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“The sun which is so high and shining is
hidden often by a small cloud”

Armenian Proverb





Preface

Remote sensing is neither a difficult or exotic technology. At its most fundamental

level, remote sensing is a form of basic field data collection, an activity common to

all physical, natural, and social science and motivated by the same overarching

goals: to systematically observe phenomena in order to record useful measure-

ments of the variables that define their characteristic properties. Remote sensing

simply acquires those measurements in a very different manner. Anyone with a

background in subject areas ranging from geography, Earth science, planning,

or resource management, to perhaps less obvious fields such as public policy

studies, environmental health, and international development can apply remote

sensing methods successfully and produce useful information that can address a

myriad of problems and issues. To approach this wider audience, I have elected to

title this book using the term “environmental sensing,” where the verb sensing

means “to become aware of”; aware of the technology and of the environmental

patterns this technology can illuminate.

My interest in remote sensing science dates to my very first course on the topic as

an undergraduate geography major at San Francisco State University and continues

to develop as this science continues to evolve. In that first course we marveled at

the use of exotic equipment such as the additive color viewer that directed red,

green and blue light through gray-scale transparencies of imagery acquired from the

Landsat MSS. Today we marvel at the speed by which computer algorithms can

process this data in digital form revealing details and complexities of the land

surface that have extended remote sensing technology beyond a simple mapping

tool. It is here where this book takes focus with the intent of reaching an audience

that knows something about remote sensing, but has not attempted to exploit its

range of capabilities. I was introduced to this audience a few years ago following an

invitation to participate in a workshop aimed at promoting remote sensing to policy

makers, government administrators and legal analysts working in the environmen-

tal sector. During this experience I was surprised by how a large segment of the

environmental community still held numerous misconceptions concerning remote

sensing and echoed common frustrations centered around “steep” learning curves
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of a technology most still regarded as out of reach. My intent in this book is to

“reach” this audience and demonstrate that remote sensing science is tamable and

can be used with great success when interested parties are equipped with a funda-

mental appreciation of the theory and methods on which this science is based.

Remote sensing no longer requires color additive viewers or other complex and

bulky machines, nor does it necessarily require expensive software. Today remote

sensing can be practiced on lap top computers with an internet connection and an

enterprising user eager to take full advantage of the knowledge contained in the

measurements acquired via this technology.

Although it might be convenient to characterize this book as an introductory text

on remote sensing, my purpose here is not to replicate what has been done very well

elsewhere. Rather, in these pages I have worked to distill the “need to know”

information and methods and reassemble them a way that highlights where and

how remote sensing can make valuable contributions to the study of our environ-

ment. Using a systematic approach, this book explains how remote sensing science

can produce pertinent information while at the same time introducing selected

methods that are well suited to the situations encountered when contending with

the intricacies of human/environmental interaction. Therefore, while not an intro-

ductory text, per se, this book is none the less appropriate in a traditional classroom

setting in a course that builds on the fundamentals of digital image processing as

well as more specialized courses that seek to advance environmental assessment by

integrating a remote sensing approach into existing methodologies. Beyond the

classroom this book can serve as a resource for those working in the environmental

sector that are well grounded in policy matters or the science of the environment,

but not well acquainted with remote sensing. To these individuals this book

describes a sequenced presentation of the technology and supporting techniques

that provide both missing background and the script to follow when developing

specific applications where a remote sensing solution is useful.

Whether your focus is the classroom, or professional practice, the paced treat-

ment presented here represents a synopsis of the current approaches to the emerging

science of Earth observation. Beginning in Chap. 1 with an overview of what Earth

observation means in the context of remote environmental data gathering, the

outline of this book continues with the environmental theme by exploring the

concept of “environmental sensing” and the areas of concern that direct environ-

mental analysis. From here we explore the tools we can call upon to collect

environmental data, describing the expanding array of satellite sensor systems

and their products. Chapter 4 introduces the fundamental techniques used to extract

information from satellite-based sensors which transitions into a discussion

of uncertainty and soft computing (Chap. 5) environmental characterization

(Chap. 6), and environmental monitoring (Chap. 7). From there, the book branches

out into comparatively new or underutilized applications areas such as thermal

analysis and anomaly detection (Chap. 8) followed by an examination of hyperspec-

tral remote sensing in Chaps. 9 and 10. Next we explore object-based image
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classification (Chap. 11) and introduce an emerging area I have termed forensic

remote sensing (Chap. 12). Finally our treatment of remote sensing concludes with a

chapter dedicated to the role and integration of remote sensing in the larger field of

geomatics and applied geospatial analysis (Chap. 13).

Obviously, none of this work took place in a vacuum, and I am indebted to

numerous people for the opportunity to produce this work. First and foremost

I would like to thank my wife Christine for the encouragement and guidance

as I embarked on this project. It is always challenging to take on the task of writing

a book and it is nice to have the support of family when you feel like giving up.

I would also like to thank those reviewers whose comments and suggestions greatly

improved my initial draft. Finally, I would like to extend a special thank you to

Dr. Richard Beck, whose phone call in 1998 made all of this work possible and truly

changed how remote sensing technology could be accessed and enjoyed by a broader

range of people. It was a simple question, “Would you be interested in helping to

improve access satellite data.” I had the presence of mind to say yes and the Ohio-

View (AmericaView) program was born (http://www.americaview.org). From that

day forward “bringing remote sensing down to earth” became an active part of my

teaching and research agenda and I hope that idea translates and communicates

within the pages of this book.

Athens, OH James K. Lein
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Chapter 1

The Earth Observation Perspective

Environmental sensing and the analytical techniques that transform raw

measurements acquired from the instruments deployed in Earth orbit are the

focus of this book. The process of rendering these data useful, however, involves

more than the application of a method. Integral to this transformation are the

innately human abilities to abstract from general principles and to craft a conceptual

view of sensing technologies and techniques that place them concretely into the

problem-based and decision-oriented roles that they have been designed to support.

In this context, environmental sensing activities are neither difficult nor exotic;

rather they are often misunderstood and viewed as beyond the reach of those

individuals and groups that can benefit from them. Satellite remote sensing can

significantly enhance the information available from traditional data sources

because it can provide synoptic views of large portions of the Earth. Satellite

imagery can also expand the spatial dimensions of limited and sometimes costly

field or point-source sampling efforts. Some satellite sensors cover areas that

may be physically or politically inaccessible or that are too vast to survey with

traditional methods. Remote sensing can also provide consistent repeat coverage

at relatively frequent intervals, making the detection and monitoring of change

feasible. Satellite-derived data and information are also useful for applications

that require fine spatial resolution such as surveys of urban and suburban

land use, land cover for agricultural purposes, and natural resource management

(Wang et al. 2010). However, regardless of sophistication, satellite remote sensing

has obvious disadvantages, such as the inability of some sensors to obtain data and

information through cloud cover and other systems where spatial resolutions do not

provide sufficient geographic detail of the surface to support meaningful analysis.

Similarly, the data gathered by sensor systems need to correct for atmospheric

absorption and scattering, and other effects that can make it difficult to obtain

desired data and information on particular environmental variables. In practical

terms, satellite remote sensing also creates large quantities of data that typically

require extensive processing as well as storage and analysis; and in the “real-world”

setting of agencies and institutions, the data from satellite remote sensing are often

costly hampered by intellectual property restrictions, can limit the dissemination of
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the information products derived from these sources. The goal of this chapter is to

suggest an alternative perspective that elevates environmental sensing to the status

of an accessible and commonplace means of addressing the issues that define

human–environmental interaction and examine the fundamental of environmental

sensing using satellite-based instruments.

1.1 Earth Observation and Environment

Since the deployment of the first civilian land resource satellite in 1972, the role of

satellite-remote sensing as a means to improve our understanding, management,

and monitoring of Earth’s natural resources has been pivotal as nations of the world

make choices that influence not only their futures, but also the future of our planet.

With the advent of satellite remote sensing, Earth observation has evolved to

become a critical method for gathering information regarding the physical, chemi-

cal, biological, and human elements that comprise our environmental system.

Although the technologies that support Earth observation have become increasingly

varied and sophisticated, their purpose is singular; to facilitate informed decision

making at local to global scales.

Connecting the science of Earth observation to the intricacies that define envi-

ronmental process can be a daunting undertaking. Inferring the environmental

parameters from measurements collected remotely requires knowledge of the

techniques of remote sensing as well as that of the process that pattern the surface

of the Earth. Integrating remote sensing theory and practice into this larger frame-

work focuses on the information that can be gained through the processing of

remotely sensed data. Information needs, however, are diverse and the environ-

mental issues confronting society are equally varied and variable. The Earth

observation perspective is one approach to better connect the data gathering assets

that characterize the current status of satellite-based remote sensing with the

informational requirements directing environmental analysis and policy making

(Lautenbacher 2006; Goetzs 2007; Boyd 2009).

Earth observation science is based on the premise that continuous and systematic

acquisition of information concerning the status of objects and phenomena on the

surface can advance our fundamental understanding of the environmental system

(Bauer et al. 2006; King and Birk 2004). Programmatic endeavors in the context of

societal and national imperatives direct Earth observation science and its associated

technologies toward the documentation, modeling, and analysis of practical societal

problems. At the center of this science are the satellite systems deployed in a variety

of orbits that capture data with contrasting capabilities and an expanding

capacity for delivering information products tailored to address specific objectives.

The Earth observation perspective exploits this new paradigm of integrated

global observation to expedite the assimilation of environmental data as decision

support. As a component of decision support, Earth observation data demands

timely access to facilitate ease of application. In very simple terms, this emerging
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model characterizes scenario where for any one location of the surface, numerous

sensor systems are actively recording data regarding its status (Thackrah 2006).

When an operational need for data arises, connecting the problem to its most

appropriate sensor becomes similar to the craftsman’s task of selecting the appro-

priate tool from the array of equipment displayed on the wall of the workshop.

Decision support also recognizes that the environmental system is complex. The

problems and situations confronted in the process of decision making are often ill-

structured and ill-defined. Incorporating the Earth observation perspective as part of

the environmental decision making process reinforces the application of data

products derived from Earth observational sensors, where synoptic scale and

geographic detail can be matched to the requirements specified by the problem.

To the decision maker, the challenge is to identify which sensor instrument

to select and how best to maximize the use of the data it collects. As the number

and scope of sensor systems increase and technological advancements continue

to refine their capabilities, we can conceptual a future where environmental

analysis is couple to continuous monitoring and data gathering in a coordinated

and policy-relevant manner. In this conceptualization, the Earth observation

perspective expands the methods used in the study of the environmental system.

However, this model of decision analysis is not a panacea. Success in the design

on decision-centric applications develops out of a sensitivity and fundamental

awareness of (1) the practical and technological constraints that surround this

emerging science and (2) the inherent complexity that envelops the study of

human–environmental interaction.

1.2 Confronting Complexity

While it is often convenient to approach a technology only as a technology,

concentrating on the how-and-why aspects that describe its functioning, this

common predilection creates an artificial separation that segregates those which

may benefit from the technology from those charged with its development and

management. With its focus on sensor instruments and specialized methods of

data processing, environmental sensing is a subject that can easily fall prey to

this intellectual trap. However, if the technological system is integrated into the

large question of environmental process and change, a synergy can be realized

where the complex needs of a decision problem are fitted with a requisite level

of environmental information. One useful approach to achieve a synergistic

fit between disparate technologies and the environmental system draws from

complexity theory.

From its beginnings in the theoretical areas of mathematics and physics near four

decades ago, complexity theory has evolved from an equation-based paradigm to an

environmental science model that has become increasingly useful when examining

how the human–environmental system operates (Manson 2001; Contanza1993;

Phelan 1999). The idea of complex systems is an approach to science that explains
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how relationships between parts give rise to the collective behaviors of a system

and how that system interacts to form relationships with its environment.

Complexity theory illuminates many interactions between natural and social

systems and can offer a new understanding of the general principles at work,

which can be used to help address vexing environmental issues. The central feature

of this theory is the concept of a system that consists of definable parts that function

to produce a result. However, rather than reducing a system to its components,

complexity theory recognizes that elements of a system cannot be simplified by

grouping them together and instead focuses on how components interact. From this

assertion, complexity investigates emergent, dynamic, and self-organizing systems

that interact in ways that influence the probabilities of later events; and at a different

level of analysis, complexity theory provides a new paradigm that can be employed

to formalize how scale and abstraction gives rise to contrasting explanations.

By concentrating analysis on complexity, systems are irreducible to elementary

laws or simple processes. The equations from which complex system models are

developed generally derive from statistical physics, information theory, and non-

linear dynamics, and represent organized but unpredictable behaviors of systems

of nature that are characterized by the combination of elements in intricate

arrangements (i.e., complex).

Within this theory, there are four types of complexity can be observed. The first

form of complexity is commonly referred to as static complexity. This is perhaps

the simplest definition of complexity and is based on the assumption that what we

are interested in is as an image that it does not change over time or space

(Kauffman 1995). From the perspective our understanding of static systems, know-

ing that they are complex, allows us to compare and relate them to other systems to

determine the complexity of the system. The second type of complexity is called

dynamic complexity and it introduces the dimension of time. Time recognizes set

patterns or cycles, but it does not provide a means to organize systems into

categories. Therefore, to understand this type of complexity, we rely on being

able to test and confirm what might be going on, and to deduce whether a system

is either static or some kind of cycle. If we observe Earth environments through

the lens of complexity, we see objects that do not change defined as variables.

However, complexity theory requires consideration of process or action as well,

which introduces the third type of complexity: evolving complexity. Evolving

complexity describes the situation where systems over time are able to evolve

into different systems (Kauffman 1995). This type of complexity is easily thought

of when we consider how systems are able to change and describe new states or

conditions. Quickly we recognize that any complex system has many combinations

of variables, and many of these variables might not have taken place yet. The

final explanation of complexity is the most relevant to the analysis of human–

environmental interaction: self-organizing complexity. This type of complexity

characterizes the case where we can take a closed system, ecosystem, and combine

the constraints observed by the closed system with those of an open system,

typically one defined as inherently human (Kauffman 1995). This is called

coevolving where we must describe the functions of the system and how they relate
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to the world. These four types of complexity enable us to do under the complexity

theory is predict solutions that will occur from differing constraints and

configurations we construct. We provide an environment and let the random

systems in it use their variables and come together to form a solution that is useful

to us in a sense that we can predict what will happen under certain environments

and constraints. Several properties of complex systems can be noted with respect to

these definitions:

• Systems influence one another. Since each agent and each system is nested within

other systems, all evolving together and interacting, we cannot fully understand

any of the agents or systems without reference to the others. This can lead to

unexpected actions in response to change and so complicates the prediction.

• Actors defined in a complex adaptive system respond to their environment by

using internalized rules that drive behavior. In a biochemical system, the “rules”

are chemical reactions. At a human level, the rules can be expressed as instincts,

procedural rules, or mental models. These internal rules need not be shared,

explicit, or even logical when viewed by another agent.

• Complex systems interact with other complex systems which produces tension

and paradox that can never be fully resolved. In complex social systems, the

seemingly opposing forces of competition and cooperation often work together

in positive ways: fierce competition within an industry can improve the collec-

tive performance of all participants.

• Neither the system nor its external environment are, or ever will be, constant.

• Individuals within a system are independent and creative decision makers.

• Uncertainty and paradox are inherent within the system.

• Problems that cannot be solved can nevertheless be “moved forward.”

• Effective solutions can emerge from minimum specification.

• Small changes can have big effects.

• Behavior exhibits patterns (that can be termed “attractors”).

• Change is more easily adopted when it taps into attractor patterns.

• Complex systems frequently produce fluctuations that are often explicable only

at the level of the whole system.

With respect to the Earth observation science, recent understanding of the com-

plexity of natural systems has eliminated the idea that everything is determined.

Therefore, knowing that it is impossible to understand every facet of the environ-

mental system, the relationships that govern environmental process observable in the

system are directed by the natural interaction of variables and other systems. This

understanding of the complexity theory carries important implications practically and

philosophically, because it demonstrates that we may need to change our approach to

what questions we might be asking in trying to understand the environmental system.

The information we gain through the Earth observation perspective should cause us to

change the questions we ask as well as our understanding of the environmental

system. In this context, the value of complexity thinking rests in its ability to:

• Explain emergent structures (self-organization).

• Measure relative complexity (hierarchical multiparameter).
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• Provide control methods for complex systems (steering points).

• Generate effective models (abstractions).

• Give statistical predictors (constraints).

• Solve outstanding problems (breakthroughs).

• Demonstrate possible new applications (novelty).

• Quantify the laws of order and information (if any).

1.3 Remote Sensing Theory and Practice

Over the past four decades, remote sensing has emerged as one of themore important

and widely described methods for collecting data on the disposition of Earth surface

phenomena (Jensen 2007; Campbell 2002). Today satellite-based remote sensing

serves as the foundation for Earth observation and the cornerstone for the future.

Indeed. Earth observation from space through various remote sensing instruments

has become a rapid and cost-effective means of monitoring land surface dynamics,

and remote sensing is one of a suite of tools available to environmental analysts that

provides up-to-date, detailed information about condition of the environmental

system. Although definitions abound, for our purposes, we can explain remote

sensing as the science and art of acquiring information about the Earth’s surface

without actually being in contact with it. When compared with other methods of

environmental data collection, remote sensing focuses on measurements made at a

distance, rather than in situ. The process of remote sensing involves the detection

and measurement of radiation of different wavelengths reflected or emitted from

distant objects or materials, by which they may be identified and categorized by

class/type, substance, and spatial distribution. The success of this approach hinges

on sensing and recording reflected or emitted energy and processing, analyzing, and

applying that information to reveal these patterns. In addition, remote sensing

systems, particularly those deployed on satellites, provide a repetitive and consistent

view of the Earth which directly supports the conceptual model implied by the Earth

observation science (Schowengerdt 2007).

The quantity commonly measured by the current generation of remote sensors

is the electromagnetic (EM) energy emanating from the object of interest. The

electromagnetic spectrum is the continuous range of electromagnetic radiation,

extending from gamma rays (highest frequency and shortest wavelength) to radio

waves (lowest frequency and longest wavelength) and including visible light, and

each has useful properties that can be exploited for the purposes of remote sensing.

Based on the properties of electromagnetic radiation, a set of fundamental

principles can be described that direct its use as a measurement tool:

1. Electromagnetic energy is explained by wavelength and arranged to form the

electromagnetic spectrum.

2. As electromagnetic energy interacts with the atmosphere and the surface of the

Earth, the most important concept to remember is the conservation of energy

(i.e., the total energy is constant).
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3. As electromagnetic waves travel, they encounter objects (discontinuities in

velocity) that reflect some energy such as a mirror and transmit some energy

after changing the travel path.

4. The distance (d) an electromagnetic wave travels in a certain time (t) depends on
the velocity of the material (v) through which the wave is traveling: d ¼ vt.

5. The velocity (c), frequency (f), and wavelength (l) of an electromagnetic wave

are related by the equation: c ¼ fl.
6. The analogy of a rock dropped into a pond can be drawn as an example to define

wave front.

7. It is quite appropriate to look at the amplitude of an electromagnetic wave and

think of it as a measure of the energy in that wave.

The EM spectrum can be divided into seven different regions – gamma rays,

X-rays, ultraviolet, visible light, infrared, microwaves, and radio waves (Fig. 1.1).

Although remote sensing involves the measurement of energy in many parts of the

electromagnetic (EM) spectrum, the major regions of interest in satellite-based

sensing are visible light, reflected and emitted infrared, and the microwave regions.

The measurement of this radiation takes place in what are known as spectral bands.

A spectral band is defined as a discrete interval of the EM spectrum. For example,

the wavelength range of 0.3–0.4 mm (or 10–6 m) is one spectral band. Satellite

sensors have been designed to measure responses within particular spectral bands to

enable the discrimination of the major Earth surface materials. In the design of a

remote sensing investigation, particular spectral band(s) are selected for data

collection depending on what they wish to examine.

The underlying theory that support remote detection and measurement is based

on the assumption that particular features of the landscape such as tree cover,

agricultural crops, urbanized land, and water reflect (and/or emit) electromagnetic

Fig. 1.1 The electromagnetic spectrum
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energy differently in specific portions of the electromagnetic spectrum. Detection

and discrimination of objects or surface features means detecting and recording of

radiant energy reflected or emitted by objects or surface material and transforming

these measurements of energy flux to thematic information. Because different

objects return different levels of energy in different bands of the electromagnetic

spectrum, a pattern of response is produced as a function of the properties of the

surface material (structural, chemical, and physical), surface roughness, angle of

incidence, intensity, and wavelength of radiant energy. In simple terms, grass on a

healthy lawn looks green to the human eye, because it reflects green light and

absorbs other visible wavelengths. On digital imagery that pattern can be seen as a

peak in the green band in the reflectance spectrum for green grass. This pattern of

reflected radiation measured according to wavelength is called the spectral signa-

ture of the surface. When solar radiation hits a target surface, it may be transmitted,

absorbed, or reflected. Different materials reflect and absorb differently at different

wavelengths which can be seen in the reflectance spectrum of a material when

displayed as a plot of the fraction of radiation reflected as a function of the incident

wavelength (Fig. 1.2). This patterning serves as a unique signature for the material.

In principle, a material can be identified from its spectral reflectance signature, if

the sensing system has sufficient spectral resolution to distinguish its spectrum from

those of other materials. This premise provides the basis for the thematic extraction

of information taken from remote measurements. The digital measurements of

electromagnetic energy captured by the remote sensing instruments detect these

“signature” variations in wavelength intensity and record it as a number typically

along a “brightness scale” of values between 0 and 255. Three essential

characteristics of our data enable the identification of signature pattern:

1. Spectral differentiation – Remote sensing depends upon observed differences in

the energy reflected or emitted from features of interest.

2. Radiometric differentiation – Examination of any image acquired by remote

sensing ultimately depends upon the detection of differences in the brightness of

objects and the features.

3. Spatial differentiation – Every sensor instrument is limited with respect to the

size of the smallest area that can be separately recorded as an entity on an image.

Fig. 1.2 Generalized spectral response pattern of selected land covers
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Achieving this level of discrimination in strongly influenced by the interaction

between incident radiation and the surface we wish to measure and understand.

However, the detection and measurement is based on energy interactions depends

upon a number of factors:

• Source of illumination (A) – The first requirement for remote sensing is to have

an energy source which illuminates or provides electromagnetic energy to the

target of interest.

• Radiation and the atmosphere (B) – As the energy travels from its source to the

target, it will come in contact with and interact with the atmosphere it passes

through. This interaction may take place a second time as the energy travels from

the target to the sensor.

• Interaction with the target (C) – Once the energy makes its way to the target

through the atmosphere, it interacts with the target depending on the properties

of both the target and the radiation.

• Recording of energy by the sensor (D) – After the energy has been scattered by,

or emitted from the target, we require a sensor (remote – not in contact with the

target) to collect and record the electromagnetic radiation.

• Transmission, reception, and processing (E) – The energy recorded by the

sensor has to be transmitted, often in electronic form, to a receiving and

processing station where the data are processed into an image (hardcopy and/or

digital).

• Interpretation and analysis (F) – The processed image is interpreted, visually

and/or digitally or electronically, to extract information about the target which

was illuminated.

• Application (G) – The final element of the remote sensing process is achieved

when we apply the information we have been able to extract from the imagery

about the target to better understand it, reveal some new information, or assist in

solving a particular problem.

These components organize to form the remote sensing system (Fig. 1.3). The

decisive factor in the successful application of remote sensing data, however, need

not be the technical sophistication of the user, but rather the suitability and precise

use of the tool to obtain accurate and relevant data. With a general grasp of the

technical process that transforms electromagnetic energy into useful information,

the appropriate use of these tools can be improved and expanded. The goal of image

processing is to detect features and changes in those features over time, and to be

sure that what is seen is related to the ground cover rather than to interference

caused by the atmosphere. To do this, sequences of images are aligned to each other

and to standard map grids (registration and rectification) and are calibrated to

remove the effects of atmospheric differences. The utility of remotely sensed data

for a given application problem is generally related to its spatial, spectral, radio-

metric, and temporal resolutions.

• Spatial resolution – The size of a pixel that is recorded in a raster image –

typically pixels may correspond to square areas ranging in side length from 1 to

1,000 m (3.3–3,300 ft).
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• Spectral resolution – The wavelength width of the different frequency bands

recorded – usually, this is related to the number of frequency bands recorded

by the platform.

• Radiometric resolution – The number of different intensities of radiation the

sensor is able to distinguish. Typically, this ranges from 8 to 14 bits, corres-

ponding to 256 levels of the gray scale.

• Temporal resolution – The frequency or repeat cycle defined by the satellite

and its orbital.

As an alternative to field-based data collection, the application potential of

remote sensing introduces (1) a practical way of obtaining data from difficult or

inaccessible areas, (2) a synoptic view of the site and situational features that define

the problem, (3) a method to achieve near-continuous acquisition of data, and (4)

a data collection methodology less time-sensitive. Remotely sensed data, however,

are not direct samples of the phenomenon of interest but measures that must

be calibrated against reality. This data must also be corrected geometrically and

geographically references to form a reasonable representation of the surface under

investigation. Even when “corrected” issues related to thematic uncertainty and

interpretation error remain difficult to resolve. Controlling for the deficiencies

inherent to remote sensing data analysis can be accomplished by adopting well

thought out procedures that blend the technique into the needs of the problem.

In general, the systematic nature of remote sensing analysis is directed by three

Fig. 1.3 Elements of a remote sensing system
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grounding axioms, particularly in modern remote sensing here computer processing

is integral to the methodology (Madhok and Landgrebe 2002):

1. Human abilities are different from those of the computer – remote sensing data

convey information regarding energy measurements and inter-pixel relation-

ships. The subjective evaluation afforded by the image representation schemes

are the interface between the analyst and machine.

2. The machine (in) validates the user’s hypothesis – algorithms that process

spatially organized data through the optimization of mathematical criteria are

often suboptimal in the sense that output may be “noisy” or visually confusing.

3. Every analysis usually requires at least one revision – terminating an analysis

depends on the tolerance level for acceptable error, the available resources, and

time. Implementing a solution typically requires “experimentation” and the best

solution is often a result of several techniques pieced together.

By keeping these “realities” in mind, a workable methodology can be designed

that directs choice toward a solution that satisfies the problem. Above all they

remind us that remote sensing is as much an “art” as it is “science,” where

procedures, regardless of their logical structure, demand equal amounts of creative

thinking and adaptive problem-solving skills.

As a methodology, remote sensing activities can be organized around a six-

phase sequence of steps (Fig. 1.4). Although presented here in linear fashion,

for any given investigation image analysis may require significant backtracking

and several iterations thought a particular stage before a successful result is

produced.

Fig. 1.4 General methodology for conduction a remote sensing investigation
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1. Problem definition – This initial phase begins with a careful and reasoned

statement of the goals, objectives, and purpose or the investigation – simple

questions that can be challenging to answer in clear and succinct terms.

In addition, there must be some consideration given to the selection or identifi-

cation of success metrics that communicate when and how well a solution has

been achieved. Success metrics also help establish the basis for evaluation,

an assessment of the results, criteria to engage a critical review, and suggest

where refinements in methods may be appropriate.

2. Data definition – Once the problem has been stated and the underlying knowl-

edge defined, it becomes necessary to acquire the data that drives the solution.

As with any analysis, data must be collected carefully and in the context of

remote sensing, data collection centers around identifying the appropriate source

given the nature of the problem. For remote sensing, this directs attention to the

senor system and its descriptive features such as spectral, spatial radiometric

resolution, as well as factors such as data format, areal coverage and available

level of preprocessing, access and cost considerations.

3. Data analysis – The remote sensing solution requires two important analytical

activities: (1) data preparation and (2) algorithm selection. Data preparation

explains the procedure required to remove noise and other artifacts from the

data that compromise its fidelity. Through data preparation a comparatively

“clean” image is produced. Cleaning might include various corrections to

remove defects such as unusable bands, or calibrate the data to enhance contrast

and the “correctness” of the radiometric measurements. Algorithm selection

focuses on implementing a specific image processing strategy to extract thematic

information from the raw imagery. An image processing strategy may include

statistically based pattern-recognition techniques, strategies based on approxi-

mate reasoning methods, or algorithms that employ methods adapted from

artificial intelligence. The specific choice of algorithm depends to a large degree

on the nature of the problem and the desired information product to be extracted

from the data.

4. Assessment of results – This analytical phase concentrates on the correctness

(accuracy) and utility of the thematic information derived from the raw imagery.

Accuracy assessment is critical undertaking before the derived product can be

used to guide decision making. This is also the phase where the success metrics

are used to determine both subjectively and quantitatively, if the results of

thematic extraction describe reasonable representations of surface conditions.

5. Presentation – Once the derived results satisfy the criteria for success,

the thematic information must be organized into a format that transmits and

communicates the information it contains. A variety of communication formats

are available depending on the purpose and intended audience of the informa-

tion. Commonly used mediums for communication include maps in either

printed or digital form, summary statistical reports, graphs, and more recently

as inputs to more and more comprehensive spatial database.

6. Knowledge application – Recognizing that the product of a remote sensing

investigation is more that simply a “pretty picture from space,” this final phase
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in the information extraction process directs our attention to the actual use of the

information in its application environment. At this phase, issues related to both

the proper use of the results and the correctness of interpretations, inferences,

and conclusions drawn are paramount. Knowledge application moves us beyond

the mechanics of accuracy to consider questions pertaining to the answers found

in the thematic information, and whether the product delivers knowledge rela-

tive to the problem and the product provides support for any conclusions

that emanate from its use.

Owing to the technical nature of the data processing operations that are typically

involved in a remote sensing application, disseminating the knowledge contained in

the results of an analysis is often an afterthought. However, for remote sensing to

yield value in relation to environmental decision making, both the technology and

the data must be accessible to those who might benefit from it and fit seamlessly

into the operational setting through the combination of a reasoned application

design executed using a tractable procedural model. Improving access to the

environmental community that has an unsatisfied need for timely data and

the corresponding means of analysis is addressed in the section to follow.

1.4 Bringing Remote Sensing Down to Earth

Heightened interest in the practical applications of Earth observations from satellite

platforms has coincided with renewed concerns related to environmental change

and increasing societal pressures of Earth’s ecosystems. Over the past four decades,

there have been significant improvements in the availability and capabilities of

remote sensing data. Yet despite these improvements, critical bottlenecks remain

that frustrate the adaptation of remotely sensed data as an active component of

institutional decision making. For example, in the USA, satellite remote sensing has

been historically until dominated by federal agencies and their private sector

contractors and was focused on reconnaissance, scientific and technological

innovation, and operational weather monitoring and prediction (Steering Commit-

tee on Space Applications and Commercialization and National Research 2001).

Satellite-based remote sensing provides sources of information that cannot be easily

obtained in other ways, however to achieve the full potential of this technology

discovering cost-effective ways to realize the potential useful applications that exist

is essential. In general, encouraging a wider use of remote sensing data demands

that this often misunderstood technology is made accessible to an audience that

may not enjoy the technical expertise to exploit its capabilities.

Earth observation to feed environmental decision making and analysis are

activities driven by information rather than by the technical capabilities of

the end users. Here, unlike those initial “proof of concept” applications of remote

sensing, future application users are likely to have little, if any, knowledge

of remote sensing technology or how it is employed to derive information
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(Steering Committee on Space Applications and Commercialization and National

Research 2001). Rather, their primary focus will likely be centered on issues of

accuracy and timeliness of the data as well as its relevance to specific decision

problems. The interplay between the intrinsic information content of the raw data

produced by a remote sensing instrument, the way the data are processed to produce

new information and the operational utility of the applications brought to

the technology are central determinants of value gained by adoption an Earth

observation perspective. Therefore, extending the benefits of remote sensing to

environmental decision makers involves both technology and knowledge transfer

and overcoming long-standing barriers than have restricted the adoption of

remote sensing and produced:

• Gaps between the raw remote sensing data and the information needs of

applications users.

• Gaps in communication and understanding between those with technical experi-

ence and training and those who are the potential end users of a remote sensing

technology.

• Gaps between the acquisition of remote sensing data and the development of a

usable application.

Two important developments have emerged to narrow these gaps and bring

remote sensing down to Earth. The first advancement has been the elevation of

data distribution archives the repositories and that provide free access to civilian

satellite imagery. Perhaps the best example of this revolution in data access is the

GLOVIS portal (http://glovis.usgs.gov/). The United States Geological Survery

(USGS) Global Visualization Viewer (GLOVIS) is an online search and order

tool for selected satellite data (Fig. 1.5). The viewer allows access to all available

browse images from the Landsat 7 ETM+, Landsat 4/5 TM, Landsat 1–5 MSS,

EO-1 ALI, EO-1 Hyperion, MRLC, and Tri-Decadal data sets, as well as Aster

TIR, Aster VNIR, and MODIS browse images from the Land Processes

Distributed Active Archive Center (LP DAAC) inventory. Through a graphic

map display, the user can select any area of interest and immediately view all

available browse images for the specified location. From the browse image viewer

page, the user may either navigate to view adjacent scene locations or select a new

area of interest. The portal also offers additional features such as cloud cover

limits, date limits, user-specified map layer displays, scene list maintenance, and

access to metadata. The highly visual nature of the GLOVIS interface offers is a

quick and easy method to perform online search for selected satellite data. The

viewer allows user-friendly access to browse images from the multiple data

holdings and by means of a graphic map display, the user can select any area of

interest and immediately view all available browse images within the USGS

inventory for the specified location. From the browse image viewer page, the

user may either navigate to view adjacent scene locations or select a new area of

interest. A downloading interface is also provided for datasets that are available

at no charge.
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In addition to GLOVIS is a search tool named The Data Pool facilitates access to

satellite imagery. The Data Pool is the publicly available portion of the LP DAAC

online holdings. Data Pool provides a more direct way to access files by foregoing

their retrieval from tape storage devices. All Data Pool holdings are available at no

cost to the user. The Data Pool access method allows users to select a collection

interest, then define spatial and temporal filters to return a listing of data sets

meeting their criteria. Data files returned from this search are exposed to limited

on-the-fly reformatting, reprojection, and subsetting services users to navigate

directly to the product collection of interest and then to the product period(s) of

interest within the online file structure.

Other search tools of the Land Processes Distributed Active Archive Center

(LP DAAC) include the MODIS reprojection tool Web (MRTWeb) interface,

which was developed to provide enhanced, Web-based discovery and delivery

services for MODIS land product tiles archived at the LP DAAC. MRTWeb 2.0

Fig. 1.5 The USGS global visualization server opening Web page
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combines familiar capabilities of the USGS Global Visualization Viewer

(GLOVIS) and the downloadable MODIS Reprojection Tool (MRT) (http://

mrtweb.cr.usgs.gov/). The MRTWeb interface organizes GLOVIS and MRT func-

tionality into three main tabs: Selection, Process, and Download. Submitted jobs are

run with MRT 4.0 processing software across multiple servers at the LP DAAC.

Output data sets are staged on a job-specific ftp directory for download.

Access to satellite imagery in the USA has also been facilitated by unique

partnerships such as the OhioView program. The OhioView partners, working

closely with the USGS EROS Data Center, established an infrastructure to support

routine acquisition, processing, and delivery of Landsat and other remotely sensed

data to Ohio (Lein 1999). The success of this model lead to the formation of

AmericaView: a locally controlled and nationally coordinated program to advance

the availability, timely distribution, and widespread use of remote sensing data and

technology (http://www.americaview.org).

The second significant advancement has been the introduction of open source

image processing software. Open source software is software whose source code is

published and made available to the public, enabling anyone to copy, modify and

redistribute the source code without paying royalties or fees. As opposed to most

image commercial systems, open source code evolves through community cooper-

ation. According to the Free Software Foundation (http://www.fsf.org), software

can be labeled as free software if the associated license conditions fulfill the “Free
Software Definition” four freedoms:

• The freedom to run the program, for any purpose.

• The freedom to study how the program works, and adapt it to your needs.

• The freedom to redistribute copies so you can help your neighbor.

• The freedom to improve the program and to release your improvements

to the public.

Because open source software is freely available and licensed so that it can be

freely distributed and modified, it removes several of the bottlenecks that frustrate

application development. There are several licensing options for open source

software but follow the same set of basic rules:

• Free redistribution

• Source code

• Integrity of the author’s source code

• No discrimination against persons or groups

• Distribution of license

• License must not be specific to a product

• License must not restrict other software

• License must be technology-neutral.

In developing a remote sensing application, open source software can be a

replacement for or a compliment to propriety software or it may function solely

to “fill in the functionality holes” of the propriety software currently in use. Perhaps

the most attractive feature of the open source alternative is for those new to remote
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sensing technology: it is free of charge and something to learn and experiment with.

In this context, some of the benefits of open source systems include:

• Cost savings.

• Improved quality assurance.

• Avoiding vendor lock-in.

• Quicker bug fixes.

• Agile deployment changes.

• Decreasing the risk of being stranded by proprietary systems.

Over the last decade, the world of free and open source geospatial software has

experienced important advances that have enhanced access to the means of image

processing and GIS analysis. For instance, the Web site FreeGIS.org currently list

over 325 GIS-related projects that deliver useful GIS functionality. Besides the

advent of new software projects and the growth of established projects, a new

organization known as the OSGeo Foundation has been established to offer a point

of contact for those searching for open source alternatives (http://www.osgeo.org/).

Currently, there are several open source alternatives to commercial products that

provide useful image processing and this list is likely to expand as the open source

alternative draw greater acceptance. A sample of open source alternatives

to commercial remote sensing packages include:

• OPTICKS – Opticks is an open source, remote sensing application that

supports imagery, video (motion imagery), Synthetic Aperture Radar (SAR),

multi-spectral, hyper-spectral, and other types of remote sensing data. Opticks is

unlike other remote sensing applications because it treats imagery and video

alike. Opticks is one of the only remote sensing applications that supports

processing remote sensing video. Opticks was initially developed by Ball Aero-

space and Technologies Corp. and other organizations for the United States

Intelligence Community. Ball Aerospace open sourced Opticks hoping to

increase the demand for remote sensing data and broaden the features available

in existing remote sensing software. The Opticks software and its plug-ins are

developed by over 20 different organizations. Opticks can also be used as a

remote sensing software development framework (Fig. 1.6).

• Multispec – MultiSpec is a processing system for interactively analyzing Earth

observational multispectral image data such as that produced by the Landsat

series of Earth satellites and hyperspectral image data from current and future

airborne and spaceborne systems such as AVIRIS.

• OSSIM – OSSIM provides advanced geo-spatial image processing for remote

sensing, photogrammetry, and Geographic Information Systems (Fig. 1.7). Backed

by an active open source software development community,OSSIM solutions have

been deployed on a number of critical commercial and government systems.

OSSIM is a high performance software system for remote sensing, image

processing, geographical information systems and photogrammetry. It is an open

source software project maintained. at http://www.ossim.org and has been under

active development since 1996.
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Fig. 1.6 The OPTICKS Web page

Fig. 1.7 The OSSIM Web page



• SPRING – SPRING is a state-of-the-art GIS and remote sensing image

processing system with an object-oriented data model which provides for the

integration of raster and vector data representations in a single environment.

SPRING is a product of Brazil’s National Institute for Space Research (Camara

et al. 1996). SPRING was developed with the following design objectives (1)

operate as a seamless geographical data base, with a large volume of data,

without being limited by tiling schemes, scale, and projection, (2) support both

raster and vector data geometries and integration of remote sensing data into a

GIS, with functions for image processing, digital terrain modeling, spatial

analysis and data base query and manipulation, (3) achieve full scalability, that

is, be capable of working with full functionality from desktop PCs running

Windows or OS/2 to high-performance UNIX workstations, and (4) provide an

easy-to-use, yet powerful environment, with a combination of menu driven

applications and a spatial algebra language.

• OpenEV – The original version of OpenEV was developed by Atlantis Scientific

as a prototype viewer for the Canadian Geospatial Data Infrastructure(CGDI). Its

development was supported by the Canada Centre for Remote Sensing

GeoConnections program and J-2 Geomatics (Canadian Department of National

Defence). The goal was to create a free, downloadable advanced satellite imag-

ery viewer that allowed users to work interactively with CGDI data (Fig. 1.8).

OpenEV runs on a variety of platforms (Windows, Irix, Solaris, and Linux)

Fig. 1.8 The OpenEV Web page
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and contains a number of data and image manipulation functions, which support

the interaction with, fusion of, and analysis of information. The power of the

viewer comes from its design which exploits the cross-platform OpenGL library

and the hardware accelerator cards that have become commonplace in Unix

workstations and PC computers. The open source nature of OpenEV permitted

widespread distribution among members of the remote sensing community and

beyond. The business benefits include the ease with which the base library has

been leveraged to create custom, proprietary tools, and the contributions of the

open source development community back to the project.

• BILKO – Bilko is described as a complete system for learning and teaching

remote sensing image analysis skills (http://www.noc.soton.ac.uk/bilko/). Bilko

routines may be applied to the analysis of any image in an appropriate format

and include a wide range of standard image processing functions. The original

aim of the project was to facilitate “hands-on” access to remote sensing for those

traditionally excluded from such training due to the:

• High cost of commercial image-processing software.

• Need for expensive computer equipment to run that software.

• Difficulty of acquiring remotely sensed images for teaching purposes.

• Long learning-curves required to master complex commercial software.

1.5 Moving Forward

Earth observation science is an emerging field that couples the study of environ-

mental change with the technologies useful for gathering change-data. This chapter

presented the concept of Earth observation and how this paradigm supports envi-

ronmental analysis and assessment efforts. Understandably, the environment under

investigation is inherently complex, and with the framework offered by complexity

theory, remote sensing methods can be integrated with a considered view of their

functional aspects and technological constraints. The treatment of remote sensing

theory presented in this chapter informs the analyst of how this technology works

and based on a suite of comparatively straightforward principles demonstrates how

useful decision products can be obtained. Perhaps more important than the theoret-

ical basis on which remote sensing science is based are those singular effort to

bridge the gap between technical analyst and policy maker. In this chapter, bringing

remote sensing down to Earth was explained as a critical step in developing

successful and sustainable remote sensing programs. To that end, the traditional

bottlenecks surrounding data access and data processing that frustrated wider use of

this technology were shown to be breaking with the emergence of internet accessi-

ble data archives and open source software; two developments that will greatly

facilitate an expanded role of remote sensing in the environmental practice.
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Chapter 2

Environmental Sensing

The environment has remained at the forefront of scientific interest for well over

four decades, and no other topic will likely captivate our attention in the foreseeable

future as we struggle to understand the complexities of this planet, we call home.

Understanding is the key, but understanding does not take place in a vacuum. To

grasp the significance of our relationship with our environment, we need to com-

prehend the patterns and processes that characterize its many features; how they

interact, how they change, and how they influence behaviors that shape our future.

Understanding requires information, which helps to reveal the distinct actors and

actions that conspire to define the environment. However, being informed implies

not only an improved comprehension of the complexities inherent to the study of

the environment, but also a greater sensitivity to the limit of our knowledge, the

uncertainties that remain, and the unavoidable realities of our ignorance. In this

context, information is intelligence that we not only learn from, but also apply to

guide us while we strive to make good environmental decisions. The goal of this

chapter is to place the environment into a framework that enables our ability to

measure, map, and model its features using remote sensing technology to gain

intelligence. Too often remote sensing is discussed from a technological perspec-

tive that leaves a gap between the obvious technical aspects of this science and the

pragmatic need to obtain relevant data to address a problem. This chapter examines

the environment by identifying its descriptive elements that can be explored

remotely; characteristics that can not only be measured, but also whose measures

communicate essential facts that explain the disposition of the environmental

complexity. From this discussion, the notion of environmental sensing is introduced

as the conduit between the technology, the myriad of applications it can serve, and

our environmental system.

J.K. Lein, Environmental Sensing: Analytical Techniques for Earth Observation,
DOI 10.1007/978-1-4614-0143-8_2, # Springer Science+Business Media, LLC 2012

23



2.1 Sensing the Environment

When used in common language the word “sensing” defines any of the faculties,

such as sight, hearing, smell, taste, or touch, by which humans perceive stimuli

originating from outside our bodies. Sensing, according to this simple definition,

means to detect, perceive, or become aware of some phenomena external to us.

Remote sensing technology has long been identified as a means of detecting or

perceiving phenomena where the measurements taken at distance from objects and

surfaces of interest are transformed into information, in a manner analogous to our

brain transforming the perception of touch into concepts such as rough or smooth.

The data collected remotely satisfies our desire for knowledge and provides needed

information to guide us in a similar way that our hand searches for the light switch

in a dark room. It may be argued that our present state of knowledge regarding the

environment is not unlike an adventure in a dark room, it can also be argued that our

capacity to sense our environment will be integral to becoming aware. How well we

sense will determine likely how well we learn and understand.

For the purposes of this discussion, environmental remote sensing may be

defined as the measurement and representation of earth surface characteristics

that support the information requirements for effective environmental management

and decision making. This practical definition suggests that there is an underlying

rational that directs the remote collection of data and narrows the scope of the

science of remote sensing by focusing on the delivery on information that

illuminates the complexities, uncertainties, and dynamic nature of the environmen-

tal process. In this regard, environmental remote sensing is an extension of an

existing technique that strives to incorporate alternative strategies and sensors that

can yield new information and provide new insight into the status of Earth’s

environments and detect conditions of critical concern.

2.2 The Environmental System

Earth’s environments are complex and varied. In simple terms, they can be

characterized as biomes; a defining area of ecologically similar geographic and

climatic conditions, which support communities of plants, animals, and soils that

assume distinctive relationships and patterns (Fig. 2.1). From a remote sensing

perspective, these biophysical patterns explain land covers that form as the outcome

of abiotic factors and the biomass productivity of the organizing vegetation types

that dominate its spatial expanse (Olsen et al. 2001). Land covers also describe

human environments where culture has altered patterns of ecosystem process and

biodiversity. Such alterations generate distinct surface characteristics that form as

the product of sustained and direct human interaction with ecosystems. These

anthropogenic biomes emerge as the consequence of human impact range from

settlements, croplands, forested areas, and wildlands subject to human modification

(Ellis and Ramankutty 2008). Whether biotic or human-induced, this ecosphere is a
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thin layer of the earth, estimated at less than 14 km, that supports life (MacKenzie

2010). Recognizing that this has taken over four billion years to achieve the present

state of the environment, there is both uniqueness and an element of chance-

consequence that underlies the conditions we observe.

As a system, Earth’s environments explain a collection of interdependent

elements (Fig. 2.2). At the most general level, these are commonly referred to as:

• The lithosphere, which contains all of the cold, hard, and solid rock of the

planet’s crust (surface), the hot semi-solid rock that lies underneath the crust,

the hot liquid rock near the center of the planet, and the solid iron core (center) of

the planet

• The hydrosphere, which contains all of the planet’s solid, liquid, and gaseous

water

• The biosphere, which contains all of the planet’s living organisms

• The atmosphere, which contains all of the planet’s air

The elements are closely connected and exhibit cyclic patterns of behavior when

materials and energy flow across space and over time. This familiar cascade,

characterized in relation to the ecosystem, the flux of solar energy that drives

climate, and the process–response progressions that punctuate geomorphic and

hydrologic activity, demonstrate how environmental components interact with

their surroundings and evolve functional relationships that connect components

together to form a definable structure (Figs. 2.3a–c).

Fig. 2.1 The patterns of Earth’s biomes
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In many respects, the land covers observed via remote sensing serve as

evidence of these structures, displaying a morphology that permits inferences to

be made regarding their disposition, causation, and variation both spatially and

temporally.

Change and the dynamic processes that propel components of the environmen-

tal system are basic attributes of variability that produce contrasting patterns over

time and space. As an attribute, environmental change varies in form, size,

duration, and areal extent and arises not at random, but as a result of basic

biological and physical processes operating on the planet (Hidore 1996). The

patterns that emerge are the observable consequence of these occurrences.

Changes in the environmental system can be described in several ways. At one

level, we can recognize a change as short-term – defining cyclic behaviors occur

in less than one rhythm of the system. From here we can also identify medium-

term changes that explain seasonal rhythms among environmental attributes.

Finally, behaviors may characterize long-term patterns, which may not be easily

resolved, transitioning from one dynamic equilibrium state to another, or

exhibiting stepped fluctuations punctuated by lag times well beyond the common

human scales of reference. More purposeful explanations may be offered that give

Fig. 2.2 The Earth system
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better insight into the patterns of change and how they channel environmental

process over time. Here, environmental change can be categorized according to

one of the five different conditions (Hidore 1996):

1. Persistent change – unidirectional trajectories typified by slow, steady

progressions over time

2. Rhythmic change – displaying regular oscillations where periodic fluctuations

occur at regular, predictable intervals

Fig. 2.3 Characteristic land covers and their definition
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3. Cyclical oscillations – where change repeats at irregular intervals with varying

intensity, but are not periodic

4. Short-lived events – explaining sporadic episodes often identifying deviations

from average or expected conditions with durations spanning seconds to several

days in length

5. Anthropogenic change – exemplified by human-induced effects on natural

patterns sustained by trajectories of established social and economic drivers

acting over time

Fig. 2.3 (continued)
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As an active force, change contributes to shaping and reshaping of the structure of

the environmental system. Since the environment is essentially open to the transfer

of matter and energy and generally oscillates between conditions of equilibrium and

disequilibrium, an appreciation of the system structure offers a means to observe the

environment independent of function or state (Dury 1981). Four general categories

of structure, moving from less to greater complexity, can be noted:

1. Morphological systems – defined in terms of their internal geometry as expressed

by the number, size, shape and linkages displayed by their components, morpho-

logical systems have identifiable shapes and patterns such as those descriptive of

streams, glacier systems, shorelines, and entire landscapes.

Fig. 2.3 (continued)
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2. Cascading systems – explain environments that receive and generate complex

inputs and outputs of matter, energy, or both. Cascading systems include some

type of regulator and mechanisms that provide storage where the main focus of

interest becomes the rate of flow or flux between components.

3. Process–response systems – describe environments that alter their internal

geometry and/or behavior in response to cascading inputs. Generally

process–response systems comprise at least one morphological system and at

least one cascading system that are linked and often share common components.

4. Control systems – environments in which some aspect of their functions are

controlled by intelligence. Such systems vary in scale, but share the inescapable

influence of human decision making and a directing force.

From this cursory review, several key concepts emerge that focus an environ-

mental remote sensing investigation. The first is the idea of complexity. As the

subject of inquiry, the environment forms as a multifaceted arrangement of living

and nonliving elements that blend to create the fabric of a landscape from which

our measurements emanate. The differentiation exhibited by the elements of the

environment encourage the need for selection and intellectual devices to manage

the variety presented to us and organize it in a clear and coherent manner.

