggest that further work would
entail comparison of Bayes methods to the methods discussed in Chapter 7.

Recent technological advances in studying the earth from space have resulted
in a new field of phenological research which concerns itself with observing the
phenology of whole ecosystems and stands of vegetation on a global scale using
proxy approaches (Reed et al. 2003, Stöckli and Vidale 2004). These remote sens-
ing methods complement the traditional phenological methods which record the first
occurrences of individual species and phenophases, and, in part, overcome one other
limitation of phenological time series is that they have limited geographical range.
But as de Beurs and Henebry in Chapter 9 point out, further research is required on
the relationship between satellite derived metrics for the start and end of season with
ground-based phenological observations. Jeanneret and Rutishauser in Chapter 8
on phenological mapping show also that technical and analytical challenges still
remain, (e.g. the comparability of different data sources and/or frequent temporal
gaps). These satellite derived phenological parameters are an approximation of the
true biological growth stages; mainly due to the limitation of current space based
remote sensing and the nature of vegetation index. As pointed out by Jeanneret
and Rutishauser in Chapter 8 motivations to map phenology are often driven by
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practical issues such as: regional planning (Jeanneret 1974, Messerli et al. 1978),
aerobiology (pollen emission, Branzi and Zanotti 1989, García-Mozo et al. 2006),
and agronomy (Mariani et al. 2007). They contend that “large-scale phenological
maps are unequalled and irreplaceable in providing a maximum amount of topocli-
matic information” and recommend that in a transition from cartographic intuition
to future mapping algorithms we need to utilize and link all available sources of
data, terrain information, knowledge and experience.

In Chapter 9 de Beur and Henebry present twelve methods commonly used
in land surface phenology along with their limitations, in determining start and
end of season, reiterating the point that, relating satellite observation with ground-
based phenology, remains a significant challenge. The different spatio-temporal
statistical methods are grouped into the following categories: [1] thresholds (Lloyd
1990, Fischer 1994, Myneni et al. 1997, White et al. 1997, Shabanov et al. 2002,
Zhou et al. 2003, Karlsen et al. (2006, 2007), Delbart et al. 2005); [2] derivatives
(White et al. 1997, Tateishi and Ebata 2004, Baltzer et al. 2007); [3] smoothing
algorithms (e.g. moving average models (Reed et al. 1994)), discrete Fourier anal-
ysis (Moody and Johnson 2001), Principal component analysis (Eastman and Fulk
1993, Hall-Beyer 2003); and [4] fitted models (logistic models (Zhang et al. 2004)),
Gaussian models or lower order Fourier estimates (Jönsson and Eklundh 2002),
quadratic models with accumulated growing degree days (de Beurs and Henebry
2008). In Chapter 9 de Beur and Henebry also point to the as yet unresolved prob-
lems with a lack of statistical error structure from most of these methods and in
oversmoothing.

In Chapter 3 Jeanneret and Rutishauser advocate that phenological observations
are crucial as the basis for a description of a seasonal classification and seasonality.
They show that a well designed phenological diagram can offer a comprehensive
picture of the rhythm and amplitude of seasons and they detail the basic require-
ments of drawing up a phenological diagram. They suggest the inclusion of abiotic
observations such as the timing of frost, thawing, icing, snow and fog provides
seasonality descriptions beyond the vegetation period – offering thus a year-round,
combined topoclimatic typology. In terms of utility Jeanneret and Rutishauser claim
that phenological season diagrams are a compelling and cheap tool for extracting
typologies of seasonal patterns based on an analysis of single years or of dif-
ferent stations; and have the potential for global application; despite phenology
having, not as yet achieved international or global standardization (Bruns and van
Vliet 2003).

Additionally given the increased worldwide momentum on reporting results from
climate impact studies and now from phenological series, as the value of long-term
data is being recognised, it seems that every attempt is being made to extract climate
signals contained within these records (Stenseth et al. 2002, Walther et al. 2002,
Parmesan and Yohe 2003, Root et al. 2003, Rosenzweig et al. 2008). However, it
is still not fully appreciated, that the identification of points of significant change
(change-points), in long-term phenological time series, is a prerequisite for the
analysis and the interpretation of phenological observations as bio-indicators of
climate change (Hudson et al 2005). Rapid shifts in climate can lead to, or be
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contemporaneous with, abrupt phenological changes. These cannot be well detected
by regression nor correlation, methods traditionally used to detect temporal changes
in phenology (Cleland et al. 2007). The non-uniform periods of change that typ-
ify the climate of the twentieth century (Dose and Menzel 2004, Rutishauser et al.
2007) pose a particular challenge when linear regression analysis is used for the
reconstruction of trends.

Indeed there are few studies to date determining change points in phenologi-
cal series using precise statistical models (Dose and Menzel 2004, 2006, Hudson
et al. 2004, 2005, Schleip et al. 2006, Keatley and Hudson 2008, Menzel et al.
2008). The Chapter (11) by Schliep and his colleagues presents a single change
point method and the associated rates of change in flowering using nonparametric
Bayesian functionals to time series. Bayesian analysis of the change-point proba-
bilities as described by Schleip and his colleagues provides both visualisation and
quantification of major changes in long-term time series (see also Dose and Menzel
2004, Menzel and Dose 2005, Menzel et al. 2008, Schleip et al. 2008, 2009). In
Chapter 19 MacGillivray and her colleagues present the results from a multiple
change point analytic approach, on herbarium records, following Moskvina and
Zhigljavsky (2003), which is model free change point method, based on the sequen-
tial application of singular-spectrum analysis (SSA) (see Chapter 18) to subseries of
the original series. They also determined, not only the significant points of change,
but also the rates of change using both change point analysis and nonlinear mod-
elling via Generalized Additive Models for Location, Scale and Shape (GAMLSS)
(Chapter 10). MacGillivray’s et al. (Chapter 19) advocate the combined use of both
non-linear methods (GAMLSS) and change points methods in phenological anal-
ysis, particularly of herbarium records. The detection of change points has also
been applied to the area of circular statistics (Jammalamadaka and SenGupta 2001),
whose potential to phenology research is discussed in Chapter 16 by Morellato
and her colleagues. Change point methods for linear scaled data are discussed in
other chapters of this book (Chapter 11). Indeed the reconstructed subcomponents
of phenological time series discussed by Hudson et al. (Chapter 18) point to sig-
nificant points of change in cyclicity and amplitude of flowering in four species of
eucalypt. Hudson also discusses the need for change point identification in phe-
nological meta-analytic studies (Chapter 20); this is a problem not appreciated,
nor accounted, for, to date, in phenology. The presence of significant and abrupt
change points affects both the accuracy of the estimates of local climate impact
and of the pooled estimates of climate effect from meta-analytic studies, which are
traditionally conducted across wide geographical locations (Chapter 20).

It has been advocated for some time that statistical techniques used in phenology
need to accommodate for the inherent complexity of phenological records (Dose
and Menzel 2004, Hudson et al. 2005) which is often ignored. Complexity, such as
their time series (correlated) nature, their often discrete and non-stationary proper-
ties, and the presence of excess zeros (non occurrence of a phenostage of interest).
More sophisticated statistical methods for examining phenological time series are
still needed. In Chapters 17 and 18 Hudson and her colleagues apply two such meth-
ods for time series decomposition and cross-correlation, namely wavelets analytic



10 M.R. Keatley and I.L. Hudson

methods (Percival and Walden 2000, Kang et al. 2004) and singular value decom-
position (SVD) using singular spectrum analysis (SSA) (Golyandina et al. 2001,
Hudson et al. 2004, Fukuda and Hudson 2005, Golyandina and Osipov 2007). It
is noteworthy that whilst wavelet analysis has been used in a study of European
spring temperatures (Paluš et al. 2005) and rainfall (Koch and Marković 2007) and
changes in vegetation cover (Lu et al. 2007), it is as yet under utilised in traditional
land based phenology. SSA is also not as yet very widely applied to phenological
data (D’Odorico et al. 2002, Hudson et al. 2004, 2005, Studer et al. 2005, 2007).
These chapters illustrate the worth of both wavelets and SSA, and associated cross
correlational analysis to phenology, demonstrating that these methods offer us ways
to: [1] identify spatial and climate niche across species; [2] decompose time series
into its sub components (e.g. trends, oscillatory modes or seasonalities, change-
points and noise); [3] establish whether a given species is uniquely influenced by
climate through the year (i.e. has its own climatic signature); [4] determine the
relationship between multiple climate indicators; [5] succinctly display how the
association between the two processes, say climate and flowering, change with
scale and time; and [6] identify the primary climatic drivers of flowering or of any
phenophase.

Transitional state modelling, which assumes the existence of underlying het-
erogeneity (mixtures) in multivariate time series, is a novel technique developed
by Hudson and her colleagues and applied to eucalypt flowering, as detailed
in Chapter 14. Hudson et al’s. approach allows for modelling possible interac-
tive effects of two or more climate variables on phenological response (where
the phenological response and climatic predictors are discrete state processes).
Interactive effects have as yet not been tested for in phenology; even though
there is an appreciation that climate drivers, other than temperature, such as rain-
fall, and drought etc need to be modelled in addition to temperature forcing
(Schleip et al. 2008).

Exploring the impacts of single and multiple climate variables, and even which
temperatures impact from different months, or combinations and interactions of
such variables, constitutes a significant modelling exercise (Sparks and Carey 1995,
Keatley et al. 2002). Transitional state modelling (see e.g. Berchtold and Raftery
2002) has also, as yet, not been embraced in phenology. Hudson et al. (Chapter
14) develop the work of Kim et al. (2005, 2008, 2009), which uses mixed transi-
tion distribution (MTD) models (Berchtold 2006) to study the relationship between
the probability of (on/off) eucalypt flowering with respect to two discrete states
(high/low) of rainfall and of temperature. Allowing for interactive effects between
climate predictors in modelling phenological response opens up new dimensions
of interpretation of results. For example, the four eucalypt species examined in
Chapter 14 are shown to be influenced by temperature (see also Keatley et al. 2002)
and in some instances are influenced by rainfall and its interaction with tempera-
ture. Hudson et al. then conclude that as a consequence their flowering phenology
will change in response to climate change, and propose that there may be a rain-
fall threshold required before flowering can occur (Hodgkinson and Freudenberger
1997).
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Increased synchrony can mean less potential for genetic or demographic rescue
effects (Brown and Kodric-Brown 1977, Tallmon et al. 2004). In the study of pop-
ulation dynamics the degree of synchrony (the temporal match of events in space
and time) is frequently estimated by the cross-correlation of population sizes in
two spatially distinct localities; with synchrony tending to decrease with distance
(Ranta et al. 1997, 1999). In Chapter 15 Ranta and his colleagues demonstrate that
phenological events can indeed be synchronized in a similar manner as population
fluctuations. Ranta et al. show that the Moran effect (i.e. a common external pertur-
bation) is capable of synchronizing two distinct life history events, that of leafing
in European aspen (Populus tremula) and that of mast seeding in both Scotch pine
(Pinus sylvestris) and Norway spruce (Picea abies) in Finland. Using a threshold-
triggered phenology model Ranta et al. demonstrate that the conceptual framework
of Moran effect may be extended to cover the timing of life history events, events
not directly regulated by density-dependent feedback. Tests for synchrony based on
circular statistics are also discussed by Morellato et al. (Chapter 16).

As mentioned cross-correlational methods underpin synchrony tests, but as yet,
like testing for interaction effects of multiple climatic indicators, are underutilized
in phenology. Schleip and his colleagues (Chapter 11) discuss correlational methods
of phenological data with temperature (see also Dose and Menzel 2006 and Schleip
et al. 2008). Wavelet cross correlation methods for bivariate time series are also
discussed in Chapter 17 of this book when relating either bivariate phenological-
series or say one phenological-series with climate time series indicators. See also the
cross correlation methods based on the SSA reconstructions of both phenological
and climate time series in this book (Chapter 18). Finally in the realm of circular
statistics (Chapter 16) cross correlational methods are now available (Zimmerman
et al. 2007).

In Chapter 16 Morellato et al. discuss circular statistics (Batschelet 1981, Fisher
1993, Zar 1999, Mardia and Jupp 2000), an area of statistics also not much used
in phenology to date. This is possibly due to its difficult and less traditional math-
ematical and statistical formulation, and the lack of easily available software, till
recently (see listing in Chapter 16). Most of the earlier animal and plant applications
of circular statistics involved the analysis of directional data (e.g. the orientation
and direction of movements of animals, such as flight direction of birds and but-
terflies and the orientation on salamanders and dragonflies (Batschelet 1981, Fisher
1993)). Morellato et al. show that the connection between the evaluation of tempo-
ral, recurring events and the analysis of directional data have converged in several
papers (Herrera 1988, Milton 1991, Wolda 1988, 1989, Morellato et al. 1989, 2000,
Alonso 1997, Davies and Ashton 1999, Hamer et al. 2005, Zimmerman et al. 2007)
and show circular statistics to be a tool by which to better describe and to compare
both plant and animal phenology. Morellato et al. advocate that circular statistics has
particular value and application when flowering onset (or fruiting) occurs almost
continuously in an annual cycle or where flowering time may not have a logical
starting point, such as mid-winter dormancy. They conclude that circular statis-
tics applies well to phenological research where one wants to test for relationships
between flowering time and other phenological traits (e.g. shoot growth), or with
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functional traits such as plant height. Circular statistical methods also allows group-
ing of species into annual, supra-annual, irregular and continuous reproducers; and
for rigorous study of seasonality in reproduction and growth; and the assessment of
synchronization of species (see also Chapter 15 for more discussion on synchrony
methods).

Recently it has been appreciated that extending phenological records over time
and particularly over geographical location is much needed (Chambers 2006, Sparks
et al. 2006, Parmesan 2007, Sparks 2007, Bertin 2008). In Chapter 19 MacGillivray
et al. present what Sparks (2007) calls “lateral thinking” – the use of herbaria spec-
imens and photographs to examine the effects of climate change on phenology (see
also Miller-Rushing et al. 2006, Lavoie and Lachance 2006, Miller-Rushing and
Primack 2008, Loiselle et al. 2008, Gallagher et al. 2009). The relevance of such
collections to a range of ecological conservation and biological studies has been,
to date, largely underappreciated in Australia (Rumpff et al. 2008). MacGillivray
et al. outline the constraints which need to be considered when linking phenological
changes with climatic fluctuations and long-term trends. They offer some cautionary
principles for analysis and interpretation - these include issues regarding sparcity of
data and irregularity of records over time, as well as the need for more complex
underlying distributions. How best, if possible, to infer first flowering dates and
actual stage of flowering from snap records remains an issue for inference, mod-
elling and interpretation. MacGillivray’s et al. (Chapter 19) also contend that to
properly address the question of change, periods of no change must also be con-
sidered as important; vital also is the determination of events throughout periods of
reasonably stable conditions.

In the final chapter, Hudson presents a review of the general methodology of
meta-analysis, assesses its advantages and disadvantages, synthesizes its use in
global climate change phenology and suggests new statistical directions and an
underlying paradigm for a unified meat analytic approach. Specifically Hudson
proposes new statistical methods, as yet not applied to phenological research, and
only recently applied, in part, in the health-climate-pollution epidemiological lit-
erature. Hudson discusses three approaches and applications to the modelling of
nonlinear phenological response over time namely, Generalised additive models for
location scale and shape (GAMLSS) (Stasinopoulos and Rigby 2007) (see Chapter
10 and Chapter 19 for GAMLSS analyses on eucalypt flowering and orchid peak
flowering, respectively), penalised signal regression (Chapter 12 of Roberts) and
Bayesian nonparametric function estimation (see Chapter 11 Schleip et al. and
Chapter 19 by MacGillivray et al.). These are shown by Hudson to be inter-related to
three recent epidemiological approaches of exposure (pollution/climate) to response
(health/hospitalizations) modelling which Hudson contends hold much promise
for future meta-analytic studies in phenology. These are nonlinear “dose/exposure
to response” functionals in epidemiology (Gamborg et al. 2007, Baccini et al.
2008, Peng et al. 2009), Bayesian hierarchical meta-analysis (Baccini et al. 2008
and Michelozzi et al. 2009) and Bayesian hierarchical distributed lag models
(BHDLMs) (Peng et al. 2009). Proof of concept of this application to phenology
is an important area of future research, which we hope will be a challenge taken
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up by mathematicians, phenologists, statisticians and others. Hudson shows that the
overarching paradigm for all the meta-analytic methods suggested for phenologi-
cal synthetic studies is the area of semiparametric regression (Ruppert et al. 2009);
which she proposes as a possible way towards a unified meta-analytic approach in
phenology.

1.3 Aims of This Book

There is both art and science in the analyzing and assessing of phenological
impacts of climate change. Forecasting and anticipating such impacts remains an
even greater challenge. A similar viewpoint with respect to climatological research
and environmental change is espoused by von Storch et al. (2007). Von Storch
and Zwiers have helped to inject statistical thinking and method into climatology
research (von Storch and Zwiers 2001, Zwiers and von Storch 2004). Our book
in a similar vein hopes firstly to build on Leith (1974) and of Schwartz (2003a),
and thereby bring to readers the art and science, complexity and beauty of phe-
nological research. It presents statistical, graphical, image analytic and sampling
methods (via case studies and some theoretical exposition), both for those com-
mencing in phenological research and for those more experienced in the area. In
addition it embraces the call that “phenologists need to link with other disciplines”
(Dunlop and Howden 2003, van Vliet et al. 2003), with contributions from botanists,
ecologists, geographers, foresters, climatologists, meteorologists, GIS experts, phe-
nologists, mathematical statisticians and health epidemiologists. We hope this book
will also be valuable as a reference source for these disciplines and add rigour to
and possibly change the focus of some directions of global climate change research
towards a more mathematically and statistically rigorous exploration. We believe
the book will add to the momentum and contribute to the robustness of the science,
which is phenology; and bring together the disciplines needed to further advance
this science. We shall then be better placed to propose future scenarios, so as to, in
the words of von Storch et al. (2007), “confront stakeholders and policy makers with
possible future conditions so that they can analyse the availability and usefulness of
options to confront an unknown future”.
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Chapter 2
Global Framework for Data Collection – Data
Bases, Data Availability, Future Networks,
Online Databases

Elisabeth Koch

2.1 Rationale

Since the 1990s, phenology has regained scientific interest as a biological indicator
for climate change (Schwartz 2003). Menzel and Fabian (1999) and Chmielewski
and Rötzer (2001) were able to demonstrate with the observation series of the
International Phenological Gardens’ network that spring has advanced in Europe
and autumn has come later. The autumn signal is not as significant as the earlier
onset of spring, however, which results in a longer vegetation period in the middle
and higher northern latitudes. The growing interest in, and importance of, phenology
is also visible in the report of Working Group II, Assessment of observed changes
and responses in natural and managed systems (Rosenzweig et al. 2007) of the 4th
assessment report of the Intergovernmental Panel on Climate Change. The impact of
warming on terrestrial species across the Northern Hemisphere is well documented
by changes in the timing of growth stages (Rosenzweig et al. 2007). The data base
for these impact studies is made up of long time series of phenological ground obser-
vations (e.g. Menzel et al. 2006) and/or satellite data (e.g. Zhou et al. 2001, Chen
et al. 2005), thus reinforcing the necessity of sustainable phenological networks.

The growing interest in phenology has also triggered many new national
and international network activities (e.g. http://www.naturescalendar.org.uk, http://
www.natuurkalender.nl/index.asp). For examples of such activity in the US, South
America and Australia, see Schwartz and Betancourt Pinto and Morellato, and
Keatley and Chambers respectively, in this chapter.

The World Climate Research Programme (WCRP) has also published recom-
mended methods for undertaking phenological observations (Koch et al. 2007).
Additionally, one of the four priorities of the expert team on climate monitoring of
the World Meteorological Organisation’s (WMO) Commission for Climatology, is

E. Koch (B)
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23I.L. Hudson, M.R. Keatley (eds.), Phenological Research,
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“to stimulate and coordinate phenological practices in climate monitoring activities”
(WMO 2007).

In the following sections we will concentrate on ground networks whose main
objective is phenological monitoring. There are of course many other observation
networks, mainly biodiversity orientated, which also have aspects of phenology in
their program for example the Long-Term Ecological Research (LTER) network, a
good overview of which is presented at www.lternet.edu. In addition, there is a wide
range of worldwide satellite data, contributing measures such as fAPAR (fraction of
absorbed photosynthetically active radiation). Whilst these do need in-situ observa-
tions to determine their reliability and accuracy, they are becoming more important
sources of data, as the higher spatial resolution of 250–300m of the new satel-
lite generation begins to solve previous problems in comparability between point
measurements at reference sites and satellite images (GCOS 2006).

This chapter will, however, focus on the data and resources available within
ground-based phenological networks. The chapter describes the history of phenol-
ogy in various locations, as well as describing the status and current activities of
phenology in various regions around the world.

2.2 First Steps in the “Globalisation” of Phenology

Elisabeth Koch, Gaston Demarée, Susanne Zach, and Kirsten Zimmermann

2.2.1 Eighteenth Century

Phenological networks were established about one century, before the word “phe-
nology” was created. Carolus Linnaeus is regarded as the father of modern
phenology; in the middle of the 18th century he initiated the first known pheno-
logical network with 18 stations in today’s Sweden and Finland. Unfortunately,
however, this network ran for only three years from 1750 to 1752 (Schnelle 1955).

About 30 years later the Societas Meteorologica Palatina at Mannheim, Germany
founded and sponsored by Kurfürst Karl Theodor, and managed by his secretary
Johann Jakob Hemmer, established the first pan European meteorological network
(1781–1792) where phenological observations were also carried out at some loca-
tions. The results are published in Ephemerides Societatis Meteorologicae Palatinae
1783–1794 (Fig. 2.1). Among the stations with “observationes botanicae” were
Rome, Saint Petersburg, Geneva and Mannheim, which had the most extensive
dataset. The program was structured in arbores et frutices (trees and bushes), fruc-
tus agrorum (agricultural fruits) with the phases gemmae (buds), folia (leaves),
flos (florescence), maturitas (ripeness). Columns were also reserved for proventus
(description of appearance) and morbi vel insecta nociva (pests or diseases). Some
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Fig. 2.1 Ephemerides (1783) first page and the table with “Observ. Manheim. Botanicae”

animal phenology was also recorded, such as aves migrantes (migrating birds):
adventus (arrival) and discessus (departure). The observers were highly educated
people such as astronomers, botanists, doctors, pharmacists, teachers and clergy-
men and they were all male. The Societas Meteorologica Palatina foundered as a
result of the French Revolution (Lingelbach 1980).

2.2.2 Nineteenth Century

In the middle of the ninetenth century many networking activities were initiated.
The Belgian astronomer Adolphe Quetelet, director of the Royal Observatory in
Brussels, recruited observers in Belgium, The Netherlands, Germany, Italy, France,
England and Switzerland. He collected data from approximately 80 stations for
the period 1840 through to the 1870s and published them in the Annals of the
Observatory and/or in the Memoirs of the Belgian Academy (Demarée and Chuine
2006). Instructions for the observation of periodical phenomena were printed in
1853 by the Royal Academy of Sciences, the observations themselves published
in the Annals of the Observatory and/or in the Memoirs of the Belgian Academy.
Apparently, Quetelet’s instructions form inspired other meteorological services like
the “Bureau Central Météorologique” of France where Eleuthère Mascart issued in
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1880 the form “Observations sur les phénomènes de la végétation et sur les ani-
maux” (Observations on phenomena of plants and animals). It was also Quetelet
who encouraged Carl Fritsch to develop international phenological guidelines which
he could present at an international conference on statistics in London in 1860.
They were officially accepted but Fritisch was the only person who followed them
(Schnelle 1955). Charles Morren (1853), professor of botany at the University of
Liège and one of Quetelet’s observers coined the term “phenology” and it was very
quickly adopted by the other scientists (Fritsch 1858)

From 1851 to 1877 Carl Fritsch from the k.k. Centralanstalt für Meteorologie und
Erdmagnetismus (Centre for Meteorology and Geomagnetism) in Vienna adminis-
tered a plant and animal phenological network in the Austrian Hungarian monarchy,
which covered parts of today’s countries like Czech Republic, Croatia, Hungary,
Italy, Poland, Romania, Slovenia and Slovakia. The number of stations varied from
seven at the beginning up to approximately 70 in the 1860s (for the status of the
network in 1857 see Fig. 2.2). The data are published in the Annals, the Jahrbücher
der Centralanstalt für Meteorologie und Erdmagnetismus and it is planned to digi-
tise them within the next few years and have them available on the webpage of
ZAMG (www.zamg.ac.at/phaeno_portal) as most of the Austrian phenological data
from 1951 are already.

The United States network initiated by the Smithsonian Institute started in the
same year in 1851, with plant and animal observations forming the program, spread
across 320 locations in 33 states – but it ended after only 8 years in 1859 (Hopp
1974).

2.2.3 Nineteenth/Twentieth Century

A real success story was Ihne (1884) and Hoffmann’s call for phenological
observations in 1884, which resulted in 59 years of data from the Southwest of
Europe to the Northeast – collected according to common guidelines and pub-
lished in a series (Ihne 1883–1941). The Deutscher Wetterdienst (DWD) digitised
these data and they are available on demand from the Historical Phenological
Database HPDB (www.dwd.de). In 1905 Ihne published the famous map: Advance
of spring in middle Europe; a more recent publication dealing with the progress of
spring across Europe is provided by Menzel et al. (2005). Figure 2.3 shows the
map with stations from where at least 5 years of observation-data are stored in
HPDB.

In 1953, the Commission for Agrometeorology (CAgM) of the WMO adopted
regular phenological observations in the official agro-meteorological observation
program to be carried out by each member country. This resolution triggered the
(re-) establishment of (agro-) phenological observations in many national mete-
orological services after World War II and indeed the roots of the International
Phenological Gardens in Europe (see Section 2.3.9) go back to that original
resolution (Nekovář et al. 2008).
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2.3 Present Status and Future of Global Framework for Data
Collection – Data Bases

2.3.1 Africa

Amruta N. Rane, Poonam Gangaram, Carl Jones, Vikash Tatayah, and
Elisabeth Koch

Only a few phenological activities are known from Africa. The activities described
here cover the status of activities in West Africa, and a significant ongoing study in
Mauritius.

2.3.1.1 West Africa

In nine West African countries (Burkina Fasso, Cape Verde, Chad, Gambia, Guinea
Bissau, Mali, Mauritania, Niger and Senegal) agro-phenological network activities
are undertaken. The agrometeorological and hydrometeorological (AGRHYMET)
program which commenced operation in July 1975 (WMO 1986) publishes a
monthly bulletin (http://www.agrhymet.ne). The bulletin details crop phenological
phases along with weather conditions, soil moisture, crop pest phenological stages
and damage caused by pests for each of the countries. The FAO also publishes regu-
lar reports about the food situation in West Sahelian countries which also mentions
growth stages of different crops.

In 1991, the Commission of Agricultural Meteorology of the WMO edited guide-
lines on agro-phenology for Africa, but it has not been possible to find out more
information on the networks, data bases etc.

In the IPCC AR4 report (IPCC 2007) the lack of geographical balance in the data
on observed changes in natural and managed systems is stated. Evidence of observed
changes is sparse in Africa. The Working group II report (Rosenzweig et al. 2007)
points out many possible reasons for this imbalance, among them being a lack of
data and published studies in this part of the world. Clearly, further attention and
resources are needed to the collection of phenological data in Africa.

2.3.1.2 Mauritius

In Mauritius a phenological study was initiated by the Mauritian Wildlife
Foundation in 2001 to gain a greater understanding of food availability for Pink
Pigeons (Columba mayeri) and Echo Parakeets (Psittacula eques) in the remnants
of the native forest.

The native habitat on the island has been reduced to less than 2% since human
colonisation in the 1600s (Strahm 1993, Swinnerton 2001). Since then 80 plant
species (Strahm 1993) and at least 16 land bird species native to Mauritius have
gone extinct (Baillie et al. 2004). A few Conservation Management Areas (CMAs);
patches of native forest managed to exclude exotic mammal and plant species, have
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supported small-scale habitat restoration. However, the native forest community is
still heavily degraded by exotic plants and animals (Cheke 1987, Strahm 1993,
Safford 1997). The Pink Pigeon and Echo Parakeet are the only extant, endemic
pigeon and parakeet species in the Mascarenes (Cheke 1987). In the 1970s the
populations of both these endangered species declined to less than 20 wild birds.
However, subsequent intensive conservation management techniques (see Jones
2004) had increased the number of Pink Pigeons to approximately 380 wild birds
across six subpopulations and Echo Parakeets to over 340 wild birds in two subpop-
ulations, by April 2008 (Reuleaux and Wilmott pers. comm.). Habitat degradation
and natural food shortages have been identified as two of the important limiting fac-
tors (Swinnerton 2001, Malham et al. 2007). Both species occur in remnant, native
forest and their diet consists of leaves, flowers and fruits, mostly from native plants.

Hence, to ensure the ongoing recovery and long-term survival of these species,
it is essential to understand the quality and quantity of natural food available in the
forest throughout the year. Previous research (Cheke 1987, Jones 1995, Swinnerton
2001) and field observations have identified 37 native and 10 exotic plant species
as important food species. Currently, very little is known about the phenological
patterns of these species. In 2001 a phenology project was initiated (Atkinson and
Sawmy 2003), which has been modified and restarted to address this information
gap. At each subpopulation the project is aimed at understanding:

1. What time of the year do each of the species flower and fruit?
2. Is the flowering and fruiting for each species continual/sub-annual/annual/supra

annual?
3. Is the flowering and fruiting for each species brief/intermediate/extended?,
4. How do rainfall, temperature, humidity, cyclones and soil quality affect plant

phenology?

Ten individuals of each available food species is monitored at five sites (Plaine
Lievre, Pigeon Wood, Combo, Bel Ombre and Ile aux Aigrettes). At sites where the
CMAs occur, the 10 individuals have been distributed so that five are in the CMA
and five outside the CMA in order to compare phenology between restored and
degraded forest. All the field staff and volunteers (biologist/ecologists) are trained
and a training manual has been created to ensure standard, good quality data collec-
tion. Monthly monitoring is carried out simultaneously at each subpopulation. All
the data are recorded in a specifically designed observation sheet and entered elec-
tronically to be converted into a database in near future. This study will also monitor
the reproductive phases in these birds such as the duration and timing of the Pink
Pigeon non-breeding period and the start of Echo Parakeet breeding season which
are believed to be linked to changing plant phenological activities.

Conservation Implications

This phenological study will help identify the natural food availability throughout
the year across fragmented remnants of native Mauritian forest and help understand
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the link between the phenology of food plant species and the annual breeding trends
in these endemic birds. It will not only benefit the long-term restoration of land-bird
species but also assist in management plans for large-scale habitat restoration.

Acknowledgments This Mauritius project is supported by Mauritian Wildlife Foundation and
National Parks and Conservation Services, Mauritius. The dedication of the field staff and
volunteers make this project possible.

2.3.2 Australia

Marie R. Keatley and Lynda E. Chambers

2.3.2.1 Australian Phenological Networks

Many areas of the world have a long history of undertaking phenological observa-
tions (e.g. Britain (Sparks and Carey 1995) and Japan (Aono and Kazui 2008)) and
have long-established phenological networks (e.g. Germany (Menzel et al. 2001)
and Estonia (Ahas 1999)). Many of these data have been used to detail the impact
of climate change (Menzel et al. 2006).

Australia is not in the same position with respect to networks. This is despite
the first call for a phenological network being issued in 1891 (Prince 1891) and
a network reportedly being established in 1949 by the “Meteorological Service”,
which was implied to be still operating in 1967 (Wang 1967). However, further
details of, and records from this network have not been located. A detailed history of
early phenological work undertaken in Australia is provided by Keatley and Fletcher
(2003).

In relation to long-term phenological datasets Australia has only a few that cover
multiple decades (Chambers 2006). These range from snow cover to changes in the
mating behaviour of lizards.

National Ecological Metadatabase

The National Ecological Meta Database (NEMD) commenced in 2005 (www.bom.
gov.au/nemd) in response to the perceived lack of long-term datasets (Keatley et al.
2002, Westoby 1991), a perception that is borne out in part by the absence of any
Australian studies reported in the third assessment report of the Intergovernmental
Panel on Climate Change (IPCC 2001). In the IPCC 2007 report this improved
slightly with six studies in the Australia/New Zealand region. The NEMD’s primary
aim is to document such data sets, but also to:

• Improve the knowledge of the impacts of climate change on Australian natural
systems and species;

• Provide information on baseline data for future monitoring programs;
• Promote sharing of knowledge between regions and institutions;
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• Improve the capacity of natural resource managers to adapt to climate change
through improved understanding of climate-species relationships;

• Assist in the identification of climate change indicator species (climate proxies).

The listing of records in the NEMD is voluntary. To supplement these contribu-
tions, a project “PhenoArc” was commenced in October 2007 (Keatley et al. 2008)
to compile existing phenological data contained within the journals of Australian
naturalist organisations which have been documenting the timing of phenological
events in their journals and newsletters, in some instances for over 100 years (e.g. the
Field Naturalists Club of Victoria whose first journal was published in 1884). This
project had immediate success with additional records (1926 and 1943) detailing
the nesting seasons of Western Australian birds located (Carnaby 1954, Robinson
1954).

Additionally, this project is examining annual reports and archives of government
departments, for example departments of agriculture, which often contain records
of harvest and production dates. Experimental farm data have been located in the
New South Wales State Archives. The cards also represent some of the longest time
series (1927–1969) in the PhenoArc database and are believed to be the first col-
lation of agricultural phenological records for Australia. They provide a synopsis
of experiments on wheat and oat varieties (e.g. seeding rates), but also list dates of
seven phenophases (e.g. planting and harvesting start dates) along with rainfall and
yield per plot. Records such as these have been useful in examining climate trends
and impacts in Europe (Sparks et al. 2005, Menzel et al. 2006).

ClimateWatch

Australia does not currently have any state or national programs for
the systematic collection of real-time phenological data. The ClimateWatch
(http://www.climatewatch.org.au/) project is the latest development in trying to
establish a national network, using “citizen scientists” to build a national picture on
natural resource management issues. Currently, one of the most prominent of these
issues is climate change and its impacts. Phenological indicators will play a primary
role in the identification and assessment of these. This project is in its trial stage and
will build on and complement the National Ecological Meta Database. Trials will be
established in three different locations in Australia. It is a collaborative project coor-
dinated through the Earthwatch Institute – Australia in partnership with the Bureau
of Meteorology, University of Melbourne, CSIRO and Birds Australia.

Earthwatch is coordinating three key steering groups that provide independent
advice and guidance as to:

• The technical requirements needed to create appropriate web based systems to
facilitate the uploading of data from the public and for the same public to query
the data in order to generate displays of trends and patterns in natural resources
nationwide.
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• The best choice of indicator species or events that will provide the most robust
data and the best nexus between the contributing public and useful indicator
distribution.

• The best strategy to engage the media to ensure interest in the project is
maintained and information disseminated to appropriate audiences.

Terrestrial Ecosystem Research Network

The Terrestrial Ecosystem Research Network (TERN) is funded under the
Australian Federal Government’s initiative National Collaborative Research
Infrastructure Strategy. http://ncris.innovation.gov.au/Capabilities/Pages/TERN.
aspx. It is currently in its formative phase. It is not a phenological network per se,
but it may have some phenological observations within it. Its aims are:

• to provide infrastructure that builds on the significant past and present invest-
ments of State, Territory and Commonwealth Governments to facilitate the
development of an integrated approach to understanding Australia’s ecosystems;

• to connect and integrate data relating to ecosystem components for a range of
terrestrial ecosystems at different spatial and temporal scales;

• to develop and make available common sets of data on key ecosystem parameters
and to establish, amongst other things, useful baseline and time-series data;

• to enable researchers to conduct experiments, undertake analyses, and construct
models, that contribute to understanding of Australian ecosystems at both large
(including national and regional) and small scales (such as catchments or habitat);

• to complement (and possibly integrate with) similar international networks where
appropriate.

• Although the value of a phenological network for Australia has been recognised
for over a hundred years, Australia is only now on the verge of implementing
one.

2.3.3 Canadian Phenological Networks

Elisabeth Beaubien

A range of phenological observation activities are occurring in Canada. From 1987
to 2001 the Alberta Wildflower Survey gathered data on three bloom stages for 15
native plant species (Beaubien and Johnson 1994). It engaged about 200 Alberta
volunteers annually. In 2002 the species and some phenophases were modified and
the survey was renamed “Alberta Plantwatch”.

In 1995, the author and assistant Ania Radziszewski launched a web-based
“Plantwatch” to enlist observers mainly in Canada to track spring bloom times
of eight plant species. Some international data for Syringa vulgaris was reported,
especially from Poland and Japan; see archived data tables and maps of the avail-
able data at http://plantwatch.sunsite.ualberta.ca. This website is being updated as
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an interactive site at www.plantwatch.fanweb.ca, where observers have their own
folders where they upload photographs and text.

By 2000 the federal government was interested in the potential of Plantwatch
to involve “citizen scientists” in monitoring the effects of climate change. Canada
Plantwatch then expanded with help from Environment Canada’s Ecological
Monitoring and Assessment Network Coordinating Office (EMANCO) and Nature
Canada. Volunteer coordinators were found for all 13 provinces and territories. See
Schwartz and Beaubien (2003) for more information on coordinators and history
of the program. A description of the program with a list of current coordinators is
available at www.plantwatch.ca. Data reported to this webpage are mapped imme-
diately and those data (dates and locations) are available to anyone to download.
Researchers could also contact individual coordinators for additional data.

Some plant species are observed across Canada, while others are observed only in
certain regions. See a list of most of the species observed in Canada under “scientific
names” at http://www.naturewatch.ca/english/plantwatch/learn_plants.asp.

Many of the species (or close relatives of the species) which are monitored
in Canada are also monitored in Europe. These include Aspen Poplar (Populus
tremuloides), Larch (Larix laricina), Coltsfoot (Tussilago farfara), Mountain Avens
(Dryas integrifolia/octopetala), Common Purple Lilac (Syringa vulgaris), Prairie
Crocus (Anemone patens, or Pulsatilla ludoviciana), Cranberry or Lingonberry
(Vaccinium vitis-idaea), Purple Saxifrage (Saxifraga oppositifolia), Cloudberry
(Rubus chamaemorus), Twinflower (Linnaea borealis), Dandelion (Taraxacum
officinale) and Wild Strawberry (Fragaria virginiana/vesca).

Details on Alberta Plantwatch

Observer training has been provided through printed program information with
information on plant species identification (with colour photos and some sketches),
observation site selection, and phenophase descriptions. Observers generally sub-
mit data before October annually. Most data are on paper forms, but reporting is
also done by email, fax, or on the webpages listed above.

Who are the volunteer observers? They include farmers, ranchers, fire tower
observers (Alberta Forest Service), volunteer weather observers (Environment
Canada), biologists, foresters, naturalists, gardeners, urban dog-walkers and the
occasional class of students. The list includes many retired people, who enjoy mak-
ing plant observations part of their spring routine. Observers are recruited using
many methods. Government departments are contacted to reach fire tower watchers
and weather observers. Other volunteers are found from articles in naturalist soci-
ety newsletters, by word of mouth from other observers, through radio interviews
or newspaper articles or by their attendance at talks to naturalist groups around
the province. Experienced volunteers are encouraged and retained through regu-
lar feedback and communication. They receive newsletters which recognize their
contributions and summarize interesting comments on the season that observers
submit.
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Table 2.1 Alberta plantwatch species

Aspen poplar (Populus tremuloides) Northern Bedstraw (Galium boreale)
Bearberry (Arctostaphylos uva-ursi) Prairie crocus (Anemone patens)
Bunchberry (Cornus canadensis) Purple saxifrage (Saxifraga oppositifolia)
Choke Cherry (Prunus virginiana) Saskatoon (Amelanchier alnifolia)
Common Purple Lilac∗ (Syringa vulgaris) Star-flowered Solomon’s Seal (Maianthemum

stellatum)
Common Yarrow (Achillea millefolium) Tamarack (Larix laricina)
Dandelion∗ (Taraxacum officinale) Twinflower (Linnaea borealis)
Early Blue Violet (Viola adunca) Wild Strawberry (Fragaria virginiana/vesca)
Golden Bean (Thermopsis rhombifolia) White Dryad (Dryas integrifolia/octopetala)
Labrador Tea (Rhododendron groenlandicum) Wolf Willow (Elaeagnus commutata)
Lodgepole Pine (Pinus contorta)

The Alberta Plantwatch species are listed in Table 2.1. All species are native,
which means that they occurred in North America long before European settlement,
except the introduced species marked with an asterisk (∗). Species in bold are also
observed in other provinces and territories.

These are the current instructions given to Alberta observers:
“When choosing plants for observation, please keep in mind the following. You

do not need to report on all species, just the plants near your home or those that
are easy to visit regularly. Even one bloom date from one plant is useful. It is best
to observe wild plants well away from buildings (heat sources), and in a flat area.
If possible, choose plants to observe which reflect about the average for your area
(i.e. not the earliest or latest to flower). Please observe the same individual shrubs
or patch of plants from year to year”.

For non-woody herbs or “wildflowers,” first bloom is when the first flowers open
in the plants under observation. For trees and large shrubs, first bloom is when the
first flowers have opened in three different places on the observed plant. Mid bloom
for most plants is when half of the flowers on the plant have opened. For leaf-out of
aspen poplar, lilac and larch, please report the dates when, in at least three different
places on the tree, the first leaves have emerged and unfolded completely. Note: see
the information on your chosen plant species, for details on how to recognize first
and mid bloom.”

Examination of the spatial and temporal trends in the 21 years of Alberta data has
commenced, and this data should become available as the analyses are completed.

2.3.4 Phenological Observation in China

Xiaoqiu Chen

2.3.4.1 Historical Background

Modern phenological observation and research in China started in the 1920s with
Dr. Coching Chu (1890–1974). As early as 1921 he observed spring phenophases
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of nine species of trees and two species of birds in Nanjing. In 1931, he summa-
rized phenological knowledge from the last 3000 years in China and introduced
phenological principles (e.g. species selection, criteria of phenological observa-
tions and phenology laws) developed in Europe and the United States from the
middle of the eighteenth to the early twentieth century (Chu 1931). In 1934, he
organized and established the first phenological network in China. Observations
included some 21 species of wild plants, nine species of fauna, some crops, and
several hydro- meteorological events, and were ceased in 1937 because of the
War of Resistance against Japan (1937–1945). Twenty five years later the Chinese
Academy of Sciences (CAS) established a countrywide phenological network under
the guidance of Dr. Chu. The observations began in 1963 and continued until the
first half year of 1997. In 2002 the phenological observation has been resumed
again with reduced stations, species, and phenophases. In addition, the Chinese
Meteorological Administration (CMA) also established a countrywide phenological
network in 1980s.

2.3.4.2 Networks and Data Collection

The observation program of the CAS network included a total of 173 observed
species. Of these, 127 species of woody and herbaceous plants had a localized dis-
tribution. Table 2.2 lists the 33 species of woody plants, two species of herbaceous
plants, and 11 species of fauna that were observed across the network (Institute
of Geography at Chinese Academy of Sciences 1965, Table 1). Since 1973, sev-
eral stations added phenological observation of major crops. These observations
were carried out mainly by botanical gardens, research institutes, universities and
middle schools according to uniform observation criteria (Institute of Geography
at Chinese Academy of Sciences 1965, Wan and Liu 1979). The phenophases of
woody plants included bud-burst, first leaf unfolding, 50% leaf unfolding, flower
bud or inflorescence appearance, first bloom, 50% bloom, the end of blooming, fruit
or seed maturing, fruit or seed shedding, first leaf coloration, full leaf coloration,
first defoliation and the end of defoliation etc.

The Institute of Geography at CAS took responsibility for collecting the pheno-
logical data and publishing them. Changes to the stations and in observers over the
years resulted in data that were spatially and temporally heterogeneous. The num-
ber of active stations has varied over time. The largest number of stations operating
was 69 in 1964 and the smallest number occurred between 1969 and 1972 with only
4–6 stations active. The phenological data from 1963 to 1988 were published in the
form of Yearbooks of Chinese Animal and Plant Phenological Observation (volume
1–11). Currently, there are about 20 stations in the CAS network.

The CMA phenological network is affiliated with the national-level agro-
meteorological monitoring network and came into operation in 1980. The phe-
nological observation criteria for woody and herbaceous plants, and fauna were
adopted from the CAS network. There are 28 common species of woody plants,
1 common species of herbaceous plant and 11 common species of fauna. The
main phenophases are the same as those of the CAS network. In addition to the
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Table 2.2 Common observation species of the CAS phenological network in China

Woody plants

Ginkgo biloba L. Morus alba L. Sophora japonica L.
Metasequoia glyptostroboides

Hu et Cheng
Broussonetia papyrifera (L.)

Vent.
Robinia pseudoacacia L.

Thuja orientalis L. Paeonia suffruticosa Andr. Wisteria sinensis Sweet.
Juniperus chinensis L. Magnolia denudata Desr. Melia azedarach L.
Populus simonii Carr. Firmiana simplex W. F. Wight. Koelreuteria paniculata

Laxm.
Populus canadensis Moench. Malus pumila Mill. Zizyphus jujuba Thunb.
Salix babylonica L. Prunus armeniaca L. Hibiscus syriacus L.
Juglans regia L. Prunus persica Stokes. Lagerstroemia indica L.
Castanea mollissima Blume. Prunus davidiana (Carr.)

Franch.
Osmanthus fragrans Lour.

Quercus variabilis Blume. Albizzia julibrissin Durazz. Syringa oblata Lindl.
Ulmus pumila L. Cercis chinensis Bge. Fraxinus chinensis Roxb.

Herbaceous plants

Paeonia lactiflora Pall. Chrysanthemum indicum L.

Fauna

Apis mellifera L. Cryptotympana atrata Fabr. Apus apus pekinensis
(Swinhoe)

Gryllulus chinensis Weber
(Gryllus berthallus Sauss.)

Hirundo rustica gutturalis
Scopoli.

Hirundo daurica japon ica
Temminck et Schlegel.

Anser fabalis Subspp. Oriolus chinensis diffusus
Sharpe.

Cuculus canorus Subspp.

Cuculus micropterus
micropterusGould.

Rana esculenta L.

natural phenological observations, the network also carries out professional phe-
nological observation of crops on the basis of a specific observation criterion
(National Meteorological Administration 1993). The main crop varieties include
rice, wheat, corn, grain sorghum, millet, sweet potato, potato, cotton, soybean,
rape, peanut, sesame, sunflower, sugarcane, sugar beet, and tobacco. In grass-
land areas, phenophases of dominant grass species, such as Leymus chinensis and
Stipa baicalensis, are also observed. In Inner Mongolia, there are eight grassland
meteorological monitoring stations with phenological observations.

The CMA network is the largest phenological observation system in China. There
are about 640 agro-meteorological measurement stations currently, of these 446
stations are undertaking phenological observations (Fig. 2.4). The CMA-archives
keep the original phenological observation records from 1981 to the present in hand
writing and provide the data freely to research institutes and universities. As the
phenological and meteorological observations are parallel in this network, the data
are especially valuable for understanding phenology-climate relationships. These
data can also be used to provide agro-meteorological service and prediction on crop
phenophases and yields, irrigation amounts, plant diseases and insect pests, and
forest fire danger (Cheng et al. 1993).

In addition, there were some regional phenological networks which previously
existed. One example is the network established by Guodong Yang and Xiaoqiu
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Fig. 2.4 Distribution of phenological stations of the CMA network

Chen during 1979–1990. The network consisted of approximately 30 stations in the
Beijing area (about 16 410 km2). Using these data, they worked out and published
a series of phenological calendars of the Beijing area (Yang and Chen 1995).

2.3.5 Europe: Establishing a European Phenological Data
Platform for Climatological Applications

Elisabeth Koch, Wolfgang Lipa, and Susanne Zach

Europe has a long tradition in phenology and phenological networks (see
Section 2.2).

The European phenological network EPN, which commenced in 2001 and ended
(in terms of funding) in 2003, was a project funded by the European Union, with its
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objectives being to facilitate integration and cooperation between existing pheno-
logical monitoring networks, to stimulate the expansion of existing and the creation
of new monitoring networks, in order to improve integration of and access to phe-
nological data in Europe (Vliet et al. 2003). After its funding period ended, the
European phenological community searched for new ways to continue the coopera-
tion of phenological network-providers and scientists on a pan European level. The
phenological observation networks in European countries are organized by different
institutions, having different objectives which result in different program with dif-
ferent observation guidelines and different formats and methods of data storage and
archiving (Menzel 2003). All these facts have unfortunately hampered European
wide phenological studies.

The need not only for the unification of the networks but also for the creation of
one single database has been recognized for many years. For example, there have
been several attempts at bilateral and multilateral cooperation (e.g. Bissolli et al.
2005, Horakova 2000). Finally in 2004, COST Action 725 was established with 27
participating countries (out of 34 COST members) with a funding period until 2009.
COST is an inter-governmental framework for European Co-operation in the field of
Scientific and Technical Research and works on the basis of so-called actions, that
is networks of coordinated national research projects in fields, which are of interest
to participants from at least five different member states (COST 2007).

The main objective of Action 725 is to establish a European reference data set of
phenological observations that can be used for climatological purposes, especially
climate monitoring and detection of changes. This data set is freely accessible for
scientific purposes and www.zamg.ac.at/cost725 available via internet Secondary
objectives lie in the harmonization of techniques for the definition of phases and
selection of species to be monitored. This involves developing guidelines to ensure
that monitoring is undertaken in a harmonised way, developing data quality check-
ing procedures, and applications of the datasets for mapping. The overall goal is
to increase the knowledge of relations between weather/climate and phenological
phases (Koch et al. 2005, 2009).

The action started with an inventory of all available phenological stations, includ-
ing the national networks and the European International Phenological Gardens
(IPGs), to determine what species and phases are being monitored. Not surpris-
ingly it turned out that the stations are very unevenly distributed across Europe with
the highest density in Germany (Figs. 2.5 and 2.6) with an even greater variability
in the plant species and phases under observation. Altogether COST725 counted
9803 stations, where 306 different plants with 92 different phases are observed.
These metadata build the fundamentals for the selection of plants and phases for the
common database of COST725.

At a meeting in Vienna in April 2005 COST725 agreed on the list of plants and
phases – derived from the metadata-results: 64 plants and 27 phases (which corre-
spond to the Biologische Bundesanstalt, Bundessortenamt and Chemical Industry
(BBCH) codes 0, 07, 10, 11, 31, 51, 55, 59, 60, 61, 65, 69, 75, 81, 85, 86, 87, 89,
92, 94, 95, 97 as well as
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Fig. 2.5 Stations of the COST725 database without Germany, status August 2007

– planting and harvest plus meadows: 25% green in spring, 1st cut for silage
winning, 1st cut for hay winning

– the principal growth stages (the first digit of the selected BBCH code are shown
in Table 2.4).

The main criterion for the selection was that the plants/phases are present in as
many as possible of the observation programs.

Data quality assurance is one of the major concerns of the working group. The
results of a questionnaire (Žust et al. 2006) on quality checking procedures applied
by the different data owners revealed that the checking procedures differ widely.
The most common methods visual control, followed by logical controls in terms
of correct sequence of phases, threshold values or inter-phase duration. It is thus
evident that common data quality procedures have to be developed and applied on
the data set before it can be made widely available for use.
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Fig. 2.6 The COST725 database Germany only, as of August 2007

Table 2.3 List of plants selected for the common database

Native plants Fruit trees Northern plants

Aesculus hippocastanum Malus x domestica (early cultivar) Calluna vulgaris
Alnus glutinosa Malus x domestica (late cultivar) Cornus suecica
Alopecurus pratensis Prunus avium (Cerasus avium)

(early cultivar)
Epilobium angustifolium

Ambrosia artemisiifolia Prunus avium (Cerasus avium)
(late cultivar)

Fragaria vesca

Artemisia vulgaris Vitis vinifera (cultivar) Geranium sylvaticum
Betula pendula

(verrucosa,/alba)
Prunus domestica (early cultivar) Juniperis communis

Corylus avellana Prunus domestica (late cultivar) Vaccinium myrtillus
Fagus sylvatica Pyrus communis (early cultivar) Populus tremula
Forsythia suspensa Pyrus communis (late cultivar)
Picea abies (P. excelsa) Ribes rubrum
Quercus robur

(Q. peduncula)
Sambucus nigra
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Table 2.3 (continued)

Native plants Agricultural plants Southern plants

Dactylis glomerata Hordeum vulgare (spring cultivar) Laurus nobilis
Tussilago farfara Hordeum vulgare (winter cultivar) Olea europea
Acer platanoides Secale cereale (spring cultivar) Prunus amygdalis/dulcis
Acer pseudoplatanus Secale cereale (winter cultivar) Rosmarinus officinalis
Alnus incana Triticum aestivum (winter cultivar)
Anemone nemorosa Avena sativa (spring cultivar)
Betula pubescens Avena sativa (winter cultivar)
Fraxinus excelsior Beta vulgaris (cultivar)
Galanthus nivalis Helianthus annuus (cultivar)
Larix decidua Solanum tuberosum (early cultivar)
Prunus spinosa Solanum tuberosum (late cultivar)
Robinia pseudoacacia Zea mays
Salix caprea Meadow
Sorbus aucuparia
Syringa vulgaris
Taraxacum officinale
Tilia cordata

Table 2.4 Principal growth stages of the BBCH code

Principal Growth
Stages

Description

0 germination/sprouting/bud development
1 leaf development (main shoot)
2 formation of side shoots/tillering
3 stem elongation or rosette growth/shoot development (mainshoot)
4 development of harvestable vegetative plant parts or vegetatively propagated

organs/booting (main shoot)
5 inflorescence emergence (main shoot)/heading
6 flowering (main shoot)
7 development of fruit
8 Ripening or maturity of fruit and seed

Besides the creation of the database, a comprehensive historical overview of the
European networks and the present status including station maps and observation
program has been published (Nekovář et al. 2008). A milestone in the work of
COST725 was the publication of the meta-analysis of phenological trends in Europe
(Menzel et al. 2006). An enormous data set with more than 125,000 series of 542
plants and 19 animal species from 21 European countries from the period 1971 to
2000 was available and could be evaluated: 78% of the time series of spring and
ripening phases showed a negative trend towards earlier dates, only 3% were sig-
nificantly delayed. Autumn phases characterized by leaf colouring and leaf fall data
were ambiguous. The average advance of spring advance was 2.5 days per decade
in Europe. This large valuable dataset will allow further analyses of this type, thus
informing the changes in phenological behaviour as a result of climate change.
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2.3.6 The INPA Long-Term Phenology Project Monitoring
Amazon Forest Trees: Tracking the Effects of Climate
Changes on Tree Phenology

Antonio Moçambite Pinto and L. Patricia C. Morellato

2.3.6.1 Introduction

This section presents a brief overview of phenological studies in Brazil, followed
by a more detailed description of the INPA (the National Institute for Amazon
Research, located in Manaus city, Amazon State, North Brazil) long-term phenology
project monitoring Amazon forest trees.

Brazil is the largest South American country. The main vegetation types are: trop-
ical evergreen moist forest including Amazon forest, Atlantic rainforest, Atlantic
seasonal forest or semi-deciduous forest, cerrado or woody savanna, open grassy
savanna, pantanal (a seasonally inundated vegetation), caatinga (semi-desert vege-
tation), sub-tropical Araucaria forest and natural fields. Some vegetation types are
among the most diverse in the world (e.g. Amazon forest and Atlantic forest) and
have been recognized as biodiversity “hotspots” for conservation priorities. All this
diversity of species and vegetation types has not been completely studied in respect
to its floristic diversity. Consequently, just a small percentage of its species and
vegetation have been examined from the point of view of their seasonal changes.

A survey of phenological works undertaken in Brazilian native vegetation, con-
sidering just community studies including information on flowering and fruiting
patterns, identified that tropical forest is the best studied ecosystem, with Amazon
(terra-firma) forest and Atlantic forest of Southeastern Brazil being the best stud-
ied vegetation types (Morellato 2003). Cerrado (woody savanna) is the second-most
studied vegetation type. Trees (forest) and woody plants (cerrado) are the life-forms
observed in almost all papers surveyed. Most papers cover a short time span, usually
about 1–3 years of observation, and just a few long-term phenology databases were
surveyed (Morellato 2003). Besides the INPA project presented here, a similar pro-
gram of long-term phenological data collection was established by Companhia Vale
do Rio Doce (CVRD), a mining company at Espírito Santo State, Northeast Brazil.
They observe lowland evergreen forest trees, employing the same methodology pro-
posed by INPA project. The project started in 1982 and still seems to be active
today. Another long-term observation of Amazon trees is carried out by EMBRAPA
(Brazilian enterprise for Agricultural and Cattle Breeding Research), but no data are
publicly available. According to Morellato (2003), the number of phenology papers
published has increased over the last 20 years. The last five years show that more
vegetation types have been studied. However, long-term phenological observations
are uncommon.

The INPA project represents the first and oldest as well as possibly unique
long-term phenological data collection for South American tropical forest trees.
The phenological work started in 1962, at the Florestal Reserve Ducke, (Manaus,
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Amazonas State, Brazil), headed by Dr. V.C. Araújo, Centro de Pesquisas em
Silvicultura Tropical, with regular, phenological observations from 1965 until today.
A second study site was established in 1974 at the Silviculture Experimental Station.
The original goals of the project were: to know more about the biology of tree
species of great or potential economic importance, and to determine the best time
for seed or fruit collection to support silvicultural procedures such as planting and
fruit harvesting. Further goals are now being added to the project, with current
objectives being: to investigate the effects of climatic changes on plant phenol-
ogy over the 35 years of observations; to compare the phenological patterns of
the species that are common between the two research stations involved in the
project; to explore the potential applications of this long-term phenological data,
and to monitor the effects of climatic cycles and climatic changes on tropical forest
trees.

Methods

The phenological monitoring system was set up in 1962, at the Florestal Reserve
Ducke in Manaus, Amazonas State, Brazil. Trees were selected from 1962 until
1965, up to a total number of 300 trees (approximately three per species) and 100
species marked over an area of 140.5 hectares of native Amazon lowland tropi-
cal forest (terra-firme forest). The regular observations started in 1965. In 1970
the sample size was extended to 500 trees (five per species), which are still mon-
itored today. In 1974, INPA replicated the phenology study at a second site. They
marked 500 trees of another 100 species from an Amazon lowland forest at the INPA
Experimental Station situated approximately 30 km from the Ducke Reserve.

The choice of species was carried out according to some basic rules of forestry:
actual or potential economic value of timber, and potential source of gums, resins
and oils (wood or seed). Both studies perform monthly observations for changes on
reproductive and vegetative phenology.

They defined 10 phases:

1. flower buds,
2. flowering (open flowers),
3. end of flowering,
4. beginning of fruiting (new fruits starting development),
5. ripe fruits,
6. end of fruiting,
7. leaf fall,
8. beginning of leaf flushing,
9. new leaves,

10. old leaves.

The database is a dbase – DOS database. The output is the mean of phenology
data over a specific period. It does not produce a year by year output.
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2.3.6.2 Research Results and Implications

The Phenology Project has produced a good number of papers over the last 30 years.
All papers to date deal with data from the Ducke Reserve. No paper has been pub-
lished with data from the Experimental Station, the second study site. Most papers
are focused on one species or family (e.g. Alencar 1994), and just two papers have
analyzed community phenological changes (Araujo 1970, Alencar et al. 1979). The
papers analyse mean phenological data over 6–12 years. A few papers have studied
time series and trends. The strongest observed correlation was between flowering
phenology and temperature (Alencar 1994). The papers never take into account
effects of climatic change and its evaluation using plant phenology.

After the migration of the data from the dbase – DOS database to a relational data
bank, the data is being analysed by comparing the phenological patterns of some
species in common between the two study sites and tracking the effects of natural
climatic changes. Some results are in press and other are under review. Current work
involves analysing the community patterns and the relationship to El Niño events,
extreme dry seasons and other climatic changes affecting Amazon forests.

The very preliminary analyses of data from this project showed that the long-
term phenology observations reveal the irregularity of the reproductive patterns of
tropical forest trees. It highlights the importance of taking into account phenology
data when planning the management of forest trees, especially fruit and tree harvest-
ing, and that the influence of natural climatic change on tropical tree phenology is
difficult to detect. Future steps in the project will include the building of a new, more
friendly online data base, to store, organize and share the phenology information,
and examine species and community data from different perspectives.

Acknowledgments This project is supported by CNPq – Brazilian National Council for Science.
AMP and LPCM receive, respectively, a doctoral and research productivity fellowship from CNPq.

2.3.7 Genesis and Progress Toward a National Phenology
Network for the USA

Mark D. Schwartz and Julio Betancourt

The idea for a USA-National Phenology Network (USA-NPN) has a long his-
tory and many contributors. In 1956, Joseph M. Caprio (Montana State University)
initiated lilac phenological research in the USA. He developed a network of volun-
teer observers (~1000, growing to 2500 by 1972) reporting from 12 Western states
(Caprio 1957, 1966). Caprio’s program stimulated development of a similar pro-
gram in the Eastern USA in 1961, initially under the direction of W. L. Colville
(University of Nebraska; ~300 observers in 1970). The Eastern network lost funding
in 1986, but was continued at ~40–50 stations by Mark D. Schwartz (University of
Wisconsin-Milwaukee; Schwartz 1994). The Western States Phenological Network
was terminated upon Caprio’s retirement in 1993, but was reactivated at a handful of
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sites by Dan Cayan (Scripps Institution of Oceanography [Scripps]/U.S. Geological
Survey [USGS]) and Mike Dettinger (USGS/Scripps) to complement their stud-
ies on changes in timing of snowmelt discharge (Cayan et al. 2001). Cloned lilacs
(and models developed from them) now serve as “anchor points” binding together
commonalities among phenological observations from native species in diverse
ecoregions, climate data, and remote sensing observations across a continent-wide
network (Schwartz 1998, Schwartz et al. 2006). In the absence of other continental
phenological monitoring, legacy lilac data provide the most logical tie to the mid-
twentieth century before the major inflection in temperature and growing season
trends.

More recently, Schwartz foresaw the need for a national network that would revi-
talize and broaden the lilac network, while extending phenological observations to
other native and non-native species, drawing in part on co-location with a subset of
National Weather Service Cooperative Observer stations and cooperation with other
existing networks. In summer 2004, Julio Betancourt of the U.S. Geological Survey
independently arrived at the same conclusion after co-chairing an AIBS Grand
Challenge Workshop that explored the National Ecological Observatory Network’s
(NEON) role in studying ecological responses to climate (AIBS 2004). When it
appeared that NEON might be designed around intensively-sampled regional nodes,
Betancourt teamed up with Schwartz to begin organizing a spatially-distributed
network that would achieve “wall-to-wall” continental coverage for phenological
observations and operate independently but ultimately in collaboration with NEON.

In August 2005, Betancourt, Schwartz and a steering committee of diverse sci-
entists convened a workshop in Tucson, Arizona, to initiate an implementation
plan for a USA-NPN. The workshop was funded by the USA National Science
Foundation (NSF) and four other federal agencies (USGS, National Park Service
[NPS], Environmental Protection Agency [EPA], and U.S. Dept. of Agriculture-
Forest Service [USDA-FS]), and included 40 scientists from across the country
and the globe (Betancourt et al. 2005). The 2005 workshop reinforced the need
for the broader scientific community to organize a nationwide network of pheno-
logical observations with simple and effective means to input, report, and utilize
these observations, including the resources to provide the right information at the
right time for a wide range of decisions made routinely by individual citizens and
by the Nation as a whole. Separate breakout groups converged on a framework
of four expandable components or tiers (Fig. 2.7), each representing a different
level of spatial coverage and quality/quantity of phenological and environmental
information: (1) locally intensive sites focused on process studies (e.g. Long-Term
Ecological Research [LTER], AmeriFlux, and AgriFlux sites); (2) spatially exten-
sive science networks focused on large-scale phenomena (e.g. National Weather
Service Cooperative [COOP] stations, NPS Inventory & Monitoring sites); (3)
volunteer and education networks (e.g. garden clubs, bird and butterfly moni-
toring networks, college campuses); and (4) Remote sensing data that can be
ground-truthed and assimilated to extend surface phenological observations to the
continental-scale. Workshop participants emphasized that observations be entered
into a database management system and be made available to the public in mapped
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Fig. 2.7 Organizational components of USA-NPN

form and near real time (see USA-NPN Plant Phenology Programs web page at
http://www.npn.uwm.edu).

At the 2005 Workshop, an Implementation Team (IT) was recruited with repre-
sentation across disciplines, institutions, and existing environmental networks that
already incorporate or could adopt phenological monitoring, with the goal of launch-
ing the first monitoring activities in 2007. The USA-NPN IT met in Tucson, Arizona
in March 2006 to draft an implementation report and continue to organize the net-
work. The IT was tasked with aspects of network development such as securing
stable support from federal agencies for a national coordinating office; renewal and
expansion of the lilac network; and adoption of phenological monitoring across
existing environmental networks (LTER, AmeriFlux, NPS Inventory & Monitoring,
and the National Weather Services COOP Network). The IT was also charged with
developing mechanisms and funding for coordinating research across the network.

In summer 2006 the IT leadership identified the need for another workshop to
resolve remaining planning and implementation issues. Furthermore, progress had
been so rapid that it was thought a workshop in autumn 2006 would permit the USA-
NPN to launch initial data collection in spring 2007. The second workshop was
held in October 2006 (Milwaukee, WI), and addressed issues revolving around the
selection/prioritization of appropriate plant species (including lists of target species
representative of the Nation’s ecoregions), and development/review of observation
protocols. It also dealt with logistical issues connected to data collection for each of
four network tiers, proposed to start in spring 2007 (Betancourt et al. 2007).

Given some practical issues (such as cloned lilacs requiring a year of acclimation
before observations commence, and different levels of organization in the various
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regions across the country), observations were launched in 2007, but limited to a
smaller set of species overall, with more detailed protocols at some sites, and across
some regions. However, by June 2007, over 750 individuals had registered as USA-
NPN observers (Fig. 2.8). Project Budburst, a USA-NPN Citizen Science Field
Campaign, was also highly successful in recruiting many participants. Technical
issues that remain to be resolved will first require a review of web page/reporting
systems for observers, and assessment of desired modifications that can be resourced
and implemented in time for spring 2008. Equally important will be the develop-
ment of an initial data management plan that will address data archiving and access
issues. The organizational issues include station location, public participation, and
cooperative agreements with existing sites and networks. In order to be most effec-
tive in the short-term the USA-NPN must maximize the number of phenological
observation stations and their geographical coverage. The best strategy for accom-
plishing this is for USA-NPN to develop some form of co-location agreements with
existing observation networks, such as the National Weather Service Co-Operative
Observer Program (COOP), AmeriFlux, NPS Inventory and Monitoring, and LTER
sites.

In March 2007, Schwartz received a US$ 500,000 for a Research Coordination
Network (RCN) that will cover USA-NPN meeting expenses for the next 5 years.
A National Coordinating Office of the NPN has been developed, through an
agreement between the U.S. Geological Survey and the University of Arizona.

The products of the first and second RCN meeting, several focused workshops,
partnership with a web development group, and countless volunteer hours by many
individuals allowed the design and full implementation of data collection with the
USA-NPN Plant Phenology Program (PPP) starting in spring 2009. Genetic vari-
ation among individuals from the same native species affects their phenological
responses to environmental variation. For example, when trees from across eastern
North America are gathered and grown at a common location, trees from northern
regions achieve spring budburst earlier each year than southern-origin trees, because
they have adapted to growing in a region with less solar-thermal energy avail-
able. Therefore, a continental-scale phenological monitoring network using only
native/introduced/naturalized species would produce a “mixed signal” of genetic
variability and environmental factors, not to mention genetic by environmental fac-
tor interactions, which are unknown for most species. This issue, and the limited
range of most native species, was a main reason for using cloned varietals of species
in the historic USA phenology networks. However, while cloned species data are
well-suited for general continental-scale phenological comparisons, they by defini-
tion cannot represent the local variations in response of native species. They also do
not have full continental coverage because of limits to their growth in some regions,
due to lack of chilling or lack of water. Further, native species are important for
conservation purposes, or for other applied questions that are particularly relevant
to native varieties (e.g. management of forest insect pests, relationships with other
species, recreation, agriculture, etc.). So for application to the broadest set of ques-
tions, the USA-NPN Plant Phenology Program (PPP) is being implemented with
BOTH a selection of nationally and regionally appropriate native species (almost
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200 species protocols are available so far to facilitate observations), as well as a few
wide-ranging cloned varietals of species (extension of the lilac legacy, termed the
Cloned Plants Project) to allow for separation of environmental and genetic factors
in phenological variability. This approach is an extension of that employed in the
International Phenological Garden (IPG) program in Europe, where cloned varietals
of multiple native species are used at all sites.

In support of these initiatives, initial testing of a new web page started in May
2008, with launching of a completely revised data entry module occurring in March
2009. By May 2009, over 1800 individuals had registered as USA-NPN plant phe-
nology observers (Fig. 2.8). Project Budburst, a USA-NPN Citizen Science field
campaign started in 2007, has also been highly successful in recruiting many
participants. Our next technical goal is to develop and implement a data visu-
alization/download module by the end of 2009. Planning is also well underway
for the scheduled launch of an USA-NPN Animal Phenology Program in 2010.
In order to be most effective, the USA-NPN must maximize the number and facil-
itate dense and geographically distributed coverage of phenological observation
stations across the country. We continue to pursue co-location and cooperation
agreements with existing observation networks, such as National Weather Service
COOP, AmeriFlux, NPS Inventory & Monitoring, and LTER sites. USA-NPN is
also preparing to take a leading role in the process of developing and implement-
ing an approach for coordinated global phenological monitoring. Schwartz, Weltzin
(Executive Director of USA-NPN), and Elisabeth Koch (COST 725 European phe-
nology program leader) are moving forward with this initiative through a Group
on Earth Observations (GEO) sub-Task, and possibly a World Meteorological
Organization Expert Team, facilitated through the Phenology Commission of the
International Society of Biometeorology.

Additional details on the progress of the USA-NPN and programs can be found
in the USA-NPN web pages (http://www.usanpn.org), and at the Citizen Science
field campaign page (http://www.budburst.org).

2.3.8 Current Network for the Collection of Phenological Data
in Russia: Data Bases, Suitability of Data, Future Networks,
On-Line Databases

Svetlana Vidyakina and Alexander Andreevich Minin

Currently, there is no national phenological network in Russia, but there are regional
coordinators of a network of voluntary correspondents (observers) of a phenolog-
ical network of the Russian Geographical Society (RGS). The RGS commenced
taking phenological observations in 1848 (Filonov and Nukhimovskaya 1985 in
Ostergren and Hollenhorst 2000). Most of the data from Russia and the former
USSR (Ukraine, Belarus, Kazakhstan, the European part of Russia, the Urals and
Siberia (see Fig. 2.9) are collected in the Moscow and St.-Petersburg centres of
the RGS. Currently, the network of voluntary supervisions is maintained by the
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Fig. 2.9 Location of
phenological observation
stations. Including the
territory of the former USSR
(Ukraine, Belarus,
Kazakhstan, European part of
Russia, the Urals, Siberia)

regional coordinators at their own expense and depends on the enthusiasm of the
correspondents.

In addition to the locations of the RGS network, monitoring is carried out in
nature reserves, at meteorological and agro-meteorological stations. These data
are forwarded to the Ministry of Natural Resources, regional administrations of
the Hydro-meteorological Service and the Agro-meteorological Service. Part of
this information forms the base of RGS and general work is carried out for the
Institute of Global Climate and Ecology of the Russian Hydro-meteorological
Service and Environmental Monitoring and the Russian Academy of Sciences,
Moscow.

The work organising the phenological observations was carried out within the
framework of the project “Nature of the European North in a changing climate”,
which was funded by the Federal Special Program “Integration” N I0842, 2002–
2006. The holding of lectures at teachers’ professional development courses and
the running of school excursions have made it possible to increase the number of
observers in the European North of Russia. Results of the work carried out are pre-
sented in a chapter of the book “Changes of climate in the European North” by
Vidyakina (2004).

The coordinators of the phenological commission of RGS are: in Moscow –
Alexander Andreevich Minin (aminin@pochta.ru), in St.-Petersburg – Violetta
Georgievna Fedotova. Most of the data are stored in hand-written form as “Nature
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Chronicles”. Over the last years the data has been systematised and organised
in a form suitable for analysis. The data forms a long timeseries with 40–60 or
more years. However, it represents only 15–20 locations of observations. The elec-
tronic database is in the Moscow Centre, presented with dates of the phenomena
occurring. These data are available in the form of maps and graphs at the site
http://www.wwf.ru. Results of the “Climatic documents of ecological regions” are
also published in a number of publications.

Publications of the series “Ecoregional Climate Change and Biodiversity
Decline” are available on the web and in printed form, for example for the Kola
Peninsula (World Wildlife Fund 2003) and for the Chukotka region (Kokorin et al.
2002)

The phenological observation program corresponds to natural vegetation zones.
These are lists of events recommended to be observed, with the aim being to have
the widest possible distribution of the location of the phenomena observed, and
to observe its precise occurrence in nature. The selection criteria also include try-
ing to have a range of organism types and the full range of seasons. The list of
the events recommended for observation include the phenomena of birds’, insects’,
plants’ lives, as well as abiotic environmental conditions (commencement of frost,
commencement of drifting of ice, icing over, etc.). Further details on phenological
observations in Russia are provided in Minin (1991, 2000).

2.3.9 International Initiatives

Frank-M. Chmielewski and Elisabeth Koch

The Phenology Study Group of the International Society of Biometeorology started
a global phenological monitoring (GPM) initiative in 1993. The main objectives of
GPM are to form a global phenological backbone with a “standard observation pro-
gram”, to link “local” phenological networks and to encourage the establishment
and expansion of phenological networks throughout the world (Bruns et al. 2003).
As GPM focuses mainly on temperature impacts on seasonal plant development, the
network is restricted to mid latitudes. The first phenological monitoring garden of
the network opened in Germany in 1995. In 2007 the network has expanded to more
than 20 sites as shown in Table 2.5 plus some International Phenological Gardens
(IPG), which have adopted Corylus avellana, Forsythia suspensa and Syringa vul-
garis in their monitoring program. The standard program comprises eight fruit trees
(see details below), whilst the extended program includes eight more flowering
plants, among them Lilac (Syringa x chinensis “Red Rothomagensis”), Forsythia
(Forsythia suspense “Fortunei”) and Hazel (Hamamelis x Intermedia). The IPGs
are further described in the following paragraphs or for more details see http://www.
agrar.hu-berlin.de/struktur/institute/pfb/struktur/agrarmet/phaenologie/ipg.

The International Phenological Gardens is a unique phenological network which
was originally founded in 1957 by Fritz Schnelle and Ernst Volkert. Based on
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Table 2.5 Stations of GPM, as of 2007

GPM-No. Country GPM-Station Lat. Long. Alt. (m) Beg. of Obs. End of obs.

1 D Deuselbach 49◦45’ 07◦03’ 480 2000 2003
2 D Blumberg 52◦36’ 13◦37’ 76 2001
3 D Braunschweig 52◦17’ 10◦27’ 81 2001
4 D Zingst 54◦25’ 12◦33’ 1 2001
5 D Moorende 53◦32’ 09◦41 4 2002
6 D Schleswig 54◦32’ 09◦33’ 36 2002
7 D Tharandt 50◦59’ 13◦32’ 365 2002
8 D Geisenheim 49◦59’ 07◦59’ 118 2003
9 D Linden 50◦32 08◦41 172 2004
10 CN Peking 40◦00’ 116◦11’ 100 2003
11 NL Wageningen
12 NL Amsterdam
13 EST Jögeva 58◦45’ 26◦25’ 70 2005
14 USA Milwaukee 43◦23’ 88◦01’ 265 2002
15 SK Banska Bystrica 48◦44’ 19◦07’ 427 2003
16 CZ Prag 50◦08’ 14◦22’ 284 2004
17 D Berlin-Adlershof 52◦26’ 13◦31’ 35 2005
19 D Offenbach 50◦06’ 08◦47’ 99 2006
20 D Leipzig-Holzhausen 51◦19’ 12◦27’ 138 2006
21 D Knüllwald 51◦03’ 09◦31’ 260 2006

the recommendation of the Commission for Agricultural Meteorology (CAgM)
they developed the idea for an international European plant phenological network
called IPG in order to obtain comparable and standardized large-scale phenolog-
ical observations across Europe (Schnelle and Volkert 1957). To eliminate the
hereditary variability only cloned specimens of trees and shrubs were planted;
microclimate effects are widely excluded as the gardens are situated in similar
surroundings (mainly plain surface with meadows and some trees) and a detailed
observation-guide helps to minimize subjective observation errors. The gardens are
professionally looked after by the staff of University institutes, botanical gardens
etc. who make the observations on a voluntary basis.

After several years of preparation, the first phenological observations started in
1959 at the Deutscher Wetterdienst in Offenbach. In the following years, the number
of IPGs increased all over Europe up to 66 IPG in 1978. The IPGs were established
on the grounds of different institutions and scientific agencies (e.g. agricultural,
forestry, botanical and meteorological institutes), located in the vicinity of an official
meteorological station. The network runs on a voluntary basis.

The coordination of the network has changed several times. For instance, from
1973 to 1977 the network was organized by the Institute of Biometeorology of the
University in Munich. Between 1978 and 1995 the German Weather Service was
responsible for the gardens. When in 1996 the Humboldt-University of Berlin took
on the co-ordination and management there were still 50 IPGs. Unfortunately, after
1978 when 66 gardens were counted the number of IPG decreased slightly, because
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Fig. 2.10 The development of the number of IPG stations from 1959 to 2006

not enough plant material was available to establish new gardens (Fig. 2.10).
However, since 2000 the number of IPGs has been increasing again.

One of the first challenges of the new management was to find a new parent gar-
den, because the old one in Hamburg-Großhansdorf (Federal Research Centre for
Forestry and Forest Products) was no longer able to continue the very important
plant propagation. At first the remaining plant material from the old parent-nursery
was moved to a new site at the JORDSAND association near Hamburg, where there
was enough space to grow the plants. During the first years the plant-dispatch was
also organized from Hamburg. Unfortunately, at this site the propagation of the
IPG plants failed and it was therefore necessary to find a new institution. Since
2001 the Experimental Station of the Bavarian State Institute of Forestry at Grafrath
(nearby Munich) has been undertaking the successful reproduction of the plants.
Additionally, in the last two years some trees were propagated in Saxony, so that
now the network is growing rapidly and we are also able to replace some older
species in the gardens by young plants.

The network of the International Phenological Gardens ranges across 28◦ lat-
itudes from Scandinavia to Macedonia and across 37 longitudes from Ireland to
Finland in the north and from Portugal to Romania and Macedonia in the south.
At present there are 70 stations (as of 2006). Thus, the network covers different cli-
mate regions from the cold to the warm climate and from the maritime to the more
continental areas of Europe (Fig. 2.11).

The original IPG observation program was fixed in 1959. It was divided into a
standard and in an extended program including 23 plant species (Larix decidua,
Picea abies, P. omorika, Pinus sylvestris, Betula pubescens, B. pendula, Fagus
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sylvatica, F. orientalis, Populus canescens, P. tremula, Prunus avium, Quercus
petraea, Q. robur, Robinia pseudoacacia, Sorbus aucuparia, Tilia cordata, Ribes
alpinum, Salix aurita, S. acutifolia, S. smithiana, S. glauca, S. viminalis, Sambucus
nigra). The standard program included one provenance of each species. Some gar-
dens observed additionally a few provenances of species from climatically different
areas (expanded program). Since some plant species are very difficult to propagate
and are not well distributed across the network, it was decided to concentrate on a
subset of plants which will be planted at all new IPGs. Additionally, in 2001 three
new species Hazel, Forsythia and Lilac were in included in the observation pro-
gram, so that now the new standard observation program consists of altogether 21
plant species (Table 2.6).

The data are published in Arboreta Phenologica (1960–2006) and gar-
den owners can download their own data to the digital database via
the IPG webpage (http://www.agrar.hu-berlin.de/struktur/institute/pfb/struktur/
agrarmet/phaenologie/ipg). Selected data are also incorporated in the COST725
database and are available download http://www.zamg.ac.at/cost725.

The phenological observations of the IPG have been used in many studies. The
data were used for modeling purposes (Kramer 1996, Menzel 1997, Chuine 2001),

Table 2.6 IPG standard observation program since 2001

Plant species Phenological Phases

Botanical name English name BO M B AB J F LV BF

Larix decidua European larch x x x x x
Picea abies (early) Norway spruce x x x
Picea abies (late) Norway spruce x x x
Pinus silvestris Scotch pine, Fir x x x
Betula pubescens White birch x x x x x
Fagus sylvatica ‘H’, ‘D’ Common beech x x x x x x
Populus tremula Trembling poplar
Prunus avium ‘B’ Wild cherry x x x x x x
Qercus robur ‘W’ Common oak x x x x x x x
Robinia pseudoacacia Common robinia x x x x x x
Sorbus aucuparia Mountain ash x x x x x x x
Tilia cordata Small-leafed lime x x x x x x
Ribes alpinum Alpine currant x x x x x x x
Salix aurita Roundear willow x x x x x
Salix acutifolia Pussy willow x x x x x
Salix smithiana Smith’s willow x x x x x
Salix viminalis Basket willow x x x x x
Sambucus nigra Common elder x x x x x x
Corylus avellana Common Hazel x x x x x x
Forsythia suspensa Forsythia x x x x x
Syringa vulgaris Common lilac x x x x x

BO Begining of leaf unfolding; M May shoot; B Beginning of flowering; AB General Flowering;
J St. John’s sprouts; F First ripe fruits; LV Autumm colouring; BF Leaf fall.
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the study of phenological trends (Menzel 1997, 1998), the investigation of relation-
ships between climate change and plant development in Europe (Chmielewski and
Rötzer 2001, 2002) and the impact of climate change on individual regions and
stations (Atkinson 2002, Donelly 2002, Köstner et al. 2005). Finally, the observa-
tions provided a fundamental basis for the COST725 action in which a phenological
reference data set has been established.

Recently the value of phenology as an instrument to raise the awareness of chil-
dren for environmental issues was re-discovered (in the 1950s for instance many
Austrian schools took part in the observation program of the ZAMG, the Austrian
national weather service). The Global Learning and Observations to Benefit the
Environment (GLOBE; see http://www.globe.gov) was probably the first program
that initiated worldwide phenological observations in schools. One of the aims of
GLOBE is to encourage students to take scientifically valid measurements in the
fields of atmosphere, hydrology, soils, and land cover/phenology, combining scien-
tific research with education. GLOBE was announced in 1994 and began operations
in 1995, involving schools and students with a special phenological observation
program. Phenology of the North Calotte http://sustain.no/projects/northcalotte/ is
another initiative aimed at stimulating schools to actively take part in nature obser-
vations and registrations foremost addressing pupils of schools in the border area
between Norway and Russia.
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Chapter 3
Seasonality as a Core Business of Phenology

François Jeanneret and This Rutishauser

Abstract The best characteristics of phenological observations are their description
of seasons and seasonal patterns. Specific phenological phases are used to define the
beginning and the end of seasons that form phenological calendars. Phenological
observations more closely capture the integrated seasonal rhythm than statistically
derived means or thresholds from climate elements. They only provide approximate
indicators of seasonal changes and cannot replace visible or directly measurable
phenomena. Including abiotic observations such as the timing of frost, thawing,
icing, snow and fog even provides seasonality descriptions beyond the vegetation
period. The length and position of seasons within the year is a foundation for an
integrated description of seasonality presented as a phenological season diagram.
Phenological observations are the indispensable basis for an integral description
of a seasonal classification and seasonality. A well designed phenological diagram
could offer a comprehensive picture of the rhythm and amplitude of seasons.

Keywords Biotic and abiotic phenology · Environmental monitoring · Mountain
climate · Phenological diagram · Topoclimatology

3.1 Seasons as Genuine Phenological Units

The science of phenology contributes to the assessment of regional climate change
by the use of observations of plant or animal behavior like many other geo- and
biosciences (van Vliet et al. 2003). However, phenology also offers definitions of
seasons, an overview of the succession of seasons and the assessment of seasonal
patterns, especially in middle latitudes, but also in sub-tropical (e.g. Sanchez-
Azofeifa et al. 2003) and sub-arctic conditions (e.g. Wielgolaski and Inouye 2003).

F. Jeanneret (B)
Institute of Geography, University of Bern, Research Group PHENOTOP, Bern, Switzerland
e-mail: francois.jeanneret@giub.unibe.ch

63I.L. Hudson, M.R. Keatley (eds.), Phenological Research,
DOI 10.1007/978-90-481-3335-2_3, C© Springer Science+Business Media B.V. 2010



64 F. Jeanneret and T. Rutishauser

These are unique contributions to the knowledge of seasonality. Essentially, this
is the core business of phenology, where as in climatology, means, thresholds or
calculated values such as temperature sums have to be used.

Phenological observations define the seasonal rhythm of nature as visible from
plant and animal phases such as budburst, flowering or first appearance. Abiotic
phenologies including the timing of frost, snow and ice also describe seasonal
changes and variability. Phenology is a highly economical method for bio- and
geomonitoring that has been recognized by the operators of national or special
phenological networks in many countries (Koch in Chapter 2, Nekovář 2008).
Furthermore many nature lovers (closet observers) scattered all over the planet
record and collect phenological events. Historical data, including information con-
tained within herbarium records (Primack et al. 2004, Lavoie and Lachance 2006,
Miller-Rushing et al. 2006), can be used for reconstructions of centennial-scale phe-
nological variability (Sparks and Carey 1995, Rutishauser 2007, Aono and Kazui
2008).

The classical definition of phenology is “the art of observing the phases of the
life cycle or the activities of plants and animals as they occur throughout the year”
(Lieth 1971). Lieth (1974) quotes the technical definition by the US IBP Phenology
Committee that described ‘[. . .] the causes of their timing with regard to biotic
and abiotic forces [. . .]’. Also in this book he specifically separates out seasonal-
ity “Seasonality is the occurrence of certain obvious biotic and abiotic events or
groups of events within a definite limited period or periods of the astronomic (solar,
calendar) year. Van Vliet and De Groot (2003) explicitly related phenology to the
physical environment and defined it as “the study of the times of recurring natural
phenomena especially in relation to climate and weather”. As a consequence, phe-
nology not only includes observations of plant and animals, but also other natural
phenomena with seasonal character. Data collection is no longer bound to tradi-
tional observations, but can also include all sorts of documents and evidence such
as pictures (e.g. Sparks 2007). Thus a broader definition should not replace tradi-
tional aspects but specifically address the diversity of possible documents such as
proposed by (Jeanneret 2005, Jeanneret and Brügger 2005): “Phenology deals with
patterns and evolution of seasonality in the biotic and abiotic environment recorded
by in situ observations and data obtained from pictures, photographs and historical
documents” (Ahrends et al. 2008, Rutishauser 2007).

Traditionally, phenology is based on observations rather than instrumental mea-
surements (Fig. 3.1). Living organisms such as plants and animals are the most
important object. Abiotic elements are also included as they provide seasonal infor-
mation beyond the vegetation period. Phenometry, meteorology and climatology
operate with instruments producing measurements of the biotic and abiotic envi-
ronment. Observations include the description of environmental changes in an
integrated way as opposed to measurements that only record one specific param-
eter. Phenology occupies therefore a relatively small but optimal position in the
specific field of topoclimatic spatial scales (Jeanneret and Rutishauser, Chapter 8).
The timing can be detected in the terrain on single organisms or species-specific
populations, but also as integrated measurements from terrestrial or remotely sensed
pictures and photographs.
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Fig. 3.1 Phenology includes direct and indirect observations of biotic and abiotic phenomena in
nature in order to describe seasonality

3.2 Seasonal Patterns Describe the Annual Rhythm

For Central Europe, Ihne defined specific phenological seasons in 1895 (Schnelle
1955) which became a classic set of denominations: for early, full and late
spring, summer and autumn he selected phenological phases which announced
and defined the beginning of each season. But in order to appropriately present
phenological observations there is a need for specific illustration of seasonality
which graphically reflect the rhythm and patterns of seasons. For mid-latitude
climates, phenological calendars (e.g. Defila 1992, Fig. 3.2) show the range of
phases from spring to autumn. Ahas and Aasa (2003) present and discuss a
range of phenological calendars that are a characteristic way of depicting the
phenological year.

These calendars statistically order plant phenological phases according to median
starting date of the record length. Quartiles and whiskers depict the spread and
extremes of the phases (Fig. 3.2). However, the upward succession of the boxes
or curves does not make reference to the continuity of the annual seasonal cycles,
nor to the inverse trend in autumn. In a different approach, the phenological clock
is a continuous representation of phases and seasons, which also allows combin-
ing two periods (Henniges et al. 2005). The comparison and visual interpretation of
more than one clock is difficult. Usually, phenological calendars and clocks offer no
differentiation of the winter, as often no plant phenophases can be recorded in mid-
to high-latitude climates.

In climate research, the well-known climate diagrams or climagrams after Walter
and Lieth (1960–1967, Fig. 3.3, Lieth et al. 1999) combine temperature and precipi-
tation as key elements to illustrate climate characteristics and patterns. They provide
a simple graphical representation of key climatic parameters of a measuring site.
Flat temperature curves reveal relatively oceanic and moderate climates whereas
uneven curves describe rather continental climates with a distinct annual cycle. The
position of the curves gives information on thermal conditions, precipitation bars on
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Tilia platiphyllos BLA/FLG
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BVAA llgemeine Blattverfärbung CoFG coloration générale des feuilles
BFAA llgemeiner Blattfall/Nadelfall ChFG chute générale des feuilles/aiguilles

Fig. 3.2 Phenological calendar of the station Liestal, Jura mountains, Switzerland, 350 m above
sea level. Observations from 1951 to 2000 (from Jeanneret and Defila 2007, BBCH-Codes after
Brügger and Vassella 2003). BEA Leaf unfolding (BBCH 13)/ unfolding of needles, BLA Full
flowering (BBCH 65), FRA Full ripeness (BBCH 87), BVA Colouring of leaves (BBCH 94), BFA
needles fallen (BBCH 95)

Fig. 3.3 Example of a
climatic diagram after Walter
and Lieth (1960) with
explanations (temperature in
◦C; rainfall in mm)
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Fig. 3.4 Variation of mean
phenological seasons in
mountain areas relative to
altitude (example from the
Austrian Alps, after Gams
1961, also reprinted in Lauer
and Rafiqpoor 2003). Only
the lower altitudes offer the
full range of seasons, and
winter rest becomes more
important in higher areas.
However, thermal inversions
in larger valleys reduce the
length of vegetation period

the quantity and monthly distribution of rainfall. The new ecophysiological climate
typology and classification elaborated by Lauer and Rafiqpoor (2003) is based on
humidity, aridity, growth activity and nivality (snow fall and cover).

As plant phenology does only rarely give evidence during the dormant season
in mid-latitude climates, like eucalypts flowering in Australia in winter, abiotic ele-
ments have to be used if required as a gap-filling, graphical element, especially
where winter rest increases with altitude (Gams 1961, Fig. 3.4). Plant phenological
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observations describe the various stages of the growing season whereas abiotic ele-
ments characterize winter. Seasons differ according to their intensity, their length
and their position within the year. The pattern of early or late, short or long defines
and demonstrates a typology. A combination of biotic and abiotic observations
represents the entire year.

A phenological season diagram should comprise data for all seasons. A graphical
representation for year-round phenological seasons based on climagrams could be a
great help to improve climatic and environmental interpretations and to reveal fields
and potential of applications. Therefore, a phenological season diagram should meet
the following basic requirements (Jeanneret 2008):

• represent the rhythm of all seasons, including an equivalent graphical element for
winter (where there is dormancy),

• show different phenological phases during the whole growing season,
• combine the different representations to an annual image,
• adapt to different observation methods and programs (different phenophases),
• be simple to read and to interpret.

3.3 The Phenological Season Diagram

We demonstrate a phenological season diagram with data from the special topocli-
matic network BERNCLIM (Jeanneret 1972, 1997, Messerli et al. 1978, Bucher and
Jeanneret 1994, see also Jeanneret and Rutishauser in Chapter 8). It was founded
in 1970 as a low-cost topoclimatic monitoring survey. In the Canton of Berne
(7000 km2) and adjacent areas in Switzerland, data of plant phenological phases
covering the entire growing season, fog frequency and snow cover duration in win-
ter have been collected for more than three decades. The combination of a set of
phenological phases from spring (blooming of the hazel Corylus avellana, dande-
lion Taraxacum officinale and apple trees Pyrus malus) to summer (wheat harvest
Triticum vulgare), and autumn (coloring of the leaves of beeches Fagus sylvatica)
followed by winter (snow cover and fog duration) characterizes the seasonal pattern
of various topoclimates.

The observation area stretches from the Northern Jura Mountains across the cen-
tral hill country to the Alps, offering a wide variety of climatic conditions over a
cross-section of 120 km and from 400 to 4000 m of elevation. Observation series of
up to 35 years are precious for research on recent climatic variations as well as for
different applications, such as forestry and bioclimatology.

With data from two selected stations, phenological season diagram is presented
(Figs. 3.5 and 3.7). The phenological season diagram combines a curve for the
growth period, derived from the dates of a number of phenophases, to monthly
column of duration of snow layer and frequency of fog in days.

The plant phenology curve is plotted against days of the year (DOY) and dis-
plays a ranking of the phenophases according to a reference series in percents. The
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Fig. 3.5 Combined phenological season diagram of the lower Swiss Plateau (Lüscherz at the
South shore of the lake of Bienne): above the biotic phenological phases in the summer term
(1970–2004) in days of the year, below the abiotic winter phases (1993–2003) in days per month.
The vegetation period starts early, is relatively long, and in winter fog is rather frequent, but the
snow cover is not lasting very long

Fig. 3.6 Phenological season diagram of two distinct years at the same location of Lüscherz.
1997 was an early phenological year with a quickly advancing spring following a short winter with
little fog and not much snow. 1986 shows a late pattern for spring following a winter with longer
snow duration, autumn was earlier with more fog
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Fig. 3.7 Combined phenological season diagram of the higher Swiss Plateau (hills of the
Schwarzenburg area adjacent to the Alps): above the biotic phenological phases in the summer
term (1970–2004) in days of the year, below the abiotic winter phases (1993–2003) in days per
month. The vegetation period is relatively late and shorter, and in winter fog is rare, but snow
cover is lasting longer

phenological reference station is a low-lying place on the Rhine River with usually
rather early dates. It belongs to the national observation network of MeteoSwiss at
Möhlin AG (Canton of Argovia, 305 m, 1956–1990, Defila 1992). The ranking is
expressed in percent of the dates of the first 6 months of the year (181 days) and
inversed for the following months (184 days). The columns of the winter data are
hanging, in order to not disturb the biotic curve.

Diagrams based on long observation periods show the mean values and, thus,
reflect general patterns (Figs. 3.5, 3.6, 3.7 and 3.8). Diagrams of single years illus-
trate particularly early (e.g. 1997, Figs. 3.6 and 3.8, left) or a late years (1986,
Figs. 3.6 and 3.8, right). The climate in the low-lying village of Lüscherz on the
shore of Lake of Bienne, (Figs. 3.5 and 3.6) is characterized by a relatively early
beginning of spring and a long vegetation period. Winter is mild with little snow.
Numerous fog days reflect the long lasting thermal inversions during high pressure
periods in winter. In the Schwarzenburg area hills, culminating well above 1000 m
and represented by the station of Schwarzenburg (Figs. 3.7 and 3.8), the vegetation
period starts later, snow is lasting during a longer period, and the area lies often
above typical thermal inversions. The two stations stand for contrasting conditions
with different seasonality patterns.

The phenological season diagrams show a regular, normal season pattern when it
is averaged over longer periods, and simultaneously allows a comparative analysis
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Fig. 3.8 Phenological season diagram of two distinct years at the same location of Schwarzen-
burg. In 1997 spring and summer were earlier after a late winter with less snow. 1986 shows a late
pattern for spring following a winter with long snow duration, but autumn was normal and snow
arrived late

of single years. The form and position of the curves reveal seasonal anomalies.
Steep slopes show quickly advancing seasons, curves to the left represent earlier, to
the right later seasons.

More examples linking plant with abiotic phenology offer the opportunity of a
year-round, combined topoclimatic typology. Well-designed and normalized dia-
grams could be used in many publications and make phenology and seasonality
more popular. An improved graph should combine various plant phenological met-
rics into a single curve, showing both rhythm and amplitude of seasonal patterns.
Further improvements could yield to a standard graph which could be widely
applied. Development should include the application of the diagram to networks
with different observation programs.

3.4 Seasons at a Glance

It is challenging to combine plant phenology data with the frequency of fog days
and snow cover duration. Each element reacts to climate variability in a complex
way. The increasing length of the vegetation period is a chance for agriculture
and summer tourism. On the other hand, the higher altitude and duration of win-
ter fog causes not only more traffic problems, but also health risks due to smog
situations in densely populated areas that are often located in basins with frequent
thermal inversions. The reduced duration of snow cover due to winter warming has
well-known economic consequences on winter tourism. All these variations are typ-
ical for topoclimatic scales, highly depending on the relief situation and reflected by
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biotic and abiotic phenological data. Clear graphical illustrations will contribute to
a better understanding and application of phenological observation data.

Compared to climate diagrams (Fig. 3.3), the phenological season diagram
includes various climate-sensitive impact factors revealing a complex set of infor-
mation on the driving climate conditions. Plants, animals, snow, ice or fog reflect the
global environmental conditions and are therefore a valuable indicator of pattern and
changes. It can be monitored at places far from meteorological stations, and pheno-
logical networks do not require heavy and expensive infrastructure. Phenological
season diagrams are a potent and cheap tool for extracting typologies of seasonal
patterns based on an analysis of single years or different stations.

The big advantage of phenological season diagrams is in fact the potential of their
universal application: This is an important step to improve the use of phenological
data. Phenology has not yet achieved international or global standardization (Bruns
and van Vliet 2003). However, ideas such as the Global Phenological Monitoring
(GPM, initiated by the International Society of Biometeorology) and research pro-
grams like the European Phenology Network EPN (5th European Program, van Vliet
et al. 2003) or COST Action 725 (“Establishing a European Phenological Data
Platform for Climatological Applications”) are important and most valuable steps
toward a standardized method with a comprehensive graphical presentation such as
the phenological seasons diagram.
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Biometeorology: proceedings of the 14th International congress on biometeorology, Ljubljana,
September, 1996

Jeanneret F (2005) The rhythm of seasonality – A phenological season diagram. Analele
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Chapter 4
Societal Adaptation Options to Changes
in Phenology

Arnold J.H. van Vliet

Abstract In this chapter I provided a qualitative overview of how phenological
changes will strongly influence human well-being through changes in primary pro-
duction sectors depending on natural productivity, including agriculture, forestry
and fisheries, and the public health sector. Farmers, commercial enterprises,
patients, doctors and policy makers have to adapt pro-actively to cope with, prevent
or reduce potential negative impacts. Adaptation should be relatively easy in most
cases because people have to ‘only’ change the timing of their activities. However,
pro-active adaptation is currently often unfeasible because stakeholders do not know
what phenological changes will happen where and when. They also are not aware
of the ecological and socio-economic consequences of such phenological changes.
They seem to miss a sense of urgency to act. Furthermore, they miss an understand-
ing on whether, how and when to respond in order to prevent (further) negative
impacts or to benefit from the emerging changes.

To adequately respond to phenological change and to improve the adaptation
potential, there is a need to (1) continue and improve monitoring of phenological
changes; (2) advance the analysis of phenological changes and its socio-economic
and environmental impact; (3) improve the projections of phenological changes
and their impacts; and (4) improve the communication on observations, knowledge,
tools and techniques. Phenological networks should take the lead in all these four
activities. They should, however, closely work together with major stakeholders.

Keywords Adaptation · Phenological networks · Primary production · Public
health
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4.1 Introduction

Phenology is the study of the timing of annual recurring life-cycle events. Examples
of phenological events include the start of flowering, leaf unfolding, insect appear-
ance, bird migration, fruit ripening or autumn colouring. The timing of many
phenological events strongly varies from year to year. This is illustrated by
Fig. 4.1, which shows the variation in timing of various phenological events in The
Netherlands in the period 2001–2007 for several species.

Fig. 4.1 Variation in timing of phenological events in The Netherlands between years and species

Phenological variability of plants and animals influences many societal sectors,
such as public health, fisheries, hunting, forestry, nature management, garden-
ing, tourism and recreation, transportation and water management (van Vliet
et al. 2003b). All these sectors continuously adapt to phenological variability and
changes, usually in a re-active or autonomous manner. In the past, the adaptation
process was largely based on trial and error and less on understanding the underlying
ecological and meteorological processes.

To observe and better understand the causes of phenological variability many
phenological networks have been set up in the last centuries. These networks
monitor, analyse, predict and communicate the timing of life cycle events in a
structured and organised manner. Phenological networks exist or have existed in
many countries (Schwartz 2003, van Vliet et al. 2003a). Several have been oper-
ational for decades (for example the networks in Germany and Slovakia) and
some even for centuries (for example Japan and Finland). Analyses of the mil-
lions of observations made in the past have demonstrated that the inter-annual
variation is largely determined by climate variables (Menzel 2000, Sparks et al.
2000, Scheifinger et al. 2002). This is clearly illustrated by Fig. 4.2, which shows
the relationship between temperature and flowering of Ground-ivy (Glechoma
hederacea).
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Fig. 4.2 Relationship between spring temperature and flowering of Ground-ivy (Glechoma hed-
eracea) in The Netherlands between 1940 and 1968 (Based on data from www.natuurkalender.nl)

All these analyses also show that the recently observed climatic changes have
already had considerable impact on the timing of phenological events (Rosenzweig
et al. 2007). Menzel et al. (2006), for example, analysed a large phenological
data set of more than 125 000 observational series of 542 plant and 19 animal
species in 21 European countries (1971–2000) and showed that 78% of all leaf-
ing, flowering and fruiting records advanced (30% significantly) and only 3% were
significantly delayed. In contrast, the signal of leaf coloring and leaf-fall is ambigu-
ous. Phenological changes in response to changes in weather and climate have been
observed in all species groups (e.g. plants, birds, butterflies, fish, amphibians, plank-
ton, dragonflies and mammals). Table 4.1 gives a number of examples of observed
phenological changes in response to recent changes in climate.

Phenological changes thus are a good indicator for climate change impacts.
However, a lot of information is still missing and cooperation between phenolog-
ical networks is needed to fill these gaps. Therefore, the International Society of
Biometeorology (ISB) established the Phenology Commission. This commission
aims to:

• Increase our understanding of the role of climate variables in vegetation
dynamics;

• Develop a combined observational program configured to be sensitive to modifi-
cations in plant/animal phenology and biodiversity changes which is able to form
an effective system for early detection and warning of impending global-scale
changes in ecosystems;

• Strategically deploy new and augment existing observational networks, initially
in the mid latitudes;

• Contribute to the combined objectives of the Framework Convention on Climate
Change (FCCC), especially with regard to adaptation, and the Convention on
Biological Diversity (CBD).
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Table 4.1 A selection of observed phenological changes within different species groups

Species group Phenophase
Observed
change Time period Location Reference

Meroplankton

Dinoflagellates
Copepods
Non-copepod
Holozooplankton

Timing of
seasonal
peak

–27 days

–23 days
–10 days
–10 days

1958–2002 North sea Edwards and
Richardson
(2004)

Trees Start of season –8 days 1969–1998 Europe Chmielewski and
Rötzer (2001)

Butterflies Mean first
appearance
35 butterflies

–8.6 days 1976–1998 UK Roy and Sparks
(2000)

Migratory birds Arrival date
Departure date
Average of 20

species

–8 days
–8 days

1971–2000 UK Cotton (2003)

Migratory birds Arrival date –14 days 1981–2000 USA, Colorado Inouye et al.
(2000)

Mammals Emergence
from winter
sleep

–38 days 1977–2000 USA, Colorado Inouye et al.
(2000)

Amphibians First spawning 0 to –21
days

1978–1994 UK Beebee (1995)

Amphibians Frog calling 0 to –13
days

1900–1999 USA, New York Gibbs and
Breisch (2001)

The ISB provides scientists a platform to exchange ideas and methods. The coop-
eration and contacts created within the ISB strongly facilitated the set up of the
European Phenology Network (van Vliet et al. 2003b), the European COST 725
network (Koch et al. 2005), and the set-up of national phenological networks such
as the ‘Natuurkalender’ network in The Netherlands1 and the National Phenology
Network in the USA2.

