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Foreword

The book has two aims:

(a) To introduce basic concepts of environmental modeling and

(b) To exercise the application of current mathematical software packages

To the target group belong all natural scientists who are dealing with the

environment: engineers from process and chemical engineering, physicists,

chemists, biologists, biochemists, hydrogeologists, geochemists, ecologists . . .!
As the book is concerned with modeling, it inevitably demands some mathemat-

ical insight. The book is designed to

1. Be a door opener to the field for novices without any background knowledge of

environmental modeling and of MATLAB®, and

2. To surprise those, who have some expertise, with advanced methods which they

have not been aware of

For this book MATLAB® was chosen as the computer tool for modeling,

because

1. It is powerful, and

2. It is available at most academic institutions, at all universities and at the research

departments of companies

Other mathematical products could have been selected from the market, which

would perform similarly well for most application problems presented in the

various chapters. But MATLAB® is rather unique in it’s strong capabilities in

numerical linear algebra.

There are 20 chapters in the book. The first chapters are concerned with

environmental processes and their simulation: (1) transport, consisting of advec-

tion, diffusion and dispersion, (2) sorption, (3) decay or degradation, (4) reaction,

either kinetic or thermodynamic. Following aim (b) there are sub-chapters inserted

for the introduction of MATLAB® modeling techniques. The first part of the book

ends with chapters on ordinary differential equations and parameter estimation

(inverse modeling).
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The second part of the book starts with chapters on flow modeling. Flow, if

present, is an important, but mostly also complex part within an environmental

compartment. Core MATLAB® allows simple flow set-ups only. Therefore the

focus is on potential flow, which has applications in hydro (water) and aero (air)-

dynamics as well as in porous media (seepage and groundwater). Concepts of

MATLAB® are deepened within these chapters. At the very end special topics

appear: image processing and geo-referencing, graphs, linear systems, the phase

space and graphical user interfaces.

Berlin
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Foreword to the Second Edition

The consistently commendatory and positive reactions that I obtained unanimously

for the first edition of ‘Environmental Modeling’ encouraged me to work on a

second improved and extended version of the book and the accompanying software,

which is available herewith. The reader may allow me to cite some surely

exaggerating voices from the Internet:

Excellent work. It will be more helpful for the younger researchers also for the sr. scientists

for understanding basics and applications of MATLAB in environmental engg. It is THE

BEST book.
I love this book, because you wrote it in a programming manner and I love programming, so

I learnt advection and diffusion excellent. Because after I read the equation I modeled it in

Matlab and saw the results. And it remains in my mind. I want to thank you because of

writing this book. It helps a lot to the students and researchers to learn environmental

modeling deeply.

Special thanks to my students at the Georg-August Universit€at, G€ottingen, and at
Freie Universit€at, Berlin, who gave me clues on how the mathematical viewpoint,

taken in this book, is conceived by an audience that is usually not especially trained

in topics as mathematical physics. Some of the improvements directly result from

the work with the students.

A new chapter was added, in which an introduction into numerical methods is

given – an important topic that was missing in the first edition, as I was told by some

readers.

Special focus has been laid to extend the capability to use ‘Environmental

Modeling’ as a reference book. The list of keywords in the MATLAB® command

index, although not covering the complete list of commands, has been extended

significantly. Personally I think that this is the major improvement in relation to the

first edition. I hope that in that way the book will help readers and modelers to

understand the commands quickly and to apply them correctly.

Final thanks to all people at the mentioned universities, the publishers at

Springer Verlag, Heidelberg, and the people of the bookprogram of MathWorks.

G€ottingen
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Preface

“Environmental Modeling using MATLAB®” by Ekkehard Holzbecher is an

excellent publication and a novel approach covering the intersection of two impor-

tant, growing worlds – the world of environmental modeling and of mathematical

software.

Environmental modeling is a science that uses mathematics and computers to

simulate physical and chemical phenomena in the environment (e.g., environmental

pollution). This science was initially based on pen-and-paper calculations using

simple equations. In the last 50 years, with the development of digital computers,

environmental models have become more and more complex, requiring often

numerical solutions for systems of partial differential equations.

Mathematical software, such as MATLAB®, has been developed in the last two

decades. These packages have been particularly successful for users of personal

computers. Mathematical software provides a set of tools for solving equations both

analytically and numerically. This is a major improvement in comparison to the

programming tools (e.g., FORTRAN) previously used by scientists. Mathematical

software offers extremely valuable and cost-effective tools that improve the pro-

ductivity of the programmer by at least an order of magnitude. The use of these

tools also minimizes the risk of programming errors. In addition, mathematical

software offers unique visualization tools that allow the user to immediately

visualize and often animate simulation results.

Scientists who become familiar with a tool like MATLAB® will never go back

to previous ways of computer programming.

The book “Environmental Modeling using MATLAB®” provides a clear, com-

prehensive, and very instructive introduction to the science of environmental

modeling, and more importantly, includes the MATLAB® codes for the actual

solutions to the environmental equations. MATLAB® codes are listed in the book

and also included as more complete versions in an attached CD1.

1 The first edition of the book included a CD. Readers of the second edition obtain the

accompanying software via Internet.
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I highly recommend this book to both beginners and expert environmental

professionals. The book will be particularly useful to those scientists who have

postponed learning and using mathematical software. This book will open a new

world to them!

Paolo Zannetti

President, The EnviroComp Institute

Editor of Book Series on Environmental Modeling
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Part I

Primer to Modeling with MATLAB®



Chapter 1

Introduction

1.1 Environmental Modeling Using MATLAB®

There are various types of models in the environmental sciences, and surely there is

no unique opinion about the essence of an environmental model. Differences may

mainly concern the scope of the models and the modeling methods. Concerning the

scope, this book is relatively open; i.e. examples from different branches of

environmental science and technology are included, mainly from the hydrosphere

and the geosphere, and also from the biosphere and the atmosphere. However, the

examples are selected for demonstration purposes and can in no way represent the

vast variety of phenomena and approaches, which can be met in publications and

studies of all types of environmental systems.

Concerning the methods, the book does not represent the entire field either.

In this book modeling is process-oriented and deterministic. These two terms

characterize almost all presented methods, which, according to many opinions,

represent the most important approach to understand environmental systems. There

are environmental problems, for which other approaches not tackled here work

more successfully. Statistical or stochastic methods are not mentioned, for example.

Data processing, either graphical or numerical, as for example in Geo-Information

Systems (GIS), appears rudimentary in this book.

Processes are in the focus of the presented approach. In the modeling concept of

this book processes can be of physical, chemical or biological nature. The repro-

duction of biological species is a process, death is another; degradation of biochem-

ical species, or decay of radioactive species are other examples. Some relevant

processes are explained in detail: diffusion, dispersion, advection, sorption,

reactions, kinetic and/or thermodynamic and others.

A view into journal or book publications shows that models of the treated

kind, process-oriented and deterministic, are applied to different environmental

compartments, to different phases and to different scales, as well as to multi-phase

and multi-scale problems. There are models of the entire globe, of earth atmosphere

and oceans, of the global atmosphere, of the sea, of rivers, lakes and glaciers, of
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watersheds, of the soil, of terrestrial or aquatic sediments, of aquifers, and of parts

of streams, and so forth. There are models of technical devices for environmental

purposes, in addition. Experimental set-ups in laboratories are simulated in order

to understand relevant processes.

The methods presented in this book are deterministic, throughout. A search for

any statistics would be in vain. The description of processes is translated into

mathematical terms. Often the approach leads to differential equations, which are

conditions concerning the change of a variable, like concentration or population

density, in space and time. Nowadays the solution of such equations is not as

tedious as in former times. Using core MATLAB®, problems in 0 and 1 space

dimensions can be solved comfortably. Core MATLAB® is also convenient for

solving 2 and 3-dimensional problems with analytical solutions. For more complex

modeling in more than one dimension, toolboxes, especially the MATLAB® partial

differential toolbox, can be recommended.

The aim of the book is to introduce basic concepts of environmental modeling.

Starting from basic concepts the problems are transformed into mathematical

formulations. Strategies for the solution of the mathematical problems on the com-

puter are outlined. The main aim of the book is to communicate the entire path of such

a modeling approach. At some points algorithmic details will be omitted for the

general aim. Who is interested strictly in computer algorithms, will be better served

with a book on numerics, applied mathematics or computational methods. It is

important that the modeler has a basic understanding of the underlying numerics.

There is no need, however, to dive so deep into the algorithms that one would be able

to program them oneself. In fact, it is an advantage of the chosen software that

modeling tasks, which could be handled only by people with profound programming

knowledge and skills, become now available to a wider audience.

Who is addressed? In a broader sense everyone is addressed, who is dealing with

or is interested in the simulation of environmental systems on a computer. In

a considerable part of the book concepts of environmental modeling are introduced,

starting from basic principles, tackling differential equations and numerical

solutions. In another similarly big part of the book special implementations are

introduced and described. If someone is very familiar with another mathematical

software, the book may be of help too, as most of the described models can also be

realized using other maths computer programs.

There are several good and excellent books on environmental modeling and on

MATLAB®. Richter (1985) deals with ecological systems and with time

dependencies (but no space dependencies), as well as Deaton and Winebrake

(1999) using STELLA®.1 Shampine et al. (2003) also present MATLAB®
modeling of ordinary differential equations; concerning applications they do not

address environmental modeling particularly; concerning methods, they do not

address partial differential equations. Gander and Hrebicek (1997) offer little to

1 See: http://www.iseesystems.com/.
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the specialized environmental modeler, although some of the presented mathemat-

ical tools could be applied to environmental problems. Christakos et al. (2002)

focus on the connection of time dependent simulation and GIS using MATLAB®.

McCuen (2002) treats statistical methods (which do not appear here) for modeling

hydrologic change. Cantrell and Cosner (2003) examine spatial ecology via reac-

tion-diffusion models, without reference to any specific software package. Lynch

(2005) addresses scientists and engineers in his general introduction to numerical

methods without preference for any specific software and with few references to

applied environmental modeling. In his introduction to MATLAB® Kiusalaas

(2005) addresses engineers in general. The topic of Zimmerman (2004) is chemical

process simulation using FEMLAB2 code. Hornberger and Wiberg (2005) have the

hydrologist’s perspective on numerical methods. Trauth (2010) focuses on image-

and data-processing, as well as statistical methods for geoscientists. Finlayson

(2006) deals with the chemical aspects and gives an introduction to MATLAB®
as one of several modeling tools. All these books3 differ concerning scope and

methods; and none of them has the same constellation of scope and methods, as it is

presented in this book.

The book is divided into 20 chapters which differ concerning scope and com-

plexity. The first ten chapters form a primer on fundamental concepts and basic

environmental modeling. All of themodel examples presented are 0- or 1-dimensional.

In the further ten chapters more complex models, as for example spatial 2D, are

outlined with an explanation of the underlying methods. Concepts of flow modeling

are introduced.

In this book the focus on basic ‘core’ MATLAB®4 is intended. There is the hope

to address a wider audience, as not all readers may have access to the complete palette

of MATLAB® toolboxes. On the other hand, there are lots of powerful commands

in core MATLAB® and novice users might be confused being confronted with

more specialized tools. It turns out that this is not a severe restriction, as most basic

tasks, which are of interest to the environmental modeler, can be performed using

core MATLAB®. For advanced higher dimensional and coupled problems the

MATLAB® partial differential equation toolbox has to be used, or COMSOL

Multiphysics alternatively. COMSOL has developed a multi-physics software envi-

ronment, which can be applied with MATLAB® in the background.

Although other mathematical codes have developed a similar extension from

a special purpose module to a toolbox for mathematical calculations in general,

matrix manipulation is the backbone and stronghold of the MATLAB® package

2Now COMSOL; see: http://www.comsol.com/.
3 There are numerous other books on MATLAB®, which could not all be checked by the author.

The reader can get a list on the MathWorks Website http://www.mathworks.com/support/books.
4 For this book we mainly used the most up-to-date version of MATLAB®. The latest version was
release R2011b. However, there are some references back to version 7 that was used in the first

edition of the book. Most of the commands described in the book should work equally independent

of the MATLAB® version.

1.1 Environmental Modeling Using MATLAB® 5

http://www.comsol.com/
http://www.mathworks.com/support/books


and explains its strong competitiveness. Therefore Sect. 1.2 gives a brief reminder

of basic matrix operations.

The book is accompanied by software containing advanced and final versions of

the program files described in the text. The Mathworks logo

appears where MATLAB® files of the accompanying software are referenced.

The terms ‘modeling’ and ‘simulation’ are synonymously in the concerned scien-

tific and technical literature. However, the term ‘model’ appears to be more general,

encompassing all types of attempts to capture one or more aspects of a real system,

and is therefore preferred in this book. The term ‘simulation’ also fits to the

presented approach, as it suggests that processes which are relevant for the behavior

of a system are included in the computer simulation. In the sequel the term is used

for time-dependent dynamics.

The book contains relatively simple models throughout. It is not the case that

complex models constructed by MATLAB® don’t exist, but they are not appropri-

ate for an introduction into modeling techniques. For such an aim models should be

as simple as possible, even more, when novice modelers are addressed.

Usually the extensive work with a model leads to renewed extensions, which

turn simple models into complex ones almost as a rule. Not all models are improved

by doing this. Jørgensen (1994) envisages the connection between model complex-

ity and knowledge, gained by the model, as shown in Fig. 1.1. Simple models can be

improved by extensions, but there is a certain peak position after which further

extensions do not add to the knowledge – rather quite the contrary. An improved

model design increases the quality of the model (lets take gained knowledge as

a quality measure), but further extensions of the improved model may finally lead to

a situation in which the increase of model complexity is counter-productive.

The model evaluation study of Constanza and Sklar (1985) provides a plot

similar to Fig. 1.1, but with ‘articulation’ on the x-axis and ‘effectiveness’ on the

0
0

complexity

knowledge
reference
improved

Fig. 1.1 Model evaluation:

knowledge gained vs.

complexity
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y-axis. Chwif and Barretto (2000) envisage a similar picture, putting ‘level of

detail’ on the x-axis and ‘model confidence’ on the y-axis. All these terms can be

taken as different terms for the complexity of a model on one side and its perfor-

mance on the other side.

The method, how to construct complex models, is another topic which is left out

in the book. The major drawback of complex models is the increased number of

parameters, sometimes to a drastical extend. The situation may be worsened by the

fact that many new parameters are usually difficult to obtain or have to be deter-

mined by parameter estimation runs with the model. Another drawback may

appear, if the model becomes very sensitive to one or more parameters, i.e. that

relatively small changes of a parameter induce a tremendous effect on the output

results. A complex model which depends sensitively on numerous unknown

parameters can surely not be used as a predictive tool.

However, complex models have their justification. Whether they can be success-

ful also depends on the architecture, design and construction itself, especially on the

analytical and/or numerical techniques.

A complex model concerning sediment phosphorus and nitrogen processes is

presented by Harper (2000): the SNAPP model is constructed in MATLAB® and

contains even a graphical user interface. As another example Luff et al. (2001)

present a MATLAB library to calculate pH distributions in marine systems.

Kumblad et al. (2003) construct an ecosystem model of the environmental transport

and fate of carbon-14 in a bay of the Baltic Sea, just to give another example.

A complex MATLAB® surface fluid flow model for rivers, streams and estuaries is

presented by Martin and Gorelick (2005).

It is not the aim of modeling to set up complex models. The opposite of that

statement is a more suitable goal: the aim of modeling is to find simple models that

explain some aspects of a real system. Unfortunately that aim turns out to be

a tricky one, because every real system appears to be complex, as long as there is

ample knowledge about the driving mechanisms. Moreover, if a system is complex,

a simple model can explain a few aspects at the most and that may not be enough to

solve a real problem.

1.2 Introduction to MATLAB®

MATLAB® is a mathematical software, originated and mainly developed by

mathematicians (Moler 2004). The name envisages a laboratory for matrix

calculations, where the mathematical term of a matrix refers to an array of numbers

such as

A ¼ 1 2

3 4

� �
(1.1)
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Linear algebra is the name of the mathematical field in which calculations with

matrices are treated. Some basic terms are listed in the appendix of this chapter.

While MATLAB®was designed for numerical linear algebra in the beginning, it

has become a tool for all types of mathematical calculations in the meantime.

Nowadays, MATLAB® has been applied in nearly every field of scientific or

technical calculations. In the academic branch there is almost no university where

MATLAB® is not available.

With MATLAB® innumerable types of mathematical operations can be

performed. Of course, numerous linear algebra calculations are available, such as

inversion of matrices, eigenvalue and eigenvector determination, which can be

applied to perform various tasks, for example, the solution of systems of linear

equations. One may perform basic statistics, numerical differentiation and integra-

tion, evaluate all types of functions, solve dynamical systems and partial differen-

tial equations, estimate parameters and so forth. All this is part of core MATLAB®,

a collection of basic mathematical tools.5

Before some details of linear algebra are examined, an introduction into the

work with MATLAB® is necessary. This should be read by novices, but can be

skipped by those who have already worked with the program.

1.2.1 Getting Started with MATLAB®

When MATLAB® is opened, the user obtains a graphical user interface on the

display, as it is shown in Fig. 1.2, containing several windows. The main window,

to start with, is the ‘CommandWindow’, where commands are given and answered.

In the command window the MATLAB® prompt ‘>>’ stands at the position where

the user command is shown on the display, during and after entering.

In order to start type the command:

Press the return button and the program gives an answer, here with the informa-

tion that a variable a was created in the machine containing the value 2:

A new prompt appears after the answer of the system, in order to enable the user to

give the next command. Note that only the line after the last prompt in the command

window can be used for a new command. The former lines remain in the command

5Core MATLAB® can be extended by numerous toolboxes for special purposes, for details see:

http://www.mathworks.com/products/. Most interesting for environmental modelling, as it is

treated here, are the optimization toolbox and the partial differential equations toolbox.
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window to allow the user to have an overview on the previous work and the produced

answers. Confirm that the ; as closing character of the command, for example

prevents that the answer is shown in the command window. Variables and their

values are stored during a session, if you do not chose to delete them. As we can

work with these variables as we want, we can imagine easily that the mathematical

software offers a lot more than a simple calculator.

Variable names may be quite long. Type

(and enter) to see what is the limit on your installation. Also note that MATLAB®
is case-sensitive: in general C is not the same as c. As you see, several variables are

predefined and may better not be used. A very prominent example is:

Try also:

to learn that MATLAB® works with imaginary numbers, with the imaginary

unit i as
ffiffiffiffiffiffiffi�1p

. In order to check this, try:

Fig. 1.2 Appearance of MATLAB® graphical user interface
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sqrt stands for ‘square root’ and is a reserved name for a function – more about

functions later.

With MATLAB® you can enter operations that are not allowed according to

school mathematics:

If there is not a warning, as shown, on your computer, switch on the warning

option, by:

Note that Inf is the value of the ‘ans’ variable. Infinity is thus a value and be

used as such:

or:

but:

NaN stands for ‘Not a Number’; remember that1=1 has no unique value. Try

also the following expressions:

Standard output has few significant digits. With

one can switch to a representation with more digits. Try it with pi now! Note

that this concerns only how values are displayed on the screen. Internally the
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default data type is ‘double.’ It corresponds to a 64 bit6 representation on

most computers, in contrast to ‘single’ or ‘float,’ which corresponds to a 32 bit

representation only.

The data type of a variable can be asked for by the ‘class’ command. Example:

what is the data type of pi?

You convert from default double to float using the ‘single’ command:

Note that there are eight significant digits. That holds for all singles, as will

become clear soon. Example:

From the MATLAB® response observe that the number consists of two parts:

the significant or mantissa (in front of the ‘e’) and the exponent (behind the ‘e’). The

‘e’ obviously indicates the start of the exponent. All doubles or singles are

represented this way. Thus it is clear that

or:

Internally both the mantissa and the exponent are stored as binary numbers, i.e.

represented not to the basis 10, but to the basis 2. This is nearby, as the binary

system knows only 0 and 1 as digits, which corresponds to the two states of a bit.

Real numbers are represented on the computer internally by floating point numbers

of different type; most important are the just mentioned double and single.
MATLAB® constructs the single and double data type according to IEEE7

Standard 754. A single is stored in 32 bits. Any value stored as a double requires

64 bits, formatted as shown in the Table 1.1:

6 A binary digit on a computer, which can take only two states: 0 or 1.
7 Institute of Electrical and Electronics Engineers.
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Every number that has more than 53 binary digits, which corresponds to 17

decimal digits,8 can not be represented exactly on a computer, as a double. Note that

53 binary digits are considered although the significant requires 52 bits only. This is

due to the convention that every number is converted to a form which has a single

non-zero digit in front of the dot. Example: 0.01 is represented as 1:0 � 10�2 in the

decimal system, but as 1.10011001100110011001101�2�4 in the binary system on

the computer.

As there is only one non-zero number in the binary system (1), the first signifi-

cant digit is always the same and does not have to be considered in the number

representation. The idea goes back the very early days of computers, when it was

already utilized by Zuse.9

We have to realize that despite of its enormous computation capacity numbers

can only be represented with a certain accuracy. Only certain numbers are

represented exactly. An accuracy measure is given by the distance from 1.0 to

the next largest double-precision number, that is 2�52 and is called within

MATLAB® as

Due to rounding the error of a result after mathematical operations may be

significantly below the 17-digit limit for doubles, resp. the 8-digit limit for singles.

We will demonstrate this in the following exercise. Numbers represented exactly in

the decimal system, may be represented with an error in the binary system

(Table 1.2).

Table 1.1 Bit usage for

double
Bits Usage

63 Sign (0 ¼ positive, 1 ¼ negative)

62 to 52 Exponent, biased by 1,023

51 to 0 Fraction f of the number 1.f

Table 1.2 Standard operator

symbols
Symbol Operation

+ Addition

� Subtraction

* Multiplication

/ Division

^ Power

( ) Specify evaluation order

8 For the conversion recall that 210 ¼ 1024 � 103.
9 Konrad Zuse (1910–1995), German computer pioneer.
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Due to the limited number of digits in the exponent there are minimum and

maximum positive and negative numbers, that are not �1 or � 0. From the 11

bits for the exponent one is needed for the sign, leaving the range to represent

210 � 1,024 numbers, i.e. from 0 to 1,023. The MATLAB® functions realmax and

realmin return the maximum and minimum values that you can represent with the

double data type. The range for double is �1.79769e+308 to �2.22507e�308 and

2.22507e�308 to 1.79769e+308. For further characteristics of floating point num-

bers see the following Table 1.3.

The command window is good for an introduction into MATLAB®. Finally, the

work with M-files replaces extensive operating in the command window (see

Chapter 2.5). Nevertheless, for certain tasks, the command window will remain

the most direct and simple way to compute with MATLAB®.

Aside from the command window, the user may select numerous other views of

the desktop. The different options are depicted in Fig. 1.3. Very important is the

workspace view, where all variables of the current session are visible and directly

available. The workspace of the just started session, shown in Fig. 1.2, is depicted

on the left side of the figure. The workspace appears only if the view is selected in

the ‘Desktop’ submenu, as shown in Fig. 1.3. Using who or whos in the command

window is an alternative way to access the workspace (and its contents).

Here, a is the only variable in the workspace which is of ‘double’ type and of

1�1 size (a single variable and not a ‘real’ matrix). A double-click on the block-

panel symbol, left of the variable name in the workspace, delivers an array editor, in

which the contents of variables can be viewed directly. In the simple example case

the result is given in Fig. 1.4. With the array editor it is not only possible to view

variables, but also to change them. The user can easily explore the use of the editor

on her/his own.

To mention is the ‘command history’ view, in which all commands are listed. An

example with one command only is depicted in Fig. 1.5. The user can initiate the

repeated command, mostly with some workspace variables changed, by double-

click in the command history window. This is a shortcut to the alternative method to

Table 1.3 Number representation in MATLAB®

Characteristics Double Single

Storage [bits] 64 32

Storage [byte] 8 4

Mantissa storage incl. sign [bits] 53 24

Exponent storage incl. sign [bits] 11 8

Max. significant decimals, mantissa 16 8

Max. significant decimals, exponent 3 2

Max. exponent of binaries 1,023 127

Min. exponent of binaries �1,022 �126
Maximum float (absolute value) 1.7977�10308 3.4028�1038
Minimum float (absolute value) 2.2251�10�308 1.1755�10�38
Machine accuracy (of 1) 2.2204�10�16 1.1921�10�7

1.2 Introduction to MATLAB® 13



Fig. 1.3 Submenu-entries of desktop main entry, listing all possible views of the desktop

Fig. 1.4 MATLAB® array editor
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copy a former command in the history view and to paste it in the command window.

The user may wish to perform some alterations in the command and can do that

easily, before the command is executed after pressing the return button.

In the command window the up-arrow and down-arrow keys of the keyboards

offer an alternative, allowing a sequential loop through former commands.

1.2.2 Matrices in MATLAB®

The name ‘MATLAB’ is a combination of ‘matrix’ and ‘laboratory.’ With respect

to the suite of various mathematical tools, which are made available by recent

versions of the software, one might think the origin of the MATLAB® software is

numerical linear algebra. A comprehensive treatment of matrix algebra is given by

Robbin (1995).

A matrix is a 2-dimensional array of numbers, for which examples are given

right below. Matrices can be specified directly by the user. Entries in lines are

separated by blanks; lines are separated by ‘;’.

The example matrix has two rows and three columns. Matrix dimensions are

2 and 3. A is a 2 � 3 matrix. It is thus non-square, as a square matrix has the same

number of rows and columns. Once a matrix is constructed, its elements can be

called by using usual round brackets, which is exemplified by:

The element in the second row and first column of A is 4. The first counting

index is 1, in contrast to conventions in other programming languages.

Fig. 1.5 MATLAB® command history view
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As no variable is used in the command, MATLAB® uses the notation ans ¼ in

order to indicate an answer to the given command. Sub-matrices of a matrix can be

called by using ‘:’, as the following example illustrates:

Elements in the second line, second and third column are given in the answer.

The ‘:’ without any numbers is used to indicate the entire range. In the example, the

entire first column of A is given

There are several special commands to input special types of matrices.

Vectors are multi-element matrices, for which either the number of rows or the

number of columns is 1. Row vectors with constant increment can be specified

as follows:

v is a row vector, containing all values between 2 and 5 with increment 0.5.10

A column can easily be obtained by using the transponation operation, which in

MATLAB® is performed by the ':

10 The comma in common numbers is a dot in all mathematics software products, thus also in

MATLAB®.
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The last element of a vector can also be reached by using the end keyword

in the following way:

or

The size of a matrix, i.e. the numbers of columns and rows, is given by the size

command:

length returns the bigger of both:

The empty array is specified by:

Matrices containing 1s are given by:

Matrices containing zeros are produced analogously:

1.2 Introduction to MATLAB® 17



How matrices containing a constant, different from 0 and 1, can be obtained

easily, is demonstrated by the following command:

The ones–matrix is multiplied by a single value, a so called scalar, here 4.5.

The * stands for multiplication. As will be explained in more details in the next

Section, there are several multiplication operations in linear algebra and in

MATLAB®. In the previous command line the * stands for scalar multiplication,
where all elements of the matrix are multiplied by the same scalar value.

The command for random matrices is

Random values between 0 and 1 are entries of the matrix. If there is only one

integer argument in the preceding matrix types, a square matrix results:

As mentioned above matrices are 2-dimensional arrays. Single numbers can be

regarded as 1-dimensional arrays. MATLAB® can, of course, handle arrays of

higher dimensions. We demonstrate this by introducing the randn command:

which is a 3-dimensional array of random numbers with mean value m ¼ 0 and

standard deviation s ¼ 1. In the same manner, all previous matrix generating

commands can be applied to obtain higher dimensional arrays if the number of

arguments in the call exceeds 2. Multi-dimensional arrays can be viewed using the

array editor, but they cannot be edited within the editor. In order to do this,
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address single elements from the command window, or specify 2-dimensional

sub-arrays:

and edit those.

1.2.3 Basic Matrix Operations

It is expected that readers are already familiar with matrix operations and basics of

linear algebra. The purpose of the following is (1) to be a reminder for those, to

whom matrices are not (yet) part of daily practice and (2) to introduce the notation

used in the following chapters of this book.

A matrix is a 2-dimensional array of numbers. A matrix has a certain number of

lines and columns, and the single numbers in the matrix are called elements

(sometimes the term ‘entries’ is used here as alternative). The matrix in (1.1) has

two lines and two columns, and the element in the second line and first column is 3.

A single number can be conceived as special case of a matrix with one line and one

column. Thus matrix algebra is a generalization of the usual calculations with single

numbers. However, in order to distinguish ‘real’ arrays from single numbers, bold

letters are used for matrices and vectors.11

Basic operations as known from single numbers can be generalized for matrices.

Matrices can be added. The sum of the matrices A and B

A ¼
a11 a12 ::: a1m
a21 a22 ::: a2m
::: ::: ::: :::
an1 an2 ::: anm

0
BB@

1
CCA and B ¼

b11 b12 ::: b1m
b21 b22 ::: b2m
::: ::: ::: :::
bn1 bn2 ::: bnm

0
BB@

1
CCA (1.2)

is given by:

Aþ B ¼
a11 þ b11 a12 þ b12 ::: a1m þ b1m
a21 þ b21 a22 þ b22 ::: a2m þ b2m

::: ::: ::: :::
an1 þ bn1 an2 þ bn2 ::: anm þ bnm

0
BB@

1
CCA (1.3)

In order to add two matrices, both need to have the same number of lines and

columns. In each element of the matrix A + B, the sum of the corresponding

elements of A and B appears. One may also say that in order to obtain the element

11A vector is a matrix consisting of one line or one column only. Terms as line-vectors or column-

vectors are used, too.
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in the i-th row and j-th column of A + B, the elements in the i-th row and j-th

column of A and B have to be added:

Aþ Bð Þij ¼ aij þ bij (1.4)

Example in MATLAB®:

When the number of columns or the number of lines do not coincide,

MATLAB® produces an error:

Clearly the subtraction of matrices is defined analogously. One may also for-

mally introduce subtraction by the definition that subtraction of B is the addition of

–B. As one may expect –B contains the negative of the elements of B and is the

inverse of B with respect to the addition operation. The generalizations of matrix

multiplication and division are slightly more complex.

It was already mentioned that there are several multiplication operations. Corre-

spondingly there are several division operations. Aside from scalar multiplication,

there are several matrix multiplications. The standard matrix multiplication for the

two matrices A and B, given by

A ¼
a11 a12 ::: a1k
a21 a22 ::: a2k
::: ::: ::: :::
an1 an2 ::: ank

0
BB@

1
CCA and B ¼

b11 b12 ::: b1m
b21 b22 ::: b2m
::: ::: ::: :::
bk1 bk2 ::: bkm

0
BB@

1
CCA (1.5)

in order to obtain a new matrix A � B, is defined by the following formula:

A � Bð Þij ¼
Xk
l¼1

aikbkj (1.6)

This is a formula for the element in the i-th row and j-th column of the matrixAB.

Matrices can be multiplied if the first matrix has the same number of columns as the

second matrix has columns (inner dimension). In formula (1.6) that number is k.
Elements in lines of the first matrix are multiplied with columns of the secondmatrix,

and the products are summed in order to obtain an entry in the result matrix A � B.
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Example in MATLAB:

If the inner dimensions of the matrices do not agree an error message results.

Matrix multiplication is a generalization of the multiplication of single numbers.

Clearly, if the productA � B is possible, the product B � A is only possible ifA and B

are square matrices. Even then the identity A � B ¼ B � Ais not valid generally (see

exercises below).

The multiplication, described by formula (1.6), is the standard multiplication of

matrices, denoted by a 0 �0 -dot in the formulae and by a * in MATLAB®
commands. Analogously to the definition of addition, given in (1.4), there exists

also an element-wise multiplication:

A � Bð Þij ¼ aijbij (1.7)

In order to perform this multiplication, matrices A and B need to have the same

number of rows and columns. In formulae element-wise multiplication is denoted

by .* in MATLAB® commands, distinguishing element-wise operation from the

standard matrix multiplication. In formulae we use the ‘�’-dot or omit the operator

symbol entirely. There are scalar multiplication and vector product as further

operations which are explained below.

Division of matrices can be defined for both multiplications. To start with the

simple case: element-wise division is performed with element values. In

MATLAB® element-wise division is denoted by ./. Element-wise division with

the same matrix delivers a matrix containing 1 in each entry, which is the unit

matrix with respect to element-wise multiplication.

Example in MATLAB®:

Obviously, in three entries the element-wise division is performed. In the second

entry of the first row Inf stands for infinity, which is the result of a division by

zero.12

12 In contrast to school knowledge, division by zero is allowed in MATLAB®. The result is

infinity. MATLAB® shows a warning (but no error) in order to remind the user that such an

operation may result in some errors in further operations.
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Example in MATLAB®:

The matrix with entries 1 everywhere is the unit matrix of pointwise matrix

multiplication.

The unit matrix with respect to matrix multiplication is given by:

I ¼
1 0 ::: 0

0 1 ::: 0

::: ::: ::: :::
0 0 ::: 1

0
BB@

1
CCA (1.8)

This matrix is a diagonal matrix, as there are non-zero elements only in the main

diagonal from the top left to the bottom right. The unit matrix within the matrix

algebra corresponds to the 1 in usual multiplications using single numbers. In

MATLAB® it is delivered by the eye-command. eye(n) produces the unit matrix

with n lines and n columns.

Formally, the division can be introduced similarly to the definition of subtraction

given above: division by B is the multiplication with the inverse of B, denoted as

B�1 in mathematical notation. In MATLAB®, the inverse of a matrix is denoted as

inv(B) and is defined by the formula:

B � B�1 ¼ I (1.9)

It can be checked easily that the matrix multiplication in (1.9) can only be

performed for square matrices B. However, this is not the only requirement; the

matrix needs to be regular in order to be invertible. The regularity of matrices is a

standard topic in textbooks on linear algebra and will thus not be deepened here.

Matrices for which no inverse exists are also denoted as singular.
The inverse of a matrix is unique, i.e. there is only one matrix with the property

(1.9). If the matrix B is regular, the division is defined by the expression A � B�1.
Example in MATLAB®:
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X is the solution of the linear systemXA ¼ B. The MATLAB® user will usually

use the /-operator for the same expression: B/A. However, the division procedure is

not unique, because matrix multiplication does not have the commutation property

to which we are used to from calculating with single numbers (see exercise below).

There are two types of divisions depending on the order in which the product is

performed. The / operator has to be used if A�1 is the second operator; if A�1 is the
first operator, the \ (backslash) is necessary.

Example in MATLAB: instead of the expression inv(A)*B one may use:

Y is the solution of the linear system A � X ¼ B. One speaks of left-division for

the latter case and of right-division’ in the former case. Both division operators can

also be used for non-square matrices (see Sidebar 1.1).

The power operation is defined for matrices as well. There is a power operator

for matrix multiplication and another for pointwise operation. In MATLAB® these

are written by ^ for matrix multiplication and .^ for pointwise multiplication. In

formulae the power notation is used for matrix multiplication.

Example in MATLAB®:

It was already mentioned that matrices can be multiplied by a single number, by

a so-called scalar. The scalar multiplication is demonstrated by the example:

All elements of the matrix are multiplied by the scalar. Note that in MATLAB®
the * is also used for scalar multiplication. MATLAB® distinguishes between

scalar multiplication and standard matrix multiplication automatically (both are

written by the same * operator). The type of the operands gives the unique clue

which of both operations is meant. From the dimension of the operators the program

finds out, whether matrix or scalar multiplication is meant. In formulae we will

usually use no symbol to indicate scalar multiplication. Sometimes we use the ‘�’ in
formulae in order to separate the factors.
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Moreover the well-known function sin, cos, exp can be performed on matrices.

The exponential function of a matrix is based on the formula

expðAÞ ¼
X1
i¼0

1

i!
Ai (1.10)

in which the powers of A are performed with matrix multiplication. Try:

Sidebar 1.1: Over- and Underdetermined Systems

Both divisions, / and \ , are also possible for non-square matrices. In the latter

case the linear system A � X ¼ B is over- or underdetermined. In the case of

an overdetermined system the equations usually can not be fulfilled exactly.

Then the solutionX is computed in the sense of least square minimization, i.e.

X minimises the expression A � X� B. In the following example the right

side of the system is a column vector b: The solution x is also a column

vector.

The solution of the overdetermined system A � x ¼ b is given in the

MATLAB® answer. The second part of the answer gives the deviation in

each of the three elements. The example can be interpreted as linear curve

fitting on three given points (see graphic). For such a task the user may also

use the polynomial curve fitting tool of MATLAB®, which is introduced in

Chap. 10. As an exercise, the novice may confirm the obtained result for x by

using the graphical user interface tool.

The division operator can also be applied for underdetermined systems

A � X ¼ B, where the number of columns ofA exceeds the number of rows. In

that case the solution is usually not unique, and MATLAB® delivers just one

solution.

24 1 Introduction



Exercises.

1. Find an example to show that the commutation-propertyA � B ¼ B � A, which is
valid for single numbers, is not valid for matrix multiplication! Take care that A

andB are squarematrices of the same size. Is it valid for pointwisemultiplication?

2. Confirm by random matrices the validity of the following identities:

Aþ Bð Þ � C ¼ A � Cþ B � C
C � Aþ Bð Þ ¼ C � Aþ C � B
A � Bð Þ � C ¼ A � B � Cð Þ
A � Bð Þ�1 ¼ B�1 � A�1

A�1
� ��1 ¼ A

A � cBð Þ ¼ c A � Bð Þ ¼ cAð Þ � B
3. Find the inverse of the following matrices:

1 3

4 5

� �
1 2

4 8

� �

4. Confirm by random matrices and some integer values of p and q the validity of
the following identity:

Apþq ¼ Ap � Aq

1.3 A Simple Environmental Model

A simple example may illustrate the methodology used in this book. As an

introductory simple situation consider the population of a biological species,

which is denoted by c. As a first approach it seems reasonable that the number of

children increases with the population. The number of children stands for

the reproduction rate of the species, denoted as @c=@t, the temporal change of the

population at each time instant. For the sake of simplicity one may consider that the

reproduction rate is proportional to c:

@c

@t
/ c (1.11)
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When the proportionality factor is denoted by a, the same relation is expressed

by the equation

@c

@t
¼ ac (1.12)

which is a differential equation for the population c as a function of time t. With

(1.12) the first task in modeling is already performed. The conceptual model,

the proportionality relationship, is expressed as a differential equation. In this

book differential equations are derived for various different processes in differ-

ent environmental compartments. The user is led from a conceptual model

concerning processes to the mathematical formulation of one or more differential

equations.

This task is completed with the formulation of the initial condition: at time t ¼ 0

the population has the value c0, or:

cðt ¼ 0Þ ¼ c0 (1.13)

The second step of modeling is the solution of the differential equation under

consideration of the boundary condition. There are several different means to do

that. For simple equations the solution can be written explicitly in a formula, here:

cðtÞ ¼ c0 expðatÞ (1.14)

The given exponential function fulfils both requirements. In MATLAB® the

formula can be evaluated and plotted directly. The following commands need to be

given in the command window (Fig. 1.6):

The concentration obviously increases by a factor of 2.8 during the time period

of length 1. Before continuing let us have a short view on the commands given

above. The first two commands specify the parameters a and c0. The third command

defines the vector t, containing 11 elements: 0, 0.1, 0.2, . . ., 1. Note that

MATLAB® prints the vector into the command window when the semicolon at

the end of the line is omitted. The fourth command initiates several tasks. At first

the vector t is multiplied by the parameter value of alpha. The result of this scalar

multiplication is again a vector (see Sect. 1.2). As a next task, the exponential

function is calculated for that vector. The command for the exponential function is:
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exp. This again is a vector. It is the strength of MATLAB® that functions are

defined on matrices. The result of the exponential operation is multiplied by c0 -

again by scalar multiplication – and stored in the vector f.

Finally, the plot command yields the graphical representation: the t vector is

used on the x-axis, and the vector f on the y-axis. The plot is depicted in a new

window on the display, the figure editor. More details of the figure editor are given

in the next Section.

In many cases the solution can not be expressed by an explicit formula like in

(1.14). For that situation MATLAB® offers a command for the numerical

solution, which is the approximate solution derived by a computational algo-

rithm. For ordinary differential equations there are several ode-commands, for

partial differential equations it is the pdepe-command. Both situations will be

explained in detail below. In addition, it is possible for the modeler to construct a

numerical solver oneself. For that more challenging strategy examples will be

given, too.

Usually the modeling is not complete with the second step. The third step of

modeling is the evaluation of the results, which one may also call post-processing.

Examples are simple calculations of derivative variables. In the given example one

may be interested in the growth rate at the 10 time periods between the time

instances, given by the vector f. This can simply be evaluated by using the diff

– command

Looking at the development of real species in the real world, the simple

expression (1.12) turns out to be too simplistic to describe the observed behavior.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Fig. 1.6 MATLAB® figure; first example
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However, it may be sufficient for certain populations for certain time periods. The

most obvious flaw of the model is that it allows the population to increase beyond

any arbitrary margin, provided the time period is long enough. Of course this is

impossible: as soon as a certain high population density will be reached, conditions

will turn to become increasingly unfavourable and the reproduction rate will

become smaller than assumed by the linear approach. Extended model approaches,

which take a carrying capacity into account, will be presented in Chap. 19.

Let’s examine the situation in which the proportionality constant in the example

given above is lower than 1:

Note that it is allowed to write several commands in a single line, as demonstrated

in the first line. In such a case it is necessary to finish the writing of commands with ;

(the last must not have it). Instead of using a negative parameter, we choose to specify

a positive value but write the formula with a minus sign (Fig. 1.7).

Obviously the population is decreasing. This model is particularly interesting for

biogeochemical species in the environment. In many situations the concentration of

a chemical or biochemical species is declining according to the simple linear

model, as presented. The shown development of concentration is well known as

exponential decay. Exponential decay depends on the linear decay law (1.12). l is

called the decay constant or degradation constant, depending on the nature of the

real process.

The proportionality constant can be related to a characteristic half-life T1/2. The
relationship is obtained from the condition:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5

6

7

8

9

10

Fig. 1.7 MATLAB® figure; second example
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expð�lT1=2Þ ¼ 1

2
(1.15)

which can be rearranged to:

T1=2 ¼ lnð2Þ=l (1.16)

‘ln’ denotes the natural logarithm. In MATLAB® the natural logarithm is called

by log:

According to formula (1.16) half-life and decay constant are of inverse

proportionality. With increasing T1/2 the decay rate decreases and vice versa.

When the decay rate is 1 with the physical dimension [time�1] in a given time

unit, half-life is given by 0.6931 in the same time unit. Vice versa holds: for T1/
2 ¼ 1 the decay constant is l ¼ 0.6931.

It is important to realize that condition (1.15) delivers an universal half-life. In

fact, it is a unique characteristic of the model for exponential decay that the

concentration is halved after a universally fixed time period.

1.4 MATLAB® Graphics – The Figure Editor

As demonstrated above, using the plot command leads to a special graphical user

interface for the creation and manipulation of graphics: the figure editor. The figure

editor is reached directly by the figure command. Headline, main menu entries and

buttons for the most important commands are shown in Fig. 1.8.

The figure editor has a manifold functionality out of which only few important

elements can be mentioned here. Maximum and minimum on both axes are

determined automatically, also the grid spacing on the axes. All these settings can

be changed by using the sub-menu commands of the figure editor. The sub-menu

entries of ‘Edit’ are depicted in Fig. 1.9.

The axes are changed using the ‘Axes Properties. . .’ option. All properties of the
graphic can be changed under the ‘Figure Properties. . .’ option. The appearing

input select box has changed between versions 6 and 7. Figure 1.10 depicts the

outlook of the recent version.

Fig. 1.8 Headline, main menu entries and buttons of the build-in MATLAB® figure editor
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The elements of the graphics can be selected by mouse click. The Property

Editor Box changes its outlook again, showing relevant properties of the chosen

element. If the standard properties are still not sufficient, the ‘Inspector. . .’ button
opens another input box for more properties to be checked and changed. See an

example for a line element in Fig. 1.11.

Fig. 1.9 Edit command of

the MATLAB® figure editor

Fig. 1.10 Property editor of the MATLAB® figure editor
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Fig. 1.11 Inspector input box of the MATLAB® figure editor
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1.5 MATLAB® Help System

MATLAB® has a simple to handle and very effective help system. It is reached

under the main menu entry ‘Help’ under ‘MATLABHelp.’ Particularly useful is the

detailed description of key words, which can be obtained under ‘Index.’ If the exact

notation of a command or keyword is not known, one should use the ‘Search’

section and enter related terms. The term ‘rectangle’ for example does not appear in

the index; but search leads directly to the corresponding MATLAB® command,

which is rectangle. It must be used when a rectangle is added to a graphics

(Fig. 1.12).

In recent versions of MATLA® there is a faster shortcut to functions and help

concerning their use. A click on the function browser symbol (see Fig. 1.13) left

actual line in the command window delivers a list of lots of MATLAB® functions

and instructions to use them.
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Chapter 2

Fundamentals of Modeling, Principles

and MATLAB®

2.1 Model Types

As the term of ‘model’ has a wide variety of meanings, clearly a very narrow type of

models is addressed in this book. Even within the special field of ‘environmental

models’ only the sub-class of deterministic models is treated; statistical models do

not appear, although statistics plays a significant role in environmental sciences and

technology.

In deterministic models all variables and parameters are functions of indepen-

dent space and time variables. The independent variables are referred to by the

usual notation x, y, z and t. In most models, especially in the relatively simple

examples presented here, it is sufficient to formulate the problem considering only a

subset of these four variables.

Depending on the number of space dimensions, one speaks of 0D, 1D, 2D or 3D

models. 0D models have no space dependency, only a time dependency. Ecological

models concerning populations of biological species in an environmental compart-

ment are in their majority of that type. As t is the only independent variable, the

analytical formulation leads to ordinary differential equations. These are differen-
tial equations, which depend on one variable only; in contrast to partial differential
equations, where there are at least two independent variables.

Models with no time dependency are denoted as steady, steady state or station-
ary. The corresponding terms for time dependent simulations are: unsteady or

transient. A steady state is approached in real systems, if the internal processes

have time enough to adjust to constant outer conditions. It is a necessary condition

for steady state that exterior processes or parameters do not change in time.

Otherwise steady conditions cannot be reached.

1D models include one space dimension only. Models for the soil compartment

are mostly 1D, as the changes in vertical direction are of concern: seepage to the

groundwater table or evaporation to the ground surface. Processes in rivers (image a

water level peak or a pollutant plume moving downstream) can be regarded in 1D

under certain conditions. Water from surface water bodies infiltrating into aquifers

E. Holzbecher, Environmental Modeling,
DOI 10.1007/978-3-642-22042-5_2, # Springer-Verlag Berlin Heidelberg 2012

35



may be described by a 1D approach, if relevant conditions do not change substan-

tially in the vertical direction and along the shoreline.

1D steady state models lead to ordinary differential equations. Transient models,

including at least one space direction, lead to partial differential equations. It is

important to know about these differences, as mathematical solution techniques for

both types of equations are different and different MATLAB® commands need to

be used. Here we use MATLAB® for steady and unsteady modeling in 1D.

2D models include two space variables. One may distinguish between 2D

horizontal and 2D vertical models. Terrestrial ecology is a typical field, where

this type of model is suitable, describing the distribution or population of species on

the land surface. In streams or estuaries or in shallow water models are often set up

for vertically averaged variables, for which a 2D horizontal description results.

Models for 2D vertical cross-sections are obtained,

• In groundwater flow, where several geological formations are to be included, but

no variations of hydraulic conditions in one horizontal direction

• In cross-sections of streams

• In air pollution modeling, if no space direction is preferential around a source; in

that case the single radial coordinate r replaces two horizontal space variables x
and y

3D models are quite complex in most cases and will marginally appear in this

book, as the focus is on simple explanatory examples. Numerical algorithms using

the methods of Finite Differences, Finite Volumes or Finite Elements are the

methods of choice for modeling in higher space dimensions, steady and unsteady.

The MATLAB@ ‘Partial Differential Toolbox’ can be recommended for the

application of these algorithms.1 As the focus here is on core MATLAB®, we

leave numerical methods out. Instead it is outlined, how core MATLAB® can be

applied for steady state modeling in higher dimensions, based on computing of

analytical solutions.

2.2 Modeling Steps

The task of modeling can be sub-divided in several steps. The way from a real

system to the working model contains different tasks, where every step depends on

good performance of the previous step. The major steps are to build a conceptual

model, to describe it by mathematical analysis, to solve the differential equations by

computational methods and finally to perform post-processing tasks. A schematic

overview of the procedure is given in Fig. 2.1 (see also: Holzbecher 1998).

1 In the partial differential equations toolbox, the modeling of advection processes (see below) is

difficult and requires numerical skills. All other processes can be simulated using the appropriate

commands.
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At first a conceptual model has to be formulated. From the available scientific

and technical expertise and knowledge, as well as the experience with observations

of the system in question, a concept has to be set up. The concept involves all

processes, which could be relevant for the studied system. This first step is a

qualitative one, i.e. there are no numbers involved yet. Scientific or technical

expertise from the involved branches has to be included. In case of environmental

problems advice has to be obtained from several disciplines mostly: chemistry,

physics, biology, biochemistry, geology, biogeochemistry, ecology, hydrology,

hydraulics, or hydrogeology.

The next step is the formulation of the model in mathematical terms. Variables

and parameters as functions of time and space are related to each other by mathe-

matical expressions. Rearrangements and transformations of the expressions usu-

ally lead to the formulation of differential equations. Fundamental theoretical or

empirical laws and principles are combined to finally yield differential equations. In

the simplest case there is a single equation only, in general a system of equations

emerges. It can be ordinary differential equations, which have a single independent
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Fig. 2.1 Modeling steps
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variably. More general partial differential equations depend on more than one

independent variables. As will be shown in numerous examples the differential

equations need to be accompanied by boundary and initial conditions, in order to

complete the mathematical formulation.

With the next main step, according to the list in Fig. 2.1, we come to the

computer. The solutions of the differential equations, under consideration of

initial and boundary conditions, have to be calculated, which is always done on

a computer. There is not a single strategy, which delivers these solutions and thus

different paths have to be followed. Sometimes the solutions can be expressed by

explicit formulae, which are quite easy to implement using any mathematical

software. An example for such a situation with an analytical solution was presented
in Chap. 1.3. With the exponential function the example formula is much simpler

than in more general cases. However, in most cases even sophisticated analytical

formulae do not suffice.

For most problem formulations in terms of differential equations numerical

methods are required. As there is no explicit formula available, the solution has

to be found approximately by so called numerical methods. It is sufficient to find

such an approximate solution, as there are tolerance parameters, which mostly

ensure to reach a good accuracy. Fortunately these methods need not to be

implemented by the modeler: there are outworked strategies available in software

packages. MATLAB® solvers for ordinary and partial differential equations will be

presented.

In order to solve a problem usually some data need to be made available to the

software program. Thus the computer very often comes into play even before the

calculation of the solution is at stake. These tasks are referred to as pre-processing.
A simple example is to transfer a parameter value from one physical unit into

another. The computation of one parameter from another or from several others

may be more complex. A more challenging task is the determination of parameter

distributions within a model region based on some measured values. It will be

shown how such tasks can be performed easily using MATLAB®.

After the approximate solution is computed (the computer always delivers

approximate solutions, also when analytical solutions are evaluated!), there are

usually several post-processing steps. Almost always the modeler and her/his client

appreciate to have a graphical representation. Another task is compute fluxes for

some key variables, may be in order to set up an entire balance for a model entity.

For such a purpose numerical integration is a useful tool, which is also possible

using MATLAB®. As another example the user may like to compare calculated

and measure values. These few examples demonstrate that post-processing is

a problem-specific task.

Finally the steps lead from a real system to a computer model. The step concept,

sketched in Fig. 2.1, needs not to be followed strictly. In practise work will be on

different steps at the same time. Feedback loops within the task list are necessary to
improve earlier approaches, to correct errors and to adjust the model in view of

measured data. Often new data come in after the start of modeling, which make

adjustments necessary.
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The feedback loops within the system of tasks can be related to terms as

verification, calibration and validation, which is visualized in Fig. 2.2. All these

terms do not have a uniquely definition and thus may be found in slightly different

contexts in the scientific literature. The term verification is mostly used in connec-

tion with software testing, which is a crucial step of software development. When

a software code is entered and runs regularly without error messages from

the computer, it is not sure that there are no ‘bugs’ in the code. In order to

test the correct performance of the computer program, test cases are set up, to

check, if the program delivers the correct answer. Test cases can be based on simple

post-processing, on analytical solutions, on theoretical derivations and on inter-

comparison with results from other codes.

Comparison with test cases, which are generally accepted in the concerned

scientific community (so called benchmarks), is called benchmarking. Within the

outlined step concept verification is thus a feedback loop in which it is checked,

whether the computed solution delivers the solution of the differential equation.

Unless it is a simple straight forward computation, the MATLAB® modeler also

has to verify her/his implemented m-code. In case of errors the code debugging
becomes necessary. How to ‘debug’ in MATLAB® is explained in Sect. 2.7.

The term calibration is used for the procedure of adjusting the model parameters

for a specific application of the code. The term is almost identical to parameter
estimation and strongly related to the term inverse modeling. Within the step

concept the term means a feedback loop, in which the solution or some entity that

is determined by post-processing is compared with values, obtained from the real

site. In case the check is negative, usually some parameter values have to be adjusted

in order to obtain a good fit. If that does not help, it may become necessary to make

adjustments in the mathematical formulation or even in the conceptual model.

Conceptual
 Model

Differential
Equation

Solution

Evaluation

Post
Processing

Feedback Loops

Verification

Validation

Calibration

Fig. 2.2 Verification,

calibration and validation as

feedback loops between

different model levels
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The work of validation is the most challenging. As the result of such work it is

proven that a model is valid, i.e. behaves like the real system. The term usually is

restricted to a field site application, but it sometimes also refers to the fact that

a code can be applied for a certain type of applications. In the later case for each

application site-specific parameters have to be included. Connected to software

tools the term ‘valid’ remains slightly obscure as its concrete meaning is to be

specified for each application field. It has to be clarified, which aspects of the real

model should be represented by the model. As a model is not identical to the

represented real system, there are always real world aspects for which the model is

not sufficient.

The step concept, visualized in Fig. 2.1 and Fig. 2.2, is less a work schedule than

a priority list. The mathematical formulation has to be based on a good conceptual

model. If the mathematical formulation is insufficient, good solution techniques

will not improve the model. One has to be sure that the solvers deliver accurate

results, before putting extensive efforts into post-processing.

2.3 Fundamental Laws

The mathematical analytical formulation is based on fundamental principles and on

empirical laws. From the former most important are the principles of conservation:

• Mass conservation

• Momentum conservation

• Energy conservation

Total mass, momentum and energy are preserved. If there are losses or gains,

these are introduced in the conservation formulation as sources or sinks.

2.3.1 Conservation of Mass

The most nearby and most common application of the continuity equation is that for

mass. There are two types of mass conservation. One type is the mass conservation

of the medium, which can be solid, aqueous or gaseous. The mass is expressed in

terms of a density r with a physical unit [M/L3]. ‘M’ represents a mass unit and ‘L’

a length unit. For example the density of fresh water at a temperature of 4�C and the

pressure of 101,325 Pa (1 atm) is 1,000 kg/m3.

The second formulation of mass conservation in a fluid concerns biogeochemical

species within a fluid. In that case the mass is expressed in terms of the concentra-

tion c. The continuity equation then is formulated in terms of the concentration c of
the species. The concentration also has the unit [M/L3] and measures the mass

within a volume of fluid. The content of chloride Cl- in seawater amounts to 19 g/l.
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One has to extend the mass definition in situations, where the fluid does not fill

the entire volume. Then the total mass per space volume is expressed by yc with

porosity y as additional factor. Porosity is dimensionless and measures the volu-

metric share of the fluid phase on the total volume. The physical dimension of the

product is thus further [M/L3]. In aquifers groundwater usually fills approximately

25% of the volume; thus holds: y¼0.25.
The described concept can be extended to situations with several phases, where

each phase has its own y-value. In the unsaturated soil zone below the ground

surface, above the groundwater table there are three phases present: the soil as solid

phase, seepage water as liquid phase and soil air as gaseous phase.

The mass of a gas component is expressed in terms of partial pressure.

According to the ideal gas law the product of pressure and volume is a constant,

which changes only with temperature. Thus mass conservation can be formulated in

terms of pressures instead of volumes. According to Dalton’s Law2 the pressures of

a gas mixture have to be summed up to yield the total pressure.

2.3.2 Conservation of Momentum

The momentum of a fluid is expressed as the product rv, where v denotes the

velocity. The physical unit of momentum is [M/(L2T)], where the letter ‘T’

represents a time unit. As velocity is a vector, the momentum also is a vector,

with one vector component for each space dimension of the model.

2.3.3 Conservation of Energy

The kinetic energy of a fluid is expressed as 1
2
rv2 with the physical unit [M/(LT2)].

If energy is measured in Joule, the given expression measures Joule per volume.

In problems, which include heat transfer, thermal energy is expressed in terms of

temperature T. The energy content per volume is given by the product rCT, where
the new factor C is the specific heat capacity. The physical unit of C is [L2/(T2K)],

where ‘K’ represents the temperature measure unit, mostly �Celsius or �Kelvin. In
many tables values for the product rC can be found, which is addressed simply as

heat capacity. Heat capacity has the unit [M/(LT2K)]. If energy is measured in Joule

rC has the physical unit of J per volume and �Kelvin, while C is measured in the

unit Joule per mass and �Kelvin.

2 John Dalton (1766–1844), English chemist and physicist.
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2.4 Continuity Equation for Mass

For the mathematical formulation of mass conservation consider the change of

mass during the small time Dt within a control volume with spacing Dx, Dy and Dz,
each for one direction in the three-dimensional space. There are two ways to

calculate changes of mass. One method is to consider the mass within the control

volume at the beginning and at the end of the time period and calculate the

difference. The other method is to balance all fluxes across the boundaries of the

volume. Balancing means that fluxes into the volume have to be taken as positive,

while those leaving the volume are negative. In three-dimensional space six faces of

the control volume have to be taken into account.

A simpler set-up for the one-dimensional space is depicted in Fig. 2.3. A box

contains a certain amount of mass at the start of the time period, and a different

amount at the end. During the time period there was influx on one face and outflux

at the other. The graphical symbols in the equation at the bottom of the figure will

be replaced by mathematical formulae in the following derivation.

The mass at the beginning and the end of the period t and t+Dt is given by:

y � cðx; tÞ � DxDyDz and y � cðx; tþ DtÞ � DxDyDz

where y denotes the share on the total volume. In case of a saturated porous medium

y denotes porosity. In the unsaturated zone, within soil for example, y is the

volumetric water saturation, when the aqueous phase is concerned. In the situation

in which two fluids occupy the space (for example water and oil) the share of each

start

end

- = -

Principle of mass conservation

Fig. 2.3 Illustration for the

derivation of the mass

conservation equation
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phase has to be taken into account, too. DxDyDz is the volume. c denotes the

concentration, measured as [mass/volume]. The change of mass per time is given

by:

y � cðx; tþ DtÞ � cðx; tÞ
Dt

� DxDyDz

Fluxes in x-direction are given across faces of the control volume:

yjx�ðx; tÞDyDz and yjxþðx; tÞDyDz

where jx� denotes mass flux per area across the left face of the volume, in negative

x-direction. Analogously jxþ denotes the mass flux in x-direction across the right

face, in positive x-direction (see Fig. 2.4). The fluxes may change spatially and

temporally which do the brackets indicate. Both fluxes are positive, if they add mass

to the control volume, and negative otherwise. The physical unit of mass flux is

[M/(L2·T)]. The term yDyDz denotes the area, through which flow takes place.3

The balance between both flux terms is thus given by:

y jx�ðx; tÞ � jxþðx; tÞð ÞDyDz

For simplicity the fluxes across the four other faces are neglected for the

derivation at this point. One may assume here that the flux components in y- and

jy–

jx+

jy+

grid
Δx

Δy

ΔV

Control Volume

z
y

x

jx–

Fig. 2.4 Illustration of a

control volume in two space

dimensions x and y

3 It is generally assumed that the volumetric share and the area share compared to the entire

volume or area respectively are both quantified by the same number, here y. This is not necessarily
true. Especially in technical systems such as filters both ratios may vary significantly. The

practioner in the field is usually happy, if there is one value at all.
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z-direction are zero. As stated above, both formulations measure the change of mass

and thus need to be equal:

y
cðx; tþ DtÞ � cðx; tÞ

Dt
� DxDyDz ¼ y jx�ðx; tÞ � jxþðx; tÞð ÞDyDz (2.1)

Division through the volume DxDyDz and porosity y yields:

cðx; tþ DtÞ � cðx; tÞ
Dt

¼ � jxþðx; tÞ � jx�ðx; tÞ
Dx

(2.2)

From this equation a differential equation can be derived by the transition of the

finite grid spacing Dx and time step Dt to infinitesimal expressions, e.g. by the limits

Dx! 0 and Dt! 0. It follows:

@c

@t
¼ � @

@x
jx (2.3)

which is a differential formulation for the principle of mass conservation. The

presumption for the differentiation procedure is that the functions c and jx, are
sufficiently smooth, mathematically speaking differentiable, which is usually

taken for granted. Equation 2.3 is valid for one-dimensional transport and is the

basis for the mathematical analysis of transport processes. The unit of the equation is

[M/(L3·T)].

Formulation (2.3) is valid if there are no internal sources or sinks for the

concerned biogeochemical species. Sources and sinks are understood here in the

most general sense: each process, which creates or destroys some species mass, can

contribute to such a source or sink. In the remainder of this volume we will see

examples, where chemical reactions and inter-phase exchange of species can be

included in that way.

Easily the given mathematical formulation can be extended to consider sources

and sinks additionally. If these are described by a source- or sinkrate q(x,t)
[M/(L3·T)], which may vary spatially and temporally, one simply has to add a

corresponding integral term

ð
Dx

ð
Dt

qðx; tÞdtdx

on the right side of (2.1) and (2.2). The term is positive, if mass is added (source)

and negative, if mass is removed (sink). In the derivation of (2.3) the integral term

had to be differentiated, which leads to the general transport equation in one space

dimension:

y
@c

@t
¼ � @

@x
yjx þ q (2.4)
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Flux components in y- and z-direction can also be taken into account, based on

formulae analogous to formula for the x-direction. The fluxes jy�; jyþ; jz� and jzþ
have to be introduced, balanced and the balances added on the right side of (2.1) and

(2.2). Taking the limits Dy! 0 and Dz! 0 one obtains:

y
@c

@t
¼ � @

@x
yjx þ @

@y
yjy þ @

@z
yjz

� �
þ q (2.5)

which is the generalized formulation of the mass conservation for three space

dimensions. Using the formal ∇-operator (speak: ‘nabla’),

r ¼
@
@x
@
@y
@
@z

0
B@

1
CA in 3D, ¼

@
@x
@
@y

 !
in 2D, ¼ @

@x
in 1D (2.6)

the equation can be written more compactly:

y
@c

@t
¼ �r � yjþ q (2.7)

With the different forms of the ∇-operator the short notation of the continuity

(2.7) is valid in one-, two- or three-dimensional space. On the right side the ∇-

operator is multiplied by the flux vector yj ¼ y
jx
jy
jz

0
@

1
A as a vector product. In the

formulae, here and in the following, the � denotes the standard vector product,4

which in MATLAB® is applied by using the * multiplication and the transpose of

one column vector. Examine with the following command:

An advantage of the formulation (2.7) is that it is valid for one-, two- and three-

dimensional situations. The number of components in the flux-vector and ∇-

operator is equal to the number of space dimensions. In two dimensions, as

illustrated in Fig. 2.4, the flux vector has two components. The illustration is

concerned with a fluid, for which the mass conservation principle can also be

applied, as for any other chemical species. When the fluid density is not changing,

4 In three dimensions for vectors arbitrary vectors u and v:

u� v ¼
ux
uy
uz

0
@

1
A �

vx
vy
vz

0
@

1
A ¼ uxvx þ uyvy þ uzvz, not to be confused with the cross-product u� v;

another formulation, found in the literature is: @c
@t ¼ �divj; divergence ‘div’ is another expression

for a vector product with the nabla-operator.
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one may express mass change by volume change (DV), which itself is represented

by a change of the ‘water’-table.

The derived equation for mass conservation alone is not yet sufficient for a

complete mathematical formulation. There are too many unknown variables,

namely concentration c, and the components of the flux vector j. In order to reduce

the number of unknowns, one has to utilize a formulation, in which the flux terms

are connected with the concentrations. Finally an equation will result, in which c is
the only unknown variable.

The advective flux is simply given by the product of the concentration and the

velocity. In the three-dimensional case the three flux components are determined by

the three velocity components:

jx ¼ vxc jy ¼ vyc jz ¼ vzc (2.8)

Independent of the dimension, using the scalar multiplication one may write in

vector notation:

j ¼ vc or j ¼ cv (2.9)

In formulae we mostly omit the multiplication sign. Note that on the right side of

(2.9) there is scalar multiplication: the scalar variable c is multiplied with the vector

variable v, as already outlined in Chap. 1.

2.5 MATLAB® M-files

The command window is good for an introduction into MATLAB®. It

demonstrates that operations, which someone used to compute on a scientific

calculator, can be better performed using MATLAB®. However, MATLAB® can

do much more.

In MATLAB® a high level programming language is included. It is often called

‘M’. Files, containing ‘M’ source code, are stored in files with extension ‘.M’. The

programming work with m-files replaces extensive operating in the command

window. Only for certain tasks, the command window will remain the most direct

and simple way to compute with MATLAB®. Program writing and editing, not

only with MATLAB@, is done by use of a text editor.

MATLAB has a built-in editor. The editor can be called in different ways. The

easiest way is to use

in the command window. Other convenient ways of calling the editor are given in

the next section. Options for the editor are set in the ‘Preferences’ sub-menu of

‘File’ (see Fig. 2.5). It is also possible to use other than the built-in editors. With the
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editor the programmer works on m-files. In the first chapter it was shown how

MATLAB® operations are stated in the command window. Even after few

exercises the user will recognize that it is often necessary to give a former command

again or to give it in a slightly different form; maybe just with a parameter name

altered. It was already shown that the command history view of the MATLAB®
graphical user interface is an appropriate tool to go back to former commands. As

already mentioned an alternative way is to use the up- and down-arrow buttons of

the keyboard.

There is another alternative, which for most purposes turns out to be so powerful

that most users prefer it for their normal work in comparison to the command

window. MATLAB® command sequences can be gathered and stored as files. The

extension of these files is simply .m; for that reason they are calledM-files. What the

MATLAB® user does with M-files, is what programmers do with other program-

ming languages, as FORTRAN, JAVA or some C variant, just to mention some

names.

In order to create a new M-file we use the ‘New!M-file’ entries of the ‘File’

main menu, as shown in Fig. 2.6. In the same menu there is an entry for opening an

already existing M-file.

A simple example demonstrates the procedure. As just described, create a new

M-file. The MATLAB® editor appears. The main menu of the editor is depicted in

Fig. 2.7. Type the following commands:

Fig. 2.5 Preferences, relevant for the editor

2.5 MATLAB® M-files 47



Use the ‘Save’ or ‘Save as. . .’ entries in the ‘File’ menu of the editor, or the

corresponding button, to save the file under the name ‘example.m’. Return to the

command window and type:

A graph showing concentrations decreasing with time appears.5 All commands

of the ‘example.m’ file are executed, when example is used as command. A bundle

of graphs can now be plotted in the same figure without much typing work:

Fig. 2.6 File submenu entries for M-files and other files

Fig. 2.7 MATLAB® editor; main menu entries of the graphical user interface

5Depending on the specific installation and organization on the computer, the user could have a

problem here, if MATLAB® does not find the ‘example.m’ file. The user should store the file in a

directory, which is included in the MATLAB® path list. Use the command path, to see the current

path list of the installation. In case of problems store the file in another directory or use the addpath

command, to add another directory in the path list. There may also be a problem, if the user

chooses an M-file name that already exists within the directories of the path list. Use the which

command in order to check, if your stored version of the file is the most nearby version in the

MATLAB® system on your machine!
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A second graph appears. Proceed further:

A graph, showing stronger degradation with increasing lambda – value, appears.

It should look similar to Fig. 2.8

The example shows that it is convenient to call repeatedly appearing command

sequences in an M-file. The demonstration application is a mixture of commands on

the command window, and of editing a file. Alternatively the entire command

sequence can be started in an M-file. There is also an alternative way to start the

current M-file: the button in the main menu of the editor.6 The procedure is

exemplified in the next section. There is an alternative way to create an M-file

directly from the command history. One or several command in the command

history can be highlighted. By using the right mouse button one gets several

options. One option is to create a M-file directly from the selected commands.

There are two types of M-files: scripts and functions. Scripts are simply files

containing a sequence of commands. By typing the filename, the commands are

executed subsequently. Variables, which are not specified or initialized in the script

have to be available in the workspace, when the script is executed. Variables,

specified in a script, are available in the workspace after execution, if they are not

cleared explicitly.

Like scripts functions contain sequences of commands, and are stored with the

extension ‘.m’. Formally they differ from scripts as the first no-comment line starts

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
lambda = 1

lambda = 2

lambda = 3

Fig. 2.8 Graphical output of

‘example.m’ file

6 The button does not appear, when the editor is called outside of MATLAB®, for example by

double-click on a M-file from the operating system.
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with the function keyword. What follows is a list of output parameters, the equality

sign, the function name and a list of input parameters:

Also alike scripts functions are called by using the function name and formal
parameter sets for input and output.

either from the command window, from a script or from another function. The

filename must be identical with the function name, i.e. in the example: ‘myfun.m’.

Formal parameters in the calling command and the function are identified on basis

of the parameter lists. They need not be identical! For example the call:

results in a continuation of the execution with the function commands, where the

parameter in1 obtains the value 5, and in2 gets the value of variable A. No output is

taken from the function in this case. By using

B and A obtain values calculated during execution of the function. Then the

function commands are executed, the execution returns to the calling statement and

proceeds with the following command.

Functions may contain subfunctions. Subfunctions are not visible outside the file

where they are defined. Normally functions return when the end of the function is

reached. The

statement can be used to force an early return. If there are functions with identical

names, the ones defined as subfunctions have priority. In general the programmer

may use the

command to find the location of function with highest priority. The

commands deliver the numbers for input resp. output parameters. This can be used

to deal with varying formal parameters, for example to allow the user to call the file

with a reduced number of parameters. This is feasible if for missing parameters

default values are specified.
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2.6 Ifs and Loops in MATLAB®

In M-files quite often commands or sequences of commands are to be executed

under certain conditions only. This can be easily programmed using the if, a

keyword that is available in all programming languages. The following command

sequence in pseudo-programming language explains its application:

If the condition is fulfilled, commands1 are executed. Otherwise commands2 are

executed. The else block can be omitted if there is nothing to be done, if the

condition is not fulfilled. Conditions can be formulated differently. Instead of a

rigorous definition here four mainly self-explaining examples:

In order to be valid conditions, a and b must be of same data type. There are two

equality signs in the first example in order to distinguish a condition from an

assignment. In the second example the condition is clear, if a is a number. But

the condition is also valid if a is of different data type, which the reader may

explore. The last of the four conditions is fulfilled if a is a positive non-zero number,

otherwise not. The letter represents the value of a condition, and could also be

defined like this in MATLAB®:

By the example sequence the value of a is changed to 1, if the former value was

positive or equal to zero. Variables as c of the example are so-called logicals. These
are variables that can take only two values: ‘true’ or ‘false.’ As other programming

languages MATLAB® treats logicals as binary, i.e. they have values 1 for ‘true’

and 0 for ‘false.’

Logical variables can be combined by logical operators (and, or, not and

exclusive or), as given in Table 2.1. Example:
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It is also possible to check the type or any other characteristic of a variable. For

that purpose there are several is. . . keywords (which have at least one variable as

formal parameter):

isfloat checks if a variable is a float, i.e. a single or double

islogical checks if a variable is a logical

isscalar checks if variable is a scalar

isvector checks if variable is a vector

isfinite checks if variable is finite

isinf checks if variable is infinite

isnan checks if variable is not a number

isnan checks if variable is not a number

isempty checks whether an array is empty

isnan checks if variable is not a number

Look for is* in the help system (see Chap. 1.5) to obtain a complete list of all

such commands.

The if, else and end keywords are reserved and should not be used by the

MATLAB® user as function or variable names. The if, else and end keywords are

reserved and should not be used by the MATLAB® user as function or variable

names. An if without else is just a condition. Using the if- else construction, one

has the option to bifurcate into one of two branches. A bifurcation into several

branches can be realized by using nested if-else commands:

Table 2.1 Defining table for

logical operators
Input parameter and ora not xor

A B A & B A | B ~A xor(A,B)

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 0 0
a The | symbol is reached by Alt-Strg->
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There is also the possibility for a direct multiple branching. For this purpose

MATLAB@ has the switch- case construction. It is exemplified in the following

examples:

In order to use the functionality of a single M-file for the example from the

preceding section, the programming technique of loops has to be applied. How

loops work, is best explained by an example. The most common for-loop is used in

the command sequence:

for is a MATLAB® keyword, which is indicated by a different color.