Through the strategies of abstraction, simplification, classification, and symboli-

zation, complexity is made sensible, which enables representation of the second

key concept: structure. Structure is something we can view as having “shape,”

whether it is the shape of drainage patterns that provide clues to the underlying

geologic structure of the environment or the shape of the boundaries that delineate

land units that may be indicative of differences in soil type, climate, or human

impact. Through structure we can infer arrangement and connectivity which

supports a process view of how the environmental system behaves at any given

location. More importantly, behavior moves us to consider change, the last key

idea that lends itself to remote detection. Through change, the patterns and

processes manifest in a dynamic setting that captures the environment in an

active and often transient state. The next section explores these concepts in

more detail.

2.3 Pattern, Process, and Disturbance

Environmental systems evidence distinctive patterns that develop as the product of

energy and material interactions over time. These patterns are identifiable as the

communities of living and nonliving elements that not only give rise to a structure,

but also define the focus of environmental remote sensing. The agents of the

biosphere, atmosphere, hydrosphere, and lithosphere form an interdependence

recognizable as the landscape: a land surface of associated habitats that explain

an ecology termed as the mosaic (Bissonete and Storch 2004; Huggett 1995;

Turner and Gardner 1994). These spatially heterogeneous area characterize a
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dynamic that can be expressed according the “brash” equations (Huggett 1995).

Using this conceptual model, we can represent the environmental system as

interacting terrestrial life and life-support components where the biosphere (b),
troposphere (r), atmosphere (a), pedosphere (s) and hydrosphere (h) respond over

time to each other plus the influence of forcing functions (z) that lie outside the

landscape. When these agents are expressed mathematically produce the “brash”

set (Huggett 1995) such that:

db

dt
¼ f ðb; r; a; s; hÞ þ z

dr

dt
¼ f ðb; r; a; s; hÞ þ z

da

dt
¼ f ðb; r; a; s; hÞ þ z

ds

dt
¼ f ðb; r; a; s; hÞ þ z

dh

dt
¼ f ðb; r; a; s; hÞ þ z;

which provides an ideal explanation of the landscape that offers an analytical

design for exploring pattern and how pattern changes over time.

Pattern is also a function of scale; a dimension that refines the spatial and

temporal characterization of the landscape mosaic. As a unit of observation, the

structure, function, and dynamics of the landscape are scale-dependent where the

processes and resulting patterns at one scale may be insignificant at another.

Traditionally, scale has been described using the “cone of resolution” model

(Fig. 2.4). This familiar representation depicts the level of detail synonymous

with the scale from the macro-scale through the meso-scale and down to the

micro-scale and implies a reference to the size (relative or absolute) at which

physical or human structures and processes are observable. Scale in this context is

also defined in terms of generalization, where scale controls the apparent detail or

complexity phenomena that may assume. Using this conceptual model, the con-

nection between the idea of scale, “visibility,” and the observational detail a

remote sensing device provides can be neatly established, which helps to identify

the appropriate level of detail required to address an environmental problem and

the capacity of a sensor to deliver that detail. At the macro-level, scale defines

pattern and process in its most generalized form. Geographically, this can be

visualized as a near-continental perspective that explains a comparatively coarse

degree of details. In the language of remote sensing, macro-scale conforms to a

level of spatial resolution common to sensor platforms such as the advanced very

high resolution radiometer (AVHRR) and MODIS. The meso-scale can be
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conceptualized as a regional scale level of detail where spatial resolution

improves to a sharper representation of the surface. At this level, representative

platforms may include the Landsat, IRS, SPOT, and Aster. The micro-scale

introduces the finest definition of pattern and suggests a landscape perspective

that would capture details present within a watershed or city. In the hierarchy of

satellite remote sensing systems, micro-scale explains spatial resolutions at or

below 5 m which are typically found on commercial platforms such as GeoEye,

IKONOS, and QuickBird (Fig. 2.5).

Although scale is inherently an imprecise and elastic concept, its role is impor-

tant and critical to the study of the environmental system (Gibson et al. 2000). First,

scale defines the size at which the environmental structures exist and over what

extent the environmental processes operate. This interpretation of scale attempts to

present the “true” expression of environmental phenomena and recognizes that

environmental processes are often scale-dependent, or at the very least, defined in

part by a relative scale. However, there can be exceptions to this idea, particularly in

the examples where patterns seen at one level of detail may also be observed at

another and the possibility that environmental processes often operate at multiple

scales. Its inexact nature, therefore, directs us to consider scale in a more pragmatic

sense: analytical scale.

Fig. 2.4 The cone of resolution model
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Analytical scale refers to the size of the unit at which the problem under

investigation is examined. This simple definition is useful in environmental remote

sensing since it implies measurement and how measurements are aggregated for

data analysis. In this context, analytical scale explains the scale of understanding;

and with specific reference to satellite remote sensing, this scale is used to represent

the surface whether as a raster (pixel) or polygon (object). Therefore, to observe and

study the environmental system accurately, the scale of analysis must conform to

the actual scale of the phenomenon, whether expressed over time or across space

(Hudson 1992).

Identifying the correct scale can be problematic. Scale insensitivity introduces

cross-level confusion, particularly when data at one scale is used to make inferences

about phenomena at another or the narrower; an example of the “ecological fallacy”

where aggregated data is used to make inferences about disaggregated patterns. In

reality, the challenges imposed by the scale often require us to use the data at the

“available” scale, which constrains an analysis to the units that are present in the

data. While there may be no reasonable alternative, representing the environmental

system (however defined) at the “available scale” may contribute to the loss of

definition, particularly when the phenomena of interest do not conform well to the

units imposed by the data. The result introduces an unavoidable level of error into

our analysis, which limits the degree of confidence that can be ascribed to a

solution.

Reconciling the issues of scale enables patterns to emerge that illustrate the

important associations that bind the elements of the environmental system together.

Identifying spatial pattern, therefore, not only supports an understanding of the

system under study, but also provides clues that relate observed characteristics to

underlying process, which highlight the dynamic nature of the environment (Dale

2002). Process, however, is difficult to capture. Taken broadly, the term suggests a

sequence of events that actively shape and reshape the behaviors exhibited by the

Fig. 2.5 Comparative spatial scale/sensor resolution relationships
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system of interest, whether it is a city, watershed, or other geographic entity. The

sequence implied may be continuous across time and space, or discrete and

observable in finite quanta of time. In both cases, there is also the underlying

assumption that the events set in motion are sustained in some definable manner.

Through the sustained “behavior” of process, a recognizable consequence is

achieved, whether explained as the land surface modified by the geologic cycle of

erosion, the establishment of growth and mortality of a plant community of the

spread, or human–urban land cover over the landscape. The product of this

sustained behavior is change, as the environmental system responds to and is

transformed by a process into a set of new relationships. We observe the evidence

of process as the generation of a new form in an environment where that form did

not exist previously. The mechanisms responsible lurk behind the observed patterns

and define the driving physical, economic, or social forces that propel the environ-

ment and fuel the trajectories of change.

Sensing environmental change shares a duality of purpose. At one level is the

need to resolve a pattern; documenting the spatial expression of process through the

contrasting patterns it reveals. At the more complicated level is the desire to infer

the process from those patterns; deducing the driving forces that are actively at

work within the environmental system. In both instances, the influence of time

cannot be ignored, nor removed from the question. Temporal influences, whether

explicit or implicit, remain a constant, although best viewed as a relative rather than

an absolute quantity (Getis and Boots 1978). In some respect, sensing time in the

environmental system is similar to watching an animation. Each frame in

the sequence, like each image captured by our sensor, is a complete depiction of

the scene at a specific instance in time. Set into motion, the individual scenes blend

to characterize the change. The rate of motion between each frame describes, in a

limited way, the pace at which a change takes place, and each individual frame

influences how animated the action (process) appears. By examining one frame in

the sequence, our interest is to describe the direction of motion and anticipate where

in the subsequent frames action will take us (Getis and Boots 1978). Complications

of course arise; particularly when processes are gradual or when new “actors” are

introduced or leave the scene. Perhaps more frustrating to the goals of environmen-

tal remote sensing are those situations where a long interval of identical frames are

encountered and no action (change) can be observed; begging the question: is the

absence of change, change? While this analogy is simple, conceptualizing the idea

of environmental change as an animation underscores the fact that, when sensing

environmental process more often than not, our understanding is frequently limited

by the available frames. In some cases, what we have may be sufficient to ade-

quately capture the “action,” although more typically we are left with an isolated or

interrupted sequence that requires us to provide the missing context. Explaining

environmental process, like viewing an animation, depends on (1) the subject

matter, which in our case are the operative processes that direct environmental

behavior (action) and (2) our ability to assemble each frame together into chain of

events that complete the story.
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The unfolding stories of environmental process that currently direct our concern

are those new actors that introduce changes in the sequence that redirect the plot.

Familiar examples of these active events include:

• Deforestation – the process of destroying or removing forest ecosystems through

logging operations or burning

• Desertification – the degradation of land in arid and dry sub-humid areas

• Environmental degradation – uncharacteristic loss of habitat, biodiversity, or

depletion of natural recourses contributing to ecological collapse

• Erosion – the process of removing sediment, soil, rock, and other material in the

natural environment

• Extinction – the death of the last existing member of a species where there are no

surviving individuals able to reproduce and create new generations

These environmental processes are complex, reflecting the influence of many

casual factors that act on environmental systems. The causal mechanisms that

contribute to the plot changes that confuse our animation have been neatly

summarized by Goudie and Viles (2003) according to a set of:

• Predisposing factors – describing features of the natural or human environment

that make a system vulnerable to stress (change)

• Inciting factors – defining stresses that trigger the change in a system

• Contributing factors – explaining the range of additional stresses that render a

system’s response more noticeable and acute.

Taken together, these factors conspire to direct the environmental system to a

new state (frame) where we observe a transformation or a shift as human activities

interact with a series of interlocking environmental responses.

The transformations characterizing environmental change can be subtle and

slow to emerge, or dramatic and quick to materialize. In either case, they reflect

the consequence of disturbances that alter material and energy flows within the

environmental system. Here, the concept of a disturbance becomes a convenient

way to connect environmental stress to actions that will display both temporal and

spatial dimensions. In an environmental context, a disturbance describes an event

causing change in the ecosystem that includes environmental fluctuations or

destructive events. Along this implied continuum of events, disturbance may

emanate from purely endogenous (internal) processes to those that are purely

exogenous (external) (White and Picket 1985). Overall, landscapes may be dis-

turbed by a range of actors from the physical consequence of strong winds, fire,

flood, landslide, and lightening; the biological consequence of pests and pathogens;

and the impacts of human and animal activities. In some cases, disturbances act at

random within the landscape, while other events spread from a beginning point

through the system over time. As a sensible quality, disturbances operate in a

heterogeneous manner, since some features with the landscape are more susceptible

to an event than are others. It is important to recognize that disturbance is an

integral part of all environmental systems, and landscapes are defined in part by a

common disturbance regime (pattern) (Gordon and Forman 1983). A disturbance
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regime represents the sum of types, frequencies, and intensities of disturbance

through time in the landscape. When we observe the environmental system, the

disturbance causes a given characteristic of an ecosystem (such as diversity,

biomass, and nutrient levels) to exceed or fall below its common range of variation.

Landscapes subject to human-modifying actions are the changes by new

disturbances introduced by economic and social forces. Human impact, expressed

as a disturbance, however is discontinuous and unevenly distributed over the

surface. Consequently, human disturbance regimes differ between landscapes

and are superimposed on contrasting natural disturbance regimes. As a result,

the landscapes produced by human modifications display a wide range of

variability, often with sharp and distinct boundaries (Gordon and Forman 1983).

The types of modified landscapes produced by human disturbances begin at the

lower end of the “gradient” with natural vegetation such as grassland, rainforest,

or desert produced by a natural disturbance regime void of significant human

effects. Moving upward along this range are the areas recently exploited by

human populations which are often characterized by scattered clearings in the

natural land cover. Continuing along this gradient are the patterns that reveal

managed landscapes where the majority of the surface appears to be composed on

natural cover, but is controlled for human activities such as timber harvesting or

livestock grazing. Control implies active management that introduces significant

differences in species, energy, and nutrient cycles when compared to the natural

vegetation. Cropland follows next in the sequence where planted vegetation

dominates and may be intermixed with remaining sections of managed vegeta-

tion. Following next in this description of modified landscapes are the human

settlement patterns characteristic of ex-urban and suburban development where

managed vegetation has been reduced and the surface appears as a heterogeneous

mixture of agriculture and urban forms. The final frame in this continuum

describes urbanized areas where human use dominates. In this pattern, only

small remnants of managed or cropland cover types remain visible. As this

gradient of human impact is observed, key descriptors of pattern emerge as

boundaries and edges shape and fragment the land surface into increasing levels

of heterogeneity.

2.4 Patches and Progressions

From the altitude of a sensing platform, the Earth’s surface appears as a mosaic of

shapes and textures of varying configurations. These configurations assume

arrangements that take on meaning in both an environmental and cultural context.

This is the landscape and from an environmental perspective, it defines heteroge-

neous land areas composed of clustered, interacting ecosystems repeated in similar

form across a discernable geographic extent. Delineating these surface

arrangements is of fundamental interest in remote sensing, but a process that

must be guided by an understanding of the mechanisms that contribute to their
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formation. Acting within the boundaries of these land surface arrangements are the

geomorphic processes, colonization patterns, and local disturbances which, work-

ing in concert, produce distinctive, measurable units that display (Gordon and

Forman 1983):

• Structure – spatial relationships among the landscape elements of energy,

materials, and species relative to the size, shape, number, and type of these

configurations

• Function – interactions among spatial elements in terms of energy, materials,

and species flows among the elements

• Changes – alterations in structure and function over time

As a physical entity, this landscape reveals three universal characteristics: (1)

patches, (2) corridors, and (3) matrix. In the language of landscape ecology these

terms take on specific meaning. The term patch is defined as a relatively homoge-

neous area that differs from its surroundings. Patches serve as the basic unit of the

landscape that change and fluctuate, a process called patch dynamics. When

observed on remotely sensed imagery, patches have a definite shape and spatial

configuration and can be described compositionally by internal variables such as

number of trees, number of tree species, height of trees, or other similar

measurements. Matrix defines the “background ecological system” of a landscape

with a high degree of connectivity. Connectivity is the measure of how connected

or spatially continuous a corridor, network, or matrix is. For example, a forested

landscape (matrix) with fewer gaps in forest cover (open patches) will have higher

connectivity. Within this explanation, corridors have important functions as strips

of a particular type of landscape differing from adjacent land on both sides. When

view in their entirety, a network emerges that defines an interconnected system of

corridors forming a mosaic which explains the pattern of patches, corridors, and

matrix that form the landscape. These building blocks of the landscape provide

simple descriptors to express local influences that identify how landscapes are

configured. These descriptors also account for the biodiversity patterns and

natural processes that we observe (Dramstad et al. 1996). Thus, while the

landscapes foundation reflects its background ecologic pattern, the local “neigh-

borhood” forms as a configuration of patches, corridors, and background cover

types revealing the matrix produced by natural processes as well as human

activities that alter the mosaic. Alterations include the obvious and well-

documented changes such as habitat fragmentation, and also include land

transformations such as:

• Perforations

• Dissections

• Shrinkage

• Attrition

• Coalescence, each carrying significant ecological and human implications

(Dramstad et al. 1996).
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2.5 Sensing the Human Dimension

Although the visible alterations evidences in the environmental system induced by

human activities have been well documented for over two decades (Mannion 1997;

Roberts 1994; Stern et al. 1992), the causes promoting these alterations are more

complex and less obvious. Therefore, while a satellite image may reveal patterns

indicative of specific transformations in the landscape, the image alone carries little

information concerning the how-and-why behind what is seen. The challenge in

environmental remote sensing is to connect the patterns detected on the image to the

decisions made that now characterize either the direct and purposeful alteration of

the landscape or the unintended consequence of human decisions that have

generated new, conditions that were not anticipated. This discontinuity rests at

the core of environmental decision making and underscores the web of human

behaviors and motivations that introduce themselves whenever choices are made,

which affect the present or future state of the environmental system (Lein 1997;

Chechile 1991). Decision making, however, does not take place in a vacuum.

Rather the choices made describe a process driven by interconnected society

needs and desires. The driving forces that direct human–environmental decision

making fall into five broad categories:

1. Population demand – Each of us make demands on the environmental system for

food, clothing shelter, and other services in support of our life styles. Greater

numbers or increasing concentrations of people expand our ecological footprints

and elevate demand for resources needed to sustain our activities.

2. Economic growth – The innate desire to improve our quality of life, provide for

our needs and realize great opportunities, focus attention on the accumulation of

wealth and capital formation to enhance our material standard of living.

Expanding economic activity introduces environmental stressors, since the

patterns of consumption contribute to both an expanding human footprint on

increased consumption of natural resources and an elevated production of wastes

and other energy and material residuals generated by these consumptive

activities.

3. Technological discovery – Discovery impacts the environmental system through

the innovations that enable wider exploitation of the resource base and through

the types and characteristics of the waste residuals produced.

4. Political institutions – Taking the form of policy instruments that direct market

influences and encourage social progress, governments and our increasing global

political economy generate environmental outcomes by promoting (directly or

indirectly) actions that damage environmental functioning, facilitating wider use

of environmental resources and ignoring the environmental consequences.

5. Cultural perceptions – Individually and collectively, we are the product of

values, beliefs, and attitudes that reflect our cultural teachings and experience.

Through the lens of culture a world-view takes form, and our relationship to the

environment becomes crystallized by the choices we make and the behaviors we

follow.
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While none of these forces are sufficient alone to produce changes in the

environmental systems, acting in combination they generate definable spatial

events adequate in their scale and impact to alter properties of the landscape

(Tillman and Lehman 2001; Vitousk 1992).

Incorporating the consequences of human decisions into the analysis of land-

scape heterogeneity begins with an appreciation of the spatially explicit actors that

evidence the human dimension of our environmental system. Although the

pathways followed by human activities are complex, they ultimately explain five

distinctive decision-driven mosaics:

1. Urbanization – The decision to urbanize summarizes a human predilection with

origins dating back over 15,000 years. As a spatial phenomenon, urbanization

explains the transformation of land cover to a form and composition distinctly

anthropogenic in nature, characterized by fragmented landscape dominated by

asphalt, concrete, brick, and other manufactured materials. Morphologically,

urban cover is typified by a terrain composed of angular forms assuming a

planimetric arrangement that extends to a third dimension. As a pattern, urbani-

zation is a physical element displaying a texture and extent wherein the concen-

tration of structures, facilities, and people conspire to express economic and

cultural influences that modify or replace “natural” form (Fig. 2.6).

Fig. 2.6 The spatial expression of urbanization
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2. Agricultural intensification – As a land cover pattern, agriculture is a mosaic of

biological and physical patches within a matrix differentiated by settlement,

cultivated land, and background cover that is defined as rural by virtue of its

density and intensity. Geometrically, agricultural intensification is typified by

a parallel structure and regularity of shape that conforms to land clearing

practices and boundaries defined by land ownership. Intensification results in

a progressive removal of existing landscape features with agricultural form

(Fig. 2.7).

3. Rangeland alteration – Surface configurations of this variety explain land

areas on which the climax or potential plant cover is composed of natural

grasses, grass-like plants, and shrubs suitable for animal grazing and

browsing. Rangeland areas are subject to limited management practices which

may include deferred grazing, burning, or rotational grazing with little or no use

of chemicals or fertilizers. Frequently subject to overstocking and fragmenta-

tion, semi-natural and natural rangelands are often adversely impacted by land

degradation, loss of biodiversity, altered species connectivity, and intensification

that retards recovery (Fig. 2.8).

4. Deforestation – Referring to the general process of forest clearing, deforesta-

tion characterizes a pattern of logging that expands progressively from an

edge, a central cut strip, or patch. Although predicated on the presence of

Fig. 2.7 The spatial expression of agricultural intensification
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large forested areas with low population density, effects emanate from policy

decisions to open forested regions through instruments such as settlement

programs, development projects, plantations, or other extractive industries.

This suggests that deforestation may not be the exclusive consequence of

timber harvesting. A related land pattern describes the re-establishment of

forested areas, which may be planned (reforestation) or unplanned (afforesta-

tion). Afforestation is common to areas where soil degradation has occurred

following farm abandonment or over cutting. Reforestation explains the large-

scale planting of trees in a highly regular and systematic pattern of field-size

units. Frequently, tree rows alternate with row crops during the early stages of

these programs (Fig. 2.9).

5. Corridors – Visually identified as openings in an area that display highly linear

patterns, a corridor develops either as the product of a human decision to

construct features such as roads, power lines, rail lines, or irrigation canals or

a lineation created by geologic and geomorphic factors. Typically, modification

spreads and proceeds outward from the corridor on opposite sides penetrating

through “natural” cover. Human constructions that create corridor features often

include branching as a more complex linear network takes shape as a function of

its design (Fig. 2.10).

Fig. 2.8 The spatial expression of rangeland alteration
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Fig. 2.9 The spatial expression of deforestation

Fig. 2.10 The spatial expression of landscape corridors
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2.6 Acknowledging Uncertainty

It would be convenient if the environmental system behaved in an unambiguous,

consistent, and perfectly predictable manner. Unfortunately this is not the case.

Rather, behaviors and processes descriptive of Earth’s environments, while not

random, are characterized by a complexity colored from a palette of deterministic,

probabilistic, and stochastic relationships that vary across space and over time. As

processes, disturbances, and natural perturbations in the environment evolve a

landscape, even though the initial status or condition is known, there are many

possible “realities” to consider, pathways to follow, and multiple potential future

states of nature (Stewart 2000). This simple observation shapes our knowledge of

the environmental system and invites a careful assessment of the uncertainties

inherent to (1) our conceptualization of the environment, (2) the limitations of

our knowledge, and (3) our inability to adequately resolve environmental process

(Brown 2004). This observation also sustains our motivation to collect data and

analyze information pertaining to the environmental system.

Uncertainty pervades all our attempts to ascertain absolutes with respect to the

disposition of human–environmental interaction. As a concept uncertainty carries

several connotations with important implications to the goals of environmental

remote sensing (Regan et al. 2002). First, is the issue of epistemic uncertainty; an

uncertainty associated with our present knowledge of the state of the environmental

system. This form of uncertainty describes a “changeableness” that emerges due to

limitations imposed by measurement devices, insufficient data, extrapolations, and

interpolations as well as spatio-temporal variability. A second branch of uncertainty

focuses the concern on the problem of linguistic ambiguity that describes the

inexactness and vagueness introduced by language. This source of confusion is a

product of our vocabulary and the presence of under-specific, ambiguity, and

context-dependent terminologies. Both forms of uncertainty are problematic and

develop from different sources. Furthermore, since they originate from difference

sources, uncertainties are likely to compound. Therefore, identifying the main

sources of uncertainty and exploring methodologies to control or minimize its

impact are critical to an improved understanding of the environment. Several key

sources of uncertainty with relevance to the environmental problem can be noted

(Sutter et al. 1987; Regan et al. 2002), and each manifest in different ways:

• Measurement uncertainty – defines the limitations imposed by the observations

techniques employed to measure environmental variables.

• Natural variability – explains behaviors in natural systems that are difficult to

predict.

• Inherent randomness – identifies the limits of our understanding of process and

the patterns that define environmental relationships.

• Subjectivity – Influence of judgment and its role in data interpretation can

introduce bias, flawed reasoning, and misleading conclusions.

• Linguistic imprecision – language branded by concepts that are vague and

inexact where the lack of specificity, clarity of meaning, and confusion in
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definition contributes to generalities and misinterpretation and weakens

communication.

Managing uncertainty, uncertain information, and recognizing its impact is

central to the methods used to study the environmental systems. At this point, it

is essential to realize that (Marjolein et al. 2002):

– Not all uncertainties can be adequately addressed with existing methods and

tools.

– Uncertainty is usually treated as a marginal issue, an additional physical vari-

able, or as a mathematical artifact.

– Little indication is provided relative to the magnitude or sources of uncertainty,

and measures of uncertainty can be difficult to understand.

Dealing effectively with uncertainty in the context of environmental remote

sensing moves beyond the technical proficiencies of image processing methods and

requires the integration and synthesis of new conceptual knowledge together with a

willingness to think with incertitude (Brewer and Gross 2002). Given that environ-

mental processes are subject to forces above internal feedbacks, chance anomalies

and deviations are as much a part of the environmental system as those aspects we

understand (Faucheux and Froger 1995; Reckhow 1994).

Connecting our discussion of uncertainty back to the question of environmental

sensing gives definition to the trends that accent our need for a better understanding

of system behavior and change. Here, six major foci dominate and help frame

environmental remote sensing investigations:

1. The impact of land use transitions

2. The rate of expansion of land use systems

3. The scale-dependent nature of changes in land

4. The reversibility of changes to the land

5. The locality of land change impacts

6. The overlapping, impact reinforcing, and mitigating nature of changes in

land use

2.7 The Role of Measurement

To measure objects at a distance encapsulates the science of remote sensing.

Our ability to understand the complexities of the environment remotely and manage

the realities imposed by uncertainty is only as good as the measurement permits.

We are reminded that measurement is nothing more than the use of numbers to

describe data according to a set of rules. As such, measurement facilitates objective

communication of objects and their attributes that can be readily manipulated

conceptually. The key to useful measurement involves assigning numbers to object,

events, and individuals that aptly characterize them in a precise and meaningful way.

In remote sensing, where our measurements are made at a distance, the objects we
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sense do not readily lend themselves to numerical treatment. Rather, measurement

builds from the isomorphic properties of our tool and the surfaces we seek to

understand. From this relationship, insights are extended from one phenomenon

(electromagnetic radiation) to the other (landscape) that creates an empirical situa-

tion, which can be expressed numerically.

Measurement is further informed by the distinction between the recorded

observations and that which is analyzed (Amedeo and Golledge 1975). On

the image, recorded observations represent a subset of the larger universe

of observations that could potentially be made about the landscape. These recorded

observations are derived from selected qualities that can be attributed to the objects

we are interested in. Often this data is collected directly by measurement, but in

the case of remote sensing, it must be translated into numerical terms before it can

be realized as data. This phase of measurement is highly interpretative and directs

attention at two problematic issues that are often overlooked:

1. The extent to which the numbers in the relationship are unique.

2. If the translation from the landscape (empirical situation) to its numerical

definition retains the identity (uniqueness), order, and internal consistency of

the original situation.

Observations of Earth’s environments are further defined by the types of

measurements made, all of which carry important implications for a remote sensing

investigation that not only speaks to the overarching concern for data quality, but

also to the larger question as to what the data actually reveal. In terms of types, we

can explain a measurement as fundamental (primary) or derived. Primary measures

explain measurements that record an existing property of an object. These define

the distinguishing attributes of the object that separate it from other features in the

scene. Derived measures are those, while expressed in numerical form, are defined

on the basis of relationships between properties, such as a ratio or index. The rules

used to produce a measure, therefore, affect its meaning, suggesting that the act of

measurement is nontrivial since it establishes the basis of our understanding. In a

digital world where files often appear as a “black box” read into software, this point

is often lost, even though it impacts the simple things such as the stability of our

measurements, their transferability from one situation to another, and calls to

question concerns about uniqueness, comparability, representativeness, and utility.

Each one is of significance; however, when combined they constrain what is

observable, and ultimately, what becomes knowable. When considering measure-

ment, it is also useful to make a clear distinction between facts and data. Such a

distinction helps frame the problem and offers a more considered view of the

remotely sense images. For practical purposes, a fact may be defined as a statement

about some fundamental quality or quantity that is true regardless of where and

when it was made. Data, by contrast, are not facts and are valid only for the time,

place, and condition under which the observation was made (Jordan and Miller

1996). As we know from experience, a pixel captured for a given geographic

location with a digital value of 31 on June 19 is not likely to enjoy that same
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value on August 8. To determine its “true” value, we would collect measures of that

pixel over different times to predict its disposition; but even in this example, we

realize that this number is an estimate and not a fact.

2.8 The Logic of Maybe

Despite the technological sophistication of remote sensing science, we can only

observe limited aspects of and conditions with the environmental system. The

measurements obtained through this technology are samples of dynamic processes

influenced by the language of our perceptions as witnessed through the lens of

contemporary logic. In the environmental sciences, that lens has been sharply

focused on the concept of probability and the theory that reasoning with uncertainty

can be accomplished by a set of tenants (rules) that impose order on measurement

that illuminates the presence of chance in the situations we observe. Through this

lens the realization of an event (E) is defined by the proportion of times that event

occurs relative to the total number of observations. A condition observed in the

landscape, however, generally describes an outcome (A) of an event (E) having
occurred. This connection between outcome and event can be expressed as the

conditional probability where,

P
A

E

� �
¼ PðA� EÞ

PðBÞ :

The outcome, while never an absolute, becomes understandable by both its

probability and the uncertainty (U), which we can express in simple terms as

U ¼ ð1� PÞ. Alternatively, we can apply mathematical expectation to “predict”

the likelihood of event (E) from the set of variables (X) that we think explains it

presence. According to this logic, the relationship takes the form:

E ¼ a1X1 þ a2X2 þ � � � þ anXn þ e:

In both examples, we are contending with estimations that attempt to manage

uncertainty, place it into a more definable boundary, and resolve the problem by

using a two-valued logic system in which our answers can be satisfied as either

“true” or “false.” This form of estimation and statistical representation has guided

our study of the environment for well over a 100 years. This are produced problem-

solving schemas based on conceptualizations that reflect the way we think things

are and encouraged acceptance of the premise that our observations of the environ-

mental system made remotely appear as fact. Consequently, the models we develop

are fundamentally probabilistic in nature and should invite alternative conceptua-

lizations based on an “ontology” of flux. This mindset moves us past the rules of

probability and encourages a perspective where there are no facts, where time is a
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moving point, and reality is based on assumption. Through this lens, variability is

an inescapable quality of what we observe; and through the application of approxi-

mate reasoning and critical thinking, problem-solving directs us to examine the

“whole” of the problem as well as its components. The methods we device to assist

us attempt to assess the effects of change on the whole, as one or more variables

cascade their influence through the system. From this alternate frame of reference,

sensing the environment is not simply the problems and their solutions, but also the

processes involved. Environmental sensing, therefore, is not the application of a

technology but the fundamental skills of:

• Problem identification

• Process reasoning

• Questioning basic premises, conclusions, and data

• Adaptive problem-solving

• Explanation of the problem, the solution, and the procedures involved

When these skills are married to the remote sensing technology, they create a

method and style of questioning that may culminate in a single solution or as an

intermediate step in a larger investigation. These skills and the methods they define

are examined in the chapters to follow.

2.9 Summary

Remote sensing is often explained with an emphasis on the technical details that

underlie this technology. How and where the methods of remote sensing connect to

the study of the environment tend to be abstracted from these general principles.

In this chapter, the question of how to study the environment remotely was

undertaken. The goal of this chapter was to introduce the environmental system

and its process–response relationships to identify the topics and targets germane to

remote sensing data collection. The patterns, processes, and scale of environmental

behaviors and the relations that define human–environmental interaction must be

resolvable within the context of remote sensing technology. What are we looking

for and how do we look become central questions in the effective use of satellite-

based remote sensing when applied in the study of Earth’s environments.

By placing the environmental problem before the technology we can better appre-

ciate the how the features of degradation, modification, and human alternation can

be understood remotely and how the measurements obtained through our sensor

systems can be employed to inform us of changes in the status of the environmental

system and to improve our efforts to model environmental process in a proactive

manner. In the chapter to follow, we will engage these intellectual activities and

undertake a review of the sensor systems called upon to provide these

measurements, and guide and support environmental solutions.
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Chapter 3

Sensors and Systems

Our capacity to understand the environmental system using remote sensing

technologies is strongly dependent on the type and quality of information we obtain.

As a data-driven process, understanding Earth’s environments and unraveling the

patterns of interaction between people and the planet have been greatly facilitated by

an increasing array of sensor systems each with contrasting spatial, temporal and

radiometric resolutions. When we compare the situation today to the recent history of

satellite-based remote sensing, the expansion of sensor platforms, while offering an

impressive variety of data products, has also necessitated a more considered view of

the technology surrounding the remote data collection. As new sensing systems are

deployed, greater attention must be given to their capabilities and how their designed

features support specific information needs. This is a sharp contrast to space-based

remote sensing of 40 years ago, when analysis and mapping was limited in scope to

the “one-size fits all” realities of the Landsat multispectral scanner (MSS). In this

chapter we will explore the evolution and advances in remote sensing satellite data

acquisition. Our purpose here is threefold: (1) highlight the satellite data collection

technology, (2) connect the capability of existing systems relative to the goals of

environmental sensing, and (3) review these data products and examine their useful-

ness as data that feed the objectives of environmental analysis.

3.1 Data Acquisition Fundamentals

The use of remote sensing to study Earth’s environments has progressed steadily

over time (Qu et al. 2006; Thoely 2000). This evolution reflects both advancements

in sensor technology and the desire to develop new data collection capabilities to

address a growing list of environmental concerns. Eight distinct phases in the

evolution of remote sensing can be noted (Melesse et al. 2007):

• Phase 1: Airborne remote sensing – This phase developed during the first and

second world wars with the primary applications focused on surveying, recon-

naissance, strategic land use mapping and military surveillance.

J.K. Lein, Environmental Sensing: Analytical Techniques for Earth Observation,
DOI 10.1007/978-1-4614-0143-8_3, # Springer Science+Business Media, LLC 2012
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• Phase 2: Early spaceborne systems – explains a phase dominated by the launch

of “proof of concept” satellites beginning with Russia’s Sputnik and Explorer 1,

introduced by the United States. These early examples contributed to the first

meteorological satellite TIROS-1 that established the feasibility for continuous

earth observation.

• Phase 3: Era of spy satellites – During the peak of the “cold war,” satellites were
introduced as a method of military surveillance hand on hard copy data formats.

• Phase 4: Advanced meteorological satellites – This phase introduced the

methods of remote data collection in digital formats that could be analyzed

using computer processing techniques and demonstrated the usefulness of global

data coverage for environmental applications.

• Phase 5: Landsat – The launch of Landsat-1 in 1972, referred to at the time as

ERTS (Earth Resource Technology Satellite) introduced the multisensor/multi-

spectral scanning technology and the systematic collection of land surface data

at an effective spatial scale for civilian earth surface observation. The success of

Landsat-1 was followed by compatible multispectral platforms (Landsat 2 and 3)

and ushered in advances in both spatial and spectral resolution systems deployed

on board the Landsat Thematic Mapper series beginning in 1982.

• Phase 6: Earth observing system (EOS) – Beginning with the launch of the

TERRA satellite in 1999, the EOS phase introduced several innovations to

satellite remote sensing. Chief among these were frequent repeat coverage

cycles, wider resolution capabilities and higher level processing to address a

multiplicity of environmental applications.

• Phase 7: New millennium – This phase in the evolution of remote sensing is

marked by the introduction of highly advanced test concept systems. These

satellite sensors represent “next generation” systems such as EO-1, which

carried the first spaceborne hyperspectral sensor and the Advanced Land Imager

(ALI) into earth orbit; a less costly and superior replacement of Landsat TM

technology.

• Phase 8: Commercialization – At this juncture, private industry ventures intro-

duce innovative sensor designs and operational configurations that usher in very

high spatial resolution satellites with pixels scales below 5 m2. Systems of this

variety include IKONOS, QuickBird and more recently GeoEye, together with

revolutionary methods of data collection such as those introduced by the RapidEye

constellation. Commercialization has also witnessed the introduction of microsat-

ellite and nanosatellite technologies, encouraging the miniaturization of remote

sensing platforms and the design of application-specific low-cost platforms.

Remote sensing systems are designed to record electromagnetic radiation emit-

ted or reflected from an object at a distance (Maini and Agrawal 2007). The specific

portions of the electromagnetic spectrum where these sensors operate is dictated by

two important factors: (1) the availability of radiant energy to record and (2) the

nature of surface objects whose physical, chemical and biological properties influ-

ence the manner by which radiant energy is received, absorbed, reflected and

emitted. Those portions of the electromagnetic spectrum that facilitate reliable
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measurement of radiant energy define “windows” that permit electromagnetic

radiation to transmit from its source to a surface and then to the sensor (Fig. 3.1).

The wavelengths of energy characterizing these windows, while explaining broad

intervals described by unique frequencies and amplitudes, can be infinitely sub-

divided into smaller channels. Here, the number and the specific intervals

designated to form a channel allow distinctive patterns and intensities of energy

flux to become measureable. A sensor system can, therefore, be designed to

measure electromagnetic radiations in a single broad interval of wavelengths, or

in multiple narrow intervals within one or more openings in the window (Fig. 3.2).

This design feature of a sensor system explains its spectral resolution; an attribute

of the sensor that defines the total number of wavelength intervals, their width, and

the specific portion of the electromagnetic spectrum that these intervals represent.

To the environmental analyst, spectral resolution is a critical determinant of a

sensor’s applicability to a given problem, since the object, surface or condition

the problem describes may not be detectable by the sensor. Therefore, knowing

where to look, or more appropriately, where along the electromagnetic spectrum the

feature of interest can be measured, is a nontrivial question. If this question can be

answered, the selection of the appropriate sensor system and data product will be

greatly simplified.

Fig. 3.1 Locations and patterns of atmospheric windows

Fig. 3.2 The configuration of spectral bands for remote sensing application
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An additional element of a sensor system’s design describes its spatial resolu-

tion. This quality measures the ground area sampled at the surface used to record

the sensor’s reflected of emitted electromagnetic energy. As a satellite sensor

progresses along its orbital path over the surface it records electromagnetic energy

in a systematic and regular fashion. Measurement takes place within the geometry

of a pixel (picture element) that represents an area at the surface at a predetermined

level of geographic detail. Generally explained as a square of fixed dimension, the

spatial unit that a measurement of electromagnetic radiation explains may range

from as coarse as 1 km � 1 km to as fine as 0.4 m � 0.4 m in area. In practical

terms, a sensor’s level of spatial resolution determines how well an object or a

feature of the surface can be recognized by its distinctive geometric form. With

reference to measurement, an object that fills the resolution “square” is observable

as a discrete value. Should the object of interest fail to completely occupy the

square, its measurement becomes a composite or mixture of whatever the other

objects fall within that boundary (Fig. 3.3). This phenomenon is commonly referred

to as the mixed pixel and represents a source of confusion and error that frustrates

image classification.

Spatial resolution is analogous to the concept of scale and allows environmental

investigations to be conducted at varying levels of spatial discreteness from the

macroscale (resolution greater than 1 km), mesoscale (resolutions between 500 and

300 m) and microscale (resolutions less than 20 m). Because sensor systems tend to

be categorized in terms of their spatial resolution, this value influences the selection

of a sensor and the data product. Ideally, a level of geographic detail can be

determined that will insure that the spectral measurements recorded by sensor

will correspond closely to the object or feature of interest. In practical applications,

however, an exact one-to-one correspondence can be illusive, particularly where

the land surface is composed of complex entities. Under these circumstances it is

Fig. 3.3 The spatial patterns defining composite or mixed pixel
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important to remember that a sensor provides a sample of the surface and as with

any sampling schema there will always be error. We will explore the methods to

compensate for error in later chapters. For now the goal is to select a resolution that

matches the minimum mapping unit required for objects to emerge from the

background clutter of the scene.

Related to both spatial and spectral resolution is the radiometric sensitivity

characteristic of the sensor. This attribute of the sensor explains its measurement

capabilities and provides a means to express the level of numerical detail used to

record the intensity of the electromagnetic radiation the sensor captures. Typically,

radiometric resolution can be conceptualized as a gray-scale continuum that

quantifies the range of measurements available with a given wavelength interval

(Fig. 3.4). As illustrated in Fig. 3.4, gray-scale quantification places radiometric

resolution as a quantity that describes “brightness” as a function of wavelength per

angular unit. This value, defined in terms of wavelength, spatial area, and intensity,

is given as a real number commonly referred to as either the brightness value or a

digital number, which is recorded for each pixel across all wavelengths and written

to a file that becomes the digital image (Fig. 3.5). The range of brightness values

that can be recorded by the sensor describes the sensors dynamic range. The greater

the number of digits that can be used to translate this range into a gray scale, the

greater is the capability of the sensor to capture (measure) subtle differences in the

radiance characteristics of objects or features at the surface. In an environmental

context this could be the difference between our ability to detect polluted water

from clear water, or subtle contrasts in vegetation that may be indicative of stress

due to drought or insect damage.

Fig. 3.4 The gray-scale concept
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When taken together the spatial, spectral and radiometric resolution of a sensor

determines how well an object or feature in the landscape can be imaged as a unique

phenomenon. Features or conditions at the surface that fall below the thresholds of

resolution cannot be sampled and therefore are not really present in the image. For

example, objects that fall below the spatial resolution of the sensor can only be

recorded as a composite or mixture of the features surrounding it. Similarly, should

the spectral resolution of the sensor identify a wavelength in an interval that is too

broad, a degree of specificity may be missing that fails to record the spectral

properties of an object in sufficient detail to enable succinct differentiation. Finally,

the radiometric characteristics of the sensor may not provide enough contrast to

allow the feature at the surface to emerge as a measureable object. In each of these

cases, measurement is confused and the digital number recorded to the image file

may not be representative of meaningful data.

An equally critical aspect of the data acquisition question for successful envi-

ronmental analysis is the representation of time. A single image acquired by a

satellite sensor represents a “snapshot” of the surface at a fixed point of time. Often

for environmental applications our interests are more process oriented and the

temporal dimension is an important element of a study. Every sensor system placed

into Earth’s orbit has a revisit or repeat cycle that is a direct function of its orbital

characteristics. The sensor’s repeat cycle introduces a temporal resolution that can

be used to formulate a time-sequenced set of measurements for a study. Exploiting

this temporal dimension facilitates the representation of time-continuous processes

and enables “progression over time” assessment of land surface behaviors and

Fig. 3.5 Characteristics of a digital image
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supports the data demands of environmental monitoring applications. The present

constellation of satellites dedicated to earth observation describes revisit cycles as

frequent as 3 days to upwards of 24 days. This suggests that under the most optimal

conditions a location on the surface could be imaged between at least 15 times per

year at a minimum and as often as 122 times per year. Satellites, such as the Landsat

series, with operational histories of nearly 40 years, suggest a temporal archive of

nearly 1,000 scenes for any location at the surface. However, obtaining a useable

time sequence is easily perturbed by cloud cover and other environmental

contaminants that reduce the number of useable scenes and impact data quality.

Notwithstanding these limitations, time-stepped images can be acquired for nearly

any environmental process over the history of satellite remote sensing that allows us

to exploit the temporal dimension. This fact alone should encourage the continuity

of satellite missions in order to preserve this essential attribute of satellite-based

remote sensing (Hernanades 2005).

3.2 Footprints and Formats

While sensor resolutions in its various definitions remain perhaps the most impor-

tant characteristic that distinguishes among satellite platforms, the application

potential of this data source is further refined by two additional factors: (1) the

sensors orbital parameters and (2) the formats employed to organize digital

measurements of electromagnetic energy into computer processable files. Satellite

orbits vary considerably with the individual facets of their design depending largely

on purpose. Specific to the goals of environmental remote sensing focus can be

directed toward the class of satellite systems referred to as earth observational

satellites. This class of sensors describes systems maintaining geocentric orbits with

altitudes that fall into one of the four categories:

1. Low earth orbits – Geocentric orbits with altitudes ranging from 160 to 200 km

(100–12,400 miles). A satellite in low earth orbit typically completes one

revolution every 90 min.

2. Medium earth orbit – Geocentric orbits with altitudes between 2,000 and

35,000 km.

3. Geosynchronous orbits – Geocentric orbits with a fixed altitude of 35,786 km,

with an orbital period timed to follow the rotation of the Earth.

4. High earth orbits – Geocentric orbits with altitudes exceeding 35,786 km.

Satellite orbits may be further defined by their inclination. Earth observational

satellites assume a near-polar, sun-synchronous path which combines altitude and

inclination in a manner that sets the satellite’s ascending or descending path over a

given point on the surface as the same local mean solar time. This particular orbital

design creates a surface illumination angle that will be the same each time the

satellite makes an overpass with a “fixed” local time. By placing the sensor into this

configuration a consistent illumination of the surface is provided which holds
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shadows nearly constant on every satellite pass and produces some level of control

as brightness is measured from the surface. The general characteristic of an earth

observational orbit is illustrated in Fig. 3.6.

As a satellite progresses along its orbital track over the Earth, its altitude

inclination and sensor architecture form a scan swath in which data are collected.

The lateral dimension of this swath width explains the side-to side-ground distance

the sensor record in during the satellites orbital pass. From the data users perspec-

tive swath width is the lateral distance that expresses the physical dimension of the

satellites “footprint.” In simple terms we can think of this as an area on the ground

represented in one satellite image (Fig. 3.7). Since file formatting conventions used

to store remotely sensed data are organized according to a grid or raster representa-

tion of geographic space, the swath width serves as a convenient device for

establishing the areal coverage of the sensor. This physical extent of the data has

important implications for environmental remote sensing since this footprint can

determine the number of individual scenes that will be required to produce a

complete coverage for a given study location, which can greatly influence other

considerations when developing a remote sensing application. Sensor footprints

vary in geographic extent from dimensions as little as 13 � 13 km to nearly as large

as 2,400 � 6,400 km. In many respects taking these dimensions into consideration

in the plan of a remote sensing investigation helps to match both the scale of

geographic coverage and the elements of resolution with the functional scale

required for the analysis (Fig. 3.8). If both are not thought through carefully, an

analysis may not yield satisfactory results and errors related to over generalization,

misidentification, and inaccuracy will dominate.

Fig. 3.6 General characteristics of satellite orbital geometries
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3.3 Sensor Characteristics

Satellite-based sensors have become the primary platform for carrying out envi-

ronmental remote sensing activities (Ulbricht and Heckendorf 1998; Gulinck

et al. 2000) due in large part to their capacity for

• Continuous data acquisition

• Frequent and regular revisit cycles

• Broad areal coverage

• Good spectral resolution

• Support of semiautomatic computerized processing and analysis

Based on the source of electromagnetic radiation used to activate the sensor

electronics, remote sensing systems may be separated into two broad classes: (1)

passive sensors and (2) active sensors. Passive sensors refer to systems designed to

detect solar radiation reflected or emitted by objects at the surface. Active sensors

describe systems designed to illuminate a surface using active artificial sources of

radiation mounted on the platform. Sending a pulse of radiation toward the surface,

Fig. 3.7 Satellite imaging “footprints” or swaths
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active sensors capture this pulse as it is reflected or scattered by surface objects

(Table 3.1). This table provides a selective listing of both passive and active sensor

systems. Within these two general classes, sensor systems can be further subdivided

into three groups based on the spectral regions they employ for data acquisition: (1)

optical/infrared sensors, (2) microwave sensors, and (3) thermal sensors.

1. Optical/infrared sensors – This class of sensor uses the visible (0.3–0.7 mm), near

infrared (0.72–1.30 mm) and shortwave infrared (1.3–3.0 mm) portions of the

electromagnetic spectrum. Sensors of this design can be arranged according to

their spatial resolution to better connect their functional configuration with the

types of environmental applications they support. We can begin this overview

working from low-resolution systems that capture spatial detail and comparatively

coarse levels of resolution and continue with medium resolutions systems and

culminate our discussion with those sensors that display high spatial resolutions.

(a) Low-resolution systems – For the purposes of this review, low-resolution

systems are defined as sensors that record reflected electromagnetic radiation

as synoptic scales above 500 m to greater than 1,000 km. Typically sensors

of this class capture data over large geographic areas which make them

useful for examining macro-scale disturbances and environmental processes

that exhibit wide areal extents. Satellite sensors of this variety include:

• The advanced very high resolution radiometer (AVHRR) carried on board
the National Oceanic and Atmospheric Administration (NOAA) series of

polar-orbiting operational environmental satellites (POES). The AVHRR

Fig. 3.8 Spatial resolution defining pixel spatial scale
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sensor is a broad-band, four- or five-channel scanning radiometer

designed to record reflected electromagnetic radiation in the visible and

near-infrared portions of the spectrum and emitted electromagnetic radi-

ation in the thermal infrared regions between 3.55 and 12.50 mm. The

general specifications of the AVHRR system are given in Table 3.2.

The first AVHRR sensor was a four-channel radiometer deployed on the

TIROS-N meteorological satellite in 1978. This initial system was

improved to a five-channel instrument (AVHRRR/2) placed into orbit on

NOAAA-7 in 1981. The latest AVHRR sensor (AVHRR/3) is a six-

channel instrument launched into orbit on NOAA-15 in 1998. The main

objective of the AVHRR program is to provide radiance data for the study

of clouds, land-water boundaries, snow and ice extent , ice and snow melt

inception, day and night cloud distribution, temperatures of radiating

surfaces and sea surface temperature estimates. Over its history, a wide

range of environmental applications have utilized the AVHRR system

including studies focused on agricultural crop assessment, ecosystem dis-

turbance, drought evaluation, fire detection, land cover analysis, large area

mapping and the evaluation of regional-scale and continental-scale snow

cover analyses.

Data from the AVHRR sensor are acquired with a wide-field scanning

system that permits global-scale coverage on a daily basis with a 1.1 km

spatial resolution. The sensor also provides a data stream at 4 km ground

resolution that is achieved by sampling and averaging the full 1.1 km data

on board the satellite. Several data products derived from the AVHRR

platform are of particular value to environmental remote sensing

investigations. These include the AVHRR normalized difference vegeta-

tion index (NDVI) composite and the global land cover characterization

(GLCC) data set. The NDVI composite are greenness maps produced by

calculating the NDVI using the red (0.6–0.7 mm) and near infrared

(0.7–1.1 mm) bands of the sensor. Weekly and bi-weekly composites are

Table 3.2 Characteristics of the advanced very high-resolution radiometer (AVHRR)

Swath width 2,399 km

Spatial resolution 1.1 km

Spectral resolution Wavelength (mm, NOAA-6, 8, 10, 12) Wavelength (mm, NOAA-7,9,11)

Channel 1 0.58–0.68 0.58–0.68

Channel 2 0.725–1.10 0.725–1.10

Channel 3A 1.58–1.64 (NOAA 15, 16)

Channel 3B 3.55–3.93 3.55–3.93

Channel 4 10.50–11.50 10.3–11.3

Channel 5 Channel 4 repeated 11.5–12.5

Orbit type Sun-synchronous circular, PM orbit

Revisit cycle Daily
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produced from multiple AVHRR observations that have been composited

together to create nearly cloud-free images depicting maximum vegetation

health and vigor at scales suitable for regional investigations. The GLCC

product is a series of global land cover classification data sets based on the

unsupervised classification of 1.1 km AVHRR 10 day NDVI composites

(http://edc2.usgs.gov/glcc/background.php).