The recent changes in climate and the resulting phenological changes have
increased the demand for phenological information. This demand will further
increase over the coming decades as the Intergovernmental Panel on Climate
Change (IPCC) concluded in its Fourth Assessment Report that the global mean
temperature will increase between 1.8 and 4.0◦C in the twenty first Century (IPCC
2007). Increases in the amount of precipitation are very likely in maritime regions,

1Dutch phenology network: http://www.natuurkalender.nl.
2USA phenology network: http://www.usanpn.org.
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while decreases are likely in most Mediterranean and subtropical land regions, con-
tinuing the observed recent trends and patterns (IPCC 2007). It is very likely that
the already ongoing changes in the timing of phenological events will continue in
response to these climate changes. As a result phenological events are likely to occur
at times of the year never previously recorded before.

It is currently largely unknown how these ongoing and the expected future phe-
nological changes will impact society. It is also unknown whether society is able to
adapt pro-actively to these phenological changes. In this chapter I aim to address the
following four questions:

1. How will climate-induced phenological changes impact various sectors in
society?

2. Which actors in society will be affected by phenological changes?
3. How can these actors adapt?
4. How can phenologists and other scientists facilitate the adaptation process?

The first three questions are addressed in Section 4.2. In Section 4.2.1 I focus on
the primary production sectors (agriculture, forestry and fisheries) and in Section
4.2.2 on public health. I base my analysis on literature and on my own experiences
gained during the coordination of the ‘Natuurkalender’ network, and the European
Phenology Network. In Section 4.3 I identify questions that need to be answered
to facilitate successful adaptation of these sectors. In Section 4.4 I describe how
phenological networks can facilitate the adaptation process.

4.2 Phenological Changes: Impact and Required Adaptation

4.2.1 Primary Production Sectors

Agriculture, forestry and fishery strongly depend on the growth and development of
plants and animals. The quantity and quality of the crops, grasslands, trees or fish
vary from year to year due to variation in environmental, biological, socio-economic
and climatological factors. These factors are both directly and indirectly influenced
by climate change causing significant impact on quantity and quality of produc-
tivity of these sectors. With the expected 55% increase in global crop production
by 2030 and an 80% increase by 2050 (FAO 2005) and the significant increases
in demand for forest products and fish, climate change will have significant impact
on these sectors. The IPCC (Easterling et al. 2007) concludes that the potential for
global food production will increase with rises in local average temperature over
the range of 1–3ºC. Above this range production will decrease. Crop yields in the
mid to high latitudes are likely to increase but decrease in low latitudes. Projected
changes in the frequency and severity of extreme climate events will also have sig-
nificant consequences for food production and security, and for the forestry sector.
For example, regional changes in the distribution and productivity of particular fish
species are expected, due to continued warming and subsequent local extinctions at
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the edges of ranges. This is particularly likely to occur in freshwater and diadro-
mous species (e.g. salmon, sturgeon). In some cases, ranges and productivity will
increase (Easterling et al. 2007).

4.2.1.1 Expected and Observed Phenological Impacts

It is not possible to quantify how much climate-induced phenological changes
will contribute to the expected changes in global productivity mentioned above.
However, it is likely that the occurrence of climate conditions that never occurred in
the past centuries will structurally change the timing of phenological processes and
influence production of agriculture, forestry and fisheries. This is supported by the
increasing evidence that phenological changes in crops, trees and fish are already
taking place in response to the observed changes in climate. Estrella et al. (2007),
for example, have studied the phenology of seventy-eight agricultural and horti-
cultural events from a national survey in Germany spanning the years 1951–2004.
They conclude that the majority of events are significantly earlier now than 53 years
ago, with a mean advancement of 1.1–1.3 days per decade. Williams and Abberton
(2004) found a significant earlier flowering of 7.5 days per decade since 1978 in
agricultural varieties of white clover. Sparks et al. (2005) showed that 25 of the 29
agricultural and phenological events observed by a farmer in the UK were earlier in
1990–2000 than in 1980–1989. The average advancement of all twenty-nine events
was 5.5 days at a time when January-March mean temperature increased by 1.4◦C.
Hu et al. (2005) showed that winter wheat heading or flowering dates in the U.S.
Great Plains occurred 6–10 days earlier in 2004 than in 1948.

Climate-induced phenological changes of fish species are less known. Marine
commercial fish stocks have changed considerably in the past few decades but it
is often difficult to determine the exact role of climate change and anthropogenic
influences (Frid et al. 2003, Reid et al. 2006). It is, however, clear that climate has
significantly changed recruitment success, population sizes, geographic distribution
and migration patterns of fish (Walther et al. 2002, Genner et al. 2004, Perry et al.
2005, Grebmeier et al. 2006, Hemery et al. 2008). Climate change is also having
many impacts on forests (Robledo and Forner 2005). Modelling activities of Kramer
et al. (2000) show that phenological changes will significantly influence net primary
production of forests (both positively and negatively). These findings are also sup-
ported by various remote sensing studies that show the lengthening of the growing
season and increases in productivity due to higher temperatures and increases in
CO2 concentration in the past years (Myneni et al. 1997, Zhou et al. 2001). The
signals picked up by satellites over large regions were supported by analysis of
long-term observations on start of leaf unfolding and leaf colouring (Menzel et al.
2006).

Climate change affects not only the timing of phenological processes of har-
vestable species and hence the timing of harvesting activities but also the timing of
those species that, negatively or positively, influence the growth of these species will
change. Examples are organisms lower in the food chain such as plankton and algae
(Beaugrand et al. 2003, Platt et al. 2003, Edwards and Richardson 2004, Winder
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and Schindler 2004), pests and diseases (Zhou et al. 1995, Rosenzweig et al. 2001,
Harrington et al. 2007, Logan et al. 2007) and predators of food sources (Manca
et al. 2007). All these changes significantly alter the growing conditions and increase
the risk of environmental and climate extremes that impact productivity.

4.2.1.2 Adaptation Options

How can the primary production sectors adapt to the phenological changes and who
should adapt? First of all, it is important to recognize that the different stakeholders
in these sectors are used to accounting for inter-annual and decadal variability in cli-
mate and phenology. Based on their experiences in the past, scientific research and
the available technologies, farmers, foresters and fishers continuously select crops,
trees or fishes that provide the highest profit under the average regional climatologi-
cal and biological conditions. In addition, they continuously try to improve growing
conditions by taking measures to control pest and diseases, by using fertilizers, and
irrigation. In the timing of all these management activities, including the timing of
sowing, planting and harvesting, producers try to make optimal use of the beneficial
climatological conditions and to limit the damage caused by climate extremes such
as cold snaps, storms and drought. Consequently, the planning of these activities
significantly determines the quantity and quality of production (Bednarz et al. 2002,
Schwarte et al. 2005). With the expected changes in climate, the optimal timing of
their production activities is likely to change (Mackenzie et al. 2007). Therefore,
farmers, foresters and fishers should consider changing the timing of sowing, plant-
ing, nutrient supply, irrigation and the control of pests and diseases. If the changes
become too large they have to select different varieties of crops and trees or even
different species that are better suited to the new climatological, environmental and
biological conditions. According to Easterling et al. (2007), adaptations such as
changing varieties and planting times should avoid a 10–15% reduction in yield in
cereal cropping systems worldwide. This corresponds to a 1–2◦C local tempera-
ture increase. However, according to Reidsma (2007) farmers in different European
regions adapt differently to climate change and variability (e.g. varying crop types
and farm size) making it difficult to estimate the success of adaptation. Furthermore,
there is likely to be a gap between the potential adaptations and the realised actions.
There will be large differences in adaptive capacity between regions and changes
in policies and institutions will be needed to facilitate adaptation to climate change
(Easterling et al. 2007).

There are many interactions and dependencies between actors that are difficult to
account for the assessment of potential future impacts of climate change. Changes
in the timing of management activities will have a whole range of socio-economic
consequences. It will, for example, change the timing of the amount of personnel
needed throughout the year. After the very warm summer in 2003 in Europe the
harvest date advanced significantly (Chuine et al. 2004). This resulted in problems
for farmers as most of their seasonal employees were still on their summer holiday.
In 2006, in The Netherlands, the extreme warm temperatures in July (4.9◦C above
average) meant fruit growers needed more personnel during a shorter period of time
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to pick the fruit (Mol 2006). The warmest autumn and winter ever recorded fol-
lowed; resulting in minimal time and not enough personnel, to prune the fruit trees
before the start of flowering (van Brandenburg, Personal Communication).

Changes in the timing of production activities also influence the whole supply
chain. Producers of seeds, nutrients, pesticides, herbicides, materials and equipment
have to change their planning of production, marketing and distribution. The whole
chain of activities post harvest will also change including storage in warehouses
and the processing and selling of products. Wholesalers and retail businesses con-
tinuously have to decide which products to buy and sell and where they want to
buy them. These decisions are based on a whole range of factors including the
costs, location of production, availability and quality of products. All these factors
are influenced directly or indirectly by the phenological changes and the resulting
changes in quantity and quality of the products.

In addition to a large number of actors within the commercial sector, national and
international governments have to respond to phenological changes. Their involve-
ment will increase if the primary production sectors do not succeed in adapting to the
expected phenological changes in time and if significant economic losses and short-
ages of food supply occur. The agricultural, forestry and fishery sectors are already
strongly regulated by regional, national and international governments. They try to
control their national production and the international competition through taxes,
subsidies and quotas. Governments are also involved because these sectors have
large impacts on ecosystems and biodiversity through over-production, land cover
and land use changes, the use of pesticides and herbicides, and the disturbance of
natural areas. In order to protect biodiversity and ecosystems, farmers, foresters and
fishers are confronted with restrictions and regulations to reduce ecological damage.
There are numerous examples of these regulations and in many cases phenological
changes and the timely adaptation to these changes will influence the effective-
ness of these regulations. In The Netherlands, farmers were requested to delay the
start of mowing to increase the survival success of meadow birds. Their popula-
tions declined with 10–60% below the level of 1990 (Teunissen and Soldaat 2005,
CBS/MNC 2007). The decline is partly caused by the advancement of mowing dates
in response to warmer springs (Sanders et al. 2003) but not in the breeding of the
birds. Another example is the regulation that restricts fishing to certain periods of
the year at particular locations to allow fish to safely reproduce (CEC 2001). Policy
makers, scientists, conservation organisations and fishers, are involved in determin-
ing fish quota whereby a continuous balance is sought between production and
preservation. The changes in timing, distribution and population sizes of fish will
intensify the many (inter)national debates about these quotas. Modelling results of
Link et al. (2004) show that fish stocks are significantly influenced by changes in
population dynamics, changes in fishing strategies as well as policy instruments.
They conclude that without the inclusion of policy instruments, the stocks would
collapse under the immense pressure of the fisheries in many scenarios of climate
change induced altered population dynamics, highlighting the necessity of actively
managing the anthropogenic exploitation of important marine resources. However,
Rijnsdorp et al. (2002) show that there is a risk that decisions on protection of
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biodiversity and on the implementation of measures that reduce impact of (in this
case) fishery are currently based on outdated or non-existing knowledge. For exam-
ple, both the location and time of protection measures to protect Cod populations in
the North Sea were wrongly selected. The selection was based on knowledge from
the 1970s. As a result, the protection measures did not have the expected benefits for
Cod populations. These wrong decisions can have large implications for the ecolog-
ical systems and the people that depend on these ecosystems for their food supply
or their income.

Phenological changes also influence the species monitoring and evaluation pro-
grams that determine the ecological impact of agriculture, forestry, and fisheries.
These programs analyse the status and development of populations of the (endan-
gered) species in the area. These monitoring activities often take place during a
limited amount of time and within a defined area. Phenological changes might
require a change in the timing of monitoring activities to prevent drawing wrong
conclusions on, for example, the impact of production activities. Especially rare
species that have a migratory or dormant behaviour might be more difficult to find if
they appear earlier or later than they usually did. Therefore, the many stakeholders
involved should recognize that natural ecosystems as well as agriculture, forestry
and fisheries undergo large-scale changes. Decisions on regulations and restrictions
should take these (potential) changes into account.

4.2.2 Public Health

Patz et al. (2005) concluded that there is growing evidence that climate – health
relationships pose increasing health risks under future projections of climate change.
The warming trend over recent decades has already contributed to increased morbid-
ity and mortality in many regions of the world ranging from cardiovascular mortality
and respiratory illnesses due to heat waves, to altered transmission of infectious dis-
eases and malnutrition from crop failures. These conclusions were supported by the
Fourth Assessment Report of the IPCC. The IPCC concluded, with very high con-
fidence, that climate change currently contributes to the global burden of disease
and premature deaths (Confalonieri et al. 2007). There are numerous ways in which
climate change influences public health ranging from the direct impact of extreme
events such as heat waves and drought, increases in malnutrition by impacts on agri-
culture and fisheries, to changes in vector-borne disease. In this section I focus only
on public health impacts via phenological changes of plants and insects.

Phenological changes of species that cause morbidity and mortality or of species
that determine the survival of the harmful species will change the start and dura-
tion of the period during which people are exposed to these health risks. A change
in geographic distribution of the harmful species due to these phenological changes
will change the area where people are exposed to the risks. Furthermore, the amount
of exposure of people to health risks is likely to change due to phenological changes.
As Confalonierie et al. (2007) concluded the emerging evidence of climate change
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effects on public health shows that climate change has altered the distribution of
some infectious disease vectors (medium confidence) and altered the seasonal dis-
tribution of some allergenic pollen species (high confidence), I focus on these two
subjects.

4.2.2.1 Hay Fever

Hay fever or Seasonal Allergic Rhinitis (SAR) is caused by allergens that are
attached to pollen of certain plants that have airborne pollen (e.g. grasses, Birch,
Alder and Hazel). Contact with pollen by hay fever patients results in a diversity
of allergic reactions. The prevalence of allergy has strongly increased in the last
decades and constitutes a major cause of hospitalization (Strachan 1989, Aberg et al.
1995, Wuthrich et al. 1995, Gupta et al. 2003). Hay fever is associated with consid-
erable direct and indirect costs that result from medical treatment and the loss of
school and working days. In Europe alone, the total annual cost for allergic rhinitis
is estimated at 3 billion Euro (UCB Institute of Allergy 2004), while the estimates
for the USA amount to 4.9 billion dollars (Schoenwetter et al. 2004).

Expected and Observed Phenological Impacts

In Section 4.1 I showed that the timing of flowering is changing in response to
changes in climate. Consequently, climate change alters the timing of the start of
pollen release and thus the start of hay fever complaints. An increasing number of
studies has shown that recent increases in temperature have advanced the start of the
pollen season (D’Amato et al. 2002, D’Odorico et al. 2002, Emberlin et al. 2002,
van Vliet et al. 2002, Huynen et al. 2003, Beggs 2004, Ziska et al. 2007). It is still
unclear what the impact of climate change will be on the length and the intensity of
the pollen season but it is likely that future changes in climate will change the start,
duration and intensity of the pollen season.

Adaptation Options

Hay fever patients are obvious stakeholders that need to adapt to shifts in the start
and duration of the pollen season. Adaptation is relatively simple, for most, as they
‘only’ need to adjust the timing of their medicine intake. This is especially the case
for patients that use medicines like topical steroids have to be aware of the pheno-
logical changes. These medicines only have a maximum effect if medicine use starts
several days to several weeks before the complaints are expected (van Cauwenberge
et al. 2000). However, patients that use medicines as soon as the pollen season start
have to have their medicines available in time.

Diagnosing hay fever by family doctors and medical specialists becomes more
complex if the hay fever season occurs at times that the doctors have not experienced
before. In general, hay fever symptoms are difficult to interpret and can be con-
fused with symptoms caused by other diseases. The changing flowering times might
increase the improper diagnosis and may result in higher costs for health care, espe-
cially in cases when hay fever triggers the development of allergic asthma (Bousquet
et al. 2003, Schramm et al. 2003). Therefore, doctors need to be aware of the changes
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in start of the pollen season. Furthermore, they have to adapt their planning of when
they can expect hay fever patients to consult them about their symptoms. As many
people suffer from hay fever, the number of consultations might increase, as patients
are experiencing symptoms outside the period they would normally associate with
hay fever.

A change in the timing of hay fever symptoms and doctor consultations will also
influence the planning of the pharmaceutical and diagnostic industry. They will have
to adjust the timing of the production, distribution and promotion of medicines and
diagnostic tests. Analysis of the sales of medicines illustrates the relevance of this
process. In the week of the start of the Birch pollen season in The Netherlands in
the period 2001–2005 an average of 2.1 million Euro worth of hay fever medicines
were sold by pharmacies (Based on data obtained from Stichting Farmaceutische
Kengetallen in 2006).

Adaptation to the changes in timing of the hay fever season is possible if all
stakeholders are informed in time by the pollen information service providers. The
start and duration of this communication period will have to change according to
the changes in the timing of the pollen season. Furthermore, the pollen monitoring
stations that monitor pollen only during a selected period of the year have to change
their counting schedule in order to cover the total pollen period. To improve the hay
fever forecasts scientists have to improve their knowledge on when and where pollen
are produced under changed climatic conditions, how the pollen are transported
through the atmosphere and how patients respond to the pollen.

4.2.2.2 Vector-Borne Diseases

Vector-borne diseases like malaria, Lyme disease, dengue and yellow fever are
infections transmitted by the bite of infected arthropod species such as mosquitoes,
ticks, and blackflies. Vector-borne diseases are very important health issues globally,
affecting billions of people (McMichael and Githeko 2001). Although vector-borne
diseases are considered to be a large health problem, still a lot is unknown about the
very complex ecological processes, the interaction with all kinds of global changes
(including climate change, land use/cover change) and the proper response strategies
(Sutherst 2004).

Expected and Observed Phenological Impacts

According to Dobson and Carper (1993) many factors relevant to the transmission
of vector-borne pathogens are highly temperature-dependent. For the invertebrate
vector, these include: spatial distribution, development and survivorship rates, and
length of the gonotrophic cycle (time between blood meals). For the pathogen itself,
temperature affects both the extrinsic incubation period (time from infection of vec-
tor to transmission of pathogen) and transmission rates. Phenological changes of the
vectors that transmit the diseases are likely to have a large influence on the occur-
rence of vectors (like mosquitoes) and the parasites/pathogens in time and space
(Kovats et al. 2001, Harvell et al. 2002, Hunter 2003, Sutherst 2004, Kutz et al.
2005, Patz et al. 2005). Most direct evidence of observed climate change impacts
come from observed changes in geographic distribution of the vectors (Epstein et al.
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1998, Epstein 2001, Confalonieri et al. 2007). Evidence for observed phenological
changes of vectors is scarce. However, many studies have shown that higher temper-
atures increase the development speed of the vectors as well as the parasites (Rueda
et al. 1990, Dobson and Carper 1993, Cox et al. 1999, Epstein 2000).

Adaptation Options

Because of the very large socio-economic impacts of vector-borne diseases, many
organisations try to reduce the problem. Addressing the problems requires actions
at many different levels including improving surveillance and response capability,
drug and vaccine development, and greater provision of clinical care and public
health services and an improved prediction (Epstein 2001).

Most work has been done on malaria. The World Health Organisation is coor-
dinating the Global Malaria Program (GMP). GMP is responsible for malaria
surveillance, monitoring and evaluation, policy and strategy formulation, techni-
cal assistance, and coordination of WHO’s global efforts to fight malaria (WHO
2008). Several components of the response strategies deal with a proper timing of
activities and thus with the phenology of the vectors. The World Malaria Report
(WHO/UNICEF 2005) states that improved early warning, detection and response
to malaria epidemics are necessary to avert catastrophe. The likelihood of an indi-
vidual becoming infected with malaria is dependent on exposure of the individual
to infective mosquitoes and the number of available infective mosquitoes to bite
individuals (Thomson and Connor 2001). As the development of mosquitoes and
their activity depend on weather conditions, there is a seasonality in the infection
risk with distinctive peaks (Cox et al. 1999, Abeku et al. 2003). Furthermore, the
survival from malaria is determined by the patient’s personal vulnerability (e.g. low
immunity and malnutrition) and early diagnosis and prompt treatment with effec-
tive anti-malarial drugs (Thomson and Connor 2001). Therefore, the medical sector
as well as the public should be informed and prepare themselves in time in order
to respond to increased risks and increased demands for health care. Several coun-
tries in the Southern African Development Community (SADC) aim to improve
their epidemic detection and response, that is 60% of epidemics should be detected
within two weeks of onset, and 60% of epidemics should be responded to within
two weeks of detection. The SADC countries recognize that to achieve these tar-
gets they need improved information on where and when to look for epidemics
(DaSilva et al. 2004). They use the Malaria Early Warning System (MEWS) frame-
work as set out by WHO (WHO 2004). The MEWS consists of four components:
(1) vulnerability monitoring, (2) seasonal climate forecasting, (3) environmental
monitoring, and (4) sentinel case surveillance. According to Epstein (2001) integrat-
ing health surveillance into long-term terrestrial and marine monitoring programs,
‘ecological epidemiology’, can benefit from advances in satellite imaging and cli-
mate forecasts that complement fieldwork. Health early warning systems based on
the integrated mapping of conditions, consequences and costs can facilitate timely,
environmentally friendly public health interventions and inform policies (Epstein
2001). Thomson et al. (2006) have demonstrated that probabilistic seasonal climate
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forecasts with the use of multi-model ensemble climate predictions can be used
to predict malaria incidence at least five months before the peak malaria season.
However, although the potential benefits of these models in terms of improved man-
agement of epidemics are clear, several technical and practical hurdles still need to
be overcome before the models can be widely integrated into routine malaria-control
strategies (Cox and Abeku 2007).

The magnitude of the challenge that the global community is facing is enormous
as hundreds of millions of people that live in or travel to areas where vector-
borne diseases occur have to be aware of the temporal and spatial changes in
the occurrence of vector-borne diseases. Even without climate-induced changes
in phenology and distribution this is already a challenge. The public has to take
measures to recognise the disease in time and take correct medication or protec-
tion measures to reduce the risk of being infected. Family doctors, medical experts
and Area Health Authorities should improve the early diagnoses and treatment
of the vector-borne diseases to prevent or reduce health problems. They can also
educate the public on how to recognize symptoms of the disease and on preven-
tion measures. Governmental organisations from the local to the national level
play a role in informing the public and experts. Governments should set up mon-
itoring and research programs and organise disease control. Often cooperation
is needed with land owners, nature conservation organisations, natural resource
managers and water managers to control the vectors. Travel agencies and tourist
offices have the responsibility to inform millions of people that travel to areas
where there is a risk for vector-borne diseases. Scientists have to be aware of
the phenological changes that (will) take place and include those processes in
their models. Proper analyses and prediction of the phenological changes and
the associated health risks, requires the involvement of many different scientific
disciplines ranging from biologists, meteorologists, sociologists and economists.
Furthermore, monitoring of changes in timing and population sizes of both the
vectors and the diseases is important for improving research and communication
activities.

4.3 Successful Adaptation Requires Answers to Four Questions

The previous two sections illustrated that phenological changes can have very
large socio-economic consequences by impacting the quantity and quality of pri-
mary productivity and by influencing public health. However, estimates of the
total cost or estimates of the amount of morbidity and mortality are not available.
This lack of knowledge hampers the creation of a sense of urgency to adapt. It
causes a lack of awareness of the problems and of the need for adaptive response
strategies. The previous sections also made clear that within each sector a large num-
ber of stakeholders have to deal with the consequences of phenological changes.
Within agriculture, for example, it is not only the farmers that (have to) respond
to an earlier start of the growing season but also many organisations that sup-
ply farmers, the organisations that process the agricultural products, and (non-)
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governmental organisations that issue restrictions and regulations to control the
agricultural production processes. Because phenological dynamics are fundamen-
tal processes of ecosystems, all individuals within the various stakeholder groups
are confronted with the changes counting up to hundreds of millions of people
world-wide.

As adaptation to phenological changes mainly consists of changing the timing of
activities and changing crop varieties, many stakeholders should be able to adapt in
time if they can find answers to the following questions:

1. What phenological events will happen when and where under different climate
change scenarios in the short and long term?

2. What will be the socio-economic and environmental impact of these changes
(with and without adaptation) under different climate change scenarios?

3. Who should do what and when to reduce impacts or to benefit from the
phenological changes in the short and long term?

4. What tools, technologies, knowledge, data and institutions are available to assist
in the adaptation process?

Unfortunately, the ability of stakeholders to adapt to phenological changes is
still very limited because the answers to these four questions are often unknown.
Consequently, to pro-actively adapt, stakeholders require a lot of information that
is often not available or not available at the right time at the right place. Therefore,
unless the information is provided, society continues to adapt autonomously to the
ongoing phenological changes and is likely to do so in response to the expected
future changes.

4.4 Contribution of Phenological Networks
to the Adaptation Process

Based on my analyses I conclude that four types of activities are required to allow
adaptation to climate-induced phenological changes:

1. Monitoring the timing of life cycle events;
2. Analysing the causes of phenological changes and the socio-economic and

environmental impacts;
3. Assessing the potential future phenological changes and the socio-economic and

environmental consequences;
4. Communicating the knowledge, tools and methodologies to the stakeholders.

Phenological networks should take the lead in organising these activities as they
are most aware of the ongoing phenological changes. Figure 4.3 gives a schematic
overview of the required four activities, the scientific disciplines to involve, the
stakeholders and the required response of the various stakeholders in the whole
adaptation process. However, to really help stakeholders or society to adapt, phe-
nological networks will have to develop and improve their methodologies and
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Fig. 4.3 Schematic overview of the required activities, the scientific disciplines involved, the
stakeholders and the required response of these stakeholders in the adaptation process. The arrows
indicate the direction of the flow of knowledge and data

techniques and have to broaden their scope. The following sections present a number
of required developments that can facilitate the adaptation process.

4.4.1 Phenological Monitoring

Many phenological networks have already monitored for decades and even centuries
(Schwartz 2003). These long-term series are crucial for showing the variability and
changes in timing of life cycle events in the past. To improve the adaptive capacity
of society, phenological monitoring networks need to:

(a) Continue existing monitoring programs: The expected future large changes
in climate will result in phenological responses that have not been seen before.
Therefore, phenological networks should continue existing long-term phenological
monitoring programs. With these data the phenological models can continuously be
validated, calibrated and updated.

(b) Expand and create networks: In those areas where no phenological observa-
tions are carried out networks should be established. This can be done by expansion
of neighbouring networks or by the creation of new ones. With the new ICT-
technologies the costs for setting up and for management of the networks, like
submission, storage and visualization of phenological observations, could be kept
relatively low.

(c) Increase socio-economic relevance: Phenological networks should include
more species and phenophases that have a clear socio-economic relevance.
Examples are plants that cause hay fever or animals that are vectors for diseases
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(e.g. ticks). The inclusion of these species will increase the socio-economic rele-
vance of phenological networks, the interest of public and media in the results of
the network, and will increase the support the funding of these networks. Sector
representatives and phenologists should select the relevant species together.

(d) Increase the spatial detail: The level of spatial detail of phenological
observations and information required for successful adaptation varies between
stakeholders. In many cases the more observations the better as this decreases the
uncertainty and provides more spatial detail and a better overview of the variabil-
ity between individuals within a species. In addition to broadening the scope of the
analysis to society, the various actors in society will improve their adaptive capac-
ity if the science of phenology focuses more on improving the spatial analysis and
detail; for example by realizing a better integration between remote sensing and
in situ observations or by implementing new technologies concerning Geographic
Information Systems.

(e) Increase the number of species and species groups monitored: Many pheno-
logical networks only focus on one or a few species groups. As different species
groups have different responses to climate changes, having information of as many
groups as possible improves our understanding of possible climate change induced
changes in ecosystems.

(f) Standardise and link networks: In order to better interpret the observations and
internationally compare phenological changes, the ongoing efforts to standardise
and link existing phenological networks as in the context of the European Phenology
Network (van Vliet et al. 2003b), the COST725 program (Koch et al. 2005, Menzel
et al. 2006), and the National Phenology Network of the United States (Betancourt
et al. 2007) should be intensified. In this standardisation process the integration of
field observations and remote sensing data should be stimulated (Fisher and Mustard
2007).

4.4.2 Phenological Analysis

Phenological observations have provided the basis for the analysis of how climate
variability and climate change influence the timing of life cycle events at various
spatial and temporal scales. The number of published phenological studies has
increased rapidly over the last years as it became clear that phenological changes
could be used as climate change impact indicators. Although our knowledge on the
relation between climate and timing of phenological events has increased, a lot is
still unknown. Therefore, phenological networks need to:

(a) Assess the relationship between timing and climatological and environmen-
tal variables: Most phenological studies focus on describing trends in the timing
of life cycle events in response to climate change. They try to determine which cli-
mate variables can explain the variation in timing. These studies have demonstrated
that the timing of life cycle events is strongly determined by climate variables (see
Section 4.1). Future studies should continue and expand these analyses. Important



4 Societal Adaptation Options to Changes in Phenology 91

issues to address are the impact of climate extremes as the climate extremes are
expected to become larger. Also the role of changes in nutrients and carbon dioxide
levels on the timing of life cycle events may be of interest. For models which deter-
mine the timing of phenological events to remain valid then need to be refined as
new information becomes available.

(b) Assess socio-economic consequences of phenological changes: To increase
the awareness and the sense of urgency of stakeholders to adapt it is important to
quantify the consequences of phenological variability and change on ecosystems
and society. These analyses should include the (required) response of the various
stakeholders within each sector such as patients, family doctors and the private
sector. These analyses will increase the socio-economic relevance of phenological
networks and require the involvement of scientific disciplines in the sociological,
economical and technological domains.

4.4.3 Assess Future Changes

Knowing what will happen when and where is crucial in any adaptation strategy. To
answer these questions phenological networks need to:

(a) Assess the timing of life cycle events in the future: There is a growing need
for studies that focus on assessing or predicting when phenological events will take
place. These studies require the combination of phenological models developed with
weather forecasts and climate change scenarios. The various stakeholders will likely
have different wishes concerning the temporal and spatial resolution of the predic-
tions. Hay fever patients are interested in knowing what will happen in the coming
days in the area where they work and live. Governments and farmers that want
to protect meadow birds require assessments for the coming weeks and months at
regional or national level while ecosystem modellers require assessments for the
coming decades at various spatial levels. For the short-term, phenological forecasts
and phenological models should be combined with (seasonal) weather forecasts. For
long-term assessments a variety of climate change scenarios are available. In these
assessments it is important to not only consider the projected changes in average
temperature but also to look at the weather and climate extremes. These assessments
should also have uncertainty analyses undertaken so stakeholders can be informed
on the range and risk for certain events.

(b) Set up field and laboratory experiments: Making projections for the future
based on historic observations can cause uncertainties as it is unknown how species
respond to climate conditions that they have never experienced before. To obtain
better insight in the potential phenological response and the biological conse-
quences of the response, it is essential to carry out field and/or laboratory exper-
iments in which several climatological and environmental characteristics can be
manipulated.

(c) Assess future socio-economic and environmental impacts: The willingness
to take adaptive actions depends on the magnitude of the socio-economic and
environmental impacts that are likely to take place. Phenological networks should
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try to quantify these impacts by integrating phenological models with socio-
economic and environmental models in combination with short-term and long-term
scenarios.

4.4.4 Communication

Monitoring, analysis and assessment of phenological changes, as well as active
adaptation to the observed or expected future phenological changes, requires the
involvement of a wide variety of stakeholders in many sectors (See Fig. 4.3). The
willingness to support, participate and/or invest in these activities increases if peo-
ple are aware of the importance of the issue, if they know what they can do, what
tools, data and techniques they can use and if they know what people or organi-
sations they should or could cooperate with. Realizing all this requires successful
communication to and with the stakeholders. Phenological networks can improve
communication if they:

(a) Develop online information systems to gather and visualize phenological
observations, analyses and forecasts: A core business of phenological networks is
the monitoring of the timing of life cycle events. Each observation contains the date
and location of the observation, the species and the phenophase. Observations are
brought together for analysis. To keep the observers motivated to continue the obser-
vations they need to be regularly informed about the results. Gathering, digitizing
and communicating the observations used to be a labour intensive work. However,
since the late twentieth century many new ICT-technologies became widely avail-
able. Several phenological networks started to build interactive websites via which
volunteers could upload their observations directly into a database. With Geographic
Information Systems and tools such as Google Maps it became easier for observers
to add the coordinates of observations. As the observations are directly available
in a database the same information systems could directly visualize all observa-
tions (see e.g. the UK network at www.phenology.uk.org and the Dutch network at
www.natuurkalender.nl). Many improvements are foreseen in the development of
these systems in combination with mobile communication tools.

(b) Focus on the socio-economic and environmental relevance of phenological
changes and cooperate with stakeholders: Increasing the sense of urgency and
raising awareness is only effective if the public knows how phenological changes
impact their own environment and preferably their own life. Therefore, it is impor-
tant to increase the socio-economic and environmental relevance of phenological
changes and try to quantify the impacts as much as possible. Including informa-
tion on where (geographically) and when the impacts will occur will increase the
success of communication. Therefore, involving stakeholders in the monitoring,
research, communication and adaptation activities is crucial. This, however, implies
that cooperation is needed between many people from different sectors, disciplines
and regions. Cooperation is a challenge as each group has its own ‘language’,
network and way of working. Phenological networks like the Nature’s Calendar
network in the Netherlands demonstrate that cooperation between scientists, the
media, the private sector, the general public, NGOs, (ICT-) technicians and sector
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representatives such as medical specialists, farmers and foresters is possible. The
cooperation in The Netherlands has provided a lot of data, tools and methods, facil-
itating adaptation in public health, agriculture, natural resource management and
gardening. However, successful cooperation requires time, an open attitude to other
tools, methods and habits that people are not familiar with.

(c) Involve media in the communication: As phenological information is relevant
for millions of people it is a challenge how to reach all these people with the avail-
able resources. Building an interesting and interactive website alone is not enough.
The only option is to involve (mass) media in the communication. The recent phe-
nological changes have attracted a lot of attention especially from the media in
countries all over the world. The media were and remained interested because they
wanted to visualize climate change impacts. In the past years phenological changes
have become one of the best indicators of ecological effects of climate change.
They are good indicators as there is a clear link between the variation in timing
and climate. Furthermore, long-term phenological monitoring networks exist which
enable the quantification of the changes. Finally, phenological changes are easily
visible in everyone’s ‘backyard’. With all the attention, phenological networks have
been able to drive home the messages about climate change (Whitfield 2001, Marris
2007). The experiences of the Dutch phenological network Nature’s Calendar show
that there is a large potential to communicate via the media. The activities of the
Nature’s Calendar network have resulted in hundreds of newspaper articles and
numerous interviews for radio and television programs. Journalists were mainly trig-
gered by the visible phenological changes caused by the many climate extremes in
The Netherlands. Secondly, by involving farmers and medical specialists in their
consortium The Nature’s Calendar network was better able to quantify and visual-
ize how public health and agricultural production were impacted by phenological
changes. With the media attention the consortium was able to significantly increase
society’s awareness on the phenological changes that were (and continue) to take
place and its impacts. Furthermore, the publicity resulted in thousands of volunteer
observers and many new contacts with sector representatives. These contacts pro-
vide a whole range of new ideas, funds, and opportunities for active adaptation in
the future.

In the future, phenological networks have to broaden their scope of communi-
cation and target it towards specific groups in society for which the information
on impacts is relevant. The way of communication should be comparable to the
way weather forecasts are made and communicated. Weather forecasts are every-
where and their focus ranges from the general public to specific target groups. The
main questions addressed in these weather forecasts are: what were, are, and will be
the weather conditions at different locations? In a similar way phenological reports
can be made and communicated. Because of the clear dependence of the timing of
phenological processes on weather conditions, a direct link with the weather fore-
casts should be considered. If phenological networks are able to communicate like
the weather forecasts they will have the ability to continuously inform the pub-
lic and specific stakeholders. With this information society will be better able to
pro-actively adapt to climatic change induced phenological changes.
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4.5 Conclusions

The IPCC (Schneider et al. 2007) concludes that market and social systems have a
considerable adaptation potential but that the economic costs are potentially large,
largely unknown and unequally distributed, as is the adaptation potential itself. In
this chapter I showed that the timing of phenological events, such as the start of
flowering, immediately follows changes in climate. These changes are evident in all
species groups throughout the whole year and in all parts of the world. The pheno-
logical conditions that society will be confronted with over the coming decades will
be unprecedented. Society has not experienced such a rapid change during the last
centuries.

In this chapter I provided a qualitative overview of how phenological changes
will strongly influence human well-being through changes in primary production
sectors depending on natural productivity and the public health sector. Farmers,
foresters, fishers, commercial enterprises, patients, doctors and policy makers have
to adapt pro-actively to cope with, prevent or reduce potential negative impacts.
Adaptation should be relatively easy in most cases because people have to ‘only’
change the timing of their activities. However, pro-active adaptation is currently
often unfeasible because stakeholders do not know what phenological changes will
happen where and when. They also are not aware of the ecological and socio-
economic consequences of such phenological changes. They seem to miss a sense
of urgency to act. Furthermore, they miss an understanding on whether, how and
when to respond in order to prevent (further) negative impacts or to benefit from the
emerging changes.

To adequately respond to phenological change and to improve the adaptation
potential, there is a need to (1) continue and improve monitoring of phenological
changes; (2) advance the analysis of phenological changes and its socio-economic
and environmental impact; (3) improve the projections of phenological changes and
their impacts; and (4) improve the communication on observations, knowledge,
tools and techniques. Successful adaptation can only take place if all four activi-
ties are addressed simultaneously. Phenological networks should take the lead in
all these four activities. They should, however, work closely together with major
stakeholders, including scientists and medical specialists, the media, the private sec-
tor, the general public, NGOs, farmers, foresters, fishers and physicians (and their
patients).

As phenological events are a fundamental characteristic of biological systems
everywhere, tools and methods developed for monitoring, analyses, assessment and
communication by one phenological network can be relatively easily transferred
to other regions and countries. International organisations such as the International
Society of Biometeorology have enabled this exchange of information and the coop-
eration between phenologists and stakeholders from all over the world. The need
for adaptation to phenological changes requires the continuous efforts and support
of these international networks to stimulate the required cooperation.
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Chapter 5
The Influence of Sampling Method, Sample Size,
and Frequency of Observations on Plant
Phenological Patterns and Interpretation
in Tropical Forest Trees
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Neves, Bruno G. Luize, Adelar Mantovani, and Irene L. Hudson

Abstract The research field of plant phenology, which often involves the mon-
itoring of several to hundreds of species of different life forms and/or different
vegetation types, has increased exponentially over the last three decades. This has
occurred in general, without consideration of the comparability of data and patterns
across areas, and its influence on the interpretation of resultant patterns. In this chap-
ter we address the influence of sampling method, sample size and the frequency of
observations on the analysis of tropical tree phenology. Our approach is to com-
pare the results of direct observations on transects with those obtained from litter
traps. Transects and litter traps are the two most common methods used to sample
and monitor plant phenology. Data from 3 locations were used to simulate differ-
ent sample sizes and frequencies, and results were then compared with the original
data. We conclude that sample size influences the patterns observed and there is a
clear trade off between sample size and the frequency of observations. We show that
direct observations were more accurate in defining both the beginning and the peak
of phenological phases, and there was a significant difference between the peaks and
seasonal patterns detected by both sampling methods. For tropical tree forest appli-
cations we recommend a minimum sample size of 15 trees and that a fortnightly
frequency of observation be used especially if the sample size is small. We advocate
the combination of presence/absence data and a quantification method to estimate
plant phenology, a careful application of indices and a cautious generalization of
pattern.
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5.1 Introduction

Phenological studies address the timing of recurring biological events. For plants,
these involve reproductive events such as bud formation and flowering, fruiting, and
seed germination, along with vegetative processes like leaf flushing and shedding.
The influence of sampling method, sample size and the frequency of observations
on the analysis and interpretation of plant phenology has been addressed only occa-
sionally in the phenological literature (Fournier and Carpantier 1975, Chapman
et al. 1992, 1994, Hemingway and Overdorff 1999, D’Eça Neves and Morellato
2004). Most of the efforts towards a common position on plant phenology have con-
sidered better definition of phenophases, provision of greater precision and accuracy
for data collected across phenological networks and phenological stations (Brügger
et al. 2003, Meier 2003, COST 725 (2008) and see Schwartz 2003 for additional
references). When we consider tropical phenology, which is less traditional and
deals with a high diversity of species and complex ecosystems (Frankie et al. 1974,
Newstron 1994a, Sakai 2001, Morellato 2003) the lack of a coherent set of sampling
rules and methods, if not analytic methods and procedures, is even more evident.
Among the few studies dealing with methods for data collection and observation are
the papers by Fournier and collaborator, suggesting an observation method to quan-
tify plant phenology (Fournier 1974), and discussing the sample size and frequency
of observations for tropical trees (Fournier and Charpantier 1975). Alternatively,
Newstrom et al. (1994b) proposed a classification system to describe phenological
patterns for tropical forest tree flowering, considering variables such as timing, fre-
quency and amplitude. Newstrom’s et al. (1994b) system however could be applied
to recurrent events in plants and animals from any part of the world (Newstrom et
al. 1994a, 1994b).

Field research on plant phenology, which may involve the monitoring of several
to hundreds of species from different life forms and vegetation types, has increased
exponentially over the last three decades (Morellato 2003, Schwartz 2003). This
has occurred without consideration of the comparability of data and patterns across
areas, and often based upon the given study’s research objectives only, not taking
into account the influence of methodology on the interpretations of the resultant
patterns (Schirone et al. 1990, Chapman et al. 1994, Newstrom et al. 1994a, 1994b,
Mac Dade and Morellato 1998). The best discussion in the recent literature dealing
with comparisons among methods focus on the estimation of fruit production (e.g.
Chapman et al. 1994, Greene and Johnson 1994, Zhang and Wang 1995, Stevenson
et al. 1998). Of particular relevance is the study of D’Eça-Neves and Morellato
(2004) who performed a survey of studies on tropical forest phenology, compiling
information about sampling and estimation methods of tropical forest phenology,
discussing their proportion of occurrence and applicability. Methods surveyed were
grouped by type and time (decade), and the authors discussed their proportion of
occurrence and applicability. D’Eça-Neves and Morellato (2004) state that the lack
of standardized procedures or the use of some common techniques for sampling
and estimation in plant phenology persists, and suggest the application of transects
as a sampling technique and the combination of qualitative or presence/absence and
quantitative or semi-quantitative methods to estimate plant phenology.
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Although the choice of methods is closely linked to the study’s goals and
questions (Galetti et al. 2003), the increasing importance of plant phenology in
monitoring and detecting climate change demands a more general and comparable
collection of methods to be applied to plant phenology studies. The use of different
methods has made it difficult to make comparisons across the different phenologi-
cal studies, especially in the tropics. We note, however, that analytic methodological
differences have been less problematic in various meta analytic studies seeking to
find so-called phenological fingerprints of global climate change for temperate sys-
tems (Parmesan and Yohe 2003, Root et al. 2003, Root et al. 2005, Menzel et al.
2006, Parmesan 2007, Rosenzweig et al. 2008, Chapter 21). What has, however,
been recently discussed is the need for the phenological community to reach a con-
sensus on inclusion criterion for studies selected for these meta analytic studies.
Criteria which also pertain to sampling and observation frequency, that is length
of observations (length of the time series) and also selection criteria of studies to
be included in the synthetic analysis, based on whether a reported neutral, negative
or positive result was exhibited in regard to climate change impact on phenology
(see Chapter 21). Indeed, Hemingway and Overdorff (1999) also recognize that
whilst the method used to collect phenological data can affect the resultant pat-
tern, these underlying influences and potential methodological biases have not been
formally examined to date. There are some similar approaches between this chapter
and Hemingway and Overdorff’s (1999) study, in which they also investigated the
effects of phenological method (selected tree observations and systematic transect
monitoring), sample size and species composition on phenological patterns, how-
ever using data collected to estimate food availability for three of primate species
in Ranomafana National Park, Madagascar. They found an effect just of species
composition.

While not wishing to constrain creativity or to promote so-called formulaic
research, the discussion of phenological measurements and data recording may
allow us to improve data accuracy and help us achieve some comparability among
data sets across sites. In this chapter we address the influence of sampling method,
sample size and the frequency of observations on the analyses of tropical tree
phenology. We tackle this question using three different approaches. Firstly, we
examine the sample size and frequency of observations based on the monitoring of
a set of trees planted in gardens, thereby we can control for age and environmental
heterogeneity. Secondly, we evaluate the effect of sample size using trees sampled
in the field, under natural conditions, where we cannot control for age and environ-
mental heterogeneity. Lastly, we address the influence of sampling and estimation
methods, comparing direct observations on transects with litter traps. These are the
two most common methods used to sample and monitor plant phenology, especially
in highly diverse tropical forests (D’Eça Neves and Morellato 2004). We conclude
that sample size influences the patterns observed and that there is a trade-off
between sample size and the frequency of observations. The direct observations
were more accurate in defining the commencement and the peak of phenological
phases than traps, and there was a significant difference between the peaks and
seasonal patterns detected by both methods. We make this proviso, however, that,
traps can be a reliable way to quantify plant phenology, an important feature when
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resource availability is the main concern, even if some information is missing for
those species dispersed by animals.

5.2 Methods

5.2.1 Frequency of Observations

We analyzed the phenology of trees from the campus of UNESP – Universidade
Estadual Paulista, at Rio Claro, São Paulo State, Brazil (22º 24’36’’S S 47º 33’
36’’), hereafter referred to just as Campus. The trees were planted from seedlings
of known origin, at the same time, were evenly spaced, in square plots along the
main entrance of the University campus, under plain light. Under these conditions
we minimize the influence of age, size, climate, soil and competition with different
species, on the trees’ phenology, making our assumptions more precise. When the
observations began, in 2001, they were all mature, reproductive trees, at least 15
years old. We present data for three species, representative of the larger number
of trees Tabebuia roseoalba (Ridl.) Sandw. – Bigoniacaeae (n = 21 individuals),
Tecoma stans (L.) Jussieu ex. Kunth – Bignoniaceae (n =17) and Erythrina speciosa
Andrews – Fabaceae (n =18), observed weekly from August 2002 to August 2004.

5.2.2 Sample Size

To verify the influence of sample size we analyzed the phenology of trees from the
Campus (described above) and of trees under natural conditions, from two native
vegetation types: a semi deciduous altitudinal forest at Serra do Japi, Jundiaí, São
Paulo State (23º 13’ S 46º 52’ W), and from the savanna cerrado vegetation at
Itirapina, São Paulo State (22º13’S 47º53’W), hereafter referred to as Forest and
Cerrado, respectively, Southeastern Brazil. The two sites are around 130 and 60 km
from the Campus site, respectively. All Forest and Cerrado trees were sampled
using transects (D’Eça Neves and Morellato 2004) and were observed at monthly
intervals. The study sites (Campus, Forest and Cerrado) are under a seasonal cli-
mate, with a dry and cold season from April to September and a wet and warm
season from October to March (Morellato et al. 1989, Camargo et al. unpubl.
data). Detailed information on site description and phenological sampling are found
elsewhere (D’Eça Neves and Morellato 2004, Reys 2008, Morellato et al. 1989).
We analyzed the phenology of the four most abundant Forest species: Callisthene
minor Mart. – Vochysyaceae (n = 48 individuals); Cupania vernalis Cambess. –
Sapindaceae (n = 17); Lapacea semiserrata Cambess. – Theaceae (n = 18); Pera
glabrata (Schott) Poepp. ex Baill. – Euphorbiaceae (n = 23) and Matayba juglandi-
folia (Camb.) Radlk. – Sapindaceae (n = 25), observed monthly from January 1999
to May 2000. The Cerrado trees selected for analyses presented the largest num-
ber of individuals (n = 90) per species, and were observed monthly from September
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Table 5.1 Place of occurrence, frequency of observations and sample size (n) of analysed
species

Place Frequency Family Species n

Campus Weekly Bignoniaceae Tabebuia roseoalba (Ridl.) Sandw. 21
Tecoma stans (L.) Jussieu ex. Kunth 17

Fabaceae Erythrina speciosa Andrews 18
Forest Monthly Euphorbiaceae Pera glabrata (Schott) Poepp. ex Baill. 23

Sapindaceae Cupania vernalis Cambess. 17
Matayba juglandifolia (Camb.) Radlk. 25

Theaceae Laplacea semiserrata Cambess. 18
Vochysiaceae Callisthene minor Mart. 48

Cerrado Monthly Annonaceae Xylopia aromatica Mart. 90
Melastomataceae Miconia rubiginosa (Bonpl.) DC. 90
Myrtaceae Myrcia guianensis (Aubl.) DC. 90

2004 to January 2007: Miconia rubiginosa (Bonpl.) DC. –Melastomataceae, Myrcia
guianensis (Aubl.) DC. – Myrtaceae, and Xylopia aromatica Mart. – Annonaceae
(Table 5.1).

5.2.3 Comparison of Sampling And Estimation Methods

The study was carried out in the semi deciduous altitudinal forest of Serra do Japi,
the Forest site described above. We compared the two most common sampling meth-
ods used in the study of tropical forest tree phenology: transects and traps (D’Eça
Neves and Morellato 2004). We sampled the trees on five transects of 100 × 2 m
each, randomly plotted parallel to the 3.5–4.5 m trail crossing the forest, at 15 m
from the edge. All trees with diameter at breast height >5 cm (reproductive trees,
Morellato et al. 1989) were sampled, measured and marked with aluminum tags.
Along each transect six square traps of 0.5 × 0.5 m were randomly set, in such
a way that two or more litter traps could not fall below the canopy of the same
trees species (Morellato 1992). The material from the litter traps were collected at
the same time that the phenological observations were performed, dried to 80◦C,
and sorted out into flower buds, flowers, unripe fruits and ripe fruits (plus seeds),
identified to species level and weighed (see D’Eça Neves and Morellato 2004, for
detailed site and method descriptions). The phenological observations and the trap
collections were both carried out monthly, from January 1999 to May 2001.

5.2.4 Phenological Observations

For all three sites, to estimate the intensity of each phenological event, we attributed
a score from 0 to 4, as follows: 0 = 0 or no activity, 1 = 1–25%, 2 = 26–50%, 3 =
51–75% and 4 = 76–100% of tree branches were in any phenophase, according to
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the method proposed by Fournier (1974). This approach allows us to estimate the
Fournier Index (FI) of intensity described below, as well as the proportion of trees
presenting each observed phase or estimate the Activity Index (AI) (Bencke and
Morellato 2002). We observed six reproductive phases: (i) flower buds, (ii) open
flowers, anthesis or flowering itself, (iii) unripe fruits, (iv) ripe fruits or fruiting
itself, and the vegetative phases of (v) leaf fall and (vi) leaf flush or new leaves, as
defined in Morellato et al. (2000).

All data presented here were collected by the authors and are part of the long-
term phenological studies developed by the Phenology Laboratory, at the Botany
Department, UNESP – Rio Claro. They are stored in the Phenology Laboratory
Data Bank and are available upon request to the corresponding author.

5.2.5 Data Analyses

The scores attributed to each tree according to the semi-quantitative scale of
Fournier were transformed into the species percentage Intensity of Fournier Index
or %FI, calculated for each date of observation, according to the formula (Fournier
1974):

%FI =
[

n∑
i=1

xi/(n
∗4)

]
∗ 100 (5.1)

where n is the number of individuals sampled in a population and xi is the value of
the semi quantitative scale attributed to the individual i.

We also calculated the proportion of trees per species manifesting each
phenophase during the entire observation period or the species percent of Activity
Index (AI) (Bencke and Morellato 2002). The use of both methods is recommended
to describe both the intensity and the synchrony of phenological events for a given
species, or for a given group of species (Bencke and Morellato 2002).

The frequency of observations (weekly, fortnightly or monthly), was evaluated
based on the graphical analysis of the percentage of Fournier and Activity indices.
We considered the number of peaks, amplitude and the duration of each event,
according to Newstrom’s et al. (1994a) terminology, so as to describe and compare
the patterns.

We performed 50 random population simulations or re-samplings (Good 2006)
for each defined sample size N smaller than that from original population sample.
Each simulated population represents a random combination of trees selected from
the original population sampled in the field, without repetition, but allowing for the
repositioning of individuals. The simulations were performed with the Resampling
statistics routine in Excel. As an example, the species Callisthene minor has 48
individuals which are sampled/monitored and, hereafter, could generate 1,712,304
different re-samples of five individuals or 6,540,715,896 samples of 10 individuals;
we set up a data bank for C. minor with 50 simulated populations of 5, 10, 15, 20,
25, 30, 35 and 40 individuals.
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For all 50 simulations of each one of the simulated population sizes, we calcu-
lated the Intensity of Fournier Index (FI) and the Activity Index (AI) for a specific
and defined date, i.e. when most of the trees were manifesting phenological activ-
ity. Then, we calculated the standard deviation (SD) amongst the simulated samples
according to the formula:

SD =
√√√√ 1

n − 1

n∑
i=1

(
Xi − X

)2
(5.2)

where Xi is the index of FI or AI calculated for the simulated population i; X
is the mean, calculated for all simulated samples; n is the number of simulations
(always = 50). The standard deviation estimates the variation or dispersion among
values, in our case, the FI and AI, calculated for each simulated sample at that same
time.

We performed graphical analyses of the phenological patterns to compare the
sampled and simulated populations; these comparisons were based on AI and
FI indices, according to Newstrom et al. (1994b) terminology. We analyzed the
frequency distribution of the AI and FI indices calculated for each of the 50
simulated populations and compared these to the AI and FI of the sampled
population.

To compare floristic diversity sampled by transects and traps we calcu-
lated Jacquard’s coefficient of similarity (CCj) according to Müller-Dumbois and
Ellemberg (1974). To perform a comparison of the phenological patterns, generated
by the different sampling and estimation methods, we calculated six phenological
variables, based on each estimation method (direct estimation: AI and FI, and indi-
rect estimation: traps); following Morellato et al. (2000): (a) date of first flowering,
(b) date of first fruiting, (c) date of peak flowering, (d) date of peak fruiting, (e) date
of peak leaf flushing, and (f) date of peak leaf fall. For the trap data we calculated
also the peak flower and fruit dates.

We then applied the circular statistical analytic methods as proposed by
Morellato et al. (2000), and described on Chapter 16. The Spearman rank corre-
lation test was used to establish similarity between the number of species on each
phenophase observed using the transects and traps methods. Note that the number
of species per month is one of the most available results in community level phe-
nology papers (e.g. Morellato et al. 2000, Bawa et al. 2003, Morellato 2003, Bollen
and Donati 2005, Boulter et al. 2006, Selwin and Parthasarathy 2006).

We performed graphical analyses of the phenological patterns to compare the
sampled and simulated populations; these comparisons were based on the AI and
FI indices, according to Newstrom’s et al. (1994b) terminology. We analyzed
the frequency distribution of the AI and FI indices (calculated for each of the
50 simulated populations) and compared these to the AI and FI of the sampled
population.



106 L.P.C. Morellato et al.

5.3 Results

5.3.1 Frequency of Observations

Flowering was chosen to evaluate the frequency of observations (weekly, fortnightly
or monthly) as the terminology was developed based on this phase (Newstrom
et al. 1994b). The other phases had similar results and can be classified using this
same terminology. The results showed that the fortnightly and, predominantly, the
monthly observations reduce the number of peaks observed in relation to the weekly
pattern (Fig. 5.1). Weekly observations depicted the better defined peaks and were
more precise in estimating the flowering duration (Fig. 5.1). However, the curves
were similar between weekly and fortnightly observations, while monthly obser-
vation changed the pattern observed, by losing some flowering events, reducing
the number of peaks and/or increasing the total duration (Figs. 5.1c and f). Most
importantly, the definition of start and end of flowering changed according to the
frequency of observation. For instance, monthly observations showed the longest
flowering duration, since small fluctuations were not detected by this interval choice
(Figs. 5.1a–c).

Fig. 5.1 Flowering patterns of percent of Fournier and of Activity indices according to the fre-
quency of observations for Tabebuia roseoalba (left column) and Tecoma stans (right column)
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5.3.2 Sample Size

We show the selected results of Laplacea semicerrata for reproductive patterns
(Fig. 5.2) and Cupania vernalis and Callisthene minor for leaf fall (Fig. 5.3), to
represent the general patterns and trends found for differing sample size. When
we compared the monthly phenological patterns of sampled and simulated popu-
lations we detected important variations in the amplitude, duration, and timing of
occurrence with sample size, and even lost of information regarding low intensity
events (Figs. 5.2 and 5.3). The smaller simulated samples (n = 5) lost information
for almost all phases and species analysed (Figs. 5.2f, 5.3b and j). A sample size

Fig. 5.2 Flowering (left column) and fruiting (right column) patterns for sampled and simulated
populations of Laplacea semiserrata
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Fig. 5.3 Leaf fall patterns for sampled and simulated populations of Callisthene minor (left
column) and Cupania vernalis (right column)

of 10, the most used in phenological field work (D’Eça Neves and Morellato 2004,
Morellato, pers. observ.), since the work of Fournier and Charpatier (1975), still
loses information, this due to the lack of occurrence of a fruiting event (Fig. 5.2f),
the reduction in the Fournier and Activity indices (Fig. 5.3c) or the reduction in
duration (Fig. 5.2g). When using 15 individuals or more the patterns observed for
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the simulated populations were quite similar to the pattern obtained from the sam-
pled population (Fig. 5.3, sampled population and simulated populations of 15 or
more trees).

The histograms of the number of resamples, by classes of Fournier and Activity
indices, according to the size of the simulated population, confirm the evaluation of
best recommended sample size (Figs. 5.4 and 5.5). As the sample size decreases, the
variation increases, in that the indices calculated for the simulated populations devi-
ate more than the indices calculated for the sampled population (Fig. 5.5). Again,
from a sample size 15 or more, the simulated population indices were closer to the
sampled population indices (Fig. 5.5). Significant variation was found among the
smaller simulated populations of 5 or 10 trees up to 35 trees, where the indices were
spread out over a large range of classes (Fig. 5.4). For species with an elevated num-
ber of individuals, such as Miconia rubiginosa, we observed a high concentration

Fig. 5.4 Frequency histograms of the number of resamples by classes of Activity Index (left col-
umn) and of Fournier Index (right column) according to the size of the simulated population (5–20
trees) of Pera glabrata. The arrow indicates the class of the index for the sampled population (n =
23). Legend indicates size of the simulated sample
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Fig. 5.5 Frequency histograms of the number of resamples by classes of Activity Index (left col-
umn) and Fournier Index (right column) according to the size of the simulated population (5–85
trees) of Miconia rubiginosa. The arrow indicates the sampled population (n = 90) the class of the
index for the sampled population. Legend indicates size of the simulated sample
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of the simulated population indices falling within the same class of the sampled
population indices (Fig. 5.5).

In spite of the certainty that standard deviation (SD) decreases as the sample
size increases, the simulated populations of 10 trees presented a standard deviation
of the order of magnitude around 0.1, while for the simulated samples of 15 trees,
the SD’s order of magnitude dropped to 0.01. An analysis of the tendency of the
standard deviation curves for the species with largest sample sizes, shows that after
25–30 samples there is proportionally much less of a decrease in the SD for the
number of samples (Fig. 5.6), indicating the ideal sample size to reduce uncertainty.
Finally, the anticipated higher variability in standard deviation was not observed
when we compared Campus versus natural (Forest and Cerrado) vegetation trees
(Fig. 5.7). Instead, the trends diverged among phenophases and the Campus trees
where shown to be more variable than forest trees, although the SDs were equally
reduced in the larger sample sizes.

Fig. 5.6 Standard deviation of the Activity Index (left column) and Fournier Index (right column)
by simulated population size for three savanna cerrado species
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Fig. 5.7 Comparison of the standard deviation for simulated samples of 5, 10 and 15 trees species
from Campus and Forest. Activity Index (left column) and Fournier Index (right column)

5.3.3 Comparison of Sampling Methods

The reproductive phenological patterns were significantly seasonal (Table 5.2),
regardless of whether they were described using the Fournier or the Activity indices,
all peaking in July, during the dry season (Figs. 5.8a–d). The traps showed a diver-
gent pattern, with one peak for flower and fruit production in March, occurring at
the end of the wet season (Figs. 5.8a–d). The mean data or angle of occurrence
was significant for all phenological variables collected by the transect method, con-
firming the significant seasonal pattern, except for leaf flush (Table 5.2 and see
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Table 5.2 Results of the circular statistical analysis and Rayleigh test of the mean angle (mean
date) or test for the occurrence of seasonality on phenological pattern, for the phenology transect –
Index of Activity and Index of Fournier (in brackets), and traps – dry weight, in the semideciduous
altitudinal forest of Serra do Japi, Southeastern Brazil

Phenological variables – transects

First
flower

Flower
peak First fruit Peak fruit

Leaf flush
peak

Leaf fall
peak

Observations (N) 24 (24) 27 (28) 17 (17) 20 (24) 29 (29) 28 (28)

Mean angle (a) 175.51◦
(175.51◦)

195◦
(197.67◦)

187.67◦
(178.81◦)

201.34◦
(203.44◦)

254.44◦
(254.44◦)

219.05◦
(215.64◦)

Mean date 25/Jun
(25/Jun)

15/Jul
(17/Jul)

08/Jul
(28/Jun)

21/Jul
(23/Jul)

– (–) 09/Jul
(05/Jul)

Circular
standard
deviation

46.04◦
(46.04◦)

31.27◦
(40.78◦)

30.25◦
(49.37◦)

24.01◦
(43.90◦)

82.77◦
(82.77◦)

48.66◦
(51.64◦)

Vector (r) 0.72
(0.72)

0.86
(0.78)

0.87
(0.69)

0.92
(0.75)

0.35
(0.35)

0.70
(0.67)

Rayleigh test (P) 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.03∗
(0.04∗)

0.00
(0.00)

Phenological variables – traps
Observations (N) – 14 – 13 – –
Mean angle (a) – 117.84◦ – 113.79◦ – –
Mean date – 27/Apr – – – –
Circular

standard
deviation

– 45.87◦ – 86.18◦ – –

Vector (r) – 0.73 – 0.32 – –
Rayleigh test (P) – 0.00 – 0.26 NS – –

∗value may be unreliable because of low concentration (uniform distribution)
NS = non significant values

comments on Chapter 16). The high degree of seasonality was confirmed also by
the elevated values of r, ranging from 0.65 to 0.88 (leaf fall – Fournier Index and
fruiting – Activity Index, respectively), and were higher for the Activity Index than
for the Fournier Index (Table 5.2). Conversely, the mean dates of all reproductive
variables did not differ significantly between the Fournier and Activity estimation
methods (F test (Watson-Williams, Zar 1999)), confirming the similarity between
the patterns irrespective of the index. However, the trap method showed a signifi-
cant seasonal pattern just for peak flowering (Table 5.2). The flower peak mean angle
was significantly different between trap (April 9th) and both the direct observations:
Activity Index (July 1st; F = 27.54, p< 0.001) and the Fournier Index (July 4th;
F = 22.67, p <0.001).
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Fig. 5.8 Phenological patterns of trees sampled by transects (direct observation percent Activity
and Fournier indices) and by traps (indirect observation – percent of weight in kg/ha), in a semi
deciduous altitudinal forest from Southeastern Brazil

A similar number of tree species were sampled using transects (n= 29) and traps
(n=24), with a similarity coefficient (CCj) of 45% (Müller-Dumbois and Ellemberg
1974). The proportion of species reproducing per month observed by the transects
and trap methods did not show a significant correlation, except for the opposite
trend on flower buds (rs = –0.59; P = 0.013; Fig. 5.9). The most outstanding dif-
ference, in fact, was between the patterns generated by traps in kg/ha (Fig. 5.8)
and the one generated for percent of species (Fig. 5.9). While direct observation
produced generally the same pattern in percent of trees (AI), percent of intensity
(FI) or percent of species, traps showed a more divergent pattern (Figs. 5.8 and
5.9). The strong peaks of flower production (Figs. 5.8a and b) were not detected in
the proportion of species profiles (Figs. 5.9a and b). Production was higher when
the lowest number of species and trees were reproducing. This occurred because
one, or a few species, were responsible for the traps’ peak – for instance, the large
buds and flowers of Inga sessilis Mart. (Fabaceae), contributed the most material to
the traps.
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Fig. 5.9 Percent of tree species flowering by sample method of transects (n = 29) and traps (n =
24), in a semi deciduous altitudinal forest from Southeastern Brazil

5.4 Discussion and Concluding Remarks

Our results indicate that the frequency of observation (weekly, fortnightly or
monthly), affect phenological patterns, and that a fortnightly frequency would pro-
vide reasonable accuracy for tropical trees, irrespective of the sample size. Fournier
and Charpantier (1975) proposed that monthly observations gave a fair indication
of tree phenology but recommended that fortnightly observations should be taken
when possible. There is a tradeoff between frequency of observations and sample
size (Lohr 1999; Camargo et al., unpubl. data), larger sample sizes describe pheno-
logical patterns with increasing accuracy as the frequency of observations increases,
while small samples lose information and precision. When working with complex
and highly diverse ecosystems, such as tropical forests, the sample sizes can be
extremely variable and it is advisable to take into account these two factors when
both sampling and interpreting the data.

Sample size is a complex issue, and our results point to a sample size of at least 15
trees to best approximate the pattern described for a sampled population. For pop-
ulation studies, a sample size of 25 trees or larger is the best to reduce uncertainty
and increase the accuracy for monthly observations. We disagree with Fournier and
Charpantier (1975), who recommended a sample of 10 trees for studies aiming to
analyze in detail the phenology of one forest tree species in particular. However,
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we concur with their suggestion to include, for tropical community studies, even
species with smaller sample sizes, since the species abundance reflects the commu-
nity structure; and a given species may be important, irrespective to its density and
frequency.

Most phenological studies represent phenological patterns as the number of
species per observation interval. This can be deceiving when one wants to consider
the amount of flowers and fruits produced. Our results demonstrate the similarity
between patterns, irrespective of whether patterns are based on the Activity Index,
Fournier Index or the number of species. However the trap method showed signif-
icantly different seasonal patterns from those obtained from phenology transects,
either in regards to production (kg/ha) or in the number of species. Our results agree
with Chapman’s et al. (1994) findings in the Kinbaule forest, Uganda, who found a
significant correlation between the estimates of fruit abundance, derived from fruit
traps and from phenological transects. On the other hand, Stevenson et al. (1998)
found similar temporal fruiting patterns between fruit traps and fruiting trees in
Colombia lowland tropical forest; and Zhang and Wang (1995) observed compara-
ble fruiting patterns between fruit traps and platform observations in French Guiana
tropical rain forest. The inconsistencies observed between phenological transects
and traps in our study may be related to chance events that overestimate flower and
fruit production (see below). Such chance events were identified in this study as well
as in previous studies carried out at Serra do Japi forests (Morellato 1992).

However, the differences we observed in the number of species flowering or fruit-
ing (over time) between transects and traps are more difficult to explain. Since the
Serra do Japi altitudinal forest is very dense and seasonal, and is suitable for the sam-
pling methods applied (see comments on Stevenson et al. 1998); transects and traps
showed around 50% similarity in species composition, which is considered a high
level of similarity for tropical, highly diverse vegetation, we expected similar pat-
terns in the number of species. Stevenson et al. (1998) found a comparable number
of species fruiting over time for both methods and suggested that, as the methods
share half of the species, they work similarly at the floristic level. The phenological
pattern generated here by the transect data did not differ from the general phenolog-
ical patterns detected in previous studies of our site (Morellato et al. 1989), and also
from studies of other seasonal forests (Morellato 1995, Rubim 2006).

A number of authors have pointed out the bias inherent in the application of
traps when estimating fruit production or fruit fall (Terborgh 1983, Chapman et al.
1992, 1994, Stevenson et al. 1998). We detected bias, as follows, when estimating
phenology from traps:

1. The time lag between the direct observation of a phase in the tree (flower or fruit)
and the appearance of the species in the traps;

2. The difference in the species sampled by transects and traps in the same studied
area;

3. The sensitivity to local effects or “the chance concentration effect” (Stevenson
et al. 1998), as the presence in the traps of large amounts of one species (flower
or fruit), or the presence of heavy flowers or fruits overestimating production.
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While the change in the starting date of a phenophase can be misleading, when
correlating trap data to actual climatic data, it may however be important com-
plementary information if the goal of the study is to understand local resource
availability. One final consideration is the effort or time spent for each method.
Phenological transects needed one quarter of the time of fruit traps (Stevenson
et al. 1998, D’Eça Neves and Morellato 2004), which in general can be applicable
for estimating flower production as well (Morellato et al. personal obs.). It is also
worth considering Hemingway and Overdorff’s (1999) study; here two phenological
methods were compared: selected tree observations and systematic transect monitor-
ing. By generating bootstrapped subsamples (Efron and Tibshirani (1993)) derived
from the transect tree data set, Hemingway and Overdorff’s (1999) simulated two
selected tree data sets and subsequently compared the observed and bootstrapped
values. Whilst we adopt a resampling approach here, we did not calculate bootstrap
confidence intervals, a possible topic for future work.

Hemingway and Overdorff (1999) noted also that although the observed val-
ues fell within their bootstrapped confidence intervals, suggesting no significant
effects of sampling protocol nor of sample size, additional lines of evidence suggest
otherwise. It is of value to follow their considerations. Hemingway and Overdorff
(1999) showed that observed samples composed of different plant species, whether
based on species attributes such as life-form or categories such as food versus non-
food plants, consistently produced different phenological patterns. Wide confidence
intervals of the bootstrapped samples possibly indicated high individual variation in
reproductive activity within the species sampled. This points out to the importance
of variation on plant species diversity. Hemingway and Overdorff (1999) compared
how well the selected tree and the transect methods represented food items used
by all three primate species studied and found that the transect methods sampled a
wider diversity of food items, including rare foods, and a higher percentage of main
primate food items than selected tree methods.

Methods to study plant phenology described in the literature vary widely and
the choice and comparability of methods remains an issue in phenological stud-
ies. Castro-Diez et al. (2003) compared phenological information gathered from
two different methods on the same population of Halimium atriplicifolium (LAM.)
SPACH (Cistaceae), a Mediterranean evergreen shrub. Interestingly they adopted, as
we recommend, monthly observations and monitoring of ten whole plants (five less
than we recommend). Specifically their first method, the so-called semi-quantitative
(SQT), was based on a monthly estimation of each phenophase’s incidence, assessed
via a visual inspection of ten whole plants. The second, called quantitative (QT) was
based on a monthly monitoring of all the leaves, buds, flowers and fruits borne on
five tagged branches throughout an annual cycle. Both methods allowed a calen-
dar of leaf production and shedding, development of inflorescence and flower buds,
flowering, fruit setting and seed dispersal to be drawn up. In addition, leaf shed-
ding was also studied using ten litter collectors, placed below the SQT-sampling
plants (LC method). The mean dates of each phenophase’s beginning, maximum
incidence, ending and the duration obtained from the different methods were cal-
culated for both methods. The 95% confidence limits of the variable means were



118 L.P.C. Morellato et al.

calculated, together with the minimum sampling size necessary to get a ′30 days
95% confidence limit’ for each variable. It has been estimated that, to get similar
confidence limits, the QT method requires 4–5 hours of field work per sampling
date, versus only one hour for SQT. Hemingway and Overdorff (1999) found a
good agreement between the methods for most of the phenophases studied. The
main inter-method differences appeared in phenophase duration, which tended to be
longer via the SQT method.

Clearly methods may vary depending on the phenophase investigated. This was
noted in Hemingway and Overdorff’s (1999) study, where while direct observations
of reproductive phenology were more accurate than traps, the observation of leaf
change, especially leaf fall were more subjective, making the traps a more reliable
way to quantify and estimate that specific phenophase for a community. However, it
is important to note that the species or individual information, for instance, degree
of deciduousness or “evergreeness” is missing in trap collection.

Our suggestions and recommendations in this chapter represent an idealized
study for tropical vegetation. As field biologists we are acutely aware of the difficul-
ties in conducting frequent observations on a large number of trees in remote tropical
forest sites. Monthly observations with a few repetitions per species are much bet-
ter than no phenological study, but we must always consider our conclusions with
some caution, especially when the final goal of the study is the management of
natural resources. We however, recommend a minimum sample size of 15 trees, a
fortnightly frequency of observation, especially if the sample size is small, com-
bined with a quantitative or semi-quantitative method and qualitative method to
estimate and quantify plant phenology, and a careful application of indices and
cautious generalization of patterns.

There is now a huge impetus to marry ground-based phenological records with
satellite imagery of vegetation (Tarpley et al. 1984, Duchemin et al. 1999, White
et al. 2003, Morisette et al. 2008). Part of the ground based initiative is to use school
children through the GLOBE Plant Phenology Observations initiative (Almeida
et al. 2006), see also http://www.lter.uaf.edu/~dverbyla/globe). Our suggested rec-
ommendations for sampling (number and frequency of observation) do not pertain
in general to these efforts. However, it is worth noting that in the GLOBE initia-
tive students are asked to visit their pre-selected trees twice weekly or daily during
the week(s) (Brombaugh et al. 2003). Plant phenology protocols are now currently
being developed by the USA National Phenological network for consistent monitor-
ing of phenology across the north east region and the nation (USA NPN) (McNeil
et al. 2008). See also the USA-NPN website and (http://www.nerpn.org/protocols/
protocols.shtml). Generally these protocols recommend the selection at the site of
3–5 individuals of each plant species and those observations be made at least weekly.
Again, they do not pertain to the realm of the present study, since those are temperate
networks of observation by amateurs mostly, over large areas. However, we believe
local observation studies may benefit greatly from our considerations in general.
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Chapter 6
Regression and Causality

Tim Sparks and Piotr Tryjanowski

Abstract Regression is a long established statistical tool that is widely used in
phenological research for two main purposes i) to detect changes in the timing of
phenological events and ii) to relate the timings of phenological events to one or
more environmental conditions, typically temperature. Regression provides a flex-
ible and robust method for the analysis of phenological data but can be influenced
by start and end years and the length of the data series being analysed. In addition,
spurious relationships can arise by trawling through large numbers of environmen-
tal variables without consideration of the likely mechanisms driving phenology.
This chapter is illustrated using examples of flowering phenology from the United
Kingdom.

Keywords First flowering date · Phenology · Responses · Temperature trends

6.1 Introduction

Regression analysis has a long history. Its principal purpose is to relate one variable,
typically known as the response variable, to one or more explanatory variables. In
phenological research regression has two main purposes; to detect changes through
time in the timing of phenological events and to relate the timings of phenological
events to one or more environmental conditions, typically temperature but poten-
tially including other variables such as rainfall, large pressure systems (such as the
North Atlantic Oscillation), latitude, longitude and altitude.

Regression techniques can be quite elaborate (Draper and Smith1998), but those
typically used in the analysis of phenological data are relatively simple involving a
small number of explanatory variables. We would recommend that careful thought
is given to the selection of these explanatory variables since spurious relationships
can arise by trawling through large numbers of environmental variables without
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consideration of the likely mechanisms driving phenology. Furthermore there is a
danger in attempting to find relationships with a limited number of years of data.
Such regressions will have limited statistical power (the ability to detect real effects)
and claims that these are “long-term” studies are hardly justifiable.

In this chapter we illustrated regression in phenological studies using examples
of flowering phenology from the United Kingdom (UK).

6.2 An Example Dataset

Throughout this chapter we will make use of some examples of phenology. The first
of these is a record collected by Mary Manning in Norwich, UK of the date of first
flowering dates (FFD) of Hazel (Corylus avellana) between 1976 and 2004. As is
typical in phenological analysis, the dates of flowering have been converted to days
since December 31, so that January 1 is day 1, April 1 is day 91 (92 in a leap year)
and so on. Analysis has been carried out, and graphs created, in the Minitab package
(versions 13–15). A graph of the observations is shown in Fig. 6.1.

Fig. 6.1 The flowering date
of Hazel in Norwich from
1976 to 2004

Figure 6.1 visually suggests change in flowering date; possibly an advance from
1978 to 1994 and relative stability thereafter. There is also some suggestion that
the year-to-year variability is smaller in recent time. A description of the graph
might suggest that flowering has advanced from occurring in January or February,
to December. It is not unreasonable to ask whether there has been a statistically
significant advance in flowering and to quantify the change. As is typically the case
with statistical analysis, there are a number of ways that this could be achieved. We
could, for example, divide the data into two halves, say 1976–1990 and 1991–2004
and compare the mean dates.

This would suggest a 40 day change between the two periods. A two-sample
t-test would reveal this to be highly significant (t27 = 4.44, P < 0.001), that is the
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Variable   period            N       Mean    Median  StDev
Hazel FFD 76-90           15      25.73      26    31.41
            91-04           14     -14.29     -15    12.62

difference is very unlikely to occur by chance alone. We may be worried that the
variability in the first period seems nearly three times greater than for the second
period; indeed a formal test would show them to be significantly different. Is the
assumption of equal variances in a standard two sample t-test invalidated? If so,
we could undertake a two sample t-test based on unequal variances, a computer
intensive resampling test (e.g. Sparks and Rothery1996), or a nonparametric test.
An example of the latter would be to reanalyse using a Mann Whitney test. This
still reveals a difference in median dates (of 41 days) and is also highly significant
(P < 0.001).

However, a more typical analysis of these data would be to use linear regression,
(i.e. to fit a straight line to the data), and to test if the slope, or gradient of the line, is
significantly different from zero (i.e. horizontal). The standard approach to this is to
fit the line using the method of least squares that minimises the sums of the squares
of the deviations of the real values from the fitted line, (i.e. the sums-of-squares
of the residuals). The fitted line in these simple cases will always pass through the
point that represents the mean of the y-values (the response variable) and the mean
of the x-values (the explanatory variable). In our example the mean year is 1990.0
and the mean day number is 6.41. Therefore, the fitted line will pass through the
point (1990, 6.41). Linear regression is widely available in computer packages.

6.3 Linear Regression

In our example the fitted line is shown in Fig. 6.2

Fig. 6.2 The flowering date
of Hazel in Norwich from
1976 to 2004 with linear
regression line superimposed
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A summary of the analysis is as follows:

Regression Analysis: Hazel FFD  versus year

The regression equation is

Hazel FFD = 5386 - 2.70 year

Predictor      Coef     SE Coef          T        P

Constant     5386.3       955.7       5.64    0.000

year        -2.7034      0.4803      -5.63    0.000

S = 21.64       R-Sq = 54.0%     R-Sq(adj) = 52.3%

Analysis of Variance

Source          DF       SS         MS        F        P

Regression      1     14837       14837   31.69    0.000

Residual Error  27    12643         468

Total           28    27479

What does this all mean? The equation of the line is FFD = 5386 –2.70 × year.
5386 is known as the intercept, where the line crosses the y-axis (i.e. the theoretical
day of first flowering in year zero). The value –2.70 represents the slope or gradient
and tells us that the average change in flowering date per year increase is –2.70,
i.e. an advance of 2.7 days per year. As we have 29 years of data, the estimate of
advance between the first and last years is 29 × 2.70 or 78 days. This is much bigger
than when we just compared the two time periods. However, that approach took the
means of the two periods, and represents the difference between the two mid points
of 1983.0 and 1997.5. If we convert the 40 days difference to a 29 year period we
need to double it to 80 days (i.e. very similar to the figure above).

But let us return to the output from the regression output. The slope has a standard
error (SE) associated with it that reflects how accurately the slope is estimated. In
this example the slope (–2.70) is much bigger than its standard error (0.48). The
ratio of the two forms a t-statistic (–5.63) which we can test for significance. In
our example it is highly significant (given as 0.000 but more normally written as
P < 0.001) and we can conclude that there is very strong evidence for a change in
first flowering date. The differences on the y-scale between the points in Fig. 6.2
and the fitted line are known as residuals. When these are squared and summed
they form the residual sums-of-squares (here 12643). This represents the bit of the
relationship between first flowering date and year that cannot be explained by the
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regression. The total variation in first flowering dates is given as the total sums-
of-squares (27479), and the bit that can be explained by regression is obtained by
subtraction (27479–12643 = 14837). The mean squares here are sums-of-squares
divided by their degrees of freedom and their ratio is an F statistic that tests whether
there is a significant relationship between the response variable and the explanatory
variable(s). In this simple case, with a single explanatory variable (i.e. just year), the
F statistic is simply the square of the t-statistic for the slope and they are effectively
testing the same thing. One other important term here is R2 (or R-sq) which is the
proportion of the total sums of squares explained by the regression. It is expressed
either as a proportion (taking values between 0.00 and 1.00) or as a percentage, as
here, between 0 and 100%. Our example has an R2 of 54% calculated as the ratio
of 14837 to 27479. Larger values of R2 mean that points are very much closer to
the fitted line, (i.e. there is much less scatter about the line). The reader should be
warned that it is easier to get high values of R2 in analyses based on a small number
of data points, and that this should be borne in mind when considering the magnitude
of R2.

Is the straight line fit adequate for our data? Predictions in the future would con-
tinue to show the same rate of advanced flowering, is that feasible? After all, we
originally suggested that the flowering date had levelled off. Is the fitted line rather
too high above the points in the middle of the graph? The type of regression we
used makes a number of assumptions about the data. These include that the residu-
als are Normally distributed and that they are random. The latter point implies that
they will not be correlated with each other in time (autocorrelated) and there will be
no discernable pattern when plotted against the explanatory variable. It is common
practice to standardise the residuals (this involves subtracting the mean from each
residual and dividing by their standard deviation) which reduces them to having a
mean of zero and standard deviation of one. We can then use our knowledge of
the Normal distribution, for example we expect approximately 95% of values to lie
between –2 and +2, to check for anomalies. Let’s look at these for our example data.

Fig. 6.3 A histogram of the
standardised residuals from
the regression of Hazel first
flowering date on year
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Fig. 6.4 A Normal probability plot of the residuals from the regression of Hazel first flowering
date on year

A histogram of the standardised residuals is shown in Fig. 6.3. This doesn’t
appear to be the typical bell-shaped curve we expect from the Normal distribution,
but this may be because of the relatively small sample size (n = 29). Let us do a
formal Normality test (Fig. 6.4). If Normally distributed, points will lie along the
straight line. Here the P-value (> 0.150) is high enough that we don’t have enough
evidence to reject the idea that the residuals are Normally distributed.

There is no significant autocorrelation in the residuals, for example the first order
correlation is only 0.21. Our experience would suggest that autocorrelation is rarely
an issue in phenology, despite the time-series nature of the records.

A plot of the residuals against the explanatory variable (Fig. 6.5) should be a
random horizontal scatter around y = 0. In our example there is some evidence that
points tend to be above the horizontal at the beginning and end of the series and
below in the middle area. We will investigate this further in Section 6.4.

In other scientific applications transformation of data to satisfy the require-
ments of regression is sometimes carried out. We suggest that is less likely to
be necessary in phenological analysis, and has the undesirable feature of creat-
ing units on an unfamiliar scale compared to the readily identified days of the
year, or degrees centigrade. Advances in computing also mean we no longer
need to try to achieve Normality since Generalized Linear Models offer much
more flexibility. However, our experience would suggest that the typical variables
encountered in phenological analysis can usually be considered to be approximately
Normal.
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Fig. 6.5 A plot of the
standardised residuals against
year. We want this to be a
random scatter around the
horizontal (i.e. around y = 0
(dotted line))

6.4 Polynomial Regression

Traditional ways in regression of fitting curves are to expand linear regression
into polynomial regression. Thus, instead of a single explanatory variable (the lin-
ear part), quadratic regression has two explanatory “variables” (the linear and the
quadratic components), cubic regression has three (linear plus quadratic plus cubic
components) and so on. It is unlikely to be sensible to go above cubic regression.
In these higher order models the additional explanatory “variables” are tested to see
if they improve the fit of the line (e.g. is a quadratic curve a better fit than a linear
one?). The quadratic regression to the Hazel flowering date is shown in Fig. 6.6.

Figure 6.6 and the analysis below suggest that a quadratic fit may be an improve-
ment. Visually the line looks a better fit (Fig. 6.6). However the addition of a
quadratic term to the linear term isn’t quite significant (P = 0.071) at traditional

Fig. 6.6 The flowering date
of Hazel in Norwich with
quadratic regression line
superimposed
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Polynomial Regression Analysis: Hazel FFD versus year 
 
The regression equation is                             

Hazel FFD = 463778 - 463.407 year                     

 + 0.115755 year**2                                    

                                                       

S = 20.6851      R-Sq = 59.5 %      R-Sq(adj) = 56.4 % 

 

Analysis of Variance 

Source         DF        SS         MS        F      P 

Regression      2   16354.3    8177.15    19.11  0.000 

Error          26   11124.7     427.87                 

Total          28   27479.0                            

 

Source      DF     Seq SS          F      P 

Linear       1    14836.5    31.6856  0.000 

Quadratic    1     1517.8     3.5472  0.071 

levels. However, it would be a foolish person who ignored results this close to the
arbitrary 5% threshold. The standardised residuals from the quadratic look more
Normal, the test of Normality suggests greater agreement with a Normal, autocor-
relation is lower and the residuals look more random (Fig. 6.7, although one might
argue they look more variable in the early years).

As with the linear fit, prediction beyond current time may be biologically mean-
ingless. Because the quadratic is a mathematical equation producing a symmetric

Fig. 6.7 A plot of the
standardised residuals from
the quadratic regression
against year
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Fig. 6.8 Prediction into
the future with a quadratic
regression may not be
satisfactory because of the
symmetrical nature of the
curve

curve, predictions in the future have to mirror changes in the past (Fig. 6.8). In a
period of projected continued warming, this is a very unlikely case.

6.5 Some Alternative Ways of Identifying Trends

We believe that it is clear that flowering date has advanced. How do we quantify that
change? We could examine the average change from one year to the next. The 28
values have a mean of –1.21 suggesting an average advance of 1.21 days per year.
An alternative is to look at all 406 pairs of years and calculate the per annum change
between them: this yields –2.52 days/year with a standard error of 0.45, very similar
to that found by linear regression.

A very good exploratory tool is using lowess (locally weighted scatterplot
smoother) lines on a graph. Figure 6.9 shows the underlying trend in first flowering,

Fig. 6.9 The flowering date
of Hazel with a lowess line
superimposed
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largely agreeing with our initial visual assessment and later quadratic regres-
sion. More recently, Bayesian methods have been investigated (see Chapter 11 in
this book).

6.6 Effects of Starting Year, End Year and Duration

Table 6.1 summarises all slopes of linear regressions of all permutations of 9–29
contiguous years. The estimated slopes vary considerably depending on start and
end years; those starting in 1977–1980 up to 1991 producing slopes as large as –6
days/year while those starting from 1990 onwards rarely exceed –1 day/year and are
even occasionally positive. A re-examination of the original plot (Fig. 6.1) would
anticipate these broad findings; 1976 and 1977 seem slightly peculiar then there is
rapid advancement in flowering followed by relative stability. Emboldened slopes
in Table 6.1 are statistically significant; showing that significant change is more
likely to be detected in the longer series, but less likely in the more recent period.
Sparks and Menzel (2002) recommended 20 years as the minimum for phenolog-
ical series; in practice that is not always possible, for example where a data series
terminated prematurely on the death of the observer. However, there are dangers in
using short series, not least of which is a reduced chance of detecting statistically
significant change.

6.7 Multiple Regression: Relations with Temperature

What drives the phenology in our example? We have correlated the first flower-
ing dates with mean monthly temperatures from September of the previous year to
March of the current year. The table of correlation coefficients suggest that there
are relatively few significant correlations between flowering date and monthly tem-
peratures, and even between temperatures of adjacent months. The only significant
correlation with first flowering date is for January temperature, and the relationship
whilst statistically significant isn’t very impressive visually (Fig. 6.10).

The R2 is much lower than in the regression against year, and this can be seen
by the much greater spread around the fitted regression line (Fig. 6.10). The slope
suggests a 1ºC increase in temperature was associated with 7.9 day advancement
in flowering. Now, January temperatures over this time period may have increased
by 2ºC which could account for a 16 day advancement in Hazel flowering, but not
the c.80 day advancement that has been recorded. Is monthly data inappropriate for
a phenological variable that is changing this rapidly? For example, January tem-
peratures are the month after recent flowering so cannot be causative. There may
be extra factors to consider, such as sunshine, rainfall, soil temperature and the
incidence of frosts. Are the scales of measurement, (i.e. monthly), too crude?
Certainly, year is still an important variable if we fit it in addition to January temper-
ature, see below. In this example the P-values associated with each term (January,
year) are the significances after fitting the other terms, and January temperature
looks far less important than year in explaining changes in the phenology
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Fig. 6.10 A plot of Hazel
first flowering dates against
January mean temperature
(ºC) with the fitted regression
line superimposed

Correlations between Hazel FFD and mean  monthly temperatures from the pre-
vious September (ps) to March of the current year (m). Figures in bold are signifi-
cant at P<0.05. 

 Hazel FFD ps po pn pd j f 

Ps 0.120 

 0.536 

Po 0.031 -0.060 

 0.875 0.756 

Pn 0.050 -0.015 0.086 

 0.795 0.938 0.658 

Pd -0.045 -0.140 -0.049 -0.140 

 0.818 0.470 0.801 0.468 

J -0.447 0.204 -0.302 -0.190 0.191 

0.015 0.290 0.112 0.323 0.322 

F -0.290 0.058 -0.050 0.161 -0.046 0.360 

 0.127 0.767 0.796 0.405 0.814 0.055 

M -0.345 0.271 -0.117 -0.226 -0.064 0.500 0.463

 0.067 0.155 0.544 0.238 0.741 0.006 0.011 

Cell Contents: Pearson correlation 

               P-Value 
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Regression Analysis: Hazel FFD versus j 
The regression equation is 

Hazel FFD = 38.7 - 7.88 j 

Predictor        Coef     SE Coef          T        P 

Constant        38.70       13.51       2.87    0.008 

j              -7.881       3.033      -2.60    0.015 

S = 28.53       R-Sq = 20.0%     R-Sq(adj) = 17.0% 

Analysis of Variance 

Source           DF        SS        MS       F       P 

Regression        1    5497.6    5497.6    6.75   0.015 

Residual Error   27   21981.5    814.1 

Total            28   27479.0 

Regression Analysis: hazel ffd versus j, year 

The regression equation is 
hazel ffd = 4848 - 4.06 j - 2.42 year 

Predictor        Coef     SE Coef          T        P 
Constant       4847.7       973.6       4.98    0.000 
j              -4.063       2.351      -1.73    0.096 
year          -2.4245      0.4908      -4.94    0.000 

S = 20.88       R-Sq = 58.7%     R-Sq(adj) = 55.6% 

Analysis of Variance 

Source            DF          SS          MS         F        P 
Regression         2     16139.4      8069.7     18.50    0.000 
Residual Error    26     11339.6       436.1 
Total             28     27479.0 

Source       DF      Seq SS 
j             1      5497.6 
year          1     10641.9 

We can examine if a better model might be achieved by including temperature
of other months in addition to January. Stepwise regression may be the chosen
method. The basic approach is to first fit the single explanatory variable that best
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explains the response variable. Further explanatory variables are either added (if
they improve the model) or discarded (if they become redundant once other vari-
ables are included). These steps are done automatically within a computer package;
typical options allow a specification of the significance threshold for adding or
removing explanatory variables, forcing some variables to be always included etc.
Variants of this method include forwards selection (starting from no variables and
expanding the model) and backwards elimination (including all variables initially
and then excluding redundant variables). Unfortunately our example data doesn’t
get further than using January temperature because the addition of other candidate
explanatory variables does not substantially improve the model.

Stepwise Regression: hazel ffd versus ps, po, pn, pd, j, f, m 

  Alpha-to-Enter: 0.15  Alpha-to-Remove: 0.15 

 Response is hazel ff on 7 predictors, with N = 29 

    Step          1 
Constant      38.70 

j              -7.9 
T-Value       -2.60 
P-Value       0.015 

S              28.5 
R-Sq          20.01 
R-Sq(adj)     17.04 
C-p            -1.0 

Consequently we will make use of another phenological event, observed by the
same recorder in the same years: the first flowering date of Daffodil (Narcissus
pseudo-narcissus). There also seems to have been an advance in flowering in this
species, but not as marked as for Hazel. A graph of the observations is shown
in Fig. 6.11, with a lowess line (a distance weighted smoothed line) to show the
underlying pattern.

A regression of first flowering date on year suggests a very significant advance
of just under 1 day/year, equating to 29 days over the entire recording period (i.e.
considerably less than that for Hazel).

We will use stepwise regression on monthly temperatures from the preceding
November (pn) to March to see which explanatory variables (monthly temperatures)
most influence flowering date. The output below shows that February temperature
appears to be the most important month with a slope of –5.3 days/◦C. Step 2 adds
January temperature as the second variable and the slopes for February and January
are, respectively, –4.1 and –3.9 days/◦C. These combine to suggest a 1◦C increase
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Regression Analysis: daff ffd versus year 

The regression equation is 
daff ffd = 2023 - 0.986 year 

Predictor        Coef     SE Coef          T        P 
Constant       2023.4       579.5       3.49    0.002 
year          -0.9862      0.2912      -3.39    0.002 

S = 13.12       R-Sq = 29.8%     R-Sq(adj) = 27.2% 

Analysis of Variance 

Source            DF          SS          MS         F        P 
Regression         1      1974.4      1974.4     11.47    0.002 
Residual Error    27      4648.3       172.2 
Total             28      6622.7 

Fig. 6.11 The flowering date of Daffodil in Norwich 1976–2004 with a lowess line superimposed

in these two months would advance flowering by 8.0 days. R2 has increased from
the single variable model of 50.6%, to 68.5%. The third, fourth and fifth steps all
add variables, rather than removing them, with the R2 in the five variable model
being 77.1%. Which model should we chose? There are many criteria for this, but
we suggest the highest step in which all variables are significant (at P < 0.05) and
which is significant overall (as assessed by the F-ratio from the analysis, not shown
in the stepwise output). Others will suggest other criteria, for example based on
Mallows’ C-p statistic or Akaike’s Information criterion (AIC statistics), but there
is no universally held opinion on which is best. Both C-p and AIC are discussed
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by von Storch and Zwiers (2001) and there are even whole books devoted to model
selection (Burnham and Anderson 2002).

Stepwise Regression: daff ffd versus pn, pd, j, f, m 

  Alpha-to-Enter: 0.15  Alpha-to-Remove: 0.15 

 Response is daff ffd on 5 predictors, with N = 29 

    Step          1        2        3        4        5 
Constant      83.88    94.67   105.47   125.22   136.24 

f             -5.34    -4.11    -3.57    -3.02    -3.04 
T-Value       -5.26    -4.64    -3.91    -3.22    -3.33 
P-Value       0.000    0.000    0.001    0.004    0.003 

j                       -3.9     -3.2     -3.4     -3.0 
T-Value                -3.84    -2.96    -3.26    -2.86 
P-Value                0.001    0.007    0.003    0.009 

m                                -2.5     -3.2     -3.6 
T-Value                         -1.68    -2.15    -2.46 
P-Value                         0.106    0.042    0.022 

pn                                        -2.3     -2.6 
T-Value                                  -1.71    -1.95 
P-Value                                  0.101    0.064 

pd                                                 -1.6 
T-Value                                           -1.53 
P-Value                                           0.140 

S              11.0     8.96     8.66     8.35     8.13 
R-Sq          50.59    68.49    71.67    74.74    77.07 
R-Sq(adj)     48.76    66.06    68.27    70.53    72.09 
C-p            24.6      8.6      7.4      6.3      6.0 

Using our, admittedly simple, approach we would select the model including
January and February temperatures. A graph of Daffodil flowering date against the
mean of the two months is shown as Fig. 6.12, and is much more impressive than
the temperature model we saw earlier for Hazel (Fig. 6.10).

The output from the regression for the two variable model is given below which
confirms both variables are significant, and that the overall model is significant.
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Fig. 6.12 A plot of Daffodil
flowering date plotted against
the mean temperature of
January–February (ºC)

In this case, but is by no means always true, a very similar regression is obtained
by taking the average of the two months as a single variable. Over the recording
period the mean of January–February temperature increased by 2.4◦C, suggesting
that this may have caused 19 days of flowering advancement, still 10 days short of
the observed change. Adding year as a third variable confirms the significance of
January and February temperature, and hints there may an additional trend in time
although this doesn’t quite achieve significance (P = 0.073). Once again, some other
climate variables, or those recorded at a different scale may explain the discrepancy.
Alternatively, other non-recorded environmental factors, such as increased light
pollution, may have contributed to the advance in flowering. However, it must be
emphasised that the importance of temperature is very strong. Our experience sug-
gests that, in temperate zones which are not water limited, temperature of up to three
months prior to the phenophase seem to be the main drivers of spring phenological
change.

We did not check the residuals from these models, and would probably not
routinely do this unless we suspected problems. Like Analysis of Variance, regres-
sion is a procedure that is very robust to departures from Normality. Departures
from Normality will not affect the estimates of the slope, but they may inflate the
significance. When significance is borderline, it may be more important to check
assumptions, but in highly significant examples like this, and when we have no
prior suspicions of breaking the assumptions required for regression, we suggest it
is not necessary.

As we mentioned earlier, there are many ways to select the variables in a multiple
regression model. One method to explore the various permutations is to use best
subsets regression. The example below lists the best two single variable models,
the best two two-variables models and so on. The selected model of January and
February temperatures can be seen in the context of alternative models, for example
February and March temperatures which is inferior.
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Regression Analysis: daff ffd versus j, f 

The regression equation is 
daff ffd = 94.7 - 3.92 j - 4.11 f 

Predictor        Coef     SE Coef          T        P 
Constant       94.673       4.828      19.61    0.000 
j              -3.923       1.021      -3.84    0.001 
f             -4.1109      0.8855      -4.64    0.000 

S = 8.959       R-Sq = 68.5%     R-Sq(adj) = 66.1% 

Analysis of Variance 

Source            DF          SS          MS         F        P 
Regression         2      4535.7      2267.8     28.25    0.000 
Residual Error    26      2087.0        80.3 
Total             28      6622.7 

Source       DF      Seq SS 
j             1      2805.5 
f             1      1730.2 

Regression Analysis: daff ffd versus jf 

The regression equation is 
daff ffd = 94.7 - 8.05 jf 

Predictor        Coef     SE Coef          T        P 
Constant       94.735       4.711      20.11    0.000 
jf             -8.054       1.052      -7.66    0.000 

S = 8.794       R-Sq = 68.5%     R-Sq(adj) = 67.3% 

Analysis of Variance 

Source            DF          SS          MS         F        P 
Regression         1      4534.5      4534.5     58.63    0.000 
Residual Error    27      2088.2        77.3 
Total             28      6622.7 

6.8 Comparing Slopes

It may be useful to compare two regression lines to see if they differ. The interest
may lie in whether the two lines are parallel but separated (i.e. one higher than the
other), or whether the two lines have substantially different gradients. To illustrate
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Regression Analysis: daff ffd versus j, f, year 

The regression equation is 
daff ffd = 883 - 3.52 j - 3.57 f - 0.398 year 

Predictor        Coef     SE Coef          T        P 
Constant        882.7       420.8       2.10    0.046 
j             -3.5208      0.9983      -3.53    0.002 
f             -3.5701      0.8936      -4.00    0.001 
year          -0.3980      0.2125      -1.87    0.073 

S = 8.556       R-Sq = 72.4%     R-Sq(adj) = 69.0% 

Analysis of Variance 

Source            DF          SS          MS         F        P 
Regression         3      4792.5      1597.5     21.82    0.000 
Residual Error    25      1830.2        73.2 

Best Subsets Regression: daff ffd versus pn, pd, j, f, m 

Response is daff ffd 

                                                p p       
Vars   R-Sq    R-Sq(adj)        C-p         S   n d j f m 

   1   50.6         48.8       24.6    11.009         X   
   1   42.4         40.2       32.8    11.890       X     
   2   68.5         66.1        8.6    8.9594       X X   
   2   61.7         58.8       15.4    9.8719         X X 
   3   71.7         68.3        7.4    8.6625       X X X 
   3   69.9         66.3        9.2    8.9328   X   X X   
   4   74.7         70.5        6.3    8.3488   X   X X X 
   4   73.3         68.8        7.8    8.5840     X X X X 
   5   77.1         72.1        6.0    8.1250   X X X X X 

this feature we will use the Hazel and Daffodil flowering dates and examine if their
regression lines on year are different from one another. The dates and regression
lines are shown in Fig. 6.13.

The two lines appear to be separate and possibly of different gradient (i.e. chang-
ing differently over time). To examine whether this is the case we need to consider
a hierarchy of three models and see whether each stage is a significant improvement
over the previous stage (i.e. that the model better fits the data). The three models
are:
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Fig. 6.13 A plot of Daffodil
flowering date (upper line)
and Hazel (lower line)
flowering date on year in
Norwich 1976–2004 with
linear regression lines
superimposed

1. a common line fitted to all data
2. two parallel lines (i.e. with common slope)
3. two non-parallel lines

These are tested by an analysis of the pooled Hazel and Daffodil data, with two
explanatory variables being year and an indication of the species (here coded zero
for Hazel and one for Daffodil).

The first model is a linear regression of first flowering date on year for all data.

Analysis of Variance for ffd (both spp), using Sequential SS for Tests 

Source          DF  Seq SS  Adj SS  Seq MS      F      P 
Year(both spp)   1   13818   13818   13818  12.22  0.001 
Error           56   63325   63325    1131 
Total           57   77143 

S = 33.6275   R-Sq = 17.91%   R-Sq(adj) = 16.45% 

Term             Coef  SE Coef      T      P 
Constant         3705     1050   3.53  0.001 
Year(both sp  -1.8448   0.5278  -3.50  0.001 

This shows that the model is highly significant meaning that the pooled data
shows a trend towards earliness over time (of –1.84 days/year).

The second model is obtained by adding a second explanatory variable (the
species indicator variable). We are using sequential tests in this analysis so the
second of the F-statistics checks whether a model with two parallel lines is signif-
icantly better than just a single line. In the above example this is highly significant
(P < 0.001), the R2 has risen from 18 to 74%, and the two parallel lines are about 56
days apart.
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Analysis of Variance for ffd (both spp), using Sequential SS for Tests 

Source          DF  Seq SS  Adj SS  Seq MS       F      P 
Year(both spp)   1   13818   13818   13818   37.47  0.000 
spp (0=h, 1=d)   1   43041   43041   43041  116.71  0.000 
Error           55   20284   20284     369 
Total           57   77143 

S = 19.2041   R-Sq = 73.71%   R-Sq(adj) = 72.75% 

Term             Coef  SE Coef      T      P 
Constant       3704.9    599.8   6.18  0.000 
Year(both sp  -1.8448   0.3014  -6.12  0.000 

Least Squares Means for ffd (both spp) 

spp 
(0=h, 
1=       Mean  SE Mean 
0       6.414    3.566 
1      60.897    3.566 

Analysis of Variance for ffd (both spp), using Sequential SS for Tests 

Source                         DF  Seq SS  Adj SS  Seq MS       F      P 
Year(both spp)                  1   13818   13818   13818   43.15  0.000 
spp (0=h, 1=d)                  1   43041    2898   43041  134.42  0.000 
spp (0=h, 1=d)*Year(both spp)   1    2993    2993    2993    9.35  0.003 
Error                          54   17291   17291     320 
Total                          57   77143 

S = 17.8941   R-Sq = 77.59%   R-Sq(adj) = 76.34% 

Term                          Coef  SE Coef      T      P 
Constant                    3704.9    558.9   6.63  0.000 
Year(both sp               -1.8448   0.2808  -6.57  0.000 
Year(both sp*spp (0=h, 1= 
             0             -0.8586   0.2808  -3.06  0.003 

The third model checks whether any improvement can be obtained by consid-
ering two non-parallel lines, one for each species. For this we need to include an
interaction between our year and species variables.

The third term in the analysis tests whether having two non-parallel lines is a sig-
nificant improvement on two parallel lines. Since the significance level is P = 0.003
we can conclude that this is a significantly better fit. R2 has risen modestly from 74
to 78%. Slopes for the two lines can be estimated as –2.70 (= –1.84 to –0.86) for
Hazel and 0.98 (–1.84 + 0.86) for Daffodil.

With care this approach can be extended to comparing more than two slopes and
in comparing non-linear relationships.
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6.9 Final Thoughts

We have only touched the surface of the potential of regression methods in phenol-
ogy. Other applications are described elsewhere in this book, smoothing methods
were previously discussed by Roberts (2008) and Chapter 12, and Hudson et al.
(2005) have reviewed statistical methods in phenology. We would thoroughly rec-
ommend Draper and Smith (1998) to anyone that wishes to learn more. For the
analysis of phenological data, analysis is typically simple. It would normally include
one or both of: regression of phenological data on year to examine for trends, and
regression of phenological data on temperature (or other climate variables) to look
for evidence of, and to quantify, a climate response. Having described it as simple,
in our experience this is usually sufficient and adequate. For spring plant phenology
in temperate zones that are not water limited, temperature is the predominant driving
force for leafing, flowering and ripening phenology. Not only this, but it would also
seem that the temperatures of the immediately preceding months are the important
ones (e.g. Menzel 2003, Estrella et al. 2007). Rarely, and even then less importantly,
do temperatures from the previous autumn appear to influence spring phenology.