MATLAB® keywords may not be used as variable names. The statement, starting

with the for keyword, starts a loop, which ends at the line with the end keyword.

lambda is the loop variable in this example (the user is free to choose the name of

the variable). In the first run through the loop lambda has the value 1.

The commands within the loop are executed with that parameter value; here the

function vector f is evaluated and a graph is plotted in the figure. Then the

commands are executed again with the variable parameter taking the next value.

In the example lambda gets the values 2, 3, 4 and finally 5. After the last run through

the loop the execution continues with the next statement after end. In the example

after the loop, the final command adds the legend in the figure. As described in

Sect. 2.5 store the entire M-file under a new name and call that name in the

command window; or use the button (old version: (Fig. 2.9)).

Note that commands within loops are indented, as shown in the example above.

This is not required by MATLAB®, but it is highly recommended, as it enhances

the readability of the M-files significantly. Loops may be nested, i.e. inner loops

may appear within outer loops. In that case it is important to recognize the

corresponding end statements. It is good practise to indent commands with every

inner loop even further. In that way the programmer visually obtains a connection

between the start of a loop (with either a for or a while keyword) and the

corresponding end.
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Like in any other programming language, also in MATLAB®, there are several

other types of loops. Another main type is the while-loop. Here a condition is

checked at the start of the loop, and the commands of the loop (between while and

end statements) are executed as long as the condition is fulfilled. Here the use has to

take care that some of the variables appearing in the condition change during the

loop; otherwise an infinite loop in produced.

If in larger loops it is necessary to have another outlet from the loop aside from the

default at the end, one may use the break command. In nested loops the command

only concerns that one loop, in which the statement is placed, i.e. execution proceeds

with the command after the next end of loop statement.

continue is a related command: the execution is skipped not for the entire

concerned loop (as with break), but only for the remaining statements in the current

run through the loop.

Loops can also be used in the MATLAB® command mode. A trivial example is:

Note that no prompt appears after pressing the return key. The command is not

yet executed. Enter:

When the end command is entered the entire loop is executed and the prompt

appears in the command window again. Note that in the specification of the loop

variable i only two values are given. The increment 1 is used as default in such a

situation.

In MATLAB® the direct notation of loops can often be avoided by using vector-

or vector–matrix notations. For an example examine the ‘elegant’ solution

implementing the Horner scheme, as shown above. By matrix–vector multiplica-

tion loops are implicitly performed, as there is a sum over the products of matrix

elements. Utilizing this type of looping not only is much shorter and more clearly

Fig. 2.9 Illustration of a loop
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arranged, it also is usually much more efficient, as special vectorized

implementations of the basic operations on a near-machine level are utilized.

2.7 Debugging of M-files

It was already said that the M-file, currently shown in the editor, is executed by

pressing the button in the editor menu list. Alternative ways to do the same

thing are (1) pressing the F5 button, or (2) select the sub-menu entry ‘Run’ from the

‘Debug’ main entry. For the exploration of M-files some other debugging

commands are very convenient, which are explained here.

Debugging is a term, which came up with computer programming. Debugging is

the task to find and correct errors, so called bugs. If a program or an M-file does not

behave as intended, if there is still at least one erroneous statement, it is convenient

to stop the program execution at a certain point and watch the execution of the

following steps in detail. For such tasks several tools are available in the

MATLAB® editor in the ‘Debug’ submenu.

A breakpoint, at which execution stops, can be set by the user easily by using the
column of ‘-’signs left from the line number counter in the editor window. A mouse

click initiates the bar to change into a red circle, indicating the location of a

breakpoint, as shown in Fig. 2.10. When the program is run, execution stops at

the first breakpoint encountered. A green arrow indicates the current position of the

command execution (see Fig. 2.10).

Now the user may check the current values in variables. Moving the curser

through the editor window will make the contents of variables pop-up in small

boxes. Figure 2.11 depicts an example: variable T, which was touched by the cursor,
is a 1�1 double variable and currently contains the value 4. Another method for

checking variables at a breakpoint is more convenient, if the variable is a huge

array, and its contents can not be shown appropriately in a small box. The user can

change into the MATLAB® command window and examine the workspace, as

described in Chap. 1.

The button in the editor’s main menu initiates the execution of the next line

only. Alternatives are the keyboard F10 button or the ‘Step’ entry in the ‘Debug’

sub-menu. Now each command can be checked step by step, examining the effect

of the command on the variables involved. The green arrow on the left side of the

text window moves further with every step, always indicating the next command,

which is not jet executed. Although the ‘Debug’ commands and options were

designed for the programmer to find bugs in programs, these are also convenient

tools for novices to understand M-files, written by others. Novices are urged to try

the debug functionality on the loop of the M-file of the previous section.

There are further debugging tools, for which the reader may view the

MATLAB® help. It is important to know that the button (or key F5) always
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stands for continuation: starting from the current position the M-file will be

executed until it reaches the next breakpoint (it is possible to set several

breakpoints!) or the end of the M-file. The button stops execution; alterna-

tively select sub-menu entry ‘Exit DebugMode.’ Breakpoints are deleted by a click,

which changes the red circle back to a bar. All breakpoints are cleared by using the

button, or by selection of the corresponding submenu entry.

Reference

Holzbecher E (1998) Modeling density-driven flow in porous media. Springer, Berlin, p 286

Fig. 2.10 Illustration of debugging; set of breakpoint and stop of execution

Fig. 2.11 Illustration of debugging; variable check
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Chapter 3

Transport

3.1 The Conservation Principle

Transport is a general term, denoting processes which determine the distribution of

biogeochemical species or heat in an environmental compartment. In this chapter

transport is understood in a narrower sense as interaction of physical processes with

an effect on species or components, or on heat. Other processes, which also may be

relevant for the environment, like sorption, degradation, decay and reactions of

various types, are not conceived as pure transport processes and are treated in

chapters below.

These transport processes are relevant in almost all environmental systems. The

term is not restricted to a specific compartment of the environment. Heat and mass

transport are a common phenomenon which can be found almost everywhere, in the

hydrosphere, in the pedosphere as well as in the atmosphere, in surface water bodies –

rivers, lakes and oceans, in sediments, in groundwater, in the soil, in multi-phase

systems as well as in single phases.

There are two different types of transport processes in the narrower sense:

advection and diffusion/dispersion. Advection denotes transport in the narrowest

sense: a particle is purely shifted from one place to another by the flow field.

Diffusion and dispersion are processes which originate from concentration

differences. Within all systems there is a tendency to equalize concentration

gradients. If the species are mobile, e.g. if they have the possibility to move from

one place to the other, there will be net diffusive or dispersive flux from those

locations with high concentrations to locations with low concentrations.

Transport can be described by differential equations as will be shown below. In

fact it is one differential equation for each species or component. The differential

equation, the so called transport equation can be derived from the principle of mass

conservation and Fick’s Law.

Concerning heat transport a differential equation for temperature T as dependent

variable results. The equation is derived from the principle of energy conservation

and from Fourier’s Law. From the mathematical point of view it is the same

E. Holzbecher, Environmental Modeling,
DOI 10.1007/978-3-642-22042-5_3, # Springer-Verlag Berlin Heidelberg 2012
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differential equation, with different meanings of the coefficients only. Thus we

refer to the temperature equation as transport equation as well.

The fundamental formulation of a conservation principle is expressed by the

general continuity equation. For mass the continuity equation was already derived

in Chap. 2. What follows next is a generalization of the mass conservation equation,

derived in Chap. 2. The conservation of variable A, which may represent mass,

momentum or energy, and which depends on time t and the three space directions x,
y and z, is quantitatively expressed by the differential equation:

@

@t
A ¼ @

@x
jAx þ @

@y
jAy þ @

@z
jAz þ Q (3.1)

where jAx, jAy and jAz represent fluxes in the three space directions. The three flux

terms are components of the flux vector jA corresponding to the three space

directions. Fluxes, as all other terms in the continuity equation, depend on the

independent variables x,y,z and t too. In the term Q all sources and sinks are

gathered. If Q(x,y,z,t) is positive, there is a source at time t at position r ¼ (x,y,z);
if Q is negative, there is a sink.

The continuity equation states that the amount of change of variable A in time is

equal to the local flux budget. The continuity equation is derived from the budget of

a control volume, i.e. a volume of finite small extensions Dx;Dy and Dz(in 3D).

Figure 2.3 shows a control volume in 2D for a fluid filling the entire space, where

only two finite extensions Dx and Dyare sufficient.
In the small but finite time intervalDt, the amount ofA per volume unit changes from

A(x, y, z, t) toA(x, y, z, t + Dt). The total amount of change in the control volume is thus

given by Aðx; y; z; tþ DtÞ � Aðx; y; z; tÞð ÞDxDyDz. In Fig. 2.3 this corresponds to the

volume change DV. On the other hand, the total budget can be expressed by the fluxes,
the sources and the sinks. In each space dimension there are two surfaces, across which

mass, momentum or energy may enter or leave according to the corresponding flux

component. In x-direction the fluxes across the two faces are given by

jAxðxþ Dx
2
; y; z; tÞ � jAxðx� Dx

2
; y; z; tÞ� �

DyDzDt; the difference in flux terms of jAx
from one side of the control volume to the opposite side has to be multiplied by the

face area of the control volume, which is here given by DyDz. In the notation of the

fluxes, visualized in Fig. 2.3, theA in the subscript is omitted and the + or� sign denotes

the direction. Note the assumption that the time stepDt is small, so that the change of the

flux terms and also of the sinks and sources during that time can be neglected.

Both expressions of the change within the control volume with a time step have

to be equal, which is expressed in the detailed equation:

Aðx; y; z; tþ DtÞ � Aðx; y; z; tÞð ÞDxDyDz
¼ jAxðxþ Dx

2
; y; z; tÞ � jAxðx� Dx

2
; y; z; tÞ

� �
DyDzDt

þ jAyðx; yþ Dy

2
; z; tÞ � jAyðx; y� Dy

2
; z; tÞ

� �
DxDzDt

þ jAzðx; y; zþ Dz

2
; tÞ � jAzðx; y; z� Dz

2
; tÞ

� �
DxDyDtþ QDxDyDzDt

(3.2)
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Using the notation of the 2D case in (3.2), the corresponding equation without

sources or sinks is simply DV ¼ jxþ � jx�ð ÞDyDtþ jyþ � jy�
� �

DxDt. Equation 3.2

is simplified in two steps. First one divides through the product of all spatial

extensions and the finite time step DxDyDzDt and obtains:

Aðx; y; z; tþ DtÞ � Aðx; y; z; tÞ
Dt

¼ jAxðxþ Dx
2
; y; z; tÞ � jAxðx� Dx

2
; y; z; tÞ

Dx

þ jAyðx; yþ Dy
2
; z; tÞ � jAyðx; y� Dy

2
; z; tÞ

Dy

þ jAzðx; y; zþ Dz
2
; tÞ � jAzðx; y; z� Dz

2
; tÞ

Dz
þ Q

(3.3)

The second step is the transition from finite steps to infinitesimal steps,

Dx! @x;Dy! @y;Dz! @z;Dt! @t, according to the differential calculus in

order to get the continuity equation in the formulation given in (3.1). Using the

vector notation, the same equation can be expressed briefly as:

@A

@t
¼ r� jA þ Q (3.4)

Thus the aim to express the flux as a function of the concentration is simple for

advective transport. In order to achieve this for diffusive/dispersive flux, an empiri-

cal relationship has to be introduced, e.g. Fick’s Law.

3.2 Fick’s Law and Generalizations

3.2.1 Diffusion

There is a natural tendency in natural systems to level out concentration differences.

The process which causes this tendency is called diffusion. When in a system there

is a high concentration at one place and a smaller concentration at another place,

there will be a net diffusive flux of the component from the location with higher

concentration to the one with lower concentration. In the molecular scale, diffusion

is a random motion of molecules in all directions. In systems without concentration

differences all random walks together maintain the same concentration level. But if

concentration is not constant, there is a net flux in one direction, from the high to the

low concentrations.

A system with initial concentration differences will finally reach a constant

concentration level if no other processes are present. Other processes can stabilise

the concentration gradient. Then the diffusive flux may be balanced by processes
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which maintain a permanent out- and inflow. Still the concentration gradient is

accompanied by diffusive flux.

The empirical (first) Fick’s Law1 is a quantification of diffusive flux (physical

unit: mass/(area�time)), here stated for the fluid phase:

j ¼ �Drc (3.5)

In words: the diffusive flux is proportional to the negative concentration gradi-

ent. The minus sign guarantees that the direction of the net flux is from high

concentrations to low concentrations. The factor of proportionality is the diffusion

constant or diffusivity D with the physical unit [area/time]. Note that here too the

∇-operator is used. Here it is not working in connection with a vector product,

because the following variable is a scalar.2 The result of such an operation is

a vector. In three dimensions it can be written as:

rc ¼
@c=@x
@c=@y
@c=@z

0
@

1
A (3.6)

In general, the diffusivity D depends on the fluid and on the transported compo-

nent; it depends on temperature and pressure and on the geochemical environment.

For all substances there is a diffusivity in gases, which differs from the diffusivity in

liquids, and it even depends on the type of gas or liquid. The diffusivity in saltwater

usually is different from the diffusivity in freshwater.

The diffusivity, as defined by (3.5), is defined in single phase systems, i.e. in

liquids or in gases, and is a characteristic of the molecules involved, i.e. of the

component and of the medium. For that reason it is common to speak of D as

molecular diffusivity. In the following this will be taken into account by writing

Dmol, while D remains the notation for diffusivity in general.

The order of magnitude of Dmol in water at common temperatures of 20�C for

most chemical components is around 10�9 m2/s. In air it is in the range of 10�5 m2/s.

For ammonium gas NH3 for example, Dmol in water is 1.46�10�9 m2/s at 20�C and

1Adolf Eugen Fick (1829–1901), German physiologist; Fick’s second Law is valid for mass

conservation in a single phase environment:

@

@t
c ¼ D

@2

@x2
c

The formula is obtained when Fick’s Law, as given in (3.5), is used as replacement for the flux in

(3.4).
2 In contrast to a vector a scalar has a single value only. A scalar function has a single value,

depending on space and/or time. Velocity is a typical vector variable, which in a one-dimensional

case is reduced to a scalar variable.
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1.23�10�9 m2/s at 4�C (H€afner et al. 1992). For the same gas the same reference gives

a value of 1.98�10�5 m2/s at 0�C for the molecular diffusivity in air.

In order to formulate Fick’s Law in multi-phase systems, such as in porous

media, two modifications have to be made. At first it has to be taken into account

that the area through which diffusive flux may occur is only a part of the total area

(see control volume in Fig. 2.4). Usually it is assumed that the area is reduced by the

same factor as the volume. The volumetric share of the pore space, porosity, is thus

taken as the factor that measures the share of the active area. For that reason a factor

y appears on the right side of (3.5) if applied in porous media. In unsaturated porous

media y represents volumetric water content.

The second correction is necessary to take into account that diffusion

pathlengths are necessarily longer if several phases are present. The situation is

illustrated in Fig. 3.1. While in single phase systems the shortest path is available

for diffusive fluxes of particles, in a multi-phase environment such direct connec-

tion is impeded by obstacles. As pathlengths are longer in multi-phases, the

diffusive flux in those systems is smaller than in a single phase case. One may

also say that pathlenghts are prolonged, which yields a factor ϑ greater than 1 in the

denominator of the concentration gradient.

Pathlength prolongation also has to be considered in the calculation of flux j. The

flux in normal direction is smaller than the flux following the generally non-normal

pathline. The combined effect of both corrections with the length prolongation
factor ϑ leads to the equation:

j ¼ � 1

#2
Dmolrc (3.7)

In sedimentological and geochemical science (Boudreau 1996; Drewer 1997)

Fick’s Law is formulated with the correction factor as given in (3.7), which goes

back to Carman (1937). Later Carman (1956) used the term tortuosity factor for ϑ,
which is misleading in (3.7), where it appears in the denominator. We prefer here to

adopt a notation that is often found in groundwater literature:

j ¼ �tDmolrc (3.8)

Fig. 3.1 Comparison of

diffusion pathlengths in

single and multi-phase

systems
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where the tortuosity t is defined as another factor, aside from factor y, with values

between 0 and 1 in Fick’s Law for multi-phase systems, a formulation which was

already proposed by Bear (1972).3 The factor t and the prolongation factor are thus
connected by the formula t ¼ 1=#2. The coefficient of the gradient, consisting of

three factors, can be termed effective diffusivity.

Deff ¼ ytDmol (3.9)

Care is advisable with the term ‘effective,’ because it is not used in the same way

in scientific literature. Sometimes the product of diffusivity and tortuosity, without

porosity, gets the predicate ‘effective.’ Sometimes the term effective is omitted at

all. In contrast to effective diffusivity the single phase diffusivity is often referred to

as molecular diffusivity.
Length prolongation and tortuosity are connected to the formation factor, which

is determined by electrical resistivity measurements. Using this technique, Archie

(1942) found a power law relationship between porosity and formation factor,

which in terms introduced above can be noted as

Deff ¼ ymDmol or t ¼ ym�1 (3.10)

and can be found as Archie’s Law in several publications (Sahimi 1993; Boudreau

1996).

Archie (1942) reports values for m (Eq. 3.10) of 1.8–2 for consolidated

sandstones, 1.3 for unconsolidated sand in a laboratory experiment, and 1.3–2 for

partly consolidated sand. For theoretical or conceptual work the value m ¼ 2 is

considered, which may be justified if there is no further information. From (3.10)

then follows: t ¼ y, and from (3.9):Deff ¼ y2Dmol with formation factor y2.
Boudreau (1996) provides an extensive overview of papers about tortuosity and

porosity and their relationship. Several fixed relationships between t and ’ have

been proposed. The relations given by Archie (1942), Weissberg (1963) and Iversen

and Jørgensen (1993) contain parameters that can be estimated based on measured

data. The latter propose the relation #2 ¼ 1þ n 1� yð Þ with a typical value of

n ¼ 3 for clay-silt sediments and of n ¼ 2 for sandy sediments. As Boudreau

(1996) already noted, the resulting parameter curves are identical to those given

by the Burger-Frieke equation #2 ¼ yþ a 1� yð Þ with parameter a. Figure 3.2

depicts the curves for Archie’s Law and the Iversen-Jørgensen equation for the

main parameter range.

3ϑ, which is here called the length prolongation factor, is often introduced as tortuosity (Boudreau
1996; Drewer 1997).
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3.2.2 Dispersion

Another generalization of Fick’s Law is necessary if advection is also present. It can be

observed that in a fluid flowing through a homogeneous porousmedium the diffusivity

as proportionality gradient in Fick’s Law (3.5) is not constant, but shows itself a strong

dependency on the flow velocity. In the scientific literature on groundwater this effect

is referred to as dispersion. Dispersion is thus a general phenomenon that includes

diffusion as special case. For the 1D situation one may write:

D ¼ tDmol þ aLv (3.11)

The effective dispersivity, which is used in Fick’s Law, consists of two parts.

One stems from the molecular diffusion and the other from porous media flow. For

high velocities the second part dominates, which is the common situation in

groundwater, although flow in aquifers is still rather slow compared to fluxes in

other hydrological compartments. The proportionality factor between dispersion

and velocity along a flow pathline is given by the parameter aL, which has the

physical dimension of [length]. One may also use the term dispersion length or

longitudinal dispersivity. The subscript ‘L’ refers to longitudinal, as it is valid only

in the direction of the flow.

In the general two- and three-dimensional situation the concept of dispersion has

to be generalized. Transverse to the flow direction, the factor aL as proportionality
factor between effective dispersivity and seepage velocity is not valid any more.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0
τ

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
q

Archie, m = 2

Archie, m = 2.5

Archie, m = 3

Archie, m = 3.5

I-J, n = 2

I-J, n = 2.5

I-J, n = 3

I-J, n = 4

Fig. 3.2 Tortuosity t as function of porosity y, according to Archie’s law for different values of

parameter m, and according to Iversen & Jørgensen (I-J) for parameter values of n
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Another parameter has to be introduced, the transversal dispersivity aT. The

analytical formulation becomes much more complex, because the scalar factor

Deff has to be replaced by the dispersion tensor D:

D ¼ tDmol þ aTvð ÞIþ aL � aT
v

vvT (3.12)

with unity matrix I. The elements of the matrix vv
T contain the products of the

velocity components. Here the usual matrix product of a column vector and a row

vector yields a matrix. The formulation may seem a little complex at first sight. It

takes into account that the mixing constant in the direction of velocity is different

from the mixing constant transverse to the velocity direction and is valid for

arbitrary vectors v. Note that v may change spatially and temporally. With the

dispersion tensor the dispersive flux term becomes:

j ¼ �Drc (3.13)

where the product on the right side is performed as matrix–vector multiplication.

Transversal dispersivity is smaller than longitudinal dispersivity. Even a factor of

one or two orders of magnitude is possible.

An important feature is the scale dependency of longitudinal and transversal

dispersivities, which has been observed in groundwater studies. Figure 3.3 shows

the scale dependency of longitudinal dispersivity in porous media. Data for that

figure were taken from several studies on dispersion in groundwater.

It is also interesting to compare the effective diffusivity with the velocity depen-

dent dispersion, i.e. the two terms which contribute to the effective dispersivity in

(3.11). For a length scale of 1 m, a velocity in the range of some mm/a, and

a longitudinal dispersivity of 0.1 m, the value of 10�4 m2/a results. Molecular

diffusivity in water for most components is around 10�9 m2/s or 3�10�2 m2/a. Even

though the diffusivity has to be reduced by the factor t, it can be concluded that for

the given scale the diffusive flux exceeds dispersive flux. The values are characteristic

for lacrustine sediments. Only for very high sedimentation burial rates and for very

long mixing pathlengths a non-negligible contribution of dispersion can be expected.

3.3 The Transport Equation

3.3.1 Mass Transport

When both advection and diffusion/dispersion are taken into account, the flux

vector in x-direction results as the sum of both contributions:

jx ¼ �D @c

@x
þ vc (3.14)
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where in the diffusivity D different contributions have to be considered: from the

molecular scale, from tortuosity or from dispersion at the regional scale. Similar

formulae can be stated for the flux components in y- and z-direction. In vector

notation results:

j ¼ �Drcþ vc (3.15)

Here, the coefficient is written as a matrix in order to account for the general

case, as described above.

Now it is time to use this result to replace the flux terms in the mass conservation

(2.4). The result in one dimension is:

y
@c

@t
¼ @

@x
y D

@c

@x
� vc

� �
þ q (3.16)

In case of constant velocity one obtains the most common formulation of the

transport equation:

y
@c

@t
¼ @

@x
yD

@c

@x

� �
� yv

@c

@x
þ q (3.17)
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Fig. 3.3 Scale dependency of longitudinal dispersivity in porous media, as observed by different

authors
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In case of constant D the equivalent formulation is:

y
@c

@t
¼ yD

@2c

@x2
� yv

@c

@x
þ q (3.18)

For higher dimensional problems one may use the ∇-operator to obtain an

equally short formulation for the general situation:

y
@c

@t
¼ r� y Drc� vcð Þ þ q (3.19)

Sidebar 3.1: Mass Conservation in Streams

For 1D models in streams, the mass conservation leads to a slightly different

formulation. The changing cross-section along the stream needs to be con-

sidered. Instead of (2.1) one obtains:

cðx; tþ DtÞ � cðx; tÞ
Dt

� ADx ¼ jx�ðx; tÞAx� � jxþðx; tÞAxþ

where A denotes the cross-section in the y-z- and j fluxes through cross-

sections. As the riverbed is usually changing, different upstream and down-

stream cross-sections Ax� and Ax�have to be taken into account (Fig. 3.4).

Division by Dx and transition to infinitesimal scale leads to the formulation

A
@c

@t
¼ @

@x
jxAð Þ

After application of Fick’s Law for the cross-section the equation

becomes:

A
@c

@t
¼ @

@x
DturbA

@c

@x

� �
� @

@x
vmeanAcð Þ

where Dturb stands for mean turbulent diffusivity across a cross-section,

and vmean for mean velocity across the cross-section.

Of course, the 1D approach is a simplification of the flow regime in

a stream or channel. However, it is justified in order to capture the dominant

downstream behavior in the main flow channel. Additional features, such as

counterflow in groyne fields or along the bankline and flow in floodplains, can

be accounted for by the introduction of additional source and sink-terms in

the equation.
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This is the so-called mass transport equation, which is valid for biogeochemical

species of all kinds. The mathematical characterization is as follows: it is of second

order in space, as there appear second derivatives in x, y and z but not third derivatives.
It is of first order in time. It is parabolic concerning the mathematical classification of

partial differential equations. In case of constant coefficients it is a linear equation.

The simplifications, performed for the 1D equation, can be made for the multi-

dimensional situation as well. For the equation

y
@c

@t
¼ r� yDrcð Þ � yv� rcþ q (3.20)

the generalized condition is that the flow field is divergence-free, or in mathemati-

cal formulation: r�v ¼ 0.4 Formulation (3.20) is then obtained from formulation

(3.19) due to:

r� vc ¼ vrcþ c r� vð Þ ¼ vrc

inflow

outflow

deposition

tributaries
pollution

i + 1

i – 1

Fig. 3.4 Illustration for the

derivation of 1D transport

equation in streams

4 For an incompressible fluid the conditionr�v ¼ 0means that there are no internal sources or sinks

for the fluid (see chap. 12).
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3.3.2 Fourier’s Law and Heat Transport

In this chapter energy is understood as heat energy throughout. The main aim is to

derive the fundamental equations for heat transport, which are based on the energy

conservation principle. Other forms of energy, for example the energy consumed or

produced in reactions or by phase transitions, may be relevant in certain cases, but

will not be treated here.

In analogy to mass conservation, the conservation of thermal energy can be

stated in the following form:

ðrCÞ @
@t

T ¼ �rje þ qe (3.21)

where (rC) denotes heat capacity in [energy/(volume��temperature)](often:

[J (�K)�1 m�3]) and je the heat flux in [energy/(area�time)] (often [Watt/area]).

The energy sink or source qe, as well as the entire differential equation, measure the

volumetric energy rate in the physical unit [energy/(volume�time)].5 Some values of

heat capacities are listed in Table 3.1.

The left side describes the storage of heat, while in the first term on the right side

mass differences are expressed through the spatial change of heat fluxes. The coeffi-

cient on the left side relates energy storage in form of heat due to temporal tempera-

ture change to the mass. The heat capacity C is the expression of the energy – mass

relationship, while specific heat capacity rC is the expression for energy – volume

relation. At first instance, (3.21) is a formulation for pure phases. In porous media as

a two-phase system, either storage and fluxes can be added weighted by their relative

volumetric share, expressed in terms of porosity:

y rCð Þf
@

@t
Tf þ 1� yð Þ rCð Þs

@

@t
Ts ¼ �rje þ qe (3.22)

In (3.22) both phases may have different temperatures: Tf in the pore water, Ts in
the sediment. Usually heat transport is slow in relation to interphase heat transfer,

i.e. the heat exchange between fluid and solid phase is fast and as a result

temperatures in the two phases are the same: Ts ¼ Tf ¼ T. Concerning the long-

term development of non-oscillating thermal regimes, as it is mostly met in field

situations, the assumption of one temperature level is true. Then holds:

y rCð Þf þ 1� yð Þ rCð Þs
h i @

@t
T ¼ �rje þ qe (3.23)

5 The given formulation is a simplified version already. The left side can be derived by using the

following formula for internal energy: e ¼ e0 þ
R
cvdTwith specific heat cv. The given formulation

is also valid for incompressible media under nearly constant pressure (H€afner et al. 1992).
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When the coefficient on the left side of the equality is regarded as the heat

capacity of the solid/fluid sediment system:

rCð Þ ¼ y rCð Þf þ 1� yð Þ rCð Þs (3.24)

one can stay with the formulation of the energy conservation as noted above in

(3.21). In a multi-phase environment (rC) is a property of the system including

all phases.

The heat transport will be derived from this equation by specifying the flux je
with respect to the relevant processes. In order to reach an equation like that for

mass transport, one has to express the heat flux vector in terms of temperature. For

advective heat flux this can be achieved in analogy to (2.9):

je ¼ y rcð Þf vT (3.25)

For diffusive heat flux there is an analogue to Fick’s Law, which is Fourier’s

Law.6 In 1822 J.B. Fourier stated a linear relation between heat flux on one side

and the temperature gradient on the other:

je ¼ �lTrT (3.26)

The proportionality factor is the thermal conductivity lT that depends on the

medium through which heat transfer is taking place. lT is thus a material property

Table 3.1 Thermal conductivities and diffusivities for selected fluid, solid and mixed phases

(Sources: H€afner et al. 1992; Lide 1995)

Phase Density

[kg/dm3]

Thermal

conductivity

[W/m�C]

Specific heat

capacity

[kJ/kg�C]

Thermal diffusivity

[10�6 m2/s]

Water at 5�C 1.0 0.5724 4.202 0.13622

Water at 10�C 0.9998 0.5820 4.192 0.13886

Water at 20�C 0.9982 0.5984 4.182 0.14335

Water at 30�C 0.9957 0.6154 4.178 0.14793

Water at 40�C 0.9922 0.6305 4.179 0.15206

Water at 50�C 0.988 0.6405 4.181 0.15505

Water at 90�C 0.962 0.6753 4.210 0.16674

Seawater at 10�C 1.0269 0.5781 3.911 0.1439

Calcite 2.6–2.8 2.2 0.91 0.92984

Sand (dry) 1.2–1.6 0.6 (0.33) 0.8 0.62500

Fine sand (dry) 1.635 0.627 0.76 0.50459

Fine sand (saturated) 2.02 2.75 1.419 0.95940

Gravel (dry) 1.745 0.557 0.766 0.41671

Gravel (saturated) 2.08 3.07 1.319 1.11900

6 Jean Baptiste Fourier (1786–1830), French mathematician.
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which can be compared with the diffusivity in Fick’s Law (Eq. 3.5). In the literature

one can also find the term conductive heat flux. The physical unit of lT is [energy/
(length�time��temperature)] (mostly: [Watt (�Km)�1]). Some values of thermal

conductivities can be found in Table 3.1.

Like Fick’s Law, Fourier’s Law was at first stated for a single phase situation,

but the formulation (3.26) does not have to be changed for multi-phases. The

proportionality factor usually is not the same: in the saturated porous medium, lT
is a weighted mean of the phases involved, i.e. the fluid and the solid phase:

lT ¼ 1� yð Þls þ ylf (3.27)

where the subscripts denote the thermal conductivities for the pure phases.

Table 3.1 provides a list of ‘material properties,’ which are relevant for heat

transport. Some are related to pure phases (water and calcite), some to mixed phases

(gravel, sand).

A parameter with the unit [area/time] results when thermal conductivity is

divided by the specific heat capacity. In analogy to mass diffusion, this parameter

is termed thermal diffusivity, and Fourier’s Law can be understood as the law of

heat diffusion. Note that the transformation from single phase to multi-phase is not

the same for heat and mass diffusion. The important difference is that heat diffusion

takes place in all phases, whereas mass diffusion is relevant only in the fluid phase.

Replacing the energy flux vector in (3.21) by the terms for advective and

diffusive fluxes, as formulated in (3.25) and (3.26), one obtains the heat transport

equation:

ðrCÞ @
@t

T ¼ r� lrT � yðrCÞf vT
� �

þ qe (3.28)

which for a divergence-free flow field simplifies to:

ðrCÞ @
@t

T ¼ r� lrT � yðrCÞf v�rT þ qe (3.29)

Division by rC delivers:

@

@t
T ¼ r�DTrT � ykv� rT þ qe

rC
(3.30)

with thermal diffusivity DT ¼ l
rC and the ratio of heat capacities k ¼ ðrCÞfrC . Some

values of thermal diffusivities are listed in Table 3.1. Note that thermal diffusivities

are more than two orders of magnitude higher than molecular diffusivities for

species. In systems, in which heat and mass diffusion act simultaneously, heat

diffuses much faster than any species.

Aside from the yk term, the advection term (3.30) and the different representa-

tion of the sources, the heat transport formulation is identical to the mass transport
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(3.19). Concerning the mathematical type both differences do not change the type

of the differential equation: it remains second order in space and first order in

time, and is thus of parabolic type. There is a first time derivative on the left side of

the equation, and on the right side there are three space derivative terms: the second

order term, representing diffusion and dispersion, a first order term, representing

advection, and a source term which usually does not contain derivatives and is

thus of zero order.

3.4 Dimensionless Formulation

Without the source term one often reads of the advection-diffusion-equation, in
connection with the differential equations derived in the preceding sub-chapter.

Depending on how the processes are understood, one may also speak of advection-

dispersion, convection-diffusion or convection–dispersion-equation. These terms

can be found for the transport equations for mass (Eq. 3.19) or for heat (Eq. 3.30).

For a better illustration of the sensitivity of the solutions, it is often appropriate

to use the dimensionless formulation of these transport equations. In the sequel, we

consider the situation with constant coefficients and no sources or sinks. The

transport equation in dimensionless form is:

@o
@t
¼ @

@x
1

Pe

@o
@x
� @o

@x
(3.31)

with dimensionless variables o ¼ c�c0
cin�c0 ;x ¼ x

L ;t ¼ vt
L and dimensionless Péclet7-

number Pe ¼ vL
D for the mass transport equation,and with dimensionless variables

o ¼ T�T0
Tin�T0 ;x ¼ x

L ;t ¼ ykvt
L and dimensionless Péclet-number Pe ¼ ykvL

DT
for the heat

transport equation. The advantage of formulation (3.31) is obvious. There is only

one parameter left, which is the Péclet number. The behavior of the solutions can

thus be explored by the variation of that single parameter, and can often be

visualized nicely in a single diagram (see Chap. 5.3 for an example).

3.5 Boundary and Initial Conditions

In the preceding part of the book, the fundamental theoretical and empirical laws

are presented and it is shown how these are combined to yield differential

equations. For most differential equations several functions can be found which

fulfil the equation. The equation @u=@s ¼ �uðsÞ for example is fulfilled by the

7 Jean Claude Eugène Péclet (1793–1857), French physicist.
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functions uðsÞ ¼ C expð�sÞ for all values of C. Such solutions are called general
solutions and contain one or more integration constants, like C in the example. In

order to restrict the solution space, additional conditions have to be specified. The

additional requirements are usually formulated as boundary and initial conditions.
The mathematical formulation based on differential equations is completed by

these conditions.

The number of conditions, required to deliver a unique solution, is mainly

determined by the order of the differential equation. For first order equations

(which contain only first derivatives) one condition is needed, while second order

equations require two conditions. The term initial condition usually refers to the

variable time t and a condition at t ¼ 0. The term boundary condition refers to

a space variable x, y or z and a condition at the boundary of the model region. In

the just mentioned example s ¼ t, the initial condition u(t ¼ 0) ¼ u0 leads to the

unique solution uðtÞ ¼ u0 expð�tÞ. Typical for 1D steady states in sediment layers

is s ¼ z and the boundary condition u(z ¼ 0) ¼ u0 at the sediment-water interface.

The unique solution uðzÞ ¼ u0 expð�zÞis then valid, representing an exponentially

declining profile of the unknown variable.

A fundamental classification distinguishes three types of boundary conditions.

A first type boundary condition or Dirichlet type8 condition specifies the value of

the unknown dependent variable at the boundary. There is a concentration value to

be given in a mass transport problem and a temperature value in a heat transport

problem.

In a second type boundary condition or Neumann9 type condition, the derivative
of the variable is specified. As this gradient is proportional to diffusive flux, one can

interpret these conditions best as a specified diffusive flux. In mass transport the

concentration gradient is to be given, while in heat transport the temperature

gradient is prescribed.

A prominent role plays the condition with a vanishing gradient. According to

Fick’s Law or Fourier’s Law there is no diffusive flux then. Often the condition is

simply referred to as ‘no-flow’ condition; but it should be kept in mind that

a vanishing gradient still allows advective flux. If there is a non-zero velocity

component across the boundary, then there usually is heat or mass flux across

that boundary even when the so called ‘no-flow’ condition is declared. Thus, it is

more precise to use the characterization ‘no-diffusive flow’ instead of ‘no-flow.’

Only a zero velocity normal to the boundary and a vanishing gradient together

guarantee no flux.

The third type, Cauchy10 - or Robin boundary condition, is the general condition
as it requires a relationship between the gradient and a given value of the variable:

8 Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician.
9 Carl Gottfried Neumann (1832–1925), German mathematician.
10 Augustin Louis Cauchy (1789–1857), French mathematician.
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a0cþ a1
@c

@n
¼ j for mass transport or

a0T þ a1
@T

@n
¼ je for heat transport

(3.32)

with given coefficients a0 and a1 and given mass flux j or heat flux je. In flow

problems third type boundary conditions are formulated analogously in terms of

hydraulic head, pressure, pressure head or streamfunction. The third type condition

includes first and second type conditions as special cases. Third type boundary

conditions are connecting advective and diffusive fluxes (Table 3.2).

Values of boundary conditions may change with time. There are applications

where even the type of the boundary condition changes with time.

In transient problems, another form of conditions appears in addition to bound-

ary conditions: the initial conditions. As the name tells, an initial condition

concerns the knowledge of a variable at the beginning of the simulation, usually

at time t ¼ 0. It is necessary to know the starting position if the temporal develop-

ment for t > 0 is to be simulated.
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Chapter 4

Transport Solutions

4.1 1D Transient Solution for the Infinite Domain

An analytical solution for the transport (3.18) with constant coefficients and q ¼ 0

was given by Ogata and Banks (1961). It reads:

cðx; tÞ ¼ cin
2

erfc
x� vt

2
ffiffiffiffiffi
Dt
p

� �
þ exp

v

D
x

� �
erfc

xþ vt

2
ffiffiffiffiffi
Dt
p

� �� �
(4.1)

‘erfc’ denotes the complementary error-function, which is defined as follows:

erfcðxÞ :¼ 1� 2ffiffiffi
p
p

ðx

0

exp �B2� �
dB

‘erfc’ is related to the error-function ‘erf’:

erfcðxÞ :¼ 1� erfðxÞ mit erfðxÞ :¼ 2ffiffiffi
p
p

ðx

0

exp �B2� �
dB

Both functions can directly by called by a MATLAB® command, equal to the

abbreviation used above. The sequence of commands

illustrates the graphs of the two functions (Fig. 4.1).

In MATLAB® other functions relevant in connection with the error-function

are implemented. Details can be obtained by using the keyword ‘error function’ in

the MATLAB® help system.

E. Holzbecher, Environmental Modeling,
DOI 10.1007/978-3-642-22042-5_4, # Springer-Verlag Berlin Heidelberg 2012
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The 1D-solution for transport given in (4.1) is valid in the infinite half-space

x � 0 for the initial condition

cðx; t ¼ 0Þ ¼ 0

and the boundary condition:

cðx ¼ 0; tÞ ¼ cin cðx ¼ 1; tÞ ¼ 0

–4 –2 0 2 4
–1

0

1

2
erf
erfc

Fig. 4.1 Error-function (erf) and complementary error-function (erfc)

Sidebar 4.1: Special Functions (1)

In MATLAB® there are various ways to call functions. There are special

functions like the trigonometric functions

their inverse functions

their inverse functions with �-output

their hyperbolic counterparts

for which there are also inverse functions with arguments in radian or degree.

There are also all secant-functions; for example cscðxÞ ¼ 1= sinðxÞ :

The logarithm functions are based on different basis (e, 2 or 10):

(continued)
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e.g. when the component is not present at the initial simulation time and is

introduced into the system by inflow of concentration cin at position x ¼ 0. The

second boundary condition concerns the behavior of the system at a point that is

infinitely far away from the inflow boundary, where the concentration remains

constant. For the application of the formula in practice follows that the outflow

boundary is far away during all time instants of interest. When the front approaches

the outflow boundary the solution of Ogata-Banks is not valid anymore.

The generalisation of the formula of Ogata & Banks for a non-zero initial

condition cðx ¼ 0; tÞ ¼ c0 is given by:

cðx; tÞ ¼ c0 þ cin � c0
2

erfc
x� vt

2
ffiffiffiffiffi
Dt
p

� �
þ exp

v

D
x

� �
erfc

xþ vt

2
ffiffiffiffiffi
Dt
p

� �� �
(4.4)

The exponential function is reached simply by exp.

To mention is also the error function and its complement, the complemen-

tary error function, defined by

erf ðxÞ ¼ 2ffiffiffi
p
p

ðx

0

expð�t2Þdt

erfcðxÞ ¼ 1� erf ðxÞ ¼ 2ffiffiffi
p
p

ð1

x

expð�t2Þdt

erfcxðxÞ ¼ ex
2

erfcðxÞ (4.2)

which are called using MATLAB® by erf, erfc and erfcx. There are also

the inverse error functions, which are reached by the keywords erfinv and

erfcinv.

Another integral of the exponential function, the so-called exponential
integral or well function, is defined as

EðxÞ ¼
ð1

x

expðtÞ
t

dt (4.3)

and is reached by expint. Other special functions, which one may meet, are

implemented in MATLAB®, like the Bessel functions, and the modified

Bessel functions, the Airy functions, the Beta-function, the incomplete

Beta-function, the Gamma-Function, the incomplete Gamma-function:
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(Wexler 1992). In MATLAB® the formula is computed in an m-file ‘analtrans.m’,
which is described in the following. First input data are specified:

Before the formula is implemented, some auxiliary variables are introduced:

e is a row vector of length N. In another row vector t the time instants are

gathered, for which the formula is to be evaluated. There are M time instants, where

the initial time t ¼ 0 is not counted. In the row vector x there are the positions, at

which the formula is evaluated. There are N locations, without start- and end-

position. In the row vector c the initial condition at t ¼ 0 of the concentration at

the positions x is given.

During the execution run of the program the vector c becomes a matrix, for

which a new line is created for each of the time-instants given by vector t. This

happens in the following loop, in which the formula is implemented:

The loop-index is i, the current time within the loop is t(i). The length function

determines the number of elements in a vector1. The h is the coefficient 1=2
ffiffiffiffiffi
Dt
p

2,

which appears in the brackets. The lengthy expression in the third and forth line

correspondwith the formula of Ogata-Banks. Note that x is a vector. In order to add or

subtract the term vt (see (4.4)) it has to be ensured that the term is also a vector: this is

done by multiplication with the ones-vector e. Also note that the multiplication of the

‘exp’-factor and the ‘erfc’-factor in the last term of the expression has to be performed

element-wise: for that reason the multiplication-operator .* is necessary.

1 Alternatively one may use the size function. Here size(t,2) replacing length(t) works well

also. size has the advantage that it can equally be applied to matrices: size(A)delivers the number

of rows and columns of array A.
2
sqrt denotes the square root.
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When the MATLAB® plot command is applied for a matrix, the values in the

columns are plotted against line numbers. As an exercise check that the command

produces two function graphs based on four nodes each. In order to obtain a plot of

lines against column numbers one has to use the command for the transpose matrix.

The final command

produces the plot (Fig. 4.2):

In case of pure diffusion the solution of Ogata & Banks simplifies to the form:

cðx; tÞ ¼ cinerfc
x

2
ffiffiffiffiffi
Dt
p

� �
(4.5)

The dimensionless solution c/cin is identical to the complementary error function

with the dimensionless argument x ¼ x=2
ffiffiffiffiffi
Dt
p

. The evaluation can be performed

easily in the classical manner: if one is interested in the concentration at location

x and at time t, it is convenient to calculate x and to go with the obtained value into
the graphical plot of error function (Fig. 4.1) to get the corresponding functional

value. The latter has to be multiplied by cin to receive the wanted c value.

Exercise 4.1: Heat diffusion D ¼ 10�6 m2/s, T0 ¼ 5�C, T1 ¼ 15�C, L ¼ 1 m;

how long does it take until the temperature on the other side of the wall reaches
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0
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1

Fig. 4.2 The solution for the transport equation; analytical solution computed with MATLAB®
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10�C? Answer: 1.1�106 s, to be read in the plot produced by the following sequence
of commands:

Also for the constant heat flux boundary condition:

� l
@T

@x
ðx ¼ 0; tÞ ¼ j0 (4.6)

with a constant flux j0 an analytical solution exists (Baehr and Stephan 1994). It is

given by:

Tðx; tÞ ¼ T0 þ 2
j0
l

ffiffiffiffiffi
Dt
p

� ierfc x

2
ffiffiffiffiffi
Dt
p

� �
(4.7)

with the integral error function

ierfcðxÞ ¼ 1ffiffiffi
p
p exp( - x2Þ�xerfc xð Þ (4.8)

The integral error function is not specified in MATLAB®, but can easily be

computed by use of (4.8). A corresponding m-file is included in the accompanying

software under the name ‘ierfc.m’.

4.2 A Simple Numerical Model

In Chaps. 2 and 3 it is shown that processes and fundamental laws can be formulated

in form of differential equations. Above in this chapter it was shown that a solution

for a differential equation could be given by an explicit formula. With reference to

mathematical analysis, functions given in formulae, as in (4.4), are called analytical

solutions.

In fact there are analytical solutions for relatively few situations, compared

to the immense complexity, which can be represented in differential equations.

For that reason an alternative approach has gained importance, in which the

mathematical algorithm on the computer yields an approximation for the solution.

The mathematical discipline dealing with these approximations is numerics. The

methods used in numerics are called numerical methods, and the solutions are

called numerical solutions – in contrast to analytical solutions.

As an example for the numerical method a simple procedure is presented, which

delivers an approximate solution for the transport equation Fig. 4.3 that was devel-

oped above. For reason of simplicity the demonstration covers the 1D situation.
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Imagine a series of cells of equal geometry, as depicted in Fig. 4.3, representing

an idealized situation in an environmental compartment. It is assumed that there is a

constant flow with velocity v through all cells. When an increased concentration cin
enters the first cell with the flow, how does that affect the concentration distribution

in the entire system? To keep it simple it is assumed that the concentration in each

cell has a single value: the concentration in the i-th cell is designated as ci. The
transport problem is to compute the concentrations ci, depending on time and the

transport parameters.

A simple algorithm is developed in the sequel to mimic the major processes,

advection and dispersion. Let’s start with advection: after an appropriate time step

Dt the entire system will be shifted by one cell. The time step depends on the

velocity v and the spatial extension of the cells in flow direction Dx. The formula is:

Dt ¼ Dx=v. In MATLAB® we start with some settings in the command window:

and the following command sequence in the editor:

Store the m-file under the name ‘advection.m’. The first commands specify the

number of cells N and the initial concentration, which holds for all cells c0. In the

first row of the m-file the initial concentration is set for all cells. In MATLAB® it is

convenient to work with vectors and thus the concentration distribution in the

system of cells is represented by a row vector c. In the next row the concentration

is shifted by one position to the right. For such an operation MATLAB® offers the

circshift command. Parameters of the command are the vector and the number of

positions to be shifted. One has to use the transpose-', because circshift operates

on column vectors, only. Additionally the circular shift puts the concentration from

the last cell into the first cell, which is not the intention here. The concentration in

the first cell should be the inflow value cin. This setting is performed in the next

command, which overrides the preceding value in that cell.

In the final row the concentration is plotted. The hold on command ensures that

the new graph is plotted in the same figure-window and that the old graph is not

deleted. Run the small m-file several times, and plots similar to Fig. 4.4 will be

visible on the display:

A front of increased concentration is passing from the left to the right. This

animation is user-controlled, as it is the user who initiates each step with a mouse-

1 2 i – 1 i i + 1
... ...

Fig. 4.3 Cells in series
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click. The sequence shows advection, i.e. pure transport with the flow field. What is

not correct is that the vertical front-line is slightly tilted. One could think that this

represents a tiny transition zone between the low and the high concentration regime,

but such a zone would be the result of diffusion or dispersion, which are not yet

included in the model. In fact the tilting is an effect of the spatial discretization, e.g.

the representation of a 1D-space interval by a finite number of discrete cells. The

plotting algorithm, implemented in MATLAB®, connects neighbouring positions

by a straight line. The tilting becomes less pronounced when the number of cells is

increased.

For further use modify the advection m-file slightly:

The concentration variable is re-named to c1, as it contains the current value of

the concentration in a row vector. The c will be reserved for a matrix containing

concentrations for all cells at all time-instants. The ‘advection.m’ file is called as a

sub-module from a main m-file, in which the initialization and the post-processing

are performed. The main module should look like this:

In the first three lines, the input part, variables are initialised, tasks which were

done in the command window in the previous demonstration. In the forth line the

row vector of current concentrations is set to the constant initial value, and also the

first row of what is to become the concentration matrix c is filled with the initials. A

for-loop is introduced, in which N time steps are simulated. Advection is simulated

in ‘advection.m’, called within the loop. Then the concentration is plotted, as

already shown in Fig. 4.4. Finally the row of current concentrations is attached to

the matrix c. Store this file under the name ‘simpletrans.m’.

Fig. 4.4 Pure advective passing of a concentration front through a 1D compartment
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Run the program. After that a surface plot in the x-t-diagram is obtained with the

surf-command (use MATLAB® command-window) (Fig. 4.5):

As a next step we introduce diffusion into the model. For that purpose we set up

another m-file with the task to mimic diffusive/dispersive processes:

Store this m-file under the name ‘diffusion.m’. The Neumann number Neumann,
which appears here, has to be specified in the main module. The definition of the

dimensionless Neumann number is given in Sidebar 4.2; let’s take it as simply a

parameter. The influence of that number is to examine. An auxiliary concentration

row c2 is computed in the sub-module, where the value in each cell is calculated

from the last concentrations c1 in the same cell and the two neighbouring

cells. Why such a procedure mimics diffusion is derived in the following.

The corresponding main m-file has a Neumann-number specification additionally

and a call of the diffusion sub-module (called by the diffusion command):

Store the m-file under the name ‘simpletrans.m’. Advection and diffusion are

simulated in the corresponding sub-modules, which are called within the for-loop of
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Fig. 4.5 Pure advection in a space (x)-time (t)-diagram
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the main file. A general term for such a numerical procedure is operator splitting.
The for-loop mimics advancing time. A snapshot of the output of the m-file looks as

follows (Fig. 4.6):

The graph was obtained by ending the loop in the main module at a value lower

than N. In the graph the build-up of a transition zone with concentrations between

initial concentration and inflow concentration is obvious (which here is not the result

of a graphic routine on discrete data). The transition zone moves with the advancing

front, in the figure from left to right. It is also obvious that the transition zone widens

with time. In other words: the gradients of the concentration curves become less steep.

That is even better visible in the (x,t)-diagram, produced with the surf-command:

As depicted in Fig. 4.7, the concentration is shown as a surface above the (x,t)-
plane.

Fig. 4.6 Transport due to advection and dispersion; snapshot from an animation using

‘simpletrans.m’

0
20

40
60

80 100

0

20

40

60

80
0

0.5

1

x

c

t

Fig. 4.7 The solution of 1D transport in the space (x) – time (t) diagram, visualized as surface plot
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An alternative is the contourf-command

by which the transition zone can be visualized nicely. The transition zone is the

multi-colored region between the plateaus of initial concentration (blue) and the

inflow concentration (red) –see Fig. 4.8. For more details concerning 2D graphics

see Chap. 14.

Sidebar 4.2: Derivation of the diffusion algorithm

As noted, diffusion is described by Fick’s Law, which in 1D is stated as:

j ¼ �D @c

@x

with diffusivity or dispersivity parameter D (see (3.5)). It was shown that the

application of the principle of mass conservation together with Fick’s Law

leads to the transport equation, which is a differential equation for the

concentration c. In the derivation the mass balance was set up for a control

volume (Eq. 3.3):

cðx; tþ DtÞ � cðx; tÞ
Dt

¼ � jxþðx; tÞ � jx�ðx; tÞ
Dx

In order to describe the change of concentration in the finite system of

cells, the same equation can be used for each cell. We choose an arbitrary cell

at position i of the series with neighbour cells at positions i + 1 and i�1. The
concentrations are designated as ci, ci+1 and ci�1. The fluxes in x-direction
across the corresponding faces of the cell can be approximated by a finite

version of Fick’s Law:

jxþ ¼ �Dciþ1 � ci
Dx

and jx� ¼ �Dci � ci�1
Dx

Note that these formulae are not valid exactly, but may serve well as

approximations. It is the idea that small errors in the approximation may lead

to small deviations between analytical and numerical solutions after

performing the algorithm. Mathematicians speak of stability at this point, as

not all algorithms tend out to be stable. Replacing the finite difference terms

in the mass conservation equation above, yields:

ci;new � ci
Dt

¼ � 1

Dx
�Dciþ1 � ci

Dx
þ D

ci � ci�1
Dx

� �

and

ci;new � ci
Dt

¼ D
ciþ1 � 2ci þ ci�1

Dx2 (continued)
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where ci,new denotes the concentration in the i’th cell after a time step, e.g.

t + Dt, while all other concentration terms are relevant at the time t. The ratio
on the right side is a finite difference representation of the second derivative

@2c=@x2. There is an entire class of numerical methods, which is founded on

such Finite Differences, whereas the simple algorithm here adopts this meth-

odology for the simulation of diffusive fluxes only. In these equations the cell

concentrations between neighbouring cells are related. Thus one may use

them applying an explicit formula, from which the new concentrations in the

system of cells can be computed:

ci;new ¼ ci þ D � Dt
Dx2

ci�1 � 2ci þ ciþ1ð Þ

The coefficient, which appears in front of the brackets, the parameter

combination D�Dt
Dx2 is also known as Neumann-number3 (abbreviation: Neu),

(see Holzbecher and Sorek 2005). It is the given explicit formula for ci,new
that is computed in the m-file ‘diffusion.m’.

3 John von Neumann (1903–1957), US-American mathematician, physicist, chemist and computer

scientist
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Fig. 4.8 The solution of 1D transport in the space (x) – time (t) diagram, visualized by filled

contours
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Exercise 4.2: Instability of the Explicit Diffusion Simulator Check the simple

transport algorithm, introduced above, for Neumann-numbers Neu ¼ 0.1, 0.2, 0.3,

0.4, 0.5 ! Show that the algorithm becomes unstable, when Neu takes values greater
than ½!

The algorithm can be improved by using several (M) diffusion steps within one

time step simulation. In other words: a diffusion time step Dtdiff ¼ Dt=M can be

introduced in addition. Note that the time step of the splitting algorithm is not

arbitrary. It is determined by the velocity v and the cell extension Dx. The following
m-file, which is included in the accompanying software under the name

‘simpletrans.m’, takes such a refinement into account.

After the specification of the input parameters the grid spacing dx is calculated in

several steps. First it is derived from the two input parameters time step and

velocity. The user may require smaller grid spacing, if the user-defined value for

dxmax is smaller. In the latter case K is the integer factor, by which dx is reduced.

The time step, corresponding to the reduced dx is dtadv. N is the number of blocks,
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which is required to reach the user-specified length L. M denotes the number of

diffusion time steps necessary to fulfil the Neumann condition:

Neu ¼ D � Dtdiff
Dx2

� 1

2
(4.9)

Note that in the m-file the time is specified explicitly, by a maximum simulation

time and an output time step. The algorithm is also described by Appelo and Postma

(1993).

4.3 Comparison Between Analytical and Numerical Solution

Compare analytical and numerical solutions, as obtained with the m-files ‘analtrans.
m’ and ‘simpletrans.m’! A typical result is shown in Fig. 4.9, which was obtained for

input values T ¼ 1; L ¼ 1; v ¼ 1;D ¼ 0:1; c0 ¼ 0; cin ¼ 1;M ¼ 50;N ¼ 50. There

are differences at the start and the end of the simulation, while for intermediate times

the two curves coincide.

As was shown above the presented algorithm treats advection exactly to the

truncation error of numbers on the computer. The deviances between analytical and

numerical solutions are thus due to the discretization of diffusion. Directly after

start of the simulation the concentration gradient is very steep, and thus the error
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Fig. 4.9 Comparison of analytical and numerical results for the 1D transport equation
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due to the approximate representation of the differentials by finite differences is

higher than in the later simulation. The error can be reduced by an increase of the

number of cells, which is done here by lowering the input value for dxmax.

The differences at the end of the outflow boundary are due to a different reason.

In fact the boundary condition, which is included in the numerical algorithm, does

not coincide with the analytical solution, which is valid for the infinite half space

x � 0. The ‘erfc’-solutions (4.1) and (4.4) do not fulfil the @c=@x ¼ 0 Neumann

condition at any finite location.

The Neumann boundary condition is in fact approximated by the numerical

algorithm, more precisely in the command

appearing in the module ‘diffusion.m’. The formula results from the general finite

difference formulation by setting c1(N + 1) ¼ c1(N), where c1(N + 1) represents the

concentration in the outflow reservoir behind the final cell. The slope of the numerical

solution vanishes at the right boundary, which is clearly visible in Fig. 4.9.

The boundary condition is not altered by a finer discretization, and thus the

deviation on the outflow side remains. Figure 4.10, obtained for 100 cells,

demonstrates that the deviation on the left side is reduced in comparison to

Fig. 4.9, but the deviation on the right side remains.
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Fig. 4.10 Comparison of analytical and numerical results for the 1D transport equation, for a finer

discretization
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4.4 Numerical Solution Using MATLAB® pdepe

Here another method for solving the transport equation is presented which is based

on the pdepe solver for partial differential equations (pde’s). It is necessary to

introduce this third method, as it offers more possibilities and can be applied for a

much broader class of problems. Several species and/or temperature can be treated

simultaneously; for that reason the vector variable u is used in this sub-chapter to

gather all dependent unknown variables. The coefficients may have dependencies,

either on time or on space, i.e. on the independent variables x and t, or on the

dependent variables u. Various forms of additional terms can be taken into account,

in order to consider complex sources or sinks. This capability of pdepe opens the

possibility to simulate networks of reacting biogeochemical species. Moreover,

initial conditions are allowed to be space dependent and boundary conditions to be

time dependent. The field of possible applications is so wide that only a few

examples can be presented within here.

pdepe is a MATLAB® command. Like for any other command the help system

delivers some information and instructions. In the command window onemay also use

in order to get the basics. The information supplied by the help system is brief and

directed to a mathematically skilled audience. Therefore we provide an introduc-

tion, which can be understood without being used to mathematical presentations.

On the other hand the focus here is on transport equations, which are typical for

environmental models, and not on those numerous other partial differential

equations, which can also be treated using pdepe.

pdepe solves ‘pde’-systems of partial differential equations which can be written

in the following form

c � @u
@t
¼ x�m

@ xmfð Þ
@x

þ s (4.10)

In the notation of (4.10) the terminology of the MATLAB® help system is

adopted. It was already mentioned that the unknown variables which have to be

determined are gathered in the vector u. The coefficients of the time derivatives are

gathered in a diagonal matrix c (has nothing to do with concentrations). The

functions f and s on the right side of (4.10) are vector functions too, depending

on x; t; u and @u=@x. Also for c these dependencies can be valid. The integer value

m may take the values 0, 1 and 2, representing slab, cylindrical, or spherical

symmetry, respectively. In favour of simplicity m ¼ 0 will be valid in the introduc-

tory examples.

Let’s look at an illustrating example. The distributions of species A and B are to

be simulated in a system in which advection, dispersion and reaction are the
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relevant processes. According to the derivations in Chap. 3 such a situation can be

described by two transport equations:

@cA
@t
¼ @

@x
D

@

@x
cA � vcA

� �
� r

@cB
@t
¼ @

@x
D

@

@x
cB � vcB

� �
þ r (4.11)

cA and cB denote the concentrations of species A and B, D the dispersivity, v the

velocity, and r the reaction rates. The system (4.11) fulfils the form (4.10) with

m ¼ 1 and the following functions:

c ¼ 1 0

0 1

� �
u ¼ cA

cA

� �
f ¼ D @

@x cA � vcA
D @

@x cB � vcB

� �
s ¼ �r

þr
� �

(4.12)

Another possible representation is:

c ¼ 1 0

0 1

� �
u ¼ cA

cA

� �
f ¼ D @

@x cA
D @

@x cB

� �
s ¼ �v @

@x cA � r

�v @
@x cB þ r

� �
(4.13)

Note that the latter formulation requires the condition @v=@x ¼ 0. The difference

between both formulations is that in formulation (4.12) the flux term f includes

dispersive and advective fluxes, while in formulation (4.13) only dispersive fluxes

are included. This difference is also important for the boundary conditions, as is

shown in the following.

For the complete formulation of the mathematical problem initial and boundary

conditions need to be set. Using the terminology introduced above, the initial

condition at time t0 is given by the vector equation:

u x; t0ð Þ ¼ u0ðxÞ (4.14)

The boundary condition, valid at locations x ¼ x0 and x ¼ xn, is formulated in

MATLAB® by

pþ q � f ¼ 0 (4.15)

The function p may to depend on x, t and u, the function q on x and t. Note that f
is the flux-vector from the differential (4.10). At first sight the formulation (4.15)

seems rather different from the formulations of boundary conditions given above.

But it turns out that the MATLAB® formulation offers a lot of flexibility and

extended options for all types of conditions. An overview is given in Table 4.1.
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In the notation in Table 4.1 a single unknown variable u is used, representing a

single unknown component. The boundary conditions, even the type of the bound-

ary conditions may be different for each component of the vector u.

The reference to the equation representation indicates, which processes are

included in the flux term f, either in case of diffusion/dispersion alone, or with

advection. In case of several unknown variables the representation can be chosen

differently for the different components.

Table 4.1 Implementation of transport boundary condition, using MATLAB® ‘pdepe’

Type Name Representation Formula p q

First Dirichlet (4.13), (4.12) u ¼ u1 u� u1 0

Second Neumann (4.13) D @u
@x ¼ �p1 p1 1

Third Cauchy or Robin (4.12) q1D
@u
@x ¼ u1 � u u� u1 q1

“ “ (4.13) D @u
@x � v � u ¼ 0 0 1

“ “ (4.12) D @u
@x � v � u ¼ p1 p1 1

Sidebar 4.3: Syntax of the MATLAB® pdepe-command

Syntax

sol ¼ pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)
sol ¼ pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)
sol ¼ pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options,p1,p2...)

Arguments

m geometry parameter (slab ¼ 0, cylindrical ¼ 1, spherical ¼ 2).

m geometry parameter (slab ¼ 0, cylindrical ¼ 1, spherical ¼ 2).

pdefun function submodule for coefficients of the differential equation

(c, f and s).

icfun function submodule for initial condition (u0).

bcfun function submodule for boundary conditions (p and q at x0 and
xn).

xmesh vector [x0, x1, . . ., xn], positions, at which the solution vector is
calculated; elements of xmesh need to fulfill: x0 < x1 < . . . <
xn and there must be at least three entries

tspan vector [t0, t1, . . ., tf], time instants, at the solution vector is

calculated; elements of tspan need to fulfill: t0 < t1 < . . . < tf
and there must be at least three entries

options options concerning the numerical algorithm: RelTol, AbsTol,
NormControl, InitialStep, and MaxStep; see‚ odeset’ in help

system for details; use default first

p1,p2,. . . optional parameters f€ur pdefun, icfun und bcfun
sol solution matrix, containing values for all elements at all

positions of xmesh at all time instants of tspan.
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A complete description can be found in MATLAB®-help. With the pdepe com-

mand the m-file ‘pdepe.m’ is called. The user finds the location of that file by using

The user may open the file to see that the implemented solution algorithm is also

written in m-language. The inexperienced user is not recommended to alter that file,

but it is worth to know that alterations of the algorithm are possible in MATLAB®.

The syntax of the pdepe command is presented in Sidebar 4.3 in brief form.

4.5 Example: 1D Inflow Front

The first test case for the pdepemethod is the simulation of a situation for which the

Ogata-Banks solution holds. At first the functions have to be specified. Because the

transport equation is concerned, the names transfun, ictransfun and bctransfun

are chosen, for the equation specification, the initial conditions and the boundary

conditions, respectively. The entire specification is given by:

The functions f and s are specified in accordance with formulation (4.13), as the

flux term includes diffusion only. Parameters in this example are diffusivity D,

velocity v, initial concentration c0 and inflow concentration cin. These parameters

have to be included in the formal parameter list appearing in the header of each

function module. Number and order of these parameters need to be the same.

Note that in the boundary module p and q have to be specified for both boundaries.

The subscripts l (left) and r (right) indicate the boundary. The specifications for the

left boundary coincide with the settings in line 1 of Table 4.1; i.e. the Dirichlet

boundary condition is specified, while the specifications for the right boundary

coincide with line 2, the Neumann condition.
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The main module of the m-file looks as follows:

The execution part of the module consists of a single call of pdepe. The previous

command has to be made in order to specify the options structure for the next

command. The parameter set for the example appears behind the options–parameter

in the pdepe call. The results are stored on matrix c.

The function modules may be located in the same m-file behind the main

module. As a result of the plot command one obtains breakthrough curves
shown in Fig. 4.11. Breakthrough curves result from plotting concentration vs
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Fig. 4.11 Breakthrough curves as result of the transport solution using MATLAB® pdepe
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time at a specified location. The term is common in experimental sciences, where

breakthrough curves are recorded in column experiments. The set-up in a column

experiment corresponds to the situation described by the Ogata-Banks solution.

A front of usually increased concentration enters a 1D system in which at certain

positions and certain time instants measurements are taken. A breakthrough curve

results if the values measured at one of the locations are plotted against time.

In MATLAB® the plot (c) command yields breakthrough curves, if the

concentrations for the current time step are added in another row of the matrix,

as it is done by MATLAB® pdepe. The first formal parameter [0 t] determines

the x-axis.

Extended versions of the m-files ‘analtrans.m’, ‘simpletrans.m’ and ‘pdepetrans.
m’ are included in the accompanying software. The extensions are explained in

the following chapters.
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Chapter 5

Transport with Decay and Degradation

5.1 Decay and Degradation

Organic matter and organic substances are subject of degradation. The degradation
processes are of biochemical nature as they are mediated by bacteria. The details of

these processes are usually quite complex. For their activity, the different bacteria

cultures depend strongly not only on the biogeochemical environment but also on

temperature and pressure conditions. One crucial condition, for example, is the

availability of oxygen. In an aerobic environment bacteria dominate that consume

oxygen aside from organic matter. These components are transformed into various

products which always include carbon dioxide. In an anaerobic environment, when

the available oxygen is consumed, other bacteria take over the role of major

contributors to organic matter degradation. Other electron acceptors become more

important, as manganese and iron in the solid phase, or nitrogen and sulphate in the

fluid phase.

As an example the decay of the herbicide Linuron in soil, taken fromWalker and

Brown (1983) is given in Fig. 5.1

The term decay generally is used for physical or chemical processes that cause a

loss of substance. The term is well known in connection with radioactive decay for
the transformation of radionuclides into daughter products. Uranium U238 decays

with a half-life of 4.5�106 a, i.e. after that time half of the initial mass is still present

while the other half is transformed into Th234 (if no other processes are involved).

As the daughter product Th234 has a half-life of 2.1 days only, most of it decays into

Pa234, which is even more short-lived with a half-life of only 12 min. The next

daughter product U234 has a long half-life of 2.5�105 a.
There is a basic mathematical formulation that is commonly used to describe

decay and degradation. More complex approaches will be presented in the follow-

ing Chaps. 7 and 9. One general approach recognizes losses q being proportional to
a power of the concentration c:

q ¼ �lcn (5.1)

E. Holzbecher, Environmental Modeling,
DOI 10.1007/978-3-642-22042-5_5, # Springer-Verlag Berlin Heidelberg 2012
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where the integer n is the order of degradation or decay. l is the so called decay or
degradation constant, which generally depends on all variables in the environment

of the system in question. Second order decay is proportional to the square of the

concentration. Note that the physical unit of l depends on the exponent n. For the
important case with n ¼ 1, the unit of l is [1/T].

The sink term, given by (5.1), is substituted in the general mass transport

equations as (3.19) and (3.20). Note that both, q and the differential equation

have the same physical units (M/T/L3). Because the porosity y appears in all

terms, it can be omitted. One obtains:

@c

@t
¼ r �Drc�r � vc� lcn (5.2)

With this approach, decay and degradation processes are included in the trans-

port equation, and it becomes possible to treat transport, decay and degradation

simultaneously. Before we give solutions and solution strategies for the general

situation, special cases will be treated first.

If no other processes are relevant remains:

@c

@t
¼ �lcn (5.3)

This is an ordinary differential equation for the independent variable t. Most

important is first order decay or degradation, i.e. the case n ¼ 1, where losses are

proportional to the concentration. Then the solution of the differential (5.3) can be

noted directly:
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Fig. 5.1 Exponential decay; computed from analytical solution using MATLAB®; circles show
measured data, line represents optimized model, as described below
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c ¼ c0 expð�ltÞ (5.4)

which holds for the initial condition c(t ¼ 0) ¼ c0. The exponential function

obviously is the solution for a component with first order decay – that explains

the notation exponential decay.
The half-life t½ is the time period in which the component concentration declines

to half of the initial value. Thus according to (5.4) the t½ is characterized by the

condition

1=2 ¼ expð�lt1=2Þ (5.5)

which is equivalent to the condition t1=2 ¼ lnð2Þ=l. This is the reciprocate relation
between decay constant and half-life. With t½ exponential decay can be noted in

dimensionless form as:

c

c0
¼ expð� lnð2Þ t

t1=2
Þ (5.6)

for the dimensionless variables c/c0 and t/t½. For the time period of five half-lifes

the function is depicted by the following MATLAB® commands in Fig. 5.2.
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Fig. 5.2 Exponential decay as represented by dimensionless variables
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From mathematical point of view, the major difference between radioactive

decay and other forms of first order losses lies in the decay constant. The half-life

of radionuclides is constant under all conditions known. The rate of exponential

decay of a nuclide is not influenced by any environmental condition, neither by

temperature, nor by pressure, nor by the biogeochemical surrounding. Table 5.1

lists some radionuclides and their half-lifes. The simulation of a chain of

radionuclides is described in Chap. 18.2.

In contrast, chemical and biochemical rates are strongly affected by environ-

mental variables. In fact, the decay law can often be understood as a most simplified

rule, in which the interaction of several complex processes are gathered and where l
is a lumped parameter. Clearly, in a changed environment the parameter is differ-

ent. More complex degradation rules, using the Michaelis–Menten or Monod

kinetics, are treated below (see Chap. 7).

5.2 1D Steady State Solution

As mentioned above, the differential equation for the steady state is obtained by

setting the time derivatives in the transport (5.2) to zero. The right hand side of the

1D transport equation has thus been set to zero:

@

@x
D
@c

@x
� v

@c

@x
� lc ¼ 0 (5.7)

This is an ordinary differential equation for the independent variable x. With

MATLAB® ordinary differential equations can be solved numerically (see Chap. 9).

Here, an analytical solution, which provides the solution in an explicit formula, is an

alternative if the coefficients are constants, i.e. independent of x and t. In order to

solve differential (5.7) analytically, it is appropriate to note it in a different form:

@

@x
� m1

� �
@

@x
� m2

� �
c ¼ 0 (5.8)

Table 5.1 Half-lifes of selected radionuclides

Radionuclide Half-life Radionuclide Half-life

U-238 4.5�109 years H-3 12.35 years

U-235 32,500 years Ra-228 5.8 years

Ra-226 1,600 years Th-228 1.91 years

Am-241 432.2 years Gd-153 242 days

Pu-238 87.74 years Po-210 138 days

Cs-137 30 years Sr-89 50.5 days

Pb-210 22.3 years Th-234 24.1 days
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The parameters m1 and m2 can be obtained by comparison of coefficients in (5.7)

and (5.8):

m1 þ m2 ¼ v=D m1 � m2 ¼ �l=D (5.9)

A quadratic equation results, which has the solutions:

m1;2 ¼
1

2D
v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4lD

p� �
(5.10)

Equation 5.8 can now be solved in two steps. First the solution �c of the equation

@

@x
� m1

� �
�c ¼ 0 (5.11)

is determined, which is given by �c ¼ C0 expðm1xÞ. C0 is an integration constant that

is determined below in order to fulfil the boundary conditions. In a second step, c is
found as solution of the differential equation

@

@x
� m2

� �
c ¼ �c (5.12)

One obtains a formula for the general solution:

cðxÞ ¼ exp m2xð Þ C1 þ C0

ð
exp m1xð Þ exp �m2xð Þdx

� �

¼ C1 exp m2xð Þ þ C0

m1 � m2
exp m1xð Þ

(5.13)

where C1 is the second integration constant. Both C0 and C1 are determined by the

boundary conditions. The usual condition at the inlet cðx ¼ 0Þ ¼ cin yields the

condition: C1 þ C0= m1 � m2ð Þ ¼ cin or C1 ¼ cin � C0= m1 � m2ð Þ. Note that m1 and
m2, as given by (5.10), have opposite signs. As m1 is positive, the first term in (5.13)

is decreasing with depth, while the second is increasing with depth. For that reason,

the solutions approach infinity for all values C0 6¼ 0. Vice versa, the function with

C0 ¼ 0 is the only solution which guarantees finite concentration for arbitrary high

values of x. It is this property which makes the choice C0 ¼ 0 favourable in studies,

where there is no information concerning the downstream boundary condition

(Anderson et al. 1988; Henderson et al. 1999). Then the solution simply reads:

cðxÞ ¼ cin exp m2xð Þ (5.14)

When the second boundary condition requires a vanishing concentration gradi-

ent at depth L, i.e. @c=@xð ÞðLÞ ¼ 0, the second equation for C0 and C1 is given by:
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C1m2 exp m2Lð Þ þ C0m1
m1 � m2

exp m1Lð Þ ¼ 0 (5.15)

which leads to the solution:

C0 ¼ cinm2 m2 � m1ð Þ exp m2Lð Þ
m1 exp m1Lð Þ � m2 exp m2Lð Þ

C1 ¼ cinm1 exp m1Lð Þ
m1 exp m1Lð Þ � m2 exp m2Lð Þ

(5.16)

With these formulae the solution is complete to be computed in MATLAB®.