• The Defense Meteorological Satellite Program Operational Linescan
System (DMSP-OLS) – This sensor is a polar orbiting satellite supported

by the U.S. Air Force. The DMSP-OLS is a sensor designed for cloud

imaging with two spectral bands; a visible near-infrared band operating

within the 0.47–0.95 mm spectral range and a thermal band at

10.0–13.4 mm. The system has a 2.7-km spatial resolution and an image

swath width of 3,000 km. The satellite system was officially acknowl-

edged and declassified in 1972, and imagery was made available to the

scientific community shortly thereafter. Since this declassification, the

DSMP instrument has been repeatedly upgraded. The OLS sensor is the

most recent of these upgrades, orbiting the Earth 14 times a day with a

night-time overpass between 20:30 and 21.30 h (10:30–11:30 PM). As a

function of its design and orbit the OLS sensor can detect visible light

sources as low as 10–9 W/cm2/steradian which is approximately 4 orders

of magnitude greater than the NOAA-AVHRR system. This feature of the

OLS has been shown to provide unique capabilities for detecting urban

footprints, gas flaring, biomass burning and for tracking vessels in the

oceans (Elvidge et al. 2001) (Table 3.3).

• OrbView-2/SeaWIFS – This sensor is housed onboard the GeoEye

Corporation’s OrbView-2 satellite. The sensor is a follow-on experiment

to the coastal zone color scanner and began its operations on September

18, 1997. The sensor covers eight spectral bands in the 0.40–0.88 mm
spectral range with a 1.1-km spatial resolution in the local area coverage

(LAC) mode and 4.5 in the global area coverage (GAC) mode. Sea-

viewing wide field-of-view sensor (SeaWIFS) was designed specifically

to monitor ocean characteristics, such as chlorophyll-a concentrations

and water clarity. Because the sensor has the capability to view every

square kilometer of a cloud-free ocean every 48 h, the data captured by

the satellite can provide measurements of the abundance of ocean biota,

Table 3.3 Characteristics

of the Defense

Meteorological Satellite

Program operational

linescan system

(DMSP–OLS)

Swath width 3,000 km

Spatial resolution 2.2 km

Spectral resolution (mm)

Visible 0.40–1.10

Infrared 10.0–13.4

Photomultiplier tube 0.47–0.95

Orbit type Sun-synchronous near-polar orbit

Revisit cycle Daily
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oceanic primary productivity, and global biogeochemistry. To date, the

SeaWIFS sensor has been used to examine the magnitude and variability

of chlorophyll, primary productivity of marine phytoplankton and to

assist with the detection and timing of spring algae blooms. The general

specifications of SeaWIFS are given in Table 3.4.

(b) Medium resolution systems – Medium resolution systems are defined as the

sensors that record reflected electromagnetic radiation at synoptic scales

between 100 and 500 m. Typically, sensors of this class capture data over

mesoscales which makes them useful for examining localized patterns of

disturbance and regional level environmental processes. Satellite sensors of

this variety include:

• Moderate Resolution Imaging Spectrometer (MODIS) – An instrument

placed into orbit on board the TERR and AQUA satellites, the MODIS

sensor has been designed to observe the entire Earth in a 1–2-day revisit

cycle with a 2,330-km swath width. The sensor captures surface radiance

in 36 spectral bands covering the interval between 0.40 and 14.38 mm
(Table 3.5). MODIS also images the surface at three distinct spatial

resolutions with bands 1 and 2 recording surface radiation at

250 � 250 m, bands 3–7 at 500 � 500 m and bands 8–36 at a low-

resolution scale of 1,000 � 1,000 m. The contrasting spectral and spatial

ranges enable MODIS data to be processed at several different levels and

facilitate the creation of 44 different standard data products. A selection

of those germane to environmental remote sensing include:

– MODIS Level 1A radiance counts (MOD 01) – A level 1A data set

contains counts for the 36 MODIS channels that are used primarily for

geolocation, calibration and processing.

– MODIS Level 1B calibrated geolocated radiance (MOD 02) – This

data set contains calibrated and geolocated at-aperture radiances for

the 36 bands generated from MODIS Level 1A sensor counts. Visible,

short-wave infrared (SWIR) and near-infrared measurements are

made during daytime only whereas the thermal radiances (TIR) are

measured continuously by the sensor.

Table 3.4 Characteristics

of the SeaWIFS sensor
Swath width 2,800 km

Spatial resolution 1 km

Spectral resolution (mm)

Visible 0.40–1.10

Infrared 10.0–13.4

Photomultiplier tube 0.47–0.95

Orbit type Sun-synchronous polar circular orbit

Revisit cycle 16 days
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– MODIS normalized water-leaving radiance (MOD 18 and MOD 37
(MODIS aerosol optical depth) – These Level 2 and Level 3 products

contain ocean water-leaving radiances for bands 8–14. Normalized

water-leaving radiance is used to estimate chlorophyll-a

concentrations and the ocean primary productivity.

– MODIS aerosol product (MOD 04) – This monitors the ambient

aerosol optical thickness over the oceans and portions of the

continents. The MODIS aerosol product is used mainly to study

aerosol climatology, and sources and sinks of specific aerosol types.

• European Space Agency’s Envisat (environmental satellite) – This instru-
ment was launched on March 1, 2002 and carries an array of nine sensor

elements with a 35-day repeat cycle (Table 3.6). The medium resolution

imaging spectrometer (MERIS) is one of the main instruments on this

satellite. MERIS is composed of five detector elements each equipped

with a push-broom spectrometer that provides data in 15 spectral bands.

This system has an intrinsic spatial resolution of 300 m and was designed

primarily to observe the color of the ocean and derive estimates of

chlorophyll and suspended sediments. The sensor is also useful for

terrestrial applications using vegetation transforms such as the NDVI.

(c) High-resolution systems – Satellite systems included in this category define

spatial resolutions between 15 and 80 m. Many of these sensors share similar

spectral and radiometric characteristics as well as repeat cycles falling

between 16- and 20-day intervals. Satellites of this class include

• Landsat TM and ETM+ – The Landsat program was the first earth resource

satellite system with the first generation Landsat satellite launched on

January 23, 1972. Over the course of the Landsat program succeeding

satellites evolved toward higher spatial and spectral resolutions. Presently,

Table 3.5 Characteristics of the MODIS sensor

Swath width 2,330 km

Spatial resolution 250 m (bands 1–2) at

nadir

500 m ( bands 3–7) at

nadir

1,000 m (bands 8–36) at

nadir

Spectral

resolution (mm)

Spectral range 0.4–14.4

Reflected bands 0.405–0.965

Emitted bands 3.66–14.385

Equatorial crossing

time

10:30 AM

Orbit type Sun-synchronous

polar circular orbit

Revisit cycle 1–2 days
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Landsat series of satellites have acquired high-resolution multispectral data

on a systematic and repetitive basis with an archive boasting 40 years worth

of earth observational data (Table 3.7).

The orbital characteristics of Landsat satellites 1–3 are provided in

Table 3.8. These satellites describe instruments deployed into sun-synchro-

nous near-polar orbits with two on-board sensors: a return beam vidicom

(RBV) and a 4-channel MSS. The RBV system suffered crippling

malfunctions and only a limited number of images were acquired. The

MSS however was more robust, recording reflected electromagnetic energy

in four spectral bands covering the interval between 0.5 and 1.1 mm with a

185-km swath width. Each detector on the MSS sampled a 57 � 79 m

ground area which was resampled to a nominal resolution of 79 � 79 m.

Table 3.6 Characteristics of the Envisat MERIS sensor

Swath width 1,150 km

Spatial resolution Ocean: 1,040 � 1,200 m Land: 260 � 300 m

Spectral resolution 15 spectral bands

Spectral range

(mm)

0.39–1.40

Equatorial crossing time 10:00 AM

Orbit type Sun-synchronous polar circular orbit

Revisit cycle 3 days

Table 3.7 Characteristics of the Landsat TM sensor

Swath width 185 km

Spatial resolution Multispectral Thermal

30 m 120 m

Spectral resolution (mm)

Band 1 0.45–0.52

Band 2 0.52–0.60

Band 3 0.63–0.69

Band 4 0.76–0.90

Band 5 1.55–1.75

Band 6 10.40–12.50

Band 7 2.08–2.35

Equatorial crossing time 9:45 AM

Orbit type Sun-synchronous near-polar orbit

Revisit cycle 16 days
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In 1982 the MSS system was replaced by a sensor referred to as the

thematic mapper (TM). The TM sensor was placed into orbit on Landsat

4 and 5. Both of these satellites retained similar orbital characteristics of the

earlier Landsat platforms; however, in order to match the swath width of

the Landsat 1–3 the altitude of the TM system was lowered, giving the TM

series a 16-day repeat cycle. The TM series has improved spectral, radio-

metric, and spatial resolution, as well as the inclusion of a thermal band. On

April 15, 1999 a third generation of the Landsat series was launched into

orbit. This new satellite carried the enhanced thematic mapper (ETM+), a

system with two noteworthy improvements over the Landsat TM. First, the

ETM+ added a panchromatic band (Band 8) with 15 m spatial resolution.

Secondly, the ETM+ included two thermal infrared channels (Band 6a and

6b) with 60 m resolution. In addition to these sensor enhancements,

Landsat 7 ETM+ was placed into an orbit that allows the sensor to precede

the TERRA satellite by 30 min along a common ground track. This orbital

configuration, referred to as a “sensor train,” is an important advancement

in earth observation science, since it allows numerous sensor platforms to

record surface phenomenon in a near-synchronous fashion. With sensors

following along in close temporal spacing opportunities exist for data

fusion between Landsat ETM+ and the ASTER, MODIS and HYPERION

instruments.

Table 3.8 Characteristics of the Landsat satellite series

(a) Landsat MSS sensor (Landsat 1–3)

Band number (L1–L3) Band number (L4–L5) mm Resolution

4 ~2 (0.52–0.60 mm) 0.5–0.6 68 m � 83 m

5 ~3 (0.63–0.69 mm) 0.6–0.7 68 m � 83 m

6 ~4 (0.76–0.90 mm) 0.7–0.8 68 m � 83 m

7 ~4 0.8–1.1 68 m � 83 m

8 ~6 (2.08–2.35 mm) 10.41–12.6 68 m � 83 m

(b) Landsat TM sensor

Swath width 185 km

Spatial resolution Multispectral Thermal

30 m 120 m

Spectral resolution (mm) Wavelength (mm)

Band 1 0.45–0.52

Band 2 0.52–0.60

Band 3 0.63–0.69

Band 4 0.76–0.90

Band 5 1.55–1.75

Band 6 10.40–12.50

Band 7 2.08–2.35

Equatorial crossing time 9:45 AM

Orbit type Sun-synchronous near-polar

orbit

Revisit cycle 16 days
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The Landsat ETM+ on board the Landsat 7 satellite experiences a

scan-line corrector failure on May 31, 2003. Although the system is still

operational, the failure significantly reduced the utility of the data. Data

are still collected using this sensor with missing data optionally filled in

using other prefailure Landsat data selected by the user. An estimated

22% of any ETM+ scene is lost due to the scan line corrector failure. The

gap-filled product option is an attempt to compensate for this loss.

• Satellite Pour L’Observation de la Terra (SPOT) Satellite – The SPOT

series of earth observational satellites consist of four high-resolution

platforms (SPOT 1–4) and a recent very high-resolution satellite (SPOT

5). Initiated by the French space agency CNES (Centre National d’etudes

Spatiales), the first SPOT satellite was placed into orbit in 1986. This

system introduced several enhancements to sensor design including the

addition of two identical high-resolution visible sensors capable of deliv-

ering stereoscopic imagery, and panchromatic and multispectral opera-

tional modes with 10 m (panchromatic) and 20 m (multispectral) spatial

resolutions (Table 3.9).

SPOT data is recorded along a 60 km swath width with a 26-day repeat

cycle. The SPOT 4 satellite, launched in 1998, features several

improvements over its predecessors including the addition of a mid-infrared

band at 1.58–1.75 mm to its high-resolution visible and infrared sensor and a

vegetation monitoring instrument called the VMI. Perhaps the most signifi-

cant advancements to the SPOT series are those found on SPOT 5, a

platform launched on May 4, 2002. The SPOT 5 satellite has two high-

resolution instruments that provide spatial resolutions of 2.5–5 m in pan-

chromatic mode and 10 m in multispectral mode. The vegetation instrument

on board SPOT 5 (Vegetation 2) also offers continuity for environmental

applications initiated by SPOT 4 functionality. The specifications of the

SPOT 5 sensor are listed in Table 3.10.

Table 3.9 Characteristics of the SPOT sensor

Swath width 60 km

Spatial resolution Multispectral mode Panchromatic mode (P)

20 m 10 m

Spectral resolution (mm)

Band 1 0.50–0.59

Band 2 0.61–0.68

Band 3 0.79–0.89

PAN 0.51–0.73

Equatorial crossing time 10:30 AM

Orbit type Sun-synchronous near-polar orbit

Revisit cycle 26 days
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• TERRA – ASTER – Referred to as the flagship of the Earth Observing

System (EOS) series of satellites, TERRA represents a new generation of

sensors that carry into orbit a complement of five synergistic instruments

including

– CERES – Clouds and Earth’s radiant energy system

– MISR – Multiangle imaging spectroradiometer

– MODIS – Moderate resolution imaging spectrometer

– Mopitt – Measurement of pollution in the troposphere

– ASTER – Advanced spaceborne thermal emission and reflection

radiometer

Launched on December 18, 1999 into a sun-synchronous orbit with an

equatorial crossing time of 10:30 AM, the TERRA system began

collecting data on February 24, 2000.

The ASTER sensor is significant in its design; covering a wide spectral

region with 14 bands from the visible to the thermal infrared with both

high spectral and radiometric resolutions. In addition, ASTER has a

backward looking near-infrared band that provided stereoscopic cover-

age. Overall ASTER consists of three different subsystems (Table 3.11).

The visible and near-infrared (VNIR) is a three band instrument with

15 m spatial resolution plus the addition of a backward looking detector.

The shortwave infrared (SWIR) instrument images across 16 bands at

30 m resolution. Lastly, thermal infrared (TIR) data are collected over

five bands with a spatial resolution of 90 m. The main features of these

subsystems can be outlined briefly as follows:

– The VNIR instrument is comprised of two sensor assemblies and

produces the highest data rates using the three ASTER imaging

subsystems.

Table 3.10 Characteristics

of the SPOT 5 sensor
Swath width 60 km

Spatial resolution Multispectral SWIR PAN

20 10 5

Spectral

resolution

(mm)

0.50–0.59

0.61–0.68

0.79–0.89

1.58–1.750

Equatorial

crossing time

10:30 AM

Orbit type Sun-synchronous

near-polar

orbit

Revisit cycle 2–3 days
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– The SWIR is a single fixed aspheric refracting sensor that operates six

SWIR channels and a pointable mirror to allow coverage of any

surface location over the 16-day repeat cycle.

– The TIR operates within 8.125 and 11.5 portion of the electromagnetic

spectrum using a pointing mirror system.

Overall, 15 data products can be derived from the ASTER system

including a Level 1B product with radiometric and geometric coefficients

applied, a Level 2 radiance at sensor converted to temperature product

and a Level 3 digital elevation model (DEM) produced by correlation of

nadir and aft-looking Band 3 data.

• IRS – Indian Remote Sensing Program – India launched its first civilian

satellite in March 1988. This date marked the beginning of a remote

sensing program that presently collect data from eight satellite systems

(Table 3.12) The IRS program is the largest constellation of remote sensing

currently in operation. Among these systems are: the IRS-1B satellite,

launched in 1991 with four spectral bands and 72 � 36 m spatial resolu-

tion, a 148 km swatch width and 22 day repeat cycle, the IRS-1C system

Table 3.11 Characteristics

of the ASTER sensor
Swath width 60 km

Spatial resolution VNIR SWIR TIR

15 m 30 m 90 m

Spectral resolution

(mm)

VNIR

Band 1 0.52–0.60

Band 2 0.63–0.69

Band 3N 0.78–0.86

Band 3B 0.78–0.86

SWIR

Band 4 1.60–1.70

Band 5 2.14–2.18

Band 6 2.18–2.22

Band 7 2.23–2.85

Band 8 2.29–2.36

Band 9 2.36–2.43

TIR

Band 10 8.12–8.47

Band 11 8.47–8.82

Band 12 8.92–9.27

Band 13 10.25–10.95

Band 14 10.95–11.65

Equatorial crossing

time

10:45 AM

Orbit type Sun-synchronous near-

polar orbit

Revisit cycle 16 days
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with three sensor instruments (PAN, LISS-III and WiFS) and a 24 day

repeat cycle and IRS-P6, a three sensor platform with spatial resolutions

ranging from 5.8 m in panchromatic mode, 23.5 m in LSS-3, and 56 m in

AWIFS capturing surface reflectance across a 740 km swath width

(Table 3.13). The LISS (Linear Imaging and Self-Scanning Sensor) is a

high-resolution multispectral instrument capable of operating in either

multispectral mode with a spectral sensitivity between 0.53 and 0.86 mm
or a mono-chromatic mode nominally set to the 0.62–0.68 mm spectral

region. The AWiFS sensor operates in four spectral bands covering the

range 0.52–1.70 mm. Data products generated by this system fall into five

broad categories:

– Scene-based standard products
– Scene-based georeferenced products
– Map-based products
– Floating geocoded products and
– Ortho-rectified geocoded products

• EO-1 – The National Aeronautics and Space Administration (NASA)

EO-1 satellite was launched on November 21, 2000 as part of a 1-year

technology demonstration mission (Digenis 2005). Strong advocacy from

Table 3.12 Satellites and

sensors of the Indian remote

sensing system

Resolution (m) Sensor Satellite

360 OCM IRS-P4

180 WIFS IRS 1C, IRS 1D, IRS P3

72.5 LISS-I IRS 1A, IRS 1B

56 AWIFS IRS P6

36.25 LISS-II IRS 1A, IRS 1B

24 LISS-III IRS 1C, IRS 1D

5 PAN, LISS-IV IRS 1C, IRS 1D, IRS P6

2.5 PAN IRS P5

0.8 PAN CARTOSAT-2

Table 3.13 Characteristics

of the IRS-1B sensor
Swath width 148 km

Spatial resolution 72.5 m

Spectral resolution (mm)

Band 1 0.45–0.52

Band 2 0.52–0.59

Band 3 0.62–0.68

Band 4 0.77–0.86

Equatorial crossing time 9:40 AM

Orbit type Sun-synchronous near-polar orbit

Revisit cycle 22 days
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the remote sensing community to continue data acquisition fromEO-1 led to

an extension of the mission. EO-1 is presently chartered to collect and

distribute data from it two main instruments: the advanced land imager

(ALI) and the hyperspectral sensor (HYPERION). The ALI sensor,

identified as the first earth observing instrument to be flown under NASA’s

New Millennium program, employs sophisticated optics and highly

integrated multispectral and panchromatic spectrometers designed to pro-

duce Landsat-type imagery. TheALI has ninemultispectral bandswith 30m

spatial resolution and a 10-m panchromatic band (Table 3.14). When com-

pared to the Landsat TM and ETM+ systems, ALI has three additional bands

covering the intervals 0.433–0.453 mm, 0.845–0.890 mm, and 1.20–1.30 mm.

However, unlike Landsat, the ALI sensor does not contain a thermal band. A

standard ALI scene is 37 kmwide and 42 km long with an option to increase

scene length to 185 km.

Perhaps the most significant advancement introduced by the EO-1 sys-

tem is the HYPERION imager. HYPERION is a push-broom hyperspectral

sensor consisting of 220 10 nm bands that cover the electromagnetic

spectrum from 430 to 2,400 nm. As a hyperspectral instrument, HYPE-

RION represents a new direction for earth observation by offering resolution

of surface characteristics across an expanded number of spectral bands

(Pignati et al. 2009). Since hyperspectral data is acquired in a continuous

fashion, HYPERION supports more complex forms of environmental anal-

ysis traditionally unavailable using the standard multispectral scanning

Table 3.14 Characteristics

of the ALI sensor
Swath width 37 km

Spatial resolution Multispectral PAN

30 m 10 m

Spectral resolution

(mm)

Band 1a 0.433–0.453

Band 1 0.45–0.515

Band 2 0.52–0.60

Band 3 0.63–0.69

Band 4 0.77–0.80

Band 4a 0.84–0.89

Band 5a 1.20–1.30

Band 5 1.55–1.75

Band 7 2.08–2.35

PAN 0.48–0.69

Equatorial crossing

time

10:03 AM

Orbit type Sun-synchronous near-polar

orbit

Revisit cycle 16 days
a Denotes analogous Landsat band
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technology. The general specifications of the HYPERION instrument are

given in Table 3.15. As noted in Table 3.15, the sensor can image a 7.5 �
100 km land area per scene, providing detailed spectral mapping across 220

channels maintain high radiometric accuracy. The ALI and HYPERION

instruments onboard the EO-1 platform have a descending equatorial cross-

ing time of approximately 10:00 AM with the EO-1 satellite flying in sensor-

train formation with Landsat 7 and TERRA.

(d) Very high-resolution systems – This family of sensor systems are

characterized by spatial resolutions below 5 m. Sensors that fall within this

class are unique in that the majority of these satellites represent commercial

ventures into the realm of spaceborne remote sensing data acquisition.

Because the commercial systems are supported by “for-profit” private

industries, they are less constrained by government policies and directed

more toward satisfying market demands for spatial data products; products

that were traditionally supplied by the aerial survey industry. The era of the

planned commercial satellite began with the successful launch of the

IKONOS-2 satellite in 1989. Since that date there is an expanding list of

commercial entries into the marketplace (Williamson and Baker 2004).

However, despite government policies that have facilitated market

opportunities, the commercial remote sensing industry remains a high-risk

venture in search of long-term stability. These limitations notwithstanding,

the “hyperspatial” resolution offered by these platforms, often on the order

of sub-meter scale, provide data in the near visible and near-infrared

portions of the spectrum that encourage the use of these systems for carto-

graphic mapping and specialized environmental applications. This section

provides a selective review of those very high-resolution systems with

demonstrated environmental utility.

• IKONOS-2 – The IKONOS system was launched by Lockheed-Martin,

Inc. for Space Imaging Corporation in September, 1999. The satellite

contains both a 1-m 11-bit panchromatic sensor and a four-band 11-bit

multispectral sensor with 4 m spatial resolution. The general

characteristics of the IKONOS satellite are given in Table 3.16. In

general this data combination facilitates applications that require detailed

Table 3.15 Characteristics

of the HYPERION sensor
Swath width 7.5 km

Spatial resolution 30 m

Spectral resolution (mm)

220 spectral bands, 10 nm

increments

0.40–2.5

Equatorial crossing time 10:03 AM

Orbit type Sun-synchronous near-polar

orbit

Revisit cycle 16 days
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and highly accurate data. However, unlike civilian satellite programs, the

cost of IKONOS data, as with other commercial systems, must be care-

fully factored into the application when developing an investigation. To

date, IKONOS data has been applied to problems ranging from precision

agriculture to various forms of urban analysis and planning (Van Delm

and Gulinck 2011).

• QuickBird-2 – The QuickBird satellite provides the largest swath width of

any present commercial satellites. The satellite collects both multispectral

and panchromatic imageries concurrently and a pan-sharpened composite

product is available at sub-meter resolution. The main features of the

QuickBird system are listed in Table 3.17. The spectral wavelength of the

multispectral and panchromatic bands covers the interval from 0.45 to

0.90 mm. The spectral resolution of the multispectral band corresponds to

the first four Landsat ETM+ channel and the panchromatic band is also

similar to that found of the ETM+ instrument. When compared to the

IKONOS sensor, QuickBird-2 has improved spatial resolution (0.61 m in

panchromaticmode and 2.4m inmultispectral) with a 16.5 km swathwidth.

Table 3.16 Characteristics of the IKONOS sensor

Swath width 11.3 km

Spatial resolution Multispectral PAN

4.0 m 1.0 m

Spectral resolution (mm)

Band 1 0.44–0.51

Band 2 0.50–0.59

Band 3 0.63–0.69

Band 4 0.75–0.85

PAN 0.45–0.90

Equatorial crossing time 10:30 AM

Orbit type Sun-synchronous polar-circular orbit

Revisit cycle 3 days

Table 3.17 Characteristics of the QuickBird sensor

Swath width 16.5 km

Spatial resolution Multispectral PAN

2.44 m 0.61 m

Spectral resolution (mm)

Band 1 0.44–0.52

Band 2 0.52–0.60

Band 3 0.63–0.69

Band 4 0.76–0.90

PAN 0.45–0.90

Equatorial crossing time 10:30 AM

Orbit type Sun-synchronous polar-circular orbit

Revisit cycle 3 days
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QuickBird imagery is available at three different processing levels: (1) raw

data that allows users to process imagery for individual needs, (2) standard

imagery with radiometric and geometric corrections applied, and (3)

orthorectified with terrain correction applied. As a source of environmental

data, QuickBird imagery has been applied to problems ranging from change

detection to thematic mapping, environmental assessment and hazard anal-

ysis (Laba et al. 2008).

• OrbView-3 – This satellite was launched in June 2003 for Orbimage, Inc.

The satellite has 1 m spatial resolution in panchromatic mode and 4 m in

multispectral with 8 km swath width. One-meter viewing enables the

accurate discrimination of fine-scale objects while the multispectral sen-

sor supports a range of environmental characterization applications.

Unfortunately the satellite experienced a malfunction of its main sensor

system on March 4, 2007 and is no longer operational.

• GeoEye – Described as the next-generation platform, GeoEye-1 was

launched in September 2008. This sensor is capable of acquiring image

data at 0.41 m resolution in panchromatic mode and 1.65 m resolution in

multispectral mode (Table 3.18). The sensor is able to record ground

areas from side-to-side and front-to-back, and its revisit period is approx-

imately 3 days or less. A second satellite in this series, GeoEye-2, is

scheduled to launch prior to 2015 and will boast a spatial resolution of

25 cm.

2. Microwave sensors – Microwave remote sensing is a dynamic field driven in

large by advances in sensor design and improvements in data processing

techniques (Tsang 1985; Woodhouse 2004). Microwave systems operate in the

1 cm to 1 m wavelength band. For environmental remote sensing investigations,

microwave systems are unique in that microwave radiation can penetrate

through clouds, haze, and dust; rendering microwave sensors weather indepen-

dent. In addition, microwave systems can operate during both daylight and

Table 3.18 Characteristics

of the GeoEye-1 sensor
Swath width 15.2 km

Spatial resolution Multispectral PAN

1.65 m 0.41 m

Spectral resolution

(mm)

Band 1 0.45–0.51

Band 2 0.51–0.58

Band 3 0.65–0.69

Band 4 0.78–0.92

PAN 0.45–0.80

Equatorial crossing

time

10:30 AM

Orbit type Sun-synchronous polar-circular

orbit

Revisit cycle 3 days
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nighttime conditions and are not constrained by solar illumination conditions.

Perhaps their most attractive feature is that microwave sensors can provide

information products that cannot be generated using visible or infrared sensors.

However, the need for sophisticated data analysis and poorer sensor resolution

due to the use of longer wavelengths are some of the disadvantages.

Microwave remote sensing platforms can be either passive or active in

design. Passive sensors typically detect the microwave radiation emitted from

an object. Here, the object is characterized on the basis of the microwave energy

received by the sensor. This energy is related to the temperature, moisture

content and physical features of the object in question. Active microwave

sensors provide their own source of microwave radiation to illuminate the

surface. An active sensor, therefore, records the brightness of the energy

returned to it and the object is detected by the intensity of the microwave energy

scattered back to the receiver. The intensity of this backscatter depends on

several properties of the surface such as

(a) Slope

(b) Roughness

(c) Dielectric constant of the material composition of the surface (a function of

moisture content)

(d) Geometric orientation of the object in relation to the active microwave pulse

(e) Land cover contrasts corresponding to the juxtaposition of soil, vegetation

and human-made materials within the sensors field of view

Other factors that influence backscatter include frequency, polarization and

the angle of incidence of the incident microwave beam.

Although not as numerous in number as optical/infrared sensors, there are

several noteworthy microwave sensors with environmental applicability:

Radarsat-SAR, Envisat-ASAR, and ERS-SAR.

(a) RADARDAT-SAR – Radarsat is an earth observational satellite developed by

the Canadian Space Agency. Designed to support environmental monitoring

applications such as sea-ice monitoring, flood mapping, oil spill detection,

and mineral prospecting, Radarssat-1 and Radarsat-2 complete 14 earth

orbits per day with a 24 day revisit interval. The heart of the Radarsat system

is its advanced synthetic aperture radar (SAR) sensor. The SAR sensor is an

active microwave instrument that sends pulsed signals to the surface and

processes the received reflected return energy. The SAR therefore provides

its own microwave illumination that enables day or nighttime data collec-

tion. In addition, the SAR, using a single-frequency C-band radar, can steer

its beam in swath from 35 to 500 km wide at spatial resolution ranging from

10 to 100 m. The operational specifications of Radarsat-1 and Radarsat-2 are

provided in Table 3.19.

(b) Envisat-ASAR – Envisat was placed into a sun-synchronous orbit on March

1, 2002. Maintained by the European Space Agency, Envisat deploys

an advanced synthetic aperture radar system (ASAR) operating in the
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C-band in conjunction with other instruments on the Envisat platform. The

ASAR sensor can operate as a conventional SAR or as a scanning SAR.

When functioning in scan mode, the SAR is a strip mapping sensor that

images in one of seven predetermined swaths (Table 3.20).

(c) ERS – The ERS system is the predecessor to the Envisat-ASAR sensor.

There are two predominate satellites of this series, ERS-1, which was

launched in 1991 and ERS-2, which was launched in 1995. The ERS

program was designed to provide global measurements of sea wind,

waves, and ocean ice using active and passive systems. The main

instruments onboard the ERS include the active microwave instrument

(AMI), a C-band SAR, the ATSR, a passive long-track scanning radiometer

and GOME – a passive spectrometer deployed on ERS-2 to monitor atmo-

spheric ozone (Table 3.21).

3. Thermal infrared systems – Thermal remote sensing satellites utilize the mid-

infrared (3–5 mm) and the long-infrared (8–14 mm) portions of the electromag-

netic spectrum. At these wavelengths, imagery is derived from the thermal

radiation emitted by an object as a function of its temperature. Through the

Table 3.19 Characteristics

of the RADARSAT-1 sensor
Swath width 100 km (standard imaging mode)

Spatial resolution 30 m

Spectral resolution C-band,5.3 GHz

Equatorial crossing time 6:00 AM

Orbit type Sun-synchronous, near-polar

circular orbit

Revisit cycle 6 days

Table 3.20 Characteristics

of the Envisat-ASAR sensor
Swath width 58–110 km

Spatial resolution 30–150 m

Spectral resolution C-band,4–8 GHz

Equatorial crossing time 10:30 AM

Orbit type Sun-synchronous polar-circular orbit

Revisit cycle 35 days

Table 3.21 Characteristics

of the ERS-SAR sensor
Swath width 100 km

Spatial resolution 26 m

Spectral resolution C-band,5.3 GHz

Equatorial crossing

time

10:00 AM

Orbit type Sun-synchronous polar-near circular

orbit

Revisit cycle 3 days
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use of thermal sensors, materials on the surface can be distinguished based on

differences in temperature and emissivity (the relative power of a surface to emit

heat by radiation: the ratio of the radiant energy emitted by a surface to that

emitted by a blackbody at the same temperature). Since the incoming solar

radiation is absorbed and reemitted from various surface arrangements, surfaces

will differ in their ability to absorb and reemit this energy. When viewed as an

image, this pattern of emitted energy resembles a black and white photograph in

which bright areas represent relatively warm objects and darker areas relatively

cooler ones. Moving from relative terms to precise measurement of actual thermal

conditions can be problematic and requires careful calibration and correction of

measured radiances to consistent physical properties. Ease of calibration can be

complicated by factors such as cloud cover, the geometry of the vegetative

canopy, and antecedent precipitation. Despite these challenges, the potential for

thermal infrared (TIR) remote sensing as a source of environmental information is

significant (Quattrochi and Luvall 1999; Weng 2009).

There are several thermal sensors deployed on earth observational satellites

including

(a) Landsat 3 MSS (237 m spatial resolution)

(b) Landsat TM (Band 6 with 120 m spatial resolution)

(c) Landsat ETM+ (Band 6 with 60 m spatial resolution)

(d) AVHRR – three thermal bands at 1 km spatial resolution

(e) EOS Aqua

• AIRS – 240 bands covering 3.7–15 at 13.5 km spatial resolution

• MODIS – 16 thermal bands at 1 km spatial resolution

(f) EOS TERRA

• MODIS – 16 thermal bands at 1 km spatial resolution

• ASTER – 5 thermal bands at 90 m spatial resolution

Thermal data obtained from these sensors have found useful applications in

agricultural water stress analysis, urban heat island studies, mineral mapping,

ocean surface analysis, environmental contamination investigations, and

weather forecasting.

3.4 Summary

Efforts to characterize environmental systems are strongly dependent on the type

and quality of information we obtain using remote sensing technologies. Under-

standing Earth’s environments and unraveling the patterns of interaction between

people and the planet have been greatly facilitated by an increasing array of sensor

systems each with contrasting spatial, temporal, and radiometric resolutions. In this

chapter, a selective review of satellite-based sensors were focused on the capacity

of these systems to provide: (1) continuous data acquisition, (2) frequent and
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regular revisit cycles, (3) broad areal coverage, and (4) good spectral resolution.

Given the expanding array of sensor platforms anticipated in the future, earth

observation capabilities will expand the types of data collected and the formats

available to derive information products through remote sensing image processing

techniques. Knowing which sensor system to employ for a given application

problem can be more challenging. In this chapter, a set of basic specifications

were suggested that can help direct selection process and simplify image processing

activities.
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Chapter 4

Fundamentals of Image Processing

Previously, we defined remote sensing as the art and science of obtaining

measurements of objects without direct physical contact. This familiar definition

when extended to the topic of the environment can be reworded slightly to focus

measurement on the elements and features that characterize the environmental

system. Measurement in this context implies the collection of data, numerical

symbols that explain how a surface emits or reflects electromagnetic radiation in

a characteristic pattern as recorded by a sensor. Data recorded in this manner are

nothing more than an array of values that only becomes useful when transformed

into some more meaningful information. When applied to activities that describe

remote sensing, information forms specialized type of knowledge that is

communicated or received concerning a particular circumstance that is of interest

to us. Generating information is, therefore, directed and purposeful, following a

systematic method that is transparent and repeatable. In this chapter, we will

examine the fundamental principles and methods that guide the transformation of

remotely sensed data into information. Through this review, we can explore how

these methods connect to the analysis and assessment of Earth’s environmental

system and gain a clearer understanding of the value of remote sensing technology

when applied to this task.

4.1 Information: Defined

In the context of information technology, the concept of information has been

explained as data that has been processed into a meaningful form to the recipient

and is of real or perceived value in current or prospective actions and decisions

(March and Smith 1995; Davis and Olson 1985). Dissecting this definition a little,

we can gain a little more insight on the nature of information and establish the

thought and reasoning that encourages its production. First, the word derives from

the Latin informare, which means to give form, shape, or character to something.

Today, the word signifies knowledge and aspects of cognition such as meaning,

J.K. Lein, Environmental Sensing: Analytical Techniques for Earth Observation,
DOI 10.1007/978-1-4614-0143-8_4, # Springer Science+Business Media, LLC 2012
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instruction, communication, and representation. When data are translated to informa-

tion, the ordered sequence of symbols communicates and assists us in categorizing

our environment in a practical way (Ackoff 1989; Brodie and Brodie 2009; Zins

2007). In a purely functional sense, one purpose of information is to control action

and guide the selection of what action to take (Scarrott 1989). From the perspective of

the remote sensing analyst, translating data to information requires achieving a match

between the information wants and needs of a “client” and the knowledge hidden in

the data. This suggests that information is sensitive and purposeful, allowing its

“user” to think about how reality is being represented and how thought is being

communicated. Information is also a device to help understand, reduce, or remove

uncertainty, particularly as it relates to vexing issues such as:

1. The lack of clarity of information

2. Uncertainty about the cause and effect relationships

3. The situation factors that influence decision making

4. The outcome of a decision

5. The ability to assign “probabilities” to an outcome or an event.

When considered in the abstract, information embodies three distinguishing

characteristics that can be used to guide information extraction:

• Process – information as process concentrates of the transfer and flow of

knowledge, such that when someone is informed what they come to know is

changed.

• Knowledge – as knowledge, information explains understanding selectively

communicated to focus on a particular fact, subject, or event.

• Thing – information ultimately assumes a representation of knowledge and ideas

as a physical object such as a map, document, or file.

Although highly situational, information is further refined by its relevance; a

point that is easily overlooked but essential in order to realize the full potential of

remotely sensed data. Relevance summarizes to several key ingredients and for an

analysis to be informative one or more of these properties should be in evidence:

• Topical

• Timely

• Current

• Useful

• Novel

• Precise

• Complete

• Accurate

• Authoritative

• Reliable.

Extracting information is not simply the action of entering command via a

keyboard into a software environment, but a thought process with clear goals

directing our actions. The end result is this thing called information, which we can
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now appreciate as a concept that can assume a variety of meanings. Perhaps the most

useful explanation is the role of information in influencing how decisions are made.

Here, while the task of extraction can be described as the application of various image

processing algorithms on a data set, the end product (information) serves to reference

five more fundamental requirements (Dehons et al. 1988; Lein 1997):

1. Information as a commodity that has value

2. Information as communication that transfers understanding and meaning

3. Information as facts devoid of context

4. Information organized according to established rules

5. Information as knowledge that facilitates the intellectual capability, to extrapolate

beyond facts and data, to draw conclusions.

When an algorithm executes and produces a “result,” how well it agrees with the

requirements stated above will determine how well this product “informs.” The

question then becomes one of how best to achieve this “result” to yield information

that is meaningful and communicates critical environmental understanding.

4.2 Explanation and Classification

When remotely sensed data are received, they are in essence context-less

measurements written to a file, placed onto a medium of storage, and disseminated.

Transforming these data into information describes the process of identifying patterns

in the measurements that represent larger themes. Pattern, as used here, explains the

statistical characterization of the numerical data. In measurement, a statistical regu-

larity emerges that is not attributed to chance or randomness, but the properties of the

surface that communicate. In a data set, measurements form associations and

relationships to each other and the objects they attribute. Similarities in these

numerical arrangements connect to the object of interest in specific ways, provided

that these arrangements can be sufficiently understood. Understanding necessitates

enforcing logic on the data that enables “pattern” to emerge by imposing order on

measurement in such a manner that information suddenly materializes out of “noise.”

In remote sensing that logic is called classification.

Classification is a familiar topic in science. We can define classification as a

unifying operation by which objects are recognized, differentiated, and understood

according to rules or a logic that impose order on measurement. The objective of this

process is to produce an arrangement or structure on measurements that assembles

objects into categories to illuminate important relationships among them; simplifying

measurement into a new dimension that effectively communicates meaning. This

fundamental activity reduces the complexities inherent to measurement and yields a

simplified generalization of data with understanding as its primary goal. As a step in

the process of information extraction, classification is an indispensible device that:

• Assists in the identification of pattern

• Organizes information
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• Supports prediction and inference

• Offers metrics to examine how objects change over time

• Enables objects to be symbolized and labeled.

Recognizing that remote sensing is essentially an exercise in resolving spatial

data into pattern, classification becomes a means of separating “signal” from

“noise” and the mechanism by which information is extracted from the image.

As a mechanism for structuring the data into something more meaningful, how a

classification is achieved requires careful consideration. While ultimately depen-

dent on purpose, organizing observations according to a set of common

characteristics can be based on numerous criteria. In the example of remote sensing,

those criteria are the measured reflectance or emittance values recorded by the

sensor as observed for the pixels that constitute the image. The method or logic

selected to impose order on these data can either be:

• Exogenous – with categories fixed according to threshold values related to the data
• Idiographic – with categories chosen with respect to specific aspects of the data,

such as natural breaks

• Serial – with categories defined by direct mathematical relationships such as

equal intervals, standard deviations, or percentiles, or

• Arbitrary – based on predefined nominal categories or categories established by

a classification system in which categories form on the basis of decision rules or

observation, such as the USGS/Anderson system of land cover classification.

Ideally the goal of any system of classification is to account for as much of the

variation in the data as possible that effectively communicates its theme, whether

that is expressed in terms of land cover, climate, soil type, or some other environ-

mental attribute. To realize appropriate fit with the observed data, the categories of

any classification system should be clearly defined, mutually exclusive and collec-

tively exhaustive; however, no classification system is error-free or perfectly

transferable to every situation encountered.

With a focus on the concept of pattern and the structuring of numerical data, the

classification problem in remote sensing centers on statistical pattern recognition and

categorization methods that translate numerical relationships into thematic informa-

tion (Friedman and Kandel 1999; Duda et al. 2001). Statistical pattern recognition

describes a family of techniques in which individual observations are organized into

groups based on quantitative measures and relationships. Recognizing that patterns in

this context are simply regularities in data, the classification problem in remote

sensing reduces to the task of deriving “functions” that assign objects (pixels) to

the classification labels, which we assume are correct. Here, it is convenient to think

of a “function” as nothing more than a set of rules (logic) that forms a statistical

decision region in the measurement boundaries established by our data (Fig. 4.1).

These rules guide the process of allocating pixels to those regions in measurement

space that are identified with a specific category of interest. The rules, therefore,
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implement a specific strategy that is based on statistical principles; concepts such as

dispersion, central tendency, or probability. Using these rules, the spectral

measurements recorded by the sensor are translated into information (e.g., the

named categories of a land cover classification or the moisture stress levels of

means to define drought conditions). Success in achieving a translation relies largely

on our skills at recognizing pattern.

4.3 Recognizing Pattern

We can define a pattern in a remotely sensed image as a characteristic arrangement

of electromagnetic radiation as recorded by a sensor within one or across many

spectral bands. Objects at the surface, owing to their physical, bio-chemical,

and material composition interact with electromagnetic radiation and produce a

measureable response. This response, commonly referred to as a spectral signature,

suggests that under ideal conditions, objects possessing similar material compositions

should, in theory, display similar response patterns relative to the wavelength(s) of

electromagnetic radiation they receive (Fig. 4.2). By identifying the parameters

of electromagnetic radiation that define a pattern, the type, nature, or disposition of

the object can become known. The relationship between the categorization of an object

based on the labels with assigned meaning and the form and spectral composition of its

pattern, however is complex and fraught with confusion. When specified only by

wavelength, the pixels that compose an image form observable groupings that explain

a common similarity in their brightness value in multispectral space. These groupings

are considered natural patterns in the data, since they distinguish separations that result

uniquely from how the scene was measured by the sensor (Fig. 4.3). As a sole product

Fig. 4.1 Decision rule schemas in relation to measurement space
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of measurement, these groupings explain classes that are exclusively spectral in nature.

In other words, they are the consequence of how electromagnetic radiation interacted

with the objects that comprise the surface. Confusion enters into their categorization

when we recognize that these natural patterns may or may not correspond to meaning-

ful thematic information. They fail to translate, if the natural patterns do not convey

information in a practical sense.

Fig. 4.2 The spectral response pattern (signature) defined according to three spectral bands

Fig. 4.3 Spectral patterning expressed in relation to spectral bands
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Meaning is ascribed to a pattern only by connecting the numerical arrangements

obtained via the sensor to a categorization of features within the scene, which is not a

number, but rather a construct that communicate information in a semantic context.

Constructs form the foundations of the informational categories that drive informa-

tion extraction. Information classes are those categories of interest that the analyst is

actually trying to identify in the imagery, such as different kinds of crops, different

forest types or tree species, different geologic units or rock types, and so on. The

connection between spectral pattern and informational class, however, is rarely an

unambiguous, one-to-one fit. Rather, due to contrasts in material composition, bio-

chemical, or physical attributes, a single informational class my exhibit a wide range

of variation in its spectral value. This source of confusion introduces uncertainty into

the pattern recognition problem, since a single information class may correspond to

several spectral groupings formed out of slight, but significant variations in a

feature’s spatial arrangement, status, or environmental setting. To illustrate the

potential uncertainty and its impact on information extraction, consider the example

of an agricultural field. To the eye, a typical agricultural field is easily recognizable

by its shape and arrangement, but spectrally, identifying an agricultural field depends

on factors such as crop type, crop cycle, phenology, and cultural setting that will

render a single definitive spectral pattern impossible to acquire. The challenge for

both classification and pattern recognition is to rationally and systematically organize

disparate spectral patterns into consistent and realistic informational classes as

accurately and reasonably as possible.

4.4 Classification Schemas

There are two fundamental approaches in statistical pattern recognition to connect

spectral groupings to informational categories. Selecting between the two depends

largely on purpose as directed by one’s prior knowledge of the study area, presence

of predefined informational classes, complexity of the problem, and issues related

to time and operational costs (Lu and Weng 2007; Richards and Jia 2006). The first

method is referred to as unsupervised image classification. This technique relies on

the application of statistical clustering algorithms to identify “natural” patterns in

the multispectral data set. As a methodology, unsupervised classification requires

very few inputs into the classification process. Instead, this method relies on the

algorithms to select classes based exclusively on the spectral properties of the pixels

expressed over the relevant spectral bands. The general method of unsupervised

classification is illustrated in flowchart form in Fig. 4.4. Data clustering algorithms

implement one of several grouping strategies (Duda and Canty 2002). The most

common include:

1. Hierarchical clustering

2. Partitioning clustering or

3. Spectral clustering.
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Hierarchical clustering is a strategy used to group pixels to form a hierarchy

based on a common similarity metric. In the majority of examples that metric is

distance, expressed according to measures, such as Euclidean distance or

Mahalanobis distance, which is used to form a decision rule that organizes mea-

surement space and guides the allocation of pixels into group structures. Alterna-

tively, clustering methods may employ similarity metrics, such as correlation

(Table 4.1). The clustering algorithm progressively merges individual pixels into

larger agglomerations based on the logic that pixels closest to each other numeri-

cally represent the same feature. Clustering continues merging clusters together

based on the same idea of “closeness” until all groups form into a single cluster

(Fig. 4.5). Partitioning algorithms attempt to decompose the data set into a series of

disjoint groups all at once based also on criteria established as a function of

distance. The spectral clustering approach takes a somewhat different strategy

and develops clusters in a manner similar to principle component analysis. This

strategy uses the spectrum of the similarity matrix of the data set to perform a

“dimensionality reduction” which in essence greats a smaller number of groups

based on the how well individual pixels correlate (Lee 2002).

For the majority of remote sensing applications, unsupervised classification

tends to employ partitioning or hierarchical methodologies. However, as a means

of exploratory data analysis, classification, and discovery, any algorithm may

reveal hidden associations in the imagery and provide useful structure to guide

further study. Exploration is often useful particularly where the results may

Fig. 4.4 The general method of unsupervised image classification
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Table 4.1 General distance measures

Metric Definition

Euclidean

distance

The distance between two points described by the length of the path

connecting them. This “ordinary” distance is similar to what would be

measured with a ruler, as solved using the Pythagorean formula

Chebyshev

distance

The Chebyshev distance between two points is the maximum distance

between the points in any single dimension. The distance between points

X ¼ (X1, X2, etc.) and Y ¼ (Y1, Y2, etc.) is computed using the formula:

Maxi |Xi � Yi|

where Xi and Yi are the values of the ith variable at points X and Y, respectively

Mahalanobis

distance

Mahalanobis distance is based on correlations between variables by which

different patterns can be identified and analyzed. It is a useful way of

determining similarity of an unknown sample set to a known one. It differs

from Euclidean distance in that it takes into account the correlations of the

data set

Bhattacharyya

distance

Measures the similarity of two discrete or continuous probability distributions

and is related to the Bhattacharyya coefficient which is a measure of the

amount of overlap between two statistical samples or populations

Manhattan

distance

Also known as the city-block distance, this metric measures the rectilinear

distance between two pixels. Computed by the length of edges between

points that must be traversed to get from a to b within a grid

Fig. 4.5 Generalized pattern of hierarchical clustering



contribute to the definition of a more formal classification scheme or where there is

evidence to suggest the presence of categorical anomalies that clusters may detect.

A selection of the algorithms most frequently employed in unsupervised image

classification includes the following.

1. K-means clustering – K-means clustering is a partitioning method. The decision

rule implemented by this algorithm allocated N data points in M-dimensional

measurement space into K clusters. Each cluster is parameterized by a vector

m(k) called its mean. Clusters form by minimizing the sum of squares distances

between a pixel and the corresponding cluster center. The algorithm calculates

an arbitrary center of an initial cluster using a predetermined number of pixels to

estimate a mean. Clustering proceeds to iteratively refine the initial solution until

a “best fit” is achieved. Typically, the cluster solution is directed by establishing

values for the:

(a) Maximum number of clusters to be created

(b) Convergence thresholds to stop the process once cluster means fail to change

beyond a lower percentage limit

(c) Maximum radius of a cluster defining the distance to the nearest cluster to

control merging

(d) Maximum iterations to perform that determines the number of times the

algorithm cycles through the data

(e) Minimum number of pixels in a cluster that specify whether a cluster

remains valid or whether its members are recruited to the next nearest

grouping

The general strategy followed by the K-means method with reference to

remote sensing is illustrated in Fig. 4.6. The K-means technique is a compara-

tively simple partitioning method; however, there are several known weaknesses

(Table 4.2).

2. ISODATA clustering – A variant of K-means clustering is to permit the splitting

and merging of the cluster solution when the cluster variance is above a

prespecified threshold. Using this approach, it is possible to obtain an optimal

partition from an arbitrary starting point. The ISODATA algorithm is an exam-

ple of this strategy. ISODATA, which stands for iterative self-organizing data

analysis technique, although computationally more intensive when compared to

the K-means method, does not solve for a priori number of clusters, rather it is

more adaptive as it strives to optimize a cluster solution (Memarsadeghi et al.

2007).