Whilst linear regression is very popular, it is unlikely that relationships in phe-
nology are actually linear. They may be approximately linear within a given or an
observed range, but caution needs to be used if extrapolating linear relationships
into the future for predicting the effects of future climate warming on phenology.
The same is true for temperature responses, since it is highly likely that a phe-
nological event has extreme dates beyond which it cannot stray (e.g. see Sparks
et al. 2000). For estimating trends, linear regression should rather be used to estimate
the average trend within a period, rather than assuming that the trend is actually lin-
ear (i.e. constant). There is a large literature on curve fitting methods (e.g. Welham
et al. 2007).

The examining of phenological data for trends is affected by start and end years.
Data which end, for example, in 2005–2007 will have a decade of extremely warm
years at the end of the series, while those ending in the mid 1980s may well termi-
nate with a cooler period. These will give an impression of major advance and slight
delay respectively. The detection of trends and temperature responses is much more
reliable in series of 20 or more years.

It is now relatively easy to access large amounts of climate and other environmen-
tal data from databases and/or the internet. This allows the researcher to examine for
relationships with a large number of potential explanatory variables. As the number
of variables goes up the chances of spurious significant relationships also increases.
Regression (and correlation) will detect relationships, but, in most circumstances,
will not prove causality (see Sparks and Tryjanowski (2005) for some examples).
Causality can only be proved when undertaking designed, controlled experiments;
which are uncommon in the phenological literature. The researcher must exercise
prudence and common sense in the selection of variables as potential explana-
tory variables. Preferably they should have some biological reason for inclusion.
They must also be time relevant, for example there is no point in considering May
temperature if flowering occurs in March.
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In summary, regression can provide a relatively simple means to examine phe-
nological data for trends and for temperature responses. Whilst being simple
and straightforward, its still requires care and the application of that rarest of
commodities – common sense.
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Chapter 7
Combining Messy Phenological Time Series

Jörg Schaber, Franz Badeck, Daniel Doktor, and Werner von Bloh

Abstract We describe a method for combining phenological time series and outlier
detection based on linear models as presented in Schaber and Badeck (Tree Physiol,
22, 973–982, 2002). We extend the outlier detection method based on Gaussian
Mixture Models as proposed by Doktor et al. (Geostatistics for environmental
applications, Springer, Berlin, 2005) in order to take into account year-location
interactions. We quantify the effect of the extension of the outlier detection algo-
rithm using Gaussian Mixture Models. The proposed methods are adequate for the
analysis of messy time series with heterogeneous distribution in time and space as
well as frequent gaps in the time series. We illustrate the use of combined time
series for the generation of geographical maps of phenological phases using station
effects. The algorithms discussed in the current paper are publicly available in the
updated R – package “pheno”.

Keywords Linear models · Gaussian mixtures · Outliers · Robust
estimation · Station effects

7.1 Introduction

Phenology, the science of “the timing of recurrent biological events, the causes of
their timing with regard to biotic and abiotic forces, and the interrelation among
phases of the same or different species” (Lieth 1974) has a long tradition embed-
ded in biological sciences. Réaumur (1735) already proposed a temperature sum
model as explanation for the variation in the onset of phenological phases, such
as leaf bud break or initiation of flowering in the spring in temperate ecosystems.
Linné described the purpose and methods of phenological observations as early as
1751. Phenological studies played a prominent role in the discovery of mechanisms
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with which organisms synchronise their development and behaviour with the envi-
ronmental conditions. Spectacular changes in nature that are associated with the
advancement of the seasons (greening of the vegetation, colourful flowering, Indian
summer or seasonal migration of animals) as well as their usefulness for the timing
of human activities are at the origin of observational time series that date back as
far as several centuries (see several chapters in Schwartz 2003 on the history of phe-
nology in different countries). In recent years these data have been discovered and
explored for studies in the context of climate change research. Since 1991, publica-
tions on phenology as one of the easily detectable biotic responses to climate change
have experienced a rapid growth (for review see Parmesan 2006, Rosenzweig et al.
2007 and papers cited therein). The growth rate of papers was higher than in other
rapidly growing research domains against a background of a slowly growing number
of publications on phenology in general.

Phenological data have specific limitations that have to be considered, when
inferences are to be made from their analysis. It must be realized that phenologi-
cal data origin from observations rather than from exact measurements. To obtain
the data phenological observers use instructions that leave room for interpretation.
Additionally, the exact location of the observation and therefore the environmen-
tal conditions as well as the genotype of plant individuals are usually unknown.
These various sources of uncertainty introduce an intrinsic variability to phenologi-
cal observations that is difficult to quantify (Schaber 2002). Moreover, phenological
time series are often incomplete and reveal large data gaps, further complicating
their analysis. The problem of the uncertainty of individual time series and gaps is
often reduced by averaging a set of phenological time series over a geographical
area of interest or a time period of interest (e.g. Estrella and Menzel 2006, Menzel
et al. 2006, 2008). This way the resulting time series has less gaps and noise of
individual time series is reduced at the cost of local information.

The principal problem associated with the use of average time series is often
neglected, but can be demonstrated by a very simple consideration (Figure 7.1):
assume we have two phenological stations s1 and s2, and s1 has observations in
years y1 and y2, whereas s2 has observations in years y2 and y3. Further assume that
observations at s1 are equal, say, c1 and at s2 we observe c2 in both years and c1 >
c2. Obviously, by averaging we obtain a monotonically decreasing time series {c1,
(c1+c2)/2, c2}. Subsequent trend analysis, which is especially popular for phenolog-
ical time series (see Schaber 2002 and references therein), would show a negative
trend. However, neither station actually shows a trend and thus, the resulting com-
bined time series should also not exhibit a trend. In this simple example the resulting
trend is clearly due to the fact that the stations have different observation years and
that phenology at one station happens to be earlier than the other.

In general terms, phenological time series are unequally distributed in time and
space and simple averaging in order to obtain less noisy and longer time series
can lead to artifacts as demonstrated in Schaber (2002) for trends of time series of
the International Phenological Gardens as published in Chmielewski and Roetzer
(2001). In the above example, a solution is simple; first, we take a general mean a,
a=(c1 + c2)/2 and correct the time series’ observations according to their deviations
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Fig. 7.1 Illustration how
averaging time series for
station s1 and s2 can lead to
undesired results because of
their unequal distribution of
observations in time
(arbitrary units)

from the general mean (i.e. c1–(c1–a) and c2–(c2–a)), and then take the average.
Obviously, the resulting time series is now {a, a, a}, which shows no trend, as we
expect from inspection of the single time series (Figure 1).

In general, this process is called combination of time series and has been
introduced to phenology by Häkkinen et al. (1995) and was put into the general
framework of linear models by Schaber and Badeck (2002).

Fig. 7.2 The density function of observed budburst dates of Beech (grey bars) modelled for 1993
and for 1981 each with 3 components (curves). A large scale and consistent warming up in spring
time usually produces unimodal distributions, as in 1993. In contrast, strong changes in temperature
regimes as experienced in 1981 result in multimodal distributions. Still, even unimodal distribu-
tions might not be normally distributed but can be more accurately be described by a Gaussian
mixture



150 J. Schaber et al.

There are several areas of application where methods for combining phenological
time series can be useful and where they have already been applied. One applica-
tion is to obtain a reliable series out of several messy time series. In this application
the focus would be on noise reduction (Häkkinen et al. 1995, Linkosalo et al. 1996,
2000, Linkosalo 1999, 2000, Schaber 2002). Another main application is to con-
struct a long time series for trend analysis. In this application data gap filling is
of primary interest (Schaber and Badeck 2005). Additionally, combined time series
can also be used to find outliers in individual time series (Linkosalo et al. 2000,
Schaber 2002, Schaber and Badeck 2002, Doktor et al. 2005). However, applying
combined time series for outlier detection might lead to removal of correct observa-
tions, if the between station differences vary strongly at inter-annual time scales due
to differences in the temperature trajectories, as already hypothesized by Schaber
and Badeck (2002). Doktor et al. (2005) discussed some empirical evidence of cold
spells that delay the transition to subsequent phenophases cause systematic devi-
ations of the frequency distribution of dates of phase onset. They also introduced
Gaussian mixtures as a tool for the quantification of the inter-annual variation in
between station differences. This approach can potentially be integrated into the use
of combined time series for outlier detection in order to avoid assignment of false
outliers.

In the following, we will shortly introduce the method of combination of pheno-
logical times series by different types of linear models and discuss some practical

Fig. 7.3 Number of detected outliers per year for Beech using the outlier detection algorithm of
Schaber and Badeck (2002) (LAD) and using Gaussian Mixture Models (GMM). The mixture
components are determined and parameterised by an optimisation algorithm
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issues. Moreover, we will discuss outlier analyses and show applications. We
present the algorithms for integration of Gaussian normals (Figure 7.2) into the
outlier detection with combined time series and illustrate the effect of this model
improvement (Figure 7.3).

One useful result of the construction of combined time series is the extraction
of station effects, (i.e. the characteristic deviation of the date of phase onset at a
given observational station relative to the population of all stations). This result is
less sensitive to gaps in the data series and different length of observation periods
than the deviation from average values. It can be applied to producing maps of
average geographical variation in the onset of a phenological phase. We illustrate
this application for the bud break of beech in Germany (Plates 1, 2 and 3).

7.2 Linear Models of Phenological Time Series

7.2.1 Linear Models

It is reasonable to assume that over a climatologically sufficiently homogeneous
region, (e.g. middle Europe or Central North America), the phenological develop-
ment of certain phases is consistent concerning years and stations. This means that
a year, which is particularly late, should be late for all stations, and a station that is
particularly late, because for example, it is situated on a top of a mountain, should
be late in all years. Putting this in mathematical terms, we say that the effect of year
yi, i=1,. . ., n and the effect of station sj, j=1,. . ., m are independent and additive,
such that

oij = a + yi + sj + εij, i = 1,...,n and j = 1,...,m. (7.1)

where oij is the observation in year i at station j and a is the general mean. εij is
an error term that is usually assumed to be homoscedastically normally distributed
around zero with some variance σ 2, that is

εij ∝ N(0,σ 2) (7.2)

In statistics, (7.1) is called a linear two-way crossed classification model. Usually,
additional conditions are imposed that assure that a unique solution exists, such as
setting

ỹi = a + yi and
∑m

j=1
sj = 0. (7.3)

We call ỹi, i = 1,. . ., n the combined time series.
Given observations oij, that may have missing data, (7.1) and the conditions

(7.3), it is essentially straightforward to estimate the ỹi and sj using least-square
optimisation (i.e. minimizing the sum of squared residuals SSR),
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SSR =
∑

i,j

ε2
ij. (7.4)

7.2.2 Fixed and Mixed Effects Models

Depending on the type of analysis we are interested in, we can treat the year and sta-
tion effects differently, which has consequences for the type of estimation procedure
we apply. For instance, when we are mainly interested in the combined time series
ỹi, we can refrain from estimating the specific station effects but rather consider the
stations to be randomly distributed. Thus, we treat the sj as a random variable

sj ∝ N(0,σ 2
s ) (7.5)

and estimate the variance component σ 2
s , rather than station effects sj. This is called

the mixed model, because we have one fixed and one random effect. For this type
of analysis special estimation and analysis procedures exist (Searle 1987, Milliken
and Johnson 1992, Pinheiro and Bates 2000). Examples of the application of mixed
models to obtain reliable phenological time series can be found in Schaber and
Badeck (2002, 2005).

On other occasions, we might be interested in the year effects as well as in the
specific station effects in order to identify stations that are particularly late, for
instance. In this case, we would treat both effects as fixed. In Section 7.3.2 we will
give an example. For details on linear models and the large theoretical body that
comes with it, please refer to Rencher (2000), Searle (1971, 1987) and Milliken and
Johnson (1992) and the literature cited therein.

7.2.3 Practical Issues and the R Pheno-Package

As already indicated, linear models constitute an entire field in statistics and calcula-
tions are far from being as easy as just calculating an average. The large theoretical
body that comes with the theory of linear models can even be an obstacle rather than
being helpful for phenological applications. Therefore, the authors wrote the soft-
ware package “pheno: auxiliary functions for phenological data analysis” (Schaber
2007) that was designed to make calculations of combined phenological time series
and station effects as easy as possible. This software is freely available as a package
for the free statistical computing environment R (R Development Core Team 2007).
The user has just to provide a table with three columns (observation, year, station) to
a function corresponding to the analysis of interest, without having to worry about
the calculations. All subsequent examples were calculated using the pheno-package.

One especially useful feature of the pheno-package is that it automatically han-
dles large data sets. To illustrate the problem, we refer to the example in the
following Section 7.2.4. In order to calculate the average time series of beech and
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the station effects for Germany over the years 1951–2004, we considered 74,996
single data points from 2,318 stations. For calculation of the fixed year and station
effects, this involves the inversion of a 74,996 × (2,319 + 53 + 1) matrix. With
the usual 8-byte number coding the matrix itself occupies around 1.4 GB. With the
extra storage needed for matrix inversion, even nowadays most personal computers
would exceed their working storage capacity with this operation. Fortunately, the
matrices involved mainly consist of zero-entries, such that the application of sparse
matrix algorithms saves a great deal of computational and storage resources. Sparse
matrix algorithms are provided in other R-packages such as SparseM and quantreg
(Koenker and Ng, Koenker 2006) and are already integrated in the R-pheno package.
This way, combined time series for whole Germany can be computed on a regular
personal computer.

Another prerequisite for the application of linear models is that the time series be
connected or overlapping. For many stations this is usually not a problem, but for
few data (stations or years) it is recommendable to check (Schaber 2002). There are
procedures within the R pheno-package that test for connectivity and automatically
extract connected sets of time series.

7.2.4 Outlier Detection

As already mentioned in the introduction, obtaining phenological data is often an
error-prone process (Schaber 2002, Schaber and Badeck 2002). Therefore, a proper
outlier detection method is indispensable. One of the few types of errors that can
be detected is the so-called month mistake. Schaber and Badeck (2002) devel-
oped a method to detect month mistakes with combined time series. The usual
least-square estimation of combined time series is sensitive to outliers. Therefore,
Schaber and Badeck (2002) recommended applying a robust estimation procedure
that minimizes least absolute deviations (LAD) (7.6),

LAD =
∑

i,j

∣∣εij
∣∣, (7.6)

before applying the classical least-square estimation. Residuals εij, (i.e. the differ-
ence between observed and predicted values), that are estimated to be larger than 30
days are considered as month mistakes and are removed. The details of the proce-
dure are described in Schaber and Badeck (2002) and are also implemented in the
R pheno-package.

7.2.5 Gaussian Normals

The assumption that year effects and station effects are independent may not always
hold true. This is the case when the inter-station differences vary due to the annual
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weather trajectories. Years with retarded phase onset in a subset of phenological
observation stations due to a cold spell as compared to years without intermittent
cold spells are an example of this class of interactions. As an extension to the out-
lier detection with LAD estimation, frequency distributions of observed budburst
dates can be characterised and modelled using Gaussian Mixtures Models (GMM)
(Figure 7.2). In many years, observations of a single species can be approximated by
a probability density function (pdf), which consists of one, two or more underlying
distributions. These can be mainly attributed to changing weather situations within
spring, which alter the phenological pace. GMM quantify the number and type of the
underlying distributions and thereby allow distinguishing years with different tem-
poral evolution of budburst dates in a quantitative manner. The models can describe
distributions with unknown underlying patterns and have the property of being able
to represent any distribution of natural observations (Gilardi et al. 2002). A mix-
ture distribution with continuous components has a density of the form (Poland and
Shachter 1994):

f (x) = p1f1(x) + ... + pnfn(x) (7.7)

Where x is the probability to have an observation at a certain day, p1,..., pn are posi-
tive numbers summing up to one and f1(x),..., fn(x) are the component densities (7.7).
To determine potential outliers one has firstly to analyse the uni- or multi-modal fre-
quency distribution to identify the main underlying components (mixtures) and their
describing parameters mean, standard deviation and weight (μk,σk,pk).

For each year i, all observations oij are related to a component’s mean μk. The
component ka an observation oij is most related to is determined based on the
frequencies fijk of component k at the observation day oij:

fijk = npk

σk
√

2π
e
− (oij−μk)2

2σ2
k , (7.8)

where n is the total number of observations of the analysed year i. Then,

ka = arg max
k

fijk (7.9)

An observation is declared to be an outlier if

∣∣oij − μka

∣∣ ≥ 30 (7.10)

An optimisation algorithm is applied on the minimisation of several (here max-
imum four) Gaussian Mixture functions. Due to the authors’ experience from
phenological data analysis it is very unlikely that changes in temperature regimes
with a sustained impact on the phenological evolution happen more than three times
within the period the plant population is experiencing budburst, at least in Central
Europe. Akaike’s Information criterion (Akaike 1974) is applied to choose the most
appropriate model, balancing between model complexity (number of components)
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and model fit. The parameterised mixture components are used for outlier detec-
tion in order to reduce the number of falsely detected outliers in years showing
bi- or multi-modal distributions (i.e. in years with a high variability of observed
phenological events).

Obviously, this method is more conservative as the one based on LAD estimates.
LAD estimation assumes that each year the observations are distributed around one
general mean (the year effect) whereas applying Gaussian mixtures we assume that
there might be several means. We detect only outliers at the margins of the whole
Gaussian mixture and consequently less than before (Figure 7.3).

Interestingly, even a unimodal distribution could be more accurately defined by a
Gaussian mixture (Figure 7.2). In fact, there was not a single year between 1951 and
2004 where the distribution of observations could be described by a single normal
distribution (P < 0.01, Shapiro-Wilk test).

7.3 Applications

7.3.1 Gaussian Normals

The two outlier detection methods are compared with respect to the number of
observations declared as outliers in each year, respectively. As expected GMM iden-
tifies, in general, fewer outliers (Figure 7.3). This, however, comes at a cost of false
negatives (declaring an observation not to be an outlier when it actually is).

7.3.2 Station Effects

We calculated the fixed effect model (1) with constraints (2) for whole Germany for
the years 1951–2004 for beech budburst without month-mistakes. We considered
only stations that had at least 20 observations. After the removal of 433 outliers
according to the robust estimation method we considered 74562 observations from
2318 stations. In Plate 1 we present a map of the calculated station effects plus the
general mean m=120 (30th of April in non-leap years) in day of the year (DOY).
To our knowledge, this is the first time that a consistent map for the characteristic
timing of a specific phenological phase for such a large region is presented. Note
that for this application the underlying trends (see Schaber and Badeck 2005) have
not been removed.

The underlying assumption that the observations within the relatively large geo-
graphic space of Germany (357,092 km2) are elements of a unimodal population is
illustrated with Figure 7.2 (curve for year 1993). In many cases a station net well
distributed over a geographical space with continuous gradients of environmental
conditions will result in such a distribution. However, the distribution may be differ-
ent from unimodal, if a geographical domain is made up by two sub-domains with
very different environmental conditions (Figure 7.2, year 1981).
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The maps of the station effects (Plate 1) and the interpolated station effects by
external drift krigging (EDK) (Plate 2) illustrate phenological responses to

1. climatological differences between regions at similar elevation (e.g. 50–100
[m] asl): the northern lowlands of Saxony are phenologically later than the
Muensteraner Becken and the Northern Upper Rhine valley. The average March
and April temperatures (1951–2003) are 3.94 and 8.27 ◦C, respectively in
Saxony at 15 stations at 12.4–13.9 longitude and 51.4–51.9 latitude. They are
5.19 and 8.62 ◦C, respectively in the vicinity of Muenster at 11 stations at 7.0–7.9
longitude and 51.7–52.2 latitude. They are 6.26 and 9.91 ◦C, respectively in the
Northern Upper Rhine valley at 7 stations at 8.3–8.45 longitude and 49.3–49.9
latitude,

2. the lapse rate across elevational gradients (the higher, the later),
3. the combined influence of the inverse lapse rate of early spring (see Table 1 and

Figure 2 in Doktor et al. (2005)) and general climatological gradients between
east and west Germany (northern lowlands: the closer to the sea the later at
similar elevation).

The difference map (Plate 3) between station effects and station averages shows
a slight general bias towards later combined station effects especially in the eastern
part of Germany. These differences might be due to gaps in the time series, which
are particularly common in this part of Germany. An indication that this is indeed
the case is the fact there is a slight negative tendency between difference and number
of observations per station (P<0.07).

7.4 Summary

Phenological data are messy data. Their analysis calls for appropriate methods that
can deal with their inherent uncertainties as well as correct for effects due to their
heterogeneous distribution in time and space. Simple averaging as a method to
accommodate noise and gaps is likely to lead to erroneous results especially when
the ratio of gaps to total number of observations is high or when a low number of
observation series is averaged. The application of linear models to obtain combined
time series constitutes an adequate method to handle gaps and noise in individual
time series.

The application of Bayes statistics is an alternative way of analysing messy phe-
nological datasets (see e.g. Dose and Menzel 2004). Future work should compare
Bayes statistics to the methods discussed in the current paper and address the respec-
tive sensitivity to assumptions about priors and underlying distributions as well as
to the types of errors and data gaps.

The approach of Gaussian mixtures to consider station x year effects can be
further developed by assigning stations to tentative mixture components before
checking for outliers or including mixed terms in the linear model (1).
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With ongoing efforts to expand the databases of phenological observations by
data mining it is very likely that more data sets with sparse data and data gaps
will become available in the near future. For example, see the instructive account
of the spatial and temporal coverage of the Japanese cherry flowering time series
and the step-wise expansion of the data base (Aono and Kazui 2007). The methods
described with the current paper are available as an R-package. The routines within
this R pheno-package allow for the construction of combined time series that can
serve for time series analyses. They can be applied for outlier detection. The cal-
culation of station and year effects facilitates geo-statistical analyses of geographic
patterns in the onset of phenological phases as well as their relation to weather
pattern in specific years.
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Chapter 8
Phenology for Topoclimatological Surveys
and Large-Scale Mapping

François Jeanneret and This Rutishauser

Abstract Biotic and abiotic phenological observations can be collected from con-
tinental to local spatial scale. Plant phenological observations may only be recorded
wherever there is vegetation. Fog, snow and ice are available as phenological para-
meters wherever they appear. The singularity of phenological observations is the
possibility of spatial intensification to a microclimatic scale where the equipment
of meteorological measurements is too expensive for intensive campaigning. The
omnipresence of region-specific phenological parameters allows monitoring for a
spatially much more detailed assessment of climate change than with weather data.
We demonstrate this concept with phenological observations with the use of a spe-
cial network in the Canton of Berne, Switzerland, with up to 600 observations sites
(more than 1 to 10 km2 of the inhabited area). Classic cartography, gridding, the
integration into a Geographic Information System GIS and large-scale analysis are
the steps to a detailed knowledge of topoclimatic conditions of a mountainous area.
Examples of urban phenology provide other types of spatially detailed applica-
tions. Large potential in phenological mapping in future analyses lies in combining
traditionally observed species-specific phenology with remotely sensed and mod-
elled phenology that provide strong spatial information. This is a long history from
cartographic intuition to algorithm-based representations of phenology.
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8.1 Phenology in Space and Time

8.1.1 At the Crossroad of Interdisciplinarity

Many scientific disciplines make use of phenology, each one having its own
motivation and its own approach (Jeanneret 1996). Biologists are interested in
the behaviour of single species and plant communities (Visser and Holleman
2001, Newstrom et al. 1994), doctors in pollen release (Confalonieri et al. 2007),
agronomists in plant growth and environmental risk (Rosenzweig et al. 2007), and
remote sensing specialists in the annual green-up in midlatitude climate regions
called the “green wave” or spring green-up. The green wave is equivalent to pheno-
logical events representing the onset of plant photosynthetic activity in the spring or
of the start of the growing season (SOS) (Schwartz 1994, Reed et al. 2003).

Geographers discovered the spatial dimension of phenology that is the role of
geographical factors like latitude, altitude, distance to the coast, landforms and oth-
ers (Schnelle 1955, Jeanneret 1972, Messerli et al. 1978). Plants are present in
both natural and urban landscapes, hence representing the possibility of increasing
the observation density by raising the number of observation sites. Meteorological
point measurements are limited to costly instruments at single sites. However, for
weather forecasts and long-term climatological studies, methods have been devel-
oped to overcome the difficulty of spatial interpolation of point measurements (e.g.
WMO 1996, Szalai et al. 2006).

Geographers traditionally address questions of spatial dimensions or repre-
sentations of specific phenomena and their interplay in space. The science of
geography has also discovered the importance of time and temporal development
(e.g. Hägerstrand 1967) and established landscape history. Phenology within geog-
raphy seems to have followed a similar development. In recent years, the importance
of environmental questions put forward the spectacular impact of climate change
phenology (e.g. White et al. 2003, Koch et al. 2006). Temporal changes, either with
a natural or anthropogenic origin, have significantly altered phenological rhythms
(e.g. Parmesan 2006) and seasonal development (see Chapter 3). The changes were
attributed to an anthropogenically induced temperature increase (Rosenzweig et al.
2008). As a consequence, the focus of research has also changed towards tempo-
ral analyses of phenological time series (see Chapter 7 and Chapter 11). Spatial
applications were initiated as early as the 1700s by Carl Linné (“so as to show how
areas differ” Menzel 2002, Freer 2003) and successfully implemented (e.g. Friedrich
Schnelle (1955)) and they remain a core application of phenology. The wide distri-
bution of the International Phenological Gardens (IPG) network has also led to an
awareness of spatial patterns at a continental scale (Rötzer and Chmielewski 2001).

8.1.2 Sources of Data Acquisition

Even if the planet is widely vegetated, there are limits to the idea of a universal
presence of observable plants: First, plants are limited in their spatial distribution
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as plant species only occur in specific locations. Species ranges are changing under
different climate conditions (Parmesan 2005), which means that it might not be pos-
sible to observe one species at one location over a long time. Second, much of the
Earth’s surface is covered with cultivated or at least very much modified vegetation.
As a consequence, we have to account for both human-induced and natural variabil-
ity. Third, observers are not everywhere. This is especially true when a high spatial
coverage of an observation network is required. In addition, networks have to deal
with a changing number of observers and tend to loose observers as they grow older
(e.g. Studer et al. 2005).

Different methods of data gathering for phenological mapping have been
employed. The first one is based on observations from a number of stations where
observers note the phenological data of specific species. As a consequence, the maps
represent species-specific onset dates such as the flowering of the apple tree or
grain harvest in Europe (Schnelle 1955). The maps contain uncertainties induced
by different interpolation methods.

The second method – itinerating phenological surveys – consists of a survey
along selected routes that allow observation of the vegetation’s phenological state
(Ellenberg 1956, Schreiber 1977, Ahas and Aasa 2001, Crimmins et al. 2008). This
approach is also called relative phenology, because it is based on comparative obser-
vations of different surveys (Plate 4). Observations are made on one or only very
few defined days. The analysis stresses relative differences of phenological stages
and their spatial distribution along the way. This method, set up by Ellenberg in
Germany (1956, 1974), has been widely applied, for example, by Schreiber et al.
(1977), Schreiber (1983) and Chytrý and Tichý (1998) in central Europe and by
Böhling (1994) and Bergmeier (1998) in the Mediterranean area.

Another method is phenological site assessments or relative phenology which
means mapping by comparing the seasonal development of plant communities at
different sites (Ellenberg 1956, Schreiber et al. 1977). Transects are surveyed sev-
eral times in relation to a calibration run of standardized phenological observations.
Afterwards the observations are compiled to create a generally large-scale map (e.g.
for agricultural applications). As this method is mainly applied in spring, the result
has sometimes been called growth-climate or thermal mapping. This name is some-
what controversial as some critics have the opinion that a phenological product is
more than a thermal issue, related to the short period of observation (Primault 1977).
The use of the phrase ‘relative phenology’, however, would suggest that it is the
result of a comparison of vegetative development within a short time.

More recently, remote sensing techniques have been used for spatial upscaling
and a representation of ground-observed phenological events in space (e.g. Stöckli
and Vidale 2004, Reed et al. 2003). However, technical and analytical challenges
still remain such as the comparability of different data sources and/or frequent
temporal gaps.

Remote sensing is the third approach to record the annual changes of the Earth’s
surface greenness or green wave (e.g. Reed et al. 2003). Land surface phenology
(LSP) measures foliage development over an area defined by the size of the satellite
resolution as opposed to the phenology of organisms. We define LSP as the study of
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the spatio-temporal patterns of the vegetated land surface observable with synoptic
sensors at spatial resolutions and extents relevant to meteorological processes in
the atmospheric boundary layer according to de Beurs and Henebry (2005 and in
Chapter 9).

Remote sensing deals mainly with green-up, maturity, senescence and dormancy
at the spatial scale of the canopy (Zhang et al. 2003) and can be most success-
fully applied to relatively homogeneous surfaces such as forests, meadows and crop
fields.

For tracking LSP in temperate climates, the onset of green-up (or start of season:
SOS), senescence (or end of season: EOS), the timing of the maximum (peak) of the
growing season and the duration of greenness are the metrics most frequently cal-
culated from image time series (Stöckli and Vidale 2004, Reed et al. 2003). Station
observations are used to ground truth the satellite data (e.g. Studer et al. 2007).

On the other side, LSP is limited in spatial resolution and cannot pick up specific
species and other phases. Thus, remote sensing is not suitable for specific aspects
of phenology – assessment of single phases or species – but can contribute to small
scale mapping (Table 8.1).

Table 8.1 Types of phenological infrastructure: network operators, data user and life expectation

Operator Users Duration

National and official
networks

state agencies Research decades

Special networks research agencies,
universities

Research years

Site assessment/relative
mappings

research agencies,
universities

Planning authorities one or several
seasons

Public networks Private, media Media, public unknown

8.1.3 Available Phenology Data for Survey

In order to understand the available data for spatial analyses, some classification
of the acquisition infrastructure is required (Table 8.1). This is also important if
new infrastructure is planned. And it is also necessary to consider the actual and
potential use as well as the users for making decisions on maintaining existing
infrastructure.

The most common infrastructure is a network organisation with fixed stations.
This setting offers continuity over time at a constant point in space. Short-term
observation campaigns allow an intensive assessment usually without a long-time
monitoring goal. Internet-based public networks have characteristics similar to
intensive short-term campaigns lacking continued observation from a defined site
(Koch et al. 2006). Image-based assessments – terrestrial and remote sensing –
produce real-time information, but require intensive handling and interpretation of
the data. They comprise the potential for long-term observation in space.
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Schnelle (1955) noted that with a station density in a network of 1–2 per 100 km2,
mapping is possible up to a scale of 1:500,000. More detailed surveys require a
significantly higher station density. Here, camera-equipped stations could supple-
ment observers and allow revising and checking of phenological data (Ahrends et al.
2008).

Sparks and Collinson (2008) reported that there are over 40,000 registered
recorders in the UK Phenology Network throughout Britain. Unlike in other
European schemes, there are no fixed locations observed every year. The obser-
vations are presented in a website that permits the examination of summary records
and a dot map showing the progression of the seasons (www.phenology.org.uk). The
Netherlands runs a comparable public network (www.natuurkalender.nl).

Basically, official or private network operators are possible, some infrastructures
are designed for a specific use and some for general monitoring – the latter is most
important in periods with intensive changes in the environment (Tables 8.1 and 8.2).

Table 8.2 Phenological data collection methods and their characteristics

Data
source

Typical data
density
[stations/km2]

Typical spatial
resolution
[km2]

Time
resolution

Observation
duration
[years]

Goal and
motivation

Network
observation

100–500 1–10 Weekly decades representative
monitoring

Site
assessment

linear
transects
(e.g.
0.3 km/km2)

0.1–1 short
missions

one to
several
seasons

detailed
survey

Remote
sensing

any 1 Weekly spring real-time
monitoring

Special
networks

Ca. 100 0.1–1 varying one to
several
seasons

specific
research

Photo-
phenology

isolated
stations

any any (real
time)

years to
decades

methodological
research

Public
networks

dependent on
participation

dependent on
participation

real time dependent
on
funding
policy

Individual,
public or
commercial
interest

Closet
observers

individual individual Daily to
yearly

years to
decades

Individual
interest

8.2 Network and Survey Data for Mapping

8.2.1 The Space: Phenology for Survey

Different methods of data gathering for phenological mapping have been applied
such as phenological networks, the itinerating phenology survey and remote sens-
ing methods. The first one is based on observations from a number of stations where
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observers note the phenological data of specific species. As a consequence, the
maps represent species-specific onset dates such as the flowering of the apple tree or
grain harvest in Europe (Schnelle 1955, Rötzer and Chmielewski 2001). The maps
contain uncertainties induced by different interpolation methods, based on differ-
ent interpolation bases like gradients or subjective appreciation and pondering of
factors.

For very detailed spatial analyses of environmental change, phenology can be
considered a “monitoring zoom”. Phenology is predisposed for surface surveys
as plants grow in most locations. The cartographer Eduard Imhof (1972) consid-
ered phenological maps as the most continuous representation of the land surface,
despite the fact that no species is omnipresent, however, plants are so numerous that
a phenological map can be considered as a continuum.

Table 8.3 Climatic/meteorological vs phenological topoclimatic assessment

Meteorological measuring station Phenological observation

Time sequence As often as measurements are made
(up to nearly continuous, e.g. 10
minutes)

As often as an observer or a camera
records phenological phases or
development

Scale Meso to topo Topo
Data acquisition Instrumental measurements Subjective observations or image

interpretation
Standard Highly standardized Standards within one network

8.2.2 Classical Phenological Maps at Medium And Large Scale

Phenological maps have been drawn since the late 19th century (Hoffmann 1881,
Ihne 1895 in Schnelle 1949, Schnelle 1965, 1979, Mäde 1952). Classical manual
cartography produced maps with intuitive interpolation, generally making use of
the extensive personal experience and knowledge of the terrain conditions of the car-
tographer. The first computer-drawn maps appeared in the 1960s (Lieth and Radford
1968, Caprio et al. 1974, Jeanneret 1974, Puppi-Branzi et al. 1985).

The phenological maps first published in the Climate Atlas of Switzerland
(Plate 5, Primault 1984) resulted from isophane curves based on the personal expe-
rience of the author. Primault harmonized phenological events according to different
climate areas based on a regional standard altitudinal gradient and the slope orienta-
tion. He drew four nation-wide maps of Switzerland for the flowering of dandelion
(Taraxacum officinale, the beginning of spring), the start of hay mowing (the begin-
ning of early summer), the blooming of lime trees (Tilia platyphyllos, the beginning
of summer), and beech leaves changing colour (Fagus silvatica, the beginning
of autumn). The four selected phases represent four seasonal development stages
during the vegetation period.
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In 2002, these four maps were integrated into the digital version of the Atlas of
Switzerland version 2.0 (Hurni and Räber 2004, their Figure 2). This is a conclusive
demonstration of digital phenological mapping but it cannot be considered a mod-
elled map. However, a main feature of this atlas is the zooming possibility between
approximately 1:1 million and 1:100,000. Furthermore, thematic maps of the same
atlas can be activated and shown as additional overlays (Plate 5, Sieber and Huber
2007).

8.3 Mapping in Detail: Topoclimatic Scale

8.3.1 A Special Network in Mountainous Areas

At the end of the 1960s, regional planners needed detailed climatic maps that could
be produced quickly at low cost. For this reason, meteorological measurements
requiring expensive equipment such as weather stations, high spatial resolution at
topoclimatic scales and long temperature series were not suitable. Furthermore,
the maps needed to be easily produced, interpreted and show a detailed cover-
age of the Canton or state of Bern, Switzerland. Thus, the Geographical Institute
of the University of Bern set up a mesoclimatological network in the Canton of
Bern (5,961 km2), and adjacent areas covering a total of 7,000 km2. The Canton is
oriented North-South, representing a cross-section through the main geographical
regions of Switzerland: the chains of the Jura mountains in the North, the plains and
hills of the Midland (or Plateau) in the centre and the high mountain environment of
the Alps in the South.

The network started in 1970 with 200 stations, with over 500 observed sites.
Therefore, the station density was one station per 30 km2. In subsequent years, the
station density dropped to one to 150 km2. The network has continued operating
since, even though many more stations have closed. In 2008, ten stations were still
in operation. The average length of the time series is about 7 years, ranging from 2
to 40 years for one observer.

The phenological observations were collected throughout the year, mainly by for-
mer students and geography teachers (Jeanneret 1970, 1972). The instruction book
of the national network of the Swiss Meteorological Institute is used to obtain com-
patible results with their existing longer series and phenological calendars (Defila
1991, 1992). In addition to the metadata for the observation site being recorded the
local observers were also asked to record details from several sites. This information
included different slopes, aspects and altitude (Jeanneret 1971). Based on their local
expertise, observers watch out for typical topoclimatic differences within their area,
undertake observations on plant phenology in summer and on fog and snow in win-
ter. These data allowed analyses on regional topoclimatic patterns. Emphasis was
put more on spatial rather than seasonal differentiation. The phenological program
is limited to five phases, each representing the beginning of one season: the bloom-
ing of hazel (Coryllus avellana) for early spring, dandelion (Taraxacum officinale)
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for full spring, apple trees (Pyrus malus) for late spring, wheat harvest (Triticum vul-
gare) for summer, colouring of the beech leaves (Fagus silvatica) for autumn. Work
undertaken for the planning authorities established during the 1970s comprise sev-
eral research programs on phenology, fog and snow (Messerli et al. 1978, Jeanneret
1996).

8.3.2 Topo Scale Maps – A Genuine and Unique Product
of Phenology

Topoclimatic-scale phenological mapping focuses on terrain characteristics
(Figure 8.1). The goal is the representation of a phenological survey that is interpo-
lated accordingly to independent factors (i.e. altitude, slope angle and orientation,
relative topography). This means that factors controlling the interannual variability
of phenology are not taken into consideration (i.e. temperature or moisture). The
survey of plant phenology is then another step independent of the observed and
surveyed data (Plate 6).

Phenological maps reflect the spatial pattern of plant phenological development
stages as an independent representation of climatic factors. As a consequence, the
remaining driving factors include climate. Topoclimatic phenological maps as a tool
for bio-monitoring allows independent comparisons with many other factors (e.g.
slope, latitude, altitude, continentality) that also influence the plants. The total of all
independent factors eventually leads to integrated spatial modelling.

Fig. 8.1 Phenology and seasonality studies represent a specific range in temporal and spatial scales
of climates (adapted after Oke 1987, from Jeanneret et al. 2008). Phenology offers an original and
genuine contribution at topo-scale
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8.4 Interpolation, Extrapolation and Spatial Modeling

8.4.1 Phenology Mapped at Mesoscale

As soon as phenological observations are recorded in a network, maps for visual-
isation become an interesting product. Differences in phenological rhythms occur
in diverse regional patterns and are in turn explained by growth factors. Thus, they
reflect the spatial distribution of environmental conditions.

If plant phenological data are available, different phenological behaviour can be
assessed. And if the patterns are dependent on the growth condition of the location,
phenological data are suited for a survey. Hence the idea of mapping phenological
data, which has a long tradition (Schnelle 1955), with modern examples of small-
scale mapping (Roetzer and Chmielewsky 2001), sometime based on remote sensing
techniques (Karlsen et al. 2007).

Motivations to map phenology are numerous, often driven by requirements for
example: regional planning (Jeanneret 1974, Volz in Messerli et al. 1978), aerobio-
logy (pollen emission, Branzi and Zanotti 1989, García-Mozo et al. 2006), and
agronomy (Mariani et al. 2007).

8.4.2 Modelled Phenological Maps in GIS

In an early attempt, Klante (1986) produced what was called a synthetic
phenological map of the bloom of lilac, surveyed at 223 stations between 1951
and 1980. It was based on a raster system of 1 km extending 156 by 145 km.
Altitudes and continentality gave the gradients for interpolation (i.e. 3.9 days per
100 m, –0.97 days per 100 km North-South, –1.88 days per 100 km East -West).
Branzi and Zanotti (1989) presented a method for an empirical model using pheno-
logical and topographical data to develop a phenological delay matrix. The matrix
could be used to produce chronological, synoptical and differential phenological
maps.

Régnière and Logan (2003) introduced methods designed for interpolation of
climatic variables that can also be applied to phenological point data.

Y = a + mE · E + mN · N + mW · W (8.1)

Where Y is a climate value, E is elevation, N is latitude and W the longitude, a is an
intercept constant and mE, mN and mW are regional thermal gradients for elevation,
latitude and longitude.

Rötzer and Chmielewski (2001) is an example of the widely used method
designed for interpolation of phenological values for small-scale mapping:

pp(x,y,z) = c + ax · x + ay · y + az · z (8.2)
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Fig. 8.2 Cross-sections through the Jura Mountains with the dates of blooming of hazel and dan-
delion, showing the average day number and date (day and month). The gradients vary from one
area to the other: the influence of thermal inversions might interfere in the South of the Jura, the
plateau situation in the North. This phenological phase reveals particularly great gradients (after
Bucher and Jeanneret 1993)

where pp(x, y, z) is the starting date of the phenological phase at altitude z, longi-
tude × and latitude y, c is a constant and ax, ay and az are regression coefficients.

Based on a similar method, maps of every observation year and mean maps can
be produced with a Geographic Information System (GIS), using correlations of
grid points with elevation (days per m for each phenological phase). An exam-
ple of this is the phenological maps for Germany produced by Müller-Westermeier
(2006).

In a complex topography and at bigger scales, more factors must be taken into
consideration in order to perform a genuine downscaling. A cross-section reveals
that there are more factors involved than altitude (Figure 8.2). Other environmen-
tal variables which should also be applied to phenological surveys are (Carrega
2006):

• Position: negative altitude difference within 100 m from a point (m)
• Slope above a point (◦)
• Orientation from 0◦ North to 180◦ South
• Distance from the sea (km)
• Vegetation cover,
• Albedo, soil conductivity, etc. at micro-scale.

This includes what could be called a relative topography, that is not only the
altitude of a point, but also taking in account the topographical situation such as
valley bottom, slope, the elevation of surrounding heights, terrace, summit, ridges,
pass which requires a complex algorithm for classification of the surrounding val-
ues of the Digital Elevation Model (DEM). This method is much more reliable than
the ones based on spatial autocorrelation. Chytrý and Tichý (1998) include solar
radiation as an additional factor for interpolation (PDSI = Potential direct solar irra-
diation). Their method was developed for interpolation of phenological observations
by weighted regression of phenology on the irradiation model, thus introducing an
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independent terrain variable. Among spatial methods, kriging seems to be the best
one (Carrega 2006, Patriche 2006, Helminen 2006). Closely related to regression
analysis, kriging belongs to a group of geostatistical interpolation techniques. It
computes a best linear unbiased estimator and according weights that estimated
under different assumptions such as known and unknown trends or a general lin-
ear model (Stein 1999). Patriche (2006) suggests the use of slope and orientation for
interpolation and Helminen (2006) recommends Gandin kriging rather than residual
kriging

8.4.3 Toposcale Maps in Switzerland

The network survey in the Canton of Berne from 1971 to 1974 reveals some sim-
ilarities with relative phenology (Ellenberg 1956, Schreiber 1977). Observations
aggregate to an overall density of three sites to 100 km2. A specific density of 10
observations per 100 km2 is possible in relation to the possible observation due to
the species’ occurrence. Different statistical and cartographical experiences show
the possibilities of analysis of phenological observations for mesoclimatic purposes
(Jeanneret 1974, Plate 6 and Figure 8.3). Proportionality between dates and altitudes
was found in areas with large differences of altitude. One example shows the possi-
bility of the description of a continuous time surface for the phenological event. For
each point the regression equation is applied to grid-based data of different variables
(e.g. altitude, exposition, slope angle) to compute the phenological date (Jeanneret
1974, Figure 8.3). This experience shows the possibilities of extrapolation of obser-
vations made at points to a continuous surface. Grid-based data bases will allow the
application of such methods (Plate 7).

8.4.4 Urban Phenology – Surveys in a Special Type of Space

Basically, plant phenology provides similar advantages for surveys in urban areas
(Rötzer et al. 2000, Henniges and Chmielewski 2006). However, urbanized sur-
faces offer special conditions, as the vegetation is very much defined by humans.
Wild plants are relatively rare, but the vegetation bears a high percentage of what
can be called a cosmopolitan flora, allowing comparison between different urban
areas.

Urban phenology very often represents a specially detailed aspect, a special case
of a large-scale survey. A major question is the mapping of urban influence on cli-
mate, the heat island effect, and the difference with the cooler outskirts (Rötzer et al.
2000, Henniges and Chmielewski 2006).

The produced phenological maps are often meso-scale and obviously allow a
detailed overview of special climatic and ecological conditions within the urban
areas. In many cities, such maps have been presented and are available to all sorts
of applications, such as premises and causes of the urban climate, the conversion
of natural ground cover into sealed surfaces, anthropogenic heat release and emis-
sions of air pollutants, the behaviour of thermal and hydrological properties of urban
surfaces which influence urban climate and human-biometeorological effects of the
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Fig. 8.3 Chloroplethes map modelled from phenological dates of wheat harvest in the Lake of
Bienne area in 1970 (see Plate 6) and environmental factors (altitude, slope orientation and slope
angle) and predicted phenological dates. Reproduced by permission of swisstopo (BA081114)

urban climate (e.g. Roller 1966 in Linz, Karsten 1986 in Mannheim, Kuttler 2000
in Vienna, Henniges and Chmielewski 2006 in Berlin).

8.5 Future Phenological Mapping

A wide variety of methods is available for phenological mapping. Satellite data pro-
vide a broad survey of the seasonal green-up and green-down waves, offer real-time
information and are a very valuable approach to small-scale or continental-scale
mapping. Small-scale phenological mapping based on observations is useful, but
not unique, rather an additional or surrogate to climate mapping (e.g. Schnelle
1965, Schwartz 2003). Internet-based dot maps (Sparks and Collinson 2008,
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www.phenology.org.uk) are not cartographic products but rather a spatial view of
phenological observations. Remote-sensing studies provide consistently generated
estimates of growing season indicators (Reed et al. 2003) and could potentially
replace traditional small-scale mapping from ground observations. Reed et al.
(2003) list “confounding issues” and refer to regions with no clear growing sea-
son, evergreen types and regions with multiple growing seasons. Furthermore, they
discuss the caveats of methods when extracting growing season indicators from
remotely sensed measurements. Bradley and Mustard (2008) presented a regional-
scale phenological analysis based on satellite observations. This study accounts
for changes in relation to land cover classes focusing on larger-scale phenological
phenomena.

Large-scale phenological maps are unequalled and irreplaceable in providing a
maximum amount of topoclimatic information. They can be produced with data
from special networks as absolute phenology (Kottmann 2008) or from the applica-
tion of the site assessment method (Ellenberg 1956, Schreiber 1977) by means of
relative phenology. Future applications in small-scale phenological mapping should
combine increasing reliable products from remotely sensed phenology as well as
very detailed and verified ground-observed phenology. The synthesis will provide
downscaled and very detailed maps for applications in ecological and climate impact
applications and modelling studies. Verification of vegetation models (e.g. Delbart
et al. 2008, Stöckli et al. 2008) will not be limited to local point-verification but can
make use of reliable phenological information in space. In a transition from carto-
graphic intuition to algorithm it is important to make use and to link together every
available source of data assessment, terrain information, knowledge and experience.
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Chapter 9
Spatio-Temporal Statistical Methods
for Modelling Land Surface Phenology

Kirsten M. de Beurs and Geoffrey M. Henebry

Abstract This chapter surveys 12 different spatio-temporal statistical methods to
determine the start and end of the growing season using a time series of satellite
images. In the first section of the chapter, we divided the methods into four cate-
gories: thresholds, derivatives, smoothing functions, and fitted models. The general
use, advantages, and potential limitations of each method are discussed. In the sec-
ond section of the chapter, a case study is presented to highlight one method from
each category. The four study areas range from the Northwest Territories in Canada
to the winter wheat areas in south-central Kansas. We concluded the case study
with a discussion of the differences in results for the four methods. The chapter
is finished with a synopsis discussing the use of nomenclature, the problems with
a lack of statistical error structure from most methods, and the perennial issue of
oversmoothing.

Keywords Derivatives · Model fit · Smoothing functions · Thermal time ·
Thresholds

9.1 Introduction

We have previously defined the phrase “land surface phenology” (LSP) to refer
to the spatio-temporal development of the vegetated land surface as revealed by
satellite sensors (de Beurs and Henebry 2004a). Due to the spatial resolution of
satellite sensors, LSP deals with mixtures of land covers and thus is distinct from the
traditional notion of a species-centric phenology (Friedl et al. 2006). LSP metrics
are primarily based on image time series of vegetation indices (VI) from optical
sensors.
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Data from the AVHRR, SPOT Vegetation, and MODIS sensors are the most
commonly used in applications of land surface phenology. To overcome prob-
lems associated with the stability of measurements from the AVHRR sensors over
time, a large set of corrections have been developed and applied. Among the most
widely known datasets created based on the AVHRR sensors are the NASA/NOAA
Pathfinder AVHRR Land (PAL) NDVI dataset (James and Kalluri 1994) and the data
from the NASA Global Inventory Monitoring and Modeling Systems (GIMMS)
group at the Laboratory for Terrestrial Physics (Tucker et al. 2005). The latest
dataset released, the Long Term Data Record (LTDR), is designed to produce a con-
sistent long term record from the AVHRR and MODIS sensors (Pedelty et al. 2007,
http://ltdr.nascom.nasa.gov/ltdr/). While most of the other datasets (PAL, GIMMS,
and also SPOT Vegetation) exist as series of periodically composited data, the LTDR
data are provided as a daily series without compositing.

The aim of compositing methods is to select the best observation available for
each pixel over the duration of the compositing period. Several algorithms have
been developed for this selection process and they do not necessarily deliver iden-
tical results (Dennison et al. 2007). The most common method is maximum value
compositing (MVC) in which each pixel is assigned the maximum value across all
observations for that pixel acquired during the compositing period. Other recent
techniques include using a bidirectional reflectance distribution function (BRDF-C)
to select observations and the constraint – view angle – maximum value composite
(CV-MVC) (MODIS user guide 2008).

Land surface phenology metrics typically aim to retrieve:

1. onset of greening,
2. onset of senescence,
3. timing of the maximum of the growing season, and
4. growing season length based on analysis of the VI curve (Reed et al. 1994, 2003,

Zhang et al. 2003, 2004).

If a VI derived from satellite observations is to be used to monitor the duration
of vegetation activity, it is desirable to compare the satellite retrieved phenological
estimates with data observed at ground level. However, a principal disadvantage
of phenological observation by satellite imagery is the complexity of validation
of the data by ground observations that usually measure something quite different
(Schwartz et al. 2002, Fisher et al. 2006). As a result, it is often unclear what the LSP
metrics actually track. For example, in high latitude biomes, the greatest temporal
increase in the Normalized Difference Vegetation Index (NDVI), which some meth-
ods use to indicate “start of the season” (SOS), is often due to snow melt (Reed et al.
1994, Delbart et al. 2005). The end of the greenness (EOS) metric, on the other hand,
can be fooled by an extended period of cloudiness that yields low NDVI, instead of
actual senescence. Since the relationship between satellite measures of LSP and
phenological events of particular species or lifeforms is ambiguous, a diversity of
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satellite measures and methods has arisen. Some authors present a whole range of
phenological measures such as, rate of green-up, rate of senescence, growing season
modality, range of NDVI, time-integrated NDVI, and more (e.g. Reed et al. 1994,
Jönsson and Eklundh 2004). Most authors (see Table 9.1), however, limit them-
selves to four primary measures: time of onset of greenness (SOS), time of end
of greenness (EOS), duration of greenness, and time of maximum (peak) VI. This
chapter surveys the currently available and often applied methods, but the survey
is not exhaustive. The range of methods can be divided into four main categories:
threshold, derivative, smoothing algorithms, and model fit (Table 9.1).

Table 9.1 Detection methods for phenological events ordered by publication year

Method Classification Reference

Inflection points on fitted, bell-shaped
curve

Model fit Badhwar (1984), Tucker
et al. (2001)

0.099 NDVI threshold Threshold Lloyd (1990)
0.17 NDVI threshold Threshold Fischer (1994)
Divergence of smoothed curve from

moving average
Threshold Reed et al. (1994)

Time derivative Derivative Moulin et al. (1997)
Six thresholds in 0.05 increments from 0.1

to 0.35
Threshold Myneni et al. (1997)

50% point Threshold White et al. (1997)
Fourier analysis Transformation Moody and Johnson

(2001), Jakubauskas
et al. (2001), Wagenseil
and Samimi (2006),
Hermance (2007)

NDVI threshold on day 120 and day 270 Threshold Shabanov et al. (2002)
0.3 NDVI threshold Threshold Zhou et al. (2003)
Locally fit Gaussian-type functions Model fit Jönsson and Eklundh

(2002, 2004), Verbesselt
et al. (2006), Huemann
et al. (2007)

Principal component analysis Transformation Hall-Beyer (2003)
Largest derivative Derivative Tateishi and Ebata (2004)
Logistic model of vegetation growth fit to

increasing and decreasing section of
EVI time series.

Model fit Zhang et al. (2003, 2004)

Phenology models based on AGDD Model fit de Beurs and Henebry
(2004a, 2005a, 2005b)

Normalized Difference Water Index
threshold analysis

Threshold Delbart et al. (2005)

Thresholds based on long-term mean VI Threshold Karlsen et al. (2006), Piao
et al. (2006), Philippon
et al. (2007)

Camelback phenology algorithm Derivative Baltzer et al. (2007)
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9.2 Thresholds

The simplest and most frequently applied method determines SOS and EOS based
on threshold values.

9.2.1 Vegetation Indices (VI) Thresholds

Some authors (Lloyd 1990, Fischer 1994, Myneni et al. 1997, Zhou et al. 2003)
arbitrarily set a threshold value at a certain level or amplitude, (e.g. 0.09, 0.099,
0.17 or the range of values from 0.1 to 0.35). The SOS is then determined as
the day of the year (DOY) that the NDVI crosses the threshold in upward direc-
tion; likewise, the EOS is determined as the DOY that the NDVI crosses the same
threshold in downward direction. To determine at which DOY the threshold is
reached, the time series is filtered to eliminate remaining cloud cover and inter-
polated to a daily dataset. Within the Northern Hemisphere, pixels in the south
generally have an earlier SOS than pixels more northern. Across the conterminous
United States of America, the NDVI threshold for the SOS can vary from 0.08
to 0.40 (Reed et al. 2003). Thus, in the case of one fixed threshold for a larger
study area, the thresholds may not measure the same phenological event and the
approach becomes inconsistent. There is also an implicit simplifying assumption
that crossing the threshold in one direction is functionally equivalent to cross-
ing it in the other. Yet, there is little reason to assume that these systems do not
exhibit hysteresis: the timing and rate of greening across the landscape is inde-
pendent of and different from the timing and rate of senescence across the same
landscape.

9.2.1.1 Thresholds Based on Long-Term Mean VI

A variation of the VI threshold method is presented by Karlsen et al. (2006,
2007). In this case the authors calculated a 21-year mean value for each pixel, for
Fennoscandia only incorporating pixels with positive values of NDVI. The SOS,
for each year, was then considered to be the date when the NDVI value passed the
long-term mean value. This threshold was chosen because it showed the highest
correlation with the onset of leafing in birch as observed at ground level. The EOS
was determined by the date when NDVI passed below 70% of the 21-year mean.
Peak timing was determined as the date with maximum NDVI (Karlsen et al. 2006,
2007). A similar method was developed for Africa where the SOS and the EOS
were determined as the date of the 10-day period right before the one where NDVI
passes the annual mean level upward (SOS) or downward (EOS) (Philippon et al.
2007). Piao et al. (2006) apply a similar method in China. First, the rate of change
is determined for the 18-year average NDVI as follows:
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NDVIratio(t) = [NDVI (t + 1)− NDVI (t)]

NDVI (t)
(9.1)

Based on the NDVIratio the timings of the greatest increase and decrease are
determined as well as their corresponding NDVI values. In the last step, the SOS
is determined for each year as the day that a smoothed curve passes the NDVI
threshold (Piao et al. 2006). Smoothing is performed with a sixth-degree polynomial
curve.

9.2.1.2 Thresholds Based on a Baseline Year

Shabanov et al. (2002) determined the SOS and the EOS by comparing years among
each other. First, they designated the NDVI values on DOY 120 and DOY 270 as
determining the SOS and the EOS thresholds for a baseline year. The median year in
the time series was selected as the baseline year (Shabanov et al. 2002). The DOYs
at which the NDVI thresholds were reached in each other year determined the SOS
and the EOS for that year.

9.2.1.3 Thresholds Based on NDVI Ratios

White et al. (1997) determined the SOS threshold as the 50% point of the NDVI
curve. The state of the ecosystem is indexed by transforming of the NDVI to an
NDVIratio as follows (White et al. 1997):

NDVIratio = NDVI − NDVImin

NDVImax − NDVImin
(9.2)

The NDVIratio ranges from 0 to 1. NDVI is the daily NDVI, NDVImax and
NDVImin are the annual maximum and minimum of the NDVI curve. This ratio
method is similar to the Vegetation Condition Index (Kogan 1995). However,
in White’s et al. case the minimum and maximum NDVI are determined annu-
ally, while Kogan (1995) used long-term minima and maxima in NDVI maximum
value composites. The SOS was determined as the day that the NDVIratio reached
50% in upward direction. The EOS was determined as the day that the NDVIratio
reached 50% in downward direction (see Fig. 9.1). The justification offered for
the choice of the 50% threshold is that the increase in greenness is believed to be
most rapid at this threshold and if only one phenological date is to be used, then
the period of most rapid growth is more important than the first leaf occurrence
or budburst. Furthermore, lower vegetation signals are more easily confounded
with soil reflectance. A 50% point states that a certain pixel (or study region)
has attained 50% of its maximum greenness. The transformation to NDVIratio is
attractive because it allows for a consistent determination of the 50% point of the
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Fig. 9.1 Threshold method
based on NDVI ratios for four
different 64 km2 pixels
ranging from 60.6 to 37.2◦N.
The profiles are extracted
from GIMMS 2002 data. SOS
is determined as the day that
the curve crosses the 50%
threshold in upwards
direction. (See Table 9.2 for
the SOS and EOS results.)
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vegetation, independent of the geographic location and land cover of the observed
study area. Furthermore, the NDVIratio retains high frequency vegetation changes
that can be lost if data are first smoothed.

In a later application of this method, White and Nemani (2006) opted for the
transformation of NDVI to NDVIratio based on long-term minimum and maximum
values. The advantage of long-term average minimum and maximum NDVI val-
ues is that they are usually not strongly influenced by outliers (White and Nemani
2006). The disadvantage is that the minimum and maximum NDVI might not be
stable through time and could change significantly, for example due to disturbance
processes, or other changes in the landscape (White et al. 1997, Rich et al. 2008).
An inadequately calibrated data record can exhibit changes in the NDVI that are
artifactual (de Beurs and Henebry 2004b).

9.2.1.4 Threshold Based on NDWI

Delbart et al. (2005) argued that the NDVI is not the optimal index when measuring
the SOS and the EOS in areas experiencing snow cover, because the onset of the
NDVI increase corresponds with the beginning of snowmelt. Thus, trends in the
SOS might not be due to actual earlier vegetation onset but rather due to reduction
in the snow cover extent. The Normalized Difference Water Index (NDWI), which
is based on reflectances in the Near Infra-Red (NIR) and Short Wave Infra-Red
(SWIR) regions, may be more efficient in estimating the start of season for areas
where extensive snow cover might be expected (Delbart et al. 2005). Using NDWI
they defined the onset of greening (SOS) as:

tgreening = max (t ∈ [0,200] )| (NDWI(t) < NDWImin + ε) ) (9.3)

This equation gives the SOS for a particular year as the last day (t) where NDWI
is smaller than the minimum NDWI plus a small empirically identified threshold (ε).
The last day has to be chosen before day 200. Time (t) is time in days, NDWImin is
the minimal observed value of NDWI over one year.

Thus, the SOS is chosen as the last record, before an increase in the NDWI
associated with vegetation green-up. The increase in the NDWI needs to fulfill the
following constraints: (1) ε should be larger than the noise affecting the NDWI pro-
file, and (2) ε must be smaller than the first NDWI increase due to vegetation growth.
They found the most accurate results with ε set at 20% of the spring amplitude in
the NDWI.

For snow covered areas, the method based on the NDWI has been shown to pro-
vide a definite advantage in discriminating green-up from snow melt. However, there
are some limitations. Firstly, the threshold value, ε, is chosen arbitrarily and likely
not optimally for all land cover types that may experience snow cover. Secondly,
the low spring NDWI amplitudes can result in extremely small ε values that come
very close to background variability or noise. Lower spring amplitudes could be
expected in the tundra due to small amount of vegetation and the extended period



184 K.M. de Beurs and G.M. Henebry

of concomitant snow melt and vegetation green-up. Areas with higher proportions
of evergreen vegetation also tend to exhibit lower spring amplitudes (Delbart et al.
2005).

Principal Limitations of Threshold Methods

Threshold methods do not provide an analytical solution to the error structure of the
statistic. Thus, the only way to determine the significance of observed differences
is through reference to a baseline determined through many years of observation,
which is difficult given the short duration of the satellite era. Some authors (White
and Nemani 2006) have used spatial neighborhoods in an attempt to estimate the
interannual variation of the SOS or EOS. Unless the dynamical system under inves-
tigation exhibits the property of ergodicity (a spatio-temporal average represents the
ensemble average), this kind of “space for time” substitution does not work. Spatial
variation does not capture temporal variation. The positive autocorrelation typically
encountered in geospatial data will diminish the residual variability thereby inflating
significance levels and increasing the risk of a Type I inferential error. Thus, it is very
difficult to understand whether any observed changes in the SOS and/or the EOS
are significantly different or simply fall within the expected range of interannual
variability.

9.3 Derivatives

Authors (e.g. Tateishi and Ebata 2004, White et al. 1997, Baltzer et al. 2007)
who study derivatives of NDVI curves generally accept the maximal increase and
decrease in NDVI as the SOS and the EOS.

9.3.1 Greatest Increase/Decrease in VI

Tateishi and Ebata (2004) defined the SOS as the time of the greatest increase in
the NDVI. They assumed, like White et al. (1997), that the SOS is characterized
by the greatest leaf expansion or the fastest green-up during the growing season.
To smooth the derivative series, they determined the derivative based on three con-
secutive ten-day composites (Tateishi and Ebata 2004). The timing of the highest
positive derivative reveals the fast increase in the NDVI and is thus designated as
the SOS. In a similar way the lowest negative derivative is considered the EOS.
The method is very simple and easily determines the fastest increase and decrease
in NDVI.

Moulin et al. (1997) determined the derivative separately for SOS and EOS. For
the start date vector they used the following equation:

bi = |xi − x0| − λ
[
(xi+2 − xi)− |xi−2 − xi|

]
(9.4)
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where, x0 is determined as a NDVI value close to the soil background and xi is
the NDVI at day i. The λ factor weights the derivative term. They proposed 3 as a
reasonable value for λ.

The end date vector is determined as:

ei = |xi − x0| − γ
[|xi+2 − xi| − (xi−2 − xi)

]
(9.5)

The terms are the same as defined for Equation 9.4. For the end date, γ is set at a
value of 5.

The final start date is determined using three rules (Moulin et al. 1997):

1. the NDVI value is close to a value of bare soil;
2. the time derivative before the start date based on bi can be either positive or

negative, but it should be close to zero; and
3. the time derivative after the start date based on bi should be positive.

For the end date comparable criteria were established.

9.3.2 Camelback Phenology Algorithm

Baltzer et al. (2007) presented an algorithm motivated by the derivatives method
that was originated by Moulin et al. (1997). A moving window consisting of five
composites is passed over the time series for every pixel. Within every window the
slope of the regression of the NDVI against time is calculated. In the second step,
with the same moving window, the second order derivative is calculated. The SOS
is determined as the time point when the second derivative of the moving window
regression reaches a local maximum within a 13-composite window and the slope is
positive (Baltzer et al. 2007). The EOS is determined at the time where the second
order derivative reaches a local maximum and the slope is negative.

9.3.2.1 Limitations of Derivative Methods

As with the threshold methods, the phenological estimates from the derivative meth-
ods do not have an analytical error structure. Thus, it is extremely difficult to
understand whether observed changes fall within the natural variability of the data
or result from a significant change. These methods have problems determining the
SOS and the EOS when the NDVI signal fails to follow an abrupt and rapid increase
or decrease. They can be especially problematic in the determination of the EOS,
because the maximum value compositing used to suppress cloud contamination in
VI time series also defers the appearance of senescence to the next compositing
period.
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9.4 Smoothing Function and Model Fits

9.4.1 Autoregressive Moving Average

Reed et al. (1994) determined the SOS and the EOS as the dates that a smoothed
time series crosses a curve established from moving average models. The moving
average has an introduced time lag which is arbitrarily chosen. Based on 14-day
composites, Reed et al. (1994) found that a moving average curve based on nine
composite periods gave the best results. This method was adjusted for and applied to
semi-arid Africa by Archibald and Scholes (2007). The savannas in semi-arid Africa
retain their leaves until late in the growing season and there is a relatively short
time period (~2 months) for which the NDVI is at its lowest value. As a result, the
moving average curve was shortened to two months (or four composites) (Archibald
and Scholes 2007).

9.4.1.1 Limitations of the Moving Average Method

The method assumes that the phenology can be well captured by a moving average
model, which might not be appropriate in case of disturbances or other changes on
the land surface. In addition, the method does not work well in rain-green systems
that respond strongly and rapidly to rainfall events and exhibit a more erratic and
even multi-modal growing season. Further, clear criteria regarding the selection (and
adjustment) of the delay time are lacking.

9.4.2 Fourier Analysis

Fourier analysis approximates complicated curves with a sum of sinusoidal waves
at multiple frequencies. As the number of component sinusoidal waves increases,
the sum becomes able to approximate a LSP signal more closely. For a given pixel,
the Fourier function is given by:

f (t) = f (t) +
L/2∑
n=1

(
An cos

2πnt

L
− φn

)
(9.6)

where, f(t) gives the NDVI for a given composite and f (t) is the mean of the of
f(t); An gives the amplitude A of harmonic term n; φn gives the phase of the nth
harmonic; and L is the number of observations within the study period (Jakubauskas
et al. 2001, Wagenseil and Samimi 2006). Thus, 10-day composites and a year of
data yields L = 36, and for 14-day composites, L = 26.

Moody and Johnson (2001) applied the discrete Fourier analysis to the temporal
signature of vegetation as recorded by image time series. Fourier analysis is shown
to be sensitive to systematic changes, but relatively insensitive to nonsystematic
data noise. The strength of the Fourier analysis is the frequency decomposition. By
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discarding higher order harmonics while retaining the first-order and second-order
harmonics, it is possible to retrieve lower noise signals that characterize the basic
temporal behavior of the vegetated surface. Inspection of the higher order dynam-
ics can give information about higher temporal variability phenomena (Moody and
Johnson 2001).

The first Fourier harmonic is often interpreted as representing mean NDVI, which
in its turn is inferred to indicate the overall productivity of the region for that time
period. Comparisons of the mean NDVI allow for the distinction between more and
less productive sites. The amplitude of the first harmonic indicates the variability of
the productivity over the year, while the phase measures the timing of the peak; there
is no direct measure for the timing of onset. The second harmonic is interpreted as
the strength and timing of any bimodal signal resulting from secondary cover types
(Moody and Johnson 2001).

9.4.2.1 Limitations of Fourier Analysis

The analysis decomposes the signal into an arbitrary number of sinusoid functions
that do not necessarily have an ecological interpretation. In most cases the observed
component signals are interpreted in terms of ecological behavior of the land sur-
face. While this approach might provide useful information for a well-characterized
region, its efficacy depends on a prior ecological understanding and thus limits its
utility in areas less well known. Furthermore, Fourier analysis operates in the fre-
quency domain and thus requires a long time series of equally spaced observations.
The longer the time series, the finer the resolution of the frequency decomposition.
The Nyquist frequency is the highest frequency that can be resolved by Fourier
decomposition and is given as the highest frequency within the data divided by two
(Moody and Johnson 2001). In other words, the sampling rate of the data must be at
least double the rate of the frequency of the highest Fourier harmonic that is sought
(Moody and Johnson 2001). Missing or irregularly spaced observations require gap
filling and/or padding of the series.

As the shapes of the NDVI signals are usually not exactly sinusoidal or strictly
periodic, it is necessary to fit several higher frequency terms to yield a suitable
approximation (Wagenseil and Samimi 2006).

The second harmonics from different years can be contrary to each other, which
presents a significant problem for interpretation. Moody and Johnson (2001) also
warned for the degree and consistency with which the second- and higher-order
harmonics relate to secondary vegetation, climate anomalies, or other land cover
changes. In addition to these problems, the influence of data quality and noise on
the Fourier decomposition is poorly understood.

Even though observations in the power spectrum can have confidence intervals
(Bloomfield 1976), we are not familiar with an application of these uncertainty mea-
sures in the LSP literature. Since the uncertainty levels of Fourier measures are often
not provided, comparison of the means is complicated, and it is unclear whether
there has been a real change or that the difference falls within the expected range of
interannual variability.
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To overcome some of the main limitations for “classical” discrete Fourier
analysis, Hermance (2007) presented a new stabilizing high-order, non-classical
harmonic analysis. This novel method allows the user to incorporate some of the
higher-order Fourier oscillations without introducing artifacts, through dampen-
ing oscillatory behavior by minimizing model roughness (Hermance 2007). This
Fourier smoothing function was used by Bradley et al. (2007) to determine the SOS
in the Great Basin (USA). The Fourier smoothing function was applied to the noisy
satellite data to smooth the data and provide a cleaner signal (Bradley et al. 2007).
However, the Fourier curves were not used to estimate timing or amplitude, but
merely applied as an advanced smoothing function. Bradley et al. (2007) resorted
to the half-maximum threshold method (White et al. 1997) to extract phenological
metrics from the smoothed curve.

9.4.3 Principal Component Analysis

Principal component analysis (PCA) is another transformation that is sometimes
applied to multi-year image series (Townshend et al. 1985, Eastman and Fulk 1993,
Hall-Beyer 2003). The objective of PCA is to account for a maximum portion of
variance present in the entire dataset through a linear combination of the original
observations. Principal component analysis of the NDVI time series provides an
alternative to phenological metrics for tracking the response of the vegetated land
surface to variability resulting from climate and other land surface changes (Hall-
Beyer 2003). It is important to note that the eigenvectors by themselves do not have
a particular ecological meaning. It is therefore necessary, as with Fourier analysis, to
interpret the eigenvectors in combination with ancillary data and prior information
about the study region (Hall-Beyer 2003). In general, as with Fourier analysis, the
first principal component is accepted as the integrated VI value that closely resem-
bles the dataset average, while the second is usually interpreted as an indication of
the VI seasonality (Townshend et al. 1985). Higher principal components are some-
times interpreted as regional seasonalities, artifacts from different sensors, or the
influence of climate modes (Eastman and Fulk 1993).

9.4.3.1 Limitations of the Principal Component Analysis

As with the Fourier analysis, the eigenvectors as retrieved by the PCA are derived
exclusively from the input data. As a result, the components are not stable and may
not be able to be interpreted in the same way from year to year (Hall-Beyer 2003).
This instability presents a problem for comparisons of phenologies between peri-
ods or across regions. Since the components can vary year to year, it is difficult to
do quantitative comparisons based on the components. The problem does not just
occur from year to year, but could also result when one or more images are added
to the original time series (Henebry 1997). This indicates that PCA may result in
fairly different loading structures when the temporal resolution of the image time
series changes from 10-day to 7- or 14-day composites. In other words, the weights
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assigned to each composite to create the principal components can be very different
depending on the temporal resolution of the image time series.

9.5 Model Fit

The last category for the description of vegetation phenology based on satellite
imagery is model fitting. To allow for the variable nature of the NDVI curves,
authors have developed several models that can easily be adjusted to the available
satellite data.

9.5.1 Logistic Models

Badhwar (1984) developed the first method to parameterize NDVI temporal profiles
that was later used by Tucker et al. (2001). The temporal profile is divided at the
peak NDVI into two time series. The following curve is fitted to the first part of the
time series (Badhwar 1984):

log (NDVI) = log P1 + P3 (log t − log P2)+ P4

(
P2

2 − t2
)

(9.7)

There are four parameters that need to be estimated for each part of the curve. P1
provides the displacement of the NDVI versus time. P2 provides an approximation
of SOS. P3 relates to the peak value and P4 is the rate of growth of the vegeta-
tion (Tucker et al. 2001). For the second half of the growing season, P2 provides
an approximation of the EOS and P4 provides an approximation for the rate of
vegetation senescence.

Zhang et al. (2004) fitted a logistic model of vegetation growth to the Enhanced
Vegetation Index (EVI). Like Tucker et al. (2001), the authors divided the annual
EVI curve in two parts, vegetation growth and senescence, and fit the models
separately. The logistic model is expressed as:

EVI (t) = c

1 + ea+bt
+ d (9.8)

This is a very straightforward model with a and b as empirical coefficients that
are associated with the timing and rate of change in EVI. The parameter c+d com-
bined give the potential maximum value and d presents the minimum value (the
background EVI value). This model can be approximated with numerical meth-
ods such as Levenberg-Marquardt (Zhang et al. 2003, Fig. 9.6). To fit both growth
and senescence, a total of eight parameters must be estimated. Based on the fitted
models, the phenological transition dates are determined by the derivative of the
curvature of the function. The curvature of the function is as follows (Zhang et al.
2004):
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CCR = b3cz

{
3z (1 − z) (1 + z)3

[
2 (1 + z)3 + b2c2z

]
[
(1 + z)4 + (bcz)2

]5/2
− (1 + z)2

(
1 + 2z − 5z2

)
[
(1 + z)4 + (bcz)2

]3/2

}
(9.9)

With, z = ea+bt and a, b, c and d as defined above.
The curvature shows local maxima and minima. During green-up there are two

local maxima that Zhang et al. (2004) designated as the onset of green-up and the
onset of maturity. Both Fisher et al. (2006) and Fisher and Mustard (2007) also
applied this curve fitting method and determine the start of season as the half-
maximum or the time point where c+d/2 is reached. This approach delivered results
similar to those using the local minimum of the curvature function (Fisher et al.
2006, Fisher and Mustard 2007). Beck et al. (2006) proposed the fit of a double
logistic function similar to Zhang et al. (2004) but adjusted especially for areas in
the far northern latitudes that experience snow-cover (Beck et al. 2006).

9.5.2 Gaussian Local Functions

Jönsson and Eklundh (2002) developed a model fit existing of a number of local
model functions that are merged in a global function. This merging of multiple
local functions increases the flexibility of the fittings and allows the fitted function
to follow the complex behavior of the time series that is not possible with a simple
Gaussian model or lower order Fourier estimates (Jönsson and Eklundh 2002). The
Gaussian-type local functions are as follows:

NDVI = c1 + c2

⎧⎪⎪⎨
⎪⎪⎩

exp

[
−
(

t − a1

a2

)a3
]

, if t > a1

exp

[
−
(

a1 − t

a4

)a5
]

, if t < a1

(9.10)

The base parameters c1 and c2 determine the intercept and the amplitude of the
curves, respectively. The parameter a1 determines the timing of the maximum (mea-
sured in time units). The upper part of the equation is fitted to the right half of the
time series (time is after the peak a1 is reached). While, the lower part of the equa-
tion fits to the left half of the time series. The parameters a2 and a4 determine the
width of the curves on the right and left side, respectively. The parameters a3 and
a5 determine the flatness (or kurtosis) of the curves on the right and left side respec-
tively. The fit of this local function alone already requires the estimation of seven
parameters. The authors provided the option of fitting a centre piece to the model, in
case of a flat plateau for a peak, introducing even more parameters. After this rather
complicated function has been fitted to the NDVI time series, the SOS is deter-
mined from the global model as the point in time for which the value has increased
10% above the base level. So, the authors have returned to a threshold method to
determine the SOS.
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This function fitting routine was added to a software package called TIMESAT.
TIMESAT fits smooth continuous curves using the Savitzky-Golay filtering, asym-
metrical Gaussian, or double logistic functions (Jönsson and Eklundh 2002, Jönsson
and Eklundh 2004). The package allows for upper envelope filtering to account for
negatively biased noise. The package has since been used in several other stud-
ies, but mainly as a smoothing algorithm after which a threshold system is applied
(Verbesselt et al. 2006, Huemann et al. 2007, Gao et al. 2008, the new MODIS North
American phenology product: http://accweb.nascom.nasa.gov).

9.5.2.1 General Limitations of Complex Models

When both curves are fitted, at least four and sometimes as many as eight parameters
must be estimated, this is substantial, especially considering the limited number of
observations per year. Furthermore, it remains unclear how the parameter estimation
is influenced by the temporal resolution of the data (Ahl et al. 2006).

9.5.3 Models Based on Growing Degree-Days

Plant phenology models relate thermal regimes of the growing season with events
in plant development (Schwartz 2003). The thermal regime of the growing sea-
son can be measured as accumulated growing degree-days (AGDDs) by summing
growing degree – days from some consistent start date until a specific subsequent
date. Degree-days can be interpreted as measures of accumulated heat (or insola-
tion) above a specified base temperature. Base temperatures differ depending on
plant life form, (e.g. annual versus perennial, C3 versus C4 photosynthetic pathway,
herbaceous versus woody). A variety of base temperatures have been developed for
crops, crop pests, and other vegetation. A common base temperature often used for
cereal crops and woody plants is 5oC (Wielgolaski 1999). Higher base temperatures
are sometimes used for plants native to warmer regions, such as 10oC for maize. A
base temperature of 0◦C is used for most spring wheat varieties that grow mainly
in colder regions (Rickman et al. 1991) as well as for temperate grasslands (Goodin
and Henebry 1997). Thermal-based regression models using AGDDs as the explana-
tory variable have been regularly used in crop phenology studies to describe and
predict the green-up, flowering, fruiting, and senescence stages of crops and grass-
lands and to compare multiple crop varieties (Goodin and Henebry 1997, Mitchell
et al. 2001, Smart et al. 2001, Davidson and Csillag 2003).

We have proposed this method to analyze changes in long image time series
using AGDDs instead of compositing periods or days of the year. This approach
enabled us to align the imagery using a temporal metric that is more relevant to veg-
etation than an anthropocentric calendar. We calculated the 15-day average growing
degree-days (GDD) for a base 0◦C and the seasonal accumulated growing degree-
days (AGDD) using the daily minimum and maximum 2-metre air temperatures
available from the NCEP Reanalysis project (Kalnay et al. 1996).
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To detect and assess the significance of changes in LSP, we proceeded in two
steps: (1) we fitted a statistical model for each period of interest; and (2) we tested
the estimated parameter coefficients of the models for significant differences. We
have sought for parsimonious statistical models with few parameters that could
have clear biogeophysical or ecological interpretations. Quadratic regression models
have proven to work well for fitting phenology of herbaceous vegetation (e.g. crop-
lands and grasslands) in temperate climates (de Beurs and Henebry 2004a, 2005a).
Woody vegetation in northern latitudes, however, follows a more rapid green-up and
forests and tundra stay green for a relatively long period prior to a rapid senescence.
Quadratic regression does not capture the NDVI plateau. We have found that a non-
linear spherical model offers a much better fit for the first part of the growing season
(de Beurs and Henebry 2005a). While we acknowledge that in the latter portion of
the temperate growing season, daylength and water stress can become important
factors affecting vegetation growth and the onset of senescence (Henebry 2003), we
have restricted our focus here to the first part of the growing season.

9.5.3.1 Quadratic Model

The quadratic regression models have only three parameters to estimate and these
yield straightforward ecological interpretations. Furthermore, these models can be
applied directly to the data without the need of applying filters to attenuate noisy
data. The basic quadratic regression model is in this form:

NDVI = α + βAGDD + γAGDD2 (9.11)

where AGDD are the accumulated growing degree-days in ◦C. The intercept (α)
gives NDVI at the start of the observed growing season. The slope parameter (β)
and the quadratic parameter (γ) together determine the green-up period, defined as
the amount of AGDD (◦C) necessary to reach the peak NDVI as follows:

AGDD to NDVIpeak = −β/2γ (9.12)

The height of the peak NDVI is determined by using AGDD at the peak posi-
tion (Eq 9.12) in Equation 9.11 and calculating the corresponding NDVI value. We
have developed an exhaustive search algorithm that fits candidate quadratic mod-
els at multiple seasonal windows of differing lengths and starting periods (de Beurs
and Henebry 2008). Thus, we fitted the quadratic model multiple times for every
pixel time series while varying the number of sequential composites included and
the beginning time of the composite sequence. The quadratic model generally fit-
ted better if only the growing season dynamic is taken into account by excluding
early composites that exhibit low VI values with little change through time. The
models were thus able to detect the SOS by searching for the best fitting model. We
determined the SOS as the first composite of the best fitting model selected for each
pixel independently. In addition, we determined the peak height in NDVI and the
peak position both as AGDD and as day of the year.
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9.5.3.2 Spherical Models

Nonlinear spherical models can describe the green-up dynamics in taiga and tundra
ecoregions parsimoniously (de Beurs and Henebry, 2005a). The spherical model
is popular in geostatistics where it is mainly used for the spatial interpolation of
variables. The spherical model with AGDD as independent variable and the NDVI
as dependent variable follows this form:

NDVI =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
α + σ

(
1.5 AGDD

ϕ
− 0.5

(
AGDD
ϕ

)3
)

if AGDD < ϕ

α + σ if AGDD > ϕ
(9.13)

where, the intercept (α) gives the NDVI value for low AGDD; the peak (α+σ)
gives the maximum NDVI; and the third parameter coefficient (φ) is the quantity
of AGDD required to reach the peak value, which corresponds to the duration of the
observed green-up phase.

LSP regression models can reveal changes in phenological pattern between peri-
ods only if the model explains a significant proportion of the NDVI variation.
The fraction of all variance in NDVI that is explained by multiple regression
models can be expressed by the coefficient of determination adjusted for model
complexity (r2

adj). Once a model with a good statistical fit has been identified,
values of the parameter coefficients can give insight into the processes that drive
LSP.

To evaluate the significance of differing values of the parameter coefficients,
there is a particular testing sequence and stopping criterion for the quadratic model:
testing begins with the highest order parameter and stops when a pair of coefficients
is assessed as significantly different. The testing sequence begins with a standard
F-test for equality of the highest order parameters in two periods. The test proce-
dure ends when a significant difference between the parameter coefficient estimates
for two periods is found. If a pair of parameter coefficient estimates is found to
be not significantly different, the two parameter coefficients are weighted by the
sum of squares of the observations from both periods and this new single coeffi-
cient is used to re-estimate the lower order parameter coefficients in each period.
The test procedure is followed until the lowest order parameter coefficient, typically
the intercept, is tested. If no significant change is found for any parameter coef-
ficient, it can be concluded that the estimated phenology models for both periods
are statistically equivalent, even if the parameter coefficients have different values.
For the spherical model, there is no testing order or stopping criterion, because the
parameters shape the curve independently; thus, every parameter coefficient pair is
tested.
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9.6 Case Study

In this case study we compared several methods for the analysis of land surface
phenology. Figures 9.1, 9.2, 9.3, 9.4, 9.5 and 9.6 show the land surface phenology
trajectories at four sites along a latitudinal transect in the middle of North America.
These time series were extracted from the 2002 GIMMS data, which has 24 15-day
composites per year. The top panel shows the northernmost pixel (97.2◦W, 60.6◦N),
which is located in the Northwest Territories of Canada. The second pixel (98.2◦W,
48.6◦N) is located in the spring wheat belt of North Dakota. The third pixel (97.8◦W,
40.5 N) is located in an extensive area of irrigated corn in south-central Nebraska.
The bottom panel shows the southernmost pixel (97.6◦W, 37.2◦N), which is located
in a winter wheat region of south-central Kansas.

The most northerly pixel is covered with natural vegetation which greens up as
soon as the environmental conditions permit growth, while the rest of pixels are
dominated by agriculture. The green-up trajectories of the pixels in North Dakota
and Nebraska are strongly dependent on the time of sowing. The pixel located
in the winter wheat belt of south-central Kansas reveals a much earlier growing
season, as the crop is sown in the autumn, overwinters, and matures in early sum-
mer. These particular pixels were chosen at random within well-defined ecoregions,
but the results are only valid for these particular pixels observed during 2002. A
colour plate (Plate 8) maps the entire study area with results from a subset of the
methods.

9.6.1 Thresholds

Figure 9.1 gives the results of the 50% threshold method, which identifies the SOS
and the EOS as the 50% point between the winter NDVI and the peak NDVI (White
et al. 1997). The SOS dates for three of the four selected pixels were similar to each
other varying between DOY 164 and 167 for Canada, North Dakota and Nebraska.
The only site with a substantially earlier SOS is Kansas, due to the dominance of
winter wheat in this pixel. For natural vegetation we would expect a north-south
gradient of the SOS and the EOS with the SOS starting later in the north than in
the south due to latitudinal differences in insolation and temperature (Schwartz and
Reiter 2000, Schwartz et al. 2006). However, as we have focused on agricultural
areas, there is a strong direct human influence on phenology (de Beurs and Henebry
2004a, 2005a). We found that the apparent growing season length is shortest in
Kansas (71 days) followed by Nebraska, Canada, and North Dakota.

9.6.2 Moving Average

Figure 9.2 gives the results for the moving average method (Reed et al. 1994). In this
case the SOS for the pixels varied more widely (Table 9.2) and the SOS was clearly
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Fig. 9.2 Moving average
method applied to detect the
onset of greenness and
senescence (See Table 9.2 for
the SOS and EOS results.)
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Fig. 9.3 The start of season
as determined by the largest
derivative. The SOS and the
EOS are indicated by the
black circles in the time series
of NDVI. The derivative itself
is plotted on the second
y-axis; however, the values
are omitted. (See Table 9.2
for the SOS and EOS results.)
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Fig. 9.4 Fourier
decomposition of the 2002
GIMMS data. The mean of
the data is stable over the
growing season. The first
harmonic tends to give the
seasonality of the data. The
sum of the mean and the first
two harmonics results in a
good approximation of the
actual NDVI curve
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Fig. 9.5 Application of the
logistical model as proposed
by Zhang et al. (2003, 2004).
The grey triangles give the
curvature function which is
used to determine SOS and
EOS (See Table 9.2 for the
SOS and EOS results.)
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Fig. 9.6 Application of the
quadratic model based on
AGDD by de Beurs and
Henebry (2004a, 2005a,
2005b). The model does not
confuse snow melt with the
actual start of season due to
the incorporation of AGDD.
The model fits well in Canada
and North Dakota and
Kansas, but does not fit as
well in Nebraska
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latest in Canada. The EOS was earliest in Kansas as a result of the harvesting of
winter wheat which typically commences in early June. Compared to the threshold
method, the estimated SOS was earlier by as much as 100 days (North Dakota). This
discrepancy is mainly due to the fact that the moving average method determines the
point that the NDVI value starts to increase as opposed to the most rapid increase.
In addition, the growing season length is between 64 and 190 days longer when
observed with the moving average method.

9.6.3 Derivatives

Figure 9.3 gives the results of the derivative method which also determines the
period of fastest increase. In this case we have applied the method of Tateishi and
Ebata (2004). The results for the SOS and the EOS were comparable to the results
from the 50% threshold method, which was expected since both methods investigate
the period of most rapid increase. On average the difference between the two meth-
ods is about 12 days, where the derivative generally has a little later SOS (except for
Canada). Again earliest SOS was found in Kansas and latest in North Dakota and
Nebraska. The EOS was earlier in Canada than in North Dakota and Nebraska, but
the EOS arrived earliest in Kansas due to the timing of crop harvest. The growing
season length varied between 60 and 90 days with the longest growing seasons in
Canada and North Dakota and the shortest growing season in Kansas.

9.6.4 Model Fitting

Figure 9.5 gives the results of the model fit for the logistic model as presented by
Zhang et al. (2003). The model fitted the data extremely well in all cases. The grey
triangles give the curvature of the model as calculated with Equation 9.9. The SOS
and the EOS are determined as the first peak and the last trough of the curvature,
respectively. These results were somewhat similar to the results of the moving aver-
age method (Reed et al. 1994); however, the figure demonstrates that for the pixel in
North Dakota, the curvature function is too flat to determine the EOS. From Fig. 9.5
it can be seen that SOS as determined in Canada might be too early and most likely
resulted from snow melt as opposed to vegetation green-up. The same effect was
visible for the moving average method. In later versions of Zhang’s model, a correc-
tion is provided for snow covered areas (Zhang et al. 2004). The SOS was reached
at day 135 in both Canada and North Dakota. The SOS was reached earlier (day
120) in Nebraska and even earlier in Kansas (day 75, see Table 9.2). The procedure
failed to estimate a growing season length in North Dakota, and it was estimated as
180 days both in Canada and in Nebraska. As expected, the growing season was a
lot shorter in Kansas. These SOS results were somewhat comparable to the results
based on the moving average method, but the growing season was shorter for both
Nebraska and Kansas (Table 9.2).
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Figure 9.6 gives the results of the model fit for the quadratic models based on
accumulated growing degree-days (de Beurs and Henebry 2004a, 2005a, 2005b).
This method was not developed for optimal detection of the SOS or EOS, but rather
for the analysis of interannual variability and change in land surface phenology. Yet,
to facilitate comparisons among the methods, we have applied the method here to
detect SOS. The curves in Fig. 9.6 show which sequence of data points were used
to fit the model. Again the results were somewhat similar to the moving average
method as well as the logistic models (Table 9.2). In two sites the quadratic model
could not determine the EOS, due to and early end of the model. The quadratic
model incorporates AGDD which results in a later SOS in Canada compared to the
logistic model and the moving average method, which are based only on calendar
dates. Since AGDD is still zero when there is a significant amount of snow cover,
SOS was not sensitive to snow melt in this case.

The colour plate (Plate 8) provides a spatial comparison of the four methods: the
logistic model fits, the quadratic model fits, the threshold method, and the derivative
method. It clearly demonstrates that the SOS is much later for the derivative and
threshold methods than for the model fitting methods in most of the study areas.
The largest differences could be found in the agricultural regions of the Midwest.
Towards the south, the differences became smaller (but in the drier areas of Texas,
the methods failed). In the north the differences were small as well, most likely due
to the shorter growing season in those areas which does not allow for long delays
between emergence and the period of most rapid green-up.

When we compared the two methods that look at the period of most rapid green-
up (derivative and threshold), we saw that the results were very similar with most
observations within two weeks of each other. In southern Texas, the differences
were much larger due to diminished variability in the data within a year, which can
readily lead to method failure. It is interesting to note that, across most of the study
region, the derivative method resulted in slightly later SOS, while in the north the
derivative resulted in slightly earlier SOS.

When we compared the results for the two model fitting routines, we found much
more spatial heterogeneity compared to the threshold and derivative methods. First,
there were large differences in the southern part of the study region. These differ-
ences were a result of a failing of the logistic regression models. The fitted logistic
curve was relatively flat which results in the lack of peaks and troughs in the cur-
vature function. When peaks or troughs cannot be detected, there is no means to
identify the SOS or the EOS. The quadratic models did provide SOS estimates for
these sites and were able to find relatively well-fitting curves. However, the vegeta-
tion in these areas most likely responded more strongly to precipitation differences
as opposed to temperature differences that are tracked by AGDD. The second area of
interesting differences can be found in a band extending from Iowa to North Dakota
and Saskatchewan. In these areas the pixels followed a fairly clean green-up period,
and accumulated growing degree-days were above zero early in the season. Based
on the visible model estimates it appeared that the quadratic models fit very well,
but started too early. The last discrepancy is in the far northern part of the study
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region, where the logistic regression model appeared to detect snow melt and thus
estimated SOS too early.

9.7 Synopsis

Having surveyed representative methods for the characterization and change anal-
ysis of land surface phenology, we conclude with observations and remarks on the
wide range of methods and results.

9.7.1 A Nomenclature is Needed

Most of the methods focus on a derived metric called the onset of season or the start
of season (SOS). However, use of the same term masks a disparity about which phe-
nomenon constitutes the SOS. This ambiguity generates a wide discrepancy among
the evaluated metrics. To move toward global terrestrial land surface phenology
products and their analysis, it is vital to conduct quantitative evaluations of compet-
ing methods and their predictions. A coherent nomenclature is critically needed, but
it is currently lacking.

9.7.2 Uncertain Error Structures

We have discussed only briefly some key limitations of the methods. While each
has its particular strengths and weaknesses, the most pressing and common prob-
lem is the lack of error measures for the observations that give an indication of
the expected natural variability around the observed value. The error structures of
observed SOS and EOS are seldom articulated; thus, it is impossible to determine
whether apparently unusual points or years are significantly different or just rare
extremes of the usual variability. As a result, most methods fail to move beyond the
descriptive phase and observed changes cannot be tested for significance.

Without an error structure that allows for statistical comparisons between phe-
nologies recorded over different time periods, we cannot test whether the detected
trends are significant. White and Nemani (2006) suggested that individual pixels
should not be analyzed independently, but rather simultaneously to form an empir-
ical distribution. Although this aggregation can minimize the influence of a few
pixels with erratic behavior, an empirical distribution as formed by a group of pix-
els in space is not the same as the standard errors of a method over time (unless the
dynamical system exhibits ergodicity, which is not only unlikely but very difficult to
test given the paucity of image time series currently available). On the one hand, the
standard error is estimated from a spatial distribution; thus, it gives an indication of
the expected spatial variability of the observations. On the other hand, the standard
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error is estimated from a temporal distribution across many years. It is this latter
standard error that gives an indication of how well a particular method is capable
of estimating a particular phenological metric such as start of season, or duration of
green-up period.

9.7.3 Limits of Fitted Models

Model fitting is a frequently applied method for the description of land surface phe-
nology based on satellite imagery. To allow for the variable nature of the NDVI
curves, several authors have developed flexible models that can easily be adjusted
to the available data (Badhwar 1984, Tucker et al. 2001, Jönsson and Eklundh 2002,
Zhang et al. 2004). While all the models are based on different theory, they have
several aspects in common:

1. they are very general and can be easily adapted to a wide range of situations;
2. time is the independent variable;
3. they require that at least four parameter coefficients be estimated; and
4. these parameter coefficients are not readily interpreted in ecological or biogeo-

physical terms.

Higher model complexity often inhibits straightforward interpretation of the esti-
mated parameter coefficients. In addition, while the large number of variables in
models might increase the coefficients of determination (r2), fitting many variables
to sparse data can substantially reduce the statistical power of the resulting model.

The models have become increasingly better at mimicking observed NDVI
curves. Methods such as the high-order, non-classical harmonic analysis of NDVI
data with damping model roughness or the Gaussian local functions as incorporated
in TIMESAT can do extremely well in approximation of the NDVI trajectories.
However, there are at least two general limitations. Firstly, the mathematical model
is assumed only to approximate the true phenological curve. This assumption will
break down quickly in case of disturbance on the landscape that might subsequently
be missed due to the smoothing action (White and Nemani 2006). Secondly, the fit-
ting routines have become so complicated that they are mainly applied as advanced
smoothing filters. As a result, to determine the SOS based on these models, most
authors (Jönsson and Eklundh 2002, Verbesselt et al. 2006, Bradley et al. 2007) fall
back on accepting a certain percentage increase in the NDVI, similar to the basic
50% threshold method.

9.7.4 Parochial Perspectives

Few authors take an approach that compares model estimates based on two or more
periods or regions. In other words, most procedures offer only statistical fits of
the data without an analysis of the significance or robustness of the model. The
phenological models based on AGDD are the only models presented here that allow
for the statistical comparison of results from different growing seasons or regions.
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An extension of this model for rain-green systems (i.e. vegetation communities
in which development is triggered by sporadic precipitation events) in Africa has
recently been developed (Brown and de Beurs 2008). While the method does a
poorer job for the testing and determining of the SOS and the EOS, it excels in
measuring the significance of temporal changes in phenology models by looking
at the peak position and peak height. Such ecologically meaningful models not
only describe the observed phenology, but can also be used to test for statistically
significant differences between time periods or study regions.

9.7.5 The Challenge of Water-Limited Systems

Most of the methods presented here are focused on the analysis of land surface
phenology in temperature and light limited systems. Few methods currently deal
directly with rain-green systems (e.g. Brown and de Beurs 2008). Rain-green sys-
tems are often more difficult to deal with because of the concomitant occurrence
of precipitation (and thus reflectance obscuring clouds) and vegetation green-up
resulting in noisier observations. In addition, rain-green systems often reveal larger
interannual variability, lagged responses, “false” starts of the season as well as areas
where the “season” does not arrive some years.

9.7.6 Challenges Ahead

Characterization and analysis of land surface phenologies has advanced rapidly in
recent years with the advent of more and richer data sources and a widening realisa-
tion of the centrality of phenology to integrating diverse biogeophysical processes.
We have restricted our attention in this chapter to a technical discussion of the
methods commonly employed with land surface phenology. However, we would be
remiss to conclude without pointing to the principal outstanding challenge; namely,
linking remotely sensed observations of the land surface phenologies with ground
level and in situ observations of the specific phenologies of plants and animals.
Reconciling the mixture of signals from the land surface with the discrete life events
of multiple species will remain an active area of research. Finally, the forecasting of
land surface phenologies is not the same task as modelling phenologies retrospec-
tively, but it is an important area for future work to provide much needed feedback to
modellers of weather and biogeochemistry as well as to natural resource managers
(White and Nemani 2006, Kathuroju et al. 2007).
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Chapter 10
Climatic Influences on the Flowering Phenology
of Four Eucalypts: A GAMLSS Approach

Irene L. Hudson, Susan W. Kim, and Marie R. Keatley

Abstract This chapter represents one of the first attempts to utilize phenological
data to detect non-linear responses of flowering to climate change using GAMLSS.
We use the flowering of four species (Eucalyptus leucoxylon, E. microcarpa,
E. polyanthemos and E. tricarpa) as a case study. Regardless of cyclicity of flower-
ing over time, this study shows that each species flowering is significantly influenced
by temperature and this effect is non-linear. Stepwise GAMLSS showed that the
main temperature driver of E. leucoxylon is minimum temperature (P<0.0001), max-
imum temperature for E. polyanthemos (P<0.0001), both minimum and maximum
temperature (P<0.0001) for E. tricarpa, and mean temperature for E. microcarpa
(P<0.0001). Rainfall was not a significant predictor of flowering. GAMLSS allowed
for identification of upper/lower thresholds of temperature for flowering commence-
ment/cessation; for the estimation of long and short-term non-linear effects of
climate, and the identification of lagged cyclic effects of previous flowering.

Flowering intensity of all species was positively and significantly correlated
with last month’s flowering (P<0.0001); and with flowering 12 months earlier for
E. polyanthemos and E. microcarpa. Flowering of E. polyanthemos was negatively
and significantly correlated with flowering intensity 2 and 4 months prior; in the case
of E. microcarpa with flowering 6 and 8 months earlier. Overall, E. microcarpa
and E. polyanthemos flower more intensely in response to predicted increases in
mean and maximum temperature, respectively. E. leucoxylon flowers less intensely
with predicted increases in minimum temperature; E. tricarpa flowers less intensely
with increased maximum temperature, but more intensely with increased minimum
temperature (after accounting for maximum temperature).
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10.1 Introduction

Phenology involves the recording of recurring natural events such as the commence-
ment of flowering (Fitter et al. 1995) or the arrival of migratory birds (Sparks
1999), and the influence on such events by edaphic and climatic factors (Leith
1974). Analyses of phenological data have been used to examine the impacts of
climate change (Menzel 2002, Chambers 2006, Rosenzweig et al. 2007). These
studies, however, remain concentrated in the Northern Hemisphere. Indications are
that long-term phenological studies, within any discipline, are extremely limited in
Australia (IPCC 2007). Datasets spanning a century or more such as are found in
Europe (Sparks and Carey 1995) are unlikely in Australia, given the short period of
European settlement (e.g. since 1788 for Sydney, 1835 for Melbourne).

As eucalypts are a dominant genus, both in a botanical and economic sense, they
have been the focus of most Australian plant phenological studies (Ashton 1975,
Cremer 1975, Law et al. 2000, Keatley et al. 2002; Bassett et al. 2006; Keatley and
Hudson 2007). The flowering pattern of plant species, may fluctuate haphazardly.
Numerous explanations are given in the literature to explain that pattern, including:
genetics, reproduction costs, herbivory effects, climate, inflorescence architecture,
phylogenetic constraints, competition, etc (Primack 1980, Waser 1983, Eldridge
et al. 1993, McKitrick 1993, Keatley and Hudson 1998, Pfeifer et al. 2006).

GAMLSS (Generalised additive model for location, scale and shape) are part
of the Generalized Linear Models (GLM) (Nelder and Wedderburn 1972) and
Generalized Additive Models (GAM) “family” (Hastie and Tibshirani 1999, Hastie
2008), were introduced by Rigby and Stasinopoulos (2001) and Akantziliotou et al.
(2002); and further developed in 2005 (Rigby and Stasinopoulos 2005) to overcome
various limitations of the popular GLM and GAMs. For example, GAMLSS can
deal with non normally distributed data (e.g. highly skewed, or kurtotic continu-
ous and discrete distributions). Current updates of GAMLSS can deal with up to 50
different types of distributions (Stasinopoulos and Rigby 2007).

GAMLSS thus extend linear regression to a non-linear form by allowing each
regression variable to have a non-linear relationship with the dependent variable.
The type of non-linearity is not pre-specified a priori, but calculated and tested in
the modelling process. GAMLSS are thereby a general framework for univariate
regression analysis which allows for testing of semi-parametric models. By this we
mean, they need a parametric distribution for the response variable, however, they
can cope with a wide range of distributions such as the (Poisson, negative bino-
mial, log normal, Weibull etc). They are “semi” in the sense that the modelling of
the actual parameters, such as the mean or location (as functions of the explana-
tory variables) may involve using non parametric smoothing functions (for example
cubic smoothing splines; for a discussion on this see Chapter 12).

Recent applications of GAMLSS have involved modelling climate with Sudden
Infant Death Syndrome (Hudson et al. 2008) and in the establishment of the world
standard child growth curves by the World Health Organisation (Borghi et al.
2006) (see also examples in Rigby and Stasinopoulos 2005). As far as the authors
are aware, GAMLSS have not been applied to phenological research to date. It
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should be noted, however, that Hudson et al. (2003) used GAMs (the precursor to
GAMLSS) and Bayesian methods to model E. leucoxylon flowering, and found that
the estimated effects of mean temperature were smoothly non-linear on flowering
intensity. The work of Roberts (Chapter 12) on penalized splines or P-splines is a
method that also has some inter-relatedness with GAMLSS in that spline functionals
(the term “spline” is used to refer to a wide class of functions that are used in appli-
cations requiring data interpolation and/or smoothing) are used in the modelling
procedures. Penalized splines were introduced by Eilers and Marx (1996). P-splines
are piecewise polynomials defined by B-spline basis functions in the explanatory
variable, where the coefficients of the basis functions are penalized to guarantee
sufficient smoothness (see Eilers and Marx 1996).

The benefits of GAMLSS for phenological data (which is a time series) are that
they

• can identify the main drivers of the event of interest from a multiplicity of
predictors such as climate and food sources etc,

• allow for non linear impacts of the explanatory variables or predictors,
• can statistically detect thresholds, for example, the lowest temperature for the

commencement of flowering,
• can model and/or account for the auto-correlated nature of the phenological

series, for example by incorporating lag effects.

This chapter presents one of the first attempts to utilize phenological data to
detect non-linear responses of flowering to climate change using GAMLSS. We use
the flowering of four species (Eucalyptus leucoxylon, E. microcarpa, E. polyanthe-
mos and E. tricarpa) as a case study. The primary aim of this chapter is to investigate
the relationship between flowering intensity and three temperature variants, min-
imum, maximum and mean temperature (since temperature is a major climatic
influence on phenological events such as flowering (Menzel 2002)). In addition to
studying possible non-linear impacts of rainfall (Hudson et al. 2003, 2008). In this
chapter we clearly illustrate the benefit of GAMLSS in modelling and interpretation
of possibly non-linear climatic impacts on eucalypt flowering.