This will be done in the next sub-chapter. Here, we want to point out that the given

procedure can be applied to obtain the solution for different types of boundary

conditions. In all cases the free constants C0 and C1 in a formula for the general

solution, like in (5.13), have to be determined to fulfil the conditions. For Dirichlet

boundary conditions on both sides cð0Þ ¼ cin and cðLÞ ¼ c0one obtains:

C0 ¼ cin m2 � m1ð Þ exp m2Lð Þ
exp m1Lð Þ � exp m2Lð Þ C1 ¼ cin � C0

m1 � m2
(5.17)

Higher order decay usually is much more difficult to handle than decay of first

order. In order to tackle more complex formulations MATLAB® offers the possi-

bility to use numerical methods for ordinary differential equations. Such methods

are treated in Chap. 9.

5.3 Dimensionless Formulation

In dimensionless form the solution (5.13) can be written as:

cð~xÞ
cin
¼ ~C0 exp ~m1~xð Þ þ 1� ~C0

� �
exp ~m2~xð Þ (5.18)

with dimensionless depth ~x ¼ x=L; ~m1 ¼ m1L; ~m2 ¼ m2L and one integration con-

stant ~C0.

The parameters ~m1 and ~m2 can be expressed as function of the dimensionless

Péclet number Pe ¼ vL=D (see Chap. 3.5) and the dimensionless second

Damk€ohler1 number Da2 ¼ lL2=D:

1 Gerhard Damk€ohler (1908–1944), German chemist.
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~m1;2 ¼
1

2
Pe�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
Pe2 þ Da2

r
(5.19)

If the first Damk€ohler number for the fluid phase is defined by Da1 ¼ lL=v, the
two m-values can also be expressed as function of Pe and Da1. Using the identity

Da2 ¼ Pe � Da1, one obtains ~m1 and ~m2 as functions of Pe and Da1:

~m1=2 ¼
1

2
Pe�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
Pe2 þ Pe � Da1

r
(5.20)

The solution with vanishing concentration gradient at depth L can be expressed

by the formula:

cð~xÞ
cin
¼ ~m2 exp ~m2ð Þ exp ~m1xð Þ � ~m1 exp ~m1ð Þ exp ~m2~xð Þ

~m2 exp ~m2ð Þ � ~m1 exp ~m1ð Þ
(5.21)

A special case of (5.21) is

cð~xÞ
cin
¼ expð ffiffiffiffiffiffiffiffiDa2

p Þ expð� ffiffiffiffiffiffiffiffi
Da2
p

~xÞ þ expð� ffiffiffiffiffiffiffiffi
Da2
p Þ expð ffiffiffiffiffiffiffiffiDa2

p
~xÞ

expð ffiffiffiffiffiffiffiffiDa2
p Þ þ expð� ffiffiffiffiffiffiffiffi

Da2
p Þ (5.22)
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Fig. 5.3 Concentration profiles in the case of diffusion and decay with constant parameters

D and l; as function of dimensionless second Damk€ohler number Da2
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which is obtained for Pe ¼ 0, i.e. for no advection. The graphs of functions (5.22)

for different values of the second Damk€ohler number are presented in Fig. 5.3. The

following MATLAB® code is used for the plot. Markers in lines were added by

post-processing with the MATLAB® figure-editor.

The corresponding M-file ‘analtrans_s1’ is included in the accompanying

software.

The result of a varying Péclet number is illustrated in Fig. 5.4. All but one of the

depicted curves are calculated for Da1 ¼ 1 and variable Pe. The unit value of Da1
guarantees equal importance of advection and degradation or decay. The increasing
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Fig. 5.4 Profiles for fluid phase concentration in case of transport with constant parameters for

Da1 ¼ 1 in dependence of the Péclet number Pe
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value for Pe then represents a reduced importance of diffusion, which in the profiles

is reflected by steeper gradients.

The corresponding M-file ‘analtrans_s2’ is included in the accompanying

software.

The lower most curve in Fig. 5.4 shows the profile for advection and decay only,

i.e. for no diffusion, calculated as solution of the simple first order ordinary

differential equation

� v
@c

@x
� lc ¼ 0 or

@c

@x
¼ � l

v
c (5.23)

The solution is:

cðxÞ ¼ cin expð� v

l
xÞ (5.24)

or in dimensionless form (for dimensionless concentration, with dimensionless

parameter Da1 and dimensionless independent variable ~x)

c=cin ¼ expð�Da1~xÞ (5.25)

Formally one can represent the no-diffusion case by Pe ¼ 1. As could be

expected for increasing values of Pe, the function of (5.25) is approached as

asymptote. But the convergence is quite slow. For the value of Da1 ¼ 1, the

value of the Péclet number should be distinctly above 10 in order to obtain a

good correspondence between the concentration distribution and the asymptote.

For a good correspondence close to the outlet (x close to L), Pe should be 100 or

higher.

Figure 5.5 shows graphs of functions according to (5.21) for a fixed value of the

Péclet number Pe ¼ 1 and selected values of the first Damk€ohler number Da1. The
constant value of Pe guarantees a constant relation between diffusion and advec-

tion, while with changing values of Da1 decay or degradation processes change
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their relative importance. For high values of the Damk€ohler number decay is

relatively important and thus concentrations are significantly reduced from the

inlet (x ¼ 0) to the outlet (x ¼ L). With decreasing value for Da1, decay becomes

less relevant. Then the profile for advection and diffusion is approached, which is

the straight line representing constant concentration c ¼ c0 (for the given boundary
conditions). The figure is produced in MATLAB® by the following commands:

The corresponding M-file ‘analtrans_s3’ is included in the accompanying

software.
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Figure 5.6 represents the solutions for increasing advection if the relation

between diffusion and decay remains equal. For this plot it is assumed that both

processes are equally important, which is expressed by the second Damk€ohler
number Da2 ¼ 1. With increasing Péclet number advection becomes more rele-

vant, the front can penetrate further, and the concentration gradients become less

steep.

The corresponding M-file ‘analtrans_s4’ is included in the accompanying

software.
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The limit solution for Pe ¼ 0 was obtained from the differential equation for no

advection:

@

@x
D
@c

@x
� lc ¼ 0 or

@2c

@x2
¼ l

D
c (5.26)

with the general solution:

cðxÞ ¼ C0 exp

ffiffiffiffi
v

D

r
x

� �
þ C1 exp �

ffiffiffiffi
v

D

r
x

� �
(5.27)

In terms of dimensionless parameter and variable this is

cðxÞ ¼ C0 exp Da2~xð Þ þ C1 exp �Da2~xð Þ (5.28)

The free constants C0 and C1 are again obtained from the boundary conditions.

5.4 Transient Solutions

The analytical solution for the inflow of a front with concentration cin into a region

with concentration c0 is given by:

cðx; tÞ ¼ c0 exp �ltð Þ 1� 1

2
erfc

x� vt

2
ffiffiffiffiffi
Dt
p

� �
� 1

2
exp

vx

D

� �
erfc

xþ vt

2
ffiffiffiffiffi
Dt
p

� �� �
:::

þ cin
2

exp
v� u

2D
x

� �
erfc

x� ut

2
ffiffiffiffiffi
Dt
p

� �
þ exp

vþ u

2D
x

� �
erfc

xþ ut

2
ffiffiffiffiffi
Dt
p

� �� �
(5.29)

with u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4lD
p

(Wexler 1992). The solution consists of two parts: the first

describes the decline of the original concentration c0 and the second the change of

the inflow concentration cin in the 1D set-up.

In MATLAB® the solution is to be included in the M-file ‘analtrans.m’, which
was introduced in the previous chapter. The decay parameter l is added in the input
part of the module:

Then the auxiliary parameter u is computed by:
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and the formula (5.29) is programmed by the lengthy term:

Also the ‚simpletrans.m’ model can be extended easily by introducing decay as

additional process. Write another submodule, named ‘kinetics.m’ that includes only
one command:

In the main module ‚simpletrans.m,’ the command kinetics is called before

diffusion. Appelo and Postma (1993) describe a similar procedure.

In dimensionless formulation the solution is:

cð~x;~tÞ¼c0exp �Da2~tð Þ 1�1
2
erfc

~x�~t
2
ffiffiffiffiffiffiffiffiffiffiffiffi
~t=Da2

p
 !

�1
2
exp Pe�~xð Þerfc ~xþ~t

2
ffiffiffiffiffiffiffiffiffiffiffiffi
~t=Da2

p
 ! !

:::

þcin
2

exp Pe
1�u
2

~x

� �
erfc

~x�u~t
2
ffiffiffiffiffiffiffiffiffiffiffiffi
~t=Da2

p
 !

þexp Pe
1þu
2

~x

� �
erfc

~xþu~t
2
ffiffiffiffiffiffiffiffiffiffiffiffi
~t=Da2

p
 ! !

(5.30)

with u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Da2=Pe

p
. Figure 5.7 illustrates the solution for a high Péclet

number Pe ¼ 100 and a moderate second Damk€ohler number. The front proceeds

in positive x-direction from left to right. The time to proceed from one front line to

the next amounts to the 10th part of the mean time which a tracer would need to

migrate through the entire system.

With the intruding front the concentration is reduced. Because of the high Péclet

number, the front line remains relatively steep, which has the additional effect that
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the deviation from the steady state is relatively moderate but increasing. The plot

was obtained by using the M-file ‘analtransnodim.m’ with appropriate parameters.

Figure 5.8 shows a typical behavior when c0 is not equal to zero. In that case,

both terms in the formulae (5.29) and (5.30) have to be considered. The decline of

concentrations from one line to the other on the right side of the figure illustrates the

decay of the material, which was initially present in the system. Increasing

concentrations on the left side stem from the advancing front.

For analytical solutions of decay chains see chap. 10.4. For multi-species

transport of decay-chains see corresponding references in that chapter.
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Chapter 6

Transport and Sorption

6.1 Interphase Exchange

Aside from advection, diffusion and dispersion, which can be formulated separately

for the solid and the fluid phases, the interaction between the phases is another

process which is relevant in many environmental systems. Under certain

conditions, particles in the pore space are attracted by the surface of the porous

medium where some chemical processes tend to bind them in various ways.

Different processes like electrical attraction and repulsion, complexation or chemical

reaction can be distinguished in a detailed look, gathered under the general term

sorption.
In multiphase environments, sorption denotes processes that affect an exchange

of components between phases. One can speak of interphase exchange. In porous

media there is the exchange between solid and fluid phase, i.e. between the water in

the pore space and the solid matrix. Adsorption denotes fluxes from the fluid to the

solid phase, while desorption is the opposite process, in which there is a flux from

the solid to the fluid phase. In the following the term mobilization is used fre-

quently. A pollutant particle which has been fixed at the surface of the solid matrix

in a first time period, may be re-mobilized and freed for dispersion and advection

processes in a second time period.

A schematic view on adsorption and desorption in the pore space of a porous

medium is given in Fig. 6.1. In the remainder of this chapter, we will mostly refer to

that multi-phase set-up as it is the standard concept for environmental models

concerning groundwater, seepage water and pore water in aquatic sediments.

In a first fundamental distinction, the speed of the processes governing inter-

phase exchange in relation to the transport processes is of concern. One speaks of

fast sorption if sorption is faster than the transport processes; and of slow sorption if
sorption is slower than transport. Thus the characterization of sorption depends on

the specific situation.

Let c denote the fluid phase concentration and cs the solid phase concentration.

Normally c and cs are not independent but connected. High or low concentrations in

E. Holzbecher, Environmental Modeling,
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one phase are usually connected with high or low concentrations in the other phase.

Such phenomenon can be formulated by a mathematical relationship. In the case of

fast sorption, the relationship is mostly stated in the functional form

csðcÞ (6.1)

in which the solid phase concentration is given in dependency of the fluid phase

concentration. This is called a (sorption-) isotherm1 and can be understood as

an equilibrium, very much like the equilibrium in chemical reactions. The

concentrations in one phase are adjusted if, for whatever reason, the concentration

in the other phase is changing.

The simplest example is the linear isotherm

cs ¼ Kdc (6.2)

where the distribution coefficient Kd determines the ratio between solid phase and

fluid phase concentrations. The physical unit [volume/mass] can be attributed to the

fact that the concentrations in the fluid and solid phase are usually not measured

in the same physical units. Strongly sorbing components have a high Kd, while it

is low for weakly sorbing components. Non-sorbing components do not interact

Fig. 6.1 Schematic illustration of ad- and desorption processes

1 The notation ‘isotherm’ stems from the fact that such measurements are mostly performed

for constant temperatures, i.e. isothermal conditions. In general the isotherm changes with

temperature.
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with the solid phase and are called tracers. Chloride is such a tracer in most

environments.

Kd not only depends on the component but also on the solid material. In clays

sorption can be expected to be high due to the high surface area per volume and due

to the high electric potential. Clay minerals have an excess of imbalanced negative

charges, thus favoring the adsorption of cations. Divalent cations are usually more

strongly adsorbed than monovalent ions (Fetter 1994).

In the literature, Kd values are treated extensively for different kinds of chemical

species, for inorganic and organic components, for chemicals of the natural envi-

ronment and for contaminants. Kd values extend over several orders of magnitude,

from low values as 2�10�4 m3/kg for sodium (H€oltt€a et al. 1997) up to high values

like 400 m3/kg for protactinium (Geibert 2001). For tracer-like components even

lower values may be found and for strongly fixed components even higher values.

Often ad- and desorption are not taking place at the surfaces of the porous matrix

directly but on organic material that itself is fixed at the solid matrix. Especially in

aquatic sediments near the sediment-water surface this type of connection may be

dominant. Synthetic organic chemicals tend to adsorb on organic carbon. If corg
denotes the concentration of organic material, Korg denotes the distribution coeffi-

cient on organic carbon, and the distribution coefficients are related by the formula:

Kd ¼ Korgcorg=rs (6.3)

where the ratio corg=rs represents the weight fraction of organic matter in the solid

phase (Karickhoff et al. 1979; Karickhoff 1984). For pure sand, which does not

contain any organics, the adsorption is thus zero. As an alternative to Korg, the

octanol-water-distribution coefficient Kow can be taken. For several chemical

components a relation between Kow and Korg is given in the form

logðKorgÞ ¼ a logðKowÞ þ b (6.4)

where a and b are empirical constants. A mathematically similar relation often can

be stated for Korg and solubility S of a component:

logðKorgÞ ¼ ��a logðSÞ þ �b (6.5)

with empirical constants �a and �b (Karickhoff et al. 1979). While Korg and Kow

are correlated positively, the correlation between Korg and S is negative. Highly

soluble chemicals can be expected to interact only marginally with the porous

material. Vica versa, chemicals with low solubility show a strong tendency of

interaction with the solid matrix. This is illustrated in Table 6.1 showing a classifi-

cation concerning mobility using Kow. Mobile components have low distribution

coefficients, low Kow, and a high solubility. Immobile, strongly sorbing components

have high distribution coefficients and low solubility.
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A generalized formulation for fast sorption is the Freundlich2 isotherm

cs ¼ aF1caF2 (6.6)

with coefficients aF1 and aF2. The exponent aF2 usually is smaller than 1, which

corresponds to the observation that for low concentrations of c the gradient of the
isotherm is higher than for higher concentrations. For aF2 ¼ 1, the Freundlich

isotherm also describes a linear relationship between the concentrations in both

phases. The Freundlich isotherm is favoured mostly by experimental scientists, who

fit their experimental data using a power law relationship.

The third important formulation is the Langmuir3 isotherm that is written as:

cs ¼ aL1c
aL2 þ c

(6.7)

with coefficients aL1 and aL2. The Langmuir isotherm also has the property that

for low concentrations the gradient of the isotherm is higher than for high

concentrations. In contrast to the Freundlich isotherm, the Langmuir isotherm

approaches a finite asymptote for c!1, given by the parameter aL1. The argu-

ment for the relevance of the Langmuir isotherm is that for high concentrations the

limited number of sorption sites at the surface of the pore space is occupied, so that

no further increase of cs is possible.
Figure 6.2 depicts examples of the three major isotherm types. Formulae of

further isotherms are listed in Table 6.2.

In the soil compartment, sorption and cation exchange are closely connected; see

the paper of Johnson et al. (1998), which is concerned with forest eco-systems for

an example study. Cations as Ca2+, Na+, NH4
+, Sr+2, Al+3 exchange sorption places

if the equilibrium is disturbed when water of different composition enters. This is

a typical situation for the soil column with water from precipitation or irrigation

entering.

Table 6.1 Mobility classes,

octanol-water-distribution

coefficients Kow according

to Fetter (1994) and the

range of solubility for

organic pollutants

Mobility class Kow [mL/g] Solubility S [ppm]

Very high 1–50 4.4�103–1.4�105
High 50–150 850–3,570

Moderate 150–500 110–1,100

Low 500–2,000 30–156

Slight 2,000–2�104 0.275–10

Immobile >2�104 <0.252

2Herbert Freundlich(1880–1941), German chemist.
3 Irving Langmuir (1881–1957), US-American chemist and physicist.
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A very popular description for the equilibrium between the cations is the Gapon
isotherm:

cs1c2
1=n2

cs2c11=n1
¼ K (6.8)
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Fig. 6.2 Illustration of sorption isotherms: linear, Freundlich and Langmuir4

Table 6.2 Overview on further sorption isotherms

Sorption isotherm Formula Number of parameters

Linear cs ¼ Kdc 1

Freundlich cs ¼ aF1caF2 2

Langmuir cs ¼ aL1c
aL2 þ c 2

Tempkin cs ¼ aT1 þ aT2 logðcÞ 2

Frumkin cs ¼ Kd exp 2aFcsð Þc
1 þ Kd exp 2aFcsð Þc 2

Langmuir-Freundlich cs ¼ a1ca3
a2 þ ca3

3

Redlich-Petersen cs ¼ a1c
a2 þ ca3 3

Toth cs ¼ a1c
a2 þ ca3ð Þ1=a3 3

Dubinin-Raduskevich log csð Þ ¼ �a1log2 a2cð Þ þ log a3ð Þ 3

4 produced using MATLAB® by: c ¼ [0:0.01:1]; cs1 ¼ c; cs2 ¼ c.^0.5; cs3 ¼ 3*c./

(1 + 2*c); plot (c,cs1,c,cs2,c,cs3); and some additional design changes from the Figure

editor.
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where cs1 and cs2 are the concentrations of sorbed species, and c1 and c2 are the

concentrations of dissolved species. The exponents n1 and n2 are the electric

valence coefficients for the species 1 and 2. K is the characteristic equilibrium

constant for the exchange between two cations. For the competition between Ca2+

and Na+ the formula (6.8) delivers:

cCa;scNa
cNa;s

ffiffiffiffiffiffiffi
cCa
p ¼ K (6.9)

Several equilibrium sorption approaches for cation competition are discussed by

Vulava et al. (2000). An alternative to (6.8) one may use the Gaines-Thomas

isotherm for exchangeable mass fractions on the porous medium (Engesgaard and

Christensen 1988; Appelo et al. 1993):

cs1
c1

� �1=n1 c2
cs2

� �1=n2

¼ K (6.10)

In the formulation of mathematical analysis, given in (2.4), sorption can be

included by the introduction of the exchange terms. Considering advective and

diffusive fluxes, first order decay or degradation, neglecting additional sinks and

sources, the analytical formulation of the mass balances in both phases is:

@

@t
ycð Þ ¼ �r � yjð Þ � ylc� efs

@

@t
rbcsð Þ ¼ �r � rbjsð Þ � rblscs � esf

(6.11)

with concentrations c and cs, porosity y and sorption exchange terms efs and esf. The
exchange term with subscript fs denotes the losses from the mobile to the immobile

phase and sf vice versa. The exchange terms have a positive sign for losses

in the first phase and a negative sign if the first phase gains due to exchange.

In comparison to the formulation, given in Chap. 3, porosity appears as coeffi-

cient in the storage, in the flux and in the decay terms. In these terms the additional

factor is relevant in order to take into account that storage, flux and decay occur in

the pore space only.

The second (6.11) describes the mass balance for the solid phase, the porous

medium. As the species concentration at the solid surface is usually given as a mass

fraction, the coefficient rb has to appear in order to obtain the mass balance for the

species. rb [kg/m
3] is the bulk density of the porous medium that is given by.

rb ¼ 1� yð Þrs (6.12)

where rs is the density of the solid material without pores. On the right side of

the equation, the flux js appears in order to denote fluxes in the solid phase.
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In groundwater or soil systems, advective or diffusive fluxes in the solid phase can

be neglected. But there are exceptions: imagine, the upper soil horizon is turned

over due to agricultural practice. That could be described by a diffusion term. In

aquatic sediments even more processes contribute to diffusive and advective

processes.

As both (6.11) denote a total mass balance, the exchange terms are necessarily

equal. In a two-phase environment the sinks of one phase are the sources of the

other. Therefore, it is sufficient to introduce one exchange term only and omit the

other one (efs), i.e. efs ¼ �esf . What is gained in one phase from the sorption

process must be lost in the other phase. The describing set of equations then

becomes:

@

@t
ycð Þ ¼ �r � yjð Þ � ylc� efs

@

@t
rbcsð Þ ¼ �r � rbjsð Þ � rblscs þ efs

(6.13)

6.2 Retardation

In case of fast sorption it turns out that the exchange terms in (6.13) can hardly be

quantified. They surely change with time and space. Also the sign changes: in front

of an advancing concentration front there is a net gain of the solid phase and losses

of the fluid phases. The situation is contrary after a front has passed: there are net

gains of the fluid phase and losses of the solid phase. For a quantitative analysis

of transport problems it is therefore convenient to find a mathematical formulation

in which the exchange term disappears. This is achieved here easily by adding both

equations of (6.13). If one neglects decay or degradation, one obtains:

@

@t
ycþ rbcsð Þ ¼ �r � yjð Þ � r � rbjsð Þ (6.14)

In order to take advantage of the summation the unknown variable cs is

eliminated. In the case of fast sorption it is possible to reduce the system by utilizing

the isotherm relationship (6.1). Equation 6.14 can be re-written as:

@

@t
Rycð Þ ¼ �r � yjð Þ � r � rbjsð Þ with R ¼ 1þ rb

y
cs
c

(6.15)

where R is the so called retardation factor. The formulation (6.15) is frequently

used by geochemists (Postma and Appelo 2000). In groundwater studies an alter-

native formulation often can be found that is valid for the constant porosity

situation. Using the chain rule @cs=@t ¼ @cs=@cð Þ @c=@tð Þ on the left side, the

retardation factor appears outside of the time derivative:
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Ry
@

@t
c ¼ �r � yjð Þ � r � rbjsð Þ with R ¼ 1þ rb

y
@cs
@c

(6.16)

(Kinzelbach 1987). For formulation (6.16) it is assumed that porosity and bulk

density are constant in time. One can interpret the role of the retardation factor on

the left side of the equation as changing the time scale (see below in this sub-chapter

for a more detailed discussion). As the factor is always greater than 1 (all terms

appearing in its defining equation are positive), R is responsible for retardation.
In the case of a linear isotherm cs/c ¼ Kd, there is no difference between the

factors R in (6.15) and (6.16):

R ¼ 1þ rb
y
Kd (6.17)

For constant y there is a constant retardation, for which one often finds the

definition (6.17). Retardation factors range from values slightly above 1 up to 107,

as measured for example by Luo et al. (2000) for Thorium 232.

In general, R depends on the concentrations and on porosity and thus may

change with time and space. Both definitions given above differ in the general

situation. The left hand side of the differential equations (6.14) and (6.15) is then

cause for nonlinearity. For the Freundlich-isotherm holds:

R ¼ 1þ rb
y
aF1aF2ðcÞaF2�1 (6.18)

and the Langmuir isotherm:

R ¼ 1þ rb
y

aL1aL2
aL2 þ cð Þ2 (6.19)

The same procedure can be followed in modeling ion exchange. This will be

exemplified for two species, for which the cation exchange capacity CEC can be

noted as the sum of the solid phase concentrations of the two species:

CEC ¼ cs1 þ cs2 (6.20)

Using the Gapon isotherm (6.8) in addition one obtains:

1þ K
c1

1=n1

c21=n2

� �
cs1 ¼ K � CEC c1

1=n1

c21=n2
and 1þ 1

K

c2
1=n2

c11=n1

� �
cs2 ¼ CEC

K

c2
1=n2

c11=n1

(6.21)

in order to write the problem setting in two differential equations:
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R1

@c1
@t
¼ @

@x
D
@c1
@x

� �
� v

@c1
@x

R2

@c2
@t
¼ @

@x
D
@c2
@x

� �
� v

@c2
@x

(6.22)

with

R1 ¼ 1þ rb
y

CEC

n1

Kc1
�1þ1=n1

c21=n2 þ Kc11=n1
1� Kc1

1=n1

c21=n2 þ Kc11=n1

� �

R2 ¼ 1þ rb
y

CEC

n2

c2
�1þ1=n2

c21=n2 þ Kc11=n1
1� c2

1=n2

c21=n2 þ Kc11=n1

� � (6.23)

Using post-processing the solute phase concentrations can then be obtained by

cs1 ¼ K � CECc11=n1= c2
1=n2 þ Kc1

1=n1
� �

and

cs2 ¼ CECc2
1=n2= c2

1=n2 þ Kc1
1=n1

� � (6.24)

In systems with one static phase as it is in groundwater, formulations (6.14) and

(6.15) have profound advantage in comparison with the (6.13). If the solid phase is

fixed in space (if it is static), the genuine processes of advection and diffusion

are not present, or in mathematical formulation: js ¼ 0. Then (6.16) is a differential

equation for the unknown variable c:

Ry
@

@t
c ¼ r � yDrcð Þ � � vgrc (6.25)

On the right side appear terms for diffusion, dispersion and advection in the fluid

phase, but there is no contribution from the solid phase. When the differential

equation is solved, the other unknown variable cs and its change in space and time

can be computed easily with the help of the isotherm. Division by y yields:

R
@

@t
c ¼ r � Drcð Þ � v � rc (6.26)

For a further interpretation, (6.25) is compared to (6.26) (the latter without

sources, sinks and exchange, as it is valid for tracers). In (6.25) retardation is

nothing more than the validity of a prolonged time scale in comparison to the

tracer. In mathematical analysis one could formally express that by the notation

R � @=@t ¼ @=@ðt=RÞ. Using the new timescale �t ¼ t � R one can say that the spatial

concentration distribution of the retarded component at time �t is equal to the

distribution of the tracer at time t.
Following the concept of pure retardation sorption has no effect on stationary

concentration distributions. This can easily be seen in (6.26) and (6.25): the left side

6.2 Retardation 119



vanishes, and the concentration c is determined as solution of the remaining terms on the

right side of the differential equation, in which the retardation factor does not appear.

The concept of retardation can also be maintained if degradation or decay have

to be taken into account. The equations above have to be extended by decay terms.

Instead of (6.14) one obtains:

@

@t
ycþ rbcsð Þ ¼ �r � yjð Þ � ylc�r � rbjsð Þ � rblscs (6.27)

and instead of (6.15):

@

@t
Rycð Þ ¼ �r � yjð Þ � r � rbjsð Þ � ~Rylc with ~R ¼ 1þ rb

y
ls
l
cs
c

(6.28)

If there is the same decay constant in both phases (which is surely valid for

the radioactive decay of radio-nuclides), both R-factors are identical: ~R ¼ R. For
a fixed porous matrix, instead of (6.26) the following differential equation results:

R
@

@t
c ¼ r � Drcð Þ � v � rc� Rylc (6.29)

6.3 Analytical Solution

For a homogeneous 1D constant flow field and constant parameters, the differential

equation for a retarded species (6.29) has an analytical solution. For the inflow of a

front with concentration cin into a region with concentration c0 holds:

cðx; tÞ ¼ c0 exp �ltð Þ 1� 1

2
erfc

Rx� vt

2
ffiffiffiffiffiffiffiffi
DRt
p

� �
� 1

2
exp

vx

D

� �
erfc

Rxþ vt

2
ffiffiffiffiffiffiffiffi
DRt
p

� �� �
:::

þ cin
2

exp
v� u

2D
x

� �
erfc

Rx� ut

2
ffiffiffiffiffiffiffiffi
DRt
p

� �
þ exp

vþ u

2D
x

� �
erfc

Rxþ ut

2
ffiffiffiffiffiffiffiffi
DRt
p

� �� �

(6.30)

with u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4lRD
p

(Kinzelbach 1987). This is an extension of the formula of

Ogata and Banks (1961), which was presented in Chaps. 4 and 5. In contrast to the

original formula there are two terms, one describing the decline of the original

concentration c0 and the second concerning the change of the inflow concentration

cin. If one of these two concentrations is zero, the formula becomes less lengthy as

one of the two terms can be omitted.

First the already introduced MATLAB® M-file ‘analtrans.m’ is extended to

account for fast sorption. The retardation factor R is a new input parameter:
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The computations for variables h and u have to be extended:

Then the explicit formula is written as follows:

That’s all. Let’s examine some solutions calculated with the extended code.

The complete code is included in the accompanying software under the name

‘analtrans.m’.

Exercise 6.1: Compare results with R ¼ 1 and R ¼ 3, with parameters: T ¼ 1,

v ¼ 1, D ¼ 0.1, L ¼ 1, l ¼ 0!

Figure 6.3 depicts the results for exercise 6.1. The effect of retardation is nothing

but a factor in the time-scale. The concentration distribution at time t�R for the

retarded species is identical to the curve at time t for the tracer – at least that is the
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Fig. 6.3 Result of exercise 6.1; both situations are represented by three concentration

distributions. Squares mark t ¼ 1/3, diamonds t ¼ 2/3 and circles t ¼ 1. The graph for R ¼ 1

and t ¼ 1/3 falls together with the graph for R ¼ 3 and t ¼ 1
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expectation due to the mathematical description. Uncertainties in measurement

will, of course, provide differences in observed laboratory or field data.

6.4 Numerical Solutions

Fast sorption can also be introduced into the ‘simpletrans.m’ code. After the

definition of R in the input part of the code, internally only timesteps have to be

adjusted. The advection timestep is reduced by the factor R:

Also the Neumann-number:

The time-end criterion for the loop also depends on the retardation:

The complete code is included in the accompanying software under the name

‘simpletrans.m’

Exercise 6.2: Use ‘simpletrans.m’ to compare results with R ¼ 1 and R ¼ 2, with

parameters: T ¼ 1, v ¼ 1, D ¼ 0.1, L ¼ 1, l ¼ 1.2!

Figure 6.4 illustrates the effect of increasing R for a species that is also subject to

degradation. Compared are the solutions for no retardation, with parameters as in

the example above and with R ¼ 2. The two advancing fronts are depicted at

10 time instants, which represent the 10th part of the mean time for a tracer to

pass through the entire system. The difference between both solutions is not only

due to retardation but also due to higher degradation. This stems from the fact that

the retardation factor R appears twice in the differential equations: as coefficient in

the storage term on the left side and in the decay/degradation term.

Retardation can also be considered in the ‘pdepetrans.m’ code.

The complete parameter list needs to appear in all function calls. However, the

variable R contributes to computations only in the main sub-routine, which reads:
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R appears as the coefficient c of the time derivative and in the assignment for s.

With this version of ‘pdepetrans.m’ all applications, which were presented above

using the ‘analtrans.m’ or ‘simpletrans.m’ files, can be run. Recall that the advan-

tage of ‘analtrans.m’ is that there are no numerical errors as an analytical solution is

evaluated explicitly. The advantage of the ‘simpletrans.m’ algorithm is that it can

be implemented outside of MATLAB® or any other mathematical software pack-

age. The advantage of ‘pdepetrans.m’ is that it can be easily extended to include

other processes which cannot be taken into account by the other methods. This is

demonstrated in the following for problems of extended complexity for fast and

slow sorption.

First it is shown how the code can be extended to include all types of fast

sorption, i.e. linear sorption using formula (6.2), Freundlich sorption using formula

(6.18) or Langmuir sorption using formula (6.19). In the extended version of the M-

file, the retardation factor is calculated from two sorption parameters, depending on

the sorption option chosen in the initialization part of the M-file. The new lines

in the input part are as follows:
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Fig. 6.4 Result of exercise 6.2; both situations are represented by ten concentration curves, which

represent the proceeding front. Dotted lines without markers represent the case without retarda-

tion; lines with markers represent the front for a sorbing species with the same degradation rate
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The sorption-switch has to be set to an integer between 0 and 3. For tracers it

should be set to 0, for linear sorption to 1, for Freundlich sorption to 2 and for

Langmuir sorption to 3. Depending on the sorption-switch, the variables k1 and k2

contain different variables. In case of Freundlich and Langmuir isotherms these two

variables contain the two sorption parameters. In case of linear sorption k1 should

be set to the retardation factor if that is used directly. For the user the alternative is

to give the Kd-value in variable k2. In the latter situation, k1 needs to be set to

0 (not a valid value for retardation) in order to indicate which option is wanted. The

two variables are not used for tracers, i.e. when sorption ¼ 0.

The two variables rhob and theta contain the bulk density and porosity. These

are used only if the Freundlich or Langmuir retardation factors are calculated or if R
is to be calculated from the Kd-value for the linear isotherm. Some re-calculations

have to be performed before the pdepe-function is called5:

For the linear isotherm the retardation factor is calculated in the second line of

these commands. In the fourth line, bulk density and porosity are multiplied

with the first factor of the Freundlich- or Langmuir-sorption parameters. This

is done in order to reduce the number of variables to be transferred to the function

sub-routines. The call is lengthy even with that cosmetic:

The parameter list in the second line needs to appear in all functions of the

M-file. The only place where the new introduced variables are needed is the

transfun-function. The following statements need to be included in the function

before the assignment of the other variables:

5 & is the logical ‘and’ operator; for other logical operators see MATLAB® help under ‘logical

array functions’; the logical ‘or’ operator is: |.
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With these commands the retardation factor is computed for the different

sorption alternatives as described above.

The complete code is included in the accompanying software under the name

‘pdepetrans.m’

Exercise 6.3: Compare concentration profiles for the linear isotherm with R ¼ 2.3

and the Freundlich isotherm with y ¼ 0:2; rb ¼ 1200 kg/m3;Kd ¼ 4 � 10�4m3/kg;

use the following parameter assignments for further parameters: initial concen-

tration c0 ¼ 0.1 mg/l, cin ¼ 1 mg/l, v ¼ 1 m/s, D ¼ 1 m2/s and no degradation.
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Fig. 6.5 Result of exercise 6.3; both situations are represented by ten concentration curves,

visualizing the proceeding front. Dotted lines without markers represent the case for the Freundlich

isotherm; lines with markers represent the case for linear sorption with the samemarginal retardation

factor

6.4 Numerical Solutions 125



In Fig. 6.5 the concentration profiles for linear and Freundlich isotherms are

compared. There is the same marginal retardation factor for both cases, i.e. for

concentration c ¼ 1 the retardation for the Freundlich isotherm is identical to

R ¼ 2.3 of the linear isotherm. The figure illustrates the higher retardation for the

Freundlich isotherm for low concentrations, with the effect that for the same time

instant the concentration values for the Freundlich case are always below those of

the linear sorption case.

6.5 Slow Sorption

In the derivation of differential equations, as presented above, it was assumed that

the interphase exchange processes are fast compared to the other relevant processes.

The equilibrium between solid phase and fluid phase concentrations is reached

at all times. Such an assumption is valid in many field situations where transport

time scales are long, for example, in aquifers or aquatic sediments It is surely not

valid in other cases.

Concerning slow sorption one may keep the original set of two differential

equations (6.13). In the following we will show how to treat such a system in

case of no transport processes for the solid phase (js ¼ 0):

@

@t
ycð Þ ¼ �r � yjð Þ � ylc� efs

@

@t
rbcsð Þ ¼ �rblscs þ efs

(6.31)

The (6.31) describe transport, sorption and degradation. The latter is allowed to

be different in the dissolved and in the solid phases. Replacing the detailed

formulation for the transport fluxes, and using the assumption of constant y and rb,
yields the formulation:

@

@t
c ¼ r � Drcð Þ � v � rc� lc� efs=y

@

@t
cs ¼ �lscs þ efs=rb (6.32)

The exchange term is assumed to have the following form:

efs ¼ kf c� kscs (6.33)

The following describes an extension of the already developed M-file to account

for slow sorption:
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The output parameters can be adopted from one of the other transport M-files,

‘simpletrans.m’, ‘analtrans.m’ or ‘pdepetrans.m’. The discretization parameters are

also taken analogously as demonstrated above. The execution part consists mainly

of the call of the pdepe-module. The function names and parameters are of course

new for the slow sorption application:

The solution is again written in matrix form. As there are two unknown

concentrations at each position and for each output time level, there are three

indices: one speaks of a tensor of rank 3. Three indices are necessary to mark a

single element of c. The third index must be 1 or 2, depending on whether to denote

the concentration of the dissolved or the adsorbed species. In all output commands,

the third index needs to be specified in order to determine which concentration has

to be plotted. Where in former codes the variable c was sufficient, now c(:, :, 1)

has to be inserted. With this command only the fluid phase concentration is plotted.

In order to obtain the solid phase concentration use c(:, :, 2).

6.5 Slow Sorption 127



The idea of two function variables in one vector has to be adopted to understand

the functions of the M-file. Where a single value was sufficient in former programs,

now two values need to be given; the first for the single phase differential equation,

the second for the solid phase differential equation. The functions read as follows:

The coefficient for the time derivative term is 1 in both differential equations.

Thus, both components in the column-vector c are equal to 1. The flux term f

contains the negative of Fickian diffusion in the first component and zero in the

second (as there is no diffusion in the solid phase). Note that the variable DuDx

contains the spatial derivatives of the concentrations and is a two-component

column vector within the function.

In a similar manner the variable s contains the contributions from advection,

decay and sorption. The first component of the first term -v*DuDx(1) contains the

advection term already known from the other M-files. The second component in

the first term is zero, as there is no advection in the solid phase.6 The second term of

the s ¼ . . . assignment includes decay terms, which are allowed to be phase-depen-

dent. If they are phase dependent, the variables lambdaf and lambdas have to be

chosen differently. The last term denotes the interphase exchange. In the coefficient

term (in round brackets) the amount of exchange is computed. The exchange needs

to be included with a positive sign in the first differential equation and with

a negative in the second differential equation. In order to achieve that, one has to

multiply with the [1/theta;-1/rhob] vector.

For both phases initial conditions are specified in the slowsorpic function. Note

that c0 is a two component vector, which contains the specified initial

concentrations for both phases. For the boundary conditions the concentration of

6 In most applications on porous media, the solid phase or porous matrix is assumed to be fixed in

the chosen spatial coordinate system. However, in some cases this may not be true. In sediments

the solids move with respect to a fixed level in space. If the interface between the sediments and the

overlying region of free flow is taken as a reference, one may obtain a situation with no flux of

solids. However, this trick works doesn’t work if there are temporal changes in sedimentation, or

even in steady state, when compaction has to be taken into account.
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inflowing fluid is the only parameter required. All other boundary conditions, for

solid and fluid phases, are all of no-flow Neumann type.

The complete code is included in the accompanying software under the name

‘slowsorp.m’

Exercise 6.4: Compare concentration profiles for a varying solid to fluid transfer

factor kf . Which known situation is described by ks ¼ 0? The fluid to solid transfer

factor is given by kf ¼ 0:02 1/d. Use the following values for the other parameters:

T ¼ 16 d, L = 8 m, D ¼ 0:1m2/d, v ¼ 0.5 m/d, l ¼ ls ¼ 0

y ¼ 0:2; rb ¼ 1200 kg/m3; cin ¼ 1 mg/l, c0 ¼ c0s ¼ 0

Figure 6.6 shows that for a varying transfer rate the solutions lie between two

marginal states. One is given if the transfer factor kf is very low. For ks ¼ 0 the

solution is identical to the situation with linear decay, as all mass which disappears

on the solid surfaces has no way back into the fluid. As the figure shows, this

marginal situation already is approached for values ksb1. The other marginal state

is characterized by an immediate back-reaction. The transfer from solid to fluid is

not a limiting factor any more. For the given parameter values this is obviously true

for ks>105 1/d.
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Fig. 6.6 Results of exercise 6.4; on the graphs for T ¼ 16 d the corresponding value of the

transfer factor kf is depicted
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6.6 MATLAB® Animations

One can use MATLAB® to produce animations. Using the getframe command,

single shots from a MATLAB® figure window can be gathered as one animation.

After finishing the production, there are commands to store and play the animations.

We demonstrate the procedure, how an animation is produced, for the transport

models that were described in Chaps. 4–6. The change of the concentration profile

with time is to be illustrated by a sequence of profiles. It is assumed that the results

of the simulation are stored on the matrix c, which contains concentration profiles in

the rows; the different rows represent different time instants. The entire sequence is

shown below and is included in the M-files ‘simpletrans.m’, ‘analtrans.m’ and

‘pdepetrans.m’ (with minor differences concerning dtout). The switch variable

ganim in the input specification is introduced to initiate or not initiate the animation

production.

The first command in the if-block concerns the filename under which the

animation is to be stored. Following the uiputfile command,7 the user is asked to

input the name of a ‘mpg’-file. Thereafter the figure editor is opened. Within the

for-loop two concentration profiles are plotted in the figure window. The axes are

set to manual scaling, because otherwise the concentration interval, shown on the

vertical axis, may change from one frame to the other. For an animation such

a change is not wanted. Within each run through the loop, the current profile is

plotted in red color first by the first plot command. The YLim command ensures

that the concentration axis remains fixed between initial concentration and inflow

concentration. With the legend statement the current time becomes visible in

the figure.

The getframe stores the current figure in an animation structure, which in the

sample M-file in this implementation has the name Anim. The index j denotes the

index of the plot. After that assignment the same plot is performed in blue color,

7With the uiputfile command a file name is specified using a file-select box.
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overwriting the red curve, before proceeding in the same manner with the next

concentration profile.

Note that there is another option connected with the ganim parameter. If the user

chooses ganim>1, the final blue colored profiles are not deleted. Thus the history of

the profile development remains visible in the following single plots of the

animation.

After the end of the loop, the entire animation is stored under the given file name.

Here we demonstrate the mpgwrite command, which does not belong to core

MATLAB®. However, everyone is free to use the command; the corresponding

M-file can be downloaded from Mathworks web-site; see: http://www.mathworks.

com/matlabcentral/fileexchange. Don’t forget to specify the directory path where

the corresponding files have to be saved (using the addpath command or the ‘Set

Path. . .’ sub-entry of the ‘File’ menu.)

The movie command starts the movie. The second formal parameter in that call

corresponds to the repetition time. If at that place a negative value is specified, each

animation is shown forward then backward. It is possible to influence the speed of

the animation by specification of a third formal parameter, which represents the

number of frames per second.

An example animation with ganim ¼ 2 is included in the accompanying

software under the name ‘animation.mpg’.
The final frame is shown in Fig. 6.7. As an exercise, the user may extend the

animation letting the profiles run through a cycle of colors.
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Fig. 6.7 Final frame of example animation
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Chapter 7

Transport and Kinetics

7.1 Introduction

Very often biogeochemical reactions in which several species of the environment

participate play an important role for the fate and the distribution of species of

environmental relevance. Due to reactions a potentially hazardous component can

be gradually degraded and may reach concentration levels above limits set by

environmental regulations. Another scenario is also important: potentially harmful

chemical species may emerge as products of a reaction along a flow path within

a compartment.

In this and the following chapter the focus is on modeling the simultaneous

action of transport and reactions. It will be shown that for mathematical modeling it

is relevant whether reactions are slow or fast in comparison to the considered

transport processes. In this chapter we stay with slow reactions, while fast reactions

are the topic of the next chapter.

The characteristic time for a slow reaction is at least in the same scale as

advection and dispersion/diffusion. In applications at different length and velocity

scales in different environmental compartments, the classification of slow and fast

reactions may differ significantly. A reaction, which has to be classified as slow in

a flowing river, can be fast in aquatic sediments or in aquifers.

The rate of reactions is quite different. According to Cox (1994), the lower limit

for the characteristic time lies between 10�12 and 10�13 s. H-bond formation in

metal complexes can be as fast as 10�10 s, macromolecular complex formation

exceeds 10�7 s, and hydrolysis 10�3 s. All these processes are surely fast in all

environmental systems, unless they are inhibited by specific biogeochemical

conditions leading to much higher reaction times.

CO2 hydration is in the order of 10
3 s, Fe(II) oxidation by O2 in the order of 10

4 s

(Morel and Hering 1993). SO2 transformation and deposition as H2SO4 or SO4
2�in

the atmosphere has a time characteristic of 10 h and 33 h respectively (Deaton and

E. Holzbecher, Environmental Modeling,
DOI 10.1007/978-3-642-22042-5_7, # Springer-Verlag Berlin Heidelberg 2012
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Winebrake 1999), i.e. in the order of 105–106 s. Photolysis of a pesticide (carbaryl)

and Mn(II) oxydation have a similar speed. Hydrolysis of an insecticide (disulfo-

ton) and heterogeneous Mn(II) oxidation can be observed in a time scale of 107 s.

More than a year can be estimated for the hydrolysis of methyl iodide in freshwater

and for homogeneous Mn(II) oxidation (Morel and Hering 1993). Tributylin, an

ingredient of anti-fouling paints, is degraded in three steps, of which each has

a characteristic time between 1.5 and 3 years (Sarradin et al. 1995).

Morel and Hering (1993) give amino acid racemization as an example for an

extremely slow process with a rate coefficient of 1014 s. This can surely be classified

as a geological time-scale (it can be compared to petroleum formation).

For the modeler, the time scale of the process always has to be related to the

typical time scale of interest of the problem for which the model is designed.

Processes which are much faster than the time scale of interest need not to be

resolved in the model – neither processes which are much slower than the time scale

of interest. Only processes, for which the characteristic time is similar to the

problem time scale need to be treated as kinetic processes. Therefore any kinetics

classification has no general validity. It is rather problem and site specific.

Kinetics is a branch of chemistry that deals with reactions, for which the reaction

rate has to be given as a function of environmental state variables. The determi-

nation of such kinetic rates is the main task of kinetics. It is often a formidable

task, because the number of state variables and the range of the validity of experi-

mentally determined reaction rates is not clear a priori.

The implementation of kinetics turns out to be unproblematic within the mathe-

matical framework used in this book. Kinetics deals with reaction rates. The

transport differential equations are stated in terms of rates. Thus, in the differential

equation a rate r just has to be added, and the resulting transport equation for the

concentration c of a single species becomes:

y
@c

@t
¼ �r� yjðcÞ þ q with jðcÞ ¼ �Drcþ vc (7.1)

Within this formalism one can conceive decay and degradation as special cases

of kinetics with q ¼ �ylcn for linear decay and q ¼ �ylcn for general decay of

order n. If the factor y appears in all terms, it can be omitted; this will be assumed

for the remainder of this chapter.

In general, several reactants are involved in reactions, and it is often not suffi-

cient to consider a single species in a model. Let’s assume that a simple reaction has

two reactants a and b and one reaction product c:

aþ b! c (7.2)

The corresponding system of differential equations is obtained by adding the

reaction rate in all three differential equations, of which each represents the
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mass balance for one of the species. Let’s denote the concentrations by the symbols

ca, cb and cc:

@ca
@t
¼ �r� jðcaÞ � r

@cb
@t
¼ �r� jðcbÞ � r

@cc
@t
¼ �r� jðccÞ þ r (7.3)

Note that the sign of the reaction rate is negative for reactants (as mass is lost)

and positive for the product (as mass is gained).

For a general formulation one may introduce a reaction matrix S, which is given

in the example by:

S ¼ �1 �1 1ð Þ (7.4)

indicating that one molecule of species a and one molecule of species b yield one

molecule of species c. The product STq is a column vector, which gathers all

reaction terms, and the system of differential (7.3) can be written briefly as:

@c

@t
¼ �r� jðcÞ þ STr with c ¼

ca
cb
cc

0
@

1
A (7.5)

The notation can be used for general systems of a multitude of species that are

connected by several reactions. The reaction rates are gathered in a column vector r.

One can write the entire system by the vector equation:

@c

@t
¼ �r� jðcÞ þ STr (7.6)

This approach will be extended in the following chapter. If transport does not

have to be considered, (7.6) reduce to:

@c

@t
¼ STr (7.7)

which is a system of ordinary differential equations. The solution of such dynamical

systems is outlined in Chap. 9.
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7.2 Law of Mass Action for Kinetic Reactions

As mentioned above, chemical reactions often are described by a so-called kinetic
formulation. The term kinetic is used in order to distinguish the description from the

equilibrium or thermodynamic formulation. In the latter case an equilibrium condi-

tion is used to characterise the relationship between the participating species. The

thermodynamic formulation is equivalent to the formulation of isotherms, which

was introduced in Chap. 6.

In the kinetics approach the rate term itself is expressed in terms of concen-

trations of the chemical species. Different formulations of such kinetic laws can be

found in concerned publications that are valid for certain reactions under certain

conditions and a certain parameter range. The most common formulation is the

kinetic version of the Law of Mass Action. The equilibrium version of that law is

presented in the following chapter.

For the reaction example (7.2) the law of mass action formulation is:

q ¼ �kcacb (7.8)

with a reaction-characteristic parameter k. The parameter k is a characteristic for

the ‘speed’ of the reaction. For fast reactions, k has a high value. For slow reactions

it is a small number.

The increase of the rate with the concentration, as expressed by (7.8), is an

expected behavior. For a reversible reaction aþ b! 2c, the rate law is given by:

q ¼ �k!cacb þ k c2c (7.9)

There appear different reaction parameters for reaction and back-reaction:

k! and k . Moreover, the stoichiometric number for the involvement of a species

in the reaction appears in form of an exponent of the concentration; two for

species c. The rate increases proportionally to the respective power of the concen-

tration if the stoichiometric number exceeds one. Equations (7.8) and (7.9) are

special cases of the general form

q ¼ �k!
Y

reactants i

cai
i
þk 

Y
products j

caj
j

(7.10)

where the stoichiometric numbers are denoted as ai and aj. Equation (7.10) is not

the most general formulation of the law of mass action. In fact, it turns out to be

valid only for the small and moderate concentration range. If the fluid is highly

mineralized, i.e. when concentrations of dissolved species are high, inhibition

due to competition between species has to be taken into account. Then activi-

ties replace concentrations in the above expressions. Further details are given

in Chap. 9.
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7.3 Monod, Michaelis–Menten and Blackwell Kinetics

When biological species are involved, another description for rate is often used. In

analogy to an approach proposed by Michaelis1 and Menten2 already three decades

before (Michaelis and Menten 1913), Monod3 suggested the following term to

describe the growth of bacteria cultures in the 1940s of the twentieth century

(Monod 1949) (Fig. 7.1):

q ¼ r
c

c1
2
þ c

(7.11)
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Fig. 7.1 Monod – Michaelis/Menten and Blackwell kinetics (normalized)

Sidebar 7.1: Free Radical Reactions in the Atmosphere

Understanding the behavior of free radicals in the atmosphere is of paramount

importance for the understanding of lifetime and hence of spatial scales of

pollutant transport. Free radicals participate in photochemical reactions,

which are initiated by light. Most free radical species have short life spans.

However, they can promote the conversion of ozone to oxygen and thus take

part in the catalytic cycle of ozone destruction. The most important radical

acting in the lower atmosphere is the hydroxyl radical OH. A system of free

radical reactions involving OH is given by
(continued)

1 Leonor Michaelis (1875–1949), German-American biochemist.
2Maud Leonora Menten 1879–1960), Canadian physician.
3 Jacques Lucien Monod, 1910–1976, French biochemist.
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For high concentrations a maximum reaction rate r is approached, while for low
concentrations q is proportional to c (with proportionality constant r=c1

2
). If the

concentration c of the species coincides with the half-concentration parameter c1
2
,

half of the maximum rate is reached.

In some computer codes, the transition between linear and constant rate appears

at a specified characteristic value of the concentration. Such a distinction between

low and high concentration situations is used as a simpler alternative to Monod

kinetics. It is referred to as Blackwell kinetics and applied by van Cappellen and

Wang (1995) among others.

7.4 Bacteria Populations

In models one may also consider bacteria populations explicitly. If there is a high

abundance of bacteria, degradation processes are favoured. Vice versa, the abun-

dance of fuel favours bacteria population growth.

H þ NO2 ! OH þ NO

2OH ! H2Oþ O

Oþ OH ! O2 þ H

with reaction constants k1, k2 and k3 (Bradley et al. 1973). Neglecting

transport, the entire set of reaction equations is as follows:

@cH
@t
¼ �k1cHcNO2

þ k3cOcOH

@cH2O

@t
¼ k2c2OH

@cNO
@t
¼ k1cHcNO2

@cNO2

@t
¼ �k1cHcNO2

@cO
@t
¼ k2c2OH � k3cOcOH

@cO2

@t
¼ k3cOcOH

@cOH
@t
¼ k1cHcNO2

� k2c2OH � k3cOcOH

with k1 ¼ 2.9, k2 ¼ 0.155 and k3 ¼ 1.1.
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For a description that takes more details into account concerning the bacterial

degradation, a formulation can be used in which the bacteria population X appears

as another variable. In addition to the differential equation for the chemical species,

another differential equation for the biological species has to be added. As exten-

sion of equation (3.20) it is possible to write:

R
@c

@t
¼ r� Drcð Þ � v � rc� aX

c

cþ b
@X

@t
¼ gX

c

cþ b
� dXn (7.12)

with retardation factor R, dispersion tensor D, velocity v and parameters

a; b;g and d. The degradation rate for the substrate is linearly dependent on X.
For high concentrations c, a maximum rate of aX is reached. Half of that maximum

is given for the substrate concentration C¼b. Such behavior is described by the

Monod term, the last term in the first equation of system (7.12). The same func-

tional dependency is used to describe the growth of the bacteria population where

the coefficient g includes the relation between bacteria population and substrate

concentration. The last term in the second equation of system (7.12) accounts for

the decline of the bacteria population or natural death of the bacteria, for which two

additional parameters, d and n, are introduced. Bacteria are assumed not to migrate

with flow; that’s why the dispersion and advection terms are missing in the second

equation.

Approaches as in (7.12) are common in biogeochemical modeling. The use of

a linear term for the decline of X is a common approach used in biogeochemical

modeling (Lensing 1995; Tebes-Stevens et al. 1998). For n ¼ 2, the approach

coincides with the so-called logistic equation, which is most popular in the

biological and ecological sciences; see Chap. 9). Marsili-Libelli (1993) refers to

the given approach with a first order growth term in X and a degradation term with

a free exponent as Richards dynamics. Even more general approaches with free

exponents in growth as well as in decay terms are examined by Savageau (1980).

An alternative formulation of similar complexity is obtained when the second

equation of the system (7.12) is replaced by

@X

@t
¼ gX

c

cþ b
� d1X � d2X2 (7.13)

In (7.13) a linear and a quadratic decay term are included. In a discussion of

various different mortality terms in ecological models, Fulton et al. (2003) favour

such an approach stating that the linear term represents ‘basal’ mortality, while the

quadratic term is due to predators which are not explicitly represented in the model.

A further approach for modeling the bacteria population was suggested by

Sch€afer et al. (1998), following Kindred and Celia (1989), using an inhibition

term for the bacteria population:
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@X

@t
¼ gX

c

cþ b
e

X þ e
� dX (7.14)

where e denotes one additional parameter. The inhibition factor e= X þ eð Þ has also
to be included in the decay term of the substrate equation.

If the one-dimensional formulation of the differential (7.12) is sufficient, one

may write:

R
@c

@t
¼ @

@x
aLv

@c

@x

� �
� v

@c

@x
� aX

c

cþ b
@X

@t
¼ gX

c

cþ b
� dXn (7.15)

Concerning the formulation (7.15) it is assumed that dispersion dominates over

diffusion (see Chap. 3): molecular diffusivity is omitted. If the velocity and also the

dispersivity are constants, as for example in column experiments, the coefficients aL
and v can be taken out of the brackets of the first term of the right hand side.

The simulation of the transient change of concentration and/or population of

biological species, described by a set of 1D equations, can be performed by using

the MATLAB® pdepe solver that was already described in chap. 4. In the sequel, as

another MATLAB® application, we determine the degradation characteristics by

evaluating the steady-state solution.

7.5 Steady States

In order to determine the degradation rate it may be sufficient to examine the steady

state. From the 1D formulation for the unsteady situation a set of ordinary differen-

tial equations emerges. Two equations result for the system described by the (7.15):

@

@x
aLv

@

@x
c

� �
� v

@

@x
c� aX

c

cþ b
¼ 0

gX
c

cþ b
� dXn ¼ 0 (7.16)

If bacteria populations remain above zero, a steady-state value for X, in depen-

dence of c can be extracted from the second equation:

X ¼ g
d

c

cþ b

� � 1
n�1

(7.17)
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The formula (7.17) is introduced in the first equation of system (7.16):

aLv
@2c

@x
� v

@c

@x
� a

g
d

c

cþ b

� � 1
n�1 c

cþ b
¼ 0 (7.18)

which is a single differential equation of second order. As an equivalent system of

two differential equations one obtains:

@c

@x
¼ c0

@c0

@x
¼ c0

aL
þ a
aLv

g
d

c

cþ b

� � 1
n�1 c

cþ b
(7.19)

In cases in which dispersive fluxes are small, one obtains a single first order

differential equation:

@c

@x
¼ � a

v

g
d

c

cþ b

� � 1
n�1 c

cþ b
(7.20)

or

@c

@x
¼ �� c

cþ b

� �n= n�1ð Þ
(7.21)

with � ¼ ag1= n�1ð Þ

vd1=ðn�1Þ
. Formula (7.21) can be re-written as:

ð
1þ b

c

� �n= n�1ð Þ
dc ¼ ��ðx� x0Þ (7.22)

For n ¼ 2 (7.22) can be integrated analytically. One obtains:

x� x0 ¼ � 1

�
cþ 2b logðcÞ � b2

c
� cin � 2b logðcinÞ þ b2

cin

� �
(7.23)

where cin is the inflow concentration at x ¼ x0. Expression (7.23) is an implicit

formula for c as function of x for given parameters and boundary condition.

Provided a value for x is known, the corresponding c can be determined by

a zero-finding algorithm. See Sidebar 7.2 for an application using the MATLAB®
fzero command.
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With the same assumptions the approaches (7.13) and (7.14) also lead to

ordinary differential equations:

@c

@x
¼ � ag

vd2

c

cþ b

� �2
þ ad1

vd2

c

cþ b
(7.24)

and

@c

@x
¼ ��1 �2

c

cþ b
� 1

� �
(7.25)

respectively.

Sidebar 7.2: Gadolinium-DTPA Steady Transport and Degradation

Diethylene-triamine-pentaacetic acid (DTPA) is used in the pulp and paper

industry, where its application increased dramatically with the introduction of

H2O2 as a substitute for the bleaching agent chlorine. Chelating agents,

particularly DTPA, are added to bind heavy metals and thus prevent the

decomposition of H2O2 during the bleaching process (van Dam et al. 1999).

After processing, DTPA remains a component of the effluent reaching sew-

age treatment plants and downstream surface water bodies such as rivers and

lakes, as well as connected aquifers. Finally the substance enters the water

supply systems.

Gadolinium (Gd) is a rare earth element (REE), which rarely occurs in

natural environments. Therefore Gd has become an indicator for human

impact in metropolitan areas; Gd is widely used in medical applications.

Since 1988 most contrast agents for magnetic resonance imaging in medicine

contain gadolinium. Gd is complexed with DTPA to form Gd-DTPA,

an aqueous soluble stable complex. Gd-DTPA does not accumulate in the

human body but is eliminated without significant chemical change via the

kidneys within a day.

Gd-DTPA reaches sewage treatment plants after having passed the sewage

systems. The sewage treatment processes are not sufficient to degrade the Gd-

DTPA complex. In densely populated areas increased concentrations of Gd-

DTPA can be found in surface water bodies that are partially recharged by

effluents of sewage plants. Even aquifers contain Gd-DTPA introduced by

infiltration of surface water. Such a path is of particular concern, where

drinking water is pumped from well galleries in the vicinity of surface

water bodies, where bank filtration is used for public water supply.
(continued)
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In the sequel, we deal with a column experiment that was set up in order to

identify the DTPA degradation processes in porous media. The reported

column experiment was performed in a series of columns with an entire

flowpath length of 30 m. The set-up and the evaluation of the experiment

was already reported by (Holzbecher et al. 2005). Inflow velocity and disper-

sion coefficient were obtained from the evaluation of a tracer experiment.

Mean interstitial velocity and longitudinal velocity for the entire duration of

the experiment are v ¼ 0.86 m/d and aL ¼ 0.06 m. Advection dominates

within the system.

Concentrations were measured at several locations along the flowpath.

Figure 7.2 depicts the measured breakthrough curves for Gd concentration at

four selected positions, 0.22 m, 10 m, 20 m and 30 m from the inlet to the first

column. After an initial time period with initial zero concentrations, c
increases fast when the front approaches. Clearly, the length of the initial

time depends on the position of the observation point. Following the sharp

increase, finally a level is reached which is constant over time. The concen-

tration level of that steady period depends on the position along the flowpath.

Minor fluctuations are due to difficulties maintaining a constant concentration

at the inlet. In Fig. 7.2 on the first breakthrough curve a rectangle indicates the

time period with steady concentration.

The constant concentration levels in dependence of travel distance are

depicted as dots in Fig. 7.3. The figure also shows two curves obtained by two

different modeling approaches. If the approach (7.12) is assumed to be valid,

according to the presented derivation, one has to solve (7.21).

For n ¼ 2, one has the alternative to solve the implicit formula (7.23),

which is implemented by using the MATLAB® fzero command. The com-

plete M-file sequence is:

(continued)
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Fig. 7.2 Observed breakthrough curves (selected) in Gd-DTPA column experiment

The complete code is included in the accompanying software under the

name ‘GdDTPA.m’. Figure 7.3 depicts the result of the computation labelled

by ‘n ¼ 2’. Estimated parameter values for b and � were adopted from

Holzbecher et al. (2005).

Additionally, Fig. 7.3 depicts the result of another model run in which the

parameter n was included in the estimation. For the solution, the steady state

equations (7.21) were modeled using a MATLAB® solver for ordinary

differential equations (see Chap. 9). The optimum fit was obtained for

n ¼ 1.029, b¼16.2 and � ¼ 5425. How parameter estimations can be

performed in core MATLAB® is shown in Chap. 10.

The second run obviously represents much better the curvature in the

observed data than the first run. A more detailed model may even improve

the fit, i.e. the correspondence between measured and modelled data. Also the

approaches (7.13) and (7.14) deliver better results than the run with a fixed

n ¼ 2 (Holzbecher et al. 2005). Which of the approaches is more realistic can

only be judged by including non-mathematical findings of the applied

sciences.
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Chapter 8

Transport and Equilibrium Reactions

8.1 Introductory Example

The situation that environmentally relevant species take part in chemical reactions,

while being transported through a compartment of the environment, was already

treated in Chap. 7. In this chapter the same situation is taken up again with the

difference concerning the time scale of the reactions. Here we deal with reactions

which are fast in comparison to transport processes.

The situation that chemical reactions are fast compared to other environmental

processes is met quite often but on very different time scales. The scale difference is

related to the fact that the transport time scale deviates significantly in different

compartments. There are systems which are almost in a no-flow state. In deep

underground reservoirs transport is measured in geological time scales, and most

chemical transformations can be assumed to be fast in comparison. In near-surface

aquifers velocities are often in the range of several meters per year or higher, and

some chemical processes may not reach their equilibrium. Sedimentation rates in

the deep ocean or in lakes are in the order of several mm per year; this sets the scale

for fast and slow reactions in those systems. Therefore, each environmental com-

partment has its own time-scale and is related to chemical processes in a different

manner.

Reactions with a characteristic time, which is in the same scale as transport or

even slower, can be included in the mathematical description as shown in the

previous chapter. The reaction rate has to be formulated in dependence of

concentrations and maybe some other state variables, like temperature, and added

as another term in the differential equation. As the reaction contributes to the mass

balance, which is expressed by the differential equation, the mathematical formu-

lation is straight forward. More difficult is the determination of rate expressions that

are relevant in practice from the chemical point of view. But this has to be left to

chemists and is outside of the scope of this book.

For fast reactions, the rate law is not relevant. Instead, the equilibrium charac-

teristic is brought into play. A widely accepted formulation is given by the law of

E. Holzbecher, Environmental Modeling,
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mass action, which is presented in sub-chapter 8.2. Here, the mathematical frame-

work is demonstrated in a special introductory example.

Let’s take a reaction in which na molecules of species a react with nb molecules

of species b to produce nc parts of species c:

naaþ nbb! ncc (8.1)

In connection with transport the development of the system of three species can

be described by the set of three differential equations:

@ca
@t
¼ r� jðcaÞ � nar

@cb
@t
¼ r� jðcbÞ � nbr

@cc
@t
¼ r� jðccÞ þ ncr (8.2)

This is a slight extension of the system (7.3), where all stoichiometric numbers

na, nb and nc were set to 1. As in the previous chapters, the vector j denotes the flux
due to transport processes, and the symbol in brackets denotes the species which is

transported. The last term in all three differential equations represents the reaction.

The notation is analogous to the description introduced in Chap. 7. r denotes the
reaction rate. The problem is that the reaction rate r is not known in equilibrium

reactions. The rate r has to be eliminated from the mathematical description, which

is achieved by an appropriate gathering of the equations (sums of first and third, as

well as second and third equations):

@ca
@t
þ na

nc

@ca
@t
¼ r� jðcaÞ þ na

nc
r� jðccÞ

@cb
@t
þ nb

nc

@cb
@t
¼ r� jðcbÞ þ nb

nc
r� jðccÞ (8.3)

In favour of simplicity, we assume that the flux term is linear, i.e. that

dispersivities, diffusivities and fluid fluxes are independent of the concentrations.

Then fluxes on the left side can be gathered in a single term:

@

@t
ca þ na

nc
cc

� �
¼ r� j ca þ na

nc
cc

� �

@

@t
cb þ nb

nc
cc

� �
¼ r� j cb þ nb

nc
cc

� �
(8.4)

In order to obtain a suitable formulation for three unknown variables ca, cb and
cc, these two equations are complemented by the mathematical formulation of

the equilibrium state, which is a mathematical function including ca, cb and cc.
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According to the law of mass action (see sub-chapter 8.2), the equilibrium condition

for the given reaction is given by the equation:

cc
nc

canacbnb
¼ K (8.5)

with a specific reaction-dependent equilibrium constant K.
The general solution procedure for the entire system is as such: solve the differen-

tial (8.4) in order to obtain the variables A :¼ ca þ na
nc
cc and B :¼ cb þ nb

nc
cc as

functions of time and space! In a second step, determine for each location and time

instant the three unknown values ca, cb and cc from the three known values A, B
and K!

In order to perform this task, we utilize the resulting explicit formulae for ca and cb
as functions of c :¼ cc as well as A and B: ca ¼ A� na=ncð Þcc, cb ¼ B� nb=ncð Þcc.
Thus we may re-write (8.5) as:

cnc

A� na
nc
c

� �na
B� nb

nc
c

� �nb ¼ K (8.6)

or:

f ðcÞ :¼ cnc A� na
nc

c

� ��na
B� nb

nc
c

� ��nb
� K ¼ 0 (8.7)

The further task is to find the zero of a non-linear equation. The standard

procedure for such a computation is Newton’s method (see Sidebar 8.1).

Sidebar 8.1: Newton1’s Method

Newton’s method is a mathematical standard method for the determination of

the zeros of a function. Let’s introduce the method for functions of one

variable f(x) first before extending it to several dimensions.

Newton’s method is an iterative method; i.e. starting from an initial guess,

a new approximation for the zero is computed in each iteration step.

The formula for the next approximation of the zero is:

x x� f ðxÞ
f 0ðxÞ

(continued)

1 Isaac Newton (1642–1727), English scientist and philosopher.
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where f 0ðxÞ denotes the derivative. It can be shown easily that the new x is the
position where the tangent on the function graph at the old x position meets

the x-axis.
The iteration stops, if the change of approximation within the last iteration

is lower than a specified tolerance (1), or if the maximum number of iterations

is reached (2). The following command sequence demonstrates the method by

calculating the zero of the cosinus, i.e. p/2.

The complete code is included in the accompanying software under the

name ‘newtondemo.m’.
In the first three lines tolerance, maximum number of iterations and initial

guess are specified. What follows is the initialization of the error variable

err and the iteration counter nit. In the while-loop the new x-position is

calculated from the old one. First, the iteration counter is increased. Then,

after function and derivative are evaluated, the change of x (the second term

in the iteration formula) is computed by the command dx ¼ �F/DF. The
absolute value of dx becomes the error variable err. Finally, the new x is

calculated.

The result of the iteration for the cosinus as demonstration function is

x ¼ 1.5708, which is already reached after three iterations. There are further

iterations, because the required tolerance with 10�7 is higher than the digits

presented in the MATLAB® command window.

Note that the Newton method requires an explicit formula for the deriva-

tive of the function.
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Note that the derivative @f=@c is to be computed in order to apply Newton’s

method. For function (8.7) the derivative is available, although a bit lengthy to write

down. In the following sub-chapter we present a general procedure, which can be

applied to general systems of multi-species interacting in several reactions.

8.2 The Law of Mass Action for Equilibrium Reactions

The most common unit for concentrations of components in the fluid phase is

[component mass / fluid volume]; in SI units [kg/m3]. Another way describing

concentrations is by using mass fractions [component mass / fluid mass], which in

physical units are dimensionless. In chemistry it is common to use molar or molal

concentrations, where the number of moles per fluid volume or fluid mass is

measured.

From the mathematical point of view a reaction is regarded as the transition from

one set of species to another. In the following, the total number of species is denoted

by Ns, and the number of reactions by Nr. In a reaction a subset of species has

the role of reactants and another set gathers the reaction products. Formally one

may write:

XNs

i¼1
n
ðjÞ
i � componenti !

XNs

i¼1
m
ðjÞ
i � componenti j ¼ 1; :::Nr (8.8)

where the coefficients n
ðjÞ
i and m

ðjÞ
i are stoichiometric integer numbers. Reversible

reactions are characterized by the observation that both the reaction and the back

reaction occur. If the reaction is fast in comparison to the other relevant processes

(as transport for example), the equilibrium between the reactions in both directions

is reached at every time instance. This can be assumed to hold for many geochemi-

cal processes, because transport and compaction in the pedosphere are usually

slow. According to the Law of Mass Action the equilibrium is characterized by

a constant Kj:

Kj :¼
QNs

i¼1
ai

m
ðjÞ
i

QNs

i¼1
ai

n
ðjÞ
i

(8.9)

Equation (8.9) is valid for fast reversible reactions. The Kj’s are independent

from the geochemical surrounding but depend on temperature and pressure.
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ai denotes the activity of the ith species, which is the product of concentration and a
species-dependent activity coefficient gi:

ai ¼ gi� ci (8.10)

For more details concerning activities see Sidebar 8.3 below. For low

concentrations, the activity coefficients are close to one and the activities in the

law of mass action can be replaced by concentrations. Taking the logarithm2 of

(8.9) one obtains:

XNs

i¼1
ðmðjÞi � n

ðjÞ
i Þ log aið Þ ¼ logðKjÞ j ¼ 1; :::Nr (8.11)

It is convenient to write (8.11) in matrix form. In order to do that, the convention

is used that stoichiometric coefficients related to reactants obtain a positive expo-

nent and those related to reaction products obtain a negative exponent:

nji ¼ m
ðjÞ
i � n

ðjÞ
i (8.12)

With the help of matrix S ¼ (nji) results:

S� logðaÞ ¼ logðkÞ with a ¼
a1
:::
aNs

0
@

1
A and k ¼

K1

:::
KNr

0
@

1
A (8.13)

S has Nr rows and Ns columns. Each line in (8.13) represents one reaction. With

respect to the calculation of Ns unknown activities, (8.13) provides Nr conditions.

For low ionic strength, the activity coefficients are approximately one, and it is

allowed to replace activities by concentrations:

S� logðcÞ ¼ logðkÞ (8.14)

Usually it is required that there is no reaction that can be obtained as combina-

tion of the other reactions. The mathematical expression for that requirement is

that the rank3 of matrix S is maximal. The maximal rank of the Nr � Ns reaction

matrices is Nr. With MATLAB® it is easy to check if the condition is fulfilled, by

using the rank command.