3. Sequential clustering – This basic method of clustering employs Euclidean

distance between the center of a cluster and pixels in the data set to create a

decision region to evaluate each pixel as it is read in from the data set. If the

distance to the nearest cluster is less than the maximum search radius specified

by the user, the pixel will be assigned to that spectral class. If the pixel falls

beyond this radius, the pixel is classified as a new cluster. According to this

strategy, each run of the algorithm produces a single clustering; however,
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because pixels are read in sequential order, useful results will depend on the

parameters selected to control its execution. Compared to other clustering

solutions, sequential clustering is most sensitive to the value set for the maxi-

mum radius of a cluster.

Fig. 4.6 The method of

K-means clustering

Table 4.2 Limitations of K-means clustering

Preprocessing (image analysis and normalization):

Which genes (variables) are used

Which samples are used

Which distance measure is used

Which algorithm is applied

How to decide the number of clusters K

K-means clustering has many weaknesses:

When the numbers of data are not so many, initial grouping will determine the cluster significantly

The number of clusters, K, must be determined before hand

We never know the real cluster, using the same data, if it is inputted in a different order may

produce different cluster when the number of data is a few

Sensitive to initial condition. Different initial condition may produce different result of cluster.

The algorithm may be trapped in the local optimum

We never know which attribute contributes more to the grouping process since we assume that

each attribute has the same weight

Weakness of arithmetic mean is not robust to outliers. Very far data from the centroid may pull the

centroid away from the real one
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A wide assortment of clustering algorithms has been introduced, each has their

own advantages for certain types of problems, and no one method is necessarily

better than another (Zhao and Karypis 2003; Jain et al. 1999; Gan et al. 2007). To

achieve a successful and unbiased solution the method selected should:

1. Identify one unique pattern containing the most “natural” clusters

2. Not assume any prior information about the number, shape, or internal distribu-

tion of the clusters

3. Allow for refining the solution by optimizing the similarity measures

4. Be able to handle clusters of different shapes, densities, and unequal distances

between centroids.

The second approach to statistical pattern recognition is called supervised

classification. Supervised classification describes the example where the desired

pattern is identified as a member of a predetermined class. The solution develops

from the set of data samples whose labels and class types are known and spectral

patterns (signatures) are assembled to lend definition to the known categories.

When compared to unsupervised classification, the supervised approach requires

more steps in the process and greater involvement of the analyst to generate a

meaningful result. For this reason, the goals of supervised classification and its

contribution to information extraction differs, since there is a greater reliance on

prior knowledge throughout. When the problem of information extraction is

considered, searching for a pattern or anomaly in the image where there is little

guidance to fall back on, unsupervised classification, with its focus on “natural”

classes inherent to the data, offers appropriate solution. In these situations,

deciding on what the data reveals follows after the data has been processed.

Once produced, the natural classes require naming. For example, in an environ-

mental application, a class of pixels may emerge that corresponds to conditions,

such as a field damaged by corn blight, a stand of trees impacted by Gypsy moth,

or a water body contaminated by illegal dumping. Typically, these are not the

expected condition of an existing land cover or land use category, and the clusters

that form are outside the “norm.” Conversely, the supervised method, by placing a

premium on the analyst’s prior knowledge, functions well when informational

classes are known and the problem is well specified. In these instances, the analyst

must locate representative examples of the known target(s) of interest and use

those examples to produce statistical patterns that can be recognized elsewhere

across the image by the classification algorithm.

With prior knowledge of the study area, an understanding of the phenomena

under investigation and a system of classification with well-defined terminology,

supervised image classification can be extremely useful for detecting similar

instances of a given land surface condition or arrangement. The general procedures

followed when conducting the supervised image classification are illustrated in

Fig. 4.7. The process follows an eight step procedure that culminates with a map

product that conveys thematic information of value to the user.
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1. Determination of classification goals – Supervised classification begins with a

clear understanding of the purpose that drives the investigation as well as a

carefully thought-out classification scheme that will be applied to the data.

Traditionally, supervised classification has been used in land cover mapping

where the classes that define specific land cover types are well defined.

Examples of this include the United State Geological Survey (USGS) Anderson

land use/land cover classification system and its derivatives (Anderson et al.

1976). When a well-designed system of classification is in use, the analyst must

decide how well the labels for the land cover types defined by the classification

scheme fit both the purpose of the study and the nature of the scene as evidenced

by the data. When a preexisting classification system does not exist or when the

problem is sufficiently unique, the analyst must develop and define problem-

specific class labels and aptly characterize the nature of the scene. With a

functional classification schema, the process of information extraction simplifies

to the problem of visually identifying examples of each class of interest in the

data and deriving spectral patterns that represent each class distinctly.

2. Data selection and simplification – Once the goals motivating the classification

problem are understood focus shifts to the question of data and the selection of those

spectral bands in the imagery that contribute meaningful “pattern” to the analysis.

Although this step is also relevant to the unsupervised classification process, it plays

a more vital role here by both reducing the number of bands required for computer

processing, while at the same time facilitating the creation of representative spectral

response patterns (signatures) for the categories of interest. Band selection, also

Fig. 4.7 The general method of supervised classification
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referred to as feature selection, concentrates on the image histogram, the statistical

explanation of brightness values, and how brightness is distributed across the image.

Because the data contained in a multispectral image can be highly correlated

between bands and the patterns of brightness may display statistical characteristics

that mask uniqueness, band selection attempts to identify the most informative

bands to assure reasonable classification results. For the purposes of image classifi-

cation, spectral bands that display a dispersed and multimodal distribution of

brightness values are generally indicative of surfaces composed of contrasting

surface types that reflect or emit energy in very distinctive intensities within a

given wavelength. If the objective of analysis is to identify objects at the surface

uniquely, bands enjoying this quality are much more useful than those with less

contrast. When brightness is concentrated around a single value where the distribu-

tion of brightness as observed on the histogram is peaked, discriminating among

surface objects is difficult, if not impossible.

3. Derivation of training samples – The “training” phase in the overall process of

supervised image classification is perhaps the single most important determinant

of a successful outcome. At this stage, the spectral bands identified during

feature selection are used to form an expression of statistical pattern that

captures the distinguishing properties of objects at the surface in relation to

their classification label (name). This step in the process is where the element of

supervision enters into information extraction. Using knowledge of the scene,

the analyst systematically identifies areas that are assumed to be representative

examples of the classes of interest that motivate the investigation. Training

involves collecting data values of the pixels that fall within these examples.

These pixels are then used to calculate descriptive statistics for each of these

named samples that will form the expression of pattern. Generally the statistical

parameters calculated for these regions in the image are the mean, standard

deviation, and variance/covariance. Taken together, these statistics serve as the

fundamental definition of an object’s spectral signature. Therefore, to be useful,

these spectral patterns should characterize the spectral behavior exhibited by the

object as uniquely as the data permits. As a statistical summary, careful evalua-

tion of these patterns is required in order to ascertain their “uniqueness.”

Because signature training is essentially an exercise in spatial sampling, how

the sample pixels are acquired from the imagery influences the reliability of the

spectral response patterns obtained. Recalling that the goal of supervised classi-

fication is to extend the sample of known signatures to the remaining unknown

pixels that make up the image, training success depends on six interrelated

considerations (Mather 2004; Swain and Davis 1978):

(a) Pixel quality per sample – Although this value depends on the spatial

prevalence of the informational classes involved, the more extensively an

object/land type is distributed over the image, the more pixels are needed in

order to obtain a representative sample. As a general rule of thumb, for every

individual example on the object/land type selected, at least 25 pixels should

included for the delineating polygon.
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(b) Size on the delineating polygon – Acquiring a spatial sample involves

inscribing a polygon on the image that envelopes the object of land type of

interest through the process of digitizing. The polygon should be large enough

to accurately delineate the geometric form of the object without overlapping

onto other neighboring features. When digitizing, care must be taken to follow

the physical shape of the object well within the bounding pixels.

(c) Sample location – Because a spectral response signature must extend their

pattern over the expanse of the image, samples should be drawn from known

locations throughout the study area and from all possible variations specific

to the informational class. By sampling at locations across the scene, as the

spectra properties of the object modify geographically, this natural

variability can be integrated into the spectral signature. For example, the

broad information class “forest” can be explained by several different tree

species under contrasting environmental conditions. A single “signature”

derived from one example of forest cover in the image is unlike to charac-

terize all other instances of forest in the scene.

(d) Number of samples taken – The actual number of sample polygons needed to

adequately represent a specific informational category varies with both the

complexity of the geographic area involved and the nature of the land type as

defined by the classification system. In examples of general uniformity at the

surface and generality in terms of class definition, it does not require an

extensive number of sample polygons, simply because radiometric contrast

is likely to be negligible. Uniformity suggests that within sample differences

in brightness values the possible range of brightness values can be assumed

to be small. However, as complexity increases, both in terms of geometric

arrangement and inherent variability, the number of samples will need to

increase as well. Increasing the number of sample polygons has the effect of

“averaging” and, therefore, maintains better sensitivity with respect to the

physical properties of the object/type and the ambiguities that may be

introduced by language in the interpretation of classes.

(e) Internal Consistency and uniformity – As with any exercise in sampling,

concerns pertaining to the representativeness of the statistical character-

izations dominate. Ideally, for the polygon samples taken from the image,

the pixels that comprise the sample should display a uni-modal distribution

for each spectral band being used with little deviation from their mean value.

When examined for consistency, pure pixels should dominate the sample

and the influence of mixed pixels would be limited to only those instances

were object/land type complexity makes mixtures of brightness values

unavoidable. Unfortunately, perfection in training is illusive. Consequently,

error and uncertainty will propagate through the analysis and place a pre-

mium on quality control.

(f) Quality assessment and evaluation – To effectively place an unsampled pixel

in the image to its appropriate information class, the sample-derived

signatures should be dissimilar. Evaluating signature separability requires a

metric, such as distance, to measure and quantify its divergence. Statistical
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overlap will suggest confusion and indicate the need to improve the sample(s)

by retraining.

Once a satisfactory set of spectral response patterns has been produced for the

information classes in interest, the supervised classification process can proceed

to the task of choosing and executing a classification algorithm.

4. Classifier selection and implementation – The classification algorithms that

guide supervised image classification employ statistical decision rules based

on the training signatures to produce a thematic map. Each rule is a strategy for

partitioning multispectral measurement space into regions that correspond to the

informational classes as defined by their statistical patterns. The algorithms

perform a per-pixel “test” based on the vectors of brightness values that charac-

terize the pixel across the bands selected for analysis. The test essentially

determines which pixels most logically fit into one of the categories as expressed

by its decision region. Assigning pixels as members of a class based on this

singular evaluation of a brightness vector can be accomplished in one of four

principal ways (Hudak and Brockett 2004; Nangendo et al. 2007; Tso and

Mather 2009):

(a) Parallelepiped Classification – The parallelepiped classifier defines a deci-

sion region by establishing minimum and maximum boundaries based on the

standard deviation from the mean for each selected information class. The

conceptual logic of the parallelepiped design is illustrated in Fig. 4.8,

assuming the configuration of an n-dimensional box. The decision rule,

using the region inscribed by the parallelepiped, implements a simple bool-

ean Yes/No logic where a given pixel whose category is unknown either falls

within the parallelepiped and becomes a member of that category, or does

not. The success of this classifier is based in part on the thresholds used to set

the dimensions of the parallelepiped. If the decision boundary is too narrow,

the algorithm is overly selective and restrictive, and pixels that should be

named to a given class are not assigned. Conversely, if the decision region is

Fig. 4.8 The parallelepiped

classifier
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too broad overgeneralization is common, and pixels that should not be

assigned to a given class are erroneously included. Although computation-

ally efficient, parallelepipeds often overlap, and a pixel may satisfy the

decision criteria for more than one informational class. In such cases, that

pixel is assigned to the first class it falls within and produces yet another

source of error and confusion.

(b) Minimum Distance to Means – The minimum distance to means decision

algorithm determines each pixel’s “distance” from the class means and

assigns them to the closest class. The algorithm evaluates the mean vectors

for each informational class from the training data and calculates the dis-

tance to each mean vector for every pixel in the scene. All pixels are

classified to the closest class unless the user specifies standard deviation or

distance thresholds, in which case some pixels may be unclassified if they do

not meet the selected criteria. In most cases Euclidean distance is used,

although other distance metrics can be employed. The logic is comparatively

simple; a pixel (X) is considered a member of class (B), if and only if its

spectral distance to the mean of class (B) is the shortest when compared to all

other classes. This relative selection criterion requires a distance threshold to

establish an n-dimensional hypersphere in measurement space to form a

decision boundary and to reconcile what brightness value constitutes the

“shortest” distance (Fig. 4.9). The pixel whose label is unknown, falling

within the hypersphere is assumed to be a member of the class. Once again

thresholds are critical to producing a useful classification, and error and

uncertainty can develop based on how these thresholds manipulate the

decision region.

(c) Maximum likelihood classification – this algorithm exploits probability

theory to determine whether a pixel is a member of a given informational

class. Unlike previous statistical classifiers that rely on decision boundaries

to partition measurement space in class regions, the maximum likelihood

Fig. 4.9 The minimum

distance classifier
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method calculates probability density functions for each class. Maximum

likelihood classification assumes that the statistics for each class in each

band are normally distributed. The decision rule requires computing the

probability for every pixel in the scene as a member of each informational

class. Each pixel is assigned to the class where its probability of membership

is the highest (i.e., the maximum likelihood). If a pixel has an equal

probability value in two classes, this dilemma is reconciled by either

assigning the pixel to one class arbitrarily or assigning the pixel to an

“unclassified” category. Unless a probability threshold is selected, all pixels

are classified. The maximum likelihood method is computationally intensive

and produces a graded membership pattern where probability decreases

gradually away from the center of each class. This “distance decay” effect

can lead to confusion at the margins of each category where areas of equal

probability may occur and contribute to classification uncertainty and error.

(d) Nearest-neighbor classification – nearest-neighbor classification implements

a decision strategy known as proximity search. The decision rule forms as an

optimization problem solved by computing the distance from a pixel to its

closest training class. Class assignment can be based on one of several

logics:

• Linear search – which computes the distance from the training class

centroid to every pixel.

• Space partitioning – a procedure that iteratively bisects the decision

space into regions based on approaches such as the k-dimension tree

algorithm.

• Locality-sensitive grouping – a method that organizes pixels into

“buckets” based on distance criteria and probability constraints.

• K-nearest neighbor – assigning pixels to the “closest” class in measure-

ment space based on a majority vote of its neighbors.

5. Initial evaluation – Each statistical classifier will produce a thematic map

depicting the spatial pattern produced by the informational classes under inves-

tigation. Since each classifier implements a different decision strategy in pro-

ducing a result, the spatial characterization of a given thematic representation

will vary and no one method is necessarily better than another for a given task.

With minimizing error as the goal, a cursory examination of the results obtained

in classification is needed to assess the expected loss of information as a specific

classification algorithm assigns pixels based on its initial parameterization

(Yom-Tov 2004). This phase of the information extraction process is not directly

concerned with the thematic accuracy of the map product, but rather the general

performance of the classifier. Whether maximum likelihood, parallelepiped or

another method was chosen, the algorithm may classify all the sample regions

that were used to collect spectral signatures, but not perform well on the

unknown areas. Ideally, the classifier should be able to generalize from the

training samples without over-fitting (Yom-Tov 2004).
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To begin this initial review it is important to establish simple criteria to guide

the evaluation. Typically the following points should be considered:

(a) What is the extent of error produced by the algorithm.

(b) What is the computational cost and memory requirements involved in the

selected method.

(c) How difficult is it for the user to implement the classifier.

(d) Can the user gain insight about the problem from an examination of the

results.

(e) On visual inspection are their noticeable gaps in the results that indicate

error.

In terms of performance, the parallelepiped algorithm is comparatively easy

to understand, computationally simple, but tends to be the least useful except for

specialized applications requiring a limited number of informational classes.

The minimum distance approach is relatively easy to understand, but is more

computationally intense. However when compared to the parallelepiped method,

the minimum distance strategy tend to yield more useful results upon initial

parameterization. The most complex classifier is the maximum likelihood algo-

rithm. Although its decision rule is more challenging to understand and its

computing requirements are very intensive, it produces the most useful results.

Ultimately, the initial success of any of the methods reviews will depend on

factors such as image quality, the quality of the training samples supplied to the

classifier, and the appropriateness of the system of classification used to produce

the informational categories.

6. Post Classification refinement – Following the satisfactory execution of the

classifier, slight thematic and geometric incongruities will remain in the infor-

mation product. These processing artifacts are due in part to the inherent spectral

variability encountered by the algorithm when conducting a classification as

well as external modifiers related to localized environmental irregularities

induced by factors such as soil moisture contrasts, discontinuities in tree

cover, and local shadowing. Visually, these artifacts may manifest as a speckled

appearance or as broken patterns, gaps, and inconsistencies in the resulting

thematic map. When such artifacts are encountered it may be desirable to

“smooth” or generalize these patterns, removing or reducing their occurrence,

and thereby enhancing the fidelity of the map product and its esthetic appeal.

Post-classification operations are employed to generalize the thematic con-

tent, showing only the dominant and assumed to be correct depiction of the

information present on the map data. Post classification includes several

operations:

(a) Post-classification smoothing/filtering – Filtering methods act to selectively

emphasize or suppress information at different spatial scales over the image.

(b) Majority/minority analysis – This undertakes a search within a “window”

set by the user to change spurious pixels into either the majority of pixel
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in a category within the window or to the class defining the minority

of pixels.

(c) Clumping – It groups adjacent similarly classified areas together using basic

morphological operations. Because thematic output often suffers from a lack

of spatial coherency, clumping classes can effectively remove gaps in the

classification. Clumping first performs a dilation operation and then an erode

operation within a predefined window to close gaps and fill holes.

(d) Sieving – Isolated pixels in a classification can be a source of confusion.

Sieving operations use a “blob-grouping” technique to remove isolated

pixels. Blob-grouping is performed by examining pixels with a predefined

window to determine if neighboring pixels for a consistent class that can

incorporate an isolated case. If neighboring pixels satisfy that condition, the

isolate pixel is replaced into this neighborhood.

(e) Merger and combination – Operating on the class values alone, merging and

combination techniques allow the analyst to selectively re-code and manu-

ally reassign pixels in one class to another existing category. This can be

useful when a land type or object is explained by two classes that can be

merged into one single expression.

7. Accuracy assessment – Accuracy assessment determines the “applied” value of

the information created during the image classification process and quantifies the

degree of confidence users of the thematic product can ascribe to its contents.

Accuracy assessment remains an active area of research in remote sensing and a

detailed literature presenting the various methods available for establishing the

“correctness” of both supervised and unsupervised classification has been

introduced (Foody 2002; Liu et al. 2007; Congalton and Green 2009; Stehman

1997). In each of the method introduced into practice, the goal is to objectively

quantify how well the thematic content of a classified pixel agrees with the

actual identity of that pixel on the ground. While specifics in the technique may

vary, establishing confidence in the product and understanding the presence of

error in the resulting information simplifies to a comparison test of the assumed

“true” value or observed class identity of a pixel as witnessed by a set of

reference data against the method-produced result based on what the classifier

predicts for a random sample of pixels. Before the actual methods for calculating

accuracy (error) are reviewed, a brief examination of the key questions that

direct the how an accuracy test is conducted helps frame this essential aspect of

the image classification process.

(a) What is an error? – In this phase of the image classification process, it is

important for the analyst to think carefully and critically about the methods

used to generate the information product. Here, consideration must be given

to an assessment of all the possible things that may have gone wrong

methodologically and what aspects of this process remained out of the

analyst’s control. Recalling limitations due to training, spectral and spatial

resolution, sensor and environmental anomalies helps to clarify what error

102 4 Fundamentals of Image Processing



might look like in the thematic map and where in it may have originated in

the process of classification. Common problems include:

• Misclassification – defining pixels that are not or cannot be correctly

labeled. Errors of this type may be the product of the classification system

in use and its lack of fit with the spatial or spectral resolution of the data.

Misclassification may also result from the natural heterogeneity of the

scene and the presence of an overabundance of mixed pixels.

• Processing – inaccuracies in the results may also be attributable to

processing error either resulting from poor preprocessing and image

rectification or due to limitations in the classification algorithm.

• Contamination – contamination describes the influence of the atmosphere

or environment and their ability to introduce “noise” into the data. Noise

can produce variability in radiometric response.

Overall, when considering error, Campbell (2006) reminds us that:

• Errors are not distributed over the image at random, but display a degree

of systematic, order occurrence in space

• Errors tend not to be assigned at random to the various classes on the

image but are associated preferentially to certain categories

• Erroneously assigned pixels are not spatially isolated but tend to group in

areas of varied size and shape

• Error may display specific spatial relationships to land units such as at

boundaries or within the interior of land unit polygons

(b) What is the ground truth? – The reference data used to anchor the accuracy
test is central to the credibility of an assessment. Reference data is also the

most challenging and problematic aspect of this step in the analysis.

Reference data are those examples we assume contain the “on ground”

conditions captured by the sensor. They are the actual values or categories

we hope to have identified in the processing of the remotely sensed

imagery. To be useful, reference data must define a “reality” that is free

of any form of bias and is, therefore, representative of the theme. Any

misinformation or misrepresentation of these data degrades the confidence

in the quality of the assessment and threatens the validity of the informa-

tion product. Selecting representative examples of “true” ground

conditions can be a decision that invites controversy; however, it is also

a decision that must content with the practical constraints imposed by time,

cost factors, and resource availability. Common sources of reference data

used to anchor an accuracy test include:

• Higher spatial resolution imagery – relying on visual interpretation, this

source of reference data involves the acquisition of aerial photographs

or satellite imagery of a finer resolution than that used in the analysis.

These sources provide the corroborating evidence that the class as

labeled on the method-produced image is a reasonable assignment. To
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be credible, the reference must be close enough in time to the date of the

image, at a scale that permits visual interpretation, and displays the

surface characteristics germane to the thematic content of the classified

scene.

• Site visitation – collecting reference data by means of field visits has been

made more precise by the use of GPS, but this method suffers from

several drawbacks including scene instability, site inaccessibility, and

logistical complexity. For some environmental applications, it may be

necessary to synchronize the collection of field reference data with the

overpass of the satellite sensor. This requirement can add additional

complexity to data acquisition.

• Reference maps – using existing maps as a source of ground truth is a

common practice, and often it may be the only viable approach to

collecting reference data. When existing maps are used, they need to be

at a comparable spatial scale in relation to the image, correct, and

appropriate with respect to topic, design, and content. Furthermore,

maps are generalizations that contain their own unique sources of error.

Often the accuracy of a published map is unknown, and its compilation

sources may be difficult to ascertain and trace.

(c) What is a sample? – The accuracy test is an exercise in comparing a sample

of pixels on the image to their exact locations in reality. The sample schema

used to acquire data to populate an assessment must assume that the data

have been selected at random and without biased. As assortment of spatial

sampling designed are available to use when collecting the reference data,

each employs a different strategy with different statistical properties

(Montello and Sutton 2006).

• Simple random sampling – is a sample design where pixels are selected

(without replacement) from the image such that any pixel had an equal

chance of being chosen. Typically, selection is based on a random

number generator or similar device that draws row and column

coordinates for the image that forms the sample locations.

• Systematic samples – is a sampling design where pixels are selected in a

regular fashion which may begin with a randomized start (systematic

random sampling).

• Stratified random sample – is a sampling method where the image is

divided into sections based on predesignated criteria, and samples are

taken at each section in this framework (stratum).

(d) Doing the math – Once a sampling strategy has been chosen, accuracy

assessment proceeds by comparing the sample-selected pixels to the “real-

world” compliment.
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As with any sampling methodology, careful consideration must be given to

the actual size of the sample and its statistical validity. Typically sample size

can be estimated by the formula:

N ¼ Z2pq

E2
;

where p is the expected percentage of accuracy, q ¼ 100 – p, and E is

the allowable error.

Based on this approximate sample size, N, error can be quantified by

tabulating an error matrix or by calculating specific map accuracy statistics

to produce an accuracy report (Congalton and Green 2009).

The error matrix is a common method of assessing classification accu-

racy. The matrix is a table of numbers defined by the rows and columns that

represent the number of sample pixels (or polygon) assigned to a given

category relative to the actual category as confirmed by the reference data

(Fig. 4.10) Configured in this manner, the rows across the table express the

classification as derived from the remote sensing analysis, while the columns

explain those same classes as evidenced by the reference (ground truth) data.

Once the sample is fully tabulated, the matrix facilitates the calculation of

several useful statistics including:

• Overall classification accuracy – determined as the sum of the diagonal

elements on the matrix divided by the total number of pixels in the

sample.

• User’s accuracy – expressing the probability that a given pixel will

appear on the ground as it is classed by the image. This value also defines

errors of commission, explaining the percentage of pixels that should

have been assigned to a given category but actually belong to another

class. This value is calculated as the percentage correct for a given row,

divided by the total for that row.

Fig. 4.10 The general form

of an error matrix
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• Producer’s accuracy – describing the percentage of a given class that is

correctly identified on the map. Here, omission errors, indicating pixels

that should have been assigned to a class but were not, are calculated by

the percentage correct for a given column divided by the total for that

column.

• The kappa (Khat) coefficient – a measure of agreement between the

derived classification image and the reference data. This estimate of

agreement is calculated by subtracting the estimated contribution of

chance agreement to the agreement as observed based on the formula:

Khat ¼ ðobserved� expectedÞ
ð1� expectedÞ :

According to this relationship, observed agreement is based on the

overall classification accuracy, and the expected accuracy is a function

of the chi-square distribution. The statistic is computed as:

Khat ¼
N
Pr

i¼1 xii �
Pr

i¼1 xiþxþi

� �
N2 �Pr

i¼1 xiþxþi

� � ;

where r is the number of rows in the matrix; xii is the number of

observations in row i and column i; xi+ and x+i are the marginal totals

for row i and column i, respectively; and N is the total number of

observations.

Interpretation of Khat is not unlike a correlation coefficient where

values moving beyond +0.75 represent strong agreement, values between

+0.5 and 0.75 suggest moderate agreement, and values falling below +0.5

indicate suggestively declining agreement between the classification

image and the ground reference information.

8. Applying the information – This final stage in the remote sensing process directs

our attention to the actual use of the thematic product as a source of information.

Here, consideration is given to how well the thematic product communicates to

the intended user and how well the product delivers based on the goals and

purpose of the study. The applied value of remote sensing rests in the capacity

for this technology to support decision making by reducing the impact of

uncertainty that surrounds any decision problem. The quality of the information

contained in the thematic product extends beyond the treatment of accuracy and

envelops those aspects of information that adds value to a decision. In this

context, the valued added nature of remotely sensed information depends on

how well it:

(a) Documents important spatial patterns

(b) Illuminates alternatives

(c) Frames the problem
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(d) Records and stores information

(e) Communicates uncertainty

(f) Presents the findings

Because the products of a remote sensing investigation often take the form of a

map, the principles of effective graphic communication warrant due consider-

ation. In the majority of environmental applications, the intended audience is

likely not a technical expert in remote sensing; therefore, the “pretty picture

from space” must inform, not simply impress. This often overlooked element of

the communication question requires maintaining a level of clarity and simplic-

ity that agrees with the user’s level of technical sophistication. Above all, the

analyst, while manipulating the remotely sensed data, should avoid two common

ethical pitfalls:

(a) Cooking the data – retaining only those points that fit the theory and

discarding others and

(b) Trimming the data – smoothing of irregularities to make the data look

extremely accurate and precise.

All of the data contained in the processed satellite image are real data and good

faith, effort should be made to explain outlying situations in an objective and

unbiased manner. Ideally, the results of an environmental investigation

conducted via remote sensing offers the user insight, not only into the nature

and significance of what has been discovered, but also the level of efforts

involved in achieving the results. Informing the audience efficiently means

capitalizing on that medium of communication that takes the user the shortest

amount of time to understand.

4.5 Summary

Image processing and analysis can be explained as the “act of examining images for

the purpose of identifying objects and judging their significance.” The image

analyst studying the remotely sensed data attempts to, through logical process,

detect, identify, classify, measure, and evaluate the significance of physical and

cultural objects, their patterns, and spatial relationship as evidenced in the image.

A wide compliment of image processing and analysis techniques have been devel-

oped to aid the interpretation of remotely sensed data and to extract as much

information as possible from the images. The choice of specific techniques or

algorithms to use depends on the goals of each individual project. In this chapter,

a sample of the more common method based on the principles of statistical pattern

recognition were examined. Recognizing pattern is essential to the extraction of

information from an image, and from this perspective statistically based techniques

guiding the supervised and unsupervised approaches to image classification were

reviewed. How effective these methods are depends on the accuracy they can
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achieve. Issues surrounding error and accuracy were examined that culminated this

procedural review with a focus on how the information obtained from a remote

sensing exercise can be communicated to its intended audience.
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Chapter 5

Sensing Uncertainty

Image extraction methods, employing statistically based image classifiers, implement

decision rules that partition spectral space into mutually exclusive categories. These

methods perform well, particularly when measurements are precise and our

conceptualizations of environmental process are unambiguous. In those specific

situations, using Boolean logic to delineate crisp search spaces, support by traditional

expressions of probability sufficiently capture items of interest reliably enough to

permit their representation as thematic content. However, there are situations we

encounter in the study of the environment where our ability to define the processes or

parameters in exact terms is impossible and the environmental conditions we wish to

categorize display a level of complexity that defies clear and certain classification.

The conceptually simple problem of mapping degraded land or a deforested area are

examples that illustrate the presence of “maybe” in our search for information and

underscores the frustrations that follow from the inherent vagueness of our definitions

and our adherence to ridged models that fail to conform to the lack of certainty that

surrounds most environmental issues. In this chapter, we will explore approaches to

image classification that departs from strict statistical methodologies. In our explora-

tion, we will examine how these different models exploit the uncertainty and produce

very different realizations of environmental conditions, presenting information in

ways that communicate differently in the context of decision making.

5.1 Embracing Imprecision

Well-recognized human–environmental processes such as land degradation,

deforestation, drought, urban sprawl, and other chronic events that produce

observable patterns on the land surface are also conditions that suggest a contin-

uum of states that transition from one circumstance to another with a range of

possible examples in between (Bennett 2001). Similarly, the boundaries

separating these transitions are not likely to be clear and simple to identify in

every instance. These examples and numerous others serve as useful reminders
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where our explanations and definitions may imply dynamic environmental

progressions, yet our classification algorithms can only recognize a pixel as either

in a category or not in a category. Membership in an intermediate state or

condition cannot be adequately recognized, and those locations that fall into the

abyss of “maybe” are lost, even though those pixels can contribute useful infor-

mation. The pixel with a spectral response pattern that is neither “forest” nor

“soil” does not fit within the two-value logic of deforested or not deforested. Its

status or label is unknown and subject to misidentification, and uncertainty is the

result. Placing this pixel into the “unknown” category removes it from further

consideration, and we lose a degree of explanatory power that could have

improved our ability to portray the pattern of land in the transition from purely

forest to perfectly barren.

In the study of human–environmental interaction, particularly those examples

where human impact induces patterns of change that may be continuous over area,

but highly variable with respect to intensity, capturing the continuum and

representing uncertainty, not as an expression of error, but as a characteristic

inherent to process, provides new forms of thematic information (Robinson

2003). Sensing the uncertainty exploits the logic of “maybe” to support the detec-

tion and mapping of modulations, diffusions, and spatiotemporal perturbations in a

more realistic and intuitive manner (Eastman and Laney 2002; Nachtegael et al.

2007). This approach to satellite remote sensing is based on soft classification

strategies that suggest decision rules built on the premise that a pixel can belong

to more than one category; a sharp contrast to the statistical classification approach

discussed in the previous chapter, where “hard” separations between categories

provided the structure from which thematic maps were produced. The distinction

between “hard” and “soft” methods of image classification is perhaps better under-

stood using an illustrative example (Fig. 5.1). As suggested in the illustration, hard

classifiers partition measurement space according to a logic that applies firm (crisp)

boundaries to separate the informational classes. Parallelepipeds, distance-based

search spaces, and delineations based on a maximum probability value ascribe to

Fig. 5.1 Hard versus soft classification logic
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this logic and provide a framework to organize pixels into thematic information.

Using these devises, the decision is simple; if the pixel as defined by its brightness

value falls within the boundary, then that pixel has its appropriate label. The

delineation, from a classification perspective, is clear and unambiguous with no

exceptions. Soft classification explains a logic that preserves ambiguity in the data

and employs it to allow a wider range of possibilities when categorizing the pixel.

Possibility permits pixels to enjoy membership in more than one class or permits

the “evidence” available as training signatures to demonstrate that a pixel belong-

ing to more than one condition or class is a plausible solution. In Fig. 5.1, this

alternative conceptualization is depicted as the gray-scale where the gradational

shift in tone captures the “maybe” surrounding the classification problem and

creates a decision boundary that is less ridged. Operating inside this “gray” area,

the candidate pixel, whose label is unknown, can be identified by where it falls

along this continuum. Thematic information adopts this logic, and the classifica-

tion is characterized as a continuous surface where each label in the classification

system defines a unique terrain depicting the spatial arrangement of membership

over the study area. In a manner similar to the raster data model common to a

geographic information system (GIS), each thematic class becomes a layer that

can be subject to further analytical manipulation.

Although the idea of a gray-scale is a useful way to visualize this logic, the

continuum describing “maybe” is quantified to a range of numbers that identifies

the value of the pixel within its various class definitions. This value not only

attributes the pixel, but also lends itself to digital representation in a computing

environment. Hard classification methods assign a pixel a value symbolizing its

class. For example, a water pixel may be given a label (value) of 1, and nonmem-

bership in that category would be 0. Soft classification techniques might assign the

water pixel a value of 0.78 for the class “water” and allocate the remaining 0.22 to

some other class, such as sand or even an unknown category. By accepting this lack

of perfection, soft classification methods enable this water pixel to emerge as

information rather than relegating it to an unknown or misclassified category.

Water, like many other land surface features are often not perfect, but influenced

by extraneous factors. A pixel that it 0.78 water is more likely that quality than it

would be some other characteristic. From the analyst’s perspective, this acceptance of

“maybe” translated to a potentially higher level of thematic correctness, whereas

to the end user of this information, expanding the representation of a class member-

ship from the yes/no model to a range of possibilities introduces the opportunity to

adjust the decision boundaries defining classes, thereby incorporating the subtleties of

a phenomenon into its spatial representation (Ibrahim et al. 2005; Foody 1999).

This less deterministic approach to thematic representation overcomes the limitations

imposed by the two-value logic, accommodates class mixtures, within-class spectral

variability, and reduces the adverse consequences of uncertainty.
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Soft classification strategies were introduced into remote sensing from the field

of soft computing (Zadeh 1994; Gomez and Montero 2008). As suggested previ-

ously, the primary tenants of traditional hard classification are precision, cer-

tainty, and rigor. In soft classification, the guiding premise is that precision and

certainty carry a “cost” and computation, reasoning, and decision making should

embrace a wider tolerance for imprecision, uncertainty, and partial truth. The

collection of soft computing techniques that have been introduced into remote

sensing offer a means to achieve greater tractability, robustness, and solutions at a

lower cost. In many respects, we can consider the role of soft computing/classifi-

cation in environmental remote sensing as an example of knowledge discovery,

involving the process whereby we sift through large amounts of data searching for

patterns attempting to derive knowledge from that data. Considering a multispec-

tral or hyperspectral image, often dominated by complex mixtures of surface

types and classification systems imposing logics based on language concepts

rooted in the vagueness of our definitions, methods that can assist us in making

sense of the data, and transforming it to meaningful information, is critical to

effective problem solving (Fayyad et al. 1996).

5.2 Soft Classification Strategies

As a process, soft classification begins by developing an understanding of the

application domain and the goals directing the investigation. Data, in this context,

are a set of facts (reflectance values in an image), and a pattern is an expression in

language describing a model we wish to apply to the data. An overview of this

process is suggested in Fig. 5.2. The discovered pattern should be valid with some

level of certainty, but to be useful these patterns should also be novel and

understandable to the end user. For a pattern to be considered knowledge, it must

meet the criteria of being interesting in a domain-specific way. The geospatial

variables acquired by means of satellite remote sensing suggest emerging patterns

that require categorization, avoiding in the process, information loss, or the arbi-

trary imposition of artificial boundaries. Because the spatial patterns tend to exhibit

spatial continuity and high autocorrelation with nearby features, soft classification

alternatives become appropriate by

• Facilitating the identification of representative patterns

• Enhancing the selection of optimal spatial boundaries

• Summarizing pattern in a more intuitive manner

Three of the more common soft classification techniques applied to remotely

sensed data are: (1) fuzzy classification, (2) evidence-based classification based on

Dempster–Shafer theory, and (3) classification based on Bayesian probability. Each

of these methods has its own unique facility for illuminating uncertainty and

modeling the imprecision inherent to thematic extraction.
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5.2.1 Fuzzy Classification

Fuzzy classification is based on the principles of fuzzy logic. Fuzzy logic represents

a departure from traditional Boolean thinking and presents a useful means to model

imprecise modes of reasoning and to discover solutions (approximate answers) to

questions based on data that are inexact, incomplete, or unreliable (Zaheh 1988;

Klir and Yuan 1995). The underlying theme of this logic system is the concept of

fuzziness, which has been defined as a type of imprecision or vagueness that

originates in language and characterizes events, phenomena, and features that

cannot be precisely defined or measured (Leung 1988; Metternicht 2003; Foody

1992; Fisher 2010). According to classical two-value logic systems, the disposition

of a pixel must conform to either one of two possible states with respect to a

defining class. Fuzziness accepts the proposition that a pixel, owing to the impreci-

sion inherent to its defining class, may be better explained by a degree of member-

ship in that defining category. Therefore, as an element of a set of conditions

(categories) that are fuzzy, belonging to one class is no longer restricted to a yes

or no state, but instead expresses a compliment of partial membership that explains

the possibilities as to where that pixel falls. The major advantage of this theory of

Fig. 5.2 The pattern discovery process
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possibilities is its ability to represent the natural description of a problem in

linguistic terms rather that in terms of exact relationships between precise numeri-

cal values. As a method of image classification, fuzziness has been widely explored

with useful results (Wang 1990; Melgani et al. 2000; Ozesmi and Bauer 2002).

Given the heterogeneity of the environmental system and the difficulties encoun-

tered when attempting to discriminate between classes where clean and unambigu-

ous spectral separations are not possible, the fuzzy solution enhances the extraction

of useful information from our imagery.

Accepting the premise that a pixel can enjoy graded participation in a class (A)
that is inherently fuzzy, a pixel (p) assumes the property:

A ¼ f½X; maðpÞ� : p ¼ Xg;

where ma(p) explains the degree of or level of membership of pixel (p) in class (A).
Defining category (A) as a fuzzy class requires deriving a membership function (ma)
to assign each pixel in the image its degree of compatibility in that category.

According to the principles of fuzzy logic, membership in a fuzzy class can range

from 0.0 to 1.0 where 0.0 describes the condition of perfect nonmembership in class

(A) and 1.0 defines the example of perfect membership in that class. The interval

between 0.0 and 1.0 expresses the degree to which a pixel can be explained as a

member of class (A). Symbolically a membership function can be expressed as

maðpÞ ¼
1 if x> ¼ an upper threshold

x�low
range

� �
if low<x>upper

0 if x< ¼ a lower threshold

:

2
4

A fuzzy set defined by m(x) can be represented graphically in a variety of ways.

Figure 5.3 illustrates one example of membership for five hypothetical land cover

categories expressed across the recorded brightness levels of the sensor.

As suggested in Fig. 5.3, the practical application of fuzzy logic in image

classification hinges on the derivation of membership functions that are used to

Fig. 5.3 General schema of a

fuzzy set
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extract thematic information from the scene. The methods by which these functions

are obtained is not always made explicit which can frustrate the use of fuzzy

classification and contribute to contradicting interpretations of what “fuzziness”

communicates in a given study. Neglecting clarification about the origin of mem-

bership can make it difficult to verify that a procedure is performed as intended.

Ideally, the fuzzy condition derived from the membership function expresses the

degree of compatibility with its defining class or concept. These functions, to

maximize the usefulness of fuzzy classification, should be comparatively easy to

calculate and described by a relatively small number of meaningful parameters. The

parameters in a remote sensing investigation are the spectral response patterns that

describe the thematic information we wish to extract from the image. To transform

spectral patterns into fuzzy representations of their class definitions, the raw image

data has to be “fuzzified.” There are several ways to convert the spectral patterns

into a fuzzy set, and different approaches may be necessary depending on the

numerical or linguistic variable under consideration. To illustrate this point con-

sider the example where the goal is to represent the thematic class “urban.”

Fuzzification requires establishing the set of brightness values that satisfy the

condition “urban.” These are essentially the signatures for that land cover type,

but also induced are the possible ranges of brightness that would be considered

“urban” based on the analyst’s judgment and experience. In mathematical terms

fuzzification can be expressed as a mapping F from a variable X to a fuzzy set m
with a membership function m(x) such that:

F : X ! mðxÞ:

The conditions fuzzification must satisfy considerations related to

• Continuity – such that small changes in the value of the spectral response data do

not yield large changes in the resulting membership grade

• Uniqueness – implying that each spectral response value has a unique member-

ship grade

• Range – requiring that the values defining the spectral pattern for a given

problem cover the entire [0,1] range of the membership function

• Monotonic rising – suggesting that a higher value of spectral response has a

greater membership grade

To appreciate the challenges that surround reasoning with fuzzy concepts, we

can return to our example of the linguistic variable “urban” in a land cover

classification system. The problem of determining membership in the urban class

begins by evaluating two important definitional questions:

1. What is the intensity of land development that identifies the condition “urban”

land cover?

2. What is the spectral response value(s) that characterizes a level of intensity or

use that agree with the condition “urban” land cover?
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Obtaining answers to these fundamental questions can be accomplished in

several ways. Initially, we could employ “expert” judgment, perhaps going so

far as to survey a group of “experts” to solicit an opinion. From here, a set of

values could be assembled from which the frequency of digital values being

scored as “urban” would then be used to produce an empirical membership

range of the form

maðxÞ ¼
Number of positive responses to ‘‘x’’ is urban

n
;

with x describing the range of digital numbers from 0 to 255 in the image and n the
number of experts solicited in this example. Based on the frequency of responses, a

membership function could be defined that would assign the range of digital values

along the 0.0–1.0 continuum (Fig. 5.4). Using expert judgment to establish the

thresholds for a fuzzy class offers a degree of flexibility that can model uncertainty

by incorporating a priori knowledge into the classification process. Expert judgment

also offers the opportunity to modify class membership based on contrasting

assumptions about the data and the classification schema being used. Judgment-

based methods may also utilize subjective assignment of membership grades for

training sites used to define spectral signatures for a class. This type of fuzzy

portioning can be employed to assign each pixel a weight proportional to its degree

of membership (Wang 1990; Townsend 2000).

In general, using frequencies or employing direct estimation methods to manu-

ally craft membership functions produce tractable solutions to the image classifica-

tion problem; however, they are not without limitations (Watanabe 1979; Turksen

1991; Kempton 1984). Although the appropriateness of adopting a fuzzy classifi-

cation strategy is ultimately determined by the accuracy of the resulting thematic

product, certain deficiencies can be noted. First, the manual generation of member-

ship functions relies on the subjective interpretation of classification labels. When

considering the concepts such as “eroded,” “degraded,” “stressed,” “disturbed,”

connecting these concepts to absolute conditions in the environmental can be

difficult. Second, placing a membership score or similar valuation based on a

brightness value without a clear rationale risks confusion and introduces the

potential for methodological inconsistencies. Finally, judgment-based approaches

are entirely dependent on the experience of the experts called upon to deliver

membership grades. Provided the expert has an understanding of the conditions

Fig. 5.4 Characterization

of a membership grade
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that define the upper and lower limits for membership in a class, reasonable

functions can be obtained. In the absence of experience, the resulting membership

grades may not be meaningful.

Alternatively, membership functions can be developed from trigonomic

relationships that approximate the concept of condition. The choice of function

will depend on how the shape of the trigonomic relationship models the nature of

the concept to be fuzzified. Functions can range from simple linear representations

to approximations based on the Gaussian distribution. Linear representations define

a straight line membership function that can define two states; increasing or

decreasing. Sigmoid representations, also known as the S-curve, are often used

when natural processes display a “history dependent” progression that and either

accelerates or declines. This membership function is defined using three

parameters: (1) its zero membership value, (2) its complete membership value

(max), and (3) its crossover (inflection) point. This S-curve function is illustrated

in Fig. 5.5. Other functions include

• Triangular representations – perhaps the most common representational form,

this function is defined using three variables where

mAðX; a; b; cÞ ¼
1 if x is greater than or equal to a
x�a
b�a

� �
if a � x � b

c�x
c�b

� �
if b � x � c

0 if x is less than or equal to c

2
664 :

The parameters a, b, and c represent the x coordinates of the three vertices of

mA(X) in fuzzy set A. This representation is illustrated in Fig. 5.6.

• Trapezoidal representation – this function is defined using four points, two to

depict points in the surface (b/c) and two for the fuzzy slope of the surface (a/d)
(Fig. 5.7).

• Shouldered representation – that the form from both the triangular and trapezoidal

shapes, shouldered sets present no upper or lower boundaries, and the shape

Fig. 5.5 Sigmoid membership function

5.2 Soft Classification Strategies 119



generally assumes the expression of a truncated trapezoidal fuzzy set. The

shoulder in this representation defines the edges of the condition or variable.

• Gaussian representations – defines sets whose membership grades approximate

a normalized Gaussian function with 0 mean and a standard deviation of d.
Membership according to this function is defined by

mAðX; c; s;mÞ ¼ exp � 1

2

x� c

s

� �� �m� 	
;

where c equals the center of the distribution, s represents the width, m is a

fuzzification factor. In this relation, the values of s and m can be altered

(increased or decreased) to produce different shapes.

When considering a fuzzy representation, it is often instructive to represent the

fuzzy set graphically and use that visualization to select the shape function that

most closely resembles the graphic depiction can conceptualize.

5.2.2 Implementing Fuzzy-Based Strategies

Image classification based on the principles of fuzzy logic can be implemented

following either a supervised or unsupervised classification procedure. Fuzzy

supervised classification requires translating spectral response patterns for the

Fig. 5.6 Triangular

membership function

Fig. 5.7 Trapezoidal

membership function
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land surface categories of interest into fuzzy representations and then applying

those fuzzy patterns (signatures) in a classification algorithm. Perhaps, the most

tractable algorithm for fuzzy supervised classification is fuzzy maximum likeli-

hood. The maximum likelihood classifier is based on the probability theory where

the mean and covariance summarize each class of interest. The algorithm solves for

the probability function P(A) such that

PðAÞ ¼
Z

HAðsÞ;

where s explains an element in class x, and HA is the “hard” membership value that

can only be 0 or 1. This basic relationship was extended to incorporate fuzziness by

Wang (1990) and Maselli et al. (1995). In this extension, the probability function is

replaced by a possibility of membership grade approximated by:

PðAÞ ¼
Z

mAðsÞ;

where mA denotes the membership function defining class A. The product of this

algorithm is a membership value for each class that can be presented spatially as a

sequence of individual map layers.

Unsupervised classification removes the analyst from direct manipulation of the

spectral response patterns and relies instead on clustering techniques such as the K-

means or ISODATA algorithms to discover natural groupings in the data. The fuzzy

extension to these approaches is found in the fuzzy c-means algorithm and its

derivatives (Bezdek 1981; Bezdek et al. 1984). Recalling that clustering is typically

based on distance metrics to establish similarities and separate cluster centers,

relaxing the “hard” representation of distance (whether expressed as Euclidean,

Mahalanobis, or other) and replacing that with fuzziness, fuzzy cluster centers can

be determined based on the function Jb:

Jb ¼
Xn
i¼1

Xn
j¼1

ðVijÞbðdijÞ2;

where b is the weighting exponent that controls the degree of fuzziness (a value

typically set between 1.5 and 0), dij defines a distance measure between each pixel x
and a fuzzy cluster center V. Based on the above equation, the membership value of

class j for the ith pixel becomes:

mji ¼
1Pm

k¼1 ðdij=dkiÞ2=ðb�1Þ ;

where mij must satisfy the following constraints:

Xn
i¼1

mji>0 j ¼ 1; 2; . . . ;m;
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Xm
j¼1

mji ¼ 0 j ¼ 1; 2; . . . ; n:

The fuzzy cluster mean (V) is resolved iteratively from

Vj ¼
P

k ðVijÞbXnP
k ðVikÞb

:

Although widely used, the fuzzy c-means algorithm assumes that every infor-

mation class has been specified, so that the membership for every pixel can be

described independently of all other classes, a condition that may not be valid in all

situations (Foody 2000; Tso and Mather 2001).

Fuzziness as a means to express imprecision in classification relies on the

successful derivation of a membership function, which is not always a simple

task. Furthermore, the membership functions do not necessarily stem from the

data itself which can be problematic when the membership criteria do not suffi-

ciently characterize uncertainty. While fuzzy classification is a useful approach

when representing spatial objects that do not conform well to crisp delineation,

there are examples in environmental analysis where uncertainty does not develop

from the mixture of reflectance values within a pixel, but rather where the similar

surface characteristics under investigation are explained by different spectral

patterns. In these instances, there is a range of variation in reflectance within and

between pixels, and the spectral patterns fail to model a perfect state (Lein 2003).

Under these conditions, the problem is not one of fuzziness, but rather a situation

underscored by “broadness” where several possibilities exist for placing a pixel into

a class, and the evidence for deciding the membership may be incomplete or

conflicting. In these examples, a method that can process the available evidence

and narrow the possibilities of membership down to an objective set that best

characterizes the informational categories offers an alternative solution to the

problem of uncertainty.

5.3 Evidence-Based Classification

Evidence-based classification exploits the logic of evidential reasoning as defined

according to Dempter–Shafer theory of evidence (Shafer 1976; Dempster 1967).