10.2 Data and Methods

10.2.1 Phenological and Climate Data

Flowering observations were undertaken on a monthly basis at the population
level by Forests Commission officers (Keatley et al. 2002). They categorised their
observations of flowering according to the quantity and distribution of flowering
across the population. Flowering quantity is ranked from “No flowering” to “Heavy
flowering”, whilst distribution ranges from “Isolated” to “General” (Table 10.1).
Flowering was quantified by assigning a rank value to these descriptions according
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Table 10.1 Terms used to describe flowering intensity and their assigned value

Observation parameter Description Assigned value

Quantity No flowering 0
Very scattered or isolated 0.5
Light Flowering 1
Medium Flowering 2
Heavy Flowering 3

Distribution Isolated 0.5
Scattered 1
Fairly General 1.5
General 2

to the formulation in Keatley (1999). Flowering intensity (ranging from 0 to 5) was
calculated, based on the sum of the quantity and distribution of the rank values,
where a score of 0 indicates that no flowering occurred whilst a score of 5 indi-
cated that flowering was heavy and distributed throughout the observation area. The
flowering intensity score assumes an equal weighting (importance) of its compo-
nents (quantity and distribution). Whilst it is possible that the importance of one
component is greater than the other, there are no data available to support such
weighting.

These flowering records are the basis of this study, which focuses on the
flowering of four species: Eucalyptus leucoxylon, E. tricarpa, E. microcarpa and
E. polyanthemos. Monthly flower counts for flowering intensity and mean monthly
readings of climate (minimum and maximum temperature (◦C), mean diurnal tem-
perature (◦C) and rainfall (mm)). For example E. leucoxylon flower counts (which
ranged from 0.0 to 5.0) for the study period (1940–1971) constituted 409 monthly
time points. Table 10.2 provides the mean, median duration of flowering for the 4
species in addition to the most probable month of flowering per year as calculated
by Keatley and Hudson (2007).

Table 10.2 Mean and median flowering duration (months + 1 SD) and most probable month of
eucalypt species at Havelock

Species
Mean duration
(months)

Median
(months)

Month with
highest probability
of flowering in a
month in a
flowering year

Month of peak
intensity

E. leucoxylon 9.7 + 4.2 9.0 October Sept
E. microcarpa 4.0 + 1.0 4.0 March March
E. polyanthemos 3.6 + 1.5 3.5 November Nov/Dec
E. tricarpa 6.2 + 2.1 6.0 July July
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10.2.2 GAMLSS Method

The GAMLSS framework of statistical modelling is implemented in a series of
packages in R, (R Development Core Team 2007), a free software (see URL
http://www.R-project.org). The packages can be downloaded from the R library,
CRAN, or from http://www.gamlss.com. For this study the GAMLSS procedure was
used with a cubic spline smoothing function and a forwards stepwise (stepGAIC)
function in GAMLSS (Stasinopoulos and Rigby 2007). Each model tested assumed
that the flowering series represented Poisson counts and the RS algorithm, a gen-
eralization of the algorithm of Rigby and Stasinopoulos (1996a, 1996b) was used
to obtain the estimates of the climatic predictors as non-linear cubic spline terms.
Lagged dependencies of current with past flowering (up to 12 months prior) were
added as auto-regressive (AR) lags. Note that cubic smoothing splines is denoted by
cs() in this chapter.

10.2.2.1 The GAMLSS Framework

We follow essentially the development of Rigby and Stasinopoulos (2005) to explic-
itly outline the GAMLSS model. Let yT = (y1,y2,...,yn) be the vector of the response
variable observations. The p parameters θT = (

θ1,θ2,...,θp
)

of a population proba-
bility (density) function (p.d.f) f (y|θ ) are then modelled by using additive models.
Specifically the model assumes that, for i=1,2,. . .,n, observations yi are independent
conditional on θ i, with p.d.f. f (yi|θ i), where θ iT = (

θi1,θi2,...,θip
)

is a vector of p
parameters related to the explanatory variables and random effects.

Here gk(.) for k=1,2,. . .,p, is a known monotonic link function relating to both
explanatory variables and to random effects through an additive model given by

gk (θk) = ηk = Xkβk +
Jk∑

j=1

Zjkγjk (10.1)

where θk and ηk are vectors of length n. For example θT
k = (θ1 k,θ2 k,...,θnk), βT

k =(
β1 k,β2 k,...,βJ′

k

)
is a parameter vector of length J′

k, Xk, is a known design matrix of

order n × J′
k, Zjk is a fixed known n × qjk design matrix and γ jk is a qjk dimensional

random variable. Model (10.1) is called the GAMLSS.
Rigby and Stasinopoulos (2005) note that the vectors γ jk for j = 1,2,...,Jk

could be combined into a single vector γ k with a single design matrix Zk. The
formulation in (10.1), nevertheless is preferred as it is suited to the back fitting
algorithm (which is integral to the fitting of the additive components) and also
straightforwardly allows combinations of different types of additive random-effects
terms to be added in the model (see also Stasinopoulos and Rigby (2007)). Model
(10.1) clearly reduces to a fully parametric model when k=1,2,. . .,p, Jk=0. This is
given by
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gk (θk) = ηk = Xkβk (10.2)

If Zjk = In, where In is an n × n identity matrix, and γjk = hjk = hjk
(
xjk

)
for all

combinations of j and k in model (10.1), we then have

gk (θk) = ηk = Xkβk +
Jk∑

j=1

hjk
(
xjk

)
(10.3)

where xjk for j=1,2,. . .,jk, and k=1,2,. . .,p, are vectors of length n. The function
hjk is an unknown function of the explanatory variable xjk (assumed to be known)
and hjk = hjk

(
xjk

)
is the vector which evaluates the function hjk at xjk. The

model in equation (10.3) is called the semi-parametric GAMLSS. Model (10.3)
is an important special case of model (10.1). It is noteworthy that if Zjk = In and
γjk = hjk = hjk

(
xjk

)
for specific combinations of j and k in model (10.1), then the

resultant model includes parametric, nonparametric and also random-effects terms.
It is common place for the first two population parameters θ1 and θ2 in model

(10.1) to be characterized as location and scale parameters, which we denote by μ

and σ ; whereas the remaining parameter(s), if any, are characterized as the so-called
shape parameters (Rigby and Stasinopoulos 2005). Given that a maximum of two
shape parameters v (=θ3) and τ (=θ4) are sufficient for many families of population
distributions, we can then write the following model,

g1 (θ1) = η1 = X1β1 +
J1∑

j=1
Zj1γ j1

g2 (θ2) = η2 = X2β2 +
J2∑

j=1
Zj2γj2

g3 (θ3) = η3 = X3β3 +
J3∑

j=1
Zj3γj3

g4 (θ4) = η4 = X4β4 +
J4∑

j=1
Zj4γj4

(10.4)

The GAMLSS model (10.1) is clearly more general than the GLM, the general-
ized linear mixed model (GLMM) (Fox 1997, Gelman and Hill 2006, Jiang 2007)
or the generalized additive mixed model (GAMM) (Lin and Zhang 1999, Pinheiro
and Bates 2000, Fahrmeir and Lang 2001) in that the distribution of the dependent
variable is not limited to the exponential family and in that all parameters (not just
the mean) are modelled in terms of both fixed and random effects.

It should be mentioned that the GLMM combines the GLM and linear mixed
model, by introducing a random-effects term in the linear predictor for the mean of
a GLM. Note that whilst the GLMM and GAMM are more flexible than the GLM
and GAM respectively, they still require an exponential family conditional distri-
bution for y and infrequently model parameters other than the mean (or location)
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of the distribution of the response variable y, as functions of the explanatory vari-
ables. This is not the case for GAMLSS. Of particular importance is that unlike the
GLMM and GAMM, the GAMLSS is not highly time consuming nor computation-
ally intensive. This is particularly so in the presence of many explanatory predictors,
where model selection requires testing numerous alternative models. Indeed their
fitting depends on Markov chain Monte Carlo (MCMC) or integrated (marginal
distribution) likelihoods (Rigby and Stasinopoulos 2005).

10.2.2.2 Model Estimation

GAMLSS models with non-linear terms can be examined via partial residuals,
which are defined in the back fitting function (Rigby and Stasinopoulos 2005). The
partial residuals, say for a given variable of interest, are plotted after removal of the
effects of the other variables (see term plot in R). The model terms in GAMLSS
are additive, so the effects from each of the other variables are easily removed.
Residuals are examined for influential or outlying cases and non-random trends (see
diagnostic plots in gamlss() in R).

The backfitting algorithm and the fact that quadratic penalties in the likelihood
result from assuming a normally distributed random effect in the linear predictor
are fundamental to the way that additive components are fitted within the GAMLSS
framework. Shrinking (smoothing) matrices Sjk within a backfitting algorithm are
used in the resultant estimation as follows.

Assume in model (10.1) that the λjk have independent (prior) normal distributions
with γjk∼Nqjk (0,Gjk) where Gjk is the (generalized) inverse of a qjk xqjk symmetric
matrix Gjk = Gjk (λjk), which may depend on a vector of hyperparameters1 λjk. If
Gjk is singular, then λjk is understood to have an improper prior density function pro-

portional to exp
(
− 1

2γ
T
jk Gjkγjk

)
. The assumption of independence between different

random-effects vectors λjk is essential within the GAMLSS framework. From this
point onward we refer to Gjk rather than to Gjk

(
λjk

)
for ease of notation, although

the dependence of Gjk on hyperparameters λjk remains throughout.
Rigby and Stasinopoulos (2005) show via empirical Bayesian arguments, that

posterior mode estimation (Berger 1993) for the parameter vectors βk and the
random-effect terms γ jk (for fixed values of the smoothing or hyperparameters λjk),
for j = 1,2,...,Jk and k=1,2,. . .,p , is equivalent to penalized likelihood estimation.
Thus for fixed λjk s the βks, the γ jks are estimated within the GAMLSS framework
by maximizing a penalized likelihood function lp given by

lp = l − 1

2

p∑
k=1

Jk∑
j=1

γ T
jk Gjkγjk (10.5)

1In Bayesian statistics, parameters of prior distributions are called hyperparameters. This is to
distinguish them from parameters of the model of the underlying data (Gelman et al. 2003).
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where l =
n∑

i=1
log

{
f
(
yi |θ i

)}
is the log-likelihood function of the data given θ i for

i=1,2,. . .,n.
Rigby and Stasinopoulos (2005) prove that maximizing lp is achieved by the CG

algorithm, wherein the maximization of lp requires that the shrinking (smoothing)
matrix Sjk, be applied to partial residuals εjk to iteratively update the estimate of the
additive predictor Zjkγ jk within a backfitting algorithm, given by

Sjk = Zjk

(
ZT

jkWkkZjk + Gjk

)−1
ZT

jkWkk (10.6)

for j=1,2...,Jk and k=1,2,. . .,p, and where Wkk is a diagonal matrix of iterative
weights.

One further conceptualization comes from the fact that different forms of Zjk

and Gjk correspond to diverse types of additive terms in the linear predictor ηjk

for k=1,2,. . .,p. Indeed for random-effects terms Gjk are often a simple or low
order matrix (or both), whereas for a cubic smoothing spline term we have the fol-
lowing equivalences γ jk=hjk, Zjk=In and Gjk = λjkKjk, where Kjk is a structured
matrix. Moreover either case allows simple updating of Zjkγ jk. Note also that the
hyperparameters λ can be fixed or estimated.

10.2.2.3 The Linear Predictor

Parametric Terms

Recall from the GAMLSS (10.1) that the linear predictors ηk, for k=1,2,. . .,p, com-
prise a parametric component Xkβk and additive components Zjkγ jk, for j=1,2...,Jk

(Rigby and Stasinopoulos 2005). Noteworthy also is the following generality, that
the parametric component can include linear and interaction terms for explanatory
variables and factors, polynomials, fractional polynomials (Royston and Altman
1994) and also piecewise polynomials (with fixed knots) for variables (Smith 1979,
Stasinopoulos and Rigby 1992). Importantly non-linear parameters can be included
into the GAMLSS (10.1) and fitted by either: the profile fitting method, where
estimation of non-linear parameters is achieved by maximizing their profile like-
lihood; or the derivative method. In the latter derivatives of a predictor ηk with
respect to non-linear parameters are incorporated in the design matrix Xk in the
fitting algorithm (Benjamin et al. 2003).

Additive Terms

Rigby and Stasinopoulos (2005) discuss a suite of different additive terms that can
be included in the GAMLSS. The additive components Zjkγ jk in model (10.1) can fit
a variety of terms such as smoothing and random-effect terms, in addition to terms
that are valuable for time series analysis. For simplicity we now drop the subscripts
j and k in the vectors and matrices, where appropriate.
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Cubic Smoothing Splines Terms

Let h = h(x) be the vector of evaluations of the function h(t) at the values x of the
explanatory variable X, where with cubic smoothing splines terms we assume in
model (10.3) that the functions h(t) are arbitrary twice continuously differentiable
functions and we maximize a penalized log-likelihood, given by lp subject to penalty
terms of the form λ

∫∞
−∞ h (t)2dt. The maximizing functions h(t) are all natural cubic

splines and thus can be expressed as linear combinations of their natural cubic spline

basis functions Bi(t) for i=1,2,. . .,n, that is [h (t) =
n∑

i=1
δiBi (t)].

Let N be an n × n non-singular matrix containing as its columns the n-vectors
of evaluations of functions Bi(t), for i=1,2,. . .,n, at x. Then h can be expressed by
using a coefficient vector δ as a linear combination of the columns of N by h=Nδ.
Let � be the n × n matrix of inner products of the second derivatives of the natural
cubic spline basis functions, with (r,s) th entry given by �rs = ∫

B′′
r (t)B′′

s (t)dt.
The penalty is then given by the quadratic form

Q (h) = λ

∫ ∞

−∞
h′′(t)2dt = λδT�δ = λhTN−T�N−1h = λhTKh, (10.7)

where K = N−T�N−1 is a known penalty matrix that depends only on the values
of the explanatory vector x.

The exact form of the matrix K is given in Green and Silverman (1994),
Section 2.1.2. Note that the model can be formulated as a random-effects GAMLSS
(10.1) by letting γ(h), Z=In, K=N-1�N-1 and G=λK, so that h ~ Nn

(
0,λ−1K−), a

partially improper prior (Rigby and Stasinopoulos 2005).

The Two Algorithms

The objective of the algorithms is to maximize the penalized likelihood function
lp, given in equation (10.5), for fixed hyperparameters λ. Two basic algorithms are
used, firstly the CG algorithm, which is a generalization of the Cole and Green
(1992) algorithm (and uses the first and second and cross-derivatives of the like-
lihood function with respect to the parameters θ . However, for many population
p.d.f.’s f(y|θ ) the parameters θ are information orthogonal (since the expected val-
ues of the cross-derivatives of the likelihood function are 0). This is true for location
and scale models and dispersion family models (Rigby and Stasinopoulos 2005).
In this latter case the second and simpler RS algorithm, a generalization of the
algorithm used by Rigby and Stasinopoulos (1996a, 1996b) for fitting mean and
dispersion additive models (MADAM) (and does not use the cross-derivatives), is
more suitable. Note that the parameters θ are fully information orthogonal for only
the negative binomial, gamma, inverse Gaussian, logistic and normal distributions.

Rigby and Stasinopoulos (2005) provide details of the algorithms and their
advantages, and demonstrate that the CG algorithm maximizes the penalized likeli-
hood lp, given by equation (10.5). The algorithms are implemented in the option
method in the function gamlss() within the R package GAMLSS (http://www.
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R-project.org). In general the algorithms have been found to be stable and fast
using very simple starting values (e.g. constants) for the (θ )-parameters (Rigby and
Stasinopoulos 2005).

10.2.3 Model Selection

10.2.3.1 Statistical Modelling: Model Selection, Inference and Diagnostics

For parametric GAMLSS models each model M of the form (10.2) can be assessed

by its fitted global deviance GD given by GD = −2 l
(
θ̂
)

where l
(
θ̂
)

=
n∑

i=1
l
(
θ̂ i
)

.

Two nested parametric GAMLSS models, M0 and M1, with fitted global deviances
GD0 and GD1 and error degrees of freedom dfe0 and dfe1 respectively may be
compared by using the (generalized likelihood ratio) test statistic � = GD0 − GD1
which has an asymptotic χ2-distribution under M0, with degrees of freedom d =
dfe0 −dfe1 (given that the regularity conditions are satisfied). For each model M the

error degrees of freedom parameter dfe is defined by dfe = n −
p∑

k=1
dfθk , where dfθ k

are the degrees of freedom that are used in the predictor model for parameter θk for
k=1,2,. . .,p.

For comparing non-nested GAMLSSs (including models with smoothing terms),
to penalize overfitting, the generalized Akaike information criterion, GAIC (Akaike
1983) can be used. This is obtained by adding to the fitted global deviance a fixed
penalty # for each effective degree of freedom that is used in a model, that is where
df denotes the total effective degrees of freedom used in the model and GD is the
fitted global deviance. The model with the smallest value of the criterion GAIC(#)
is then selected. The Akaike information criterion, AIC (Akaike 1974) and the
Schwarz Bayesian criterion SBC (Schwarz 1978) are special cases of the GAIC(#)
criterion corresponding to #=2 and #=log(n), respectively.

10.3 Results

Table 10.3 shows the results of a GAMLSS modelling using a forwards stepwise
selection procedure via the stepGAIC function in GAMLSS (Stasinopoulos and
Rigby 2007). All effects shown are non-linear effects (cubic splines (cs())) (see
Fig. 10.1).

From Table 10.3 we see that the temperature variants had singly or jointly highly
significant (P <0.0001) non-linear effects on flowering for each species. Rainfall
was not a significant factor in predicting flowering intensity after the effect(s) of
temperature and previous lags were accounted for (thus it was omitted from the
model by the stepwise procedure). For each species flowering one month prior sig-
nificantly increased (P <0.0001) the likelihood for current flowering (a positive
though non-linear lag1 effect (Table 10.3)). Indeed for all species flowering one
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Table 10.3 Parameter estimates and goodness of fit statistics of the GAMLSS model for the four
species

Species Predictors β estimate Std
error

T value P GDφ AICφ SBCφ

E. leucoxylon Intercept 0.42 0.14 3.07 < 0.0001 942.7 960.7 995.9
minT −0.10 0.01 −7.14 < 0.0001
lag1 0.39 0.03 11.71 < 0.0001

E. tricarpa Intercept 0.72 0.36 1.97 0.05 641.6 675.6 742.1
maxT −0.17 0.04 −4.65 < 0.0001
minT 0.21 0.06 3.71 < 0.0001
lag1 0.60 0.05 12.49 < 0.0001
lag5 −0.14 0.06 −2.35 0.02

E. microcarpa Intercept −3.37 0.33 10.09 < 0.0001 484.4 526.4 608.5
meanT 0.15 0.02 7.97 < 0.0001
lag1 0.60 0.04 13.39 < 0.0001
lag6 −1.29 0.60 −2.15 0.03
lag8 −0.45 0.16 −2.85 < 0.0001
lag12 0.14 0.06 2.53 0.01

E. polyanthemos Intercept −2.47 0.40 −6.21 < 0.0001 507.1 549.1 631.1
maxT 0.06 0.02 3.47 < 0.0001
lag1 0.56 0.06 9.67 < 0.0001
lag2 −0.28 0.07 −4.2 < 0.0001
lag4 −0.38 0.11 −3.52 < 0.0001
lag12 0.22 0.06 4.01 < 0.0001

φGD denotes the scaled deviance statistic, AIC denotes the Akaike information criterion and SBC
denotes the Schwarz Bayesian Criterion goodness of fit statistics.

month prior significantly increased (P<0.0001) the likelihood for current flower-
ing (a positive lag1 effect). A significant lag 12 effect was found in E. microcarpa
and E. polyanthemos only. For E. polyanthemos there is a highly significant and
non-linear (positive) effect of maximum temperature on flowering (Table 10.3) and
particularly significant and non-linear (negative) lag effects of previous flowering at
2 and 4 months prior in relationship to current flowering (Table 10.3). This means
that flowering 2 and 4 months earlier were highly correlated with a decreased like-
lihood of current flowering in E. polyanthemos (i.e. E. polyanthemos usually does
not flower 2 and 4 months prior to current flowering). The 6 and 8 month lags for
E. microcarpa had a similar negative effect on current flowering (Table 10.3). These
negative lags agree with the autocorrelation (ACF) plot (not shown) for Eucalyptus
microcarpa which shows negative lags for 6 and 8 months and positive lagged
dependencies at 1 and 12 months: the ACF lags correlations are (0.67, –0.26, –0.21,
0.32) for lags (1, 6, 8, 12 months prior) in that order.

For E. microcarpa and E. polyanthemos there is a significant and non-linear
effect of temperature in that they flower more intensely in response to predicted
increases in mean and maximum temperature, respectively (see the positive and
highly significant β estimates (P <0.0001) in Table 10.3. Eucalyptus leucoxylon
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Fig. 10.1 Term plot of the GAMLSS model for E. polyanthemos. The dotted line shows the 95%
confidence band around the cubic spline curve (solid line)

flowers less intensely in response to predicted increases in minimum temperature,
whereas E. tricarpa flowers less intensely in response to predicted increases in max-
imum temperature, but more intensely with increased minimum temperature (after
accounting for maximum temperature); indicating for E. tricarpa there are two main
but opposing temperature drivers. Eucalyptus tricarpa prefers cooler maximum
temperature but warmer minimum temperature.

All the GAMLSS models fitted the original data very well (see the diagnostic
plot in Fig. 10.2 for E. polyanthemos only and the observed and fitted time series
plots in Fig. 10.3). The best fit was obtained for E. microcarpa as evidenced by E.
microcarpa GAMLSS model’s low value of scaled deviance statistic (GD) in Table
10.3. GAMLSS analysis found the same contemporaneous effects of climate on
flowering for Eucalyptus tricarpa and E. leucoxylon, which constitutes one species
pairing; and for E. microcarpa and E. polyanthemos (the other species pairing).
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Fig. 10.2 Diagnostics plot of the GAMLSS model for E. polyanthemos

10.3.1 Thresholds for Start and Finish of Flowering

The β estimates in Table 10.3 and the so-called GAMLSS term plot for each model
(for E. polyanthemos in Fig. 10.1) demonstrate the cubic spline effect of each pre-
dictor (whether climatic or lag in Table 10.3) after the other effects in the model
have been accommodated for (see for example the term plot for E. polyanthemos in
Fig. 10.1).

Reading off the exact temperature (on the horizontal axis) at which the spline line
and its 95% confidence limits go above zero for the partial residuals (Fig. 10.1) gives
the lower temperature threshold for flowering commencement for a given species
(17.5◦C maximum temperature for E. polyanthemos). Similarly reading off the exact
temperature at which the spline curve and its 95% confidence limits go below zero
for the partial residuals gives the higher temperature threshold for finish of flowering
for a given species (25.9◦C maximum temperature for E. polyanthemos), when they
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Fig. 10.3 Predicted fit (dashed line) of the GAMLSS model for E. leucoxylon (leu), E. tricarpa
(tri), E. microcarpa (mic) and E. polyanthemos (pol) overlaid with the observed data (solid line)

exist from the resultant cubic spline. The resultant temperature thresholds for all
four species are listed in Table 10.4.

Table 10.4 Temperature thresholds for the start and finishing of flowering

MinT (◦C) MeanT (◦C) MaxT (◦C)

Species Start Finish Start Finish Start Finish

E. leucoxylon 8.0 – – – – –
E. tricarpa 10.2 – – – – 21.3
E. microcarpa – – 16.1 – – –
E. polyanthemos – – – – 17.5 25.9

10.4 Discussion

Phenological records are now regularly used to determine and report the impacts
of global warming (Menzel et al. 2006a, IPCC 2007, Keatley and Hudson 2008,
Rosenzweig et al. 2008). Inter-annual changes in spring plant phenology (typically
an advance in the commencement of flowering) are one of the most sensitive and
observable indicators of the biotic response to climate change (Walther et al. 2002,
Menzel et al. 2006b). An understanding of past behaviour in relation to climate is
needed for predictions of the response to climate change (Sparks and Carey 1995,
Visser and Both 2005). The GAMLSS analysis discussed here shows that flowering
in each of these eucalypt species is influenced by temperature. This is in agreement
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with previous studies on these eucalypts (Porter 1978, Keatley and Hudson 2000,
Keatley et al. 2002). However, this GAMLSS analysis confirms that this effect is
non-linear for E. leucoxylon (Hudson et al. 2003) and is also non-linear for the
remaining species. The non-linear effect of temperature is well recognized for crops
(Loomis and Connor 1992) but less so for native species (Sparks et al. 2000).

The main driver for flowering in E. leucoxylon is minimum temperature with
flowering intensity being less when there are warmer minimum temperatures; min-
imum temperatures in the region where these observations were recorded have
decreased significantly by 0.1◦C between 1998 and 2007 (Dept. Sustainability and
Environment 2008). Hence over this period it is expected that flowering intensity
has been slightly more intense. More intense flowering should have been evident in
E. microcarpa and E. polyanthemos as they are positively influenced by maximum
and mean temperatures, respectively: maximum daily temperature has increased by
0.6◦C and mean daily temperature by 0.3◦C. Flowering in E. tricarpa would be
expected to be to less intense over this period, as it is negatively influenced by
maximum temperature and positively influenced by minimum temperatures.

In this chapter we identified a lower threshold temperature of 8◦C to induce flow-
ering in E. leucoxylon which is lower than the base temperatures of 9.9◦C previously
determined by Keatley and Hudson (2000) (using the methods put forward by Yang
et al. (1995)). Keatley and Hudson (2000) assumed a linear relationship between
temperature and flowering which could account for some of the difference. Whilst
no upper threshold temperature was identified here, Hudson et al. (2003) had pre-
viously estimated 18◦C. Both E. tricarpa and E. polyanthemos were also included
in the study of Keatley and Hudson (2000) therefore their base temperatures were
identified, 11.7◦C and 14.05◦C, respectively compared to 10.2◦C and 17.5◦C (see
Table 10.4). Keatley and Hudson (2000) concluded that further work was required in
determining the base temperature of E. polyanthemos (14.05◦C) because of the large
co-efficient of variation in the calculated growing degree days; hence the 17.5◦C is
probably correct.

This chapter delineated for the first time that upper threshold temperatures have
been determined for either of these species. Eucalyptus microcarpa has not pre-
viously had a lower threshold temperature identified. Its temperature of 16.1◦C,
along with that of E. polyanthemos, is quite high indicating that flowering for
these species is in a heat-demanding developmental period (Wielgolaski 1999).
Eucalyptus polyanthemos has the highest base temperature but the shortest interval,
1 month, between the pre-determined starting date (1st of September) and flowering
(Keatley and Hudson 2007). Eucalyptus leucoxylon commences flowering the latest,
in May, indicating that it has the lowest temperature requirement for development
and this assumption is supported by it having the lowest threshold temperature.

GAMLSS found no significant effects of rainfall on flowering, whereas, wavelets
analysis (see Chapter 17) showed that rainfall significantly (P <0.05) influences the
flowering intensity of E. tricarpa; with flowering intensity increasing with increas-
ing rainfall. This is in agreement with the results of a mixed transition distribution
(MTD) analysis of the same 4 species by Kim et al. (2005 and Chapter 14) which
confirmed, using two states for flowering, “on” or “off,” that the only species whose
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likelihood of flowering systematically showed a significant (main effects) depen-
dence on rainfall was E. tricarpa. It should, however, be noted that a novel extension
of MTD analyses to allow for interactions (Kim et al. 2008), in this case to inter-
actions between the (climatic) predictors, revealed a highly significant interactive
effect between mean temperature with rainfall in E. polyanthemos (see Chapter 14).
Kim et al. (2008) showed that flowering in E. polyanthemos is enhanced especially
when conditions are warmer and dryer.

Knowing what the main driver for a given species is, say a particular temper-
ature variant, may assist us in interpreting the possible changes in flowering due
to climate change. Specifically E. leucoxylon’s flowering intensity at the study site
has probably increased slightly because of the decrease in minimum temperature.
However, in other parts of its range, minimum temperature has increased signif-
icantly by 0.3◦C, hence flowering intensity in this region should have decreased.
Additionally, these new lower threshold temperatures can be used in both the re-
calculation and/or calculation of growing degree days (GDD) (Wielgolaski 1999)
for these species. GDD assumes that there is a relationship between the develop-
ment rate and temperature for the phenological stage being examined and that this
development only occurs above a base (lower) threshold temperature (Wielgolaski
1999).

Flowering intensity and flowering commencement in these species will be
affected by climate change (Keatley et al. 2002). These changes can be regarded
as the short-term implications of climate change (Rehfeldt et al. 2004). The
longer-term consequences are changes in their individual reproductive success and
distribution. For example, the flowering period of E. leucoxylon and E. tricarpa
are synchronous but their peak flowering is well separated (Keatley et al. 2004).
Flower production in E. tricarpa at this site is positively skewed, in that flow-
ers are produced quickly with the remaining and smaller proportion of flowers
produced over anextended period of time by comparison. In E. leucoxylon flower
production is negatively skewed, the opposite mode of production. Rapid produc-
tion of flowers, or positive skewness, is believed to quickly accustom potential
pollinators to a new food source (Thomson 1980). Eucalyptus leucoxylon and E.
tricarpa are placed in the same series (Pryor and Johnson 1971) and are therefore
taxonomically close, with morphologically similar flowers. Eucalyptus leucoxy-
lon flowers would thus be already familiar to potential pollinators as E. tricarpa
had already flowered. Consequently, the production of E. leucoxylon flowers pos-
sibly does not have to be rapid to attract pollinators to enable them to adjust
to a new food source. However, this facilitation of pollination may occur later
in the flowering period (or not at all) of E. leucoxylon if there a decrease in
its flowering intensity possibly resulting in less seed production; or if there is
an increase in flowering intensity this switch could occur earlier, increasing not
only the competition for pollinators between the species but also the possibility of
hybridization.

Any change in reproductive behaviour also has implications for the pollinators
and the species which depend on eucalypts as a food source: 20 percent of resi-
dent vertebrate Box-Ironbark species are nectarivorous (Traill 1991, Tzaros 2005).
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Eucalypt flowers also attract invertebrates which contribute to the diet of nec-
tarivorous birds (Tzaros 2005). Changes in phenology have led to mismatches in
food abundance and breeding which has resulted in decreased reproductive success
(Visser and Both 2005). These species contribute significantly to the honey indus-
try in Victoria and therefore changes in flowering would have significant economic
consequences.

10.5 Conclusion

In summary changes in temperature are likely to translate to changes in both the
timing of flowering commencement and in terms of flowering intensity as shown
here. Ultimately these changes may result in a change to species composition, as
the relative reproductive success of the species changes over time. We show here
that GAMLSS modelling allows for the identification of upper and lower thresh-
olds of flowering temperature and the estimation of long and short-term non-linear
effects on flowering of climate, and the lagged cyclic effects of previous flowering.
GAMLSS analysis demonstrates a contemporaneous effect of climate on flowering
for Eucalyptus tricarpa and E. leucoxylon, which constitutes one species pairing;
and for E. microcarpa and E. polyanthemos (the other species pairing). We conclude
that GAMLSS add credibility to the use of phenological records to detect phenolog-
ical phases, local climatic impacts on flowering and possibly global climate change
per se.
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Chapter 11
Bayesian Methods in Phenology

Christoph Schleip, Annette Menzel, and Volker Dose

Abstract The identification of changes in observational data relating to human
induced climate change remains a topic of paramount importance. In particular, sci-
entifically sound and rigorous methods for detecting changes are urgently needed.
Analyses based on the BAYES approach here offer new possibilities to describe
long-term phenological time series. The first example of this chapter will focus on
the model comparison option of the Bayesian approach that was used to compare
three different types of models (constant, linear, and one change point) for the anal-
ysis of three species in Germany. In addition to the functional behaviour, rates of
change in terms of days per year were also calculated. The second example of this
chapter illustrates the application of the Bayesian method to several phases through-
out the year in two different countries. Thus we particularly investigate phenological
changes of different phases and seasons.

Keywords BAYES · Climate change · Model comparison · Trend · Rate of change

11.1 Introduction

The global average surface temperature has increased over the twentieth century by
about 0.6 ± 0.2◦C and is projected to continue to rise at a rapid rate (Trenberth et al.
2007). Many studies have revealed evidence of ecological impacts of this recent
climate change. In particular, shifts in plant and animal phenology for the boreal and
temperate zones of the northern hemisphere have been reported (Menzel and Estrella
2001, Sparks and Menzel 2002, Walther et al. 2002, Root et al. 2003). Reviews of
phenological trend studies indicate that most of the data originate from the last four
to five decades. These recent data predominantly reveal advancing of flowering and
leaf unfolding in Europe and North America by 1.2–3.8 days decade−1 on average
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and a strong seasonal variation with highest advances in early spring (Rosenzweig
et al. 2007, 2008).

However, there are several problems involved in the commonly used methods of
searching for signals in phenological time series. The detection of shifts is mostly
done by classical statistical methods, such as slopes of linear regression models (e.g.
Bradley et al. 1999, Menzel and Fabian 1999, Jones and Davis 2000, Schwartz and
Reiter 2000, Defila and Clot 2001, Menzel et al. 2001, Ahas et al. 2002, Peñuelas
et al. 2002, Menzel 2003), rarely by other curve fitting methods (e.g. Ahas 1999,
Sagarin and Micheli, 2001). Trends are then reported in days per year or decade,
or days of change over the study period. It is apparent that using linear regression
models the length of a time series and its start and end dates are critical in detect-
ing changes and in determining their magnitude, especially when highly variable
phenological time series of a few decades are analyzed (Sparks and Tryjanonwski
2005). Thus, series that include the whole of the 1990s benefit from the decade being
the warmest on record. However, the observation periods vary between phenological
networks and among stations in networks because phenological observations mostly
depend on volunteers and thus have often discontinuous, incomplete data series.
Moreover, different individuals may apply different standards in their observations.
Several studies have addressed this problem (e.g. Menzel and Estrella 2001, Sparks
and Menzel 2002) and illustrate the variation of resulting changes with the period of
interest (e.g. Scheifinger et al. 2002). Few studies use these linear regression mod-
els for even longer time series, some covering almost one century (Beaubien and
Freeland 2000, Sagarin and Micheli 2001 for lake and river ice cover). Reviews
of phenological trend studies suggest that only about 40% of the reported trends
have proved statistically significant. The significance is often tested by the F-test
(Defila and Clot 2001), and occasionally by the Mann–Kendall trend test, which
does not require a Gaussian distribution of the data (e.g. Menzel 2000). Few studies
also report the standard error of the slope (e.g. Sagarin 2001). Studies analyzing
long-term phenological records often reveal a heterogeneous pattern of temporal
variability with sometimes alternating periods of advanced and delayed onset (e.g.
Schnelle 1950, Lauscher 1978, 1983, Freitag 1987, Sparks and Carey 1995, Ahas
1999). The advance of phenological events in the last decades is compared to the
timing in preceding periods, mostly only by comparing averages in distinct peri-
ods (e.g. Fitter and Fitter 2002). Another phenomenon in time domain described
(Chmielewski and Rötzer 2002, Scheifinger et al. 2002) is a discontinuity in time
series behaviour in the late 1980s, as in many areas almost no trend is observed
before the discontinuous shift towards earlier occurrence dates after the late 1980s.

These limitations of the currently used methods render comparison and interpre-
tation of the observed changes extremely difficult. They may partly account for the
observed spatial variability among sites or the different response of species besides
the inherent inhomogeneity caused by local microclimate conditions, natural vari-
ation, genetic differences or other nonclimatic factors. Thus, there is strong need
to improve the recently applied method of change detection in phenological time
series.
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In the next Section 11.2, we introduce the Bayesian concepts as an alternative
to the classical statistic methods. We shall introduce the Bayesian concepts and ter-
minology only to the extent that is necessary to define the nomenclature in the rest
of the article. In the subsequent Section 11.3 , we perform a Bayesian comparison
of different models to describe the functional behaviour of different phenological
phases. We will focus on two examples that deal with long-term phenological obser-
vations in Germany and Switzerland. With the help of the Bayesian method, we
analyse the variations of the onset of phenological phases and additionally illustrate
phenological changes of different seasons in the 20th century.

Section 11.3 consists of three different examples illustrating the Bayesian use of
a combined analysis of phenological and temperature time series. The recent quan-
tification of changes in time series of phenology data with Bayesian methods has
provided compelling evidence for nonlinear changes during the last 20 years. In the
first selected example of the third section Dose and Menzel (2006) correlated the
phenological observations with spring temperature time series. They compared two
alternatives models Ma: temperature and blossom onset time series evolved inde-
pendently and Mb: temperature and blossom onset time series are synchronous in
their change. In the second example Schleip et al. (2008) analysed rates of change
and the relationship between temperature changes and bud burst of Norway spruce
in the 51 year period 1953–2003. This study does not only deliver quantitative
results on the correlations between temperature and Norway spruce bud burst in
Germany, but it also offers new in-sights into model improvement and to methods
for the understanding of ecological responses to climate change.

11.2 Bayes Theory

Bayesian data analysis is based on two rules. The first is the conventional prod-
uct rule for manipulating conditional probabilities. It allows a probability density

function to be broken down depending on two (or more) variables p
( �θ ,�d

∣∣∣M, I
)

conditional on the model M that specifies the meaning of the parameters �θ and
additional information I into simpler functions

p
( �θ , �d

∣∣∣M, I
)

= p
( �θ

∣∣∣M, I
)

∗ p
( �d

∣∣∣ �θ , M, I
)

(11.1)

where p
( �θ ,

∣∣∣M, I
)

and p
( �θ ,�d

∣∣∣M, I
)

depend only on the single (vector-) variables

�θ and �d respectively. Equation 11.1 may be expanded in an alternative way due to
symmetry in the variables �θ , �d.
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∗ p
( �θ

∣∣∣ �d, M, I
)

(11.2)

Equating the right hand sides of Equation 11.1 and Equation 11.2 yields Bayes’
theorem.
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p
( �θ

∣∣∣ �d, M, I
)

= p
( �θ

∣∣∣M, I
)

∗ p
( �d

∣∣∣ �θ ,M, I
)/

p
( �d

∣∣∣M, I
)

(11.3)

The function on the left hand side is called the posterior density of the parameters
�θ given data �d and model M. It is equal to the prior density of the parameters �θ ,

p
( �θ

∣∣∣M, I
)

which encodes our information on �θ prior to considering the data �d
times the likelihood p
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)
.
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is formally the normalisation for the posterior density
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(11.4)

By inverse application of the product rule we arrive at the Bayesian marginal-
isation rule, which completes Bayes’ theory and has no counterpart in traditional
statistics
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(11.5)

Equation 11.5 allows for an important interpretation. It is obviously the likeli-
hood of the data �d given the model M regardless of the numerical values of the
parameters �θ . Employing Bayes’ theorem to invert (11.5) we obtain

p
( �d

∣∣∣M, I
)

=
∫

d�θ P
(�d, �θ

∣∣∣M, I
)

(11.6)

Equation 11.6 is then the probability of a model M out of a possible variety given
the data �d.

We shall now adapt these abstract concepts to the problems of Section 11.3. The
data �d are then the phenological or temperature time series. They are modelled either
by a constant, implying time independence or by a linear function in time, which
associated constant rate of change or by a function consisting of two linear segments
matching at a given time tE . Apparently, the latter model, which we call the (one-)
change point model, is not only the most complicated but reduces also to the other
two by selecting variables. The likelihood for the change point model reads

p
( �d

∣∣∣ �f , tE, M, I
)

(11.7)

where �f is a three component vector of the support functional values at the beginning
of the time series (f1), the change point (f2) and the end of the time series (f3). The
likelihood for the linear model evolves from (11.7) by electing f2 and tE, and for the
constant model be deleting f2, f3 and tE. Our first task is to find the change point

probability distribution P
(

tE| �d, M, I
)

. By Bayes’ theorem it is given by
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The marginal likelihood p
( �d
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)

is derived from (11.7).
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Application of Equation 11.8 requires the specification of p
(

tE| �d, M, I
)

, which

was taken flat, independent of tE in all subsequent applications.

Note that Equation 11.8 contains also the marginal likelihood p
( �d

∣∣∣M, I
)

which is needed to infer the probability of the model M given the data �d using
Equation 11.6.

One final point needs to be mentioned. Having obtained the posterior distribution
of the parameters using Equations 11.3 and 11.7 we can calculate expectation values
of the parameters given the data. For example the expectation value of θk is given by

〈θk〉 =
∫

d�θθk∗ p(θ̄
∣∣ �d, M, I) (11.10)

It can be shown that Equation 11.10 also holds for any function φ(�θ
∣∣∣ �d, M, I) and

can be used in particular to derive estimates of the moments μ1 and μ2 of our model
functions at any given time t . t is not restricted to the time interval covered by the
data but can also lie in extrapolation regions. Defining μN as

μN =
∑

E

∫
d�f p(�f , E| �d, M, I) ∗

{
φ(�f , E| t, �d, M, I)

}N
(11.11)

we find for the mean of the model functions μ1 and for the standard deviation

〈
�φ2

〉1/2 =
{
μ2 − μ2

1

}1/2
(11.12)

This completes the formal calculations referred to in Section 11.3. For details of
the algebra the reader is referred to Dose and Menzel (2006).
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11.3 Examples of Bayes Theory in Phenological Research

11.3.1 Time Series Analysis by Bayesian Non Parametric
Estimation

11.3.1.1 Methods

The Bayesian approach for analysing the functional behaviour of phenological time
series and their trends follow the method introduced by Dose and Menzel (2004).
We refer to this publication for further insight into the mathematical formulae.
Here, the main features of the Bayesian approach are explained in the six graphs
(Fig. 11.1a–f).

The phenological time series plotted in Fig. 11.1 can be described by different
models/functions. We selected three of them:

1. a constant model with a fixed date of onset (Fig. 11.1a),
2. a model with linear change of onset dates in time (Fig. 11.1b) and
3. a change point model, which is the choice of a function that consists of two linear

segments which match at a particular time tE (Fig. 11.1c). We call the point tE
the change point.

The constant model represents the hypothesis of no change at all. It assumes a
functional behaviour constant in time with associated zero rates of change/trend.
The forecasting equation for the linear trend model is y(t) = α + βt: where t is the
time index. The parameters alpha (α) and beta (β) (the “intercept” and “slope” of the
trend line) are usually estimated via a simple regression in which y is the dependent
variable and the time index t is the independent variable.

The change point model with two linear segments (Fig. 11.1c) fits our data with
a residual sum of squares of 2800 compared to 3593 for the linear regression model
and 3865 for the constant model. The obvious improvement in fit is penalized by
a further complication as the model needs four parameters (tE, the functional val-
ues at tE, tc and a functional value for each segment). Further complications of the
model (i.e. more change points) would achieve better fits – ending with an ultimate
model containing as many parameters as data points. Bayesian probability theory
generally calculates the probability of a given model compared to one or more alter-
natives. The change point model is not simply another arbitrary functional form that
is likely to provide a better fit to the data due to its extra parameter. The assessment
of the quality of a model is determined by the so-called odds ratio that is described
in detail in Dose and Menzel (2006). The odds ratio assumes the same prior prob-
abilities for competing models and in this case is equal to the so called “Bayes
Factor”. The Bayesian approach provides a powerful way of assessing compet-
ing models at the forefront of science by automatically quantifying Occam’s razor
(Garrett 1991). Occam’s razor is a principle attributed to the medieval philosopher
William of Occam (or Ockham). The principle states that one should not make more
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Fig. 11.1 The Bayesian approach to phenological time series analysis (an example using the
beginning of flowering of Syringa vulgaris at Grünenplan, Germany). (a) constant model, (b) lin-
ear model, (c) change point model, (d) change point probability distribution for the change point
model, (e) the functional behaviour of the time series (continuous line) with confidence intervals
(dashed lines) for the change point model and (f) the derivative of the time series, the trend, with
dashed lines representing the upper and lower confidence interval

assumptions than necessary. It chooses the simplest from a set of otherwise equiv-
alent models of a given phenomenon. In any given model, Occam’s razor helps us
to “shave off” those variables that are not really needed to explain the phenomenon
(Garrett 1991). The one change point model is sufficient to represent the major
change in a 50 year long phenological and temperature time series.

Figure 11.1c displays only the maximum likelihood fit of a continuous func-
tion with two linear segments. In Bayesian probability, however, not only the single
triangular function shown in Fig. 11.1c, but the overlay of all possible triangular
functions (their number is N-2 for N data points) weighted with their associated
probability should be considered. The Bayesian marginalization rule is employed
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to remove the change point variable by marginalization. This extremely important
rule removes ‘nuisance’ parameter/s from a Bayesian calculation (Dose and Menzel
2004). The change point variable is such a ‘nuisance’ parameter because we do
not consider the best solution to be that which minimises the root mean square error
(RMSE), or the two or three best triangular functions, but all of them. The advantage
is that the marginalisation rule overlays all possible triangular functions and then
weighs them by their respective change point probability. By using the Bayesian
marginalization rule the support functional values can be eliminated resulting in a
probability, p(E), for a particular change point choice. If the data exhibited an abrupt
change, then this change point probability would be zero except for that particular
E. In cases of more gradual change, appreciable change point probabilities are also
observed for E±1, E±2 . . . . The associated probability of a change point position
can be rigorously calculated. We do not show how these change probabilities are
calculated but display the result as a curve in Fig. 11.1d. A detail explanation of
the used Bayesian calculations is shown in Dose and Menzel (2004). Readers who
want to know more fundamental detail about the Bayesian ideas are referred to the
excellent tutorial by Sivia (2005).

In Fig. 11.1e the functional behaviour of the data, following the above procedure,
is displayed, including the uncertainty of the function estimate which should not be
confused with the variability of the data.

Even more interesting than the functional behaviour of a time series is the func-
tional behaviour of its derivative, the trend. The derivative of a linear function is a
constant, the derivative of a triangular function is a constant c1 in the range t1<t<tc
and another constant c2 in the range tc<t<tN. The Bayesian result for the overall
trend is, as for the function estimation, the overlay of all possible step functions
weighted by their respective change point probabilities. The resulting trend esti-
mates including point-wise uncertainties are shown in Fig. 11.1f. What happens if
all three model alternatives exhibit similar probabilities?

Bayesian probability theory calculates the probability of a given model (i.e in
our case the change point model compared to two alternatives) such as the constant
and linear models. Unless one of the models sticks out with a very high probabil-
ity, the description of the data in terms of only one model is again unsatisfactory.
Instead, the rigorous application of Bayesian probability theory describes that the
proper functional behaviour and the proper trend are obtained by superposition of a
constant, a linear function and the change point model function again weighted with
their respective model probabilities.

11.3.1.2 Examples

Example 1 Bayesian Analysis of Climate Change Impacts in Phenology (Dose and
Menzel 2004)

Dose and Menzel (2004) applied the method to blossom time series of Prunus
avium L., Galanthus nivalis L. and Tilia platyphyllos SCOP. The functional
behaviour of these series is represented by three different models: the constant
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model, the linear model and the change point model. Their results provide a quan-
titative representation of what was previously inferred from the same data by less
involved methods. The model comparison option of the Bayesian theory allows the
evaluation of which one, out of the chosen group of models, is best suited to describe
the trend that is hidden in the data. For the three time series at Geisenheim, it turns
out that the most likely model is the change point model. The resulting change
point probability has the maximum near 1985 (0.070) for cherry blossom and, with
a quite similar distribution, a maximum near 1984 (0.090) for lime tree blossom.
The change point probability distribution of snowdrop blossom is much broader,
even multi-modal, with a maximum near 1986 (0.055) and a secondary maximum
(0.020) near 1964. The rate of change determined by the change point model reaches
–1.5 days yr–1 in 2002 for snowdrop blossom, and around –0.6 days yr–1 both for
cherry and lime tree blossom.

Several studies report time of season differences with the highest advances usu-
ally in early spring, and notable advances of succeeding phenophases in full spring
and early summer (e.g. Bradley et al. 1999, Defila and Clot 2001, Menzel et al.
2001). Sparks and Smithers (2002) suggest higher temperature changes in early
in the season as the reason for this differentiation. The relative order of changes
revealed for these three species’ blossom series at Geisenheim accords with other
results: regression coefficients from mean anomaly curves of Germany (1951–2000,
Menzel 2003) ranged from –0.25 days yr–1 for snowdrop, to –0.14 days yr–1 (lime
tree) and –0.09 days yr–1 (cherry). It is evident that their absolute magnitude for
the 1951–2000 period is much smaller than rates of change determined for the year
2002 with the change point model. A recalculation of the regressions in Menzel
(2003) for the 1985–2000 period revealed advances of –1.42 days yr–1 for snow-
drop blossom, –0.67 days yr–1 for cherry blossom and –0.86 days yr–1 for lime tree
blossom. These average rates of change for Germany mirror the results of our new
method based on Bayesian theory.

Over most of the century, there is essentially zero change; however, from the
mid-1980s onwards, the rate of change is negative for cherry and lime tree blossom.
This finding is consistent with the results of other studies (e.g. Scheifinger et al.
2002, Chmielewski and Rötzer 2002) that describe a discontinuous shift towards
earlier occurrence dates in the late 1980s and almost no significant trends before
that date. However, the negative rate of change in snowdrop blossom is not evident
prior to 1992; although the rates of change are relatively high in the 1990s they are
associated with a considerable uncertainty range.

The proposed new method of selecting models to describe the trend in phenologi-
cal time series has major advantages compared to the traditional statistical approach
of linear regression. Figure 11.2 displays the slopes of the linear regression and the
corresponding significance by the Mann–Kendall trend test for all possible com-
binations of starting (x-axis) and ending year (y-axis) with 10 or more years of
observation of cherry blossom at Geisenheim. This first example clearly demon-
strates that the resulting trends start to be representative in the temporal scale when
more than 30 years are included. The main obstacle of this traditional approach is
evident: the rate of change strongly depends on the time period and no distinct rate
of change for single years can be given.
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Fig. 11.2 Trend matrix: Linear regression coefficients and their significance by the Mann–Kendall
trend test for Prunus avium blossom time series at Geisenheim/Germany. (.1 Q1≥ 1. . .2, 1 Q1>2)

However, all time series ending in 1989 and later reveal advancing trends, espe-
cially if they start in the second half of the 20th century. The corresponding results
for lime tree (trend matrix not displayed) are very similar to Fig. 11.2. The trend
matrix for snowdrop (not shown) is even more heterogeneous because snowdrop
blossom was observed extremely early in several years between 1910 and 1923, and
thus nearly all time series starting before 1920 reveal delayed blossom.

Example 2 The Use of Bayesian Analysis to Detect Recent Changes in
Phenological Events Throughout the Year (Schleip et al. 2006)

The paper of Schleip et al. (2006) focused on recent changes in phenological events
throughout the year. They analysed 2600 observational time series in Europe and 19
phenological phases of different seasons (Table 11.1). Schleip et al. (2006) found
that in all seasons (very early spring, early spring, mid summer and early autumn,
late autumn) and for all phases the change point model possessed, on average, the
highest model probabilities (Fig. 11.3).
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In particular, the phases at the middle and at the end of the year were charac-
terised by higher change point model probabilities (see Fig. 11.3c and d); almost all
time series of mid summer, early autumn and late autumn season had median values
of over 60%. The highest change point model probability was reached in late autumn
by Aesculus hippocastanum leaf colouring (Fig. 11.3d). No significant differences
concerning model probabilities existed between forest trees, fruit trees and other
plants. The probabilities of the linear model mostly ranged between 20 and 30%;
but in mid summer to late autumn the constant model had very low probabilities
(Fig. 11.3c, 10% on average).

In Fig. 11.4 the results of analysis of phenological phases across the year of the
two selected species, horse chestnut (Aesculus hippocastanum) and common oat
(Avena sativa), are displayed. Both species revealed a nearly continuous increase
of mean and median probabilities of the change point model from the beginning of
the growing period (leaf unfolding, flowering) until its end (full ripeness, autumn
colouring).

The results of both Figs. 11.3 and 11.4 indicated that the probabilities of the
three different models to describe the observational records clearly changed with
season. In general, observed changes at the end of the growing season were more
abrupt; thus, the change point model was noticeably superior for description of these
time series. The independent results for single species in Fig. 11.4 clearly confirm
the results of Fig. 11.3 and prove that they are not an artefact of studying different
species’ phases in different seasons.

Fig. 11.4 Horizontal boxplots of change point probabilities for phenological stages across the year
(for description see Fig. 11.3, numbers of stations in brackets). The definition of the phenological
stage labelled ‘‘cultivation’’ includes all processes which involve a tilling and manipulation of the
soil such as ploughing, disk harrowing and seed bed preparation
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11.3.1.3 Discussion

The two examples compared three models, the constant, linear and change point
models, using a new method for the analysis of phenological time series based on
Bayesian concepts, recently presented by Dose and Menzel (2004).

The model comparison gives new insight into the type of changes. Two model
types were identified as less probable, thus less important; the linear model type
which suggests a constant change, perhaps due to a gradual change in climate and
the constant model, which can be linked to the idea of no changes in the underlying
triggering factors or expressed time lags in their reaction.

The clear preference for the change point model signifies that there are non-linear
changes in the phenological. Semenov et al. (2004) have already emphasised that
phenological data are non-linear functions of the temperature-regime characteristics
of surface air. Particularly the second example proved that long-term phenological
time series of key phases (Table 11.1, Fig. 11.3) for four seasons (very early spring,
early spring, mid-summer/early autumn, and late autumn) could be described better
by the change point model than by traditional methods. In the model comparison,
the change point model outperforms the conventional linear and constant models by
far. It is important to note that we identified relevant and mostly abrupt changes in
all phenological seasons. We even reveal higher change point model probabilities
for autumn events than those in the spring. We can conclude that the change point
model was superior in all cases. Seasons at the end of the year exhibited the highest
probabilities for the change point model.

This tendency was confirmed for two selected species, horse chestnut and com-
mon oat (Fig. 11.4) with a nearly continuous increase of change point model
probabilities from stages at the beginning until those at the end of the year. These
results suggest that subsequent phases later in the growing season integrate more
and longer positive temperature anomalies.

11.4 Correlation of Phenological Data with Temperature

11.4.1 Overview

The recent quantification of changes in time series of phenology data with Bayesian
methods has provided compelling evidence for nonlinear changes during the last 20
years. Dose and Menzel (2006) correlated the phenological observations with spring
temperature time series. They compare two alternatives models Ma: temperature and
blossom onset time series evolved independently and Mb: temperature and blossom
onset time series exhibit coherence.

Schleip et al. (2008) analysed rates of change and the relationship between tem-
perature changes and bud burst of Norway spruce in the 51 year period, 1953–2003.
This study does not only deliver quantitative results on the correlations between
temperature and Norway spruce bud burst in Germany, but it also offers new
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insights into model improvement and to methods for the understanding of ecological
responses to climate change.

11.4.2 Methods

Figure 11.5 exhibit the change point probabilities as a function of time for a temper-
ature (thick dashed line) and a phenological time series (continuous line) as well as
their overlap renormalized to unit area (thin dashed line). The upper panel shows a
case of small overlap, characteristic of a small coherence factor and the lower panel
a case of large overlap characteristic of a high coherence factor.

The calculation of the coherence factor relates to the change point distributions
in the following way: the variable “change point position” (E) is eliminated using
the Bayesian marginalisation rule. With a flat prior distribution for the change point
position this amounts to averaging over all N-2 change point positions per series.
Note that N does not need to be identical to the number of observations, because
the algorithm tolerates missing data. The calculation of the probability p(x) that
temperature and phenology observations evolve either independently or coherently
(= synchronously) reduces to performing this average independently for the change
point positions in the temperature (ET) and in the phenology series (EP) or for
ET = EP only. The ratio of probabilities p(coherent)/p(independent) is equivalent
to a Bayes Factor. In the absence of qualified prior information the Bayes Factor
equals the posterior odds (Dose and Menzel 2006). The Bayes Factor will be called
the coherence factor henceforth. A coherence factor above one signifies that the two
time series are more probably synchronous than independent.

In the recent work of Dose and Menzel (2006) the phenological time series of
snowdrop, cherry and lime tree at Geisenheim were related to the three-month mean
temperatures January – March, February – April and March–May. Schleip et al.
(2008) generalized the temperature averaging and chose as the average effective
temperature T(yi) in year yi

T(yi) =
kmax∑
k=1

wk · Tk(yi),
∑

wk = 1 , wk > 0 , (11.13)

where Tk(yi) are the average temperatures in month or week k of year yi, wk are
positive weight coefficients that add up to unity and k=1 is either associated with
January or with the first week of the year, while kmax is the last month or week
in which the phenological event occurs. The unknown weight coefficients are deter-
mined by maximizing the coherence between temperature and the phenological time
series. In the first cycle of the calculation (n=1, where n is the index of the current
cycle of the calculation) we start with an assumption of equal weights wk=1/kmax
for all k. These weights are then used to calculate the coherence factor C using the
procedure of Dose and Menzel (2006).
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Fig. 11.5 Distributions of temperature, bud burst and joint (temperature and bud burst) change-
point probability of Norway spruce bud burst (Picea abies L.) in Schleswig (upper panel) and in
Hof (lower panel). In the upper panel the coherence factor has a value of 1.2 and in the lower
panel a value of 3.3. Note that the y-axes have different scales. The thick dashed line symbolises
the averaged change point probability distribution of the weighted temperatures for the months
January to May. The continuous line represents the probability distribution of the phenological
data. The thin dashed line stands for the joint change point probability
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For cycle n=2, a new random set of unnormalized weights is generated
according to

wnew = wold

(
1 + r ∗ N2

N2 + 4 n2

)
(11.14)

where r is a uniform random number –0.25 < r <0.25, n is the index of the current
cycle of the calculation and N the predetermined number of cycles chosen to find an
optimum set of weights. wnew, wold are components of vectors with the dimension=
kmax. The factor multiplying the random number r is near unity at the beginning of
the calculation, it drops to one half at n = N/2, and converges to 0.2 for n = N. wnew
must, of course, finally be renormalized to sum to unity.

The relationship between weights and coherence factor is nonlinear and com-
plex. In fact there is no guarantee that the function “coherence factor” exhibits a
unique maximum as a function of the kmax weights. This multimodal possibility can
be resolved by using a simulated annealing approach, which accounts for the mul-
timodal possibility and finds the global maximum in the presence of one or several
lower satellite maxima. The name and inspiration of “simulated annealing” come
from annealing in metallurgy, a technique involving heating and controlled cooling
of a material to increase the size of its crystals and reduce their defects. The heat
causes the atoms to become unstuck from their initial positions (a local minimum
of the internal energy) and wander randomly through states of higher energy; the
slow cooling gives them more chances of finding configurations with lower internal
energy than the initial one. By analogy with this physical process, each step of the
simulated annealing algorithm replaces the current solution by a random “nearby”
solution, chosen with a probability that depends on the difference between the corre-
sponding function values and on a global parameter T (called the temperature), that
is gradually decreased during the process. The dependency is such that the current
solution changes almost randomly when T is large, but increasingly “downhill” as
T goes to zero. The allowance for “uphill” moves saves the method from becoming
stuck at local minima – which are the bane of greedier methods.

For this purpose it is necessary to accept not only uphill steps but, conditional on
a certain probability p, where

p = Min(1, exp{(Cnew − Cold)/T}) (11.15)

to allow also for downhill moves. The latter can cross a valley and find another
possibly higher maximum. T is the annealing temperature and scales the difference
between the new (Cnew) and the old (Cold) coherence factors. The approach for one
step of the calculation is then

1. accept uphill moves with probability one, (i.e. always)
2. if Cnew < Cold choose a random number R from a uniform (0,1) distribution and

accept the downhill move if
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Cnew − Cold

T(n)
> ln R (11.16)

Currently, there is no general rule for the choice of T(n).
The present calculations were done with T(n+1) = T(n)/1.01 (e.g. a one percent

decrease of temperature per step). The simulated annealing approach leads to the
same approximate optimum as the simple “uphill search” discussed before.

11.4.3 Examples

Example 1 Bayesian correlation between temperature and blossom onset data (Dose
and Menzel 2006)

Dose and Menzel (2006) compared blossom trends for the coherent and independent
hypotheses and found that the transition from trends being slightly positive before
1970 to strongly negative by 200x becomes sharper when the temperature data are
included in the analysis (Fig. 11.6).

For the three species considered: snowdrop, cherry and lime tree Dose and
Menzel (2006) found factors of 1.05, 2.19 and 3.26, respectively, in favour of coher-
ence. Quantitative differences in the Bayes factors of cherry and lime tree, reflecting
different amounts of interdependence, are not evident in traditional correlation anal-
ysis. These differences between cherry and lime tree results may be related to
different temperature sensitivities. The fact that no preference for a coherent treat-
ment of snowdrop blossom and January–March temperatures was found, although
traditional correlation analysis gives a correlation coefficient r2 of 0.56, raises fur-
ther questions. Either January–March temperatures are not the most appropriate
measure to attribute observed changes in snowdrop blossom to, or other possible
triggering parameters, such as soil temperatures or snow cover should be consid-
ered, too. Additionally, changes in blossom dates may also be (partly) attributed
to other causes, such as changes in variety or microclimatic conditions at top soil
and/or ground level which are not mirrored at the 2m height where air temperature
is measured.

Thus, the Bayesian answer to the question whether changes in temperature and
phenology should be regarded as coherent as was found with cherry and lime trees
or independent as in the case of snowdrop also offers deeper biological insight. In
conclusion the Bayesian treatment of the problem not only provides us with num-
bers of well-defined meaning as to which of the two alternative hypotheses Ma: the
evolution of temperature and blossom onset time series is causally independent or
Mb: the two time series exhibit correlation, is supported by the data. In case that Mb
dominates it also allows pooling of temperature and blossom data to arrive at much
more precise trend estimates. The return of the Bayesian analysis is therefore much
superior to the results of a traditional correlation analysis.

Example 2 Norway spruce (Picea abies): Bayesian analysis of the relationship
between temperature and bud burst (Schleip et al. 2008)
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Fig. 11.6 The figures in the upper row show the original data on blossom onset. The second
row shows change/matching point probabilities for the chosen two segment polygonal as obtained
for the temperature data as full dots, for the blossom time series as the dashed trace and the joint
probability from the pooled data set as a continuous curve. The third row reproduces blossom trend
results obtained earlier on the basis of blossom time-series data only (Dose and Menzel 2004). The
lower row shows the corresponding trend predictions based on the joint temperature and blossom
data sets

Schleip et al. (2008) applied the Bayesian probability approach when investigating
the time series of the phenological phase of bud burst in Norway spruce (Picea abies
(L.) Karst.) as well as mean monthly and/or weekly temperatures of corresponding
climate stations in Germany. They used the Bayesian coherence analysis of Dose
and Menzel (2006) to estimate the coherence between phenological onset dates and
an effective temperature generated as a weighted average of monthly and weekly
means from January to May. Weight coefficients were obtained from an optimization
of the coherence factor by simulated annealing.

Most time series of naturally-occurring events in ecosystems do change in a
nonlinear way (Dose and Menzel 2004, Schleip et al. 2008). Schleip et al. (2008)
showed, using the approach of Dose and Menzel (2004) that linear regression
models by themselves are of limited value for the analyses of temperature or phe-
nological time series. Norway spruce bud burst time series (1953–2003) of 17 out
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of 18 German stations revealed an abrupt change at the beginning of the 1980s. The
change point model proved to be the preferred model with an average model prob-
ability of 87% to describe this observed discontinuity. Schleip et al. (2008) showed
that temperature time series also exhibited this discontinuity at the beginning of
the 1980s. April and May mean temperatures revealed the highest change point
probabilities. The advantage of the Bayesian probability method is that it allows an
accurate analysis of the relationship between phenology and temperature observa-
tions. In all cases investigated in Schleip et al. (2008), the results clearly suggested
a coherent development of temperature and phenological time series, with some
coherence factors as large as three. Therefore, they expected that change point prob-
abilities derived from the two data sets (joint change point distribution) would be
more informative (e.g. better localized in time than that obtained from a single series
of data) (see Fig. 11.7).

Norway spruce bud burst represents a phenological phase which shows a prompt
response to temperatures of the previous (April) and current month (May) with
average temperature weights of 0.48 and 0.28, respectively.

Fig. 11.7 Box plots of change point probability distributions of joint (temperature and pheno-
logical) change point probability at the corresponding 18 climate stations. Change point model
probability distributions were calculated for the period 1951–2003. The median is represented by
the horizontal line within each box plot. The top of each box is the third quartile (Q3) – 75% of
the data values are less than or equal to this value. The bottom of the box is the first quartile (Q1) –
25% of the data values are less than or equal to this value. The lower whisker extends to this adja-
cent value – the lowest value within the lower limit. The upper whisker extends to this adjacent
value – the highest data value within the upper limit
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Schleip et al. (2008) calculated model averaged rates of change, using the Bayesian
probability approach of Dose and Menzel (2004). Model averaged rates of change
are obtained by the superposition of the constant, the linear and the change point
model rates of change, weighted by the respective model probabilities. The model
averaged rates of change of April and May temperatures have increased from 1951
to 2003, which is equivalent to increased warming. In 2003, May temperature
change rates of 18 climate stations ranged from 0.03 to 0.17◦C year–1 whereas in
1951 May temperature change rates ranged from –0.03 to 0.03◦C year–1. In con-
trast, change in bud burst of Norway spruce in 2003 was estimated from –0.25 to
–0.75 days year–1 but had showed a delay in 1951. Over most of the investigated
period, there was essentially a zero rate of change; but from the 1980s onwards the
rate of change was negative for Norway spruce bud burst. This finding is consistent
with results of other studies (e.g. Scheifinger et al. 2002, Chmielewski and Rötzer
2002, Dose and Menzel 2004, Schleip et al. 2006) that describe an abrupt change
towards earlier occurrence dates in the late 1980s and almost no significant rates of
change before that date.

The results of Menzel et al. (2006) and Menzel (2003) underline the findings
of Schleip et al. (2008). Menzel (2003) found that the anomaly curve of Norway
spruce revealed notable phenological advances of 0.13 days year–1 during the
previous 5 decades (1951–2000). Menzel (2003) detected that, in general, later
spring phases (including Norway spruce) responded to March to May temperatures.
Menzel (2003) calculated the subset regression between phenological anomalies
of bud burst of Norway spruce and the three-monthly running mean temperatures
of March, April and May. Her results showed a r2 of 0.79 and a slope of –4.7
days year–1. Menzel (2003) also applied a two-variable model where the month
preceding bud burst (April) was chosen as the first variable and the mean tempera-
tures of March to May as the second variable; these explained most of the variability
(r2 = 0.85). In the work of Menzel et al. (2006), most phases correlated signifi-
cantly with mean monthly temperatures of the month of onset and the two preceding
months. For 19% of the phenophases the highest correlation was seen with the
month of onset, 63% with the preceding month and 18% with that 2 months earlier.

The enhancement of resolution of the approach by weekly or even shorter tem-
perature intervals has pros and cons. On one hand such an enhancement of resolution
inherits a loss in the achievable precision and very likely causes unwanted noise. In
other words, if we conducted the analysis with a daily resolution, we might get
high temperature weights of a certain day which is more likely accidentally and
not because of a biological dependence. But, on the other hand, the results of the
weekly analysis reveal more specific information about further systematic biologi-
cal dependences. Beside April and May, the end of February exhibited a systematic
accumulation of higher temperature weights.

The state of forcing is often described as a sum of daily rates of forcing (Chuine
2000). Our example suggests that bud burst does not simply react to a rate of forcing
with fixed temperature sum or defined threshold value as used by Cannell and Smith
(1983), Murray et al. (1989) and Häkkinen (1999) and others. Forcing temperatures
rather exhibit a periodic pattern with a smaller first signal at the end of February
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and a greater temperature prompt in April and May. However, forcing temperatures
have changed in recent decades in a nonlinear way.

As support for more ecophysiological approaches, one could say that they should
incorporate specific forcing temperature change patterns rather than temperature
threshold sums of previous and current years. Linkosalo (2000) concluded that the
formulation of commonly used phenological models seems to be general enough
to suit several different plant species and various phenological phenomena. But
Linkosalo (2000) also mentioned that it is also possible that the nature of the control
mechanism is not straightforward triggering as stated in the same models.

Häkkinen (1999) has already discussed the disadvantages of standard statistical
methods because of the dynamic nature of the models of bud development theories.
He suggested an alternative approach of a bootstrap and cross validation method for
the evaluation of theories based on the numerical comparison of the model mean
square errors only.

Chuine et al. (1998) tested four commonly used models to predict the dates
of flowering of temperate-zone trees, the spring warming (Hunter and Lechowicz
1992), sequential (Sarvas 1974, Hänninen 1987, 1990, Kramer 1994b), parallel
(Landsberg 1974, Hänninen 1987, 1990, Kramer 1994a) and alternating models
(Cannell and Smith 1983, Murray et al 1989, Kramer 1994a, 1994b). The main
disadvantages of these models are that they are unable to make accurate predictions
based on external data (Kramer 1994a). Chuine et al. (1998) stated that the external
validity is still not available for the majority of the species. They suggested that a
wrong estimation of the starting date of the forcing phase and a wrong estimation
of the critical state of forcing may be the reason. The comparison of the accuracy of
different models for different species shows that there is no consensus model even
if some models seem consistently more accurate than others (Chuine et al. 1998).

11.5 Discussion

Our examples indicate that the method of Bayesian analysis combined with the
method of simulated annealing may bring a valuable contribution to the estimation
of forcing temperatures and model selection.

Phenophases are responding to many meteorological and environmental factors
such as light, photoperiod, temperature, precipitation, humidity, wind, soil condi-
tions etc. (Schnelle 1955, Menzel 2002). Despite the many influencing factors,
the timing of leaf unfolding and flowering of deciduous vegetation is most likely
triggered primarily by temperature. Specifically, chilling temperatures break winter
dormancy and subsequent warming temperatures induce budburst (e.g. Chuine et al.
1998, Sparks and Menzel 2002, Rosenzweig et al. 2007).

The comparison of model averaged rates of change of, for example, Norway
spruce bud burst time series with those of monthly temperatures that exhibit the
highest temperature weights gives us further insights into the relationship. The
description of the data in terms of only one model is often unsatisfactory (Dose and
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Menzel 2004, Schleip et al. 2006). The Bayesian model comparison analysis allows
us to estimate a reliable combined model averaged rate of change. Compared to the
commonly used linear regression approach, we are able to provide model averaged
rates of change at an annual resolution. This helps us to describe discontinuities and
to quantify the direction and speed of the changes. Furthermore the implemented
simulated annealing method allows the determination of temperature weight coeffi-
cients that show us which temperature changes support phenological change points.
It is worth noting that the model averaging process does not alter the shape of the
rate of change derived from the change point model. The model averaging procedure
adds a counterbalance due to the constant contribution from the linear model and a
reduction of the amplitude by the amount of the model probability obtained for the
change point model. The results of Schleip et al. (2006, 2008) clearly reveal that the
phenological phase has a discontinuity in the 1980s. In the second example we con-
firmed for several climate stations in Germany that temperatures in April and May
had a very similar discontinuity in the 1980s. The reason for this specific timing of
change points in the 1980s is most likely linked to altered atmospheric circulation
patterns, such as the North Atlantic Oscillation (NAO) (e.g. Menzel 2003).

11.6 Conclusion

Regional studies of plant phenology, often using phenological network data, are
extremely important for assessing the impacts of global change as they can shed
light on regional peculiarities. However, this information is only revealed if the spa-
tial variability can be separated from inherent problems in the temporal significance
due to different underlying time periods. This latter point is the crucial limitation
of the currently used linear regression approach. By contrast, Bayesian concepts
allow the comparison of different models to describe the functional behaviour of
phenological time series and even provide annual predictions of rates of changes.
Thus, this new approach allows an intensified comparison of regional changes in
phenology.

In general, the Bayesian approach provides a unique tool for phenological time
series analysis as the reliability of the functional behaviour and of the trend is
represented by confidence intervals, which are diagnostically useful as observed
odd changes in our study emphasise. Plant phenological research provides funda-
mental knowledge on the development rhythm of plant species and of influencing
factors. Plants have different sensitivities and responses to climate changes which
may lead to changes in population dynamics. Differences in their phenological
response may affect the competition among species (Kramer et al. 2000) and pro-
mote those with a better adaptive response. Changes in species distribution and
abundance are expected to result from climate change, which may have positive
and negative effects. New crop varieties can become productive in specific regions
and unknown diseases or weeds may appear in certain areas. Thus, the phenolog-
ical responses should be examined at all levels of the plant-environment system
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(Beaubien 1996), as a continued trend towards earlier development is very likely to
happen.

The frequent observations of a non-linear change underline the importance of
Bayesian analyses. Often the strongest changes in the length of the growing season,
which is a central clue for the variation of carbon exchange of terrestrial ecosystems,
take place at the beginning of the vegetation period. The earlier spring phenophases
are the most consistent indicators, however, late spring species benefit more from a
prolongation in spring time than early spring species. The reason for this is because
late spring species exploit longer days (Schaber 2002). Bayesian nonparametric
function estimation is the method of choice for the identification of changes in phe-
nological records and will allow a better large scale attribution of these changes to
the temperature evolution in the second half of the twentieth century.

References

Ahas R (1999) Long-term phyto-, ornitho- and ichthyophenological time-series analyses in
Estonia. Int J Biometeorol 42:119–123

Ahas R, Aasa A, Menzel A et al (2002) Changes in European spring phenology. Int J Climatol
22:1727–1738

Beaubien EG (1996) Plantwatch, a model to initiate phenology in school classes. Phenol Season
1:33–35

Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean
temperature. Int J Biometeorol 44:53–59

Bradley NL, Leopold AC, Ross J et al (1999) Phenological changes reflect climate change in
Wisconsin. PNAS 96:9701–9704

Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea
sitchensis. J Appl Ecol 20:951–963

Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperature-
zone trees using simulated annealing. Plant Cell Environ 21:455–466

Chuine I (2000) A unified model for budburst of trees. J Theor Biol 207:337–347
Chmielewski F-M, Rötzer T (2002) Annual and spatial variability of the beginning of growing

season in Europe in relation to air temperature changes. Climate Res 19:257–264
Dose V, Menzel A (2006) Bayesian correlation between temperature and blossom onset data.

Global Change Biol 12:1451–1459
Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Global

Change Biol 10:259–272
Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207
Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:

1689–1691
Freitag E (1987) Auswirkungen von Klimaänderungen auf den Entwicklungsrhythmus der

Pflanzen für historische Zeiträume. Schlussbericht zum BMFT-Förderungsvorhaben KF2008,
Deutscher Wetterdienst, Offenbach am Main

Garrett AJM (1991) Ockham’s Razor. In: Grandy WT, Schick LH (eds) Maximum entropy and
bayesian methods, Kluwer, Dordrecht, pp 357–364

Hänninen H (1987) Effects of temperature on dormancy release in woody plants: implications of
prevailing models. Silva Fenn 21:279–299

Hänninen H (1990) Modelling bud dormancy release in trees from cool and temperate regions.
Acta For Fenn 213:1–47



11 Bayesian Methods in Phenology 253

Häkkinen R (1999) Statistical evaluation of bud development theories: application to bud burst of
Betula pendula leaves. Tree Physiol 19:613–618

Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. J Appl Ecol
29:597–604

Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and
wine production and quality for Bordeaux, France. Am J Enol Viticult 51:249–261

Kramer K (1994a) Selecting a model to predict the onset of growth of Fagus sylvatica. J Appl Ecol
31:172–181

Kramer K (1994b) A modelling analysis of the effects of climatic warming on the probability
of spring frost damage to tree species in The Netherlands and Germany. Plant Cell Environ
17:367–377

Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of
climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an
overview. Int J Biometeorol 44:67–75

Lauscher F (1978) Neue analysen ältester und neuerer phänologischer Reihen. Arch Meteor
Geophy B 26:373–385

Lauscher F (1983) Weinlese in Frankreich und Jahrestemperatur in Paris seit 1453. Wetter Leben
35:39–42

Landsberg JJ (1974) Apple fruit bud development and growth; analysis and an empirical model.
Ann Bot 38:1013–1023

Linkosalo T (2000) Mutual dependency and patterns of spring phenology of boreal trees. Can. J.
For. Res. 30:667–673

Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int
J Biometeorol 44:76–81

Menzel A (2002) Phenology: its importance to the global change community. Climatic Change
54:379–385

Menzel A (2003) Phenological anomalies in Germany and their relation to air temperature and
NAO. Climatic Change 57:243–263

Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659
Menzel A, Estrella N (2001) Plant phenological changes. In: Walther GR, Burga CA, Edwards PJ

(eds) Fingerprints of climate change—adapted behaviour and shifting species ranges, Kluwer
Academic/Plenum Publishers, New York and London, pp 123–137

Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons
in Germany from 1951 to 1996. Global Change Biol 7:657–666

Menzel A, Sparks T, Estrella N et al (2006) European phenological response to climate change
matches the warming pattern. Global Change Biol 12, 1969–1976, doi:10.1111/j.1365-
2486.2006.01193.x

Murray MB, Cannel MGR, Smith RI (1989) Date of bud burst of fifteen tree species in Britain
following climatic warming. J Appl Ecol 26:693–700

Penuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in
the Mediterranean region. Global Change Biol 8:531–544

Root TL, Price JT, Hall KR et al (2003) Fingerprints of global warming on wild animals and plants.
Nature 421:57–60

Rosenzweig C, Casassa G, Imeson A et al (2007) Assessment of observed changes and responses
in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP et al (eds) Climate
Change 2007. Impacts, adaptation and vulnerability. Contribution of Working Group II to the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, UK, pp 79–131

Rosenzweig C, Karoly D, Vicarelli M et al (2008) Attributing physical and biological impacts to
anthropogenic climate change. Nature 453:353–357

Sagarin R (2001) Phenology: false estimates of the advance of spring. Nature 414:600
Sagarin R, Micheli F (2001) Climate change in non-traditional data sets. Science 294:811
Sarvas R (1974) Investigations on the annual cycle of development of forest trees. II. Autumn

dormancy and winter dormancy. Commun Inst For Fenn 84:1–101



254 C. Schleip et al.

Schaber J (2002) Phenology in Germany in the 20th Century: methods, analyses and models.
Dissertation, University of Potsdam

Scheifinger H, Menzel A, Koch E et al (2002) Atmospheric mechanisms governing the spatial
and temporal variability of phenological observations in central Europe. Int J Climatol 22:
1739–1755

Schnelle F (1950) Hundert Jahre phänologische Beobachtungen im Rhein -Main -Gebiet, 1841–
1859, 1867–1947. Meteorol Rundsch 3:150–156

Schnelle F (1955) Pflanzen-phänologie (Plant phenology) – Akademische Verlagsgesellschaft
Geest & Portig K.-G

Schleip C, Menzel A, Estrella N et al (2006) The use of Bayesian analysis to detect recent changes
in phenological events throughout the year. Agric Forest Meteorol 141:179–191

Schleip C, Menzel A, Dose V (2008) Norway spruce Picea abies. Bayesian analysis of the
relationship between temperature and bud burst. Agric Forest Meteorol 148:631–643

Schwartz MD, Reiter BE (2000) Changes in North American Spring. Int J Climatol 20:929–932
Semenov SM, Koukhta BA et al (2004) Nonlinearity of climate-driven changes in phonological

dates in woody plants. Doklady Biol Sci 396:221–223
Sivia DS (2005) Data analysis – a Bayesian tutorial. Oxford, Clarendon
Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis

of the Marsham phenological record. J Ecol 83:321–329
Sparks TH, Menzel A (2002) Observed changes in seasons: an Overview. Int J Climatol 22:

1715–1725
Sparks TH, Smithers RJ (2002) Is spring getting earlier? Weather 57:157–166
Sparks TH, Tryjanonwski P (2005) The detection of climate change impacts: some methodological

considerations. Int J Climatol 25:271–277
Trenberth KE, Jones PD, Ambenje P et al (2007) Observations: surface and atmospheric climate

change. In: Solomon S, Qin D, Manning M et al (eds) Climate Change 2007: The physi-
cal science basis. Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK,
pp 235–336

Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature
416:389–395



Chapter 12
Smoothing Methods

Adrian M.I. Roberts

Abstract Regression methods are often used to explore the dependence of the
timing of natural events on the weather. These methods are generally reasonable
straightforward to apply, being available in numerous software packages. Weather
data are commonly aggregated to monthly means, so, for example, the date on which
a particular species flowers each year might be regressed on the monthly mean tem-
peratures during the period preceding flowering. This aggregation has the benefit of
reducing problems due to multicollinearity; temperatures between successive days
and weeks tend to be highly correlated.

In this chapter, we describe regression methodology that can be applied to cor-
related predictor variables, such as daily temperature records, avoiding difficulties
due to multicollinearity. This method, called penalised signal regression, is based on
the observation that the regression coefficients for successive days should be similar
in size. Differences in coefficients between neighbouring days are penalised. This
results in a smooth curve of regression coefficients that is easily interpretable. We
describe several alternative methods that employ this idea and explain how to apply
penalised signal regression in practice.

Keywords Penalised regression · Phenology · P-spline · Smoothing

12.1 Introduction

There is considerable interest in the relationships between the timing of natu-
ral events and weather data, particularly given the current concerns about cli-
mate change and its influence on ecology (Fischlin et al. 2007). Methods for
examining such relationships fall into two classes: model based and association
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based. In the case of the former, models are built on an understanding of the
physiological processes that determine when the event occurs (e.g. thermal time
models (Chuine et al. 2003, Trudgill et al. 2005)). Models tend to be non-linear,
though sometimes it is possible to approximate with linear models (Thompson and
Clark 2006). Association based methods, on the other hand, are not based on any
particular biological model but merely attempt to quantify the relationship with
weather data.

Association based methods tend to be straightforward to apply routinely, requir-
ing less tailoring to particular circumstances. Conclusions can be drawn directly or
the methods can be used as exploratory tools to suggest specific biological models.
In particular, they can highlight secondary effects that otherwise might be missed
(e.g. Fitter et al. 1995, Sparks et al. 2000).

Regression analysis (Draper and Smith 1981) is a class of association based
methods that is widely used in phenology, in particular stepwise regression (Fitter
et al. 1995, Sparks and Carey 1995, Roy and Sparks 2000). Linear regression has
the benefit of flexibility; for example, it is possible to accommodate non-normal
responses, multiple effects, covariates and correlated errors. In phenological appli-
cations, weather data is usually aggregated to averages over a month or more, even
though daily observations may be available. This avoids both numerical problems
and difficulties with interpretation arising from the high dimensional and correlated
nature of daily weather data. However, aggregation is an unsatisfactory solution
since information is lost.

In this chapter we describe a recently introduced approach to examining the
relationship between phenology and weather (Roberts 2008). This, being based
on linear regression, retains the benefit of flexibility. However, it can be used with
weekly or daily weather data and gives results that are intuitively attractive.

To illustrate the concepts, we draw on the Last family records (Last et al. 2003,
Roberts et al. 2004). The Last family made weekly records of the species in flower
in their garden in East Lothian, Scotland, from 1978. From these records, we
have determined the first dates of flowering for 208 species and cultivars from
1978 to 2001. We also have daily weather data from the Royal Botanic Garden
Edinburgh. Here we will largely focus attention on one species, the European rowan
or Mountain ash (Sorbus aucuparia), and the influence of temperature. Over the
period, Rowan started flowering between 23 April (1993) and 3 June (1979), a range
of 41 days. The mean date of first flowering was 16 May. We use here maximum air
temperature; this gave the best stepwise regression results over all the species of the
five temperature measurements available (Roberts et al. 2004).

We will start by giving an overview of some regression methods used in phe-
nology (Section 12.2), motivating the need for new method. We then illustrate the
smoothing approach (Section 12.3), demonstrating some of its advantages. This
method is described in more detail (Section 12.4 and 12.5), leading onto a descrip-
tion of alternative approaches (Section 12.6). Extensions to the approach are then
detailed (Section 12.7), including ways of analysing many species simultaneously.
Finally, software options for implementing the approach are detailed in Section 12.8.
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12.2 An Overview of Regression Methods for Exploring
Relationships with Weather Data

There are several methods available based on linear regression to explore relation-
ships between phenological records and weather data. The most straightforward is
simple linear regression, where the phenological response is regressed on a single
weather variable. The weather variable could be daily or aggregated. In Table 12.1
we show the results of regressing the first flowering dates of Rowan on temperature
data aggregated into months. The regression coefficients (slopes) show the effect
of a 1oC rise in temperature in that month, with a negative coefficient indicating
an advance in flowering. The largest correlations are found with temperatures in
the months February and March, giving an advance in flowering with higher tem-
peratures. January (advance) and October (delay) also have statistically significant
correlations at the 10% level.

Next we illustrate the use of multiple linear regression to look at the effects of
several weather variables simultaneously. This method does not work well if the
variables are highly correlated, otherwise known as multicollinearity, or if there is
a large number relative to the number of observations (Draper and Smith 1981). In
such cases, regression coefficient estimates can be highly sensitive to small changes
in the model or data. This makes it harder to make interpret results. In our data set,
correlation coefficients between consecutive daily temperatures average 0.63 and
are higher in the period November to March. Monthly temperatures are less seri-
ally correlated, with coefficients averaging 0.15. Even so the correlation coefficients
between January and February, and February and March are quite high at about
0.5. It clearly makes sense to use aggregated temperatures for multiple regression to
avoid issues with multicollinearity. In Table 12.2 we show the results of regressing
the first flowering dates of Rowan on monthly temperature data from July of the

Table 12.1 Regression coefficients (days/oC) and correlation coefficients for simple linear regres-
sion by least squares of Rowan first flowering dates on each month mean temperature in turn, from
July of the previous year to May of the year of flowering

Month Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

Coefficient 0.3 –0.2 –4.1 3.2 0.7 0.8 –4.0 –4.9 –6.5 –2.7 –4.2
Correlation 0.02 –0.02 –0.30 0.38 0.07 0.10 –0.55 –0.76 –0.72 –0.26 –0.37

Table 12.2 Regression coefficients (days/oC) for multiple linear regression by least squares of
Rowan first flowering dates all of the monthly mean temperatures from July of the previous year
to May of the year of flowering

Month Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

Coefficient 1.2 1.3 4.5 0.3 0.0 2.3 –0.3 –3.8 –4.7 –0.1 –2.3
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previous year to May of the year of flowering. By summing the regression coeffi-
cients, we see that the predicted effect of an overall 1oC rise in temperature over
the year is a 1.6 day advance in the start of flowering. Again the largest effects are
associated with February and March. Interestingly, September now is linked to a
delay in flowering with rising temperature (c.f. Table 12.1); this inconsistency may
be due to the relatively low number of observations and the correlations between the
months.

Stepwise regression is a variation on multiple regression in which the aim is to
select those predictor variables that “best” explain the response. This is done in
an incremental process by gradually building the regression from a model with no
explanatory variables by adding terms that sufficiently improve the model (forward
selection) or by dropping terms that no longer have a sufficient effect (backwards
elimination). The procedure is finalised once no variables can be added nor deleted.
For a more detailed explanation, see Draper and Smith (1981). Stepwise regression
is commonly used in phenology (e.g. Fitter et al. 1995, Sparks and Carey 1995, Roy
and Sparks 2000, Keatley et al. 2002), having the benefit of focussing attention on
the most influential variables. We apply it here to the Rowan example, using the
mean temperatures in the months from July of the year prior to flowering up to May
of the year of flowering. We use a 1% cut-off significance criterion for entry and
exit of terms. The procedure selects the mean temperatures in February and March
and these have regression coefficients –3.5 and –4.2 days/oC respectively. Given an
overall rise in temperature of 1oC, the model predicts an advance in flowering of 7.7
days. It is clear that these two months have an important association with the timing
of flowering (Fig. 12.1).

Several regression methods have been developed to cope with high dimensional,
correlated arrays of predictor variables, primarily for chemistry applications. These

Fig. 12.1 First flowering dates for Rowan plotted against the mean maximum air temperature over
February and March
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Fig. 12.2 Partial least squares regression applied to Rowan first flowering dates with regressors
being the daily maximum air temperatures from 1 July of the year prior to flowering and the
preceding year to 30 June of the year of flowering. The line interpolates the regression coefficients

include ridge regression, principal component regression and partial least squares
regression (Hastie et al. 2001, Frank and Friedman 1993). We show how one of
these, partial least squares, performs with the Rowan data. Partial least squares
regression works by finding multivariate projections of the predictor data that are
most highly associated with the response variable. By selecting the best of these,
the dimensionality of the predictor array can be reduced. The number of projections
or components required is chosen by a set criterion – we use the cross-validated pre-
diction error (see Section 12.5). For the Rowan example, we choose to use the daily
temperatures from 1 July of the year prior to flowering to 30 June of the year of flow-
ering, giving a total of 365 predictor variables. The resulting regression coefficients
for the Rowan example are shown in Figure 12.2, where the number of components
was chosen to be two. There is some sign of the relationship with temperatures early
in the year of flowering but the graph is difficult to interpret because of the jagged
nature of the coefficients.

12.3 Improving on regression by smoothing

One of the limitations of the more traditional regression methods (see also
Chapter 3) such as multiple regression and stepwise regression for phenology is
that it is necessary to aggregate weather data, thus resulting in loss of information.
Other regression methods, such as partial least squares, that have been developed to
cope with many correlated variables give results that are not always easy to inter-
pret. The method that we describe here, using the concept of smoothing, can cope
with weekly or daily weather variables and gives results that are interpretable.
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This smoothing concept is based on the idea that regression coefficients for con-
secutive days should have similar values. We can achieve this through a process of
smoothing the regression coefficients. There are a number of potential mechanisms
for achieving this; here we principally concentrate on the approach of penalising
differences between consecutive regression coefficients. This is known as penalised
signal regression. Whereas in standard linear regression, the regression coefficient
estimates are found that optimise the fit of the model to the data according to the
least squares criterion (Draper and Smith 1981), in penalised signal regression esti-
mates are found that both fit the data well and which have small differences between
consecutive coefficients. This approach is explained in greater depth in Section 12.4.
There are a number of variations on this general idea and these are detailed in
Section 12.6.

We illustrate the penalised signal regression approach using the Rowan example
(Fig. 12.3). Again we use the daily temperatures from 1 July of the year prior to
flowering to 30 June of the year of flowering as predictors. The particular method
that we employ for this analysis is known as P-spline signal regression (Marx and
Eilers 1999) (see Section 12.6). The advancing effect due to the temperatures in the
period prior to flowering is clear, with the peak being around 4 March, 21/2 months
before the mean date of flowering. The lines indicating two standard errors above
and below each regression coefficients help in the interpretation; there is apparently
little effect of temperatures in the calendar year before flowering. A note of caution
should be added here – as for all the alternative regression methods, the quality
of results will depend on the number of observations (years) available. With more
observations, main effects should be more sharply defined and secondary effects
may become evident.

Fig. 12.3 P-spline signal regression applied to Rowan first flowering dates with regressors being
the daily maximum air temperatures from 1 July of the year prior to flowering and the preceding
year to 30 June of the year of flowering. The thick line interpolates the regression coefficients and
the dotted lines represent two standard errors above and below these
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12.4 Some Mathematical Detail

In this section, we describe one of the more straightforward implementations of
the penalised signal regression approach. In least squares regression, the estimates
of regression coefficients are found by minimising the sum of squared residuals. To
constrain the regression coefficients to be similar, a penalty term is added to the sum
of squared residuals before minimisation. This method is described by Eilers (1991)
and Elston and Proe (1995). Note that the latter adopted a likelihood approach rather
than least squares, but these are equivalent for a regression model with independent
normal errors.

For a standard multiple linear regression model y = Xβ + ε, where y is a vec-
tor of responses for the n years observed, X is a n by p+1 matrix corresponding
to the p predictor variables plus a column of 1’s for the intercept, β is a vector
of regression coefficients {β i} including the intercept and εis a vector of indepen-
dent normally-distributed errors with variance σ2, the regression coefficients are
estimated by minimising the expression

(y − Xβ)T (y − Xβ)+ λβTDTDβ (12.1)

The first part of Equation 12.1 is the sum of squared residuals used in least
squares and the second part is the difference penalty term. The parameter λ deter-
mines the balance between the sum of squares term and the penalty and thus controls
the degree of smoothing. The choice of λ and the effect on the coefficient estimates
is discussed in 12.5. D is a matrix that applies differencing to the coefficients β and
has p+1 columns. For given λ, estimates β̂ of β are found by minimising (1). There
is an analytic solution given by:

β̂ = (
XTX + λDTD

)−1
XTy (12.2)

and standard errors for β̂ can be found using:

var(β̂) = σ̂ 2 (XTX + λDTD
)−1

(XTX)
(
XTX + λDTD

)−1
(12.3)

where σ̂ 2 is the estimate of the residual variance.
Different orders of differencing can be employed. First order differences corre-

spond to simple differences between consecutive coefficients: β iβ i+1. Higher order
differences correspond to polynomial contrasts and can be calculated using the
recursive formula (Marx and Eilers 1999):

Dj+1 = D1Djβ (12.4)

where Dj is the difference matrix of order j. For example, second order differences
are of the form β i–2β i+1+β i+2 and third order of the form β i–3β i+1+3β i+2–β i+3.
The order of difference applied will have some effect on the resulting estimates of
coefficients; for example, a third order difference matrix will penalise solutions that
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are not locally quadratic. Eilers and Marx (2003) suggest comparing different low
orders, say from one to three. In our experience, we find that third order differences
give satisfactory results with daily temperature measurements.

Eilers and Marx (2003) suggest the inclusion of a further penalty term, known as
a ridge penalty, which has the effect of shrinking the regression coefficients towards
zero. This is also used in ridge regression (Hastie et al. 2001). The expression (12.1)
becomes:

(y − Xβ)T (y − Xβ)+ λβTDTDβ + γβTβ (12.5)

with solution given by:

β̂ = (
XTX + λDTD + γ I′)−1

XTy (12.6)

where I′ is an identity matrix augmented with zeros to allow for the intercept – this
is not penalised.

The additional term in Equation 12.5 is proportional to the sum of squares of the
regression coefficients. Its importance is controlled by the ridge parameter γ ; see
Section 12.5 for information on choosing γ . We have found the inclusion of a ridge
penalty beneficial in phenology applications.

12.5 Choosing the Degree of Smoothing

As mentioned above, the smoothness of the profile of regression coefficients is con-
trolled by the smoothing parameter λ. Small values of λ produce wiggly solutions
and large values tend to produce curves that look more like low-order polynomi-
als (Fig. 12.4). These correspond to greater and less complexity, respectively. The
degree of complexity can be represented by the effective degrees of freedom, d (Marx
and Eilers 1999). In the Rowan example shown in Figure 12.4, the optimal solution
(also shown in Fig. 12.3) has 5.6 degrees of freedom, and the under- and over-
smoothed solutions have 15.4 and 2.4 degrees respectively. The effective degrees of
freedom are calculated using the formula:

d = trace
((

XTX + λDTD + γ I′)−1
XTX

) − 1 (12.7)

The choice of both λ and the ridge parameter, γ , may be made by subjective
means, using visual judgement of the results, or, preferably, by more objec-
tive means using quantitative criteria. Commonly employed quantitative methods
include cross-validation, the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) (Marx and Eilers 1999, Hastie et al. 2001). These meth-
ods will result in different choices of λ and γ , particularly with low numbers of
observations. Here we describe the most conceptually simple of these methods,
cross-validation.
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Fig. 12.4 Comparison of curves produced by optimal, under and over-smoothing using P-spline
signal regression applied to Rowan first flowering dates with regressors being the daily maximum
air temperatures from 1 July of the year prior to flowering and the preceding year to 30 June of the
year of flowering. The black line interpolates the regression coefficients the optimum choice of λ,
the black dashed line is under-smoothed and the grey dot-dash line is over-smoothed

The objective in cross-validation is to assess how well the model will predict the
timing of events in future years. This is done by portioning the data into a training
set, to which the model is fitted and regression coefficients estimated, and a test set,
which is used to assess the quality of predictions using these estimates. In particular,
in leave-one-out cross-validation (Hastie et al. 2001), the training set is made of up
of all years but one and the test set is the remaining year. The prediction of the
phenological response, ŷ−i, for this year, i, based on the model estimated from the
other years is compared to the observed response, yi. By cycling through all of the
years, using each in turn as the test set, we can build up an estimate of the standard
error of prediction, σ̂cv, thus:

σ̂cv =
√√√√ 1

n − 1

n∑
i=1

(
yi − ŷ−i

)2 =
√√√√ 1

n − 1

n∑
i=1

(
yi − ŷi

)
(1 − hii)2

2

(12.8)

where ŷi is the prediction of the response for year i based on a model estimated from
all years including i, and hii is the ith diagonal element from the hat matrix given by

X
(
XTX + λDTD + γ I′)−1

XT . The second equivalence in Equation 12.8 reduces
computations considerably.

To find the optimal penalty parameters, it is sufficient to calculate σ̂cv on a loga-
rithmic grid of values for λ and γ. Of course it is important to explore the parameter
space fully. It should be noted that multiple local optima may be present, particu-
larly with low numbers of years. In such cases, judgement may be required to select
the most appropriate solution and it is worthwhile examining a plot of σ̂cv against λ
and γ .
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12.6 Alternative Methods

In Section 12.3, we detailed one particular variation of penalised signal regression
by Elston and Proe (1995). Here we outline other possibilities.

The first of these variations transforms the basic penalised regression approach of
Equation 12.4 into an equivalent linear mixed model (Searle et al. 1992) as described
in Sims et al. (2007). Here the difference penalty is interpreted as a random effect
on the differences between the regression coefficients. So Dβ ∼ N(0,σ 2

λ I). Fixed
effects are required for low order polynomials in the regression coefficients repre-
senting the difference between Xβ and Dβ – see Sims et al. (2007) for more detail.
The polynomials have orders up to the order of the difference less one. The mixed
model parameters can then be estimated by residual maximum likelihood (REML)
(Patterson and Thompson 1971, Searle et al. 1992). A feature of the mixed model
parameterisation is that the degree of smoothing is estimated directly though the
variance component σ 2

λ since λ = σ 2/σ 2
λ . Welham et al. (2007) noted that estimates

of λ tend to be larger with this mixed model approach than through cross-validation.
However, current REML implementations may be unable to cope with the very large
numbers of predictors that one may use with daily weather measurements, perhaps
due to conditioning problems. For example, we were unable to process the Rowan
example using the REML procedure in GenStat R© with 365 daily temperatures as
predictors; in contrast the penalised regression parameterisation of Equation 12.1
can be computed quite quickly.

In a similar manner to which the penalised regression is reparameterised into
a mixed model, it can also be placed into a Bayesian framework (see Chapter 11
and Gelman et al. 2004). Here Dβ is given a normal prior with zero mean and
variance-covariance matrix σ 2

λ I. It is also necessary to place priors on the low
order polynomials of the regression coefficients remaining after Dβ is accounted
for, i.e. such that Dβ = 0. As with the mixed model, the degree of smoothing is
related to σ 2

λ . A hyper-prior is required for σ 2
λ : the form of this may have a marked

effect on the results, particularly if the number of years is low, so it is important
to consider this carefully. Distributions that might be considered are the inverse
gamma for the variance or uniform for its square root, the standard deviation. The
parameters of the prior could be informed by experience from analyses of other
similar data. Markov chain Monte Carlo (MCMC) (Gilks et al. 1996) is a flexible
simulation-based approach for fitting Bayesian models. Note that for both the mixed
model and Bayesian formulations, it is not straightforward to incorporate a ridge
penalty along with the difference penalty since β ∼ N(0,σ 2

γ I) and Dβ ∼ N(0,σ 2
λ I)

conflict.
Finally, Marx and Eilers (1999) introduced P-spline signal regression (PSR) as

a way of reducing computational problems associated with very high numbers of
predictors. The approach is similar to that outlined in Section 12.4 except that the
regression coefficients are projected onto a lower dimensional and smooth basis. The
basis chosen is based on B-splines. B-splines consist of polynomial pieces, joining
at defined points known as knots. The number of knots spanned by each piece is
determined by the degree of the spline. For example, the pieces of B-splines of
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degree two are quadratic and span four knots (including the ends). Eilers and Marx
(1996) give more detail on B-splines. Marx and Eilers (1999) suggest that cubic
B-splines are sufficient in most applications of PSR.

A linear transformation, B, based on these B-splines reduces the dimensionality
of the coefficients and places the coefficients on a smooth curve, α, with lower
dimension p∗, so that β=Bα where B has dimension p∗ by p. A penalised signal
regression is then carried out as specified in Section 12.4, with α replacing β and
U=ZB replacing X. The difference penalty serves to smooth the coefficients further.
Eilers and Marx (2003) recommend choosing a large number of knots. This can be
higher than the number of years without causing numerical problems; in the Rowan
example, we were able to use 100 knots.

It is also possible to place PSR into a mixed model framework (Currie and
Durban 2002, Welham et al. 2007). The use of B-spline transformation should
improve numerical properties with larger numbers of predictors.

PSR offers perhaps the most flexible approach of those detailed here, being able
to cope with very high numbers of predictors, and having software available (see
Section 12.8). In the Rowan example shown in Figure 12.4, we used cubic B-splines
with 100 knots and both third order difference and ridge penalties.

12.7 Extending the Method

The basis of the approach is in regression. This allows several options for extending
and generalising the method:

1. Inclusion of covariates as additive effects. For example, we might be particularly
interested in covariates that represent the state of the species in the previous
year. The formulae in Section 12.4 can easily be generalised to include additive
covariates – these only affect the least squares part of Equation 12.1.

2. Inclusion of covariates as multiplicative effects. This allows examination of the
effect of the covariate on the form of the regression coefficient curve rather than
just its height. For example, we might be interested in the effect of latitude. The
method is more complex and is outlined below.

3. Inclusion of more than one set of predictors. For example, the effects of daily
temperature and rainfall may be of interest; therein we have a two-dimensional
surface of regression coefficients. The method is outlined below.

4. Correlated error terms. This could be used to represent the effect that the previous
year’s response might have on the current year’s outcome.

5. Non-normal distributed responses. Marx and Eilers (1999) demonstrate that
the approach can be extended using a generalised linear regression method
(McCullagh and Nelder 1989). The range of possibilities then includes distri-
butions such as the binomial and Poisson.
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The P-spline approach outlined above can be expanded to investigate the effect of
one or more covariates, for example latitude, on the regression coefficients (Eilers
and Marx 2003) or to study how two or more banks of predictors, such as daily
temperature and rainfall measurements, affect the phenological response (Marx
and Eilers 2005). In both cases a smooth surface of regression coefficients is pro-
duced. In parallel to ordinary PSR, the regression coefficients are transformed onto a
smooth surface using tensor-products of B-splines. Tensor-products (a matrix oper-
ation) of one-dimensional B-splines give a mathematically simple way to extend the
idea of B-splines to two or more dimensions – see Eilers and Marx (2003) for a fuller
description. These provide a flexible basis yet economical basis for representing a
surface. The degree of smoothing is again smoothed by difference penalties: one
for each dimension of the surface. Note that the computational cost of the method is
related to the product of number of knots in each dimension; Marx and Eilers (2005)
recommend that this product is limited to 1000.

We illustrate multidimensional PSR to investigate the effect that the date that a
species tends to start flowering has on the relationship of its phenology with tem-
perature. In this case we are examining the effect of a covariate, the mean date of
flowering, on the form of the 1-d PSR curve. Over the range of mean flowering
dates, this forms a 2-d surface of regression coefficients. Since the mean flowering
date is a covariate, we centre the flowering dates for each species by subtracting their
mean. To avoid those species with greater responses to temperature dominating the
analysis, we scale the centred flowering dates by dividing by the standard deviation
of flowering dates for the species. The 2-d surface of regression coefficients that we
wish to produce has one axis representing the daily temperatures and the other rep-
resenting the effect of the mean date of flowering; the 2-d PSR method forms a 2-d
regression coefficient surface using tensor-products of B-splines, one for each axis
direction, which is constrained using separate penalties, again one for each axis.

Figure 12.5 shows the regression coefficient surface produced by applying this
approach to 208 species from the Last family data set. These have mean first flow-
ering dates ranging from 1 January to 27 November. The regression is on daily
maximum air temperature from 1 January of the year preceding flowering to 31
December of the year of flowering. Thirty cubic B-splines are used in each direc-
tion (to keep the product below 1000) along with third order difference penalties
(as for the one-dimensional PSR). A ridge penalty is also included. We found that
the penalty parameters chosen by cross-validation produced a rather wiggly surface.
To aid interpretation, the surface illustrated is based on a greater degree of smooth-
ing, though the increase in cross-validated prediction error is small. The surface is
dominated by a diagonal trough, representing negative regression coefficients. This
shows that the period when increasing temperatures has the effect of advancing
flowering tends to be later for later species. For January flowering species, the key
period when temperature most affects timing of flowering tends to be about a week
prior to the mean date of flowering; for August species, the key period is about three
months before the mean date.
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Fig. 12.5 Contour plot of the regression coefficient surface produced by two-dimensional P-spline
signal regression applied to the standardised flowering dates of 208 species with daily temperatures
for the year of flowering and the preceding year as regressors and mean date of flowering as a
covariate. The surface has been scaled by the mean of the standard error to simplify interpretation.
The dashed line indicates where the temperature day is equal to the mean flowering date. This
figure is reproduced from Roberts (2008) with the kind permission of Springer

12.8 Software

Although off-the-shelf software is not available for the basic penalised signal regres-
sion method (Section 12.4), it is relatively straightforward to implement this with
software that permits matrix manipulations. Statistical packages with such facilities
include SAS R©, S-PLUS R©, R and GenStat R© (Payne et al. 2008). To implement
the mixed model approach, software with both a REML procedure and matrix
manipulations will be required. Again SAS R©, S-PLUS R©, R and GenStat R© have
such facilities. For a Bayesian framework, there are software packages that carry
out MCMC for certain classes of models, including WinBugs (Lunn et al. 2000).
Marx and Eilers have produced S-PLUS R© code for their 1-d and multidimensional
P-spline signal regression methods (see http://www.stat.lsu.edu/faculty/marx/).