2 In this chapter, we deal with logarithms to the basis 10; in the text we do not introduce a different

notation to distinguish from the logarithm to the basis e, which is used in other chapters. However,

in MATLAB® the log10 command has to be taken!
3 The rank of a matrix is the maximum number of linear independent column or row vectors in the

matrix; see textbooks on Linear Algebra.
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The following reaction example between hydrogen H, nitrotriacetic acid NTA
(a chelating agent in detergents influencing the metal ion activity in aqueous

systems), and cobalt (II) Co demonstrates the case:

H þ NTA! HNTA

CoNTA! Coþ NTA

CoNTAþ H! Coþ NTA

There are five species involved in three reactions and the corresponding reaction

matrix is:

In MATLAB® it is easy to check if the above given requirement is fulfilled. The

rank of the matrix is the maximum number of independent reactions. In the example

case MATLAB® shows:

In fact, only two of the given reactions are independent. The rank is lower than 3

and thus not maximal. The chemical system is treated in more details by Fang et al.

(2003). In order to obtain a maximum rank for the given example, one of the three

reactions has to be omitted. The resulting 2 � 5 matrix has maximum rank.

Without mentioning we assume a matrix of maximum rank in all following

theoretical derivations.

8.3 Speciation Calculations

The equation for a system of species in equilibrium is given by:

STreq ¼ 0 (8.15)

The problem with the system (8.15) is that it can not be computed directly,

because the exchange rates of the equilibrium reactions req are neither known,

nor are they given by an explicit expression. In order to reach an appropriate

formulation, the equations have to be added up in a way that eliminates the

unknown reaction rates. There are Ns equations in the system (8.15), and there

are Nr equilibrium conditions for the reactions. Usually Ns>Nr holds, i.e. the

system is overdetermined.

In order to complete the system (8.15), Ns-Nr additional conditions in form

of specified values for total concentrations can be given (Steefel and
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MacQuarrie 1996). Total concentrations are invariants that are obtained by linear

combinations of the species concentrations. Mathematically this can be expressed

by (left) multiplication of the (8.15) with a matrix U, a matrix with Ns-Nr rows and

Ns columns. The vector

u ¼ U� c (8.16)

contains values of total concentrations. u is a column vector with Ns-Nr

components. The conditions (8.15) imply:

U�ST� req ¼ 0 (8.17)

Sidebar 8.2: Single Reaction Example

For the reaction between species A, B and C

2Aþ B, C

the reaction matrix S is given by

S ¼ 2 1 �1ð Þ

and for U holds:

U ¼ 1 0 2

0 1 1

 !

Total concentration u1 and u2 are thus given by:

u1 ¼ cA þ 2cC

u2 ¼ cB þ cC

which can be explained as follows: the total concentration u1 of A is given by

the concentration cA and two times the concentration cC, because according to
the reaction two A-species are within the reaction product C. For the total

concentration u2 of B the two concentrations cB and cC have to be summed up,

because there is one unit of B to be found in C. This may give an impression

why the term ‘total concentration’ is used.

In this example case the matrix U is unique if it is required that U is

combined by the unit matrix and one additional column fitting to the

formulation (8.20).
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In order to fulfil the conditions (8.17), the matrix U is chosen to obey the

equation

U�ST ¼ 0 (8.18)

There are several ways to find such a matrixUwhich is not unique. Saaltink et al.

(1998) mention Gram-Schmidt orthogonalization and singular decomposition

as alternative methods to construct a matrix U with the property (8.18) and provide

an example for the latter procedure. In addition, Saaltink et al. (1998) suggest

another procedure which can easily be implemented using MATLAB®, as it is

formulated in matrix form. The algorithm is based on the partition of the matrix S in

two sub-matrices:

S ¼ S1 S2jð Þ (8.19)

where S2 is a regular square matrix with Nr rows and columns. S1 is a matrix with

Ns-Nr rows and Nr columns. U is then given by:

U ¼ INs�Nr
S�

T
���h i

(8.20)

with

S�¼ � S2
�1�S1 (8.21)

and unit matrix INs�Nr
with Ns-Nr rows or columns.

In order to perform the matrix operation, S2 must be invertible. Sometimes some

permutations of the species’ system are required to achieve that S2 is regular. It

is possible in either case if the matrix S has maximum rank (see above). The number

of entries in the right sub-matrix of (8.20) is Nr � (Ns-Nr), for which there are

(Ns-Nr) conditions only.

For a given vector u the (8.16) is a system of Ns-Nr equations for the unknown

components of the vector c. In addition, there are Nr equilibrium conditions. For

given total concentrations, gathered in vector u, the system

u ¼ U� c
S� logðcÞ ¼ logðKÞ (8.22)

has to be solved for c. It is a nonlinear system of Ns equations for Ns unknown

values. The so-called speciation problem (8.22) can be solved by the Newton-

Raphson method, an extension of the Newton method described above. There are

Ns-Nr linear balance equations and Nr non-linear equilibrium equations. In

MATLAB®, the generalization of the Newton method for vector functions of

several independent variables can be implemented for that purpose:
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The complete code is included in the accompanying software under the name

‘Speciation.m’.
In the input part of the M-file the tolerance, the maximum number of iterations,

and an initial guess are specified in a similar way as in the Newton M-file

(see Sidebar 8.1). In addition, the reaction matrix, the equilibrium constants for

the reactions, and the total concentrations are specified. All concentrations and

equilibrium constants are entered using their logarithmic values.

The execution part of the M-file is divided into two parts. In the first part, the

initialization is done for the iterations to be performed in the second part. In the first

part, the sub matrices S1 and S2 of the reaction matrix are determined to be used in

the computation of S� and U. Total and species concentrations are converted from

logarithm to their real values. Error variable and iteration counter are already

introduced in the former example, see Sidebar 8.1.

Within the iteration the zero of the function

FðcÞ ¼ U � c� u

S � logðcÞ � logðKÞ
� �

(8.23)
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is computed. It is easy to see that the zero is identical with the solution of system

(8.22) if activity corrections are neglected. The derivative of the function F, the so

called Jacobi matrix, is given by:

DFðcÞ ¼ U

S= c logð10Þð Þ
� �

(8.24)

In analogy to the Newton algorithm, presented in Sidebar 8.1, the generalization

is given by the formula:

c c� DFðcÞ�1 � FðcÞ (8.25)

In the command sequence, first the second term is evaluated and stored in the dc

variable. The following command in the listing ensures that the concentrations

remain positive.

8.4 Sorption and the Law of Mass Action

One can formallywrite sorption as an equation of a reaction between sorption sites and

free species on one side and sorbed species on the other side. In analogy to the Law

of Mass Action, one may note the differential equation for the temporal change as:

@c

@t
¼ k cs � k!c � s

@s

@t
¼ k cs � k!c � s

@cs
@t
¼ k!c � s� k cs

(8.26)

where c denotes the concentration in the fluid, s the number of free sorption sites

and cs the number of occupied sorption sites. The terms for transport have been

omitted in order to focus on sorption. The equilibrium condition is then given by:

cs
c � s ¼

k!
k 
¼: K (8.27)

or:

cs
c
¼ K� s (8.28)

s here denotes the number of free sites. If no competition between species is taken

into account, s can also be expressed as cs;max � cs, the number of available free

sites is diminished by the number of occupied sites. Altogether results:
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Sidebar 8.3: Activities and Activity Coefficients

ai denotes the activity of the ith species in a multi-species system. It is the

product of concentration ci and activity coefficient gi that is species-dependent,
i.e. for the ith chemical species holds:

ai ¼ gi � ci
The activity depends on ionic strength m in the solution, defined by

m ¼ 1

2

X
ciz

2
i

where the sum has to be extended over all charged components. zi denotes the
electrical charge of species i. The logarithm of the activity coefficient can be

computed explicitly by a formula like:

log gi ¼ �A � zi2
ffiffiffi
m
p

This is the simplest formulation that can be derived theoretically. For very

low values of m (<10�2.3; Sigg and Stumm 1989), the formula is valid with

a value of A ¼ 0.51 (in water of 25�C, see: Krauskopf and Bird 1995).

An extended formula was proposed by Davies:

log gi ¼ �A � zi2
ffiffiffi
m
p

1þ ffiffiffi
m
p � 0:3m

� �

The Davies equation is usually assumed to be valid for ionic strengths up to

m ¼ 0.5. The coefficient A depends on temperature only. Values for A are

given in Table 8.1. The activity coefficient thus depends on temperature, on

ionic strength and the electric charge of the species.

Another extended formulation for the relation between activity coefficients

and ionic strength is found with reference to Debye4-H€uckel5:

log gi ¼ �
A � zi2 ffiffiffi

m
p

1þ Ba0i
ffiffiffi
m
p þ bim

with coefficients B, ai
0 and bi (Debye and H€uckel 1923). The coefficient

B depends on temperature only. The ion-size parameter ai
0 as well as bi are

species-dependent. The latter formulation is used in the speciation code

(continued)

4 Peter Debye (1884–1966), Dutch chemist and physicist.
5 Erich Armand Arthur Joseph H€uckel (1896–1980), German chemist and physicist.
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cs
c
¼ K � cs;max � cs

� 	
(8.29)

or, resolved for cs:

cs ¼ Kcs;maxc

1þ K � c (8.30)

With parameters aL1 ¼ cs;max and aL2 ¼ K�1 this is the already mentioned

Langmuir isotherm (6.7). A generalization of this formula results for species

which participate with more than one unit on the reaction, as for example gaseous

O2. Starting from the reaction terms:

PHREEQC (Parkhurst 1995). Another extension uses a different formulation

of the last term:

log gi ¼ �
A � zi2 ffiffiffi

m
p

1þ Ba0i
ffiffiffi
m
p þ B0m

This is implemented in the CHESS code (van der Lee 1998). The temper-

ature-dependency of the parameters is shown in Table 8.1. If activities are

considered, the derivation above leads to equation

u ¼ U � c
S � logðgÞ þ logðcÞ½ � ¼ logðKÞ

instead of (8.22), where g denotes the vector of activity coefficients.

Table 8.1 Coefficients in extended equations for activity equations (Berner 1971;

van der Lee 1998)

Temperature [�C] A B B’

0 0.4883 0.3253 0.0374

5 0.4921

10 0.4960

15 0.5000

20 0.5042

25 0.5085 0.3288 0.0410

30 0.5130

35 0.5175

40 0.5221

50 0.5319

60 0.5425 0.3346 0.0440

100 0.9595 0.3421 0.0460
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@c

@t
¼ k cs � k!c2 � s

@s

@t
¼ k cs � k!c2 � s

@cs
@t
¼ k!c2 � s� k cs

(8.31)

the same arguments as above lead to the isotherm:

cs ¼ Kcs;maxc
2

1þ K � c2 (8.32)

Figure 8.1 depicts an example of such a sorption isotherm. Formula (8.32) is

a special case of the so called Langmuir-Freundlich isotherm (Klug et al. 1998) with

exponent two.

8.5 Transport and Speciation

The differential equation for multi-species reactive transport has been written in

vector notation (see equation (7.6)):

@c

@t
¼ �r � jðcÞ þ STr (8.33)

The system (8.33) contains one differential equation for each species. It is

a system with Ns equations. In case of equilibrium reactions it is not possible to

treat the system (8.33) directly, because the exchange rates of the equilibrium

reactions r are neither known nor given by an explicit expression. In order to

reach a feasible formulation, the equations have to be summed up in a way that

eliminates the last term on the right side of the equation. The procedure was already

described in Chap. 8.3.

0 0.2 0.4 0.6 0.8 1
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It is appropriate to multiply the equation from the left by a matrix U with the

property U � ST ¼ 0. The matrix U has Ns-Nr rows and Ns columns and is not

unique. The result is:

@

@t
Uc ¼ �U � r � jðcÞ þ U � STr (8.34)

The last term on the right side can be omitted because of U � ST ¼ 0. If the

transport terms are linear, multiplication with matrix U and differentiation can be

exchanged. From (8.34) one directly obtains a differential equation for the total

concentrations u :¼ U � c:

@

@t
u ¼ �r� jðuÞ (8.35)

Equation (8.35) represents a system of Ns-Nr transport equations for the Ns-Nr

components of u. The problem is thus significantly simpler than the original system

with Ns coupled equations. The gain is paid by the need for speciation calculations.

When the vector u is calculated, the Ns species have to be computed in a second step

with the help of (8.22).

The formulation of the entire problem, given by (8.35) and (8.22), offers various

advantages. The given formulation has the following properties:

1. Transport and reaction modeling are not coupled, because transport can be

solved independently from the speciation; solving the transport problem, the

knowledge of the c-vector is not required

2. The transport problem consists of Ns-Nr linear differential equations

3. The differential equations of the transport problem are independent from each

other

4. The reaction problem consists of a nonlinear system of Ns equations which have

to solved for each node

For the solution of such a system it is justified to apply a sequential non-iterative
approach (SNIA, see: Steefel and MacQuarrie 1996): transport is solved first in

order to obtain u, from which c is determined in a second step. In the first step Ns-Nr

independent linear transport equations have to be solved.

In the case of reactive transport with equilibrium equations, the SNIA approach

causes no additional errors in contrast to other approaches. If the type of boundary

conditions is the same for all total concentrations, it is even sufficient to solve the

transport equation only once. When the transport step is completed, the speciation

has to be calculated for each block (or node). These computations are independent

from each other, i.e. the speciation in one block does not depend on the speciation in

any other block of the model region.

The de-coupled solution procedure is only possible, because within the formu-

lation itself (8.35) and (8.22) transport and equilibrium geochemistry are not

coupled. The sequential (de-coupled) treatment of transport and speciation is not
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always possible. When kinetic reactions have to be considered additionally, the

equations remain coupled and the numerical solution is not as easy (Holzbecher

2005).

The situation is also more complex when species in different phases are

involved. In the mathematical formulation species in different phases can not be

expressed by the same transport operator, as it is assumed in (8.33).

For demonstration purposes we selected an example from carbon chemistry.

A formulation is chosen in which seven species are involved in five reactions.

These are ordered in the species vector as follows:

Hþ;HCO3
�;Ca2þ;OH�;H2CO3;CO3

2�;CaHCO3
þ� 	

The major reactions for the carbon species and the equilibrium constants are

gathered in Table 8.2. Note that two additional species appear in the reactions:

water, H2O, and calcite, CaCO3. Those two species are not included in the

model, because it is assumed that both are available from an infinite pool. In

that case their concentrations can be set to unity. Water is the medium within

which other species are dissolved. Concerning calcite, it is assumed that the

flow passes through a calcareous or limy formation, a fracture, a pipe or a karst

system.

The following reaction matrix corresponds with the reaction system:

S ¼

1 0 0 1 0 0 0

1 �1 0 0 0 1 0

0 1 1 0 0 0 �1
2 0 0 0 �1 1 0

0 0 1 0 0 1 0

0
BBBB@

1
CCCCA (8.36)

The matrices S1 and S2 are given by:

S1 ¼

1 0

1 �1
0 1

2 0

0 0

0
BBBB@

1
CCCCA S2 ¼

0 1 0 0 0

0 0 0 1 0

1 0 0 0 �1
0 0 �1 1 0

1 0 0 1 0

0
BBBB@

1
CCCCA (8.37)

Table 8.2 Carbon chemistry equilibrium constants

Reactions and equilibrium constants (log) for T ¼ 25�C

Hþ þ OH� $ H2O �14
Hþ þ CO3

2� $ HCO3
� �10.329

Ca2þ þ HCO3
� $ CaHCO3

þ �1.106
2Hþ þ CO3

2� $ H2CO3 �16.7
Ca2þ þ CO3

2� $ CaCO3 �8.48
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and for the transformation matrix U results:

U ¼ 1 0 1 �1 1 �1 1

0 1 �1 0 1 1 0

� �
(8.38)

Thus there are two totals which are a combination of the species concentrations:

Tot1
Tot2

� �
¼ Hþ þ Ca2þ � OH� þ H2CO3 � CO3

2� þ CaHCO3
þ

HCO3
� � Ca2þ þ H2CO3 þ CO3

2�

� �

For each of the totals a differential equation is solved. The entire system is

reduced to the solution of the transport equation for two totals and the specification

calculations. The connection with transport was tested for a situation of fracture

within calcareous rock, entered by water which was under-saturated with respect to

calcite. Such a system was studied by Saaltink et al. (2001). Some parameter values

were adopted from that study.

A list of parameters is given in Table 8.3. A 1D porous fracture of 100 m length

is modeled with water entering at a Darcy velocity of 2 m/a. Initial and input

concentrations for both species have to be specified as well.

The MATLAB® model for the problem is implemented as a combination of the

pdepe solver and the speciation calculations. pdepe is used for the usual transport

equation as described in Chap. 4 in detail. The speciation has to be performed for

each geochemical species set at each node and each time instance of interest.

The simulation using MATLAB® shows the propagation of the front for all

species. Figure 8.2 depicts pH as an example. The pH rises, because carbon species,

entering the aqueous system by calcite dissolution, bind more of the available

H+-species. With pH ¼ 9.7 the inflowing front thus shows higher values than the

initial system with pH ¼ 8.75.

The given procedure can also be applied to systems in which both kinetic and

equilibrium reactions are expected. The mathematical formalism has to be slightly

extended, as it was demonstrated by Holzbecher (2005). Without going into details,

we demonstrate the procedure for a situation derived from the example above.

Table 8.3 Parameter for calcite dissolution equilibrium test-case

Variable Value Unit

Length 100 m

Maximum simulated time 5 a

Porosity 0.1 –

Darcy velocity 2 m/a

Diffusivity 200 m2/a

Initial concentration Tot1 �4.019 log mol/l

Initial concentration Tot2 �3.018 log mol/l

Input concentration Tot1 �4.365 log mol/l

Input concentration Tot2 �5.421 log mol/l
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Saaltink et al. (2001) already consider the case in which the calcite dissolution

reaction (the last in Table 8.2) is slow compared to all other processes.

In that case, the reaction matrix for equilibrium reactions contains four rows

only. for S1 and S2 results:

S1 ¼
1 0 0

1 �1 0

0 1 1

2 0 0

0
BB@

1
CCA S2 ¼

1 0 0 0

0 0 1 0

0 0 0 �1
0 �1 1 0

0
BB@

1
CCA (8.39)

Using (8.20) and (8.21) and MATLAB® it is easy to calculate U:

U ¼
1 0 0 �1 1 �1 0

0 1 0 0 1 1 1

0 0 1 0 0 0 1

0
@

1
A (8.40)

Now the total concentrations are different combinations of the species:

TotH
TotC
TotCa

0
@

1
A ¼ Hþ � CO3

2� þ H2CO3 � OH�

HCO3
� þ H2CO3 þ CO3

2� þ CaHCO3
þ

Ca2þ þ CaHCO3
þ

0
@

1
A

There are three initial and inflow concentrations required for the totals TotH,
TotC and TotCa. The values proposed by Saaltink et al. (2001) are provided in

Table 8.4. The kinetic transfer coefficient a varies over 4 orders of magnitude. It is

used in the kinetic rate law given by:

rkin ¼ r ¼ a 1� sð Þ (8.41)

where s denotes the calcite saturation index.
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Figure 8.3 illustrates the results for pH in dependence of the kinetic transfer

coefficient. For the cases CAL-1–CAL-4, the kinetics rate is increased by a factor of

10, taking the values given in Table 8.4. In the CAL-1 case, the process of calcite

dissolution is too slow to have any effect on pH. There is a front of low pH

penetrating the system.

For enhanced kinetics the already mentioned rise of pH becomes more and more

pronounced. Due to increased calcite disolution, H+ ions are increasingly consumed

by the dissolved carbon species. As a result, the pH is increased where the inflowing

water dominates. The equilibrium situation is approached gradually with a front of

high pH entering the fracture.

The MATLAB® simulation is again based on a combination of the pdepe solver

and speciation calculations based on the Newton method. Holzbecher (2006)

extended the presented approach for the simulation of the horizontal and vertical

concentration distribution within a fracture. The 2D flow field is computed follow-

ing the Hagen-Poiseuille analytical solution (see Chap. 11). The 2D advection-

Table 8.4 Parameter for calcite dissolution simulation (CAL – see: Saaltink et al. 2001)

Variable Value Unit

Initial concentration TotH �7.978 log mol/l

Initial concentration TotC �3.018 log mol/l

Initial concentration TotCa �3.019 log mol/l

Inflow concentration TotH �5.496 log mol/l

Inflow concentration TotC �5.421 log mol/l

Inflow concentration TotCa �4.398 log mol/l

Kinetic transfer coefficient(s) 9.939 10�4(1)7 mol/(l a)
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Fig. 8.3 Calcite dissolution example; results for different calcite dissolution kinetics
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dispersion equation with an anisotropic dispersion tensor is solved using COMSOL

Multiphysics6. The reaction term (8.41) is computed at each node and each time

level. In order to evaluate formula (8.41), the concentrations of the species need to

be known. They are obtained within a MATLAB® speciation M-file, which is

called by COMSOL Multiphysics. The M-file looks as follows:

Using the software combination of this book, it is thus possible to treat reactive

transport in several space dimensions.
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Chapter 9

Ordinary Differential Equations:

Dynamical Systems

Ordinary differential equations (ode) are differential equations for functions which

depend on one independent variable only. These ‘odes’ are simpler than partial

differential equations which contain more than one independent variable. In almost

all models or simulations independent variables are either time and/or space.

In environmental modeling, two situations can be distinguished in which odes

appear. The first situation deals with systems in which spatial differences can be

neglected and the temporal development is questioned. In chemistry, the continu-

ously stirred reactor is an often used concept for which an approach is allowed with

time t as the only independent variable.

One such situation a was already described In Chap. 5.1, with degradation or

decay as the only relevant process for the transient change of some species concen-

tration. Below (Chap. 10.1) an example is presented dealing with the determination

of a reaction kinetic, using data from batch experiments. In the field situation such

ideal systems are seldom appropriate, but sometimes the assumption of no space-

dependence may be approximately fulfilled. The long-term accumulation of a sub-

stance in lakes can be modeled with the idea of an ideally mixed reservoir, for

example.

In a second different constellation time is neglected and a steady state is sought

for a system which can be described by a single space variable. Such models are

common for aquatic sediments, where parameters and variables show characteristic

changes normal to the water-sediment interface, usually in vertical direction. Also

in streams the one-dimensional approach can be applied under certain circumstances:

the space coordinate is taken along the steady streamline following the river down-

stream. Surface water infiltrating an aquifer has a pronounced direction along the

flow path. Here the 1D formulation is justified, because the transverse gradients

almost vanish.

Aside of analytical solutions, two numerical solvers of MATLAB® are

introduced in this chapter, one (ode15s) designed for the solution of initial value

problems, the other (bvp4c) for the solution of boundary value problems (bvp). In

initial value problems boundary conditions are formulated for one value of the

independent variable only (typically: t ¼ 0), whereas in boundary value problems

E. Holzbecher, Environmental Modeling,
DOI 10.1007/978-3-642-22042-5_9, # Springer-Verlag Berlin Heidelberg 2012
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there are conditions required at both ends of the interval of the independent

variable. A special MATLAB® related textbook on modeling with odes is

published by Shampine et al. (2003).

9.1 Streeter-Phelps Model for River Purification

A relatively simple model concerning decreased concentration of oxygen down-

stream from a polluting discharge and the recovery to background level was

proposed by Streeter and Phelps already in 1925. Although the application is

based on several assumptions, such type of modeling is used as part of regulations

for sewage facilities. Bacteria gradually degrade the organic matter contained in the

discharge along the course of the river downstream. The most relevant bacteria

prefer aerobic conditions, i.e. they also rely on oxygen (DO ¼ dissolved oxygen).

The change of these two components (organic matter and DO) along the flow path is

simulated in the following.

In the model, the concentration of the organic pollutant is measured as biode-

gradable oxygen demand (BOD) as a proxy. Two parameters are connected to the

BOD behavior: the inflow rate fBOD (kg/m3/s) and the degradation rate k1 (1/s).

Degradation concerns both BOD and DO, which is expressed in the system of two

ordinary differential equations

@cBOD
@t
¼ fBOD � k1cBOD

@cDO
@t
¼ k2 cDO;sat � cDO

� �� k1cBOD (9.1)

The oxygen concentration cDO is additionally determined by the reaeration

process. Reaeration brings oxygen back into the water, for which various processes

may be relevant. One of the most important is the contact with atmospheric air. If

the contact time is long enough, the equilibrium between partial pressure of oxygen

in airpO2
and cDO is established. According to Henry’s Law1 such equilibria are

characterized by a component specific ratio of dissolved concentration and partial

pressure. As in the earth atmosphere pO2
is fixed with approximately 0.21 atm, cDO

can reach a value of 12.9 mg/l,2 which is the saturation limit for oxygen in water.

However, the saturation limit in a natural river may be somewhat smaller as

a result of other processes that influence the oxygen balance. Aquatic plants

produce oxygen, aquatic fauna consumes oxygen. Moreover, oxygen is needed by

bacteria which are busy degrading natural organic matter at the bottom of the water

1William Henry, 1775–1836, English chemist.
2 Henry’s Law constant for the equilibrium between gaseous and aqueous phase oxygen at 5�C is

61.2 mg/l/atm.
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body and in the sediment compartment. Thus, the oxygen saturation limit cDO,sat
depends on local circumstances and is not an universal (not even a terrestrial)

constant.

However, the reaeration process will make oxygen concentration converge to the

limit. Therefore in the most simple approach the difference from the limit cDO;sat �
cDO determines the rate of DO-change aside from the kinetic parameter k2.

The system (9.1) of two differential equations is quite simple to solve. The first

equation contains only one dependent variable (cBOD) and has an exponential

function as analytical solution. With that solution one can regard the second

equation as a differential equation for cDO. Together, both (9.1) form a linear

system. A method for the solution of general linear systems is presented below

(Chap. 18). The following lines are a special implementation for the Streeter-

Phelps system. The presented numerical approach can also be extended to non-

linear systems of equations, which may appear if there are complex parameter

dependencies.

T = 25;                % maximum time [T]
k1 = 0.3;              % deoxygenation rate coefficient [1/T]
k2 = 0.4;              % reaeration rate coefficient [1/T]
DOsat = 11;            % DO saturation [M/L^3] 
BODin = 7.33;          % initial BOD [M/L^3]
DOin = 8.5;            % initial DO concentrations [M/L^3]
fBOD = 1;              % natural BOD inflow [M/(L^3*T)] 
N = 60;                % discretization of time

%---------------------- execution ---------------------------------

% BOD = y(1), DO = y(2)
options = odeset('AbsTol',1e-20);
[t,y] = ode15s(@SP,[0 T],[BODin; DOin],options,k1,k2,DOsat,fBOD);

%---------------------- graphical output --------------------------

plot (t,y);

legend ('BOD','DO');
xlabel ('traveltime'); ylabel ('concentration');
grid;

%---------------------- function ----------------------------------

function dydt = SP(t,y,k1,k2,DOsat,fBOD)
dydt = zeros(2,1);
dydt(1) = fBOD-k1*y(1);
dydt(2) = k2*(DOsat-y(2))-k1*y(1);

The complete code is included in the accompanying software under the name

‘StreeterPhelps.m’
Input values for the example are adopted from Deaton and Winebrake (2000).

Deoxygenation and reaeration rate coefficients are given in 1/d. BOD inflow
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is in mg/(l�d). All concentrations are in mg/l. The steady state is given by cBOD ¼
fBOD=k1 ¼ 3:33 mg/l and cDO ¼ cDO;sat � fBOD=k2 ¼ 8:5 mg/l.

Figure 9.1 shows the result for the increased input values with cBOD ¼ 7.5 mg/l.

BOD concentration decreases within a time period of 15 days. The content of

oxygen decreases within the first 3 days if degradation exceeds reaeration. After

that follows a second time period in which reaeration is dominant leading to

a gradual recovery of the DO level back to the natural state.

The Streeter-Phelps model is based on several conditions. Diffusion and disper-

sion processes are neglected. There is no distinction of concentrations within the

river cross-section. The system of differential (9.1) is based on a Lagrangian3

description, which is a formulation for the concentration along the flow path. In

the Lagrangian description the advection terms disappear, whereas they remain in

the alternative Eulerian description. The Eulerian approach, which was introduced

in Chaps. 3 and 4, is based on the conception of a fixed space and delivers the

following set of equations

@cBOD
@t
¼ r� jðcBODÞ þ fBOD � k1cBOD

@cDO
@t
¼ r� jðcDOÞ þ k2 cDO;sat � cDO

� �� k1cBOD (9.2)

Also with respect to biogeochemistry the Streeter-Phelps model has to be

extended to capture a more detailed behavior. Vanrolleghem et al. (2000) present

and discuss several generalizations of the simple Streeter-Phelps approach. In order

to consider photosynthesis-respiration, the model contains four more variables:

ammonium, nitrate, phosphorus and algae. The mathematical description takes
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Fig. 9.1 Model results for

river purification

3 Joseph-Louis Lagrange, 1763–1813, French mathematician.
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into account that phosphorus and nitrate are produced by the degradation of organic

matter. Algae growth on the other hand consumes nutrients, nitrate-NO3 and

phosphorus-HPO4, and produce oxygen.

Even more complex models may consider anoxic and anaerobic degradation as

well as growth and respiration of different bacteria populations (Vanrolleghem

et al. 2000).

9.2 Details of Michaelis–Menten or Monod Kinetics

The Michaelis–Menten kinetics for the description of rate limited chemical and

biochemical degradation processes was introduced in Chap. 7. It can be written as

@s

@t
¼ �r :¼ � k1s

k2 þ s
(9.3)

with maximum rate k1 and half-degradation concentration k2. s denotes the concen-
tration of a chemical species, here called the substrate. It will be demonstrated that

the kinetics (9.3) may result from a sequence of reactions, in which aside from the

reactant and the final reaction product an enzyme e and an intermediate product i
are involved. The system of chemical reactions can be noted as:

sþ e! i! pþ e

The substrate s and enzyme e are connected with an intermediate species i by an
equilibrium reaction. Moreover, the intermediate i is broken down into the final

reaction product p with the enzyme e as a by-product in an irreversible reaction.

According to the law of mass action, the set of differential equations for the reaction

system is:

@s

@t
¼ �k1seþ k3i

@e

@t
¼ �k1seþ k3iþ k2i

@i

@t
¼ k1se� k3i� k2i

@p

@t
¼ k2i (9.4)

with rate coefficients k1, k2 and k3. Transport is neglected in this system. It can be

shown (Fife 1979; Morel and Hering 1993) that for long times the behavior of the

four-species system can simpler be described by the following Michaelis–Menton

kinetics:

@s

@t
¼ � k1k2ði0 þ e0Þ

k2 þ k3 þ k1s
s (9.5)
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Both alternative systems are implemented in MATLAB® using the ode15s

solver. After the input section the M-file looks like this:

%----------------------execution-----------------------------------
% substrate= y(1),enzyme2= y(2),intermediate= y(3), product= y(4)

options = odeset('AbsTol',1e-20);
[t,y] = ode15s(@detail,[0 T],[s0; e0; i0; p0],options,k);
[tt,z] = ode15s(@lumped,[0 T],s0,options,e0,i0,k);

%---------------------- graphical output --------------------------
plot(t,y(:,1:4)); hold on;
plot(tt,z(:,1),'--',tt,s0-z(:,1)+p0,'--');
legend ('substrate','enzyme','intermediate','product',…
'lumped substrate','lumped product');
grid;

%---------------------- functions ---------------------------------
function dydt = detail(t,y,k)
r1 = k(1)*y(1)*y(2);
r2 = k(3)*y(3);
r3 = k(2)*y(3);
dydt = zeros(4,1);
dydt(1) = -r1 + r2;
dydt(2) = -r1 + r2 + r3;
dydt(3) = r1 - r2 - r3;
dydt(4) = r3;

function dzdt = lumped(t,z,e0,i0,k)
dzdt(1) = -k(1)*k(2)*(e0+i0)*z/(k(2)+k(3)+k(1)*z);

The system of four species is solved in the y-vector, and the system is specified

in the detail-function. The substrate development according to the

Michaelis–Menton kinetics is given in variable z and specified in the lumped-

function.

The complete code is included in the accompanying software under the name

‘MichaelisMenten.m’
For the input parameters s0 ¼ 1; e0 ¼ 0:2; i0 ¼ 0:1 and p0 ¼ 0:3 and the rate

coefficients k1 ¼ 1; k2 ¼ 0:15; k3 ¼ 0:4 the result is depicted in Fig. 9.2. The

strong initial change is obviously not captured by the Michaelis–Menten

approach. But for long time periods the common Michaelis–Menten model is

a good approximation, although several initial conditions and rate constants are

lumped into two parameters. The difference between the detailed and the lumped

model is visualized in Fig. 9.3. For long times the relative error for the substrate is

almost 100%. That must not be crucial, because the high relative error coincides

with low concentrations, as the comparison between the two figures shows.

However, if the initial concentrations are several orders of magnitude above

a limit value, low concentrations may still be harmfull and the error of 100% is

not tolerable.
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Fig. 9.2 Comparison of a detailed four-species model and the approximation using Michaelis-

Menten kinetics
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9.3 1D Steady State Analytical Solution

Steady-state or stationary means time-independent. In real systems steady state

is achieved when the relevant timescale for the problem is too long compared to the

internal time scale.

The transport equation for the steady state is simply obtained by omitting the

storage term on the left side, which includes the time-derivative @c=@t. The right

hand side of the 1D transport equation has thus been set to zero:

@

@x
D
@c

@x
� v

@c

@x
þ q ¼ 0 (9.6)

Equation (9.6) is an ordinary differential equation, as only space derivatives in

a single direction (x) appear. For constant parameter values, the solutions of such

an ordinary differential equation can be written explicitly. In the first step to obtain

a solution we neglect sources and sinks, i.e. the last term in (9.6) is omitted: q ¼ 0.

If there is a Dirichlet condition at one side and a Neumann condition at the other

side of a finite system with length L

cð0Þ ¼ cin @c=@xðLÞ ¼ 0 (9.7)

the solution is obviously given by the constant function c ¼ cin, because all

derivatives vanish. For constant parameters D and v and Dirichlet boundary

conditions on both sides

cð0Þ ¼ cin cðLÞ ¼ c1 (9.8)

the solution is:

cðxÞ ¼ cin þ c1 � cinð Þ 1� expðv � x=DÞ
1� expðv � x=DÞ (9.9)

or in dimensionless form:

cðxÞ � cin
c1 � cin

¼ 1� expðPe � xÞ
1� expðPeÞ (9.10)

with dimensionless space variable x, dimensionless Péclet number Pe ¼ v � L=D for

dimensionless concentration on the left side of (9.10). Note that we here allow the

Péclet number to have a sign depending on flow direction. Results for selected

values of the Péclet number are shown in Fig. 9.4. In all cases a steeper gradient

can be observed near the outflow boundary; i.e. for negative Pe on the left, and

for positive Pe on the right boundary. The deviation in the slope between inflow

and outflow side increases with the absolute value of Pe. The linear profile, which
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results for the pure diffusion situation, is not plotted as it corresponds with the main

diagonal of the coordinate system. Clearly, the figure is symmetric with respect to

the diagonal.

The figure is obtained by the following command sequence and some post-

processing in the figure editor on the graphs’ appearance (introduction of markers

and colors):

Pe = [-10,-1,-.1,0,.1,1,10];
x = [0:0.025:1]; 
figure; hold on;
for i = 1:size(Pe,2)

plot (x,(1-exp(Pe(i).*x))./(1-exp(Pe(i).*ones(1,size(x,2))))); 
end
legend ('Pe=-10','Pe=-1','Pe=-.1','Pe=0','Pe=.1','Pe=1','Pe=10');

The complete code is included in the accompanying software under the name

‘sttransanal.m’
For aquatic sediments the fluid velocity in the pores decreases with depth. Near

the bottom the velocity is smaller, because the fluid obeys an additional moment
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Fig. 9.4 The steady-state solution of the advection-diffusion equation in dimensionless form in

dependence of the dimensionless Péclet number
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against the sedimentation direction. The reason is the shrinking size of the pore

space due to compaction processes. Holzbecher (2002) showed that in such

a situation the velocity v, the sedimentation velocity (burial rate/area) vbur and the

final porosity in the compacted sediment y1 are connected by the formula (see

Sidebar 9.1):

v ¼ y1
y
vbur (9.11)

The depth-dependent porosity profile vðxÞ thus determines the local velocity.

Then the general solution for variable parameters

cðxÞ ¼ cin þ c1 � cinð Þ 1� JðxÞ
1� JðLÞ with JðxÞ¼ exp

ðx

0

vðxÞ
DðxÞdx

0
@

1
A (9.12)

has to be taken into account. Only for special cases of parameter dependencies an

analytical solution can be derived, as the integral may be difficult to evaluate. For

that reason numerical methods have to be applied to achieve approximate solutions.

This can be done using MATLAB®. As an example, we assume a porosity profile

which changes exponentially between a high value y0 at the sediment-water

interface and the final value y1:

yðxÞ ¼ y1 þ ðy0 � y1Þ exp �axð Þ (9.13)

Solutions with MATLAB® for the variable parameter situation are given below.

Sulphate Reduction

Dealing with sulphate reduction in aquatic sediments, Berner (1964) introduces

a simple model on organic matter. Organic carbon is utilized by bacteria in the

biochemical degradation process. It is assumed that ‘the rate of metabolism of the
bacteria is directly proportional to the concentration of utilizable organic matter’.
Taking into account the sedimentation velocity w, which is derived from the burial

rate, he solves the differential equation for the steady state of organic matter in the

solid phase:

� w
@

@z
corg;s � lcorg;s ¼ 0 (9.14)

with degradation constant of organic matter l in the physical unit [time-1]. Equation

(9.14) is a differential equation for the concentration of organic matter in the solid

phase corg,s. Such an equation was already treated in chap. 4 (equation (4.6)). The

equation reflects that under steady state conditions there is a balance between

degradation of organic matter and sedimentation. It can be derived from the general
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Sidebar 9.1: Velocity Profiles in Steady Compacted Aquatic Sediments

Sedimentary deposits of all kinds near the surface often show a characteristic

decrease of the pore space in vertical direction. The process that causes the

decrease is compaction. Due to rearrangement of sediment particles and to

compression of particles, i.e. the porosity, the volumetric share of pore space,

decreases with distance from the interface.

Here we take the Lagrangian approach, where the origin of the coordinate

system is fixed at the sediment interface and is thus moving in space. In an

Eulerian system, which is fixed in space, no steady state can be expected for

compacting sediments. A constant burial velocity vbur and a constant porosity
’0 at the interface are assumed, a necessary prerequisite for a steady-state in

the Lagrangian system.

The mass conservation equation for the fluid filling the pore space is given

by the continuity equation

@

@x
yrvð Þ ¼ 0

(compare Chaps 3 and 4), which in case of constant fluid density r reduces to

@

@x
yvð Þ ¼ 0

The solution obviously is

yv ¼ C

with integration constant C. The constant C can be evaluated in the deep

sediments:

C ¼ y1v1

with v1 denoting the fluid velocity in the deep sediments, where porosity does

not change any more. v1 can be expressed differently by taking into account

that the burial velocity at all locations is given by

vbur ¼ 1� yðxÞð ÞvsedðxÞ þ yðxÞvðxÞ
where vbur denotes the burial velocity and vsed the velocity of the sediment

(solid) phase. The latter changes with depth. In the deep sediments, out of

reach for compaction processes, holds

vð1Þ ¼ vsedð1Þ ¼ v1 (continued)
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It follows:

v1 ¼ vbur;

and thus:

C ¼ y1vbur

The final result is

v ¼ y1
y
vbur

(see also: Holzbecher 2002).
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transport equation (3.19) by restriction to the one-dimensional steady state situa-

tion, when diffusion due to bioturbation, additional source- and sink-terms and

inter-phase exchanges are assumed to be irrelevant. Furthermore, both remaining

relevant terms are divided by bulk density rb, which they have in common. For the

spatial coordinate we use z here in order to distinguish the vertical direction.

Concerning sulphate, Berner (1964) takes into account the processes of diffu-

sion, fluid flow and degradation. The resulting differential equation for the 1-

dimensional steady state is:

D
@2

@z2
cS � u

@

@z
cS � lScorg;s ¼ 0 (9.15)

where cS denotes sulphate concentration. D is the relevant diffusion coefficient, u
denotes fluid flow and lS the kinetic degradation coefficient. Equation (9.15) is

a differential equation for sulphate concentration cS. If there is no compaction and

no connection to the ambient groundwater regime, one can set v ¼ u ¼ w. The
general solution of the given system for both components is:

corg;s ¼ corg;s0 exp � l
v
z

� �

cS ¼ C0 þ C1 exp
v

D
z

� �
� v2corg;s0
v2 þ Dl

exp � l
v
z

� �
(9.16)

with integration constants C0 and C1. The particular solution given by Berner

(1964) results for C1 ¼ 0:

corg;s ¼ corg;s0 exp � l
v
z

� �

cS ¼ cS0 � cS1ð Þ exp � l
v
z

� �
þcS1 (9.17)

where the subscript ’0’ denotes the concentration at the sediment-water interface,

while the subscript ‘1’ represents the concentration in the deep sediment. Berner

(1964) presented the solution (9.17) to describe sulphate reduction in maritime

sediments and later used it to describe a part of the nitrogen cycle (Berner 1971). If

the nitrogen cycle is concerned, cS in the equations given above has to be replaced

by the concentration of total ammonia.

As soon as the sulphate disappears, the solution of (9.16) produces negative

concentrations. Boudreau and Westrich (1984) suggest the use of the Monod or

Michaelis–Menton kinetics (see Chaps. 7 and 9 above) to describe sulphate reduc-

tion and organic carbon content. In the here used notation one obtains:

� w
@

@z
corg;s � kcorg;scS

KS þ cS
¼ 0

@

@z
D

@

@z
cS � u

@

@z
cS � fkcorg;scS

KS þ cS
¼ 0 (9.18)
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where k denotes the reaction parameter, which is a characteristic for the ‘speed’ of

the reaction.KS is a ‘half reaction concentration’, whichmeans that for given corg,s the
reaction rate takes half of its maximum value. f is a parameter relating the mass

of organic matter to the sulphate mass. In f the stoichiometric relation in the

sulphate reduction process has to be taken into account. The bulk density and

porosity also play a role if organic matter in the solid phase reacts with sulphate

in the fluid phase.

The system (9.18) of two ordinary differential equations has no analytical

solution. Results can only be obtained by numerical methods. The system can be

treated using the MATLAB® bvp4c function for the solution of boundary value

problems (bvp). The function is designed for solving problems which can be

formulated in the following notation (see MATLAB® help on ‘bvp’):

y0 ¼ f ðx; y; pÞ
0 ¼ bcðyðaÞ; yðbÞ; pÞ

where the first line characterizes the differential equation telling that the first

derivative y0 of the unknown variable y is a function of y itself, of the independent
variables x and of a parameter set p. As always in MATLAB®, y as well as p can be
vectors. The second line characterizes the boundary conditions telling that these are

specified at the boundaries x ¼ a and x ¼ b.
The first differential equation in the system (9.18) is of first order and can easily

be brought into the required form:

@

@z
corg;s ¼ � 1

w

kcorg;scS
KS þ cS

(9.19)

The second equation has a second derivative and can be the brought into the

necessary form by a simple trick. Another variable is introduced: cS
0, which is the

first derivative of the unknown function cS. The second-order differential equation
can thus be written as a system of two first order systems:

@

@z
cS ¼ cS

0

@

@z
cS
0 ¼ 1

D
u
@

@z
cS
0 þ fkcorg;scS

KS þ cS

� �
(9.20)

Note that for the entire formulation of the problem there are three unknown

functions: cs;org; cS and cS
0. The vector y in the MATLAB® notation has three

components, which have to be taken into account in the formulation of the system

of differential equations and of the boundary conditions. The following m-code

excerpt shows how the MATLAB® routine for boundary value problems can be

utilized to solve the system (9.19) and (9.20).
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%----------------------execution-----------------------------------

solinit = bvpinit (linspace(0,L,N),[cin; 0]);
sol = bvp4c(@bw,@bwbc,solinit,odeset,D,v,k,KS,f,cin);

%---------------------- graphical output --------------------------

plotyy (sol.x,sol.y(1,:),sol.x,sol.y(2,:));
legend ('Corg','SO_4'); grid;

%----------------------functions-----------------------------------
function dydx = bw(x,y,D,v,k,KS,f,cin)

monod = k*y(2)/(KS+y(2));  
dydx = zeros (3,1);
dydx(1) =  -monod*y(1)/v;
dydx(2) =  y(3);
dydx(3) =  (v*y(3)+f*monod*y(1))/D;

function res = bwbc (ya,yb,D,v,k,KS,f,cin)
res = [ya(1:2)-cin; yb(3)]; 

The complete code is included in the accompanying software under the name

‘boudreau_westrich.m’.
The initial commands, in which the parameters L, v, D, k, KS, f, cin and N are

specified, are omitted in the listing above. Before the call of the solution routine in

the second line, an initial guess of the unknown functions is required. This is done

by the bvpinit command. The first formal parameter in the command is the vector

of x-values, for which the variable-values are to be computed. The second formal

parameter consists of three values (cin is a two-component column vector). Each of

these three is a guess of a constant valued function.

In the bvp4c call there is a list of formal parameters. First in the list are the

function calls: (1) the function in which the system of differential equations is

specified, (2) the function in which the boundary conditions are specified. solinit

is the initial guess obtained from the previous command. odeset yields the standard

options for the solution routine. What follows as formal parameters is the set of

parameters for the described example.

In the bw function the differential equations are specified, following (9.19) and

(9.20). y denotes the vector of unknown variables. Thus y(1) denotes the concen-

tration of organic matter, y(2) the sulphate concentration and y(3) the derivative of

sulphate concentration. The Monod-term for sulphate is calculated under monod.

The bwbc function specifies the boundary conditions. At the left side, i.e. at the

lowest x-value (a) given above, the condition is computed using the ya variable.

The variable yb is responsible for the condition at the highest x-value (b) . The
condition is formulated in a way making the residual res vanish. Thus the first

two variables at boundary x ¼ a take the values given in the cin vector, while the

third variable has a vanishing value at boundary x ¼ b. The physical meaning of

the latter condition is that there is no diffusive flux because of a vanishing

concentration gradient.
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As output, concentrations of organic carbon and sulphate are plotted in one

figure with two y-axes, one on the left and one on the right side. MATLAB®
provides the plotyy command for that task.

The problem of negative concentrations, which was recognized in Berner’s

approach according to (9.14) and (9.15), is overcome in the presented model. In

fact, the sink term in the sulphate equation is responsible for that improvement.

Some other approaches concerning the sink term of organic matter can be found in

the literature. In their model on oxygen penetration depths and fluxes, Cai and

Sayles (1996) use a simpler linear degradation term for corg and the corresponding

analytical solution of exponential decline. The argument for such a simplified

approach is that degradation of organic matter occurs anyway. If the aerobic

pathway with oxygen as an elector donor is not sufficient, other anaerobic pathways

for decomposition usually take over. The following sub-chapter shows approaches

how such a redox sequence can be treated in detail.

9.4 Redox Sequences

Redox conditions play an important role in environmental systems, as they are

a determining factor for population growth or decline of bacteria and microbes.

Depending on the local redox state, conditions may favour or disfavour the exis-

tence of certain microbial cultures which are able to degrade hazardous or other-

wise harmful organic substances.

Redox zones are usually observed in aquatic sediments at the bottom of surface

water bodies, in aquifers with infiltrating river water, and downstream from

contaminated sites or landfills.

There are six major chemical pathways being responsible for the degradation of

organic matter in environmental systems. These are oxic respiration, denitrification,

manganese oxide and iron (hydr)oxide reduction, sulphate reduction and

methanogenesis. The transfer of electrons plays a crucial role in all six redox

reactions. In each reaction one specific substance acts as electron donor: oxygen

in oxic respiration for example. All half-reactions, including the donors, are listed

in Table 9.1. Each half reaction is completed by another half-reaction in which an

electron acceptor consumes the electrons. If degradation processes are concerned,

organic matter is the electron acceptor. As a matter of fact, microorganisms do the

work in most redox reactions. A detailed approach including bacteria populations

Table 9.1 Primary redox (half) reactions, according to Hunter et al. (1998)

1. Oxic respiration O2þ4Hþþ4e� ! 2H2O

2. Denitrification NO3
�þ6Hþþ5e� ! 0:5N2þ3H2O

3. Manganese oxide reduction MnO2þ4Hþþ2e� ! Mn2þþ2H2O

4. Iron (hydr)oxide reduction Fe(OHÞ3þ3Hþþe� ! Fe2þþ3H2O

5. Sufate reduction SO4
2�þ9Hþþ8e� ! HS�þ4H2O

6. Methanogenesis CO2þ8Hþþ8e� ! CH4þ2H2O
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requires some knowledge of their consumption and reproduction behavior, which is

seldom available.

It is an important characteristic of redox reactions that most environments show

a distinctive preference for a special redox reaction, depending on the biogeochem-

ical conditions. The numbering in Table 9.1 provides the preference priority. As

long as oxygen is abundantly available in a system, all other redox reactions play

a minor role. If there is no or only a small amount of oxygen present, nitrate takes

the leading role. If there is also no nitrate, manganese and iron oxide reduction

become important and so forth.

The example in Fig. 9.5 results from measurement and modeling studies in

aquatic sediments, published by van Cappellen and Wang (1995, 1996). The

relevant redox parameters change within the first centimeters below the sediment

water interface (‘depth’ in the figure). The figure depicts the share of specific redox

processes on the total reaction dynamics as a function of depth below the water

sediment interface. In the upper half centimeter, in the aerobic zone where oxygen

is present, aerobic respiration dominates over all other processes. Below follows

a zone where the share of reactions consuming oxygen becomes less important,

increasingly admitting all other redox interactions to take place. Denitrification is

the first competing process but is relevant only in a narrow zone of a few

millimeters length and always remaining with a share of less than 30%. Iron and

manganese reduction become relevant at the same depth, but, due to the higher

abundance of iron (hydr)oxides, the former redox process remains more relevant

within the rest of the depth interval. Sulphate reduction is the only process that

gains relevance with increasing depth. Obviously, in this set-up sulphur is available

at such high concentrations that methane formation is suppressed everywhere.

In other environmental compartments the extensions of redox zones may have

a different length scale than in the given example. Holzbecher et al. (2001) present
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a study on river water infiltrating an aquifer where redox zones are in the range of

10–100 m. Further studies on bank filtration were published by Doussan et al.
(1997). A similar range is often met downstream of contaminated sites and landfills

(Keating and Bahr 1998; Lu et al. 1999).

The approach, presented above for sulphate reduction as one of the dominant

redox processes, can be extended to treat such a sequence of redox reactions. This is

achieved by the introduction of so-called inhibition terms. If the abundance of

species with concentration c inhibits some other kinetics, the formula for the latter

should contain the inhibition factor k
kþc with a suitable value for the inhibition

parameter k. Clearly, the factor is small for high values of c, and approaches one for
low values.

The idea is demonstrated on a rudimentary redox model containing the first three

redox reactions of Table 9.1.

The command listing for the file, included in the accompanying software under

‘redoxsteady.m’, is as follows:

L = 100;               % length [m]
v = 1;                 % velocity [m/s]
D = 0.02;              % diffusivity [m*m/s]
lambda = 0.01;         % organic carbon degradation parameter [1/m]
k1 = [0.1; 1; 0.2];    % 1. Monod parameter [m/s]
k2 = [0.035; 1];       % 2. Monod parameter [kg/m*m*m]
k3 = [3.5e-3; 1];      % inhibition coefficient [kg/m*m*m]
corg = 1;              % organic carbon concentration at interface
cin = [4; 3; 0.001];   % interface concentrations [kg/m*m*m]
N = 100; % number of nodes  

%----------------------execution-----------------------------------

x = linspace(0,L,N);
solinit = bvpinit (x,[cin; zeros(3,1)]);
sol = bvp4c(@redox,@bcs,solinit,odeset,D,v,lambda,k1,k2,k3,corg,cin);

%---------------------- graphical output --------------------------
plot (x,corg*exp(-lambda*x),sol.x,sol.y(1:3,:));
legend ('C_{org}','O_2','NO_2','Mn'); grid;

%----------------------functions-----------------------------------
function dydx = redox(x,y,D,v,lambda,k1,k2,k3,corg,cin)

c0 = corg*exp(-lambda*x);
monod = k1.*y(1:2)./(k2+y(1:2));
monod(3) = k1(3); 
inhib = k3./(k3+y(1:2)); 
dydx = zeros (6,1);
dydx(1) =  y(4);
dydx(4) =  (v*y(4)+c0*monod(1))/D;
dydx(2) =  y(5);
dydx(5) =  (v*y(5)+c0*monod(2)*inhib(1))/D;
dydx(3) =  y(6);
dydx(6) =  (v*y(6)-c0*monod(3)*inhib(1)*inhib(2))/D;

function res = bcs (ya,yb,D,v,lambda,k1,k2,k3,corg,cin)
res = [ya(1:3)-cin; yb(4:6)-zeros(3,1)];      
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As the main part of the M-file and the function calls coincide with the previous

example, the explanation of the code is restricted to the function section. Note that

in this example there are six unknown functions, which are the concentrations of the

three redox species that are included in the model with their derivatives. All

functions are included in the vector y. y(1) is the oxygen concentration, y(4) its

derivative, y(2) is the nitrate concentration, y(5) its derivative, y(3) is the manga-

nese concentration and y(5) its derivative.

In the variable c0 the analytical solution for organic matter is implemented. The

lambda value used here coincides with the ratio l=w of formula (9.14). In the monod

vector three Monod terms are calculated and in the inhib vector the two inhibition

factors for the two redox processes with higher preference.

The derivative specifications for the first three components of y are the defining

formulae for the derivatives of the concentrations. The other three specifications

represent the differential equations in the following form:

@

@z
cO2

0 ¼ 1

D
u
@

@z
cO2

0 þ corg;s
kO2

cO2

KO2
þ cO2

� �

@

@z
cNO2

0 ¼ 1

D
u
@

@z
cNO2

0 þ corg;s
�kO2

�kO2
þ cO2

kNO2
cNO2

KNO2
þ cNO2

� �

@

@z
cMn

0 ¼ 1

D
u
@

@z
cMn

0 � corg;s
�kO2

�kO2
þ cO2

�kNO2

�kNO2
þ cNO2

kMncMnO2

KMn þ cMnO2

� �
(9.21)

The degradation of oxygen is given by the product of organic matter concentra-

tion with the Monod term: c0*monod(1). The coefficients kO2
; kNO2

and kMn are

stored in the k1 vector, the parameters KO2
;KNO2

and KMn in the k2 vector and the

inhibition parameters �kO2
and �kNO2

in the k3 vector. The degradation term for nitrate

in addition to the Monod term includes the inhibition term for oxygen inhib(1).

The corresponding term for manganese has another additional term: inhib(2), the

inhibition term for nitrate. Note that the sign of the reaction term in the equation for

manganese is opposite to that of the other two substances, as free manganese ions

are produced in the redox reaction, while oxygen and nitrate are consumed. That is

the reason why the Monod-term for the manganese redox reaction is different.

Equations (9.21) also contain the concentration of the reaction product MnO2. In

order to keep the number of parameters small, it is assumed that the manganese

pool in the porous matrix remains at a constant high level for this model.

For cMnO2
>>KMn the Monod term can be approximated by kMn (Fig. 9.6).

Biochemical redox reactions, which are strongly coupled with the degradation of

organic matter, are taken into account by the formulation:

qi ¼ �lorgcorgfi (9.22)

with concentration of organic matter corg and degradation constant lorg. The factor
fi is a measure for the relative share of the ith redox process on the total degradation

9.4 Redox Sequences 187



of organic matter. Following van Capellen and Wang (1995), the factor fi takes
a form that is similar to Monod kinetics:

fi ¼ 1�
Xi�1
j¼1

fj

 !
ci

ci � clim;i
(9.23)

where a limit concentration clim,i appears, which is specific to components. The

term in the brackets ensures that the sum of all contributions does not exceed 1. All

six major redox processes are thus implemented in the model: organic respiration,

denitrification, manganese-, iron- and sulphate reduction and methanogenesis.

More details of the model are given by Holzbecher et al. (2001). The graphical

output of the program is depicted in Fig. 9.6.
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Chapter 10

Parameter Estimation

10.1 Introduction

In most application fields one frequently finds models that are applied with

a different goal than described in the previous chapters. The purpose of modeling

was defined as prediction in a general sense. Models show how an environmental

system develops, starting from an initial state, restricted by some boundary

conditions under the assumption that some parameters are well defined and well

known. That usual procedure of simulation was demonstrated above.

Mostly, before being able to start any prediction run, parameters turn out to be

the problem: values for the parameters need to be known. There are various ways to

obtain parameter values. They can be taken from literature. There are well known

constants: the acceleration due to gravity (¼9.807 m2/s), for example, can be

treated as a constant in environmental problems. Values can be taken from tables:

thermodynamic data are found in steam tables, for example; and reaction constants

can be found in concerned data-bases. Some parameter values are reported in text-

books, reports and in journal publications. Under certain conditions, parameter

values can be obtained from experiments, i.e. from a controlled environment

which is similar to field situation. Some parameters can be measured on-site

directly, like spatial extensions, time, temperature etc.

After utilizing all these possibilities, there may be still some parameters left.

These need to be determined by parameter estimation. Parameter estimation can be

performed using the model in question (then we speak of calibration) or for

an especially designed experimental set-up. When observations of one or more

variables are available, the model can be run with different parameter values in

order to check, which parameter value fits best to the observations. Following such

a procedure, the original role of parameters and variables is exchanged: now the

parameters are unknown, while variables are known. For that reason parameter

fitting is also named inverse modeling.
Example: Microcystins (MCYST) are a group of toxic substances produced by

cyanobacteria (‘blue-green-algae’). In case of cyanobacterial blooms microcystin
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concentrations in surface waters may reach values far above the value proposed as

provisional guideline for drinking water by the WHO of 1 mg/l for MCYST-LR.

When a well is installed in the vicinity of a river or lake shore, part of the pumped

water originates from surface water, which is called bank filtrate. When bank filtrate

is utilized for drinking water, it has to be ensured that concentrations in pumped

water are below the threshold. For that reason, it is important to understand the

sorption and degradation processes during the sub-surface passage of the bank

filtrate water. Batch experiments using surface water and characteristic porous

materials are a first approach for such an examination.

In a batch experiment microcystin, dissolved in water, was brought into contact

with porous sediments. The original concentration was 1 mg/l. In aqueous sediments

microcystin is subject to sorption and biodegradation. In order to obtain retardation

factors and degradation rates batch experiments can be run. The decrease of

the concentration was measured at several time instants after the first contact. The

following table and figure shows example concentrations for five instants of time

(Gr€utzmacher 2006) (Table 10.1) (Fig. 10.1):

In MATLAB® the values are entered as two line vectors:

tfit = [0.25 1 2 4 8];  
cfit = [0.7716 0.5791 0.4002 0.1860 0.1019];
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Fig. 10.1 Quadratic curve fitting for example batch experiment

Table 10.1 Example data-set from microcystin batch experiment

Time (h) 0.25 1 2 4 8

Concentration (mg/l) 0.9405 0.5537 0.3994 0.1509 0.0592
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10.2 Polynomial Curve Fitting

In order to outline the basic concepts of inverse modeling, we first focus on the

simple situation, in which the dependent variable obeys an analytical formula with

respect to a variable time t. Imagine the dependent variable being the concentration

of a pollutant. The reader may think of t as time. For a first approach it is even

assumed that this formula is a polynomial. The coefficients of the polynomial,

which are connected to the parameters, are unknown and have to be determined by

the inverse modeling procedure.

The best fit is that polynomial (represented by a set of coefficients that are the

parameters), for which the deviation between given values and modelled values is

minimal. For such polynomial curve fitting MATLAB® has the polyfit command.

Use the following command to find the best fit for the data-set given above under

the assumption that the formula is quadratic:

p = polyfit (tfit,cfit,2) 

p = 
    0.0181   -0.2326    0.8099 

The last formal parameter in the brackets on the right side specifies the degree of

the polynomial, i.e. the exponent of the highest power term. It needs to be above one

and lower or equal to the number of given measurements. MATLAB® returns the

coefficients of the polynomial in an array, here p. The answer shown above

corresponds to the polynomial:

cðtÞ ¼ 0:0181t2 � 0:2326tþ 0:8099 (10.1)

Polynomials are evaluated by the polyval command. Use the following com-

mand in order to compute the values of the polynomial, given by (10.1), and just

obtained by parameter fitting:

c = polyval(p,[0:.2:8]) 

c = 
  Columns 1 through 7  
    0.8099    0.7641    0.7198    0.6769    0.6354    0.5954    0.5568 
  Columns 8 through 14  
    0.5197    0.4840    0.4498    0.4170    0.3857    0.3557    0.3273 
  Columns 15 through 21  
    0.3003    0.2747    0.2506    0.2279    0.2067    0.1869    0.1685 
  Columns 22 through 28  
    0.1516    0.1362    0.1222    0.1096    0.0985    0.0888    0.0806 
  Columns 29 through 35  
    0.0738    0.0684    0.0645    0.0621    0.0611    0.0615    0.0634 
  Columns 36 through 41  
    0.0667    0.0715    0.0777    0.0853    0.0944    0.1050

The first formal parameter of polyval is a line vector and is interpreted as the

polynomial whose coefficients are the elements of the vector. The second formal
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parameter is the line vector of instants at which the polynomial is evaluated. The

output is a corresponding vector with values of the polynomial. The plot command

yields a visual comparison of the original values and the fitted curve:

plot(tfit,cfit,'o',[0:.2:8],c,'-');

Note that the fitting procedure is based on a quantitative measure for the quality

of an approximation. Such different evaluations are based on the residual vector,
showing the difference between given and modelled values for all measurements:

c = polyval(p,tfit); 

resc = cfit-c 

resc = 

    0.0187   -0.0163   -0.0168    0.0175   -0.0031 

There is no unique measure for the quality of a fit. One can use for

example the mean absolute error 1
N

P
cðtfitÞ � cfit
�� ��, the mean quadratic error

1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
cðtfitÞ � cfit
� �2q

, the maximal absolute error max cðtfitÞ � cfit
�� ��� �

or the max-

imal quadratic error max cðtfitÞ � cfit
� �2n o

. There are even other measures

possible.

It is most common to check the quadratic error. The mean quadratic error for the

given approximation is obtained by the command:

sqrt(sum (resc.*resc))/5   

ans = 
    0.0070 

One may also use the square root of the sum of the squares of the residuals

normc = sqrt(sum(resc.*resc)) 

normc = 
    0.0348 

This is the so called norm of the residuals which can also be obtained by the

commands:

normc = norm(resc) 

or

normc = norm(resc,2) 

For more details concerning the norm command, which can be used for alter-

native quality measurements, see the MATLAB® help. For every polynomial other

than the best fit, the deviation between measured and calculated values, quantified

in the residual norm, will be higher. Lets make one check:
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c = polyval([0.0015   -0.1078    2.0315],tfit); 
normc = norm (cfit-c) 
normc = 
    2.9623

The residual norm for the chosen quadratic polynomial is far above the residual

of the best fit .

Alternatively, curve fitting can be performed from the MATLAB® figure editor.

Use the plot command first in order to perform the fitting:

plot (tfit,cfit,'o')   

Then click the ‘Basic Fitting’ submenu in the ‘Tools’ menu of the figure editor to

obtain the box depicted in Fig. 10.2.

Fig. 10.2 The ‘Basic fitting’

command box
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In the ‘Basic Fitting’ box various options are available: polynomial fitting for

polynomials of degrees 1–10 and spline interpolation. Residuals can be shown as

bar plots, line plots or scatter plots, either in a subplot or a separate figure. Equations

can be shown in the curve plot, residual norms in the residual plot. The user may

select the number of significant digits of the fitting and may center and scale x-axis
data. If more than one data-set is depicted in the figure, fitting can be performed for

all data-sets separately. Moreover, there is the option to save the results of the fitting

procedure to the workspace.

Using the options shown in Fig. 10.2 for the example data-set, one obtains the

plot, given in Fig. 10.3.

The upper subplot of Fig. 10.3 shows the linear, quadratic and cubic best fits

together with the original data. The lower subplot depicts histograms of the residual

vectors for all three fits and lists the norm of the residuals. The coefficients of the

polynomials are obtained by using the button in the ‘Basic Fitting’ box.

10.3 Exponential Curve Fitting

In environmental systems exponential fits are often more appropriate than polyno-

mial fits. See the next sub-chapter for an argument, why exponential curves can be

expected as outcome of batch experiments. Generally, there may be some reason

that the solution has the exponential form:
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Fig. 10.3 Results for the example fitting problem, using the ‘Basic fitting’ tool under MATLAB®
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cðtÞ ¼ c0 expð�ltÞ (10.2)

There are two parameters: the initial concentration c0 and the decay constant l.
Note that the fitting procedure can be performed for any dependent variable c and
the independent variable t; both symbols do not necessarily represent concentration

and time in this chapter.

As the polyfit command works with polynomials, one may use the idea that the

exponential curve is a linear curve in logarithmic representation. Thus the polyfit

command can be used for the logarithm of the concentration vector:

p = polyfit(tfit,log(cfit),1) 

p = 
   -0.2619   -0.3387 

The best fit for the logarithm is thus given by:

logðcÞ ¼ �0:2619t� 0:3387 (10.3)

or:

cðtÞ ¼ expð�0:3387Þ exp �0:2619tð Þ
¼ 0:7127 exp �0:2619tð Þ (10.4)

Comparison with formula (10.2) shows that the second line of (10.4) is the aimed

formulation with c0 ¼ 0.8236 and l ¼ 0.3487. In Fig. 10.4 the result is again

plotted together with the original data:

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 10.4 Exponential fit for example batch experiment
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c = exp(polyval(p,[0:.2:8]));   
plot(tfit,cfit,'o',[0:.2:8],c,'-');   

Lets check again the quadratic difference between observed and modelled data:

c = polyval(p,tfit); 
normc = norm (cfit-c)   

normc = 
    3.6427 

and check:

c = exp(-tfit); 
normc = norm (cfit-c)   

normc = 
    0.3915 

Obviously the chosen function

cðtÞ ¼ expð�tÞ (10.5)

is a much better approximation for the example data set, showing that the

coefficients obtained before for the exponential fit do not represent the best fit.

The explanation for that apparent contradiction is nearby: the linear curve is found

under the condition that the sum of squares of the quadratic logarithmic deviationsP
logðcfitÞ � logðcðtfitÞÞ
� �2

is minimized and not the sum of the quadratic

deviations
P

cfit � cðtfitÞ
� �2

. In the next sub-chapter, we present a better procedure

for the determination of the optimal exponential curve.

10.4 Parameter Estimation with Derivatives

MATLAB® offers the possibility to find the best exponential fit by another

procedure, which is demonstrated in the following. The method can be extended

for parameter fitting for arbitrary curves, i.e. it is not restricted to polynomial or

exponential curve fitting.

Remember that it is the goal to minimize the norm of the residual vector:

resk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

cðtfitÞ � cfit
� �2q

(10.6)

The square root operation within the norm formula does not change the result of

the task and can be omitted. Thus, the task can also be formulated without the
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square-root: the objective is to minimize the term e understood as a function of the

parameter l:

eðlÞ ¼
X

cðtfit; lÞ � cfit
� �2

(10.7)

Note that c also is conceived as a function of the parameter l. A necessary

condition for the minimum value of l is that the derivative of e with respect to l
becomes zero:

@e

@l
¼ 2

X
cðtfit; lÞ � cfit
� � @c

@l
ðtfit; lÞ ¼ 0 (10.8)

Obviously the leading two of condition (10.8) can be omitted. The last factor can

be obtained from (10.2),

@c

@l
¼ �tc0 expð�ltÞ ¼ �t � c (10.9)

leading to the following formulation of the condition:

X
cðtfit; lÞ � cfit
� �

cðtfit; lÞtfit ¼ 0 (10.10)

Using the vector notation, the last formula can also be written as:

cðtfit; lÞ � cfit
� �

cðtfit; lÞ � tfit
� �T ¼ 0 (10.11)

One can define the right hand side as a function, and the conditions (10.10) or

(10.11) are fulfilled for the zero of that function. In order to find the zero of

a function, MATLAB® provides the fzero command.

fzero starts a MATLAB® algorithm for the computation of the zeros of

a function f(x), i.e. to find a value x0 with f(x0) ¼ 0. If fzero is called, at least

two parameters have to be given by the user. One concerns the function f, the other
is a starting value for x0:

fzero(@f,x0);  

The function f can be any function which MATLAB® knows. For example, one

obtains the well-known zero of the cosine-function by the command:

fzero(@cos,0.11) 

ans = 

    1.5708 

As expected, the zero is p/2. The input of another start value may yield another

zero of the cosinus-function, as demonstrated by the following command:
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fzero(@cos,4.11)   

ans = 
    4.7124 

Of course, it is possible to determine the zeros of user specified functions. In the

following, the example name myfun is used as name for a user-specified function.

The function with name myfun needs to be specified in an M-file. Here we write the

function f together with the fzero command in the same M-file:

function parest0 
x0 = fzero(@myfun,1.) 

function f = myfun(x); 
f = sin(x) + cos(x)*cos(x);   

The command sequence is stored in a function M-file. It is not possible to use the

same sequence in a script-file. When running, the M-file produces the result of

x0 ¼ �0.6662 in the MATLAB® command window, which is a zero of the

function sinðxÞ þ cos2ðxÞ.
Parameter estimation is performed in the same manner. The function f for the

exponential fit needs to be calculated according to formula (10.11):

function par_est 
% parameter estimation with derivatives 
% for exponential fit for lambda 
lambda = fzero(@myfun,0.05)  

function f = myfun(lambda);  
tfit = [.25 1 2 4 8];  
cfit = [0.7716 0.5791 0.4002 0.1860 0.1019]; 
c = exp(-lambda*tfit);       % equation for c  
f = (cfit-c)*(c.*tfit)';     % specify function f to vanish 

In the fourth line of the M-file, the fzero-function is called for the function

myfun and the starting value of 0.11 for l. In the first line of the function, the given
values are specified as two line vectors: tfit for the values of the independent

variable and cfit for the values of the dependent variable. These two vectors may

represent measured concentration values for a certain substance at different time

instants. The next line computes the values of the function at the specified time

instants for a given value of l. The last line corresponds to formula (10.10). The

term cðtfitÞtfit is evaluated element-wise and then transformed into a column vector

(using the ’-operator!). The usual vector-multiplication of the line vector cðtfitÞ �
cfit with the column vector cðtfitÞtfit

� �T
yields the summation required according to

the formula.

Running theM-file delivers the result: l¼0.3329. The followingM-file ‘par_est.m’
is slightly extended to perform further post-processing tasks:
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function par_est 
% parameter estimation with derivatives 
% for exponential fit for lambda 
global tfit cfit c0  

% specify fitting data 
tfit = [0.25 1 2 4 8];  
cfit = [0.7716 0.5791 0.4002 0.1860 0.1019]; 
c0 = 0.8; lambda0 = 0.5; 

lambda = fzero(@myfun,lambda0);  
normc = norm(cfit-c0*exp(-lambda*tfit)); 
display (['Best fit for lambda = ' num2str(lambda)]); 
display (['Norm of residuals =' num2str(normc)]); 
tmax = tfit(size(tfit,2)); 
t = [0:0.01*tmax:tmax]; 
figure; plot (tfit,cfit,'or',t,c0*exp(-lambda*t),'-'); 
legend ('given','modelled'); 
text(0.5*tmax,c0*0.7,['\lambda: ' num2str(lambda)]);  
text(0.5*tmax,c0*0.8,['norm of residuals: ' num2str(normc)]); 

function f = myfun(lambda);  
global tfit cfit c0  
c = c0*exp(-lambda*tfit); %solve linear decay eq. for c with c(0)=c0  
f = (cfit-c)*(c.*tfit)';  % specify function f to vanish   

The corresponding M-file ‘parest.m’ is included in the accompanying

software.

The vectors of fitting data tfit and cfit as well as the initial concentration c0 are

now specified in the input section of the M-file. Also the initial value for l (in the

M-file called lambda0) is specified at the beginning. normc, computed directly after

the calculation of l, represents the norm of the residuals. The next two lines initiate

output of lambda and normc in the MATLAB® command window. The last four

commands in the main module produce a plot showing given values and best fit

curve, the best fit value and the norm of residuals. The following figure is the plot

obtained for the microcystins example data introduced at the beginning of this

chapter (Fig. 10.5).

The optimum l is 0.3329 and the norm of residuals is 0.0646. Obviously, the

function with the new value of l is a much better fit than the exponential fit of the

previous sub-chapter that was obtained by polynomial curve fitting.