Dempster–Shafer theory can be considered as a generalization of Bayesian theory

of probability where probabilities are assigned to sets rather than to a single object

(or a set containing a single member). As a variant of the Bayesian model,

Dempster–Shafer theory replaces subjectivity with the concept of ignorance

which can be loosely explained as a type of inconclusiveness given the evidence

available to make a decision. Therefore, in contrast to probability theory where
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evidence is associated with only one possible event or condition, Dempster–Shafer

theory allows evidence to be associated with multiple possible events. This

distinguishing aspect of this theory permits evidence to assume meaning at higher

levels of abstraction without incorporating any underlying assumptions about the

data. In remote sensing, the appeal of Dempster–Shafer theory rests in its ability to

capture the natural behavior of reasoning by narrowing a hypothesis set down to a

smaller number of possibilities as the evidence for making a selection increases

(Mertikas and Zervakis 2001). In the example of image classification, this theory

addresses the decision problem of selecting pixels to form one or more land cover

categories under conditions where the evidence available to guide class assignment

varies. For applications common to environmental sensing, by allowing

for inconclusiveness in the evidence, Dempster–Shafer theory does not introduce

bias into the probability assignment process. In a practical sense, the appeal of

Dempster–Shafer as a method of classification relates to the common decision

problem where a pixel must be assigned to one of the several categories; however,

the evidence, as expressed by the set of spectral signatures, varies and conflicts.

Labeling a pixel as a specific type of use or cover, for example “agricultural,”

proceeds by narrowing down this initial hypothesis based on the spectral response

patterns to a level of agreement that can be supported by the spectral evidence

(Fig. 5.8). When this method of reasoning is applied to guide spectral discrimination

and classification uncertainty, image analysis based on the Dempter–Shafer model

has been shown to produce more complete descriptions of surface characteristics

(Le Hegarat-Mascle et al. 1997; Lein 2003, 2006; Cayuele et al. 2006).

Dempster–Shafer classification introduces the concept of belief as the device to

examine the evidence surrounding class membership. As a decision criterion, the

Fig. 5.8 Spatial representation of “belief”
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concept of belief is intuitive and compliments the manner by which human

reasoning is conducted. In simple terms, if we were to observe the value of a

pixel and compare its brightness number to those of the signatures we have

collected, the statement “I believe this pixels is forest, based on the evidence before

me” mimics the manner by which the Dempster–Shafer algorithm reasons toward

the same goal. Unlike human reasoning, a belief according to Dempster–Shafer

theory is expressed quantitatively based on the calculation of a belief function.

Belief functions are based on a probability assignment that explains the level of

acceptance (belief) that can be committed exactly to a specific hypothesis (i.e., that

the spectral patterns exhibited by a pixel across its defining wavelengths character-

ize agricultural land). Measures of belief communicate the level of confidence in

the hypothesis along the familiar range of numbers from 0.0 to 1.0. Along this

continuum, 0.0 communicates “no confidence” in the hypothesis while 1.0 explains

absolute confidence in the decision. Intermediate values express the degrees of

belief in that can be ascribed to the hypothesis given the available evidence. Belief

measures can then be summed up to produce an overall expression of certainty,

which makes the Dempster–Shafer approach a useful method for qualifying classi-

fication belief using numerical expressions to define both the levels of support and

the degrees of uncertainty.

There are three important mathematical functions that form the foundation of

Dempster–Shafer theory and direct its use as a classification algorithm: the basic

probability assignment function (BPA), the belief function (BEL), and the plausi-

bility function (PLS). In the language of Dempter–Shafer theory, the BPA

represents a mapping of the power set to the interval between 0 and 1, where its

null set is 0, and the summation of the PBA’s of all the subsets of the power set is 1.

Although expressed as a value between 0 and 1, BPA is not a value of probability in

the classic sense, but rather the proportion of all relevant and available evidence

that supports the allocation of a pixel (X) to the information class (D). From this

basic probability assignment, the upper and lower bounds of an interval, expressing

class membership, can be determined. It is this interval that contains the actual

probability of the set under evaluation, which is then bounded by two nonadditive

continuous measures describing belief and plausibility. Therefore, given a set of

mutually exclusive alternatives, such as three distinct land cover types, a basic

probability assignment (m) is determined for each subset (A), which is written as m
(A). The lower boundary of belief for a set (A) is the sum of all the basic probability

assignments for the set such that

BELðDÞ ¼
X
A\X

mðAÞ

and plausibility develops as the sum of all BPA’s determined by

PLS(DÞ ¼ 1� BEL(DÞ;
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a term that expresses the degree to which an assignment to a class (hypothesis)

cannot be disbelieved. When the two equations given above are compared, belief

(BEL) quantifies the degree of evidence in support of the hypothesis (that pixel X is

agricultural), while plausibility indicated the degree to which the condition appear

to be correct for that hypothesis, although the evidence to support that conclusion is

incomplete (Lein 2003). To illustrate this relationship, suppose we assume that

three training sites have been generated for three land cover classes (e.g., urban,

forest, and water), a pixel that shows some similarity to the urban signature, but not

to any other would be typically named urban. However, if the evidence supports the

hypothesis that the pixel is urban to the degree 0.40, the Dempster–Shafer algorithm

would assign 0.40 as its value of belief to urban with a plausibility of 1.0. The result

would produce a belief interval of 0.60, and the algorithm would assign all other

classes a belief of 0.0 and a plausibility of 0.60. This assignment creates a measure

(degree of belief) that can be employed to represent the cover type as a continuous

surface where both belief and uncertainty become spatial variables that express the

geographic pattern of class membership over the study area (Lein 2003, 2006).

Following the combination of probability assignment, a decision rule must be

selected in order to assemble pixels into classes and form representative informa-

tional classes. Decision rules are based on the Dempster evidence function for

belief and plausibility (Mantara 1990). This function is essentially an evidence

gathering process that requires combining the support for a hypothesis based on

multiple observations. The basic rule guiding the algorithm states that the BPA

representing the combination of m and m2 apportions the total amount of belief

among the subsets by assigning m and m2 to the intersection of the set.

Applying Dempster–Shafer theory as a soft classification strategy follows the

general format of the supervised image classification procedure. The main point of

departure is simply the idea that the Dempster–Shafer algorithm would provide a

more correct or logically appropriate characterization of the remotely sensed data.

There are four main phases of the procedure:

1. Signature development and training – involving the creation of spectral response
patterns for the informational categories of interest. However, unlike traditional

supervised classification, there is little need to be concerned over the statistical

parameters that summarize the land surface objects or their potential overlap.

2. Soft classification – employing the Dempster–Shafer algorithm to generate

belief and plausibility surfaces for the thematic classes of interest.

3. Class hardening – requiring the selection of belief thresholds for each thematic

class to produce a finished map product. The hardening algorithm evaluates the

degree of support for the assignment of a pixel to a specific informational class

and involves detailed consideration of the hierarchy of classes and all possible

combinations (mixtures).

4. Assessment and evaluation – focusing on “face validity,” this final step examines

how well the belief surfaces communicate the uncertainty, the overall correct-

ness of the hardened classification, and the level of agreement achieved between

surface arrangements and their spatial representation. Because belief surfaces
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serve as a basis for quantifying class membership, reference to the spatial

patterns of belief can help to refine optimal thresholds for forming conventional

class boundaries.

5.4 Bayesian Classification

The Bayesian approach to representing classification uncertainty is based on the

supposition that the prior probability of an event should be incorporated into the

interpretation of a current situation (Lein 1997). As a classification strategy,

Bayesian methods define class membership as a “probability-to-feature” problem

as opposed to developing decision rules that explain class membership according to

a “distance-to-feature” logic. The underlying assumption guiding Bayesian classi-

fication is that the decision problem surrounding the question of assigning pixels to

classes can be expressed in probabilistic terms and that all of the relevant probabil-

ity values are known a priori. Under this assumption, Bayesian classification

performs in a manner sensitive to the selection of prior probabilities and introduces

the use of subjective probability into the classification process. When compared to

hard classification techniques, Bayesian classification requires the analyst to draw

from theoretical or heuristic knowledge the nature of the expected probability

relationships rather than from strict statistical assumptions stemming from the

data (Wither 2002). Because there are no prior assumptions about class member-

ship, the analyst must carefully consider what the expectations are, given the nature

of the classification problem. The use of subjective prior knowledge, in this context,

while permitting greater flexibility to unique situations, requires the explicit con-

sideration of uncertainty. The application of subjective judgment makes the Bayes-

ian approach well suited to situations where the data are inexact and the general

rules of thumb are called upon to contend with the unknowns.

As a method of classification, Bayesian theory is predicated on three defining

principles: (1) a set of mutually exclusive hypotheses, (2) conditionally indepen-

dent evidence, and (3) complete enumeration of the hypothesis set. Working with

these principles, the goal of Bayesian classification is to assign objects to categories

such that

P
H

E


 �
¼ PðHÞPðE=HÞ

PðEÞ ;

which describes the conditional probability of E (evidence) given a hypothesis (H),
where E is typically expressed as a subject probability value. In the example of land

cover analysis, we might assume that there is a prior probability p(w*) that a parcel
(pixel) of vegetated land is chaparral, and a probability p(w^) that it is not chaparral.
The prior probability terms reflect the subjective judgment on the analyst as to how

likely chaparral serves as a reasonable estimate of any feature descriptive of the
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parcel (pixel). Without any additional information, the decision about how the

parcel (pixel) should be labeled is simply a comparison of p(w*) and p(w^).
However, the conditional probability for vegetated cover can be explained more

completely by other variables such as leaf reflectance of by a vegetation index (VI)

that establish a cleared decision boundary and threshold for evaluating the condi-

tion. In this example, a vegetation index value from chaparral pixels and

nonchaparral pixels can be used to define a relationship:

p
w1

VI

� �
and p

w2

VI

� �
;

where a pixel that is chaparral can be defined and classified. By determining

appropriate thresholds for the VI values, a relationship can be evaluated of the form:

If (p(w1/VI) > p(w2/VI))

Then Class ¼ chaparral

Else Class ¼ nonchaparral

According to this simple example, if both the prior probabilities p(w), condi-
tional probabilities p(w/VI), and the VI values can be estimated from an image, we

can employ Bayes rule to formulate the decision taking the general form:

P
wi

VI

� �
¼ p

VI

wi


 �
pðwiÞ
pðVIÞ


 �
;

where p(VI) is the prior probability of VI, which develops out of the total probably

given as

P
wi

VI

� �
¼ p

VI

wi


 �
pðwiÞP

pðVI=wiÞpðwiÞ½ � :

Pixel classification is performed by maximizing the a posteriori probability

obtained from this solution. As a classification algorithm, the Bayesian approach

searches for the best class descriptions which can be defined as the solution that

optimally trades off predictive accuracy against class complexity without

overfitting the data. The resulting classes are “approximate,” and pixel membership

in a class is expressed in terms of a probability estimate in the range 0.0–1.0. When

classification results are presented spatially, membership explains a probability

surface, which can be hardened or manipulated further depending on the purpose

(Rocchini and Ricotta 2007; Binaghi et al. 1999).

Soft classification offers many possibilities when confronted with the uncer-

tainty stemming from conceptual imprecision and vagueness, and the use of these

methods can support a range of applications’ problems. One common problem

encountered in environmental remote sensing relates to the presence of mixed

pixels and the uncertainty mixtures introduce into thematic extraction. In the next

section, we will examine the issues surrounding mixed pixels.
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5.5 Mixtures and Subpixel Analysis

To this point in our discussion, uncertainty was characterized as a product of the

confusion resulting from the attempts to organize spectral measures into informa-

tional classes based on the terminology that can be vague or poorly defined in

language. Interrelated to this important source of confusion are those

uncertainties that grow out of the complex arrangements of objects at the surface

that cannot be aptly described by a single “unique” spectral pattern. Implicit in

this discussion are the constraints introduced by the spatial resolution of the

sensors, which, due to varying dimensions, impose an artificial gridding on real

and highly varied landscapes. The result of superimposing this ridged, stratified

sampling design on a surface that is likely to be a heterogeneous complex of

natural features and human-made objects is a form of uncertainty well recognized

as the mixed pixel problem (Fisher 1997; Lewis et al. 2000). The production of

mixed or composite pixels originates from the observation that at some level of

spatial resolution, natural surfaces are not uniform, and whereas human-created

surfaces might conceivably be uniform at a given scale, homogeneity is not

typically the case (Schowengerdt 1996). Rather, composite pixels in a remotely

sensed image represent a spatial average of the spectral response patterns from

at least two or more surface conditions. Composites are also unique to the manner

in which features occupy the pixel, displaying variations resulting from

subtle differences in the material, chemical or biological fabric descriptive of

that surface. The mixing of spectral response patterns arise from four main

sources:

1. The intrinsic, spatially mixed nature of most land cover categories

2. The physical continuum that may exist between discrete categorical labels

3. Resampling for geometric rectification during preprocessing operations

4. The spatial integration induced by the sensor’s point spread function

Only in controlled and limited situations can the mixing induced by these

contrasting sources be distinguished (Schowengerdt 1996). Consequently, the

categories that describe our thematic (informational) classes are often spectrally

ambiguous in addition to being linguistically vague. Unraveling the mixing with a

single pixel resulting from spectral ambiguity is a challenge, and the soft classifi-

cation strategies introduced previously have been used to address this problem.

However, estimating subpixel composition and quantifying the land cover/land use

fractions contained with the pixel are better addressed by mapping the subpixel

components of the surface using spectral mixture analysis (SMA) (Powell et al.

2007; Song 2005; Small 2001).
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5.5.1 Spectral Unmixing and Spectral Mixture Analysis

The process of unmixing the spectral composition of a pixel and labeling the cover

types that comprise the observed mixture introduces the concept of an endmember.

In simple terms, an endmember is a pure reflectance spectra that has been derived

from a specific target material or precise land cover arrangement where no mixing

with other objects or features has taken place. Endmembers, are therefore, features

recognizable in the scene as being abstractions of land cover materials with uniform

properties (Rashed et al. 2001). The material nature of the pixel is a central idea in

the definition of an endmember. Based on this material definition, an endmember is

a pattern of reflectance that describes the characteristic properties of an object or

feature. For example, if the target of interest were asphalt, the asphalt endmember

would be similar in concept to its pure spectral signature. As a characteristic pattern

of reflectance, endmembers serve as reference spectra for objects. Also because

they are free of any mixtures, they can be used to separate any mixing of reflectance

patterns within a pixel and determine the combination of composite reflectance

patterns exhibited by an observed mixture in the scene.

Quantifying the spectral composition of a pixel is accomplished using SMA. As

a method of subpixel classification, SMA assume that the net radiance at the sensor

(without the effects introduced by atmospheric attenuation) is a linear combination

of the spectral patterns of all cover types or objects that fall within a given pixel.

According to this technique, each pattern explains one component of the mixture

and contributed in some way to the observed value of reflectance measured by the

sensor. The process of unmixing is comparatively straight forward. If the properties

of each object or cover type’s contribution to the observed brightness value can be

determined, then the relative proportion of each patterns contribution to the overall

spectral response can be estimated (Small 2001; Foody 2000). Expressing the idea

of unmixing in more quantitative terms, a composite pattern of reflectance of a pixel

(P) for a specific spectral band (i) can be explained as (after Settle and Drake 1993;
Wu and Murray 2003)

Pi ¼
XN
k¼1

FkPik þ Ei;

where N is the number of spectral bands, Pi is the reflectance of a pixel in the ith
band, Pik is the reflectance of the kth component of the pixel in the ith band, Fk is the

weight of the mixing or fraction of endmember k, and Ei is the error.

The fit of this relationship is typically evaluated by the residual (error) term Ei of

the root mean square (RMS) error over all of the bands in the image (n) such that

RMS ¼
Pn

i¼1 e
�
i

n


 �1=2

:
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The fraction of each endmember can be estimated by applying the least square

technique to the data in order to minimize the unmodeled residual error (ei) with the
assumption that selected endmembers are independent of each other, the number of

endmembers is less than or equal to the available spectral bands, and the selected

spectral bands are not highly correlated (Lu and Weng 2006). The products of the

SMA algorithm are a series of images that depict the spatial distribution of each

endmember’s abundance across the scene. Fractional abundance surfaces, there-

fore, communicate a continuum for each endmember and provide a means to

visualize both the unmixing of pixels and the relative material abundance of the

features that compose the land surface.

Although a useful way to decompose the mixtures produced by complex land

surface arrangements, the linear mixture model may not be the appropriate choice

for applications where only subtle spectral differences exist across the selected

bands. Validity is also an important consideration in the use of this method. The

validity of the SMA technique depends on the selection of endmembers. Generally,

the rule of thumb is that more endmembers can explain more spectral variation,

which improves the fit of the SMAmodel. However, there is a trade-off between the

number of endmembers and model fit. In a typical application of SMA, a fixed

number of representative endmembers usually between 2 and 5 are chosen, and the

image is modeled relative to those spectral components. There are limitations to this

rule of thumb, particularly in situations when the selected endmember patterns do

not effectively explain all features present in the scene or in examples where a pixel

may be characterized by endmembers that do not correspond to the materials found

within its spatial dimensions (Powell et al. 2007).

As a method for sensing uncertainty, SMA has traditionally be a technique

reserved for use with hyperspectral imagery. Recently, some success with mixture

uncertainty and land cover classification has been achieved using multispectral data

such as Landsat, AVHRR, and ASTER (Wu 2004; Quarmby et al. 1992; Sabol et al.

1992). In either case, the procedure followed while applying the SMA algorithm

consists of five main steps:

1. Selection of endmembers

2. Application of the SMA algorithm

3. Evaluation of the SMA fractional surfaces and RMS error

4. Classification of the SMA fractions

5. Assessment of classification accuracy

Each step in the procedure requires detailed consideration to produce useful end

results. Perhaps the most critical aspect of the SMA approach centers on the final

classification of the SMA fractions into informational classes. Classification

focuses on the fractional surfaces produced by the SMA algorithm. A fractional

surface shares properties similar to those obtained through fuzzy or evidence-based

classification. As the SMA algorithm decomposes the mixture, it produces a surface

for each endmember that depicts the abundance of that endmember for every pixel

in the scene. Using values ranging from 0.0 to 1.0 (abundance values of <0.0 or

>1.0 suggest missing or incorrect endmembers), the per-pixel fraction of that
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endmember is given a spatial expression that can be used to form a decision

regarding the labeling of pixels. Depending on purpose, the spatial distribution of

fractional abundance can be treated as a continuous expression used to characterize

the representation uncertain of the endmember across the scene, or it can be

subjected to “hardening” in order to produce a standard thematic map. Combining

fractional solutions into a crisp thematic presentation involves visualization of the

fractional images, analysis of the fraction characteristics of representative land

cover/feature types, and the evaluation of error images. Each of these activities

helps to establish thresholds that can be used to select the abundance value that best

categorizes the pixel. Through subject assessment based on the fractional surfaces,

the analyst can determine which combinations or thresholds provide the best

description of the thematic categories. Class boundaries can be established using

operations such as simple Boolean logic to reclassify the fractions into a 0 or 1

representation of the endmember, or combined using a variety of other strategies

including

• Derived exogenous groupings based on application-specific criteria

• Statistical-based classification

• Clustering

• Majority analysis

• Multiattribute overlay

5.6 Summary

Uncertainty remains a vexing issue in remote sensing and has numerous sources

which conspire to degrade the fidelity of the thematic information taken from the

image. In this chapter, a selection of methods for managing uncertainty as it applied

to the image classification problem were examined. Each has its value depending on

the nature of the problem under investigation, and each offers a unique way to

present and explain thematic content as a continuous phenomenon that allows the

end user to make the final decision regarding the precise allocation of pixels into

informational categories. Through the logic of fuzziness, the explication of belief,

the introduction of prior probability, and the notion of pixel unmixing, more

adaptive approaches to image classification are encouraged, and useful information

that might otherwise have been lost due to the inflexibility of statistical-based

classification algorithms is preserved. When applied to the questions that envelop

environmental analysis, the method of sensing with uncertainty extends the utility

of remotely sensed data and facilitates their use where the environmental process is

poorly defined and our understanding is tempered by inexactness.

The process of image classification based on pattern recognition methods

assumes that pixels can be organized into mutually exclusive and exhaustive

categories. In some cases, the prospects for a perfect delineation of surface features

into classes fail, and information that might otherwise be useful is lost into the class
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of “unknowns.” In this chapter, alternative strategies based on approximate

reasoning logics such as fuzzy set theory and the Dempster–Shafer theory of

evidence were explained. Both models offer useful advantages to the task of

information extraction, particularly where classification suffers from practical and

semantic imprecision and inexactness, and both models represent a form of many-

valued logic to deal with reasoning approximate, rather than fixed and exact. Here,

we examined the usefulness of explaining surface categorizations expressed along a

continuum that ranges in degree between 0 and 1, and explored situations where

partial truth can describe membership in land cover categories producing surface

patterns that defer judgment regarding class membership to the analyst’s subjective

technical judgment. Recognizing that human–environmental processes, such as

land degradation, deforestation, drought, and urban sprawl, produce observable

patterns on the land surface, which also suggest a continuum of states that transi-

tion, encourages using the logic of “maybe” as a means of revealing environmental

uncertainties and capturing complex environmental patterns in a more realistic way.
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Chapter 6

Environmental Characterization

Environmental process and the products of human decision making that assume

discernable geographic patterns are actors on a landscape that exhibit behaviors

expressed as a function of time. The temporal dimension, while implied in most

remote sensing investigations, becomes explicit when concern is focused on the

question of change. Change is a familiar theme in the context of applied remote

sensing whether couched in terms of land cover, land use, or more specific environ-

mental conditions (Walker and Peters 2007; Berberoglu and Akin 2009). As a

concept, change is perhaps on the more intriguing subjects in science, if only

because its presence illustrates the fact that events do not simply occur in the

here and now, but along a continuum of constant flux and adjustment. The chal-

lenge to us is recognizing when change has occurred and connecting together the

myriad pathways and processes that conspired to produce a difference in the status

of the landscape that we now observe. Tracing the pathways followed to a changed

system is fundamentally more involved than the present looking backward into the

past with perfect knowledge, but the more complicated problem of projecting the

present into tomorrow.

At present, there is a sense of urgency regarding our environmental future.

However, the study of change begins much earlier with a detailed understanding

of the initial state of our environmental system. From this perspective, the status

and the active processes that define our environment are described and organized

into a framework that explains its present disposition and captures the dynamic

nature of those processes active in the landscape. Although the concept of change is

important to this discussion, the focus of this chapter is directed at this beginning

phase of our appreciation of change. For the purposes of our discussion, we can call

this point of beginning as the baseline phase in which the attention is restricted to

the current status of the environment and the identification of those attribute that

characterize the system. The questions we ask of our data are twofold and

interrelated:

1. How do we describe the qualities or peculiarities of the environmental system?

2. Which attributes mark or distinguish this system?

J.K. Lein, Environmental Sensing: Analytical Techniques for Earth Observation,
DOI 10.1007/978-1-4614-0143-8_6, # Springer Science+Business Media, LLC 2012
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In this chapter, we will examine the role satellite remote sensing plays in

answering these questions; exploring the methods and techniques that contribute

information to assist in the characterization of our environment, from the derivation

of environmental indicators to the incorporation of remotely sensed technology in

the implementation of environmental monitoring systems.

6.1 The Characterization Question

Environmental characterization may be defined as the systematic collection of

attributes describing the qualities that give distinction to a specific geographic

area. Measurement is an essential aspect of the characterization process and

methods that simplify procedures and enable rapid appraisal of the environment

can greatly benefit the characterization activities. The term “site characterization”

was introduced by the nuclear waste industry but has expanded over time to

describe a range of pursuits undertaken to gather hydrogeologic information,

guide design remediation, evaluation site restoration strategies, and support the

environmental impact assessment process (Cook 2006; Artiola et al. 2004). As an

investigative activity, characterization involves the collection, analysis, and inter-

pretation of data together with the application of the knowledge gained from that

data to evaluate the support of resource potential of a site. Typically, site charac-

terization examines natural phenomena and those human-induced conditions

important to the definition of the local environment through a combination of

sampling and monitoring activities (Kays 2000). The goal of characterization

procedures is to develop an operational concept of the site and to identify those

aspects of the area that influence both environmental functioning and the perfor-

mance of human constructions committed to that location.

The data needed to guide environmental characterization will vary, but tend to

explain the controlling variables that given the landscape its definition. These

natural factors are selected to describe the baseline against which change can be

evaluated. The idea of a “baseline” or beginning point is a central concept in

environmental characterization. We can think of baseline information addressing

two fundamental questions: (1) what is there, and (2) what does it mean. From a

basic accounting of the locale under consideration whose present disposition may

be poorly understood, characterization structures the salient environmental

variables into a “context” (Lein 2006). Therefore, to be useful, these natural factors

should aptly typify the environment, providing sufficient detail to inform and

demonstrate relevance to the motivating problem. The environmental attributes

that are critical to a site characterization may be placed into two broad categories

(Table 6.1). When viewed collectively the elements listed can be conceptualized as

a series of themes that relate and interact over time and area. A careful review of

Table 6.1 will reveal that some aspect of each of the attributes listed can be acquired

through remote sensing either directly as the product of image classification or

through the application of one or more environmental indicators designed to

identify the phenomena or explain trends that may not be readily perceptible.

136 6 Environmental Characterization



In some respects, we can think of environmental characterization as a type of

landscape inventory with a more directed and rigorous focus, where we wish to

document the opportunities, constraints, and sensitivities inherent to the landscape

to form a systematic understanding of the environmental system at both a synoptic

scale and a local scale.

From a remote sensing perspective, effective environmental characterization

depends on the selection of what to characterize and the methods required in

order achieving environmental understanding (Herold et al. 2006). Although the

selection problem will vary according to purpose, and in some instances may be

predetermined by policy directives, typically characterization is built around the

dominant or preeminent features of the landscape system. Given the multidimen-

sional nature of the environment, selection is no simple task; however, detailed

consideration is often shown to:

• Habitats found within or adjacent to the focus of interest

• Major cultural resources

• Major land uses and related land use activities

• Major geologic and geomorphic features

A more comprehensive listing is suggested in Table 6.2. Characterizing each of

the factors presented in the table usually demands a combination of mapping and

field data collection, which can limit the applicability of remote sensing technology

in some cases. However, for those variables that can be measured remotely, how

measurement proceeds becomes a critical next step in the process. The answer to

this procedural issue is closely related to the level of detail needed based on the

nature of the characterization problem. This level of detail in large part determines

the degree of spatial and spectral resolution that must be available to match this

fundamental data requirement. With specific reference to the required level of

Table 6.1 Environmental factors relevant to site planning and inventory

Natural elements

Physiography: slope, unique features

Geology: bedrock formations, faults, fractures, slumps, slips

Soils: type, composition, permeability, erosion potential

Hydrology: drainage systems, springs, seeps, wetlands

Vegetation: plant associations, unique communities

Wildlife: habitats

Climate: temperature, precipitation, wind flow, humidity, evaporation

Cultural elements

Transportation: roads, rail lines, airports

Utilities: oil, gas, electric, water networks

Structures and excavations: buildings, mines, dumps

Historical/archeological sites
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Table 6.2 Comprehensive listing of environmental characterization targets

A. Physical and chemical characteristics

1. Earth 3. Atmosphere

(a) Mineral resources (a) Quality (gases, particulates)

(b) Construction material (b) Climate (micro, macro)

(c) Soils (c) Temperature

(d) Landform 4. Processes

(e) Force fields and background radiation (a) Floods

(f) Unique physical features (b) Erosion

2. Water (c) Deposition (sedimentation, precipitation)

(a) Surface (d) Solution

(b) Ocean (e) Sorption (ion exchange, complexing)

(c) Underground (f) Compaction and settling

(d) Quality (g) Stability (slides, slumps)

(e) Temperature (h) Stress–strain (earthquake)

(g) Snow, ice, and permafrost (f) Recharge

(i) Air movements

B. Biological conditions

1. Flora 2. Fauna

(a) Trees (a) Birds

(b) Shrubs (b) Land animals including reptiles

(c) Grass (c) Fish and shellfish

(d) Crops (d) Benthic organisms

(e) Microflora (e) Insects

(f) Aquatic plants (f) Microfauna

(g) Endangered species (g) Endangered species

(h) Barriers (h) Barriers

(i) Corridors (i) Corridors

C. Cultural factors

1. Land use 3. Esthetics and human interest

(a) Wilderness and open spaces (a) Scenic views and vistas

(b) Wetlands (b) Wilderness qualities

(c) Forestry (c) Open space qualities

(d) Grazing (d) Landscape design

(e) Agriculture (e) Unique physical features

(f) Residential (f) Parks and reserves

(g) Commercial (g) Monuments

(h) Industrial (h) Rare and unique species or ecosystems

(i) Mining and quarrying (i) Historical or archeological sites and objects

2. Recreation (j) Presence of misfits

(a) Hunting 4. Cultural status

(b) Fishing (a) Cultural patterns (life style)

(c) Boating (b) Health and safety

(d) Swimming (c) Employment

(e) Camping and hiking (d) Population density

(f) Picnicking

(g) Resorts

(continued)
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Table 6.2 (continued)

5. Man-made facilities and activities

(a) Structures

(b) Transportation network (movement,

access)

(c) Utility networks

(d) Waste disposal

(e) Barriers

(f) Corridors

D. Ecological relationships

(a) Salinization of water resources (e) Salinization of surfacial material

(b) Eutrophication (f) Brush encroachment (g) Other

(c) Disease–insect vectors (g) Other

(d) Food chains

E. Modification regimes

1. Alterations 5. Land alteration

(a) Exotic flora or fauna introduction (a) Erosion control and terracing

(b) Biological controls (b) Mine sealing and waste control

(c) Modification of habitat (c) Strip mining rehabilitation

(d) Alteration of ground cover (d) Landscaping

(e) Alteration of ground-water hydrology (e) Harbor dredging

(f) Alteration of drainage (f) Marsh fill and drainage

(g) River control and flow codification 6. Resource renewal

(h) Canalization (a) Reforestation

(i) Irrigation (b) Wildlife stocking and management

(j) Weather modification (c) Ground-water recharge

(k) Burning (d) Fertilization application

(l) Surface or paving (e) Waste recycling

(m) Noise and vibration 7. Changes in traffic

2. Land transformation (a) Railway

(a) Urbanization (b) Automobile

(b) Industrial sites and buildings (c) Trucking

(c) Airports (d) Shipping

(d) Highways and bridges (e) Aircraft

(e) Roads and trails (f) River and canal traffic

(f) Railroads (g) Pleasure boating

(g) Cables and lifts (h) Trails

(h) Transmission lines, pipelines, and

corridors

(i) Cables and lifts

(i) Barriers, including fencing (j) Communication

(j) Channel dredging and straightening (k) Pipeline

(k) Channel revetments 8. Waste emplacement and treatment

(l) Canals (a) Ocean dumping

(m) Dams and impoundments (b) Landfill

(n) Piers, seawalls, marinas, and sea

terminals

(c) Emplacement of tailings, spoil, and

overburden

(continued)
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information content, remote sensing data collection and image processing can be

targeted at one of three geographic of details:

1. Reconnaissance level appropriate for describing regional scale patterns or

factors that explain “large-scale” regional trends

2. Mesoscale definitions oriented toward more generic inventory of variable at the

local level

3. Site-specific descriptions providing detailed analysis needed to guide citing

decisions and environmental impact concerns

The necessary features of the sensor to deliver data follow based on its ability to

supply measurement at the requisite level of discreteness (Table 6.3). A careful

review of Table 6.3 shows that sensor systems can be indentified that collect

measurements with a spatial precision sufficient in most instances to support

characterization objectives (Melesse et al. 2007). Transforming these raw spectral

measures into information that is meaningful to the characterization problem, calls

on the image analyst’s skills to generate customized information products from the

Table 6.2 (continued)

(o) Offshore structures (d) Underground storage

(p) Recreational structures (e) Junk disposal

(q) Blasting and drilling (f) Oil-well flooding

(r) Cut and fill (g) Deep-well emplacement

(s) Tunnels and underground structures (h) Cooling-water discharge

3. Resource extraction (i) Municipal waste discharge including spray

irrigation

(a) Blasting and drilling (j) Liquid effluent discharge

(b) Surface excavation (k) Stabilization and oxidation ponds

(c) Subsurface excavation and retorting (l) Septic tanks: commercial and domestic

(d) Well drilling and fluid removal (m)Stack and exhaust emission

(e) Dredging (n) Spent lubricants

(f) Clear cutting and other lumbering 9. Chemical treatment

(g) Commercial fishing and hunting (a) Fertilization

4. Processing (b) Chemical deicing of highways, etc.

(a) Farming (c) Chemical stabilization of soil

(b) Ranching and grazing (d) Weed control

(c) Feed lots (e) Insect control (pesticides)

(d) Dairying 10. Accidents

(e) Energy generation (a) Explosions

(f) Mineral processing (b) Spills and leaks

(g) Metallurgical industry (c) Operational failure

(h) Chemical industry

(i) Textile industry

(j) Automobile and aircraft

(k) Oil refining

(l) Food

(m) Lumbering

(n) Pulp and paper

(o) Product storage
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imagery. In the sections to follow several of the more commonly used remote

sensing techniques for deriving specialized information products germane

to environmental characterization are examined.

6.2 Classification as Characterization

Classification is an operation that seeks to organize observations into a set of

mutually exclusive and exhaustive categories based on one or more unifying

criteria. As a logical procedure the complexities of the landscape is simplified

and structured into new representations that improve communication and enhances

understanding. As we recall from Chap. 3, observations once arranged according to

a system of classification reveal patterns in the data, which can be expressed

geographically and compared over time. Within the context of environmental

characterization, the structure imposed by a classification system serves to identify

the presence of specific environmental phenomena, documenting their geographic

consequence and selecting their locations from the background clutter of the

landscape. The essential ingredient in this formula is the classification system we

select to use and its relationship between spectral measurement and the typology of

the constructs it embodies that organizes environmental features into categories.

Perhaps the best known example of a classification system designed exclusively

to organize spectral measurements into nominal information categories is the

Anderson–Hardy system developed for the United States Geological Survey

(Anderson et al. 1976). This method of land cover/land use classification serves

to illustrate a logic that translates spectral data obtained via supervised or unsuper-

vised image analysis into carefully defined classes. Based on the underlying

principle of descending levels of discreteness, this system moves from the general

categorization of broad land cover themes to increasingly more specific and

detailed definitions of land use. As a resolution-depended method, the spectral

data fall into informational classes that facilitate the representation of the biophysi-

cal qualities that explain the land surface (Table 6.4). Since its introduction over

four decades ago, other classification systems have been created to support general

land cover characterization needs. Representative examples include the national

vegetation classification system (NVCS) and the national land cover characteriza-

tion (NLCC) system (The Nature Conservancy 1994; Homer et al. 2004).

Table 6.3 Sensor resolution requirements for selected classification level

discreteness

Land use/cover Temporal (years) Spatial (m) Spectral

USGS Level 1 5–10 20–100 VIS–NIR

USGS Level 2 5–10 5–20 VIS–NIR

USGS Level 3 3–5 1–5 Pan–VIS–NIR

USGS Level 4 1–3 0.25–1 Pan
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While the nature of these classification systems differs, each recognizes the

important role land cover enjoys as an “index” of environmental conditions. Land

cover, as a focus of characterization, defines the observable, biophysical cover of the

Earth’s surface (Herold et al. 2006). Included in this definition are the vegetative and

human-made features that populate the landscape as well as the bare rock, exposed

soil, inland water surface, and other elements forming the landscape’s skin. Taken in

total, the status and arrangement of a land cover category becomes an important

indicator of underlying environmental process and existing ecological conditions.

Therefore, at this fundamental level, land cover is not just an observable element in a

characterization study, but an obvious and detectable signal of both natural process

and human interventions at the surface. At present, land cover characterization is

Table 6.4 General examples of land cover classes and their definitions

Class Definition

Developed

land

This class is composed of areas of intensive anthropogenic use. Much of the land is

covered by structures and impervious surfaces. Anderson et al. (1976) called

these areas “Urban or Built-up Land” although the definition clearly included

suburban and rural areas. Included in this category are cities; towns; villages;

strip developments along highways; transportation, power, and

communications facilities; and areas such as those occupied by mills, shopping

centers, industrial and commercial complexes, and institutions that may, in

some instances, be isolated from urban areas

Cultivated

land

Agricultural land used primarily for production of food and fiber. On high-altitude

imagery, the chief indications of agricultural activity will be distinctive

geometric field and road patterns on the landscape and the traces produced by

livestock or mechanized equipment

Grassland The grassland category includes lands covered by natural and managed herbaceous

cover. Grassland historically has been defined as land where the potential

natural vegetation is predominantly grasses, grass-like plants, and forbs, and

where natural herbivore was an important influence in its precivilization state.

Some grasslands have been or may be seeded to introduce or domesticate plant

species

Woody land The woody land class includes any species with an aerial stem that persists for more

than one season. The woody class is divided into three subclasses: 1.41,

deciduous; 1.42, evergreen; and 1.43, mixed

Bare land Bare land is composed of bare rock, sand, silt, gravel, or other earthen material with

little or no vegetation regardless of its inherent ability to support life.

Vegetation, if present, is more widely spaced and scrubby than that in the

vegetated categories. Unusual conditions, such as a heavy rainfall, occasionally

may result in a short-lived, luxuriant plant cover. Wet, nonvegetated exposed

lands are included in the wetland categories

Tundra Tundra is the term applied to the treeless cover beyond the latitudinal limit of the

boreal forest in poleward regions and above the elevation range of the boreal

forest in high mountains. The vegetative cover of the tundra is low and dwarfed

and often forms a continuous mat. Plant characteristics are an adaptation to an

extreme physical environment in which temperatures may average above

freezing only 1 or 2 months out of each year, strong desiccating winds may

occur, great variation exists in solar energy, and permafrost is ubiquitous

beneath the surface
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hampered by the absence of mapping standards, and none of the current systems of

land cover classification have gained international acceptance (Di Gregorio and

Jansen 2000). The emergence of the land cover characterization system (LCCS)

method may move the characterization issue closer toward a standard solution. The

LCCS is a comprehensive a-priori classification system containing systematic and

strict class boundary definitions, yet it maintains important flexibility to meet a

variety of user needs (DiGregorio 2005).

As noted in Di Gregorio and Jansen (2000), the classification uses a set of

independent diagnostic criteria that allow correlation with existing classifications

and legends. Land cover classes are defined by a combination of a set of indepen-

dent diagnostic criteria that are hierarchically arranged to assure a high degree of

geographical accuracy. Because of the heterogeneity of land cover, the same set of

classifiers cannot be used to define all land cover types. The hierarchical structure of

the classifiers may differ from one land cover type to another. Therefore, the

classification has two main phases:

• An initial dichotomous phase, where eight major land cover types are

distinguished

• A subsequent modular-hierarchical phase where the set of classifiers and their

hierarchical arrangement are tailored to the major land cover type

The classification system leads to mutually exclusive land cover classes, which

comprise of: (1) a unique Boolean formula (a coded string of classifiers used); (2) a

standard name; and (3) a unique numerical code. Both the numerical code and

standard name can be used to build an automatically generated legend, with the

classes created grouped according to the main land cover categories and their

domains according to the level of detail. The nomenclature can be linked to a

user-defined name in any language.

Further, the definition of the land cover class can be achieved by adding

attributes. Two types of attributes, which form separate levels in the classification,

are distinguished:

• Environmental attributes: These are attributes (e.g., climate, landform, altitude,

soil, lithology, and erosion) which influence land cover but are not inherent

features of it and should not be mixed with “pure” land cover classifiers.

• Specific technical attributes: These are associated with specific technical

disciplines (e.g., for (semi-)natural vegetation, the floristic aspect can be

added; for cultivated areas, the crop type; and for bare Soil, the soil type).

The advantages of the classifier approach are found in its highly flexible

approach in which each land cover class is clearly and systematically defined,

providing essential internal consistency. In addition, the system is truly hierarchical

and applicable at a variety of scales. Rearrangement of the classes based on

regrouping of the classifiers used facilitates extensive use of the outputs by a

wide variety of end users. Also, accuracy assessment of the end product can be

generated by a class or by the individual classifiers forming the class, and all land

covers can be accommodated in this highly flexible system. An overview of the

LCCS (DiGregorio 2005) is given in Fig. 6.1. Applying this system produces land
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cover mapping results that identify biophysical surface types as measurement

endpoints whose values quantify key environmental relationships moving land

cover into the status of an indicator.

6.3 Indicator Science

Environmental indicators are instruments designed to quickly and easily inform a

target audience about the status of an object of interest (Lein 2004). When

abstracted from remotely sensed data, indicators serve to communicate information

about environmental conditions and, over time, about significant changes and

trends that are actively reshaping the landscape (National Research Council

2000). Communication is perhaps the most important function of an indicator,

and to be effective in this role, an indicator should enable or promote information

exchange regarding the characteristics it has been designed to address (Smeets and

Weterings 1999). Because the effective communication requires simplicity, useful

indicators strive to reduce the complexity of a specific condition or situation by

focusing attention on those aspects of the environment that are considered to be the

most relevant. In relation to the goals of environmental sensing, indicators serve

three critical functions:

1. They supply information on the status and condition of the environment.

2. They support management and policy decision making.

3. They facilitate monitoring of critical environmental thresholds.

Therefore, by developing indicators and observing their spatio-temporal varia-

tion, our ability to identify environmental problems as they evolve is greatly

improved. Acquiring the data to capture and clearly illuminate changes in environ-

mental functioning can be problematic (Noss and Cooprrider 1994). This reality

emphasizes the importance of selecting the appropriate indicator to meet the

challenges of the environmental problem under investigation. To be effective as

means of analysis and inquiry, an environmental indicator must possess certain

traits; that not only determine its applicability to a problem, but also its scientific

validity (Lein 2004; Hammond 1995; Kogan 1995). Several of the more critical

attributes that influence the selection of an indicator include (Riley 2000; Dale and

Beyeler 2001):

• General relevance – Consideration of relevance helps to determine how well the

indicator characterizes the environment and facilitates the definition of process

and change.

• Conceptual integrity – Integrity speaks to the overarching rationale, which may

be theoretical or practical, that supports and justifies the use of the indicator.

• Reliability – Focus of reliability centers around the question of how successful

using the indicator will be now and over time, and the level of explanation that

can be delivered based on its use.
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• Scale appropriateness – Scale directs our attention to the ability of the indicator
to detect the desired environmental quality at the appropriate temporal and

spatial scale as dictated by the problem or purpose.

• Statistical sensitivity – Sensitivity relates to the level of measurement precision

and accuracy that can obtained from the indicator as well as the level of

confidence that can be ascribed to the results it produces when applied.

• Robustness – Focusing on the potential of the indicator to produce consistent

results under a range of external conditions and environmental perturbations,

robustness directs a selection to look critically at those factors that influence its

capacity to deliver useful measures of the environment.

In a purely pragmatic sense, relevance ultimately narrows down to the

indicator’s ability to quantify and simplify information in a cost-effective manner

(Babu and Reidhead 2000; Landres 1992). With these basic considerations kept in

mind, criteria can be offered to guide indicator selection in a systematic way

(Niemeijer and deGroot 2008). Several of these criteria more pertinent to environ-

mental remote sensing are given in Table 6.5.

Once an indicator has been chosen, the main concern surround its use within the

context of environmental analysis tends to be conceptual in nature. As noted in our

discussion previously, an environmental indicator must be sufficiently complete to

capture key expressions of process without becoming overly complex. We can draw

on a conceptual model to enhance our understanding of the environmental system in

which indicators, as surrogates for more complicated actors, can be connected to a

process-oriented view of the landscape. One useful model that offers a lucid

framework to achieve this linkage is expressed in the DPSIR model (Fig. 6.2).

The DPSIR model is a causal framework for describing the interactions between

Table 6.5 Criteria to guide indicator selection

A clear representation of the indicandum (the indicated issue) by the indicator

A clear proof of relevant cause–effect relations

An optimal sensitivity of the representation

Information for adequate spatio-temporal scales

A very high transparency of the derivation strategy

A high degree of validity and representativeness

A high degree of comparability in and with indicator sets

An optimal degree of aggregation

A good fulfillment of statistical requirements concerning verification, reproduction, and validity

Information and estimations of the normative loadings

High political relevance concerning the decision process

High comprehensibility and public transparency

Direct relations to management actions

An orientation towards environmental targets

A high utility for early warning purposes

A satisfying measurability

A high degree of data availability

Information on long-term trends of development
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society and the environment. This framework, developed by the European Envi-

ronment Agency adopts a systems view of environmental process, simplifying

process and change as a function of the interaction among five main components:

• Driving forces

• Pressures
• States
• Impacts

• Responses

Applying this model in an environmental sensing application structures the need

for information and concentrates the selection of indicators on:

• The identification and monitoring of driving forces

• The resulting environmental pressures

• The baseline state of the environmental system

• The impacts resulting from changes in the environmental functioning and quality

• The societal response to environmental change

Ideally environmental indicators are called on to capture each element of this

casual network. In this manner, the DPSIR framework becomes a useful device for

both describing the relationships between the origins of an environmental problem

and its consequences.

A typology of indicators has been offered by Smeets and Weterings (1999) that

can assist both the selection problem and integrate chosen indicator into the DPSIR

framework. Although simple, the typology is appealing because it relates the

indicator to type of information it provides for a given environmental situation.

According to this typology the initial class of indicators, Type A, is purely descrip-

tive in nature. Information obtained from these metrics address the general

questions of “what is happening to the environment and human populations.”

Descriptive indicators of this type can be refined further into four subcategories:

1. Driving force indicators – describing social/demographic forces that

provoke changes in the production or consumption of resources that exert

pressure on the environment

Fig. 6.2 Depiction of the

DPSIR model
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2. Pressure indicators – define specific physical and biological agents as well as

land and resource use that contribute emissions and releases

3. State indicators – express the quantity and quality of physical, biological, and

chemical phenomena such as temperature or carbon dioxide concentrations

4. Response indicators – identify how groups and individuals respond to or adapt to

changes in the state of the environment

Type B indicators refer to those metrics designed to evaluate performance.

A performance indicator compares actual conditions to a specific set of reference

conditions. Through the use ofperformance indicators thedifference between the actual

condition, the reference state, and thedesired state canbemeasured and assessed. In this

way, progress toward specific goals or policy objectives can be evaluated. Performance

indicators can be based on a variety of reference conditions, but typically involve policy

targets established by national or international instruments. Type C indicators define

metrics that measure effectiveness. Efficiency indicators address the broad question:

“arewe improving,”while the last category in this typology,TypeD indicators, explains

metrics designed to measure improvements in total welfare.

6.4 Environmental Indicators and Transforms

Recognizing that many physical and human elements of the environment can be

measured using remote sensing, satellite technology plays a vital role in the

development and application of indicators. The range of indices derived from the

remotely sensed data is impressive and continue to expand as new sensor systems

are introduced and as indicator science progresses. Satellite-derived indicators that

support the environmental characterization problem fall into four general

categories: (1) vegetation transforms, (2) landscape metrics, (3) customized band

ratios, and (4) statistical approximations.

6.4.1 Vegetation Transform

A vegetation transform is an index derived from important spectral characteristics

of vegetation. The index is a quantitative measure generated by an algebraic

combination of specific spectral bands that define a relationship to the status of

vegetation in a pixel. This summary value forms an expression of vegetation

biomass or plant vigor, serving as an indicator of those environmental qualities

that influence ecosystem vitality, and is often used as a surrogate of climate and

other environmental factors that affect ecosystem conditions. Vegetation trans-

forms are supported by empirical evidence that suggest that the cells in plant leaves

are effective at scattering electromagnetic radiation. Scattering at the level of the

leaf is due to the high contrasts in refraction between water-rich cells and intercellular

air spaces. When viewed spectrally vegetation appears dark in the visible portion of
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the spectrum (0.4–0.7 mm) resulting from the high absorption of energy by leaf

pigments, such as chlorophyll, proto-chlorophyll, and xanthophylls. In the green

portion of the spectrum, reflectivity increases since these pigments are less absorp-

tive. Consequently, when examined within the 0.7–1.3 mm portion of the spectrum,

plant material appears bright since absorption is weaker and scattering increases.

Beyond 1.3 mm to approximately 2.5 mm vegetation appears dark once again primar-

ily the result of leaf water, cellulose, and lignin absorption. From this comparatively

simple relationship, one can infer that any internal or external influence that modifies

water in the leaf, cellulose production, and the presence of plant pigments will be

detectable owing to changes in the patterns of absorption and reflectance they

produce. Therefore, vegetation transforms are proportional to the value of key

biophysical parameters, such as leaf area (as quantified by the leaf area index,

LAI), green vegetation fraction, net primary productivity, and the fraction of

absorbed photosynthetically active radiation. Drawing on these parameters, vegeta-

tion transforms poses the capacity to characterize the structure and dynamics of

ecosystem; a capability that has been well documented in the remote sensing litera-

ture (Xie et al. 2008; Nagler et al. 2001). A selection of commonly applied vegetation

transforms is given in Table 6.6.

Although this topic remains an active area of research, a selective review of

vegetation transforms permits us to examine their utility to the task

of environmental characterization is more detail. This cursory review focuses on

the normalized difference vegetation index (NDVI), the Kauth–Thomas transform,

and the leaf area index (LAI).

1. The Normalized Difference Vegetation Index (NDVI) – The NDVI dates to the

early work introduced by Kriegler et al. (1969) and Rouse et al. (1974).

Table 6.6 Selected vegetation transforms

Vegetation index Defining equation

Band ratio (RATIO) (NIR/RED)

Normalized difference vegetation index

(NDVI)

(NIR � RED)/(NIR + RED)

Transformed vegetation index (TVI) (NDVI + 0.5)0.5

Infrared percentage vegetation index (IPVI) NIR/(NIR + RED)

Perpendicular vegetation index (PVI) [NIR � a1(RED) � a0]/[1 + (�a1)(0.5)]

Soil-adjusted vegetation index (SAVI) [(NIR � RED)/(NIR + RED + L)] � (1 + L)

Transformed soil-adjusted vegetation index

(TSAVI)

a1[NIR � a1(RED) � a0]/
[RED + a1(NIR) � a1�a0]

Modified soil-adjusted vegetation index

(MSAVI)

(2NIR + 1 � [(2NIR + 1)2 � 8(NIR � RED)]

0.5)/2

Difference vegetation index (DVI) NIR � RED

Renormalized difference vegetation index

(RDVI)

(NDVI � DVI)0.5

Weighted difference vegetation index (WDVI) NIR � a1 � RED

NIR, crop reflectance in the near infrared band (TM4); RED, crop reflectance in the red band

(TM3); L, constant (taken as 0.5), and a0, a1 are the intercept and slope of the soil line, respectively
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This index is calculated based on the interaction between the visible and near-

infrared portion of the electromagnetic spectrum as reflected by vegetation

(Fig. 6.3). According to this relationship, healthy vegetation absorbs most of

the incident energy in the visible wavelengths and reflects a large portion of

energy in the near-infrared bands. The NDVI captures this relationship and,

because of the ratioing involved in its calculation, the index tends to reduce

several sources of noise in the imagery that originates from variations in solar

illumination, cloud shadow, and topography. The index is calculated based on

the formula:

NDVI ¼ ðNIR� REDÞ ðNIRþ REDÞ= ;

where NIR stands for spectral measures acquired in the near-infrared region of

the spectrum, and RED explains spectral measures taken within wavelengths

defining the red portion of the spectrum. The spectral reflectances are ratios of

Fig. 6.3 An NDVI image
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the reflected over incoming radiation in each spectral band. Typically values of

this ratio assume values between �1.0 and +1.0. Although the index is dimen-

sionless, NDVI values for dense vegetation tend to migrate toward positive

values from 0.3 to 0.8 whereas barren or snow covered surfaces display NDVI

values in the negative range below 0.0.