12.9 Conclusions

We have described here a flexible approach to exploring relationships between the
timing of natural events and weather data. It allows use of daily weather measure-
ments without the need to aggregate. It can be extended in various ways, permitting,
for example, the examination of weather relationships across many species.
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As mentioned in the Introduction, biologically-based models such as thermal
time models provide an alternative route to investigating the relationship between
the phenological response and weather. The relationship between such models and
the penalised regression approach is of interest. In particular, can the results from
penalised regression models be used to guide the selection of particular thermal time
models? This is the subject of ongoing research. The research will also include an
evaluation of the number of years on the quality of the penalised regression model
and comparison of alternative methods (Section 12.6) and criteria for selecting the
degree of smoothing (Section 12.5).
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Chapter 13
Accounting for Correlated Error Structure
Within Phenological Data: a Case Study
of Trend Analysis of Snowdrop Flowering

Natalie Kelly

Abstract Given that phenological studies can provide insight into some of the
climate change driven alterations in global ecosystems, easily understood but valid
statistical analyses are paramount. Results from studies of trends in phenophases at
a regional level provide more powerful evidence of climate change; and such studies
require observations from multiple locations. However, data containing phenophase
time series from multiple locations has an inherent correlated error structure which
may render standard statistical methods invalid. This chapter explores the prob-
lems in statistical inference that can arise from applying naïve techniques to data
containing correlated error and provides two alternative modelling approaches for
more valid analyses. These alternative modelling approaches – data resolution and
random effects modelling – are extensions of simple linear regression. These mod-
elling approaches are described in detail, compared and discussed in the context
of potential questions, data and analysis issues in phenological research. A case
study of trends in flowering of the spring bulb snowdrop (Galanthus nivalis L.)
across England is used to demonstrate these alternative modelling approaches.
For the period 1952–2000, snowdrop flowering advanced approximately 6.5 days
(SE = 0.10) per decade across England. Snowdrop flowering was also estimated to
advance approximate 3.9 days (SE = 0.52) for every 1◦C increase in mean January
air temperatures during the same period.
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13.1 Introduction

Phenology is the study of the periodicity of biological events such as flowering and
leaf set in plants or trees, or migration and breeding in animals (Lieth 1974). A
fundamental aim of phenological research is to link the variation in periodicity of
such events – known as phenophases – to climate variables, such as air tempera-
ture and rainfall, and other environmental or geographical covariates like pollution
or latitude. As it is often the case that phenophases are sensitive to changes in
climate, especially temperature (Dose and Menzel 2006), phenological data can pro-
vide insight into effects of climate change upon natural systems (Sparks et al. 2000,
Rosenzweig et al. 2007). With a high likelihood of profound changes in the function-
ing of global ecosystems with climate change (Parmesan and Yohe 2003, Thompson
and Clark 2006, Cleland et al. 2007), valid statistical analyses of phenological data
are paramount.

Observations of a given phenophase are made annually, usually at the same
geographical location and by the same observer. Records of a phenophase of a par-
ticular species, or collection of phenophases, at a single location may span many
decades or, as in the famous (and rare) example of the Marsham series, one family in
Norfolk, England, recorded the dates in spring of the appearance of a small number
of common plants and animals for nearly two centuries from 1736 (Margary 1926,
Sparks and Carey 1995). Phenological data are therefore longitudinal; a name which
is traditionally applied to repeated observations of individual sample units through
time. However, repeated observations will not be independent and so are likely to be
correlated. As one of the primary assumptions of many common statistical tests is
that data are comprised of independent samples, correlation must be accounted for
in order to draw valid and efficient inferences about the parameters of interest. This
is a particularly important consideration if phenophase series from multiple loca-
tions are to be analysed together in order to draw inferences about regional level
processes.

This chapter describes both the consequences of correlated data and how to
apply valid statistical analysis to phenological data. To assist in this, a case
study of trend detection in snowdrop flowering at a number of locations across
England is presented. To appeal to varying levels of statistical knowledge, two
methods for modelling correlated data are demonstrated and compared against a
model which ignores correlation – one simple and the other more sophisticated,
and both based on simple linear regression. This chapter assumes knowledge of
regression analysis and linear models and the basic properties of expectations
and variances. For a primer on these topics, readers are directed to references
such as McCullagh and Nelder (1989). As the intention of this chapter is to
introduce statistical methods that account for correlated data in a phenological
context, statistical notation has been kept as simple as possible. If readers wish
to explore further the underlying statistical theory, references such as Pinheiro
and Bates (2000), Verbeke and Molenberghs (2000) and Diggle et al. (2002) are
recommended.
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13.2 Trend Detection and Regional-Level Analyses
with Phenological Data

13.2.1 Trend Analysis

A common analysis of phenological data involves testing for the presence of a trend
in a phenophase of a given species over time or with an associated climate covariate,
such as air temperature (i.e. H0: trend = 0 days per unit of time or climate covariate).
Detection of the presence and magnitude of a trend in a phenophase can indicate the
present cumulative impact of climate change on a species or aid in the prediction
of future changes, either with time or a given climate covariate (Sparks and Menzel
2002). If assessed against time, a trend in a phenophase may then be reported as
a change in days over the study period, per year or per decade (Dose and Menzel
2004). This type of analysis is empirical, using purely statistical concepts to direct
model building (Cleland et al. 2007). However, the results of such empirical analyses
can be used further to inform process-based or physiological modelling (e.g. Chuine
and Beaubien 2001).

Modelling of trends in phenological data series, whether using the slope estimate
or measure of correlation, has the general structure of simple linear regression,

yk = β0 + β1xk + ek (13.1)

where x is the explanatory variable (time or environmental covariate), y is the
realisation of a phenophase usually expressed as a yearday (i.e. number of days
since December 31), and k represents the kth sample. The error term ek accounts
for unexplained variability, and is assumed to be Gaussian and independently dis-
tributed in a population, with a mean of zero and a common variance of σ 2. The
parameters, β0 and β1, are the intercept and slope, respectively. A model of this
type treats phenophase data – both yearday and year values – as variables that are
continuous with a Gaussian distribution. The significance of the slope or trend esti-
mate is usually tested using either a t- or F-test (e.g. as used in a phenology context
by Abu-Asab et al. 2001). When year is treated as an explanatory variable, a positive
trend estimate corresponds to a delay in a phenophase and a negative trend estimate
to an advance of a phenophase over the study period. While the parameter estimate
from a trend model is referred to as a slope, it becomes a trend when considered in
the context of the study.

This method assumes linearity in the response of the phenophase with time or
climate covariates; although there may be little basis for this assumption (Sparks
and Carey 1995, Dose and Menzel 2004, 2006). It is important to note, however, that
a linear function allows for a simple approximation of the direction and magnitude
of a trend and that estimated linear rates are easily understood and palatable to
both scientists and policy makers (Weatherhead et al. 1998). For simplicity, only
linear relationships are considered in this chapter, but some discussion of modelling
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non-linearity in phenological data is offered in Dose and Menzel (2004, 2006) and
Roberts (2008).

13.2.2 Detecting Trends in Phenophases at the Regional Level

The Intergovernmental Panel of Climate Change (IPCC) has made repeated refer-
ence to the importance of testing for changes in biological processes at the regional
level or across a geographical scale of a hundred or so kilometres (Gitay et al.
2001, Rosenzweig et al. 2007). Ecological theories gain weight when able to be
generalised across geographical regions, suites of species, life forms, age classes,
etc (Beck 1997). Likewise, the validity of applying the results of phenophase trend
analysis at a regional level can be strengthened with the inclusion of series of obser-
vations from multiple locations within the region of interest. In addition, including
data from multiple locations in an analysis will also lessen the effects of outliers
arising from unusual seasonal weather or observation error (Häkkinen et al. 1995).
Although the existence of multiple-location phenological data is reasonably rare,
the rise in popularity of phenological networks will ensure more of such data is
available in the future (Cleland et al. 2007).

There has been some discussion in the phenology literature about the repre-
sentativeness of locations of phenophase observations (e.g. Roetzer et al. 2000,
Thompson and Clark 2006 and Siljamo et al. 2008). It is thought that data from
individual locations may unduly influence or bias models of phenological change,
particularly through factors that cannot be controlled for or quantified. Each loca-
tion will have a unique suite of confounded characteristics that will influence the
variance in a phenophase. Firstly, it is likely that each location will have an indi-
vidual observer that may have their own interpretation of the phenophase and bias
is, therefore, introduced through scientific methodology (Siljamo et al. 2008). The
localised climate at each location will also influence the phenophases, but unless
a weather station is placed nearby, these subtle variations in climate will not be
recorded (Thompson and Clark 2006, Siljamo et al. 2008). Further, it is realistic
to assume that genotypes of species spread across a study region may vary enough
to express a different phenophase, even with comparable climatic conditions. The
combination of all these factors will lead to a phenophase systematically occurring
a few days earlier at one location or a few days later at another compared to the
mean of a population of locations. These sources of variation may be accounted for
with a covariate analysis, but this would require a great deal more information to
be collected; which may be a particularly onerous task if attempted retrospectively
(Linkosalo et al. 1996). It is perhaps best, therefore, to concede that each location
will have a certain amount of random variation that differs between locations and
that cannot be realistically quantified.

Fortunately, if the geographical positions of locations of phenophase series arise
randomly – which is probably a fair assumption given a large proportion of phe-
nological data is sourced from amateur observers – means and trend estimates
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derived by combining these data are going to be unbiased for the greater underlying
population, regardless of the consequences for the associated variance. To this end,
some consideration has been given to the problem of combining phenophase series
from locations which vary from one another as described above. The basic idea of
methods introduced by Häkkinen et al. (1995) and further developed by Schaber
and Badeck (2002) involves comparing the series from each location and estimat-
ing the location-wise bias. This location-wise bias is considered systematic for each
location. Put in simplest terms, by estimating and accounting for location-wise bias,
the residual errors in trend estimate models were decreased, providing more power
to detect the presence of trends. This type of model is known as a random effects
model, where location-wise effects can be considered either fixed or random (def-
inition expanded upon below). Although not directly discussed by either Häkkinen
et al. (1995) or Schaber and Badeck (2002), these very same models can be used to
account for correlations in longitudinal data.

13.3 Statistical Analysis of Snowdrop Flowering Data

The analysis presented here aims to explore three models that differ in how they
account for correlations between observations of a phenophase within a given
location. A comparison between the models is presented, based on two common
parameters of interest in analyses of trends in phenological data: the estimate of
the trend and its standard error. To illustrate this, a case study of spring flowering of
snowdrop is presented, where the aim is to identify trends in flowering over time and
with a changing climate covariate across the latter half of the twentieth century over
a region of England. After the case study is introduced, each model to be explored
will be is described in turn.

13.3.1 Case study

Phenological studies will almost certainly be observational and therefore rely
on correlation analysis for inference (Parmesan and Yohe 2003, Sparks and
Tryjanowski 2005). Unfortunately, causal relationships are notoriously difficult, if
not impossible to prove with observational studies. In recognition of this problem,
the IPCC produced guidelines to strengthen inferences from correlation analyses on
observational studies (outlined in Gitay et al. 2001 and implied in Rosenzweig et al.
2007). In particular – and with specific reference to the influence of air tempera-
ture on biological events (Root et al. 2003) – studies must positively identify three
relationships, viz., that there is a significant correlation between a species trait and
air temperature; the species trait has changed significantly over the study period;
and that there has been significant change in air temperature over the study period.
Owing to the number of studies finding significant increases in air temperatures
across England over the twentieth century (e.g. Harvey and Mills 2003 and Karoly
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and Stott 2006), the current study of snowdrop flowering will only focus on two
of the criteria for detecting causal relationships, namely the relationship between
a phenophase and air temperature (henceforth referred to as temperature), and the
relationship between a phenophase and time.

Snowdrop or fair-maid-of-February (Galanthus nivalis L.) is a spring ephemeral
and one of the earliest flowering bulbs across Europe. Snowdrop grows up to a
height of 15–20 cm, with a single white, bell-shaped flower, which appears between
January and March (Aschan and Pfanz 2006). Like other spring ephemerals of
deciduous forests, snowdrop appears shortly after snow melt to take advantage
of the increased light available in early spring before the upper canopy develops
(Lapointe 2001). Therefore, it is likely that snowdrop phenology is highly influ-
enced by snowmelt (Galen and Stanton 1995) and, as a corollary, will be sensitive
to changes in growing season (Schwartz et al. 2006). Snowdrop is a popular plant
in phenological datasets as it is widely associated with the coming of spring and is,
therefore, a sentimental favourite (Sparks and Collinson 2003).

The case study data are comprised of four series of first annual snowdrop flower-
ing. The locations, viz. Walsall in the West Midlands, Ponteland in Northumberland,
Norwich in Norfolk and Sheffield in Yorkshire are reasonably spread out across
England (see Table 13.1 for details). Each series was recorded by an amateur
observer, in a consistent manner, over the period of each series and was com-
pletely independent of the others. Although all four snowdrop flowering series have
different starting years, they all cover the last two decades of the twentieth cen-
tury; a period widely noted for substantially increased temperatures across England
(Sparks and Menzel 2002). Mean minimum and maximum monthly temperatures
(near-surface) for each series, as estimated by the closest weather station to each
of the four locations, were obtained from The Met Office website.1 Mean monthly
temperature was calculated as the average of the mean minimum and maximum
temperatures. The flowering date is presented as yearday. A basic analysis of the
Norfolk series appeared in Sparks and Manning (2000) and the West Midlands,
Yorkshire and Norfolk series appeared in Sparks and Collinson (2003). Given the
consistency of the Central England temperature series over the general region con-
taining the four study locations (Harvey and Mills 2003), a reasonable level of
regional homogeneity in climate is assumed.

Exploring which temperature variables – temperatures from different months, or
combinations and interactions of these variables – is a complete modelling exercise
in itself (e.g. Sparks and Carey 1995 and Keatley et al. 2002). In earlier studies of
the phenology of spring flowering plants in England, monthly temperatures from
the previous year were of less importance than those of winter and early spring
(Fitter et al. 1995, Sparks and Carey 1995, Fitter and Fitter 2002). Therefore, for
the purposes of this study, only mean January temperature has been selected as a
climate covariate to explain variation in snowdrop flowering. Finally, it has been

1The United Kindgom’s Government weather service, The Met Office; http://www.metoffice.
gov.uk/
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suggested that by ignoring the date of the vernal equinox, bias can be introduced
into analyses of the start of spring (Sagarin 2001). As such bias has been generally
thought of as negligible (Menzel 2003), no consideration was given to the yearly
timing of the vernal equinox in the analyses of snowdrop flowering presented here.

13.3.2 Modelling Correlated Data

Data that are classed as correlated contain groups or clusters of observations that are
stochastically related in some way. Within each cluster, all observations are influ-
enced similarly by inherent qualities of the cluster itself and will typically display
positive correlation. That is, within-cluster observations will be more similar, on
average, than observations from other clusters. A single sample unit might be con-
sidered a cluster by itself, but there may also be multiple sample units within a
cluster. There are three common sources of clustering in data, namely, nesting of
sampling units, splitting of sample units and repeated observations taken on sample
units (Schabenberger and Pierce 2001). The third clustering type is the most relevant
to analyses of trends within phenological data. A phenological series is comprised
of observations made each year at a single location and, therefore, can be considered
longitudinal. Other hypothetical examples of clustering in phenological data might
include phenophases recorded by a single observer at multiple locations or multi-
ple observers at a single location. At the very least, phenological data is clustered
at the location level and this should be considered during analysis and subsequent
inference.

In measuring changes in response variables within individual clusters over time,
the central aim of longitudinal studies is to quantify the relationships between
these changes and both time and any associated global or cluster-specific covari-
ates. However, the potential presence of within-cluster correlation invalidates the
assumption of independence of observations, as required for many common statisti-
cal analyses; this may then return produce misleading results in subsequent analyses.
For example, if a model is specified to make a comparison between clusters and no
consideration is given to the within-cluster correlation, the standard error associated
with the cluster-wise parameter estimate may be too small. This may, in turn, lead
to confidence errors that are too narrow or a p-value that is too small and, therefore,
an inflation of the significance of a parameter estimate. Alternatively, if a model is
specified to estimate change across a number of clusters, between-cluster variance
may produce a standard error that is too large, decreasing the power of any statistical
tests applied to the data. In this instance, pertinent information is wasted.

Fortunately, statistical methods are available that account for within-cluster
correlation and provide valid models for subsequent interpretation. Such mod-
els provide an alternative to naïve pooling; or ignoring within-cluster correlation
during analysis (Burton et al. 1998). In particular, if the response variable has a
Gaussian distribution – or, alternatively, normality can be approached through trans-
formation – analyses that account for within-cluster correlations are usually a
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generalisation of simple linear regression. As an aside, this generalisation results
from a more flexible way in which the covariance matrix of the random errors is
specified (Fitzmaurice et al. 2004). For simplicity, the following discussion of mod-
els for clustered data is confined to responses that are continuous with a Gaussian
distribution; a common feature of phenophase data. Discussion of clustering will
also largely be confined to longitudinal data, but some consideration will also be
given to cross-sectional analyses, where data are collapsed over time.

To correctly model clustered data, both the mean response and the within-cluster
correlation structure must be modelled (Liang and Zeger 1993). Three modelling
methods are presented here – a naïve pooled model, a data resolution model
and a random effects model – all based upon simple linear regression. Notation
which applies to each of the models is specified below: yij is snowdrop flowering
phenophase in yeardays, i represents each of the four locations (i.e. N = 4) and j
each year a phenophase was recorded for each location (j = 1, 2,. . ., ni). Note that
values of n can vary with location, i. Covariates to be tested are year as a raw value,
tij, and mean January temperature (◦C), m. As y and t both carry the subscripts i and
j, both are able to vary by location and with time point.

13.3.3 Naïve Pooled Analysis

The simplest model presented in this chapter is a naïve pooled model where no
consideration is given for the location grouping within the snowdrop flowering data.
A simple linear regression provides least squares estimates of slope and intercept
and all data is weighted equally. The naïve pooled model is specified as:

yij = β0 + β1tij + eij (13.2)

where β0 is the intercept, β1, the slope or estimate of change in snowdrop flower-
ing associated with a one year increment across the region represented by the four
locations, eij is a Gaussian distributed error term, which is uncorrelated with t. If
t is substituted with m, the slope is an estimate of change in snowdrop flowering
associated with a 1◦C increase in mean January temperature. The statistic for the
testing the significance of a slope, β1, is given by:

test statistic = β̂1

SE(β̂1)
(13.3)

with

(
N∑

i=1
ni

)
− 2 degrees of freedom.

Tests of this type are known generally as Wald tests and are constructed in order
to test significance of model parameter estimates (Wald 1943). The test statistic is
compared against a standard Gaussian distribution with a null hypothesis that the
population slope is zero. However, since the properties of the Gaussian distribution
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tend to break down with smaller sample sizes, the t-distribution can be used instead
to provide a more robust test.

13.3.4 Data Resolution Model – Averaging over Location-Wise
Trend Regressions

The next simplest approach to the analysis of snowdrop flowering from multiple
locations would be to resolve the repeated measures at each location by producing
a summary statistic and then use that statistic as if it was the primary data (Feldman
1988, Burton et al. 1998). An appropriate summary statistic would be the slope esti-
mate from simple linear regression of the date of snowdrop flowering over time,
or with a climate covariate, estimated for each location, with its associated stan-
dard error. After a slight modification to (13.2), the within-location simple linear
regression is given by:

yij = β0i + β1itij + eij (13.4)

where β1i the slope for location i. This method is based on the assumption that
there is an underlying population slope describing the change in the date of snow-
drop flowering across the region of interest. Furthermore, the least-squares estimates
of the slope parameters, β1i, are unbiased for the snowdrop population across the
region of interest, regardless of the within-location correlation structure (Diggle
et al. 2002, Murtaugh 2007). Finally, it is assumed that each estimate of β1i has
a Gaussian distribution. As described by Murtaugh (2007), an appropriate summary
statistic of β1i is a weighted mean of the location-wise slope estimates – where such
weights are proportional to the squared standard errors of the location-wise slope
estimates – given by:

ˆ̂
β1 =

N∑
i=1

wiβ̂1i

N∑
i=1

wi

(13.5)

using

wi = 1/[SE(β̂1i)]2

N∑
i=1

(1/[SE(β̂1i)]2)

(13.6)

where

N∑
i=1

wi = 1. (13.7)
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Using the assumption that the slope estimates for each location are independent, (i.e.
it is unlikely that the snowdrop flowering at one location will influence flowering at
another), the standard error of the weighted average, (13.5), is calculated as,

SE( ˆ̂
β1) =

√√√√√
N∑

i=1
wi(β̂1i − ˆ̂

β1)2

N − 1
. (13.8)

With ˆ̂
β1i and the associated standard error, the test statistic for the test of significant

slope is as specified by (13.3), but with degrees of freedom, N–1.

13.3.5 Random Effects Model

The final and most complex model considered in this chapter explicitly accounts for
location-wise correlation.

Consider the simple linear regression model represented in (13.1) or (13.2). With
such linear regression models, the errors, ek or eij, are assumed to be Gaussian and
independently distributed across the population, with a mean of zero and a com-
mon variance of σ 2. However, as previously described, the model errors cannot be
assumed independent with longitudinal data; but will instead be correlated to some
degree. Furthermore, the model given by (13.2) specifies that the intercept and slope
will be the same for all clusters, that is there is only one value each of β0 and β1.
As described in Häkkinen et al. (1995) and Schaber and Badeck (2002), it is benefi-
cial to add individual location-specific effects into the model to account for different
rates of change in the phenophase, in addition to the problem of non-independence
between observations (Fitzmaurice et al. 2004). The model represented by (13.2)
then becomes:

yij = β0 + β1tij + υ0i + eij (13.9)

where υ0i represents the influence associated with location i, or its influence on
the repeated observations within i. Other components are as specified in previous
models. The model containing location-wise effects can be re-written as a two-level
model, where the first level reflects the within-cluster component,

yij = b0i + b1itij + eij (13.10)

and the second level reflects the between-cluster component,

b0i = β0 + υ0i (13.11)

b1i = β1. (13.12)
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Model (13.9) specifies that the intercept for the ith location is a function of a
population level intercept, β0, which is altered by the addition of a unique con-
tribution, υ0i, for that location. It is assumed that the slopes are equal across the
population, estimated to be β1; that is the slope for each location is parallel to a
population level slope. Readers may recognise this model format to be similar to
that of an analysis of covariance (ANCOVA), where the intercepts and slopes of
different treatments or factors may vary. Accordingly, it is possible to add a further
parameter, υ1i, to account for the unique contribution of a given cluster to the slope
estimate. However, during exploratory data analysis of the snowdrop flowering data,
an ANCOVA model – where individual slopes and intercepts were assigned to each
location – provided no evidence that the slopes for each location were anything
but parallel (data not shown). Therefore, in the interests of brevity, the slope and
intercept random effects model will not be pursued here.

The process that the cluster-wise effect, υ0i, represents is at the centre of mod-
elling with correlated data. As it is typical that clusters are considered to be
representative of an underlying population, and that the clusters have been ran-
domly selected, the cluster-specific effects υ0i may be considered a random effect.
Specifically, a random effect represents parameters that vary from cluster to cluster
and, therefore, account for the natural heterogeneity that arises from unmeasured
factors (Liang and Zeger 1993). Realisations of υ0i are considered to be rep-
resentative of that underlying population, where it is commonly assumed that
υ0i ∼ N(0,σ 2

υ0
). With the addition of υ0i to (13.2), the distribution of the errors

eij are then considered to have a Gaussian distribution and be conditionally inde-
pendent across the population with a mean of zero and a common variance σ 2. The
conditional independence can be assumed due to the presence of random cluster spe-
cific effects, υ0i; with the influence due to individual clusters removed from errors
(Hedeker 2004).

As the response y across t is shifted by a random amount, υ0i, for each cluster,
but that y ∼ t is still parallel for all sample units, this model is often referred to as a
random intercepts model. The random intercepts model is demonstrated in the left
panel of Fig. 13.1, where annual observations of phenophases for two locations – A
and C – are plotted with a theoretical population-level response, B. The population
slope specified by is β1, and the population intercept by β0. The vertical shift to take
trend-line B to either A or C would represent υ0A and υ0C, respectively. Cluster-
wise variation around the population level response is represented by σ 2

υ0
; that is if

the value of σ 2
υ0

is close to zero, there would be little variation among the clusters.
Finally, the within-location variation is demonstrated in the right panel of Fig. 13.1.
During standard model fitting for random effects model, the actual random effects
are not estimated per se, but instead the parameters of their distributions (i.e. σ 2

υ0

and σ 2) are estimated.
In contrast to random effects, fixed effects are those explanatory variables asso-

ciated with an entire population or repeatable experimental treatment. Although
referred to here as a random effect model, a model with both fixed and random
effects are also known as mixed effects models, multilevel models and random
coefficient models (list not exhaustive) (Hedeker 2004). Deciding whether a given
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Fig. 13.1 Sources of variability in longitudinal data, demonstrated using snowdrop flowering data
from two locations. Left: Between-location (A and C) heterogeneity (---), compared to a population
trend (B) (—). Right: Within-location (A) variation around a location-wise trend (—)

cluster variable is fixed or random will depend on how the levels of the variable that
appears in the study were selected. For example, if a phenological study contained
data from multiple randomly selected locations, and the aim of a study is to apply
the results to a wider region, then location would be considered a random effect.
If instead the aim is to model phenophases at deliberately selected locations, then
location would be treated as fixed effect. The consequence of treating location as a
fixed effect, however, is that model results cannot be extrapolated to a wider regional
level. Either way, if year is added to the phenophase trend model as a covariate, then
it would probably be considered a fixed effect. In summary, a random effects model
allows the flexibility to estimate both the population level mean response and the
cluster response, depending on research aims.

With the inclusion of a random effect in a model to account for within-cluster
correlation, there is an assumption that all observations within a cluster are equally
correlated. For example, the inclusion of a cluster-wise random effect leads to the
decomposition of variance of as response as:

Var(yij) = σ 2
υ0 + σ 2 = σ 2

null (13.13)

where σ 2
null is the total variance of the pooled response values; that is a null model.

The within-cluster correlation, ρ, can be estimated by:

ρ = σ 2
υ0

σ 2
υ0 + σ 2

. (13.14)
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That is if σ 2
υ0 = 0, within-cluster correlation reduces to 0. The value ρ is also an

estimate of the proportion of unexplained variance in the response variable that is at
the cluster level (Moerbeek et al. 2003). However, the assumption of constant corre-
lation within a cluster is usually unrealistic, particularly if clustering occurs through
repeated observations. Very often with time series or longitudinal data, observations
that are close in time will be more similar than those further apart. This is known as
serial correlation; a specific example of which would be autoregressive correlation.
Another type of correlation structure is known as unstructured, where the correlation
between each pair of observations is estimated individually – which is computation-
ally intensive and requires a completely balanced design. The correlation structure
used to model a random effect (as a random intercept) is known as exchangeable or
compound symmetry, where, as described before, each observation is assumed to be
correlated equally (Horton and Lipsitz 1999). It is, however, common that the sig-
nal of serial correlation is swamped by random effects (Diggle et al. 2002). During
exploratory data analysis of the snowdrop flowering data, a number of serial corre-
lation models were tested, but none were found to explain location-wise correlation
structure better than the pure random effect (as a random intercept; data not shown).
Therefore, only the exchangeable correlation structure is considered here.

Specifying the test statistic for the test of a significant slope for a fixed effect is
not as straight forward as that described for the naïve pooled and data resolution
models; particularly for small sample sizes (i.e. N < 10 (Feldman 1988)) and unbal-
anced data (Manor and Zucker 2004). It is standard that estimates of precision and
subsequent analysis upon fixed effects are based on their asymptotic distribution – a
property known to break down with small sample sizes (Kenward and Roger 1997).
However, a number of methods are available to correct for small sample biases in
inferences for fixed effects with random effects models. Readers are directed to
Kenward and Roger (1997), Fouladi and Shieh (2004) and Manor and Zucker (2004)
for more details on this problem. Generally speaking, popular statistical packages
allow for approximations for dealing with small sample sizes and unbalanced data
in estimating the significance of fixed effects within random effects models.

There are two main methods for modelling correlated error structure – which
must be calculated before the fixed effects parameters can be estimated – namely,
maximum likelihood (ML) and restricted maximum likelihood (REML). Both meth-
ods are readily available in popular statistical analysis packages; and choosing
between the two can be a source of consternation to those new to modelling with
random effects (Murtaugh 2007). In general, both methods are based on likeli-
hoods and so benefit from the principles of consistency, efficiency and asymptotic
normality. Furthermore, the two methods are asymptotically equivalent. In basic
terms REML is better at estimating and then finding the most appropriate corre-
lation structure (Fitzmaurice et al. 2004). In contrast, ML is more appropriate for
comparing nested fixed effects. In most cases the estimates of the fixed effects
parameters will be similar, although probably not exactly the same (Pinheiro and
Bates 2000). It is often worthwhile fitting a random effects model with both ML
and REML methods to check if the parameter estimates of the fixed effects vary
greatly. If there is substantial variation in the parameter estimates, then Diggle et al.
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(2002) recommend using the REML method. The REML method was selected for
the analyses presented in this chapter.

Although the design and structure of longitudinal data may suggest that there
could be significant amounts of within-cluster correlation, it may be that the addition
of random effects are not necessary. A common method for testing the significance
of random effects is to compare the fit of models both with and without random
effects, with fixed effects remaining unchanged. However, non-nested models or
models estimated using REML cannot be compared using likelihood ratio-tests.
Instead Akaike’s information criterion (AIC) can be used to indicate the best model
(Akaike 1974):

AIC = −2 × (ln Lmax) + 2 × p (13.15)

where p is the number of unknown parameters estimated in the model; and ln Lmax
the log-likelihood maximum function evaluated at the REML estimates. The AIC
provides a measure of fit for a particular model, which is penalised by the number
of parameters estimated. When all models are fitted to the same data, the model with
the lowest AIC value provides the most parsimonious representation of the data.

13.3.6 Collapsing Across Time

A variable representing de-trended snowdrop flowering responses – where the year
trend was removed – was created and used to model the effect of changing the mean
January temperature on snowdrop flowering. As the trend with time was removed
from this snowdrop flowering data, it is valid to assume there is no natural ordering
for these observations. It may be appropriate, therefore, to collapse over the time
dimension and to model de-trended flowering responses as a function of temperature
only; an analysis known as cross-sectional. Such a model would allow interpretation
of the physiology or autecology of the species in addition to aiding prediction of
changes in phenology with changes in climate.

The effect mean January temperature on de-trended snowdrop flowering data was
also modelled using the three models described, but with no consideration given
to time. With addition of a location-wise random effect, the de-trended snowdrop
flowering data is assumed to be conditionally independent; and the mean January
temperature is treated as a fixed effect.

13.3.7 Software

The fixed effects models (naïve pooled and data resolution models) were fitted in
R v2.7.1 (R Development Team 2008). The random effects models were also fitted
in R, but using the nlme library v3.1-89 (Pinheiro et al. 2008); specifically the “lme”
function. The “lme” function produces sensible restricted likelihood estimates from
unbalanced data (Pinheiro and Bates 2000), which is of benefit in this study. It is also
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possible to analyse random effects models in R using a library called lme4 (Bates
et al. 2008); both libraries are available from the Comprehensive R Archive Network
(CRAN).2 The nlme library provides an approximation for testing the significance
of fixed effects with small sample sizes and unbalanced data (Pinheiro and Bates
2000).

13.3.8 Model Diagnostics

If the variance of the date of snowdrop flowering around a mean response profile
appeared to increase over time, it may be worthwhile to apply a log transform to the
date variable before formally fitting any models. No transformation was applied to
the snowdrop data, however, as variance does not seem to increase with time.

As with most statistical modelling techniques, it is important to test the under-
lying assumptions using model diagnostics. To check the distributional assumption
of the errors, plots of residuals versus predicted values were produced. If the model
is correctly specified, residuals should have mean zero and a distribution that is
Gaussian. However, checking the distribution of the between-cluster variance is
arguably difficult with such a small sample size (i.e. N = 4). The effects of influen-
tial points were also checked. However, although the values before 1960 (i.e. those
from Northumberland) are deemed to be influential points, with high leverage, they
were not deemed to have a significant role in influencing parameter estimates, as
judged by leave-one-out statistics.

13.4 Results

13.4.1 General Observations

The yearday of snowdrop flowering for year and for each location is given in
Fig. 13.2. Summary statistics of the timing of snowdrop flowering by location is
given in Table 13.2. The de-trended standard deviation was calculated after first
removing the location-wise trend line from the raw dates of snowdrop flowering. On
average, snowdrop flowers earliest in Norfolk and latest in both Northumberland and
Yorkshire. Inter-annual variation in the date of snowdrop flowering was greatest in
Northumberland and least in Yorkshire. Upon inspection of Fig. 13.2, the location-
wise interannual variation appears to be almost as large as the between-location
differences.

2www.cran.r-project.org/
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Fig. 13.2 Inter-annual variation in date of first flowering of snowdrop across four loca-
tions. Note the temperature scale on the right vertical axis has been inverted for clarity.
Gaps in the data series for Northumberland and Norfolk represent observations that were
lost or never recorded. The minus values refer to snowdrop flowering that occurred in the
previous December. A five-year moving average January temperature has been added for
comparison

Table 13.2 Summary statistics of the timing of snowdrop flowering by location

Location of
observations

Mean
flowering
date

Standard
deviation
(raw)

Standard
deviation
(de-trended) Earliest Latest

West Midlands Feb 1 13.2 12.4 Jan 14 (1998) Mar 5 (1986)
Northumberland Feb 9 17.1 13.9 Jan 8 (1989) Mar 23 (1963)
Norfolk Jan 14 12.5 11.5 Dec 13 (1986) Feb 4 (1979)
Yorkshire Feb 9 9.4 8.2 Jan 23 (1989) Feb 25 (1985)
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Fig. 13.3 Results of naïve pooled, data resolution and random effects models of the date of snow-
drop flowering over time, with a 95% confidence interval for E(yij) (mean response) at a given
value of tij (time in years), as superimposed upon the raw data

13.4.2 Trend Results

Each of the three models yielded highly significant year effects for snowdrop
flowering, despite large inter-annual variation, Fig. 13.3. Using the parameter
estimates from the random effects model, the interpretation is that snowdrop
flowering has advanced by 6.5 days per decade (SE = 0.10) from 1952 to 2000
across the region represented by the four locations, Table 13.3. Likewise, each of
the three models also produced highly significant mean January temperature effects
for de-trended snowdrop flowering, Fig. 13.4. Again, using the random effects
model for interpretation, the date of snowdrop flowering advanced around 3.9 days
(SE = 0.52) for each 1◦C increase in mean January temperature across the region
represented by the four locations, Table 13.4.
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Table 13.3 Parameter estimates, associated standard errors and test results for each model for the
analysis of date of snowdrop flowering over time. Results for null model included for comparison

Model Parameter Estimate Standard error t p < AIC

Null x̄ 30.91 1.59 19.49 0.0001 1076.5
σ 2 314.33 – – – –

Naïve pooling β0 1231.99 236.91 5.20 0.0001 1054.7
β1 –0.61 0.12 –5.07 0.0001 –
σ 2 262.11 – – – –

Data resolution β0 1298.44 111.97 11.59 0.0002 –
β1 –0.65 0.05 –11.83 0.0002 –

Random effects β0 1311.35 201.96 6.49 0.0001 999.4
β1 –0.65 0.10 –6.35 0.0001 –
σ 2
υ0 161.01 # – – –
σ 2 151.52 # – – –

#Standard errors for the estimated covariance parameters are not reported in model output
provided by nlme (Pinheiro et al. 2008) in R

13.4.3 Comparison of the Three Methods

For both analyses of snowdrop flowering over time and with mean January temper-
atures, the data resolution and random effects models gave similar slope estimates,
Tables 13.3 and 13.4. For snowdrop flowering over time, the slope estimated by the
naïve pooled model was less negative than those of the other models. In weight-
ing each data point equally and not considering their origin, the vertical spread of
the snowdrop flowering dates, particularly in the influential end year values (i.e.
around 2000) forced the slope estimate from naïve pooled model to be shallower.
This dampening effect is negated in the data resolution and random effects models
where slope estimates for each location are calculated before being weighted and
summarised together for population-level inferences. The slope dampening effect is
reversed for the de-trended snowdrop flowering against mean January temperatures
model, where the naïve pooled regression slope is more negative than those from
the other models. Here warmer mean January temperatures and earlier flowering in
Norfolk is combined and weighted equally with the colder temperatures and later
flowering in Yorkshire to produce a steeper slope estimate, Figs. 13.2 and 13.4.

For the analysis of snowdrop flowering over time, the standard error of the slope
estimate for the data resolution model was around 50% that returned for the random
effects model, Table 13.3. With balanced data, these two values would be expected
to be similar (Feldman 1988, Moerbeek et al. 2003). In this example, the discrepancy
can be explained by the lower weights assigned to a location-wise slope estimate
which was further away from the mean (i.e. that for Yorkshire), Table 13.5. If the
numbers of years at each location were more equal, it is likely that the standard
errors of the location-wise slope estimates would also be more similar; this would
lead to more equal weighting in (13.8), and a larger standard error of the popula-
tion level slope estimate, putting it closer in size to that returned by the random
effects model.
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Fig. 13.4 Results of naïve pooled, data resolution and random effects models of de-trended date of
snowdrop flowering by mean January temperature (◦C), with a 95% confidence interval for E(yij)
(mean response) at a given value of mij (mean January temperature), as superimposed upon the
raw data. Symbols correspond to each location: West Midlands, ◦; Northumberland, �; Norfolk,
+, and Yorkshire, ×

It is likewise usually expected that the standard error of the slope estimate will be
smaller for naïve pooled models than in either the data resolution or random effects
models, due to positive correlations between observations within a single cluster
(e.g. Feldman 1988, Moerbeek et al. 2003 and Murtaugh 2007). However, in this
example, the standard error of the slope estimate – for both snowdrop flowering
against time and with mean January temperature – for the naïve pooled model is
larger than those from the other models, Tables 13.3 and 13.4. This can be attributed
to the relative size of the within-location variation resulting from high interannual
variation as compared to between-location differences.

With so much interannual variation, it is almost surprising that the addition of
the location-wise random effects was deemed to improve the model. However, a
great deal of the error variance (σ 2) in the naïve pooled model is explained by
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Table 13.4 Parameter estimates, associated standard errors and test results for each model for the
analysis of de-trended date of snowdrop flowering with mean January temperatures. Results for
null model included for comparison

Model Parameter Estimate Standard error t p < AIC

Null x̄ 0.00 1.44 0.00 1 1052.8
σ 2 259.85 – – – –

Naïve pooling β0 15.11 2.89 5.23 0.0001 1024.0
β1 –4.23 0.72 –5.80 0.0001 –
σ 2 205.35 – – – –

Data resolution β0 14.45 6.96 2.07 0.0700 –
β1 –3.83 0.39 –9.72 0.0004 –

Random effects model β0 14.80 6.52 2.27 0.0300 953.0
β1 –3.86 0.52 –7.17 0.0001 –
σ 2
υ0 150.80 # – – –
σ 2 106.30 # – – –

#Standard errors for the estimated covariance parameters are not reported in model output
provided by nlme (Pinheiro et al. 2008) in R

Table 13.5 Location-wise estimates of slope, associated standard error and calculated weights for
the data resolution model. Estimates of the intercept parameters included for completion

Snowdrop flowering date ∼ year
Detrended snowdrop flowering ∼
mean January temperature

Location β̂0(SE) β̂1(SE) wi β̂0(SE) β̂1(SE) wi
West Midlands 1253.22 (696.18) –0.61 (0.35) 0.09 16.18 (4.39) –3.51 (1.08) 0.20
Northumberland 1409.33 (284.04) –0.69 (0.14) 0.55 19.41 (3.77) –5.00 (1.10) 0.20
Norfolk 985.61 (432.67) –0.49 (0.22) 0.24 –5.56 (4.37) –2.99 (0.98) 0.25
Yorkshire 1545.62 (599.64) –0.76 (0.30) 0.12 –3.81 (3.56) –3.81 (0.82) 0.35

adding the random location effect for analysis of both flowering over time and with
mean January temperature, Tables 13.3 and 13.4. Using (13.14) and values from
Tables 13.3 and 13.4, the within-location correlation for the raw date of snowdrop
flowering over time is 0.52; the correlation for de-trended snowdrop flowering by
mean January temperature is 0.59. These values are reasonably high and certainly
far from the value of zero required for simple linear regression to be appropriate.
The relative worth of the adding random effects to the model is tested by directly
comparing the random effects model with the naïve pooled model. Given the AIC
value for random effects model of 999.4 is lower than that of the linear regression
model with no random effects (or naïve pooled model), 1054.7, Table 13.3, it can
be concluded that it is important to account for location-wise correlation in fitting
models to detect a trend in snowdrop flowering over time. This is mirrored in the
models to detect a relationship between mean January temperatures and a de-trended
date of snowdrop flowering, where the AIC for the naïve pooled and random effects
models were 1024.0 and 953.0, respectively, Table 13.4.
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13.5 Discussion

13.5.1 Application of Analysis of Correlated Data Methods
to Phenological Data

In this chapter, two alternative methods to the naïve pooled model have been
presented; both accounting for correlation, but varying in sophistication. Both alter-
native models are widely described and used within ecological literature, but have
been approached to a substantially lesser degree in phenological research. Notable
exceptions would be studies by Inouye et al. (2003) and Tøttrup et al. (2006),
where the repeated or longitudinal nature of phenological data was accounted for.
Furthermore, Sparks and Carey (1995) did incorporate a term to account for serial
correlation in a multivariate analysis of changing phenophases, but the method was
not fully described. In analysing here a dataset of snowdrop flowering from a num-
ber of different locations around England, the salient features of accounting for
correlated error structure in phenological data have been demonstrated.

The naïve pooled model ignores location-wise clustering and fits a simple linear
regression to equally weighted points. In the naïve pooled model, between-cluster
variance is lumped together with the within-cluster, which falsely reduces the esti-
mate of error variance. With a deflated error variance, the likelihood of finding a
parameter estimate significant, when it is not, is increased – that is, a false posi-
tive or type I error. The reverse was the case in the snowdrop flowering case study,
however, where the unbalanced data structure and high interannual variation of the
snowdrop flowering produced a larger than expected standard error of the slope esti-
mate for the naïve pooled model. With a higher than expected standard error of the
slope estimate, the chance of a false negative or type II error is increased. Either
way, in not accounting for any underlying correlations in clustered data, there will
be an increase in the likelihood of a spurious result. The results of the naïve pooled
models also demonstrate that it is possible that the contribution of location-wise
trends to an analysis may be diminished (e.g. population slope estimate was under-
estimated in the flowering over time model) or may be exaggerated (e.g. population
slope was overestimated in the de-trended flowering with temperature model).

The data resolution model uses summary statistics for each location – in this
instance, slope and standard error of the slope – which are then treated as raw data
in the next step of data analysis. The relatively simple data resolution method is
well suited to analyses of trends in phenophases, where inferences are largely based
on simple linear regressions which yield summary statistics like slope and its stan-
dard error estimate. This method prevents also over-inflation of the apparent sample
size (Burton et al. 1998) and returns an unbiased estimate of the population slope.
Furthermore, the data resolution model treats the within- and between-location vari-
ation separately. In the first step, variances are estimated from the raw flowering
data. In the second step, these raw variances are used in estimating a weighting
scheme with which location-wise slopes are combined to produce a population-
wise slope estimate. While this mean slope estimate is unbiased, the associated
standard error estimate may be incorrect if the weighting system is inaccurate. In
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the example of snowdrop flowering over time, the unbalanced nature of the data
produced high estimates of standard error for some of the locations (i.e. Yorkshire).
Subsequently, this decreased the weighting that the Yorkshire location-wise slope
estimate received which, in turn, produced a very small standard error of the popu-
lation slope estimate. This highlights an issue with the data resolution model when
using small sample sizes which are coupled with greatly unbalanced data.

The random effects model treated location as a random effect and both year
and mean January temperature as fixed effects. There was no interest in estimating
the differences in snowdrop flowering between the locations, but the location-wise
structure was accounted for regardless. As a result, an unbiased population-wise
slope was estimated for trends in snowdrop flowering; the estimation of which
accounted for both random location factors that were not directly measured in addi-
tion to correlations between observations. Despite large amounts of within-location
variation, the addition of the random effects improved the model, according the
AIC. The significance test of the slope parameter is based on an approximation
and it is unknown whether it was robust against such a small sample size. This
point is recommended for future research. Furthermore, although the addition of
early observations from Northumberland were potentially influential to the random
effects model, examination of leave-one-out diagnostics revealed they were not so.
However, given the potential for even more unbalance in data in phenological stud-
ies, this point too warrants future research in order to prove the utility of random
effects modelling.

Finally, the sign of a good statistical analysis is the ability to account for
sources of correlation and variation in the underlying statistical process (Verbeke
and Molenberghs 2000). Although the nature of phenological data may prove chal-
lenging to any random effects model, any attempt to account for correlated error
structure will yield an improvement to the analysis.

In this study of trends in snowdrop flowing, only mean January temperature
was considered as a potentially influential climate covariate. It is, however, reason-
able to assume the temperatures across other months of the year or combinations
or sums of such temperatures may also influence a phenophase. In the event that
the explanatory or predictive value of a number of such climate covariates is to be
tested, methods such as forward, backward or stepwise regression may be used (e.g.
Sparks and Carey 1995 and Keatley et al. 2002). Model selection of this nature is
also possible with random effects models, where selection for fixed effect variables
is largely similar to that used in linear models. Naturally, any process of selection of
the most informative climate covariates would need to simultaneously account for
correlated error structures.

The issue of balanced data sets is very pertinent in phenological studies involving
observations from multiple locations. It is unlikely that phenological series collected
by different observers will start and end on the same years. Furthermore, due to per-
sonal circumstances, yearly observations may be missed altogether within the time
series, as occurred with the Northumberland and Norfolk series in the snowdrop
flowering case study. In fact, missing data are probably the rule, not the exception in
phenological data. Many statistical analyses for longitudinal data are based on the
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assumption that data is balanced (Fitzmaurice et al. 2004), where sample units are
all measured at a set of common time points. Given likely improvements in analysis
of balanced phenological data, there may be the temptation to truncate longer time
series to cover the same period. There are studies that have excluded phenophase
times series on account of being too short (e.g. Roetzer et al. 2000), but this reflects
a need to include time series over a certain length to increase analysis power as
opposed to the need to have more balanced data. Fortunately, methods around ran-
dom effects modelling are usually robust enough to deal with missing data, albeit
only if missing on a random basis (Liang and Zeger 1986). For a more in depth
discussion of different models of missing data, see Diggle et al. (2002). A simulta-
neous analysis of phenophases from different locations – regardless of the modelling
method selected – will be valid if the bulk of the years comprising the data have
observations from each location. In the event that the lengths of phenophase time
series vary greatly, as they did in the snowdrop flowering case study, model results
must be checked for impact of leverage from the longer time series. Phenological
data is hard won and deleting for the sake of balance should never be seriously
considered.

It is hoped that the reader now has an appreciation of how misleading statisti-
cal analyses can potentially be if pertinent correlated error structures are ignored.
It may, however, seem that for studies of phenological trends at the regional level,
treating phenological data as longitudinal and properly accounting for within-cluster
correlation is a negative, requiring much more knowledge about statistical methods.
To begin with, solutions for dealing with within-cluster correlations in longitudinal
studies do not necessarily need to be complex. Being mindful of potential issues
arising from small sample sizes and unbalanced data – factors which are going to be
almost universal in phenological research – the data resolution method can provide
a quick and easy method to account for correlation structures. For those wishing
to employ more sophisticated analyses that are a little more robust against small
sample and unbalanced data issues, the random effects model is available. However,
anybody considering using a random effects model in phenological research should
not do so uncritically (Feldman 1988). Assumptions concerning the distribution of
data and errors have been outlined above and these should be thoroughly tested.
Finally, correlated error structures are an essential feature of phenological data.
With relatively little effort combined with readily available software, in addition
to resources like this chapter, it is hoped that the use of random effects modelling in
phenological research will expand.

13.5.2 Changes in Snowdrop Flowering Phenology

The results of modelling the phenophase of snowdrop flowering over time and as a
function of temperature presented here suggest there has been a shift across England
over the second half of the twentieth century. From the early 1950s to 2000, this
study detected an advance in snowdrop flowering of 30.7 days – or approximately
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6.5 days earlier per decade. This estimate is somewhat larger than those reported
for Germany where snowdrop flowering advanced by 2.5 days per decade between
1951 and 2000 in one study (Menzel 2003) and between 2.9 and 3.7 per decade
between 1951 and 1995 in another (Roetzer et al. 2000). The slower rate of advance
of snowdrop flowering in Germany as compared to England may be attributed to
less warming and less fluctuating continental temperatures (Menzel et al. 2006).
This study also detected a significant relationship between the timing of snowdrop
flowering and mean January temperatures; with a shift of approximately 3.9 days
earlier with every 1◦C increase. This concurs with an estimate of the advance in
snowdrop flowering across the United Kingdom of 3.4 days with each 1◦C increase
in Central England temperature by Sparks et al. (2000).

On balance, this shift in snowdrop flowering phenology is likely to be a result
of climate change, particularly through increases in air temperatures (Root et al.
2003). There is evidence to suggest that temperatures across England have been
increasing over the past decades. According to analyses on the Central England
temperature (CET), there has been a 1◦C increase in annual-mean temperature since
1960 (Karoly and Stott 2006). Of particular relevance to spring ephemerals is the
increase of 1.5◦C in spring Central England temperatures from the 1970s (Harvey
and Mills 2003). When combined with these published findings of increases in tem-
peratures across England, the results presented here provide compelling evidence of
a causal link between changing snowdrop flowering in England and extant climate
change. This evidence is strengthened by the relative long length of the phenolog-
ical series analysed, particularly from Northumberland, with 48 years of snowdrop
flowering observations; and by the large area of England represented by the series
(approximately 25,000 km2). However, since this study only covers a period of 48
years at most, it is not appropriate to suggest the results reflect long-term patterns in
phenology of snowdrop flowering. Regardless, this study does present evidence of
a strong fingerprint for change in the phenology of early flowering bulbs in England
between 1952 and 2000.
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Chapter 14
Modelling the Flowering of Four Eucalypt
Species Using New Mixture Transition
Distribution Models

Irene L. Hudson, Susan W. Kim, and Marie R. Keatley

Abstract The multivariate relationship between the probability of flowering, in
relation to two discrete states of rainfall and of temperature (high/low), is inves-
tigated via a mixture transition distribution (MTD) analysis, which allows for a
different transition matrix for each lag (up to 12 months backwards in time) to
present flowering via a so-called MTDg analysis. The conventional mixture tran-
sition distribution (MTD) model considers the effect of each lag to the present
independently, and uses equal transition matrices among different lags. Flowering
data consisted of monthly flowering records of E. leucoxylon, E. microcarpa,
E. polyanthemos and E. tricarpa (1940 and 1970). We extend the MTDg model
to allow for interactions (between rain and temperature) to account for changes in
the transition matrices amongst the differing lags. The MTDg model with interac-
tions shows that the flowering of E. leucoxylon and E. tricarpa behave similarly
with temperature (both flower at low temperature) and have a positive relationship
with flowering intensity 11 months ago. Eucalyptus microcarpa behaves differently,
in that it flowers at high temperature. MTDg analysis also found a highly signif-
icant interaction between mean temperature and rainfall for E. polyanthemos, in
that E. polyanthemos does not tend to flower during the winter time (when it is
cold and wet). Rainfall has a direct positive impact only on E. tricarpa. These
four species are influenced by temperature (and to a lesser extent rainfall) and as a
consequence their flowering phenology will possibly change in response to climate
change.
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14.1 Introduction

Eucalypts as a genus dominate much of the Australian landscape. Studies exam-
ining the phenology of this genus have had two main periods from the late 1950s
to the 1960s (Ashton 1956, Fielding 1956, Harris 1956, Gill 1966) and then the
1990s (Harrison et al. 1990, Bassett and White 1993, Bassett 1995, Keatley 1999).
Keatley et al. (2002) represents one of the first attempts to utilise Australian phe-
nological data, using more than 30 years of monthly flowering readings to detect
responses to climate change. Phenological indicators (e.g. date of first and last flow-
ering, first arrival of migrating birds) are used as proxies of global climate change
(Root et al. 2003, Hudson et al. 2005, Rosenzweig et al. 2008). Long-term (1940–
1971) synchrony of four Eucalyptus species was recently quantified mathematically
at the population-level (Keatley et al. 2004, Kim et al. 2008). Keatley et al. (2002)
reported that changes in temperature are likely to translate to changes in flowering
commencement time. The magnitude of these shifts (Keatley et al. 2002) is greater
than the average reported in meta analysis studies (Root et al. 2003, Parmesan and
Yohe 2003, Parmesan 2007, Parry et al. 2007) but in agreement with the results
for some individual species in other studies (Abu-Asab et al. 2001, Fitter and Fitter
2002, Peñuelas et al. 2002).

Earlier Hudson et al. (2003) identified upper temperature thresholds for E. leu-
coxylon flowering and showed that E. leucoxylon flowering is influenced by tem-
perature whose effect is non-linear. GAMLSS modelling (Chapter 10 and Hudson
et al. 2009) of the four species (E. leucoxylon, E. microcarpa, E. polyanthemos,
and E. tricarpa) showed non-linear impacts of temperature on flowering, where,
the main temperature drivers: for E. leucoxylon is minimum temperature, maximum
temperature for E. polyanthemos, both minimum and maximum temperatures for
E. tricarpa, and mean temperature for E. microcarpa (P<0.0001). Reproductive suc-
cess may also be influenced by shifts in flowering onset (Hudson et al. 2003). Indeed
Keatley and Hudson (1998) showed there is an optimal time for species to flower,
depending on bud and fruit volume. Recently Keatley and Hudson (2007) found
monthly flowering probabilities, and mathematically derived peak month, flowering
commencement month and cessation month for the same aforementioned species.

The aim of this chapter is to demonstrate, using two case studies (see Kim et al.
2008, 2009), how to model the multivariate relationship between the probability of
flowering (on/off) in relation to two discrete states of rainfall and of temperature
(high/low) via a generalized mixture transition distribution (MTD) analysis, which
allows for a different transition matrix for each lag (up to 12 months backwards in
time) to present flowering, the so-called MTDg analysis (Raftery 1985, Berchtold
2006) extended to incorporate complex interactions between the covariates (here
climatic predictors). The idea of the mixture transition distribution (MTD) model is
to consider independently the effect of each lag to the present, instead of consider-
ing the effect of the combination of lags as in the case of the more traditional pure
Markov chain process (Brémaud 1999). The assumption underpinning the MTD
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model, namely the equality of the transition matrices among different lags, is a
strong assumption in that we can expect differing transition matrices across differing
lags in practice.

For this current chapter, an extended model for a MTDg (Berchtold 2006) anal-
ysis, which accommodates interactions was developed. This work extends both
MARCH and the work of Kim et al. (2005, 2008) to allow for differing transi-
tion matrices amongst the lags for MTD modelling the flowering of the same four
eucalypt species and climate time series studied here, respectively.

14.2 History and Approach

Earlier studies by Kim et al. (2005, 2008) extended the MARCH software
(Berchtold 2006) for MTD modelling of the flowering records of the same four
eucalypt species and climate time series studied here. For this current study,
an extended model for a MTDg (Berchtold 2006) analysis, which accommo-
dates interactions is developed (see Kim et al. 2009). As in Kim et al. (2008),
we develop here, an extended model which accommodates interactions using
the AD Model BuilderTM (Fournier 2000). As already mentioned this extends
both MARCH and the work of Kim et al. (2005, 2008). Our model is differ-
ent to MARCH’s MTD models, in terms of incorporating interactions between
the covariates and also in its minimization process, namely AD Model BuilderTM

(Fournier 2000), which uses auto-differentiation as a minimization tool. This
was shown to be computationally less intensive than MARCH (Kim et al. 2008,
2009).

Here we develop the MTDg model with interactions model to account for
changes in the transition matrices of flowering amongst the differing lags (up
to 12 months prior). Four climatic predictors are incorporated into the MTDg
modelling of eucalypt flowering. As in Kim et al. (2005, 2008) we accommo-
date interactions for the MTDg model. The MTD model with interactions was
first defined by Kim et al. (2008) and the MTDg model was given by Berchtold
(2004).

14.2.1 The Models

In the next sections we follow the development of Berchtold and Raftery (2002),
defining first the well known Markov chain formulation, then describing the mixture
transition distribution (MTD) model, as first introduced by Raftery (1985) for the
modeling of time-homogeneous high-order Markov chains; then we develop the
MTDg model. Lastly both the MTD and MTDg models are extended to incorporate
covariates.
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14.2.1.1 Markov Chains

The Markov chain is a probabilistic model used to represent dependences between
successive observations of a random variable. The Markov chain model was intro-
duced by Andrej Andreevic Markov at the beginning of the twentieth century and
is used in many disciplines, including mathematical biology, internet applications,
economics, meteorology, geography, biology, chemistry, physics, behaviour, social
sciences and music. For a comprehensive treatment of Markov chains and early
applications, see Brémaud (1999). Seneta (1996) provides an account of Markov’s
motivations and the theory’s early development.

Here we consider a discrete-time random variable Xt taking values in the finite
set {1,...,m}. The aim of Markov chains is to predict the value of Xt as a function of
the values taken by previous observations of this same variable.

First-Order Markov Chain

In a first-order homogeneous Markov chain, we make the assumption that the
whole past of a random process is summarized by the knowledge of the last obser-
vation only. Figure 14.1 represents the dependence relation between successive
observation of a Markov chain.

Mathematically, we write

P(Xt = i0|X0 = it, . . . ,Xt−1 = i1) = P(Xt = i0|Xt−1 = i1) = qi0i1 (t) (14.1)

where it,. . ., i0 ε {1,. . ., m}. If we suppose that the probability qi0i1 (t) is time-
invariant, it is replaced by qi0i1 and we have a homogeneous Markov chain.
Considering all combinations of i1 and i0, we construct a transition matrix Q, each
of whose rows sums to 1:

Xt

Xt−1 1 · · · m

Q =
1
...
m

⎡
⎢⎣

q11 · · · q1m
...

. . .
...

qm1 · · · qmm

⎤
⎥⎦

...

State of the 
chain at 
time t

X1 = x1 X2 =x2 X3 = x3 ...X4 = x4

x1 x2 x3 x4

Output at 
time t

Fig. 14.1 A first-order Markov chain. The probability of observing a particular output at time t
depends on the output observed at time t–1
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Let

Xt = (xt(1), . . . ,xt(m))′ (14.2)

be a vector such that xt (i) = 1 if Xt = i and 0 otherwise, and let χ̂t be the probability
vector

χ̂t = (P(Xt = 1), . . . ,P(Xt = m))′ (14.3)

Then the following relationships hold:

χ ′
t = χ ′

t−1Q, (14.4)

χ̂ ′
t = χ ′

0Qt (14.5)

The process is fully defined once we know the initial vector χ0 and the transition
matrix Q.

High-Order Markov Chain

In many scenarios, the present depends not only on the first lag, but on the last l
observations. We have then an lth-order Markov chain whose transition probabilities
are given as

P(Xt = i0|X0 = it, . . . ,Xt−1 = i1) = P(Xt = i0|Xt−l = it, . . . ,Xt−1 = i1) = qil...i0
(14.6)

If we set l=2 and m=3, the corresponding transition matrix is then

Q =

Xt−2
1
2
3
1
2
3
1
2
3

Xt−1
1
1
1
2
2
2
3
3
3

Xt

Xt−1

1
1⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q111
q211
q311

0
0
0
0
0
0

1
2
0
0
0

q121
q221
q321

0
0
0

1
3
0
0
0
0
0
0

q131
q231
q331

2
1

q112
q212
q312

0
0
0
0
0
0

2
2
0
0
0

q122
q222
q322

0
0
0

2
3
0
0
0
0
0
0

q132
q232
q332

3
1

q113
q213
q313

0
0
0
0
0
0

3
2
0
0
0

q123
q223
q323

0
0
0

3
3

0
0
0
0
0
0

q133
q233
q333

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

When the order is >1, the transition matrix Q contains several elements corre-
sponding to transitions that cannot occur. For instance, it is impossible to go from
the row defined by Xt–2 = 1 and Xt–1 = 2 to the column defined by Xt–1 = 1 and
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Xt = 1 because of the different value taken by Xt–1. The probability of this transition
is then 0 and this element is considered to be a structural zero. Each possible combi-
nation of l successive observations of the random variable X is called a state of the
model. The number of states is equal to ml (32=9 in this example). In the case of a
first-order Markov chain, each value taken by the random variable X is also a state
of the model. The relationships (14.3) and (14.4) defined in the case of a first-order
Markov chain still hold. Irrespective of what the order is, there are (m–1) indepen-
dent probabilities in each row of the matrix Q, the last one of which is completely
determined by the others since each row is a probability distribution summing to
1. The total number of independent parameters to be estimated is thus equal to ml

(m–1). Given a set of observations, these parameters can be computed as follows.
Let nil...i0 denote the number of transitions of the type Xt–l = i1,. . ., Xt–1 = i1,
Xt = i0 in the data. The maximum likelihood estimate of the corresponding
transition probability q̂il...i0 is then

q̂il...i0 = nil...i0

nil...i1+
, (14.7)

Where

nil...i1+ =
m∑

i0=1

nil...i0 (14.8)

and the log-likelihood of the entire sequence of observations is written

LL =
m∑

il...i0=1

nil...i0 log(q̂il...i0 ) (14.9)

14.2.1.2 The MTD Model

Let {Xt} be a sequence of random variables taking values in the finite set N = {1,. . .,
m}. In an lth-order Markov chain, the probability that Xt = i0, i0 ∈N, depends on the
combination of values taken by Xt–l,. . ., Xt–1. In the MTD model, the contributions
of the different lags are combined additively. Then

P(Xt = i0|X0 = it, . . . ,Xt−1 = i1) =
l∑

g=1

λgP(Xt = i0|Xt−g = ig) =
l∑

g=1

λgqigi0

(14.10)
where it,. . ., i0 ∈N, the probabilities qigi0 are elements of an m × m transition matrix
Q = [qigi0 ], each row of which is a probability distribution (i.e. each row sums to 1
and the elements are nonnegative) and λ= (λl,. . ., λ1)′ is a vector of lag parameters.
Note that here we adopt the convention that each row of the transition matrix Q is
a probability distribution. Sometimes each column of Q is taken to be a probability
distribution. To ensure that the results of the model are probabilities, that is,
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0 ≤
l∑

g=1

λgqigi0 ≤ 1 (14.11)

the vector λ is subject to the constraints

l∑
g=1

λg = 1 (14.12)

where

λg ≥ 0 (14.13)

Equation (14.10) gives the probability corresponding to each combination of il,. . .,
i0 individually. The model can also be written in matrix form, giving the whole
distribution of Xt. Let χt and χ̂t be the vectors defined by (14.2) and (14.3).

The MTD model can then be rewritten as

χ̂t =
∑

λgχ
′
t−gQ (14.14)

Since each row of the transition matrix Q is a probability distribution and as such
sums to 1, this matrix has m (m–1) independent parameters. In addition, an lth-order
model has l lag parameters λl,. . ., λ1, but by (14.8) only (l–1) of them are indepen-
dent. An lth order MTD model thus has m (m–1) + (l–1) independent parameters,
which is far more parsimonious than the corresponding fully parameterized Markov
chain (see Table 14.1). Moreover, each additional lag adds only one parameter to
the model.

Table 14.1 Maximal number of independent parameters for different Markov chains and MTD
models

Number of values m Order l Markov chain MTD model MTDg model

2 1 2 2 2
2 4 3 5
3 8 4 8
4 16 5 11

3 1 6 6 6
2 18 7 13
3 54 8 20
4 162 9 27

5 1 20 20 20
2 100 21 41
3 500 22 62
4 2,500 23 83

10 1 90 90 90
2 900 91 181
3 9,000 92 272
4 9,000 93 363
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MTD modelling 

Xt–1 Xt–2 Xt–3 Xt

Xt–1 Xt–2 Xt–3 Xt

Real 3rd order 
Markov chain 

Fig. 14.2 Comparison between a 3rd order Markov chain and its MTD model analogue. In a real
high-order Markov chain, the combination of all lags influences the probability of the present. In a
MTD model, the contribution of each lag upon the present is considered independently

In the basic MTD model, the same transition matrix Q is used to model the rela-
tion between any of the lags and the present (Fig. 14.2). In MTD modelling, the
contribution of each lag upon the present is considered independently. The MTD
model approximates high-order Markov chains with far fewer parameters than the
fully parameterized model (see Table 14.1). Even though Markov chains are well
suited for the representation of high-order dependencies between successive obser-
vations of a random variable, as the order l of the chain and the number m of possible
values increase, the number of independent parameters increases exponentially and
quickly becomes too large to be estimated efficiently, or even identifiably, with data
sets of the sizes typically encountered in practice (Berchtold and Raftery 2002).
Table 14.1 gives the number of independent parameters for different combinations
of l and m showing the significant reduction in parameters achieved by MTD (and
MTDg) modelling compared to conventional Markov chains.

14.2.1.3 The MTDg Model

Let {Xt} be a sequence of random variables taking values in the finite set N = {1,. . .,
m}. In an lth-order Markov chain, the probability that Xt = i0, i0 ∈ N, depends on
the combination of values taken by Xt–l,. . ., Xt–1. In the basic MTD model, the same
transition matrix Q is used to model the relationship between any of the lags and the
present. The idea of the mixture transition distribution (MTD) model is to consider
independently the effect of each lag to the present instead of considering the effect
of the combination of lags (Fig. 14.2); as in the case of the more traditional pure
Markov chain process (Brémaud 1999).

The constraints imposed by the use of only one transition matrix to represent
the relation between each lag and the present is sometimes too strong to allow good
modeling of the real high-order transition matrix. In this case, it is possible to replace
the basic MTD model by a MTDg model. The principle of the MTDg model is to
use a different transition matrix of size (k×k) to represent the relationship between
each lag and the present. The high-order transition probabilities are then written as
follows,
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P(Xt = i0|Xt−1 = i1, . . . ,Xt−f = if ) =
f∑

g=1

λgqgigi0 (14.15)

where qgigi0 is the transition probability from modality i0 observed at time t–
g and modality i0 observed at time t in the transition matrix Qg associated
with the gth lag. In addition to the lag weight parameters λ1,. . ., λf, the MTDg
model implies the estimation of f transition matrices Q1,. . ., Qf, for a total of fk
(k–1) + (f–1) independent parameters. This is much more than involved in the
basic MTD model described in the previous section, but this number of parame-
ters remains small compared to the number of independent parameters of a real
fully parameterized fth order Markov chain (see Table 14.1). As a result the
MTDg proves valuable in many real world applications, as shown by Kim et al.
(2008).

14.2.1.4 The MTD Model with Covariates

Though Markovian processes are usually used to describe the behaviour of say a
single observed random variable, we oft times believe the behavior to be under
the influence of an unobserved hidden process. This is where the modelling of
the observed variable may be enhanced if the effect of some covariates could be
taken into account in the modelling process. MARCH (Berchtold 2006) is able to
incorporate covariates, even if the resulting process is not a real Markovian process.
Here we make an abstraction of the possible influence of an additional hidden pro-
cess, following Berchtold and Raftery (2002). The information set used to predict
the probability distribution of Xt can be decomposed into two parts: the lags of an
order f. Markov chain, Xt–1,. . ., Xt–f, and a set of e categorical covariates C1,...,Ce.
Each covariate j takes a finite number of modalities kj. Covariates can either take
a fixed value during the whole observed process (gender for instance), or be time
dependent (age category, income category, or behaviour for example). The rela-
tion between the jth covariate and Yt is summarized in a transition matrix Dj of
size (kj×k). Each row of Dj is the probability distribution of observing the k pos-
sible values taken by Yt in function of one of the kj possible values taken by the
covariate.

The MARCH platform (Berchtold 2006) proposes three solutions to combine
the lags and covariates information:

1. All available information is directly combined into a single very large transi-
tion matrix giving the probability distribution of Xt given any combination of
the values taken by both the lags and the covariates. This matrix is of size(
kf ∏e

h=1 kh × k
)
.

2. The lags of Xt are considered as an order f Markov chain with transition matrix
Q, and the covariates are represented through there transition matrices D1,. . .,
De. The information of these e+1 transition matrices is then combined by using
a mixture model. Formally, we write
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P(Xt = i0|Xt−1 = i1, . . . ,Xt−f = if ,C1 = c1, . . . ,Ce = ce)

= λ1qif ...i1i0
+

e∑
h=1

λ1+hdhjhi0
(14.16)

where qif ...i1i0 is the transition probability corresponding to the Markov chain, dhjhi0
is the transition probability between covariate h and Xt, and where the weight param-
eters λ1,. . .λ1+e sum up to one. By computing all of these probabilities, we can then
estimate the full transition matrix computed in the previous solution.

3. Consider the same situation as in solution 2 above, but that the Markov chain
associated with the lags of Xt is replaced by a MTD model. Then,

P(Xt = i0|Xt−1 = i1, . . . ,Xt−f = if ,C1 = c1, . . . ,Ce = ce)

=
f∑

g=1
λgqigi0 +

e∑
h=1

λf +hdhjhi0
(14.17)

where the qigi0 are the transition probability of the MTD model, dhjhi0 is the transi-
tion probability between covariate h and Xt, and where the weight parameters λ1,. . .,
λf+e sum up to one. By computing all of these probabilities, we can then estimate
the full transition matrix computed in solution 1 above.

In this chapter we implemented solution 3.

14.2.1.5 The MTD Model with Interactions Between the Covariates

The MTD model above with covariates can also have interaction among covariates.
The high-order transition probabilities are then computed as follows:

P(Xt = i0|Xt−1 = i1, . . . ,Xt−f = if ,C1 = c1, . . . ,Ce, M1 = m1, . . . , Ml = ml)

=
f∑

g=1
λgqigi0 +

e∑
h=1

λf +hdhjhi0 +
l∑

u=1
λf +e+usuvui0

(14.18)
where λf+e+u is the weight for the interaction term, qigi0 is the transition probability
from modality ig observed at time t–g and modality i0 observed at time t in the tran-
sition matrix Q, suvui0 is transition probability between covariate h1 and covariate h2
interaction term (vu = dh1jh1

× dh2jh2
) and Xt, and where

f +e+l∑
g=1

λg = 1 (14.19)

and where

λg ≥ 0 (14.20)
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14.2.1.6 The Generalized MTDg Model with Interactions between Covariates

The MTD model with interactions above can also have a different transition matrix
of size (k×k) to represent the relation between each lag and the present. The high-
order transition probabilities are then computed as follows:

P(Xt = i0|Xt−1 = i1, . . . ,Xt−f = if ,C1 = c1, . . . ,Ce = ce,M1 = m1, . . . ,Ml = ml)

=
f∑

g=1
λgqgigi0 +

e∑
h=1

λf +hdhjhi0 +
l∑

u=1
λf +e+usuvui0

(14.21)
where qgigi0 is the transition probability from modality ig observed at time t–g and
modality i0 observed at time t in the transition matrix Qg associated with the gth lag.

In Eq. (14.21), suvui0 is transition probability between covariate h1 and covariate
h2 interaction term (vu = dh1jh1

× dh2jh2
) and Xt, and

f +e+l∑
g=1

λg = 1 (14.22)

and where

λg ≥ 0 (14.23)

14.2.1.7 Estimation

The parameters λ and q of the MTD model (14.21) can be estimated by minimizing
the negative the log-likelihood (NLL) of the model:

NLL = −
m∑

il,...,i0=1

nil,...,i0 log

⎛
⎝ f∑

g=1

λgqgigi0 +
e∑

h=1

λf +hdhjhi0 +
l∑

u=1

λf +e+usuvui0

⎞
⎠

(14.24)
where nil,...,i0 is the number of sequences of the form Xt–1 = i1,. . ., Xt–f = if,
C1 = c1,. . ., Ce = ce, M1 = m1,. . ., Ml = ml in the data. To ensure that the model
defines a high order Markov chain, the negative log-likelihood must be minimized
with respect to the constraints (14.22) and (14.23). ADMBTM was used to minimize
the negative the log-likelihood (NLL). This uses auto-differentiation (AUTODIFF)
(Fournier 1996) as a minimisation tool, and was shown to be computationally less
intensive than MARCH (Kim et al. 2005, 2008). The major advantage of our new
model is that its run-time is more than 10 times shorter (< 1 min vs. 2 days) and can
be run from a batch file in DOS. Hence multiple models can be tested one after the
other in remote mode. The outputs can also be appended into one file to be easily
accessed by any graphical software.
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14.3 Data Sets

Flowering data were sourced from the Box-Ironbark Forest near Maryborough,
Victoria, in particular the flowering records of E. leucoxylon, E. microcarpa,
E. polyanthemos and E. tricarpa (1940–1971). Flowering intensity was calculated
by using a rank score (from 0 to 5) based on the quantity and distribution of flow-
ering (Keatley and Hudson 2007). Flowering intensity scores were dichotomised
into two discrete states, namely on and off (1/0) flowering (Fig. 14.3) as in Kim
et al. (2005). One temperature variant, of the minimum monthly temperature
(MinT), maximum monthly temperature (MaxT) and mean monthly diurnal temper-
ature (MeanT), in addition to the monthly rainfall (Rain) were included as covariates
in the MTD and MTDg models; along with the temperature by rain interaction
effect, for both the MTD and the MTDg models. We used two discrete states, namely
low/high (lower than median temperature vs. higher than median temperature) for
the temperature variables and less/more (less than the median rainfall vs. more than
the median rainfall) for the rainfall variable. The cut-points for the states or low/high
(less/more) categories of each climatic covariate are shown in Table 14.2.

Fig. 14.3 Flowering (0=off/1=on) of the four eucalypts species

Table 14.2 Cut-points for the climate variables based on medians

Climate variables Low (less) High (more)

Minimum temperature (◦C) ≤7.65 >7.65
Maximum temperature (◦C) ≤20.33 >20.33
Mean diurnal temperature (◦C) ≤13.84 >13.84
Rain (mm) ≤40.45 >40.45
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14.4 Results

The MTD mixing probabilities λg and transition probabilities for the four species
are given in Tables 14.3 and 14.4, respectively. Flowering intensity of all species
was positively and significantly correlated with last month’s flowering and with
flowering 11 months earlier (P < 0.0001); with flowering 12 months earlier for
E. polyanthemos and E. microcarpa. MTD showed a significant 9 month lag for
both E. polyanthemos and E. tricarpa. Rainfall was not a significant main predictor
of flowering in all species except E. tricarpa. Rain interacts with (mean) temperature
for E. polyanthemos only. Figure 14.4 shows the relevant transition probabilities for
the MTD model of E. polyanthemos flowering. MTD models confirm that the main
temperature driver is maximum temperature for E. tricarpa, and mean temperature
for both E. leucoxylon and E polyanthemos (Fig. 14.4); and minimum temperature
the main temperature driver for E. microcarpa’s flowering.

The MTDg mixing probabilities λg and transition probabilities for the four
species are given in Tables 14.5 and 14.6, respectively. MTDg modelling showed
that flowering intensity of all species was positively and significantly correlated with
last month’s flowering; with flowering 12 months earlier for E. polyanthemos and
E. microcarpa; and with flowering 11 months earlier for all species except E. micro-
carpa. MTDg as did MTD showed a significant 9 month lag E. tricarpa only.
Rainfall was not a significant main predictor of flowering in all species except E. tri-
carpa. Rain interacts with mean temperature for E polyanthemos only. Figure 14.5
shows the relevant transition probabilities for the MTDg models of all 4 species’
flowering.

MTDg models (Tables 14.5 and 14.6), in agreement with the MTD analysis
(Tables 14.3 and 14.4), show that the main temperature driver for E. tricarpa is
maximum temperature, mean temperature for both E. leucoxylon and E. polyanthe-
mos; and minimum temperature for E. microcarpa’s flowering. From the MTDg
analysis we summarise as follows: Flowering increases as temperature (mini-
mum) increases for E. microcarpa, flowering decreases as temperature increases
for E. leucoxylon and E. tricarpa (driven by mean and maximum tempera-
ture, respectively). Rainfall positively impacts on the flowering of E. tricarpa
(i.e. flowering increases with more rainfall). There is a significant interaction
between mean temperature and rainfall on the flowering of E. polyanthemos
(Table 14.4).

A comparison of the MTDg and MTD analyses show overall similar results.
Previous months flowering has a significant positive impact on flowering of the
current month for all four eucalypts species, as gleaned by both MTDg and MTD
analysis. Flowering at lag 12, the previous year, has a significant positive effect on
the flowering of E. microcarpa and E. polyanthemos, as shown by both MTDg and
MTD models. Flowering of 11 months ago has positive effects on flowering of E.
polyanthemos, E. leucoxylon, and E. tricarpa from the MTDg models, and on all
four species from the MTD analysis. Flowering nine months ago has a significant
positive effect on flowering of E. tricarpa for both MTDg and MTD; MTD models
also found a significant 9 month lag for E. polyanthemos.
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Fig. 14.4 Transition probabilities to flowering from (a) previous flowering state (on/off), (b) mean
diurnal temperature state (low/high), (c) rainfall state (less/more) and (d) temperature by rainfall
interaction state for E. polyanthemos

14.5 Discussion

The MTD and MTDg models with interactions show that the flowering of E. leu-
coxylon and E. tricarpa are influenced similarly by temperature (both flower at low
temperature) and exhibit a positive relationship with flowering 11 months ago. For
E. leucoxylon this is because it has two months in which flowering commencement
is almost equally likely: April and June, 0.36 and 0.39, respectively (Keatley and
Hudson 2007). The reason is less clear for E. tricarpa as the probability of flowering
commencement 11 months prior is low, 0.04.

The flowering of E. microcarpa behaves differently from E. leucoxylon and E. tri-
carpa. Eucalyptus microcarpa flowers at high temperature and its flowering has
a significant and positive relationship with flowering a year ago. This illustrates
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Fig. 14.5 MTDg transition probabilities to flowering from previous flowering state (on/off),
temperature state (low/high), and rainfall state (less/more) for the four eucalypts species

this species is more consistent as to when it starts flowering (i.e. E. microcarpa
has a probability of commencing flowering 12 months before of 0.67 compared to
E. leucoxylon and E. tricarpa, respectively 0.41 and 0.39) (Keatley and Hudson
2007).

The MTD and the MTDg model found a significant interaction between two cli-
mate variables, mean temperature and rainfall on the flowering of E. polyanthemos.
As flowering is viewed as either “off” or “on” this interaction appears to be delin-
eating E. polyanthemos’ flowering period. It usually commences flowering in late
spring – as mean temperature is increasing and rainfall is decreasing and ceases in
early summer; just prior to the warmest mean temperature and lowest rainfall. An
alternative interpretation of this interaction could also be that as flowering is viewed
as either “off” or “on” it is delineating the climate profile during E. polyanthemos’
flowering period.
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These four species examined here are influenced by temperature (see also Keatley
et al. 2002) and in some instances are influenced by rainfall; and as a consequence
their flowering phenology will change in response to climate change. These changes
can be regarded as the short-term impacts of climate change (Rehfeldt et al. 2004).
The longer-term consequences are changes in their individual reproductive success
and distribution. These changes in phenology will in turn have an impact on other
species (e.g. 20% of vertebrate species where these species occur, box-iron bark
forests, are nectar dependent (Traill 1991)). Mac Nally et al. (2009) have related a
crash in the number of birds in these systems to a reduction in nectar; reflective of
reduced flowering intensity and thus food, between 2002 and 2007. The apicultural
industry is also likely to be affected as these species are some of the main produc-
ers of honey in Australia (Victorian Environment Assessment Council 2001) and
therefore changes in flowering would have significant economic consequences.

Future work will entail the modification of the MTD and MTDg models dis-
cussed here to incorporate all the three temperature variants, rainfall main effects
and their interactions. Multivariate MTD (M-MTD) models are also the topic of
future work. It is anticipated that our M-MTD models (with a multiplicity of
covariates) may be more sensitive than MTD and MTDg models in establishing
temperature by rainfall interactive effects on flowering. Indeed the influence of rain
on these species needs further examination as its effect has been shown to range
from none (Porter 1978, Keatley and Hudson 2000) to a significant but minor effect
(i.e. temperature has a much greater influence) (Wells 2000, Keatley and Hudson
2000, Keatley et al. 2002); to significant with a major influence (Wilson and Bennett
1999, Kim et al. 2005, Mac Nally et al. 2009). Given these mixed results indications
are that, as in semi-arid woodlands, there is a rainfall threshold required before
flowering can occur (Porter 1978, Hodgkinson and Freudenberger 1997).
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Chapter 15
Life History Mediated Responses to Weather,
Phenology and Large-Scale Population Patterns

Esa Ranta, Jan Lindström, Veijo Kaitala, Elizabeth Crone, Per Lundberg,
Tatu Hokkanen, and Eero Kubin

Abstract Using a threshold-triggering framework, we extend the Moran effect to
also cover timing of life history events. With two varieties of the model we demon-
strate emergence of synchrony in seasonal and annual timing that levels off against
distance between sampling sites compared. In the first model we address within-
season timing over years. The Finnish data on leafing of European aspen support
the model predictions in al detail explored. In the second example the focus is on
annual match of seed production in the Finnish Scotch pine and Norway spruce.
The model predictions find their match with the data. We show that it is possible to
extend Moran’s (1953) idea to encompass events not directly regulated by density-
dependent feedback. It is perhaps not too surprising that phenological events can be
synchronized in much the same way as population fluctuations.

Keywords Life history · Phenology · Spatial synchrony · The Moran
effect · Threshold-triggering

15.1 Introduction

An eminent Australian statistician, P.A.P. Moran (1953) was the first one to draw
ecologists’ attention to the fascinating fact that densities of many populations of
a given species fluctuate in step over time. He also provided a model to show how
synchrony may arise. Pat Moran’s argument was very elegant in its simplicity: if spa-
tially separate populations were subjected to similar density-dependent feedback in
their renewal process, spatially correlated external disturbance would synchronize
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population fluctuations. In addition, correlation between these population fluctua-
tions would eventually match the correlation between the forcing terms (see also
Ripa and Ranta 2007). Perhaps demonstrating how much Moran was ahead of his
time, ecologists ignored Moran’s model for several decades, until Royama (1992)
reintroduced it in an influential monograph. To use a well-worn cliché, the rest is
history; the so-called “Moran effect” has been very much in the limelight of ecolog-
ical literature since Royama’s 1992 book (for reviews, see Ranta et al. 1997, 2006,
2007, Liebhold et al. 2004).

For historical reasons, the Moran effect has been considered as the synchronizing
agent of population fluctuations (Ranta et al. 1997, 2006, 2007). Here, we discuss
the role of Moran effect in synchronizing phenological events. In particular, we are
interested in landscape and population level causes of timing of life history events to
external triggers. Hence, phenology for us is: “the relationship between a regularly
recurring biological phenomenon and climatic or environmental factors that may
influence it” (Encarta R© World English Dictionary© 1999, Microsoft Corporation).
Such events include calendar timing of episodes such as spring arrival, onset of egg
laying, hatching of chicks, moult and autumn departure in birds; timing of reproduc-
tion in mammals and fish; emergence of adult insects and timing of diapause and
hibernation; leafing, flowering, and fruit production in plants. Note that many of
those phenomena are inherently closely associated with factors directly tied to pop-
ulation growth. The Moran effect on population fluctuations and on phenological
life history processes are thus very closely related.

To lessen our burden, we limit the analyses presented here to two kinds of life
history events, those that make immediate use of resource availability, and those
that need accumulation of resources before being realized. Drawing on life-history
theory (e.g. Stearns 1992), we call these income and capital strategies, respectively.
These are the ends of a continuum of strategies; so demonstrating the possible pop-
ulation and landscape level consequences of life history decisions made at these end
points of this continuum captures the range of possible outcomes. Leafing in trees
is an example of an income strategy. Leafing phenology is cued by temperature at a
particular site in a particular year, so we expect leaf production to reflect (for most
part) conditions in the current year (Arft et al. 1999). Seed production in trees is an
example of a capital strategy. In northern latitudes, many tree species produce seeds
(cones, or berries) synchronously in some years, followed by a few low seed produc-
tion years to the next mass production of seeds (Kelly and Sork 2002), suggesting
that seed production in one year reflects resource allocation from stored resources
as well as resource gain in that year (see, e.g. Hoch et al. 2003). Indeed, reproduc-
tive activity of trees in forests often fluctuates between years with a large variance,
and their flowering and fruit production are synchronized over a long distance, even
across species and higher taxa (Koenig and Knops 1998, 2000, Koenig et al. 1994,
1999). Therefore, in order to ask whether weather events synchronize seed produc-
tion, we need to understand how individual trees store and allocate resources over
time.

To facilitate our argument, we first show how a simple statistical tool – measuring
synchrony (the temporal match of events in space and time) – helps us uncover sig-
nificant features that lie in the space-time domain of ecologically significant income
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processes such as leaf phenology. We then introduce a resource-based model of
mast seeding in plants (c.f., Büsgen and Münch 1929, Yamauchi 1996, Isagi et al.
1997, Satake and Iwasa 2002, Rees et al. 2002). Masting, or mast seeding, is the
synchronous and highly variable seed production between years by a population of
plants (e.g. Kelly 1994). A number of hypotheses have been proposed to explain
evolutionary advantages of masting (Janzen 1971, Silvertown 1980, Nilsson and
Wästljung 1987, Norton and Kelly 1988, Smith et al. 1990, Kelly et al. 2001, just
to name a few). However, we are interested in evaluating a mechanistic explana-
tion of masting as a function of fluctuations in available resources due to variable
environmental conditions such as temperature and precipitation.

Synchrony is simply defined here as “occurrence at the same time” (Encarta R©
World English Dictionary© 1999, Microsoft Corporation). Quite obviously, events
such as the arrival of spring (according to some appropriate definition), should
potentially serve as a strong synchronizing agent. It is well known that many natural
processes are indeed synchronized (Ranta et al. 2006). When referring to popula-
tion dynamics the degree of synchrony is often measured as the cross-correlation of
population sizes in two spatially separate locations (references in reviews by Ranta
et al. 1997, 2006, 2007). When the correlation approaches one, the two populations
fluctuate roughly hand in hand, when the correlation is close to negative one, they
are completely out of phase, and when it is close to zero, there is no correlation
between the population sizes at the two locations. Obviously, depending on the kind
of data it might be advisable to use some other measure of the population synchrony
than temporal correlation. For example, in phenological research, synchrony could
be measured as the difference in time when a life history event takes place but in
different study populations.

Typically, synchrony tends to decrease with distance – the closer the popula-
tions are in space, the higher the temporal match is. This distance-dependence of
synchrony can have two causes (Ranta et al. 1997, 1999). First, the populations
may share the same environmental driver and respond in a similar fashion to it
(flowering and leafing in plants, onset of nesting in birds), and populations sepa-
rated by smaller distances may experience more similar timing of environmental
events. Second, there may be a high degree of exchange of individuals between the
two populations (valid for dispersing organisms only). Both effects tend to be more
matching the closer the populations are in space. Hence, when the synchrony mea-
sure between any two populations in a set of spatially separate habitats or patches,
is plotted against distance between them, there is usually a negative slope of that
relationship. The more global the Moran effect is (i.e. high spatial autocorrelation
in environmental factors), the less synchrony levels off with distance and the slope
becomes shallower. The more localized the Moran effect is, the steeper the slope.
Ranta et al. (2006: Chapter 4) provide a fuller account on the definitions and the
statistics involved here.

Population synchrony is not just a statistical phenomenon. If, for example, per
capita dispersal is constant, then many individuals are dispersing at high popula-
tion densities over large areas, but far less so when the population densities are
simultaneously low in nearby habitats or patches. This means that gene flow will
be pulsed over time and that “crunch” years with small populations densities, and
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therefore increased likelihood of local genetic drift, will occur. In other words,
greater synchrony means less potential for genetic or demographic rescue effects
(Brown and Kodric-Brown 1977, Tallmon et al. 2004).

15.2 Space-Time Synchrony of Phenology Events

We aim to show that the Moran effect (i.e. a common external perturbation) is capa-
ble of synchronizing two differing life history events, exemplified with leafing in
European aspen (Populus tremula) and mast seeding in both Scotch pine (Pinus
sylvestris) and Norway spruce (Picea abies) in Finland. In proving the latter we
do not need to call for the concept of “pollen coupling” (Satake and Iwasa 2002).
Indeed, in each case a simple threshold-triggering mechanism works. In the first
example we address within-season timing over years, in the second example the
focus is on the annual match of seed production in the two most common forest
trees in Finland. However, we emphasize that synchrony here refers to timing of
leafing within years, and seed production among years, not to population dynamics.

15.2.1 Threshold-Triggered Phenology

Consider the onset of leafing (more precisely, when leaves have reached their final
size) along a temperature gradient, as a metaphorical starting point. The annual
steepness of the gradient (i.e. the slope of temperature over space) represents the
possible strength of the Moran effect. In years when the slope is shallow, the
threshold is reached almost simultaneously everywhere. This would correspond to
a situation where a large-scale weather pattern prevails on large range. In contrast,
when the slope is steep, one end of the gradient has higher temperatures earlier,
resulting in earlier leafing in that end of the gradient. However, local conditions are
also going to affect the phenological event in question, as different places will have
different wind conditions and geographical features, for instance. To accommodate
such variation, we add local noise to the overall pattern, affecting the temperature
accumulation towards the threshold needed for leafing. Thus, one can imagine sam-
pling stations located along a temperature gradient, where local conditions are also
recorded. We let the Moran effect influence the annual slope of the gradient, and
the resulting data are observations of seasonal timing of the phenology event in
the sampling stations. Such data render it easy to define spatio-temporal patterns of
synchrony.

15.2.1.1 Phenology of Leafing in the European Aspen in Finland

To make this conceptual model concrete, we turn to real data. In this particular
case, we have the 1997–2007 leafing records (i.e. when leaves reach their full size)
of European aspen from 30 sampling stations in Finland. The method of selecting
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the target trees of local origin and undertaking the phenological observations are
described in Kubin et al. (2007). The observations are made individually by observ-
ing five medium-sized and healthy trees. The trees are selected either from an
observation stand or from a separate location according to the situation, and they are
marked and numbered. The leaf has reached its full size when it does not grow any
bigger. To verify this, cross measurements (width and length of individual leaves)
were used (for more details see Kubin et al. 2007).

We take 2002 as an example year and plot the dates on the map of Finland
(Fig. 15.1a). In this year the gradient to reach full-sized leaves is 40 days across
the country. The threshold temperatures are encountered earlier in South and West
than in North and East of Finland. The model suggests (in statistical terms), pro-
vided there is a geographical gradient, that the temporal match in timing is highest
at close ranges and that it decreases with increasing distance. Not surprisingly, this
pattern is found despite that there is huge scatter in the aspen synchrony data (r464
= –0.60; Fig. 15.1b). To illustrate the basic elements of the threshold-triggering
model, we have taken May temperature isoclines (1971–2000 data at 1◦C isoclines
available at http://www.fmi.fi/saa/tilastot_134.html) as a preliminary surrogate of
the environmental gradient.

With such data we can replace the geographical distance data with temperature
distance data. Graphing leafing synchrony against temperature synchrony suggests a
positive co-variation between the two variables (Fig. 15.1c; r464 = 0.74), somewhat
stronger than the relationship between synchrony and distance. This can be repeated
for all the 11 years we have data on leafing in the European aspen. As the tempera-
ture data are long-term averages, while the aspen data are annual, one would expect
to see annual variation in the slope of the relationship between synchrony of leafs
in full size vs. temperature match along the nation-wide geographical range. This is
the case (Fig. 15.1d); the slope varies between 1 and 4 days per one ºC difference
between the sampling sites.

We consider some, yet unknown, accumulated temperature sum needed for
reaching full-sized leaves in aspen. Using the 1971–2000 temperature isoclines (or
their synchrony across Finland) approximates this threshold. Annual temperature
variation in the leaf-growing season is reflecting variation the triggering threshold.
Thus, the Moran effect can be partitioned into its components: long-term average,
and annual deviations from it. We used these 11 years of data on the relationship
between synchrony in flowering dates and temperature match across Finland, to esti-
mate the relative contributions of match in temperature and years to the slopes in
Fig. 15.1d. Normalized regression coefficients for temperature synchrony and
year are 0.57 (standard error = 0.01) and 0.09 (standard error 0.01), respec-
tively. Therefore, the annual component of the Moran effect plays a minor role
in synchrony relative to the long-term average. Nonetheless, Fig. 15.1d suggests
intriguingly that the long-term average climate conditions could be becoming a
worse predictor of annual synchrony over time (a generalized linear model with
year x slope interaction gives a normalized coefficient –0.13 (standard error 0.01)
supporting the conclusion of negative trend).
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Fig. 15.1 (a) Leafing phenology of European aspen in Finland 2002. The numbers and letters on
the map refer to the date on which leaves reached full expansion (1 = 24/5; 2 = 25/5; 3 = 28/5;
4 = 1/6; 5 = 8/6; 6 = 11/6; 7 = 12/6; 8 = 13/6; 9 = 15/6; 0 = 16/6; A = 18/6; B = 22/6; C =
24/6; D = 29/6; E = 5/7; F = 6/7; G = 11/7; H = 13/7) and their locations indicate the position
of sampling stations on the map. (b) Based on the data in (a) one can simply calculate synchrony
in the temporal match of leafing in the aspen and graph the data against the geographic distance of
the sampling stations. The finding is a leveling off of the synchrony against distance (r = –0.603;
slope –0.026). (c) Instead of distance one can use long-term (1970–2001) temperature isoclines as
a measure of phenological proxy between the sampling locations. The leafing synchrony is graphed
against the measure of temperature synchrony (r = 0.736, slope 4.29). (d) The slope (days per a
degree of ◦C difference) of regression lines (synchrony in leafing versus synchrony in temperature;
see panel (c)) graphed over the study years 2001–2007

15.2.2 Phenology of Mast Seeding

Here we formulate the resource allocation by plants into an individual based model
of seed production. Our model was inspired by resource matching as described by
Büsgen and Münch (1929), and is very close to that presented by Tuomi et al. (1983,
their Fig. 2). It is also conceptually close to models analyzed recently by Yamauchi
(1996), Isagi et al. (1997), and Rees et al. (2002) in that individual plants gain
resources over time, and then spend them on reproduction when above a threshold
level needed for reproduction. To emphasize the similarity to other models and avoid
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Fig. 15.2 Schematic structure of the resource-threshold model (more details in Box 13.1). The two
individuals depicted differ their energy levels accumulated for reproduction (�i, white sections
of the columns). On the ongoing season both gain energy. E(t) (grey sections), for reproduction
modulated by local modifiers, ε(t) (hatched sections), not necessarily the same for all individuals.
Once the energy accumulated exceeds the threshold � needed for reproduction, breeding takes
place all reserves are depleted. The next season those individuals start energy accumulation from
scratch, while those that did not hit � stay with their reserves to the next breeding season

confusion in the definition of resource matching (c.f., Rees et al. 2002, Monks and
Kelly 2006), we refer to our model as a resource-threshold model of seed produc-
tion. With this model, we evaluate periodicity and patterns of spatial synchrony
in reproductive events in perennials across geographical ranges. For this purpose,
we consider again a set of localities along an environmental gradient as in Section
15.2.1, where – for instance – temperature in one end is higher that in the other end
(e.g. due to latitude or altitude).

The model (Fig. 15.2; Box 15.1) is built on individual-level accumulation of
energy reserves

∏
i(t) for reproduction. The reserves are either increased by energy

gained during the growing season, E(t), or used up if reproduction takes place
(Box 15.1). Individuals may experience variation due to local conditions: E’i(t) =
μ’i(t) E(t), (here μ is taken from uniformly distributed random distribution between
1–wL and 1+wL). Reproduction takes place once the accumulated reserves exceed
the threshold � for reproduction. The reserves are completely depleted during
reproductive events. The model poses an immediate observation, also seen in the
data (Figs. 15.6 and 15.7): all individuals do not reproduce simultaneously!
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With annual variation in E(t), and with individual differences in energy accumu-
lation due to local differences, we find the following. When E(t) > � all individuals
in all sites will reproduce every year (consistent with the results of Isagi et al.
1997, Satake and Iwasa 2000). This is one of the extreme ends of the income-
capital reproduction continuum: the income is put directly to reproduction. In
contrast, if the energy demand for reproduction is higher than annual availabil-
ity (i.e. � < E(t)) reproduction becomes periodic, and the period length between
the peak years of reproduction increases with increasing difference between E(t)
and � (Figs. 15.3 and 15.4 ). This is another testable prediction generated by

Fig. 15.3 Examples of the temporal dynamics the resource-threshold model can generate. The
threshold is � = 250, annual availability, E(t), is uniformly distributed random numbers between
80 and 120 plus εi(t) with w = 0.01 in (a) and w = 0.05 in (b). The population is n = 100 individuals
with initial �i taken from uniform random numbers between 50 and 150. In both cases there is a
three-year periodicity but the overall pattern differs, In (a) peak (year t) is followed by a crash at t +
1, modest recovery at t + 2, and a peak of reproduction at t + 3. In (b) there are still a fair proportion
of individuals reproducing after the peak year. The reproduction statistics are taken after a transient
period of 100 time steps has elapsed. (c) An example with a six-year periodicity, � = 550, w =
0.025, otherwise as in (a) and (b)
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Fig. 15.4 Period length as a function of the energy threshold for reproduction �, when E(t)
is uniformly distributed random numbers between 80 and 120 with εi(t), when w = 0.01. The
population is n = 100 individuals with initial �i taken from uniform random numbers between 50
and 150. The autocorrelation statistics (only positive coefficients are indicates starting from 0.2;
inset) are taken from time series of 100 steps long after a transient period of 100 time steps has
elapsed. A matching graph (not shown here) can be achieved by keeping the threshold � fixed
and by reducing the E(t): when E(t) gets smaller and smaller the period length of reproduction
increases

the model. Note that one has the same effect by keeping � constant and by
reducing E(t).

This resource-threshold model is easy to extend into a spatial context. Assume
that there are N sites, perhaps along an environmental gradient. The regions may
differ in many ways in terms of the resource-threshold model, as outlined above.
Introducing differences (i) in Ek(t), would imply more energy in the south (low-
lands) than the north (at high altitudes), for instance. Alternatively, there could be
(ii) gradient differences in �k, or (iii) Ek(t) and �k could co-vary along the gradient
either with matching or different slopes. We demonstrate this by taking two local-
ities, A and B, that are either matching (EB = EA), or more apart (e.g. EB = dEA,
where d < 1; Box 15.1). We measure the temporal match between these two local-
ities by calculating cross correlation with time lag zero, r0 (e.g. Ranta et al. 1995,
2006). Presenting the gradient similarity this way makes the ambient environments
in A and B spatially autocorrelated (Ranta et al. 1999). The full model is presented
in Box 15.1. Note that the Moran effect in the present model is in the E, provided
it is not constant over years. This is similar to the threshold-triggered phenology
model in Section 15.2.1.When E(t) comes from a frequency distribution, nothing
prevents it from having a long-term trend, or temporal structure (autocorrelation).
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Fig. 15.5 Synchrony (measured with cross correlation with lag zero, r0) in reproduction between
populations increasingly with environmental similarity ranging from perfect match d = 1 to d =
0.5. In each panel synchrony level is evaluated for reproductive periodicities of three, six and nine
years. The population size in each unit is n = 100 individuals with initial �i taken from uniform
random numbers between 50 and 150. The synchrony statistics are taken from time series of 100
steps long after a transient period of 100 time steps has elapsed. The gradient can be either in Ek
(a) or �k (b). If the gradient is both in Ek and �k, it can be with matching slopes for Ek and �k
(c), or slopes for Ek and �k can differ (d)

We leave exploration of these aspects outside the present treatment, as they would
take so much space.

We observe that spatial synchrony, the degree of temporal match in space,
reduces rapidly with increasing environmental dissimilarity with the gradient being
either in Ek or �k (Fig. 15.5a, b). The main reason for this fast decline in synchrony
is that the two populations start to fluctuate with different periodicity (Fig. 15.5).
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Period length of the reproductive dynamics between the sites also affects the level
of synchrony. The larger the difference, the lower is the temporal match of reproduc-
tion. Interestingly, when the gradient influences simultaneously, and with matching
slopes, both Ek and �k, we observe only a minimal decay in synchrony along the
environmental gradient (Fig. 15.5c). Finally, when both Ek and �k change along
the environmental gradient but with different slopes (regardless of which one is
steeper) the synchrony decay against decreasing values of d becomes shallower
(Fig. 15.5d).

15.2.2.1 Seed Crop in Pine and Spruce in Finland

The most important factors influencing the seed crop include variations in climatic
and weather conditions, and the internal anatomical, physiological and genetic char-
acteristics of the trees (e.g. Sarvas 1962). There are also other factors regulating the
abundance and quality of the seed crop, such as site fertility, stand structure, topog-
raphy and damages. These factors can be depicted by means of a seed crop concept
model (Hokkanen 2000), which illustrates the complexity and multi-phased nature
of the ecological process resulting in a seed crop.

At the end of the 1950’s Risto Sarvas, an ingenious forest ecologist, established
a nation-wide network monitoring the litter fall, flowering and seed crops of trees
in Finland. At its peak, the network included 47 pine and 21 spruce sample plots
in different parts of Finland. At present, almost fifty years later, the litter collection
is still ongoing at 12 original sample plots. The litter fall collection and seed crop
sampling system is described in detail by Sarvas (1962), Koski and Tallqvist (1978),
and Kouki and Hokkanen (1992).

Long-term data of Scotch pine and Norway spruce seed crops in Finland immedi-
ately corroborate one prediction of this individual based resource-threshold model:
reproduction in these trees is not evenly distributed in time. Rather, the data suggest
some periodicity in time (Figs. 15.6 and 15.7; compare with Fig. 15.3). Some years
are markedly better in terms of seed production that others. In good seed production
years pine is capable of producing ca. 200 seeds per m2, the corresponding capacity
for spruce being ca. 1000 seeds. In lean years, these numbers are much reduced.
However, in those years, the seed production is not reduced evenly, but only some
trees produce seeds, whereas in good seed years practically all trees are known to
reproduce (Koski and Tallqvist 1978). These observations are in accordance with
the model (e.g. Fig. 15.3).

Periodicity of the incidence of life history events is one of the most profound
predictions of the resource-threshold model (Fig. 15.3). We addressed the period-
icity of the annual seed crop in pine and spruce by using the peak-to-peak analysis
(Packard et al. 1980, Rinaldi et al. 2001). In principle, this method calculates inter-
vals between years of high seed production. Frequency distributions of intervals (in
years) from one peak to another are shown in Figs. 15.6 and 15.7. As the seed pro-
duction in both pine and spruce are periodic in Finland, this matches another major
prediction of the model in two species.
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Fig. 15.6 Annual seed crop in pine in nine localities in Finland (arranged from bottom to top in
south to north order). The right-hand histograms give the frequency distribution of peak-to-peak
seed years
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Fig. 15.7 Annual seed crop in spruce in five localities in Finland (arranged from bottom to top
in south to north order). The right-hand histograms give the frequency distribution of peak-to-peak
seed years

Given a resource gradient, or a gradient in the threshold, or both (but with dif-
fering slopes), the resource-threshold model suggests that if populations compared
are from different parts of the gradient, the degree of synchrony in reproduction
decreases with distance. The temporal mismatch in seed production is expected to
increase with difference in the ambient environments (Fig. 15.5), and this is another
feature readily seen in the pine and spruce data: the synchrony in seed produc-
tion clearly decreases with increasing distance, perhaps with a steeper slope against
distance for spruce than pine (Fig. 15.8a, b).