Using the calculated l one may have the idea to improve the fit further by

changing c0 in formula (10.2). For this purpose, the ‘par_est.m’ file has to be

changed slightly in order to optimize for c0 and not for l. Instead of condition

(10.8) one obtains:

@e

@c0
¼ 2

X
cðtfitÞ � cfit
� � @c

@c0
ðtfitÞ ¼ 0 (10.12)

The factor 2 can be omitted. Evaluation of the last factor delivers the condition:

X
cðtfitÞ � cfit
� �

expð�ltfitÞ ¼ 0 (10.13)
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In the following M-file the zero of that function is determined. The sum of

(10.13) is evaluated in the last line. In all other parts the M-file resembles the

‘par_est.m’ example given above.

function par_esta 
% parameter estimation with derivatives 
% for exponential fit for c0  
global tfit cfit lambda 

% specify fitting data 
tfit = [0.25 1 2 4 8];  
cfit = [0.7716 0.5791 0.4002 0.1860 0.1019]; 
lambda = .3329; c00 = 1.; 

c0 = fzero(@myfun,c00); 
normc = norm(cfit - c0*exp(-lambda*tfit)); 
display (['Best fit for c0= ' num2str(c0)]); 
display (['Norm of residuals= ' num2str(normc)]); 
tmax = tfit(size(tfit,2)); 
t = [0:0.01*tmax:tmax]; 
figure; plot (tfit,cfit,'or',t,c0*exp(-lambda*t),'-'); 
legend ('given','modelled'); 
text(0.5*tmax,c0*0.7,['c_0: ' num2str(c0)]);  
text(0.5*tmax,c0*0.8,['norm of residuals: ' num2str(normc)]); 

function f = myfun(c0);  
global tfit cfit lambda 

c = c0*exp(-lambda*tfit);  
    %solve linear decay equation for c with c(0)=c0 
cc0 = exp(-lambda*tfit); % equation for dc/dc0 
f = (c-cfit)*cc0';       % specify function f to vanish   
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Fig. 10.5 Exponential fit for parameter l using the demonstration data set
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The corresponding M-file ‘paresta.m’ is included in the accompanying

software.

The result is c0 ¼ 0.816 with an improved residual norm of 0.061. The reader

may check the result as an exercise.

It is also possible to combine the last two M-files to estimate both c0 and l. Then,
two function modules have to be used within the M-file. In one function (myfun) l is
optimized. Within that function, the second one (myfun2) is called, in which c0 is
optimized.

function par_estb 
% parameter estimation with derivatives   
% for exponential fit with c0 amd lambda as parameters 
global tfit cfit c0 
c0 = 0.816; lambda = 0.333;      % start values 

% specify fitting data 
tfit = [0.25 1 2 4 8];  
cfit = [0.7716 0.5791 0.4002 0.1860 0.1019]; 

lambda = fzero(@myfun,lambda); 
normc = norm(cfit - c0*exp(-lambda*tfit)) 
display (['Best fit for lambda= ' num2str(lambda)]); 
display (['Best fit for c0= ' num2str(c0)]); 
display (['Norm of residuals= ' num2str(normc)]); 
tmax = tfit(size(tfit,2)); 
t = [0:0.01*tmax:tmax]; 
plot (tfit,cfit,'or',t,c0*exp(-lambda*t),'-'); 
legend ('given','modelled'); 
text(0.5*tmax,c0*0.8,['\lambda: ' num2str(lambda)]);  
text(0.5*tmax,c0*0.7,['c_0: ' num2str(c0)]);  
text(0.5*tmax,c0*0.6,['norm of residuals: ' num2str(normc)]); 

function f = myfun(lambda);  
global tfit cfit c0  

options = optimset;  
c0 = fzero(@myfun2,c0,options,lambda); 
display (['Best fit for c0 = ' num2str(c0)]); 

c = c0*exp(-lambda*tfit);    % solve linear decay eq. for c with c0 
clambda = -c.*tfit;          % equation for dc/dlambda 
f = (c-cfit)*clambda';       % specify function f to vanish 

function f = myfun2(c0,lambda);  
global tfit cfit 

c = c0*exp(-lambda*tfit); %solve linear decay eq. for c with c(0)=c0 
cc0 = exp(-lambda*tfit);  % equation for dc/dc0 
f = (c-cfit)*cc0';        % specify function f to vanish 

The corresponding M-file ‘parestb.m’ is included in the accompanying

software.

The formal parameter lambda needs to be added in the call of the second

function. In order to do that, options must be transferred, too. The standard options

set is obtained by using the options ¼ optimset command.

10.4 Parameter Estimation with Derivatives 203



The result of the estimation procedure for both parameters is l ¼ 0.355 and

c0 ¼ 0.833. Figure 10.6 depicts the result with the improved norm of residuals

equal to 0.057. For the chosen data set the change of parameters in the last two steps

is relatively marginal, but in general that can be very different. It can be crucial to

apply a procedure that really delivers optimal approximation.

Example 1

For many substances in many environmental compartments it can be assumed that

sorption processes are fast in comparison to degradation processes. If this is true,

the first drop of the concentration from the original concentration cref in solution

(in the example 1 mg/l) to a value of c0 can be attributed to sorption: part of the total
mass available attaches to the surfaces of the porous material. The slow decline

observed thereafter is due to degradation processes. Concerning degradation we

assume a linear degradation characteristic (compare Chap. 5). The temporal devel-

opment of the system can be described by the differential equation:

@c

@t
¼ �lc (10.14)

Note that the retardation factor disappears, as R is a coefficient in both relevant

terms in the equation. The solution of the differential equation is

cðtÞ ¼ c0 expð�ltÞ (10.15)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ:0.35537

c0:0.83319

norm of residuals: 0.057169

given
modelled

Fig. 10.6 Exponential fit for l and c0
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for initial concentration c0. The degradation rate l can directly be obtained from the

optimized parameter set of the previous example. The retardation factor R is

obtained from a mass balance at time t ¼ 0:

ycin ¼ yc0 þ rbcs (10.16)

The initial concentration cin after the fast ’splitting’ is divided in a fluid and

a solid phase part. We re-write the right hand side and utilize formula (6.15) under

the assumption of a linear isotherm:

ycin ¼ yc0 1þ rbcs
yc

� 	
¼ y Rc0 (10.17)

from which we get an initial guess for the retardation, even without the observation

of any temporal changes:

R ¼ cin
c0

(10.18)

According to formula (10.18), microcystin has a retardation of R ¼ 1.2 in the

above described batch experiment.

Example 2

For nuclide chains the decay rates can be subsequently determined by using the

described parameter estimation strategy. We exemplify this here for a system of

two species, one the mother and one the daughter nuclide for example. The system

of differential equations is given by:

@

@t

c1
c2


 �
¼ �l1 0

gl1 �l2


 �
c1
c2


 �
(10.19)

g denotes a partition parameter, which is lower than 1, if only a part of specie 1

decays into specie 2. The analytical solution for given initial conditions c10 and c20
is than given by:

c1ðtÞ ¼ c10 expð�l1tÞ
c2ðtÞ ¼ c20 expð�l2tÞ þ c10

gl1
l2 � l1

expð�l1tÞ � expð�l2tÞð Þ (10.20)

In the first step we determine the decay constant for specie 1, using the condition

(10.8) with the derivative (10.9). After that we proceed with specie 2. We can also

10.4 Parameter Estimation with Derivatives 205



use condition (10.8). However, the derivative to be used looks a bit more

complicated:

@c2
@l2
¼�c20texpð�l2tÞþc10 gl1

l2�l1 texpð�l2tÞ� 1

l2�l1 expð�l1tÞ�expð�l2tÞð Þ

 �

(10.21)

For the implementation of this formula use the following function

function f = myfun2(lambda2); 
global tfit c2fit c0 c02 lambda1 g 
t = tfit; 
c1 = exp(-lambda1*t);  
c2 = exp(-lambda2*t);  
dl = lambda2-lambda1; 

clambda2 = (g*lambda1*c0/dl-c02)*t.*c2 - (g*lambda1*c0/dl/dl)*(c1-c2);
c2 = c02*c2+g*lambda1*c0*(c1-c2)/dl; 

More on explicit solutions for decay chains is noted by Yuan and Kernan (2007).

Bauer et al. (2001) as well as Guerrero et al. (2009) focus on the transport of decay
chains.

10.5 Transport Parameter Fitting

The described algorithm can also be applied for the estimation of transport

parameters. Here this is demonstrated for 1D transport as described by the Ogata-

Banks solution:

cðx; tÞ ¼ c0 þ cin
2

erfc
x� vt

2
ffiffiffiffiffi
Dt
p


 �
þ exp

v

D
x

� 	
erfc

xþ vt

2
ffiffiffiffiffi
Dt
p


 �
 �
(10.22)

The situation is examined in which the velocity v is the most unknown para-

meter. Such a situation can be met quite often in the description of environmental

systems.

In order to apply the procedure introduced above, the derivative of the solution

due to velocity is needed. The derivative of the complementary error function is

given by:

@

@x
erfcðxÞ ¼ � 2ffiffiffi

p
p exp �x2� �

(10.23)
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By application of the chain rule results:

@c

@v
ðx; tÞ ¼ cin

t

2
ffiffiffiffiffiffiffiffi
pDt
p exp � x� vt

2
ffiffiffiffiffi
Dt
p


 �2
 !

� exp
v

D
x

� 	
exp � xþ vt

2
ffiffiffiffiffi
Dt
p


 �2
 !" #

þ x

2D
exp

v

D
x

� 	
erfc

xþ vt

2
ffiffiffiffiffi
Dt
p


 �

0
BBBB@

1
CCCCA

(10.24)

The derived equations are implemented in the following subroutine. As in the

examples mentioned, the measurements are represented in the two vectors xfit and

cfit. They are assumed to be measured at time T after the start of migration. D

denotes the relevant diffusivity, c0 is the initial and c1 the inflow concentration.

function f = myfun(v);  
global xfit cfit T D c0 c1 

e=diag(eye(size(xfit,2))); h=1./(2.*sqrt(D*T)); 
arg1 = h*(xfit-v*T*e'); arg2 = h*(xfit+v*T*e'); arg3 = (v/D)*xfit; 

% solve advection diffusion equation for c with c(t=0)=c0 and c(x=0)=c1
c = c0 + 0.5*c1*(erfc(arg1)+(exp(arg3).*erfc(arg2))); 

% compute derivative of solution due to v 
cv = c1*((T*h/sqrt(pi))*(exp(-arg1.*arg1)-exp(arg3).*… 
exp(-arg2.*arg2))+0.5*(xfit/D).*exp(arg3).*erfc(arg2)); 

% specify function f to vanish 
f = 2*(c-cfit)*cv'; 

The algorithm is demonstrated for an example of chloride concentrations

measured in a sediment core of the Marmara Sea (Pekdeger 2006). It is assumed

that a concentration profile, as it is observed today, results from two interacting

processes. Sedimentation compounds the sediment layer. For the sake of simplicity

a constant sedimentation rate is assumed which corresponds to a sedimentation

velocity v. The second process is diffusion.

When there are no horizontal differences in variables or parameters, a 1D

description can be used. The sediment water interface reduces to a single position.

One may choose the origin to be located at the sediment water interface for the

complete simulation. Note that this point moves in a coordinate system that is fixed

to the earth, but that does not change the validity of the differential equations. The

change of the concentration profile can be described by the usual transport equation

with effective diffusivity D and positive sedimentation velocity v.
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The main program is given in the following:

function par_estc    
% transport parameter estimation with derivatives       
global xfit cfit T D c0 c1 

% Example values for Marmara Sea Sediment Core               
T = 6.3e11;  % [s] 20.000 years  
D = 1.0e-5;  % [cm*cm/s] 
c0 = 0;      %  
c1 = 619;    % [mmol/l] 
xmax = 4000; % [cm] 

% specify fitting data 
xfit = [0 20 40 60 100 120 140 160 215 255 275 300 375 450 525 600 750

1050 1200 1350 1650 1950 2250 2550 2700 3000 3450 3900]; 
cfit = [619 597 608 615 619 615 621 571 621 618 619 625 577 612 608 612

609 590 582 582 556 494 457 489 487 444 381 371]; 

v = fzero(@myfun,0.2e-8,options); 
display (['Best fit for v = ' num2str(v)]); 

x = [0:xmax/400:xmax]; 
h = 1./(2.*sqrt(D*T)); e = diag(eye(size(x,2)));  
plot (xfit,cfit,'o',x,c0+0.5*c1*(erfc(h*(x-v*T*e'))+... 

(exp((v/D)*x)).*erfc(h*(x+v*T*e'))),'-'); 
legend ('given','modelled'); 
xlabel ('depth [cm]'); ylabel ('chloride concentration [mmol/l]'); 
text(0.1*xmax,c1*0.65,['sedimentation velocity [cm/a]: ' 

num2str(v*3.15e7)]); 
e = diag(eye(size(xfit,2)));  
normc = norm(cfit-c0+0.5*c1*(erfc(h*(xfit-v*T*e'))+… 

(exp((v/D)*xfit)).*erfc(h*(xfit+v*T*e')))); 
text(0.1*xmax,c1*0.6,['norm of residuals: ' num2str(normc)]); 

The corresponding M-file ‘parestc.m’ is included in the accompanying

software.

The value for T represents 20,000 years. This is approximately the time when

a fresh water lake, located where the Sea of Marmara is found today, was flooded

from the rising Mediterranean. The value for D is a standard first guess for molecular

diffusivity, which is valid for many substances dissolved in water. It is assumed that

before the flooding the sediment pores were filled with water of low chloride

concentration. A more realistic low non-zero value could have been taken, but

this has no significant influence on the model results, as the inflow concentration for

saline water with 619 mmol/l is quite high. The maximum length for the simulation

corresponds to 40 m slightly exceeding the maximum depth of the measurement

locations.

What follows is already the fzero-command, which here is the optimization

routine. Starting value for the velocity is 2·10-9 cm/s. All further commands concern

the design of the graphic in which measured data and the modelled curve can be

compared, and where the result of the estimation procedure is depicted in addition.

The output is shown in Fig. 10.7.
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10.6 General Procedure

The described zero search procedure for the computation of the optimal fit can also

be applied to parameters of differential equations, i.e. if the solution is not given by

an explicit formula like in the examples treated above. The value for diffusivity is

determined in a new demonstration example, (1) by using analytical formulae, and

(2) by using differential equations.

Example: Diffusivity Estimation

An environmental system is considered with two processes governing the distribu-

tion of a (bio) chemical species. To keep it simple, we examine a one-dimensional

set-up. There are two reservoirs separated by a barrier. The barrier does not allow

fluid flow, but chemical species may penetrate by means of diffusion. The driving

force for diffusion is the fact that the two reservoirs have a different level of

concentration c. Additionally, there is a constant source or sink for the examined

species: it is produced or consumed passing through the barrier at a constant rate Q.
The differential equation for the steady state of such a system is:

@

@x
D
@c

@x


 �
þ Q ¼ 0 (10.25)
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Fig. 10.7 Exponential fit for l and c0
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The diffusivity D is to be estimated based on a measurement within the barrier.

The condition for the best estimate is that the following function e is minimized:

e ¼
X

cðxfitÞ � cfit
� �2

(10.26)

Like the previous tasks the problem is solved by considering the derivative

@e=@D, which is required to be zero for the best fit diffusivity:

@e

@D
¼ 2

X
cðxfitÞ � cfit
� � @c

@D
ðxfitÞ ¼ 0 (10.27)

The derivative @c=@D, which appears in (10.27), fulfills a differential equation

that is obtained by differentiation of (10.25) with respect to D:

@

@x
D

@

@x

@c

@D
þ @c

@x


 �
¼ 0 (10.28)

or, taking again (10.25) into account:

@

@x
D

@

@x

@c

@D


 �
¼ Q

D
(10.29)

In order to test the approach we can work with analytical solutions of (10.25) and

(10.29). The general solution for c is given by:

cðxÞ ¼ � Q

2D
x2 þ C1xþ C0 (10.30)

With boundary conditions

cð0Þ ¼ 1 and
@c

@x
ð1Þ ¼ 0 (10.31)

one obtains: C0 ¼ 1 and C1 ¼ Q=D . Analogously, the general solution of

(10.29) is given by:

@c

@D
ðxÞ ¼ Q

2D2
x2 þ D1xþ D0 (10.32)

As the Dirichlet condition for c at the left boundary is independent of D one

obtains the boundary conditions:

@c

@D
ð0Þ ¼ 0 and

@

@x

@c

@D
ð1Þ ¼ 0

(10.33)
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The second condition follows from the chain rule @c=@D ¼ @c=@xð Þ @x=@Dð Þ
and the second boundary condition given in (10.31). It follows: D0 ¼ 0 and

D1 ¼ �Q=D2.

The following M-file demonstrates the procedure for an example data set (see

Rom 2005):

function par_est2 
% parameter estimation with derivatives               
% Idea from FEMLAB - there R instead of Q  
% see COMSOL News, Nr. 1, 2005, page 15 
global xfit cfit Q 

% specify fitting data 
xfit = [0.05:0.1:0.95]; 

cfit = [0.9256859756097451 0.7884908536585051 0.6665396341462926 
0.559832317073104 0.4683689024389414 0.39214939024380824 
0.33117378048770196 0.28544207317062964 0.25495426829258294 
0.23971036585356142];       
Q = -2; 
D = fzero(@myfun,2); 
display (['Best fit for D = ' num2str(D)]); 
x = [0:0.01:1]; 
plot (xfit,cfit,'o',x,-(Q/D/2)*x.*x + (Q/D)*x + 1,'-'); 
legend ('given','modelled'); 
xlabel ('x'); ylabel ('c'); 

function f = myfun(D);  
global xfit cfit Q 

% solve diffusion equation for c with c(0)=1 and dc/dx(1)=0  
c = -(Q/D/2)*xfit.*xfit + (Q/D)*xfit + 1;  

% solve Poisson equation for dc/dD (cD) with boundary conditions 
cD = (Q/D/D/2)*xfit.*xfit - (Q/D/D)*xfit; 

% specify function de to vanish 
f = 2*(c-cfit)*cD'; 

The corresponding M-file ‘parest2.m’ is included in the accompanying

software.

The main program follows the same line given by the ‘par_est’M-files presented

in the previous subchapters. The fzero function is called with an initial guess

D ¼ 2. The function myfun consists of three commands. The first evaluates c as

formulated in (10.30); the second evaluates the derivative @c=@D following

(10.32); the third specifies function f according to formula (10.27).

For Q ¼ �2 the procedure delivers the correct result of D ¼ 1.312 ! The best fit

is visualized in Fig. 10.8:

Hitherto, the analytical solution of the problem has been utilized again. The first

two commands in the function myfun can be replaced by calls of differential

equation solvers. In the first command, the (10.25) needs to be solved with regard

to the boundary conditions (10.31); in the second command, it is the differential

(10.29) with regard to conditions (10.33). The function f then becomes:
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function par_est2a 
…. 
function f = myfun(D);  
global xfit cfit Q 
options = bvpset;

% solve diffusion equation for c with c(0)=1 and dc/dx(1)=0  
solinit = bvpinit([0 xfit 1],@guess);
c = bvp4c (@mat4ode,@mat4bc,solinit,options,Q/D,1);

% solve Poisson equation for dc/dD (cD) with boundary conditions 
solinit = bvpinit([0 xfit 1],@guess1);
cD = bvp4c (@mat4ode,@mat4bc,solinit,options,Q/D/D,0);

% specify function f to vanish 
f = 2*(c.y(1,2:size(c.y,2)-1)-cfit)*cD.y(1,2:size(c.y,2)-1)'; 

function dydx = mat4ode(x,y,Q,c0) 
dydx = [y(2); -Q]; 

% ------------------------------------------------------------ 
function res = mat4bc(y0,y1,Q,c0) 
res = [y0(1)-c0; y1(2)]; 

% ------------------------------------------------------------ 
function v = guess(x) 
v = [x*(x-2)+1; 2*(x-1)]; 

% ------------------------------------------------------------ 
function v = guess1(x) 
v = [x*(x-2); 2*(x-1)]; 
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Fig. 10.8 Optimal fit for diffusivity estimation example problem
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The corresponding M-file ‘parest2a.m’ is included in the accompanying

software.

The main body of the M-file is omitted. In the f-function module we obtain two

solutions by calling the bvp4c command for the solution of boundary value

problems. Both differential equations are of Poisson type @2c
@x2 ¼ const; therefore,

it is possible to use the same module (mat4ode) with different formal parameters. It

is an alternative to use two different functions. The second order differential

equation is re-written as two first order differential equations with c1 ¼ c:

@c1
@x
¼ c2

@c2
@x
¼ const (10.34)

In the mat4ode sub-module the vector y has two elements representing c1 and c2.
The mat4bcmodule specifies the boundary conditions (10.31) and (10.33), which in

terms of c1 and c2 are given by:

c1ðx ¼ 0Þ ¼ const c2ðx ¼ 1Þ ¼ 0
(10.35)

The two functions guess and guess1 deliver initial guesses for both functions

fulfilling the boundary conditions. The graphical output resulting from that algo-

rithm is identical to Fig. 10.8.

It has been demonstrated that the procedure, using solutions of differential

equations within the fzero-module, is applicable to parameter estimation in

situations in which an explicit formula for the solution is not available. We chose a

one-dimensional set-up as demonstration example and had to solve boundary value

problems for ordinary differential equations. However, the same concept can be

applied to more general set-ups, steady or unsteady, in one or more space dimensions.

In general, the solutions of partial differential equations are required within the zero-

search-algorithm.
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Chapter 11

Flow Modeling

Flow, of course, is a crucial topic in many environmental sciences. Flow is the

carrier of advective transport (see Chap. 3). Biogeochemical species are transported

by flow through environmental compartments and through systems of compart-

ments. Often transport with the flow is the fastest process by which a species of

potentially hazardous impact, starting from a source, reaches a sensitive region.

Let’s take a repository for radioactive waste as an example. In several countries

of the world final storage facilities are envisaged located in some nearly imperme-

able geological environments in the deep sub-surface. The main safety problem

with these waste disposal sites is concerned with the identification of flow. Contain-

ments and barriers of any type are not able to shut off heat producing, acid,

radioactive and/or toxic material for long time periods. There is the danger that in

the long run hazardous substances find a subsurface flow path, which takes them up

to the surface. Even if that are long distances and long time periods, the potential

thread still remains, as those nuclides with long half-lives remain active for 1,000s

of years. Though the transport along the flow path may take several 1,000s or

10,000s of years, this is a much faster process than any other one. Thus, it is

important to understand and model flow paths and fields (Fig. 11.1).

Speaking of flow in environmental sciences not always means the same thing.

There are various types of fluids and fluxes. In the hydrosphere, containing as

different compartments as creeks, rivers, lakes and the sea with coastal waters,

continental margins and the deep sea sub-compartments, water is the flow medium.

Aquifers and the pore space of aquatic sediments also belong to the hydrosphere.

Air is the flow medium of the atmosphere. In the unsaturated zone, between the

earth surface and the groundwater table, water and air are both fluids, although with

quite different characteristics. There is also flow in the biosphere, for example,

when water is taken up by the roots and transferred to the green parts of plants

above the earth surface.

According to the differences concerning the medium and the compartments and

sub-compartments respectively, there is not the one and only approach to modeling

flow phenomena. In the sequel, the term free fluids is used if the flow medium

occupies the entire volume. A contrasting term is porous media flow, where the

E. Holzbecher, Environmental Modeling,
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fluid flow occurs within the pore space of a solid material, as in aquifers, aquatic

sediments or the soil, the latter with seepage and air flow in the unsaturated or

vadose zone.

11.1 The Navier-Stokes Equations for Free Fluids

Considering all the different phenomena of flow fields, it may seem to be amazing

that one mathematical approach is well accepted as a fundamental description. It is

valid for all types of free flow, either laminar or turbulent, in bounded or unbounded

domains. The equations are a basis for many situations, although simplifications or

extensions are necessary. The generally accepted Navier1-Stokes2 equations can be
noted as follows:

r
@

@t
vþ r v �rð Þv� rf þrpþ �r2v ¼ 0 (11.1)

with fluid density r, velocity vector v, volume force f and pressure p. p and v are the
dependent variables. For a one-dimensional description the system (11.1) reduces
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Fig. 11.1 Pollutant environmental pathways with relevant advective transport

1 Louis Marie Henri Navier (1785–1836), French mathematician and physicist.
2 George Gabriel Stokes (1819–1903), Irish mathematician and physicist.
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to a single equation, in two-dimensional space there are two differential equations

given by system (11.1), and in three-dimensional space there are three.

Equations (11.1) are derived from the principle of momentum conservation,

where momentum is defined as the product rv. From that point of view the Navier-

Stokes equations are for fluid mechanics what is Newton’s Law for classical

mechanics. The first two terms in (11.1) represent temporal change and advective

transport of momentum. The rf-term introduces outer forces as for example

gravity. The connection with pressure is given by the rp-expression. The final

term, including the viscosity � as parameter, represents the internal friction within

the fluid. A more general formulation of the Navier-Stokes equations can addition-

ally take the effect of compressibility into account (Guyon et al. 1997).

Detailed derivations of the Navier-Stokes equations can be found in textbooks

on fluid mechanics; see for example Guyon et al. (1997). In the derivation of the

formulation (11.1) it is assumed that the internal shear stress within the fluid is

proportional to the change of the velocity in transverse direction. The dynamic

viscosity � is the proportionality factor in that relationship, which can also be traced
back to Newton. Water is a Newtonian fluid for which such a relation is valid, while

different formulations result for non-Newtonian fluids. The change of water viscos-

ity in the temperature range between 0�C and 50�C is depicted in Fig. 11.2.
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Equations (11.1) are completed by the continuity equation

@

@t
r�r� rvð Þ ¼ rQ (11.2)

which represents the principle of mass conservation for the fluid. As outlined

in Chap. 3, the derivation of (11.2) is analogous to the derivation of the mass

conservation for species, utilizing the equation for fluid flux: j ¼ rv. Q represents

volume sinks and sources within the flow region. Not taken into account in both

(11.1) and (11.2) is the case in which the fluid phase does not cover the entire space.

That can be included by an additional factor, which represents the share of

the concerned phase on the entire volume. In the system of (11.1) and (11.2) the

number of equations equals the number of unknown variables p and v. From the

mathematical aspect, the most problematic term in the equations is the second term

of (11.1), which is nonlinear.

The plot is produced by a ‘viscosity_dyn.m’, included in the accompanying

software.
There are few classical solutions for the complete set of Navier-Stokes (11.1)

and (11.2). Analytical solutions are mostly restricted to special circumstances. One

example is incompressible laminar flow through a pipe, see Sidebar 11.1. Incom-

pressible flow concerns fluids with constant density, for which the continuity (11.2)

simplifies to:

r� v ¼ Q (11.3)

where the right hand side represents sources and sinks, measured as volumetric rate.

In absence of sources and sinks the equation becomes identical to the condition for

divergence-free vector fields:

r� v ¼ 0 (11.4)

The Reynolds3 number Re is defined by Re ¼ vchar � Hchar=u, with a characteristic
velocity vchar, a characteristic length Hchar and kinematic viscosity u ¼ �=r. In
situations in which the Reynolds number is above that value, the flow regime

becomes turbulent. In turbulent flow small disturbances are amplified, and the

assumption of zero velocity components perpendicular to the main flow direction

is not valid anymore. For turbulent flow there are no analytical solutions of the

Navier-Stokes equations.

3 Osborne Reynolds (1842–1912), English physicist.
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Sidebar 11.1: One-Dimensional Laminar Flow (Hagen-Poiseuille)

One of the simplest examples for a solution of the Navier-Stokes equations is

the two-dimensional horizontal flow between two plates, in a steady state

situation with constant density r. Assume that the z-axis is directed perpendic-
ular to the plates and the distance of the plates is given by Dz. The y-direction
is neglected in the two-dimensional set-up. Moreover, the assumption of

a vanishing velocity component vz perpendicular to a pressure gradient in

x-direction can be made. From (11.2) to (11.4) follows that

@2

@x
vx ¼ 0

i.e. the velocity is not changing in x-direction. If a constant pressure gradient
is given in x-direction (Dp/Dx), the steady state version of the (11.1) reduces

to equations for vx:

�
@2

@z2
vx þ Dp

Dx
¼ 0

The solution of the differential equation for vx is a quadratic function of z.
The two integration constants are derived from the condition that the velocity

component vanishes at the plates at positions z ¼ �Dz=2. The resulting

solution can be expressed as:

vx ¼ vmax 1� 4z2

Dz2

� �

The velocity distribution is visualized in Fig. 11.3. vmax is the maximum

velocity at the halfway between the plates, given by the formula:

vmax ¼ �Dz2

8�

Dp
Dx

(continued)

v

Fig. 11.3 Laminar flow

between two plates
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The mean velocity is given by:

vmean ¼ �Dz2

12�

Dp
Dx

and the flux per unit width by:

q ¼ �Dz3

12�

Dp
Dx

The equation states a linear relationship between fluid flux q and the

pressure gradient Dp=Dx. So far, one-dimensional flow between two plates

in cartesian coordinates has been studied as most simple situation. one-

dimensional flow within a pipe can be treated similarly using a two-dimen-

sional coordinate system. Instead of the z-coordinate, the radial coordinate r
has to be considered, and the differential equation for vx in cylinder

coordinates takes the form:

�
1

r

@

@r
r
@

@r
vx

� �
þ Dp

Dx
¼ 0

In analogy to the procedure demonstrated just before one obtains the

solution:

vx ¼ vmax 1� r2

R2

� �

where R denotes the radius of the pipe. The paraboloid shape is depicted

in Fig. 11.4.

vmax ¼ �R2

4�

Dp
Dx

(continued)

v
Fig. 11.4 Laminar flow of

paraboloid shape in a pipe

with circular cross-section
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Using MATLAB®, the focus will be on analytical solutions, which can be

applied for special cases only. In the following subchapter cases will be considered

in which internal friction can be neglected. Thereafter special systems are in the

focus which are dominated by friction.

The mean velocity is given by:

vmean ¼ �R2

8�

Dp
Dx

Regarding the corresponding head h of the fluid as a measure for pressure,

it is also possible to write:

vmean ¼ �R2

8n
@h

@x

Taking into account that the total flux through the pipe is known, one

obtains the classical result of Hagen4 and Poiseuille5

Q ¼
ðR

0

vxðrÞ2prdr ¼ pR4

8�

Dp
Dx

The formula was first experimentally developed by Hagen and by

Poiseuille independently. According to the Hagen-Poiseuille formulae there

is a linear relation between the flux Q and the pressure gradient Dp/Dx, and
between the characterising velocities and the pressure gradient. Such

a relationship is typical for situations in which the friction on solid walls is

a dominant process. A linear relation between velocity and pressure, or flux

and hydraulic head, holds not only in systems of pipes of small diameter but

for porous media flow in general. Darcy’s Law for porous media states

exactly such a relation (see Chap. 11.3).

The validity of the given formulae is limited by the dimensionless

Reynolds-number of Re ¼ 2300, where the diameter is taken as characteristic

length and the mean velocity as characteristic velocity.

4 Gotthilf Heinrich Ludwig Hagen (1797–1884), German engineer.
5 Jean Louis Marie Poiseuille (1799–1869), French physician and physicist.
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11.2 The Euler Equations and the Bernoulli Theorem

There are situations in which the friction can be neglected. For frictionless ideal
fluids, i.e. fluids with zero viscosity, the Euler6 equations are written in modern

notation as:

r
@

@t
vþ r v �rð Þv� rf þrp ¼ 0 (11.5)

which were published by Euler in 1750.

Utilizing potential theory for fluid mechanics is the classical approach (“classi-

cal hydrodynamics” according to Prandtl and Tietjens 1957), developed already by

the Bernoulli’s7 and Euler. The works of Euler in Berlin and St. Petersburg not only

mark the completion of classical fluid mechanics (Szabó 1987), but also the origin

of an approach by which natural phenomena in the laboratory or in the field are

described by differential equations and their solutions.

The general Navier-Stokes equations have few analytical solutions (for an

example see Sidebar 11.1). Thus, they usually have to be solved by special software

packages utilizing numerical methods, such as finite differences, finite elements, or

finite volumes. The use of numerical methods by applying the pdepe command was

already described in Part I of the book. However, pdepe can be used for 1D

problems only. For higher dimensional problems the MATLAB® partial differen-

tial toolbox has to be applied, which is not described here. In the following chapters,

it is the aim to examine the use of MATLAB® for potential flow.

Potential flow is an umbrella term for a technique to obtain analytical solutions.

Analytical solutions are explicit formulae for the unknown variables, sometimes

also referred to as closed form solutions (Narasimhan 1998). If a flow field is

irrotational, i.e. if the condition8

6 Leonard Euler (1707–1783), Swiss mathematician.
7 Johann Bernoulli (1667–1748), Daniel Bernoulli (1700–1782), Swiss mathematicians.
8 ’ � ’ denotes the cross product for vectors, which for vectors r1 ¼ (x1, y1, z1)

T and r2 ¼
(x2, y2, z2)

T is defined by:

r1 � r2 ¼ x2y3 � x3y2; x3y1 � x1y3; x1y2 � x2y1ð ÞT

If the nabla-operator is used as first vector and v ¼ (vx, vy, vz)
T as second, one obtains:

r� v ¼ @

@y
vz � @

@z
vy;

@

@z
vx � @

@x
vz;

@

@x
vy � @

@y
vx

� �T

For the special case of flow in the 2D (x,y)-plane follows the equation:

r� v ¼ 0; 0;
@

@x
vy � @

@y
vx

� �T
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r� v ¼ 0 (11.6)

is fulfilled at a time instant, this property remains valid further on. It can be shown

that under condition (11.6) a potential ’ exists, which is characterized by the

property

v ¼ r’ (11.7)

and that it fulfills the Bernoulli theorem (for example: Gallavotti 2002):

r
@’

@t
þ r

2
v2 þ rfþ p ¼ C (11.8)

where f denotes the potential of the force vector f (i.e. f ¼ rf). C is a constant in

a simply connected domain. If condition (11.6) is skipped, C is a constant for each

streamline but not in the entire flow domain. For steady states the first term in (11.8)

can be omitted. In fact, the Bernoulli theorem yields a relation between pressure and

velocity. In following chapters methods will be explained how the potential can be

determined, from which the velocity field is derived.

Sidebar 11.2 Open Channel Flow

Open channel flow is defined as flow in any situation in which a liquid has

a free surface, such as in channels, rivers, streams, ditches, uncovered

conduits and discharge from tailings ponds. There is open channel flow in

closed channels, such as pipes, tunnels or adits, if the liquid does not fill the

entire cross-section. Open channel flow is not under pressure, with gravity as

the driving force.

Some characteristics of open channel flow can be derived from the

Bernoulli theorem. For steady conditions according to (11.8) and (11.10),

one can state that the left hand side of the Bernoulli (11.8)

v2

2g
þ h cos bð Þ ¼ He

is a constant, which represents total energy in the dimension of height and is

therefore denoted asHe, the energy height (see also textbooks on fluid mechan-

ics, for example: Schr€oder 1995). h denotes the height of the water column, i.e.

the water level with reference to the zero level at the bottom of the flowing

water body. Using the formula between mean flow velocity v, cross-sectional
area A and flux Q ¼ Av, one may write the equation in the form:

Q2

2gAðhÞ2 þ h cos bð Þ ¼ He

(continued)
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If the flow is kept at a constant value, the question arises, which water

levels result from the formula. In order to answer the question, the area has to

be expressed in terms of water level. For a rectangular cross-section one

obtains:

q2

2gh2
þ h cos bð Þ ¼ He

where q denotes the flow rate per unit width. The formula yields an energy

height as function of water depth h. The situation can be visualized using

MATLAB®.

The corresponding M-file is included in the accompanying software

under the name “OpenChannel.m”
Figure 11.5 illustrates that there is a minimum energy height He,min. The

water level, corresponding with He,min, is commonly referred to as critical

height hcrit. For all possible levels He > He,min, there are two possible water

table positions; one above hcrit and one below hcrit. Both values for the height
of the water column are denoted as conjugated heights. In the former situation

the velocity is lower than in the latter situation. That’s why the first case is

called subcritical, while the second case is called supercritical. Height and
velocity at the critical state are given by:

hcrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=g cosðbÞ3

p
vcrit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghcrit cosðbÞ

p
which can be derived from the condition @He=@h ¼ 0. For b ¼ 0 the critical

state can be related to the Froude9 number

Fr ¼ vffiffiffiffiffi
gh
p

Flow is subcritical flow for Fr < 1 and supercritical for Fr > 1. In open

channels and regulated rivers changes from subcritical to supercritical or vice

versa can be observed at locations where the channel characteristics change, as

channel boundary roughness, channel bottom slope, lower boundary elevation,

etc. (Rouse 1978). Most natural rivers are in the sub-critical regime in most

parts (Olsen 2002), except in the vicinity of waterfalls, weirs or other structures.

9William Froude (1810–1879) English engineer.

(continued)
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Ideal fluids are quite rare, but they exist. Helium below a temperature of 2.17�K
becomes a suprafluid without viscosity. However, there are situations with more

common conditions, in which potential flow theory provides an approximate

solution. At high velocities disturbances due to friction, for example at the bound-

ary of an obstacle, cannot develop into the fluid, at least not within the short time of

the passing fluid. Obstacles in a fast flowing fluid can thus be treated by potential

flow. Also for fluids with high Reynolds numbers the Euler equations can be taken

as an approximation if the flow is far away from any walls and not turbulent (Guyon

et al. 1997).

Potential flow also plays an important role in hydraulic engineering (Schr€oder
1995). From (11.8) an explicit formula for total pressure p can be derived. For the

steady state in the gravity field follows directly:

p ¼ pref þ rgz� r
2
v2 (11.9)

where z denotes the opposite direction of gravity, g acceleration due to gravity, and
pref a pressure reference value. If, for constant density, dynamic pressure pdyn ¼
p� rgz is expressed as height of a fluid column (denoted as h), the result is:

h ¼ href � v2

2g
(11.10)
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Fig. 11.5 Energy height and water level characteristic for open channel flow
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Equation (11.10) is a simple formula connecting piezometric head h and

velocity v.

11.3 Darcy’s Law for Flow in Porous Media

Not only the visible or sensible flow of water or air, which we observe above the

ground surface, is relevant for the distribution of potentially harmful substances

within the environment. A multitude of pathways below the ground surface con-

tribute substantially to the migration of pollutants. The sketch of Fig. 11.6 visua-

lizes some of those.

Chemical substances are transported from a contaminated site with the seepage

flow into the unsaturated soil as first compartment in the subsurface. Even in arid

regions such transport can be observed, although only scarce precipitation events

produce a transient flow field. Modern landfills are equipped with a confined bottom

to prevent the downward movement of components. Thus, the described migration

by seepage is reduced significantly on these sites. However, the confinement is not

complete and may last only temporarily. Toxic, aggressive waste may diminish the

sealing function over long time scales. Old landfills or contaminated sites can be

sealed at the top by a cover which is more or less impermeable to water. This helps

to reduce flow and advective transport effectively.

Contaminants can pass the unsaturated zone and enter the groundwater compart-

ment. While in the vadose zone the dominant flow direction is vertically downward,

in groundwater layers the horizontal velocity component usually dominates. The

substances may thus be transported to more vulnerable regions. Where water is

Fig. 11.6 Crucial sub-surface flow paths at waste disposal sites
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pumped for drinking water or any other purposes, the contaminants can return back

to the ground surface with the potential to produce hazards in the antroposphere.

The time scale for such a return can differ substantially. In the vicinity of surface

water bodies the residence time in the subsurface compartments may be as short as

several days or weeks. When deeper groundwater layers are involved, the time scale

of residence is surely to be counted in years. In several regions fossil groundwater is

pumped which was recharged several 1,000s of years before. In comparison to the

ambient state without any anthropogenic influence, the natural residence time

within the subsurface may be significantly shortened by pumping wells.

It was already mentioned in Sidebar 11.1 that in situations in which the wall

friction is a relevant process a linear relationship between flux or velocity on one

side and the pressure or head gradient on the other side can be expected. The

relationship was derived from the Navier-Stokes (11.1) and (11.4) for one-

dimensional pipe flow. A similar situation is given for fluid flow within the pore

space of a porous matrix or porous medium. Pour water movements in sediments,

seepage through the soil, or groundwater flow in aquifers are environmental

systems that fall into that category.

The mentioned proportionality between flux and pressure drop for porous media

is stated in Darcy’s Law. In 1856, Henry Darcy10 was the first who published such

a proportionality law. He has performed a series of experiments in metal columns

filled with sand. An experimental set-up, which in many parts resembles the

original facility, is sketched in Fig. 11.7.

Driven by a pressure gradient water flows from the inlet of the column to the

outlet. The pressure is kept constant if the two piezometer pipes are connected with

water reservoirs of constant height. The height difference Dh between both reser-

voir levels is taken as a measure for the pressure difference. The finding from the

Darcy experiment is stated mathematically as follows:

Q=A / Dh=L (11.11)

where Q denotes the volumetric flow rate, A the cross-sectional area, L the length of

the column and Dh the head gradient. In the 150 years that passed since the first

publication, Darcy’s law has been confirmed to be valid for a huge variety of porous

media and for wide ranges of velocities and scales. In terms of the Reynolds-

number the limiting value is Re ¼ 10 (Bear 1972). For higher values of Re
a generalized formulation has to be used, but in most subsurface aqueous environ-

ments the velocities are so low that Re stays below the threshold.

Nowadays it is common to formulate the law as an explicit equation for the

Darcy velocity in an infinitesimal scale of the three-dimensional space:

yv ¼ �Kfrh (11.12)

10Henry Darcy (1803–1858), French engineer.
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The left side of the equation denotes the Darcy velocity, which is derived from

the real mean interstitial flow velocity by multiplication with the porosity y. It is,
in fact, the same variable as on the left side of (11.11); i.e. it is the velocity which

represents the fluid flux. On the right side of equation (11.12) the head gradient∇h
is a generalization of the right side of (11.11) replacing the head difference per unit

length. Kf is the proportionality factor, which is mostly referred to as hydraulic

conductivity. It has the physical unit of velocity [L/T], [m/s] in MKS units.

Kf depends on the properties of pore space, such as pore diameter and length,

connectivity and porosity, or pore structure in general. The structure of the pores is

far too complex to predict the Kf- value from microscopic properties. For porous

pipe structures the hydraulic conductivity can be estimated on the basis of the

Hagen-Poiseuille formula (see Sidebar 11.1).

The Kf- value also depends on the properties of the fluid which flows through

the pore space. It is accepted that the dependencies can be separated by the

approach:

Kf ¼ krg
�

(11.13)

where k represents the permeability (physical MKS unit: [m2]) that depends on the

porous medium, while density r and dynamic viscosity � are fluid properties.

Fig. 11.7 Typical set-up of a Darcy-experiment; for examination of Darcy’s Law and the determi-

nation of hydraulic conductivity

230 11 Flow Modeling



g ¼ 9.81 m2/s is the acceleration due to gravity. Concerning the flow of water,

it has to be taken into account that the dynamic viscosity changes by a factor of

2 between 0�C and 25�C. The permeability varies across a relatively wide range,

which is shown in Table 11.1.

Note that with the corresponding version of the∇-operator, the given formulation

of Darcy’s Law (11.12) is valid in 1D, 2D and 3D situations. two- and three-

dimensional situations often make it necessary to distinguish between conductivities

in different directions. In the mathematical formulation this can be taken into account

by using a tensor (a matrix)Kf instead of a scalar Kf value, or a permeability tensor k

instead of k. Some situations require an even more general formulation of Darcy’s

Law. For example for variable density flow (Holzbecher 1998) the head gradient on

the right side of the equation has to be replaced by the gradient of the dynamic

pressure:

yv ¼ � k

m
r p� rgzð Þ (11.14)

As additional variable besides velocities either hydraulic head h or pressure

p appears. The concepts based on both variables are equivalent as long as there are

no density gradients, which is a general assumption here. The mathematical treat-

ment given here is similar to the derivations presented in textbooks on groundwater

flow (Bear 1972; Bear and Verruijt 1987). In both formulations of Darcy’s Law,

(11.12) and (11.14), it is obvious that it is not the absolute value of pressure or head

that determines the velocity. Flow, in its size and direction, is induced by the

pressure or head gradient. For that reason it is irrelevant according to which refer-

ence value pressure and head are measured. From one application to the other the

reference frame often is chosen very differently taking the specific circumstances

in consideration.

In the mathematical formulation of porous media flow Darcy’s Law replaces

the momentum conservation (11.1). The conservation of mass principle for porous

media can be formulated similarly to (11.3). The generalized formulation of the

steady state is

r� yv ¼ Q (11.15)

Table 11.1 Classification and examples for hydraulic conductivities and permeabilities

Kf [m/s] 100 10�1 10�2 10�3 10�4 10�5 10�6 10�7 10�8 10�9 10�10 10�11 10�12

k [m2] 10�7 10�8 10�9 10�10 10�11 10�12 10�13 10�14 10�15 10�16 10�17 10�18 10�19

Pervious

Semi�”
Impervious

Gravel

Sand

Fine sand

Peat

Clay
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When in formula (11.15) the velocity v is replaced with the help of Darcy’s Law

(11.12), one obtains:

r�Kfrh ¼ Q (11.16)

When the conductivity as a material parameter for a porous medium is known,

the differential (11.16) has a single unknown variable: h, the hydraulic or piezo-

metric head. For given boundary conditions, the differential (11.16) has to be

solved for h. A generalized version, which is very appropriate for 3D groundwater

flow, results if formulation (11.14) is taken into the continuity equation:

r� k
m
r p� rgzð Þ ¼ Q (11.17)

where pressure p is the dependent variable.

For unsteady flow the generalization of (11.16) is given by:

S
@h

@t
¼ r�Kfrh (11.18)

where S is the storage coefficient, which is dimensionless. It denotes the volume of

water released per unit area of aquifer and per unit drop in head. As far as a confined

aquifer (see Chap. 12) is concerned, the storage coefficient is a function of the

compressive qualities of water and matrix structures of the porous material. In 2D

horizontal models for the unconfined aquifer (see Chap. 12) the storage coefficient

is mainly determined by the change of the water column depth and thus may take

much higher values than in the confined aquifer.

Codes for modeling groundwater flow apply numerical methods to solve (11.16)

or (11.17) for the steady state, or (11.18) for the transient situation (Holzbecher

2002). In a homogeneous porous medium the (11.16) becomes equivalent to the

Poisson equation. With the core version of MATLAB® numerical solutions can be

obtained for one-dimensional cases, and analytical solutions for one- and two-

dimensional cases. This will be presented in the next chapters.

11.4 Flow in Unsaturated Porous Media

One speaks of an unsaturated situation if there are two fluids filling the pore space

of a porous medium, a gaseous and an aqueous phase. Soil is the most important

environmental compartment, in which the unsaturated situation is met. The unsatu-

rated layer between the land surface on the top and the groundwater table at the

bottom is the unsaturated or vadose zone.
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In order to model the more complex flow phenomena under unsaturated

conditions, an extended formulation of Darcy’s law is applied. The hydraulic con-

ductivity for water decreases with the water content. Here the volumetric water
content as a generalization of porosity is denoted by y. Its maximum value is equal

to the porosity of the porous medium. As an alternative parameter, the effective

saturation Se can be used. Se takes values between 0 (gas phase only) and 1 (aqueous
phase only):

Se ¼ y� yr
ys � yr

(11.19)

where yr is the residual water content and ys the water content in the saturated

situation.

Several mathematical relationships have been proposed for the dependency

between hydraulic conductivity and water content. Mualem (1976) suggests

a power law:

KðSeÞ ¼ KSe
n (11.20)

with a soil specific exponent n. The value for K on the right side of the equation is

the conductivity of the saturated soil. For most soil types the exponent takes values

between three and four (Brooks and Corey 1964). van Genuchten (1980) proposed

a formula, which is frequently found in publications :

KðSeÞ ¼ K
ffiffiffiffiffi
Se

p
1� 1� Se

1=m
� �mh i2

(11.21)

The application in the vadose zone requires the hydraulic head to be split into

a term representing the effect of total pressure p and buoyancy, as it was done in

(11.17) already. With pressure head c as a measure of total pressure in a length unit

(representing the height of a corresponding water column), the (11.18) for 1D gets

the form:

@y
@t
¼ @

@z
K yð Þ @

@z
c� zð Þ (11.22)

On the left side of (11.22) storage of water is described by the change of water

content.

The code for the retention curve visualization is included in the accompanying

software under the name “retention.m”.
In the unsaturated zone the pressure head takes negative values. Sometimes the

term suction head is used for the negative of pressure head. c becomes zero at the

groundwater table. The saturation-suction relationship, often referred to as
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retention curve, is an empirical relationship, which has to be considered in soil

modeling. Van Genuchten (1980) uses the mathematical form:

Se ¼ 1=ð1þ acj jnÞm (11.23)

with parameters a and n ¼ 1� 1=m. The unit of a is [1/L]. Parameter m is identical

to the one introduced in (11.21). Figure 11.8 depicts some example retention

curves. There are various other formulations of the retention curve, which are not

repeated here. A problem that is seldom tackled is the hysteresis of the retention

curve, which means that the curve is not unique. In fact, experiments have shown

that the saturation-suction curve for dewatering is often very different from the

curve for re-wetting.

There are two possible ways to compute problems of unsaturated flow, based on

(11.22) and the retention curve cðyÞ. Some authors prefer to use the retention curve

to rewrite the term on the right side of (11.22) as function of y. A MATLAB®
implementation, using that approach, is presented by Hornberger and Wiberg

(2005). The alternative approach is to rewrite the left side as follows:

@y
@c

@c
@t
¼ @

@z
K cð Þ @

@z
c� zð Þ (11.24)
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Fig. 11.8 Examples of retention curves, data from Hornberger and Wiberg (2005); produced

using MATLAB®
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The coefficient of the pressure derivative on the left side is evaluated based on

the retention curve formula. For the van Genuchten formulation (11.23) one

obtains:

@y
@c
¼ ys � yrð Þnma �ahð Þn�1

ð1þ acj jnÞmþ1
(11.25)

The differential (11.24) is the so-called Richards11 equation, which can also be

found in a slightly different notation:

@y
@c

@c
@t
¼ @

@z
K cð Þ @c

@z
� 1

� �
(11.26)

The following M-file is an implementation of the Richards equation with the van

Genuchten formulation for the suction-saturation and the conductivity-saturation

relationships.

L = 200;                  % length [L] 
s1 = 0.5;                 % infiltration velocity [L/T] 
s2 = 0;                   % bottom suction head [L] 
T = 4;                    % maximum time [T] 
qr = 0.218;               % residual water content  
f = 0.52;                 % porosity 
a = 0.0115;               % van Genuchten parameter [1/L] 
n = 2.03;                 % van Genuchten parameter 
ks = 31.6;                % saturated conductivity [L/T] 

x = linspace(0,L,100); 
t = linspace(0,T,25); 

options = odeset('RelTol',1e-4,'AbsTol',1e-4,'NormControl','off',… 
'InitialStep',1e-7) 

u=pdepe(0,@unsatpde,@unsatic,@unsatbc,x,t,options,... s1,s2,qr,f,a,n,ks); 

figure;  
title('Richards Equation Numerical Solution, computed with 100 mesh 

points'); 

subplot (1,3,1); 
plot (x,u(1:length(t),:));  
xlabel('Depth [L]'); 
ylabel('Pressure Head [L]'); 

subplot (1,3,2); 
plot (x,u(1:length(t),:)-(x'*ones(1,length(t)))'); 
xlabel('Depth [L]'); 
ylabel('Hydraulic Head [L]'); 

for j=1:length(t) 
for i=1:length(x) 

        [q(j,i),k(j,i),c(j,i)]=sedprop(u(j,i),qr,f,a,n,ks);  
end  

end 

subplot (1,3,3); 
plot (x,q(1:length(t),:)*100) 
xlabel('Depth [L]'); 
ylabel('Water Content [%]'); 

11 Lorenzo Adolph Richards (1904–1993), US-American soil physicist.
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% ----------------------------------------------------------------- 
function [c,f,s] = unsatpde(x,t,u,DuDx,s1,s2,qr,f,a,n,ks) 
[q,k,c] = sedprop(u,qr,f,a,n,ks); 
f = k.*DuDx-k; 
s = 0; 
% ----------------------------------------------------------------- 
function u0 = unsatic(x,s1,s2,qr,f,a,n,ks) 
u0 = -200+x;  
if x < 10 u0 = -0.5; end 

% ----------------------------------------------------------------- 
function [pl,ql,pr,qr] = unsatbc(xl,ul,xr,ur,t,s1,s2,qr,f,a,n,ks) 
pl = s1;  
ql = 1;  
pr = ur(1)-s2; 
qr = 0; 

%------------------- soil hydraulic properties -------------------- 
function [q,k,c] = sedprop(u,qr,f,a,n,ks) 
m = 1-1/n; 
if u >= 0  
    c=1e-20; 
    k=ks; 
    q=f; 
else 
    q=qr+(f-qr)*(1+(-a*u)^n)^-m; 
    c=((f-qr)*n*m*a*(-a*u)^(n-1))/((1+(-a*u)^n)^(m+1))+1.e-20; 
    k=ks*((q-qr)/(f-qr))^0.5*(1-(1-((q-qr)/(f-qr))^(1/m))^m)^2; 
end 
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Fig. 11.9 Solution of Richards equation for infiltration within the soil compartment
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The complete code is included in the accompanying software under the name

“richards.m”.
The output for the example data-set is reproduced in Fig. 11.9. The initial profile

is linear in the major deeper part of the soil column. In the upper 10 cm, the linear

profile is disturbed by a layer with high pressure head and high water content. There

is constant inflow specified as input condition at the top of the column, and a zero

pressure head 2 m below the top, representing the groundwater table.

The simulation shows the gradual development towards a steady state with

constant infiltration and a gradual increase of volumetric water content from 38%

towards its maximum of 52%. Parameters for soil properties were taken from

Hornberger and Wiberg (2005). The physical units for all data are a combination

from length in [cm] and time in [h].
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Chapter 12

Groundwater Drawdown by Pumping

Aquifers are a valuable source of water. Groundwater is available and used in many

parts of the world for industrial and municipal purposes and for public water supply.

In several regions and urban centers the percentage of groundwater on public water

supply reaches 100%. Although the chemistry of subsurface water may be very

different, groundwater quality can fulfil highest standards nevertheless.

Groundwater is pumped from single wells or galleries of several wells. In the

vicinity of the wells the water table may decrease, depending on the type of the aquifer.

In all cases the piezometric head decreases, which is explained in more details below.

Environmental studies in connection with groundwater withdrawal are necessary

for several reasons. The maximum yield, which can be extracted on a sustainable

basis, is of high concern for the well operating agency. The drawdown of the water

table itself may also be of ecological importance, as eco-systems in the catchment

of the well can be affected. Wetlands for example are vulnerable systems, which

react quite sensitive to changes of the sub-surface or surface water table.

Water quality is another important topic for water withdrawal systems. If the

quality of pumped water is not sufficient, knowledge about the well catchment and

the flowpaths may enable counter-measures in order to avoid or reduce the migration

of polluted water towards the pumping facilities. Recharge wells may prevent such

migration if operated at an appropriate location and an appropriate recharge rate.

In this chapter we examine the change of piezometric head h in the vicinity of

a single pumping well. There are analytical solutions for h as function of distance

from the well centre r, which can be computed easily using MATLAB®. In all

cases other causes for groundwater flow (for example base flow) are neglected.

More complex situations are treated in the following two chapters.

12.1 Confined Aquifer

A confined aquifer is a permeable groundwater layer between two impermeable

layers (aquitards), as shown in Fig. 12.1. In idealized situations, which are treated in

this chapter, groundwater flows in a permeable layer, the aquifer, from all sides

E. Holzbecher, Environmental Modeling,
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radially towards an installed pumping well. It is assumed that the situation is totally

equal in all radial directions, which allows the use of the radius r as the space

variable. It is also assumed that there are no differences in vertical direction: the

well is screened across the entire aquifer and there are no differences concerning the

hydraulic properties within the permeable layer. The aquifer remains water

saturated, i.e. there are no parts that fall dry due to pumping.

In the idealized situation shown in Fig. 12.1, the aquifer is characterized by

a thickness H [m] and a transmissivity T [m2/s]. In the transmissivity parameter

the hydraulic conductivity K of the porous material and the thickness of the aquifer

H are represented:

T ¼ K � H (12.1)

T increases with thickness; T is higher for more permeable aquifers. It is assumed

that the well withdraws water at a constant rate Q [m3/s], which allows the

description of the steady state groundwater flow. The relevant variable for the

analysis of groundwater flow is the piezometric head h, which changes with

the distance r from the well position. Piezometric head is the key variable for

flow (see Darcy’s Law, Chap. 11), quantifying the height of the water table above

some reference level measured by a piezometer. A piezometer is a pipe that is open

at both ends, and reaches into the aquifer with the lower end). h decreases if the well
is approached and can be calculated by using the formula of Thiem (1906):

hðrÞ ¼ h0 þ Q

2pT
log

r

r0

� �
(12.2)

with:

h0 piezometric head above base at radius r0 [m]

Q pumping rate [m3/s]

T transmissivity of the aquifer [m2/s]

r0 radius [m]

Aquifer

Aquitard

Aquitard

Earth Surface

Well

Groundwater
Flow

H

pumping rate Q

transmissivity T

Fig. 12.1 Schematic cross-sectional view of a well pumping from a confined aquifer
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A derivation of the formula is found in Sidebar 12.1. Here we describe a short

command sequence by which the piezometric head values in the vicinity of the well

are calculated. At first, the values of the input parameters have to be given:

h0 = 5; 

T = 5.e-6;
Q = 1.e-4;
r0 = 0.1;

Afterwards the radius vector r is specified. For each radius within the vector the

lowering of the piezometric head h is calculated:

r = [0.1:0.1:20];

The following command initiates the computation of the desired values

according to formula (12.2):

h = h0 + (Q/(2*pi*T))*log(r/r0);

In MATLAB®, log is the natural logarithm to the basis e. In the vector h we

now find all piezometric heads for the radii, given in the radius vector r.

For

plot (r,h); 
ylabel ('piezometric head [m]'); xlabel ('distance [m]');

The result is shown in Fig. 12.2.
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Fig. 12.2 Drawdown of groundwater piezometric head in a confined aquifer due to pumping

(Thiem formula)
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12.2 Unconfined Aquifer

In contrast to a confined aquifer, an unconfined aquifer (also called phreatic aquifer)

is not limited by an impermeable layer from above. The upper boundary of an

unconfined aquifer is given by the groundwater table. Between the groundwater

table and the earth surface the unsaturated zone is located, where the pore space

within the porous material is filled with water and air. Within the aquifer it is only

water that flows in the pore space. The situation is schematically depicted in

Fig. 12.2.

If measured in reference to the aquifer base, the variable h is the water saturated
thickness of the aquifer, which is the distance between the position of the ground-

water table and the base of the aquifer below. In contrast to the confined aquifer, in

the unconfined aquifer piezometric head h represents the position of the ground-

water table (Fig. 12.3).

The following formula adapts the Thiem (12.2) to the situation of an unconfined

aquifer. It is derived in Sidebar 12.1 and delivers piezometric head h in the distance
r from a well:

h2ðrÞ ¼ h0
2 þ Q

pK
log

r

r0

� �
(12.3)

with:

h0 water level in well [m]

Q pumping rate [m3/s]

K aquifer hydraulic conductivity [m/s]

r0 well radius [m]

Aquifer

Aquitard

Water Table

Earth Surface

Well

Groundwater
Flow

h

conductivity K

pumping rate Q

Fig. 12.3 Schematic cross-sectional view of a well pumping from an unconfined aquifer
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Sidebar 12.1: Derivation of Thiem’s Equations for Confined

and Unconfined Aquifers

In the confined aquifer horizontal flow towards a well in a steady state needs

to fulfil the volume conservation equation:

2prHvr ¼ Q

for all radii r with radius-dependent velocity vr, aquifer depth H and pumping

rate Q. According to Darcy’s Law holds:

vr ¼ K
@h

@r

Both equations together deliver a differential equation for h(r):

r
@h

@r
¼ Q

2pT

with T ¼ KH. As the right hand side is a constant, the differential equation

can also be written as follows:

@

@r
r
@h

@r

� �
¼ 0

In order to obtain a solution formula, we proceed with a reformulation

of the equation:

@h

@r
¼ Q

2pT
1

r

The solution can simply be obtained by integration:

h ¼ Q

2pT
logðrÞ þ C

with integration constant C. If the head h0 at a position r0 is given, the

integration constant can be determined:

C ¼ h0 � Q

2pT
logðr0Þ

The formula (12.2) given above results.

In the unconfined situation one starts analogously with the volume conser-

vation principle:
(continued)
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h changes with the radius r, as already explained above. We compute the

changing values in a short command sequence. In the MATLAB® command

window specify the new input parameter first:

K = 1.e-4;

The following line initiates the computation of the vector of piezometric heads:

h = sqrt(h0*h0 + (Q/(pi*K))*log(r/r0));

sqrt denotes the squareroot. With the next command the results are shown as

a green broken ine:

plot (r,h,'--g');

Exercise. Change the value for K and compare drawdowns of piezometric head in

a single figure! Use the command

hold on;

to keep the graphic, and the command

legend (‚K=1.e-4’);

2prhvr ¼ Q

Instead of the total height of the groundwater layer, the height of the water

table h above the base has to be considered. Using Darcy’s Law, as stated

above, yields:

rh
@h

@r
¼ Q

2pK

or

r
@h2

@r
¼ Q

pK

with the general solution:

h2 ¼ Q

pK
logðrÞ þ C

As above, the knowledge of a pair (r0,h0) helps to determine the integra-

tion constant C and the formula (12.3) results.
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to show a legend. The legend, like other additions to or corrections of the graphic,

could also be added from the figure editor itself. A title is plotted by using the title

command:

title (‘Thiem unconfined’);

12.3 Half-confined Aquifer

The situation in a half-confined aquifer is depicted in Fig. 12.4: an aquifer is

overlain by a half-permeable layer. Thus, the pumped water partially originates

from the aquifer itself, partially from the overlying strata, which is connected

through the half-permeable layer.

For a thick half confined aquifer, de Glee (1930)1 derived a formula describing

the drawdown s of piezometric head at a distance r from a well:

sðrÞ ¼ Q

2pT
K0

rffiffiffiffiffi
Tc
p

� �
(12.4)

with:

Q pumping rate [m3/s]

T transmissivity [m2/s]

c resistance of half-permeable layer [s]

K0 modified Bessel function 2. type 0. order

In MATLAB®, put in the new parameter c:

c = 1.e7;

Aquifer

Aquitard

Half permeable layer

Earth Surface

Well

Groundwater
Flow

H

pumping rate Q

transmissivity T

Fig. 12.4 Schematic cross-sectional view of a well pumping from a half-confined aquifer

1 Gerrit Jan de Glee (1897–1975), Dutch hydrologist.
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and calculate the vector of drawdowns according to:

s = (Q/(2*pi*T))*besselk(0,r/sqrt(T*c));

The correct variant of the Bessel function (here besselk) and the parameters

are found in MATLAB-help. The graphical representation of the results (Fig. 12.5)

is shown by using the plot command:

plot (r,-s);

In Fig. 12.6 drawdowns in a confined, an unconfined and a half-confined aquifers

are compared. The drawdown for the half-confined situation lies between the

drawdown for the confined and the unconfined aquifers. The user may easily find

parameter values for which that reasonable result is not true. The reason for the

apparent incompatibility is that all three formulae are valid under different

conditions. The formula of de Glee is derived for the half-space below the half-

permeable layer, i.e. under the assumption that the aquifer is too extended, making

the value of its thickness irrelevant.

The complete code is included in the accompanying software under the name

‘welldrawdown.m’

12.4 Unsteady Drawdown and Well Function

In a confined aquifer the drawdown of the piezometic head s is given by the formula

of Theis (1983)2. s is a function of the distance from the well r and the time t after
the start of pumping:
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drawdown [m]

Drawdown in a half-confined aquifer
according to de Glee

Fig. 12.5 Drawdown of groundwater piezometric head in a half-confined aquifer due to pumping,

according to de Glee (1930)

2 Charles Vernon Theis (1900–1987), US-American hydrogeologist.
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sðrÞ ¼ Q

4pT
W

Sr2

4Tt

� �
(12.5)

with:

Q pumping rate [m3/s]

T aquifer transmissivity [m2/s]

S storage coefficient of the aquifer [1]

In the formula appears the function W, with an argument which is usually

abbreviated as u. W(u) is so important for well drawdown that it is named well
function in the corresponding literature. In the mathematical literature, the same

function is called the exponential integral and is mostly referred to as E1(u). The
name is explained by the definition of E1(u):

WðuÞ ¼ E1ðuÞ ¼
ð1

u

expð�BÞ
B

dB (12.6)

In MATLAB® the well function can be found under its mathematical notation. It

is called by expint. In order to compute the formula given above, specify the

storage parameter as new parameter:
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Fig. 12.6 Steady drawdown of groundwater piezometric head in a confined, a half-confined and

an unconfined aquifer
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S = 0.1;

Then specify the time for which drawdown is to be computed:

t = [1000000];

Calculate and plot the results by the following commands:

s = (Q/(4*pi*T))*expint(S*r.*r/(4*T*t));
plot (r,-s);

Figure 12.7 depicts the resultinmg drawdowns at four different time instants.

12.5 Automatic Transmissivity Estimation

The formulae given in the previous sub-chapters can not only be used for the

computation of the groundwater drawdown and lowering of piezometric head but

also for parameter estimation. In so called pumping tests water is pumped from one

well, while drawdown is observed in some surrounding boreholes or piezometers.

The result is a series of drawdown values; an example data set is given in Table 12.1.

The conductivity or transmissivity of the aquifer is to be determined, i.e. we have

a task of inverse modeling as already introduced in Chap. 10.
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Fig. 12.7 Unsteady drawdown of groundwater piezometric head in a confined aquifer due to

pumping according to Theis; parameters given in text, for times t ¼ 103, 104, 105 and 106
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In simple cases parameter estimation can be performed manually, i.e. the

concerned parameter is adjusted until a reasonable coincidence between observed

and calculated values is obtained. Here we follow the procedure, described in

Chap. 12.5, performing automatic parameter estimation using MATLAB®. The

procedure is demonstrated for the Thiem formula (12.2), i.e. for the determination

of the transmissivity of a confined aquifer. The example is based on a data set given

by Krusemann and de Ridder (1991)), measured for a pumping test at the ‘Oude

Korendijk’, the Netherlands. Values for steady state drawdown were obtained at

four positions in different distances from the well. In MATLAB®, distances and

drawdowns are specified in vectors:

rfit = [0.8 30 90 215];
sfit = [2.236 1.088 0.716 0.25];

Next pumping rate [m3/d] and reach of the well are given, as well as an initial

guess for the transmissivity [m2/d]:

Q = 788;
reach = 500;
T = 700;

The estimation is performed by utilizing the MATLAB® zero-search function

fzero:

T = fzero(@myfun,T);

Table 12.1 Pumping test example data-set (after: Krusemann and de Ridder 1973)

Time at

r ¼ 30 [min]

Drawdown

r ¼ 30 [m]

Time at

r ¼ 90 [min]

Drawdown

r ¼ 90 [m]

Time at

r ¼ 215 [min]

Drawdown

r ¼ 215 [m]

0 0 0 0 0 0

0.1 0.04 1.5 0.015 66 0.089

0.25 0.08 2.0 0.021 127 0.138

0.5 0.13 2.16 0.023 185 0.165

0.7 0.18 2.66 0.044 251 0.186

1.0 0.23 3.0 0.054

1.4 0.28 3.5 0.075

1.9 0.33 4.0 0.090

2.33 0.36 4.33 0.104

2.8 0.39 5.5 0.133

3.36 0.42 6.0 0.153

4.0 0.45 7.5 0.178

5.35 0.50 9.0 0.206

6.8 0.54 13.0 0.250

8.3 0.57 15.0 0.275

8.7 0.58 18.0 0.305

10.0 0.60 25.0 0.348

13.1 0.64 30.0 0.364
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with an appropriate function myfun. The function is derived from the residual

condition

resk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

hðrfitÞ � h0 � sfit
� �� �2q

is minimal (12.7)

When the reach of the well with condition h0 ¼ 0 is considered, condition (12.7)

is equivalent to finding the minimum of the objective function

eðTÞ ¼
X

hðrfitÞ þ sfit
� �2

(12.8)

This has the following necessary condition:

@e

@T
¼ 2

X
hðrfitÞ þ sfit
� � @h

@T
ðrfitÞ ¼ 0 (12.9)

Using the Thiem formula, the derivative can be written as:

@h

@T
¼ � Q

2pT2
log

r

r0

� �
¼ � h

T
(12.10)

and thus the condition can be reformulated as follows:

X
hðrfitÞ þ sfit
� � hðrfitÞ

T
¼ 0 (12.11)

The vector notation is:

1

T
hðrfitÞ þ sfit
� �

hðrfitÞT ¼ 0 (12.12)

It is convenient to use the function in an M-file, which should look similar to:

function f = myfun(T); 

global rfit sfit reach Q

% calculate Thiem solution

h = Q*log(rfit/reach)/T/2/pi;

% specify function f to vanish

f = (h+sfit)*h'/T;

The result for the example data set is: T ¼ 352 m2/d, which is obtained after

few iterations within the MATLAB® fzero�module. Figure 12.8 depicts the
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hypothetical drawdown for the ideal case, calculated by MATLAB®, and the

measured drawdowns.

The MATLAB®module for automatic transmissivity estimation based on Theis

steady-state solution can be found under the name ‘thiem_test.m’. The described

results can be obtained by setting the test�parameter in the input section of the

M-file to 1.

The example demonstrates a procedure for the determination of transmissivity in

a confined aquifer using the Thiem formula (12.2). The method can be performed

similarly for the other formulae given in this chapter. One can determine hydraulic

conductivity in an unconfined aquifer with the help of formula (12.3). One

can estimate transmissivity and/or resistance of the half-permeable layer for

a half-confined aquifer using the de Glee formula (12.4), and one may obtain the

transmissivity and storativity of a confined aquifer using the Theis formula (12.5).

Automatic Transmissivity Estimation Exercise

Write an M-file, similar to the example given above, and perform an automatic

parameter estimation for an unsteady pumping test using the Theis formula (12.5).

As two parameters have to be estimated, use a structure of two functions, where the

second function for the estimation of the transmissivity is called within the first for

the estimation of the storage coefficient.

As an exercise, use the data set from Table 12.1. There are three observation

points in the distances r ¼ 30 m, 60 m and 215 m from the well. In the columns
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Fig. 12.8 Automatic transmissivity estimation in MATLAB® based on Theis solution
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of the table corresponding times and drawdowns are given for the various

measurements. The example data-set was taken from Krusemann and de Ridder

(1973).

Hint: use the derivative of the well function

@WðuÞ
@u

¼ expð�uÞ
u

(12.13)

to show the following two equalities:

@W

@T
¼ @W

@u
� @u
@T
¼ � expð�uÞ

T
(12.14)

and

@W

@S
¼ @W

@u
� @u
@S
¼ expð�uÞ

S
(12.15)

Formulae (12.4) and (12.5) have to be used in the automatic parameter estima-

tion procedure that is based on derivatives and is demonstrated above and in

Chap. 10.4.
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Chapter 13

Aquifer Baseflow and 2D Meshing

13.1 1D Analysis

In general a flow field, as introduced in Chap. 11, may be different at every location

and, for transient flow, at every time instant. In contrast, one-dimensional base

flow represents a constant vector independent of time and space. Such an idealized

situation is seldom met in environmental compartments, but it may serve as an

approximate description of field situations. An example could be the groundwater

flow between two parallel channels which have a constant but different water level.

However, in parts of a regional watershed often a constant flow field is assumed as

a simplification of the real situation. The 1D assumption is also often justified for

experimental set-ups, for example in column experiments. The simplest flow

pattern for a fluid set-up between two plates is also 1D.

For a basic description, we assume that the x-axis is chosen in flow direction.

The flux per unit width results as product of the height h of the water column and the

velocity u:

q ¼ h � u (13.1)

The unit of q is [L2/T]. When the fluid fills only part of the space, i.e. in porous

media or in multi-phase situations, u is the product of the real velocity v multiplied

with the share y of the porespace or the corresponding phase on the total volume:

u ¼ y � v (13.2)

In porous media, u is the Darcy-velocity or filter velocity. A slightly more

generalized situation is given if water height and velocity are allowed to change

along the flowpath (in x-direction):

q ¼ hðxÞuðxÞ (13.3)
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with:

q water flux per unit width [m2/s];

h height of the water column [m];

v velocity [m/s].

For a confined aquifer (see Chap. 12) the height remains constant: h is equal to

the thickness of the aquifer H. In porous media Darcy’s Law is valid, which can be

formulated as

uðxÞ ¼ �K @h

@x
(13.4)

with: K hydraulic conductivity [m/s]

Replacing u in (13.3) by the formula (13.4) delivers:

q ¼ �T @h

@x
(13.5)

as transmissivity is the product of hydraulic conductivity and aquifer height:

T ¼ K�H. Equation (13.5) is a differential equation for the function h(x). For
constant transmissivity T the equation is easy to solve:

hðxÞ ¼ � q

T
xþ h0 (13.6)

For the unconfined aquifer (see Chap. 12) the starting point is not (13.5) but the

following:

q ¼ �Kh @h
@x

(13.7)

The differential equation (13.7) can also be written as:

q ¼ � 1

2
K
@h2

@x
(13.8)

which has the solution:

h2ðxÞ ¼ � 2q

K
xþ h20 (13.9)

Another relevant term is the discharge potential ’ [m3/s] with derivative –q as

defining condition. The discharge potential cannot be measured directly but is

introduced, because it fits into the theoretical framework. ’ plays an important

role in the following chapters. Note that the findings for the potential are valid,
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whether an aquifer is confined or unconfined. However, the transition from poten-

tial ’ to piezometric head h depends on the conditions of the aquifer.