There are several noteworthy derivations of the NDVI formula. Three of

the more common ones include:

(a) Transformed Vegetation Index (TVI) – Introduced by Deering et al. 1975, the
TVI was created by adding a constant to the NDVI and taking the square root

such that:

TVI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNDVIþ 0:5Þ

p

Which avoids problems related to negative values, even though negative

values may still result at NDVI ¼ �0.5. In general, a TVI� 0.71 indicates a

nonvegetated surface.

(b) Soil-Adjusted Vegetation Index (SAVI) – Developed by Huete 1988, the

SAVI is designed to minimize the effects of soil background noise by

introducing a soil adjustment factor (L) such that:

SAVI ¼ [(NIR� Red)=(NIRþ Red)þ I]� ð1þ LÞ;

where L ranges from 1.0 for low density vegetative cover to values of 0.25

for densely vegetated surfaces.

(c) Enhanced Vegetation Index (EVI) – An optimized index designed to enhance

the vegetation signal by improving sensitivity to high biomass, reducing

canopy background noise, and atmospheric influences. The EVI is computed

from the formula:

EVI ¼ 2:5� [(NIR� red)=NIRþ C1 � Red� C2 � Blueþ LÞ�;

where NIR, Red and Blue are the atmospherically correct surfaces reflectance

in the near-infrared, red and blue bands, respectively, L is the canopy back-

ground adjustment factor, and C1 and C2 are aerosol resistance coefficients.

In most applications of the EVI, the parameters used for calculating the index

are: L ¼ 1, C1 ¼ 6, C2 ¼ 7.5, and G, a gain factor is usually set to 2.5.

2. Kauth–Thomas Transform – It is commonly referred to as the Tassle-

cap transformation (Kauth and Thomas 1976). The Tassle-cap transformation

converts multispectral data into a new set of characteristics that correspond to

physical conditions at the surface (Fig. 6.4). Specifically, this transform

produces four vegetation indices:

(a) The Brightness Indicator – a metric forming out of the weighted sum of all

bands and describes the principal variation in soil reflectance.
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(b) The Greenness Indicator – an index that exploits the contrast between

the NIR and the visible bands, serving as a measure of the density of

green vegetation.

(c) The Wetness Indicator – a measure that explains the pattern of canopy and

soil moisture due to contrasts between short-wave infrared and visible/near

infrared reflectance.

(d) Haze – an index that essentially expresses noise.

Although originally developed for use with Landsat MSS data, the

Kauth–Thomas transform has been extended to other satellite systems including

Landsat TM, ASTER and IKONOS. Regardless of platform, this transform

projects soil and vegetation through a linear combination of bands. Successful

application, however, depends on careful calibration information for the sensor

(Kaufman and Tanre 1992).

3. Leaf Area Index (LAI) – The LAI expresses an important structural property of a

plant canopy; the number of equivalent layers of leaves the vegetated surface

displays relative to a unit ground area. Because leaves are the fundamental

Fig. 6.4 A Tassle-cap greenness surface
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photosynthetic organs of vegetation, LAI is a useful indicator of carbon dioxide

release, interception, net photosynthesis, volume growth, and light penetration

through the canopy (Jensen and Binford 2004; Zheng and Moskel 2009). In the

majority of applications, LAI is estimated based on a combination of field

measurement and statistical methodologies using regression analysis to establish

the statistical fit between field-collected samples of LAI and selected spectral

bands from the sensor system. For example, in a study of urban LAI for Terra

Haute, Indiana, Jensen and Hardin (2005) found the relation:

LAI ¼ 3:99� ðGreen=RedÞ þ 0:02� IR� 7:10;

which produced a suitable estimator using the Aster SWIR imagery. Other

approaches involved deriving LAI from vegetation indices. One example of

this alternative solution uses the soil-adjusted vegetation index (SAVI) (Schultz

and Engman 2000). According to this approach, LAI is found using the formula:

LAI ¼ �ln(SAVI ¼ 0:371Þ=0:48:

6.4.2 Landscape Metrics

Environmental characterization is often concerned with understanding the structure

and function of landscapes and how these two qualities change in response to

internal and external forces. As fundamental descriptions of landscape pattern,

the relationship between structure and function strongly influence ecological pro-

cesses, biotic abundance, and diversity (Herold et al. 2002). From an analytical

perspective, changes in landscape structure alter landscape function and vice-versa.

Therefore, a fundamental understanding of the dynamic interactions that form

between their two attributes of the environmental system is an essential ingredient

of effective environmental planning and management strategies. Characterizing the

main structural elements and the fluxes or processes that dominate is central to the

definition of landscape function. In practical terms, establishing this relationship

also helps illuminate the ecological consequences of human actions on the land

surface, serving as integrative indicators of ecological sustainability (Helming et al.

2008; Renetzeder et al. 2010).

The concept of a landscape metric refers exclusively to indicators developed

from categorical map patterns. Metrics, taken from the spatial arrangement of

thematic data, are essentially algorithms that quantify geographic characteristics

of pattern, focusing on either the composition of the map without reference to

spatial attributes or the spatial configuration of the map based on the specific

arrangements and juxtaposition of map categories. As a characterization device,

landscape metrics concentrate attention on the geometric and geographic properties

6.4 Environmental Indicators and Transforms 153



of categorical map patterns at a specific scale of reference (Frohn and Hao 2006).

Three important levels of metric quantification can be noted:

1. Patch-level Metrics – which are defined for individual patches, and characterize

the spatial character and context of the landscape patches

2. Class-level Metrics – which are integrated over all the patches of a given type or
category

3. Landscape-level Metrics – which are integrated over all patch types or categories
across the full extent of the landscape (scene). This can be further subdivided

into eight measurement groupings:

(a) Area/density/edge metrics

(b) Shape metrics

(c) Core area metrics

(d) Isolation/proximity metrics

(e) Contrast metrics

(f) Contagion/interspersion metrics

(g) Connectivity metrics

(h) Diversity metrics

A detailed listing of the available metrics arranged according to measurement

group is given in Table 6.7. These metrics are carefully reviewed and extensively

described by McGarigal and Marks (1995). A suite of improved landscape metrics

that are independent of the characteristic variations inherent to remotely sensed

imagery has been introduced by Frohn (1998). These together with the landscape

metrics listed in Table 6.7 demonstrate that the list of available metrics is extensive.

However, studies have shown that many of these measures are highly correlated

with one another, and therefore, their use becomes redundant (Riitters et al. 1995;

Cushman et al. 2008). A core set of landscape metrics useful for landscape analysis

and environmental monitoring/characterization can be offered (Boteguilha and

Ahern 2002; Schindler et al. 2008). This core selection includes the following:

• Diversity – expressed according to

H ¼ �sum½ p� ln ðpÞ�;

where p is the proportion of each class in the kernel.

• Dominance – a metric calculated according to the formula:

D ¼ Hmax � H;

where H is a measure of diversity, and Hmax is the maximum diversity based on

the natural logarithm of the number of different classes present in the kernel.

• Fragmentation – expressed according to:

F ¼ ðn� 1Þ=ðc� 1Þ
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Table 6.7 Comprehensive listing of available landscape metrics

Type Metric

Area/density/edge Patch area

Patch perimeter

Radius of gyration (patch)

Total area (class)

Percentage of landscape

Number of patches

Patch density

Total edge

Edge density

Landscape shape index

Normalized landscape shape index

Largest patch index

Patch area distribution

Radius of gyration distribution (class)

Total area (landscape)

Number of patches

Patch density

Total edge

Edge density

Landscape shape index

Largest patch index

Patch area distribution

Radius of gyration distribution

Shape Perimeter–area ratio (patch)

Shape index

Fractal dimension index

Linearity index

Related circumscribing circle

Contiguity index (patch)

Perimeter–area fractal dimension (class)

Perimeter–area ratio distribution

Shape index distribution

Fractal index distribution

Linearity index distribution

Related circumscribing circle distribution

Contiguity index distribution (class)

Perimeter–area fractal dimension (landscape)

Perimeter–area ratio distribution

Shape index distribution

Fractal index distribution

Linearity index distribution

Related circumscribing circle distribution

Contiguity index distribution (landscape)

Core area Core area (patch)

Number of core areas

Core area index

(continued)
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Table 6.7 (continued)

Type Metric

Average depth index

Maximum depth index (patch)

Total core area (class)

Core area percentage of landscape

Number of disjunct core areas

Disjunct core area density

Core area distribution

Disjunct core area distribution

Core area index distribution (class)

Total core area (landscape)

Number of disjunct core areas

Disjunct core area density

Core area distribution

Disjunct core area distribution

Core area index distribution (landscape)

Isolation/proximity Proximity index (patch)

Similarity index

Euclidean nearest-neighbor distance

Functional nearest-neighbor distance (patch)

Proximity index distribution (class)

Similarity index distribution

Euclidean nearest-neighbor distance distribution

Functional nearest-neighbor distance distribution (class)

Proximity index distribution (landscape)

Similarity index distribution

Euclidean nearest-neighbor distance distribution

Functional nearest-neighbor distance distribution (landscape)

Contrast Edge contrast index (patch)

Contrast-weighted edge density (class)

Total edge contrast index

Edge contrast index distribution (class)

Contrast-weighted edge density (landscape)

Total edge contrast index

Edge contrast index distribution (landscape)

Contagion/interspersion Percentage of like adjacencies (class)

Clumpiness index

Aggregation index

Interspersion and juxtaposition index

Mass fractal dimension

Landscape division index

Splitting index

Effective mesh size (class)

Percentage of like adjacencies (landscape)

Contagion

Aggregation index

Interspersion and juxtaposition index

(continued)
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with n representing the number of classes present in the kernel, and c the number

of cells directing the calculation (9, 25, or 49).

• Relative richness – determined by the equation:

R ¼ n nmax � 100= ;

where n is the number of different classes present in the kernel, and nmax is the

maximum number of classes in the scene.

• Fractal dimension – computed over the entire surface using a moving window

operation typically set to a 3 row by 3 column design, fractal dimension is found

using the formula:

Line Square Cube

¼ logN^1= logN
¼ 1� logN= logN

¼ logN^ 2= logN
¼ 2� logN= logN

¼ logN^ 3= logN
¼ 3� logN= logN

D ¼ 1 D ¼ 2 D ¼ 3

As a general rule of thumb, it is often necessary to employ more than one metric

to characterize the landscape. The rational for this is simple; the observation that

one number does not adequately explain the pattern in sufficient detail. When

selecting metrics for the purposes of environmental characterization, choice should

be given to those that are relatively independent of one another and center on those

Table 6.7 (continued)

Type Metric

Landscape division index

Splitting index

Effective mesh size (landscape)

Connectivity Patch cohesion index (class)

Connectance index

Traversability index (class)

Patch cohesion index (landscape)

Connectance index

Traversability index (landscape)

Diversity Patch richness (landscape)

Patch richness density

Relative patch richness

Shannon’s diversity index

Simpson’s diversity index

Modified Simpson’s diversity index

Shannon’s evenness index

Simpson’s evenness index

Modified Simpson’s evenness index (landscape)

6.4 Environmental Indicators and Transforms 157



measures that facilitate detection of ecologically meaningful landscape properties.

Detection will also be enhanced by insuring that: (1) the resolution of the image is at

least two times smaller than the spatial features to be analyzed, and (2) the extent of

the image exceeds the largest patch visible in the scene.

6.4.3 Customized Band Ratios

Although frequently used as an image enhancement technique, band ratios can also

be employed to produce specialized results that give prominence to unique features

or materials in a remotely sensed image. Through carefully selected ratios distinc-

tive gray tones can be produced that highlight desired characteristics at the surface

preserving unique information and subtle spectral-reflectance or color differences

between surface materials that are often difficult to detect in a standard image. The

general form of a customized band ratio follows the formula:

BVi;j;ratio ¼ BVi;j;k

BVi;j;l
;

where

BVi,j,k is the original input brightness value in band k,
BVi,j,l is the original input brightness value in band l, and
BVi,j,ratio is the ratio output brightness value.

The number of possible ratio combinations for a multispectral sensor with

P bands can be determined from:

n ¼ PðP� 1Þ:

For example, using the six reflectance bands of the Landsat TM, there are 30

different ratio combinations, 15 original and 15 reciprocal; and based on these

possible combination, certain surface characteristics can be discovered. In a study

based on the use of Landsat MSS data, Avery and Berlin (1992) identified ratios for

depicting soil and rock units (shown by band 1/band 2, band 1/band 4, band 2/band

4, and band 3/band 4), vegetation (shown by band 3/band 1, band 3/band 2, band 4/

band 1, and band 4/band 2), and the ratio band 2/band 3 and band 3/band 2 to

differentiate between vegetated areas and rock and soil units, whereas a band 3/

band 1 ratio derived from Landsat TM produces a resulting image that emphasizes

features that are red or orange in color. These examples illustrate that ratios can be

discovered that are useful for maximizing the visibility of unique spectral differ-

ence. However, the utility of a spectral ratio depends on the reflectance

characteristics of the features under investigation and their abundance relative to

other surface cover types in the scene.
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A ratio can discriminate subtle spectral variations that might otherwise be

masked by brightness differences. The two factors that influence a ratio’s power

of discrimination are the spectral properties of the surface and the material abun-

dance of the object or feature composing the scene. Since any ratio image will

portray the variation in the slopes of the spectral reflectance curves between two

bands, regardless of their absolute reflectance values, an effective ratio will exploit

the difference in the spectral curves for the materials or surface arrangements we

wish to characterize. When crafting a band ratio the numerator is typically the band

where the material of interest is highly reflective and the denominator defines the

band that describes an absorption feature of that material. For example, surface

types with a high abundance of iron oxide tend to reflect more strongly in band 3 of

the Landsat TM than in band 1; therefore, a band 3/band 1 ratio provides a means to

identify iron oxides in an image. Similarly, other ferrous minerals can be detected

using a Landsat TM band 5/band 4 ratio. Surfaces with a high clay mineral

abundance display strong reflectance in band 5 than in band 7, which enables a

Landsat TM band 5/band 7 ratio to highlight their occurrence in the image. A

variety of band ratio combinations have been introduced for applications ranging

from water quality assessment to geologic prospecting. Consulting ratios published

in the remote sensing literature can simplify the band ratio selection problem and,

with some modification, support environmental characterization requirements.

However, caution should be exercised when interpreting ratioed image. In some

circumstances materials with different radiances, but similar spectral reflectance

curves are encountered. When ratios are produced these instances, surface types

appear identical even though their constituent materials are not the same. Noise can

also degrade the quality of a ratio which will require careful noise removal before

any computations are attempted.

6.4.4 Statistical Estimation

Statistical estimation describes the general procedure whereby a material or surface

feature is identified as a function of a set of spectral patterns or measurements. This

functional relationship can be expressed as

Si ¼ f ðR1;R2;R3 . . . ;RnÞ

Where Si is the surface type or condition of interest and R is a reflectance value or

ration combination from the sensor. Estimating the functional form of this relation-

ship implies either a type of prediction where a known characteristic of (S) helps to
fit a model to explain the observed pattern or where quality (S) forms out of the

linear combination of reflectance values. In the first example, characterization

follows the logic of regression analysis and its multivariate extension whereas in

the second case we can employ factor analysis or principle component analysis to

identify a construct from the data that explains the observed condition (S).
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1. Regression estimation – Baseline characterization based on regression analysis

follows a multivariate logic that seeks to model the pattern or status of a

landscape variable according to a series of predictor variables measured over

the range of wavelengths that define the image. These wavelengths can be

individual reflectance bands and/or band ratios selected to highlight specific

surface features. By acquiring a value from field collected samples of the target

condition, the attempt is made to fit a model that explains the variance exhibited

by that sample. The statistical model is then used to characterize the pattern of

the condition over the remainder of the scene or to derive a predictive algorithm

that can be employed to identify and quantify the expressed condition over time.

To illustrate this approach to remote environmental appraisal, consider the

characterization problem where the goal is not to simply identify a material in

the image, but to relate spectral measures of that material to a quantified estimate

of its value or concentration in a medium (i.e., soil or water). Concentration

could be focused on algae in a lake, pH levels in a soil, or a contaminant

introduced by human activities on the land surface or in a body of water. In

each instance, the underlying hypothesis and defining assumption is that there

are detectable differences in the reflectance values for that medium that may be

attributed to the presence of or variation in the concentration or amount of a

given substance. Thus, the observed difference in the quality of a rangeland, as

evidenced by brightness contrasts in the image, is a function of differential

values of pH in the soil, or in the example of water quality, the heightened

presence of an invasive aquatic plant is an assumed function of elevated water

temperature. Testing either of the two hypotheses using the regression estima-

tion approach would follow a carefully scripted seven phase procedure

(Fig. 6.5).

(a) Field data collection – A field campaign is conducted to sample the medium

of interest to derive concentrations or values of the target variable of interest.

Field data collection phase concentrates on the sampling design and timing

of the field campaign in a manner that is sensitive to the variable of interest.

Seasonal and logistical considerations drive this phase as does the larger

issue of selecting the appropriate sensor system to insure that field data

collection is coordinated to correspond with sensor overpass dates.

(b) Satellite data acquisition – Remote sensing data acquisition based on the

coordination of field sampling efforts with sensor overpass of the sample site

builds on the spatial and spectral resolution considerations, adding repeat

coverage cycles and image quality constraints into the procedure. The effort

to coordinate field data collection is to control for scene/reflectance contrasts

and external environmental influences that might contaminate the statistical

model. Determining optimal time/date periods for reliable data collection

and valid statistical analysis is complicated by satellite repeat cycles and

local weather conditions. In the absence of coordinate data acquisition,

temporal matching is needed to identify imagery that closely corresponds
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to the scene and environmental conditions that existed when field sampling

took place.

(c) Sample registration – Registration requires establishing geographic refer-

ence between sample site locations taken in the field and their corresponding

locations in the remotely sensed image. Through the use of GPS, the

geographic position of filed sample sites can be noted, giving each sample

site measurement value an (X, Y) coordinate in a standard geographic

referencing system such as latitude/longitude. Once registered to a geo-

graphic reference system, the field samples can be projected onto a digital

base map and used as an overlay coverage to sample the pixels in the

geometrically corrected image.

Fig. 6.5 The method of

regression estimation
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(d) Image sampling – Following a procedure analogous to the sampling strategy

used when conducting a thematic accuracy assessment, the field locations

serve to identify pixel locations from which the required reflectance values

are to be taken. At each pixel location, spectral measurements are extracted

from the scene and used to create a data file for statistical analysis. The

format of this file may be purposely kept simple as suggested in Table 6.8.

Additional terms, such as band ratios can be added using basic spreadsheet

functionality.

(e) Model building – Using the data file of field sampled data (Y) and the

independent variables extracted from the imagery (X), statistical model

building can proceed. Although the statistical test selected may vary, in the

majority of applications the precise form of functional relationship is uncer-

tain and the exact contribution of each independent variable (spectral mea-

sure) in the model is unknown. Obtaining a parsimonious solution under

these conditions relies on the application of stepwise multiple regression or a

similar algorithm. Stepwise regression allows variables to enter or exit the

model based on their degree of fit. This facility can be an important advan-

tage when developing a sound predictive model. By stepping in or removing

a spectral measure, the contribution of a variable to the overall fit and

explanatory power of the model can be examined. The variables that remain

in the relationship become those that best characterize the pattern of the

condition under investigation.

(f) Model testing – A statistically significant model that explains sufficient

variations of the dependent variable can be employed to identify and

quantify surface conditions elsewhere over the image or applied more

universally over time. With a robust model, periodic site evaluations and

measurements that may be acquired from remotely sensed sources are used

in a characterization study.

(g) Implementation – The final step in this solution is to put the model to work in

an applied setting whether in place of traditional field sampling or as an early

warning indicator that helps to prioritize more detailed field inspections.

Table 6.8 Simple tally matrix

As classified

Urban Forest Agriculture Grassland Water Total

As sampled

Urban 12 4 0 0 1 17

Forest 0 0 0 1 0 1

Agriculture 0 0 0 0 0 0

Grassland 0 2 0 3 0 5

Water 0 2 0 1 4 7

Total 12 8 0 5 5 30
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2. Image-based constructs – Factor analysis and related data reduction methods are

statistical techniques used to describe variability among the observed variables

(Byrne et al. 1980; Bierman et al. 2011). In statistical modeling factor analysis is

frequently used to analyze interrelationships among a large number of variables

and to explain these variables in terms of their common underlying dimensions

(factors). Factor analysis is also used to verify the analyst’s conceptualization of

a construct of interest. These constructs are hidden in the data and form from the

unique linear combination of a set of explanatory variables selected for analysis.

To illustrate its use in remote sensing, consider the example of “degraded” land.

The term “degraded” is a construct that we might understand but find difficult to

measure in absolute terms. In our imagery, we observe distinct variations in

spectral response across the landscape. Is it possible to identify areas that are

“degraded” based on the observed patterns of spectral response in our imagery?

The underlying hypothesis guiding us is that variations in three or more observed

spectral bands (or band combinations) explain the variations in a single unob-

served variable; “degraded” land. Factor analysis searches for such joint

variations in response to the unobserved latent variable. The observed variables

are modeled as linear combinations of the potential factors, plus an error term.

Mathematically, the factor analysis model is often expressed algebraically as:

Y1 ¼ a11F1 þ a12F2 þ � � � þ a1mFm;
Y2 ¼ a21F1 þ a22F2 þ � � � þ a2mFm;
Y3 ¼ a31F1 þ a32F2 þ � � � þ a3mFm;
� � �
� � �
� � �
Yn ¼ an1F1 þ an2F2 þ � � � þ anmFm;

where Y ¼ a variable with known data, a ¼ a constant, and F ¼ a function, f()
of some unknown variables.

According to this expression, factor analysis attempts to represent a set of

observed variables X1, X2,. . ., Xn relative to a number of common factors plus a

factor that is unique to each variable. These common factors define the latent

structures hidden in the data which are hypothetical and explain how correlations

among the observed variables organize to explain a new dimension.

Relationships develop as linear functions where the goal is to solve for the

coefficient (a) which best reproduce the observed variable from the factor (F).
There are two basic methods to accomplish this goal:

(a) Principal component analysis – This method provides a unique solution such
that the original data can be reconstructed from the results. It examines the

total variance among the variables, so the solution generated will include as

many factors as there are variables. There is only one method for completing
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a principal components analysis; this is not true of any of the other multidi-

mensional methods.

(b) Common factor analysis – This family of techniques uses an estimate of

common variance among the original variables to generate the factor solu-

tion. Based on this approach, the number of factors will always be less than

the number of original variables.

Factor analysis has enjoyed a broad range of applications relevant to the problem

of environmental characterization (Subbarao and Subbarao 1996; Kaplunovsky

2005; Esengun et al. 2006). As a means of statistical estimation, its use supports

the desire to (1) explain a complex pattern through a smaller number of variables,

(2) define the nature of the derived latent character of the data, and (3) express the

degree to which simply explanations can summarize the variability observed. In a

remote sensing context, we can review the example introduced by Doerffer and

Murphy (1989). In this study, the objective was to characterize the near-shore

environment in an area focused on the Wadden Sea. Using Landsat TM data, factor

analysis was applied to spectral reflectance values in order to derive representations

of three hypothetical variables (constructs): (1) topography, (2) water content, and

(3) surface temperature. The rationale for adopting the factor analysis approach was

based on the observation that variations in spectral reflectivity of the near-shore

environment could be attributed to contrasts in sediment type, water content, and

the presence of organisms such as algae, mussel shells, and benthic diatoms on the

surface. The spatial distribution of these variables was assumed to correspond with

reflectivity patterns with a high degree of covariance that would fall within a set of

common factors. Factor analysis was applied to the Landsat TM data, and the

factors were mapped using the factor scores calculated by the algorithm for each

pixel in the data. By mapping the factor scores, the value of each pixel on the

common factor could be interpreted and evaluated. The results of this analysis

produced a three factor solution that fit the hypothetical constructs and explained

82% of the total variability exhibited across all seven Landsat TM bands. Through

this approach, factor analysis demonstrated that a set of proximate factors could be

derived that characterized surface environments and produced useful indicators that

enables the assessment of environmental change.

6.5 Summary

Typically, environmental characterization involves the assembly of available phys-

ical and biological data and information in electronic form at a common geographic

scale and converting this data into the input formats required by the analytical

models. Characterization can be explained in two ways: (1) the baseline environ-

mental characterization that captures the current condition of the system and (2) a

template condition which is often regarded as a representation of the restoration

potential of the environmental system. Characterization is used as a reference
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condition against which to compare against, to define change, and indicate a

direction for needed improvement. In most cases, it is not a management alterna-

tive. It is generally an historic reconstruction adjusted for irreversible (anthropo-

genic or natural) to the normative condition. In this chapter, the application of

remote sensing to the characterization problem was examined together with a

review of landscape indicators that can be derived from remotely sensed data and

fed into the characterization process.
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Chapter 7

Environmental Monitoring and Change

Detection

In the previous chapter, discussions focused on the application of satellite remote

sensing as a means to document and describe the baseline status of the environ-

mental system. Through the use of image-derived indices that characterized critical

aspects of the landscape, important environmental relationships could be

summarized and the initial condition of the surface could be established against

which changes may be evaluated. In this chapter, we will expand on this prelimi-

nary treatment of change and broaden the scope of environmental characterization

by introducing the application of remote sensing technology in the temporal

domain. Sensing in the temporal domain recognizes the dynamic nature of the

landscape, and with the addition of time in the equation, we can adopt a more

process-oriented view of the environmental system. Understanding process is

obviously central to the study of environmental change, and the capacity of satellite

systems to provide multitemporal images of land surface objects greatly enhances

our ability to observe the progression of human and natural forces as they act on the

landscape. We will begin our examination of this subject with a brief review of

the principles that guide environmental monitoring efforts, with this background

the role of remote sensing is explored leading to a detailed survey of the methods

developed to sense change. The chapter culminates with an overview of anomaly

detection and the integration of temporal data in predictive analysis and environ-

mental modeling.

7.1 Principles of Environmental Monitoring

The use of the term monitoring is widespread in both the remote sensing and

environmental assessment literature (Rachon 2003; Duro et al. 2007). In both

cases, the idea of monitoring implies the systematic collection of data over time.

With this simple explanation, monitoring in the context of remote sensing is

comparatively easy to conceptualize, given the regularity of satellite orbits and

the constant recording of reflected or emitted electromagnetic from the surface by

J.K. Lein, Environmental Sensing: Analytical Techniques for Earth Observation,
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earth observational sensors. Recording, mapping, and sampling radiance, however,

only provides a basis for monitoring, and this non-trivial reality can cause confu-

sion when we overlook the fact that monitoring is a methodology, not simply a

satellite’s revisit schedule. To appreciate monitoring as a methodology, it can be

useful to clarify certain terms that are often used interchangeably but take on subtle

differences when related to the detection and documentation of environmental

change. One term frequently used in conjunction with remote sensing is the word

surveillance. For the purpose of our discussion, surveillance can be defined as the

systematic measurement of variables and processes over specific temporal period in

order to establish a series of data in time (Spellerberg 2005). There is no implied

goal to the act of surveillance, and although it is systematic, it involves simply

collecting data over an interval of time. Earth orbiting satellites are instruments of

surveillance, collecting measurements over their operational life spans. The con-

cept of monitoring also requires the systematic measurement of variables and

processes over time, but carries one important distinction. Monitoring is purposeful

in that the variables subject to measurement have been selected for a well-defined

reason, and the collection of data is undertaken to fulfill clearly stated goals and

objectives (Spellerberg 2005). Monitoring is also conducted to collect data

according to a set of standards or requirements that are problem-centric and

designed to provide specific information on the characteristics of given situation

and how that situation changes over time. For example, a physician will systemati-

cally monitor a patient’s heart rate to determine whether it improves over time in

response to the administration of a new blood thinning drug. Because there is an

optimal heart rate for this patient, monitoring that variable can determine how

successful this medication is in terms of improving the patient’s health. In response

to the monitored information, the physician may then increase or decrease the

dosage until a satisfactory result is sustained. Monitoring, as suggested in the

remote sensing literature, does not always meet the criteria of being operationally

purposeful at the level of rigor as our medical example implies, which invites

confusion. Therefore to carry our discussion forward, we will define environmental

monitoring in more exacting terms as the systematic collection of environmental

data in a standardized manner, at regular intervals over time, to provide information

to direct decision making in a well-defined context. With this focus on the provision

of decision-relevant information several styles of monitoring can be noted (Brydges

2004):

• Simple monitoring – which involves the recording of a single variable at one

point over time

• Survey monitoring – that replaces the lack of a historical record with a survey of
the current environmental conditions in both the affected and non-affected areas

• Surrogate monitoring – which involves the use of proxy information to infer

changes and a way to compensate for the absence of previous monitoring

• Integrated monitoring – that employs detailed sets of environmental information

Although the level of detail and degree of sophistication associated with these

general categories may vary, each develops out of a common methodology aimed at
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deriving an objective appraisal of tangible environmental benchmarks. The

benchmarking concept adds to further distinguish the process of monitoring from

the environmental surveillance activities. Any environmental monitoring effort

enables participants to engage in a learning process by offering a basis to that

promotes adaptive decision making. Therefore to make efficient use of the learning

opportunity, the results obtained via environmental monitoring need to be

integrated into the way things are done, whether that describes crop planting and

harvesting, forest management, or urban design and planning. As an engaged

activity, monitoring becomes part of an active “loop” with remotely sensed data

feeding the learning process with timely and relevant information (Fig. 7.1).

An environmental monitoring strategy that facilitates learning directs attention

to seven practical issues that also help refine how remote sensing technology is

applied (Usher 1991):

1. Definition of objectives – the basic question to resolve pertains to how one

determines which aspects of the environmental system are to be assessed and

how this process change is to be defined and expressed.

2. Indicator selection – based on the stated objectives and which characteristics

provide the most concise and relevant answer to the monitoring question.

3. Method – what is the optimal means for measuring and observing the indicator.

4. Measurement frequency – what is the temporal interval needed to identify

meaningful environmental trends, yet infrequent enough not to saturate the

process with data overload.

5. Program assessment – as monitoring ensues, ongoing assessment of the

objectives, indicator measurement frequency, and methods of analysis are

required to insure consistency and validity of results.

6. Data analysis – what methods enable the assessment and analysis of change and

which offer the greatest capacity to explore trends in the data.

7. Evaluation – as information is acquired from the monitoring program, how well

does it support decision needs.

Fig. 7.1 The remote sensing/

environmental monitoring

“Loop”
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Giving each of the above points due consideration suggests that environmental

monitoring is more involved than simply acquiring remotely sensed data across an

analytical time horizon. Facing a complex environmental system together with the

wide variety of factors that influence natural process, monitoring not only demands

a strategy, but also a well-planned program framed around three organizing

concerns (Roberts 1991):

• Why conduct a monitoring exercise; there must be a question that monitoring

can answer – what is it?

• What data is needed?

• How will data be collected?

In practice, monitoring can be either descriptive-hypothetical where data is

collected, analysis seeks patterns in the data, and interpretation identifies the

possible causes, or monitoring may be post hoc correlative focused on collecting

data and the formulation of a question followed by an analysis that will explore how

well the data “fits” the answer (Roberts 1991). In either case, the monitoring

activities are prone to inefficiencies unless guided by a well-articulated conceptual

model that helps to organize information, elucidate critical component of the

environmental system, and provide a scientific framework around which the moni-

toring program takes shape. Developing a clear conceptual model is a challenge for

most monitoring programs. Because environmental relationships are often com-

plex, communicating complexity to audiences with contrasting needs, levels of

expertise, and expectations requires sensitivity and a flexibility of approach, partic-

ularly when remote sensing technology is involved (Lookingbill et al. 2007).

Meeting the communication challenge has been greatly simplified by a conceptual

modeling building schema introduced by Lookingbill et al. (2007). The model is

designed to improve information gathering by combining scientific theory with

pragmatic management considerations focused squarely on the identification of

monitoring endpoints (Fig. 7.2). Modeling building according to this design begins

by: (1) gathering relevant information pertaining to environmental functioning and

the likelymanagement concerns, then continues by (2) identifying specific resources

of concern for the management area that influence long-term sustainability, (3)

deriving lists of stressors into scenarios that define specific treats to sustainability,

and culminates in (4) evaluating the usefulness of this conceptual model based on

a set of assessment criteria (Table 7.1). Overall a useful conceptual model is the

one that

• Articulates important processes and variability

• Highlights interactions between environmental processes

• Identifies critical links between drivers, stressors, and system responses

• Facilitates the selection and justification of monitoring variables

• Supports evaluation of data from the monitoring program

• Communicates process to technical and non-technical audiences.
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Although a monitoring program need not concentrate on developing quantitative

environmental models or engage in policy formulation, producing a set of realistic

and focused conceptual models is an essential ingredient for designing strategies that

clearly identify critical environmental trends, directing environmental management

operations while contributing to sound policy review mechanisms (Gross 2003).

Table 7.1 Assessment criteria guiding environmental monitoring

Correspondence between model prediction and monitoring observation

Applicability to decision-making needs

Reliability

Fig. 7.2 Conceptualizing an environmental monitoring system
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7.2 Monitoring Remotely

Satellite remote sensing is a well-documented tool for monitoring the environmen-

tal system (Spitzer 1986; Leimgruber et al. 2005; Jat et al. 2008; LeMarie et al.

2006; Dymond et al. 2001). Satellite data enjoys a comparative advantage over

other methodologies in several ways:

• Large areal coverage

• Describes a recent historical record dating from the 1970s to present

• Offers convenient digital storage and retrieval

• Facilitates objective assessment of environmental conditions

• Provides a consistent basis for measurement that permits the analysis of change

Integrating remote sensing into a monitoring program can be accomplished in

either of two ways. The first implementation strategy, a top-down approach,

encourages monitoring large geographic areas with low-resolution satellite imag-

ery. Monitoring of this type is well suited to track programs aimed at international

or national topics of concern. Low-resolution data is selected for this type of

analysis owing to their large geographic coverage and high temporal repeat cycles.

The goal of top-down monitoring is to utilize the low spatial resolution data to

identify and indicate where adverse forms of environmental change are active, such

as the reduction of forest cover, habitat loss, or the spread of land degradation.

Following completion of the macroscale assessment, the documented locations of

adverse environmental change can be subjected to more detailed analysis through

the acquisition of medium or high-resolution images. The rationale for engaging in

medium or high-resolution assessments is to provide additional information regard-

ing the causal activities that are responsible for the observed trends and to investi-

gate the modification in finer detail. A top-down monitoring strategy is well suited

to situations where the drivers of environmental change have already been well

documented and environmental policies or legal thresholds designed to remedy the

offending actions have been established.

The bottom-up method for monitoring the environment using satellite imagery

focuses on the regional environmental situation and relies on guidance or direct

involvement of local stakeholders or governmental bodies that have identified a

specific need or problem that requires monitoring. Examples of this meso- to

microscale examination of local trends might include local programs aimed at

watershed restoration activities, wetland preservation, strip mine reclamation, or

urban growth management issues. In these examples, specific repair, restoration, or

policy directives are at work, and the activities they describe demand regular

assessment to determine their effectiveness. Additionally, the active processes

modifying the landscape may be too difficult to detect with low-resolution imagery,

and finer spatial detail is required. Typically environmental monitoring targets have

been established as part of the larger management program and performance

indicators are in place that may be used to track and report progress toward the

desired policy goal. Alternatively, bottom-up monitoring may be called upon in
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response to an anomalous event or an ongoing novel situation such as the aftermath

of a natural hazard event, oil spill, or sudden infestation. In these examples, the

active process often falls below the geographic scale of coarse or medium resolu-

tion sensors.

A comprehensive strategy for implementing a monitoring program built around

a well-defined conceptual model that incorporates remotely sensed data has been

introduced by Jones et al. (2009). While this strategy is directed toward the

assessment of land use/land cover change in areas surrounding national parks in

the United States, certain aspects of their contribution in environmental monitoring

can be assembled into a more generic design (Fig. 7.3). As suggested in Fig. 7.3,

there are four main phases to a monitoring program based on the use of remotely

sensed data. Remote monitoring begins with the creation of a conceptual model that

defines all the relevant elements that must be incorporated in the program in order

to achieve meaningful results. Remotely sensed imagery is introduced in the second

phase of this design where the sources of data for monitoring the environmental

indicators are identified. The selection of image data focuses attention around a

series of questions that underscore the practical considerations that affect the type

of data acquired and the analytical procedures needed to produce a final decision

product. The utility of satellite imagery hinges on the selection of the optimal

sensor given the specifics of the monitoring problem. Here, guidance from the

conceptual model is critical as issues pertaining to spatial resolution, spectral

Fig. 7.3 Crafting and active

environmental monitoring

program
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resolution, swath width, geographic coverage, repeat cycle characteristics, and the

length of the historic data archive must be addressed.

Since imagery will be used to either develop or serve as an indicator, how well

the sensor and the raw image product match the requirements for environmental

monitoring is a nontrivial matter. Once the data product is selected, the baseline

conditions from which change is to be assessed must be produced. Data availability

can be a significant constraint at this stage of program development. Since the aim

is to generate a database to fill the interval as determined by the monitoring time

horizon, or to establish a schedule for data acquisition to capture the next time step

in the monitoring sequence, repeat coverage cycles, external environmental factors,

and modes of data delivery stand to frustrate the flow of data into the monitoring

program. If a monitoring program requires annual data beginning at time T, the
phased integration of time (T+1 . . . T+n) has to be considered when allocating the

resources (personnel, technical, financial, etc.) to support long-term monitoring.

Data selection is also influenced by the method(s) that will be employed to define

change in the indicator, reintroducing concerns related to accuracy and ground

referencing as they relate to the verification and documentation of actual change.

Because monitoring implies an ongoing focused data collection, the contribution

made by satellite imagery runs parallel and complimentary to the monitoring

program; supplying an information feed at regular intervals to support the larger

goals of the monitoring program. Over the long-term, however, data availability

and the continuity of the image product can become a limiting factor as satellite

systems fail and operational constraints conspire to create an uncertain future.

7.3 Sensing Change

Mapping and detecting environmental change using remotely sensed data has been

approached using a variety of techniques and applied to an extensive list of topics.

Recent examples include from Rogan et al. (2002), Kleinod et al. (2005), Koltunov

and Ustin (2007), Wang and Xu (2010), and Verbesselt et al. (2010). Based on this

selective sample, change detection has become both a major application of remote

sensing technology and an active area of research and development (Ridd and Liu

1998). Our interest in environmental change detection recognizes that terrestrial

ecosystems are in a state of permanent flux, and the status or description of change

varies across spatial and temporal scales. Digital change detection describes those

methodologies that support the quantification of temporal trends and alterations in

surface phenomena from imagery acquired by satellite sensors employed in an

environmental monitoring program. Detecting change in a digital image is a complex

task. In the previous chapter, we engaged the concept of change and formed a

working definition that provides a basis to its remote evaluation. In that discussion,

environmental change was explained as (1) an alteration in the characteristics or

components that describe the land surface and (2) as a spectral movement or contrast

of a pixel entity over time. Both aspects of this definition are anchored by the pixel,
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the fundamental unit of sampling electromagnetic energy reflected or emitted by the

surface. The disposition of a pixel from one time step to other evidences a trajectory

within what we assume is a well articulate thematic context. The differences observed

in a pixel, expressed as a function of time, loosely explain a rate of change which can

be abrupt/dramatic or subtle with transitions occurring gradually as suggested by

measured dissimilarities in radiance values. When the observation is made that the

environment has “changed,” the alteration in a pixels radiance value could explain a

categorical shift (i.e., a pixel classified as forest becoming a pixel now classed as

urban) or a continuum, such as a numerical trend expressed by an index (Coppin et al.

2004). Change may also be characterized at the surface using terminology such as a

conversion or modification that attempt to express underlying process moving from

an origin. When addressing the concept of change, conversions at the surface imply a

purposeful redirection in use of cover where one land type has been replaced by

another. Modifications, however, suggest subtle shifts that affect the character of the

surface without directly replacing the type of surface involved. Determining whether

change is dramatic or subtle, a modification or a conversion follows after the detected

differences in radiance can be measured. Once measured, characterizing change

requires careful interpretation of the patterns revealed in the data and the actors

involved as the surface that express an active process taking place.

The list of adjectives that can be employed to describe change in the status of a

pixel and indirectly the environment is numerous. When viewed within the spatial

confines of our imagery, four expressions of change can be noted (Khorram et al.

1999). First is the conventional notion of change where a land type at time T
becomes a different category at time T+1. This follows a second expression of

change where an observed land type expands, shrinks, or alters its shape by time

T+1. Alternately a land type may (3) shift position or it may (4) fragment or coalesce

when observed at time T+1. Unfortunately, given the numerical nature of our digital

image, the basic assumption guiding change detection is that change at the surface

is a direct function of differences in radiance values of a pixel viewed over time.

This fundamental explication of change is further refined by the supposition that

differences in radiance due to surface change are more pronounced (larger) than

difference in radiance caused by other factors such as contrasts in atmospheric

conditions, soil moisture content, or sun angle (Mas 1999). Consequently, not all

detectable (measurable) changes are equally important. Therefore, our ability to

monitor change in the environment depends on:

• How well baseline conditions have been established

• How well variability can be expressed in directional terms

• How well the spatial extent and context of change can be understood

The main challenges facing the satellite monitoring and detection of environ-

mental change have been summarized by Coppin et al. (2004) as expectations that

serve as specific requirements for a sensor system to:

1. Detect modifications in addition to conversions

2. Monitor rapid and abrupt change in addition to progressive and incremental

changes
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3. Separate interannual variability from longer-term trends

4. Correct for scale dependence influences that confuse statistical estimations

5. Match the temporal sampling rate of satellite observations to the temporal scale

of the process of interest

Taken together these system requirements advance the idea that a useful exercise

in change detection is the one that allows the analysis to clearly distinguish the real

change (phenomenology-based differences in the features of the surface) from

noise (differences resulting from influences external to the problem). Achieving

this distinction develops out of a well-crafted change detection methodology (Lu

et al. 2004).

The analytical approach for implementing a change detection methodology in

conjunction with an environmental monitoring program has been well documented

in the remote sensing literature (Lyon et al. 1988; Muchoney and Haack 1994;

Lunetta et al. 2004). Change assessment is conducted according to two main

phases. The first follows a series of steps that concentrate on project formulation

(Fig. 7.4), which continues into an operational phase that focuses on image analysis

(Fig. 7.5). The initial phase of change assessment takes shape during the design of

the monitoring program. During this phase the objectives are specified that will

determine the direction of the analysis of change and the question(s) that will be

answered using the imagery. A precisely defined problem contributes to the next

step in the implementation process, product specification. Product specification

concerns the actual deliverables of analysis and how well they convey information

Fig. 7.4 An environmental change detection strategy
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to the end users. The deliverable, either as a hard copy cartographic display or a

digital file to be incorporated into a spatial database, typically requires thought-

fully developed standards for thematic and geometric accuracy. Standards will

insure that utility of the product as a reliable source of information and will

enforce consistency over the monitoring time horizon. With a set of minimum

standards established, the data requirements needed to support the project can be

entertained. For environmental monitoring applications, this involves consider-

ation of the spectral, spatial, and temporal resolution needs that will ultimately

determine which sensor system or class of sensor is the most appropriate for the

application. With respect to spectral resolution, thought must be given to the

available wavelengths of the electromagnetic spectrum and which combinations

are needed to monitor the phenomenon in question. Next, consideration should be

given to the bandwidth and how that will provide sufficient spectral detail to

detect the phenomena. Spatial resolution corresponds to geographic scale and

how well the scale implied by the data will represent the phenomena as a

measurable object. We can think of spatial detail in a manner similar to the

concept of a minimum mapping unit and how well an object assumes geometric

form. Finally, temporal resolution asks us to consider how the phenomena behave

with respect to time. Time implies seasonality, progression, and how process

becomes discernable over the time horizon. Because our interest is capturing the

pattern of real change, sufficient time must elapse for a change at the surface to be

detectable. The spacing in time varies for natural process and human activities.

Deciding on the optimal time-step for effective analysis and detection demands

sensitivity to the nature of the phenomena involved in the context of the

Fig. 7.5 An operational remote sensing monitoring methodology
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monitoring problem as defined. The temporal dimension of a change study is also

influenced by data availability. Often, due to external environmental effects or

sensor perturbations gaps can appear in the digital archive that may render a

particular date or sequence of dates, unusable. Where gaps exist or in situations

where external factors, such as cloud cover or haze, conspire to reduce the

available imagery, adjustments to the data acquisition cycle have to be made.

Although adjustments are common, temporal lags in the time series can introduce

variations in the scene that frustrate the detection of real change. Ideally, moni-

toring and change assessment using images acquired on anniversary dates is the

goal; however, that rarely is feasible and reality forces reliance of close

approximations that manage to satisfy the monitoring objectives. For example,

a monitoring program based on data collected in mid-April every 3 years may find

that (1) no April imagery is available forcing data collection to rely on an early

May or early June acquisition date, or (2) the collection cycle for year 3 was

unable to provide usable imagery for any of the suitable months and data for year

4 was used, instead. Adjustment, while a necessity, introduces error and uncer-

tainty into the process and underscores the need to careful calibration. The final

consideration in the assessment of change introduces the practical consideration

of the costs associated with data acquisition. Environmental monitoring programs

are designed to be ongoing and systematic data collecting operations. Acquiring

data from reliable instruments that are consistent and accessible is critical to the

success of the monitoring program. Cost factors can significantly retard aggres-

sive environmental monitoring activities, unless funding sources are committed to

data acquisition over the life-cycle of the monitoring program.

Moving from project formulation to the actual analysis of time-sequenced

imagery introduces six additional steps into the change detection procedure.

These additional steps describe the analytical treatment of the raw satellite imagery

and the data processing activities required to produce a meaningful deliverable.

Taken in turn, the processing tasks include:

1. Data preparation – This step concerns the activities followed in order to

assemble imagery into a data set that facilitates time-sequenced analysis. The

tasks required at this stage center around subsetting or mosaicking the imagery

to the geographic specifications as dictated by the study area together with the

operations that address image quality issues such as cloud cover, and haze

removal and the treatment of radiometric artifacts that extend across the analyti-

cal time horizon.

2. Feature selection – A multitemporal data set assembled from multispectral

imagery can produce a file containing numerous spectral bands. Depending on

the application, not all spectral bands for a image/date may be required for

analysis or useful based on their spectral contrast. Histogram analysis can be

used to examine the individual bands in the data set and eliminate redundant or

undesirable bands to reduce processing requirements and form a more parsimo-

nious data set.
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3. Geometric registration and radiometric correction – Accurate geometric regis-

tration is critical to any image-based change detection study. Because analysis is

performed on a per-pixel basis, pixel misregistration will contribute to error and

incorrect results. Registration is accomplished by selecting on date (image) to

serve and the geometric anchor to which all other images (dates) will be fit.

Using either ground control points or moving directly to image-to-image regis-

tration, the goal is to resample the data set to the lowest root mean square (RMS)

error value as practical. Once geometric shifts between dates have been

compensated for, radiometric corrections can be undertaken to enhance the

fidelity of the data across the time horizon. Despite the fact that change detection

demands the use of anniversary data to reduce atmospheric and environmental

scene anomalies, variability in radiance can be expected; therefore, using radio-

metric corrections acts to normalize interscene and temporal variability reducing

noise in the change signal. Several of the more common approaches to correct

radiometric shifts are described in Table 7.2.

4. Change analysis – Once a suitable data set has been assembled and normalized

to insure geometric and radiometric consistency over the analytical time hori-

zon, assessment can proceed to the selection and execution of a change detection

algorithm. There are several algorithms available to analyze change in digital

imagery, and the topic of change detection has been extensively reviewed in the

remote sensing literature (Lu et al. 2004; Mas 1999; Gao 2009). We will

examine the more common methods in a separate section. In general, the

methods of change analysis follow either of two strategies: (1) preclassification

spectral change detection or (2) postclassification categorical change analysis

(Lunetta and Elvidge 1999).

5. Accuracy and quality assurance – The challenge in change analysis is to identify
real, substantive, and significant differences in the environment across the

multitemporal data set. The successful execution of an algorithm does not

imply that this challenge has been met. Indeed, all of the complicating factors

and pitfalls associated with thematic analysis of remotely sensed data magnify

during a change study which places paramount importance on the question of

accuracy. Change detection accuracy should be assessed by examining the

results obtained at selected sampling locations in a manner similar to the

procedures followed when conducting a thematic accuracy assessment (Gao

2009). Assuming that the baseline characterization which established the initial

start date of the monitoring exercise meets the established accuracy standard and

that normalization error was kept at a suitable minimum, actual change in the

scene can be quantified, and illogical differences (pixels that display anomalous

values, spurious, or categorical designations that conflict with underlying the-

ory) should become readily apparent. Calculating the ratio of illogical difference

(change) to total detected change offers a useful statistic for quality assurance

purposes in an environmental monitoring program. Additional methods have

been reviewed by Gao (2009) and include the use of error propagation theory,

correlational analysis, and qualitative evaluation approaches based on visualiza-

tion techniques and computer animation (Radke et al. 2003).
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7.4 Change Detection Algorithms

The core problem in change detection involves the separation of pixels that are

“significantly” different from those that are not across preceding images in a

multitemporal sequence. The pixels identified as being different comprise the

“change mask” which can be the consequence of a combination of underlying

factors, several having no relevance to the environmental process(es) involved.