An interesting fact that we would like to point out is the almost total absence of
synchrony between the seed crops in pine and spruce in the same (or very closely
situated) stands (Heinola: r0 = 0.09; Kuorevesi; r0 = 0.09; Rovaniemi: r0 = –0.11
or –0.30; Kittilä: r0 = –0.11 or –0.13). These observations show – if nothing else
– that the two tree species are either different in their match to resources, or to
the threshold needed for reproduction. In fact, this is yet another indication that
the resource-threshold model captures some relevant features of the expected life
history responses to environmental cues: different species respond to the ambient
environment differently (depending on their life histories and thresholds).
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Fig. 15.8 Seed crop synchrony in (a) pine and (b) spruce graphed against geographical distance
between the sampling sites. The time series data, based on which the synchrony values are cal-
culated are shown in Figs. 15.6 and 15.7. (c) Seed crop periodicity in pine and spruce against
latitude (correlation coefficients are inserted)

The model also suggests – provided that there is a gradient in the resource avail-
ability for reproduction – less energy towards north, or in higher altitudes – that
the periodicity of the reproduction increases. Calculating averages of the peak-to-
peak intervals (right-hand histograms in Figs. 15.6 and 15.7) and plotting the values
against latitude of the time series shows that there is indeed an increasing trend in
period length towards north (Fig. 15.8c).

15.3 Discussion

We have shown with the threshold-triggered phenology model (Section 15.2.1)
that the conceptual framework of Moran effect can be extended beyond its origi-
nal domain in explaining large-scale synchrony in fluctuations of population size.
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Here, instead of focusing on synchrony in the overall size of the populations in time
and space, we looked at the timing of different phenological events, such as seed
production in trees. The model incorporates the idea of a Moran effect by letting
an environmental gradient represent the original spatially autocorrelated, density-
independent perturbation. The other essential component of the original idea by
Moran (1953) concerned the shared structure of density-dependence by the spatially
separated populations. When transferring the Moran effect to govern life history
events one has to be particularly careful when referring to density dependence and
when not. With our two examples, accompanied with explicit Moran noise, we have
shown that it is possible to extend Moran’s (1953) idea to encompass events not
directly regulated by density-dependent feedback. Against this background, it is
perhaps not too surprising that phenological events can be synchronized in much
the same way as population fluctuations (e.g. Antonovics and Levin 1980).

Similar to our first example, Tryjanowski et al. (2006) monitored first flowering
of Early dog violet (Viola reichenbachiana) and Horse chestnut (Aesculus hippocas-
tanum) over 26 years in Poland and the United Kingdom. They presented annual
observations of first flowering dates (y-axis) graphed against mean temperature (x-
axis) in February–March in both countries. For comparison, we generated measures
of flowering and temperature synchrony from their data. Calculating the slope (as
in Fig. 15.1c) we observe that the synchrony in first flowering dates is shallower in
Poland (violet: 2.9 days difference per ◦C, standard error = 0.25; chestnut 1.6±0.20)
than in the United Kingdom (violet: 8.4±0.54; chestnut: 4.2±0.64). This analy-
sis substantiates Tryjanowski et al.’s conclusion that flowering records show much
stronger temperature sensitivity in the United Kingdom (where temperatures are
much warmer than in the same period in Poland) compared to Poland. With sta-
tistical modeling, one can quantify the contribution of the country effect: in the
violet data it is almost as strong (based on normalized regression coefficients) as
the temperature synchrony effect (violet: 0.47±0.03 vs. 0.58±0.03, country and
temperature, respectively; chestnut: 0.47±0.04, vs. 0.32±0.04). This finding sug-
gests that exploring effects of phenotypic plasticity or adaptation to local conditions
would be a potentially profitable direction for extending the threshold-triggered phe-
nology model. Incidentally, with the aspen data (Fig. 15.1c, d) if we split Finland
into two halves (at 63◦N), for the 11 -year period we get the average slope for the
southern part to be 2.5 while it is 2.2 for the northern part. A paired t-test found this
difference to be statistically significant (t10 = 2.24, p < 0.05). Hence, the data on
aspen and violet and chestnut are matching, steeper slope in warmer temperatures.
This finding is perhaps an indication that the threshold temperature for the phenol-
ogy event is somehow related to long-term ambient temperature during the critical
period for the life history event in question.

Synchrony in seed production is even more directly analogous to population-
dynamic Moran effects. In population dynamics, the Moran effect influences
population renewal process that is not very far from seed production. In addition,
fluctuations in resource gain can be considered as representing the spatially autocor-
related perturbation, and as resource depletion within individual plants encompasses
these fluctuations, this process becomes directly analogous to density dependence
within populations. To fully develop the analogy, recall that population dynamic
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Moran effects occur because population dynamics are regulated through density-
dependent feedback loops (e.g. Royama 1992): once populations are depressed (or
elevated) by climate in a particular year, endogenous processes tend to return pop-
ulation sizes towards carrying capacity; this (with or without resonance) tends to
keep populations synchronized in future years.

Similarly, resource depletion in individual plants leads to periodic seed pro-
duction, at least at the capital end of the resource allocation continuum. After a
high-resource year, all plants reproduce, all plants deplete their resources below
the threshold, and all plants are all part of the same cycle. A key component of
this result is that seed production by individuals is inherently periodic over time
in our resource-threshold model. For example, Satake and Iwasa (2002) analyzed
Moran effects as a possible synchronizing force in seed production using a heuristi-
cally similar model of resource depletion. Their model predicted chaotic patterns of
seed production by individuals over most regions of parameter space, and therefore
autocorrelated fluctuations in resource availability did not synchronize seed produc-
tion. However, even in their model, Moran effects occurred in the small region of
parameter space where seed production by individuals was approximately cyclical.
Therefore, we might expect Moran effects to be stronger for phenology of traits that
draw on capital resources, such as seed production.

It is interesting to revisit evolutionary theories about mast-seeding in light of the
potential for Moran effects to cause synchronous mast seeding. Resource match-
ing has been viewed as a kind of a null hypothesis as it assumes no evolutionary
benefits (Rees et al. 2002). It is possible that masting is just a consequence of
physiological constraints or selection for reproduction based on stored resources
in a variable environment, not necessarily a consequence of selection due to bene-
fits of mast seeding per se, such as predator satiation. Alternatively, it is possible
that selection for mast seeding acts to favor life histories at the capital end of
the continuum, so that Moran effects are more effective in synchronizing plant
reproduction.

The two explanations are not necessarily mutually exclusive. It is quite possible
that the primary reason for the observed patterns is based on the physiological con-
straint mechanism and that that in turn might give predator satiation an advantage
that could fine-tune the response to a variable environment. But since plant popula-
tion dynamics rarely seem to be seed limited (Clark et al. 2007), it is perhaps more
likely that what we see is life history and physiologically driven response to the
mixed effect of resource acquisition, resource storage and environmental variability
with no deeper direct adaptive significance. In either case, it is clear that evaluat-
ing mechanisms of synchrony in seed production needs to be done in the context of
mechanisms of resource allocation and storage over time, in response to fluctuations
in resource availability.
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Chapter 16
Applications of Circular Statistics in Plant
Phenology: a Case Studies Approach

L. Patricia C. Morellato, L.F. Alberti, and Irene L. Hudson

Abstract Phenology is the study of recurring biological events and its relationship
to climate. Circular statistics is an area of statistics not very much used by ecol-
ogists nor by other researchers from the biological sciences, and indeed not much
visited, till recently in statistical science. Nevertheless, the connection between the
evaluation of temporal, recurring events and the analysis of directional data have
converged in several papers, and show circular statistics to be an outstanding tool
by which to better understand plant phenology. The aim of this chapter is to assess
applications for circular statistics in plant phenology and its potential for phenologi-
cal data analysis in general. We do not discuss the mathematics of circular statistics,
but discuss its actual and potential applications to plant phenology. We provide sev-
eral examples at various levels of application: from generating circular phenological
variables to the actual testing of hypotheses, say, for the existence of certain a pri-
ori seasonal patterns. Circular statistics has particular value and application when
flowering onset (or fruiting) occurs almost continuously in an annual cycle and
importantly in southern climates, where flowering time may not have a logical start-
ing point, such as mid-winter dormancy. We conclude circular statistics applies well
to phenological research where we want to test for relationships between flowering
time and other phenological traits (e.g. shoot growth), or with functional traits such
as plant height. It also allows us to group species into annual, supra-annual, irregular
and continuous reproducers; to study seasonality in reproduction and growth; and
to assess synchronization of species.
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16.1 Introduction

The relevance of phenology, the study of recurring biological events and their
relationships to climatic factors, has increased exponentially over the last decade,
as phenology can be used to understand the effects of climatic changes on plant
and animal life cycles (Menzel 2002, Schwartz 2003). However, the issue of
comparability among phenological studies remains a challenge due to the wide
range of methods applied in the collection and evaluation of plant phenology data
(Chapters 5, 6 and 20). When we consider the lack of world wide standards for
data collection, [as an exception we can cite the Europeans through COST Action
725 (COST 2008), that have developed a standard; see Chapter 5 for further discus-
sion], and the need for core methods of analysis for phenological data, we start to
appreciate the difficulties faced by plant phenologists worldwide.

Circular statistics is an area of statistics not much used by ecologists and other
researchers from the biological sciences (Fisher 1993). Circular (or directional)
statistics is the specific sub-discipline of statistics that deals with directions (unit
vectors), axes (lines through the origin) or rotations. The fact that 0 and 360◦ are
identical angles, so that 180◦ is not a sensible mean of 2 and 358◦, provides an
illustration that special statistical techniques are required for the analysis of angular
(vector) data.

Environmental applications of circular statistics include long-axis orientations
of feldspar laths, cross-bed azimuths of paleocurrents, and orientations of peb-
bles or rock cores (Fisher 1993). Also, the repeating nature of time increments,
such as days, months or years, is captured by the wrapping-around of the circle.
Further examples include time of the daily maximum temperature, or occurrence
of hurricanes during the year, compass directions, dihedral angles in molecules
(Anderson-Cook and Otieno 2002), etc.

Applications of circular statistics are to be found in geology, astronomy (Fisher
1993, Evans 2006) and the medical sciences (Mann et al. 2003). Other applica-
tions are spread out across several fields such as meteorology (Svensson et al.
2002, Grimit et al. 2006, Kasprzyk 2006), oceanography (Calsbeek and Smith
2003), geography (Liebhold et al. 2004) and biology (Hemmi and Menzel 1995,
Alonso 1997, Novotny and Basset 1998, Morellato et al. 2000, Hamer et al.
2005, Prado et al. 2005, Castro et al. 2007). The growing applications for bio-
logical sciences justified a book on directional data methods by Batschelet (1981)
and the inclusion of circular statistics in a general textbook (Zar 1999), and
more recently in software and computational platforms. See for example, Stata,
Matlab (2009) (CircStat in the Statistics Toolbox), the free R-project package for
circular statistics, namely CircStats (R Project for Statistical Computing 2009)
(see http://rss.acs.unt.edu/Rdoc/library/circular/html/00Index.html). Lastly Oriana
2.0 (Kovach Computing Services 2009) (see http://www.kovcomp.co.uk), which
is the only platform dedicated specifically to circular statistics. Also important
is Jammalamadaka and SenGupta’s (2001) research monograph on circular data
analysis which contains S-plus subroutines for analyzing actual data sets.
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It is noteworthy that recently circular statistics is gaining prominence in the
highly complex area of computational biology and proteomics (Mardia et al. 2007,
Boomsma et al. 2008); also in bird ecology (Sutherland et al. 2004) and in other
ecological studies (Herrera 1988, Morellato et al. 2000, Anderson et al. 2005, Ting
et al. 2008). For instance, Ting et al. (2008) applied circular vector algebra to char-
acterize seasonal peaks in fruit production (mean date, as an angle) and the length
of fruiting seasons (as a circular standard deviation), and circular correlations to
connect geography and climate to timing of fruit production in fleshy fruited plant
communities.

Most of the earlier animal and plant applications of circular statistics analy-
sis in biological sciences concern the analysis of directional data, for instance,
the orientation and direction of movements of animals, such as flight direction of
birds and butterflies and the orientation on salamanders and dragonflies (Batschelet
1981, Fisher 1993). Nevertheless, the connection between the evaluation of tempo-
ral, recurring events and the analysis of directional data have converged in several
papers, and shown circular statistics to be an excellent tool by which to describe
and to compare both plant and animal phenology (Herrera 1988, Wolda 1988, 1989,
Morellato et al. 1989, 2000, Milton 1991, Alonso 1997, Davies and Ashton 1999,
Hamer et al. 2005, Zimmerman et al. 2007). Milton et al. (1982) was one of the first
studies to apply circular statistics to analyse phenology.

The aim of this chapter is to assess the applications of circular statistics on plant
phenology and its potential for phenological data analysis in general. We do not
discuss the mathematics of circular statistics, a rather complex issue, but focus
on its actual and potential applications in the science of plant phenology. We pro-
vide examples for the application of circular statistics in plant phenology, from the
generation of so-called phenological variables to testing hypotheses of random (uni-
form) versus non-random seasonal patterns. In summary circular statistics includes
tests of uniform direction around the circle (which may represent a year), intervals,
and tests for comparing two groups of directions, circular graphs, correlations, and
regression, among others. Finally, we discuss the still unexplored potential of cir-
cular statistics to plant phenological studies. We conclude that circular statistics is
a developing field of application for the analysis of plant phenological data; and its
application is highly recommended for researchers who aim to unravel phenological
patterns and to formally compare and test hypotheses on plant phenology.

16.2 Circular Statistics

16.2.1 Definition of Circular Scale and Circular Distribution

The first aspect of application of circular statistics is to understand how the basic
parameters of circular statistics correspond to traditional linear statistics. There are
classic books (Mardia 1972, Batschelet 1981) and other good sources of information
on directional data (Upton and Fingleton 1989, Fisher 1993, Mardia and Jupp 2000,
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Jammalamadaka and SenGupta 2001), and the literature cited therein. The basics to
circular distributions and test statistics of hypotheses for directional data are clearly
explained by Zar (1999, or any other edition) for a beginner. To further discuss the
applications of circular statistics in plant phenology it is necessary to briefly intro-
duce the terms we use in this chapter and, where appropriate, their correspondence
with linear data. The terminology follows Zar (1999), and the definitions are mostly
according to Batschelet (1981) and Fisher (1993).

A circular scale is a special type of interval scale, where not only is there no
true zero, but indeed any designation of high or low values is arbitrary. The best
example of the circular scale are compass directions (North, South, East, West and
its intervals), where the circle is divided into 360 equal intervals or degrees. Other
illustrations of a circular scale are times of day and months of year, a familiar scale
for any phenologist, dealing with daily, monthly or annual cycles. For example, at
an annual level, one month of the year corresponds approximately to 30◦ (360◦/12)
of a circle, and ~1◦ to one day. Time is also circular when it measures part of a cycle,
such as the timing of a daily event; however, time is linear when it measures length
of time, such as the number of days since an event.

Apart from long standing theoretical reasons, data from circular distributions
may not be analysed by traditional linear statistics for empirical reasons even purely
based on such arbitrariness of the zero point on the circular scale (Mardia 1975,
Batschelet 1981, Zar 1999). Henceforth, any time unit (X) can be converted to an
angle (a) on the circular scale (16.1), where k is the total time units in the full cycle,
we have then that:

a = (360◦)(X)

k
(16.1)

In terms of plant phenology applications, any date of observation (month, week or
day) can be converted to an angle, and the frequency of observations at that angle or
date is then plotted (Figs. 16.1 and 16.2). For instance, if we are considering monthly
observations, these circular data divide the 360◦ range into 12 groups, corresponding
to months of the year, where January is the first and December the last. The dates are
conventions defined by the authors, who generally try to include a high number of
complete phenological cycles (see Herrera 1988 for a good example). January as the
lower degree makes angles easily comparable. Each sector or interval is 30◦ wide
and, by convention, the midpoint of the sector is the angle representing a month,
for example January being 15◦, February 45◦ and December 345◦. When dealing
with circular distributions it is important to define the nature of the data used, that is
delineate angles (0 to 360◦), compass direction (N, S, SE, etc), time (time in hours,
day of week, month of year, day of year), or a date (the specific date when data
were collected). As a time scale is naturally in intervals, this type of data is grouped
in nature (see Fisher 1993), an aspect which may restrict the application of some
circular statistical tests or may need some correction factor, depending on the nature
of the grouped interval and the number of groups (Batschelet 1981, Fisher 1993).
The correction for grouped data works only for variables exhibiting a unimodal dis-
tribution, or one mode or modal angle. The use of a correction factor is, however,
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Fig. 16.1 Circular histograms of the frequencies of species of each phenological variable for the
semideciduous altitudinal forest data of Table 16.1. The vector line in the circle indicates the mean
angle or direction and the sector outside the circle indicates the 95% confidence interval. Note that
in histogram H there are no mean directions and the confidence limit is unreliable. For the purpose
of this book, this was painted in black instead of the traditional red output given by Oriana. In each
histogram the longest grey bar represents the main mode
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Fig. 16.2 Raw (a) and arrow data plots (b), and rose diagram (c) for the same frequencies
of species for peak of leaf flush of the semideciduous altitudinal forest data of Table 16.1 and
Fig. 16.1e. The bold arrow represents the r vector. (d) shows the bimodal data for leaf flush, where
the bold arrow inside the circle indicates the nonsensical mean angle or direction calculated (as
here the bimodality of the data has not been taken into account), and the tick line crossing the
circle from July to January indicates the opposite angular directions of the bimodal distribution,
calculated as in Zar (1999)

optional for more than 12 groups (Batschelet 1981), favouring the idea of increasing
the frequency of observations (Chapter 5). For instance, biweekly intervals lead to
24 groups, and improves the application of the Watson-Williams F test (Batschelet
1981) for further comparisons. After overcoming the restriction of grouped data, we
are then able to calculate the mean angle ā (a correlate but in a sense similar to the
linear mean): the computations consider the sum of the sine and cosine of n angles a,
and the rectangular coordinates and the length of the mean vector r is calculated, and
the mean angle ā is thus defined (Table 16.1, Fig. 16.1). The resultant mean angle is
obtained by calculating the inverse tangent. The mean angle can be back converted
to a mean date (Table 16.1), based on the same formula (16.1) above, given the time
of year around which the phenological activity is most concentrated. Definitions
and formulations of sine, cosine and inverse tangent functions are given on the
Wikipedia (2009) web link http://en.wikipedia.org/wiki/Trigonometric_functions.
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We refer the reader particularly to the unit-circle definitions of the sine, cosine
and inverse tangent trigonometric functions and the unit-circle figure shown in
http://en.wikipedia.org/wiki/Trigonometric_functions.

It is important to remember that the angle of the mean vector (and the corre-
sponding date) do not necessarily point to the time of peak activity, as can be seen
in Fig. 16.1g, but indicates the central tendency of the data. The peak of activ-
ity is given by the modal angle, defined afterwards. Here r is the length of the
mean vector, a measure of concentration of frequencies around the estimated mean
angle ā (Table 16.1). The value of r has no units and varies proportionally with the
amount of concentration in the data, from zero (when there is so much dispersion
that a mean angle cannot be described) to one (when all the data are concentrated
at the same direction or angle). Although not used in most phenological applica-
tions to date, one could calculate the circular deviation around the mean angle (in
degrees), and additional estimators of angular dispersal, such as the circular variance
S2, angular variance s2 and standard variance, the angular deviation and the circular
standard deviation, as well as the confidence limits for the population mean angles
(Table 16.1, see Zar 1999), which can also assist in the detection of deviations
from a unimodal distribution. Circular distributions can thus well represent vary-
ing amounts of concentration, corresponding to the values of r (Table 16.1 and
Fig. 16.1)

Underpinning this approach is the assumption that the equivalent in circular
statistics, to the Gaussian or normal distribution in conventional statistics, is the
von Mises distribution (Fisher 1993). This distribution on the circle is probably the
best known distribution in the field of directional statistics. The von Mises distri-
bution is widely used to model the type of angular data described above, where an
angle is represented here by a two-dimensional unit vector (that is, a point on the
circle).

More frequently used to estimate phenological variables for plants is the median
angle, to represent the centre of phenophase duration for a given species and, the
modal angle, meaning the phenophase peak (Fig. 16.1). The median angle is defined
in two steps: first one determines which diameter of the circle divides the data into
two equal sized groups; then the diameter’s radius, near to the majority of the data
points, is taken to be the median angle. The modal angle is defined in the same way
as for the linear scale and, as with linear data, there may be more than one mode
or in fact no mode. The median angle may coincide, or not, with the mean angle
(Table 16.1 see peak flower and first fruit, respectively).

There are cases of bimodal or multimodal distributions that may restrict the appli-
cation of some circular tests (Batschelet 1981). A bimodal distribution occurs when,
for instance, there are two peaks (modes) on the opposite sides of the circumference
(see Morellato et al. 1989, Zimmerman et al. 2007). For example, the results of
Rayleigh test for leaf flush data on Table 16.1, although significant, are unreliable
due to low concentration of data, indicating a tendency to uniform or multimodal
distribution. If we add eight records in January for the data from Table 16.1 on
peak leaf flush, and Fig. 16.1e, we produce the distribution depicted on Fig. 16.2d,
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with two modes, one in January and the other in July. The new mean vector is
then smaller (r = 0.25) than the previous from a unimodal distribution (r = 0.39).
If one applies the Rayleigh test (Batschelet 1981) we again would not reject the
null hypotheses of a uniform distribution. Note, however, here we should reject
the null hypotheses, since the distribution is bimodal (a type II error). In this case,
after detecting, by visual inspection, a bimodal distribution (Fisher 1993), a specific
procedure has to be adopted (Zar 1999), as follows: the bimodal distribution has
to be converted to a unimodal variant, this by reducing the angles to one side of
the circle (Zar 1999): then the Rayleigh test can be applied, and the mean angu-
lar direction re-calculated, and thus converted to give the two mean directions of
the data (Fig. 16.2d). In this case no r value is estimated in the case of bimodal
distributions.

As advised by Fisher (1993), it is always important first to look carefully at your
data when analyzing circular distributions; this should occur before the interpre-
tation of and performing of any circular tests. In the case of peak leaf flush in
Table 16.1, although the Rayleigh test was significant, an examination of the cir-
cular diagram (Fig. 16.1e) shows a multimodal distribution, supported by the low
r value, low concentration values and by the wide confidence limits (Fig. 16.1e).
Hence the results are unreliable due to the low concentration of the data. However,
the distribution of leaf flush peak is not uniform around the year (Table 16.1 peak
leaf flush).

16.2.2 Graphing and Describing Phenology Using
Circular Distributions

The best graphical representation of phenological data is a circular histogram, with
the length of each bar representing the relative frequency of a given phenological
variable observed at a given date or angle (Fig. 16.1a-h). We can add information to
the circular diagram, such as the direction of the mean angle and 95% confidence
intervals (Fig. 16.1a-h), the circular variance, or vector r. When plotting the r vec-
tor, the vector length should correspond to its value, and it also should point to the
mean angle. Other representations exist, such as the raw data plot, arrow data plot
and the rose diagram (Fig. 16.2a-c, respectively), which are very well discussed by
Batschelet (1981) and Fisher (1993) in their chapters on circular data types and its
representation (see also Oriana 2.0 software). The arrow data plot makes the modal
angle more visible, while rose diagrams may misrepresent the importance of each
angle frequency (Fig. 16.2b, c). The box-plot is an alternative representation for uni-
modal data (Fisher 1993). Some authors have used lines to connect the frequency
value at each angle, demarcating an area inside the circle (Batalha and Martins
2004): this should be avoided as it gives the impression of dependence amongst the
angles.
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16.3 Applications of Circular Statistics to Phenological Data

Here we present a dozen examples, based on the current literature, of the application
of circular statistics to plant phenology. We hope in this context to provide a practical
approach, aiming to encourage phenologists to consider circular statistics as a viable
and user-friendly tool by which to analyse phenological data.

16.3.1 The Estimation of Phenological Variables Using
Descriptive Circular Statistics and the Vector r

The definition of mean time of occurrence of a given phenophases, as the angle of
the mean vector ā, is among the most widespread uses of vector algebra to plant phe-
nological variables. Its application to phenological data from litter traps, instead of
direct observation, is very well exemplified by Wright and Calderon (1995), Wright
et al. (1999) and Zimmerman et al. (2007). Boulter et al. (2006) also employed
the angle of mean vector to estimate the mean flower time or flower midpoint for
herbarium data (over 36,774 records), and used the length of the mean vector r as
a measure of the concentration of phenological activity. The daily concentration of
airborne pollen for several species has also been estimated by circular statistical
methods and its resultant parameterization (Kasprzyk 2006).

16.3.2 Synchrony and Aggregation of Phenological Activity

Descriptive statistics for circular distributions have been used to quantitatively char-
acterize plant phenology at the individual and the species level. The length of the
mean vector r has been used as a measure of the temporal concentration of pheno-
logical activity, with high r values, indicating aggregate phenological activity. For
instance, Herrera (1988) analyzed the individual variations on fruit phenology of
Osyris quadripartita using the mean angle as the centre of fruit period and the range
and mean of the individual values of vector r as an indicator of the level of seasonal-
ity. To assess the annual variation in fruit phenology, Herrera (1988) calculated the ā
and r for individual plants in each of the four annual cycle studies and compared the
resulting r values. Herrera was able to detect differences of phenological patterns
and the degree of seasonality among individuals and among years, demonstrating
how an unusual year affects the mean fruiting date. In a similar way, Davies and
Ashton (1999) applied the mean angle and vector length r at the individual and pop-
ulation level to indicate time of temporal aggregation or synchrony of reproductive
activity of Macaranga species from Borneo forest. They found, for instance, a large
population r indicating a high degree of intraspecific reproductive synchrony, while
the elevated individual values for r reveal a reasonably short reproductive duration
(Davis and Ashton 1999). In another application Pico and Retana (2001) calculated
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the mean angle and r for each individual of Lobularia maritima over five flowering
seasons, using the proportion of flowering stems per month in each individual plant
as a circular frequency distribution (with data grouped at 30◦). The mean angle
calculated by Pico and Retana (2001) represents the average date of phenologi-
cal activity and r the degree of temporal aggregation or synchrony of reproductive
activity for an individual or species. They determine differences among years in the
flowering mean dates, comparing the mean angles using a Kruskal-Wallis ANOVA
(Pico and Retana 2001), since the r values were too low to allow a circular test, as
described below.

16.3.3 Testing Hypotheses for Circular Distributions
and Comparing Phenological Patterns

Hypothesis testing for circular distributions is a valuable tool for phenology (see
Morellato et al. 2000). The choice of the statistical test should depend on the pre-
vious assumptions based on exploratory analysis, such as a graphical display of the
data (Fisher 1993).

The most straightforward circular test of hypotheses is the test for circular uni-
formity or significance of the estimated mean angle called the Rayleigh test. This
test shows how large a sample r must be to indicate a nonrandom population distri-
bution. The “Rayleigh’s z” is utilized for testing the null hypothesis of no population
mean direction. The null hypotheses H0: states that the population samples are
uniformly (or randomly) distributed around the circle; the alternative hypothesis
HA: the population samples do not show a uniform (or random) circular distribu-
tion. If the null hypothesis is rejected, we conclude that there is a significant mean
population direction or angle (or date); otherwise we conclude the distribution to be
uniform around the circle.

The length of the mean vector r gives some indication of unimodality; if r is
sufficiently large, usually more than 0.5, the hypotheses of randomness can be
rejected. Rayleigh’s test assumes a unimodal distribution or that the population does
not have more than one mode. If a unimodal population distribution is assumed
from the beginning, a significant Rayleigh test indicates a concentration around
the mean angle or direction, or a preferred direction (Batschelet 1981). Note that
there are some restrictions when employing conventional circular statistics calcula-
tions and tests to grouped data (Batschelet 1981, Fisher 1993); but the correction
of Rayleigh is easy to apply. Both tests lead to the same results (Table 16.1),
probably due to the robustness of the Watson-Williams test (Anderson-Cook 1999,
Zar 1999).

An alternative to the Rayleigh test for uniformity is the V test (Batschelet 1981)
applicable if a specific direction or date is expected. If for some reason one can
assume a direction for the distribution of the data (for instance, if the fruit season
of wind dispersed fruits is expected to fall in the dry season) we can test against a
specified angle. In the example of Table 16.1, we could assume an expected mean
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angle based on the previous phenological work from Morellato et al. (1989) at the
very same forest site. Based on this work, testing considers a H0 = flowering pop-
ulation dates are uniformly (or randomly) distributed around the circle or year, and
HA = flowering population dates are not uniformly distributed around the year, but
have a mean angle of 225◦ (August, 15). The resultant V (expected mean 225◦) =
0.74 and the V test (u) = 5.42, P < 1×10–5, hence we reject H0. The same test
procedure could be performed for leaf fall, the expected mean based on Morellato
et al. (1989) is 164◦ (June, 14); the resultant V (expected mean 164◦) = 0.39, the
V test (u) = 2.95, P < 0.001, again we reject H0. The V test is sufficiently powerful
to detect clustering around a predicted date, but the Rayleigh test remains powerful
for aggregation on any part of the circle (Batschelet 1972).

Therefore, the Rayleigh test allows, as proposed by Morellato et al. (2000), for
the detection of significant seasonal patterns (significant mean direction), the defi-
nition of a degree of seasonality (r), and the further application of a two or multiple
sample test (see details below) to test hypotheses regarding the comparison of phe-
nological patterns (mean angles or dates). Comparisons can be performed among
phenophases, sites, life forms, and vegetation types (Morellato et al. 1989, 2000,
Talora and Morellato 2000, Batalha and Martins 2004, Zimmerman et al. 2007),
species (Cruz et al. 2006) or populations (Osada et al. 2002, Brando et al. 2006,
Castro et al. 2007). For instance, while Castro et al. (2007) compared the reproduc-
tive phenology of Euterpe edulis (Arecaceae) at three contiguous sites of Atlantic
rain forest, Brando et al. (2006) tested for variations in the fruit phenology of
Coussarea racemosa (Rubiaceae) under different experimental drought conditions
across years. Cruz et al. (2006) employed the test for nonrandom flowering phenol-
ogy as well as displaying flower visitors’ seasonality. Whilst the mean vector r has
been interpreted as a measure of aggregation or synchrony, different interpretations
may be found in the literature (Hamrann 2004). ter Steege and Persaud (1991) have
applied circular statistics to define uni- or multimodality of flowering for Guianese
timber species. They demonstrated that unimodal species have a high z-value for
the Rayleigh test and multimodal species a low z-value, and calculated an index of
modality (ter Steege and Persaud 1991). The problem of multimodal and bimodal
data distributions (sub-annual patterns) is still a challenge to implementing rigorous
seasonal data analysis (Wolda 1988), but an excellent approach has been presented
recently by Zimmerman et al. (2007).

Working with the phenology of tropical forest trees, Morellato et al. (2000), have
proposed a test for the occurrence (or absence) of seasonal phenological patterns
within sites using the Rayleigh test; and compared patterns among four different
forest sites by applying the Watson-Williams test (F) statistics (Anderson-Cook
1999, Zar 1999), detailed below. For all sites, based on monthly observations, they
calculated reproductive and vegetative phenological variables to characterize the
phenology of each species, such as date of first flowering, date of first fruiting, date
of peak flowering, date of peak fruiting, date of peak leaf flushing, and date of peak
leaf fall. This procedure is important since, under the assumptions of circular statis-
tics, data around the circle are independent. If we just calculate the frequency of
species or the frequency of individuals to each month or angle, the same species
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may be considered in more than one month, since the duration of each phenophase,
for instance flowering, is usually longer than the sample interval (month).

To calculate circular statistics based parameters, months were converted to
angles, from 0◦ = January to 330◦ (December) at intervals of 30◦. The frequency
of occurrence of species of each phenological variable within each angle was cal-
culated and the circular parameters estimated for each study site (mean angle ā,
angular dispersion, confidence limits of the frequency distribution for each pheno-
logical variable and vector r). To test for the occurrence of seasonality Morellato
et al. (2000) rephrased the hypotheses tested as follows: H0 = dates are uniformly
(or randomly) distributed around the circle or year (i.e. there is circular uniformity or
no mean direction and consequently no seasonality); HA = dates are not uniformly
distributed around the year (i.e. there is a significant mean angle or mean direction
and consequently, there is some seasonality). The Rayleigh Z test was applied and
if H0 was rejected, the intensity of concentration around the mean angle, denoted
by the vector r, was considered as a measure of the degree of seasonality, ranging
from zero (when phenological activity is uniformly distributed through the year) to
one (when phenological activity is concentrated around one single date or time of
the year). If H0 was accepted, then r = 0 and if no bimodal or multimodal distri-
bution was detected it’s possible to conclude that the data do not exhibit significant
seasonality as reported in Morellato et al. (2000) using Zar (1999)

To compare seasonal phenological patterns within and among sites, when the
mean angle ā was significant, Morellato et al. (2000) performed the two-sample
Watson-Williams test (F): to (a) compare the mean angles ā among the phenologi-
cal variables within sites (so as to determine whether they exhibit similar seasonal
patterns); and (b) compare the mean angle ā of each phenological variable among
sites, to determine if the different sites exhibit a similar seasonal pattern or mean
angle ā (Zar 1999). The hypotheses tested were: H0 = the samples are from popu-
lations with the same mean angle; HA = the samples are not from populations with
the same angle. The Watson-Williams test (F) was utilized in Chapter 5 to compare
the mean phenological patterns between traps and direct observation.

Castro et al. (2007) follow the same procedure to test if the reproductive phe-
nology of Euterpe edulis (Arecaceae) differed among years and among three
contiguous sites of Atlantic rain forest, while Cruz et al. (2006) used the same pro-
cedure to test if flowering patterns differed between species of Bromeliaceae. The
same comparison was performed by Herrera (1988) to investigate possible differ-
ences among the study years regarding the mean fruiting angle in a population of
Osyris quadripartita. Herrera (1988) was the first to apply the Watson-Williams test
to study whether the mean fructification angle differed among populations of Osyris
quadripartita, demonstrating that the population’s phenology changed according to
variations in rainfall. At the community level, Batalha and Martins (2004) employed
the Watson-Williams test to evaluate if mean flowering times were significantly dif-
ferent between herbaceous and woody components of a savanna community and if
mean fruiting patterns were different among seed dispersal modes. It is important to
remember that the Watson-Williams test assumes that the samples are independent
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(Batschelet 1981). In the examples above this translates to the time of occurrence of
phenophases assumed to be independent.

Circular statistics can also be applied to test specifically for non-random temporal
patterns (Batschelet 1981). For these analyses, year is represented by a circle divided
into the number of segments that represent the interval of observations (12 months or
30◦ in the example on Table 16.1 and Fig. 16.1). The mean angle is back-converted
to a mean calendar date representing the average date of phenological activity. The
Rayleigh test is thus applied to determine if the distribution of phenological activity
is not uniform or nonrandom (Davies and Ashton 1999, Osada et al. 2002, Batalha
and Martins 2004). It should be used only in the case of unimodal distributions
(Batschelet 1981). The Hodges and Ajne sign test is a valid option if the alternative
is a unimodal distribution (Batschelet 1972).

If the objective is to detect any departure from a uniform or random distribution,
other tests may be more appropriate. For example Kuiper’s goodness-of-fit test, the
circular version of the Kolmogorov-Smirnov test for one sample (Batschelet 1981),
was used by Milton (1991) to detect whether or not the timing of phenological events
for each Moraceae tree was randomly distributed around the year. The null hypothe-
sis states that the phenological data are drawn from a uniform distribution. Note that
Kuiper’s test, although not recommended for groups larger than 5◦, is more sensitive
to departures from uniform and multimodal distributions than is the Rayleigh test
(Batschelet 1972), but the latter is stronger if we assume a unimodal distribution.
A test powerful for both unimodal and multimodal distributions is Rao’s Spacing
test (Jammalamadaka and SenGupta 2001). If the data is grouped and the expected
frequencies are larger than four, the chi-square test (X2) is a best option (Batschelet
1981).

In summary, it is important to keep in mind that the examples of Figs. 16.1 and
16.2d and Table 16.1 are illustrative. As is the case for traditional statistics, a low
sample size, usually below 25 can be problematic. Circular tests would then work
better if one applied bootstrapping techniques (Fisher 1993). A very large sample
size, on the other hand, may lead us to consider as significant very low r values. It
is fundamental that we keep in mind the biological meaning of your interpretations.

16.4 Further Circular Methods: a Quick Overview

Calculating confidence intervals on the parameters of circular data, though not dis-
cussed here, can be approached using resampling methods (Manly 1991, Crowley
1992). Heideman and Utzurrum (2003) used randomization methods with circular
statistics to test for synchrony and seasonality of reproduction in three species of
nectarivorous bats on the Negros Island in the central Philippines. Stark and Abeles
(2005) gave a unified framework for the use of resampling methods to construct spe-
cific tests for placing confidence limits on parameters of circular data, and specific
procedures for testing hypotheses on circular data, in the context of neurophysi-
ological data analysis, via an illustration with real data from monkey behaviour
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experiments. Aspects covered by Stark and Abeles (2005) were also non-parametric
confidence limits of circular parameters; testing circular distributions for equality
and circular permutation tests.

Tests for synchrony are also discussed in chapter 15 of this book, and tests for
seasonality in the chapter on singular spectrum analysis. Circular cross correlation
(see Oppenheim et al. 1999, Zimmerman et al. 2007) is one advancement not dis-
cussed in detail in this chapter. However, the method is now available in Matlab
7.5 (use the CXCORR command). Note that CXCORR(a,b), for a and b repre-
sent samples taken over time interval, which is assumed to be a common period
of two corresponding periodic signals (phenological series) each of length M row
vectors. Then the Matlab command [x,c]=CXCORR(a,b) returns the length M-1
circular cross correlation sequence c, with corresponding lags x. For the calcula-
tion of a circular covariance between a and b use CXCOV(a,b) (see http://www.
mathworks.com/matlabcentral/). Wavelet cross correlation methods for bivariate
time series are also discussed in Chapter 17 of this book when relating either
bivariate phenological-series or say one phenological-series with climate time series
indicators. See also the cross correlation methods based on the SSA reconstructions
of both phenological and climate time series in this book (Chapter 18).

The detection of change points is also one advancement in circular statistics that
is not given here in detail. Change point problems on a circle for directional data (see
Jammalamadaka and SenGupta (2001) can now be applied using the “change.point”
command in Circular statistics in R (see http://rss.acs.unt.edu/Rdoc/library/circular/
html/00Index.html). Change point methods for linear scaled data are discussed in
other chapters of this book (Chapter 11, Chapter 19).

Other circular procedures not discussed here involve analysis of variance for
circular data (Harrison and Kanji 1988) and circular-circular and circular-linear
regression. There is a novel suite of graphical representations of circular data avail-
able in Oriana 2.0 and in Matlab. These include rose plots, plots for kernel density
estimation for circular data, plots of circular empirical distribution functions, and
fitting a two dimensional circle to bivariate (x,y) data. Milton (1991) was one of
the first to use circular correlation in phenology, Wright et al. (1999) and Ting
et al. (2008) are other examples of its application in phenology. Ting et al. (2008)
present innovative solutions for the analysis of phenological data applying circular
correlations.

16.5 Circular Statistics or Time Series Analyses?
A Brief Comment

Phenological seasonal series are easily analysed applying circular statistics when
considering one year cycle or few cycles. Those data are difficult to analyse using
time series since we need a long time series to model data tendency, and the period
and frequency of cycles. However, extended phenological time series, for instance,
of 15 years, may not fulfil the premises of circularity, and would not be properly
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analysed by application of parametric circular statistics. Within a 15 year time series
there may be 16 cycles of 11 months each; where these cycles are not going to match
the one year circle, and indeed may originate from multimodal distributions that
mask the seasonality or the mean date (see Herrera 1988).

Therefore, as the number of cycles increases it seems more likely that conven-
tional time series will describe the data better than circular statistics. Time series
analysis is divided into frequency and time domain approaches - and the classic
reference is Box and Jenkins (1976). In the frequency domain the spectral anal-
ysis attempts to describe patterns, somewhat similar to some circular techniques,
although the spectral analytic approach summarizes the information across several
years. In the time domain the main models used are the autoregressive models (AR),
the autoregressive moving average models (ARMA), and the integrated ARMA or
ARIMA, which not only investigate patterns, but also make predictions or forecasts.
A subfamily of such ARIMA are the interrupted time series models (ITS) which, as
far as we now, have never been applied to phenological data. Such models can eval-
uate the significance and make predictions of future changes due to a storm or a
twister (McDowall et al. 1980). The ITS approach has been applied to medical sci-
ence, and presents an unexplored potential in ecology (Britt et al. 1996, Hsieh et al.
2008).

Time series methods are still under-utilized in phenology, especially in the trop-
ics, perhaps due to the lack of long phenological time series. However, in recent
years there has been a growth in the analysis of phenological data through time
series, as the phenological data can be bio-indicators of climate change (Menzel
2002, Hudson et al. 2003, 2004, 2009, Dose and Menzel 2004, 2006, Schleip
et al 2009). Some applications of time series are illustrated in Chapter 18 of
this book.

16.6 Concluding Remarks and Perspectives on the Application
of Circular Statistics

Our examples highlight important applications of circular statistics to the science of
phenology. These applications, in summary entail:

1. calculation of phenological variables (mean date, concentration, distribution,
duration)

2. estimating synchrony (asynchrony) or aggregation
3. testing hypotheses about: the distribution of a phenophase (divergence from a

random or uniform pattern), testing whether phenological patterns differ between
or among individuals, species or entire communities (by comparing angles, mean
angles, or mean vectors), testing the predictability of occurrence of a specified
phenophase, given an expected date or mean angle. These applications repre-
sent the most common applications of circular statistics in the phenological
arena.
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It is important to note that the circular statistics applies to any level (hierarchy) of
analysis, from individuals to communities, and that the descriptive measures calcu-
lated are easily compared statistically by means of a variety of two or multi-sample
tests.

Differences among species and among years in (budding, flowering, fruiting,
reproductive) seasonality (namely, the tendency for clusters of events to fall at
approximately the same point in each year) and synchrony (amount of clustering of
events within a year) characterize much of plant phenology. Such questions can be
approached using circular statistics. We conclude that circular statistics is an emer-
gent field of analysis for plant phenology and its application is highly recommended
for anyone wanting to investigate and better interpret phenological patterns. Circular
statistics also has particular value and application when flowering onset (or fruiting)
occurs almost continuously in an annual cycle and importantly in southern climates,
where flowering time may not have a logical starting point, such as mid-winter
dormancy. Circular statistics applies well to phenological research, where we may
want to test for relationships between flowering time and other phenological traits
(e.g. shoot growth), or with functional traits such as plant height. Circular statis-
tics allows us to group species into annual, supra-annual, irregular, and continuous
reproducers; to study seasonality in reproduction, and to assess synchronization of
species. We advocate that while the theory underlying circular statistics is not new,
the recent availability of mainstream statistical packages to implement this tech-
nique makes directional statistical methods clearly accessible to plant and animal
phenologists, ecologists, biologists and evolutionary researchers.
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Chapter 17
Wavelet Analysis of Flowering and Climatic
Niche Identification

Irene L. Hudson, In Kang, and Marie R. Keatley

Abstract This chapter discusses wavelet analysis which is a robust statistical
method capable of handling noisy and non-stationary data which phenological time
series often are.

We used a maximal overlap discrete wavelet transform (MODWT) analysis
to examine the flowering records (1940–1970) of E. leucoxylon and Eucalyptus
tricarpa, E. microcarpa and E. polyanthemos. We identified four subcomponents
in each flowering series: characterised as a non-flowering phase, duration, annual
and intensity cycles. A decreasing overall trend in flowering was identified by the
MODWT smoothed series.

Wavelet correlation found the same contemporaneous effects of climate on
flow-ering for E. leucoxylon and Eucalyptus tricarpa, and for E. microcarpa and
E. polyanthemos.

Wavelet cross-correlation analysis identified the cyclical influence of tempera-
ture and rainfall on peak flowering intensity. For each species there are 6 months
of the annual cycle in which any given climate variable positively influences flow-
ering intensity and 6 months of negative influence. For all species, rainfall exerts a
negative influence when temperature is positive.

Keywords Climate · Cycles · Flowering · Wavelet analysis · Wavelet cross
correlation

17.1 Introduction

Phenology has contributed significantly to agriculture (Aitken 1974, Hodges 1991),
to understanding the ecology and conservation of individual species (Ashton 1956,
Baumgärtner and Hartmann 2000), and communities (Rabinowitz et al. 1981, Bawa
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et al. 2003). Some work also combines plant phenology in relation to animal phenol-
ogy, for example the study on species composition and abundance of birds in relation
to fruit and flower abundance in subtropical Argentinian forests (Malizia 2001) and
the amount of leaf beetle damage to a herbaceous perennial plant with differential
growth according to a high altitude site versus a low altitude site (Suzuki 1998). The
wealth of these studies indicates the emergence of phenology as an important focus
for ecological research (Schwartz 1999). Importantly, also is that phenological data
have of late emerged as highly effective in the study of the impact of climate change
on both plants and animals (Menzel 2002, Sparks and Menzel 2002, Chambers
et al. 2005). During the last 14 years or so, studies using historical phenological
observations mainly from the Northern Hemisphere: Europe (e.g. Fitter et al. 1995,
Sparks and Carey 1995, Sparks et al. 2000, Ahas et al. 2002, Menzel et al. 2006),
North America (e.g. Bradley et al. 1999, Beaubien and Freeland 2000, Schwartz
and Reiter 2000, Abu-Asab et al. 2001, Miller-Rushing and Primack 2008) and Asia
(e.g. Lu et al. 2006, Zheng et al. 2006, Miller-Rushing et al. 2007, Aono and Kazui
2008) have shown that the onset of flowering times of many plant species occurs
significantly earlier (3–55 days) currently, than 35–150 years ago.

Most phenological data rely on observations from individuals who record a
phenostage – frequently first bloom being the datum of choice (Hänninen 1995,
Wielgolaski 1999, Chuine 2000) at a particular location over a long period. Other
phenostages such as fruit production, first bird arrival are also used. At a global
level, representation of these long time series, where long is considered to be of
length (>20 yr) are rare (Lavoie and Lachance 2006). Whilst such long records
often combined with dense phenological observational networks exist in Europe
(see Chapter 2) and facilitate the monitoring of flowering dates (e.g. Menzel et al.
2001, Ahas et al. 2002); the scenario is very different elsewhere, with phenological
records usually of short duration, highly dispersed and often limited to a small num-
ber of species (Schwartz and Reiter 2000). Indeed there are as yet few phenological
data sets in the Southern hemisphere (Hudson et al. 2003, Keatley and Fletcher 2003,
Morellato 2003). Some of the better known records across the northern hemisphere
cover several decades (e.g. the International Phenological Gardens (Chmielewski
and Rötzer 2001)) to several centuries (e.g. the flowering of cherry blossom in Japan
(Arakawa 1955)). Their early purposes were: development of calendars to determine
when crops should be planted (Aitken 1974, Ahas 1999), to judge whether a partic-
ular year was hotter or colder, compared to other years, prior to the invention of the
thermometer (Pfister 1980), to understand the seasons within a year (Abbot 1863 in
Winter 1972), and to understand the “natural” world (White 1912).

However, because the foundations of phenology rest in observation, monitoring
and natural history (see Chapter 2), it has not been generally regarded as a real nor
robust science (Sparks and Menzel 2002). This is despite many significant scientific
contributions to phenological methods over an extended period (Bassett et al. 1961,
Idso et al. 1978, Linkosalo et al. 1996, Schaber and Badeck 2002, Dose and Menzel
2004, Hudson et al. 2004, Kang et al. 2004). This view began to change in the
mid 1990s (Schwartz 2003, Chapter 1 of this book) with the recognition that phe-
nology can assist in delineating the impacts of climate change (Sparks and Carey
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1995, IPCC 2001, Root et al. 2003, Parmesan and Yohe 2003, Parmesan 2007).
However, phenological analytical methods which have been used to date, primarily
regression and correlation, whilst useful and robust (de Vries 1980, Pfister 1980,
Parmesan 2006) have their limitations (Sparks and Menzel 2002, Hudson et al.
2005, Sparks and Tryjanonwski 2005). For example, the slopes of resultant regres-
sion lines are influenced by when the given series commences and finishes and,
also by the length of the given series (Sparks and Tryjanonwski 2005, Chapter 6).
Statistical techniques used in phenology also need to accommodate for the inherent
complexity of phenological records, which is often ignored. Complexity, such as
their time series (correlated) nature, their often discrete and non-stationary proper-
ties, and the presence of excess zeros (non occurrence of a phenostage of interest).
Additional methods for examining phenological time series are thus needed, these
include Bayesian techniques (Dose and Menzel 2004, Chapter 11), sophisticated
decomposition methods for time series (Hudson et al. 2005, Chapter 18); or for
methods for combining time series (Häkkinen et al. 1995, Linkosalo et al. 1996,
Schaber and Badeck 2002, Chapter 7) and for change point methods (Dose and
Menzel 2004, Schleip et al. 2006, 2008, Keatley and Hudson 2008, Chapter 11).
Wavelets analysis is one such method.

17.2 General Motivation for Wavelets Analysis

Over the last 30 years, wavelets have emerged as a mathematical tool for the analy-
sis of complex datasets. Indeed, since their introduction in the geophysical literature
by Goupillaud et al. 1984, the application of wavelets to time series (Percival and
Walden 2000, Kang et al. 2005) and spatial data (White et al. 2005) has increased.
Wavelets are well suited to signal processing, particularly the analysis of biological
signals and images (e.g. human brain imaging and EEG data) which often pos-
sess fractal or scale invariant properties (Bullmore et al. 2003). Wavelets allow the
decomposition of a time series with respect to two independent variables, namely,
time and scale, and also the decomposition of an image with respect to location and
extent. A review of the historical development of wavelets is provided by Jaffard
et al. (2001). A detailed exposition on wavelets can also be found in Burrus et al.
(1998). Wavelet analysis has also been used in an examination of European spring
temperatures (Paluš et al. 2005) and rainfall (Koch and Marković 2007) and changes
in vegetation cover (Lu et al. 2007). Some key papers that have applied wavelets
in vegetation ecology and related fields include Bradshaw and Spies (1992), Dale
(1999), Lark and Webster (1999), Katul et al. (2001), Csillag and Kabos (2002) and
Dale et al. (2002).

Whitcher et al. (2000) were the first to propose a multi-scale analysis of covari-
ance between two time series using the discrete wavelet transform (DWT). In
atmospheric science for example, the bivariate relationship between two time series
is paramount (see for example Whitcher et al. (2000) who identified the Madden-
Julian oscillation (MJO) using bivariate spectral analysis (between the station
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pressure and zonal wind components at Canton Island)). Whitcher’s et al. (2000)
novel technique for bivariate Gaussian time series utilized the maximal overlap
DWT (MODWT). The MODWT is a non-decimated version of the orthonormal
DWT, shown to be valuable in the analysis of geophysical processes (Percival and
Guttorp 1994, Percival and Mofjeld 1997). Whitcher et al. (2000) introduced and
defined the wavelet correlation and wavelet cross-correlation and performed an
analysis of El-Nino (Southern Oscillation events and the Madden-Julian oscillation
(MJO) using a 35+ year record), thus demonstrating his method to be an excellent
alternative to traditional cross-spectrum (Fourier) analysis. Whitcher et al. (2000)
showed how the wavelet cross-correlation between ENSO events and the MJO both
quantifies and also visually displays how the association between the two processes
changes with scale. Conventional time and frequency domain techniques had to
that time, and still, provided results, difficult to interpret (see Foufoula-Georgiou
and Kumar (1994) and Kumar (1996) for descriptions of time-frequency/time-scale
analysis).

More recently Percival et al. (2004) illustrated the use of the DWT in the analysis
on time series related to vegetation coverage in the Arctic region. Percival et al.
(2004) showed how, given the DWT coefficients, the vegetation time series could
be reconstructed perfectly by a multi-resolution analysis (MRA). In the MRA the
series is re-expressed as the sum of a new set of time series (details and a smooth),
each of which is associated with variations at a particular scale. Percival et al. (2004)
illustrated how MRA allowed for the identification of certain decades (in the series
for the boreal group) for which the year-to-year variations were smaller than usual.
Whitcher et al. (2000), Katul et al. (2001) and Percival et al. (2004) all showed how
potentially complicated patterns of cross-correlation are easily decomposed using
the wavelet cross-correlation on a scale by scale basis, where each wavelet cross-
correlation series is associated with a specific physical time scale. This scale by
scale interpretation is possible as the energy in a time series is preserved in its DWT
coefficients (Whitcher et al. 2000, Percival and Walden 2000, Bullmore et al. 2003).
Wavelets thereby provide a decomposition of the sample variance (of a time series)
into components that may be associated with different temporal scales.

Some phenological studies cover areas as large as Europe or North America using
data-banks built up over decades from individual data collecting sites or remote
sensing. Wavelets have had particular application for phenology via remote sensing
(see White et al. 2003). Finally, some of the most interesting recent work combines
plant phenology in relation to animal phenology. Examples of this work include a
study on the species composition and abundance of birds in relation to fruit and
flower abundance in subtropical Argentinean forests (Malizia 2001) and the amount
of leaf beetle damage to a herbaceous perennial plant growing differently in a high
altitude site than a low altitude site (Suzuki 1998).

This wide application is due to wavelet analysis being able to cope with non-
stationary data: capable of deconstructing a time series into its subcomponents and
removing noise; able to handle multi-scale information, and its ability to minimize
correlation and time-dependency in data (Percival and Walden 2000, Gencay et al.
2001, Cornish et al. 2006). As phenological time series are often non-stationary and
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noisy, wavelets would seem to be a useful analytic method (Hudson et al. 2005)
for phenological records and for the determination of possibly changing climatic
impacts on flowering, at an annual (and across years) basis.

The aim of this chapter is to demonstrate the utility of wavelet analysis for pheno-
logical records by using the flowering time series of four eucalypt species as a case
study. Additionally, this study contributes to the much needed understanding of the
interplay between climate and Eucalyptus flowering – a major southern hemisphere
genus.

17.3 Methods

17.3.1 Continuous vs Discrete Wavelet Transform (CWT vs DWT)

In the earlier development of wavelet analysis the so-called wavelet transform (WT)
was usually considered to be the continuous wavelet transform (CWT) (Percival and
Walden 2000), as it was often applied to a function f (.) defined over the entire real
axis, say over time t. The CWT is a function of two variables�(τ , λ) and is obtained
by projecting the function f (t) onto a particular wavelet ψ via

CWT�x (τ , λ) = ��x (τ , λ) = 1√
λ

∫
f (t)ψ

(
t − τ

λ

)
dt

=
∫ ∞

−∞
f (t)ψλ,τ (t)dt, (17.1)

where

ψλ, τ (t) = 1√
λ
ψ

(
t − τ

λ

)
, (17.2)

and τ is a translation parameter which measures time, while λ is a scaling parameter
(Percival and Walden 2000). The translation of a wavelet function ψ(t–τ ) shifts
its range, τ units to the right, while a dilation of the function ψ(t/λ), expands its
range by a multiplicative factor. Hence, it is possible to break down the complicated
structure, present in the function, f (t), into its simpler components: signals at various
scales or resolution and shifts. This is called decomposing the function.

17.3.2 The Discrete Wavelet Transform (DWT)

For most practical applications, the discrete wavelet transform (DWT), which anal-
yses signals over a discrete set of scales, that are usually sampled at dyadic sequence
(λj = 2j–1, j= 1, 2, 3,. . . ), is sufficiently accurate and can recover signals perfectly
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(Mallat 1989). In the dyadic form, the wavelet function corresponding to Eq. (17.2),
with λ= λj = 2 j–1 and τ = kλj can be written as:

ψλj,kλj(t) = 1√
λj
�

(
t − kλj

λj

)
= 2−(j−1)/2ψ(t2−(j−1) − k), (17.3)

where j is the j th decomposition level or scale and k is the kth wavelet coefficient.
By contrast to Eq. (17.1) we now have λ = 1, 2, 4, 8,. . ., 2j.

Some details on the DWT decomposition and reconstruction follow. We assume
that x denotes a dyadic length column vector containing a sequence x1, x2,. . ., xN–1,
of N=2J observations of a real-valued time series. The length N vector of discrete
wavelet coefficients w is obtained via

w = Wx,

where W is an N × N orthonormal matrix defining the DWT. The vector of wavelet
coefficients may then be organised into J + 1 vectors,

w = [w1,w2, . . . ,wj,vJ]T (17.4)

where wj is a length N//2J vector of wavelet coefficients associated with changes
on a scale of length λj = 2j–1 and vJ is a length N/2J vector scaling coefficients
associated with averages on a scale of length 2J = 2λJ.

The matrix W is composed of wavelet and scaling filter coefficients arranged on
a row-by-row basis. Let

h1 = [h1,N−1,h1,N−2, . . . ,h1,1,h1,0]T (17.5)

be the vector of zero-padded unit scale wavelet filter coefficients in reverse order.
That is, the coefficients h1,0,. . .. . . h1, L–1 are taken from an appropriate orthonormal
wavelet family of length L, and all values, such that L < t < N, are defined to be zero.
Now we circularly shift h1 by factors of two, so that

h(2)
1 = [h1,1,h1,0,h1,N−1,h1,N−2, . . . ,h1,3,h1,2]T ,

h(4)
1 = [h1,3, . . . ,h1,0,h1,N−1,h1,N−2, . . . ,h1,5,h1,4]T , and so on.

Define the N/2 × N dimensional matrix W1 to be the collection of N/2 circularly
shifted versions of h1, that is,

W1=
[
h(2)

1 ,h(4)
1 , · · · ,h(N/2−1)

1 ,h1

]T

Let h2 be the vector of zero-padded, scale 2, wavelet filter coefficients defined simi-
larly to Eq. (17.5). Now construct the matrix W2 by circularly shifting the vector h2
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by factors of four. Repeat this to construct the matrices Wj by circularly shifting the
vector hj (the vector of zero-padded scale j wavelet filter coefficients) by factors of
2 j. The matrix VJ is simply a column vector whose elements are all equal to 1/

√
N

(Percival and Walden 2000). The structure of the N × N dimensional matrix W is
seen through the sub-matrices W1,. . ., WJ and VJ via

W = [W1,W2, . . . ,WJ ,VJ]T (17.6)

To complete the construction of the orthonormal matrix W, we must be able to
explicitly compute the wavelet filter coefficients for scales 1,. . .,J. The wavelet filter
hl is associated with scale. Given the transfer functions of unit scale and scaling fil-
ters, define the wavelet filter hj,l, for scale λj = 2j–1, as the inverse discrete Fourier
transform (DFT) of

Hj,k = H1,2 j−1k mod N

j−2∏
l=0

G1,2lk mod N , k = 0, · · · ,N − 1.

Define the scaling filter gJ for scale λJ as the inverse DFT of

Gj,k =
j−1∏
l=0

G1,2lk mod N , k = 0, . . . ,N − 1 (17.7)

17.3.2.1 Implementation of the DWT: Pyramid Algorithm

Decomposition

Implementation of the DWT via the pyramid algorithm (Mallat 1989) is detailed
below. Let h = (h0,. . ., hL–1) be the vector of wavelet (high-pass) filter coeffi-
cients and g = (g0,. . ., gL–1) be the vector of scaling (low-pass) filter coefficients
(Daubechies 1992). The length N vector of X is convolved with the filter h, whose
discrete Fourier transform is H (f), and downsampled by two in order to produce a
new vector W of length N/2 (similarly for G).

Graphical representation of the DWT as applied to a dyadic length vector X is
given in Fig. 17.1, which shows that wavelet decomposition is achieved by a com-
bination of high and low pass filters, H and G, respectively. This decomposition
essentially identifies high, medium and low scales in the function.

In practice the DWT is implemented via a pyramid algorithm (Mallat 1989) that
starts with the data xt, filters a series h1 and g1, subsamples both filter outputs to
half their original lengths, keeps the sub-sampled output from the h1 filter as wavelet
coefficients and then repeats the above filtering operations on the subsampled output
from the g1 filter. A flow diagram (Fig. 17.1) shows the first stage of the pyramid

algorithm. The symbol 2↓ , downsampling by 2, means that every other value of
the input vector is removed.
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Fig. 17.1 First stage of the
pyramid algorithm

Reconstruction

Reconstruction moves from coarse to a fine approximation, while decomposi-
tion moves in the opposite direction. The one level reconstruction process is
schematically shown in Fig. 17.2.

Inverting the DWT is achieved through upsampling the final level wavelet
and scaling coefficients, convolving them with their respective filters (wavelet for
wavelet and scaling for scaling) and adding up the two filtered vectors. A flow dia-
gram (Fig. 17.2) depicts the reconstruction of x from the first level wavelet and

scaling coefficient vectors. The symbol means 2↑ that a zero is inserted before
each observation in w1 and v1. The flow diagram in Fig. 17.2 shows the reconstruc-
tion of x from the unit scale wavelet coefficients w1 and from the unit scale, scaling
coefficients v1.

Fig. 17.2 Reconstruction of x
from the unit scale wavelet
coefficients w1 and from the
unit scale, scaling
coefficients v1

17.3.3 Maximal Overlap DWT (MODWT)

The discrete wavelet transform (DWT) as applied here, following Percival and
Walden (2000), requires a discretisation of the continuous time variable. For most
practical applications, the DWT, which analyses signals over a discrete set of scales,
that are usually sampled at dyadic sequence (λj = 2j–1, j= 1, 2, 3,. . . ), is sufficiently
accurate and can recover signals perfectly (Mallat 1989). The maximal overlap
DWT (MODWT) is one discretisation choice which gives N wavelet coefficients
for each scale (Percival and Guttorp 1994). The MODWT is a non-decimated vari-
ation of the DWT (Percival and Mofjeld 1997). It is also equivalent to the original
time series, in the sense that, given the MODWT coefficients, Y, can be constructed
as an additive decomposition, which is known as a multiresolution analysis (MRA)
(Hernández and Weiss 1996, Gencay et al. 2001, Bratteli and Jorgensen 2002).
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17.3.4 Multiresolution Analysis Using DWT

The MRA decomposition is as follows:
Using the DWT, we may formulate an additive decomposition of a series of

observations. Let dj = WT
j wj for j = 1,. . ., J. For example, the second detail series,

d2, represents the cross product of W2 where W2 is the scale λ2 MODWT coef-
ficients. Define the j th level wavelet detail associated with changes in x at scale
λj. The wavelet coefficients wj = Wj x represent the portion of the wavelet anal-
ysis attributable to scale λj, while Wj

Twj is the portion of the wavelet synthesis
attributable to scale λj. For a length N = 2J vector of observations, the final wavelet
detail dJ+1 = VT

J . VJ is equal to the sample mean of the observations.
A multiresolution analysis (MRA) may now be defined via

xt =
J+1∑
j=1

dj,t (t = 0,k · · · N − 1) (17.8)

that is, each observation xt is a linear combination of wavelet detail coefficients
{dj,t}.

Let sj = ∑J+1
k=j+1 dk define the j th level wavelet smooth for 0 ≤ j ≤ J, where

sJ+1 is defined to be a vector of zeros. Note that, whereas the wavelet detail dj is
associated with variations at a particular scale, sj is a cumulative sum of these vari-

ations and will be smoother and smoother as j increases. In fact x − sj = ∑j
k=1 dj

so that only lower-scale details (high-frequency features) will be apparent. The vec-
tor, sj, is called the “smooth series” since it is associated with averages over scales
2λj0 and longer; it thereby captures the slowly varying portion of the original time
series, and is often considered to be the overall trend. The j th level wavelet rough,
rj = ∑j

k=1 dk for 0 ≤ j ≤ J + 1, characterises the remaining lower-scale details.
Note r0 is defined to be a vector of zeros. A vector of observations may then be
decomposed through a wavelet smooth and rough via xj = sj + rj, for all j.

17.3.5 Wavelet Cross – Correlation and Correlation

The above section considers decomposing the original time series into J+1 subcom-
ponents. However, the scale λj MODWT coefficients may also be used to examine
the wavelet correlation and wavelet cross-correlation of bivariate time series Xt

and Yt (Serroukh and Walden 2000, Whitcher et al. 2000, Gencay et al. 2001), as
described below.

The wavelet correlation (WCORR) of (Xt, Yt) at scale λj=2j–1 is defined as

ρXY ,τ=0(λj) =
Cov

{
W

X
j,tW

Y
j,t

}
σX(λj) · σY (λj)

= γXY ,τ=0(λj)

σX(λj) · σY (λj)
(17.9)
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where σ 2
X(λj) = var

{
W

X
j,t

}
is the wavelet variance with scale λj. W

X
j,t and W

Y
j,t are

the scale λj MODWT coefficients for Xt and Yt, respectively (Percival 1995). Note
that Eq. (17.9) is a theoretical quantity that is well-defined under an assumption of
stationarity. For a time lag τ , between the two series, Xt and Yt, the wavelet cross-
covariance and wavelet cross-correlation (denoted by WCCORR) (Gencay et al.
2001), for scale λj=2j–1 and time lag τ is

γXY ,τ (λj) ≡ Cov
{

W
X
j,tW

Y
j,t+τ

}
(17.10)

where W
X
j,t and W

Y
j,t are the scale λj MODWT coefficients for {Xt} and {Yt},

respectively (Whitcher et al. 2000, Gencay et al. 2001), and the associated wavelet
variances σ 2

X(λj) and σ 2
Y (λj) are unity. By setting τ = 0, γ XY,0 (λj) reduces to the

wavelet variance for Xt or Yt denoted by σ 2
X(λj) or σ 2

Y (λj), respectively.
The wavelet cross-correlation in Eq. (17.10) is thus able to provide the lead or

lag relationship on a scale-by-scale basis (Gencay et al. 2001), just as is the case
for conventional cross-correlations, which can determine lead or lag relationships
between two series. When the time lag τ = 0, the corresponding MODWT estimator
of the wavelet correlation (WCORR) between the two series Xt and Yt (Percival et al.
2000) is derived.

17.3.5.1 Confidence Interval Determination

Construction of the 95% two-sided confidence interval (CI) of WCORR and
WCCORR follows the development of Gencay et al. 2001. To produce CIs for the
cross-correlation coefficient, the Fisher’s nonlinear z-transformation h(ρ) (Dépué

2003), as follows, h(ρ) = 1
2 log

(
1+ρ
1−ρ

)
= tanh−1(ρ), is required. For ρ̂X , an unbi-

ased estimator of WCORR based on the MODWT, the following asymptotic normal
distribution holds

√
N − 3[h(ρ̂) − h(ρ)] ∼ N(0,1) (17.11)

Applying the transformation tanh maps the confidence interval back to [–1,1] to
produce an approximate 95% CI for ρX (λj) as follows (Whitcher et al. 2000, Gencay
et al. 2001)

tanh

⎧⎨
⎩h [ρ̂X(λj)] ± 1.96

(
1

Nj − 3

)1/2
⎫⎬
⎭ (17.12)

The quantity Nj in Eq. (17.11) is the number of DWT coefficients associated with
scale λj.
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17.4 Data Analyses

DWT, MODWT and MODWT-MRA analyses were performed using code based on
the wavelet methods developed by Percival and Walden (2000) and Gencay et al.
(2001).

17.4.1 Phenological Data

The phenological data, used here as a case study, was collected between 1940
and 1970 and comprises the flowering intensity profiles of four eucalypts species
growing in the region of Havelock, Victoria, Australia. Observations on the timing,
quantity and distribution of flowering of these species were collected on a monthly
basis (Keatley et al. 1999).

Flowering intensity of each of the species was quantified by assigning a rank
value to these descriptions (Keatley and Hudson 2007) producing a discrete, small
counts time series (Fig. 17.3 wherein only the period January 1945–December 1955
is shown for visual clarity). Flowering intensity (ranging from 0 to 5) was calculated,
based on the sum of the quantity and distribution rank values. A score of 0 indicates
that no flowering occurred, in the given month, whilst a score of 5 indicates that
flowering was heavy and distributed throughout the observation area (Keatley and
Hudson 2007).

Fig. 17.3 Time series of E. leucoxylon and E. polyanthemos between 1945 and 1955

The four species examined in this study commonly occur together and, flowering
between them may overlap (Keatley et al. 2004) (Table 17.1):

• Eucalyptus leucoxylon ssp pruinosa (F. Muell. ex Miq.) Boland,
• E. tricarpa (LAS Johnson) LAS Johnson and KD Hill,
• E. microcarpa (Maiden) Maiden,
• E. polyanthemos ssp vestita LAS Johnson and KD Hill.
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Table 17.1 Likelihood flowering characteristics of species at Havelock

Species
Commencement
month Peak month

Finishing
month

Mean flowering
duration (month)
± SD

E. leucoxylon May September December 9.7 ± 4.2
E. tricarpa April July September 6.2 ± 2.1
E. microcarpa February March May 4.0 ± 1.0
E. polyanthemos October November December 3.6 ± 1.5

Daily minimum and maximum temperature along with daily rainfall were
obtained from the Bureau of Meteorology, for the closest weather station (approx-
imately 3.5 km away); Maryborough, Victoria (37′ 03′′S, 143′ 44′′E, 249.3 m
elevation). The temperature dataset had some missing data. When only one day
was missing, the average of the temperature either side of the missing date was
used. If two or more days were not recorded, then the mean minimum or max-
imum temperature for that month was substituted. Daily mean temperature was
calculated as the average of daily minimum and maximum temperature. Monthly
means for minimum, maximum, diurnal temperature and rainfall were used in the
analyses.

17.5 Results

17.5.1 MODWT-MRA

Maximal overlap discrete wavelet transform – multi-resolution analysis (MODWT-
MRA) with J = 3 (17.8) provided the subcomponents of the flowering signal within
each species (see Fig. 17.4). The raw series is given by X, d1–d4 are the different
subcomponents (detail) of the original series X. Traditionally, d1–d4 are associated
with changes in averages over 1, 2, 4 and 8 months, respectively (Fig. 17.4). Also
s4, which is the smoothed series associated with averages over 16 months, is also
provided by MODWT-MRA (see Fig. 17.4 for E. tricarpa).

Each of the subcomponents, d1–d4, can be interpreted similarly across the four
species as follows: d1 shows the interval when flowering is absent – a non-flowering
interval; d2 reflects duration and the overall pattern of the original flowering data. d1
and d2 appear similar in their profiles (see Fig. 17.5 for E. polyanthemos), however,
d1 contains subcycles per year (in a flowering year) but it is unclear as to what these
cycles are related. The annual cycle is delineated by d3, and d4 relates to the annual
or biennial cycling of intensity of flowering years. s4 is the smoothed series and
indicative of the overall trend.

d3 not only delineates the annual cycle of flowering, but reveals (by its peaks),
in the majority of cases, the month of peak flowering in a flowering year (or within
the month on either side) (Fig. 17.6). Note that for E. leucoxylon 73% of the peak
months are thus selected, for E. microcarpa 72%, for E. polyanthemos 69% and for
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Fig. 17.4 Example of MODWT-MRA output using E. tricarpa. X = the raw data, d1–d4 different
subcomponents (details) of the original series X, and s4 = the smooth series

Fig. 17.5 d1, d2 and raw data of E. polyanthemos between January 1940 and March 1945
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E. tricarpa 65%. Additionally, d3 highlights years when flowering does not occur –
this is seen in Fig. 17.5 when d3 is zero. Per species, these years of non flowering
are: 1943, 1958, 1962, 1968 and 1969 for E. microcarpa; 1949, 1956, 1958 and
1961 for E. polyanthemos and 1947, 1949, 1958, 1962 and 1966 for E. tricarpa.
Note 1958 and 1962 are predominantly non-flowering years.

d4 outlines annual and biennial cycles of flowering intensity for each species
(Fig. 17.7). For three of the four species, namely E. microcarpa, E. polyanthemos
and E. tricarpa, the biennial cycle is associated with years of low flowering intensity
(< 2) and also includes years of no flowering (i.e. flowering intensity = 0).

Flowering alternates between a quasi-biennial (1950–1952, 1955–1963) and an
annual cycle in E. leucoxylon. It is the only species where a biennial cycle is asso-
ciated solely with low flowering intensity (< 2) and/or late commencement with
short duration. Flowering usually commences in May (Table 17.1), however, in
some years (e.g. 1958 and 1962) flowering did not commence until September or
October and then flowered only for approximately 3.5 months compared to the usual
duration of 9.7 months (Table 17.1).
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Fig. 17.6 d3 subcomponent for each of the species
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Fig. 17.7 d4 subcomponent of each species

Although s4 is the smoothed series it is also reflective of the trend and variation in
flowering intensity. s4 indicates that flowering has become less intense from 1940
to 1970 for all four species (Fig. 17.8). Eucalyptus leucoxylon on average (mean
intensity 1.63) flowers more intensely than the other 3 species except for a brief
period, between June 1945 and July 1946, when E. tricarpa flowered most (Fig.
17.8). Eucalyptus tricarpa is the next most intense flowering species (mean inten-
sity = 0.89). The remaining two species have flowered as intensely as each other
(E. microcarpa mean = 0.59 and E. polyanthemos mean = 0.57) over time, but alter-
nate between periods of heightened intensity (Fig. 17.8). A trough indicating lower
flowering intensity overlapped only once in all species (i.e. between April and June
1962 (Fig. 17.8)). The most intense flowering period for all species occurred prior
to 1958. Hudson et al. 2005 noted wetter years than average years in the mid 1940s
to the end of the 1950s; and maximum temperature at Maryborough increasing until
late 1967/early 1968 (also reflected by the Southern Oscillation Index (Ghil et al.
2002).
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Fig. 17.8 s4 subcomponents for each species

17.5.2 Correlation with Temperature and Rainfall

The wavelet correlations between temperature (minimum, maximum and diurnal)
and rainfall with peak flowering intensity at different wavelet levels or scales (1, 2,
4, 8, 16 and 32 months) were examined. See Fig. 17.9, where significant (P < 0.05)
wavelet correlations are those where the upper (U) and lower (L) confidence limits
are on the same side of the zero line. It can be seen that there are more correlations at
scale 3 (23–1 = 4 months) which are significant than as scale 2, whereas, correlations
at 1, 8, 16 and 32 months were not significant (Fig. 17.9).

For E. tricarpa minimum, maximum and diurnal temperatures have a signifi-
cant negative relationship at 2 and 4 months (Fig. 17.9 and Table 17.2). Eucalyptus
tricarpa was the only species for which rainfall had a significant, positive relation-
ship with flowering at the 4 month scale (Fig. 17.9). This indicates that warmer,
wetter periods lead to greater flowering intensity for E. tricarpa. The relationship
for E. leucoxylon and rainfall was positive but was not significant. For E. microcarpa
and E. polyanthemos a negative correlation (although not significant) with rainfall
was indicated.

The temperature variables (mean, minimum and maximum) at 2 and 4 months
(or wavelet scales) were also significant for E. leucoxylon. At peak flowering inten-
sity both E. leucoxylon and E. tricarpa have a negative relationship with each of the
temperature variables, indicating increased intensity of flowering with decreasing
temperature. However, there is a slight difference in the strength of the relation-
ship of flowering across the temperature variants (Table 17.2) indicating that for
E. leucoxylon the main relationship with flowering intensity is with minimum tem-
perature and for E. tricarpa it is with maximum temperature (Table 17.2), both
significant at the 4 month scale.

An inverse relationship between flowering and the temperature variants was
found for E. microcarpa and E. polyanthemos; with an increase in peak flower-
ing intensity with increasing temperature. However, the only temperature variable



17 Wavelet Analysis of Flowering and Climatic Niche Identification 377

Fig. 17.9 Wavelet correlations (WCORR – zero lag) of the four species with temperature variables
and rainfall with 95% confidence intervals indicated by U and L

Table 17.2 Wavelet (scale 3) correlation of peak flowering intensity and temperature and rainfall
variables

Diurnal temp Minimum temp Maximum temp Rainfall

Period (months) 2 4 2 4 2 4 2 4

E. leucoxylon −0.49∗ −0.59∗ −0.52∗ −0.62∗ −0.46∗ −0.56∗ 0.03 0.29
E. tricarpa −0.51∗ −0.75∗ −0.49∗ −0.72∗ −0.51∗ −0.76∗ 0.20 0.40∗
E. microcarpa 0.18 0.27 0.23∗ 0.31∗ 0.15 0.25 −0.01 −0.24
E. polyanthemos 0.15 0.48∗ 0.14 0.43∗ 0.16 0.50∗ −0.06 −0.17

∗P< 0.05
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which impacts significantly on the flowering of E. microcarpa was minimum tem-
perature (at 2 and 4 months), indicating that it may be the primary climatic driver
of flowering intensity. In contrast, for E. polyanthemos, there was a significant pos-
itive relationship with all three temperature variables (at 4 months) with maximum
temperature being identified as having a slightly greater influence on flowering
(Table 17.2). This is in agreement with a recent Generalised additive model for
location, scale and shape (GAMLSS) analysis of the data studied here (Hudson
et al. 2009).

17.5.3 Wavelet Cross-Correlation with Temperature
and Rainfall Variables

Wavelet cross-correlations were examined for all wavelet scales (1–32 months).
Significant relationships (P ≤ 0.05) were found only at 4 months (level 3) for
rainfall; but at 2, 4 and 8 months (levels 2–4) for the temperature variants
(Fig. 17.10a, b). The strongest (highest absolute value of the correlation profile)
and most significant relationship for all species with temperature was at 4 months
(level 3) (Fig. 17.10a, b). This mirrors the correlation results (Table 17.2), where
level 3 correlations were significant. Note that correlations are the equivalent of
cross-correlations at lag zero.

17.5.4 Level 3 Wavelet Cross-Correlations

Cross-correlations between peak flowering intensity and the temperature variants
and rainfall are lagged from 0 to 12 months prior to the species specific peak flow-
ering month. An illustration of these cross-correlation profiles between mean diurnal
temperature and flowering is given in Fig. 17.11 for each species. This sinusoidal
profile shows that there are positive and negative relationships of 6 months duration
and as a consequence there are seasonal change points (CPs) from positive to neg-
ative cross-correlation and vice-versa (see Table 17.3, where the season specific to
each CP month is given).

Table 17.3 Species specific change points (month, season) for diurnal temperature

Positive to negative Negative to positive

Species Month Season Month Season

E. leucoxylon August Winter February Summer
E. tricarpa March Autumn September Spring
E. microcarpa August Winter February Summer
E. polyanthemos December Summer June Winter
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Fig. 17.11 Individual wavelet cross-correlations plots for daily mean temperature and flowering
intensity. Vertical lines encapsulate the 12 months prior to peak flowering. The small horizontal
interval indicates the annual flowering period

The cross-correlation profiles also show there is a maximum positive and neg-
ative cross-correlation, and these occur systematically 6 months apart for each
species (Fig. 17.11 and delta values (�) in Table 17.4). These cross-correlations
can be viewed as the highest absolute value of the wavelet cross-correlations, for
lags either in the short term (≤ 6 months prior to peak flowering intensity), or the
long term (> 6 months). The number of months at which either lag, occurs prior
to peak flowering intensity, differs for each species (Fig. 17.11 and Table 17.4).
Note that E. polyanthemos’s maximum short term lag is positive (0.72) and occurs
in September, which is 2 months before peak flowering intensity, whereas E. tri-
carpa’s short term lag is negative (–0.73) and occurs in June, this being 1 month
prior to peak flowering intensity. The long term lag for E. polyanthemos is in March,
which is 8 months before peak flowering intensity and negative (–0.72), compared to
the December positive (0.75), long term lag for E. tricarpa, which occurs 7 months
before its peak flowering intensity in July (Fig. 17.11 and Table 17.4).

According to these wavelet cross-correlations, a similar relationship between
flowering with temperature and between flowering and rainfall occurs in E. leu-
coxylon and E. polyanthemos. The strongest correlations with temperature are
positive (0.78 and 0.72, respectively) in the short-term (≤ 6 months) and nega-
tive (–0.80 and –0.72, respectively) in the long-term (> 6 months). With rainfall,
the strongest wavelet cross-correlations are negative (–0.41 and –0.32, respectively)
in the short-term and positive (0.35 and 0.39, respectively) in the long-term. The
reverse relationship between flowering and temperature and with rainfall is observed
in E. tricarpa and E. microcarpa.

The cross-correlations also show, as did correlations, that for all species temper-
ature and rainfall variables do not act in concert. That is, within a given species,
if the cross-correlation with temperature is positive, at a particular time of year,
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Table 17.4 Significant (P < 0.0001) wavelet cross correlations (4 months, λ3 scale) between
species and climate: shorter [≤ 6 months] and longer lags [> 6 months] prior to peak flowering
intensity

Species Diurnal temp Minimum temp Maximum temp Rainfall

E. leucoxylon
Peak: September
Start: May
End: December

0.78 [–4]
May

0.78 [–5]
April

0.79 [–4]
May

–0.41 [–5]
April

–0.80 [–11]
October � = 7

–0.81 [–11]
October � = 6

–0.80 [–10]
November � = 6

0.35 [–11]
October � = 6

E. tricarpa
Peak: July
Start: April
End: September

–0.73 [–1]
June

–0.73 [–1]
June

–0.73 [–1]
June

0.46 [–1]
June

0.75 [–7]
December � = 6

0.75 [–7]
December � = 6

0.74 [–7]
December � = 6

–0.45 [–7]
December � = 6

E. microcarpa
Peak: March
Start: February
End: May

–0.77 [–4]
November

–0.76 [–4]
November

–0.77 [–4]
November

0.48 [–4]
November

0.78 [–10]
May � = 6

0.78 [–10]
May � = 6

0.78 [–10]
May � = 6

–0.44 [–10]
May � = 6

E. polyanthemos
Peak: November
Start: October
End: December

0.72 [–2]
September

0.72 [–2]
September

0.72 [–2]
September

–0.32 [–2]
September

–0.72 [–8]
March � = 6

–0.73 [–8]
March � = 6

–0.72 [–8]
March � = 6

0.39 [–8]
March � = 6

� signifies the difference in months between shorter and longer lags

then the relationship with rainfall is negative (Figs. 17.10a, b and 17.11, Table 17.4)
and vice versa. For example, each of E. microcarpa’s short term lags for temper-
ature is positive and occurs in November. Its short term rainfall lag also occurs in
November, but is negative. Additionally, cross-correlations provide further insight
into the dynamic relationship between climate and peak flowering intensity for each
species. For example, although at zero lag E. tricarpa and E. leucoxylon have a sim-
ilar relationship with climate (somewhat intuitive as their flowering overlaps (Table
17.4)); their relationship over the 12 months differs, with an opposite sinusoidal
profile of peaks and troughs (Fig. 17.11 and Table 17.4).

17.6 Discussion

17.6.1 Subcomponents

Wavelets multiresolution analysis (MRA) has delineated four subcomponents in the
flowering series: non-flowering phase, duration, annual cycle, flowering intensity, as
well as the overall trend for each species. d1 is the non-flowering phase per species.
These “off phases” are coincident with other reproductive phases (e.g. budding,
seeding) in eucalypts (Ashton 1975, Bassett 1995, Murray and Lutze 2004). This
phenomenon has also been noted specifically in E. tricarpa (Keatley and Murray
2006). The second sub-component, d2, reflects both the duration and pattern of the
original flowering record, for a given species.
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The annual cycle has been clearly delineated by d3, with the mean month of
peak intensity, so identified, being in agreement (i.e. E. leucoxylon: September,
E. tricarpa: July, March: E. microcarpa, November: E. polyanthemos) with that
identified by other analytic methods (the mean flowering intensity in a flowering
year (Keatley and Hudson 2007)) and singular spectrum analysis (SSA) (Hudson et
al. 2004).

d4 relates to the annual or biennial cycling of the intensity of flowering years.
In three of the four species (E. microcarpa, E. polyanthemos and E. tricarpa) the
biennial cycle is associated with years of low flowering intensity (< 2). Note that in
these three species low flowering intensity also includes years of no flowering (i.e.
flowering intensity = 0).

In E. leucoxylon flowering alternates between a quasi-biennial (1950–1952,
1955–1963) and an annual cycle. It is the only species, where the biennial cycle
is associated solely with low (< 2) intensity, and/or late commencement with short
duration (commencing in September or October compared to the most probable
month of commencement in April). Variation in flowering intensity, in gen-
eral, as well as cycling has long been reported in eucalypts (Chambers 1893).
Flowering intensity exhibiting two year cycles in these species has also been pre-
viously reported, based on the opinion of apiarists (Goodman 1973, Somerville
and Campbell 1997, Paton et al. 2004); the collection of reproductive components
(Keatley and Murray 2006) and more recently confirmed by autocorrelogram anal-
ysis and SSA (Wells 2000, Hudson et al. 2004). However, there are also some
differences between wavelet and SSA based results. For example, a 4 year cycle,
previously detected by SSA for E. tricarpa (Hudson et al. 2004, Chapter 18),
was not demonstrated by wavelet analysis. A four year cycle for this species has,
however, been delineated using autocorrelograms (Wells 2000). Wells’s study and
that by Somerville and Campbell (1997) have also reported a four year cycle in
E. microcarpa. It is worth noting that whilst SSA is a global analysis (see Hudson et
al. 2005) wavelets provide a localised analysis. Yiou et al. (2000) note that SSA can
be made more wavelet-like with the use of a specific windowing technique. Some
comparisons between wavelets analysis and SSA are given in Chapter 18 but see
also Yiou et al. (2000).

s4 is the smoothed series that captures the slowly varying portion of the flower-
ing signal, effectively an estimate of the trend. Again the results of wavelet analysis,
namely a decreasing trend in flowering intensity, align with SSA results (Hudson
et al. 2004, 2005, Chapter 18). The so-called trend reconstructed component is
usually the first reconstructed component in a SSA (Elsner and Tsonis 1996) and
mirrors the smoothed overall trend S4.

17.6.2 Temperature and Rainfall Correlations

At the time of peak intensity both E. leucoxylon and E. tricarpa have a signifi-
cant negative relationship with the temperature variants. This indicates that for both
these species, flowering intensity is increased if cooler temperatures are present.
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However, there is a slight difference in the strength of this relationship, possi-
bly indicating that for E. leucoxylon, it is cooler minimum temperatures, and in
E. tricarpa cooler maximum temperatures which have more of an influence on
peak flowering time/intensity. Eucalyptus leucoxylon and E. tricarpa have a pos-
itive relationship with rainfall, but it is only E. tricarpa, where the correlation
with rainfall is statistically significant, indicating that wetter conditions would tend
to increase flowering intensity for this species. This strong evidence of a signifi-
cant negative wavelet correlation between flowering and temperature variants for
Eucalyptus tricarpa and E. leucoxylon, supports the earlier finding of an upper
threshold temperature (of 18◦C) above which flowering intensity reduces or ceases
for E. leucoxylon (Hudson et al. 2003) and the recent GAMLSS modelling of
Hudson et al. (2009) (see Chapter 10) which identified an upper threshold of 21.3◦C
for maximum temperature above which flowering intensity reduces or ceases for E.
tricarpa.

Eucalyptus microcarpa and E. polyanthemos share a similar relationship with
temperature (positive) and rainfall (negative). Note, however, that their flower-
ing durations do not generally overlap (Keatley et al. 2004) and their months
of peak flowering intensity are separated by four months. However, the mean
diurnal temperature and mean monthly rainfall over their respective flowering
duration is similar, 16.2ºC and 38.7 mm for E. microcarpa and 16.3ºC and
42.0 mm for E. polyanthemos. Rainfall did not have a significant influence in
either of these species. In E. microcarpa flowering intensity is only significantly
correlated with minimum temperature indicating warmer minimum temperatures
are associated with more intense flowering. Minimum temperature has previ-
ously been nominated as the primary driver for E. microcarpa (Hudson et al.
2004). Other studies of these species (Porter 1978, Keatley and Hudson 2000,
Hudson et al. 2004, 2009, Kim et al. 2009) have also identified similar rela-
tionships between temperature and/or rainfall with flowering commencement (or
flowering intensity). The recent GAMLSS modelling of Hudson et al. (2009)
(see also Chapter 10) identified a lower threshold of 16.1◦C (mean tempera-
ture) for E. microcarpa and 17.5◦C (maximum temperature) for E. polyanthe-
mos above which flowering commences. This supports the results of this study:
a significant positive wavelet correlation between flowering and temperature
variants.

17.6.3 Temperature and Rainfall Cross-Correlations

Relationships delineated between phenophases and climatic variables, may be con-
sidered physiologically and/or statistically based (Yang et al. 1995, Spano et al.
1999). In this case, for each of the species examined, the relationships between peak
flowering intensity and the temperature and rainfall variables could partly be reflect-
ing the time of year these species flower. For example, E. tricarpa’s peak flowering
intensity occurs in winter, and this species has a negative relationship with temper-
ature, indicating increased flowering with decreasing temperature. Previously, this
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scenario has been suggested for explaining at least some of the relationship between
flowering commencement and climate in three (E. leucoxylon and E. tricarpa and
E. polyanthemos) species (Keatley and Hudson 2000). However, cross-correlations
add further insight into and detail about the changing relationship between cli-
mate and peak flowering intensity (over an annual cycle). They show that whilst
the pairing of E. leucoxylon and E. tricarpa, and the pairing of E. microcarpa and
E. polyanthemos, respectively, have similar relationships at zero lag with the climate
variables; the relationship between peak flowering intensity and climate during the
12 months prior to each species’ peak flowering is individual or species specific;
and therefore not a reflection of the time of year in which the species flowers. Note
that, four months prior to peak flowering intensity, E. leucoxylon is most strongly
and positively influenced by temperature, whereas the influence on E. tricarpa is not
significant. Also the influence of temperature on each of these species switches from
negative to positive and back again in different seasons pointing to a physiological
basis for this interplay.

Additionally, it has been found that when rainfall and temperature have been
accounted for, there is no significant remaining trend in flowering intensity in
E. leucoxylon (Hudson et al. 2003), indicating that there is a physiological basis to
this relationship. Previous work (Porter 1978, Keatley and Hudson 2000, Keatley
et al. 2002, Hudson et al. 2003, 2004) examining the influence of temperature
and rainfall on flowering intensity of these species have found similar results,
but have used different analytical methods (singular spectrum analysis, gener-
alized additive models (GAMs) and Bayesian hierarchical models (BHMs) and
regression).

In very broad terms, more intense peak flowering is likely to occur in
E. leucoxylon when cool, wet conditions coincide with peak flowering. However,
peak flowering would be furthered enhanced if the preceding autumn and win-
ter were warm and dry, and the previous spring and summer cool and wet. This
endorses the upper threshold temperature of 18.5ºC found for this species by
Hudson et al. (2003). Eucalyptus tricarpa requires the same conditions at peak
flowering intensity (i.e. cool and wet) but almost the opposite conditions to E. leu-
coxylon in the months leading up to flowering: namely a cool, wet autumn and
winter, with a warm, dry spring and summer. A warm, dry autumn and winter
with a cooler, wet spring, and summer with warm, dry conditions at peak flow-
ering, favours more intense flowering in E. microcarpa. Flowering is enhanced in
E. polyanthemos with warm, dry conditions coinciding with peak flowering, pre-
ceded by a warm, dry winter and spring and cool, wet summer and autumn, in
contrast to E. microcarpa.

Wavelets also clearly identify the cyclical influence on peak flowering intensity
of climate (temperature and rainfall). There are 6 months of an annual cycle in which
any given climate variable positively influences flowering intensity and 6 months of
negative influence, within a given species which results in distinct seasonal change
points.

Previous authors have also observed this 6 month cycling phenomenon in
the reported tables and/or figures of various published studies; namely in an
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examination of flowering commencement between 1954 and 1989 (by multiple
regression) and the effect of mean monthly temperature by Fitter et al. (1995,
Fig. 4); in a study using P-splines by Roberts (2008, Fig. 3) on flowering com-
mencement, from 1978 to 2001, with respect to mean daily maximum temperature
being an approximately 6 month period in which the sign of the smoothed regres-
sion coefficients changed from negative to positive. Finally, in Sparks and Carey
(1995, Table 2) there is evidence of this cycling in correlation between flowering
in wood anemone and turnip and monthly temperature in central England, for the
months preceding mean observed date, over a 212 year period (1736–1947). Further
investigation of this cycling phenomenon is required. Until now this phenomenon
of 6 monthly cycling has not been commented on, nor formalised quantitatively as
in this present study (via wavelets).

17.7 Conclusion

MODWT-MRA identified the sub-components (annual cycle, duration, non-
flowering and trend) within each flowering series. Wavelet correlation found the
same contemporaneous effects of climate on flowering for Eucalyptus tricarpa and
E. leucoxylon, and for E. microcarpa and E. polyanthemos. There is strong evidence
of a significant negative wavelet correlation between flowering and temperature
variants for E. tricarpa and E. leucoxylon, which supports the earlier finding of
an upper threshold temperature above which flowering intensity reduces or ceases
for these species. There is also strong evidence of a significant positive wavelet cor-
relation between flowering and temperature variants for Eucalyptus microcarpa and
E. polyanthemos, which supports recent identification of lower temperature thresh-
olds below which flowering intensity reduces or ceases. Wavelets cross-correlational
analysis determined the relationship between temperature and rainfall identifying
the primary climatic drivers at peak flowering intensity. Cross-correlations demon-
strated the changing dynamics of the relationship between peak flowering and
climate, and point to a physiological basis for this interplay. Specifically, wavelet
cross-correlation analysis identified the cyclical influence of temperature and rain-
fall on peak flowering intensity (P<0.05). For each species there are 6 months of
the annual cycle in which any given climate variable positively influences flower-
ing intensity and 6 months of negative influence. For all species, rainfall exerts a
negative influence when temperature is positive. In doing so, wavelet analyses add
credibility to the use of phenological records to detect and understand local climatic
impacts on phenological phases and possibly global climate change per se. This
study shows that the discrete wavelet transform (DWT) and the maximal overlap
DWT (MODWT), with multiresolution analysis are ideally suited for analysing the
inter-correlations between climate and phenological time series which may exhibit
non-stationarity. Whilst conventional time frequency domain techniques (such as
the Fast Fourier Transform (FFT)) provide results that are difficult to interpret, the
wavelet cross-correlation succinctly displays how the association between the two
processes, climate with flowering, change with scale.
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Koch M, Marković D (2007) Evidences for climate change in Germany over the 20th century
from the stochastic analysis of hydro-meteorological time-series. In: Oxley L, Kulasiri D
(eds) MODSIM 2007 International Congress on Modelling and Simulation, Christchurch, New
Zealand

Kumar P (1996) Role of coherent structures in the stochastic-dynamic variability of precipitation.
J Geophys Res Atmos 101:26393–26404

Lark RM, Webster R (1999) Analysis and elucidation of soil variation using wavelets. Eur J Soil
Sci 50:185–206

Lavoie C, Lachance D (2006) A new herbarium-based method for reconstructing the phenology of
plant species across large areas. Am J Bot 93:512–516

Linkosalo T, Häkkinen R, Hari P (1996) Improving the reliability of a combined phenological time
series by analyzing observation quality. Tree Physiol 16:661–664

Lu P-L, Yu Q, Liu J-D et al. (2006) Effects of changes in spring temperature on flowering dates of
woody plants across China. Bot Stud 47:153–181

Lu X, Liu R, Liu J et al. (2007) Removal of noise by wavelet method to generate high
quality temporal data of terrestrial MODIS products. Photogramm Eng Rem Sens 73:
1129–1140

Malizia LR (2001) Seasonal fluctuations of birds, fruits, and flowers in a subtropical forest of
Argentina. Condor 103:45–61

Mallat S (1989) A theory for multiresolution signal decomposion: the wavelet representation. IEEE
Trans Pattern Anal Mach Intell 11:674–693

Menzel A (2002) Phenology: its importance to the global change community. Clim Change
54:379–385

Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons
in Germany from 1951 to 1996. Glob Change Biol 7:657–666

Menzel A, Sparks TH, Estrella N et al. (2006) European phenological response to climate change
matches the warming pattern. Glob Change Biol 12:1969–1976



390 I.L. Hudson et al.

Miller-Rushing AJ, Katsuki T, Primack RB et al. (2007) Impact of global warming on a group of
related species and their hybrids: cherry tree (Rosaceae) flowering at Mt. Takao, Japan. Am J
Bot 94:1470–1478

Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s
Concord: a community perspective. Ecology 89:332–341

Morellato LPC (2003) South America. In: Schwartz MD (ed) Phenology: an integrative envi-
ronmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The
Netherlands, pp 75–92

Murray M, Lutze M (2004) Seedcrop development in Eucalyptus obliqua and Eucalyptus cypel-
locarpa in high elevation mixed species forests of East Gippsland. Forest Science Centre,
Orbost

Paluš M, Novotná D, Tichavský P (2005) Shifts of seasons at the European mid-latitudes: natu-
ral fluctuations correlated with the North Atlantic Oscillation. Geophys Res Lett 32:L12805,
DOI:12810.11029/12005GL022838

Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev
Ecol Syst 37:637–669

Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological
response to global warming. Glob Change Biol 13:1860–1872

Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across
natural systems. Nature 421:37–42

Paton DC, Crossfield EL, Hurrell B et al. (2004) Floral resources used by the South Australian
apiary industry. Rural Industries Research and Development Corporation, Barton, ACT

Percival DB (1995) On estimation of the wavelet variance. Biometrika 82:619–631
Percival DB, Guttorp P (1994) Long-memory processes, the Allan variance and wavelets. In:

Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics. Academic Press, New York,
pp 325–344

Percival DB, Mofjeld O (1997) Analysis of subtidal coastal sea level fluctuations using wavelets.
J Am Stat Assoc 92:868–880

Percival DB, Sardy S, Davison AC (2000) Wavestrapping time series: adaptive wavelet-based boot-
strapping. In: Fitzgerald WJ, Smith RL, Walden AT et al. (eds) Nonlinear and nonstationary
signal processing. Cambridge University Press, Cambridge, pp 442–471

Percival D, Walden A (2000) Wavelet methods for time series analysis. Cambridge University
Press, Cambridge

Percival DB, Wang M, Overland JE (2004) An introduction to wavelet analysis with applications
to vegetation monitoring. Community Ecol 5:19–30

Pfister C (1980) The little ice age: thermal and wetness indices for central Europe. J Interdiscip
Hist 10:665–696

Porter JW (1978) Relationships between flowering and honey production of red ironbark,
Eucalyptus sideroxylon (A. Cunn.) Benth, and climate in the Bendigo district of Victoria. Aust
J Agric Res 29:815–829

Rabinowitz D, Rapp JK, Sork V et al. (1981) Phenological properties of wind – and insect
pollinated prairie plants. Ecology 62:49–56

Roberts AMI (2008) Exploring relationships between phenological and weather data using
smoothing. Int J Biometeorol 52:463–470

Root TL, Price JT, Hall KR et al. (2003) Fingerprints of global warming on wild animals and
plants. Nature 421:57–60

Schaber J, Badeck F-W (2002) Evaluation of methods for the combination of phenological time
series and outlier detection. Tree Physiol 22:973–982

Schleip C, Menzel A, Estrella N et al. (2006) The use of Bayesian analysis to detect recent changes
in phenological events throughout the year. Agric For Meteorol 141:179–191

Schleip C, Rutishauser T, Luterbacher J et al. (2008) Time series modeling and central European
temperature impact assessment of phenological records over the last 250 years. J Geophys Res
113:G04026, DOI:10.1029/2007JG000646



17 Wavelet Analysis of Flowering and Climatic Niche Identification 391

Schwartz MD (1999) Advancing to full bloom: planning phenological research for the 21st century.
Int J Biometeorol 42:113–118

Schwartz MD (2003) Preface. In: Schwartz MD (ed) Phenology: an integrative environmental sci-
ence. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands,
pp xviii–xix

Schwartz MD, Reiter BE (2000) Changes in North American spring. Int J Climatol 20:929–932
Serroukh A, Walden AT (2000) Wavelet scale analysis of bivariate time series I: statistical

properties for linear processes. J Nonparametr Stat 13:1–36
Somerville D, Campbell S (1997) Beekeeping in the Narrandera State Forests. NSW Agriculture,

Goulburn, NSW, Australia
Spano D, Cesaraccio C, Duce P et al. (1999) Phenological stages of natural species and their use

as climate indicators. Int J Biometeorol 42:124–133
Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis

of the Marshman phenological record, 1736–1947. J Ecol 83:321–329
Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering

times and temperature at the national scale using long-term phenological records from the UK.
Int J Biometeorol 44:82–87

Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climatol 22:
1715–1725

Sparks TH, Tryjanonwski P (2005) The detection of climate change impacts: some methodological
considerations. Int J Climatol 25:271–277

Suzuki H (1998) Leaf phenology, seasonal changes in leaf quality and herbivory pattern of
Sanguisorba tenuifolia at different altitudes. Oecologia 117:169–176

Wells K (2000) Long term cyclic and environmentally induced effects on flowering of four box-
ironbark eucalypts. Dissertation, University of Melbourne

Whitcher, BJ, Guttorp P, Percival DB (2000) Wavelet analysis of covariance with application to
atmospheric time series. J Geophys Res 105:941–962

White G (1912) The natural history of Selbourne. Ward Lock and Co Ltd, London
White MA, Brunsell N, Schwartz MD (2003) Vegetation phenology in global change studies.

In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation
science, vol 39. Kluwer Academic Publishers, The Netherlands, pp 57–73

White MA, Hoffman F, Hargrove WW et al. (2005) A global framework for monitoring phenolog-
ical responses to climate change. Geophys Res Lett 32:L04705, DOI:10.1029/2004GL021961

Wielgolaski F (1999) Starting dates and basic temperatures in phenological observations of plants.
Int J Biometeorol 42:158–168

Winter G (1972) “For. . . the Advancement of Science”: the Royal Society of Tasmania,
1843–1885. Dissertation, University of Tasmania

Yang S, Logan J, Coffey DL (1995) Mathematical formulae for calculating the base temperature
for growing degree days. Agric For Meteorol 74:61–74

Yiou P, Sornette D, Ghil M (2000) Data-adaptive wavelets and multi-scale singular spectrum
analysis. Physica D 142:254–290

Zheng J, Ge Q, Hao Z et al. (2006) Spring phenophases in recent decades over eastern china and
its possible link to climate changes. Clim Change 77:449–462



Chapter 18
Singular Spectrum Analysis: Climatic Niche
Identification

Irene L. Hudson and Marie R. Keatley

Abstract This chapter discusses singular spectrum analysis (SSA) and uses a
32 year record (1940–1971) of flowering of four eucalypt species (Eucalyptus
leucoxylon, E. microcarpa, E. tricarpa and E. polyanthemos) to illustrate its use.

SSA delineated the trend, annual and biennial cycle in all four species.
Additionally a 4 year cycle was detected in E. tricarpa. The trend and annual cycle
were identified by SSA decomposition of the underlying climate profile (rainfall and
mean, minimum, maximum temperatures).

An examination of the correlation between the reconstructed flowering series and
lagged climatic components found that for E. leucoxylon and E. tricarpa there was
a similar relationship to climate. These two species exhibit a significant negative
relationship with the temperature variables and a positive relationship with rain-
fall. The strongest relationship for E. leucoxylon was with minimum temperature
(ρ= –0.742). In E. tricarpa maximum temperature was the marginally stronger
driver (ρ= –0.895). Both E. microcarpa and E. polyanthemos also share a simi-
lar relationship to climate but this differs to that of E. leucoxylon and E. tricarpa; in
that these species were positively influenced at flowering by temperature and neg-
atively by rainfall. For E. microcarpa minimum temperature is the main but weak
influence (ρ= 0.383) and E. polyanthemos maximum temperature is the stronger
influence (ρ= 0.674).
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18.1 Introduction

Recent phenological literature has highlighted the need for additional mathematical
and statistical methods for examining time series (Dose and Menzel 2004, 2006,
Gordo and Sanz 2005, Hudson et al. 2005a, Doi 2007).

Singular spectrum analysis (SSA) was introduced in oceanographic research by
Colebrook (1978) and developed for nonlinear dynamical systems by Broomhead
and King (1986) and Fraedrich (1986). At present, the books, book chapters and
papers dealing with the methodological aspects and the applications of SSA num-
ber several hundred (see, for example, Allen and Smith 1986, Vautard et al. 1992,
Danilov and Zhiglyavsky 1997, Ghil and Taricco 1997, Yiou et al. 2000 and refer-
ences therein) particularly within the field of digital processing, and the examination
of geophysical and climatic data (e.g. Kumaresan and Tufts 1980, Pike et al. 1984,
Vautard and Ghil 1989, Elsner and Tsonis 1991, 1996, Ghil and Vautard 1991,
Allen et al. 1994, Ghil et al. 2002, Yiou et al. 2000). In the life sciences, SSA
has been applied to the possible connections between ENSO and cholera (Rodó
et al. 2002), and to neurophysiological problems (Mineva et al. 1996), among oth-
ers. Loeuille and Ghil (2004) applied principal component analysis and SSA (as a
spectral analytic technique) to study intrinsic and climatic factors in animal popula-
tion dynamics. See also Salmerón et al. (2002), Weedon (2003) and Grigorov (2006)
for diverse applications of SSA.