The transformation formulae are derived from the equivalent defining equation:

’ðxÞ ¼ �
ð
qdx (13.10)

and further:

’ðxÞ ¼
KH

ð
@h

@x
dx for the confined aquifer

K

ð
h
@h

@x
dx ¼ K

2

ð
@h2

@x
dx for the unconfined aquifer

8>>><
>>>:

(13.11)

Thus follows finally:

’ðxÞ ¼
T hðxÞ � h0ð Þ for the confined aquifer

K
2

h2ðxÞ � h20
� �

for the unconfined aquifer

(
(13.12)

Note that the relation T ¼ KH was applied. The potential is not unique. The

addition of a constant does not change the potential property.

13.2 1D Implementation

For modelling with MATLAB® set input parameters first:

h0 = 10;
Qx0 = 5.e-5;
K = 0.0001;

Then define the vector x with distances at which h is to be calculated:

x = [1:1:100];

In the following line the vector with piezometric heads for the confined aquifer is

calculated utilizing formula (13.6):

x = [1:1:100]; 

The calculation of the unconfined situation, according to formula (13.9), is

similar:

hu = sqrt (h0*h0 + (2*Qx0/K)*x);  
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With the following commands heads in confined and unconfined aquifers are

compared:

plot (x,hc,'-b',x,hu,'--g');
legend ('confined','unconfined',2)

Exercise 13.1. Change q to a more realistic value that is 2 orders of magnitude

lower

Quite often the discharge q is not known. Instead, the groundwater level h1 in
a certain distance L is known from measurements. The derivation of the solution,

as shown above, delivers the formulae:

hðxÞ ¼
h0 þ h1 � h0

L
x for the confined aquiferffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h20 þ
h21 � h20

L
x

r
for the unconfined aquifer

8>><
>>:

(13.13)

Obviously, h depends only on the observed values h0 and h1 and the length L. h is
independent of the material parameter K and the aquifer depth H.

Exercise 13.2. Compare the confined and the unconfined situation in a graph, as it

is shown in Fig. 13.1!

The solution is obtained by using the following commands:
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Fig. 13.1 Piezometric head for a confined and an unconfined aquifer with identical hydraulic

properties

256 13 Aquifer Baseflow and 2D Meshing



L=100;
h1 = 12;
hc = h0 + ((h1-h0)/L)*x;
hu = sqrt(h0*h0 + ((h1*h1-h0*h0)/L)*x);
plot (x,hc,'--g',x,hu,'-b');
legend ('confined','unconfined',2)

13.3 2D Implementation

Of course most flow fields in environmental systems are higher-dimensional. In this

chapter we are concerned with 2D flow fields, which are more complex than 1D

fields, but in general still simpler than 3D flows. The first task is to represent a 1D

flow field in 2D.

In order to start with a 2D description, one needs to know how to represent

meshes. In MATLAB®, the easiest way to obtain a mesh is the meshgrid com-

mand. It is best explained by an example:

[x,y] = meshgrid ([0:10:100],[10:2:20]) 

x =
     0    10    20    30    40    50    60    70    80    90   100
     0    10    20    30    40    50    60    70    80    90   100
     0    10    20    30    40    50    60    70    80    90   100
     0    10    20    30    40    50    60    70    80    90   100
     0    10    20    30    40    50    60    70    80    90   100
     0    10    20    30    40    50    60    70    80    90   100
y =
    10    10    10    10    10    10    10    10    10    10    10
    12    12    12    12    12    12    12    12    12    12    12
    14    14    14    14    14    14    14    14    14    14    14
    16    16    16    16    16    16    16    16    16    16    16
    18    18    18    18    18    18    18    18    18    18    18
    20    20    20    20    20    20    20    20    20    20    20 

A rectangular mesh, a grid, is produced for which the x-coordinates are given by
the first vector in the brackets and the y-coordinates by the second vector in the

brackets. If the command is called with a single vector as parameter, that one is used

for both x- and y-direction. The meshgrid command produces two matrices, one

containing the x-coordinates, and one containing the y-coordinates. In the example

the matrices are denoted by x and y also. Using the commands

hc = h0 + (Qx0/(K*h0))*x;
hu = sqrt (h0*h0 + (2*Qx0/K)*x);

the piezometric heads for the confined and for the unconfined aquifers are calcu-

lated for all grid points. Both hc and hu are also matrices here which have the same

dimension as x and y. The fields are plotted as surfaces by using the command:
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surf (x,y,hc);
hold on
surf (x,y,hu);

Here the mesh is rectangular and regular, but the surf-command can also be

used for irregular meshes.

The next step is to extend the model for situations in which the aquifer is

partially confined and partially unconfined. The potential ’ (in the M-file: phi)

is first evaluated without a constant. Then an appropriate constant phi0 is added.

The constant is computed differently for the confined and for the unconfined

situation. The confined situation is given if h0, the head at mesh position (1,1),

exceeds the aquifer thickness H. In order to use this simple criterion, it is required

that the hydraulic head is measured to zero level at the aquifer base (Fig. 13.2).

The formulae (13.12) are applied. The potential for the confined situation gets

another constant, which is � 1
2
KH2. Inserting this constant the potential becomes

a continuous function at locations with h ¼ H, where the conditions change from

confined to unconfined or vice versa. The potential value at these ‘critical points’ is

given by:

’crit ¼
1

2
KH2 þ ’0 (13.14)

The formulae for the head thus become:
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Fig. 13.2 The difference of piezometric head between two specified levels for a confined and an

unconfined aquifer is obviously marginal
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hðxÞ ¼
H

2
þ ’ðxÞ

KH
for the confined aquifer

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

K
’ðxÞ

r
for the unconfined aquifer

8>><
>>:

(13.15)

The entire M-file is given by:

Qy0 = -1.e-6; Qx0 = 0.0; 
K = 0.001;
h0 = 9.99; 
H = 10;

[x,y] = meshgrid ([0:2:200],[0:2:200]);
phi = -Qx0*x - Qy0*y;
if (h0>=H) 

phi0 = -phi(1,1) + K*H*h0 - 0.5*K*H*H;    % confined
else

phi0 = -phi(1,1) + 0.5*K*h0*h0;     % unconfined
end
phi = phi + phi0;
phicrit = 0.5*K*H*H + phi0; % margin between confined and unconfined
confined = (phi>=phicrit);
h = confined.*(0.5*H+(1/K/H)*phi)+~confined.*sqrt((2/K)*phi);
surf (x,y,h); 

In the final part of the M-file we use a matrix containing the values 0 and 1,

depending on the hydraulic situation of the aquifer at the corresponding mesh

position. The array confined contains a 1 if the aquifer is confined, and a 0 if it is

Fig. 13.3 Head distribution for the reference input data
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unconfined. The matrix is created simply by the formula phi>¼phicrit. In the

following statement the matrix h is calculated using the formula for the confined or

for the unconfined situation, depending on the situation at each mesh node. For that

purpose the confined and the ~confined arrays are used, with the negation operator

~ that switches between 0 and 1 at each location.

The following figure depicts the output of the M-file for the reference input

data-set (Fig. 13.3).

Exercise 13.3. Change Qx0 and Qy0! Two examples are given below in Fig. 13.4.

13.4 Meshs and Grids

Some commands concerning MATLAB® 2D graphics have already been used

in previous chapters and subchapters (see Chap. 4 for surf and contourf).

MATLAB® 2D graphics, justifying the name of the software, is based on matrices,

i.e. 2D arrays. The values within a matrix can be visualized by several graphics

commands. The user may try the following simple sequence:

A = rand(10);
surf (A);

which produces a surface plot of a random matrix (Fig. 13.5):

Other commands that work on single matrices are: plot (A), contour (A),

contourf (A), mesh (A) and waterfall (A). In these introductory examples the

x-y-positions in the graph are simply the indices corresponding to rows and columns

of the matrix. In most 2D graphics such a simple mesh of integers is not appropriate.

Thus the graphical representation starts with the computation of the mesh.

The basic mesh generating meshgrid command was already used in this Chapter

before. Using meshgrid in 2D, two 1D vectors are transformed into two 2D arrays;

the latter represent the x- and y- coordinates of the mesh nodes. As already

Fig. 13.4 Two examples for baseflow for confined aquifer (with reference head 10m,K ¼ 10�4 m/s);

left: in x-direction (Qx0 ¼ �10�6, Qy0 ¼ 0), right: in y-direction (Qx0 ¼ 0, Qy0 ¼ �10�6)

260 13 Aquifer Baseflow and 2D Meshing



demonstrated, the command can also be used for the generation of 3Dmeshes. If the

input vectors are equidistant, a regular mesh is produced, in which all areal

elements of the mesh are of same size. If the vectors are not equidistant, the

resulting mesh is irregular.
MATLAB® contour commands are based on a rectangular grid. The contouring

algorithm is quite simple. For a given contour level v the positions between two
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Fig. 13.5 Surface plot and filled contours for a matrix
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neighboring grid points are computed based on linear interpolation if the contour

level lies between the variable values of these two positions xi and xj, i.e. if
u(xi) < v < u(xj) or u(xi) > v > u(xj) hold. In a second step the algorithm draws

lines connecting the calculated positions within the same block.

Contours can also be created if positions are not distributed on a rectangular grid.

An intermediate operation is to interpolate and extrapolate given data to a rectan-

gular grid. This is done by the griddata command. The command has several

parameters and options and the graphical output, i.e. the exact locations of the

contour lines may be quite different, if different options are used.

We demonstrate the procedure for a dataset that is available in three columns:

x-coordinates, y-coordinates and values, all gathered in an array X. The following

command sequence can be used to produce a figure of filled contours:

[x,y] = meshgrid(linspace(xmin,xmax,100),linspace(ymin,ymax,100));
z = griddata (X(:,1),X(:,2),X(:,3),x,y);
contourf (x,y,z);

xmin, ymin, xmax and ymax are the limits of the x- and y-region. By the first

command the mesh is calculated and stored in the variables x and y. The second

command initiates the interpolation. Interpolated data are stored in variable z. The

last command produces the plot.

Of course the interpolation depends on gridsize of the mesh. But also the

interpolation method is important. There are four options currently implemented

in MATLAB®:

• ‘Linear’: triangle-based linear interpolation (default)

• ‘Cubic’: triangle-based cubic interpolation

• ‘Nearest’: nearest neighbor interpolation

• ‘v4’: biharmonic interpolation

The influence on the outcome is demonstrated for a data-set that was extracted

from 100 borehole logs. For each borehole the file contains the information, if a

certain subsurface strata was detected or not. The detection of that highly imperme-

able strata is connected to a value of hydraulic conductivity (see Chap. 11.3).

Detection is identified with a vertical hydraulic conductivity of 10−8 m/s, while

there is a high conductivity of 10−3 m/s otherwise. The interpolations using the four

different methods available in MATLAB®, lead to very different results that are

presented in Fig. 13.6.

Results from linear and cubic interpolation look most similar at first sight, but

a closer look reveals that the cubic method delivers negative values at several places

of the map. Like other material properties and like concentrations, conductivities

can not take negative values and the result of cubic interpolation is thus not

appropriate for processing in an environmental model.

Biharmonic spline is a method, for which the curvature of the approximated

surface plays an important role (Sandwell 1987). As a result local peaks in the data

set have an influence on a larger region in their vicinity. The method is not

appropriate in this example, as the regions with negative values are even more

extended than for cubic interpolation.

262 13 Aquifer Baseflow and 2D Meshing



The ‘nearest neighbor’ method delivers a completely different picture, as the

variable takes only two values. There is no transition zone. Concerning its geologi-

cal significance the result seems to be the closer to reality, as there are no locations

with intermediate values: the impermeable layer is either present or not.

There are also differences between the four methods concerning extrapolation.

Linear and cubic interpolation are based on triangulation of the model region and

thus deliver no values outside the subregion, for which data are available. Outside

that region NaN is given by the algorithm, i.e. there are no values extrapolated.

Consequently in these regions, near the upper and right boundary, no colours are

depicted in the plot. The other two methods deliver values for the entire grid,

although extrapolation may not be justified. By using the ‘nearest neighbor’

method, the user has to set NaN’s manually before plotting, if extrapolation is

not wanted.
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Chapter 14

Potential and Flow Visualization

14.1 Definition and First Examples

Potential and streamfunction are mathematical functions that cannot be observed

directly in the real world, but which turn out to be extremely powerful concerning

the calculation and visualization of 2D flow fields. There are applications for all

types of fluids, for free flow of gases and liquids, as well as for porous media flow.

Electro- and magnetodynamics are other scientific fields where potential theory is

applied extensively.

The notation potential refers to a function ’, from which a flow field is derived

by the gradient of ’. ’ is a velocity potential if:

v ¼ �r’ (14.1)

For steady incompressible fluids (see Chap. 2), for which the continuity equation

r � v ¼ 0 is valid, follows the potential equation or Laplace1 equation2:

r2’ ¼ 0; in 2D:
@2’ðx; yÞ

@x2
þ @2’ðx; yÞ

@y2
¼ 0

in 3D:
@2’ðx; y; zÞ

@x2
þ @2’ðx; y; zÞ

@y2
þ @2’ðx; y; zÞ

@z2
¼ 0 (14.2)

The short form, using the ∇-operator, is valid for 2D and 3D cases. In fluid

dynamics the potential ’ has the physical unit of [m3/s]. The name potential is

connected with the property that at each location of the model region the flux or

velocity vector can be derived from the gradient of the potential:

1 Pierre-Simon Laplace (1749–1827), French mathematician and astronomer.
2 The formulation D’ ¼ 0 can be found frequently, which makes sense, as the Laplace operator

D is formally defined as D :¼ r � r.

E. Holzbecher, Environmental Modeling,
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v ¼ r’ (14.3)

There is an entire mathematical discipline dealing with solutions of the 2D

potential equation. Subject of complex analysis are harmonic functions that are

solutions of the 2D Laplace equation. In this chapter we deal with 1D parallel flow

that is represented by the potential

’ðx; yÞ ¼ ’0 þ ’xxþ ’yy (14.4)

Additionally there are sources and sinks in the infinitely extended space, which

are represented by the potential:

’ðx; yÞ ¼ Q

2p
logð r� r0j jÞ (14.5)

where ’x; ’y and ’0 are constant numbers. Q denotes the source- or sink-rate, r0
the location of the source or sink in 2D space and r ¼ ðx; yÞ the vector towards the
current location. According to vector analysis, r� r0 is the vector connecting

source/sink location with the current position. r� r0j j is the length of the

connecting vector, equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q
.

In the following we examine potentials emerging from the superposition of

formulae (14.4) and (14.5). According to the principle of superposition, the sum

of the functions is a solution of the Laplace equation too. The principle is a trivial

consequence from the fact that the potential equation is linear. In MATLAB® such

functions can be visualized easily as demonstrated by the following command

sequence.

xmin = -1; xmax = 1;                       % x-coordinates
ymin = 0; ymax = 2;                        % y-coordinates
x0 = 0; y0 = .905;                         % source/sink location
Qx0 = 0.1; Qy0 = 0;                        % baseflow components
Q = 1;  

% source/sink rate
% mesh generation
xvec = linspace(xmin,xmax,100);
yvec = linspace(ymin,ymax,100);
[x,y] = meshgrid (xvec,yvec);              % create mesh

% processing
r = sqrt((x-x0).^2+(y-y0).^2);             % distances to well
phi = -Qx0*x - Qy0*y + (Q/(2*pi))*log(r);  % potential

%post-processing

surf (x,y,phi);                            % surface plot 

With the first five instruction lines the parameter values are specified. In the next

step, 100 equidistant positions at the intervals on the x- and y-axis are computed

before the mesh is constructed and stored in the x and y arrays, using MATLAB®
meshgrid. Next, the array r is computed, which contains the distances to the
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source/sink position for all mesh-points. The potential array phi is evaluated in the

following command and finally plotted as surface plot.

The result of the entire series of commands is given in Fig. 14.1. The outer

gradient, due to baseflow, is clearly visible as well as the dramatic drawdown where

the sink is approached. As the M-file is written, a positive value for Q produces

a sink, while a negative value results in a source. The user may check the direction

and gradient of baseflow by variation of the variables Qx0 and Qy0. Note that the

given logarithm has a single singularity at the source/ sink position with r ¼ r0.

In 3D the point source/sink solution, corresponding to formula (14.5), is given by

’ðx; y; zÞ ¼ � Q

4p
1

r� r0j j (14.6)

In MATLAB® the 3D potential is calculated by the following command

sequence. The resulting plot is depicted in Fig. 14.2.

Q = 1;
Qx0 = 1;
i = linspace(1,3,50)
[x,y,z] = meshgrid (i,i,i)
r = sqrt((x-2.05).^2+(y-2.05).^2+(z-2.05).^2);
xslice = [1.5;1.9;2.3];
yslice = [3];
zslice = [1.5;2.2];
phi = -Qx0*x-Q/4/pi/r;
slice (x,y,z,phi,xslice,yslice,zslice)

Fig. 14.1 Surface plot for a potential function; derived from superposition of 1D baseflow and

flow towards a sink
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14.2 Potential and Real World Variables

From the Euler equations (see Chap. 11) for irrotational potential flow the following

formula can be derived (Guyon et al. 1997):

r
@’

@t
þ r

v2

2
þ pþ r’f ¼ C (14.7)

where C is a constant for the entire domain. ’f denotes the potential of an outer

force. Equation (14.7) resembles the Bernoulli theorem (see Chap. 11), which holds

for all solutions of the Euler equations but with a constant C on streamlines only.

It is a formula connecting the potential and real world variables p and v. If the
potential is known, the velocity can be obtained by formula (14.1), and (14.7)

becomes an equation for the pressure p as only unknown variable. Some conditions

concerning r and ’ are required additionally, which was already discussed in detail

by Prandtl and Tietjens (1934).

In 2D porous media flow it is usual to use the discharge vector q as the negative

gradient of the discharge potential ’:

q ¼ �r’; in 2D:
qxðx; yÞ
qyðx; yÞ

� �
¼
� @’ðx; yÞ

@x

� @’ðx; yÞ
@y

0
BB@

1
CCA (14.8)
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Fig. 14.2 Potential flow in 3D
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The discharge vector has the dimension [m2/s] and denotes the volume of

water flowing in the x-y-plane per unit space of z-direction. Discharge vector and

Darcy-velocity u [m/s] are related according to the formula:

qðx; yÞ ¼ H � uðx; yÞ for the confined aquifer

hðx; yÞ � uðx; yÞ for the unconfined aquifer

�
(14.9)

with H thickness of the confined aquifer [m] and h height of watertable above the

base of the unconfined aquifer [m].

For the real interstitial velocity v [m/s] holds:

qðx; yÞ ¼ H � y � vðx; yÞ for the confined aquifer

hðx; yÞ � y � vðx; yÞ for the unconfined aquifer

�
(14.10)

with porosity y. Using Darcy’s Law u ¼ �K � rh (with hydraulic conductivity K),
a formula for the calculation of the potential ’ from the piezometric head h can be

given:

’ðx; yÞ ¼ K � H � hðx; yÞ þ Cc for the confined aquifer
1
2
K � hðx; yÞ2 þ Cu for the unconfined aquifer

�
(14.11)

h [m] is the piezometric head above the base, both for the confined and the

unconfined case. In the unconfined aquifer, h corresponds to the position of the

groundwater table. Cu and Cc are constants that are irrelevant for the flow field:

when the potential is differentiated, the two constants vanish. However, Cu and Cc

are relevant for the relation between h and ’. Details are given below.

The condition that the head has no jump, where the aquifer changes from

confined to unconfined state, yields a condition for Cu und Cc. If both formulae

for the marginal condition h ¼ H are evaluated, both potential values are equal

under the condition:

Cc ¼ Cu � 1

2
KH2 (14.12)

One obtains a continuous potential ’ðx; yÞ, with which it is possible to describe

aquifers being partly confined and partly unconfined. Altogether one may thus

write:

’ðx;yÞ ¼ K �H � hðx;yÞ � 1
2
K �H2þ’0 for the confined aquifer

1
2
K � hðx;yÞ2þ’0 for the unconfined aquifer

�
(14.13)

where the notation ’0 is used instead of Cu. The transition between confined and

unconfined situation is given for the (critical) potential value:

’crit ¼
1

2
KH2 þ ’0 (14.14)
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In order to compute piezometric head from the potential, which is obtained as

solution of the potential equation, the (14.13) have to be resolved for h. The result is:

hðx;yÞ ¼ ’ðx;yÞ þ 1
2
K �H2�’0

� �
= KHð Þ for the confined aquiferffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ’ðx;yÞ �’0ð Þ=Kp
for the unconfined aquifer

�
(14.15)

Equations (11.16) and (11.17) are valid for porous media flow independent of the

number of spatial coordinates, i.e. in 1D, 2D and 3D. Under certain conditions these

may be reformulated as potential equations. From (11.6) can be derived that in case

of constant conductivity K the potential equation is valid for ’ ¼ K � h in model

regions without sinks or sources. One may also use the pressure formulation (11.7)

to obtain a connection between potential and pressure:

’ ¼ k

m
r p� rgzð Þ (14.16)

14.3 Example: Groundwater Baseflow and Well

In the following example the formulae, derived for aquifers in the previous sub-

chapter, are applied to a system of wells in an aquifer. Input values are typical for

hydro geological set-ups. There are aquifer thickness, hydraulic conductivity and

baseflow in both coordinate directions. Moreover, there is a reference value for

piezometric head, which is to be valid at a very specific position of the model region.

Well coordinates and pumping rate are to be specified as well as the extension of

the model region:

% Baseflow
H = 5.;             % thickness [L]
h0 = 5.5;           % reference piezometric head [L] 
K = 5.e-5;          % hydraulic conductivity [L/T] 
Qx0 = 1.e-6;        % baseflow in x-direction [L^2/T]
Qy0 = 0;            % baseflow in y-direction [L^2/T]
% Well
x0 = 100;           % x-coordinate well position [L]
y0 = 0;             % y-coordinate well position [L]
Q = 1.e-4;         % pumping / recharge rate [L^3/T]
% Mesh
xmin = 0; xmax = 200;% min./max. x-position of mesh [L]
ymin = -100; ymax = 100;% min./ max. y-position of mesh [L]

% Reference point position in mesh
iref = 1; jref = 1;

xvec = linspace(xmin,xmax,100);
yvec = linspace(ymin,ymax,100);
[x,y] = meshgrid (xvec,yvec);                   % mesh
r = sqrt((x-x0).*(x-x0)+(y-y0).*(y-y0));        % distances to well
phi = -Qx0*x + Qy0*y + (Q/(2*pi))*log(r);       % potential
phi0 = -phi(iref,jref) + K*H*h0 - 0.5*K*H*H;…

% reference potential
hc = 0.5*H+(1/K/H)*(phi+phi0);                  % confined
surf (x,y,hc);                                  % surface plot
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In the execution part the mesh is computed first in the arrays x and y. The vector

of distances from the well position is stored in r. Then the potential is calculated in

phi. The reference potential is determined to produce the reference head value h0 at

the (iref,jref) position of the mesh. For the chosen input values, the position of the

reference head has the coordinates (xmin,ymin). The user has to choose different

values if the reference value is to be valid at another location of the model region.

The array of piezometric heads hc for the confined aquifer is computed from the

potential using (14.15) with a value for reference potential phi0 calculated before.

The final command initiates the figure plot.

The last commands are valid for the confined aquifer. For the unconfined aquifer

the command sequence needs to be changed only slightly. The potential remains the

same. Only the part in which the head is computed from the potential has to be

altered. The command for phi0 is concerned, as well as the computation of the head

hu for the unconfined aquifer. One may use the following commands

phi0 = -phi(iref,jref) + 0.5*K*h0*h0;         % reference potential
hu = sqrt ((2/K)*(phi+phi0));           % unconfined
contourf (x,y,hu);  

in order to produce a contour plot, as shown in Fig. 14.3. The reference head value

needs to be below the aquifer thickness; H ¼ 6 was used in the computation.

The M-file can be extended to account for situations in which the aquifer

is partially confined and partially unconfined in the model region. To do that, the

M-file must be changed in the part where the head is calculated:
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Fig. 14.3 Drawdown in an aquifer in the vicinity of a pumping well
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if h0 > H
    phi0 = -phi(iref,jref) + K*H*h0 - 0.5*K*H*H; 
else
    phi0 = -phi(iref,jref) + 0.5*K*h0*h0; % reference potential
end        
hc = 0.5*H+(1/K/H)*(phi+phi0);            % head confined 
hu = sqrt ((2/K)*(phi+phi0));             % head unconfined 
phicrit = phi0 + 0.5*K*H*H;         % transition confined / unconfined
confined = (phi>=phicrit);          % confined / unconfined indicator
h = confined.*hc+~confined.*hu;           % head

The reference value phi0 is computed in the first five lines. If the specified

reference head h0 exceeds the aquifer depth H, the aquifer is confined, otherwise it

is unconfined. For those situations the reference potential is computed using

different formulae, which are obtained by solving (14.13) for ’0.

Then the heads hc and hu for the confined and the unconfined situation are

both calculated. phicrit is the critical potential value at which the aquifer

switches between confined to unconfined state, according to formula (14.14).

The confined array contains a 1 at every entry corresponding to a mesh node,

where the aquifer is confined, and a 0 at every entry that corresponds with

a mesh node where the aquifer is unconfined. In the final command the real

2D head array is computed. Each entry related to a location in the confined part

takes the hc value, and the hu value if that is related to a location in

the unconfined part of the aquifer. ’~’ is the negation operator, switching an

1-entry to 0 and vice versa.

It is useful to indicate to the user the state of the aquifer within the model-region.

In the demonstration example below, messages concerning the state of the aquifer

are displayed in the command window. The display command produces a mes-

sage in the command window, showing the text string specified in the brackets.

if all(all(confined))
    display ('aquifer confined');
else

if all(all(~confined)) 
        display ('aquifer unconfined'); 

else
        display ('aquifer partially confined and unconfined');

end
end    
if any(any(h<0)) 
    display ('aquifer falls partially dry'); 
    h = max(0, h);
end

For a confined aquifer the confined array contains only 1s. Here we use the

MATLAB® all command to question if all entries are 1. The command has to be

used twice, as it operates on columns first, i.e. for a 2D array the command all(A)

produces a line vector with the same number of columns as A. The column has

a 1-entry for each column containing non-zero elements only. The second call

gathers all columns. Some other MATLAB® commands operate on the same idea.
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The following double all command on the ~ confined array delivers a 1 if the

aquifer is unconfined. For the remaining situations, in which the aquifer is neither

confined nor unconfined, the correspondingmessage is given in the nested else block.

The any command is applied in the last four lines. It asks if the condition is true

for any entry of the matrix phi<0. Any user in doubt may examine that for each

matrix A the expression A<0 is a matrix too! If the head value, representing the

height of the piezometer level table above the aquifer base, becomes less or equal

zero, the aquifer is fallen dry. Is that true in any part of the chosen region, the

corresponding message is given in the command window. The final command

changes all negative head values (as they are impossible) to zero.

The commands outlined above are part of the “gw_flow.m” file, which

is included in the accompanying software. The groundwater baseflow and well

example is extended in Chap. 15.

Exercise 14.1. Vary parameters and examine in which parts the aquifer is confined

and unconfined, and when the aquifer falls dry!

14.4 MATLAB® 2D Graphics

Based on mesh data several output commands for 2D and 3D meshes are available

in MATLAB®. Some of these (contourf and surf) have already been introduced

in the previous sub-chapters. They will be demonstrated here by extending the M-

file developed in this chapter until this point. First a graphic option is introduced in

the specification part of the M-file:

% Graphical output options
gsurfh = 1;         % piezometric head surface plot

The user controls the graphical output by the gsurfh parameter. At the end of

the previous version of the M-file add the plot commands:

%----------------------------------graphical output----------------
if gsurfh 
    figure; surf (x,y,h);                             % surface
end   

If the graphics control parameter is nonzero, the figure editor is opened and a

surface of the head values is plotted.

As another extension of the M-file, two further graphics options are added:

gcontf = 20;        % no. filled contour lines (=0: none)
gquiv = 1;          % arrow field plot

which are connected to additional output commands at the end of the file:
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figure; 
if gcontf                                        % filled contours
    contourf (x,y,h,gcontf,'w'); 
    colormap (winter); 
    colorbar; hold on;
end
if gquiv 
    quiver (x,y,u,v,'y'); hold on;               % arrow field
end

With the gcontf parameter there is the option to plot filled contours of head

values. If such a plot is not wanted, set the parameter to zero. gcontf not only

serves as a switch for contour plots; it also contains the number of contours to be

plotted. The contours’ color is white (formal parameter ‘w’).

The MATLAB® colormap command determines the use of colors in the plot.

The default colormap is jet, which has all colours of the rainbow. Here we select

the winter colormap, in which the colors blue and green are preferred. The user

may select other predefined colormaps. It is most convenient to explore colormaps

from the figure editor. Use the ’Colormap. . .’ sub-menu entry of the ‘Edit’ main

entry in the figure editor. Figure 14.4 depicts the colormap editor and the choice of

pre-defined colormaps.

The colorbar command displays a colorbar next to the figure, on the right. The

colorbar relates the colors to numbers, e.g. to head values in the given example.

Fig. 14.4 Colormap editor
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Minimum and maximum values of colorbar are calculated automatically by the

software.

The gquiv switch is related to a quiver call. For a given velocity field the

command depicts an arrow field. Input values are, aside from the mesh coordinates

x and y, the velocity components u and v. The latter are obtained from the potential

by the gradient command:

[u,v] = gradient (-phi);

which corresponds to (14.8). In the example the arrows are plotted in yellow

(formal parameter ‘y’). Note that quiver can only be used for 2D flow fields

and equidistant meshes.

Figure 14.5 depicts the output of the groundwater flow example, as far as

developed to this point. The plot was obtained after zooming in the figure editor.

Flow towards the well is clearly visible. Visible also is the increase of velocity if the

well is approached.

Finally another graphic option is introduced. The streamline command

produces flowpaths, which are also based on the velocity field. Flowpaths trace

the flow of a particle within the flow field; for that reason the method is also called

particle tracing. Flowpaths are identical to streamlines in steady state flow fields

and identical to contours of the streamfunction; see Chap. 15 for differences and

advantages/disadvantages compared to streamfunction plots.
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Fig. 14.5 Example graphic showing contours, colorbar and arrow field
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We add a gflowp_fit switch as another option where graphic options are specified.

At the end we add the following commands:

if gflowp_fit                                             % flowpaths
xstart = []; ystart = [];
for i = 1:100

if v(1,i) > 0 xstart = [xstart xvec(i)];...
                ystart = [ystart yvec(1)]; end

if v(100,i) < 0 xstart = [xstart xvec(i)];...
                ystart = [ystart yvec(100)]; end

if u(i,1) > 0 xstart = [xstart xvec(1)];...
                ystart = [ystart yvec(i)]; end

if 
ystart = [ystart yvec(i)]; end

end
h = streamline (x,y,u,v,xstart,ystart);

    set (h,'Color','red'); 
end

The streamline command, almost at the end of the last command listing,

obtains mesh and velocity field information like the quiver command. There are

two new vectors to be added, which have to contain the starting values for the

flowpaths. With the for loop the starting positions for the flowpaths are determined.

Each mesh node at the boundary becomes a start position if the flow velocity is

directed into the model region.

A nice way to determine the catchment of a well is to choose startpositions near

the well position and trace the flowpath backward in time. In the code we introduce

another option parameter gflowp_bit. The value of the parameter determines

whether backward tracing is performed at all. In case of backward tracing, the

value of the parameter determines the number of starting positions around the well.

The well radius R is introduced as another new input parameter that is used for the

calculation of the starting locations.

if gflowp_bit                                              
    xstart = x0 + R*cos(2*pi*[1:1:gflowp_bit]/gflowp_bit);
    ystart = y0 + R*sin(2*pi*[1:1:gflowp_bit]/gflowp_bit);
    h = streamline (x,y,-u,-v,xstart,ystart);
    set (h,'Color','y'); 
end

Another nice feature is the option to use dots along the flowpaths in order

to indicate the size of the velocity. The use of the option is demonstrated on the

following commands:

if gflowp_dot
    [verts averts] = streamslice(x,y,u,v,gflowp_dot);
    sc = 10/mean(mean(sqrt(u.*u+v.*v)));
    iverts = interpstreamspeed(x,y,u,v,verts,sc);
    h = streamline (iverts);
    set (h,'Marker','.','Color','y')
end
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As a switch, the variable gflowp_dot is introduced. The streamslice command

delivers flowpaths for the given mesh and velocity field similar to the streamline

command. The information is gathered in two data structures. The structure verts

contains coordinates for all streamlines. If averts is not returned, arrows indicate

the direction along the flowpaths instead of dots. gflowp_dot has the additional

function to determine the streamline density: a doubled value produces approxi-

mately twice as much streamlines. interpstreamspeed evaluates the speed along

the streamlines, which is scaled by the sc parameter. sc is the inverse of the mean

velocity, multiplied by 10. mean initiates the calculation of the mean value and has

to applied twice, as we have arrays of dimension 2. Some manual adjustment is

surely necessary here: the author found it often appropriate to use the mean velocity

multiplied by a factor of 10. The last two commands have already been explained:

streamlines are finally plotted in yellow colour, using dots as time markers.

The result for a well with pumping rate Q ¼ 2�10�4 m3/s is depicted in Fig. 14.6.

The pumping rate is 2�10�4 m3/s.

Exercise 14.2. Confirm the following formulae for a control sample by choosing

an appropriate graphical output!

1. The distance between the well location and the stagnation point downstream

from the well is given by:

d ¼ Q

2pQx0
(14.17)
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Fig. 14.6 Flow towards a well, depicted by filled head contours and flowpaths with speed dots
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2. The width of the well catchment in far upstream distance is:

b ¼ Q

Qx0
(14.18)

14.5 MATLAB® 3D Graphics

Potential flow can also be computed in 3D. The potential for a sink or a source is

given by the formula:

’ðx; y; zÞ ¼ � Q

4p
log

r� r0j j (14.19)

instead of formula (14.5). This can be combined with baseflow in x-direction. An

example M-file for a sink or source at position (2,2,2) is shown below. Slices

xslice, yslice and zslice are defined for all three different space directions,

which are then used within the slice command. Streamlines are drawn using

streamline.
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Fig. 14.7 3D potential flow, computed and visualized using MATLAB®
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Q = 1;                   % source/ sink rate [L^3/T]
Qx0 = 0.2;               % baseflow [L^2/T]
i = linspace(1,3,50);
[x,y,z] = meshgrid (i,i,i);
r = sqrt((x-2).^2+(y-2).^2+(z-2).^2);
xslice = [1.3;1.7;2.4];
yslice = [3];
zslice = [1.1;1.9];
phi = -Qx0*x-Q/4/pi/r;
slice (x,y,z,phi,xslice,yslice,zslice); hold on;
[u,v,w] = gradient (-phi);
h = streamline (x,y,z,u,v,w,ones(1,50),i,i);
set (h,'Color','y')  

or

coneplot (x,y,z,u,v,w,)

The M-file is included in the accompanying software under the name

‘3D_flow.m’.
Figure 14.7 shows the flow field produced by the M-file after some manual

changes using the MATLAB® Figure editor. The color range for the color map was

restricted and lines on slices were omitted.
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Chapter 15

Streamfunction and Complex Potential

15.1 Streamfunction

The streamfunction is another mathematical construct that is of high importance for

models using analytical solutions. Together with the potential the streamfunction

enables the visualization of flow patterns that can hardly be produced by other

methods. In 2D the streamfunction C is defined by the equations:

qx¼� @C
@y

qy ¼ @C
@x

(15.1)

The derivatives of the streamfunction are the components of the discharge

vector. In contrast to the potential, the negative of the y-derivative delivers the

x-component of discharge, and the x-derivative delivers the y-component of dis-

charge. From the defining equations follows that the streamfunction also fulfils the

potential equation:

@2C
@x2
þ @2C

@y2
¼ @

@x

@C
@x
þ @

@y

@C
@y
¼ @

@x
qy � @

@y
qx

¼ @

@x
K
@h

@y
� @

@y
K
@h

@x
¼ K

@2h

@x@y
� @2h

@y@x

� �
¼ 0

(15.2)

Streamlines are characterized by the property that the tangentials are perpendic-

ular to the contours of the potential or the head. The mathematical proof utilizes the

connection between streamfunction and discharge vector (15.1) as well as the

connection between potential and discharge vector (14.3):

qx¼ @’

@x
qy ¼ @’

@y
(15.3)
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The condition for orthogonality is then obtained through:

@’

@x

@C
@x
� @’

@y

@C
@y
¼ �qxqy þ qxqy ¼ 0 (15.4)

There are explicit formulae for the streamfunction for special flow elements,

for example:

Cðx; yÞ ¼
�Qx0yþ Qy0x for baseflow
Q

2p
#ðx; yÞ for a well

(
(15.5)

with ϑ ¼ angle of the connecting vector between position (x,y) and well location.

The physical unit of the streamfunction is [m3/s], i.e. the dimension of volume

flux. This is easiest explained regarding baseflow in x-direction. Qx0 is the volume

flux per unit width Dy ¼ 1. According to the formula (15.5) holds: C(x,y) ¼
�Qx0y, representing is the flux between the x-axis and its parallel in distance y. It
follows that between two horizontal lines at locations y1 and y2 and streamfunction

values C1 and C2 the flux is given by

DC ¼ C1 �C2 (15.6)

It is a general property of the streamfunction that for any two locations in the

model region the flux between these positions is given by the difference of their

streamfunction values. This characteristic property of the streamfunction follows

directly from (15.1) by integration along curves within the model region. The

restricting condition is that the model region has to be simply connected (Needham

1997), which roughly means that it has no holes.

Imagine two arbitrary locations. If the streamfunction takes the same value at

these positions, the volumetric flux between these locations is zero, which results as

a special case from the above given property of the streamfunction. The property

is obvious if the connecting line is the streamline itself, but it holds for every

connecting line. Then, positive fluxes across the line are exactly outweighted by

negative fluxes. In a more general sense one may consider arbitrary closed curves in

the model region. Take an arbitrary point on this curve, representing both start

and end point of the curve. The streamfunction property states that the integral of

fluxes across this line is zero (because the streamfunction value at start and end

is the same). Physically speaking, negative and positive fluxes outweigh each other

exactly.

Because of the mentioned property, the streamfunction is a very appropriate

measure for fluxes. In order to demonstrate the application of the streamfunction,

we extend the M-file ‘gw_ flow.m’, which was developed in Chap. 14. That is done

in three steps:
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1. In the execution part of the M-file add a command by which the streamfunction

is computed under the variable psi:

The command is an implementation of the two formulae given in (15.5).

Following the principle of superposition (see Chap. 14), the formulae have to be

added to account for a situation with baseflow and a single well. The angle ϑ is

calculated by the arcustangens function. In MATLAB® there are two ways of

computing the arcustangens. Here we chose not to use the standard atan

command, which delivers angles in the interval between � p
2

and p
2
. The

atan2 command is chosen, because angles in the range between �p and p
are computed. We will come back to that point below.

2. Add another plot option in the input part of the M-file:

3. Plot baseflow with the contour command (without filling colors):

The gstream parameter is not only a switch for streamline graphics, but also

determines the number of contours to be depicted. According to the property of

the streamfucntion mentioned above, there is no flux between two locations on

the same contour. This means that the C-contours are streamlines, a term

already met in Chap. 14 in connection with the MATLAB® streamline

command. The streamfunction offers an alternative method for plotting

streamlines.

Figure 15.1 shows the output of the M-file if both the streamline and the

streamfunction contours are active. Streamfunction contours are depicted in black

colour, lines from streamline in yellow, using the gflowp_dot option, introduced

in Chap. 14. Obviously the flow field representations coincide1. But streamline

distributions are obviously different. Using streamline, the lines are determined

by starting points; the MATLAB® algorithm thus is a flowpath algorithm by

which a flowpath is traced forward or backward in time. Another word for such

a procedure is particle tracking. In 2D these are numerical solutions of the differ-

ential equations:

1 Of course, there should be no cross-overs between the streamline patterns if both representations

are correct. The user may play around and find out that under certain conditions there are cross-

overs. One important example is given, when the mesh spacing in x- and y-direction is not equal, as
the output of the streamline command is not a correct representation of the flow field.
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@x

@t
¼ vx

@y

@t
¼ vy (15.7)

Streamlines, obtained as streamfunction contours, originate from a very different

idea. When C-contour levels are selected equidistantly, the same volume of fluid

flows between neighbouring streamlines. Between two locations on neighbouring

streamlines there is the same volumetric flux, independent of the locations, i.e.

C1 �C2. If the streamfunction is plotted using equidistant values of stream-

function levels (as in the example above), the same amount of fluid flows between

two neighbouring streamlines – that holds for all streamlines in the plot. Thus,

streamlines provide a very nice visualization of velocities: where streamlines are

dense, the velocities are high; where streamlines are far apart, velocities are low.

The streamline density illustrates the velocity of a flow field.

Figure 15.1 shows another advantage of the streamfunction: flowpaths are easily

followed into regions with high velocities, here into the immediate vicinity of the

well. As illustrated in the figure, the particle tracking algorithms have difficulties in

the vicinity of the well.

An advantage of the MATLAB® particle tracking is that markers can be used as

indicators of velocity size. A disadvantage of the streamfunction approach is that

cuts may appear. In Fig. 15.1 there is a cut, depicted as a thick black line between

the well and the left side boundary. Such cuts appear where the stream function has

a singularity. Using the atan2 function in the M-file the cuts appear if the angle is

# ¼ p, which is 180� from the positive x-axis. Along the negative x-axis the

arcustangens function has a jump, which becomes visible in the contour plot as

a cut. If the atan function is called in the M-file, the flow pattern is still represented

correctly but with cuts from the well singularity in vertical direction.
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Fig. 15.1 Streamfunction contours and flowpaths for a single well in uniform baseflow
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Exercise. The formula concerning the width of the upstream catchment of a well,

given in Chap. 14, can easily be checked by the streamfunction property mentioned

above. Hint: in the far distance from the well only the baseflow determines the flow

pattern. Between two locations perpendicular to baseflow with distance b the water
flux is Qx0b.

15.2 The Principle of Superposition

The principle of superposition has been introduced in Chap. 14 and proved to be

a powerful method to obtain solutions of the flow potential. We continue with

further demonstrations, as the principle can also be applied to the streamfunction.

For that purpose we extend the groundwater M-file, which was developed in the

previous sections. The M-file is extended to account for several wells (the former

version can be used for a single well only). Wells, i.e. their positions within the

model region and their pumping rates, are introduced in the input part of the M-file

and replace the concerned commands by the following sequence:

The sequence gives an example for the introduction of three wells with equal

pumping rates. In the same manner the user may enter as many wells as she/he likes.

There may be pumping and recharge wells in the same well gallery, each working

at its own rate. The vectors, specified in the three lines, must have the same length.

In order to take several wells into account in the potential and streamfunction

calculation, we use a for loop as follows:

While the index variable i takes values starting from 1 to the number of wells, the

loop runs through all the wells. In each run through the loop, the analytic solution for

the well is calculated and added to the amount calculated before, according to the

principle of superposition. An example output is provided in Fig. 15.2.

The ‘cplxPot.m’ M-file, included in the accompanying software, where the

complex potential is applied, is an extension of ‘gw_ flow.m’, in which several wells
can be taken into account.
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15.2.1 The Doublette

A problem which is suitable for the application of the program concerns a doublette
system. Such a system consists of a pumping well and a recharge well. More

complex installations with several recharge and discharge wells are not treated

here, although they can be simulated easily using the presented procedure. Such

systems are installed for several environmental purposes, for example, to extract

freshwater and simultaneously dispose waste water.

Doublettes are a typical set-up of geothermal technology. In geothermal facilities

hot water is pumped, usually from deep geological formations. In most applications

the pumped water has a high mineral content and can neither be used for other

purposes except for the use of heat, nor dumped into surface water bodies. Environ-

mental regulations often require the fluid to be suppressed back into the subsurface

region, from where it originates. The question of cold water breakthrough, which can

be answered by modelling, is important as it defines the lifetime of the facility.

Also for the clean-up of contaminated groundwater doublette well systems are

common. The pumping well takes the polluted fluid to a treatment station. After

purification the treated water is brought back into the aquifer by the recharge well.

Exercise 15.1. Model a doublette system with recharge and pumping well 100 m

apart from each other. Model a recharge and a discharge well with equal pumping

rates and assume no baseflow. How do isopotentials and streamfunctions look like?

As shown in Fig. 15.3, the doublette flow pattern is symmetric in several

respects. One symmetry axis connects both wells and is a streamline. The other
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Fig. 15.2 Groundwater flow towards three wells (is potential, streamlines and flowpaths)
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symmetry line, which is an isopotential line, is perpendicular to the connecting line.

Note that the depicted is potentials are not completely identical on the left and right

side of the figure, which stems from the fact that the internally determined potential

levels are not symmetrical around the mean value. It is also easy to see that all

streamlines and is potentials are circles. If that is not true on the user’s computer

display, it probably depends on the scaling that may not be the same for both length

axes. Moreover, streamlines and is potentials meet at right angles. All these

properties are well known from classical theory, but it is nice to see them confirmed

using a small M-file.

15.2.2 Mirror Wells

The modeller may utilize non-existing wells in order to simulate special boundary

conditions. For that purpose virtual wells are introduced that do not exist in reality.
The previous example showed the simple doublette system with a constant potential

line as a symmetry axis between both wells. The modeller may thus take advantage

of that property and use such a doublette system to produce a constant potential

boundary where it is needed. In fact, for each real well a virtual well needs to be

located at the mirror position with respect to the is-potential line. For real pumping

wells the mirror well should be a recharge well and vice versa.

A typical application is given for a well or a well gallery in the vicinity of a river

or lake. The spatial gradient within the surface water body is usually very small and

can be neglected. If both water bodies, groundwater and surface water, are well

connected, the shoreline becomes a constant head boundary for the groundwater

modeller. Constant head corresponds with constant potential. The formula for the

analytical solution of such a situation is identical to the doublette solution. How-

ever, in this case the pattern needs to be computed only for that side of the bank

where ground surface and well are located. The ’virtual side’ should be omitted.
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Fig. 15.3 Doublette system (iso potential and streamlines)
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The water pumped in the well partially originates from the surface water body.

This part is often referred to as bank filtrate. Very often the flow pattern is

a combination of natural groundwater baseflow towards the bank and the imposed

regime by the well gallery. For very small pumping rates the well withdraws

ambient groundwater only and no bank filtrate. Bank filtrate starts to play an

increasing roll if the pumping rate is increased above a critical value Script.

Exercise 15.2. Verify, using different pumping rates, that the critical pumping rate

for bank filtration is given by the following formula

Qcrit ¼ Qx0px0 (15.8)

where Ax determines base flow towards the is potential boundary and ax the distance
between well and boundary. Use a plot of the flow pattern to decide whether there is

bank filtration or not!

Exercise 15.3. Confirm for some sample runs the dependence of groundwater and

surface water withdrawal from pumping rate.

Figure 15.4 visualises the exact formula for the share of water originating from

the surface water body (bank filtrate) and ambient groundwater. The formula is

given by:

Q� DC
Q

¼ 2

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

Qcrit
� 1

s !
� Qcrit

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

Qcrit
� 1

s !
(15.9)

Hint: utilize that in streamfunction plots for equidistant levels the same amount

of water flows between two contour lines. In the situation shown in Fig. 15.5 the

percentage of bank filtrate is 4/11 � 36%. The entire well discharge is divided into

11 equal parts, four of them originating from the bank on the left side of the figure.
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Those, who do not believe that the procedure works, may evaluate formula (15.9) to

obtain the same result.

Figure 15.6 shows a vortex with circulating flow as another flow pattern which

can be modelled by using the analytical method. The detailed steps of the method

are summarized in Sidebar 15.1.
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Fig. 15.5 Bank filtration example plot (for ax ¼ 100 m, Ax ¼ -10�6 m2/s, Q ¼ 0.001164 m3/s)
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Fig. 15.6 Image of vortex; filled contours for potential and white contour lines for streamfunction
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Sidebar 15.1: Summary of the Analytical Method

In summary, the set-up of a model based on an analytical solution can be

divided into 4 steps, which are repeated here in brevity with some comments:

Step 1
Choose the analytical formulae that are appropriate for the situation to be

modelled.

See Table 15.1.

Step 2
Compute the analytical solution by superposition of the chosen elements; that

means: add all potential and streamfunction elements!

Step 3
Numerical Postprocessing

Compute hydraulic heads

hðx; yÞ ¼ ’ðx; yÞ þ 1
2
K � H2 � ’0

� �
= KHð Þ for the confined aquiferffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ’ðx; yÞ � ’0ð Þ=Kp
for the unconfined aquifer

�

Compute flux vector components

qxðx; yÞ ¼ � @’ðx; yÞ
@x

qyðx; yÞ ¼ � @’ðx; yÞ
@y

8>><
>>:

9>>=
>>;

or

qxðx; yÞ ¼ � @Cðx; yÞ
@y

qyðx; yÞ ¼ @Cðx; yÞ
@x

8>><
>>:

9>>=
>>;

Compute velocity vector components

vxðx; yÞ ¼ qxðx; yÞ=H for the confined aquifer

qxðx; yÞ=hðx; yÞ for the unconfined aquifer

�
and

vyðx; yÞ ¼ qyðx; yÞ=H for the confined aquifer

qyðx; yÞ=hðx; yÞ for the unconfined aquifer

�

The last two formulae are to be processed for groundwater flow based on

the discharge potential. For free fluids the potential has to be transformed in

terms of pressure (see Chap. 14.2).

Step 4
Graphical Postprocessing

Plot (optionally):

– Hydraulic heads

– Velocity vectors

– Streamfunction contours

– Path lines
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15.3 Complex Analysis and Complex Potential

In MATLAB® both potential and streamfunction can be visualized more easily if

one adopts the notation of the 2D plane using complex numbers. The simplest

command sequence to produce a potential for a sink or source, are:

In Fig. 15.7 the real part of the logarithm is plotted. Compare with Fig. 14.1.

Instead of the computation of the real potential and the streamfunction, the

imaginary potential is evaluated. Real potential ’, streamfunctionC and imaginary

potential F are connected by the formula:

F ¼ ’þ iC (15.10)

i denotes the square root of -1, the imaginary unit. In MATLAB® specify the

imaginary number z by:

In the latter example the real part of z is -1, and the imaginary part is 2.

In MATLAB@ use the commands real and imag:

Table 15.1 Analytical elements for some fundamental flow patterns

Element (Real) Potential ’ Streamfunction C

Baseflow2 � Qx0x� Qy0y � Qx0yþ Qy0x

Well3 Q

2p
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xwellð Þ2 þ y� ywellð Þ2

q� �
Q

2p
arctan

y� ywell
x� xwell

� �

Vortex4 A

p
arctan

y� y0
x� x0

� �
A

p
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q� �

Di-pole5

s

2p

cos arctan y�y0
x�x0

� 	
� b

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q s

2p

sin arctan y�y0
x�x0

� 	
� b

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q

2With x-component Qx0 and y-component Qy0.
3 At position ðxwell; ywellÞ with pumping rate Q.
4 At position ðx0; y0Þ with strength A.
5 At position ðx0; y0Þ with strength s and angle b.
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Complex numbers are just another more general data type which MATLAB®
can handle. Thus in MATLAB® there are arrays, vectors, matrices and functions of

complex numbers, and the user may use those almost as she/he is accustomed

to with real numbers. Any complex number can alternatively be characterized by an

absolute value r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and an angle y:

z ¼ reiy (15.11)

The corresponding MATLAB® command are:

The output for the angle lies between -p and p.

Fig. 15.7 Surface plot of the complex logarithm
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The conjugate complex is denoted by an over bar and defined as follows:

�z ¼ x� iy (15.12)

In MATLAB the conjugate complex of a complex number z is calculated by

using the conj function:

Often it is easier to implement the imaginary potential instead of the separate

computation of the real potential and the streamfunction (see examples in Table 15.2).

When the complex potential is computed, (real) potential and streamfunction can be

obtained as real and imaginary part of the imaginary potential:

’ ¼ Re Fð Þ C ¼ Im Fð Þ (15.13)

There are more analytical elements than those for baseflow and wells. Formulae

for line sinks or line sources, for di-poles, for vortices and so forth can be found in

the textbooks.

Table 15.2 Complex potentials for various flow patterns; basic flow patterns with parameters as

in Table 15.1; with Z ¼ z� 1
2
z1 þ z2ð Þ

1
2
z2 � z1ð Þ

Element (Imaginary) Potential F

Baseflow �Q
��

0z

Well Q

2p
logðz� zwellÞ

Vortex A

pi
logðz� z0Þ

Di-pole s

2p
expðibÞ
z� z0

Line-sink6 sL
4p

Zþ 1ð Þ log Zþ 1ð Þ � Z� 1ð Þ log Z� 1ð Þ þ 2 log
1

2
z2 � z1ð Þ

h i
� 2

n o

Fig. 15.8 Dipole pattern

(streamlines white, potential

contours black)

6 Between positions z1 and z2with strength s.
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The M-file for the dipole is included in the accompanying software as

‘dipole.m’ file. The figure (15.8) was produced by calling the function from the

‘AnElements.m’ file with appropriate parameters. The ‘AnElements.m’ file has

options to superpose baseflow, di-pole, sources, sinks and vortices.

For the easy computation of complex potentials the ‘AnElements.m’ file can be

used. In the following example we demonstrate the superposition of a di-pole

and a baseflow solution:

The M-file performs the major tasks of input, initialization, execution and output

in consecutive blocks. Isopotential lines are visualized by filled contours, the

streamlines by the streamline command. A streamline pattern could also be

produced by contours for the imaginary part of the complex potential. However,

by using the option to specify starting points one obtains a better representation of

the circular limit streamlines.

Figure 15.9 results, which can be found in different application fields. The white

lines can be interpreted as flow lines around a spherical obstacle in the 2D plane

(Prandtl and Tietjens 1934). Black lines are the is-potential lines in that case. In

groundwater modeling the same superposition is interpreted differently. The black
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lines represent streamlines. Here, baseflow is in vertical direction towards a circular

lake, where a constant potential (water table) is given (Strack 1989).

White lines are the potential contours. Streamlines are depicted in black. The

interior of the lake, within the white circle, has to be neglected in the groundwater

flow problem.

The user may investigate the influence of the solution parameters, here Q0,

s and z0.

15.4 Example: Vortices or Wells Systems

As an example for the various applications of analytical solutions for the com-

plex potential an M-file is developed, by which systems of several vortices or wells

can be evaluated and illustrated. Moreover, various types of boundaries can be

considered, here as example along the x- or y-axes. The input section of the file is

as follows:

Fig. 15.9 Flow round an

obstacle; groundwater flow

towards a lake
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With the wellvort switch the user decides if wells or vortices are considered.

The mirrorx switch enables the user to make the x-axis a symmetry boundary;

analogously, the value stored in mirrory decides about the y-axis. It is possible to

decide about the x- and y-axis independently: either option may be ‘on’ or ‘off’

independent of the other. In both cases the symmetry may result in an impermeable

boundary or an open boundary. For the latter alternative the mirror switch is

responsible: if it is ‘on’ (1), the well or vortex on the other side of the symmetry

line is of identical strength; if it is ‘off’ (0), the mirror object has opposite strength.

In the latter case the pumping well is vis-à-vis of a recharge well, and a clockwise

circulating vortex is vis-à-vis of another one circulating counter-clockwise.

Under xspace and yspace the x- and y-values of the mesh are specified.

Moreover, the user can choose the number of vortices or wells. There are two

options: randomly distributed wells and manual input. For the first option the user

has to choose a value N greater than 0. Otherwise the locations of the wells/vortices

are specified in the zloc vector and their strengths in the s vector. The positions are

given as complex numbers.

There are some further options. The number of start positions around the well is

required. For well systems the starting positions concern streamlines, for vortices

iso-potentials. There is the number of filled contour lines that represent streamlines

for vortices plots and iso-potentials for well galleries. Finally, there is the option

to switch on / off the output of arrow fields.

The next commands compute some auxiliary variables, which are needed in the

following. xrange and yrange represent the length of the model region on both

coordinate axes. x and y are the mesh variables in real numbers, z in complex

numbers. zloc is a vector containing randomly determined positions of the vortices

and wells. s is a vector containing the strength of all, also randomly determined.

With the final command the minimum absolute value of all the vortices or wells

strengths is computed and divided by the integer K.

Note that the contents of the two vectors zloc and s are displayed in the command

window. The user is thus able to find the exact data for the output in case she/he is

interested to reproduce interesting results. In the next command lines virtual wells or

image vortices are introduced depending on the options set in the specification part of

the M-file. The position given by conj(zloc) is the mirror location of a well with

respect to the x-axis, the conjugate complex. It is easy to check that the commands in

the nested if-blocks fulfill the task, which is explained above.
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In the next command, at the end of the last listing, the complex potential is

evaluated. The function Phi appears at the end of the M-file:

The formula for the complex logarithm, as given in Table 15.2, is evaluated in

every run through the for-loop and added to the former output. Note that all

computations are performed in the space of complex numbers. The result of log

is a complex number. All further commands are based on the complex potential,

which is available under the variable f after execution.

At first, velocity vectors are computed from the real potential, which is contained

in the real parts of the complex potential. The following four commands construct

the legend, stating that streamlines are illustrated by white lines, and isopotential

contours by blue lines. The last command selects the colormap.

In the next commands starting positions for the streamline command are calcu-

lated. Around each well and virtual well (vortex and image vortex) M0 positions are

chosen equidistantly.
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With the final command new mesh-spacing vectors are computed. With the latter

the arrow plot is performed. For fine meshes the arrows become unidentifiable, and

thus it is better to visualize them on a coarser grid.

In the last command block a figure is composed out of filled contours, contours

and arrows. This has to be done separately for a well gallery on one side and

a vortices system on the other side. For the well option, the real part of the complex

potential represents the real potential and the contours are given in blue color. The

streamline command is started twice, once forward and once backward. This is

realized by changing the sign in the velocity component. The user may increase the

performance of the execution by choosing the correct set of start values for each

streamline command. In the final if block the arow field is plotted. The course

mesh is computed first and stored in variable z. Then the velocity field is re-

calculated, based on another evaluation of the complex potential, before the

quiver command plots arrows in the figure.

i

For the vortex option the same tasks are performed but with slightly different

details. The filled contour plot gets white isolines, as these represent streamlines in

this case. The lines, plotted with the streamline command, are is-potentials in the

vortex case and are thus plotted in blue. For the arrow field, it has to be taken into

account that the real part of the complex potential represents the streamfunction,

and thus the velocity components have to be computed following the (15.1).
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The M-file described in this sub-section is included in the accompanying

software as ‘wellvortex.m’ file.
An example output of the M-file is given in Fig. 15.10.

Exercise 15.4. Examine, by use of the M-file, which option combination of the

wellvort and mirror switches leads to an impermeable or to an is-potential

boundary?

15.5 Example: Thin Objects in Potential Flow

Another example for the application of the complex potential concerns thin objects

in a baseflow field. A highly permeable or impermeable object is approached by

a potential flow field with an angle a. One may imagine a situation in sub-surface

Fig. 15.10 Vortex plot example, as obtained using the ‘wellvortex.m’ file; change of white color
to black color by copy option in the figure editor
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flow with a permeable fracture or an impermeable obstacle as well as in the

atmosphere with a solid obstacle.

For the following it is assumed that the thickness of the object can be neglected,

so that it becomes a line object in the 2D model region. For the impermeable case

a solution has been given in form of a complex potential by Churchill and Brown

(1984):

F ¼ v1ðz cosðaÞ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p

sinðaÞÞ (15.14)

where v1 denotes the absolute value of velocity at infinity. a is the half length of the
line object. In Fig. 15.11 we show the result for a ¼ 2 and a ¼ 45�. Closer
evaluation shows that the real part potential has a jump across the line object.

With a rotation of the angle the complementary solution, in which real and

imaginary part of the solution of formula (15.14) are exchanged, can be used

also for highly permeable objects. This is considered in the following program.

Variable perm is to be used to switch between the two situations. In that case

the streamfunction has a jump at the line object, representing the flux through the

permeable formation.

Fig. 15.11 Impermeable object in a flow field entering with an angle of 45�: isopotentials (black),
streamlines (white), velocity field (arrows)
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The M-file described in this sub-section is included in the accompanying

software as ‘fracture.m’ file.
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Chapter 16

2D and 3D Transport Solutions

(Gaussian Puffs and Plumes)

16.1 Introduction

In the Chaps. 4–7 several solutions of the transport equation in a single space

dimension (1D) have been presented. Analytical solutions were presented including

various kinds of different processes. The models are valid under restricted

conditions. In this chapter we show that analytical solutions are also available for

higher dimensional problems.

The 1D formula can be applied to various situations in almost all environmental

compartments. Such models are especially popular in air pollution modeling, for

example in the modeling the local concentration distribution due to emissions from

stacks, but they can also be applied to problems of point pollution in rivers,

channels, lakes, reservoirs and the sea, in ground- and soil water.

Most solutions are derived from the 1D solution for a plume, which is given by

the normal distribution function f(x):

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p
p

s
exp � 1

2

x� m
s

� �2� �
(16.1)

The normal distribution has most applications in statistics. m is the mean value of

the distribution and s the standard deviation. As the normal distribution is also

referred to as Gaussian1 distribution, these methods are also named Gaussian
plumes (in case of steady state) or Gaussian puffs (for the transient case). One

may find the term Gaussian models too.
The normal distribution f(x) with m ¼ 0 and s ¼ ffiffiffiffiffiffiffiffi

2Dt
p

is the solution of the

transport equation

@c

@t
¼ @

@x
D
@c

@x
(16.2)

1 Carl Friedrich Gauss (1777–1855), German mathematician.
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which accounts for diffusion only. The initial condition for this solution is the peak

with infinite concentration at x ¼ 0. This mathematical construction is termed the

d-function. More precisely the d-function is defined by the two properties:

dðxÞ ¼ 1 for x ¼ 0

0 for x 6¼ 0

�
and

ð1

�1
dðxÞdx ¼ 1 (16.3)

The normal distribution converges to zero for x! �1. This is a suitable

boundary condition for an excess concentration, i.e. when the background value

is subtracted from the measured value.

The solution (16.1) can be extended to the situation where the plume is

transported within a flow field. If the fluid moves with velocity v in x-direction,
the solution is:

cðx; tÞ ¼ Mffiffiffiffiffiffiffi
4pt
p ffiffiffiffi

D
p exp �ðx� vtÞ2

4tD

 !
(16.4)

M denotes the total mass per unit area in the fluid system. The concentration c is

a solution of the transport equation, which accounts for diffusion and advection:

@c

@t
¼ @

@x
D
@c

@x
� v

@c

@x
(16.5)

The solution (16.4) can be implemented easily in MATLAB®. The following

command sequence is an example:

The space interval is divided into 100 parts. Within each run through the for-

loop, which represents the time instants, the solution is evaluated for the entire

space vector x. The resulting vector of concentrations is appended as a new line in

the concentration matrix c. Note that using the plot command in the final plotting
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section the column indices of the matrix appear on the x-axis. Similar constructions

were already used in Chap. 4 for simulations of concentration fronts.

Figure 16.1 depicts the output, slightly modified in the MATLAB® figure editor.

The concentration distribution for five different time instants is plotted. Obviously,

the plume moves downstream while the shape of the bell function changes. The

peak concentration decreases with time, and the space interval, in which elevated

concentrations show up, widens.

Most command sequences, presented on the following pages, are gathered in the

‘GaussianPuff.m’file,which is included in the accompanying software.Between various

solutions the user may choose using option parameters in the input section of the file.

The presented formula (16.4) has been applied in almost all branches of envi-

ronmental sciences and only few examples can be listed. Based on (16.4),

Maloszewski et al. (1994) explain tracer experiments in karstic aquifers,

Sukhodolov et al. (1997) deal with dispersion in a lowland river, Wang and Persaud

(2004) investigate experiments from soil columns. Bear (1976) and Kinzelbach

(1987) recommend the normal distribution for pollution problems in aquifers.

A dimensionless formulation can be derived easily if the transport (16.5) is

modified to:

@c

@t
¼ 1

Pe

@2c

@x2
� @c

@x
(16.6)

where x ¼ x=L denotes dimensionless space and t ¼ tv=L dimensionless time.

Pe ¼ vL=D is the dimensionless Péclet number that was already introduced in
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Fig. 16.1 1D Transport solution for instantaneous source for five time instants
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Chap. 5. The dependence of the transport solution for dimensionless time t ¼ 1 on

the Péclet number is visualized in Fig. 16.2. The figure was obtained using the M-

file ‘GaussianPuff.m’ with input data:

in three runs with different diffusivities:

It is instructive to view the development of the concentration profile in the space-

time diagram. Such an illustration is given in Fig. 16.3, which was obtained using

the M-file ‘GaussianPuff.m’ with input data:

A more generalized formulation of the normal distribution is valid for substances

that are subject to degradation or decay processes in addition. If l refers to the

decay coefficient, one obtains the formula:

cðx; tÞ ¼ Mffiffiffiffiffiffiffi
4pt
p ffiffiffiffi

D
p exp �ðx� vtÞ2

4tD
� lt

 !
(16.7)
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(see also: Hunt 1983; Kinzelbach 1987). Linear equilibrium sorption can be

included following the derivations in Chap. 6. For a constant retardation coefficient

R, the solution is given by:

cðx; tÞ ¼ Mffiffiffiffiffiffiffi
4pt
p ffiffiffiffiffiffiffiffiffi

D=R
p exp �ðx� vt=RÞ2

4tD=R
� lt

 !
(16.8)

In analogy to the 1D situation analytical solutions can be derived for the higher

dimensional cases. The generalization of the 1D normal distribution (16.1) for

2D is:

f ðx; yÞ ¼ 1

2psxsy
exp � 1

2

x� mx
sx

� �2

þ y� my
sy

� �2
" # !

(16.9)

with standard deviations sx and sy and mean values mx and my for x- and

y-directions. Formula (16.9) gives the solution of the differential equation

@c

@t
¼ @

@x
Dx

@c

@x
þ @

@y
Dy

@c

@y
(16.10)

with a d-peak initial condition (formula (16.3)) at position (mx,my ) and zero

boundary condition at infinity. Standard deviations and diffusivities are related

by the equations sx ¼
ffiffiffiffiffiffiffiffiffi
2Dxt
p

and sy ¼
ffiffiffiffiffiffiffiffiffi
2Dyt

p
.
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Analogously, the solution for the corresponding 3D situation is given by:

f ðx; yÞ ¼ 1ffiffiffiffiffiffi
2p3
p

sxsysz
exp � 1

2

x� mx
sx

� �2

þ y� my
sy

� �2

þ z� mz
sz

� �2
" # !

(16.11)

From the given formulae solutions can be derived for various 2D and 3D

situations. Some of these will be presented in the remainder of this chapter

16.2 2D Instantaneous Line Source

The explicit formula for transient transport, including diffusion/dispersion, constant

advection in x-direction and decay is given by:

cðx; y; tÞ ¼ M

4pt
ffiffiffiffiffiffiffiffiffiffiffi
DxDy

p exp � 1

4t

ðx� vtÞ2
Dx

þ y2

Dy

 !
� lt

 !
(16.12)

(see also: Fried 1975; Kinzelbach 1987). M denotes the total mass per unit length in

that situation. Figure 16.4 depicts the surface plot of an example 2D Gaussian puff.

The plot was produced using the M-file ‘GaussianPuff.m’ with input data:
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Fig. 16.4 Transport solution for an instantaneous source in 2D
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The concentration distribution c, given by (16.12), is a solution of the differential
equation:

@c

@t
¼ @

@x
Dx

@c

@x
þ @

@y
Dy

@c

@y
� v

@c

@x
� lc (16.13)

The formula (16.12) can be derived from the statistical formulation (16.9) with

the help of the relationship between diffusivities as transport parameters on one side

and standard deviations as statistical characteristics on the other side: sx ¼
ffiffiffiffiffiffiffiffiffi
2Dxt
p

and sy ¼
ffiffiffiffiffiffiffiffiffi
2Dyt

p
, already encountered above. Various more complex models are

based on more general relationships between these two types of parameters. Smith

(1989) gives an overview and more details on this topic.

16.3 2D Constant Line Source

The 2D steady state analytical solution, describing the effect of a constant line

source on an infinitely extended plane, is given by:

cðx; yÞ ¼ c0Q

2p
ffiffiffiffiffiffiffiffiffiffiffi
DxDy

p exp
xv

2Dx

� �
K0

v2x2

4D2
x

þ v2y2

4DxDy

� �
(16.14)

(see: Fried 1975; Bear 1976) with K0 being the modified Bessel function of the

second kind and zero order.

The formula can easily be implemented in MATLAB®. The Bessel function of

second kind is reached by the command

where nu is the order and Z the array of arguments.

16.4 3D Instanteneous Source

The effect of diffusion, advection in a constant unidirectional flow field, and decay

is given by the analytical solution:

cðx; y; z; tÞ ¼ Mffiffiffiffiffiffiffi
4pt
p� 	3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DxDyDz

p exp � 1

4t

ðx� vtÞ2
Dx

þ y2

Dy
þ z2

Dz

 !
� lt

 !

(16.15)

(see also: Kinzelbach 1987, Wexler 1992), which can be derived in analogy to

(16.7) and (16.12). There are many applications of this equation, mainly for

pollution spreading in the atmosphere. Richter and Seppelt (2004) apply the
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Gaussian puff solution with no advection in order to evaluate pollen disposal from

genetically modified crops in agricultural ecosystems. The method can be chosen as

an option in the ‘GaussianPuff.m’ file.

@c

@t
¼ @

@x
Dx

@c

@x
þ @

@y
Dy

@c

@y
þ @

@z
Dz

@c

@z
� v

@c

@x
� lc (16.16)

A 3D Gaussian puff is visualized in Fig. 16.5. The result was obtained using the

‘GaussianPuff.m’ file with input data:

For applications in the atmosphere, the formula is extended to take the ground

surface into account. The ground surface is located at z ¼ 0, while the release of the

pollutant appears at height H. In applications H can correspond with the stack or

chimney height, but often an increased value has to be adopted in order to account

for the initial rise of an emission plume with an increased temperature compared to

the ambient environment. H is also referred to as effective stack height.
At the ground surface, it is common to require a no-flow boundary condition. As

demonstrated in Chap. 15 the no-flow condition can be fulfilled by adding another

source in mirror position on the other side of the boundary, i.e. for the situation here

at location (x,y,z) ¼ (0,0,�H). For a linear transport equation the solution can be

constructed by using the principle of superposition (see Chaps. 13 and 14):
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Fig. 16.5 Concentration distribution from a 3D Gaussian puff
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cðx; y; z; tÞ ¼ Qffiffiffiffiffiffiffi
4pt
p� 	3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DxDyDz

p exp � 1

4t

ðx� vtÞ2
Dx

þ y2

Dy

 !
� lt

 !

� exp �ðz� HÞ2
4Dzt

 !
þ exp �ðzþ HÞ2

4Dzt

 !" #
(16.17)

(see also: Kathirgamanathan et al. 2002; Mitsakou et al. 2003). Overcamp (1983)

describes this method for a meteorological model.

16.5 3D Constant Source

Neglect of diffusion in horizontal direction leads to the differential equation:

@c

@t
¼ @

@y
Dy

@c

@y
þ @

@z
Dz

@c

@z
� v

@c

@x
� lc (16.18)

for which the steady state can be reformulated as:

@c

@x
¼ @

@y

Dy

v

@c

@y
þ @

@z

Dz

v

@c

@z
� l

v
c (16.19)

From the analytical point of view the differential (16.19) is identical to (16.13).

Only parameters and variables have different names. For the latter equation, the

solution was already denoted in (16.12). Reformulation of the solution in terms of

the new variables and parameters yields:

cðx; y; zÞ ¼ Mv

4px
ffiffiffiffiffiffiffiffiffiffiffi
DxDy

p exp � v

4x

y2

Dy
þ z2

Dz

� �
� l

v
x

� �
(16.20)

In fact, (16.20) is the steady state solution for a constant source in 3D space. The

product Q ¼ Mv in the nominator of the first term on the right side represents the

emission rate in unit [mass/time].

Formula (16.20) can be modified to account for a source at height H and a no-

flow surface boundary condition along the line z ¼ 0. The procedure, using an

image source, was already described in Sect. 16.4. In the same manner a steady state

solution for a constant source in 3D is obtained:

cðx;y;zÞ¼ Q

4px
ffiffiffiffiffiffiffiffiffiffiffi
DyDz

p exp � vy2

4xDy

� � exp �vðz�HÞ2
4xDz

 !

þexp �vðzþHÞ2
4xDz

 !

2
666664

3
777775
exp

l
v
x

� �
(16.21)
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For the concentration distribution at ground level (z ¼ 0) follows:

cðx; yÞ ¼ Q

2px
ffiffiffiffiffiffiffiffiffiffiffi
DyDz

p exp � v

4x

y2

Dy
þ H2

Dz

� �� �
exp

l
v
x

� �
(16.22)

For a tracer component (i.e. without decay) in terms of standard deviations the

corresponding formula reads:

cðx; yÞ ¼ Q

pvsysz
exp � 1

2

y2

sy2
þ H2

sz2

� �� �
(16.23)

(see: Vaz and Ferreira 2004). Applying the principle of superposition (see Chaps. 14

and 15) the formula can be used to account for several stacks. The contributions from

the different sources, calculated by formula (16.21), have to be added.