Ideally, the method of analysis should produce a change mask that does not contain

unimportant or nuisance forms of change that have been induced by

Table 7.2 Common radiometric correction methods

Method Description

Dark object subtraction Examine brightness values in an area of shadow or for a very dark

object (such as a large clear lake) and determine the minimum

value. The correction is applied by subtracting the minimum

observed value, determined for each specific band, from all pixel

values in each respective band. This method is based on the

assumption that the reflectance from these features, if the

atmosphere is clear, should be very small, if not zero

Contrast enhancement Contrast enhancement involves changing the original values so that

more of the available range is used, increasing the contrast

between targets and their backgrounds

Linear contrast stretch This involves using the minimum and maximum brightness values

in the image. A linear stretch uniformly expands a small range to

cover the full range of values from 0 to 255. Enhances the

contrast in the image with light-toned areas appearing lighter and

dark areas appearing darker, making visual interpretation much

easier

Histogram equalization Assigns more display values to the frequently occurring portions of

the histogram. In this way, the detail in these areas will be

enhanced relative to those areas of the original histogram where

values occur less frequently

Spatial filtering Spatial filters are designed to highlight or suppress specific features

in an image based on their spatial frequency

Convolution filtering Involves moving a “window” (e.g., 3 � 3, 5 � 5, etc.) over each

pixel in the image, applying a mathematical calculation using the

pixel values under that window, and replacing the central pixel

with the new value. Image has been filtered and a “new” image

has been generated. By varying the calculation performed and

the weightings of the individual pixels in the filter window,

filters can be designed to enhance or suppress different types of

features

Image transformations Involve the manipulation of multiple bands of data to generate

“new” images from two or more sources which highlight

particular features or properties of interest, better than the

original input images
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senor–scene–environmental irregularities (Radke et al. 2003). Because the distinc-

tion between “significantly different” and “unimportant” varies with application,

selecting the appropriate change detection algorithm can be a difficult task. In a

remote sensing application the method of detecting change is therefore genuinely

distinct from the more complicated problem of understanding change. Understand-

ing change places the temporal shifts displayed by a pixel over time into a semantic

context that connects radiometric evidence to theory, process, and the dynamics of

the environmental system.

The utility of a change detection algorithm is determined principally by its

capacity to delineate apparent image change. Delineation can follow either an

algebraic or classification-based scheme, and each broad approach has its

advantages and limitations (Singh 1989; Lu et al. 2004).

7.4.1 Algebraic Techniques

This family of change detection algorithms employs mathematical operations to

produce a change mask from remotely sensed imagery. Methods that fall into this

category include the following:

• Image differencing – Intuitively appealing, the image differencing technique

involves subtracting on date (T1) of imagery from a second date (T2) that have
been subject to precise geometric registration (Fig. 7.6). The process, suggested

by the relation:

Dij ¼ T1ð Þ � T2ð Þ;

proceeds on a pixel-by-pixel basis creating a image expressing the results of

subtracting the brightness value of pixel i and T1 from the brightness value

of pixel i and T2. This widely applied algorithm performs well in a range of

settings. The logic is also comparatively straightforward. A pixel that has

undergone no change will record a value of zero. Differences between dates are

defined when D moves in either a positive or negative direction from the initial

date/value of pixel i. Although easy to comprehend, the value of D can be small,

such as when T1 and T2 are not well separated spectrally (i.e., 40 � 43 ¼ �3).

Therefore, a critical aspect of this form of change detection involves the selection

of a change threshold; a value chosen by the analyst that is used to clearly separate

real (interesting) change from no change (noise). A secondary and related issue

with the image differencing approach, which is common to most algebraic

change detection techniques, surrounds the problem of interpretation. Even

with the selection of a change threshold, what determines “interesting” change?

Since D can assume positive and negative values, ascribing meaning to D relies

on the context of the problem. In general, certain directional trajectories

can suggest unique change patterns or trends. For example, positive values
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imply movement from relatively low reflectance (radiance) surfaces to higher

reflectance (radiance) surfaces. Such transitions may be indicative of vegetative

cover changing to exposed soil or to a concretized state. Conversely, high

reflectance to low reflectance shifts may suggest the maturation of vegetative

cover over time or the aging of built surfaces such as roof tops or roads.

• Image ratioing – This method calculates the ratio of two registered images on a

pixel-by-pixel basis. The division of

Dij ¼ T1ð Þ T2ð Þ= ;

yields a quotient where the no-change condition is expressed as 1, and the values

less than or greater than 1 can be interpreted as some indicator of change

(Fig. 7.7). Because band ratioing is also an image enhancement operation, this

Fig. 7.6 Simple image subtraction

Fig. 7.7 Simple band ratio approach
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method can also reduce the impacts associated with sun angle contrasts, shadow,

and topography. Similar to the image differencing technique, ratioing is also

dependant on the selection of a change versus no-change threshold and subject to

the same interpretation issues.

• Image regression – Using a regression-based approach to the detection of

change is based on the assumption that a pixel from time T1 is a linear function
of the time T2 pixel. Regression analysis establishes the relationship between the
two dates, then estimates pixel values of the second date image. Subtracting the

regressed image from time T1 forms an expression of difference (change)

according to:

Diff xij ¼ Xij T2ð Þ � Xij T1ð Þ;

where X is the regressed image. Once again a threshold is selected to partition

Diffxij to identify area of real (interesting) change.

• Change vector analysis – According to this method, the brightness value of a

pixel occupies a location, an (x, y), in measurement space defined by the

brightness ranges expressed by two or more spectral bands. When that value

changes over time, the location of that pixel (P) will also change. This difference
in position is explained by a change vector (Ci) such that:

Ci ¼ Pði;yÞ � Pði;zÞ:

For pixel i, its shift is the difference between year y and year z. The magnitude of

this change is expressed as the Euclidean distance separating y and z. The
direction of the change vector Ci is measured by the direction of the angle

between year y and year z in measurement space. The direction of this angle

suggests the nature of the change process. Typically, the no-change condition is

described by a zero-length vector; however, the trajectory that defines interesting

change requires the selection of a change threshold.

7.4.2 Classification-Based Techniques

Classification-based methods of change detection eliminate the reliance on radiance

differences over time as the determinant of change. Instead, change over time is

expressed as categorical shifts in the labels assigned to pixels. When compared to

algebraic approaches, classification techniques exploit informational changes in the

disposition of classes rather than the spectral differences explained by pixel

measurements over time. Three classification-based approaches to change detection

dominate:

• Postclassification change detection – This change detection procedure requires

the independent classification of a multitemporal data set into a sequence of
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thematic maps. The success of this approach depends on the thematic compari-

son of the classified images on a pixel-by-pixel basis. Postclassification change

detection demands the adoption of a standard system of classification as well as

the use of well-defined accuracy guidelines to insure that map quality is consis-

tent across the analytic time horizon. Lack of consistency will frustrate compar-

ative analysis and produce unreliable estimates of change. Comparative analysis

generally employs some form of cross-image tabulation to generate a detailed

matrix expressing categorical differences between dates. When compared to

algebraic approaches, postclassification avoids the need for strict image normal-

ization and provides important flexibility since the assessment of change can be

tailored to informational categories that are relevant to the monitoring program.

The use of categorical distinctions as the basis of change versus no-change

simplifies the problem of designating whether or not real change has occurred

and eliminates the use of change thresholds. Categorical designations are sup-

port the extraction of essential “From–To” information from the data which can

make significant contributions to understanding change in relation to theory and

process.

• Unsupervised change detection – A variant of the postclassification method, this

technique selects spectrally similar groups of pixels, applies a clustering algo-

rithm to the time T1 image to produce primary class, then proceeds to identify

spectrally similar groups in the time T2 image to form primary class at that time

step in the data. Change, according to this approach, is based on differences in

pixel membership to the primary classes (clusters) between time T1 and time T2.
Although the method is relatively simple, the unsupervised method can make it

difficult to identify and label change classes. This bottleneck often hampers

creation of a complete matrix of change information.

• Multidate composite analysis – This technique combines images from two or

more dates into a single multilayer data file (stack) (Fig. 7.8). The composite

multilayer image can then be subjected to either cluster analysis to identify

change and no-change categories or principle component analysis (PCA) to

produce a linear combination of the scene over time to create a change compos-

ite (Healey et al. 2005; Lasaponara 2006; Cakir 2006).

7.5 The Thresholding Question

The methods of change detection reviewed in the previous section are by no means

exhaustive. The techniques selected provide tractable approaches that fit well within

the larger problem of environmental monitoring. The advantages and limitations of

each are clearly apparent (Table 7.3), and without radiometric calibration, geometric

registration, methodological consistency, and a sustained sense of purpose with

respect to the enabling monitoring program, useful characterization of processes

acting on the environment will remain elusive. Perhaps one of the more vexing
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Fig. 7.8 A multilayer image stack

Table 7.3 Advantages and disadvantages associated with the selected change

detection algorithms

Method Advantage Disadvantage

Multidate composite

image

Requires only a

single

classification

Non-quantitative and

no to–from

information is

generated

Image algebra Efficient and does

not require

classification of

individual scenes

Requires careful

selection of

thresholds and no

to–from

information is

generated

Postclassification Provides to–from

information and

produces

thematic maps

for each time

period

Success depends on

accuracy of the

individual

thematic

classifications

and requires two

independent

classifications

Change vector

analysis

Uses all bands and

does not require

classification of

individual

scenes; vector

information can

provide to–from

information

Computationally

intensive and

difficult to

interpret



issues surrounding the application of change detection algorithms centers around

the problem of thresholding. Regardless of methodological sophistication, at some

point a decision is required in order to establish the boundaries between change and

no-change conditions as dictated by the data. Although this decision can be deferred

using postclassification methods, error and uncertainty remain embedded in the

results regardless of which procedure is followed. Error is an unavoidable reality

and without careful treatment its effects can migrate into further analytic operations

(Rogerson 2002).

There are two general avenues to follow when attempting to resolve the

thresholding issue. One approach relies on the application of expert subjective–

technical judgment. The other means of resolving the thresholding problem

employs a statistical methodology. Expert judgment runs the risk of establishing

arbitrary thresholds, but is based on knowledge of the underlying processes

involved and subjective experience acquired from previous situations. Based on

the quality of expert judgment, reasonable thresholds separating change from noise

can be derived. Often a degree of experimentation is needed to adjust thresholds to

refine the solution before meaningful results are obtained. In the case of long-term

environmental monitoring, expert judgment may produce inconsistent results over

time. Consistency can suffer particularly when experts change over time and

opinions vary as a consequence of differential levels of experience and training.

Reducing the potential limitations imposed by reliance on human expertise as led to

the adoption of auto-thresholding methods.

Auto-thresholding techniques draw on the statistical properties on the change

data. One simple method of auto-thresholding uses standard deviation units.

According to this approach “interesting” change identifies conditions that occur

beyond one standard deviation from the mean value. Other more detailed methods

include:

• Otsu’s Histogram Shape-Based Method (Otsu 1979) – This strategy is based on

discriminant analysis and uses the zero-and first-order cumulative moments of

the histogram to calculate the value of the thresholding level.

• Tsai’s Moment-Based Method (Tsai 1985) – This method determines the thresh-

old that preserves the first three moments of the input image.

• Kapur’s Entropy-Based Method (Kapur et al. 1985) – This method considers the

thresholding problem as two classes of events, each characterized by a probabil-

ity density function. Using probability, this technique maximizes the sum of the

entropy of the two probability density functions to identify a point of conver-

gence that become the threshold value.

• Kittler’s Histogram Shape Method (Kittler and Illingworth 1986) – This method

determines a threshold value by approximating the histogram as a Gaussian

distribution and identifies a cut-off point using a cost function derived from

Bayes classification rule.
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7.6 Summary

Environmental change, defined as an alteration or disturbance of the environment

by human or natural ecological processes, and the monitoring of Earth’s

environments to detect those changes was the focus of this chapter. Remote sensing

technologies have played an important role in environmental monitoring.

Identifying the principles that guide the implementation of a monitoring program

and integrating remote sensing into that schema directed discussion to the question

of sensing change and the methods developed to study change using remotely

sensed data. A selection of change detection algorithms were examined to complete

the analysis of change and the systematic monitoring of key indicators in the

landscape system over time.
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Chapter 8

Thermal Sensing and Anomaly Detection

Thermal remote sensing directs our attention to the role of temperature and an indicator

of land surface conditions and contrasts (Diak 1995; Xian and Crane 2006; Quattrochi

and Luvall 1999). Recognizing that all surface objects with temperatures above

absolute zero (0 K) emit electromagnetic radiation, thermal remote sensing

concentrates on the techniques involved in measuring the electromagnetic energy

emitted by objects at the surface and the physical mechanisms that influence how

object behave within the thermal portion of the electromagnetic spectrum. Our interest

in temperature as an environmental indicator and medium for land surface characteri-

zation is somewhat analogous to the role temperature plays in the diagnosis of human

health. Features and surface objects that comprise the environmental system emit

radiant energy as a function of their temperature, should the thermal characteristics of

surface objects deviate from an ambient state, numerous questions can be entertained

to account for the observed thermal differences and the spatial patterns they

create (Kustas and Anderson 2009; Weng 2009). Temperature in this regard suggests

the presence of active processes that modify how objects absorb heat energy, store heat

energy, and radiate heat energy. Sensing the thermal disposition of the environment

can therefore reveal certain clues and patterns indicative of behaviors or changes that

cannot be sensed using the reflective portions of the electromagnetic spectrum (Luvall

et al. 2000). In this chapter, we will examine the principles of thermal remote sensing,

describe how thermal energy is measured by satellite sensors, and explore the role of

thermal data in environmental analysis and anomaly detection.

8.1 Principles of Thermal Remote Sensing

Thermal energy has been widely used in geologic and military remote sensing

applications (Jensen 2007). The first declassified thermal data obtained from satel-

lite sensors were used primarily for meteorological observation and weather

forecasting. The civilian use of thermal imagery for land surface remote sensing

J.K. Lein, Environmental Sensing: Analytical Techniques for Earth Observation,
DOI 10.1007/978-1-4614-0143-8_8, # Springer Science+Business Media, LLC 2012
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dates roughly to the early 1980s with the development of the thermal infrared

multispectral scanner (TIMS). This thermal scanner acquired infrared energy in

thermal six bands (Table 8.1). The success of this program contributed to the

deployment of thermal sensors on Landsat Thematic Mapper series (Landsat TM

4 and Landsat TM 5) beginning in 1982. Presently, thermal imagery is acquired by

several Earth observational satellites and sensors including ASTER, MODIC, and

the AVHRR. The thermal products generated by these systems, however, are not

interpreted in the same manner as the measurements obtained from the reflected

bands (Jensen 2007). Rather, treatment of thermal data requires an understanding of

the governing processes that control how thermal energy interacts with features of

the land surface and how these properties of the surface direct the rate and intensity

of these interactions.

Thermal sensors measure the radiant energy of Earth’s surface features. This

form of electromagnetic flux is an external manifestation of an objects energy state

based on it temperature. The energy emitted by the object is used to quantify its

radiant temperature. Radiant temperature is strongly influenced by the ability of an

object to absorb heat energy either by conduction, which explains the transfer of

heat through a material by molecular contact, convection, describing the transfer of

heat energy through the physical movement of heated material, or radiation, which

explains heat transfer in the form of electromagnetic waves. Objects at the Earth’s

surface receive thermal energy primarily through radiative transfer from the sun.

However, conductive processes also transfer heat from below the surface. Although

the magnitude of this flux is appreciably small, there are important geographic

variations in this energy flow and can be detected remotely. In many of these

regional examples, the energy transferred by conduction are indicative of thermal

springs, volcanoes, and patterns of subsurface heat flow that are modified by local

geologic features and activities (Sabins 2007).

The relative power of an object or material to emit heat by radiation is deter-

mined by its emissivity. Emissivity is defined as the ratio of energy radiated by a

black body at the same temperature as the object of interest. A black body is an

idealized object that absorbs all of the electromagnetic radiation that it receives.

This theoretical object would have an emissivity (e) of one while any environmental

surface would display an emissivity less than one. Although emissivity is a dimen-

sionless quantity (has no physical unit related to it), objects that are composed of

Table 8.1 Characteristics

of the TIMS scanner
Swath width 31.3 km

Spatial resolution 50 m

Spectral resolution Wavelength (mm)

Band 1 8.2–8.6

Band 2 8.6–9.0

Band 3 9.0–9.4

Band 4 9.4–10.2

Band 5 10.2–11.2

Band 6 11.2–12.2
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dark or dull materials tend to define values of emissivity approaching one while more

reflective surfaces tend to describe lower emissivity values (Table 8.2). In general,

emissivity depends on several factors including temperature, the angle of emission

and wavelength. In the majority of applications of thermal imagery, it is assumed that

an objects spectral emissivity and absorptivity do not depend on wavelength. This

assumption, referred to and the gray body assumption, allows values of emissivity to

be held constant. However, there are important differences in the fraction of radiation

absorbed by an object relative to wavelength that does produce subtle contrasts in

emissivity. These deviations from the ideal behavior of a black body are resolved

by taking into consideration both the structural geometry and chemical

composition of an object as expressed according to Kirchoff’s Law of Thermal

Radiation (1 � e ¼ reflectivity). For this reason, the radiant temperature of an object

at the surface will always be less than its kinetic temperature (the temperature we

measure and make common reference to using a thermometer).

The radiant temperature of an object describes its radiant flux. This definition of

temperature can be measured remotely using sensors designed to detect electromag-

netic radiation in the thermal infrared wavelengths of the spectrum (Fig. 8.1).

The thermal portion of the spectrum occupies wavelengths occupying the range

from 3.0 to 14.0 mm. However, not all of the wavelengths in this interval are

Table 8.2 Emissivity from

selected surfaces

and objects

Water 0.960

Fresh snow 0.986

Coniferous needles 0.971

Leaves

Corn, beans 0.940

Cotton, tobacco 0.980

Sugar cane 0.940

Dry peat 0.970

Wet peat 0.983

Dry fine sand 0.949

Wet fine sand 0.962

Thick green grass 0.986

Thin green grass on wet

clay soil

0.975

Forest, deciduous 0.950

Forest, coniferous 0.970

Fur, hair

Mouse 0.940

Squirrel 0.980

Hare, wolf 0.990

Human skin 0.980

Glass 0.940

Emissivity expressed as a fraction of the radiant energy of a

blackbody as the same temperature from Geiger, R., Aron, R.,

and Todhunter, P. (2003) The Climate Near the Ground, Rowman

and Littlefield
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transmitted uniformly through the atmosphere. As with reflected energy, the atmo-

sphere acts to degrade the intensity and effect the spectral composition of energy

recoded by a thermal sensor. Atmospheric constituents such as carbon dioxide, ozone,

and water vapor absorb energy at particular wavelengths in the thermal region, while

gases and suspended particles in the atmosphere can emit radiation based on their

temperatures, which add to the quantity of the radiant energy that is being sensed.

There are two atmospheric windows where radiant energy is transmitted with little or

no absorption. The first thermal window falls with the spectral range of 3.0–5.0 mm.

The second is located along the wavelengths between 8.0 and 14.0 mm (Fig. 8.2). At

the top of Earth’s atmosphere a narrow absorption band can be identified between 9.0

and 10.0 mm, corresponding with the Earth’s ozone layer. To effectively record

thermal energy satellite systems avoid this interval and tend to operate primarily

within the wavelength interval from 10.5 to 12.5 mm.

Sensing the radiant flux of an object at constant temperature varies as a function

of wavelength. Locating where in the thermal spectrum an object displays its

Fig. 8.2 Thermal windows useful for remote sensing applications

Fig. 8.1 The thermal portion of the electromagnetic spectrum
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radiant energy peak (lmax), which is defined by Wien’s displacement law,

expressed as:

lmax ¼ 2;897

Trad
;

where Trad is radiant temperature in degrees Kelvin (Absolute temperature) and the

value 2,897 is a physical constant. Using this relationship, the wavelength where an

object’s radiant energy is at its highest can be found by substituting a value of

temperature for Trad. For example, the radiant energy peak for a roof top surface at

62�C (145�F) can be estimated by

lmax ¼ 2;897

336K
;

which solves to a wavelength of 8.62 mm. A thermal infrared sensor operating in the

8.0–14.0 mm region would detect this roof top surface. The thermal property of an

object greatly influences the calculation of lmax and frustrates the simple character-

ization of objects using radiant temperature. Because all surface materials have the

capability to conduct, store, and exchange heat energy, the ability of a material to

absorb heat energy becomes a direct function of its thermal (heat) capacity. The

heat capacity of a object explains the quantity of energy needed to raise the

temperature of 1 g of the material in question by 1�C. Differences in heat capacity

influence how well energy is stored by a material and that ability to store energy has

a direct effect on its radiant profile. Water, for example, has a high thermal capacity.

Consequently, water bodies heat and cool more slowly than a sandy surface, which

due to their heat capacity, tend to heat rapidly and cool rapidly. The ability of heat

energy to pass through a material is a function of its thermal conductivity (F). This
quantity is expressed as the number of calories that will pass through 1 cm3 of a

material in 1 s when two opposite faces of the material are maintained at a 1�C
difference in temperature. The final thermal property of an object with relevance to

thermal remote sensing is its thermal inertia (F ). Thermal inertia measures the

thermal response of a material to changes in temperature and is expressed in

calories per cm2 per second square root per 1�C according to the expression:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF � D�xÞ

p
,

where F is the object’s thermal conductivity, D represents its density in g/cm�3 and

x is the object’s thermal capacity.

8.2 Moving to Measurement

The potential of Thermal Infrared remote sensing in environmental analysis

concentrates interest on the radiation emitted from terrain features as a means of

mapping and characterization. Understanding how thermal energy is partitioned
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across a landscape and the magnitude and contrasts displayed by the thermal

characteristics of landscape features helps to explain the fluxes and redistributions

of materials among these features (Quattrochi and Luvall 1999). As we noted earlier

in Chap. 4, characterization implies measurement, and the temperature extremes as

well as the heating and cooling rates of landscape features can supply information

pertaining to the type and condition of an object. In general, when the land surface is

observed using thermal infrared data, darker image tones represent cooler radiant

temperatures while lighter tones in the image represent warmer radiant temperatures.

This pattern is analogous to the concept of brightness as applied to the interpretation

of reflected infrared bands. This common thread permits us to associate brightness to

temperature at the surface and relate its status to a measurable quantity. Translating

brightness into unit of measure that convey more meaningful information, however,

requires detailed calibration of the thermal infrared data (TIR).

Radiometric calibration of TIR data first requires compensating for atmospheric

absorption and emission in the radiance arriving at the sensor, then involves

corrections that take into account surface emissivity effects. Several of the factors

that influence the emissive power of surface objects are listed in Table 8.3. The

process begins with the assumption that good energy absorbers are also good

energy emitters and seeks to remove noise effects that hamper the retrieval of

surface temperature estimates. A thermal sensor measures the emitted spectral

radiance it receives (Ll). This quantity is called the brightness temperature,

symbolized as TB and is expressed according to the relation:

TB ¼ l4
2kc

Ll;

where l ¼ wavelength, k ¼ Planck’s constant, c ¼ speed of light, and L ¼ spec-

tral radiance.

With knowledge of the emissivity (Y) of an object or material, brightness

temperature can be related directly to kinetic temperature by the formula:

TB ¼ Y1=4 Tkin:

This association suggests that brightness temperature can be used to monitor

temperature as well as the properties of objects or materials based their emissivity.

Table 8.3 Factors influencing emissivity

Tone of objects Darker objects are better absorbers and better emitters

Surface roughness The rougher the surface relative to the wavelength the greater the

surface area and greater the potential for absorption and

re-emission

Moisture content The more moisture content, the greater the ability to emit energy

Field of view

Viewing angle
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Compensating for atmospheric contamination of the spectral radiance received

by the sensor requires some form of external referencing. One common approach

uses empirical measurements taken in the field with either:

1. A thermometer measuring true kinetic temperature or

2. A hand-held radiometer measuring radiant temperature

Using the data sampled from the field, regression analysis is used to establish the

degree of fit between field-sampled locations and the corresponding brightness

temperature obtained via the thermal imagery. Although this approach is efficient,

the empirical method does not take the atmosphere directly into account, nor does it

adjust for emissivity contrasts. Incorporating emissivity into the calculation of

brightness temperature is estimated using

T ¼ a�Y� Tkin
4 þ b;

where (a) is the slope of the relationship established using the regression fit and (b)
is the y-intercept (Jensen 2007). Rewritten, this equation permits the calculation of

“true” kinetic temperature for every pixel in the image such that

Tkin ¼ BVij � b

a�Y

� �1=4

:

Solving for Tkin not only supplies an analysis with estimates on temperature, but

facilitates the production of maps depicting the spatial distribution of surface

temperature (Fig. 8.3). For the majority of environmental applications, particularly

those designed to contribute to environmental monitoring, change detection or

Fig. 8.3 Typical thermal

image (Landsat ETM+)
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special purpose investigations such as those conducted in association with environ-

mental compliance enforcement operations, collecting reference temperatures in

the field may not be practical or feasible. In these situations alternative approaches

to land surface temperature estimation are available (Sobrino et al. 2004; Dash et al.

2002; Schmugge et al. 1998). The alternative solutions to temperature estimation

apply theoretically derived algorithms based on the linearization of the Planck

function. The approaches available include

• Split-window algorithms – Using these techniques, brightness temperatures

recorded on one thermal channel are corrected for atmospheric contamination

using the linear difference between the brightness temperature in a second thermal

channel. The general form of the split-window method can be expressed as

TLS ¼ a1Ti þ b1Ti þ c1;

where the coefficients a1, b1, and c1 are estimated from computational models

(Prata 1994).

• Single-channel algorithms – This method utilizes the radiance in one thermal

channel and corrects for atmospheric effects using a radiative transfer model

(examples include the MODTRAN and LOWTRAN algorithms). The radiative

transfer model solves for atmospheric transmission based on vertical and hori-

zontal profiles of temperature and humidity supplied from vertical sounding

instruments such as radiosonde, using data obtained from local weather

forecasting centers. A correction algorithm that avoids dependence on

radiosounding was introduced by Qin et al. (2001) for use with Landsat TM

thermal data and a somewhat more tractable approach without specific sensor

requirements has been offered by Jimenez-Munoz and Sobrino (2003). This

generalized technique estimates land surface temperature from one thermal

channel based on the equation:

Ts ¼ g ½e� 1 ð’ Lsensor þ’2Þ þ ’3� þ s

with

g ¼ c2 Lsensor
T2sensor

l
c1

� �
Lsensorþl�1

� �� ��1

and

s ¼ �gLsensor þ Tsensor;

where Lsensor ¼ at satellite sensor radiance, Tsensor ¼ at satellite sensor brightness

temperature in K, and l ¼ effective wavelength (11.76 mm for Landsat TM Band 6).
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C1 ¼ 1:19104� 108 W mm4 m�2 sr�1

C2 ¼ 14387:7 mmK:

The atmosphere functions (symbolized as ’) are derived as a function of total

atmospheric water vapor content (w). For Landsat TM Band 6 those equations are

’1 ¼ 0:147114w2 � 0:15583wþ 1:1234;

’2 ¼ �1:1836w2 � 0:37607w� 0:52894;

’3 ¼ �0:04554w2 þ 1:8719w� 0:39071:

Depending on the nature of the problem rigorous estimation of land surface

temperature may not be required. In these examples, it may be appropriate to avoid

atmospheric correction if thermal contrast rather than precise temperature measure-

ment is sufficient for the purposes of analysis. Furthermore, it has been observed

that the coefficients derived from the various correction algorithms are valid only

for the data set used to derive them. A transferability issue acts to constrain the

universal application of these functional relationships and introduces estimation

error in the results when they are applied beyond the limitations imposed by the

defining data set. Therefore, a set of thermal responses for a specific landscape

phenomenon measured using a particular TIR sensor cannot reliably be

extrapolated to describe the same TIR measurements either from other sensors or

from images recorded at different times using the same sensor (Dash et al. 2002;

Quattrochi and Goel 1995; Weng et al. 2004). A simplified temperature estimation

technique can be offered that yields suitable results. This generic approach involves

three main steps to retrieve brightness temperature values from TIR data:

1. Conversion of digital brightness values as recorded by the TIR sensor into units

of spectral radiance.

2. Conversion of the spectral radiance values into values of “at-satellite” brightness

temperature under the assumption of uniform emissivity at the surface.

3. Correction of the “at-satellite” brightness temperature using spectral emissivity

based on land cover units.

A demonstration of this procedure using ASTER and Landsat TM thermal

imagery follows. For the Landsat TM example, spectral radiance is calculated as

Lrad ¼ 0:0370588� BVij þ 32;

where BVij is the digital TIR brightness value recoded by the sensor for pixel (i, j ).
Converting spectral radiance (lrad) to “at-satellite” brightness temperature is accom-

plished from
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TB ¼ K2

lnðK1=Ll þ 1Þ ;

where TB is given in degrees Kelvin and K1 and K2 are pre-launch calibration

coefficients. For Landsat ETM + the coefficient for K1 ¼ 666.09 and for

K2 ¼ 1,282.71.

For the ASTER sensor conversion to spectral radiance is determined by

Lrad ¼ Gain� (BVij � 1Þ;

where the gain for each of the ASTER TIR bands are

Gain(10) ¼ 0.006882

Gain(11) ¼ 0.006780

Gain(12) ¼ 0.006590

Gain(13) ¼ 0.005693

Gain(14) ¼ 0.005225

Conversion to “at-satellite” brightness temperature is accomplished by the

formula:

TB ¼ K2

lcln ½K1=l
5
cðLrad þ 1Þ� ;

where, K1 ¼ 1.91 � 108, K2 ¼ 1.439 � 104, and lc ¼ wavelength.

The final step involves correction for emissivity which will produce an estimate

of land surface temperature according to

Ts ¼ 1

e1=4

� �
TB:

Estimates of emissivity (e) can be acquired from look-up tables based on land

cover type or derived from NDVI measures based on empirical relationships (Van

de Griend and Owe 1993). One generalized approximation for emissivity is given as

Emissivity ¼ eij ¼ 1:0094þ 0:047� ln (NDVIijÞ:

Although TIR data has tremendous potential for a range of environmental

applications, its utility must be balanced against the current methods by which

TIR data is collected from Earth-orbiting satellites. First, it is important to recog-

nize that thermal sensors detect radiation from the surface of ground objects,

typically over the first 50 mm. Consequently, radiant temperature as recorded may

not always be indicative of an object’s internal temperature, despite careful

corrections and calibrations. To understand the implications of this measurement

disparity, we need to only consider the surface of a lake where surface evaporative

202 8 Thermal Sensing and Anomaly Detection



cooling may produce temperatures cooler than those only a few centimeters below.

The sensor can only measure surface radiant energy and not the warmer subsurface

conditions. In addition, most operational satellite sensors that acquire easily acces-

sible imagery in the TIR region of the spectrum make their geographic overpass

between 10:00 and 11:00 AM local time during the daylight orbit and between 10:00

and 11:00 PM local time during their night-time orbits. Neither of these time periods

are ideal for collecting TIR data remotely which is a significant operational

constraint when developing a thermal application. Lastly, there are technical

limitations that constrain TIR data collection and its overall usefulness. Because

there is relatively little radiation emitted by the Earth’s surface in the TIR portion of

the electromagnetic spectrum, and because satellite sensors that detect TIR radia-

tion have high orbital velocities, the spatial resolution that must be used to sample a

scene using emitted radiation is larger than that used to acquire data in the reflective

bands. Therefore, the relative coarse spatial resolution of TIR data can be a severe

limitation for applications that demand fine spatial detail. Also, TIR detectors must

be kept extremely cold during use and require regular calibration to ensure consis-

tent data quality. Despite these potential limiting factors, TIR data offers the

capacity to recover measurements about objects that cannot be acquired using

reflective infrared bands; measurements that may signal uncharacteristic deviations

in the status of the environmental system that move analysis into the realm of

anomaly detection.

8.3 Anomaly Detection and Mapping

When conducting studies of the environmental system we conveniently assume the

surface in an ambient state where objects that form the landscape of interest

organize into what we define as an expected condition. The synoptic view provided

by our imagery gives us a spatial perspective where our expectations of “normal”

conditions support certain beliefs regarding how the processes constituting the

environmental system perform. Thermal measurements along with the image-

derived indicators introduced in Chap. 7, serve not only to document the ambient

state of the environment but also to communicate curious, conspicuous, and

unanticipated patterns that emerge from an otherwise homogeneous background.

Thermal data can also exploit the differential heating of objects and surface due to

heat capacity contrasts to reveal heat shadows and other aberrations in emittance

that contain useful information that is not discernable using reflected infrared

imagery. This form of detection highlights the presence of anomalies at the surface

and enables their evaluation and spatial representation.

Thermal anomaly detection has received considerable attention in the remote

sensing community due in part to the wider availability of thermal data at improved

spatial resolutions (Koltunov and Ustin 2007; Kant and Badarinath 2002). With

specific reference to environmental analysis and assessment, a thermal anomaly can

be defined as a deviation or departure from the normal or expected pattern of
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surface emittance. Such deviations, when detected, emerge from the background as

peculiar, irregular, abnormal, and therefore difficult to classify (Ashton and Schaum

1998). Anomaly detection attempts to locate and identify irregular or abnormal

patterns at the surface based on the image. In the measurement space defined by

thermal imagery, an anomaly can be explained as any pixel that is spectrally

different from the background. Conceptually, we can visualize anomalous pixels

as spikes or troughs in brightness values whose unique characteristics cannot be

attributed to noise or error (Fig. 8.4). Distinctiveness, however, relies on statistical

measures that separate difference by applying anomaly thresholds to the imagery.

Using the convention of a threshold, pixels can be extracted from the background

pattern thereby reducing the likelihood of returning false positives. Conducted in

this manner, anomaly detection can be an important component of environmental

characterization and monitoring programs, since it is the irregularities and

departures from expected conditions that signal reason for concern. We can liken

this to the familiar dental X-ray where the shadow on a tooth communicates the

presence of decay. At the surface the observed anomaly may be the simple

consequence of a random event, or the anomaly may identify

1. The consequences of an action taken (or not taken)

2. A failure in a human construction (such as a pipeline or containment barrier)

3. The footprint of a malicious action or event (such as an illegal dumping of

chemical solvents or the clearing of vegetation)

4. The initiation or progression of an unexpected or unanticipated process (such as

a chemical spill, wildfire, or infestation)

5. The occurrence of environmental outliers or extremes

6. The presence of a unique environmental feature (such as a ground water seep or

rock outcrop)

In each of these examples the detection of the anomaly serves to document

environmental conditions and assist early warning or emergency response

activities. Identification also presents the anomalous pattern as a spatial object

that can be subject to further analytical operations.

Fig. 8.4 Conceptual representation of a surface (image) anomaly
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While intuitively appealing, the challenge with anomaly detection relates to

identification of “extreme” or “out of place” pixels in the digital imagery. Anoma-

lous pixels do not conform to expected values. Depending on the application,

nonconforming pixels may explain outliers, discordant observations, exceptions,

aberrations, surprises, peculiarities, or contaminants (Chandola et al. 2009).

Distinguishing among these various manifestations of an anomalous pixel is some-

what complicated by the presence of human error, natural deviations in populations,

changing behaviors of the system under study, and systematic faults (Hodge and

Austin 2004). Moving from an abstract concept to the tangible detection of non-

conformity with an expected condition begins by first, defining what is “normal”

given the nature of the problem and the range of states (radiances) than encompass

“normality” and follows next by filtering out noise in the data which may parrot the

actual anomaly. Formulation of the detection problem is influenced by several

factors. Central among them are the actual nature and quality of the imagery, the

constraints and requirements introduced by the problem, and the availability of

labels (classes) that can be associated with a pixel that can determine if that pixel is

normal or anomalous (Chandola et al. 2009). When spectral patterns are observed

the nature of the pixel anomaly is likely to fall into one of three descriptive

categories:

1. Point anomalies – where an individual pixel or region of pixels are spectrally

anomalous with respect to the rest of the image/scene

2. Contextual anomalies – where the context of the pixel (its classification label) is
anomalous with respect to those constituting a bounding neighborhood

3. Collective anomalies – where a collection of measures is anomalous with respect

to the entire scene

Depending on how well the outlier investigation problem can be structured there

are three methodological strategies that can be used to guide detection of one of all

of these anomaly classes (Hodge and Austin 2004; Chandola et al. 2009):

• Type 1 detection – This methodological approach determined outliers with no

prior knowledge of the data. This technique follows an unsupervised clustering

logic and is based on the assumption that normal patterns of spectral radiance are

more frequent in the images than are anomalies.

• Type 2 detection – This direction to the outlier problem is based on developing a

model of normality and abnormality with the context of the problem. The goal of

this approach is to apply labels using supervised classification methods to tag

pixels as either normal or abnormal based on training data or information

gathered prior to analysis that assists in the characterization of outlier patterns.

• Type 3 detection – This technique operates in a semisupervised classification

mode that supplies training data (prior information) for only the normal class.

According to this method, a pattern is normal if it falls within the boundary of the

known “normal” class/state. Any pattern beyond this boundary is assumed to be

anomalous.
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Selecting the appropriate outlier detection strategy depends on two conditions:

1. The availability of an algorithm that can reliably model the data distribution and

highlight outliers for clustering, classification, and recognition.

2. The identification of the spectral or informational class boundary that delineates

normality together with thresholds for establishing when patterns are anomalous.

8.4 Anomaly Detection Algorithms

The algorithms developed to assist with outlier and anomaly detection have been

reviewed extensively by Chandola et al. (2009) and Hodge and Austin (2004).

In this section, we will examine a selection of the available algorithms that are

germane to the objectives of environmental remote sensing. Here, in the image

domain, outlier detection is concerned with changes in an image over time or

delineating regions within a static scene that appear abnormal (Coolbaugh et al.

2007). The anomaly can therefore be spatial or temporal taking the form as outlying

points in the data distribution, or contextually different patterns that suggest novel

features or features that have been misclassified (although not necessarily errone-

ous). In either instance the outlier is inconsistent and translates to actionable

information about the environmental system. The algorithms developed for these

applications are primarily statistical techniques that fit a numerical model to the

data and employ methods of statistical inference testing to determine if a pixel in

the scene belongs to the model or not.

One of the simplest statistical methods used to detect univariate and multivariate

anomalies employs the box plot rule. A box plot portrays image data using

descriptive statistics to summarize the minimum, maximum, median, and range

of pixel values. These statistics are used to establish limits beyond which n
observation (pixel) will be treated as an anomaly. A similar logic is applied in the

Grubbs Test, which calculates a Z-value as the difference between the mean value

for the pixel based on the formula

Z ¼ jx� �xj
S

;

where x and S are the mean and standard deviation of the data sample. The Z-value
is compared to a 1 or 5% significance level and the pixel value (p) is considered
anomalous if

Z>N � 1ffiffiffiffi
N

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2a=ð2NÞ; n� 2=N � 2þ T2a=ð2NÞ; n� 2

p
;

where N is the sample size and T2a/(2N), N � 2 is a threshold taken from

the t-distribution at a significance level of a/2N. A variation of this test based

on the Mahalanobis distance compares a pixel vale (p) to the sample mean to define

the outlier anomaly such that
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Y2 ¼ ðx� �x)’ Cov�1ðx� �xÞ;

where Cov is the sample covariance matrix. Similar proximity-based methods have

been introduced as well that use either the K-nearest neighbor algorithm or simple

Euclidean distance.

When observations are compared over time anomaly detection based on regres-

sion analysis have been explored. The regression-based approach consists of two

steps. Initially, a regression model is fit to the image data which is followed by an

evaluation of the residuals. The residuals are used to determine the presence of

outliers in the relationship. Anomalies are those observations (pixels) that are not

explained well by the regression model as defined by the magnitude of the residual.

The value of the residual therefore serves as a score separating static condition from

an anomalous response pattern. For example, the pattern of illegal clear cutting

between two dates may be detected where the “normal” pattern of forest is

interrupted by residual values well beyond what might be considered the typical

spectral response of forest cover for a specific time of the year. The main imitation

with this strategy is the underlying assumption that the observations (pixels) are

normally distributed. More flexible and autonomous approaches using nonparamet-

ric techniques are available so that all the data determine model structure.

The most straightforward nonparametric technique uses the histogram to form a

profile of the data distribution. Using this approach, anomaly detection begins by

calculating the histogram for the image followed next by a check to examine if an

instance of data falls into one of the bins of the histogram. According to this

strategy, brightness values that fail to organize with a histogram bin are labeled

anomalous. The size of the bin use to perform the containment check determines

how well anomalies are detected in the image. If the histogram bins are set to too

small a width, pixels will fall in an empty or rare bin and thus return a false positive.

Therefore, selecting an optimal bin size that reduces false positives is critical to the

success of this method. An additional nonparametric technique for anomaly detec-

tion employs Kernel functions to approximate a probability density function (PDF)

based on Parzen-window estimation. Parzen-window density estimation is essen-

tially a data-interpolation technique (Duda et al. 2001; Simonoff 1996). Given an

instance of the random sample, x, Parzen-windowing estimates the PDF of P(x)
from which the sample was derived. The PDF value P(x) is the sum total of the

contributions from the observations to this window. The Parzen-window estimate is

defined as:

PðxÞ ¼ 1

n

Xn
i¼1

1

hdn
K

x� xi
hn

� �
;

where K(x) is the window function or kernel in the d-dimensional space.

Kernel-based methods estimate the density distribution of the input data and

identify outliers as observations (pixels) lying in regions of low density. A common
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detection algorithm using kernel density estimation employs the Gaussian mixture

models of the form:

Pðt=xÞ ¼
Xm
j¼1

ajðxÞfj ðt=xÞ:

An alternative technique adapted from extreme value theory uses the Gaussian

mixture model to represent the data distribution defined by the image. Anomalies,

based on this method, are those pixels evidencing extreme values located at the tail of

the distribution. Extreme value theory examines the tails of the distribution to estimate

the probability that a given observation (pixel) is an extreme value according to

PðextremexÞ ¼ exp �exp
Xm � om

sm

� �� �
:

Anomaly detection can be dramatically improved when multiple spectral bands

locate anomalies (outliers) that are essentially very bright or very dark according to

their relative location in multispectral measurement space (Chang and Chiang

2001). One of the more widely applied detectors of this variety is the R(x) algorithm
developed by Reed and Yu (1990). The basic R(x) algorithm is defined according to

the equation:

ORDXðrÞ ¼ ðr � GÞTKL�Lðr � uÞ;

where r is the vector of pixel spectral values, Gis the mean spectral vector for the

area of interest (the mean of each spectral band), L is the number of spectral bands

and K is the spectral covariance matrix. The algorithm performs in a manner similar

to how a human analyst would visually search for outliers in a single band image by

identifying bright or dark pixels. A human analyst would, of course, be challenged to

identify outliers simultaneously across several spectral bands, the R(x) algorithm,

however, by implementing the Mahalanobis distance formula, establishes a multi-

variate search space that facilitates detection using either multi- or hyperspectral

data. Anomaly detection using the R(x) algorithm begins by calculating the mean of

each band using a sliding dual concentric window (a small interior window centered

within a larger outer window) (Fig. 8.5). The dimensions of the interior window are

assumed to be the size of the feature of interest in the image. The algorithm proceeds

to calculate the spectral covariance matrix before solving for the value ofΩ as shown

by equation (see above). Alternately, the R(x) formula can be normalized using

either the squared distance (magnitude) of the pixel vector to the mean

OnrxdðrÞ ¼ ðr � GÞTKL�Lðr � uÞ=ðr � GÞTðr � uÞ

or to the simple distance determined by,
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OmrxdðrÞ ¼ ðr � GÞTKL�Lðr � uÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � GÞTðr � uÞ

q
:

The calculated value of Ω(r) derived from either of the three methods produces

an array of outlier pixels. Because the R(x) algorithm involves computation of the

mean and covariance matrix, real-time processing of the image data is infeasible. In

order to enable real-time implementation of anomaly detection, the Causal R(x)
algorithm was introduced. The Causal R(x) algorithm employs the sample correla-

tion matrix and solves for Ω(r) such that

OcrxðrÞ � rkTR
�1ðrkÞ rk:

Unlike the R(x) model, which requires knowledge of all of the data samples to

populate the covariancematrix prior to processing, CR(x) processes and updates either
in line-by-line or pixel-by-pixel fashion across the image. Also, since the sample

correlation matrix accounts for both first-order and second-order statistics, CR(x) can
capture spectral variability more efficiently that the R(x) model which is limited to

only second-order statistics. This quality of the CR(x) approach can be advantageous
in remote sensing applications where imagery is generally nonstationary.

Fig. 8.5 The moving window concept
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The R(x) algorithm and its variants are a form of matched filtering where the

signal to be matched is unknown. Through the use of each pixel vector as the signal

to be matched, outlier search space is greatly simplified by the use of distance

formula to partition spectral space into decision regions. Extensions to the R(x)
model include the addition of a Uniform Target Detector algorithm that provides a

measure to express how close each pixel matches a uniform spectral pattern, and the

Low Probability Detection algorithm. Incorporating these into the solution

compensates for background effects and noise while improving the performance

of the R(x) algorithm (Chang and Chiang 2001).

Although there is no universally applicable method for anomaly detection, the

ability to recognize outliers quickly in a remotely sensed image can offer important

clues for a range on environmental issues from the simple identification of thermal

hot-spots elated to phenomena such as geo-thermal activity or subsurface coal fires

to surface peculiarities that may be indicative of contaminant flows, insect

infestations, or nonconforming surface patterns attributable to discordant human

actions. To the analyst, outlier detection begins by selecting an algorithm that

agrees with the statistical assumptions about the data. From this initial decision,

consideration should be given to which of the three fundamental approaches fit

given the nature of the detection problem: a clustering strategy, classification

approach, or a novelty detection search. Once a general strategy has been chosen,

the question of labeling can be entertained. Labeling address the large issue of

naming the anomaly, a facet of the methodology that is closely related to the more

fundamental problem of thresholding as it influences what outlier conditions in the

data separate normal from abnormal. As the analyst approaches the problem of

anomaly detection, prior specification of the factors which determine a discordant

observation allows the results of a processing algorithm to be translated into

meaningful information.

8.5 Summary

Remotely sensed data has become important for the analysis, characterization and

modeling of a wide array of land surface processes, whether biophysical or human,

in the Earth system sciences. These processes range from changes in vegetation

over time, the impact of human activities as well as more complex changes in

ecosystem dynamics such as deviation in nutrient cycling, biomass, or water levels.

Although remote sensing based on reflected electromagnetic energy is recognized

as a powerful tool in the collection, analysis, and modeling of environmental data,

less attention has been given to the use of thermal, and especially thermal infrared,

remote sensing. This chapter provided a review of the use of emitted electromag-

netic energy with a focus on the use of thermal data in anomaly detection and

mapping. In this capacity thermal remote sensing is especially useful for under-

standing the fluxes and redistribution of materials as a key aspect of land surface

processes, where deviations in those processes may signal abnormal or problematic
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events. Directing attention to the concept of an anomaly, the extreme or “out of

place” relationships identifiable in the thermal patterns expand the application of

remote sensing as a method of environmental assessment.
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Chapter 9

Hyperspectral Sensing

Multispectral remote sensing has enjoyed widespread use for well over 40 years

and in the previous chapters we have explored the sensors and techniques that have

been developed to exploit the remote measurement of environmental attributes

using this technology. While multispectral analysis provides information to guide

our assessment of environmental processes, the inherent limitations imposed by the

comparatively broad spectral resolution of multispectral sensors restricts the level

of detail that can be extracted from the data. As interest in environmental remote

sensing continues to develop, imaging capabilities that extend measurement options

beyond the wide wavelength bands common to multispectral sensors can expand

environmental analysis and characterization efforts. In recent years, hyperspectral

remote sensing has emerged as an important complement to multispectral image

analysis which demonstrated potential in application areas ranging from geologic

mapping, agricultural analysis, ecological science, forestry, and urban planning

(Treitz and Howarth 1999; Plaza et al. 2009; Madden 2004; Schaepman et al. 2009).

In this chapter, we will introduce the principles that support hyperspectral remote

sensing and the foundation knowledge required to employ this approach in

land surface mapping. In our discussion emphasis will be given to those aspects

of hyperspectral imagining that distinguish it from the more familiar multispectral

approaches and the methodologies that have been developed to guide the

application of this technology in environmental analysis.

9.1 Moving to the Hyperspectral

Although the concept of hyperspectral remote sensing was introduced in

the mid-1980s, with the deployment of satellite sensors and accessible data archives,

hyperspectral image analysis has become an exciting advancement in remote sensing

over the last decade (Goetz and Alexander 2009). Hyperspectral data aremeasurements

of reflected infrared radiation made across hundreds of wavelengths. When compared

to multispectral imagery, the distinguishing characteristic of hyperspectral data is that

J.K. Lein, Environmental Sensing: Analytical Techniques for Earth Observation,
DOI 10.1007/978-1-4614-0143-8_9, # Springer Science+Business Media, LLC 2012
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reflectance measurements are acquired over very narrow and continuous wavelength

intervals (Fig. 9.1). Therefore, the reflectance curve produced by hyperspectral

measurements assumes a more complex geometric shape that preserves the subtle

details in reflection and absorption that are far more generalized when multispectral

reflectance patterns are observed. By collecting data simultaneously across hundreds

of narrow, adjacent spectral bands, hyperspectral measurements produce a continu-

ous spectrum for each pixel comprising the image (Fig. 9.2). In terms of raw

Fig. 9.1 Comparing hyperspectral data b with bandwidth with multi and panchromatic systems

Fig. 9.2 The hyperspectral pixel
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information content, a pixel in a hyperspectral image defined by continuous spectra,

evidences considerably more information than is available for that same pixel in a

multispectral image.

With greater spectral information available to explain patterns of energy reflec-

tance, the capacity to learn more about the nature of the reflecting surface is enhanced.

The spectra capture by the hyperspectral image defines a spectral resolution that is far

more intelligible than the coarse signature common to the multispectral image.

This feature of hyperspectral imagery is significant and suggests that for each pixel

in the image a continuous spectrum of radiance is sample with a level of spectral

discreteness that enables the identification of spectral signatures that correspond to the

material composition of the pixel (Aspinall 2002). Typically, hyperspectral images

are composed of spectral bands that are 0.005–0.01 mm wide, with sensors systems

designed to detect reflected electromagnetic energy in the range from 0.40 to 2.50 mm
(Fig. 9.3). Therefore, by capitalizing on the derivation of reflectance spectra, image

classification using hyperspectral imagery is less focused on indentifying categories

of land cover or broad descriptions of surface types or conditions. Instead, hyper-

spectral analysis concentrates on the detection of surface characteristics related to

biogeochemical composition.