SSA is a nonparametric method. It attempts to overcome the problems of finite
sample length and noisiness of sampled time series, not by fitting an assumed model
to the available time series, but by using a data-adaptive basis set; this is instead
of the more traditional fixed sine and cosine method of the Blackman-Tukey cor-
relogram (Blackman and Tukey 1958), which constructs an estimate of the power
spectrum using windowed fast Fourier transforms of the autocorrelation function of
the time series under investigation.

The potential value of SSA in phenology and climate change research was
detailed by Hudson et al. (2005a). SSA is essentially a linear approach which can
decompose a time series into its underlying components (e.g. trends, oscillatory
modes or seasonalities, change-points and noise) and is useful for short, noisy time
series (Vautard et al. 1992, Allen and Smith 1996, 1997, Elsner and Tsonis 1996,
Golyandina et al. 2001), of which many phenological datasets are. SSA is as yet
not very widely applied to phenological data (D’Odorico et al. 2002, Hudson et al.
2004, Studer et al. 2005, 2007).

The problem of establishing the statistical linkages between large-scale and
local-scale processes has been investigated through noise reduction by combining
SSA (or Empirical Orthogonal Function [EOF] analysis), and spatial principal com-
ponent analysis (Jollife 1986) with the aim of constructing appropriate statistical
models for estimating the local-scale variables from large-scale processes (Tatli
et al. 2005, Studer et al. 2007). This approach is viable as in statistics and signal
processing, the method of EOF analysis is essentially a decomposition of a signal
or data set in terms of orthogonal basis functions which are determined from the
data. The basis functions are typically found by computing the eigenvectors of the
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covariance matrix of the data set. Thus SSA (or equivalently EOF) is analogous to
performing a principal component analysis on the data, except that the EOF method
finds both time series and spatial patterns. EOF is extensively employed in climate
research to identify dominant patterns of variability and to reduce the dimensional-
ity of the data (Hannachi et al. 2005). SSA was used by Tatli et al. (2005) in a study
of surface air temperature variability over Turkey and its connection to large-scale
upper air circulation; and by Aban and Tateishi (2004) for the reconstruction of
annual phenological profiles from Normalized Difference Vegetation Index (NDVI)
time series data.

Recently Studer et al. (2007) used EOF analyses to link ground-based phenologi-
cal observations with those obtained from satellite remote sensing. Long time series
of ground-based plant phenology, in addition to more than 20 years of satellite-
derived phenological metrics are currently accessible to evaluate the impacts of
climate variability and trends on terrestrial vegetation (Schwartz and Reiter 2000,
Schwarz et al. 2002, Schwartz 2003). Use of remote sensing data assimilation for
phenology model development was recently investigated by Stöckli et al. (2008). It
is well recognised that traditional plant phenology provides very accurate informa-
tion on individual plant species, but with limited spatial coverage. Remote sensing
phenology allows monitoring of terrestrial vegetation on a global scale and provides
an integrative view at the landscape level (Schwartz 2003). Studer et al. (2007) com-
pared a multispecies index (derived in Studer et al. 2005) from ground-observed
spring phases with two types (maximum slope and threshold approach) of satellite-
derived start-of-season (SOS) metrics (Zhang et al. 2004, White et al. 2005). Studer
et al. (2007) concluded that there is good correspondence between the traditional
observed ground-level phenology and the satellite approach to phenology, thereby
satellite-derived phenology can assist in interpreting ground data of low coverage.

Caterpillar SSA (Golyandina et al. 2001) was successfully adapted and applied to
epidemiological data to investigate the relationship between climate, pollution and
Sudden Infant Death Syndrome (SIDS) (Hudson et al. 2005b) and to a case study of
the impact of notable global and local weather events on the level of air pollution in
Christchurch, New Zealand (Fukuda 2004, Fukuda et al. 2004, Fukuda and Hudson
2005a, b).

18.1.1 SSA vs SSA MTM

SSA is based on eigenvalue-eigenvector decomposition of a time series’ lag-
covariance matrix (Broomhead and King 1986, Fraedrich 1986). Given a series of
length T, and a maximum lag L, the eigenvectors are data-adaptive basis functions
for the representation of the series and are called empirical orthogonal func-
tions (EOFs), by analogy with conventional principal component analysis. The
eigenvalues are the associated variances λk, of each EOF ordered from largest
to smallest. When two eigenvalues are nearly equal, and the corresponding pair
of (odd and even) EOFs are in phase quadrature, they may capture, subject
to statistical significance tests, an anharmonic (i.e. not sinusoidal) oscillation of
possibly nonlinear origin (Ghil and Vautard 1991, Vautard et al. 1992).
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Specifically, Broomhead and King (1986) applied the “method of delays” of
dynamical systems theory to estimate the dimension of, and reconstruct series, using
singular-value decomposition (SVD) on the trajectory matrix formed by lagged
copies of a single series obtained from the system. Vautard and Ghil (1989) realised
the formal similarity between classical lagged-covariance analysis and the method
of delays, and called the SSA derived eigenvectors, empirical orthogonal functions
(EOFs). The projection of the time series onto an EOF yields the corresponding prin-
cipal component of length T–L+1. Reconstructed components are series of length T
that are obtained by the least-square fitting of their lagged copies, at lag 0, 1, . . . ,
L–1 to the projection of the original series and its copies onto a given EOF or a set of
EOFs (Ghil et al. 2002, Vautard et al. 1992) (see the mathematics method in Section
18.2 below). In summary, the SSA procedure then selects the subsets of eigen ele-
ments and principal components to facilitate three algorithms – noise-reduction,
detrending and identification of oscillatory components – for constructing so-called
new components, “reconstructed components” (Vautard et al. 1992).

The SSA-MTM Toolkit developed by the Theoretical Climate Dynamics group
at the University of California, Los Angeles (Dettinger et al. 1995) and further
improved in collaboration with researchers in Europe and North America (Ghil et al.
2002 and http://www.atmos.ucla.edu/tcd/ssa). The SSA-MTM Toolkit supports four
different spectral methods: classical Fourier analysis, SSA, the multi-taper method
(MTM), and the maximum entropy method (MEM). MTM is designed to reduce the
variance of spectral estimates by using a small set of tapers rather than the unique
data taper or spectral window used by Blackman-Tukey methods (Thompson 1982).
MTM as In MTM a set of independent estimates of the power spectrum is computed,
by pre-multiplying the data by orthogonal tapers which are constructed to minimize
the spectral leakage due to the finite length of the data set. The optimal tapers or
“eigentapers” belong to a family of functions known as discrete prolate spheroidal
sequences and defined as the eigenvectors of a suitable Rayleigh-Ritz minimisation
problem (Slepian 1978). Averaging over this set of spectra yields a better and more
stable estimate – (i.e. one with lower variance – than do single-taper methods).

The foundation of SSA-MTM is to examine and expand the lagged-covariance
matrix, that allows study over space and/or time (Shun and Duffy 1999). The SSA-
MTM toolkit provides a battery of statistical significance tests for each method, as
well as important visualisation tools that facilitate comparison of results between the
methods. More complete descriptions of all four methods, as well as comparisons
of their features and performance can be found in Ghil et al. (2002). The entire
SSA-MTM Toolkit, along with the User Guide, is available as freeware (SSA-MTM
Toolkit User’s Guide see http://www.atmos.ucla.edu/tcd/ssa). Further references on
advanced spectral methods and their diverse applications are also listed therein (see
also Vautard et al. 1992, Allen and Smith 1996, Mann and Lees 1996).

The key idea and procedures of SSA are similar between the two research groups,
namely SSA-MTM (Vautard and Ghil 1989) and Caterpillar SSA (Golyandina et al.
2001). Both SSA-MTM and Caterpillar SSA can be applied without any a priori
knowledge about the underlying system. The procedures then select the subsets
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of eigen elements and principal components to facilitate three algorithms – noise-
reduction, detrending and identification of oscillatory components – for constructing
so-called new components, denoted as reconstructed components (RCs) (Vautard
et al. 1992, Fukuda 2004). The main tasks of Caterpillar SSA are introduced in
Section 18.2.

There are, however, some theoretical and mathematical differences between
the two methods. SSA from the SSA-MTM group provides three steps with an
appropriate selected window length; embedding the sampled time series, comput-
ing the lag- covariance matrix, and diagonalising the lag-covariance matrix (which
includes decomposition via SVD). This lag-covariance matrix is a Toeplitz matrix,
which is a square matrix with constant diagonal structure with negative slope.
On completion of these three steps, the sum of the power spectra of the compo-
nents (eigenvalues and associated principal components) then form the resultant
reconstructed structures (recon). In contrast, Caterpillar SSA from Golyandina
et al. (2001) has four steps: embedding, SVD, ET grouping (eigenvalues and prin-
cipal components) and diagonal averaging. The summing of each decomposed
structure is carried out prior to the diagonal averaging required to obtain the
reconstructed structures. The lag-covariance matrix here is a Hankel matrix – a
square matrix, with constant diagonal structure and a positive slope. Indeed the
Hankel matrix is an upside-down Toeplitz. Detailed information on Caterpillar
SSA is described in Section 18.2.1.1. For information on the mathematics of SSA-
MTM, refer to Vautard and Ghil (1989), Dettinger et al. (1995) and Ghil et al.
(2002) and for examples of applications Allen and Smith (1996) and Mann and
Lees (1996).

Each SSA method also has their own statistical software available:

– “Caterpillar” SSA http://www.gistatgroup.com/cat/ (Golyandina et al. 2001)
– SSA-MTM Toolkit which is freeware and can be found at http://www.atmos.ucla.

edu/tcd
– kSpectra Toolkit software http://www.spectraworks.com/ a commercial project

which uses the same mathematics as SSA-MTM Toolkit.

18.1.2 Examples of SSA-MTM and Monte Carlo SSA

Loeuille and Ghil (2004) have applied multi-taper methods (MTM) and SSA (both
spectral analytic techniques) to study intrinsic and climatic factors in animal pop-
ulation dynamics. In 2006, Grigorov (2006) used an extension of SSA, namely
the Monte Carlo Singular Spectrum Analysis (as was introduced by Allen and
Smith 1996) to test whether a given time series was generated from any well-
defined process, including deterministic chaos. Chaos is an instance of dynamical
nonlinearity and chaotic processes. See also the review papers of Ghil and Yiou
(1996) and Ghil and Taricco (1997). Monte Carlo SSA can be used to estab-
lish whether a given time series is linearly distinguishable from any well-defined
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process, including the output of a deterministic chaotic system. “Red noise” is tra-
ditionally used to refer to any linear stochastic process in which spectral power
declines monotonically with increasing frequency (see the SSA-MTM Group 2000;
http://www.atmos.ucla.edu/tcd/ssa/). An enhanced Monte Carlo SSA was developed
by Paluš and Novotná (2004). This enhanced Monte Carlo SSA was successfully
applied in the detection of period 7.8 years oscillatory modes in records of monthly
average near-surface air temperature from several European locations, as well as
in the monthly North Atlantic Oscillation index (Paluš and Novotná 2004). Their
method was based on evaluating and testing regularity of dynamics of the SSA
modes against the so-called coloured noise null hypothesis, in addition to the test
based on variance (eigenvalues, as in conventional SSA). The application of their
regularity index, computed from a coarse-grained estimation of mutual information,
enhances the test sensitivity and reliability in detection of relatively more regular
dynamical modes than those obtained by decomposition of coloured noise compo-
nents, in particular, in detection of irregular oscillations embedded in red noise (as
in Monte Carlo SSA).

Earlier studies using Monte Carlo SSA or SSA-MTM are: Allen and Smith
(1996) who used Monte Carlo SSA to detect trends in the Southern Oscillation Index
(SOI) and El Niño/Southern Oscillation (ENSO) index; a coastal study (Rozynski
et al. 2001); D’Odorico et al.’s (2002) phenological study; a pressure signal study
in nuclear power plants (Paloma et al. 2003); the use of SSA in combination with
principal component analysis and neural networks to derive a prediction model for
ENSO by Hsieh and Tang (1998) and by Hsieh and Wu (2001, 2002); a combination
of SSA and wavelets to detect the SOI/ENSO changes by Yiou et al. (2000) (see also
Fukuda 2004 and the SSA-MTM ToolBox).

18.2 Methods

We follow part of the mathematical development of SSA by Hassani (2007) in addi-
tion to that of Golyandina et al. (2001) and provide a description of the methodology
of SSA.

18.2.1 Stage 1 Decomposition

18.2.1.1 First Step: Embedding

Embedding can be regarded as a mapping that transfers a one-dimensional time
series YT = (y1,. . .,yT) into the multi-dimensional series X1,. . .,Xk with vectors

Xi = (yi, . . . yi+L−1)′ ∈ RL, (18.1)

where K = T – L+1; i=1, 2, . . ., K.
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Vectors Xi are called L-lagged vectors (or, simply, lagged vectors). The single
parameter of the embedding is the window length L, an integer such that 2 ≤ L < T,
giving the trajectory matrix

X = [X1, . . . , XK] = (xij)
L,K
i,j = 1. (18.2)

Note that the trajectory matrix X is a Hankel matrix, which means that all the ele-
ments along the diagonal i+j = const are equal. Embedding is a standard procedure
in time series analysis. With the embedding performed, future analysis depends on
the aim of the study.

18.2.1.2 Second Step: Singular Value Decomposition (SVD)

The second step, the singular value decomposition (SVD) step, performs a singular
value decomposition of the trajectory matrix and represents it as a sum of rank-one
bi-orthogonal elementary matrices. Denote by λ1,. . .,λL the eigenvalues of XX′ in
decreasing order of magnitude (λ1≥ . . . λL≥0) and by U1,. . ., UL the orthonormal
system (that is, (Ui,Uj)=0 for i �= j (the orthogonality property)) and ||Ui||=1 (the
unit norm property)) of the eigenvectors of the matrix XX′ corresponding to these
eigenvalues. (Ui,Uj) is the inner product of the vectors Ui and Uj and ||Ui|| is the
norm of the vector Ui. Let

d = max (i, such that λi > 0) = rank X (18.3)

If we denote Vi = X′Ui / λi, then the SVD of the trajectory matrix can be written
as:

Xi = √
λiUiV

′
i(i = 1, . . . ,d) (18.4)

where Xi = √
λiUiV ′

i(i = 1, . . . ,d).
The matrices Xi have rank 1; therefore they are elementary matrices, Ui. In SSA

literature they are called “factor empirical orthogonal functions” or simply EOFs
and Vi often called “principal components” which represent the left and right eigen-
vectors of the trajectory matrix. The collection (λi,Ui,Vi) is called the i-th eigentriple
of the matrix X, λi(i = 1,. . .,d) are the singular values of the matrix X and the set
{λi} is called the spectrum of the matrix X. If all the eigenvalues have multiplicity
one, then the expansion (18.4) is uniquely defined.

SVD (18.4) is optimal in the sense that among all the matrices X(r) of rank
r < d, the matrix

∑r
i=1 Xi provides the optimal approximation to the trajectory

matrix X, so that ||X–X(r)|| is minimum. Note that ‖X‖2 = ∑d
i=1 λi and ‖Xi‖2 = λi

for i=1,. . ., d. Thus we can consider the ratio λi

/∑d
i=1 λi as the characteristic of the
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contribution of the matrix Xi to expansion (18.4). Consequently,
∑r

i=1 λi

/∑d
i=1 λi,

the sum of the first r ratios, is the characteristic of the optimal approximation of the
trajectory matrix by the matrices of rank r.

18.2.2 Stage 2 Reconstruction

18.2.2.1 First Step: Grouping

The grouping step corresponds to splitting the elementary matrices Xi into several
groups and summing the matrices within each group. Let I = {

i1, . . . ,ip
}

be a group
of indices i1, . . . ,ip. Then the matrix XI corresponding to group I is defined as XI =
Xi1 ,+ . . . ,+Xip m . The split of the set of indices J = 1, . . . ,d into the disjoint subsets
I1, . . . ,Im corresponds to the representation:

X = XI1 , + . . . , + XIm (18.5)

The procedure of choosing the sets I1,. . ., Im is called the eigentriple grouping. For
a given group I the contribution of the component XI into the expansion (18.4) is

measured by the share of the corresponding eigenvalues:
∑

i∈I λi

/∑d
i=1 λi.

18.2.2.2 Second Step: Diagonal Averaging

Diagonal averaging transfers each matrix I into a time series, which is an additive
component of the initial series, YT. If zij stands for an element of a matrix Z, then
the k-th term of the resulting series is obtained by averaging zij over all i, j such
that i + j = k + 2. This procedure is called diagonal averaging, or Hankelization
of the matrix Z. The result of the Hankelization of a matrix Z is the Hankel matrix
HZ, which is the trajectory matrix corresponding to the series via the diagonal aver-
aging. Note that Hankelization is an optimal procedure in the sense that the matrix
HZ is the nearest to Z (with respect to the matrix norm) among all Hankel matri-
ces of the corresponding size (for more information see Golyandina et al. (2001,
Chapter 6, Section 2)). In its turn, the Hankel matrix HZ uniquely defines the
series by relating the value on the diagonals to the values in the series. By apply-
ing the Hankelization procedure to all matrix components of (18.5), we obtain the
following:

X = X̄I1 , + . . . , + X̄Im (18.6)

where X̄I1 = HX. This is equivalent to the decomposition of the initial series
YT = (y1, . . . ,yT) into a sum of m series:
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yt =
m∑

k=1

ȳ(k)
t (18.7)

where Ȳ (k)
T =

(
ȳ(k)

1 , . . . ,ȳ(k)
T

)
corresponds to the matrix XIk.

18.2.3 ET Groupings

The first step of stage 2, the reconstruction stage, is to separate the additive com-
ponents of the time series that are constructed from the previous step – ETs – into
groups. The procedure of selecting each possible group is called ET grouping. To
understand the mechanism of the grouping, one needs to consider the concept of
separability, as the grouping of similar components, from the group of additive com-
ponents, can also be considered as partitioning, or separating the components from
one another.

18.2.3.1 Mathematical Description

The first part is the grouping procedure. Consider step 2 (Section 18.2.1.2), where
the SVD was used to decompose the trajectory matrix, X, into the following:

X = X1 + ... + Xd (18.8)

The grouping procedure partitions the set of indices {J = 1, . . ., d} 3.6 into m
disjoint subsets (ET groups), I1, . . ., Im (see equation 18.5).

Let I = {i1, . . ., Ip}. The resultant matrix XI corresponding to the group I is
defined as:

XI = Xi1 + ... + Xip (18.9)

The grouping parameters that combine the decomposed structures (see Equation
18.5) selecting the sets of I1, . . ., Im are called the ET grouping.

Separability is the key to achieving a successful ET grouping. If the original time
series is constructed of separable components, it is said to possess strong separa-
bility. The original time series is described as F, and F is considered to be a sum
of two time series, F(1) and F(2): F = F(1) + F(2). The idea is that matrix terms
of the SVD of the trajectory matrix X can be split into two different groups – X(1)

and X(2) – of the original time series F(1) and F(2). This condition is critical for the
SSA method to work. A description of the mathematical conditions of separability
follows.
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The original time series F is a sum of two time series F (1) and F(2), such that:

fi = f (1)
i + f (2)

i where (i = 0, . . . , T − 1) (18.10)

Details of conditions for separability follow, as do four methods to assess
separability.

18.2.3.2 Conditions for Separability

Fix a window length L, thus K=T – L+1. The L-trajectory matrices of the compo-
nents of F, F (1) and F(2), are respectively labelled X(1) and X(2). Each row and each
column of the trajectory matrix X(1) of F(1) is orthogonal to each row of the trajec-
tory matrix X(2) of F(2). Then orthogonality of the subspaces for the series F(1) and
F(2) is necessary: If the subspace (L, 1) is spanned by the columns of the X(1), it must
be orthogonal to the subspace (L, 2) spanned by the columns of X(2). At the same
time, the subspaces (K, 1) and (K, 2) spanned by the rows of X(1) and X(2) must also
be orthogonal.

Assessment of Separability

1. When the orthogonal condition above holds for X(1) and X(2), (weak) separability
is achieved for the series F by decomposition of X.
The following definition exists to satisfy (weak) separability:
If a collection of indices I ⊂ {1, . . ., d} exists, such that:

X(1) =
∑
i∈I

Xi (18.11)

and

X(2) =
∑
i/∈I

Xi (18.12)

then the series F(1) and F(2) are said to be (weakly) separable.
2. Assume that the singular values corresponding to X(1)

k and X(2)
m are the same, then

the SVD of the matrix X is:

X =
∑

k

X(1)
k +

∑
m

X(2)
m (18.13)

Thus the terms of X(1) and X(2) cannot be identified uniquely in the sum of X(1)

and X(2) for this specific k and m, (i.e. they are not completely separable). This
state is called weak separability.
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3. Besides the condition of weak separability of F(1) and F(2) from 1 above and
equations 18.11 and 18.12, if the collections of the SVD of the trajectory
matrices X(1) and X(2) are disjoint as follows,

X(1) =
∑

k

X(1)
k (18.14)

and

X(2) =
∑

k

X(2)
k (18.15)

then it is said that F(1) and F(2) are strongly separable.
4. When the set of indices is fixed as I=I1, the resultant matrices, XI1 and XI2 , are

Hankel matrices. If XI2 = X − XI1 , then the trajectory matrix X is separable by
the expansion of X. At the same time, if the matrices XI1 , and XI2 are thought
to be Hankel matrices, then F(1) and F(2) as well as the corresponding trajectory
matrices X(1) and X(2) are thought to be Hankel matrices. Then it is said that the
sequence is “approximately separable” for two series; F(1) and F(2). This can be
assessed by the correlation coefficient ρ(L,K) between the rows and the columns
of the trajectory matrices of X(1) and X(2), and all the correlations of these are
close to zero.

The concept of separability (either weak or strong separability) is satisfied if
condition 1 is true; basically, the corresponding X(1) and X(2) from each F(1) and
F(2) are separable. The difference of weak and strong separability can be illustrated
by examining whether the sum of the SVDs of the trajectory matrices of the series
F(1) and F(2) coincide with one of the SVDs of the trajectory matrix of the series
F = F(1) + F(2), or more practically, whether it is possible to group the matrix terms
of any SVD of the trajectory matrix X of the series F = F(1) + F(2), to obtain the
trajectory matrices of the series F(1) and F(2) (Golyandina et al. 2001). If the answer
to these questions is yes, then it is said to be strongly separable, and condition 3 is
satisfied. However, if the either or both answers are no, then condition 2 is satisfied,
and the structure has weak separability.

In real life, exact separability is not often obtained, so that proving that the corre-
lations between the rows and between the columns of the trajectory matrices of X(1)

and X(2), corresponding to each F(1) and F(2), are close to zero is enough to con-
clude approximate separability, as in condition 4. Actual observations for the cross
correlation coefficient ρ X(ω)

1,2 can also be examined from the w-correlation analysis
below (see equation 18.9).

18.2.3.3 Concept of w-Correlation

The value of ρ from the w-correlation analysis is obtained from each selected ET
group. Therefore separability is assessed by the cross correlation value of ρ, and
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the quality of separability, called the weighted correlation or w-correlation is a nat-
ural measure of deviation of two series F(1) and F(2) from w-orthogonality and in
the case of exact separability, the orthogonality of rows and columns of the trajec-
tory matrices X(1)and X(2) means that all pairwise inner products of their rows and
columns are “zero” (Golyandina et al. 2001). The w-correlation matrix is defined
below.

Consider a w-correlation analysis for F(1) and F(2), then the w-correlation is
derived as follows:

Let L∗=min (L, K) and K∗=max (L, K), then

ωi =
⎧⎨
⎩

i + 1 for 0 ≤ i ≤ L∗ − 1,
L∗ for L∗ ≤ i ≤ K∗,

T − i for K∗ ≤ i ≤ T − 1.
(18.16)

The inner product of series F(1) and F(2) of length T given by

(F(1),F(2))ω =
def T−1∑

i=0

ωi f (1)
i f (2)

i . (18.12)

Then, if (F(1),F(2))ω = 0, the relationship between F(1) and F(2) is w-orthogonal.
The weighted correlation, or w-correlation, is a value that quantifies the separa-

bility of two series F(1) and F(2) as follows:

ρ
(ω)
12 =

(
F(1) ,F(2)

)
ω∥∥F(1)

∥∥
ω

∥∥F(2)
∥∥
ω

(18.18)

for

∥∥∥F(i)
∥∥∥ω =

√
(F(1),F(2)) ω, i = 1,2. (18.19)

where from Equation 18.16, the absolute value of the w-correlation is obtain.
If this value is small (close to zero), then the two time series are said to be almost

w-orthogonal, and they are approximately separable. However it is important to
mention that when two time series are large (i.e. infinitely long), this assumption
is no longer true, because the series are not likely to be w-orthogonal, thus pro-
viding poor separability, whereby F(1) and F(2) are called asymptotically separable,
when the correlation coefficients tend to zero, while T → ∞ (with the condition of
the window length L=L(T)) (Golyandina et al. 2001).

An examination of the correlation coefficient ρ is certainly helpful in confirming
separability in the series and this information is used subsequently to group the ETs
into the appropriate groupings to derive requisite separability.



18 Singular Spectrum Analysis: Climatic Niche Identification 405

18.2.4 Assessment of Any ET Groups by the w-Correlation Plot

Graphical interpretation of separability is examined by observing the w-correlation
plot (provided automatically by Caterpillar SSA). The w-correlation plot for E. leu-
coxylon is shown Fig. 18.1. It shows how all ETs are grouped together and how the
resultant groups are successfully separated.

Fig. 18.1 w-correlation plot for E. leucoxylon

18.2.5 Considerations

There are three issues to consider when using SSA (regardless of the package used)
these are:

• the data are assumed to be complete (i.e. there is no missing data),
• the appropriate window length,
• the number of, and which eigentriples to group (see Fig. 18.1 the w-correlation

plot).

18.2.5.1 Missing Data

Missing data are common in datasets and phenological data are no different. Any
standard spectral analysis requires data to be complete (Kondrashov and Ghil
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2006). Hence methods for filling in missing data have been developed (Schneider
2001, Schollhamer 2001, Kondrashov et al. 2005, Kondrashov and Ghil 2006,
Golyandina and Osipov 2007). Each of these methods has different underlying
mathematics which is explained in detail in the individual papers and com-
pared in various of the following papers (Ghil et al. 2002, Kondrashov and Ghil
2006, 2007, Schneider 2007). The missing value algorithms of Golyandina and
Osipov (2007) can now be performed by the CatMV 1.0 (2007) software (see
http://www.gistatgroup.com/cat/).

18.2.5.2 Window Length

The selection of window length L is undertaken by the user. In choosing the win-
dow length the user needs to consider the question they are asking and balance the
amount of information extracted versus the degree of confidence in that information.
There is greater statistical confidence in smaller window lengths (Elsner and Tsonis
1996, Ghil et al. 2002).

The ultimate choice of L depends on what kind of structural changes one is look-
ing for. If one is only interested in the low-frequency components of the limited
(finite) available variance in the time series, then L need to be very large. On the
contrary, with a larger window length, the strictly, high-frequency components can
be resolved (Golyandina et al. 2001). Moreover, Results cannot be very sensitive to
L as long as L is considerably small. According to Golyandina et al. (2001), there are
several general principles for the selection of L, which are summarized as follows:

1. The value of L should be reasonably large to separate the low-frequency com-
ponent from the high-frequency component, but not greater than a half of series
length Nt/2.

2. The larger L is the more detailed is the decomposition of the time series. The
most detailed decomposition is achieved when L is approximately equal to half
of the length of time series, that is, , its maximized possible value.

3. For specific series and tasks, choice of a small L may be optimal than a large L,
and may perform better than the large L. It is worthwhile trailing several window
lengths.

4. When a series contains an obvious or known periodic component, say with an
integer period T, set L proportional to T.

5. For a long series, it is better to choose L close to Nt/2 and such that L/T is an
integer. This is a combination of principles (2) and (4) above.

Indeed, the selection of window length L is determined by the time series itself.
Often the shape of the graph of the series can be an effective visible indicator (of a
trend or of underlying harmonics). Using a periodogram of the series may also help
determine the periods of possible harmonic components in the series and as such in
the selection of window length (see Fig. 18.2).

Differences in window length may result in differences in trend.
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Fig. 18.2 Periodograms for E. leucoxylon: (a) 6 month cycle, (b) 12 month cycle and (c) 24 month
cycle
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18.2.5.3 Choice of Number and Eigentriples (ETs) to Group

The use of a scree diagram (eigenvalues λk plotted against k) assists in determining
which of the principal components should be considered (Vautard and Ghil 1989,
Ghil et al. 2002). Eigenvalues which have the same amplitude and are harmonic
(or almost) (Golyandina et al. 2001) are considered oscillatory pairs and may be
grouped (Fig. 18.3, Tables 18.1 and 18.2). The principal components which are
above the noise floor are those which are considered “significant” (Vautard and Ghil
1989, Shun and Duffy 1999, D’Odorico et al. 2002) (Fig. 18.3).

Fig. 18.3 Scree diagram of first 25 eigenvalues. Four eigentriple pairs are indicated 2–3, 4–5, 6–7
and 8–9

Table 18.1 Reconstructed series, characteristics and variance accounted for in climate

Variable

Principal
components
(#indicates
grouped RSs) Characteristic Variance (%) Total variance

Minimum temperature 1 Trend 83.7
2–3# Annual 14.5
4–5# 6 monthly 0.2 98.4

Maximum temperature 1 Trend 91.6
2–3# Annual 7.5
4–5# 6 monthly 0.10
6–7# ∼Biennial 0.04 99.2

Mean temperature 1 Trend 90.0
2–3# Annual 9.3
4–5# 6 monthly 0.1
6–7# ∼Biennial 0.04 99.4

Rainfall 1 Trend 69.9
2–3# Annual 2.7 72.6
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Table 18.2 Reconstructed series, characteristics and variance accounted for in phenological data

Variable

Principal components
(#indicates grouped
RSs) Characteristic Variance (%) Total variance

E. leucoxylon 1 Trend 62.5
2–3# Annual 16.3
4–5# ∼ Biennial 4.0
6–7# 20 months 2.2
8–9 6 monthly 1.4 86.4

E. tricarpa 1 Trend 36.6
2–3# Annual 20.4
4–5# ∼Biennial 11.2
6–7# ∼ 4 year 7.2 75.4

E. microcarpa 1 Trend 23.5
2–3# Annual 29.3
4–5# 6 monthly 7.5
6–7# ∼ Biennial 4.7 65.0

E. polyanthemos 1 Trend 21.7
2–3# Annual 24.6
4–5# 6 monthly 8.0
6–7# ∼Biennial 4.1 68.4

There are several principles for grouping to best achieve separation and identifica-
tion of the underlying additive components of a time series.

• Collect and combine all the slowly varying (low-frequency) singular vectors to
extract the major trend of a time series.

• A single periodicity component of the series produces a pair of principle compo-
nents with approximately equal eigenvalues. Therefore eigenvalues close in value
can indicate a seasonal component of the series.

• Although eigenvalues are important for eigentriple grouping, plots of both the
grouping eigenfunctions and principle components can be more informative.
For example, scatterplots of the eigenfunctions of sines and cosines with equal
frequencies, amplitudes and phases, turn out to be increasing circular with
increasing period (see Fig. 18.4).

18.2.6 Methods

18.2.6.1 Climate Data

Daily rainfall, along with daily minimum and maximum temperature records, were
obtained from the Bureau of Meteorology, for the closest weather station (approx-
imately 3.5 km away); Maryborough, Victoria (37′ 03"S, 143′ 44"E, 249.3 m
elevation).
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Fig. 18.4 Scatter plots of three of E. leucoxylon’s eigentriple pairs: (a) 8–9 with a harmonic cor-
responding to a period of 6, (b) 2–3 with a harmonic corresponding to a period of 12, (c) 4–5 with
a harmonic corresponding to a period of 24

18.2.6.2 Phenological Data

The records used in these analyses come from Havelock, Victoria, Australia and
cover the years 1940–1971. Over this observation period there were two observers.
The first observer covered the period 1940 until 1962, and the second 1962 until the
1971.

The timing and distribution of flowering of eight species of Eucalyptus were
collected on a monthly basis. The observations were undertaken on a regular basis,
on the 15th (and sometimes 16th) of each month. Whilst the monthly basis of the
data limits the sensitivity of the analysis, no data of greater temporal resolution are
currently known to be available in Australia for this period. It should also be noted
that the mean flowering for each of the species studied is greater than 3 months.
Observations were undertaken within plots. This study concentrates only on the
four species that commonly occur together (Muir et al. 1995).

– Eucalyptus leucoxylon – Yellow gum
– E. microcarpa – Grey Box
– E. polyanthemos – Red Box
– E. tricarpa – Red Ironbark.

18.2.6.3 Analyses

In this study Caterpillar 3.30 SSA was used to examine the eucalypt data with a
window length of 120 (equivalent to 10 years). The modifications based on the
eigentriple (ET) grouping method of Fukuda (2004) used in the study of the impact
of global and local weather events on air pollution in Christchurch, New Zealand
(Fukuda et al. 2004) was employed. This ET grouping method, called an enhanced
Fourier expansion method (EFE) was based on the Fourier expansion criteria for
ET separability from Golyandina et al. (2001) and FastGrouping software, which
allowed for the detection of small frequency changes.
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18.3 Results

18.3.1 Climate

The first reconstructed series (RS) (Fig. 18.5a–c) for minimum, maximum and mean
daily temperature 1940–1971) for Maryborough account for 83.7, 91.3 and 90.0% of
the signal (Table 18.1), respectively. It is typical for trends to be indicated in the first
component and this is the case here. Minimum temperatures (Fig. 18.5a) increased
until approximately September 1954 and were stable for a short period until early
March 1955; after this date there is a downwards trend in minimum temperature
until September 1964; after this minimum temperatures began to increase again
in September 1955. Maximum temperature at Maryborough was increasing until
November 1965, stable until March 1967 and then decreased until July 1970.

The mean temperature at Maryborough is driven by the maximum temperature
(Fig. 18.5c). It increases until February 1967. There appears to be an agreement in
the trends between rainfall and minimum temperature (Fig. 18.5a, d). The first RS in
rainfall accounts for 69.9% of the signal (trend); rainfall increases until early 1955
(January) and is stable through to mid 1956 (June 1956) and then trends downwards.

Fig. 18.5 First reconstructed series for (a) minimum, (b) maximum, (c) mean temperature and (d)
rainfall

18.3.2 Phenological Data

The first reconstructed series (RS) also account for the maximum amount of varia-
tion in two of the species examined E. leucoxylon (62.5%) and E. tricarpa (36.6%)
(Table 18.2, Fig. 18.6a, b). In both E. microcarpa and E. polyanthemos the sec-
ond RS (annual cycle) accounts for the majority of the variance (29.3 and 24.6%,
respectively) compared to 23.5 and 21.7% for the trend (Table 18.2, Figs. 18.6c, d
and 18.7c, d).

As with the climate RSs, the first RSs of the eucalypt species reflects the trend.
There is a clear decrease in flowering intensity in all species – although this occurs
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Fig. 18.6 First reconstructed series for (a) E. leucoxylon, (b) E. tricarpa, (c) E. microcarpa and
(d) E. polyanthemos

at different times across the species. For E. leucoxylon this commences in early
1942 February (Fig. 18.6a) and E. tricarpa a decrease is evident from September
1942 (Fig. 18.6b). Eucalyptus microcarpa increases in flowering until June 1952
and remains stable for about a year (May 1953), and then decreases to April
1969 followed by a sharp increase (Fig. 18.6c). In E. polyanthemos there is a
sharp decrease from November 1946 until September 1958, after which flowering
intensity stabilises (Fig. 18.6d).

The general decrease in flowering in each species indicates that flowering has
become less intense over time. Another possible explanation for the downward trend
is that the observers of flowering have changed their interpretation of intensity over
time. The latter explanation does not seem to be as likely given the trends observed
in E. microcarpa which as already indicated increased for the first 11 years.

18.3.3 Reconstructed Series 2 and 3

For all species (Fig. 18.7a–d) and for each of the weather variables examined
these RSs represent the annual cycle. The peaks in the RS2 and 3 for each of the
species indicate the time of peak flowering. For E. leucoxylon this is the month of
September, for E. microcarpa it is March, E. polyanthemos peaks in November and
E. tricarpa peaks in July.

As already mentioned, for E. microcarpa and E. polyanthemos these RSs
accounted for the greatest amount of variation. In all species there is an overall
decrease in amplitude of flowering over time. This decease is least pronounced
in E. microcarpa whose amplitude is constant until late 1960 thereafter there is a
slight decease (Fig. 18.7c). There is a general decrease in amplitude in E. leucoxy-
lon flowering until approximately 1957 when the amplitude seems to be “even” until
1966 and then decreases again (Fig. 18.7a). Eucalyptus tricarpa which flowers in
the cooler months, as does E. leucoxylon, decreases, until early 1953 (Fig. 18.7b).
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Fig. 18.7 Second and third reconstructed series for (a) E. leucoxylon, (b) E. tricarpa,
(c) E. microcarpa and (d) E. polyanthemos

Flowering of E. polyanthemos increases from the beginning of the time series until
late 1945 and then decreases until late 1957/early 1958 (Fig. 18.7d).

18.3.4 Correlation and Cross-Correlations Between Species
and Weather Reconstructed Series 2 and 3

The relationship between the annual cycle (reconstructed series 2 and 3) of flowering
and the climate variables were examined (Table 18.3) via correlational analysis. For,
E. leucoxylon and E. tricarpa there were negative correlations (no lags) between
each of the temperature variables and a positive relationship with rainfall. These
relationships are reversed in the remaining species.

At peak flowering, the most influential temperature variable for E. leucoxylon is
minimum temperature (ρ = –0.742) and for E. tricarpa it is maximum temperature
(ρ = –0.895). This in contrast to the positive correlations for E. microcarpa and
E. polyanthemos: minimum temperature (ρ = 0.383) and maximum temperature
(ρ = 0.674), respectively.

Broadly speaking, at the time of peak flowering a negative relationship between
temperature implies that as these temperature variants increase during the obser-
vation period flowering intensity decreased with the positive influence of rainfall
moderating flowering in wetter periods. For E. microcarpa and E. polyanthemos
increased temperatures in dry conditions Results in greatest flowering intensity.

Table 18.3 Correlations between climate parameters and species (no lag)

Species Minimum temp Maximum temp Mean temp Rainfall

E. leucoxylon –0.742 –0.693 –0.711 0.642
E. tricarpa –0.857 –0.895 –0.882 0.539
E. microcarpa 0.383 0.297 0.328 –0.494
E. polyanthemos 0.626 0.674 0.658 –0.405
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Cross-correlation analysis revealed that although E. leucoxylon and E. tri-
carpa are similarly influenced at the time of peak flowering by temperature and
rainfall (Table 18.4) they are, overall, influenced differently throughout the year
(Table 18.4). That is for approximately 4 months before peak flowering the influ-
ence of any temperature variable is positive for E. leucoxylon; which would favour
increased flowering intensity but would be moderated by the negative influence of
rain. However, for E. tricarpa 5 months prior to, and including peak flowering the
influence of temperature is negative. This would result in a lower flowering intensity
with the positive influence of rain once again being a moderating factor.

For all four species there is on average, 5.7 months, when temperature positively
influences flowering and 5.7 months when the influence of temperature is nega-
tive. Additionally, the influence of rainfall is always opposite to that of temperature
(for example, E. tricarpa is positively influenced by temperature and negatively
influenced by rain between October and March, and negatively influenced by tem-
perature and positively influenced by rain between April and September. This
relationship with temperature is illustrated in Fig. 17.11).

18.3.5 Reconstructed Series 4 and 5

This is the first difference in the flowering signal between the four species (i.e.
the previous RSs were similar across all four species). Eucalyptus leucoxylon and
E. tricarpa exhibit a quasi-biennial cycle (Fig. 18.8a, b), whereas E. microcarpa and
E. polyanthemos exhibit a 6 monthly cycle (Fig. 18.8c, d). The intensity of flowering
in E. leucoxylon and E. tricarpa is, however, reversed. The shift in the amplitude of
flowering in E. leucoxylon from less intense to more intense occurs in approximately
mid April 1952, the shift from more intense to less intense in E. tricarpa also occurs
in 1952, approximately August.

Fig. 18.8 Fourth and fifth reconstructed series for (a) E. leucoxylon, (b) E. tricarpa,
(c) E. microcarpa and (d) E. polyanthemos
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The half yearly cycles evident in E. microcarpa and E. polyanthemos are out-of-
phase with each other by approximately 7 weeks. Eucalyptus microcarpa’s peaks
are usually in late March and the middle of September, whereas E. polyanthe-
mos’ peaks occur in May and November (Fig. 18.8c, d). It is difficult to determine
what these peaks relate to in a biological sense. In each species one of the peaks
coincides with their average month of peak flowering (e.g. March is the month of
peak flowering in E. microcarpa). There is an increase in the flowering intensity
of E. microcarpa from early 1944 until the beginning of 1968. In E. polyanthemos
there is a clear decrease in flowering intensity in 1956.

18.3.6 Reconstructed Series 6 and 7

This set of RSs exhibits the first occurrence of a significant difference between the
species pair of E. leucoxylon and E. tricarpa (Fig. 18.9a, b). Eucalyptus leucoxy-
lon has an average cycle of 20.5 months with a range of 23 months (1940–1942)
to 18 months (1945–1947). The RSs 6 and 7 (Fig. 18.9a) account for a small
amount of the variation (2.1%) in the flowering of E. leucoxylon but based on the
values of the eigenvalues this is considered “significant”. There are two changes
evident in flowering intensity one which occurs in early 1945 and one in late
1963. Eucalyptus tricarpa has an average cycle of 4 years 8 months but ranges
from 4.5 years (between 1950 and 1955) to 5 years (between 1941 and 1946)
(Fig. 18.9b).

Both E. microcarpa and E. polyanthemos exhibit a quasi-biennal cycle (mean
22.9 and 23.8 months, respectively) (Fig. 18.9c, d). Eucalyptus microcarpa’s cycle
has a range of 17 months (between 1952 and 1953) to 24 months (which occur
on mulTiple occasions). The cycle in E. polyanthemos has a range of 20 months
(between 1952 and 1954) to 32 months (between 1960 and 1962). These differing

Fig. 18.9 Sixth and seventh reconstructed series for (a) E. leucoxylon, (b) E. tricarpa, (c) E.
microcarpa and (d) E. polyanthemos
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periods in the individual species cycles correspond to change points in overall RSs
(Fig. 18.9c, d). The period of 32 months could be detecting a phase of non flowering;
as E. polyanthemos did not flower between February 1960 and September 1962.

18.4 Discussion

18.4.1 Cycles

SSA has separated out the trend and annual cycle in the climate variables. It has
also delineated the trend, annual and biennial cycle in flowering intensity all four
species. In defining the annual cycle the average peak intensity month for each
species was generally delineated. For example, the peak flowering month for E.
microcarpa is March (Keatley and Hudson 2007, Chapter 17) and the Results of
SSA were in agreement with these other analytic methods (e.g. Keatley and Hudson
2007, Chapter 17).

Biennial cycling in flowering in these species has been commonly reported by
bee keepers based on their experience (Beuhne 1914, Goodman 1973, Somerville
and Campbell 1997) and mathematically quantified by Wells (2000). Variation in
the intensity of flowering occurs within other species of eucalypts (Beuhne 1914,
Goodman 1973, Ashton 1975, Setterfield and Williams 1996, Wilson 2002) and
other species (e.g. Banksias (Copland and Whelan 1989)). These years of “good”
and “poor” flowering in eucalypts have been attributed to climatic factors (Hudson
et al. 2004, Flint and Fagg 2007) such as rainfall deficits resulting in soil moisture
stress which in turns increases the abscission rate of buds and flowers (Ashton 1975,
Wilson 2002, Flint and Fagg 2007). Other factors such as insect and fungal attack
and the carry-over of buds to the following season are also believed to contribute to
this apparent cyclicity of flowering (Ashton 1975, Davis 1969, Bassett 2002).

Eucalyptus tricarpa was the only species to have an extended cycle of 4 years
and 8 months cycle detected. A four cycle has been detected using autocorrelograms
(Wells 2002) but not by wavelet analysis (Chapter 17). Four year cycles have been
detected in other eucalypt species: E. regnans, E. diversifolia, E. dumosa, E. fasci-
culosa, E. incrassata and for one of the other species in this study, E. leucoxylon
(Ashton 1975, Paton et al. 2004).

With the exception of E. tricarpa, each species was found to have an approx-
imately 6 month cycle. Determining the biological significance of this cycle is
difficult. It is tempting to suggest that this cycle is related to the periods of flowering
and non flowering through out the year. However, this does not seem to hold for any
of these species as their mean flowering period ranges from 3.6 ± 1.5 months for
E. polyanthemos to 9.7 ± 4.2 months for E. leucoxylon (Keatley and Hudson 2007).
Additionally, if there were the case it would be expected that this cycle was present
in E. tricarpa. It is possible that the 6 month cycle is within the eigentriples which
were not considered significant. Clearly, further work on this aspect of the cycles is
required.
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18.4.2 Temperature and Rainfall Correlations

An examination of the correlations between the reconstructed flowering series and
climatic components found that for E. leucoxylon and E. tricarpa there was a simi-
lar relationship with climate. Each is negatively influenced by temperature: be that
mean, minimum or maximum temperature and each is positively influence by rain-
fall. For E. leucoxylon the main influence on flowering is minimum temperature and
E. tricarpa it is maximum temperature. Rainfall has a slightly greater influence on
flowering in E. leucoxylon than E. tricarpa. Hence, overall flowering intensity is
enhanced by cooler, wetter conditions for each of these species. Both E. microcarpa
and E. polyanthemos also share a similar relationship to climate but this is the
opposite direction to that of E. leucoxylon and E. tricarpa. Flowering intensity in
E. microcarpa and E. polyanthemos is enhanced by warmer, drier conditions.

The main temperature driver of flowering for three of these species: E. leucoxy-
lon, E. tricarpa and E. polyanthemos is now established: in that linear regression
(Keatley and Hudson 2000), GAMLSS (Hudson et al. 2009, Chapter 10), Wavelets
(Chapter 17) and SSA (Hudson et al. 2004, this chapter) have nominated the same
temperature variable for each of these species (e.g. E. polyanthemos’s main driver
is maximum temperature which positively influences flowering intensity).

Stepwise regression (Keatley and Hudson 2000) also nominated the same main
drivers for each of these species but highlighted that the influences on flowering
are not simple: that is although there is a dominant climatic variable which influ-
ences flowering there are others which contribute. Using E. tricarpa as an example
stepwise regression found that growing degree days and minimum temperature
also contribute significantly to flowering. GAMLSS analysis (Hudson et al. 2009,
Chapter 10) also found that minimum temperature positively influences flowering in
this species therefore minimum moderates the influence of maximum temperature.

The main influence on the flowering of E. microcarpa is less clear. This is
because two methods, Wavelets and SSA, have suggested minimum temperature
influencing flowering and GAMLSS has indicated mean temperature as the main
driver of flowering. Both contending variables have a positive influence.

The effect of rain has been shown to range from none (Porter 1978, Keatley
and Hudson 2000) to a significant but minor effect (i.e. temperature has a much
greater influence) (Wells 2000, Keatley et al. 2002); to significant with a major
influence (Wilson and Bennett 1999, Kim et al. 2005). Therefore the role of rain
on the flowering of these species needs further work.

E. leucoxylon and E. tricarpa commonly occur together (Muir et al. 1995) and
have overlapping flowering periods (Wilson 2002, Keatley et al. 2004) both flower
in the cooler, wetter months and these are precisely the conditions which enhance
flowering. This might be regarded as just reflecting the climatic season in which
these species flower. However, with the use of lags and cross correlation we demon-
strated that there is an underlying physiological basis to the influence of climate and
that these species avoid competition by occupying a different annual climate niche.
These two species, as well as E. microcarpa and E. polyanthemos, are differently
influenced by climate in the months preceding flowering. There is approximately
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6 months of the annual cycle in which, any given climate variable, positively
influences flowering intensity and 6 months of negative influence.

This 6 monthly cycle has also been delineated and statistically confirmed by
wavelets analysis (Chapter 17) and has been illustrated in the Results, but not
commented on, in the examination of the relationship between temperature and
flowering of various species in the United Kingdom by regression, correlation and
P-splines (Fitter et al. 1995, Sparks and Carey 1995, Roberts 2008).

So clearly the flowering of these species is influenced by climate. Their flowering
period will change in response to climate change (Keatley et al. 2002) as will their
peak flowering intensity and therefore nectar production (Porter 1978) as well as
how often they flower (Mac Nally et al. 2009). The consequences of these responses
to climate have been recently and dramatically demonstrated by a crash in the pop-
ulation of the birds which depend on the nectar these species (Mac Nally et al.
2009).

18.4.3 Advantages and Limitations of SSA

The advantages that SSA has over simple linear regression (SLR) are that it makes
no specific distributional assumptions and can cope with non-stationary data. SSA
also overcomes the enforced linearity that SLR imposes. Additionally, in a study
of 3 datasets of global surface air temperature which varied in length between 90
and 130 years Elsner and Tsonis (1991), found that the trends of the air temperature
were very similar regardless of the length of the series. A known limitation of SLR
is that the slopes of the resultant regression lines are influenced by when the series
commences and finishes and, also by the actual length of the series in the case of
phenological data (Sparks and Menzel 2002, Menzel 2003, Sparks and Tryjanowski
2005).

As shown, a reconstructed phenological series may also be cross-correlated with
climate variables so as to determine whether there is significant contemporaneous or
lagged relationship. SSA also allows for forecasting and detection of change points
in a time series (Golyandina et al. 2001); not discussed here. See SSA based change
point analysis of herbarium records in Chapter 19.

As with all analytic methods there are limitations and restrictions: for SSA
datasets are assumed to be complete (i.e. that there are no missing data) but meth-
ods are available to fill in the gaps (Schneider 2001, Schollhamer 2001, Kondrashov
et al. 2005, Kondrashov and Ghil 2006, Golyandina and Osipov 2007). Also the
grouping of eigentriples is currently determined by the user, however, AutoSSA is
being developed to accommodate and allow automated ET grouping procedures (see
http://www.pdmi.ras.ru/∼theo/autossa/). The window length is also required to be
determined by the user, and as to which window length is optimal to use is a bal-
ance between the amount of information extracted versus the degree of confidence
in that information. Smaller window lengths provide greater confidence. Differences
in window length may result in significant differences in trend.



420 I.L. Hudson and M.R. Keatley

18.5 Conclusions

SSA has been shown to be a useful technique in the analysis of a phenological time
series. It can, as with wavelet analysis, deconstruct a series into its major underlying
components: trend and cycles (annual, biennial etc.).

At an individual species level SSA identified which of the climate variables were
the main drivers of flowering. Cross-correlation has established that each species is
uniquely influenced by climate through out the year. Cross correlation analysis of
the resultant SSA reconstructed series demonstrate that there is an underlying physi-
ological basis to the influence of climate and that these species avoid competition by
occupying a different annual climate niche. Eucalyptus leucoxylon and E. tricarpa
as a species pair; and E. microcarpa and E. polyanthemos as the other species pair-
ing, are differently influenced by climate in the months preceding flowering. There
is approximately 6 months of the annual cycle in which, any given climate variable,
positively influences flowering intensity and 6 months of negative influence. Future
work will entail the analysis and forecasting of the four eucalypt species jointly via
SSA-based approaches to multidimensional time series.
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Chapter 19
Herbarium Collections and Photographic
Images: Alternative Data Sources
for Phenological Research
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Abstract Irrefutable evidence is emerging from the scientific literature of universal
shifts in phenology as a consequence of climate change. The intimate relationship
which exists between seasonal flowering and climatic conditions, coupled with ease
of observation, makes the monitoring of flowering events a reliable and cost effec-
tive method for the early detection of change in biological systems and an important
tool in global change research. However, the long-term data sets required to deter-
mine the nature and magnitude of climatic impacts are very limited in Australia,
and current research incorporates an interrogation of archival records to redress this
important issue. Herbarium collections and photographic images have been found
to provide robust estimates broadly in keeping with those published in the literature.
This chapter is specifically focussed on accessing long term phenological data from
the alternative data sources residing in herbarium and photographic collections. We
outline the constraints to be considered when linking phenological changes with
climatic fluctuations and long-term trends, offer some cautionary principles for
analysis and interpretation and finally offer two case studies where phenological
data have been successfully extracted from herbarium records. We investigate the
value of less traditional methods such as Generalised Additive Models for Location,
Scale and Shape (GAMLSS) adapted for time series data to accommodate possible
non-linearities between herbarium records and year and/or climate; and suggest a
model-free method of change-point detection. How best, if possible, to infer first
flowering dates and actual stage of flowering from snap records is also an issue for
inference and interpretation.
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19.1 Introduction

In the past, as now, an intimate knowledge of the timing of seasonal events was
of great cultural and economic importance (Bolmgren and Lonnberg 2005). Before
the advent of scientifically based weather forecasting, people’s survival and well-
being depended to a large extent on accumulated knowledge from generations of
careful, detailed observations (Sparks et al. 2000, Bolmgren and Lonnberg 2005).
Memorable events sometimes came to have cultural and religious significance, such
as the flowering of cherry trees in Japan for which records from Kyoto date back
to the ninth century (Arakawa 1955, 1956) and constitute the oldest known series
(Koch et al. 2007). Dedicated amateur natural historians such as the Marsham fam-
ily in the U.K. from 1786 to 1947, Henry Thoreau from 1837 to 1861 and, more
recently, Mrs. Anderson from 1960 to 2002 in Massachusetts USA (Thoreau 2000,
Ledneva et al. 2004, Miller-Rushing and Primack 2008) have provided a further
legacy of valuable long-term data sets which are now providing evidence that many
aspects of the world’s physical and biological systems are changing in concert with
current enhanced global warming. Consequently, phenological research has taken on
a new significance and urgency. Answers are being sought to fundamental questions
about the implications of climate change for species survival and ecosystem function
in which phenology is now recognised as a driver of dynamic ecological processes
as opposed to merely a passive response to environmental change (Primack et al.
2007, Post and Inouye 2008).

In most cases however, long-term historical observations of phenology are the
exception rather than the rule, and information needs to be acquired from alter-
native data sources. This chapter is specifically focussed on accessing long-term
phenological data from specimens residing in herbarium collections and photo-
graphic images. We outline the constraints in linking phenological changes with
climatic fluctuations and long term trends, make some specific observations about
herbaria and photographic data, offer some cautionary principles for analysis and
interpretation and finally offer two case studies where phenological data have been
successfully extracted from herbarium records. In contrast to northern hemisphere
regions, where long-term biological data sets are frequent and diverse (Europe,
USA, Japan), southern hemisphere records are an order of magnitude less frequent.
The potential to access phenological information from alternative data sources such
as herbaria and photographs therefore represents a very useful resource for South
America and Africa, and particularly for Australia where more than six million
herbarium specimens exist. http://www.anbg.gov.au/chah/avh/avh.html

19.2 Constraints to Linking Phenology with Climate

Phenology encompasses a wide range of vegetative and reproductive responses to
local environmental conditions. However, consistencies have long been observed
which indicate that phenological patterns are intrinsic and relatively stable proper-
ties of taxon groups (Clarke 1893, Kochmer and Handel 1986, Boulter et al. 2006).
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Phylogenetic constraints have been defined as those “properties shared by mem-
bers of a monophyletic group by virtue of their common ancestry which limit the
response of these taxa to directional selection” (Kochmer and Handel 1986). One
of the first to suggest and document this, in relation to flowering time, was Clarke
(1893) who wrote more than a century ago “The truth is forced upon us that the var-
ious groups of flowering plants are not scattered indiscriminately from one end of
the season to the other, but are regulated by definite systematic principles” (Clarke
1893) p 770, and it has indeed proven to be the case. However, within the constraints
imposed by past evolutionary adaptations and shared through lineage relationships,
there is a great diversity and complexity of phenological responses (Colasanti and
Coneva 2009).

The synchronization of a plant’s vegetative and reproductive biology with local
environmental conditions is essential for maximisation of its chance of reproduc-
tive success. To this end, plants need to detect and respond to environmental cues
that indicate incipient seasonal changes, both favourable and hostile to their ongoing
development. The most reliable indicator of seasonal progression is photoperiod. As
seasonality and changing day length are dependent upon distance from the equator,
photoperiod monitoring is imperative for daylength dependent transition to flower-
ing at higher latitudes (Simpson and Dean 2002). Plant species have evolved distinct
reproductive strategies by which they can respond very precisely to relatively small
changes in the ratio of daylight to darkness (Rivera and Borchert 2001, Simpson and
Dean 2002, Yanovsky and Kay 2003). However, despite its fundamental importance,
the influence of photoperiod is independent of climate and environmental condi-
tions, and alone is insufficient to determine the procession of plant phenological
responses.

19.3 Weather and Climate

Superimposed on the seasonal regularity of photoperiodism are more highly vari-
able and unpredictable climatic factors such as temperature and precipitation (Spano
et al. 1999, Lechowicz 2001, Brearley et al. 2007, IPCC 2007). Temperature has a
major influence on plant developmental responses. Accumulated temperature above
a certain threshold value, usually expressed as degree-days from the first of January,
is a major trigger for the onset of flowering (Spano et al. 1999, Beaubien and
Freeland 2000), and accumulating evidence from the northern hemisphere links
the timing of phenological events to the onset of spring warming (Spano et al.
1999, Wielgolaski 1999, Beaubien and Freeland 2000, van Vliet and Schwartz 2002,
Walther et al. 2002). Temperate and cold zones are particularly sensitive to changes
in climate (Ahas et al. 2002, Sparks and Menzel 2002, Rutishauser et al. 2007) and
shifts towards the earlier onset of spring phenophases have been more pronounced
in these regions than nearer the equator (Parmesan 2007, Rutishauser et al. 2007).

Global patterns of change have been attributed to changes in large-scale cli-
matic processes such as the North Atlantic Oscillation (NAO) (Scheifinger et al.
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Fig. 19.1 Multivariate ENSO Index. Positive MEI values indicate the warm El Niño phase;
negative values the cold La Niña phase. The El Niño events of 1982–1983 and 1997–1998
which rank as the highest of the century (Wolter and Timlin 1998) fall within a period
(1976–1998) during which there is a noticeable reduction of La Niña events. Sourced from
http://www.cdc.noaa.gov/people/klaus.wolter/MEI/ (5/5/2009)

2002), the Arctic Oscillation (AO) (Min et al. 2008) and the El Niño Southern
Oscillation (ENSO) (Wolter and Timlin 1993, 1998, Beaubien and Freeland 2000,
Schauber et al. 2002, Walther et al. 2002, Brearley et al. 2007) (Fig. 19.1). There
were two main periods of warming during the twentieth century; the first between
1910 and 1945, and the second from 1976, marking the beginning of an extended
warm El Niño phase (Wolter and Timlin 1993, 1998, IPCC 2007) (Fig. 19.1).
Records from the Australian Bureau of Meteorology show that the period since
1980 includes many of the warmest years on record for Australia, with con-
siderable increases in both annual maximum and annual minimum temperatures
http://www.bom.gov.au/climate/change/amtemp.shtml. The rate of warming during
this period has been approximately double that of earlier in the century, and the rate
has continued to increase (IPCC 2007).

Paleoclimatic data indicates that the rate of warming since 1950 has been the
highest for at least the last 1300 years (van Vliet and Schwartz 2002, IPCC 2007).
Estimates of projected future climate change (IPCC 2007) indicate that, by 2030,
rates of global warming could very likely be at least double that observed for the
twentieth century, manifesting as more frequent and extreme heat waves, and heavy
precipitation events brought on by the increasing frequency and intensity of El Niño
events (Walther et al. 2002) as have occurred after 1976 (Wolter and Timlin 1993,
1998) (Fig. 19.1).

Regional precipitation is more erratic and less dependable than temperature, with
years of good rainfall interspersed with sometimes extended periods of drought.
Various aspects of both temperature and precipitation need to be considered both
separately and in combination to unravel the synergistic interactions among these
parameters (Keatley and Hudson 2007a), and careful analysis required to tease out
signals from within this complex system. Temperature and rainfall interact to impact
on processes such as evapotranspiration with very serious consequences in regions
where rainfall is unreliable; and severe water deficit tends to coincide with high
temperature extremes. These interactions will have particular impact in areas such
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as southern Australia, where a year round growing season and high maximum tem-
peratures coincide with periods of low precipitation and drought, both of which
are predicted to increase in frequency and intensity (IPCC 2007, Chambers 2008,
CSIRO 2008) and must be given overriding consideration.

Broad-based multi-taxon analyses have indicated a mean response to recent
warming with advances of spring events, estimated at between 2.3 and 2.8
days/decade (Parmesan and Yohe 2003, Root et al. 2003, Parmesan 2007), reflecting
the current enhanced warming trend. With regard to the higher northern latitudes
where cold winters, often augmented by snow and ice cover, restrict the growing
season (Rutishauser et al. 2007), research focus has been on minimum tempera-
tures. While plants do not experience temperature or any other aspect of weather in
isolation, other climatic parameters such as rainfall and periods of drought, while
influential, are not considered to be major drivers of phenology in these northern
regions (Wielgolaski 1999, Rutishauser et al. 2007). However, they do take on much
greater relative importance for rainfall limited ecosystems, such as occur in Africa
and Australia.

Opportunely, Australia’s endemic plant species have had the benefit of millennia
to evolve effective responses to the climatic extremes and irregularities typical of
the continental weather systems. A good example can be seen in the reproductive
ecology of some species of Eucalyptus. Unencumbered by an urgency imposed by
a restricted growing season, these trees have adapted instead to cope with a contin-
uous growing season plagued by uncertainty. Thus, while initiation of flower buds
in some species may be in response to quite precise and predictable photoperiodic
signals (Fitter et al. 1995, House 1997, Law et al. 2000, Renner 2007), the onset
of flowering can be withheld, sometimes for many months, until conditions become
suitable (Fitter et al. 1995, Lechowicz 2001, Keatley et al. 2002). Keatley et al.
(2002) found that the combined effect of temperature and rainfall had more explana-
tory power in relation to the flowering commencement of four eucalypts species than
either factor showed when considered separately.

By comparison, the species E. regnans, when growing at elevations above 600
metres, with adequate water supply, exhibits a more stable reproductive cycle with
relatively specific budding and flowering periods influenced predominantly by sum-
mer and autumn temperatures, and photoperiod (Ashton 1975). Flower buds, first
detected in late spring to late summer, swell during the following November and
December and finally come into full flower more than two years later during the
shortening days of autumn when three generations of buds may be present on the
same branch. Flowering tends to be earlier at lower altitudes and on younger trees,
but considerable variation is found among individual plants. A considerable vari-
ability in flowering abundance, which conforms to a more or less regular two or
four-yearly pattern may, however, be disrupted during periods of drought.

Generally, however, satisfactory explanations for the coincidental timing of cli-
matic and biological events have been difficult to ascertain, and details of the
mechanisms regulating ecosystem processes in general remain unknown. At the
same time, our dependence upon the consequences of such processes has become
an issue of utmost importance. Throughout the world native plants may be well
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adapted to the vagaries of their regional climates, but they now must face increased
challenges while coping with adversity imposed by habitat loss and destruction, the
introduction of pests, and other human related activities. Thus, after millennia of
remarkable and successful adaptations, the future of many endemic species is now
uncertain.

19.4 Using Phenology to Assess Complex Relationships Between
Species and Climate Through Time

Irrefutable evidence is emerging from the scientific literature of universal shifts in
phenology as a consequence of climate change, now widely expected to have a num-
ber of major impacts on biological systems around the globe. Mediterranean systems
such as occur in southern Australia are especially vulnerable (Bardsley 2006). The
intimate relationship which exists between seasonal flowering and climatic condi-
tions, coupled with ease of observation, makes phenological monitoring of flowering
events a reliable and cost effective method for the early detection of change in bio-
logical systems and an important tool in global change research (Keatley et al. 2002,
2008, Menzel 2002, Keatley and Hudson 2007a).

Even when rapid, climate change is a relatively long-term process and obser-
vations on decadal timescales are insufficient to place phenological shifts in
perspective. Short-term phenological studies provide important snapshots in time,
but cannot be used to determine the magnitude or nature of impacts on the large tem-
poral and spatial scales of the processes themselves. Much of what we know about
the influence of climate on phenology comes from investigations of archival records
undertaken in the northern hemisphere. For these we are indebted to the dedication
of amateur naturalists (Marsham 1789, Thoreau 2000, Dean 2008, Post and Inouye
2008) whose observations and collections were made at a time when environmental
concern was directed at the newly arrived railroads and their trains steaming across
their landscapes (Fender 1997); heralding the arrival of the industrial revolution and
enhanced input of greenhouse gases into the atmosphere.

19.5 Historical Data Sets

While not always conforming to modern, systematic standards and often highly
subjective, many historical recordings made by these motivated, knowledgeable
and extremely precise observers, now provide us with a valuable source of reliable
phenological information (Rutishauser et al. 2007, Dean 2008, Miller-Rushing and
Primack 2008). Although such records are by nature variable, discontinuous, and
incomplete, they have been shown to furnish comparable results to those obtained
from field investigations (Primack et al. 2004, Miller-Rushing et al. 2006) and pro-
vide supporting evidence that flowering times are indeed responding to current
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warming trends. Some species in Massachusetts are now flowering seven days ear-
lier than they did 150 years ago in Thoreau’s day (Miller-Rushing et al. 2006, Dean
2008).

In many countries, particularly those of the southern hemisphere, no long-term
data equivalents are available: Marsham was making the first of his recordings more
than 50 years before the first fleet sailed out of Portsmouth bound for Botany Bay,
Australia. As it is inappropriate to extrapolate from findings derived from northern
hemisphere data sets, however sound they may be, researchers in the southern hemi-
sphere must turn to alternative, local sources for urgently needed information on a
comprehensive selection of plant species. Collections held in national herbaria sat-
isfy these criteria, and the immediate future of phenological studies in the southern
hemisphere, particularly Australia, rests to a large extent on this resource.

19.5.1 Herbarium Collections

The application of herbarium vouchered specimens to comparative phenological
studies is a relatively recent approach, but initial explorations have produced con-
vincing evidence of their suitability and led the way to their wider application
(Borchert 1996, Primack et al. 2004, Bolmgren and Lonnberg 2005, Lavoie and
Lachance 2006, Gallagher et al. 2009) (Table 19.1).

Collections comprise a broad temporal, geographic and phylogenetic representa-
tion of their regional flora which are conveniently available independent of season.
In particular, they have been found to provide a reliable estimate of the peak flow-
ering date, a convenient measure of flowering time as it is relatively independent of
population size (Primack and Miller-Rushing 2009). Indeed vouchered specimens,
used either alone or in combination with field observations, can show that flowering
times respond to changes in temperature and reveal intraspecific variations in flow-
ering phenology relative to seasonal conditions throughout a species’ entire range
(Borchert 1996). They thereby offer a reliable data source (Primack et al. 2004,
Bolmgren and Lonnberg 2005) with the potential to provide valuable supporting
evidence of phenological changes in response to global warming (Miller-Rushing
et al. 2006, Sparks 2007).

In Australia, herbaria collectively house in excess of six million vouchered spec-
imens dating from the earliest days of European settlement; an historical record of
over two hundred years. By its nature, a large component of this data source is prone
to error, especially in relation to spatial positioning and scientific naming, and the
process of digitization has incorporated careful revision. While a very time con-
suming, and therefore expensive process, the end product with errors minimized, is
highly reliable, comprehensive and readily accessible.

Australia’s Virtual Herbarium, a collaborative project of Australian State,
Territory and Commonwealth herbaria, delivers its product via an electronic
Australian Flora on-line with data storage and retrieval via the world wide web:
http://www.anbg.gov.au/chah/avh/avh.html. It provides a wealth of botanical data
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Fig. 19.2 Photograph of
vouchered specimen Diuris
pardina BS128-3730, record
number AD176137, held at
the State Herbarium of South
Australia, Plant Biodiversity
Centre, Adelaide. See
Table 19.2 for the information
provided by Australia’s
Virtual Herbarium (AVH) for
this specimen

associated with scientific plant specimens held in these major Australian herbaria
(Fig. 19.2), many enhanced by images, descriptive text and identification tools. It
has the advantage of including records from multiple sources without the duplica-
tion which arises when the same data is obtained independently from each of the
contributing institutions. A global equivalent, the Index Herbariorum, comprises
a detailed directory of the public herbaria of the world; This joint project of the
International Association for Plant Taxonomy and the New York Botanical Garden
lists above 3300 herbaria and includes a photographic archive and is available at
http://sciweb.nybg.org/science2/IndexHerbariorum.asp (Holmgren and Holmgren
1998).
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Table 19.2 Information relating to vouchered specimen of D. pardina BS128-3730, #AD 176137,
as obtained from the AVH data base. See Fig. 19.2 for photograph of the actual specimen held at
the State Herbarium of South Australia. N.B. Collection date as formatted does not specify century
of collection. This particular specimen was collected in 2004

Family Angiosp.

Genus Diuris
Species Pardina
Scientific Name Diuris pardina Lindl.
Herbarium Source AD
Record Suffix 176137
Latitude –34.54861
Longitude 135.71833
Nearest named place Wanilla
State South Australia
Country Australia
Collection Date 3 September 2004
Collector Lang, P.J.
Collecting number BS128-3730
Additional collectors
Geocode Precision 150
Coordinate Error Method GPS
Date Last Edited 11 December 2006

However, the archival record available to us today has not arisen from an inter-
est in, or concern about, climate change. Its value in this respect has only become
evident in retrospect, and analysts investigating these collections, made by some-
one else for purposes other than those being analysed (Miller-Rushing and Primack
2008), must deal with the restrictions this imposes upon them. Those who work
directly from original sources find that old records do not always give up their
secrets easily, and as with all valuable collections, care needs to be taken. Until rela-
tively recently, field naturalists did not have the convenience of the world-wide-web
or word processors to keep them updated on the latest taxonomic developments or
to redress their messy handwriting and, without the strict guidelines imposed on
the collectors of today, many otherwise valuable early records lack collection date
and/or location details and therefore cannot be considered in this type of scientific
analysis (see case study 2 below). Leopold and Jones (1947) demonstrate the ben-
efits to be derived from the careful and systematic organization of data, a practice
not made obsolete by the advent of the computer. While they did not consider the
impacts of climate change in their report covering the decade 1935–1945, they dis-
cuss many pertinent issues and possible sources of error including those arising from
multiple observers and differing intensity of observations.

While dated vouchered specimens, collectively, may provide a good indication of
peak flowering date, each individual specimen can provide only an approximation
of that event. This is especially the case for plants with long flowering periods, when
any one specimen could be collected several weeks earlier or later than the actual
occurrence (Primack and Miller-Rushing 2009). Relatively large sample sizes are
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needed for this assumption to be valid. When compared with field data, flowering
times derived from herbarium specimens also tend to be later for early spring-
flowering species, and earlier for late summer-flowering species (Bolmgren and
Lonnberg 2005). This may be explained by the fact that early-flowering species are
typically collected later, and late-flowering species, earlier, in their relative flow-
ering periods. The length of a species flowering period gauged from herbarium
collections is usually greater than that obtained from geographically restricted and
time limited field investigations but shorter than that suggested by published floras
(Bolmgren et al. 2003, Bolmgren and Lonnberg 2005).

19.5.2 Collection Effort

It is well recognised that collection efforts are not consistent over time, but may vary
from species to species, location to location, and from year to year. Early records
are sparse, as are those coincident with adverse periods in history, such as the two
world wars. Short term anomalous increases may correspond to periods in which
field investigators are employed or field naturalists with a special interest make a
particular endeavour. Resulting bias may lead to a false interpretation of flower-
ing time variation, reflecting collection effort rather than climate change. Concerns
have also arisen in relation to possible roadside and other collection bias associated
with geographic distribution and the different climatic conditions associated with
sampling locations (Rumpff et al. 2008).

Loiselle et al. (2008) found that although climatic gradients were non-uniformly
and poorly represented in herbarium collections, this did not detract from the overall
value of the data set (Loiselle et al. 2008).Where necessary, correction procedures
should be applied to account for these parameters when using herbarium specimens
to reconstruct flowering dates (Kochmer and Handel 1986, Johnson 1992). Although
elevation is now required for each vouchered specimen submitted to a herbarium,
the AVH database does not provide information specifying elevation of collection
location, and this must to obtained by other means if necessary. Spatial coordinates
are generally, but not always, provided.

With such irregularities as these making it difficult to extract a clear signal from
the data, recourse to expert opinion is always advisable (Walther et al. 2002, Rumpff
et al. 2008). However, when allowances have been made and precautions taken,
these data sets have the potential to make an outstanding contribution to studies in
comparative phenology. Especially now, with many of the early specimens repre-
senting former distributions, species on the verge of extinction, or already extinct,
these collections are beginning to take on a special significance. Recent searches
for the plants recorded by Thoreau highlight the plight of many; of the 21 species
of orchids Thoreau observed in Concord, only seven are known to exist in the area
today (Dean 2008). Paradoxically, with herbarium records now accessible as never
before, collection efforts appear to be on the decline (Prather et al. 2004, Watanabe
et al. 2006). Alternative sources of information, however valuable, cannot replace
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the need for the actual specimens, the “fundamental records of biodiversity” (Prather
et al. 2004) p 216, which will continue to provide the crucial infrastructure and ref-
erence base upon which phenological and other floristic research depends. They
may, however, fulfil other roles and provide opportunities for phenology studies to
proceed in a new, and hitherto inaccessible, direction.

19.5.3 Completing the Picture

While we cannot return to the past to “fill in” the inevitable gaps in the record,
statistical methods for the analyses of time series with missing values have been
developed to compensate for this deficiency (Fornaciari et al. 2003, Golyandina and
Osipov 2007). Furthermore, researchers are now exploring the potential of pho-
tographic images to supplement herbarium collections. Flowering phenology has
always had popular appeal and attracted the attention of many photographers who,
unsuspectingly, have bequeathed a rich resource of pictorial knowledge. These are
less likely than specimens to have found their way into the major archives, and many
undoubtedly still await discovery in wooden filing cabinets or on dusty shelves in
local museums and private collections. Initial investigations have demonstrated the
potential of dated photographs with referenced locations to reliably augment other
sources used to assess shifts in flowering times (Table 19.3). They have been found
to provide robust estimates comparable with those derived from field investigations
and broadly in keeping with those published in the literature. As for herbarium spec-
imens, assumptions of peak flowering have been validated, providing confidence
in the evidence of change obtained from this metric, both in relation to time and
to differences in past and present temperatures, (Bolmgren and Lonnberg 2005,
Miller-Rushing et al. 2006, Sparks 2007). The visual record also provides infor-
mation on plant size, a confounding factor in flowering phenology (Primack and
Miller-Rushing 2009).

Additional information can be retrieved from photographic time series obtained
by repeat or time-lapse photography at permanent monitoring sites; a process
indispensable for capturing changes over time (Watanabe et al. 2006). Historical
photo-point time-series, however, tend to be in black and white and are often
restricted to an annual series which more generally captures a landscape perspec-
tive. They are, perhaps, more appropriate for the recording of phenophases other
than flowering, such as leaf flushing or the emergence of winter grasses, along with
indications of periods of drought and other seasonal and climatic changes (Sinclair
2004, 2005).

19.5.4 Digital Photography

But it is not only climate which is changing; advancing technology is also making
an impact on our world and the methods by which we interpret it. A growing cat-
alogue of digital images, accompanied by a wealth of pertinent and readily shared
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Fig. 19.3 Digital photograph
of yellow form of Diuris
orientis (Orchidaceae).
Photographer Jennifer
Skinner

information (Fig. 19.3, Table 19.4), is dramatically expanding the available pheno-
logical data base. Until now, the accurate capture of a key phenological event has
necessitated regular, labour intensive monitoring, beginning some days prior to its
expected occurrence (Rivera and Borchert 2001). Automatic digital repeat or time-
lapse photography, freed from the restrictions imposed by a grey colour scale, the
need for photographic film and constant human intervention, is ideally suited to
these demands (Sparks et al. 2006). Resulting images reliably capture not only the
actual phenological events, but also quantitative changes over time, such as shifts
in the abundance of flower blooms, their pollinators and herbivores (Crimmins and
Crimmins 2008, Faast and Facelli 2009).

More recent technological initiatives have led to the coupling of cameras with
edaphic and meteorologic recording devices. Such integrated networks are capa-
ble of augmenting digital images with sufficient site-specific information to enable
a precise determination of environmental triggers of the events observed (Sparks
et al. 2006, Ahrends et al. 2008, Crimmins and Crimmins 2008). However, systems
are still under trial, and reports to date have been limited to experimental plots.



19 Herbarium Collections and Photographic Images 439

Table 19.4 Digitally recorded information relating to digital photograph (Fig. 19.3) of yellow
form of Diuris orientis (Orchidaceae)

Date and Time 22/09/2008; 9.20am

Location Belair National Park, South Australia
Camera Pentax K10D
Image ID IMGP7783.JPG
Image size 3.96 MB
Settings ISO 100, f 32, exposure time 1/90, 80 mm

focal length

Conversion for larger scale field investigations will require several important mod-
ifications, including weatherproof housing for camera and computer equipment, an
external power source (electricity, battery or solar panel) and, in some locations,
insulation from temperature extremes. However, they promise unprecedented oppor-
tunities to obtain the wealth of data needed to answer the wider questions about
the implications of global climate change in relation to ecological processes and
ecosystem function. To this end they can be archived as a permanent record readily
available to future researchers.

19.6 Cautionary Points for Analysis and Interpretation

As always, the value of these data sets as a source of phenological information
depends to a very large extent on the methods of analysis employed and the
interpretation of the results obtained.

Some points for consideration include:

• the non-independence of data due to phylogenetic constrains, multiple collections
on any one day at any one site

• the validity of assumptions that sampling has been random with respect to
geography, climatic and environmental gradients, etc.

• natural variation across sites, including local microclimatic conditions, genetic
differences and other non-climatic factors contributing to uncertainty

• geographical limits (latitude, longitude, elevation)
• bias resulting from inconsistent collection effort
• environmental changes throughout the period of collection such as deterioration

and loss of habitat, conservation status of species, etc.
• increasing impact of urban heat island effects confounding climatic warming

signals
• appropriate flowering time measure for the data set under consideration (date

of first flowering, date of peak flowering, length of flowering time, changes in
flowering abundance, etc.)

• non-linearities inherent in the time series
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• non-uniform periods of warming which have occurred throughout the twentieth
century and the particular challenge they pose when linear regression analysis is
used for the reconstruction of trends

• error may be introduced through taxonomic issues, nomenclatural inconsisten-
cies, inaccurate recording of spatial coordinates, etc.

• detection of signals indicative of earlier flowering need to be very strong be
discerned above noise in the data

• ways of improving the accuracy and reducing the uncertainty in analyses, and
the limitations assumptions and uncertainty impose on the interpretation of the
results.

19.7 Two Australian Case Studies

19.7.1 Phenological Trends Among Australian Alpine
Species: Using Herbarium Records to Identify
Climate-Change Indicators

Until recently, the major investigations into flowering phenology of plants in
southern Australia have been obtained from State Forest Commission records of
Eucalyptus species (Keatley et al. 2002, 2004, Barbour et al. 2006, Keatley and
Hudson 2007b). The recent study by Gallagher et al. (2009) represents a departure
from this precedent with a multi-taxon study exploring the strengths and limitations
of herbarium voucher specimens for the detection of changes in flowering phenol-
ogy of Australian alpine plants in the vicinity of Mt. Kosciuszko. This region has a
unique climate for the Australian mainland, but is comparable to many regions in
the northern hemisphere where an intimate link between the timing of snowmelt
and flowering plant phenology is well established (Lavoie and Lachance 2006,
Rutishauser et al. 2007, Inouye 2008). Temperature sensitivity in relation to flower-
ing time in these alpine regions is likely to be more pronounced than elsewhere on
the Australian continent, and rising temperatures, accompanied by a 40% reduction
in snow cover since the 1960s, have special significance (Green and Pickering 2002,
Pickering et al. 2004, Gallagher et al. 2009).

This study entailed a search for suitable indicator species and potential locations
for proposed monitoring sites. A preliminary list of 171 potential candidates repre-
senting the flora of the alpine region and the Victorian Alps at elevations above
1500 m was selected from Kosciuszko Alpine Flora (Costin et al. 2000). Data
for these species were then obtained from three of Australia’s major herbaria:
the National Herbarium of NSW, the National Herbarium of Victoria and the
Australian National Herbarium in Canberra. Duplicate records were removed from
the combined data sets, as were:

• records with insufficient, or incorrect, collection date or location information
• multiple observations of a species in any one year (the first observation only was

retained)
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• all observations not falling within the period 1950–2007 inclusive (to correspond
with the temperature data used in the analysis)

• species for which records indicated a flowering season longer than three months
• species represented by ten or less independent specimen records.

This process of elimination reduced the original 171 to a working list of 20
species representing 7 families. The metric chosen for analysis was the onset
of flowering and referred to as “flowering observation.” This approximation was
extracted from the data by discarding all but the earliest collection date for any
one species in any one flowering season. For analysis, flowering observation was
expressed as a Julian date (January 1st = day #1), adjusted to overcome the diffi-
culty of dealing with plants whose flowering season spanned the transition from one
year to the next.

Data obtained from the Bureau of Meteorology provided evidence of an increase
in the mean annual temperature of 0.74◦C over the 1950–2007 period, and by match-
ing spatial locations of herbarium specimens to the temperature data and using
ordinary least-squares linear regression models, eight of the 20 species were iden-
tified for which flowering response showed a significant negative relationship with
mean annual temperature (i.e. a temperature increase at the point of collection corre-
sponded with earlier flowering observations for these species). One of these species
was Prasophyllum tadgellianum (R2 = 0.63, P<0.0001; y = –8.99x + 447.62), one
of two orchids whose sister species P. suttonii, was the only species to show a
positive correlation (R2 = 0.17; P=0.06; y = –3.73x + 375.56). Simultaneous con-
vergence/divergence in flowering times between these two closely related species
in response to the same changing conditions may have long-term implications for
hybridization (see also case study 2 below). Of the eight species, only one, Senecio
pectinatus var. major, was deemed suitable for use as an indicator species for
environmental monitoring.

With only one potentially suitable species selected from an original 171 candi-
dates, the attrition rate was high, and it becomes clear that the search for a range of
site-specific indicator species requires interrogation of large data bases. This would
hardly be possible without the availability and convenience of the rich resources
provided by herbaria. With a realization of the emerging importance of their role
in climate change research, it is to be hoped that increased funding is forthcom-
ing for the continued collection and curation of the voucher specimens upon which
these data sets are based. Gallagher et al. (2009) concluded that “the real utility of
herbarium specimens lies in providing a complementary historical baseline of data
to which new field-based observational records can be compared” p 7.

19.7.2 Tracking Phenological Shifts and Evolutionary Impacts
Relating to Climate Change

Shifts in phenology impact on community-level interactions and other evolutionary
processes, and have the potential to induce ecosystem compositional turnover as
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the synchrony between developmental times of co-evolved and dependent species is
disrupted (Beaubien and Freeland 2000). For plants such as orchids these shifts
may impinge on the finely tuned relationships with their pollinators providing
opportunities for interspecific hybridization.

The present case study (Section 19.7.2) case study investigation has two aspects.
As for the previous study, the first component incorporates an examination of herbar-
ium collections in a search for evidence of recent shifts in flowering phenology in
line with recent climate change. The species chosen for the study belong to the
genus Diuris Sm. (donkey orchids), a genus of 64 Australian species and four named
hybrids, as listed by Jones (2006). The flowers have a structural resemblance to
those of the pea family (Fabaceae), considered by many to be a mimicry associated
with the deceptive attraction of native bee pollinators (Indsto et al. 2007). Natural
hybridization is common within this genus. In South Australia, co-occurring local
populations of D. orientis (Fig. 19.3), D. behrii and D. pardina readily form hybrids
exhibiting considerable variation in floral colour patterns. Diuris X palachila, a
fertile, natural hybrid between D. pardina and D. behrii is capable of producing
further crosses between either parent and the hybrid species itself, resulting in a
confusing array of morphologically different forms (Jones 2006). Orchid plants arise
from underground tubers towards the end of winter, and flowering finishes before
hot summer temperatures becomes established. The flowering period is relatively
short and compact thus making it easier to detect shifts over time (Rumpff et al.
2008). Spotting and photographing orchid flowers is a very popular pastime, and
many dedicated and knowledgeable observers have amassed valuable photographic
collections to supplement the considerable collection held in the state herbarium.

Presented in this section is an initial exploratory analysis of the data extracted
from the AVH electronic database, using simple linear regression (SLR). This
amounted to 388 individual South Australia collections of the study species,
D. orientis, D. behrii and D. pardina, from a total of 6,395 Australian Diuris
records. All specimens are represented by one and only one record eliminating
the need to check for, and remove, duplicates. Converting the collection date for-
mat to yyyy/mm/dd makes for easier sorting and eliminates the problematic issue
of mistaken century of collection. Of the 388 records, 72 were discarded because
collection date was not provided, leaving 316 usable records available for analy-
sis. Two hundred and nine of the total data set had no information on their spatial
coordinates, but as many of these were also undated this omission did not neces-
sitate further reduction. The following analysis discussed in this chapter has been
restricted to the two species, D. orientis and D. behrii.

An assumption was made that collection date was a reliable surrogate for peak
flowering, and where multiple records existed for any one flowering season, the
median value was chosen as the most appropriate measure for peak flowering. For
analysis, date of peak flowering was converted to the number of days following the
winter solstice, and calculated from June 22 (day #1). This not only keeps the metric
within a reasonable numerical range, but also conveniently differentiates lengthen-
ing day from shortening day (with negative values) flowering responses. For these
species flowering occurs during the noticeably lengthening days from late winter to
late spring.



19 Herbarium Collections and Photographic Images 443

19.8 Initial Exploratory Data Analysis

19.8.1 Simple Linear Regression

Methodologically, the detection of trends in time series is frequently performed
via the classical statistical methods using slopes of linear regression models where
phenological dates (less frequently temperatures) are plotted against time (Bradley
et al. 1999, Menzel and Fabian 1999, Schwartz and Reiter 2000, Defila and Clot
2001, Menzel et al. 2001, Ahas et al. 2002, Penuelas et al. 2002, Menzel 2003) and,
more rarely, by other curve fitting methods (Ahas 1999, Sagarin and Micheli 2001).
For herbarium applications see Table 19.1 and for general phenology applications
see Menzel and Fabian (1999), Walther et al. (2002), Parmesan and Yohe (2003),
Root et al. (2003), and Menzel et al. (2006).

The slope of the linear regression equation then indicates the average rate of
change in phenology given as days per annum (days/a), or temperature expressed as
degrees per annum (ºC/a). The major disadvantages of this least squares approach
(SLR) is its limitation to time series with a comparatively linear trend, possible poor
extrapolation properties, and sensitivity to outliers (or so-called extremes (Schlittgen
and Streitberg 1999)) and to boundary values. As noted by von Storch and Zwiers
(2001), one or two outliers can seriously distort the results of a least squares anal-
ysis (NIST/SEMATECH, e-Handbook of Statistical Methods, 2006, available at
http://www.itl.nist.gov/div898/handbook/index2.htm).

A plot of the entire data set for D. orientis spanning a 98 year period from
1897–2005 (Fig. 19.4) supplies provisional evidence of a shift to earlier flower-
ing of between one to two days per decade, or approximately 16 days over the entire
period. This figure also clearly illustrates the non-uniform nature of the data series
and identifies possible collection bias with a concentration of points for the period
1965–1969 and again around 2000. This recent increase in collection effort does not
appear to substantiate the claims made by (Prather et al. 2004, Lavoie and Lachance
2006) of a growing decline in collection activity. However, orchids species have
popular appeal and have been the focus of many recent surveys. A closer investiga-
tion of the data reveals that the orchid specialist and author, D.L. Jones, collected

Fig. 19.4 Plot of all data
points for D. orientis
spanning the period
1897–2005. The
concentration of collection
points around 1965–1969 and
around 2000 may introduce
collection bias
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a b

Fig. 19.5 (a) Number of days to peak flowering for D. behrii for S34.5 < latitudes < S35.5; average
of 94 days to flowering over the period. The negative slope indicates slight evidence of a trend to
earlier flowering. (b) Number of days to peak flowering for D. behrii north of latitude S34.5;
average of 87 days to flowering over the period. The positive slope provides evidence of a trend to
later flowering

all 24 specimens recorded for the period between 7th and 14th September 1999,
confirming dependence and necessitating their exclusion from the final analysis.
Following substitution of all multiple data points for any one season by their median
value, and discarding the outlier in 1925, former evidence of a negative trend (i.e.
towards earlier flowering) diminished (y = –0.1058x + 308.76, R 2 = 0.0397), and
the mean number of days to peak flowering across all latitudes increased from 96 to
100 days.

Because changes are not consistent across the entire range of a species (Lavoie
and Lachance 2006) the possible effect of latitude was investigated for D. behrii.
When regions are considered separately as central (Fig. 19.5a) and northern
(Fig. 19.5b) populations, there emerges some evidence of a difference in mean peak
flowering date and tendency for an opposite trend in flowering time shifts over this
period. Southerly populations have flowered on average seven days later than more
northerly populations, where hotter and drier conditions are more likely to induce
earlier flowering. However, these regional differences appear to be diminishing as a
result of the contrary shifts. See Gallagher et al. (2009) above for further evidence
of opposite shifts in flowering time for Prasophyllum species.

19.9 Limitations of Standard Methods to Detect Trend

19.9.1 Non-Linearity of Trends

As noted by Hudson et al. (2005), Sparks et al. (2000), Dose and Menzel (2004) and
Parmesan (2007), this commonly used method of searching for signals in phenolog-
ical time series presents problems. Indeed it will be difficult to find a linear model
that fits the data well for essentially non-linear processes. This is true particularly
as the range of the data increases (Schleip et al. 2008b). Importantly, Menzel et al.
(2008) noted that when utilising SLR, the length of a time series and its start and end
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dates are crucial in correct detection of changes, and in estimating their magnitude.
This is particularly so when highly variable, multi-decadal, phenological time series
are analysed (Dose and Menzel 2004). We show this also for the three herbarium
data sets analysed here.

How can we accommodate for non-linear responses of phenology to time (year)
and/or to climatic factors? In the Chapter 20 on meta analysis this question is
addressed by the illustration of three approaches to modelling phenological time
series assuming possible non-linear trends, namely:

1. The Generalised Additive Model for Location, Scale and Shape (GAMLSS)
approach (Rigby and Stasinopoulos 2005, Stasinopoulos and Rigby 2007)
applied recently to flowering records of four Eucalypts (Eucalyptus leucoxylon,
E. microcarpa, E. polyanthemos and E. tricarpa), from Maryborough, Victoria,
Australia, for the period 1940–1971 (Hudson et al. 2008, Hudson et al. 2009);
see also Chapter 10.

2. Penalised spline (P-spline) signal regression (PSR) (Marx and Eilers 1999, 2005)
applied recently to a dataset of 208 species compiled from the 1978 to 2001
flowering records of the Last family (Last et al. 2003, Roberts 2008), and

3. The Bayesian nonparametric function estimation approach of Dose and Menzel
(2004) applied to blossom (onset) time series of Prunus avium L., Galanthus
nivalis L. and Tilia platyphyllos SCOP (1896–2002) in Germany, in an analysis
of the variations of the onset of phenological phases in the twentieth century.

In this chapter we present the GAMLSS approach to show its greater accuracy
and relevance to the assessment of non-linear trends over time (year) for the herbar-
ium records. We clearly establish the existence of non-linear trends in days to peak
flowering of herbarium records. A short introduction to GAMLSS follows, as does
a brief cautionary point on change points in time series analysis and detection.

It is noteworthy that GAMLSS models often provide the researcher with a visual
indication of points of change in a given time series. However, formal tests of sig-
nificance for change points should be carried out in addition to fitting GAMLSS
models to phenological time series. We explore the use of both non-linear methods
(GAMLSS) and change points methods in combination in this analysis of herbar-
ium records. It is important to note (as evidenced in the D. behrii for S34.5 <
latitudes < S35.5 data) that whereas GAMLSS modelling of a cubic spline or non-
linear effect of year (time) may show statistically non-significant effects of year;
formal change point detection tools can point to significant and abrupt change
points.

19.9.2 Need for Formal Change Point Analyses

Rapid shifts in climate can lead to, or be contemporaneous with, abrupt pheno-
logical changes. Although it has been appreciated for some time that these change
points cannot be detected satisfactorily (if at all) by either regression or correlation
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methods, they continue to be used for the detection of temporal changes in phenol-
ogy (Keatley et al. 2002, Hudson et al. 2005, Cleland et al. 2006, 2007). However,
new techniques for change point analysis which enable a quantitative representation
of non-linear phenological responses and associated (abrupt and non-abrupt) rates
of change have been reported (Hudson et al. 2003, Sparks and Tryjanowski 2005,
Keatley and Hudson 2008). See also Bayesian change point techniques (Hasselmann
1998, Dose and Menzel 2004, Menzel and Dose 2005, Menzel et al. 2008, Schleip
et al. 2008a,b). These allow for the analysis of so-called change-point probabilities
which provide the researcher with the ability to both visualize and quantify major
changes (shifts) in long-term time series. It is anticipated that future developments
in change point analysis will address the assessment of increasingly complex time
series models such as multiple change-point models.

In this chapter a model-free method of change-point detection has been used to
establish the existence, or otherwise, of significant change points in time series of
days to peak flowering of herbarium records (Moskvina and Zhigljavsky 2003). This
method is based on the sequential application of singular-spectrum analysis (SSA)
(Chapter 19) to subseries of the original series, and the monitoring of quality of
approximation of the other parts of the series by suitable approximates (Moskvina
and Schmidt 2003). The three test data sets obtained from AVH, namely flower-
ing dates of South Australian orchid species Diuris behrii (S34.5 <latitude<S35.5),
D. behrii (latitudes < S34.5) and D. orientis (all latitudes) are used as exem-
plars. We show that significant change points exist for two of the three herbarium
series; change points which could not be detected using traditional linear regression
analysis.

19.10 Introduction on GAMLSS

The Generalised additive model for location, scale and shape (GAMLSS) is part
of the Generalized Linear Model (GLM) (Nelder and Wedderburn 1972) and
the Generalized Additive Model (GAM) “family” (Hastie and Tibshirani 1999,
Hastie 2008). GAMLSS was introduced by Rigby and Stasinopoulos (2001) and
Akantziliotou et al. (2002), and further developed by Rigby and Stasinopoulos
(2005) to overcome various limitations of the popular GLM and GAMs. For exam-
ple, GAMLSS can deal with non-normally distributed data (e.g. highly skewed,
or kurtotic continuous and discrete distributions). Current updates of GAMLSS
can deal with up to 50 different types of distributions (Stasinopoulos and Rigby
2007). See Chapter 10 for mathematical theory and details on the implementation
of GAMLSS.

Importantly, the GAMLSS family extends linear regression to a non-linear form
by allowing each regression variable to have a non-linear relationship with the
dependent variable. The type of non-linearity is not pre-specified a priori, but is
calculated and tested for in the modelling process. GAMLSS models are thereby
a general framework for univariate regression analysis which allow for testing of
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semi-parametric models. By semi-parametric, we mean they need a parametric dis-
tribution for the response variable, although they can cope with a wide range of
distributions such as the Poisson, negative binomial, log normal, Weibull etc. These
GAMLSS models are thus “semi” in the sense that the modelling of the actual
parameters, such as the mean or location (as functions of the explanatory variables),
may involve using non-parametric smoothing functions, such as for example cubic
smoothing splines [cs()]. For a discussion on cubic splines see Chapter 12.

The benefits of GAMLSS for phenological and herbarium time series data are
that they:

1. can identify the main drivers of the event of interest from a multiplicity of
predictors such as climate and food sources etc.,

2. allow for non-linear impacts of time and/or the explanatory variables or predic-
tors,

3. can statistically detect thresholds; for example, the lowest temperature for the
commencement of flowering and

4. can model and/or account for the auto-correlated nature of the phenological
series; for example by incorporating lag effects, such as autoregressive AR(k)
lags (k=1,2,. . .).

Recent applications of GAMLSS have involved modelling climate with Sudden
Infant Death Syndrome counts (Hudson et al. 2008) and in the establishment of
the world standard child growth curves by the World Health Organisation (Borghi
et al. 2006). Further examples are given in Rigby and Stasinopoulos (2005) and
Stasinopoulos and Rigby (2007). As far as the authors are aware, GAMLSS have
not been applied to phenological research to date, apart from a forthcoming paper
by Hudson et al. (2009). It should also be noted that Hudson et al. (2003) used
GAMs (the precursor to GAMLSS) and Bayesian methods to model E. leucoxylon
flowering, and found that the estimated effects of mean temperature were smoothly
non-linear on flowering intensity. The work of Roberts (2008) (Chapter 12) on
penalized splines (P-splines) (Eilers and Marx 1996) illustrates a method that also
has some inter-relatedness with GAMLSS in that spline functionals are used in the
modelling (the term “spline” refers to a wide class of functions that are used in
applications requiring both data interpolation and/or smoothing).

19.10.1 GAMLSS Methods

The GAMLSS framework of statistical modelling is implemented in a series of
packages in R (R Development Core Team 2007), a free software (see URL
http://www.R-project.org). The packages can be downloaded from the R library,
CRAN, or from http://www.gamlss.com. For this study the GAMLSS procedure
was used with a cubic spline smoothing function (Stasinopoulos and Rigby 2007).
Each model assumes that the flowering series represents normally distributed data
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and the RS algorithm, a generalization of the algorithm of Rigby and Stasinopoulos
(1996) used to obtain the estimates of the year (time) effect.

19.10.2 GAMLSS and Change Point Results

Table 19.5 shows GAMLSS modelling of the effect of year (time) on the num-
ber of days to peak flowering of D. orientis spanning the period 1897–2005. The
significant and negative cubic spline effect of year (cs(year)) of –0.1668, with an
associated non-linear P value of 0.0009, indicates a highly significant non-linear
and overall negative trend with year for D. orientis. Figure 19.6 indicates the curvi-
linear nature of change in days to peak flowering for D. orientis (1897–2005). A
significant change point in the time series in 1925, marks the end of a period of
decreasing trend (to earlier flowering). This is followed by a period of increasing
trend to 1972, after which a slow negative trend till 1984 becomes increasingly neg-
ative (significant change point or deviation starting about 1985) and most negative,
indicating significantly earlier flowering, after the change point in 1995.

Note that the precursor to GAMLSS, namely GAMs, gave a R2 for the model of
17.63% (compared to the R2 of 4.45% obtained by the earlier simple linear regres-
sion (SLR) analysis (Fig. 19.4)), indicating that the non-linear cubic spline model
fits the data significantly better than that achieved by SLR. The scaled deviance
statistics (Stasinopoulos and Rigby 2007), the Akaike information criterion (AIC)
(Akaike 1983) and the Schwarz Bayesian Criterion (SBC) (Stasinopoulos and Rigby
2007) goodness of fit statistics are also shown for the resultant GAMLSS model
in Table 19.6. The sparcity of data prior to 1925 may, however, be biasing the
GAMLSS analysis prior to 1925.

Table 19.7 shows the GAMLSS model for the effect of year (cs(year))on of the
number of days to peak flowering of D. behrii between the latitudes S35.5 and S34.5
for the period 1986–2004. The cubic spline effect of year (cs(year)) of –0.0425 is,
however, not statistically significant. Figure 19.7 indicates the relatively flat profile
of the days to peak flowering for D. behrii after 1924; with a slight increase in 1964
and then a negative trend after 1984 (as for D. orientis) and increased earlier time to
peak flowering date after 1999.

It is noteworthy that whilst the GAMLSS cubic spline effect for year (cs(year))
is not statistically significant, a formal change point detection analysis gives three
years of significant change (Table 19.8).

Table 19.5 Intercept and year effects via GAMLSS modelling of the number of days to peak
flowering of D. orientis spanning the period 1897–2005

GAMLSS
intercept S.E. t value P value

GAMLSS
cs(year) S.E. t value

Non
linear
P value

GAMs
100(R2)%

D. orientis 427.10 134.520 3.175 0.001 –0.167 0.068 –2.459 0.0009 17.63
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Fig. 19.6 Variant of Fig. 19.4: GAMLSS term plot of all data points for D. orientis spanning
the period 1897–2005; showing the cubic spline effect of year (cs(year)) and its associated 95%
confidence interval. (Spline line and 95% confidence band for effect of year flowering day number
for D. orientis)

Table 19.6 Significant change points in the time series of the number of days to peak flowering
of D. orientis spanning the period 1897–2005; with GAMLSS goodness of fit statistics (GD, AIC
and SBC) shown

Change point
years:Moskvina
& Zhigljavsky
(2003)

Global
Deviance(GD)φ AICφ SBCφ

D. orientis 1925, 1972,
1984, 1995

967.2 979.2 995.6

φ GD denotes the scaled deviance statistic (Stasinopoulos and Rigby 2007); AIC denotes the
Akaike information criterion (Akaike 1983) and SBC denotes the Schwarz Bayesian Criterion
(Stasinopoulos and Rigby 2007) goodness of fit statistics.

Table 19.7 Intercept and year effects via GAMLSS modelling of number of days to peak flow-
ering for D. behrii for S34.5 < latitudes < S35.5; mean over the period of 94 days spanning the
period 1896–2004

GAMLSS
intercept S.E. t value P value

GAMLSS
cs(year) S.E. t value

Non
linear
P value

GAMs
100(R2)%

D. behrii
(all) 177.131 71.485 2.478 0.0163 –0.0425 0.037 –1.149 NS∗ 7.11

∗NS = not significant
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Fig. 19.7 Variant of Fig. 19.5a: GAMLSS term plot of data points for D. behrii number of days to
peak flowering for D. behrii for S34.5 < latitudes < S35.5; mean over the period of 94 days; showing
the cubic spline effect of year (cs(year)) and its associated 95% confidence interval. (Spline line
and 95% confidence band for effect of year flowering day number for D. behrii)

In summary, from Table 19.8 and following the change point detection meth-
ods of Moskvina and Zhigljavsky (2003), significant change points in the D. behrii
for S34.5 < latitudes < S35.5 time series were found at 1924 (a decrease), 1964
(increase) and at 1999 (decreased trend). Recall that there was a change point
(decrease) in 1925 for the days to peak flowering of D. orientis (1897–2005), sim-
ilar to the D. behrii for S34.5 < latitudes < S35.5 time series. The years 1999 and
1995 mark the beginning of an increased negative trend for the D. behrii (for S34.5
< latitudes < S35.5) and the D. orientis time series, respectively (an earlier point of
decrease could not be detected for the D. behrii data, due to lack of records after
1984 and 1998).

GAMs gave a R2 for the model of 7.11% (in contrast to the R2 of 2.06% obtained
by the earlier SLR (see Fig. 19.5a)). GD, AIC and SBC goodness of fit statistics are
shown for the resultant GAMLSS model in Table 19.8.

Diagnostic plots (Fig. 19.8) of quantile residual diagnostics and a normal Q-Q
plot of the theoretical quantiles show that the GAMLSS intercept and cubic spline

Table 19.8 Significant change points in the time series of number of days to peak flowering of
D. behrii for S34.5 < latitudes < S35.5; mean over the period of 94 days spanning the period
1896–2004; with GAMLSS goodness of fit statistics (GD, AIC and SBC) shown

Change point years:
Moskvina & Zhigljavsky
(2003)

Global
Deviance(GD)φ AICφ SBCφ

D. behrii (all) 1924, 1964, 1999 444.5 456.5 469.1

φ GD denotes the scaled deviance statistic (Stasinopoulos and Rigby 2007); AIC denotes
the Akaike information criterion (Akaike 1983) and SBC denotes the Schwarz Bayesian
Criterion (Stasinopoulos and Rigby 2007) goodness of fit statistics.
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Fig. 19.8 Diagnostic plots of GAMLSS analysis of the number of days to peak flowering for
D. behrii for S34.5 < latitudes < S35.5; mean over the period of 94 days; showing quantile residual
diagnostics, and normal Q–Q plot of the theoretical quantiles. A straight 1:1 line (plot on RHS
bottom) indicates a good fit of the GAMLSS model

year (time) effect model fits the data well. This is indicated by the straight 1:1 line
for the sample versus theoretical quantile plot (RHS bottom). For brevity we show
only this model’s diagnostic plots.