Such models are used extensively for estimations of the local development of

a plume in the atmosphere. For the most common application of release from

a stack, the parameters are visualized in Fig. 16.6. The Gaussian models take into

account diffusive processes, advection with a mean air flow direction (wind), and

first order decay. The term diffusion here is used as an umbrella term for various

processes which have in common the tendency to lower concentration or tempera-

ture gradients. Diffusion at the molecular scale can surely be neglected in the

atmosphere, while variations and fluctuations at various scales within the velocity

field are the cause for the observation of diffusion at a larger scale. Moreover,

turbulence adds as another origin of diffusion.

Idealized conditions are assumed for these processes if formula (16.21) has to be

applied. Other processes, which often play an important role in the atmospheric
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Fig. 16.6 Release from a stack; Schematic illustration of parameters and processes
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environmental compartment, are not taken into account: dry and wet deposition on

the ground, washout due to precipitation, and multi-species reactions. More specif-

ically, all decay processes are neglected for which a first order description does not

suffice. For example, photochemical degradation, that is relevant in air pollution

problems, requires a more detailed approach.

The following commands deliver the result of a Gaussian plume according to

formula (16.23).

The command sequence is included in the accompanying software in file

‘GaussianPlume.m’.
The results of the commands, slightly modified in the MATLAB® figure editor,

are shown in Figs. 16.7 and 16.8. The first figure depicts the concentration on the

ground. Highest concentrations on the ground can be observed approximately

300 m downstream from the stack. In analogy to the 1D situation analytical
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solutions can be derived for the 2D situation. They decrease slowly after the peak is

reached at �350 m.

Figure 16.8 depicts ground concentrations along slices with constant x and

varying y. Clearly, all distributions are of Gaussian type. Global peak concentration
is found in the slice at x ¼ 300. For lower x < 300, the bell shaped concentrations

have small standard deviations, and local peak concentrations increase with x.
Beyond the slice with peak concentration, i.e. for x > 300, the standard deviations

increase, and the local maximum decreases with x.
Finally let us list the assumptions for the application of the Gaussian plume

model for the estimation of stack release:

• The smokestack emission is continuous and constant

• The terrain is relatively flat

• The wind speed is constant in time and in elevation

• In main wind direction, advection dominates over diffusion and dispersion

• The diffusivities in horizontal and vertical direction are constant, i.e. they do not

change spatially and temporally

• No settling velocity for the species

• The pollutant is not involved in reactions, i.e. the species is neither produced nor

consumed; in particular there is no degradation

• When the pollutants hit the ground, they are reflected and not absorbed
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It is not only the potential hazards from stacks or chimneys that can be estimated

by Gaussian’ plumes. As mentioned above the normal distribution has applications

in all environmental compartments. Methods, similar to the ones described in this

subchapter, were applied in other fields as well. Karol et al. (1997) simulate the

exhaust composition of a subsonic aircraft and combine Gaussian plumes with

chemical reaction modeling. Raupach et al. (2001) deal with the insecticide endo-

sulfan that, applied by spraying on agriculture land, finally enters and pollutes rivers

and lakes. Dayan and Koch (2002) deal with the dispersion of PCB following

a release caused by fire.
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Chapter 17

Image Processing and Geo-Referencing

17.1 Introduction

In many applications of environmental modeling it makes sense to process images,

to read them into a MATLAB® figure for certain types of processing. In some

applications it is necessary to process the images themselves. Satellite images for

example contain information about some environmental variables. The distribution

of botanical and sometimes also of zoological species within a geographical area

can be determined by a computational algorithm based on images. Infrared images

are used as they contain information about the temperature distribution.

MATLAB® allows various types of image processing. Only few commands are

treated here. Trauth (2010) tackles the topic in much more details. For those who

need an extended functionality, Math Works offers an Image Processing Toolbox,

containing tools to analyze and visualize images, develop algorithms, and share

results; see: http://www.mathworks.com/products/image/. Interested readers are

referred to the related textbook of Gonzales et al. (2004).

In core MATLAB®, the ‘hdftool.m’ is available to explore, extract, and display

satellite remote sensing data sets, distributed by the National Aeronautical and

Space Administration (NASA) in Hierarchical Data Format (HDF). The reader

can view the details in the MATLAB® help index under the keywords ‘hdf’ or

‘hdftool’. In this chapter these options will not be presented further.

In the following, examples are restricted to few other purposes. Imagine a map or

a cross-section plot through some environmental system. The figure contains some

valuable information about a relevant variable or parameter distribution. Using a

map the location of positions, of lines and of areas can be determined. Lakes, rivers,

shorelines, and land-use patterns are examples of such distributions which can be

located with the help of a map. A geological cross-section, in which rock- or

soil-type layers are visualized, is another example of a 2D illustration of informa-

tion. The thickness of these layers, as well as their location, represented in the cross-

sectional view, are data that the user may need to extract for modeling soil, aquifer

or geological processes.

E. Holzbecher, Environmental Modeling,
DOI 10.1007/978-3-642-22042-5_17, # Springer-Verlag Berlin Heidelberg 2012
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It is the aim of the modeller to transfer some information from the map into

a computer model, which may itself be implemented in MATLAB® or at least

connected to MATLAB®. Different kinds of connections between MATLAB® and

a Geo Information System (GIS) have already been discussed in literature. Marsili-

Libelli et al. (2001) couple a river quality model with a GIS software, whereas

Marsili-Libelli et al. (2002) present a pure MATLAB® approach for a task of

similar kind. Raterman et al. (2001) describe an integrated approach, using

MATLAB® with GIS for groundwater modeling.

Moreover, it is often convenient to view model output results in front of a map

or a cross-section plot. Calculated concentration distributions of environmental

species, temperature, hydraulic head or pressure are often visualized in front of

an area background. In the following it is outlined how the task can be achieved

with MATLAB®.

In the first subchapter it is shown how the user can include a bitmap image in

a MATLAB® figure. There are two steps: the image must be read (1) and displayed

on the screen (2). The second part is a guide to the correct coordinate frame. In the

GIS literature such a task is referred to asGeo-referencing. In the third subchapter it
is demonstrated how information from the map is transferred to the computer

model. We summarize this work under the header Digitizing.

17.2 Reading and Display

The main new features within an M-file for geo-referencing are explained using an

example. As an example image, we choose a map that is read from MATLAB®. It

is shown how the map is depicted in the MATLAB® figure editor. Thereafter, the

image is geo-referenced in order to be able to extract basic features from the map

image figure. The following command sequence performs the first task.

The complete code, outlined in this chapter, is included in the accompanying

software under the name ‘georef.m’.

[infile,path] = uigetfile('*.jpg','Select graphics file...');
infilepath = strcat(path,infile);
lx = 1000; ly = 1000;
figure;   
[X,map] = imread(infilepath);
imagesc(X); 
axis off; hold on;
ax1 = gca; 
ax1 = axes ('Position',get(ax1,'Position'),'Color',...
    'none','XLim',[0 lx],'Ylim',[0 ly],'XTick',[],'YTick',[]);

The first line opens a file select box using the MATLAB® uigetfile command.

Parameters in the command are the type of the file (here: *.jpg), and the header

‘Select graphics file. . .’. The file-select box looks as follows:
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The output of the uigetfile command is the filename, which is stored in the

variable infile. The second output is the directory path of the graphics file, stored in

the variable path. Both these text strings are concatenated in the second command

by using strcat. The initial length lx and width ly scale of the image are set to

1,000. The imread demands the chosen file to be read.

After reading into the workspace, the image file is represented by two variables,

X and map. X contains the color information for each pixel and map the colormap

information. The dimension of X is 3; the content of the first and second entries

is equal to the corresponding pixel-numbers of the image. For RGB color images, the

third dimension is 3 because the color information is internally represented by three

color values. Altogether there is thus one R, one G and one B value for every pixel.

For those modelers wishing to work extensively with graphic files, it is

recommended to study the information in the MATLAB® help, the various types

of image representation and the various corresponding commands for input, output,

display and conversion. Using the imread command all standard type bitmap images

can be read by MATLAB®, such as ‘bmp’, ‘cur’, ‘gif’, ‘ico’, ‘jpg’, ‘jpeg’, ‘pbm’,

‘pcx’, ‘pgm’, ‘png’, ‘pnm’, ‘ppm’, ‘ras’, ‘tif’, ‘tiff’, and ‘xwd’. The complete list of

formats is found in the MATLAB® help.

With the imagesc command the map is displayed in the figure that was opened

before. The following final commands of the presented sequence manipulate the

outlook of the coordinate axes.

17.3 Geo-Referencing

When the map appears on the display, the user may like to have the real world

coordinates displayed on the axes. The real world coordinates are of course not

unique. Very often the origin is chosen in the lower left or upper left corner of the

Fig. 17.1 The MATLAB® file-select box for graphic files
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model region. However, when the model region is irregular, the choice may not be

appropriate any more. Another choice of coordinates refers to those from geodetic

projections. Numerous different projections are common in different countries

of the world, even within countries, and this is not the place to go into details.

The procedure which enables the user to have any real world coordinates available

on the display, showing the map, is known as geo-referencing.

There are various ways of geo-referencing. One way is to specify the coordinates

of two opposite corners. Often the positions for which exact coordinates are known

are not identical with the corners of the map. Then two positions within the image

can be chosen to which all others are related. There is one condition for the

procedure to work well, which is that the two selected points may not have the

same x- or the same y-coordinates. For this task an M-file is presented below.

For those with access to the MATLAB@ mapping toolbox, it may be more

convenient to work with the more general approach there. In the toolbox a 3 � 2

transformation matrixR is used, which enables the transformation for a tilted image

and for a geoid (see: http://www.mathworks.com/products/mapping/).

In the following commands, which continue the command listing from the

previous subchapter, the user chooses the image positions by mouse-click and

enters the real world coordinate values in an input box.

%------------------------ Geo-reference ---------------------------
h = gca; hold on;

h0 = text (0,-ly*0.05,'Set referencepoint 1','BackgroundColor'...
    ,'y','EdgeColor','red','LineWidth',2);
[x0,y0,but] = ginput(1);
h1 = plot (x0,y0,'k+');
coords = inputdlg({'horizontal','vertical'},'Field 
position',1,{'0','0'});

xx0 = str2double(coords(1)); yy0 = str2double(coords(2)); 
delete (h0);

h0 = text (0,-ly*0.05,'Set referencepoint 2','BackgroundColor',...
    'y','EdgeColor','red','LineWidth',2);
[x1,y1,but] = ginput(1);
h2 = plot (x1,y1,'k+');
coords = inputdlg({'horizontal','vertical'},'Field 
position',1,{'4000','3000'});

xx1 = str2double(coords(1)); yy1 = str2double(coords(2));
delete (h0,h1,h2);

mx = (xx1-xx0)/(x1-x0); xmin = xx0-mx*x0; xmax = xx1+mx*(lx-x1);
my = (yy1-yy0)/(y1-y0); ymin = yy0-my*y0; ymax = yy1+my*(ly-y1);
ax1 = axes ('Position',get(ax1,'Position'),...
    'Color','none','XLim',[xmin xmax],'Ylim',[ymin ymax]);

In the second command line, the text ‘Set reference point 1’ is displayed below

the bottom axis of the figure. The user is informed that a location has to be set on

the image by mouse-click. ginput is the MATLAB® command that delivers the

location of the mouse during a mouse click. The third command demonstrates its
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use. ginput stores the position in the current coordinate system in the variables x0

and y0. The input parameter 1 in the command tells that a single point is read. Note

that the command waits for user input, i.e. the execution of the M-file does not

continue before the user has not finished the task.

The following plot command places a black ‘ + ’ at the location on the display

where the mouse click occurred (see Fig. 17.2). inputdlg is the MATLAB®
command for an input dialog, which here asks the user to input the coordinates of

the marked location in the real coordinate system. The dialog box is shown in

Fig. 17.2, with the values ‘900’ and ‘1,000’, which have been entered by the user.

The input parameters of the command are easy to relate: ‘horizontal’ and ‘vertical’

are text strings associated with the input fields; ‘Field position’ is the header text.

Both input fields are located in a single line, and default values for the two variables

are ‘0’.

After the input dialog is closed, the coordinate values, chosen by the user, are

stored in the coords variable, containing two strings. As for further processing the

values (not the strings) are required, the strings have to be transformed into

numbers. The two str2double commands transform the strings to double precision

values. After the reference point 1 is read, the following delete command deletes

Fig. 17.2 Illustration of work with the geo-referencing example
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the text string h0, which is used in the sequel for other purposes. The following

commands (until the next delete) repeat the previous commands for reference

point 2. As these correspond exactly to the commands, outlined for reference point

1, they need not to be commented again.

In the final four lines the new coordinate system is computed and displayed on

the figure axes. The user may check that the linear transformation of coordinates,

gathered in the first two lines, is correct. The final command adds the real world

coordinates under XLim and Ylim axes properties. The specification of the 'Color'

property as 'none'ensures that the image remains visible.

17.4 Digitizing

In the example it is shown how some characteristic structures, which are visualized

on the map, can be made known to MATLAB® in real-world coordinates. That is

done once for a line (structure) and once for locations. The command sequence

within the M-file is basically the same for both tasks.

% --------------------------- Set Line ----------------------------
h = gca; hold on;
h0 = text (xmin,ymin-0.05*(ymax-ymin),'Set line: left mouse button:… 

set; right: last value','BackgroundColor','y',… 
'EdgeColor','red','LineWidth',2);

but = 1; count = 0;
while but == 1
    [xi,yi,but] = ginput(1);
    plot (xi,yi,'rx');
    count = count+1;
    xline(count) = xi; yline(count) = yi; 
end
line (xline,yline,'Color','r');
delete (h0);

In the second command, the information text for the user is displayed below the

bottom axis; the text is: ‘Set line: left mouse button: set; right: last value’. The user

is asked to set the locations of the polyline by mouse clicks on the left button. The

last input is indicated by a click on the right button instead of the left.

The main part of the command sequence is given in the while loop. Before the

loop is entered, the button indicator but is set to 1, and the point counter count to 0.

Within the loop, the first command questions the location of the click, storing the

results in the variables xi and yi. Moreover, the but variable is renewed,

depending on the mouse button that was used by the modeller. The left mouse

button is represented by a 1 in variable but, the right button by a 3.

The next instruction in the loop puts a red cross at the location selected by the

user. The counter is increased by 1 and the last coordinates are put into vectors

xline and yline, which represent the current polyline.
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The loop is ended when the right mouse button is used and the button variable

but contains a 3. Finally, after the loop, the polyline is plotted on top of the map (in

red color) and the info-text is deleted.

% --------------------------- Set Locations------------------------
h0 = text (xmin,ymin-0.05*(ymax-ymin),'Set locations: left mouse… 

button: set; right: last value','BackgroundColor','y',… 
'EdgeColor','red','LineWidth',2);

h = gca; hold on;
but = 1; n = 0;
while but == 1

  [xj,yj,but] = ginput(1);
    plot (xj,yj,'bo');
    count = count+1;
    xloc(count) = xj; yloc(count) = yj; 
end
delete (h0)

The procedure, described for a polyline, is repeated for the location set. There

are minor differences: instead of a red cross, a blue circle becomes the indicator on

the map, and there is no connecting line drawn finally.

An example result of digitizing work with the presented M-file is given in

Fig. 17.3.

–3

–2

–1

0

1

2

3

4

5

6

Fig. 17.3 Effect of digitizing

work on the map of an island

(shoreline in red, locations in

blue)
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17.5 MATLAB® Functions

In the accompanying software the ‘georef.m’ M-file has a different header than

most of the other M-files developed in the book. The header line

function [xx0,yy0,xx1,yy1,xline,yline,xloc,yloc] = georef ()

defines a MATLAB® function with name georef. The name appears on the right

side of the equals sign. As a rule, the file has the same name, with extension ‘.m’.
A function may be called from the MATLAB® command line or another M-file.

That is not the main point, as all M-files can be called that way. The difference lies

in the connection between calling module and function via both input- and output

parameters. When an M-file, which is not a function, is called, parameters and

variables in the called file are taken from the calling program. If there is a variable

in the M-file, it is taken from the pool of global variables, defined at an upper level

by the calling program. If it does not exist there, an error message results. In

MATLAB® such files are called scripts.
Functions are distinguished from scripts, because functions are working within

their own local data environment with variables that are locally defined only: local
variables. Of course, data can be transferred from and to the calling M-file. This is

done via a list of reference arguments. This point is best discussed by an example.

The ’georef.m’ file, included in the accompanying software, starts with the function

command, given above. On the left side of the equals sign, in square brackets, the

output parameters appear, i.e. those values that are computed or manipulated within

the M-file and which are needed for further processing in the calling module. There

are eight parameters in this example, starting with xx0 and ending with yloc.

Input parameters appear on the right side of the function name in round brackets.

In the example there are no such variables: the brackets are empty. Empty brackets

can also be omitted in m-language. The same parameter may appear both in the

input and in the output list.

The user has to make sure that the types of the variables in the function M-file

and in the calling command fit to each other. Not only the number of variables

needs to be the same, the sequence and the types of each of the corresponding

variables need to be identical as well. Exceptions from that general rule exist, but

are not discussed here. The interested MATLAB® user may have a look into the

help system under nargin, nargout. The example georef function could be called

by the command:

[A,B,C,D,xbound,ybound,xwell,ywell] = georef;

by which the variable xx0 of the function becomes A in the calling routine. In this

example command, all variables have different names within and outside of the

function. Amust be a double value, as xx0 is one, and xboundmust be a 1D array, as

the corresponding xline is a 1D array. The function georef can be called from the

MATLAB® command window, or from any M-file in which geo-referencing is
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needed. It may be useful in any M-file in which data from scanned graphs are

processed. It is no problem, if the variables in both files have different names:

georef can be called from both, each using its own names for the variables, as

explained. That’s the advantage of using functions in comparison to using scripts.

The majority of M-files accompanying this book are written as functions, i.e. the

first command is the function command without input and output parameters. In

most modules the first line is not necessary: the reader of this book will already have

recognized that the function line is omitted in the printed listings. The major

reason for using the first command in the files is to ensure the user that the right

program is called. Because function-name and file-name are identical, the module

can be recognized by the file name.

The function commands, printed in the book, are always necessary. Sometimes

the reason is that input and/or output parameters have to be specified. It is also

necessary to use the function command if there are subfunctions within the M-file.

Otherwise MATLAB® gives an error message, as can be demonstrated by the

following lines:

A = 1;
function demo (A)
A = 2; 
Error: A function declaration cannot appear within a script M-file. 

Subfunctions are functions that are called within an M-file. There have been several

examples already. Within the ‘pdepetrans.m’ file (see Chapter 4), there are calls to
three subfunctions:

function [c,f,s] = transfun(x,t,u,DuDx,D,v,lambda,…)
function u0 = ictransfun(x,D,v,lambda,sorption,k1,k2,c0,cin)
function [pl,ql,pr,qr] = bctransfun(xl,ul,…)

The calling rules, explained in this chapter, have already been applied there.
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Chapter 18

Compartment Graphs and Linear Systems

18.1 Compartments and Graphs

Seen from the process perspective, compartment models are the simplest type of

environmental models. This type of model is based on quite rigorous conditions.

There is probably no environmental system at all, where the conditions are fulfilled

exactly. Nevertheless, as a first guess and in order to give a rough idea about the

interactions between compartments, the simplicity justifies the application.

Compartment models consist of a network of compartments. An example

for such a network is given in Fig. 18.1, representing the terrestrial part of the

hydrological cycle.

There are four compartments to be modelled in the system of Fig. 18.1: inter-

ception, soil moisture, groundwater and surface water, visualized by rectangular

boxes. Systems of compartments are the simplest concept in environmental

modeling. A compartment is part of an environmental system which is spatially

not further resolved. The analogue in chemical engineering is the continuously

stirred chemical reactor. A compartment model can thus only be an approximation

of a real system if there are no steep gradients within the real environment.

Several processes induce fluxes between compartments, visualized in Fig. 18.1 by

arrows. Groundwater recharge is a flux from the soil to the groundwater, overland

flow from interception to the surface water compartment. There is interflow from

unsaturated soil moisture to the surface water compartment.

Rounded boxes illustrate processes connecting to the outer world, which is not

explicitly taken into account in the model. Ocean and atmosphere are compartments

within the hydrological cycle not being treated within the conceptual model

demonstrated by Fig. 18.1.

A system of compartments, shown in a flux diagram, can be represented by

a matrix. The adjacency matrix represents each compartment in one line and one

column. It has a one-entry at the corresponding position, if there is a flux from the

row compartment to the column compartment; otherwise there is a 0-entry.

The adjacency matrix for the system of Fig. 18.1 is:

E. Holzbecher, Environmental Modeling,
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A ¼
0 0 0 1

0 0 1 1

0 0 0 1

0 0 0 0

0
BB@

1
CCA (18.1)

which is directly related to the tabular representation of Table 18.1.

A more complex representation of the terrestrial part of the hydrological cycle is

given in Fig. 18.2. Vegetation and surface are included as new compartments,

interception is omitted. Several processes, which were neglected for simplicity in

Fig. 18.1, are included. For example, due to capillary rise there may be fluxes from

groundwater to the soil and from soil to the surface. Instead of surface water the less

general term ‘channel storage’ is preferred in this graph.

The adjacency matrix for the system of Fig. 18.2 is:

Evapotranspiration Precipitation

Runoff

Unsaturated
soil moisture

storage

Saturated
groundwater

Surface water
storage

Interception
storage

Compartment Fluxes across outer borders

Fluxes between environmental compartments

Fig. 18.1 Network of compartments for modeling the terrestrial part of the hydrological cycle

according to Freeze and Cherry (1979), modified by E.H.

Table 18.1 Tabular representation of connections within the compartment system of Fig. 18.1

Storage Interception Soil moisture Ground-water Surface water

Interception x

Soil moisture x x

Groundwater x

Surface water
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A ¼

0 1 0 0 1

0 0 1 0 1

0 1 0 1 1

0 0 1 0 1

0 1 0 1 0

0
BBBB@

1
CCCCA (18.2)

In MATLAB®, the graph corresponding to an adjacency matrix can be plotted

directly using the gplot command. The following command sequence demonstrates

how that is done. Figure 18.3 shows the graph, as given by MATLAB®.

Surface

Soil moisture

Groundwater

C
ha

nn
el

 s
to

ra
ge

Evaporation 
Transpiration

Precipitation

Runoff

interception

throughfall

overland flow

infiltration

percolation

baseflow

throughflow

Vegetation

floods

capillary rise

capillary rise

Leakage

stemflow
throughfall

channel precipitation

recharge

Fig. 18.2 Network model of a part of the hydrological cycle containing secondary fluxes (Ward &

Robinson, 1990, modified by E.H.)

Vegetation

Soil

Surface water

Ground water

Surface

Fig. 18.3 Graph,

representing a flux network

between compartments,

visualized using MATLAB®
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In A the adjacency matrix is specified. The vector xy contains the positions

representing the compartments in the plot. The '-o' string in the gplot-command

specifies how lines and nodes in the plot (vertices and edges in graph theory – see for
example: Chartrand 1977) are represented in the figure. The axis-command defines

the limits of the coordinate system. The final text calls set the text-strings near to the

corresponding edges.

In order to complete a compartment model, fluxes need a mathematical quantifi-

cation. Formulae for such fluxes are more or less complex, which determines

the degree complexity at this point. In the following sub-chapters fluxes of different

mathematical complexity will be treated, starting with the simplest linear case.

Holzbecher et al. (2005) describe some other properties of the adjacency matrix,

especially in relation to the feedback property within compartment systems. In

the following we examine linear systems as most simple mathematical examples of

compartment models. Finally, there is to mention that Avila et al. (2003) present
the ECOLEGO toolbox for radiological risk assessment, which is a MATLAB®
implementation based on the compartment idea. The model was used for modeling

the accumulation of radionuclides in the arctic Barents Sea (Dommasnes et al.

2001). A simplified version of the food chain as a graph is shown in Fig. 18.4

Harp seal

Zooplankton:
copepods, amphipods, euphausiids

Phytoplankton

Water

Polar cod

Fig. 18.4 Graph,

representing the foodchain in

the Barents Sea; simplified by

E.H. from Dommasnes et al.

(2001)
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18.2 Linear Systems

A first, most simple approach comprises component mass fluxes as linear functions

of some state variable of the involved compartments. The procedure is best

demonstrated on a sequence of lakes, connected by streams, as depicted in

Fig. 18.5. If some substance is introduced into the lake most upstream, it is subject

of mixing processes first. It is assumed that mixing is fast in comparison to

the residence time of the lake1. In the argumentation we assume all fluxes Qi and

volumes Vi to be known, and the concentrations ci being the unknowns to be

determined.

The concentration in the outflow of the lake is equal to the concentration c1. The
total mass leaving the lake per time is thus Q1c1(t), where Q1 denotes the mean

water flux. Neglecting further losses, that mass enters the next lake downstream.

Again the same argumentation can be used to set Q2c2(t) as the flux out of the

second lake into the third. The procedure can be extended to the entire system

of lakes. Following the principle of mass conservation (Chap. 2), one obtains

a differential equation for each lake. For the ith lake holds:

Vi
@ci
@t
¼ Qi�1ci�1 � Qici (18.3)

where Vi denotes the mean volume of the lake. In systems theory such a set-up

is called donor controlled, as the input for the following compartment (lake) is

determined by the state variable (concentration) of the previous compartment.

The contrasting term is recipient controlled, i.e. the flux is determined by the

concentration of the receiving compartment (for the lake sequence that approach

does not make sense). Each equation can be divided by Vi. Using matrix notation

the resulting equations can be written in one system, representing all lakes:

@

@t
c ¼ Bc (18.4)

with elements Bi�1;i ¼ Qi�1=Vi and Bi;i ¼ �Qi=Vi. The matrix B is a generalization

of the adjacency matrix. The off-diagonal locations of the zeroes in both matrices

Lake 1

Volume V1
Concentration c1

Lake 2

Volume V2
Concentration c2

Discharge Q1 Discharge Q2Recharge Q0

...

Fig. 18.5 Scheme for a sequence of lakes

1 Under steady state conditions (inflow Qi�1 ¼ outflow Qi) the residence time is given by Vi/Qi;

the notation is given in the text.
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coincide. Where the transpose of the adjacency matrix AT has unit entry, there is

a positive entry in B of (18.4), too. Opposite to the adjacency matrix there are

nonzero entries in the diagonal of the compartment matrix. In the donor-controlled

cases these entries are negative. The sign of the matrix entries corresponds to the

sign in the formulae given above, because the fluxes Qi denote absolute values and

are thus positive.With such compartment matrices general networks of connected

compartments can be described. Each upstream compartment corresponds with

a positive off-diagonal entry in the matrix. Each downstream compartment leads

to a negative contribution in the diagonal. Sidebar 18.1 outlines the idea how

a linear model can be used for indoor air quality modeling. Figure 18.6 depicts

a graph of the compartment concept used for the migration of radionuclides after

the fallout in the plant-soil environment. The concept, which was presented by

Amano et al. (2003), leads to a linear system of equations.

We note the compartment matrix for the system, shown in Fig. 18.2, as an

example. It looks as follows:

B¼

� QVSþQVCð Þ=VV 0 0 0 0

QVS=VV � QSSoþQSCð Þ=VS 0 0 0

0 QSSo=VS � QSoGþQSoCð Þ=VSo 0 0

0 0 QSoG=VSo �QGC=VG 0

QVC=VV QSC=VS QSoC=VSo QGC=VG 0

0
BBBB@

1
CCCCA

(18.5)

Fallout

Plant surface Plant interior

Fast comprtm. Slow comprtm.

Deep layer

Vegetation

Soil

Infiltration Infiltration

Resuspension Root uptake

Fixation

Deposition

Weathering

Translocation

Fig. 18.6 Graph for the migration of nuclides in the plant-soil environment after a fallout, as used

by Amano et al. (2003); modified by E.H.
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For a more general description it is assumed that there is an additional vector of

fluxes fi into the lakes (i for influx). Additional fluxes out of the system can be taken

into account.

There are connections to compartments, which are not included in the model, as

the atmosphere and the ocean in the examples represented by Figs. 18.1 and 18.2.

These fluxes are also donor controlled. For that reason they are best represented by

a matrix-vector product Eoc, with a diagonal matrix Eo(o for outflow). The mass

conservation equations within the network can then be expressed in the more

general form

Sidebar 18.1: Indoor Air Quality Modeling

Various compounds from different sources affect Indoor air quality. There are

random short-term on/off sources, like cigarettes for example, long-term on-

off sources like heaters, long-term steady-state sources, like moth crystals.

Sources may have a high initial emission rate, which is decreasing in time

with quite different rates. Wax or painted surface emissions decline within

hours, while others show modest decay. Sources for volatile organic

compounds (VOCs) may be located outdoors (air quality in vicinity of

industrial emissions, landfills or contaminated sites) or within the building

(combustion, human activities, surface emissions).

Problems of indoor air quality, due to VOCs, can be treated by linear

compartment models, as demonstrated by Bouhamra and Elkilani (1999). The

approach is presented here briefly. In analogy to (18.3) for each room the

concentration of VOC is described by two differential equations:

V
@c

@t
¼ Qcin � Qc� kaAci þ kdAcs þ q

@cs
@t
¼ kac� kdcs

where c denotes the concentration within the room, cin the inflow concentra-

tion, V the volume of the room, Q air inflow and outflow, and q the rate of the
sources within the room, if there is any. Two terms and the second differential

equation are introduced to account for sorption effects. Especially furniture

and soft tissues may act as temporary sinks of sources for the VOC due to ad-

and desorption processes. The corresponding ad- and desorption coefficients

are denoted by ka and kd, while cs denotes the sorbed concentration and A the

area of the reacting surface.

When the source is described by q ¼ kcðcsource � cÞ a set of two linear

equations results. The approach can be extended to a complete apartment,

floor or building, when the set of equations, given above, is formulated for a

network of room compartments:
(continued)
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@

@t
c ¼ Bcþ f i � Eoc (18.6)

where c denotes the vector of the state variables. The number of elements of c

corresponds thus with the number of compartments. In the matrix B the exchange

coefficients are gathered. E0 is a diagonal matrix, representing outflow into the

exterior, which is also proportional to the state variable. fi is a source/sink vector,

defining a constant sink or source for each compartment which is independent of

any state variable. For a compartment source the sign of the corresponding element

is positive, for a sink it is negative.

For the following we define:

C ¼ B� Eo (18.7)

For non-constant input vector fi the general solution is given as:

cðtÞ ¼ expðCtÞ~cþ expðCtÞ
ðt

0

expð�CsÞf iðsÞds (18.8)

Vi
@ci
@t
¼

X
jinflow

Qjcj �
X
koutflow

Qkck � ka;iAici þ kd;iAics;i þ qi

@cs;i
@t
¼ ka;ici � kd;ics;i

where the index i is used to indicate the ith room. Inflow and outflow terms

are extended in order to consider that several other rooms may contribute to

the total inflow and outflow. Sorption coefficients are assumed to be room-

specific, as the involved surfaces may be of different kind. Of course it would

also be possible to consider different types of surfaces with respect to sorption

in each room. With all these extensions the presented approach still leads to

a linear system connecting compartments, which can be solved by the

methods described in the second sub-chapter.

Some caution concerning the applicability of the approach should be

mentioned. Bouhamra and Elkilani (1999) use the model to determine sorp-

tion coefficients within an experimental test chamber with controlled in- and

outflow and an installed toluol source. For real apartments or buildings, the

number of uncontrolled parameters increases quite fast and surely limits the

model’s applicability for predictive purposes. However, the presented

approach can be useful in hypothetical studies exploring the relevance and

interaction of processes. In any case, the compartment approach is more

justified for gaseous environments, where mixing occurs fast in comparison

to an aquatic environment.
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(Jordan and Smith 1977; Walter and Contreras 1999). The expressions with

the exponential function need further explanation, as the arguments Ct and -Cs
are matrices. The exponential value of a square matrix is defined by the infinite

series:

expð�CtÞ ¼ I � Ctþ C2t2

2!
þ :::þ ð�1Þk C

ktk

k!
þ ::: (18.9)

which is the analogue to the infinite series of the exponential function for single

numbers. The powers of C in the higher order terms are results of matrix multipli-

cation. The result of the operation is also a matrix. The so computed matrix is

different from the element wise evaluation of the infinite series or the exponential

function. In MATLAB® the expression expðCtÞ can be programmed easily, as the

exponential function of a matrix is available. In m-code it is written using the matrix

exponential call expm (compare Sidebar 18.2):

The exp command in MATLAB® is reserved for the elementwise evaluation of

the exponential function. The vector ~c in formula (18.8) contains unknown

parameters, which have to be determined from boundary or initial conditions.

The computation of the general solution (18.8) is quite complex. It includes the

evaluation of an integral, which usually needs special analysis. We keep it simple

by assuming constant fi. For constant fi the solution of (18.6) can be written as:

cðtÞ ¼ expðCtÞ~c� C�1f i (18.10)

The result can be derived easiest by the application of the integration formula for

the exponential:

ðt

0

expðCsÞds ¼ C�1 expðCtÞ

which is common knowledge for single values, but also holds for matrices. C�1

is the inverse matrix of C. Thus, the formula (18.10) is applicable only for

regular matrices (for which an inverse exists). The first term in (18.10) is the

general solution of the problem @c=@t ¼ Cc, which mathematicians call

homogeneous. The second term in (18.10) is a particular solution of the differential

(18.6), representing the equilibrium solution with @c=@t ¼ 0, which can be verified

easily.
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For an initial value problem with the condition cðt ¼ 0Þ ¼ c0, it can be verified

that the solution is:

cðtÞ ¼ expðCtÞc0 � expðCtÞ � Ið ÞC�1f i (18.11)

For a zero source vector fi the special solution is:

cðtÞ ¼ expðCtÞc0 (18.12)

An example for the application of (18.11) is given by the following command

sequence:

Sidebar 18.2: MATLAB® Matrix Functions

Matrix functions are common functions that allow matrices as arguments.

There are several matrix functions directly implemented in MATLAB®:

Other matrix functions can be defined by using the MATLAB® ‘fun.m’
M-file or funm command. How it works is best explained by an example.

Instead of using expm (A) as command with matrix A one may write:

In the same manner sin, cos, sinh or cosh can be called with a matrix

argument. Unfortunately, the same procedure does not work for functions

with more than one argument. Thus the call

does not work. Maas and Olsthoorn (1997) propose the following nice trick,

which works by introducing two new M-files:
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Sidebar 18.3: Chains of Radionuclides

The safety analysis for a repository of radioactive waste includes the

modeling of the fate of radionuclides. In such a work it is necessary to look

at several radionuclides simultaneously, as these are connected in chains of

radionuclides. Let’s explain the general behavior here without going too

much into detail.

With a characteristic half-life the concentration of a mother nuclide

declines by radioactive decay. Instead of half-life it is convenient to work

with a decay coefficient, as introduced in Chap. 5. The differential equation

(5.3) with n ¼ 1 is the basis for mathematical modeling of the mother

nuclide. As a result of the radioactive decay a daughter nuclide is produced.

The daughter nuclide usually is unstable itself, i.e. it also decays with

a characteristic constant, which is expressed by the differential equation:

@cdaughther
@t

¼ lmothercmother � ldaughtercdaughter

The daughter nuclide itself is a mother nuclide for a next daughter nuclide.

Thus a chain of radionuclides can be identified. Let’s denote the concen-

trations within that chain by ci, where the index i indicates the ith member in

the chain. The entire system of species may thus be described by a system of

linear differential equations:

@

@t

c1
c2
c3
:::

0
BB@

1
CCA ¼

�l1 0 0 :::
l1 �l2 0 :::
0 l2 �l3 :::
::: ::: ::: :::

0
BB@

1
CCA

c1
c2
c3
:::

0
BB@

1
CCA

(continued)
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In the code the matrix exponential is evaluated only once, and stored as

matrix E. This is good programming practice, as for the computation of c in

the next command the term is needed twice. Such programming saves time,

which is surely not relevant in the simple example presented here, but it can be

crucial in an elaborated code, where in the interior of nested loops the same

command sequence is executed again and again. The term eye(size(C,1)) in

the expression for c denotes the unit matrix, represented in the mathematical

formulae by I.

In the final lines the eigenvalues and steady state values of the given system

are calculated and displayed in the figure. The plot resulting from the M-file is

shown in Fig. 18.7 (markers were added afterwards using the figure editor). The

reader may notice that the text command adds textstrings to the figure. The first

text places the ‘Eigenvalues’ text into the figure. Within the second text

command eigenvalues (see the following subchapter) are calculated, values

briefly written as @
@t c ¼ Bc, which is a special case of (18.6). The solution of

the system is given by (18.12) with C ¼ B. The eigenvalues of the matrix are

identical to the decay rates with negative sign. If source rates for the nuclides

are gathered in the vector f, the resulting system

@

@t
c ¼ Bcþ q

is still a special case of (18.6). The general solution is given by (18.11) with

C ¼ B and fi ¼ q.

An M-file for the simulation of the nuclide chain can be constructed in

close relation to the compartment simulation, described and listed in the text.

In the specification part of the M-file the decay rates, the initial concentration

and the source rates have to be defined. The matrix B is constructed by the

following commands:

The solution is evaluated using the exponential matrix function expm.

The complete code is included in the accompanying software under the

name “nuclides.m”
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(numbers) are converted to strings (command num2str), and the result is added

to the figure.

It was already mentioned above that the formula C�1f i represents the steady

equilibrium. That term is evaluated within the last text statement. The transient

development, depicted in the figure, shows that the steady state, obtained by the

evaluation of the formula, is approached. We are in the lucky position that the

steady state can be obtained in two ways: by evaluating an analytical formula and

by regarding the temporal development at long times. In many other models only

the second alternative is available.

The development of the transient simulation against the steady state (here

c ¼ (1.5, 0.5)T) does not become as obvious as in Fig. 18.7, if the time interval is

not sufficiently long. Note that there are systems which do not approach the

equilibrium, independent of the length of the time interval. In that case we speak

of an unstable equilibrium. It can also be checked by the sign of the biggest

eigenvalue (see below), whether the system converges towards a steady state, i.e.

if the equilibrium is stable or unstable. For the next sub-chapter keep in mind that in

the example the maximum eigenvalue is � �0.59, and thus negative.

The complete code is included in the accompanying software under the name

“comparts.m”
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1.5         0.5

time

1
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Fig. 18.7 Transient and steady state solution of a two-compartment model using MATLAB®
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Sidebar 18.4: Systems of Aquifers

Systems of aquifers or layers of permeable porous media in the subsurface are

often connected. If the flow within these layers is to be studied, one has to

take into account the connections. Using matrix notation for the entire setting

all layers can be represented in one model. If the porous matrix within each

aquifer is homogeneous one can note the following differential equation for

the ith layer:

r2hi ¼ hi � hi�1
KiHici�

þ hi � hiþ1
KiHiciþ

where hi denotes the piezometric head, Ki the hydraulic conductivity and Hi

the thickness, all for in the ith layer, whereas ci�and ci+ denote the

conductances of the overlying and underlying aquitards. In this notation we

have: ci� ¼ cði�1Þþ and ciþ ¼ cðiþ1Þ�. The entire system can be noted in

vector notation as:

r2h ¼ Ah

with matrix A, which for a three-layer system is given by:

A ¼
1

K1H1

1
c1�
þ 1

c1þ

� �
� 1

K1H1c1þ
0

� 1
K2H2c2�

1
K2H2

1
c2�
þ 1

c2þ

� �
� 1

K2H2c2þ

0 � 1
K3H3c3�

1
K3H3c3þ

0
BB@

1
CCA

Using the exponential and square-root matrix functions, the solution for

the system is given by:

hðxÞ ¼ expð�x
ffiffiffiffi
A
p
Þh0

for all positions x (Maas 1986). In the vector h0 for each aquifer the reference

heights at position x ¼ 0 are stored. The explicit formula can be programmed

easily:

In the same manner the formula of de Glee for semi-confined aquifers,

which was introduced for a single aquifer in Chap. 12, can be extended for

a system of aquifers. One may write

hðxÞ ¼ 1

2p
K0ðr

ffiffiffiffi
A
p
Þh0

(continued)
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18.3 Eigenvalues and Phase Space

Eigenvalues of a matrix allow a much deeper insight in the behavior of a system of

differential equations. For every square matrix C, the eigenvalues l are values for

which the system of linear equations:

Cx ¼ lx (18.13)

has a non-zero solution vector x. The vector x is called eigenvector for the

eigenvalue l.
Eigenvalues and eigenvectors as basic characteristics of matrices are discussed

in every textbook on linear algebra or matrix algebra (for example: Robbin 1995).

It is not the place here to recall properties of eigenvalues and eigenvectors; the

reader who is not yet familiar with these terms should refer to a textbook on linear

algebra. As MATLAB®’s origin is numerical linear algebra, the determination of

eigenvalues is one of the most basic tasks for which this software can be used.

In MATLAB® eigenvalues are calculated using the eig command, for example:

i.e. the matrix
1 2

3 4

� �
has the eigenvalues l1 ¼ �0.3723 and l2 ¼ 5.3723. The

eigenvalues of a diagonal matrix are the elements in the diagonal:

(Maas and Olsthoorn 1997) where K0 is the Bessel function, already

discussed in Chap. 12. h0 here is the element wise product of pumping rate

with the reciprocal of conductivity and thickness.

The MATLAB® command is simply:

More details are given by Maas (1986) and Maas and Olsthoorn (1997).

For an extension of the method for unsteady flow towards wells see Hemker

(1985) and Hemker and Maas (1987).
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For a square matrix with N rows and columns there are N eigenvalues, of which

some have to be counted several times. How many times an eigenvalue has to be

counted is not arbitrary, of course: we call it the order of the eigenvalue. In the

following example

there are the eigenvalues ‘1’ and ‘2’. ‘1’ has the order 2 and appears twice in the

MATLAB® output list. The unit matrix has only one eigenvalue (‘1’), but with the

order of N. Try the command:

The nice property that the number of eigenvalues, if counted according to their

order, is equal to N is only true, if complex valued eigenvalues are allowed. In

general, eigenvalues are complex numbers, which is no problem for MATLAB®, of

course:

The eigenvalues in this example are l1;2 ¼ 1� 2i, where i denotes the imaginary

unit i ¼ ffiffiffiffiffiffiffi�1p
(for complex numbers see also Chap. 15). Also, the eigenvectors can

be obtained from the eig command; see the MATLAB® help system for details.

The reader interested in the numerics of the calculation of eigenvectors should

consult a textbook on linear algebra.

The connection with linear systems of differential equations is that the eigenvalues

tell something about the behavior of the solutions. Negative real parts tell that

the unsteady solution is converging towards the equilibrium (which is given

by:ceq ¼ C�1f i, see the preceding subchapter). The equilibrium in that case becomes

a steady state, as demonstrated in Fig. 18.7. As both eigenvectors are negative in that

example, the solutions with increasing time tend towards the steady state.

The importance of eigenvalues for the analysis of the development of linear

systems is most apparent in phase diagrams. Phase diagrams, such as plots of the

phase space, are a tool for the visualization of the behavior of linear and nonlinear

systems. In a phase diagram two dynamic variables or derivations are plotted

against each other. The representation is unique if there are only two unknown

variables. For the matrix C, treated in a listing above, the procedure is performed

and demonstrated by the following commands:
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The result is a ‘flowpath’ in the phase space towards the steady state, a so-called

trajectory. In the phase space such lines are called trajectories. In order to obtain

a more illustrative figure, we chose several starting positions around the equilibrium

solution. One obtains:

The complete code is included in the accompanying software under the name

‘phasediag.m’.
The graphical output of the M-file is depicted in Fig. 18.8. The graphic was

extended manually by arrows in order to indicate the temporal direction of the

trajectories. A textbox was added close to the position of the stable equilibrium.

Figures similar to the one depicted arise, whenever two variables are plotted in

the vicinity of a stable equilibrium. Obviously, the equilibrium is approached

differently from different angles, which is a result of the different eigenvalues.

For the more seldom case of equal eigenvalues, the resulting figure looks differ-

ently, although the qualitative behavior remains the same. In case of an unstable
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equilibrium similar trajectories result, but the flow direction is opposite. It is left to

the reader to explore these different cases by modifying the ‘phasediag.m’ M-file.

Table 18.2 provides a classification of equilibria for a two variable system, based

on the real parts of the eigenvalues (see also: Hale and Koçak (1991)

Figure 18.9 provides a view of the stable oscillations that are obtained if both

eigenvalues are purely imaginary, i.e. if both eigenvalues have vanishing real

parts. The trajectories are circles around the origin, describing a cycling of the

corresponding variables: if variable 1 increases, variable 2 decreases and vice versa.

Turning points between these two situations are reached, when one of the variables

has a zero value and changes its sign.

For higher values of N the characterization of stable and unstable situations can

easily be extrapolated from the simple N ¼ 2 case. If there is at least one eigenvalue

with a positive real part, the equilibrium is unstable. If real parts of all eigenvalues

are negative, there is convergence towards a stable solution. Degenerate situations,

in which there is at least one purely imaginary eigenvalue, can be interpreted

analogously to the five lower rows in Table 18.2.

For 2D phase space calculation and visualization, the MATLAB® M-file

‘pplane.m’ by Polking is available on the web (http://math.rice.edu/~dfield/). It

sets up a graphical user interface (GUI) and has several other convenient features.

The manual for the program is available as a book (Polking 2004). We demonstrate

an application example in Chap. 19.

0.5 1 1.5 2 2.5
-0.5

0

0.5

1

1.5

variable 1

variable 2

phase diagram

stable
equilibrium

Fig. 18.8 Phase diagram for a simple compartment model using MATLAB®
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Table 18.2 Classification of equilibria stability according to eigenvectors, for N ¼ 2

Eigenvalues l1, l2
Matrix of equivalent

reference system

stable (s)

unstable (u) Comment

Reðl1Þ<0;Reðl2Þ<0 �1 0

0 �1
� �

s Hyperbolic sink

Reðl1Þ>0;Reðl2Þ>0 1 0

0 1

� �
u Hyperbolic source

Reðl1Þ>0;Reðl2Þ<0 1 0

0 �1
� �

u Hyperbolic saddle

Reðl1Þ<0; l2 ¼ 0 �1 0

0 0

� �
s Equilibria for all c2, c1 ¼ 0

Reðl1Þ>0; l2 ¼ 0 1 0

0 0

� �
u Equilibria for all c2, c1 ¼ 0

l1 ¼ l2 ¼ 0 2 eigenvectors 0 0

0 0

� �
s All locations equilibria

l1 ¼ l2 ¼ 0 1 eigenvector 0 1

0 0

� �
u Equilibria for all c1, c2 ¼ 0

Reðl1Þ ¼ Reðl2Þ ¼ 0 0 1

�1 0

� �
s Oscillations
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Fig. 18.9 Phase diagram for the reference matrix of two purely imaginary eigenvalues,

representing oscillations around the equilibrium; obtained using phasediag.m file with reference

matrix from Table 18.2, zero right hand side and equidistant start positions on the c2-axis

Eigenvalues and Phase Space 345



References

Amano H, Takahashi T, Uchida S, Matsuoka S, Ikeda H, Hayashi H, Kurosawa N (2003)

Development of a code MOGRA for predicting the migration of ground additions and its

application to various land utilization areas. J Nucl Sci Eng 40(11):975–979

Avila R, Broed R, Pereira A (2003) ECOLEGO – toolbox for radiological risk assessment. In:

IAEA, Proceedings international conference on protection of the environment from Ionizing

radiation, Stockholm, pp 229–232. http://www.facilia.se/ecolego/

Bouhamra W, Elkilani A (1999) Development of a model for the estimation of indoor valitile

organic compounds concentration based on experimental sorption parameters. Environ Sci

Technol 33:2100–2105

Chartrand G (1977) Introductory graph theory. Dover Publ, New York, p 294

Dommasnes A, Christensen V, Ellertsen B, Kvamme C, Melle C, Nøttestad L, Pedersen T,

Tjelmeland S, Zeller D (2001) An ECOPATH model for the Norwegian Sea and Barents
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Chapter 19

Nonlinear Systems

Linear systems, as examined in the previous chapter, represent the simplest type of

models. But linear models are often too simplistic from the process aspect. The set-

up of a linear model is often motivated by the fact that few characteristics,

parameters or variables, of the system have been observed and that few data are

available to check the model approach, whatever that may be. This chapter

describes models slightly more complex than the linear ones. It is demonstrated

that even simple nonlinear terms in the differential equation open the door to

a much greater variety of phenomena than experienced by the work with linear

systems.

There are several mathematical textbooks on nonlinear systems of ordinary

differential equations. Jordan and Smith (1977) provide a wide range of examples,

not only for environmental systems. Hale and Koçak (1991) focus on bifurcations in

nonlinear systems, but with hardly a connection to environmental sciences. For

MATLAB® users the book of Polking (2004) is highly recommended, because the

accompanying software is extremely user-friendly and can be obtained via internet.

19.1 Logistic Growth

The linear differential equation @c=@t ¼ rc for a single species describes exponen-
tial growth, for r>0. With reference to discussions on earth’s population this is

sometimes referred to as Malthus1ian growth. However, there is no environmental

system in which any species can grow infinitely. The model, described by the

simple linear equation above, can thus be valid for a limited range of parameter

or variable values only. If the model is to be valid for an extended parameter range,

1 Thomas Robert Malthus (1766–1834), English demographer and political economist.

E. Holzbecher, Environmental Modeling,
DOI 10.1007/978-3-642-22042-5_19, # Springer-Verlag Berlin Heidelberg 2012
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the equation needs to be extended itself. The basic formulation for the development

of a biological species is the logistic growth equation:

@c

@t
¼ rc 1� c

k

� �
¼: f ðcÞ (19.1)

with growth rate r and carrying capacity k. For populations we maintain to use the

symbol c, which was introduced in previous chapters (with an eye on concentrations
to be described). The term ’logistic growth’ was introduced by Verhulst2, who

studied the equation already in the first half of the nineteenth century. For small

populations the first (linear) rc term is dominant, describing first order growth r>0.

For high concentrations the population approaches the carrying capacity k,
while the temporary growth rate r 1� c=kð Þ approaches zero. Equation (19.1) is

a nonlinear differential equation. It has an analytical solution:

cðtÞ ¼ c0k expðrtÞ
kþ c0 expðrtÞ � 1ð Þ (19.2)

which can easily be implemented using MATLAB®. Here an example command

sequence for parameter input, execution and graphical output:

%---------------------- input ---------------------------------
T = 10; % maximum time
r = 1; % rate
kappa = 1; % capacity
c0 = 0.01; % initial value

%---------------------- execution ---------------------------------

t = linspace (0,T,100);
e = exp(r*t);
c = c0*kappa*e./(kappa+c0*(e-1));

%---------------------- graphical output -------------------------

plot (t,c); grid;
xlabel ('time'); legend ('population'); 
title ('logistic growth');

The complete code is included in the accompanying software under the name

“logistic.m”.
The graphical output of the M-file is given in Fig. 19.1, showing the increase of

the population from an initial value towards a maximum value, at which the

carrying capacity of the system is reached.

Also for nonlinear equations it makes sense to examine equilibria, as introduced

in Chap. 18. The logistic equation has two equilibria that are obtained by finding

2 Pierre François Verhulst (1804–1849), Belgian mathematician.
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values c, for which the left hand side of (19.1) vanishes: f(c) ¼ 0. The population

c ¼ 0 is an unstable equilibrium, while c ¼ k is stable. Small deviations from the

unstable equilibrium, in the example c0 ¼ 0.01, lead to increased deviations at

later times. The user may check easily for the given parameters that an initial value

near to the stable equilibrium of c ¼ 1 produces an almost constant system

development.

The stability of equilibria can be examined by the use of the derivative. For

a negative value of the derivative the system is stable, while it is unstable for

a positive derivative. For the logistic (19.1) there is @f=@c ¼ r 1� 2c=kð Þ, which is
positive at the origin but negative for c ¼ k. In the following we treat systems

of equations instead of single equations. For systems the eigenvalues of the Jacobi-

matrix take the just described role of the derivative and have to be examined in

order to check the equilibria for stability.

There is almost no branch of environmental modeling in which nonlinear

systems do not appear. In ecological sciences ecosystems are in the focus with

interactions between species populations. The structure of a foodweb model is often

visualized in a compartment graph, in the way hydrological systems were

represented in Figs. 18.1 and 18.2. An example of a foodweb graph is depicted in

Fig. 19.1. Species or groups of species are represented by compartments. Arrows in

foodweb graphs indicate the direction of the food-chain; in the example lake trouts

consume forage fish, which themselves live on zooplankton.

In the example graph, representing a part of the Lake Michigan aquatic eco-

system, there are four trophic levels. Detritus and phytoplankton are the lowest

level and lake trout alone represents the highest level in this model. Most modeling

efforts of lake eco-systems end up with less than five or six trophic levels. Foodweb

structures can be represented by an adjacency matrix and visualized using the

MATLAB® gplot command, as shown in Chap. 18.

In the sequel some simple foodweb models are examined as examples for the

treatment of nonlinear systems by MATLAB®. Analytical solutions can be

obtained for simple networks and interactions only, as for example for the logistic

growth (19.1). Therefore, numerical methods will be used for the solution for more

complex set-ups. First we study species of the same trophic level, like in the forage

fish or the zooplankton compartments of Fig. 19.2.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

time

population

logistic growth

Fig. 19.1 Logistic growth; Computed form analytical solution using MATLAB®
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19.2 Competing Species

More specifically we are interested in the development of two species that are

competing for exactly the same resources. For very low populations the growth

rates are given by the specified values r1 and r2. For increased populations the

growth rate is reduced by a term which takes into account the reduced foodstock of

both species. If the foodstock is reduced by Dh, the following system of two

differential equations can be used to describe the temporal development:

@c1
@t
¼ c1 r1 � a1Dhð Þ

@c2
@t
¼ c2 r2 � a2Dhð Þ

9>=
>; with Dh ¼ h1c1 þ h2c2 (19.3)

The system of (19.3) can be re-written in analogy to formulation (19.1):

@

@t

c1
c2

� �
¼

r1c1 1� c1
k1

� �
with k1 ¼ k10

1þ lc2=c1

r2c2 1� c2
k2

� �
with k2 ¼ k20

1þ l�1c1=c2

8>><
>>:

(19.4)

with capacities ki0 ¼ ri=aihi for single species cases and the dimensionless system

parameter l ¼ h2
h1
¼ r2

r1
a1
a2

k10
k20

(compare: Richter 1985). When the ratios ri=ai are
equal, the capacities are related by the formula: k10 ¼ lk20. If species 1 is more

efficient than species 2 concerning resource consumption, it holds: l<k10=k20;
while the opposite inequality holds if species 2 is more efficient.

Lake Trout

Bloater
Chub

Sculpin Alewife
Rainbow

Smelt

Benthos
diporeia

Herbivorous
Zooplankton

Bythotrephes

Nysis

Detritus Phytoplankton

Forage Fish

Zooplankton

Fig. 19.2 Example of a

foodweb model; for part of

the Lake Michigan aquatic

ecosystem
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The following M-file explores the situation in a phase diagram. As example

a situation is studied in which the parameters are non-dimensionalized (Murray

2002), i.e. in which rates and equilibria are set to unity.

T = 1000; % maximum time
r = [1; 1]; % rates
e = [1; 1]; % equilibria
lambda = 0.2; % lambda parameter
c0 = [0.1; 0.1]; % initial concentrations

%----------------------execution-----------------------------------

options = odeset('AbsTol',1e-20);
[t,c] = ode15s(@CS,[0 T],c0,options,r,e,lambda);

%---------------------- graphical output --------------------------

plot (c(:,1)',c(:,2)'); hold on;
plot (e(1),0,'s'); plot (0,e(2),'s');
legend ('trajectory');
xlabel ('species 1'); ylabel ('species 2');
title ('competing species');

%---------------------- function ----------------------------------

function dydt = CS(t,y,r,e,lambda)
dydt = zeros(2,1);
k = [e(1)/(1+lambda*y(2)/y(1)); e(2)/(1+y(1)/y(2)/lambda)];
dydt = r.*y.*(1-y./k);

The complete code is included in the accompanying software under the name

“compspec.m”
Various trajectories (see Chap. 18.3) for the same starting populations, but with

varying parameter l, are shown in Fig. 19.3. Obviously, for almost all l-values the
solutions at coordinates (0,1) or (1,0) are approached.

In both equilibria cases one of the species becomes extinct. As both equilibria

for single species are identical, the marginal parameter value is l ¼ 1. For l > 1

species two uses resources more efficiently and species 1 becomes extinct.

For l < 1 the fate of the species is reversed. In Fig. 19.3 the two positions in the

phase space, which represent these two situations, are marked by ’species 1’ and

’species 2’.

In fact the two mentioned states are equilibria, because they fulfil the system

(19.4) for vanishing left hand side, i.e. for zero time derivatives. A refined exami-

nation of the two-equations- system (19.4) reveals that there are three equilibria in

the competing species model, which are given by:

0

0

� �
;

0
r2

a2h2

 !
;

r1
a1h1
0

 !
(19.5)
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Even more equilibria are obtained for the degenerate case of parameter values, in

which both brackets on the right side of (19.3) vanish. That condition is

characterized by the equality r1=a1 ¼ r2=a2, and all positions on the line, given

by h1c1 þ h2c2 ¼ r1=a1, become equilibria. The second and third equilibria repre-

sent those states in which one of the species dominates over the other, and the latter

becoming extinct.

The mathematical analysis offers more than just the number of equilibria and

their position in the phase space. Also the behavior of the system concerning the

equilibria can be determined by analytical means. The crucial condition includes

the eigenvalues, as outlined in more detail in the sequel.

The behavior of the system at the equilibria can be analyzed by the examination

of the Jacobi3-matrix at the equilibrium position. For a (multicomponent) vector

function f with components fi, depending on the variables cj, the Jacobi matrix is

given by

Df :¼ @fi
@cj

� �
i;j¼1:::N

(19.6)
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Fig. 19.3 Trajectories in phase space for the competing species model; l∈{0.2, 0.25, 0.4, 0.5,

0.667, 0.8, 0.9, 1, 1.11, 1.25, 1.5, 2, 2.5, 4, 5}; use the corresponding M-file for other input values

3 Carl Gustav Jacob Jacobi (1804–1851), German mathematician.
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where i denotes the row index, and j the column index. The Jacobi matrix changes

with the variables ci and thus with time t, as the c’s are functions of t. The Jacobi
matrix depends on the position in the phase space where it is evaluated. Df is

a generalization of the derivative for multi-valued functions, depending on several

variables.

For the competing species system (19.3), the function f is given by:

fðcÞ ¼ fðc1; c2Þ ¼ f1ðc1; c2Þ
f2ðc1; c2Þ

� �
¼ c1 r1 � a1Dhð Þ

c2 r2 � a2Dhð Þ
� �

(19.7)

All four expressions in (19.7) are different writings of the same thing.

MATLAB® users, familiar with vector notation, probably prefer the most compact

writing on the left. As the reader may easily verify, the Jacobi matrix at location

(c1,c2) is given by:

Dfðc1; c2Þ ¼ r1 � a1 2h1c1 þ h2c2ð Þ �a1h2c1
�a2h1c2 r2 � a2 2h2c2 þ h1c1ð Þ

� �
(19.8)

For c1 ¼ c2 ¼ 0 the Jacobi matrix is diagonal with r1 in the upper-left position

and r2 in the lower right. The eigenvalues of the diagonal matrix are given by

two reaction rates r1 and r2 (compare Chap. 18). These are always positive; the

eigenvalues are positive, indicating that the equilibrium at zero concentrations is

unstable.

At the other two equilibrium positions the Jacobi matrices look as follows:

Dfðr1=a1h1; 0Þ ¼ �r1 �h2r1=h1
0 r2 � a2r1=h1

� �
Dfð0; r2=a2h2Þ

¼ r1 � a1r2=a2 0

�h1r2=h1 �r2

� �
(19.9)

The eigenvalues for these two triangular matrices can be read directly from the

diagonal:

l1 ¼ �r1 at (r1=a1h1; 0Þ
r1 � a1r2=a2 at (0,r2=a2h2Þ

�
l2 ¼ r2 � a2r1=a1 at (r1=a1h1; 0Þ

�r2 at (0,r2=a2h2Þ
�

(19.10)

The eigenvalues are real in all cases, because all parameters are real numbers.

The stability depends on the sign of both eigenvalues. The equilibria are stable if

both eigenvalues are negative. As the rates r1 and r2 are positive, there remains only

one condition. Stability is equivalent to the conditions:

r1
a1

<
r2
a2

at (r1=a1h1,0) and
r1
a1

>
r2
a2

at (0,r2=a2h2Þ (19.11)
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The Jacobi-matrix at ðr1=a1h1; 0Þ has negative eigenvalues for r1=a1>r2=a2 and
positive eigenvalues if the inequality holds in opposite direction. For the Jacobi-

matrix at ð0;r2=a2h2Þ the conditions are exactly reversed. The analysis shows that

the result, obtained above for the example values from a phase space analysis, is

generally valid.

For the degenerate case with r1=a1 ¼ r2=a2 one eigenvalue becomes zero; as the

other one is negative the equilibrium is still stable. However, it needs to be noted

that all positions on a line are also equilibria in that case. The eigenvalues for those

points are � a1h1c1 and � a2h2c2 and thus also negative. All these equilibria are

stable.

In order to visualize this in the phase space, various trajectories have been

plotted as described above. Input parameter within the ’compspec.m’were specified
as follows:

T = 1000;                % maximum time
r = [1; 1];              % rates
e = [1; 1];              % equilibria
lambda = 1.;             % lambda parameter

Several starting positions were chosen and the M-file was run several times with

the hold on option being active. As shown in Fig. 19.4 all trajectories are straight

lines, which end at the diagonal that connects the upper left and the lower right

corners of the plotted region. Using the mathematical analysis from above it is easy

to verify that this line represents all equilibria (except zero). The illustration allows

the obvious conclusion that the equilibria on the line are stable, which we already

know from the eigenvalues.
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Fig. 19.4 Trajectories in the phase space for the degenerate case l¼0 of the competing species

model; all equilibria on the diagonal line (from upper left to lower right) are stable

354 19 Nonlinear Systems



In order to improve the graphical representation of the phase space, an arrow

field is added, illustrating the direction and the velocity along the trajectories. The

option for such an extension is implemented in the ’compspec.m’ file. In the input

part several option parameters are added:

gquiv = 20;              % arrow field plot; 
value for no. of arrows in 1D

xmin = 0; xmax = 1;      % x- interval for arrow field plot
ymin = 0; ymax = 1;      % y-     "     "    "     "     "
scale = 2;               % scaling factor for arrows

In the output part of the file find the following instruction block:

if (gquiv)
[x,y] = meshgrid 
(linspace(xmin,xmax,gquiv),linspace(ymin,ymax,gquiv));

    dy = zeros(gquiv,gquiv,2);
for i = 1:gquiv 

for j = 1:gquiv
            dy(i,j,:) = CS(0,[x(i,j);y(i,j)],r,e,lambda);

end
end

    quiver (x,y,dy(:,:,1),dy(:,:,2),scale);
end

With the meshgrid command a regular mesh is constructed, which has already

been demonstrated in previous chapters. The array dy is initialized with two values

for each mesh node. In the interior of the for loops these two values, which

represent the time derivatives of both variables, are calculated. The final quiver

request initiates the plot of the arrow field. The scale parameter is related to the

length of the arrows. The outcome of the M-file with the given values can be

recognized in Fig. 19.4.

The described situation of non-coexistence in an ecological system can be

observed in reality, especially in aquatic eco-systems, where disfavored species

have no chance to emigrate to places with more favourable conditions. One of the

such catastrophes happened in Lake Victoria, when the nile perch was introduced

into Africa’s biggest lake in 1960 (Goldschmidt 1998). At the top of the food-chain

the single predator gradually replaced more than one hundred species of predators.

As a result, the complete foodweb changed. The prawn, which was rare before the

appearance of the Nile perch, replaced several detritus-eating species, the sardine

replaced more than 20 species of zooplankton-eating fish. Algae-grazing fish

disappeared without replacement. This radical change of the species population in

the lake may have contributed to increased blue-green algae blooms and eutrophi-

cation, which has been observed hitherto. While the catch of Nile perch strongly

increased after its introduction, the overall productivity of the lake was reduced by

80% in 1984, compared to pre-1960 levels. The consequences not only concerned

the aquatic system. Problems arose in communities around the lake, which were

strongly dependent on the catch. Ecological problems worsened the situation in

addition to economical problems. Large perch is oily and cannot be dried in the sun.
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Fish preservation by smoking over wood led to a decline in the stock of trees.

The spread of the infectious and often lethal bilharzia disease can also be related to

the introduction of the Nile perch (Murray 2002).

19.3 Predator–Prey Models

Another type of model describes the development of populations of a predator and

its prey. The model covers two trophic levels. The simplest approach goes back to

publications in the 1920s of the last century. In 1926, Volterra4 tried to explain the

observation of oscillatory fish catches in the Adriatic Sea with the set of two

ordinary differential equations; the first for prey population c1, the second for the

predator concentration c2:

@c1
@t
¼ c1 r1 � a1c2ð Þ

@c2
@t
¼ c2 a2c1 � r2ð Þ

(19.12)

with positive parameters r1, r2, a1 and a2.
While Lotka5 developed the same approach for a system of chemical species

(Lotka 1956) Volterra was the first who applied the system to an ecological problem

(Murray 2002). Often the term Lotka-Volterra-models is found. The assumptions

that lead to the system (19.12) are rather simplistic. Without the predator-prey

interaction the prey population would increase exponentially with rate r1,
accompanied by the exponential decrease of the predator population with rate r2.
However, it is assumed that for the overall behavior the interaction is crucially

relevant. Prey consumption and predator population growth, both increase or

decrease with c1 and c2, which is expressed by the two terms including the product

c1c2. In the corresponding M-file the MATLAB® ode15s solver is again utilized

for the calculation of the ordinary differential equations. The M-file in large parts

coincides with the previous examples, so that few comments are necessary only.

4 Vito Volterra (1860–1940), Italian mathematician and physicist.
5 Alfred James Lotka (1880–1949), Austrian-US-American mathematician, chemist and ecologist.
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T = 100;                 % maximum time
r = [.5; .5];            % single species rates
a = [1; 1];              % alpha parameter
c0 = [0.1; 0.1];         % initial population density

%---------------------- execution ---------------------------------

options = odeset('AbsTol',1e-20);
[t,c] = ode15s(@PP,[0 T],c0,options,r,a);

%---------------------- graphical output -------------------------

subplot (2,1,1);
plot (c(:,1)',c(:,2)'); hold on;
legend ('trajectory');
xlabel ('predator'); ylabel ('prey');
subplot (2,1,2);
plot (t,c(:,1)','-',t,c(:,2)','--');
legend ('predator','prey');
xlabel ('time');

%---------------------- function ----------------------------------

function dydt = PP(t,y,r,a)
dydt = zeros(2,1);
dydt(1) = y(1)*(r(1)-y(2)*a(1));
dydt(2) = y(2)*(-r(2)+y(1)*a(2));

The complete code is included in the accompanying software under the name

“predprey.m”
In the output section the subplot command is used to place two plots with

different coordinate systems in the same figure. subplot can be used to place sub-

plots in one or more rows or columns (like a matrix) within the same MATLAB®
figure. The command has three integer parameters. The first integer specifies the

number of rows, the second the number of columns, the third gives the ’serial

number’ if sub-plots are counted along the rows first, starting with the uppermost

row. See the MATLAB® help for some instructive examples. Here two plots are

drawn, one above the other; the upper containing the phase space plot, the other a

visualization of the population time series. The output of the M-file with the data set

printed above is shown in Fig. 19.5.

Both sub-plots show the characteristic oscillations of predator and prey

populations. When prey populations increase, the predator finds favourable

conditions, which leads to an increase of the predator population, too. With

increasing predatory stress the situation changes gradually for the prey, leading to

a decline of prey population, which finally results in unfavourable conditions for the

predator and a corresponding decline of the population. When the situation

becomes favourable for the prey, the entire loop starts again. The oscillations can

be observed in the second subplot, where the oscillating behavior of the prey

population is followed closely by the predator population curve.

The corresponding figure in the phase space is a closed curve, as depicted in the

upper subplot. The populations follow that curve in anti-clockwise direction. Along
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the lower boundary the predator population remains small, while the prey has

favourable conditions. Then, the number of predators starts to increase, which at

the rightmost positions leads to a decline of the prey. With declining prey the

predator population can increase only for a limited time, until, at the uppermost

position of the closed curve, these decline, too. Finally, near the origin the low

abundance of predators makes the prey population rise again.

The result, obtained by the numerical methods included in MATLAB®,

coincides with findings from analytical methods for the simple and much examined

classical Lotka-Volterra system. In fact, it is easy to see that there are two equilib-

rium solutions:

c1 ¼ 0

0

� �
and c2 ¼ r2=a2

r1=a1

� �
(19.13)

The Jacobi-matrix can be used to examine the stability of the equilibria. Simple

calculations yield that the eigenvalues of the Jacobi-matrix at c1 are r1 and –r2. As
the second eigenvalue is real and positive, the equilibrium is unstable. At c2 the

eigenvalues are pure imaginary � i
ffiffiffiffiffiffiffiffi
r1r2
p

, which indicates a stable equilibrium

with oscillations around the equilibrium in its vicinity. In the phase space there are

circular motions around the equilibrium. The reader may explore this using the

MATLAB® M-file by changing the initial value c0.

The solutions in the phase space can also be obtained by integration (Richter

1985, Murray 2002). In non-dimensional form they are given implicitly by the

equation:

lnðc1Þ � c1 ¼ r1
r2

lnðc2Þ � c2ð Þ þ c0 (19.14)
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Fig. 19.5 Example output of

a predator-prey model
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The calculation and visualization of such curves requires also numerical means,

which are in most cases more sophisticated than the presented solution method

using numerical MATLAB® solvers for ordinary differential equations.

In practical applications it has been observed that the classical Lotka-Volterra-

system has several drawbacks. The simplistic assumptions have already been men-

tioned. Nevertheless, it is a jumping-off place for more realistic models, which are

obtained by extensions of the original system (19.12). Such extensions have been

proposed in the literature. Murray (2002) provides an overview. Themost nearby idea

is to use a logistic growth term, as in (19.1), instead of the linear 1.order term.

In the presented approach is quite easy to implement extensions of the Lotka-

Volterra equations. All that needs to be done is to extend the formulae in the

function of the ’predprey.m’ M-file. If additional parameters are required, these

should be added in the input specifications part of the M-file and considered as

formal parameters in the function call. Using various starting positions in following

runs, it is possible to examine, whether an equilibrium is stable or unstable or if a

limit cycle exists.

For 2D problems, i.e. settings with two variables, the ’pplane.m’ model can be a

very useful tool for the MATLAB® user. Briefly, we present an example applica-

tion for the phase space M-file ’pplane.m’, which was already mentioned in Chap.

18. The M-file is available from the web (http://math.rice.edu/~dfield/).

Figure 19.6 depicts the set-up and the output for a predator pray problem, for which

we used the MATLAB® version 7 file: ’pplane7.m’. Four windows are depicted. In
the ’Setup’ window the differential equations are specified. There are edit-boxes for

the input and change of parameters as well as for the basic settings concerning outlook

and axes of the display window. For the example case we did not edit the system of

differential equations, but chose the ’predator prey’ entry from the ’Gallery’ menu.

The display window shows the phase space. A field of grey arrows as a first

visualization depicts the trajectories. Blue lines for trajectories appear by mouse

click within the displayed phase space where the cursor location is taken as starting

value for a trajectory. The red dot, indicating an equilibrium location, appears when

the corresponding sub-menu entry ’Find an equilibrium point’ under ’Solutions’ is

selected. The user has to click into the displayed phase space and to select a starting

point for the search.

When an equilibrium position has been found, some of its characteristics are

shown in a separate small window with text output, depicted on the right side of

Fig. 19.6. The exact position, the corresponding Jacobi matrix, the eigenvalues and

eigenvectors can all be read from the window. There is an additional button reading

’Display the linearization’. After pressing that button, the linearized system is

shown in another window named ’Linearization’, into which trajectories are plotted

after a mouse click (Fig. 19.6). In the example we see circles around the origin. The

pattern of the trajectories of the linearized system corresponds with the last row of

Table 18.2, with non-zero entries only in the off-diagonal of the matrix and two

purely imaginary eigenvalues.

The user may further explore the ’pplane7.m’ program by her/himself. There are

numerous new entries in the menu, which are added to the MATLAB® figure
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editor. In the ’Solutions’ there is the option to ’Show nullclines’. Nullclines are

curves along which only one of the two functions becomes zero. Under the ’Edit’

menu several options allow to erase unwanted graphical objects or to include text.

The ’Solver’ options, under menu ’Options’, may be relevant to obtain better

trajectories, especially closed orbits.

19.4 Chaos (Lorenz Attractor)

Finally, in this chapter we want to give a short impression of a more complex behavior

than shown in the previous sub-chapters. Even quite simple nonlinear systems may

show such behavior which we nowadays call chaotic in the scientific literature.

Fig. 19.6 Example windows of ’pplane.m’ (Polking 2004) for the predator-prey model (see text)
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In the first publication on the topic, Lorenz (1963) dealt with the following

relatively simple system:

u1
u2
u3

0
@

1
A ¼ s u2 � u1ð Þ

ru1 � u2 � u1u3
u1u2 � bu3

0
@

1
A (19.15)

Lorenz was concerned with convective motions in the atmosphere. Facing the

problem of the limited capacity of computers at that time, he had set up a very

simplified model with which he hoped to explain real motions of air masses. The

system (19.15) has three unknown variables u1, u2 and u3 and three parameters: the

Prandtl number s, the Rayleigh number r and b.
What Lorenz discovered was a completely new behavior of a nonlinear system,

which had not been known before that time. The trajectories did not converge to a

stable equilibrium position or an oscillating orbit neither did they run to infinity.

Within a limited region the trajectories showed a chaotic behavior. The shown

phase space picture is now well-known and the system which it represents is called

the Lorenz attractor.
The Lorenz attractor, depicted in Fig. 19.7, is produced by the following

command sequence:

sigma = 16; rho = 45.92; beta = 4;  % parameters
N = 1000;         % no. of time steps
span = 0.05;      % inner iteration time span
AbsTol = 1.e-5;   % absolute tolerance for ODE solver
RelTol = 1.e-5;   % relative tolerance for ODE solver

H = figure; set(H,'DefaultLineLineWidth',1.0);
options = odeset('RelTol',RelTol,'AbsTol',ones(1,3)*AbsTol);
u0 = [1;1;1];
for i = 1:N
    [t,u] = ode45(@lornz,[0 span],u0,odeset,beta,rho,sigma);
    hold on; 
    plot(u(:,1),u(:,2),'r'); 
    u0 = u(end,:); 
end

title('Attractor of Lorenz System');
xlabel('Component 1'); ylabel('Component 2');
axis off; hold off;

function dydt = lornz(t,y,beta,rho,sigma)
dydt = [sigma*(y(2)-y(1)); rho*y(1)-y(2)-y(1)*y(3); y(1)*y(2)-
beta*y(3)];

The code is included in the accompanying software under the name

“lorenza.m”
The code does not need lengthy explanations. The first five lines represent the

specification part of the file. The main numerical computation is performed within

the for loop. First the Lorenz system (19.15) is solved, using the ode45 solver of

MATLAB®. The system itself is specified as a subfunction in the very last lines of
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the listing. Then the trajectory in the phase space, which is spanned by the first two

variables, is plotted (computation and output are not strictly separated in this M-

file). The advantage of the chosen procedure is that the storage space for the

solutions remains small. If the span is small, only a limited number of storage is

required: the old solution values are overwritten after the corresponding part of the

trajectory has been plotted.

The example shows that even simple nonlinear systems may exhibit chaotic

behavior. Also systems of chemical or biological species may lead to observations

similar to the Lorenz system (see for example: Fussmann and Heber 2002).

If a model system is chaotic, it can not be used for predictions. In fact, chaos in

the mentioned sense can also be characterized by the property that tiny deviations in

an initial state lead to significant deviations at later times (Devaney 1987). The

modeler, working with dynamical systems, should be aware that models may show

such a ’strange’ behavior.
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Chapter 20

Graphical User Interfaces

In the previous chapter the reader found a graphical user interface (‘pplane7.m’),
which allows easy input of parameters as well as direct output of results, numeri-

cally or graphically. The technical term for these types of ‘man-machine-interfaces’

is Graphical User Interface, and the abbreviation is GUI. Nowadays, computer

users are already used to GUIs, as there is hardly any software that does not utilize

its capacities, including the operating system.

Looking back to Fig. 19.6, the user may ask how difficult it may be to construct

such an interface. In this final chapter it is shown how a GUI can be implemented

using MATLAB®. It will be demonstrated that GUIs can be set up using core

MATLAB®, and that it is easier than the novice may have imagined beforehand,

although the functionality of the examples does not reach the one of the ‘pplane7.m’
file of the previous chapter.

20.1 The MATLAB® Guide

There is a special MATLAB® tool for the set-up of GUIs. It is called from the

MATLAB® command window by:

guide

What appears is a graphical user interface to construct GUIs. First the user is

asked whether she/he wants to open an existing GUI, or whether to create a new one

(Fig. 20.1).

We proceed with an example, and therefore choose the ‘Blank GUI’ default. The

window that appears on the display next is reproduced here in Fig. 20.2.

E. Holzbecher, Environmental Modeling,
DOI 10.1007/978-3-642-22042-5_20, # Springer-Verlag Berlin Heidelberg 2012
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Fig. 20.1 Start window for the MATLAB® graphical user interface for GUIs

Fig. 20.2 The MATLAB® ‘guide’ GUI
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On the left side bar of the window we find various elements which constitute

a GUI. Major elements that are used in the following demonstration are:

Push button

Edit text

Static text

Axes

Pop-up menu

Radio button

Panel

There are further elements we do not use in this example: slider, radio button,

check-box, list box, toggle button, panel, button group and ActiveX control. Click

at the ‘static text’ variable and move the cursor into the big GUI workbench on the

right. The workbench represents the GUI window, which finally will become the

interface to the user. The ‘static text’ appears and is fixed at a certain location. In order

to change and format the text element, double click on it (see right side of Fig. 20.3).

As a result another window appears in which all properties of the selected element

are shown and can be edited. This so-called ‘Property Inspector’ is shown on the left

side of Fig. 20.3.

We want to change the text to ‘Diffusivity’. The new text string is entered as

‘String’ property, where before the ‘Static Text’ was found (see Fig. 20.3). As further

exercise with the new tool the reader may change the ‘Font Size’ property to 12 and

the ‘FontWeight’ property to ‘bold’. Select a color for the ‘Foreground Color’

property. Clicking the color select box appears that is depicted in Fig. 20.4.

Having entered the changes in the Property Inspector these become active in the

workbench.

Now let’s examine the previous procedure for a different GUI element. Choose

the ‘edit text’ element and place it aside the static text element, which was already

entered. Double-click on the element to reach the Property Inspector with the

corresponding properties. Change the ‘String’ property to ‘1’; we want to use

this element for the input of the diffusivity and change the ‘Tag’ property to

‘D_edit’.

In the very same way we add some further text and edit elements, as illustrated

in Fig. 20.5. The reader may recognize that the elements are related to the

major input parameters of a transport model, as described in Chaps. 4, 5 and 6.

In fact, when finished the example GUI will allow 1D transport simulation and

visualization.
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In addition an ‘axes’ element is introduced, covering nearly the entire space

of the GUI. It is reserved for the graphical output and has the ‘Tag’ property

‘xaxes’.

When the user clicks on the ‘Save as. . .’ button, MATLAB® saves the work

in two files. The user interface window is stored under a file with ‘.fig’

Fig. 20.3 The Property Inspector window within the MATLAB® guide
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extension, a corresponding M-file with the same name is saved in addition. Within

the exercise the user may choose the name ‘transport.fig’ and a file ‘transport.m’ is
created too.

Fig. 20.4 The color select

box of the MATLAB® guide

Fig. 20.5 The example GUI, in construction using MATLAB® guide
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Let’s have a look on the M-file. It starts with the following commands:

function varargout = transport(varargin) 
% TRANSPORT M-file for transport.fig 
%      TRANSPORT, by itself, creates a new TRANSPORT or raises the  
%      existing singleton*. 
% 
%      H = TRANSPORT returns the handle to a new TRANSPORT or the  
%      handle to the existing singleton*. 
% 
%      TRANSPORT('CALLBACK',hObject,eventData,handles,...) calls  
%      the local function named CALLBACK in TRANSPORT.M with the 

given input arguments. 
%      TRANSPORT('Property','Value',...) creates a new TRANSPORT or
%      raises the existing singleton*.  Starting from the left,  
%      property value pairs are applied to the GUI before  
%      transport_OpeningFunction gets called. Anunrecognized  
%      property name or invalid value makes property application  
%      stop. All inputs are passed to transport_OpeningFcn via  
%      varargin. *See GUI Options on GUIDE's Tools menu. Choose  
%      "GUI allows only one instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

% Edit the above text to modify the response to help transport 

% Last Modified by GUIDE v2.5 22-Sep-2006 16:50:52 

% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @transport_OpeningFcn, ... 
                   'gui_OutputFcn',  @transport_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

As already outlined above, a function with the same name (here: ‘transport’) is
created. varargin and varargout are lists of input- and output parameters. What

follows is a list of comments and the initialization of the entire structure. As the

details are relevant for the specialist only, we skip any explanation but pinpoint to

the very last comment of this part of the program. It tells the user that all statements

above concern initialization and may under no circumstances be edited.

After the initialization part several subfunctions follow, starting with the open-

ing function

function transport_OpeningFcn(hObject, eventdata, handles, varargin)
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Some explanations concerning the functions are given in the comments. Most

sub-functions are of the following types:

function D_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to D_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

% Hints: get(hObject,'String') returns contents of D_edit as text 
%        str2double(get(hObject,'String')) returns contents of  
%        D_edit as a double 

% -- Executes during object creation, after setting all properties. 
function D_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to D_edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
% called 

% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

There is one ‘callback’ function and one ‘create’ function. The reader may verify

that there are these two sub-functions for each element of the GUI window. With

the functions the functionality of the GUI is created. The ‘callback’ function is

called every time when the element is selected during the execution of the program.

In the example command sequence the function listings are empty, aside from an

adjustment concerning the background color (get and set commands). I.e. the

standard functionality of the GUI element is performed, with which the user is not

really concerned here.

In the current example there is only one part of the program where the user has to

add some functionality. That concerns the ‘Run’-button. When that button is

pressed, several tasks have to be performed in order to draw a picture of the

concentration profiles on the screen. The corresponding commands have to be

added to the runbutton_Callback function, which is executed after pressing the

run-button. Here we add the following list:

% --- Executes on button press in runbutton. 
function runbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to runbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

% Get user input from GUI 
D = str2double(get(handles.D_edit,'String')); 
v = str2double(get(handles.v_edit,'String')); 
R = str2double(get(handles.R_edit,'String')); 
lambda = str2double(get(handles.lambda_edit,'String')); 
T = str2double(get(handles.T_edit,'String')); 
L = str2double(get(handles.L_edit,'String')); 
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The data, given by the user in the GUI window, have to be allocated to

corresponding variables. The reader recognizes the relevant variables on the left

side of the assignments above. In the sequel we give some clues how to understand

the remainder of the lines. handles is a structure which contains the entire GUI

implementation. handles.D_edit is a call of the D_edit function of the given

structure. The name of the function corresponds with the ‘Tag’, specified in the

Property Inspector. The value, entered by the GUI user during program execution,

can be found under ‘String’ and is reached by the get command. The content of

the ‘String’ is of data type string, i.e. a listing of characters. As for the further

processing in the program the numerical value is relevant (not the text-string), the

string has to be converted to a numerical double type. In MATLAB® the command

that performs such conversion is str2double.

Using the debugging mode, the user may check some parameter functions.

For example the variable D contains the value found in the edit box for diffusivity.

The given command sequence delivers the values of the parameters for further

processing. In Chaps. 4–6 the same task was performed in the specification part of

the M-files in a more obvious way.

Now that the parameters are available, the execution part can be adopted

almost identically from former transport models. The remainder of the

runbutton_Callback function is taken from the ‘analtrans.m’, outlined in Chap. 6:

c0 = 0;    % initial concentration
cin = 1;   % inflow concentration

%Calculate data 
y ='rgbcmyk'; 
e = ones (1,100); 
u = sqrt(v*v+4*lambda*R*D); 

% Create space plot 
t = linspace (T/10,T,10); 
axes(handles.xaxes); 
x = linspace(0,L,100);  
for i = 1:size(t,2) 
    h = 1./(2.*sqrt(D*R*t(i)));   
    hh = plot (x,c0*exp(-lambda*t(i))*(e-0.5*erfc(h*(R*x-... 
       e*v*t(i)))-0.5*exp((v/D)*x).*erfc(h*(R*x+e*v*t(i)))) +... 
       (cin-c0)*0.5*(exp((v-u)/(D+D)*x).*erfc(h*(R*x-e*u*t(i)))+... 
       exp((v+u)/(D+D)*x).*erfc(h*(R*x+e*u*t(i)))),y(mod(i,7)+1)); 
    set (hh,'LineWidth',2) 
    hold on; 
end 
grid on 
hold off 

As the mathematical aspects of the command sequence are explained in Chap. 6,

we can restrict our description to the graphics commands. After having set

initialization values for c0, cin, y, e and u, the t vector is computed. t contains

those time instants at which a concentration profile is plotted. Here the entire time

period of length T is equidistantly divided into 10 parts (the starting time t ¼ 0 is

not included). The following axes command tells that the following graphic
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statements are executed within the coordinate system, named xaxes, which is part

of the handles structure. Later we introduce another coordinate system, making the

necessity to specify the axes more obvious.

The x vector is a discretization of the entire model length. Within the following

for loop, for each time instant of the t vector, the temporary ‘help’ parameter h is

calculated. h is used in the lengthy analytical formula that follows within the plot

command. Note that the concentration values are not stored in a big matrix, unlike

in the M-files of Chaps. 4–6. Here they are lost after plotting is executed, because

they are not needed further.

The last formal parameter in the plot command (y(mod(i,7) + 1))) effects

that the line color changes from one profile to the next, according to the characters

given above in the y string. The set command specifies an increased line width

(default is 0.5). The hold on statement is necessary in order to obtain all profiles in

the same figure. The final graphics command, grid on, plots the grid. The resulting

outlook of the GUI is depicted in Fig. 20.6.

20.2 The Transport GUI

Here we extend the M-file from the previous part. In the MATLAB® guide we add

three graphical elements, all of which are shown in Fig. 20.7. A second ‘Axes’

element is introduced. In order to make both graphics fit on the same panel figure,

the size of the coordinate systems is reduced. Using the property inspector, the new

Fig. 20.6 The example GUI, first step
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axes gets the tag ‘taxes’ (for time axis). As header we introduce another static text

element, for which font size, font weight and color are changed from default. As third

adjustment we enter a pop-up menu. Using again the property inspector we specify

‘Author’, ‘Book’, ‘Publisher’ and ‘Software’ as four entries in the ‘String’ property.

After these adjustments of the last sub-chapter GUI, use ‘Save’ in the

MATLAB® guide menu to store the new figure. Note that the ‘transport.m’ is

also changed as a result of the ‘Save’ click. The interested user may have a look into

the M-file listing to see some new ‘callback’ and ‘create’ command blocks,

corresponding with the new elements.

As a next step, the new M-file has to be extended to include a new functionality.

Within the command block, related to the run-button, the following list should be

added at the end, i.e. behind the commands concerning the space plot:

% Create time plot 
x = linspace (L/10,L,10); 
axes(handles.taxes); 
t = linspace (T/100,T,100); 
h = 1./(2.*sqrt(D*R*t)); 
for i = 1:size(x,2) 
    hh = plot(t,c0*exp(-lambda*t).*(e-0.5*erfc(h.*(e*R*x(i)... 
        -v*t)))-0.5*exp((v/D)*x(i))*erfc(h.*(e*R*x(i)+v*t))+... 
        (cin-c0)*0.5*(exp((v-u)/(D+D)*x(i))*erfc(h.*(e*R*x(i)...
        -u*t))+exp((v+u)/(D+D)*x(i))*erfc(h.*(e*R*x(i)+u*t)))...
        ,y(mod(i,7)+1));  
    set (hh,'LineWidth',2) 
    hold on;  
end 
grid on 
hold off 

Fig. 20.7 The extended example GUI, in production using MATLAB® guide
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In the sequel we follow the procedure outlined in the preceding sub-chapter. The

concentration values are calculated from the analytical solution given in Chap. 6.

Here the vector of concentration values is computed for each of ten equidistant

locations along the model axis. After the calculation the corresponding curve

is plotted. The graphs are depicted in the second coordinate system, where all

graphics commands are directed after the axes(handles.taxes) command has

become effective.

An example view of the GUI with the computed result for an example data set,

including dispersion/diffusion, advection and degradation, is depicted by Fig. 20.8.

The algorithm is surely not time-optimized, as all values of the concentration

matrix are calculated twice. On the other hand the computation algorithm is quite

effective with respect to computer storage. Only two 100-element vectors are used

aside from all other variables. The set-up of the GUI itself surely is the most time

consuming part in the M-file. However, for problems in one space dimension

performance questions are irrelevant, taking into account the performance of

today’s computers. For problems in two space dimensions performance questions

may become relevant, in three dimensions they surely are.

At last we introduce some functionality to the pop-up menu. This is done within

the corresponding ‘callback’ function. Function header and added commands are

listed below:

Fig. 20.8 The transport GUI, with output for a selected parameter set
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% --- Executes on selection change in popupmenu1. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
val = get(hObject,'Value'); 
switch val 
case 1 
    msgbox('E. Holzbecher, WIAS, Mohrenstr. 39, 10117 Berlin,...  
    GERMANY, E-mail: holzbecher@wias-berlin.de','Info','none');  
    web http://www.igb-... 
    berlin.de/abt1/mitarbeiter/holzbecher/index_e.shtml; 
    uiwait; 
case 2 
    msgbox('Environmental Modeling using MATLAB, Springer... 
    Publ.','Info','none'); 
case 3     
    msgbox('Springer Publ., Heidelberg','Info','none'); 
    web www.springer.com; 
    uiwait; 
case 4 
    msgbox('MATLAB, MathWorks Inc, see: www.mathworks.com',... 
    'Info','none');  
    web www.mathworks.com; 
    uiwait;         
end 

The ‘callback’ function is reached when the user has clicked on a menu entry of

the pop-up menu. In the example, the pop-up menu has four entries: ‘Author’,

‘Book’, ‘Publisher’ and ‘Software’. During the execution of the program, the

menu entry, which is selected by the user, is obtained by the command get

(hObject,'Value'). The returned variable is an integer between 1 and 4, by

which the selection is uniquely determined. In the listing the current value is stored

in variable val.

It is convenient to use the switch keyword for the val variable in order to jump

to different command blocks. If the value is 1, a message box opens with informa-

tion about the author. The corresponding MATLAB® command is: msgbox. Addi-

tionally, using the web command, a browser opens with the personal site of the

author. The uiwait command makes the process wait until the user clicks at the

closure button.

The other cases are handled in exactly the same way; there are other message

texts and other web-sites.

The code is included in the accompanying software under the name

‘transport.m’
As an example for a more elaborated graphical user interface, the ‘pplane7.m’

file for processing ordinary differential equations was already mentioned in

Chap. 19; see also: Polking (2004). Another example implementation for
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environmental science and technology is the ‘Menyanthes’ software, which is used

to manage, analyze, model, and present groundwater level data in the Netherlands

(van Asmuth 2006); see also: (http://www.mathworks.com/res/menyanthes).
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Chapter 21

Numerical Methods: Finite Differences

It was demonstrated in previous chapters that the combination of fundamental

physical laws, as the conservation of mass or conservation of energy in combination

with empirical laws, such as Darcy’s Law, Fick’s Law or Fourier’s Law, leads to

a mathematical equalities expressed as partial differential equations (pdes) – or the

ordinary differential equations, which can be considered here simple as a specific

simpler type of pde. With the addition of initial and/or boundary conditions a partial

differential equation usually has a specific solution (which not be always unique,

but this should not be a question here).

In the described way many application cases are transformed to the problem of

finding the solution of a differential equation. So far we have given several

examples of such solutions. In Chap. 1 a very simple differential equation was

solved by programming the analytical solution, describing exponential growth.

In Chap. 4 we gave the analytical solution for the 1D transport equation.

In the first edition of the book we presented all types of solutions, as just listed,

which are given by explicit formulae of mathematical analysis. This type of

solutions is gathered under the term analytical solutions. However, analytical
solutions exist only for a limited set of differential equations. The solution differs

with pde and with each variation of boundary or initial conditions. They are often

valid only under special conditions concerning the coefficients of the differential

equations. If the coefficient varies in dependence of space, time or the function

itself, a formula derived for the constant coefficient, is not valid any more.

Another example: if the additional conditions change in space of time, a new

formula has to be sought. This may be very tedious, as the derivation of the formula

for the constant condition case is not valid for varying conditions anymore.

Modifying a simple pde with analytical solution one comes very easily to the

situation in which an analytical solution cannot be found, neither by analytical

derivation, nor by literature search. In that sense the method of analytical solutions

is rather limited.

Nevertheless, here are other solution methods, which are incomparable more

powerful and flexible. These are gathered under the term numerical solutions, and
there are finite differences, finite elements, finite volumes, boundary elements, just

E. Holzbecher, Environmental Modeling,
DOI 10.1007/978-3-642-22042-5_21, # Springer-Verlag Berlin Heidelberg 2012
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to name the most important ones, and cellular automata, just to name a more

nowadays still exotic example. The specific branch of mathematics that deals

with this type of solutions is numerics – which by the way concerns more than

the solution of odes or pdes.

A first example of a numerical method was already given in Chap. 4.2. However

that worked for 1D only. In this chapter we show, how numerical methods can be

used to solve problems in higher dimensions. The pdepe solver was described in

Chap. 4.4. In fact there the MathWorks programmers have included sophisticated

knowledge from numerics, which cannot be outlined at this place. However, also

pdepe works for 1D spatial problems only. The MATLAB® finite element toolbox

may be used for higher dimensional spaces. However, in this book it was intended

to use core MATLAB® only, and thus we show how here how to do it.

Starting point for a numerical solution is the differential equation itself. The

equality, given in the equation is in some way mimicked by a numerical algorithm.

The method of that mimicing makes the difference for most of the different

numerical methods mentioned above. In order to make the method powerful the

approximate mimicking of the differential equation is performed in small parts of

the model region and the boundary. I.e. the model region and/or the boundary have

to be sub-divided in many small parts, which may be called blocks, cells, elements

or volumes, depending on the method. This process of discretization is outlined in a

first introductory example.

21.1 Introductory Example

The differential equation

@c

@t
¼ �lc (21.1)

is the simplest one to describe the decay or degradation of a chemical specie due to

whatever processes. c is the concentration and l the decay constant. This type of

problem was already introduced in Chap. 1 (with a positive coefficient it describes

exponential growth). There is a well-known analytical solution for that differential

equation for the case when the concentration is known at an initial time, i.e. for the

condition

cðt ¼ 0Þ ¼ c0 (21.2)

with a concentration c0. The solution is:

cðtÞ ¼ c0 expð�ltÞ (21.3)
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Imagine that we don’t know the analytical solution, or would not have the

possibility to evaluate it; maybe we have a supermarket calculator only without

access to the exponential function. Are there other means to obtain a solution value

for a given time t?
Luckily there are numerical methods. For the current problem we will outline the

simplest numerical method. The idea is to approximate the differential term on the

left side of the (21.1) by a finite difference term. The numerical method is thus

termed ‘finite differences’ (FD). Here the finite difference looks like this:

@c

@t
� cðtþ DtÞ � cðtÞ

Dt
(21.4)

Dt is the so called timestep, and we can use the approximation for any t that we
like. Geometrically the approximation can be visualized by taking the secant

through the two points (t,c(t)) and (t + Dt,c(t + Dt)) instead of the tangent at the

point (t,c(t)). From (21.1) we obtain:

cðtþ DtÞ � cðtÞ
Dt

¼ �lcðtÞ (21.5)

Assume that c(t) is known. The we have to resolve equation for the unknown c
(t + Dt), and obtain:

cðtþ DtÞ ¼ ð1� lDtÞcðtÞ (21.6)

Thus we see that we have to multiply the concentration at time t with the

factor 1� lDt, to obtain an approximation of the concentration at time t + Dt.
The factor depends, aside from the given material property l, only on the numerical

parameter Dt.
We utilize the formula (21.6) in the following ‘timestepping’ approach. We start

at initial time t ¼ 0, at which the concentration is known (formula (21.2)) and apply

formula (21.6). In that way we obtain an approximate value for the concentration at

time Dt:

cðDtÞ ¼ ð1� lDtÞc0 (21.7)

Now that we have a value for c at t ¼ Dt, we can apply the formula (21.6) once

more to obtain a value for c at time t ¼ 2Dt:

cð2DtÞ ¼ cðDtþ DtÞ ¼ ð1� lDtÞcðDtÞ (21.8)

In that manner we use the formula (21.6) over and over again until we cover the

entire time interval in we are interested and reach the final time instant that we want.

The entire procedure is implemented in the following M-file. Starting time is

zero and final time is given by the variable Tmax. After the initialization of all
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variables, we plot the analytical solution, as given by (21.3). Then the numerical

solutions are computed as described. In the outer loop (with counter variable i), in

each iteration we halfen the timestep. In the inner loop (with counter variable j) the

numerical solution is computed. The numerical solutions are plotted after calcula-

tion, in the outer loop. Here we use only four different timesteps, i.e. we refine three

times, in order to see the differences from one numerical solution to the next in a

single plot.

% numerics demonstration (for decay equation) 
Tmax = 1; 
lambda = 2; 
c0 = 1; 
marker='sod.'; 
% plot analytical solution 
plot (Tmax*[0:.01:1],c0*exp(-lambda*(Tmax*[0:.01:1])),'-r'); 
hold on 

% compute and plot numerical solutions 
deltat = .5*Tmax; 
for i = 1:4 
    f = 1-lambda*deltat; 
    c(1) = c0; 

for j = 2:2^i+1 
        c(j)=c(j-1)*f; 

end 
    plot (linspace(0,Tmax,2^i+1),c,['-' marker(i)]); 
    deltat=deltat/2; 
end 
legend ('analytical',['\Delta' 't=.5'],['\Delta' 't=.25'],['\Delta'

't=.125'],['\Delta' 't=.0625'])    

The complete code is included in the accompanying software under the name

‘numdemo.m’
In the following figure we show the results of the numerical method for c0 ¼ 1,

l ¼ 2 and the time interval t 2 ½0; 1�. The solution at t ¼ 1 is 0.1353. The

unmarked graph depicts the analytical solution. If we use the timestep Dt ¼ 1/

2 we obtain c(1) ¼ 0, which is a very bad approximation. But we can easily see that

we obtain much better results if we use smaller values for Dt (Fig. 21.1).
The demonstration shows clearly that the solution is better approximated for

smaller timesteps. In general we may use the term discretization. Here the time

period is discretized into smaller peaces, the timesteps: the smaller the timestep, the

finer the discretization; and the better results can be expected.

Mathematicians say that the numerical solutions converge towards the wanted

solution with refinement of the discretization. All numerical solutions are

approximations for the ‘real’ solution. For practical purposes it is always sufficient

to obtain an approximate solution. It depends very much on the problem which

degree of approximation is wanted, and on the programmer as well.

There is a simple procedure, which is usually applied in order to check the accuracy

of the solution. If the modeller uses different discretizations, she/he can check the

change from the finest to the previous discretization. If the change is lower than the

wanted accuracy, the programmer is usually satisfied. It is not strictly guaranteed that

the required accuracy is reached, but the described criterion to end the discretization

refinement usually delivers an approximation that deviates from the real solution by
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the wanted accuracy. In the example above, if the modeller is interested in c(t ¼ 1),

the following approximations are obtained in 12 refinement steps:

0 0.0625 0.1001 0.1181 0.1268 0.1311 0.1332

0.1343 0.1348 0.1351 0.1352 0.1353 0.1353

If she/he is interested to obtain the first 4 digits of c(1) accurate, she/he can stop

the algorithm after the 12th refinement, as the result shows no change in the first

four digits any more.

21.2 Finite Differences

In the previous chapter the numerical method of finite differences has been used for

the approximate solution of the decay equation. The method can in general be used

for the solution of ordinary or partial differential equations. The recipe to replace

differentials by finite differences can be applied for time derivatives and spatial

derivatives in all space directions. In case of spatial differentials we speak of a grid
spacing instead of a timestep, and we use the symbols Dx;Dy and/or Dzinstead
of Dt.

For first order derivatives there are various alternatives; forward, backward and

central FD:

@u

@x
� uðxþ DxÞ � uðxÞ

Dx
forward

@u

@x
� uðxÞ � uðx� DxÞ

Dx
backward

@u

@x
� uðxþ DxÞ � uðx� DxÞ

2Dx
central

(21.9)
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Fig. 21.1 Analytical solution (red) and numerical solutions for different timesteps
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here formulated for a function u depending on the independent variable x.
For second order derivatives the central FD scheme is usually without alterna-

tive. It is obtained by using the finite difference approximation of the first order FD

approximations:

@2u

@x2
� 1

Dx
uðxþ DxÞ � uðxÞ

Dx
� uðxÞ � uðx� DxÞ

Dx

� �
(21.10)

or (compare Sidebar 4.2)

@2u

@x2
� uðxþ DxÞ � 2uðxÞ þ uðx� DxÞ

Dx2
(21.11)

A simple example may illustrate the entire procedure. FD transforms the differ-

ential equation for 1D steady state transport

D
@2c

@x2
� v

@c

@x
� lc ¼ 0 (21.12)

into

D
cðxþ DxÞ � cðxÞ þ cðx� DxÞ

Dx2
� v

cðxÞ � cðx� DxÞ
Dx

� lcðxÞ ¼ 0 (21.13)

Here the backward FD for the first order derivative has been chosen. In fact the

backward FD delivers a numerical algorithm that usually converges much better

method the version, in which forward or central schemes are used. For details about

this consult an introductory textbook on numerics (for example: Thomas 1995;

Moler 2004).

Equation (21.13) serves as basis for a numerical solution of (21.12) if we divide

the model region of interest, that is an interval xmin � x � xmaxon the x-axis, into
peaces of length Dx. Using the numerical method we can obtain approximate values

for c(x) at the mesh positions, called nodes x ¼ xmin þ Dx; xmin þ 2Dx; ::::xmax � Dx
(lets take x as a vector here). For each position x (21.13) states a relation between

the (unknown) function value c(x) and the (also unknown) function values at the

neighboring two nodes.

Boundary conditions have to be considered separately, but without problem.

A Dirichlet boundary condition at the left side of the interval for example,

cðxminÞ ¼ c0, according to (21.13) leads to:

D
cðxmin þ 2DxÞ � 2cðxmin þ DxÞ þ c0

Dx2
� v

cðxmin þ DxÞ � c0
Dx

� lcðxmin þ DxÞ ¼ 0

(21.14)
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A Neumann condition at the right hand side, @c=@x ¼ 0, transferred to the first

order FD leads to:

D
cðxmax�2DxÞ�cðxmax�DxÞ

Dx2
�vcðxmax�DxÞ�cðxmax�2DxÞ

Dx
�lcðxmax�DxÞ¼0

(21.15)

In that way we obtain as many equations as there are unknowns in the vector x.

Before we proceed with the description of the numerical procedure lets take a

partial differential equation as another example. Using the approximations (21.11)

one obtains for the 2D Laplace equation in x,y-coordinates:

@2u

@x2
þ @2u

@y2
� uðxþ Dx; yÞ � 2uðx; yÞ þ uðx� Dx; yÞ

Dx2

þ uðx; yþ DyÞ � 2uðx; yÞ þ uðx; y� DyÞ
Dy2

¼ 0

(21.16)

which can be applied In 2D space domains, which are discretized into a rectangular

mesh or grid, as shown in the following figures.

At nodes at the boundary the discretization (21.16) changes according to the

boundary condition. Let’s give one example for a Dirichlet boundary condition. If

at the right boundary we have a value ubnd specified, then we obtain instead:

ubnd � 2uðx; yÞ þ uðx� Dx; yÞ
Dx2

þ uðx; yþ DyÞ � 2uðx; yÞ þ uðx; y� DyÞ
Dy2

¼ 0

(21.17)

Other node values have to be replaced, if the Dirichlet condition is for a node on

the other sides. For a Neumann condition at the right side, we have to make the

following modification:

�uðx; yÞ þ uðx� Dx; yÞ
Dx2

þ uðx; yþ DyÞ � 2uðx; yÞ þ uðx; y� DyÞ
Dy2

¼ 0 (21.18)

This results from the first order approximation 0 ¼ @u
@x � uðxþDx;yÞ�uðx;yÞ

Dx
(see (21.9)), which is equivalent to uðxþ Dx; yÞ � uðx; yÞ ¼ 0(Fig. 21.2).

In case of an equidistant mesh with equal grid spacing h ¼ Dx ¼ Dythe approxi-
mation of (21.16) simplifies to the well-known five-point stencil:

1

h2
uðxþ Dx; yÞ þ uðx� Dx; yÞ þ uðx; yþ DyÞ þ uðx; y� DyÞ � 4uðx; yÞð Þ ¼ 0

(21.19)
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For each position (x,y) (21.16) and (21.19) state a relation between the

(unknown) function value u(x,y) and the (also unknown) function values at the

neighboring four nodes. Boundary conditions can be considered as described for

the ode-case above.

Altogether, one obtains an equation for each of the unknown nodes. I.e. there are

as many equations as there are unknown values – a classical situation for utilizing a

mathematical solver for such a problem. Thus the problem of solving a differential

equation, ode or pde, is reduced to the problem of solving a system of equations.

The latter is a feasible task (in principle), using help offered by mathematical

toolboxes, such as MATLAB®.

For the given examples with constant coefficients the described procedure leads

to linear systems of equations. For example using canonical numbering of the nodes

(x-direction first, then y-direction) the stencil (21.19) leads to the linear system:

�4 1 0 ::: 1 0 :::
1 �4 1 0 ::: ::: 0

::: 1 �4 1 ::: ::: 1

0 ::: ::: ::: ::: ::: 0

1 0 ::: ::: ::: 1 :::
0 ::: ::: 0 1 �4 1

::: 0 1 ::: 0 1 �4

0
BBBBBBBB@

1
CCCCCCCCA
� u ¼ b (21.20)

where u denotes the vector of unknown values u(x,y) at the nodes and b the right

hand side vector. The matrix has entries �4 along the main diagonal, and entries 1

in 4 side-diagonals. Two of the side diagonals are just aside the main diagonal; both

others are further away depending on the size of the mesh in x-direction. Due to the
boundary condition several of the 1-entries in the side-diagonals will be missing,

and instead of that there will appear non-zero entries in the right hand side vector b.

In all cases, independent of the dimension, and of the special discretization

method, one obtains matrices, in which the number of non-zero entries is very quite

small in relation to the space available in the matrix. Such matrices are called

sparse, in contrast to dense matrices, in which the majority of elements is non-zero.

Fig. 21.2 Examples of 2D regular (equidistant) and irregular FD meshes of a square model region
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MATLAB® has an extra variable type ‘sparse array’ in order to store and operate

with such matrices.

Although the problem of solving a system of equations is feasible, it may be very

hard depending on the dimension, the type of the differential equation, the (ir)

regularity of the model region and/or the mesh and the structure and dependencies

of the parameters.

Let’s start with the dimension. In 1D one will usually have some 100s, maybe

1,000 grid points, called nodes. The size of the linear system is the lower or equal

1,000. The matrix has only diagonals with non-zero entries. For 2D the situation is

surely more severe: there are usually few 100 nodes in each direction, thus we

obtain 10,000–100,000 nodes easily. Using the same estimations for a 3D model

one easily comes to the order of one million nodes.

Sidebar 21.1: Sparse Matrices

Sparse matrices are stored in a different format in which the location of the

non-zero entries is stored and taken into account. Thus it becomes feasible to

work with matrices, which have more than a million rows and columns – in

most computers that is not possible for dense matrices. There are various

operations that work for sparse matrices only, for the transversion of matrices

of different type and there are also operations, which can be applied for sparse

matrices in the same manner as they are used for usual arrays. Here some

examples:

sparse(A) 

converts a matrix into sparse form. Try for the matrix

A = [1 0 ; 0 3] 

for demonstration of the representation (do not use the sparse type for such a

simple matrix in your programs). Using sparse with a longer list of input

parameters it is possible to assign each single element of the matrix. For a

complete description of the command see the help. The conversion from a

sparse matrix to a full matrix is performed by:

full(A) 

If you want to know, if a matrix is internally stored in sparse form, use:

issparse(A)

Sparse systems can also be combined from vectors, better: from a matrix

containing the diagonals of the sparse matrix in columns. Use the spdiags

command. Here an example: the command
(continued)
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A = spdiags([ones(9,1) -2*ones(9,1) ones(9,1)],[-2 0 2],9,9)

creates a matrix with three diagonals. The content of the diagonals is deter-

mined by the first input parameter, which is a matrix with three columns. The

position of the diagonals in the matrix is determined by the second input

parameter, which is an integer array. A zero entry in this vector denotes the

main diagonal. The other entries are related to that setting, The command

above creates a 9 � 9 matrix with �2 entries in the main diagonal and 1

entries in two off-diagonals. To see the structure of the matrix, use

spy(A)

and obtain the figure on the right as a result.

All nonzero entries are indicated by a blue star.

Matrix operations, i.e. addition, subtraction, multiplication etc. can be

performed as with usual matrices. For example

A\ones(9,1)

delivers the solution of the system A � x ¼ bwith right-hand side vector

containing one in each entry.

21.3 A Finite Difference Example

In the following example we demonstrate the method for the Poisson equation

r2u ¼ q (21.21)

for the unknown function u(x,y) and right hand side q(x,y).
In the specification part the dimension of the system is assessed. Here the system

has the length 5 (nx*h) and the width 20 (ny*h). Moreover we specify the boundary

condition at the upper and lower boundary, and a constant source term.
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nx = 5; ny = 20;      % dimensions in x- and y-direction 
h = 1;           % grid spacing
btop = 1;             % boundary condition at left side
bbottom = 0;          % boundary condition at right side 
q = .1;               % right hand side (source term) 

In the main part we compute the matrix and the right hand side, as shown in

(21.20) according to the finite difference method. N is the total number of

unknowns. In the example we compute an approximate solution at all locations of

a grid of 5 � 20. For the exact set-up of the matrix (21.20) we use the spdiags

command (see Sidebar 21.1) before starting the ‘real’ processing (the solution of

the linear system). All commands before that statement prepare the exact entries of

the diagonals.

The vector d determines the locations of the diagonal. To understand this we

have to be aware that the locations of the grid, the nodes, are numbered in canonical

order, i.e. starting with the 1 for the (1,1) position we number in x-direction first and
in y-direction subsequently. In that order their function values appear in the

unknown vector x. The left and right (x-direction!) neighbors of the node i then
have the indices i + 1 and i-1, and the top and bottom (y-direction) neighbor nodes

have the indices i + nx and i-nx. This determines the locations of the off-diagonals,

and is taken into account by the given choice of d.

As mentioned above, annlogously to the derivation of formula (21.19) for the

Poisson equation we obtain the discretization:

uðxþ Dx; yÞ þ uðx� Dx; yÞ þ uðx; yþ DyÞ þ uðx; y� DyÞ � 4uðx; yÞ ¼ h2q

(21.22)

or

1

4
uðxþ Dx; yÞ þ uðx� Dx; yÞ þ uðx; yþ DyÞ þ uðx; y� DyÞ � 4 	 uðx; yÞð Þ ¼ h2q

4
(21.23)

Thus there are �4 entries in the main diagonal and 1 is the standard entry in the

off-diagonal. This we have to consider in the assignment of matrix B, in which all

diagonals of the matrix A are stored. Thus we proceed with the commands:

N = nx*ny; 
d = [-nx,-1,0,1,nx]; 
B = [ones(N,2) -4*ones(N,1) ones(N,2)]; 
b = -q*h*h*ones(N,1); 

However, there are some exceptions that must be taken into account. For some

nodes not all four neighbor nodes are available. For example along the left bound-

ary the left neighbor is missing, and at all nodes on the right side the right neighbor

is missing. Thus in the matrix the corresponding off-diagonal entries should be

0 and not 1. In the example this is done in the first two commands of the first loop.
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At all nodes at which we require a Neumann condition, the 4 entry in the main

diagonal needs to be changed, according to formula (21.18). If we assume a

Neumann condition on the left and right boundary, we thus have to change the

corresponding diagonal entries to 3. This is done in the last two statements of the

first loop.

for i = 1:ny 
   B(i*nx,2) = 0; 
   B(i*nx+1,4) = 0; 
   B((i-1)*nx+1,3) = -3; 
   B(i*nx,3) = -3; 
end 

At all nodes with Dirichlet condition, according to (21.17) we have to add an

additional term on the right hand side, i.e. in the vector b. This is done in the next

loop, before the matrix A finally is set up as intended.

for i = 1:nx 
    b(i) = b(i)-btop; 
    b(N+1-i) = b(N+1-i)-bbottom; 
end 
A = spdiags(B,d,N,N); 

After all these preparations we can solve the linear system. The solution is

obtained in the vector U using the backslash operator (see chapter *). In order to

rearrange calculated (before) unknown values into a matrix that corresponds to the

format of the grid, we use the reshape command.

% processing: solution 
U = A\b; 
U = reshape(U,nx,ny); 

Finally we check the result. The MATLAB® command del2 computes the

outcome of the right hand side of (21.23). In our example this is a constant value

at all nodes. The last command delivers graphical output, as shown in Fig. 21.3.

% check & visualize 
4*del2(U) 
surf(U) 

The complete code is included in the accompanying software under the name

‘Poisson1.m’
Note that the Dirichlet boundary values, in the example 1 on the left and 0 on the

right side, are not taken at the outer nodes. In the given example all nodes are lying

in the interior of the model region. The boundaries, for which the conditions are

valid, have a distance of h from the outer nodes, as the m-file terms for the boundary

blocks correspond with the discrete formulation (21.17). In order to show the

solution in the entire model region, a vectors with boundary values would have to

be combined with U, for example by using:

surf([btop*ones(nx,1) U bbottom*ones(nx,1)]) 
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21.4 Solution for the 2D Poisson equation

In the previous sub-chapter the numerical solution of the Poisson equation was

described as a first example solving a stationary problem on higher dimensional

model region. Here we extend the program to deal with heterogeneous boundary

conditions and right hand side.

In the previous example Dirichlet-type boundary conditions are given at the

constant-x boundaries, while at the constant-y boundaries Neumann-type conditions

are required. In order to allow arbitrary combinations of Dirichlet- and Neumann-

type conditions, the program has to be extended. We choose to use logical vectors

for the indication of the boundary type and double vectors for the values. There are

four vectors representing the four sides of the square model region:

% boundary type indicators (1=Dirichlet, 0=Neumann no-flow) 
ltop = logical(zeros(1,nx));              % top
lbottom = logical(zeros(1,nx));           % bottom
lleft = logical([ones(ny/2,1) zeros(ny/2,1)]);   % left
lright = logical([zeros(ny/2,1) ones(ny/2,1)]);  % right

A 1-entry in the vector indicates a Dirichlet-type condition, while a 0-entry

stands for a Neumann-type no flow condition. In the example, given by the four

commands above, we have no-flow conditions along the top and bottom boundary,

while the left and right boundary a split in two parts, one having Dirichlet- and one

Neumann-type conditions.

Corresponding to the logical vectors as boundary-type indicators we introduce

double vectors for the eventually needed boundary values:
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Fig. 21.3 Solution of the example setting for the Poisson equation
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% boundary values (Dirichlet only) 
btop = ones(1,nx);                  % top
bbottom = zeros(1,nx);              % bottom
bleft = 2*ones(ny,1);               % left
bright = zeros(ny,1);               % right

The values given in the four vectors above will be taken only if the

corresponding position has a Dirichlet boundary condition, i.e. when the

corresponding entry in the logical vector is zero. In the example here only the first

half of the vector bleft and the second half of the bright are relevant for the

problem. All other values are maintained in order to allow M-file to be capable to

treat the general case.

As a generalization of the right hand side we write

q = [ones(nx/2,ny);zeros(nx/2,ny)];     % right hand side (source term)

The entries in the matrix q represent positions in the model region. If an element

is non-zero there is a source (or sink if the value is negative) in the corresponding

block of the model region. In the example we have a source term in the upper half of

the model region, while there is no source in the lower part – for whatever reason,

we don’t have to discuss here. The next commands are identical to the former

program.

N = nx*ny; 
d = [-nx,-1,0,1,nx]; 
B = [ones(N,2) -4*ones(N,1) ones(N,2)]; 
b = -h*h*reshape(q,N,1); 

The last command only is modified. One has to take into account that the matrix

q has to be changed into a vector for the further computations. In the following we

modify matrix B and right hand side b according to the general boundary conditions.

In the first loop we treat top and bottom boundary conditions. For the top boundary

(indices 1 to nx) an additional term has to be added to the right hand side in case of a

Dirichlet condition or the entry in the main diagonal has to be reset to 3 in case of

Neumann condition. These settings were outlined already in the previous subchap-

ter, but for the different boundaries as a whole. Now the distinction has to be made

for each location along the boundaries. The bottom boundary blocks then (indices

N-nx + 1 to N) are treated similarly in the second command block.

for i = 1:nx 
if ltop(i) 

        b(i) = b(i)-btop(i); 
else 

        B(i,3) = -3; 
end 
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if lbottom(i) 
        b(N-nx+i) = b(N-nx+i)-bbottom(i); 

else 
        B(N-nx+i,3) = -3; 

end 
end 

In the next loop we treat left and right boundaries similarly. However there are

certain peculiarities to be considered.

• Some of the entries in the adjacent off-diagonals have to be set to zero. These

represent those block neighbors that are outside of the model region, i.e. left

neighbors for boundary blocks on the left, and right neighbors for boundary

blocks on the right. This is considered below in the first two commands in the

outer if block. For the top and bottom boundary this was not necessary because

there these entries are missing in the matrix as the outer diagonals do not extend

over all rows and columns of B.

• The diagonal elements must be increased by 1, in contrast to the first loop above,

where they could be set to�3 in general. That is because the former assignments

in the first loop have to be considered in the second loop.

for i = 1:ny 
    B(i*nx,2) = 0;  

if i<ny B(i*nx+1,4) = 0; end
if lleft(i) 

        b((i-1)*nx+1) = b((i-1)*nx+1)-bleft(i); 
else 

        B((i-1)*nx+1,3) = B((i-1)*nx+1,3)+1; 
end 
if lright(i) 

        b(i*nx) = b(i*nx)-bright(i); 
else 

        B(i*nx,3) = B(i*nx,3)+1; 
end 

end 

After all these settings to execution and visualisation part is in fact identical to

the former M-file:

U = A\b; 
U = reshape(U,nx,ny); 
4*del2(U) 
surf(U)  

The system is solved using the \-operator. The solution has to be reshaped before

the output is checked and visualized. The final result is depicted in Fig. 21.4.

The complete code is included in the accompanying software under the name

‘Poisson2.m’
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21.5 Solution for the 2D Diffusion-Decay Equation

The program M-file from the last sub-chapter can be easily extended to account for

decay. This shows the strengths of the numerical methods. The differential equation

for the steady state is:

Dr2c� lc ¼ 0 (21.24)

(see chapter 5), where the unknown function is again denoted by c to indicate

concentration. D is the diffusivity and l the decay constant.

We can re-write the (21.24) as

r2c ¼ l
D
c (21.25)

which now shows a high resemblance with the Poisson (21.21). We see that the

difference is only on the right hand side, where we have a function depending on

c in this case. In the formalism of the finite difference procedure that is thus not

a crucial difference. Following the FD approach the term ðl=DÞcis evaluated at the

center position and enters the differential equation for each block. Thus we obtain

another term in the main diagonal of the matrix B. This is considered by replacing

the former initial setting for B by:

B = [ones(N,2) -(4+lambda/D)*ones(N,1) ones(N,2)]; 
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Fig. 21.4 Solution of the example setting for the Poisson equation with general boundary

conditions and sources/sinks
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That is all we have to do; aside from initializing D and lambda in the first part of

the program. In the example we use the same boundary conditions as in the previous

sub-chapter. The result is shown in Fig. 21.5.

We left the general source/sink-term considered so that we can actually solve a

diffusion-decay-source/sink problem with the M-file. In the example however,

there were no sources, i.e. q ¼ 0.

The code can be found in the accompanying software under the name

‘DiffDecay2D.m’
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Supplements

Supplement 1: MATLAB® Data Import

There are several ways to import data into the MATLAB workspace. See topic

‘Using Import Functions with Text Data’ in the online help for an overview

concerning text data. There are special commands for importing spreadsheet data

(csvread); there is even a special command for importing from Microsoft EXCEL:

xlsread.

It is not the intention here to go into details. We demonstrate a user-friendly tool,

which provides a data preview and several data manipulation tools during

importing. The ‘Open Import Wizard’ interface is called by

uiimport 

from the MATLAB® command window. The functionality is exemplified on one of

the most cited data sets, showing the increase of atmospheric CO2 concentrations

within almost 50 years. The data-set, which is measured at the Mauna Loa Obser-

vatory in Hawai’i at a height of 3,400 m above sea-level, can be obtained from the

internet. For monthly recorded data see: http://www.seattlecentral.org/qelp/sets/

078/078.html. All data are given in a single ASCII text file. Typical content is

depicted after calling uiimport from the command window and opening the file

(see Fig. S.1).

After pressing the ‘Next’ button another similar window appears, which allows

some manipulations on the data file. Here it is important to increase the number of

text header lines to 15. After that in the right data window the data matrix appears,

as depicted in the Fig. S.2.

Click two times ‘Next’ to move to the final window. Here, choose only to

re-name the data variable (use again right mouse button) to ‘CO2’. The final

‘Finish’ (button!) creates a new variable with the chosen name in the workspace

(see Fig. S.3). With that operation the command is finished and the wizard

disappears.
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Fig. S.1 Data import, first

screen

Fig. S.2 Data import, second screen

Fig. S.3 Data import, third screen
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The year is given in the first column; 14 following columns show month related

concentrations, the annual mean and a fitted annual mean. As we liked to take

the monthly measurements only, we highlight the corresponding 12 columns by

mouse-click in the right data window. Use the right mouse button to obtain a pop-up

window, including a copy button. After copying the highlighted columns, use the

‘Back’ button to return to the first window; and select ‘Clipboard’ using the

corresponding radio button. Now the carbon-dioxide values appear in the data

blocks; years are omitted.

In the next step we manually change ‘-99.99’ entries in the data set that is used in

the data set for missing values, to ‘NaN’, which fits with the MATLAB® conven-

tion (using copy and paste operations in the array editor. There are only few missing

values, which allow the manual operation. For more complex data sets one has to

utilize some MATLAB® commands as demonstrated in the following.

In order to plot the data, the matrix is transformed into a row vector. This can be

done using the following command sequence:

for i=1:47 
for j = 1:12 

     co2(12*(i-1)+j)=CO2(i,j); 
     t(12*(i-1)+j)=datenum(1957+i,j,15) 

end  
end 

The 2D data set in the variable ‘CO2’ is converted to a row in the variable ‘co2’.

In addition another row vector with corresponding times is created. We use the

serial date number, which is one of several MATLAB® alternatives to represent

date and time (for more information see the online help index ‘dates and times’).

The datenum command converts a date into the serial date number. Called with

three numbers, these correspond to year, month and day. There are several more

alternative calls of the command, which the user may look up in the help. The aimed

plot is finally created by the commands:

plot (t,co2) 
datetick ('x',11) 
xlabel (year); ylabel('Atmospheric CO_2 [ppm]'); 

The following figure results. Corresponding to the time format the datetick com-

mand offers several options to display time. There is a list of 28 alternatives which

can be applied by the datetick command. Here we choose to show the year only.

The result is shown in Fig. S.4.
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Fig. S.4 Atmospheric CO2

increase; visualized using

MATLAB®
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Supplement 2: Data Export

Data are exported by using the save command. Let us take the calculated co2 data

from Supplement 1 as an example. The command

save ('co2.mat', 'co2') 

stores the values in the file ‘co2.mat’ in the working directory. Make sure that the

user has write-permissions on that file. Otherwise change the directory by using the

cd (change directory) command. Note that MATLAB® has its own data storage

format that is the default here. Usually the extension ‘.mat’ is used for files with that

data format.

Other data formats can also be stored. Most important is the ASCII format,

which is obtained by using:

save ('co2.mat', 'co2','-ascii') 

Also important is the -append option for the data to be appended at the end of an

existing file.

Supplement 3: Data Presentation in a Histogram

There are various ways to represent environmental data using MATLAB®. The

reader may have a look in MATLAB® online command index for the hist, bar

and bar3 commands.

As an example we show a histogram of concentration measurements of different

chemical species at various observation points. Six species were measured at 13

positions. The entire data-set is stored in a matrix C.

The histogram is then produced by the bar command:

bar(C); 

The code is included in the accompanying software under the name

‘bardemo.m’
The result of the M-file is depicted in Fig. S.5. Further commands concern the

labels of the axes and the legend. Note how Greek characters are introduced in the

text, by using the \ operator.

xlabel ('observation points'); 
ylabel ('C [\mug/l]'); 
title ('measured concentrations'); 
legend ('Na','Cl','B','HCO_3','F','TOC'); 
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Epilogue

In 20 chapters, the book shows various applications of MATLAB® in the field of

environmental modeling. Numerous MATLAB® commands are introduced and

their use demonstrated. Various fields of environmental modeling have been

touched.

After 20 chapters, the book remains incomplete. Neither the entire field of

environmental modeling is covered, nor is the entire capability of MATLAB®
exploited. Of course, either of the mentioned tasks would be too ambitious to be

worked out, even within several book volumes.

Is something missing that is important? Probably everyone working in the field

of environmental modeling, who does not find her/his special problem set-up, will

say, yes. It was already mentioned that the entire field is too vast. Concerning

MATLAB®, the important application field of numerical methods for 2D and 3D

applications is missing. MATLAB® can be used to implement important numerical

approaches, like finite differences, or finite elements. These methods were omitted

as a consequence of the decision to focus on core MATLAB®. The easiest way

to apply such numerical techniques is to use the partial differential toolbox

of MATLAB®. Core MATLAB® could also be used to implement higher-

dimensional numerical models, but manual programming skills are required. Only

the advanced user would be addressed by this topic, to whom the recently published

book of Danaila et al. (2007) can be recommended. Among other numerical topics

Quarteroni (2003) outlines methods for the advection diffusion equation using

advanced Finite Element modeling techniques and presents MATLAB@ source

code for the solution of the 1D steady state.
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Fig. S.5 Example data representation in a histogram
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Concerning the environment, the hydrosphere is surely over-represented in the

book, while the atmosphere and the pedosphere appear only sporadically. Among

the hydrosphere topics, groundwater has the biggest share. The choice of the topics

is surely due to the background of the author, who in the past mainly worked in the

favored fields. However, the mathematical concepts that were introduced are

mostly independent from the environmental compartment and thus applicable in

several environmental areas. The given applications should be viewed as examples

for the mathematical techniques.

It was the purpose of the book to give a first introduction. I hope that goal

is reached. Aside from that, some novel approaches have been introduced and

examined which are beyond state-of-the-art. Some of these approaches turn out to

be simple and useful and will hopefully find their way into the practice of environ-

mental modeling. If that really happens, is due to the reader and her/his conception

of the book. In that sense, I wish the book to find understanding readers who make

these concepts work.
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MATLAB®Command Index

abs 15.3

acsc 4.1

acscd 4.1

acsch 4.1

addpath 2.2

airy 4.1

all 14.3

angle 15.3

any 14.3

acos 4.1

acosd 4.1

acot 4.1

acotd 4.1

asin 4.1

asind 4.1

atan 4.1, 15.1

atand 4.1

atan2 15.1

axes 20.1

axis 6.6, 18.1

bar Supplement

bar3 Supplement

besseli 4.1

besselj 4.1

besselk 12.3, 18.2

bessely 16.3

beta 4.1

betainc 4.1

break 2.6

bvp4c 9.3

bvpinit 9.3

case 6.4, 20.2

cd Supplement

ceil 4.2

circshift 4.2

class 1.2

clear 4.2

colorbar 14.4

colormap 14.4, 15.3

conj 15.3

continue 2.6

contour 15.1, 16.5

contourf 4.2

cos 4.1, 8.1

cosh 4.1

cot 4.1

coth 4.1

cplxgrid 15.3

cplxmap 15.3

csc 4.1

The following list gathers the MATLAB® commands, which are mentioned in

the book. For each command find the corresponding chapter and sub-chapter

numbers within the book. For frequently appearing commands the most important

occurrences are listed, only.
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csvread Supplement

datenum Supplement

datetick Supplement

del2 21.2

delete 17.3

diag 18.2

diff 1.3

display 8.1

edit 2.5

eig 18.3

else 2.6

end 2.6

eps 1.2

erf 4.1

erfc 4.1

exp 1.2, 1.3

expint 4.1, 12.4

expm 18.2

eye 1.2, 18.2

figure 1.4

floor 4.2

format long 1.2

full 21.2

funm 18.2

function 2.5, 17.5

fzero 7.5, 10.4, 12.5

gamma 4.1

gammainc 4.1

get 20.1

getframe 6.6

ginput 17.3

global 10.4

gplot 18.1

gradient 14.4, 15.3

grid 1.3

griddata 13.4

guide 20.1

hdftool 17.1

hist Supplement

hold 2.5

i 1.2, 15.3

if 2.6

imread 17.2

imag 15.3

imagesc 17.2

inputdlg 17.3

interpstreamspeed 14.4

inv 1.2

isempty 2.6

isfinite 2.6

isfloat 2.6

isinf 2.6

islogical 2.6

isnan 2.6

isscalar 2.6

issparse 21.2

is vector 2.6

legend 2.5, 4.1

length 1.2, 11.4

line 17.4

linspace 4.2

log 1.3. 4.1, 10.3, 12.1

log10 4.1, 8.2, 8.3

log2 4.1

max 6.6, 8.3

mean 14.4

mesh 13.4

meshgrid 13.3, 14.5

min 6.6

movie 6.6

mpgwrite 6.6

msgbox 20.2

namelengthmax 1.2

nargin 2.5, 17.5, 20.1

nargout 2.5, 17.5, 20.1

num2str 18.2

ode15s 9.1, 19.3

ode45 19.4

odeset 4.5, 9.3, 11.4

ones 1.2

path 2.2

pdepe 4.4, 6.4

pi 1.2

plot 1.3

plotyy 9.3

polyfit 10.1

polyval 10.1

quiver 14.4, 15.4
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rand 1.2

randn 1.2

rank 8.2

real 15.3

realmax 1.2

real min 1.2

rectangle 1.5

reshape 21.2

return 2.5

round 15.4

save Supplement

set 20.1

sin 4.1, 8.1

single 1.2

sinh 4.1

size 1.2, 4.1

slice 14.1

sparse 21.2

spdiags 21.2

spy 21.2

sqrt 1.2, 4.1

sqrtm 18.2

streamline 14.4, 15.1

streamslice 14.4

str2double 17.3, 20.1

strcat 17.2

subplot 19.3

surf 4.2

sum 10.1

switch 6.4, 20.2

tan 4.1

tanh 4.1

text 18.2

title 11.4

uiimport Supplement

uiwait 20.2

uigetfile 17.2

uiputfile 6.6

warning 1.2

waterfall 13.4

web 20.2

which 2.2

whitebg 15.4

while 2.6

who 1.2

whos 1.2

xlabel 4.2

ylabel 4.2

xlsread Supplement

zeros 1.2

+ 1.2

- 1.2

* 1.2

/ 1.2

\ 1.2

^ 1.2

.* 1.2

./ 1.2, Supplement

.^ 1.2

’ 2.4

& 6.4

| 6.4

% 4.1

~ 13.3
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Companion Software List

advection.m

analtrans.m

analtrans_s1.m

analtrans_s2.m

analtrans_s3.m

analtrans_s4.m

analtransnodim.m

AnElements.m

animation.mpg

bardemo.m

boudreau_westrich.m

comparts.m

compspec.m

cplxPot.m

DiffDecay2D

diffusion.m

dipole.m

DischargePotential.m

Fracture.m

GaussianPlume.m

GaussianPuff.m

GdDTPA.m

georef.m

gw_flow.m

ierfc.m

kinetics.m

logistic.m

lorenza.m

MichaelisMenten.m

newtondemo.m

nuclides.m

numdemo.m

OpenChannel.m

par_est.m

par_esta.m

par_estb.m

par_estc.m

par_est2.m

par_est2a.m

pdepetrans.m

phasediag.m

Poisson1.m

Poisson2.m

predprey.m

redoxsteady.m

retention.m

richards.m

simpltrans.m

The accompanying CD contains the M-files which are described in the book,

sometimes extended versions. The files can also be downloaded from the

MATLAB® central file exchange (www.mathworks.com/matlabcentral/

fileexchange).
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slowsorp.m

Speciation.m

StreeterPhelps.m

sttransanal.m

thiem_test.m

ThreeD_flow.m

transport.m

viscosity_dyn.m

welldrawdown.m

wellvortex.m
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Index

A

Activity, 97, 151, 152, 157–159

Adjacency matrix, 327–332, 349

Adriatic Sea, 356

Advection, 3, 36, 57, 63, 64, 70, 71, 81–84,

88, 90, 92, 93, 104–108, 111, 119,

122, 128, 133, 139, 143, 165, 172, 177,

207, 304, 308–310, 312, 314, 373, 397

Air quality, 332, 333

Analytical solutions, 4, 36, 38, 39, 80, 110,

169, 210, 220, 223, 224, 232, 239, 281,

295, 303, 307, 313–314, 349, 377

Animation, 81, 84, 130–131

Aquifer

confined, 232, 239–243, 246, 248, 249,

251, 254–256, 259, 260, 269–272, 290

half-confined, 245–246, 251

unconfined, 232, 242–245, 247, 251,

254–256, 258, 259, 269–271, 290

Archie’s Law, 62, 63

Atmosphere, 3, 57, 133, 137, 170, 217, 300,

309, 310, 312, 327, 333, 361, 398

B

Bacteria, 97, 137–140, 170, 173, 178, 184, 191

Bank filtrate, 192, 288

Barents Sea, 330

Bernoulli theorem, 224–228, 268

Bessel function, 77, 245, 246, 309, 341

Biosphere, 3, 217

Boundary conditions

Cauchy, 72, 73, 92

Dirichlet, 72, 73, 92, 93, 102, 176, 210,

382, 383, 388–390

Neumann, 72, 73, 89, 92, 93, 129,

176, 383, 388–390

Robin, 72, 73, 92

Buoyancy, 233

C

Calcite, 69, 70, 162–165

Calibration, 39, 191

Carrying capacity, 28, 348

Chaos, 360–362

Chloride, 40, 113, 207, 208

Closed form solutions, 224

Cobalt, 153

Command history, 13, 15, 47, 49

Compartment, 3, 26, 35, 57, 63, 81, 82,

114, 133, 147, 171, 185, 204, 217,

228, 229, 232, 236, 253, 303,

313, 315, 327–345, 349, 398

Complex potential, 281–301

Concentrations, total, 153–155, 161, 164

Conductivity

hydraulic, 230, 231, 233, 240, 251,

254, 269, 270, 318, 340

thermal, 69, 70

Conservation

energy, 40, 41, 57, 68, 69

mass, 40–42, 44–46, 57, 58, 60, 65,

66, 68, 85, 179, 220, 331, 333

Continuity equation, 40, 42–46, 58,

59, 181, 222, 234, 263

Convection, 71

Convergence, 105, 344

of numerical algorithms, 382
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Curve fitting

exponential, 196–198

polynomial, 24, 193–196, 201

Cyanobacteria, 191

D

Dalton’s Law, 41

Damk€ohler number, 102–107, 109

Darcy’s Law, 223, 228–232, 240, 243,

244, 253, 269, 377

Davies equation, 158

Decay, 3, 29, 57, 97–110, 116, 117, 120,

122, 127–129, 134, 139, 140, 169,

197, 201–203, 205, 206, 306, 308,

309, 312, 313, 333, 337, 338, 378,

380, 381, 392–393

Degradation, 3, 28, 49, 57, 97–110, 116,

117, 120, 122, 123, 125, 126,

138–140, 142–144, 169, 170, 173,

178, 181, 184, 187, 192, 204,

205, 306, 313, 314, 373, 378

Density, 4, 28, 40, 69, 116, 118, 124,

126, 181, 182, 220, 221, 227, 230,

231, 277, 284, 357

fluid, 45, 179, 218

Deposition, 133

wet, 313

Diethylene-triamine-pentaacetic acid (DTPA),

142, 144, 145

Diffusion, 3, 57, 59–64, 71, 82, 83, 85–89,

92, 93, 103, 105–107, 109, 111, 117,

119, 128, 133, 140, 172, 177, 181,

207, 209, 211, 212, 304, 308, 309,

311, 312, 314, 373, 392–393, 397

heat, 70, 79–80

Diffusivity

molecular, 60–62, 64, 140, 208

thermal, 69, 70

turbulent, 66

Digitizing, 318, 322–323

Di-pole, 291, 293, 294

Dispersion, 3, 57, 63–65, 71, 81, 82, 84,

92, 93, 111, 119, 135, 141, 142,

145, 168, 174, 303, 306, 312,

313, 371

length, 63

Dispersivity, 63–65, 78, 85, 88, 91, 140

Donor controlled, 331–333

Doublette, 286–287

DTPA. See Diethylene-triamine-pentaacetic

acid

E

Ecosystem, 7, 310, 349, 350

Eigenvalue, 8, 337–339, 341–345, 349,

352–354, 358, 359

Eigenvector, 8, 341, 342, 345, 359

Endosulfan, 315

Energy, 40, 41, 57, 58, 68–70, 225–227, 377

Equations

continuity, 40, 42–46, 58, 59, 179,

220, 232, 265

Laplace, 266, 383

Poisson, 211, 212, 232, 386, 387, 389–392

potential, 265, 266, 270, 272, 281

state, 144, 178, 209

Equilibrium

stable, 339, 343, 344, 349, 354, 358,

359, 361

unstable, 339, 344, 345, 349, 353, 358, 359

Euler equation, 224–228, 268

Eutrophication, 355

F

Fick’s Law, 57, 59–64, 66, 69, 70, 72,

85, 86, 377

Finite differences, 36, 86, 89, 224, 377–398

Finite elements, 36, 224, 377–378, 397

Finite volumes, 36, 224, 377

Food chain, 330, 349, 355

Foodweb, 349, 350, 355

Fourier’s Law, 57, 68–72, 377

Fracture, 162, 163, 165, 300, 301

Free fluids, 217–223, 290

Function

Bessel, 77, 245, 246, 309, 341

error, 75–77, 79, 80, 174, 194, 206

harmonic, 266

Function browser, 32

G

Gaussian models, 303, 312

Gaussian plumes, 303, 313–315

Gaussian puffs, 303–315

Geo Information Systems (GIS), 3, 5, 318

Geo-referencing, 317–325

Gravity, 191, 219, 225, 227, 231

Grid, 28, 29, 44, 75, 87, 99, 171, 174, 183,

186, 257, 294, 298, 348, 370–372,

381, 383, 385, 387, 388

Groundwater level, 256, 375
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H

Harmonic function, 266

Head

hydraulic, 73, 223, 231, 233, 235,

236, 258, 290, 318

piezometric, 228, 232, 239–242, 244–248,

255–258, 269–271, 273, 340

pressure, 73, 233, 235–237

suction, 233, 235

Heat capacity, 41, 68–70

Henry’s Law, 170

Histogram, 196, 293–397

Hydraulic head, 73, 223, 231, 233, 235,

236, 258, 290, 318

Hydrological cycle, 327–329

I

Ideal fluids, 224, 227

Image processing, 317–325

Initial conditions, 26, 38, 71–73, 76–78,

90–93, 99, 130, 174, 207, 304,

307, 335, 377

Insecticide, 134, 315

Interception, 327, 328

Ionic strength, 152, 158

Isotherms, 114–119, 124–126, 136, 159

linear, 112, 118, 124, 125, 205

J

Jacobi matrix, 157, 352–354, 358, 359

K

Karst, 162

Kinetics

Michaelis-Menten, 100, 137–138, 173–175

Monod, 100, 137–138, 173–175,

181, 187, 188

L

Lake, 3, 57, 147, 169, 192, 208, 217, 287,

303, 315, 317, 331, 333, 349, 350, 355

Lake Michigan, 349, 350

Lake Victoria, 355

Laplace equation, 265, 383

Linear system, 23, 24, 155, 161, 171, 327–362,

384, 385, 387, 388

Logistic growth, 347–350, 359

Lorenz attractor, 360–362

Lotka-Volterra, 356, 358, 359

M

Marmara Sea, 207, 208

Mass action, 148

law of, 136–137, 149, 151–153,

157–160, 173

Mesh, 235, 257–260, 262, 270–273,

275–277, 283, 294, 296, 298,

300, 355, 382–385

Michaelis-Menten, 100, 137–138, 173–175

Microcystin, 191, 192, 201, 205

Model region, 38, 72, 161, 263, 270–272,

276, 282, 285, 296, 300, 320,

378, 382, 384, 385, 389–391

Monod kinetics, 100, 138, 173–175, 188

N

Neumann number, 83, 86, 87, 122

Newton method, 151, 155, 165

Nile perch, 355, 356

Nonlinear system, 155, 161, 171, 342, 347–362

Norm, 194–196, 198, 201–204, 208

Normal distribution, 303–307, 315

NTA, 153

Nuclides, 100, 120, 205, 217, 332, 337, 338

Numerical solutions, 4, 27, 80, 85, 88–93,

122–125, 164, 232, 235, 283,

377, 380–382, 389

P

Parameter estimation, 7, 8, 39, 62, 144,

191–213, 248, 249, 251, 252

PCB, 315

Péclet criterion

Péclet number, 71, 102, 104, 105, 107,

109, 176, 177, 306

Pedosphere, 57, 151, 398

Permeability, 230, 231

Phase diagram, 342–345, 351

Phase space, 341–345, 351–355,

357–359, 361, 362

Phosphorus, 7, 173

Phytoplankton, 349

Piezometric head, 228, 232, 239–242,

244–248, 255–258, 269–271, 273, 340

Poisson equation, 211–213, 232, 386, 387,

389–392

Pollution, 36, 303, 305, 309, 313

Porosity, 41, 42, 44, 61–63, 68, 98, 116–118,

124, 127, 163, 178–180, 182, 230,

233, 235, 269

Potential complex, 281–301
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Potential flow, 224, 227, 268, 278, 285,

299–301

Precipitation, 114, 229, 313

Precision mode, double precision, 12, 321

Predator-prey, 356–360

Pressure

dynamic, 227, 231

head, 73, 233, 235, 237

R

Rayleigh number, 361

Reactions

equilibrium, 112, 147–166, 173

kinetic, 134, 136, 137, 162, 164, 171

redox, 184–187

Recipient controlled, 331

Redox reactions, 184–187

Residence time, 229, 331

Residual, 183, 194, 196, 198, 201–204,

208, 233, 235, 250

Retardation, 117–126, 139, 192, 204, 205, 307

Retention curve, 233–235

Reynolds number, 220, 223, 227, 229

Richards equation, 235, 236

S

Scaling, 130, 287, 355

Script, 49, 50, 324, 325

Sedimentation, 64, 147, 178, 207, 208

Sediments, aqueous, 192

Seepage, 35, 41, 63, 111, 218, 228, 229

Settling velocity, 314

Sinks, 40, 44, 58, 59, 71, 90, 116, 117,

119, 176, 220, 266, 267, 270, 293,

294, 333, 392

line, 293

Soil, 4, 35, 41, 42, 57, 97, 114, 117, 218,

228, 229, 232–234, 236, 237, 303,

305, 327, 328, 332

Sorption, 3, 57, 111–131, 157–160, 192,

204, 307, 325, 333, 334

Sources, 40, 44, 58, 59, 69–71, 91, 116,

117, 119, 176, 220, 266, 270,

293, 294, 312, 333, 392, 393

Sparse, 384, 385

Stack release, 312, 313

Streamfunction, 73, 265, 275, 281–301

Streamlines, 268, 275, 277, 278, 281, 283, 284,

286, 287, 293–295, 297, 298, 300

Streeter-Phelps, 170–173

Subfunctions, 50, 325, 361, 368, 369

Suction head, 233, 235

Superposition, 266, 267, 283, 285–291,

294, 310, 312

System

linear, 8, 23, 24, 171, 327–345, 384,

385, 387, 388

nonlinear, 155, 161, 171, 342, 347–362

T

Temperature, 40, 41, 57, 58, 60, 68–70, 72,

79, 90, 97, 100, 147, 151, 158, 159,

191, 219, 227, 310, 312, 317–318

Timestep, 44, 58, 59, 78, 81, 83, 86–89,

95, 96, 122, 127, 379–381

Toluol, 334

Tortuosity, 61–63, 65

Trajectory, 343, 351, 357, 359, 362

Transition zone, 82, 84, 85

Turbulence, 312

U

Unsaturated zone, 41, 42, 217, 220, 228,

232, 233, 242

V

Vadose zone, 218, 228, 232, 233

Validation, 39, 40

Variables

dependent, 57, 72, 90, 171, 193, 197,

200, 218, 232

dimensionless, 71, 99, 109, 176

global, 324

independent, 35, 37, 38, 58, 90, 98, 100,

105, 155, 169, 170, 182, 197, 200,

334, 382

local, 324

Velocity

Darcy, 163, 229, 230, 253, 269

flow, 63, 143, 225, 230, 231, 276

Verification, 39

Viscosity

dynamic, 219, 230, 231

kinematic, 220

Volatile organic compound, 333

Vortex, 289, 294, 295, 297–299

W

Water content, 61, 233, 235, 237

Wells, 229, 239, 270, 284–291, 293, 295–299,

341

Wet deposition, 313

Z

Zooplankton, 349, 355
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