Table 19.9 shows GAMLSS modelling of the number of days to peak flower-
ing of D. behrii north of latitude S34.5 for the period 1893–2004. Interestingly
the cubic spline effect of year (cs(year)) is positive with a value of 0.0689;
but this is not a statistically significant positive trend. Figure 19.5b indicates a
relatively flat profile for the days to peak flowering for D. behrii after 1918;
with slightly later peak flowering day after 1964; but earlier time to peak flow-
ering after 1999 (but this trend is non-significant). Here the GAMLSS cubic
spline effect for year (cs(year)) is not statistically significant and likewise a for-
mal change point detection found no significant points of change (Table 19.10,
Fig. 19.9).
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Table 19.9 Intercept and year effects via GAMLSS modelling of number of days to peak
flowering for D. behrii north of latitude S34.5; mean 87 days (1893–2004)

GAMLSS
intercept S.E. t value P value

GAMLSS
cs(year) S.E. t value

Non
linear
P value

GAMs
100(R 2)%

D. behrii –48.864 154.050 –0.317 NS∗ 0.069 0.078 0.884 NS∗ 25.71

∗NS = not significant

Table 19.10 Significant change points in the time series of number of days to peak flowering of
D. behrii north of latitude S34.5; mean 87 days; with GAMLSS goodness of fit statistics (GD, AIC
and SBC) shown

Change point years:
Moskvina & Zhigljavsky
(2003)

Global
Deviance(GD)φ AICφ SBCφ

D. behrii
No significant change
points 153.6 156.5 171.6

φ GD denotes the scaled deviance statistic (Stasinopoulos and Rigby 2007); AIC
denotes the Akaike information criterion (Akaike 1983) and SBC denotes the Schwarz
Bayesian Criterion (Stasinopoulos and Rigby 2007) goodness of fit statistics.

Fig. 19.9 Variant of Fig. 19.5b: GAMLSS term plot of number of days to peak flowering for
D. behrii north of latitude S34.5; mean 87 days; showing the cubic spline effect of year (cs(year))
and its associated 95% confidence interval. (Spline line and 95% confidence band for effect of year
flowering day number for D. behrii.)

GAMs gave a high R2 for the model of 25.71% (in contrast to the R2 of 2.79%
obtained the earlier SLR analysis (see Fig. 19.5b)). GD, AIC and SBC goodness of
fit statistics are shown for the resultant GAMLSS model in Table 19.8.
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19.11 Discussion

GAMLSS modelling has shown a significant curvilinear change in days to
peak flowering for the D. orientis records covering the period 1897–2005.
The change point year of 1972 coincides with an abrupt change in the El
Niño Southern Oscillation (ENSO), from an extended cold La Niña phase to
one dominated by El Niño (Wolter and Timlin 1993, 1998) (Fig. 19.1). The
negative trend beginning around 1972 (Fig. 19.6) coincides with the warm
El Niño phase and the period of significant warming in Australia from the
mid 1980s when some of the warmest years on record were experienced
http://www.bom.gov.au/climate/change/amtemp.shtml. The change point years of
1984 and 1995 come at the end of the most extreme (1982–1983), and the most
protracted (1990–1995), El Niño events on record (Fig. 19.1).

It is noteworthy that a change point or deviation starting about 1985 was also
shown in the study of Dose and Menzel (2004). These authors developed non-
parametric regression from a Bayesian viewpoint to explore the possible non-linear
functional behaviour of blossom onset time series of Prunus avium L., Galanthus
nivalis L. and Tilia platyphyllos SCOP (1896–2002) in Germany, and thereby anal-
ysed the variations of the onset of phenological phases in the twentieth century.
The period covered in their study is similar in to that represented by the herbarium
records for Diuris (1896–2005) analysed here.

Dose and Menzel (2004) trialled three different models: a constant model, a
linear model (though more complex than SLR) and a one change point model, to
represent the functional behaviour of their blossom onset time series. See Dose and
Menzel (2004, 2006) for details on the relevant computational and mathematical
formulae. Further discussion appears in the Chapter 11. However, the change point
methods used here, following the development of Moskvina and Zhigljavsky (2003),
allow for multiple change points in a given time series, not just one change point as
in Dose and Menzel (2004).

Dose and Menzel (2004) calculated the rates of change (days per year) as well
as the so-called average functional behaviour with its associated uncertainty range.
This model average for the rate of change was calculated from the mean rates of
change of the three models, weighted by their respective probabilities. The rate of
change was shown to be essentially zero over most of the century, with a significant
and abrupt change point or deviation starting around 1985 (Dose and Menzel 2004),
and a current rate of change of –0.6 days per year (Dose and Menzel 2004). In Dose
and Menzel (2004) this negative curvilinear slope and associated rate of change was
associated with an uncertainty of –0.5 days per year. Likewise, GAMLSS modelling
and change point analysis of the days to peak flowering for D. behrii indicate a
relatively flat profile from 1924 to 1984, and an estimated rate of change of –0.7
days per year for D. orientis and –0.8 days per year for D. behrii, obtained from
SLR slopes for the same current period, thus comparing favourably with the Dose
and Menzel (2004) estimates.

The non-uniform periods of change that typify the climate of the twentieth cen-
tury (Dose and Menzel 2004, Rutishauser et al. 2007, CSIRO 2008) pose a particular
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challenge when linear regression analysis is used for the reconstruction of trends.
To properly address the question of change, periods of no change must be consid-
ered as an important part of the overall picture. While it is obviously necessary to
determine changes in phenology with respect to corresponding changes in climate,
it is likewise, but maybe less obviously, important to determine events throughout
periods of reasonably stable conditions.

Schleip et al. (2008b) also applied linear trend analysis and Bayesian model
comparison to an investigation of three unique, 250-year phenological time series
from Switzerland and France, spanning the years from 1753 to the present (Chuine
et al. 2004, Schleip et al. 2006, Meier et al. 2007). Schleip et al. (2008b) detected
major changes in both long-term phenological and temperature time series at the
end of the twentieth century, as we do here for the herbarium flowering records.
It is noteworthy that Schleip et al. (2008b) showed that the functional description
of the change-point model exhibited a sharp decline at the end of the twentieth
century for all the phenological time series studied. In this chapter we also report
change points of increased decline near the end of the twentieth century, namely
near 1995 and 1999/2000 for D. orientis and D. behrii respectively. Analysis of
change incorporating temperature is a topic of further investigation.

Whilst GAMLSS splines often give the researcher a visual indication of points
of change in a time series, formal tests of significance of change points should be
carried out in addition to fitting GAMLSS (splines or polynomials approaches) to
phenological time series. We advocate the combined use of both non-linear meth-
ods (GAMLSS) and change points methods in the analysis of herbarium records.
It is important to note that whereas GAMLSS modelling of a cubic spline or non-
linear effect of year (time) may show statistically non-significant effects of year,
formal change point detection tools can point to significant abrupt change points,
as evidenced in the D. behrii for S34.5 < latitudes < S35.5 data (Table 19.8).
Linear regression methods cannot accommodate significant and abrupt change
points; although piecewise linear regression methods may. Such an approach (but
via Bayesian methods) was used in the seminal paper of Dose and Menzel (2004) in
their linear model approach.

While climate change forecasts provided by the Bureau of Meteorology
http://www.bom.gov.au/climate/change/amtemp.shtml, indicate that the current
trend of persistent and substantial warming which began in 1950 will continue into
the future, orchid species emerge at the end of a generally mild, and hopefully
wet, winter and finish flowering before summer heat sets in. Future refinements
to the GAMLSS modelling of these herbarium records will incorporate both tem-
perature and rainfall as predictors, despite the inherent complexities of irregularly
spaced time points, the inclusion of lagged dependencies of current with past climate
and/or flowering days, for up to 12 months prior to the event; and the devel-
opment of specific functionals for the herbarium flowering records. Sparcity of
data and irregularity of records over time, as well as the need for more complex
underlying distributions, remains an issue in the analysis of trends in herbarium
records.
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19.11.1 Potential for Change in Hybridization Dynamics

Understanding the impact of climate on the phenology of these orchids, in combina-
tion with knowledge of their genetic heritage, will help clarify their future prospects
for survival, both as populations and species. Opportunities for pollination will
be diminished if the synchrony between plants and their pollinators is disrupted,
especially when the pollinators themselves are seasonal and impacted by climate
change (Fitter and Fitter 2002). On the other hand, seed predation may be disrupted
if the phenology of seed predators shift independently of the timing of seed produc-
tion (Tarayre et al. 2007). Thus when sympatric species display divergent responses
to change, the resulting mistiming of seasonal activities has the potential to disrupt
existing biotic interactions (Walther et al. 2002, Visser and Both 2005).

The historical baseline data forthcoming from this investigation should be well
suited to place the complementary phase of this study in perspective. This will entail
field and molecular investigations to determine the genetic variation present within
sympatric populations of these orchid species and the extent of natural hybridiza-
tion occurring among them. Flowering time has a genetic basis incorporating levels
of individual variation within populations as a form of bet-hedging against normal
patterns of year to year variability.

Shifts in phenology as a consequence of climate change are expected to have a
number of major impacts on biological systems, and successful evolutionary adap-
tation is more likely when high levels of genetic variance (Fox 1990, Franks et al.
2007) provide the resources for a species to cope with change in the short term,
outcompete less resilient species and have better prospects for long term survival
(Cavers et al. 2003, Burke 2004). Species which do not have sufficient capacity to
respond to the conditions imposed by enhanced and rapid change will be prone to
local extinction.
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Chapter 20
Meta-Analysis and Its Application
in Phenological Research: a Review
and New Statistical Approaches

Irene L. Hudson

Abstract Climate change is one of the greatest challenges to sustainable develop-
ment. Results from many individual studies show significant variation in response
to climate change and human activities. Given the scope and variability of these
trends, global patterns may be much more important than individual studies in
assessing the effects of global change. There is a need to synthesize quantitatively,
existing results on ecosystems and their responses to global change, in order to
reach a general consensus or summarize the differences. Meta-analysis provides
such a quantitative synthetic method, in that it statistically integrates results from
individual studies to find common trends and differences: so called fingerprints of
change. Only a small number of studies to date have performed a formal statistical
meta-analysis of species’ responses or have synthesized independent studies to
reveal emergent and globally coherent patterns of ecological changes in physical
and in biological systems in the phenology and distribution of plants and animals.
There are very few reports available on the use of meta-analysis to examine global
climate change in Australia. The unequivocal conclusion across the global synthe-
ses, to date, is that twentieth-century anthropogenic global warming has already
impacted on the Earth’s biota. This chapter reviews the general methodology of
meta-analysis, assesses its advantages and disadvantages, synthesizes its use in
global climate change phenology and discusses future directions and proposes new
statistical methods, as yet not applied to phenological research, and only recently
applied, only in part, in the health-climate epidemiological literature.
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20.1 Introduction

20.1.1 Why Meta-Analysis in Global Climate Change Research?

Climate change is one of the greatest challenges to sustainable development
(Sathaye et al. 2007). Climate change, human influences and ecosystem response
have become more and more interrelated. Changes in phenology have been long
regarded as sensitive indicators of climatic change (Hughes 2000, 2003, Walther
et al. 2001, 2002, 2005, Badeck et al. 2004, Thomas et al. 2004, Pounds et al.
2006, Robinson et al. 2008, Morisette et al. 2009), where phenology has tradition-
ally involved the study of the rhythm of biological phenomena primarily related
to climate (Schwartz 2003). Phenology with its recording of dates provides high-
temporal resolution of changes which are frequently reported as time series. The
recording of phenological observations has a long history, for example the several
centuries of records of cherry blossoming in Japan (Menzel and Dose 2005, Aono
and Kazui 2008).

Global surface temperature has increased by an estimated 0.74◦C over the past
century, a change that is widely believed to result primarily from the effects of
anthropogenic emissions of carbon dioxide and other greenhouse gases (IPCC
2007). Many physical changes have been attributed to this warming, including sea
level rise, melting of glaciers and ice sheets, decreased snow and ice cover, changed
depth to permafrost and changes in patterns of wind, temperature, and precipitation
(IPCC 2007). Such changes are likely to have considerable biological effects and
numerous studies have sought evidence of such biological effects in nature. Indeed
several recent papers summarize the results of these studies and conclude that bio-
logical effects are already evident and have impacted on numerous taxa in different
geographical areas (Peñuelas and Filella 2001, Walther et al. 2002, Parmesan and
Yohe 2003, Root et al. 2003, Menzel et al. 2006, Parmesan 2006, Rosenzweig et al.
2008). Results from many individual studies show significant variation in response
to climate change and human activities. Given the scope and variability of these
trends, global patterns may be much more important than individual studies in
assessing the effects of global change. There is a need to synthesize quantitatively,
existing results on ecosystems and their responses to global change, in order to reach
a general consensus or summarize the differences.

20.1.2 Definition

Meta-analysis is a quantitative research method that statistically integrates results
from individual studies (Hedges and Olkin 1985, DerSimonian and Laird 1986,
Borenstein et al. 2009) to find common trends and differences: so called finger-
prints of change. Meta-analysis as such is also called a synthetic approach, as it
synthesizes and integrates the results of many studies chosen a priori. Meta-analysis
has been increasingly applied in large scale global change research in recent years
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(Blenckner et al. 2007). Indeed, meta-analysis has become popular in large scale
global change ecology of late and shows high value for studying the response of
terrestrial ecosystem to elevated CO2 and global warming. There are, however, few
reports available on the use of meta-analysis to examine global climate change in
the Southern Hemisphere (Australia, South American and Africa). Twenty years is
considered to be the minimum time period needed for rigorous phenological study
(Sparks and Menzel 2002). In Australia, this is currently being address with research
locating data sets that are currently extant and of sufficient temporal length (e.g.
NEMD http://www.bom.gov.au/nemd and PhenoArc; Chambers et al. 2007, Keatley
et al. 2009). Networks fuel the need for combining data and results and thereby
add impetus to governments’ decision making on climate change. It is expected as
such, that global meta-analysis will be more widely adopted in future climate change
research, and in policy making (van Kooten et al. 2004).

20.1.3 History of Meta-Analyses and Syntheses

A number of studies to date have performed a formal statistical meta-analysis
of species’ responses or have synthesized independent studies to reveal emergent
and globally coherent patterns of ecological changes in physical and in biolog-
ical systems in the phenology and distribution of plants and animals (Parmesan
and Yohe 2003, Root et al. 2003, 2005, Menzel et al. 2006, Parmesan 2006,
Rosenzweig et al. 2008). The unequivocal conclusion across these global synthe-
ses is that anthropogenic global warming has already impacted on the Earth’s biota
as noted by Peñuelas and Filella 2001, Walther et al. 2002, 2005, Root et al. 2003,
Parmesan and Yohe 2003, Parmesan and Galbraith 2004, Parmesan 2005a, b, Root
and Hughes 2005, Menzel et al. 2006, Pounds et al. 2006, Parmesan 2007 and
Rosenzweig et al. 2008. In what follows meta-analytic case studies are reviewed
followed by recommendations and future statistical methods and directions. Note
that a meta-analysis on bird phenology by Lehikoinen et al. (2004) is not discussed
here. Also not discussed in this review are early developments of meta-analysis in
ecology (see Gurevitch and Hedges 1993, Arnqvist and Wooster 1995, Gurevitch
et al. 2001).

20.2 Case Studies

20.2.1 Case Study 1: Meta-Analysis: Three Decades and 29,000
Natural Systems

The climate change cause-effect, meta-analytic study of Rosenzweig et al. (2008)
demonstrates the power of meta-analysis in global climate change research. This
is the first study to date to formally link observed global changes in physical and
biological systems to human-induced climate change, principally due to increasing
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greenhouse gases. Their approach used joint attribution (Rosenzweig et al. 2007)
across multiple biological and physical systems at both the global and continental
scale. The joint attribution approach by these authors is as follows: (1) they first
show that the observed correspondence between impacts and warming would be
very unlikely to occur if patterns of temperature change were the result of natural
climate variability; (2) then argue that human influence has a role because observed
large-scale climate change can be attributed to human influence on the climate sys-
tem (Zwiers and Hegerl 2008). As described “joint attribution,” delineates thus a
two-step linkage: human activities contribute significantly to temperature changes
and human-changed temperatures are associated with discernible changes in plant
and animal traits. This approach to joint attribution was conducted on studies of
145 specific plant and animal species earlier by Root et al. (2005). Root’s et al.
study involved linking climate models with process-based or statistical models to
simulate changes in natural systems caused by different climate forcing factors, and
comparing these directly with the observed changes in natural systems. When tem-
perature data from the HadCM3 global climate model were used to examine the
likely cause for changes in the timing of spring events of Northern Hemisphere
wild animals and plants, results show the strongest agreement when the modelled
temperatures were derived from simulations incorporating anthropogenic forcings
(Root et al. 2005). Indeed Rosenzweig’s et al. (2008) synthesis is ground-breaking
and pushes detection-and-attribution research into a much broader arena given the
huge number (29,000) and range of natural systems investigated. It may permit us
to better understand the mechanisms by which, and by how much, anthropogenic
factors cause the observed impacts (Zwiers and Hegerl 2008).

20.2.1.1 Data

Rosenzweig et al. (2008) examined 80 previous studies, the majority of which came
from Europe, based on a single meta-analysis of a collaborative database of obser-
vations of annual natural events from Menzel et al. (2006). Several hundred others
came from studies around the world. Australia, Africa and Latin America were,
however, inadequately represented. Rosenzweig et al. (2008) monitored 29,000 nat-
ural systems between 1970 and 2004: most of the studies synthesized examined the
impact of climate change on plants and animals: others focussed on its impact on
land, water, and ice. The literature sampled by Rosenzweig et al. (2008) studied
for example, the perturbation of polar bear behaviour: timing of peak stream flow,
of grape harvests: and of spring flowering and bird migration: and variation in the
freeze–thaw pattern in the tundra, in krill stocks and in glacier depletion. All of the
phenomena were monitored for at least 20 years.

20.2.1.2 Methods and Results

Rosenzweig et al. (2008) studied how many of the 29,000 natural systems had
changed in ways consistent with warming. They developed a database of observed
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changes in natural systems from peer reviewed papers, which had shown a sta-
tistically significant trend in change in either direction related to temperature and
represented data for at least 20 years (between 1970 and 2004). Observations in
the studies were characterized as a “change consistent with warming” or a “change
not consistent with warming.” The databases of the observed significant changes in
the natural systems were overlaid with two gridded observed temperature data sets
and the spatial patterns of the observed system changes were compared with the
observed temperature trends using pattern-comparison measures. The link between
their binary indicators and climate change was assessed by means of techniques
involving “spatial pattern congruence” statistics. Based on the conclusions of the
original authors, 90% of the biological systems showed the effects of rising tem-
peratures (e.g. penguins dying off), as did 95% of the physical systems (e.g.
glaciers melting). The second part of the study plotted the location of every instance
of ecological disruption and noted local temperature trends since 1970. Average
temperatures were analysed against computer models which calculate the natural
climate variability for any spot on the globe, for any year. Results showed that a
system (physical, plant or animal) change occurred almost exclusively where highly
elevated levels of warming were recorded in recent decades.

20.2.2 Case Studies 2–4: Influences of Methods on Estimates of
Phenological Response to Global Warming and the First
Fingerprints of Global Warming

A meta-analysis of 203 species performed on published datasets from the northern
hemisphere by Parmesan (2007) demonstrated that data-sampling and inclusion cri-
teria for the studies selected for meta-analysis and the methods used for analysis
may significantly impact global (meta-analytic or synthetic) estimates of the mag-
nitude of global warming response (Root et al. 2003, Parmesan and Yohe 2003).
Other more general literature on how methods affect estimates of climate change
impacts include considerations by many others about the effects of publication bias,
differences across studies in time periods analyzed, non-random sampling within
a species and non-random selection of species (Parmesan and Yohe 2003, Badeck
et al. 2004, Parmesan and Galbraith 2004, Parmesan 2005a, b).

20.2.2.1 Meta-Analytic Factors Affecting Response

As Parmesan (2007) reported studies documenting responses of wild species to
global warming show that responses deviate significantly from being homogeneous
(Walther et al. 2002, Parmesan and Yohe 2003, Root et al. 2003, Parmesan 2006).
Whilst there are only a few species, which are opposite in their direction of response
(e.g. breeding later despite warming temperatures) the magnitude of response, how-
ever, in the expected direction, varies significantly across species. Many species
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(20–70% of species at a given location) reveal no significant response, exhibit-
ing steady phenological patterns over years despite warming (Parmesan and Yohe
2003). Parmesan (2007) makes a case for the inclusion of such stable (nonrespon-
sive) species in meta-analytic studies, in the second study to date (after Menzel
et al. 2006), to explicitly investigate the impact of publication bias, exclusion of sta-
ble processes, sampling methods, latitude, taxonomic representation and variation in
time periods covered by studies synthesised: and test for these effects on quantitative
estimates of species’ responses. The phenological global climate change community
has, as yet, no formal agreement upon choice on study design or on statistical meth-
ods for meta-analyses. The paper of Parmesan (2007) attempts to inform on the need
for such a future consensus. Much work and an increased inter-disciplinary dialogue
needs, as yet, to occur to achieve such a consensus.

20.2.2.2 Diagnostic Fingerprint

To date there have been quantitative, globally inclusive datasets on strictly pheno-
logical responses to recent climate warming by Parmesan (2007), Rosenzweig et al
(2008) and the two earlier studies of Root et al. (2003) and of Parmesan and Yohe
(2003). Quantitative comparisons across broad taxonomic and functional groups
have only been performed in the single meta-analytic study of Root et al. (2003).
These two synthetic papers Root et al. (2003) and Parmesan and Yohe (2003) both
used data published in peer-reviewed literature, but differed in their criteria for study
inclusion due to the divergent aims of the two studies. Specifically Root et al. (2003)
focussed on estimating the pervasiveness of a positive correlation between temper-
ature trends and phenological trends (a sustained climate change and correlated
system change; see Fig. 1 of Menzel et al. 2006) for species that were changing
through time, whilst Parmesan and Yohe (2003) focused on estimation of the total
response to climate change, by analysing the overall strength and consistency of
response across all species, irrespective of whether or not they showed phenolog-
ical change. Both these studies revealed the first consistent pattern across diverse
species to global climate change, a so-called climate “diagnostic fingerprint” in bio-
logical changes that provide a causal link between anthropogenic global warming
and biological impacts (Cleland et al. 2007, Dang et al. 2007, Rosenzweig et al.
2008). Since the publication of these two seminal meta-analytic studies, new data
have been rapidly accumulating (Root et al. 2005, Parmesan 2006).

20.2.2.3 Differential Advance in the Timing of Spring Events

Parmesan (2007) investigated causes for the more than two-fold difference in esti-
mates of the mean magnitude of advance in the timing of spring events between the
two studies: 2.3 days per decade advance found by Parmesan and Yohe (2003), and
5.1 days per decade by Root et al. (2003). Different latitudes, taxa, or different time
periods could account for this discrepancy: Parmesan (2007) found the latter effect
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significant, but importantly also the effect of differing inclusion criteria. A three-
fold approach was used, which involved analysis of the Parmesan and Yohe (2003)
dataset without modification. Base analyses were then conducted on the dataset of
Root et al. (2003). The same set of analyses conducted on the unmodified (base)
dataset was repeated with modified data sets: with and without the composite (mean)
values from studies where species were not separated, and with and without replica-
tion of individual species in different studies. The combined data set was compiled
such that each data point represented one unique species. Parmesan’s (2007) analy-
sis of a new expanded dataset produced an estimate of overall spring advancement
across the northern hemisphere of 2.8 days per decade.

20.2.3 Case Study 5: European Phenological Response
to Climate Change

The first meta-analytic study to examine for possible lack of evidence for changes or
shifts at sites, where no temperature change is observed, was undertaken by Menzel
et al. (2006). This was done to test whether there was bias in the previous litera-
ture towards principally reporting climate change-induced impacts. Meta-analyses,
which included reanalyses of network data, for all available species, did not yet
exist, to that date. Menzel et al. (2006) keenly observed, as did Parmesan (2007)
somewhat later, that the two previous seminal synthetic studies (Parmesan and
Yohe 2003, Root et al. 2003) had different inclusion criteria. The first included
multispecies studies from any location that reported neutral, negative and positive
results and analysed a total of 677 species or species functional groups’ phenology
(Parmesan and Yohe 2003). The results of one study site in the UK (Fitter and Fitter
2002), however, itself accounted for nearly half of its records, possibly affecting its
generalisability. The second meta-analysis was restricted to publications reporting
significant changes of one or many species (Root et al. 2003). Subsequently, the
average spring advance revealed by the latter was higher (5.1 compared to 2.3 days
per decade).

20.2.3.1 Publication Bias

The majority of published phenological-climate studies focus on the problem of
whether changes in systems and sectors relate to altering regional climates. As a
consequence of this, future reporting of phenological trends in peer-reviewed jour-
nals may become more and more difficult, especially when dealing with “no change”
or “change opposite to the direction expected” (see Table 1 of Menzel et al. 2006),
as commented by Hughes (2000) and others (Menzel 2002, Kozlov and Berlina
2002, Menzel et al. 2006). In principle, four combinations of system and climate
changes are possible. “No change” in the tracking systems seems to be less likely to
be reported, especially if it matches with “no change” in temperatures. (See Fig. 1
of Menzel et al. 2006)
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20.2.3.2 Data and Results

Menzel’s et al. 2006 study was a comprehensive Europe-wide analysis of all
observed changes in phenology (plants/animals) in the period 1971–2000. In total,
more than 125,000 observational series were examined. Phenological trends of 542
plant species in 21 countries (125,628 time series) and of 19 animal species in
three countries (301 time series) were analysed. Menzel et al. (2006) concluded that
previously published results of phenological changes were not biased by reporting
or publication predisposition: their study found a coherent signal of earlier spring
(leaf unfolding and flowering) and summer (fruit ripening), the average advance
of spring/summer was 2.5 days per decade in Europe. This analysis of 254 mean
national time series indisputably demonstrated that species’ phenology is respon-
sive to temperature of the preceding months (mean advance of spring/summer by
2.5 days per 1◦C, delay of leaf colouring and fall by 1.0 day per 1◦C).

20.2.4 Case Study 6. Human Modified Temperatures Induce
Species Changes

Can a signal of human-induced global warming be identified in the changing phe-
nology of wild plants and animals? Until the meta-analytic study of Root et al.
(2005) this question had not been answered, and indeed temperature-species associ-
ations had not been statistically attributed directly to anthropogenic climate change.
This study performed a two-step linkage paradigm: human activities contribute
significantly to temperature changes, and human-changed temperatures are linked
with detectable changes in plant and animal traits. Subsequently, Rosenzweig et al.
(2008) used the same approach to link both physical (and biological) systems
changes with human-induced climate change.

20.2.4.1 Joint Attribution

The study of Root et al. (2005) modelled climatic variables and observed species
data, traditionally independent of thermometer records and paleoclimatic proxies,
to demonstrate statistically significant joint attribution, in that, (i) human activi-
ties involving injection of greenhouse gases and aerosols into the atmosphere were
found, by modelling studies, to be changing the surface-air temperatures at a local
and more regional scale, and (ii) some phenological changes in species, at various
locations around the globe were highly likely to be caused by such a human-
induced temperature increase. This approach specifically involved relating climate
models with either process-based or statistical models to simulate changes in nat-
ural systems caused by different climate forcing factors, namely, natural climatic
forcings (NF), anthropogenic forcings (AF), and a coupling of both natural and
anthropogenic forcings (combined forcings (CF)) and comparing these directly with
observed changes in natural systems.
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20.2.4.2 Species Data

The temporal scale covered by the synthesized studies ranged from 11 to 97 years:
were gleaned from 29 published studies and also from Root et al.’s unpublished
data: were distributed over 41 GCM grid boxes and included 145 species repre-
senting a variety of taxa (130 exhibiting statistically significant changes in spring
phenology). Europe comprised the bulk of locations (62%) and North America most
species (57%). Phenological changes were measured consistently in all studies (date
of event), allowing calculation of the mean annual phenological change for sets of
species in the Northern Hemisphere from 1969 to 1999.

20.2.4.3 Analytic Methods

To facilitate comparisons among taxa and regions, species were divided into 7 over-
lapping groups, each of which contained at least 25 species: all species: species
north of 45◦ latitude: North American species: European species: birds: herbaceous
plants: and woody plants. Data only on species that exhibit a statistically signifi-
cant trend in a phenological trait were analysed, and used in association with GCM
modelled temperature values at both one- and nine-gridbox scales to test for joint
attribution in three different ways.

Firstly, Pearson correlation was used to quantify the association between the
annual phenological averages and each of the three time series of GCM-temperature
data (i.e., temperatures modelled with NF, AF, and CF) at three spatial scales: (i)
averaging only grid boxes covering study locations, (ii) averaging all grid boxes
in the Northern Hemisphere (ocean and terrestrial), and (iii) grid boxes around the
entire planet (ocean and terrestrial). Secondly joint attribution was tested by calcu-
lating individual correlation coefficients between the three temperature time series
and species’ data for each of the 145 species and then calculating the means of
the correlation coefficients for species included in each of the regional and taxa-
specific subsets described above. Monte Carlo simulations with one species chosen
randomly from each of the 41 individual grid boxes containing the 42 site loca-
tions were performed to assess possible bias due to multiple-species observations
being recorded at one location. Thirdly the frequency distribution of the species’
correlation coefficients, were examined.

20.2.4.4 Results

Using temperature data from the HadCM3 global climate model to examine the
probable cause for changes in the timing of spring events (flowering, migration) of
Northern Hemisphere wild animals and plants, results showed the strongest track-
ing, when the modelled temperatures, were derived from simulations incorporating
anthropogenic forcings. The species trends over time results are of particular inter-
est, in that whilst, as expected, the direction of change is negative (shift earlier in the
season in response to warming), the estimated average number of days changed is
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–3.2 day per decade for all 130 species. Despite some contention (on issues of inclu-
sion methods), this is in fact not very different to the finding of Parmesan (2007),
whose expanded analysis gave an estimate of overall spring advancement across the
northern hemisphere of 2.8 days per decade. An advance of 3.2 days per decade is
also not statistically different from Parmesan’s (2007) re-calculation of the data of
Root et al. (2003) – to permit the inclusion of stable species, which gave a value of
mean advance in spring timing of 3.1 days per decade: the latter is not statistically
different to the advance of 2.3 days per decade (Parmesan and Yohe 2003).

Root et al. 2005 do not suggest that plant-and-animal-climate-proxy data should
replace archives of actual instrumental climatic records or the detection and attri-
bution literature based on them. However, use of these species data, from varied
locations and diverse taxa, potentially give independent confirmation of the many
earlier attribution studies that utilise instrumental observations. Indeed, as Root et al.
(2005) note by demonstrating significant correlations between biological records
and the HadCM3, resultant modelled anthropogenic climatic changes increases our
confidence in the ecological implications of GCM-based projections of climatic
changes into the twenty-first century (Thomas et al. 2004).

20.3 Limitations and Future Directions

20.3.1 Scarcity of Global Data

The largest gaps in meta-analytic studies are geographic rather than taxonomic
(Parmesan 2006). A reason for this paucity may be that some areas, such as sub
tropical or tropical regions in particular, have poorly marked temperature seasons,
thus events such as the advance of spring phenology is less significant. Phenological
information on lower latitude taxa is rather scarce, particularly in Australia, as
noted by many authors (Hughes 2000, 2003, Stenseth et al. 2002, Chambers et al.
2005, Walther et al. 2005, Chambers 2006, Zwiers and Hegerl 2008). Phenological
data and documentation of observed changes is also lacking in Africa and Latin
America (Rosenzweig et al. 2008). Some specific examples of temperature sensitive
phenologies in lower biomes, however, on which records exist, are the Australian
Box-Ironbark eucalypt forests, the E. regnans eucalypt forests in southeast Australia
and the Arizona-Sonora desert (see Ashton 1975, Keatley et al. 2002, Hudson et al.
2005, Bowers 2007, Bustamante and Búrquez 2008).

20.3.2 Integrated Data Archiving and Phenological Networks

In many European countries National Meteorological Services have organized phe-
nological recordings since the second half of the twentieth century (Menzel 2003a,
Schwartz 2003, Pfister and Dietrich-Felber 2006). Some networks were extant at
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the beginning of the twentieth century (Menzel 2003a, Nekovář et al. 2008). The
longest written phenological record is believed to be the record of the commence-
ment of flowering of cherry at the Royal court of Kyoto, Japan, which dates back
to AD 705 (Sekiguti 1969, Menzel 2002, Aono and Kazui 2008). One of the oldest
and longest European time series of phenological observations is the Marsham fam-
ily record in Norfolk, UK (1736–1947) (Sparks and Carey 1995). Europe also has
many old and some still extant phenological networks (Nekovář et al. 2008)

20.3.3 Shortness of Records

Does the relative shortness, as yet, of phenological records used in meta-analyses
reduce our capacity to put biological changes in the context of past observed vari-
ations in climate (Zwiers and Hegerl 2008), especially when we consider studies
spanning over a century (Parker et al. 1992, Rutishauser et al. 2007). The records
mined by Rosenzweig et al. (2008), for example, were primarily from the period
1970 to 2004, with the rule that at least 20 years of data be available: the time
series studied by Root et al. (2003) had to have at least 10 years of data from recent
decades (1951–2001), whilst Parmesan and Yohe (2003) stipulated time series be of
length 20 or more years, starting from the past decade and working back in time.
Typically 50–100 year data sets are used to attribute and to detect change in basic
climate variables such as temperature, rainfall and surface pressure (Hegerl et al.
2007, Zhang et al. 2004, Min et al. 2008).

There has, however, been one recent study by Schleip et al. (2008a) that evalu-
ates plant phenological variability and temperature impacts over the last 250 years.
Schleip et al. (2008a) reported coherence factors and temperature weights that
indicate that spring phenological variability is not only influenced by forcing tem-
peratures of the current year, but also by temperatures of particular months in the
preceding year. This is the first study to date, to investigate the relationship of phe-
nological records with temperatures of the previous year. The approach adopted
by Schleip et al. (2008a) was a Bayesian analysis following the work of Dose and
Menzel (2004, 2006) (see also Chapter 11).

Extending phenological records over time and particularly over geographical
location is much needed (Chambers 2006, Sparks et al. 2006, Parmesan 2007,
Sparks 2007, Bertin 2008). Herbarium specimens and photographs represent a
possible new resource to extend the range of species and localities addressed in
global-warming research (Miller-Rushing et al. 2006, Sparks 2007). The approach
involves a comparison of current observational phenological records to older records
documented by either photographs or herbarium specimens (Lavoie and Lachance
2006, Loiselle et al. 2008, Gallagher et al. 2009, Chapter 19). Herbarium and
museum records are traditionally used in taxonomic, systematic and biogeograph-
ical studies as well as providing information on the distribution and habitat of
organisms (Bolmgren and Lonnberg 2005, Rumpff et al. 2008). Commonly these
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collections contain detailed information on collection date, location, habitat, life-
form, abundance, co-occurring species and reproductive state. As noted by Rumpff
et al. (2008) the relevance of such collections to a range of wider ecological conser-
vation and biological studies has been, to date, largely under-appreciated (Rumpff
et al. 2008, see also Chapter 19).

20.3.4 Direct Attribution Studies

Statistical analysis plays a major role in climate change detection and attribution
studies (Lee et al. 2005), as it does for meta-analysis (Borenstein et al. 2009).
Complexity with regard to methodological issues of detection (correctly detecting a
real trend) and attribution (assigning causation) has been discussed by many authors
(Hasselmann 1998, Parmesan et al. 2000, Parmesan 2002, 2005a, b, Root et al.
2003, Parmesan and Yohe 2003, Dose and Menzel 2004, Root and Hughes 2005,
Hegerl et al. 2006, 2007, Shoo et al. 2006, Zwiers and Hegerl 2008). Indeed Zwiers
and Hegerl (2008) pointed out that it would be difficult to quantify the climate–
impact link with an analysis, as in Rosenzweig et al. (2008), as the approach adopted
involves aggregation of results from distinctly different types of systems, both bio-
logical and physical. Two-step joint attribution studies are those in which an aspect
of change in the climate system is first ascribed to an external influence, and alter-
ation in a physical or biological system is subsequently attributed to climate change
(Root et al. 2003, Parmesan and Yohe 2003). Estimation of the size of the anthro-
pogenic contribution may, however, call for a so-called direct attribution approach.
This involves an end-to-end modelling system that: (i) explicitly represents all the
major climate and non-climatic processes which are possible components of the
variation in the system (whether biological or physical): (ii) can simulate response
(e.g. to greenhouse-gas changes, or to other factors affecting the observed impacts)
(Hasselmann 1998, Stone and Allen 2005, Hegerl et al. 2006).

To date only a few end-to-end attribution (Stone and Allen 2005) studies
exist (Rosenzweig et al. 2007, 2008, Zwiers and Hegerl 2008). These are usually
restricted to scenarios where the affected system’s interaction with climate is either
empirically described (Gillett et al. 2004) or somewhat well understood (Barnett
et al. 2008). Recently, Zwiers and Hegerl (2008) noted that the undertaking of more
end-to-end studies will assist much in the interpretation of less direct approaches
to attribution, and also assist in the all important projections of future impacts.
To better understand “end-to-end” attribution we refer to Stone and Allen (2005)
who contextualize end-to-end attribution in the framework of cause and effect in
the epidemiological arena. They state that “When a damaging extreme meteoro-
logical event occurs, the question often arises as to whether that event was caused
by anthropogenic greenhouse gas emissions. The question is more than academic,
since people affected by the event will be interested in recurring damages if they
find that someone is at fault. However, since this extreme event could have occurred
by chance in an unperturbed climate, we are currently unable to properly respond
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to this question. A solution lies in recognising the similarity with the cause-effect
issue in the epidemiological field. The approach there is to consider the changes in
the risk of the event occurring as attributable, as against the occurrence of the event
itself. Inherent in this approach is a recognition that knowledge of the change in risk
as well as the amplitude of the forcing itself are uncertain. Consequently, the frac-
tion of the risk attributable to the external forcing is a probabilistic quantity.” Stone
and Allen (2005) develop and demonstrate this method in the context of the climate
change problem.

20.3.5 Publication Bias and Consensus

Criticisms of meta-analysis are based on its misapplications and deficiencies
(Rosenthal and Di Matteo 2001, Noble 2006); these include publication bias, possi-
ble partisanship in literature selection and non-independence among studies. Various
methods, rarely used in the phenology community, exist to verify publication bias
(Egger et al. 1997, Duval and Tweedie 2000a, b, Macaskill et al. 2001, Rothstein
et al. 2005). When bias is detected, further analysis and interpretation should only
be performed with care (Møller and Jennions 2001, Kotiaho and Tomkins 2002,
Jennions et al. 2004). (See also Jennions et al. 2004). It behoves us also to update
the results of meta-analysis on a given subject topic at regular intervals by inclu-
sion of newly published literature. A consensus on inclusion criteria and sampling
methods for meta-analytic studies must be reached by the phenological community.
Publication bias in synthetic studies remains highly contentious, as underlined by a
recent publication by Michaels (2008), which showed that a survey of Science and
Nature, demonstrates that the likelihood that recent climate change literature is not
biased in a positive or negative direction is less than one in 5.2 × 10–16.1 This has
considerable implications as Michaels (2008) states “for the popular perception of
global warming science, for the nature of ‘compendia’ of climate change research,
such as the reports of the United Nations’ Intergovernmental Panel on Climate
change, and for the political process that uses those compendia as the basis for
policy.” See also Higgins et al. (2003) for a discussion on measuring inconsistency
in meta-analyses.

1The climate research community believes that published findings on global warming will have an
equal probability of raising or lowering forecasts of climate change and its impact. This is a testable
hypothesis based upon the recent literature and the assumption that extant forecasts are themselves
unbiased. A survey of Science and Nature demonstrates that the likelihood that recent literature is
not biased in a positive or negative direction is less than one in 5.2 × 10–16. This has considerable
implications for the popular perception of global warming science, for the nature of “compendia”
of climate change research, such as the reports of the United Nations’ Intergovernmental Panel on
Climate change, and for the political process that uses those compendia as the basis for policy.)
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20.3.6 Binary Indicators

When biological impacts occur due to seasonal changes, non-local climate change
or variation in temperature extremes, binary indicators of impacts (i.e. whether a
given impact is consistent or inconsistent with warming), as used recently in spatial
pattern congruence statistics by Rosenzweig et al. (2008), do not allow us to glean
impact patterns perfectly correlated with annual mean warming (Easterling et al.
2000,Zwiers and Hegerl 2008). It is thus difficult to quantify the climate-impact
link with such an approach. Zwiers and Hegerl (2008) noted that a “spatial pattern
congruence” statistic, assumes that the effects of local climate change occur locally;
as such this “measure will not fully capture connections where biological impacts
result from remote climate changes, seasonal changes or changes in temperature
extremes” (Zwiers and Hegerl 2008). Perhaps structural equation modelling and
spatial regressions may offer some solution to this problem.

20.3.7 Future Perspectives and Projections

Increased empirical data is needed to create accurate future probabilistic projec-
tions of response to global change impacts. An essential component in achieving
this is to gain a better understanding of the complex interdependencies between
species. Implementation of long-term field observations and/or experiments is one
way forward (Parmesan 2007). Apart from temperature, there is a need to con-
sider other climate variables (e.g. rainfall) and particularly non-climatic drivers
(e.g. soil moisture, CO2) of phenological change. Increased CO2 may, for example,
directly impact on plant phenology: though experimental evidence to date shows
no consistent direction of response (either advance or delay) (Asshoff et al. 2006).
Following the arguments and development of the Bayesian coherence approach of
Dose and Menzel (2006), future analyses of the impact of temperature on phenology
should include temperature forcing periods other than primarily calendar months:
we should consider, as noted by Schleip et al. (2008a) a combination of precipitation
and drought, say, by use of drought severity indices.

As Menzel et al. (2006) stated phenological studies also need to track the
entirety of changes to rigorously answer questions of evidence of no change,
change opposite to the direction expected, change not matching climate/temperature
change.

20.3.8 Change Point Analyses

Rapid shifts in climate can lead to, or be contemporaneous with, abrupt phenologi-
cal changes. These cannot be well detected by regression nor correlation, methods
traditionally used to detect temporal changes in phenology (Keatley et al. 2002,
Cleland et al. 2006, 2007). However, new techniques based on change point analysis
enable a quantitative representation of such often non-linear phenological responses
and associated rates of change as reported by others (Hudson et al. 2003, 2005,
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Sparks and Tryjanowski 2005, Keatley and Hudson 2008; and for Bayesian tech-
niques see Hasselmann 1998, Dose and Menzel 2004, Menzel and Dose 2005,
Menzel et al. 2008, Schleip et al. 2008a, b). Analysis of the change-point proba-
bilities via Bayesian methods provides the advantage of visualizing and quantifying
major changes in long-term time series.

Specifically for the study of Schleip et al. (2008a) their change-point model
allowed for nonlinearities in the description of functional behaviour and rates of
change. The change-point model was formulated in terms of triangular functions
consisting of two linear segments defined by the endpoints of the series and a change
point in between. The variables of these triangular model functions were assumed to
be the unknown functional values, both at the endpoints and at the change point as
well (which delineates the temporal position of the change point). Bayesian prob-
ability theory estimates the probabilities of all possible change point positions by
marginalization over the functional values at the endpoints and the change point of
the series. Indeed these change-point probability distributions exhibit the change-
point probabilities as a function of time for a temperature or a phenological time
series. Future and ongoing work will address the assessment of increasingly com-
plex time series models, such as multiple change-point models (see e.g. Keatley and
Hudson 2008).

20.4 Increased Statistical Sophistication

20.4.1 Why We Need to Move Beyond Regression

There is much need to update the fundamental statistical tools for research syn-
thesis, so as to include rarely used methods in global climate change research.
Methodologically, trends in time series are frequently analyzed using simple lin-
ear regression (SLR) where phenological dates or temperatures are plotted against
time (for examples of phenology applications see Menzel and Fabian 1999, Walther
et al. 2002, Parmesan and Yohe 2003, Root et al. 2003, and Menzel et al. 2006). The
slope of the linear regression equation then indicates the average rate of change in
phenology (days per year or days per ◦C). This method can be easily applied to a
large number of sites to compare differences between species and sites, and thus be
applied to synthetic studies. The major disadvantages of this least squares approach,
are their restriction to time series exhibiting comparatively linear trend, possible
poor extrapolation properties, and also sensitivity to outliers (or so-called extremes
(Schlittgen and Streitberg 1999)), and sensitivity to boundary values. Indeed one
or two outliers can seriously distort the results of a least squares analysis (von
Storch and Zwiers 2001) (NIST/SEMATECH, e-Handbook of Statistical Methods
2006, available at http://www.itl.nist.gov/div898/handbook/index2.htm). For inher-
ently non-linear processes it is difficult indeed to find a linear model that fits the data
well. This is true particularly as the range of the data increases (Schleip et al. 2008a).
Menzel et al. (2008) noted that, when utilising SLR, the length of a time series and
its start and end dates are crucial in correct detection of changes and in estimating
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their magnitude, particularly when highly variable phenological time series of a few
decades are analysed (see also Dose and Menzel 2004).

20.4.2 Non Linearity of Phenological Response: Implications
to Modelling and Meta-Analysis

Numerous studies have examined the relationship between phenological events and
temperature over several seasons to derive predictive relationships between say tem-
perature and the timing of a given phenophase. Such functions are typically used as
the basis for predicting phenological changes (likely to be associated with future
temperature changes) with a linear relationship generally assumed (Bertin 2008).
Indeed many publications demonstrate the coherence of phenological spring phases
and temperature, using classical statistical methods which assume linearity, such
as correlation analysis, linear and multiple regression methods (Sparks and Carey
1995, Sparks et al. 2000, Menzel 2003b, Luterbacher et al. 2007, Rutishauser et al.
2008).

Experiments have shown the link between temperature and phenology to be
causal in many plant species: in that, warmer temperatures generally lead to ear-
lier spring phenology (Saxe et al. 2001). Plant phenophases may also respond to
many other types of environmental and meteorological factors such as light, pho-
toperiod, wind, humidity, rainfall and soil conditions (Menzel 2002, Schleip et al.
2008a, b, 2009). Sparks et al. (2000) noted that plant response to temperature, even
if linear over a certain range, must inevitably taper off, though we do not know at
what temperature this is likely to occur.

As noted by Sparks et al. (2000) and by Dose and Menzel (2004) the commonly
used methods of searching for signals in phenological time series present problems.
The detection of shifts is frequently performed via classical statistical methods, such
as slopes of linear regression models (Bradley et al. 1999, Menzel and Fabian 1999,
Jones and Davis 2000, Schwartz and Reiter 2000, Defila and Clot 2001, Ahas et al.
2002, Peñuelas et al. 2002, Menzel 2003b), rarely by other curve fitting methods
(e.g. Ahas 1999, Sagarin and Micheli 2001, Sagarin 2001). Trends are traditionally
reported in days per year or decade, or days of change over the study period.

20.4.3 Generalised Additive Model for Location, Scale and Shape
(GAMLSS), Penalised Spline Signal Regression
and Bayesian Nonparametric Function Estimation:
3 Approaches to Non-Linear Response

There are two pertinent questions here. How can we accommodate for non-linear
responses of phenology to time (year) and/or to climatic factors? This shall be
addressed by illustration of three approaches to modelling phenological time series
assuming possible non-linear trends:
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1. The Generalised Additive Model for Location, Scale and Shape (GAMLSS)
approach (Rigby and Stasinopoulos 2005, Stasinopoulos and Rigby 2007)
applied recently to flowering records of four eucalypts (Eucalyptus leucoxylon,
E. microcarpa, E. polyanthemos and E. tricarpa), from Maryborough, Victoria,
Australia, for the period 1940–1971 (Hudson et al. 2009, see also Chapter 10)

2. penalised spline (P-spline) signal regression (PSR) of Marx and Eilers (1999,
2005) applied recently to the flowering records from 1978 to 2001 of the Last
family (Last et al. 2003) by Roberts (2008). From these records, a dataset of 208
species and cultivars has been compiled (see also Chapter 12 of Roberts)

3. The Bayesian nonparametric function estimation approach of Dose and Menzel
(2004) applied to blossom (onset) time series of Prunus avium, Galanthus nivalis
and Tilia platyphyllos (1896–2002) in Germany in an analysis of the variations
of the onset of phenological phases in the twentieth century.

A handful of papers have used other methods to account for the possible non-
linearity and for the complex interdependencies and for changing structure in
phenological time series: namely dynamic factor analysis (Gordo and Sanz 2005)
and chronological clustering (Doi 2007). See also Doi and Katano (2008). These
methods prove valuable in separating out underlying components of a univariate
(single) time series that show significantly different patterns: however, they are
not discussed in this chapter. The issue of accounting for, modelling and detect-
ing change points in phenological time series also remains an important issue (Dose
and Menzel 2004, Keatley and Hudson 2008, Schleip et al. 2008a) and is briefly
discussed in Section 20.6.6 of this chapter.

It is noteworthy that the Bayesian non-parametric function estimation methods
(in the above list point (3)) were also recently applied by Menzel et al. (2008) to
study four deciduous tree species: horse chestnut (Aesculus hippocastanum L.), sil-
ver birch (Betula pendula L.), common oak (Quercus robur L.), and European beech
(Fagus sylvatica L.) from the phenological network data of the German (1951–
2003) and the Slovenian meteorological service (1961–2004). Menzel et al. (2008)
aimed to investigate the following:

1. whether changes in the length of the growing season are related to trends in leaf
unfolding and/or leaf colouring dates,

2. the nature of the variation among different broad-leaved species,
3. possible confounding effects of an insect attack, and
4. how these changes are related to recent temperature changes.

Menzel et al. (2008) confirmed advanced leaf unfolding in both countries with the
same species order (oak > horse chestnut, beech, and birch). However, this advance
was non-linear over time and more apparent in Germany, with clear change-points
in the late 1970s, followed by marked advances (on average 3.67 days per decade in
the 2000s). In Slovenia, there was a more gradual advance of onset dates (on average
0.8 days per decade in the 2000s).
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Recently Schleip et al. (2008a) also applied these Bayesian non-parametric func-
tion estimation methods (linear trend analysis and Bayesian model comparison) to
an investigation of three unique, multidecadal, 250-year phenological time series
from Switzerland and France from 1753 to the present (Chuine et al. 2004, Meier
et al. 2007, Rutishauser and Studer 2007, Rutishauser et al. 2007). Schleip et al.
(2008a) detected major changes in long-term phenological and temperature time
series at the end of the twentieth century, especially for summer temperatures since
the 1980s. Bayesian model-averaged trends revealed a warming rate that increased
from an almost zero rate of change to an unprecedented rate of change of 0.08◦C per
annum in 2006. After 1900, temperature series of all seasons show positive model-
averaged trends. In response to this temperature increase, the onset of phenology
advanced significantly. See also Schleip et al. 2006, 2008b, 2009.

The second question is how best to accommodate for non-linearity between phe-
nological response and time in meta-analytic studies aimed at determining possible
fingerprints of change. Or in other words, when a phenological response or out-
come is in fact non-linearly related to time (or temperature, say), how can one apply
meta-analytic procedures to obtain a combined (pooled) estimate of effect of time
(temperature) across studies? These pooled estimates usually assume linearity.

20.5 Epidemiological Perspectives and Relevant Studies

20.5.1 Dose-Response Functionals and Bayesian Hierarchical
(BH) Meta-Analysis

We advocate that meta-analytic methods used only recently to account for nonlin-
ear “dose/exposure to response” functionals in epidemiology (Bagnardi et al. 2004,
Gamborg et al. 2007) may be possibly adapted and apply well to phenological syn-
thetic studies. Another focus of the discussion in this chapter will be on Bayesian
hierarchical (BH) meta-analytic studies, to modelling so-called dose-response func-
tionals. BH models were recently used to assess the impact of extreme heat events on
hospitalizations for cardiovascular and respiratory admissions in 12 European cities
(see Michelozzi et al. 2009): in what is now known as the PHEWE (Assessment
and Prevention of acute Health Effects of Weather conditions in Europe) study:
which enrolled 15 cities, about 30 million people on calendar years 1990–2001.
The latter study aimed to investigate possible climate change impacts on human
health. Indeed, under climate change scenarios, it has recently been hypothesised
that the increase in extreme weather events and certain air pollutants, especially
ozone (Confalonieri et al. 2007), are likely to further exacerbate chronic respiratory
diseases (see also Bell et al. 2007, Analitis et al. 2008, Baccini et al. 2008, Mahmud
et al. 2008) and cardiovascular mortality (Ren et al. 2008).

The interested reader should also note the following meta-analytic approaches:
meta-regression (Berkey et al. 1995), which is an extension of meta-analysis to
allow testing for heterogeneity of effects across studies, cumulative meta-analysis:
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sensitivity analysis: and importantly as noted above, hierarchical Bayesian meta-
analysis (widely used in health environmetrics) and discussed by numerous authors
(Smith et al. 1995, Louis and Zelterman 2000, Stuhlmacher and Gillespie 2005,
Barnett 2007, Michelozzi et al. 2007, Baccini et al. 2008, Ren et al. 2008, Zanobetti
and Schwartz 2008).

20.5.2 Bayesian Hierarchical Distributed Lag Models (BHDLMs)

The recent study of Peng et al. (2009) that develops Bayesian hierarchical dis-
tributed lag models (BHDLMs) to relate particulate matter air pollution exposure
to hospitalisations for cardiovascular and respiratory diseases (using a national US
database on 3 million enrollees of the US Medicare system, living in 94 coun-
tries, and covering the period 1999–2002) will also be referred to in this chapter,
again with a view to advancing more sophisticated meta-analytic approaches in
phenological and climate change research.

20.5.3 Approach and Justification of New Methods

The three approaches and applications to the modelling of non-linear phenolog-
ical response over time delineated above (GAMLSS, penalised spline regression
and Bayesian nonparametric function estimation) will be reviewed, and will then
be linked to the following recently developed epidemiological approaches (dose-
response functionals, Bayesian hierarchical meta-analysis and BHDLMs). The
meta-analytic methods proposed here for phenological studies are all essentially
based on nonparametric regression (Green and Silverman 1994, Eubank 1999) or
semiparametric regression (Chen and Ibrahim 2006, Ruppert et al. 2009), includ-
ing Bayesian hierarchical models (Gelman et al. 2004), the latter of which can be
cleverly reformulated in terms of a penalised spline model. This was only recently
shown by Peng et al. (2009) in the context of Bayesian hierarchical distributed lag
models (BHDLMs).

20.6 Modelling of Non-Linear Phenological Response over Time

20.6.1 Generalised Additive Model for Location, Scale and Shape
(GAMLSS) Models for Non-Linear Response

Hudson et al. (2009) (see also Chapter 10) represents the first attempt to apply the
Generalised Additive Model for Location, Scale and Shape (GAMLSS) (Rigby and
Stasinopoulos 2005, Stasinopoulos and Rigby 2007, Hudson et al. 2008), to study
a phenological data set, with the aim, in part, of detecting non-linear responses to
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climate change (contrasting earlier stepwise regression approaches). Regardless of
the cyclicity of flowering over time, this study shows that each species’ flowering is
significantly influenced by temperature and that this effect is non-linear. Importantly
from the view of phenological studies GAMLSS allows for the: (i) identification of
lower and upper thresholds of temperature for flowering commencement and cessa-
tion: (ii) estimation of long and short-term non-linear effects of climate, and (iii) the
identification of lagged cyclic effects of previous flowering.

20.6.2 Non-Linear Functionals with Temperature:
Slope – Threshold Forms from Cubic Splines

GAMLSS is thus a possible way, not only to detect non-linear trends, but to actually
establish at what temperature the plant response to temperature tapers off (Sparks
et al. 2000). From the cubic splines analysis of GAMLSS, lower (maximum) tem-
perature thresholds for (commencement of) flowering for E. polyanthemos were
shown to be 17.5◦C temperature then reaching cessation at 25.9◦C (Hudson et al.
2009). In terms of meta-analytic studies, we believe that the smoothing cubic spline
estimates of trend that GAMLSS provide per time seies, could then be combined to
obtain an overall effect measure, traditionally used in the meta-analytic approach.
Alternatively these cubic spline estimates of trend from GAMLSS could be anal-
ysed using linear or non-linear Bayesian mixed models (meta regression) (see also
Thompson and Higgins 2002). One could also potentially compare the temperatures
at which the tapering off occurs across species and sites and obtain an overall esti-
mate. These ideas need to be rigorously tested and demonstrated, and are the topic
of future work.

20.6.3 Regression Methods: from Simple Linear, Multiple Linear,
Stepwise Regression to P-Spline Signal (PSR) Regression

Linear regression is a commonly used method to determine rates of change in phe-
nological data (Fitter and Fitter 2002). The limitations of linear regression have
been highlighted in the phenological literature (Menzel 2003b). The slopes of the
resultant regression lines are influenced by when a series commences and finishes
and by the length of the series (Sparks and Menzel 2002, Sparks and Tryjanowski
2005). Given that temperature in the last 20 years encompasses the warmest period
recorded to date, this will affect the slope of the resultant regression lines. The dif-
ference in rate of change has been illustrated by Menzel et al. (2003). The suggestion
by Menzel et al. (2003) that trends should be reported in days per year along with
the number of years analysed, in addition to the years study, should be taken up.
Dose and Menzel (2004) (followed by Menzel et al. 2008 and Schleip et al. 2008a,
b, 2009) have addressed the issue of estimating rates of change based on Bayesian
nonparametric function estimation, (see Section 20.6.6). Their approach very much
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addresses problems in estimating rate of change, determining change-points and
importantly provides a rigorous analysis of uncertainties of the results. The provi-
sion of uncertainty analysis is much needed in climate-related research (see Katz
2002, Dose and Menzel 2004).

Multiple linear regression (MLR) or stepwise regression (Draper and Smith
1981) are regularly used to investigate the influence of temperature on the first day
of flowering (Fitter et al. 1995, Sparks and Carey 1995, Keatley and Hudson 2000,
Roberts 2008 etc), or to relate a phenological response to weather measurements.
To date, MLR or stepwise methods have delineated similar results across different
regions (Fitter and Fitter 2002, Roberts et al. 2004). Stepwise regression is a pro-
cedure that selects the subset of the regressors that best explains the variation in
the phenological response. Stepwise regression however, has limitations in studies
relating a phenological response to weather data. Firstly it does not accommodate
for large numbers of highly correlated regressors (Roberts 2008). This is a real issue
if daily or weekly climate measurements are used as regressors. In practice monthly
aggregates of weather data are used and clearly information is lost. Stepwise regres-
sion also does not take into account the marked auto-correlated structure in the
regressors. Indeed what has not often been highlighted in the phenological litera-
ture is that phenological series (or fine time scale weather series) are correlated by
nature, an aspect not accounted for by linear, MLR, nor stepwise regression meth-
ods (see Hudson et al. 2005, Roberts 2008, Chapter 12 of Roberts and Chapter 13
of Kelly).

Recently Roberts (2008) suggested and tested an approach to account for the
evident structure in the (daily weather) regressors (see also Chapter 12). Several
regression methods aimed at accommodating many correlated regressors exist and
are derived mainly in the field of chemometrics. These include ridge regression,
principal components regression and partial least squares (Hastie et al. 2001, Frank
and Friedman 1993). However, as Roberts (2008) noted none of these explicitly
take advantage of the ordered structure inherent in regressors based on higher time
resolution weather data. Roberts (2008) applied P-splines signal regression (PSR)
(Marx and Eilers 1999) and ridge penalties (Eilers and Marx 2003) to the Last family
bluebell data, with 730 daily temperatures for both the year of flowering and the
preceding year as regressors. These results were compared to those from to a partial
least squares (PLS) stepwise regression analysis of the same bluebell flowering dates
(from 1978 to 2001), using daily temperatures for both the year of flowering and the
preceding year as regressors.

20.6.4 Smoothed Profile of Regression Coefficients in Current
and Preceding Year

To motivate and illustrate this approach consider a regression with daily tempera-
tures as regressors. The effects of the temperature on two consecutive days might be
expected to be similar. The penalised regression approach (Elston and Proe 1995)
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utilises this information by steering the model towards a solution where consecu-
tive regressors have similar regression coefficients. The penalised regression method
illustrates the concept of penalising differences between regression coefficients so as
to obtain a smooth profile. This so-called smoothed profile of regression coefficients
is both intuitive and highly informative (see Fig. 2 of Roberts 2008).

In this chapter we point out that the form of this smoothed profile of regression
coefficients bears a striking resemblance to curves, which can be drawn from the
Pearson correlation analysis, between flowering and temperature in the current and
preceding year, derived recently by Schleip et al. (2008a, Table 1). See also the form
of the wavelet cross-correlation curves between flowering intensity and temperature
(and rainfall) for the current flowering year (and back) for four species of Australian
eucalypts, as developed and discussed by Hudson et al. in Chapter 18. We discuss
the relevance of this finding later.

It is also noteworthy that there are various methods for smoothing, though they do
not appear to be commonly used in plant phenology models; see e.g. running means
(Schaber 2002) and LOWESS that have been applied (Crick and Sparks 1999, Roy
and Sparks 2000, Gange et al. 2007). Splines, which smooth via applying polyno-
mial regressions, appear to have been only recently applied to phenological data
(Roberts et al. 2004) (see also Chapter 12, Roberts 2008, Chapter 10 and Hudson
et al. 2009).

There are other approaches that have the same aim as penalised regression.
The identical regression model can be re-expressed as a linear mixed model (Sims
et al. 2007). Smoothing of the regression coefficients is then achieved by assuming
the differences between adjacent regression coefficients to be random (non-fixed)
effects with a common variance component. The smoothing parameter is estimated
internally, as part of the procedure, being directly related to the latter common vari-
ance component. Roberts (2008) pointed out that similarly, the idea can be translated
into a Bayesian context by placing a common prior distribution on the differences
between adjacent regression coefficients: this would generally be a normal dis-
tribution with zero mean and variance σ 2. The degree of smoothing is estimated
directly and can be found through the posterior distribution for σ 2. Marx and Eilers
(1999) extended the usefulness of the penalised regression in a method termed
P-spline signal regression (PSR), which allows for the use of many more regressors
in a computationally efficient fashion (Roberts 2008). This allows for modelling
long sequences of daily (say climatic) measurements as regressors. PSR also uses
P-splines (Currie and Durban 2002) and smooth B-splines (Eilers and Marx 1996).
In brief, the latter consist of polynomial pieces: the degree of the polynomial can be
chosen by the user.

In his application Roberts (2008) showed that when stepwise regression was
applied to the Last bluebell data, January and February were chosen as significant
regressors, with regression coefficients of 3.4 and 4.4 days/◦C respectively: thereby
a uniform 1◦C rise in temperature would be expected to advance flowering by 7.8
days. Using PLS and PSR Roberts (2008) showed that a uniform 1◦C rise in tem-
perature would be expected to advance flowering by 10.2 days. The time of year
that had the greatest influence was in the period around 14 February, about a month
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before the earliest date of first flowering. A clear relationship between the late-
ness (of onset) of a species and its phenological behaviour was discovered, in that
later species tend to be affected by later temperatures. This has been noted by other
authors (Fitter et al. 1995, Sparks et al. 2000). In addition Roberts (2008) observed
that the influential temperatures may be nearer to flowering for earlier species than
for later species.

Roberts (2008) showed that the application of both one-dimensional and two-
dimensional forms of penalised regression to the Last family (Bluebell) records was
successful, and noted that it was possible to build PSR models across species: this
potentially via multivariate models. The number of flowering years available clearly
has an influence on the quality of the results obtained. With smaller datasets, the
complexity of the curve or surface that can be fitted is limited by the number of
observations (Marx and Eilers 1999). In the Last family records, with 24 years, the
degree of smoothing changed considerably between different responses, in some
cases appearing to be under-smoothed. It is expected that, with the addition of more
years, the choice of degree of smoothing should become more stable. Roberts (2008)
pointed out that the number of years required to achieve this, will depend on the
complexity of the underlying model, as well as on the precision of measurements
and on the lack of fit. Both this problem and the possible link of these PSR mod-
els with biologically-based models (Chuine et al. 2003) need to be studied further.
To what degree penalised regression can recover information about an underlying
mechanistic process (Chuine et al. 2003) would be of particular interest (Roberts
2008) (see also Chapter 12 of Roberts).

20.6.5 GAMLSS Interconnection with PSR and Splines
in General: Computer Routines

The work of Roberts (2008) (see also Chapter 12) on P-splines (Currie and Durban
2002) and on B-splines is a method that also has some strong inter-relatedness
with the GAMLSS approach discussed here (see also Chapter 10) – in that for
all approaches, spline functionals are used in the modelling procedures. The term
“spline” is generally used to refer to a wide class of functions that are used in
applications requiring data interpolation and/or smoothing. The data may be either
one-dimensional or multi-dimensional. Spline functions for interpolation are nor-
mally determined as the minimizers of suitable measures of roughness which are
subject to the certain interpolation constraints. Smoothing splines may be viewed
as generalizations of interpolation splines, where the functions are determined to
minimize a weighted combination of the average squared approximation error over
observed data and the roughness measure. The smoothing spline is a method of
smoothing (fitting a smooth curve to a set of noisy observations) using a spline
function (Hastie and Tibshirani 1990). Smoothing splines are related to, but how-
ever distinct from, P splines (Penalized Splines) which combine the reduced knots
of regression splines, with the roughness penalty of smoothing splines (Ruppert
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et al. 2003) Indeed smoothing splines though related to, are distinct from: (1)
Regression splines, wherein the data is fitted to a set of spline basis functions, with
a reduced set of knots, typically by least squares, and no roughness penalty is used:
(2) Penalized Splines, which combines the reduced knots of regression splines (e.g.
Roberts 2008 used 100 knots) with a roughness penalty and a ridge penalty term
(Eilers and Marx 2003). Computer routines for general smoothing splines and P
splines for Generalized Additive Models (GAMs) (Hastie 2006) and Generalised
Linear Models (GLMs) are given by Gu (2007) and Marx (2003), respectively. See
also computer routines for GAMLSS in Stasinopoulos and Rigby (2007).

20.6.6 Modelling the Functional Behaviour of Phenological Time
Series: Bayesian Nonparametric Regression

As noted by Dose and Menzel (2004) Bayesian analysis offers the possibility
to overcome the pitfalls of linear regression models. Indeed Bayesian statistical
methods have been applied to date in climate change detection, analysis and attribu-
tion (Hobbs 1997, Hasselmann 1998, Leroy 1998, Tol and De Vos 1998, Barnett
et al. 1999, Berliner et al. 2000, Katz 2002), and also in climate reconstruc-
tions (Robertson et al. 1999, Schoelzel 2006). Recently various studies show that
Bayesian analysis offers huge benefits in the analysis of varying changes, model
probabilities and change-point probabilities of time series, when non-linear changes
in phenological and climate time series exist. Along with these rates of change, rig-
orously calculated uncertainties of model-averaged rates of change and linear trends
can be described by Bayesian statistics (Dose and Menzel 2004, Menzel et al. 2008,
Schleip et al. 2008a; see also Chapter 11).

We shall now review the studies of Dose and Menzel (2004) and of Schleip
et al. (2008a), with the aim of indicating how estimates of the resultant functional
behaviour of the phenological time series (which allow for both linear non-linear
change and abrupt change points) could be modelled and combined for pooled esti-
mates of change, say over species and localities – a meta-analytic viewpoint, that
can account for so-called non-linear climate exposure-response finctionals. Finally,
we show that the overarching paradigm for all the methods, is the area of semi-
parametric regression (Chen and Ibrahim 2006, Ruppert et al. 2009), except for
the Bayesian approach to modelling the non-linear functional relationship between
flowering and time (of Dose and Menzel 2004). It is noteworthy however, that the
latter work models nonparametic functionals via Bayesian methods.

Dose and Menzel (2004) developed nonparametric regression from a Bayesian
viewpoint to describe the possibly non-linear functional behaviour of blossom
(onset) time series and analysed the variations of the onset of phenological phases
in the twentieth century. The functional behaviour of these series was represented
by three different models: the constant model, the linear regression model and the
one change point model. In addition to the functional behaviour, rates of change in
terms of days per year were also calculated. Dose and Menzel (2004) also obtained
the average functional behaviour with its associated uncertainty range. The three
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models were compared for the trend of flowering time series, using the model com-
parison option of Bayesian theory, which relies on Ockham’s razor (Garrett 1991):
and ensures that the model of choice should be as complex as required to explain
the data and as simple as necessary to avoid fitting the model to noise. The model
average for the rate of change was calculated by averaging the rates of change of
the three models weighted by their respective probabilities. The rate of change was
shown to be essentially zero change over most of the century, with a significant and
abrupt change point or deviation starting about 1985, with a current rate of change
of –0.6 days per year (Dose and Menzel 2004). This negative curvilinear slope and
associated rate of change was associated with an uncertainty of –0.5 days per year
(Dose and Menzel 2004). We later argue that this plateau-threshold shape of the
time series functional may lend itself to Bayesian hierarchical (BH) meta-analytic
study, when obtained across sites: an approach that still requires rigorous testing.

Recently Schleip et al. (2008a) also applied the linear trend analysis and Bayesian
model comparison discussed above, to an investigation of three unique, multi-
decadal, 250-year phenological time series from Switzerland and France from 1753
to the present (Chuine et al. 2004, Meier et al. 2007, Rutishauser et al. 2007).
Schleip et al. (2008a) detected major changes in long-term phenological and tem-
perature time series at the end of the twentieth century. See Dose and Menzel (2004,
2006) for details on the relevant computational and mathematical formulae. Schleip
et al. (2006, 2009) also demonstrated the flexibility of the Bayesian procedure on
different climate change detection issues. Schleip et al. (2008a) showed that the
model-averaged rates of change of the phenological phases demonstrated a signif-
icant advance of the onset of spring and harvest dates. Summer temperature time
series showed an abrupt temperature increase at the end of the twentieth century.
For all phenological time series the change-point model was the preferred model.
Schleip et al. (2008a) noted that the linear model provided an adequate alternative
for describing the temperature time series for winter and autumn. In the context of
the last 250 years the end of the twentieth century represents a period with unique
major increases in temperatures for all seasons and earlier grape harvest phenol-
ogy as derived from model averaged trends Schleip et al. (2008a). The functional
behaviour of the change-point model suggests a considerable increase in summer
temperatures since 1978. Since the 1980s, and using Bayesian model-averaged
trends, Schleip et al. (2008a) showed that the summer warming rate increased
from an almost zero rate of change to an unprecedented rate of change of 0.08◦C
per annum in 2006. After 1900, temperature series of all seasons showed posi-
tive model-averaged trends. In response to this temperature increase, the onset of
phenology advanced significantly.

20.6.7 Understanding Long-Term Ecological Change: Modelling
Current and Preceding Year Climate

Importantly Schleip et al. (2008a) also used Bayesian correlation to compare the
phenological records with independent Swiss instrumental temperature measure-
ments (commencing in 1753), so as to assess the impact of monthly temperature
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on phenological variability of the past three centuries. This was achieved by using
the method developed by Schleip et al. (2009), which improved on the Bayesian
correlation approach of Dose and Menzel (2006), in that the coherence of long term
temperature and phenological time series was estimated to determine and weight
single monthly and seasonal 3-monthly averaged temperature impacts: and a sim-
ulated annealing optimization algorithm was used to obtain a coherence factor and
temperature weights (Schleip et al. 2008a).

20.6.8 Cyclic Correlational and Regressor Profiles of Past Climate
on Flowering: Links with PSR and Wavelets

Whilst the earlier analyses of Dose and Menzel (2006) assumed that temperatures of
the previous year (of the phenological event) could be neglected with regard to the
phenological onset in the year of interest, the results of Schleip et al. (2008a) con-
firm that summer temperatures very likely influence, not only summer phases of the
current year, but also spring phases of the following year as seen in the onset of the
Swiss “spring plant,” Schleip et al. (2008a) noted that for “spring plant” phenology,
temperatures during the spring season of the year of budburst, and temperatures
during the summer season of the previous year, appeared particularly important,
especially temperatures in the previous July and the following May. With simple lin-
ear approaches (e.g. Sparks and Carey 1995), this result is much less evident: but has
been discussed to date, only in part, by Roberts (2008), who used a penalised spline
regression (PSR) method, with 730 daily temperatures for both the year of flower-
ing and the preceding year as regressors. See also the wavelet analytic, the singular
spectrum analysis (SSA) and GAMLSS approaches investigating lagged dependen-
cies between flowering and climate (of the current year and back) in Chapters 17,
18, and 10, respectively.

Schleip’s et al. (2008a) study represents a long term approach (see Cheke 2007)
and is the first study to date to investigate the relationship of phenological records
with temperatures of the previous year by Bayesian methods. Pearson correla-
tion (Table 1 of Schleip et al. 2008a), coherence factors and temperature weights
(Fig. 5a, b of Schleip et al. 2008a), indicated that spring phenological variability is
not only influenced by forcing temperatures of the current year, but also by tempera-
tures of the preceding June and October. It is noteworthy that the cyclic curve which
can be drawn from the Pearson correlation analysis between flowering and tempera-
ture in the current and preceding year, as derived by Schleip et al. (2008a, Table 1),
bears a striking resemblance to the cyclic form of the smoothed profile of regression
coefficients of Roberts (2008). These are also comparable to the cyclic shape of the
wavelet cross-correlation curves between flowering and temperature (and rainfall)
for the current flowering year (and back) for four species of Australian eucalypts, as
recently developed and discussed by in Chapter 17. Wavelets clearly identified the
cyclical influence on peak flowering intensity of climate (temperature and rainfall).
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There are 6 months of an annual cycle in which any given climate variable posi-
tively influences flowering intensity and 6 months of negative influence, within a
given species which results in distinct seasonal change points (Chapter 18; see also
similar profiles from the singular spectrum analytic approach of Chapter 17).

We now review three significant and recent meta-anlaytic approaches in epi-
demiological research, namely dose-response functionals, Bayesian hierarchical
meta-analysis and BHDLMs, which we believe hold much promise to further
meta-analytic studies in phenology. Proof of concept is an important area of
future research. We also show their interconnectedness to the three modelling
approaches discussed earlier, namely, GAMLSS, penalised spline regression (PSR)
and Bayesian nonparametric function estimation, recently applied to non meta-
analytic phenological studies of late (Dose and Menzel 2004, Roberts 2008, Schleip
et al. 2008a, Menzel et al. 2008, Hudson et al. 2009).

20.7 Accounting for Non-Linearity in Meta-Analysis via
Fractional Polynomials and Spline Regression –
an Epidemiological Application

Recently Bagnardi et al. (2004) described fractional polynomials (Greenland 1995)
and spline regression (Royston 2000) (in particular random effects cubic splines)
by which to represent smooth non-linear dose-response relations in summarizing
meta-analytical aggregate data of 29 cohort studies, investigating alcohol consump-
tion and all-cause mortality, for the period 1966–2000. This was the first study,
to that date, to use so-called flexible meta-regression functions in a meta-analysis
of dose-response aggregate data (for alcohol consumption and all-cause mortality).
Specifically, curvilinear J-shaped curves between the logarithm of the relative risk of
death versus alcohol “dose” (i.e. exposure) were consistently obtained via fractional
polynomials and cubic splines (Bagnardi et al. 2004).

It is noteworthy that attempts to represent non-linearity in epidemiologic meta-
analysis are traditionally made via polynomial models, typically quadratic models
(Berlin et al. 1993, Friedenreich 1993). Such low-order polynomials, however, offer
a limited suite of shapes for the dose-response functional, whilst high-order poly-
nomials, on the other hand, may fit poorly at the extreme values of the exposure
variable (McCullagh and Nelder 1989). Furthermore, polynomials do not have
asymptotes and cannot fit data for which a threshold value is expected. This rep-
resents a major disadvantage to epidemiological applications and wider. We now
delineate the rationale for the parametric approach of Bagnardi et al. (2004) (para-
metric versus nonparametric regression) and later suggest possible phenological
applications and adaptations. These could possibly apply to modelling accumulated
heat (temperature, growing degree days (GDD)) – phenological response curves
(over time): or apply to modelling across location nonparametric functionals of phe-
nological response (as in Dose and Menzel 2004, Menzel et al. 2008 and Schleip
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et al. 2008a), but in this case by using random effects for the parameters of the
functionals across locations (sites). This is the topic of future research.

20.7.1 Nonparametric (Smoothing) Regression

Whilst nonparametric regression methods (e.g. the GAMs family of Hastie and
Tibshirani 1990: the GAMLSS family of Stasinopoulos and Rigby 2007, see also
Green and Silverman 1994), are useful alternatives for avoiding strict assumptions
about the form of the dose-response relation (asymptotes, thresholds, plateaus, poly-
nomial order) a main impediment of this approach is the lack of widely known and
standard software. Moreover, nonparametric regression is particularly useful when
little or nothing may be assumed about the form of the exposure-disease relation. For
most epidemiologic purposes, however, knowledge or strong prior evidence exists
about the functional form of the exposure-response relationship. This is particularly
true in meta-analysis, for which the shape of the relationship is indicated by the
individual (say across locations) studies.

20.7.2 Parametric Approaches

Two alternative curve-fitting methods, fractional polynomial regression and spline
regression, have been described by Greenland (1995) and Royston (2000).
Fractional polynomials are a family of models considering, as covariates, power
transformations of a continuous exposure variable restricted to a small predefined
set of integer and non-integer exponents (Royston and Altman 1994). The family
includes conventional polynomials, as a particular case, and therefore aligns with
simple regression, though it offers important improvements (Royston et al. 1999).

Fractional polynomials (fp())2 can be invoked in the GAMLSS platform (see
Chapter 10) as parametric additive terms. The main advantage of parametric regres-
sion models using fractional polynomials, rather than traditional ones, is that models
containing as few as two power transformations are able to encompass a large range
of shapes (Royston et al. 1999). This allows then for the accommodation of almost
all known dose-response relationships. Indeed splines (de Boor 1978) are a family
of smooth functions that can take on virtually any shape, and, as a consequence, they
come close to nonparametric regression (Durrleman and Simon 1989). Noteworthy
also is that the GAMLSS platform also accommodates for cubic splines (Green and
Silverman 1994), P-splines (Eilers and Marx 1996) and varying coefficient models
(Hastie and Tibshirani 1993). An advantage of such parametric approaches, namely

2Originally the fractional polynomial (fp()) function was an implementation of the fractional poly-
nomials introduced by Royston and Altman (1994). The functions involved in fp() and bfp() are
loosely based on the fractional polynomials function fracpoly() for S-PLUS given by Ambler
(1999)
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fractional polynomial and spline regression, is that they allow researchers to obtain
interpretable, intuitive and communicable results.

20.8 Possible Phenological Applications

In considering phenological applications the statistical validity of any application
depends on the nature of the response (e.g. date of first flowering (DOFF) (Roberts
2008), flowering intensity (Keatley et al. 2002, Keatley and Hudson 2007), harvest
date (Schleip et al. 2008a, b), first (median or mean) arrival (birds), peak pas-
sage (migratory birds) (Jenni and Kéry 2003, Lehikoinen et al. 2004)). We believe
that the fractional polynomial or spline regression methods could well apply to
meta-analytic studies, where one modelled, say, flowering versus accumulated heat
(temperature exposure) over time, wherein a particular temperature threshold was
found/assumed to lead to flowering. The resultant curve would potentially be flat and
then curve upwards, opposite to the plateau followed by a negative rate of change
of DOFF found by Dose and Menzel (2004). Recall that Dose and Menzel (2004)
showed that the rate of change was essentially zero over most of the century with
a significant and abrupt change point or deviation starting about 1985 and a current
rate of change of –0.6 days per year. This negative curvilinear slope and associated
rate of change was associated with an uncertainty of –0.5 days per year. Clearly
temperature/heat thresholds as described above would need to be established (to be
considered as a change-point in any so-called heat accumulation curve). These ideas
need, however, to be rigorously tested and are the topic of future research.

20.8.1 Bayesian Hierarchical Models (BHMs): a Climate
Change and Health Meta-Analysis

Bayesian hierarchical meta-analytic studies were recently used to assess the impact
heat on mortality in 15 European cities (Baccini et al. 2008) and more recently
assess the impact of extreme heat events on hospitalizations for cardiovascular and
respiratory admissions in 12 European cities (Michelozzi et al. 2009): in what is
now known as the PHEWE (Assessment and Prevention of acute Health Effects
of Weather conditions in Europe) study, which enrolled 15 cities, about 30 million
people on calendar years 1990–2001. These studies aimed to investigate possible
climate change impacts on human health (Confalonieri et al. 2007, see also Chapter
4 by van Vliet). The impact of extreme heat events on respiratory admissions is
expected to increase in European cities as a result of global warming and progres-
sive population aging (see also Bell et al. 2007, Analitis et al. 2008, Mahmud et al.
2008). Epidemiologic studies show that high (and cold) temperatures may be related
to mortality, but until 2008 little was known about the exposure-response function
and the lagged effect of heat/cold, whether on mortality or morbidity. The founda-
tional mathematical formulae used in these studies, namely Bayesian hierarchical
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models (BHMs) is given in the work of Samoli et al. (2005) which earlier estimated
the exposure-response relationships between particulate matter (pollution) and mor-
tality of 22 European cities participating in the APHEA (Air Pollution and Health –
A European Approach project) and also performed a meta-analysis.

Specifically in the study of Michelozzi et al. (2009) hospital admissions were
related to the daily counts for cardiovascular, cerebrovascular and respiratory causes
by age (all ages, 65–74 years age group, and >75 years age group) in the resident
population for the period 1990–2001. Maximum apparent temperature (Tappmax),
(see Fig. 2 of Michelozzi et al. 2009) was used as the exposure variable of interest.
This is an index of thermal discomfort (“exposure”) based on air temperature and
dew point temperature according to the work of Kalkstein and Valimont (1986) and
of O’Neill et al. (2003). The analysis was restricted to the warm period of the year
(April–September), as in Baccini et al. (2008). Note that Baccini et al. (2008) also
used maximum apparent temperature (Tappmax) as the exposure variable.

20.8.1.1 First Stage Analysis

In the study of Baccini et al. (2008), the first stage of the analysis involved estima-
tion of the city-specific effects, and in the second stage, the results were combined to
obtain pooled across cities effect (of exposure) estimates. The city-specific analyses
were based on generalized estimating equations (GEEs) (Liang and Zeger 1986).
Certain distributed lag models (DLMs) (Shiller 1973) were specified in studying
the delayed effect of the exposure of interest. Time-varying coefficient models were
used to check the assumption of a constant exposure (heat effect) over the warm
season. Indeed on the basis of an exploratory analysis (Chiogna and Gaetan 2003,
2005, Michelozzi et al. 2009), Baccini et al. (2008) specified an autoregressive struc-
ture, that has a lag of 0–3 days (Schwartz and Dockery 1992) – where observations
close in time, tend to be more correlated than more distant observations, so as to
take into account the intrasummer correlation. Michelozzi et al. (2009) also used
the model based variance estimator for the standard errors (recommended for use in
the presence of few large clusters by Diggle et al. 2002). A common city-specific
model was used. A Poisson distribution of the outcome variable was assumed (i.e.
a daily time series Poisson regression was used): including potential confounders
(e.g. in Michelozzi et al. 2009) such as holidays, day of the week and calendar
month, linear terms for barometric pressure (lag 0–3) and wind speed, and linear
and quadratic terms for time and maximum 1-hour daily value of nitrogen dioxide
(NO2) (lag 0–1).

20.8.2 Threshold-Slope Model – Large Variability Amongst
the Cities

In Baccini et al. (2008) regression cubic splines (Durrleman and Simon 1989) were
used to estimate the exposure–response relationship for each city. The exposure–
response curves of the relationship between maximum apparent temperature
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(Tappmax) (exposure) and admissions/death (response) were highly heterogeneous
between cities. In Baccini et al. (2008) exposure effects were modelled by cubic
regression splines (with 1 knot every 8◦C) and a straight line above a city-specific
threshold was utilised. Baccini et al. (2008) showed that the city-specific exposure-
response functions had a non-linear, in fact a V shape, with a change-point that
varied significantly amongst the cities. These were interpreted and modelled as
threshold-slope models, with a separate city-specific threshold temperature, after
which the outcome (deaths) increased significantly (with generally a positive slope).
The meta-analytic estimate of the threshold (maximum apparent) temperature was
29.4◦C for Mediterranean cities and 23.3◦C for north-continental cities. The esti-
mated overall change (slope) in all natural mortality associated with a 1◦C increase
in maximum apparent temperature above the city-specific threshold was 3.12%
(95% credibility interval = 0.60–5.72%) in the Mediterranean region and 1.84%
(0.06–3.64%) in the north-continental region. We note that in some sense Dose
and Menzel’s (2004) relationships between flowering and year (years from 1896
to 2002) were thresholds with a subsequent negative slope (see also Schleip et al.
2008a and Chapter 11).

By contrast in Michelozzi et al. (2009), however, two models were used
to describe the Tappmax–hospitals admission relationship. In the first model, a
semiparametric approach, that includes penalised cubic regression splines for tem-
perature, was applied to describe the exposure–response relationship. This approach
allowed modelling of the data in a flexible way without imposing a specific shape
for the exposure–response curve (Wypij 1996). The relationship was modelled using
piecewise polynomials between equally spaced breakpoints. Because no significant
threshold of Tappmax was identified in the exposure–response curves (aimed to
estimate the impact of Tappmax on admissions) Michelozzi et al. (2009) applied a
second model, assuming a log-linear increase in risk above the 90th percentile of
the distribution of Tappmax (lag 0–3) in each city. The effect was expressed as a
percent variation in daily hospital admissions for 18◦C increase in Tappmax above
this value.

20.8.3 Second Stage: Bayesian Random Effects Meta-Analysis

In the second stage, as mentioned above, city-specific results were combined via a
Bayesian random effects meta-analysis using the method described by DerSimonian
and Laird (1986). This essentially entails regressing the city-specific exposure effect
estimates (say thresholds, slopes and other regression coefficients) produced from
the first stage of the analysis, on city-specific covariates, to obtain the overall
exposure–response curve and to explore potential heterogeneity in the city-specific
curves (see also Berkey et al. 1995). Separate meta-analyses were performed for
two a priori defined geographical regions Mediterranean versus North-continental
cities: thereby providing summary estimates and reducing heterogeneity. Cities
were grouped into “Mediterranean” (Barcelona, Ljubljana, Milan, Rome, Turin, and
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Valencia) and “North-Continental” (Budapest, Dublin, London, Paris, Stockholm,
and Zurich) according to geographical and climatic criteria. City-specific effect
estimates were combined using random effects meta-analysis using the method
described by DerSimonian and Laird (1986) (see also Egger et al. 1997, 2001). For
phenological applications city can be clearly interpreted as a location (whether local
or global): exposure can be interpreted as time and/or temperature: and response can
be interpreted as phenophase etc. (Baccini et al. 2008).

20.9 Bayesian Hierarchical Distributed Lag Models – an
Epidemiological Application

Multi-site studies, which combine information from many locations by using
national or regional databases, have of late, obtained precise and consistent results
which demonstrate an adverse health effect associated with short-term exposure
to particulate matter (PM) and ozone (Peng et al. 2009). The National Morbidity,
Mortality, and Air Pollution Study in the USA and the “Air pollution and health:
a European approach” study in Europe are important exemplars of such multi-site
time series studies (Samoli et al. 2003, Bell et al. 2004, Peng et al. 2005). Also more
recently the Medicare Air Pollution Study (MCAPS) showed a strong association
between fine particulate matter (< 2.5 μm in aerodynamic diameter) and hospital-
ization for cardiovascular and respiratory diseases in 204 US counties (Dominici
et al. 2006, 2007). Most recently is the study of Peng et al. (2009) which develops
Bayesian hierarchical distributed lag models (BHDLMs) to relate particulate matter
air pollution exposure to hospitalisations for cardiovascular and respiratory diseases
(using a national US database on 3 million enrollees of the US Medicare system
living in 94 countries covering the period 1999–2002).

We believe that such newly developed BHDLMs, which Peng et al. (2009)
proves can be reformulated as penalized spline models (see also Roberts 2008)
have particular value for phenological multi-site (and multi-species) studies, where
a meta-analytic approach is needed to obtain a so-called fingerprint (across locales,
species) of change.

We briefly overview Peng et al.’s (2009) approach: showing how the Bayesian
distributed lag models (DLMs), invoked by Baccini et al. (2008) and Michelozzi
et al. (2009), extend to BHDLMs. In general DLMs are applicable where the
association between an input (or exposure) and a response (health or phenological
outcome) is anticipated to exist over multiple time points into the future. DLMs
have been used for decades in economics (Almon 1965) and have been applied more
recently in the area of environmental epidemiology. Schwartz (2000) for example
used both unconstrained and constrained (polynomial) distributed lag functions to
estimate the effects of PM on daily mortality. Zanobetti et al. (2000) extended this
work and developed the generalized additive modelling (GAM) methodology (see
Chapter 10). DLMs in air pollution and health studies have primarily been applied
to time series data at an individual location such as a county or a city. Typically, a
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DLM is fitted to the data and the estimated distributed lag function is then smoothed
across lags by using a polynomial or a non-parametric smoother (e.g. Almon 1965).

In contrast Peng et al.’s (2009) BHDLM uses a prior distribution that constrains
the time course of the short-term health effects of air pollution (exposure) and com-
bines information from multiple locations (and then performs a meta-analysis). The
model builds on the study of Welty et al. (2009), who proposed a Bayesian model
for estimating the distributed lag function in a time series study using a single loca-
tion. Welty et al. (2009) introduced a prior distribution that constrains the shape of
the distributed lag function, by allowing effects corresponding to early lags to take
a wide range of values, whilst effects at more distant lags are constrained to be near
zero and are correlated with each other. Peng et al. (2009) likewise constrains the
distributed lag function because the effects of air pollution at early lags are not well
understood – this because of the lack of knowledge about biological mechanisms
and the time course of the disease process within the population.

Competing hypotheses exist about the shape of the distributed lag function, how-
ever, all suggest that fewer constraints should be placed at early lags (Schwartz
2000, Zanobetti et al. 2002, Dominici et al. 2002b). At longer lags there are jus-
tifications for assuming that the effects of air pollution on the outcome should
approach zero smoothly. Peng et al.’s (2009) BHDLMs also further the approach
of Zanobetti et al. (2000) by smoothing distributed lag function estimates across
lags and by providing a technique by which to combine these functions across loca-
tions. Importantly Peng et al.’s (2009) hierarchical model allows for the examination
of a range of shapes in the location (county) – specific distributed lag functions. In
summary Peng et al.’s (2009) BHDLM involves the description of a specific prior
distribution for constraining the distributed lag function and proposes a hierarchical
structure for combining information about the shape of the distributed lag function
across multiple locations. A few details follow.

20.9.1 Single-Location to Across Locations: a National Across
County Averaged Distributed Lag Function µ

Peng et al.’s (2006)approach begins with a model for air pollution and hospitaliza-
tion data in a single location such as a county. This model relates day-to-day changes
in air pollution levels to day-to-day changes in rates of hospitalization for a given
county; controlling for other time varying factors that might confound the relation-
ship of interest. At the county level, Peng et al. (2009) used the log-linear Poisson
model for the county-specific hospital admissions rates and air pollution data: where
the length L vector of parameters μ is the distributed lag function and parameters
in β are nuisance parameters (see Eq. (2) Peng et al. 2009). In the county-specific
model, the random effect part Z of the model (see Eq. (2) Peng et al. 2009), incor-
porates certain time varying factors that might confound the relationship between
air pollution and hospitalization (Kelsall et al. 1997, Dominici et al. 2002a). In par-
ticular, Peng et al. (2009) include smooth functions of average daily temperature,
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dewpoint temperature and indicators for the day of the week. They also include a
smooth function of time to adjust for seasonal variation that is common to both the
air pollution and the hospitalization time series. This smooth function of time is
modelled by using natural splines and the natural spline basis is included in Z (see
also Welty and Zeger 2005 and Peng et al. 2006).

A direct extension of the single-county model would assume a common associ-
ation between air pollution and hospital admissions across counties. Rather than
assume a common association, Peng et al. (2009) let each county have its own
parameter θc, so as to allow for heterogeneity between counties. Peng et al. (2009)
assumed that each of the county-specific distributed lag functions θc is normally
distributed around a “national average” distributed lag function μ, with variance
covariance matrix constrained as described in Peng et al. (2009). The variance
covariance matrix describes the unexplained variation or heterogeneity across coun-
ties of the county-specific distributed lag functions θc. A priori it is assumed that
there will be more variation across counties in the coefficients corresponding to
early lags and less variation in the coefficients corresponding to longer lags.

Peng et al. (2006) assume that the prior distribution for the national-average-
distributed lag function μ: and importantly proved that the BHDLM can be
reformulated as a penalized spline model, where the prior distributions (in expres-
sions (5) and (6) of Peng et al. 2009) induce a special type of penalty for constraining
the county-specific distributed lag functions and combining information across
counties. This connection creates a basis for understanding the statistical properties
of Peng et al.’s (2006) approach: but also adds credibility to a unified approach to
meta-analysis for phenological studies (see the penalized spline regression approach
of Roberts (2008) and Bagnardi et al. (2004) who described fractional polynomials
and spline regression (Royston 2000), in particular random effects cubic splines, to
model non-linear exposure-response curves). The principal benefit of the DLM is its
ability to estimate the shape of the distributed lag function relating increases in expo-
sure to outcomes in short periods of time after an extreme episode. The BHDLM
provides a useful parameterization that can easily incorporate prior knowledge and
be applied to large multi-site databases. The BHDLM has clear applicability to
phenological climate change research and generally to environmental statistics. In
general, with the increasing sophistication of data (networks) and collection sys-
tems, in health and now in phenology, which provide data from multiple locations,
the applicability and relevance of the BHDLM model in phenology and climate
change research is clear

20.10 Towards a Unified Approach: Semiparametric Regression

As noted earlier the three approaches and applications to the modelling of non-linear
phenological response over time delineated above (GAMLSS, penalised spline
regression (PSR) and Bayesian nonparametric function estimation) will be linked
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to these recent epidemiological approaches (dose-response functionals, Bayesian
hierarchical meta-analysis and BHDLMs).

The meta-analytic methods proposed here for phenological synthetic studies are
all essentially based on nonparametric (Green and Silverman 1994, Eubank 1999) or
semiparametric regression (Chen and Ibrahim 2006, Ruppert et al. 2009) methods,
including the Bayesian hierarchical models (Gelman et al. 2004), the latter of which
was recently reformulated in terms of a penalised spline model by Peng et al. (2009)
(for Bayesian hierarchical distributed lag models (BHDLMs)).

Semiparametric regression (Ruppert et al. 2003, 2009) is an embellishment of
parametric regression that uses penalised spline basis functions (Harezlak et al.
2005, Pearce and Wand 2006) to achieve greater flexibility, than can be achieved
when linearity is assumed. The mixed model variants of semiparametric regres-
sion, and antecedents such as smoothing splines, have been firmly established and
have a long history (Wahba 1978, Eubank 1999). All the approaches discussed here
(spline penalized regression, fractional polynomials, spline regression. GAMLSS,
BHM and BHDLMs), apart from the nonparametric function estimation of Dose
and Menzel (2004), are so-called semiparametric regression techniques.

20.10.1 Mixed Model Approach to Semiparametric Regression:
Handling Nonparametric Functionals

Semiparametric regression techniques allow for nonlinear nonparametric function-
als, generalized scalar link functions, fixed (Xβ) and random effects (Zu) in that
most semiparamteric regression models are expressible as

E(y|u) = g(Xβ + Zu), u ∼ (0,G) (20.1)

In Eq. (20.1) g is a scalar “link” function. The fixed effects term, Xβ, handles
covariates that enter the model linearly, whereas the random effects component Zu,
with corresponding covariance matrix G, handles non-linear effects, random subject
effects and other spatial correlation structure. There will often also be other param-
eters, for example, in the variance structure (R = cov (y|u)), but we will ignore this
in the current discussion.

The hierarchical Bayesian version of (20.1), which allows for meta-analytic
approaches, takes the form

[
y|β] = f1(y;Xβ + Zu), [u|G] = f2(u;G)

[β] = f3(β;Aβ ), [G] = f4(G;AG)
(20.2)

where Aβ and AG are hyper parameters f1,. . ., f4 are fixed conditional density func-
tions and f(v|w) denotes the conditional density of v given w. Inference is based on
posterior densities for parameters of interest, in particular f(β|y), f(u|y) and f(G|y).

Noteworthy is that in the mixed model approach to semiparametric regression,
nonparametric functional relationships are handled through modelling mechanisms
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such as delineated by Eq. (1) of Samoli et al. (2005). These involve functionals
of the exposure-response relationship, so-called spline basis functions, the simplest
being so-called knots. More sophisticated spline basis functions are given in Wood
(2003), Welham et al. (2007) and Wand and Ormerod (2008). All the spline basis
functions fall under what is generally known as smoothing splines (Wahba 1990).

Recall also the P-spline signal regression (PSR) approach of Roberts (2008) (see
also Chapter 12). As noted by Roberts (2008) this approach is extendable to multi-
variate functions (time series or multiple regressors, say temperature and rainfall as
predictors of phenological response, say DOFF) by using either radial basis func-
tions (e.g. Ruppert et al. 2003, Wood 2003) or tensor products (e.g. Wood 2006).
It is noteworthy that Dose and Menzel (2004) also modelled nonparametric func-
tions using Bayesian theory. We believe that the B-splines approach as described
in Roberts (2008) could well be adapted to meta-analytic scenarios where differ-
ent vectors of climatic regressors of the preceding and current year are modelled in
relation to phenological response, say across locations. This is the topic of future
research. Multivariate adaptations of PSR are as mentioned above also plausible.
This is the topic of future research.

BHMs and BHDLMs also have clear application to phenological time series
(under the semiparametric regression paradigm) where one is interested in estimat-
ing non-linear functionals, say of a phenological response with climatic exposure
variables. This, as yet, needs to be tested and developed rigorously, and would possi-
bly require thresholds and functionals between phenological response and exposure
(heat, rain) to be derived and modelled, such that time (year) can be accommodated,
and such that random effects can be involved in the parameters delineating the so-
called “exposure” effects across locations. Essentially here we are talking about the
derivation of the pooled (across location estimates) (i.e. polled trend, pooled thresh-
olds, pooled slope, pooled lag dependency across locales/sites). This is the topic of
future work.

20.11 Discussion on Increased Statistical Sophistication

It is advocated that meta-analytic methods used only recently to account for non-
linear “dose/exposure to response” functionals in epidemiology (Bagnardi et al.
2004, Gamborg et al. 2007, Baccini et al. 2008, Peng et al. 2009) may be possibly
adapted and apply well to phenological synthetic studies. The overarching paradigm
for all the methods suggested here for modification and /or direct application to phe-
nological meta-analytic studies (except for the Bayesian approach to modelling the
nonlinear functional relationship between flowering and time of Dose and Menzel
2004) is the area of semiparametric regression. Three significant and recent meta-
analytic approaches in epidemiological research, namely dose-response functionals,
Bayesian hierarchical meta-analysis and BHDLMs, have been reviewed, which hold
much promise to further meta-analytic studies in phenology. Proof of concept is
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an important area of future research. We have also shown, via mathematical inter-
pretation and example, their inter-connectedness to the three modelling approaches
discussed earlier – GAMLSS, penalised spline regression (PSR) and Bayesian non-
parametric function estimation, all of which have been recently applied to non
meta-analytic phenological studies (Dose and Menzel 2004, Roberts 2004, Roberts
et al. 2008, Menzel 2008, Schleip et al. 2008a). Fractional polynomial or spline
regression methods could also well apply to meta-analytic studies where one mod-
elled, say, flowering versus accumulated heat (temperature exposure) over time,
where a particular temperature threshold was found or assumed. These ideas need,
however, to be rigorously tested and are the topic of new research.

In terms of meta-analytic studies, the smoothing cubic spline estimates of trend
that GAMLSS provide per time series, and of those of past regressors from PSR
could be combined to obtain an overall effect measure, traditionally used in the
meta-analytic approach. Alternatively these spline estimates could be analysed
using linear or non-linear Bayesian mixed models (meta regression). It is also
potentially possible to compare the temperatures at which the tapering off (say of
flowering) occurs across species and sites and obtain an overall estimate. These
ideas also need to be rigorously tested and demonstrated, and are the topic of future
work.

All the methods, particularly the most recent and newly developed BHDLMs
have particular value for phenological multi-site (and multi-species) studies, where
a meta-analytic approach is needed to obtain a so-called fingerprint (across locales,
species) of change. The principal benefit of the DLM is its ability to estimate the
shape of the distributed lag function relating increases in exposure to outcomes
in short periods of time after an extreme episode. The BHDLM provides a use-
ful parameterization that can easily incorporate prior knowledge and be applied to
large multi-site databases. The BHDLM has clear applicability to phenological cli-
mate change research and generally to environmental statistics per se. In general, the
increasing sophistication of data (networks) collection systems in phenology, which
provide multiple time series data from multiple locations, make the applicability and
relevance of the both the BHMs and the BHDLMs in phenology and climate change
research clear.

20.12 Conclusions

We have reviewed the general methodology of meta-analysis, assessed its advan-
tages and disadvantages, synthesized its use in global climate change phenology and
discussed future directions and importantly proposed new statistical approaches, as
yet not applied to phenological research, and only recently applied, only in part,
in the epidemiological literature. These we believe offer much promise to phenol-
ogy and climate change research. Documentation of observed changes in physical
and biological systems in tropical and subtropical regions is still, however, sparse
(Africa, South America, Australia, Southeast Asia, the Indian Ocean and some
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regions of the Pacific). Data mining of historical documents and improved observa-
tion networks are urgently needed to develop data sets and to document sensitivity
of physical and biological systems to warming in tropical and subtropical regions,
where many developing countries are located. Thereby in 20 years (but hopefully
less) we can perform meta-analytic studies to demonstrate as Rosenzweig et al.
(2008) have found, a “statistical consistency of observed changes (which are very
unlikely to be caused by natural internal variability of the systems themselves or
other driving forces) in natural systems with warming and conduct spatial analyses
that show that the agreement between the patterns of observed significant changes in
natural systems and temperature changes is very unlikely to be caused by the natural
variability of the climate.”
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Color Plates

Plate 1 Computed station effects + the general mean (day of year) based on observed budburst
dates of Beech from 1951–2004 over Germany. A Digital Elevation Model (1∗1 km in meters)
represents the topography, which considerably influences the timing of phenological phases in
spring time. Observation stations are indicated as coloured points
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512 Color Plates

Plate 2 Computed station effects + general mean (day of year) based on observed budburst
dates of Beech interpolated using External Drift Kriging (EDK). The DEM of Germany (1∗1 km)
provides the external variable.
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Plate 3 Difference of the interpolated maps: the computed station effects – observed mean
budburst dates of the respective stations



514 Color Plates

Plate 4 (a) Phenological map or thermal conditions at the Western end of Lake Neuchâtel and
the Southern slopes of the Jura Mountains (Switzerland, from Schreiber et al. 1976). Examples
of itineraries of the phenological campaign between 28th and 30th April 1962. From “7 froid” =
cold to “13 assez chaud” = rather warm. The estimated observation density for this area is about
300 m per km2. (b) Resulting thermal map after 4 seasons (1969–1973). Base map by swisstopo.
From Schreiber et al (1977), original scale 1:200,000. Reproduced by permission of swisstopo
(BA081114)
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Plate 5 Phenological map of the dandelion general bloom 1951–1990 of the same area as Plate 7
from the digital Atlas of Switzerland 2.0, Swisstopo (2003) based on conventional mapping of the
isophanes (Primault 1984), two observation stations lie within and four in the vicinity of the map
fragment. Reproduced by permission of swisstopo (BA081114)
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Plate 6 Manually drawn map of the wheat harvest 1970 in the area of the Lake of Bienne.
(a) Details of map drawing of a South-Western part of the area. Full red dots mean wheat variety
Probus, the empty ones other varieties. Isophanes indicate the date (DDMM) at 10 days interval,
dashed lines indicated uncertainties. Original scale 1:25,000, vertical interval between contours
20 m, base map by swisstopo. (b) Generalized survey, published at the scale 1:300,000, green
frame shows the area of map A. From Jeanneret 1971. Reproduced by permission of swisstopo
(BA081114)
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Plate 7 Map of the general bloom of the dandelion 1971, in an area of the western Bernese
Oberland, Switzerland (Lake of Thun and Kander valley, same area as Plate 5, top limit of the
phenology mapping at 2100 m). The map was produced with a digital terrain model with 100
m raster distance and is based on 50 observations, mostly in valleys close to cities and villages.
From Kottmann 2008, base map: Atlas of Switzerland 2.0. Reproduced by permission of swisstopo
(BA081114)
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Plate 8 Difference matrix
for the derivative method, the
threshold 50% method, the
logistic model and the
quadratic model based on
AGDD. The results fall in
two groups with the logistic
model and the quadratic
model generally finding
earlier SOS than the 50%
threshold and derivative
methods
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