Fig. 9.3 The measurement “Depth” of a hyperspectral scene
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The contrast between classification and detection suggests that the objectives of

hyperspectral analysis differ, which is important to understand since it influences

the types of application problems well suited for this form of remote sensing. With

hyperspectral data, applications center on the problem of discovery as opposed to

the task of labeling. Although this distinction is subtle, if we consider a pixel in

multispectral space, the information we have to process allows us to name the pixel

at a very general level, such as rock or vegetation. The detail added to our analysis by

the continuous spectra of our hyperspectral image allows us to not only name pixels

that are rock, but to discover which of those rock pixels are dolomite or which of those

vegetated pixels are chickweed. In this context, detection or discovery is more

concerned with the capacity to identify the existence or occurrence of a condition

(Shaw and Burke 2003). Composition-specific analysis extends the capabilities of

environmental remote sensing to engage problems pertaining to the presence or

absence of a phenomena, the spatio-temporal status of an object or feature,

the constituent elements that comprise a pixel, or the proportion of materials that

characterize a given landscape arrangement. The spectra observed for a pixel imaging

a concrete surface in a hyperspectral image displays characteristics identical to the

spectra for concrete that would be measured in a laboratory. The intensity of radiation

separated in this manner is measured by means of an instrument called a spectrometer

(Fig. 9.4). This relationship is no accident (Govender et al. 2007; Ben-Dor et al. 2009;

Fava et al. 2009). Rather, it establishes the theoretical basis behind hyperspectral

remote sensing and promotes the use of hyperspectral imagery as an information

source for:

• Object/feature detection.

• Material mapping.

• Material identification.

• Mapping details of land surface properties.

Fig. 9.4 General schematic of a spectrometer
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9.2 Imaging Spectroscopy

Spectroscopy is a science that uses the absorption, emission, or scattering of

electromagnetic radiation by atoms or molecules to qualitatively or quantitatively

understand materials and physical processes and has been a powerful tool for

investigating environmental and biological agents for many years (Schmidtlein

2005; Swayze 2000). The science of Spectroscopy involves the study of spectra

and howmatter interacts with electromagnetic radiation to form spectra that enables

the identification of substances by observing how energy is emitted or absorbed.

In principle, the science behind spectroscopy is comparatively straightforward.

When matter is excited by the application of thermal, electrical, or radiant energy,

electromagnetic radiation is emitted as the object of matter relaxes back to its

original state. The spectrum of radiation emitted by a substance that has absorbed

energy is referred to as its emission spectra. This is the emission feature of matter

that is studied by spectroscopy. Using emission spectroscopy, the interaction between

matter and electromagnetic radiation can be explored by concentrating a continuous

range of radiation on a substance or material and examining which frequencies or

wavelengths of energy it absorbs. The resulting spectrum derived from the material

displays the original range of radiation that was focused upon it with dark spaces

corresponding to those particular frequencies (or wavelengths) that are missing or

absorbed. The spectrum produced by this process is termed an absorption spectrum

(or spectra) and is used to detect individual absorption features of materials created

when energy interacts with specific chemical bonds in a solid, liquid, or gas.

Generally, either the emitted or absorbed radiation is analyzed by separating radiation

into various frequency or wavelength components (Plaza et al. 2009).

A spectrometer measures the properties of radiation and typically operates over a

selective portion of the electromagnetic spectrum. As it receives the energy radiated

by a material, the spectrometer produces a graph (spectra) that describes the

intensity of emitted or absorbed radiation over the portion of the spectrum it is

designed to operate within. Spectra, quantified by means of a spectrometer, can fall

into one of three broad categories: (1) continuous, (2) line, or (3) band. Heated

solids and the Sun produce continuous spectra where the emitted radiation contains

all the wavelengths/frequencies within a particular region of the electromagnetic

spectrum. Excited atoms in the gas phase form line spectra and only certain

wavelengths/frequencies are produced.

Band spectra are produced by excited molecules emitting radiation in groups

of closely spaced lines that merge to form bands. Taken together these categories of

emission and absorption spectra contain useful information regarding the chemical

structure and composition of materials. Because every material object is formed by

chemical bonds, the potential to detect substances using spectroscopy is very real

and promising. The actual detection of materials, however, somewhat complicated

and dependent on factors such as:

• Spectral coverage.

• Spectral resolution.
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• The signal to noise ratio of the spectrometer.

• The abundance of the material in a sample.

• The strength of absorption features for the material in the wavelength region

subject to measurement.

Taking these factors into consideration, it is both the absorption features

displayed by the material along with the overall shape of the spectra that helps

distinguish one substance from another. Several spectra for common materials

are illustrated in Fig. 9.5. As we examine these spectra variations in the observed

peaks and troughs produce signature-like patterns that clearly differentiate

materials. In many respects the shape and characteristics of these spectra suggest

to the eye that when materials are examined over a continuous range of

wavelengths, distinctive pattern-response sequencing become sufficiently evident

to facilitate the identification of that material.

As a method of material identification, spectroscopy can be used in laboratories, in

the field and on platforms ranging from aircraft to satellite sensors. In the laboratory

spectra are produced when a source of continuous radiation is applied to a material.

The intensity of radiation is measured by the spectrometer and a spectra is recorded.

In remote sensing, imaging spectroscopy is employed to acquire reflectance data in

the form of spatially gridded spectra. The gridded spectra produce a two-dimensional

image, one for each spectral channel across a series of continuous bands (Fig. 9.5).

The spectrum obtained from one pixel, therefore, closely resembles the spectra of a

material obtained through laboratory spectroscopy. The close correspondence

between the pixel and the material spectra obtained in the laboratory is significant

for the purposes of mapping and environmental analysis. Given two sources of

information that display a signature pattern produced by the interaction between

matter and energy, a comparison can be made, in this case between the image spectra

and a laboratory spectra, that enables the identification and verification of the

substance involved.

Hyperspectral remote sensing is a form of imaging reflectance spectroscopy.

Reflectance spectroscopy differs from other categories of spectroscopy in two

fundamental ways (Schaepman et al. 2009). First, energy is reflected or scattered

by object materials to the sensor as opposed to other methods that require energy to

pass through a substance suspended in a gaseous or liquid medium. This quality

of reflectance spectroscopy emphasizes differences in the physical processes of

energy reflection vs. energy transmission critical to effective measurement. Second,

reflectance spectroscopy for remote sensing applications is limited to operating

within the 0.4–2.5 mm portion of the electromagnetic spectrum where atmospheric

windows provide optimal transmission of the energy source. Despite this limitation

numerous materials and substances display unique spectral reflectance signatures in

the 0.4–2.5 mm wavelength interval, owing largely to the absorption of photons

by specific electronic, vibrational, or scattering processes that are produced by

common earth materials in this portion of the spectrum. (Curran 1994; Vane and

Goetz 1988) For example, reflectance characteristics in the 0.4–1.0 mm spectral

range define wavelengths that are influenced by the presence of transition metals
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such as iron. This property makes this interval of diagnostic value for mineral

detection and identification. Unique absorption patterns around 0.9 mm are indica-

tive of electronic transitions resulting in absorption in mineral crystal fields.

This characteristic facilitates their identification in an image. Vegetation, defined

chiefly by chlorophyll absorption features at 0.48–0.68 mm that are the product of

Fig. 9.5 What a spectra looks like: (a) oak leaf and (b) fiberglass roof
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electronic transitions in the carotenoid pigments associated with photosynthesis can

also be understood in the reflectance spectra. Vegetation reflectance also displays

diagnostic characteristics part at 1.0 mm. Beyond this wavelength two reflectance

peaks associated with vegetation can be noted. The first occupies the 0.8-mm region

and the second is found at 1.3 mm; areas referred to as the infrared plateau.

High reflectance properties in this area are associated with leaf tissue structure and

provide diagnostic information pertaining to the cellular arrangement of leaf tissue

and the hydration state of the leaf. The steep increase in spectral reflectance at 0.8 mm
identifies the location of the red edge of the chlorophyll band. Movement of

the spectral location of this edge to lower wavelengths suggests chemical stress in

the leaf which can be used as a surrogate for a range of environmental stressors to

which vegetation is responding. From these brief examples specific reflectance peaks

and absorption troughs can be examined directly from the spectral curves which

enable the potential identification of a material. Therefore, for relatively “pure”

materials, such as an individual mineral or tree species, it is possible to construct

useful reflectance spectra from hyperspectral data. These spectra can be employed in

a “matching” exercise with laboratory or field-collected spectra in order to extract the

material type from the image in a manner similar in concept to a thematic map of land

cover produced via multispectral imagery, wherever the spectra “match.” In addition,

with careful analysis of image spectra, mixtures of two or more materials can be

determined from the components of a spectral curve recorded over a more complex

land surface arrangement.

Imaging spectroscopy, however, is not a panacea, particularly when conducted

via airborne or satellite-based sensors. Laboratory spectra, developed to identify the

characteristics of a given material, are acquired under controlled conditions and

describe substances in the purest condition. Although this information is essential to

hyperspectral sensing, laboratory data rarely captures the complexities of a land-

scape where mixtures of soil, wood, vegetation, metals, water, and numerous other

materials may be present in a pixel. Furthermore, contaminants and natural

variations within a homogeneous scene can introduce very subtle differences in

the spectra of a pixel. Therefore to exploit the remote collection of environmental

spectra, those factors that influence reflectance, absorption, and scattering need to be

taken into account. The data collection capabilities of an imaging spectrometer are

determined principally by four aspects of its design (Clark 1999):

1. Spectral range – spectral range is an essential characteristic that defines the

wavelengths captured by the spectrometer. This range insures that sufficient

diagnostic spectral absorptions are covered to satisfy the requirements for a

given application. Certain spectral ranges are commonly used:

Ultraviolet 0.001–0.4 mm
Visible 0.4–0.7 mm
Near-infrared 0.7–3.0 mm
Mid-infrared 0.3–30.0 mm (thermal)

Far-infrared 30.0 mm to 1.0 mm
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2. Spectral bandwidth – Bandwidth defines the width of an individual channel

of the spectrometer. Bandwidth is an important parameter since the narrower the

spectral bandwidth, the narrower is the absorption feature that can be measured

by the instrument. Bandwidth is analogous to spectral resolution such that at

wider bandwidths subtle spectral detail cannot be detected. Typically, bandwidth

sample greater than 0.025 mm lose the ability to resolve absorption features of

some materials and thus produce less useful spectra when compared to their

laboratory counterparts.

3. Spectral sampling – spectral sampling explains the distance separating the

spectral bandpass profiles for each channel of the spectrometer expressed in

units of wavelength. Bandpass describes the wavelength region each channel has

been designed to operate within. A channel, under optimal conditions, only

accepts reflectance within its wavelength-sensitive range. However, energy

can leak in from beyond this window. Most spectrometers employ a Gaussian

curve filter to control for bandpass aberrations. Sampling, to reduce error and

bias must be close enough spectrally to measure the peak and valley locations

along the curve without overlap. Spectrometers usually sample at one-half a full

width at a half-maximum of the Gaussian profile (termed the Nyquist frequency)

or at half Nyquist.

4. Signal to noise ratio – the signal to noise ratio affects the ability of a spectrometer

to record detail with precision. The signal to noise ratio needed to satisfy a given

application is influenced by the strength of the spectral features under investiga-

tion and is dependent on detector sensitivity, spectral bandwidth, and the intensity

of reflected or emitted energy from the surface.

The data collection capabilities of an imaging spectrometer can also be impacted

by a suite of external environmental factors. Many of these factors are common to

other forms of remote sensing, but when hyperspectral data are involved they exert

greater influence on data quality and the level of detail defined by the image spectra.

Energy recorded by an imaging spectrometer must transmit through the atmo-

sphere. Consequently, any attempt to measure the spectral properties of the material

environment must consider the absorption patterns of the atmosphere that conspire

to modify the spectra of a pixel. Critical absorption regions occur across the spectrum.

Those with the greatest impact on hyperspectral data occur at wavelengths below

0.35 mm where ozone absorption is active. Ozone absorption is also a factor at

9.6 mm, while at 0.76 mm oxygen is the primary absorption factor. Absorption by

carbon dioxide occurs at 2.01 and 2.06 mm.Water vapor is responsible for most of the

absorption features throughout the remainder of the spectrum.When photons enter an

absorbing medium they too are absorbed according to Beer’s Law:

I ¼ Ioe
�kx;

where I is the observed intensity, and Io is the original light intensity, k is an

absorption coefficient, and x is the distance traveled through the medium.

9.2 Imaging Spectroscopy 221



When spectra are observed, the absorption bands we see are the product of either

electronic or vibrational processes. Electronic absorption is attributed to the excita-

tion of outer electrons which create changes in energy states. As an atom absorbs

energy, electrons are promoted from their ground state to a state that is termed

“excited.” One of the more common electronic processes revealed in the spectra of

minerals is the result of unfilled electron shells of transition elements such as iron,

nickel, chromium and cobalt. Absorption bands can also be caused by charge

transfers or interelement transitions where the absorption of a photon causes an

electron to move between ions. Charge transfer absorptions are the main cause of

the red color evidenced by iron oxides (Clark 1999). Vibrational processes involve

the bonds in a molecular compound. At certain energy levels the atomic units held

by the bonds are set into motion in either a back and forth or rotational manner.

The frequency where a molecule absorbs energy depends on (1) the strengths of the

bonds and (2) the masses of atom participating in the movement. Vibrational

absorption is common in nonmetal materials and tends to produce complex spectra.

It is the analysis of electronic or vibrational patterns of absorption and reflectance as

captured by our spectroscopic data that provides essential clues that help to identify

a material. The position of peaks and troughs as well as the overall shape of the

spectra is not only instructive for the purpose of identification, but also facilitates

the machine processing of hyperspectral imagery. In the following section a sample

of spectra are examined to illustrate the variability inherent to our material

environment and to demonstrate how the knowledge contained in a reflectance

spectra can be assembled into a database that can assist with the processing and

interpretation of hyperspectral imagery.

9.3 Endmember Spectra

An endmember is a spectrum chosen to represent a surface material in its pristine

state (Dehaan and Taylor 2003; Rogge et al. 2007). In theory, an endmember is a

hyperspectral signature defining a reflectance vector obtained from the measure-

ment of a pure sample of a material obtained under conditions assumed to be

comparable to those describing the hyperspectral image (Fig. 9.6). Two conditions

underscore the endmember concept. First is the absence of “mixing” in producing

the spectra. Second, it is common to consider the endmember representative of

fundamental materials much the same way a dictionary provides reference definitions

for words. Appreciating the role of an endmember as a reference connects us to the

manner by which electromagnetic energy interacts with a surface. When energy

interacts with materials and substances, energy at certain wavelengths are preferen-

tially absorbed while at other wavelengths energy is transmitted in the material

(van der Meer 2004). The position, shape, depth, and width of the absorption features

evidenced by a spectrum are controlled by the chemical and crystal structure of the

material. Therefore, the descriptive variables characterizing absorption features can
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be directly related back to the physical structure and chemistry of the sample material.

More importantly, absorption depth and asymmetry serve as useful indicator of the

amount of the material causing the pattern or absorption described by the spectra.

To illustrate the diagnostic qualities of endmember reference spectra we can

examine a series of material samples and compare the position, shape, depth,

and width of the absorption features they evidence. This illustrative review begins

with common types of vegetation and continues with an overview of human-made

materials. Each of these examples was obtained from the United States Geologic

Survey Digital Spectral Library (Clark et al. 1999). Through the careful analysis of

these spectra information can be gathered pertaining to the nature of objects at the

surface that helps the remote sensing analysts answer a series of fundamental

questions, such as:

• What is it?

• What is it like?

• What is it made up of?

Placing these simple diagnostic questions into an environmental context gives us

clues regarding the identification, status, and potential changes that characterize

Fig. 9.6 An image endmember spectra
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features of the landscape and ultimately the environmental system (Craig et al. 2006;

Underwood et al. 2003; Younan et al. 2004).

• Vegetation spectra – typical green vegetation displays characteristic absorption

features related to the presence of chlorophyll-a, chlorophyll-b, and carotenoids

in leaves (Fig. 9.7). Peak absorption patterns related to chlorophyll-a occurs

approximately at 0.42 mm while the chlorophyll-b absorption peak I found at

0.47 mm. Secondary absorption peaks are found at 0.65–0.67 mm, respectively.

Carotenoids display a bi-modal absorption peak occurring at 0.48 mm and again at

0.51 mm. Consequently, when the reflectance spectra for typical green vegetation

is observed, we find reflectance elevated between 0.75 and 1.3 mmwith secondary

reflectance peaking at 1.6–1.8 mm with a lesser reflectance increase located

between 2.2 and 2.5 mm. This characteristic pattern extends across a range of

vegetation samples producing nearly identical absorption bands over a variety of

species including Fir tree (Fig. 9.8a), Blue Spruce (Fig. 9.8b), Blue Oak (Fig. 9.8c)

and the familiar grass that comprise our lawns (Fig. 9.8d). Shifts or modifications

in these spectral patterns would be diagnostic of important variations in the

photosynthetic properties of vegetation, indicative of changes in water content,

biomass, soil nutrients, and the overall concentration of chlorophyll in leaves

(Im and Jensen 2008).

• Material spectra – the reflectance spectra for materials common to the human

landscape are more diverse and varied when compared to vegetation endmembers.

Diagnostic absorption features can be far more subtle and more difficult to

generalize since reflectance patterns are controlled by the chemical and crystalline

Fig. 9.7 Absorption features characterizing vegetation spectra
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structures of the materials. For example, asphalt tar, a material common to the roof

tops of industrial and commercial land uses is noticeably absent of definable

absorption bands (Fig. 9.9a). Rather, the reflectance spectra approximates a flat

line with a very slight dip in reflectance at 0.90 mm. The endmember spectra for a

terra-cotta roofing shingle, however, displays a more discernable patter with a

small absorption trough located at 1.9 mm (Fig. 9.9b). Other materials frequently

encountered in the built-environment include concrete road surfaces (Fig. 9.9c)

with a diagnostic pattern evidencing high reflectance beginning at 0.60 mm
through 2.1 mm and an absorption band falling at 1.9 mm. Galvanized sheet

metal (Fig. 9.9d) shows a diagnostic absorption trough at 1.0 mm while materials,

such as red raving brick evidence a spectral pattern similar in shape to concrete

road surface (Fig. 9.9e). Several materials, such as fresh pine plywood (Fig. 9.9f )

share characteristic patterns similar to those of vegetation; however, more exotic

materials such as plastic (visqueen) advertise strong absorption bands between

2.3 and 2.5 mm (Fig. 9.9g).

Despite the limited breadth of this review several general principle regarding

absorption features and diagnostic value of endmember spectra can be noted.

For example, when mineral spectra are observed the shape of the spectral curve

and the presence and location of specific absorption bands is greatly influenced by

minerals’ chemical composition and crystalline structure. The wavelength-dependent

Fig. 9.8 Representative vegetation spectral: (a) fir tree, (b) blue spruce, (c) blue oak, and (d) lawn
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Fig. 9.9 Representative material spectra: (a) asphalt tar, (b) terra-cotta tile, (c) concrete road,

(d) sheet metal, (e) brick, (f) plywood, and (g) plastic sheeting

226 9 Hyperspectral Sensing



absorption features typically result from the presence of chemical elements or ions,

the ionic charge of the elements involved and the geometry exhibited by the chemical

bonds between elements. Examples of these influences can be seen in minerals such

as calcite, a major constituent of limestone, where the carbonate ion (CO3
2�)

produces a series of absorption bands between 1.8 and 2.4 mm (Fig. 9.10a), and

Kaolinite, a clay mineral found in soils, describe absorption bands at 1.4 and 1.9 mm
due to the presence of hydroxide ions (Fig. 9.10b). Vegetation spectra exhibit the

controlling influence of various plant attributes where in the visible bands the shape

of the endmember spectra is governed largely by the absorption effects of chlorophyll

and other leaf pigments. Reflectance increased sharply across the boundary between

the red and near infrared wavelengths, defining the location of the Red Edge. Higher

reflectance in the near infrared wavelengths is directed primarily by the internal

cellular structure of leaves. Beyond 1.3 mm reflectance declines as wavelength

increases except of two pronounced water absorption bands at 1.4 and 1.9 mm.

Fig. 9.10 Characteristic mineral spectra: (a) calcite and (b) kaolinite
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9.4 Mixtures and Models

Although the spectra examined in the previous section provide a convenient way to

visualize how differences in the chemical and crystalline structure of materials

contribute to significant contrasts in their reflectance spectra, the materials we

reviewed represent typical cases whose spectra were measured under ideal laboratory

conditions. In reality, and certainly within the pixels that comprise a hyperspectral

image, all natural materials will display some variations in composition and

structures due to external environmental effects related to age, exposure, weathering,

and contamination, which result in marked differences in their reflectance spectra.

This fact is important if only because the real world captured by a pixel in a

hyperspectral image is also likely to be a far more complex mixture of materials

both as a result of the spatial resolution of the sensor and the inherent nature of the

landscape and its diverse composition (van der Meer and Jong 2002). As we recall

from our treatment of multispectral remote sensing, an imaging spectrometer records

spectral measurements according to a defined spatial resolution. When the

spectrometers ground resolution is coarse it is likely that more than one surface

material will contribute to the measured spectra. The result is a mixed spectra where

the endmembers explain a portion of the curve that define the pure spectra that

contribute to the mixture. Four general types of mixtures in hyperspectral imagery

have been identified (Clark 1999):

• Linear/areal mixtures – macroscopic patterns resulting from the sum of the

fractional area times the spectrum of each component endmember. In this

example, each endmember defined the end of a mixture and forms a “mixing

space” whose proportions can be calculated.

• Intimate mixtures – microscopic mixtures that occur when different materials are

in close contact and a single photon of energy interacts with more than one

material.

• Coatings – mixtures produced when one material coats another and each coating

acts as a scattering/transmitting layer whose optical properties vary with wave-

length and the properties of the materials involved.

• Molecular mixtures – form at the molecular level when two liquids or a liquid

and a solid are mixed together (i.e., mud).

Mixtures remind us that the spectra acquired from a hyperspectral sensor are a

property of the ground features subject to measurement. Ideally we would like to

measure those features accurately and precisely; however, the acquired spectra does

not always resemble the reflectance characteristics of our reference spectra taken

from the laboratory. Additionally, image spectra are also effected by:

• The spectra of the input solar energy.

• Interactions with the atmosphere.

• The geometry of ground illumination.

• The design characteristics of the sensor system.
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These factors not only impact the receipt of accurate spectral reflectance,

but also introduce within-scene variability that hampers comparisons between

individual pixels in the same image.

In order to effectively compare image spectra with reference spectra the

recorded radiance values on the image require conversion to reflectance values

(unless they have already been encoded in units of reflectance). Typically, conversion

must account for the solar source spectrum, illumination of the scene as a function of

sun angle and topography, transmission through the atmosphere and sensor gain.

Converting from radiance to reflectance becomes a mathematical procedure where

the reflectance spectrum of the surface is multiplied on a wavelength by wavelength

basis by the factors listed above. This form of reflectance modeling produces the

measured radiance spectrum with the effect of sensor offset and path radiance due to

atmospheric scattering included in additive fashion (Gao 2009). Several of the more

commonly applied methods of reflectance conversion include the following:

1. Flat field conversion – An image-based method that uses an area on the image

of uniform area that displays a comparatively flat spectral reflectance curve.

From this area the image is converted to “relative” radiance by dividing each

image spectrum by the mean spectrum of the flat field. Ideally, the flat field

should be bright to reduce image noise which would allow the mean spectrum to

approximate the combined effects of solar irradiance and atmosphere absorption

and scattering. The drawback with this methods rest with the difficulty in

locating areas that display a completely flat reflectance spectrum.

2. Average relative reflectance conversion – This method normalizes the image

spectra by dividing by a mean spectrum, but calculates the mean spectrum from

the entire scene. Prior to this operation radiance values in each image spectrum

are scales to compensate for topographic shading and other conditions that

produce variations in brightness.

3. Empirical line method – This technique uses image radiance and ground reflectance

values to perform a linear fit to relate radiance to reflectance. The derived function

quantifies the effects of sensor gain (slope) while the intercept of the function

represents offset. The derived function is then employed to recalculate each image

band to a value of apparent reflectance.

4. Modeling methods – This approach employs radiative transfer models of the

atmosphere to simulate solar irradiance and computer scene radiance for the

time/date of the image. This approach also corrects to atmospheric scattering and

absorption. Several atmospheric correction algorithms have been developed to

calculate concentrations of atmospheric gases from the spectral information

contained in a hyperspectral image. Examples of commonly used models include

ACORN (Atmosphere Correction Now), FLAASH (Fast Line of Sight Atmo-

spheric Analysis of Spectral Hypercubes), ATREM (Atmosphere Removal) and

HATCH (High Accuracy Atmosphere Correction for Hyperspectral Data

(Kruse 2004).
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9.5 Managing Endmembers

From the discussion presented in the previous sections of this chapter, we see that

imaging spectroscopy centers around the measurement and analysis of spectra

acquired as images. The use of these images to study environmental systems and

processes is based on the capabilities of hyperspectral sensors to provide hundreds

of spectral bands, creating one spectrum per pixel that can resolve constituent

surface signatures (Martinez et al. 2006). However, hyperspectral data when

applied to environmental problem-solving may enjoy high spectral detail, but are

often frustrated by low spatial resolution. Consequently, numerous disparate

materials can contribute to the spectrum measured for a single pixel, adding

complexity to the task of surface mapping and environmental characterization.

Since accuracy is paramount to the objectives of environmental remote sensing,

the processing of hyperspectral imagery narrows to the problem of decomposing the

mixtures inherent to the pixel into an estimation of the materials that contribute to

the measured spectra. On face value resolving pixel mixtures appears to be the

relatively straightforward task of identifying unknowns from the image spectra.

However, the question of unknowns can be elusive to answer since contributions to

a pixels spectrum can include all the absorbing and scattering components of the

atmosphere as well as those of the surface that affect radiance. If the application

problem has more unknowns than useful measurements, effective analysis can be

undermined. Conversely, if there are more measurements than unknowns, the

application is overdetermined and a meaningful solution should be attainable.

Regardless of application area, we can generally assume that the objects or features

we are most interested in understanding are not homogeneous or easily captured

spatially by a pixel. Rather, our image spectra are likely to define the integration of

signatures associated with the purest portions of the pixel. Therefore, the spectrum

evidenced by a pixel is some fraction of the corresponding materials that it samples;

a proportion that will vary in abundance based on the heterogeneity of the scene.

Thematic extraction in this context concentrates on defining those fractions.

The less complex the surface, the greater the likelihood a pixel explains “pure”

spectra. As complexity at the surface increases, a pixel becomes a signature of

macroscopically pure patterns that describe image endmembers.

Endmember extraction and the derivation of reference spectra is one of the more

fundamental and critical tasks associated with hyperspectral remote sensing. As we

noted previously in this chapter, a simple definition of the endmember concept

remains elusive. Endmembers are often described as an idealized pure signature for

a material or substance. In terms of thematic extraction, a more involved definition

explains endmembers as the features recognizable in a scene. From this perspective,

endmembers are meaningful to an observer and constitute abstractions of real objects

that can be regarded as possessing uniform properties (Garcia-Aro et al. 1999).

For the purposes of our discussion, it is perhaps more useful to consider an

endmember as simply a clean, clear unambiguous spectra of a material that occurs

somewhere in the image. These are the spectra wewish to identify and ultimatelymap.
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A pixel that falls on a uniform surface, such as a large body of water, unbroken forest

canopy, or open field, will display a spectrum that reveals an endmember spectra

characteristic of that surface. Pixels falling on less uniform areas will have a spectrum

composed of a mix of endmembers. As noted previously, most surfaces contain mixes

of materials or conditions that produce spectral contrasts. These contrasts correspond

to more than one endmember and the challenge is to determine the portion of each

endmember responsible for the mixture. The complicating factor in this identification

problem is the fact that one cannot tell what type of material a pixel is a sample of by

simply looking at its spectra; some reference is needed. In this case a spectral

reference.

Developing a spectral reference to guide the separation of pixel spectra into

meaningful informational categories directs attention to the process of estimating

endmembers. Several methods have been developed to help deduce endmembers.

Two of the more common techniques involve (1) extracting endmembers from the

image (image endmembers) or (2) deriving endmembers from field-collected or

laboratory-measured spectra of known materials (ground-based endmembers).

• Image endmembers – Selecting reference spectra from a hyperspectral image is

similar in concept to the signature collection procedures followed when

conducting a supervised image classification operation (Dehaan and Taylor

2003). The task begins by selecting representative homogeneous pixels from the

image that accurately and comprehensively describes surface materials or ground

conditions germane to the application problem. For a given image spectra to be

useful the pixel(s) sampled must be relatively pure. Pixels can be screened for

purity either through careful visualization of the spectral scatter plots of candidate

sample locations or by applying the Pixel Purity Index method. The Pixel Purity

method utilizes an algorithm to allocate a score to each pixel in the image based on

the number of times a pixel occupies a near-vertex position in repeated projections

of the image data onto a random vector oriented through the mean of the data

cloud (Chaudhry et al. 2006). Although the procedure sounds daunting, pixels that

are relatively pure will have a high score on the Pixel Purity Index. This high score

communicates that these pixels repeatedly occupy locations at the extremes of the

data distribution and therefore represent spectra that is distinct. Having identified

pure pixels based on their purity score, a sample of these can be acquired by

referencing the data layer produced by the algorithm as a guide. Typically in a PPI

image spectrally extreme pixels are displayed in bright tones while darker pixels

are less spectrally pure. Using this image as reference locations containing pure

(bright) pixels can be sampled. Sampling relies on gathering spectral profiles of

the material of interest which are then written to files and complied to form a

spectral library. From this sample mean spectra can be computed for each material

or condition of interest. The resulting spectrum, if collected from an image that has

been preprocessed to remove the contaminating influences of atmospheric scatter-

ing and absorption based on a sample that has been extracted from regions within

the centers of known features, can serve as a reliable reference for hyperspectral

classification operations. Extending image-based reference spectra beyond the
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original scene, however, may be problematic without additional calibration.

One useful calibration procedure that facilitates comparison of reference spectra

across images is the continuum removal method. Continuum removal normalizes

reflectance spectra to permit comparison of individual absorption features from a

common baseline. Following the continuum removal operation reference spectra

can be scaled to provide better agreement ranges exhibited by image spectra.

• Ground-based endmembers – Ground-based collection of reference spectra can

be undertaken either by means of field spectroscopy or through the utilization of

spectroradiometer measurements made in a laboratory setting. Field spectroscopy

requires measuring surface material in situ using “hand-held” spectroradiometers

usually mounted on a pole or yoke to reduce contact with the operators body

(Milton et al. 2009). A variety of field collection techniques have been introduced,

some designed to measure the spectral properties of individual elements of the

scene such as leaves or minerals, others designed to measure the reflectance

characteristics of spatial assemblages such as soil surfaces or vegetation canopies,

and lastly are those methods used to calibrate remote-sensed imagery. Most field

collected data are acquired with the sensor element pointed vertically over the

surface of interest and measurements are recorded by the device and stored as flat

ACSII files to support computer processing. However, to maximize the utility of

field measurements appropriate metadata should be collected and stored for each

field-measured spectra (Table 9.1). Field-collected measurements are a passive

optical method of acquiring spectra which requires optimal illumination

conditions in the field. This requirement can often be problematic, but for the

spectra to serve as useful reference, field-collected data demands conditions of low

atmospheric water vapor content, low aerosol content, and solar zenith conditions

that provide good illumination of the surface. In addition, when sampling

materials in the field issues related to natural variability must be account for

since the field environment can display subtle and complex within-class(material)

variability. Laboratory spectra, as an alternative, are collected under more sterile

conditions where external factors that could potentially contaminate a spectrum

are subject to greater control. Ideally, in the laboratory, the direction of the light

source, its incidence angle and other factors that are involved in data collection

can be held constant. This advantage insures data consistency across all samples.

Specimens of the materials or substances of interest are prepared and mounted on

a stage, illuminated and then undergo measurement. Scans of the material are

collected often from more than one sample and average to produce a single

spectrum. The only limitation associated with collecting spectra in a laboratory

setting is the problem of agreement. Since laboratory conditions are kept at an

optimal during data collection, spectrum run the risk of being “too perfect” and not

representative of what would be encountered in a real world setting. Therefore

when laboratory spectra are compared to data collected in the field they are often

overspecified which can pose problems during hyperspectral classification

operations.
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9.6 Compiling Spectral Libraries

Reference spectra acquired by either an image-based or ground-based methodology

are most useful when assembled into a spectral library. High quality spectral

libraries are essential to the successful exploitation of the wealth of data contained

in a hyperspectral image. As with any library, a spectral library serves as a repository

of information that can be stored, searched, and accessed to support hyperspectral

analysis. The library also represents a reference resource base that facilitates

continued research on the collection of material spectra (Nidamanuri et al. 2010).

The detail and accuracy of an environmental application using imaging spectroscopy

is, in many respects, dependent upon the quality and extent of the spectral library.

Not surprisingly, compilation of a spectral library reference is often the initial step in

a hyperspectral investigation. Library compilation requires the selection of spectra for

the materials of interest that are required given the nature and purpose of the

investigation. These are the spectra that will function as endmember as analysis

proceeds to the identification and mapping phases of the study.

Table 9.1 Sample spectral library metadata file

TITLE: Russian_Olive DW92-4 DESCRIPT

DOCUMENTATION_FORMAT: PLANT

SAMPLE_ID: DW92-4

PLANT_TYPE: Tree

PLANT: Russian Olive

LATIN_NAME: Elaeagnus angustifolia

COLLECTION_LOCALITY: Denver West Office Complex, Golden, Colorado, USA

ORIGINAL_DONOR:

SAMPLE_DESCRIPTION:

Fresh leaves, stacked two on bottom, one on top, over a deep black sample cup

END_SAMPLE_DESCRIPTION

COMPOSITIONAL_ANALYSIS_TYPE: None

COMPOSITION_DISCUSSION:

END_COMPOSITION_DISCUSSION.

TRACE_ELEMENT_ANALYSIS:

TRACE_ELEMENT_DISCUSSION:

END_TRACE_ELEMENT_DISCUSSION.

SPECTROSCOPIC_DISCUSSION:

END_SPECTROSCOPIC_DISCUSSION.

SPECTRAL_PURITY: 1a2_3_4_ # 1= 0.2-3, 2= 1.5-6, 3= 6�25, 4= 20�150 microns

LIB_SPECTRA_HED: where Wave Range Av_Rs_Pwr Comment

LIB_SPECTRA: splib04a r 5322 0.2-3.0mm 200 g.s.=

LIB_SPECTRA: splib05a r 11813 0.2-3.0mm 200 g.s.=

LIB_SPECTRA: splib06a r 30728 g.s.=

Source: Clark and others (2007) USGS Data Series 231 Spectral Library splib06a Sample Des-

cription, http://speclab.cr.usgs.gov/spectral.lib06/ds231/DESCRIPT/V/russianolive.dw92-4.html
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To be useful the spectral library, acting as a database, should contain spectra of

the major surface component materials that are likely to be encountered or whose

presence or disposition in the image is of interest. The function of the library is to

provide spectra as a common reference that is sufficiently representative to permit the

accurate characterization of thesematerials within the study area. Spectral libraries can

therefore form as a generic collection of spectra assembled for nonspecific application.

In this arrangement the spectral library is simply a collection of assorted reflectance

spectra that were produced without a specific connection to a mapping or detection

problem. Alternatively, spectral libraries can be assembled from problem-specific

examples collected for a well-defined purpose or application. Examples of generic

spectral libraries that can be accessed for general applications include the following:

• The United States Geological Survey (USGS) Spectroscopy Lab Spectral

Library (http://speclab.cr.usgs.gov/spectral_lib.html).

• The ASTER Spectral Library (http://speclib.jpl.nasa.gov).

Application-specific spectral libraries are assembled from reference spectra

collected during field campaigns or laboratory investigations. In both of these

instances “high-value” target materials have been selected from which spectra are

measured. Examples may include phenomena such as a particular plant species,

chemical agent, or land surface property that is unique or specialized and therefore

not commonly found in a generic library. The creation of application-specific

libraries and the issues guiding their collection have been well documented by

Price (1995), Price (1998), and Herold et al. (2004).

Whether generic or “self-built,” once assembled the spectral library becomes an

invaluable tool for environmental analysis provided it addresses the user’s primary

needs. As hyperspectral sensing becomes more common, questions regarding the

standardization of spectral libraries, the nature and content of library metadata,

together with the practical issues introduced by the need for documentation,

standard taxonomy, measures of accuracy, and user accessibility will demand

critical evaluation. One promising solution to the general problem of library

standardization and access has been introduced by Ferwerda et al. ( 2006) in the

form of a prototype Web-based open source database for the distribution of

hypespectral signatures.

9.7 Developing Hyperspectral Applications

Environmental analysis conducted using multispectral remote sensing provides

useful information that supports broad types of questions concerning the identification

and inventory of land surface objects (Craig et al. 2006; Govender et al. 2007;

Ben-Dor et al. 2009). With the introduction of hyperspectral analysis a third possibil-

ity is to introduce analysis that directs our attention to the question regarding the

condition of the landscape objects we have identified. Hyperspectral applications are

typically developed around this third question, supporting investigative problems that
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are deductive in nature (Curran 2001; Aspinall et al. 2002). Deductive analysis

facilitated by hyperspectral data directs interest to those types of problems where

interest centers on understanding the composition of objects, their status and

the identification of unique features. Examples can be as basic as studies designed

to identify an invasive plant species within the scene, focused analysis to determine the

status of concrete paving on highways, or investigations developed to investigate

the composition of industrial gray or brown fields. In these examples the reflectance

spectra obtained from imaging spectrometers aptly characterize the material envi-

ronment and the library reference assembled to drive the application facilitate both

the thematic identification of materials that are known, but also enable the assess-

ment of unknowns, outliers, and anomalous patterns at the surface and the environ-

mental complexes that envelop them.

Crafting a hyperspectral mapping exercise follows four fundamental processing

steps:

• Initial calibration – this step in analysis requires the conversion of image data to

radiance values.

• Atmospheric correction – operations here are aimed at removing image noise

attributed to the atmosphere and converting radiance to apparent reflectance.

• Endmember preparation – a step involving the extraction of spectra from the

image, removing the spectral continuum and building the spectral library of

continuum-removed absorption features or acquiring library reference spectral

through direct collection or by accessing a prepared spectral library.

• Spectral classification – classifying image pixels using specific processing

strategies such as those preformed by spectral unmixing or spectral matching

algorithms with reference to the spectral library.

Each of the processing step outlined above introduce detailed methodological

considerations that will be explored and expanded upon in the next chapter.

In general, the goal of hyperspectral analysis is no different than the principles

that guide multispectral remote sensing: to derive the maximum information from

the imagery, thereby minimizing reliance on other sources of data in order to move

closer to the solution of a problem (Kalacska et al. 2009). Through careful project

planning, based on clear objectives, we can recover more detail about the composition

of the environment using hyperspectral data and undertake complex mapping

applications that extend the utility of remote sensing technologies in environmental

analysis. To the environmental community the promise of hyperspectral remote

sensing as a means to identify the presence and abundances of specific diagnostic

materials can better direct land management, environmental monitoring, and envi-

ronmental assessment operations (Madden 2004; Pontius et al. 2008).
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9.8 Summary

This chapter introduces the world of remote sensing beyond the multispectral

sensors commonly employed in landscape analysis and mapping. Hyperspectral

images are often referred to as spectrally over determined. Such imagery captures

spectral information over an expanded sample of wavelengths that can be used

to identify and distinguish between spectrally similar (but unique) materials.

Hyperspectral imagery provides the potential for more accurate and detailed infor-

mation extraction than is possible with other types of remotely sensed data;

therefore, hyperspectral imagery provides opportunities to extract more detailed

information than is possible using traditional multispectral data. In this chapter,

the principles of hyperspectral analysis were introduced beginning with a treatment

of spectroscopy to understand how materials absorb light energy in discernable

ways. From this background the concept of an endmember was introduced than

demonstrated how the chemical and material composition of surface objects cold be

identified based on their spectra. With an understanding of these fundamental

principles, the compilation of material spectra into libraries to guide analysis

was examined.
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Chapter 10

Hyperspectral Classification

The detailed spectra defined in a hyperspectral images posses new image processing

challenges and exciting opportunities. Unlike its multispectral counterpart,

hyperspectral imagery captures a level of spectral resolution that contains unique

compositional and structural information about the landscape not available in other

forms of remotely sensed imagery. To exploit this source of information, thematic

extraction based on hyperspectral data involves isolating spectral features in the

image according to their reflectance properties followed by a comparison of these

properties to those on known materials. In this chapter, we will review the methods

employed to extract thematic information from hyperspectral imagery and examine

the algorithms called upon to process image spectra.

10.1 Processing Fundamentals

The overarching goal in hyperspectral remote sensing is to achieve a successful

identification of surface materials and conditions. With this goal in mind the

classification problem using hyperspectral data reduces to the twofold task of

(1) decomposing the spectral composition of a pixel and (2) matching pixel spectra

to those of known materials of substances. Thematic extraction based on this

comparatively simple logic produced a level of classification discreteness that

also contrasts markedly with the thematic categorizations developed from multi-

spectral data sets. Through the application of hyperspectral data, image classifica-

tion focuses on the discrimination of surface types and their conditions as opposed

to the naming of broad categories of land cover. At first glance this distinction may

seem trivial, but it carries important and useful implications for environmental

remote sensing applications. For example, multispectral classification is capable of

producing information detailing the spatial extent of impervious surface over

portions of a watershed. While this information is extremely useful in hydrologic

and engineering studies, this same exercise performed using hyperspectral imagery

can not only produce a map explaining the geographic pattern of impervious

J.K. Lein, Environmental Sensing: Analytical Techniques for Earth Observation,
DOI 10.1007/978-1-4614-0143-8_10, # Springer Science+Business Media, LLC 2012
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surface, but also detail what surface types can be attributed to the pattern; whether

impervious surface is composed of concrete, impervious asphalt, brick, or shake

roof tops (Van der Meer 1998/1999, 2004, 2006). In this example, the addition of

“type” in the categorization of the surface contributes significantly more informa-

tion to the analyst and facilitates estimation of the abundance of these materials in

the watershed.

The concept of abundance is a recurrent theme in hyperspectral classification.

The concept explains the degree to which surface types that comprise elements

of the landscape are evidenced in a pixel. The pixel, as a sample unit of fixed

spatial dimension can be pure, describing a homogeneous surface, or a mixture of

types commonly referred to as a composite. Abundance is an attribute of the pixel

that is used to quantify the percentage or fraction of the pixel covered by a given

material. We recall this idea from Chap. 9 during our discussion of spectral

endmembers. Values of abundance are expressed along the numerical range from

0.0 to 1.0 and are displayed cartographically as a continuous surface communicat-

ing the same logic as a fuzzy or belief surface (Fig. 10.1). Using this numerical

expression, the spatial distribution and relative amount of a given material at pixel

locations over the scene can be understood. More importantly, abundance estimates

can be transformed into categorical representations detailing the presences of a type

or class of material, and through the selection of fractional thresholds, type or class

dominance can be established and visualized (Fig. 10.2).

Hyperspectral classification may also proceed based on the logic of matching.

Matching is a form of supervised pattern recognition logic where an unknown

spectra is compared to that of a known material. Spectral matching, according to

Fig. 10.1 Representation of surface fractions
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this logic, is typically defined by a measure of similarity between the unknown

spectra and the spectra of the reference material. In simple terms the closer the

unknown spectra is to the reference example as expressed by a “distance” metric,

the closer is the match. A decision rule determines the threshold where an optimal

match is achieved. The pixel is labeled accordingly based on its proximity or

similarity to this threshold. Matching logic employs a range of approaches to est

ablish matching thresholds. Common methods derive thresholds using distance-

based, angle-based, or correlation-based measures (Drake et al. 1999; Goodenough

et al. 2003; Kardi 2007).

Lastly, hyperspectral classification can be understood based on the logic of

unmixing. The landscape we study is rarely composed of a single uniform material

Fig. 10.2 Material cover representations derived from abundance surfaces
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or condition. Consequently, when materials with different properties are sampled

by a single image pixel, some degree of spectral mixing can be expected. We

generally conceptualize mixing as the linear combination of reflectance spectra

with the addition of some level of noise that contributes to the pattern in random

ways. Classification based on the logic of unmixing focuses on reversing the mixing

process that occurs and attempts to “take a part” in the pixel spectral. By reversing

the mixing process, the goal is to isolate the various components (spectra) that

contribute to the pattern of mixing explained by the pixel. Through the unmixing

process the identity of spectral signatures (endmembers) hidden in the mixture are

revealed and their corresponding proportions (fractional abundance) are quantified.

A variety of empirical procedures have been developed to guide hyperspectral

classification. Implementing a specific procedure begins by selecting that processing

chain that is (1) capable of addressing the requirements imposed by the application

problem and (2) capable of compensating for the limitations introduced by the

design of the sensor system that provides the hyperspectral data. End-to-end analysis

of hyperspectral imagery can be approached following a sequence of recommended

operations that have been described by Kruse et al. (2003) as the “hourglass”

approach. Illustrative methods such as the “hourglass” model are a useful means

of visualizing the procedures required to extract thematic information from our

imagery and as well as a schematic device that serves as an organizing framework

to guide the analyst through the classification problem. In the next section, we will

examine the hyperspectral processing chain and employ the “hourglass” model as a

road map to guide us through the analysis and classification process.

10.2 Hyperprocessing

Any image processing methodology is designed to reduce the spectral or spatial

dimensionality of hyperspectral data in order to (1) locate, (2) characterize, and

(3) indentify critical spectra (endmembers) in the data that can be employed to

explain the remainder of the scene. The tasks specific to this general operation and

the workflow required to produce the desired result is illustrated in Fig. 10.3. As

with any remote sensing exercise, hyperspectral classification begins with the

acquisition of data that complements the application problem. Although

hyperspectral remote sensing has undeniable potential for advancing environmental

analysis, hyperspectral imagery is not as readily available as other forms of

remotely sensed data. At present there are very few operational satellite-based

hyperspectral sensors and none provide the continuous repeat coverage common

to multispectral sensors such as Landsat TM. The current situation suggests that

satellite-based hyperspectral imaging is still in the developmental stages, therefore

the majority of applications will rely on careful mission planning and data acquisi-

tion based on air-born systems for the foreseeable future. This near-term reality

restricts the “off-the-shelf ” availability of hyperspectral imagery which constrains

the breath of applications to only those well-funded, carefully planned and clearly
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targeted problems; the majority still somewhat experimental in nature. Despite this

limitation hyperspectral data can be accessed from the EO-1 systems (EO-1 and

Hyperion) and acquired through visualization servers such as GLOVIS supported

by the United States Geological Survey (http://glovis.usgs.gov).

Once imagery can been acquired, either by means of a specific data collection

mission or from Earth-orbiting platforms, formal processing can proceed. The

stages involved include the following:

1. Data preparation – Data preparation begins the generation of a spatial subset of

the hyperspectral image to focus attention on the study are germane to the applica-

tion problem. Once the geographic extent of the study area has been identified,

preparation continues with an initial assessment of image quality followed by

radiometric and geographic preprocessing. One common method for displaying

hyperspectral imagery for visual evaluation is the 3-D data cube (Fig. 10.4).

Fig. 10.3 Hyperspectral

processing/classification

workflow
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The 3-D data cube is a graphic device that emphasizes the high spectral content of

the image and permits a cursory inspection of the individual bands comprising the

scene. The display convention used to present the data cube relegates the spatial

(x, y) coordinate information to the X–Y axis while the Z-axis displays the spectral
information for the image with the shorter wavelengths at the top moving down-

ward as wavelength increases. As a visualization device the image cube illustrates

the structure of the image and is an effective way to identify black layers in the

image indicative of spectral bands compromised by high atmospheric absorption

where negligible reflectance reaches the sensor. An additional visualization tool for

identifying absorption and noise in the data employs image animation. Animation

of the scene with each band representing a frame in the sequence facilitates cycling

through the wavelengths noting bands that have noticeable radiometric error and

noise. Examples of image noise are provided in Fig. 10.5). Once bands plagued by

error or noise have been identified they can be removed by spectral subsetting of the

image. The result produces a relatively clean image that can be subjected to

geometric correction and radiometric calibration. Geometric correction and

orthorectification is a critical operation for imagery acquired from aircraft sensors

in order to remove flight line distortions. Radiometric calibration attempts to

remove any lingering striping and periodic cross-path swatch variations in bright-

ness. Calibration also compensated for senor-related effects that modify the image

and render the sensor-recorded values more proportional to actual at-sensor

radiance.

Fig. 10.4 Characteristic 3-D

image cube
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2. Atmospheric correction – Hyperspectral imaging sensors collect radiance data

from either airborne or space-borne platforms that must be converted to apparent

surface reflectance before classification operations can proceed. At this point, it is

helpful to recall that radiance and reflectance are two distinct phenomena. Sensor

radiance measures the amount of electromagnetic energy that reaches the sensor.

Reflectance explains the percentage of electromagnetic radiation incident on a

surface that is actually reflected by the material. Without converting radiance

measures to reflectance values comparing image spectra with reference reflec-

tance spectra (endmembers) will not yield meaningful results. Atmospheric

correction techniques are called upon to remove spectral transmission of the

atmosphere and scattered path radiance, producing an image expressed in units

of reflectance in the process. Atmospheric correction can be undertaken using

either:

(a) Simple atmospheric correction methods, such as

• Flat field
• IAR reflectance
• Empirical line corrections

Fig. 10.5 Image noise
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or

(b) Advanced atmospheric correction methods, such as

• ACORN
• FLAASH
• ATREM

Under most circumstances model-based transformations using advanced correc-

tion methods are required for hyperspectral analysis.

3. Data reduction – Adjacent bands in a hyperspectral image are often visually and

numerically similar. Reducing the dimensionality of the image data can speed up

visual analysis and classification procedures. When this option is exercised, two

of the most common data reduction techniques employed are principal

components analysis (PCA) and the minimum noise fraction (MNF) transform.

PCA is a familiar technique in multivariate statistics that seeks to produce an

orthogonal linear transformation of data to form a new smaller number of

uncorrelated variables. When applied to a hyperspectral image, PCA is a useful

method of data reduction when there is sufficient evidence to believe that

redundancy is an issue. Redundancy implies high levels of correlation between

bands and suggests that these correlated bands are measuring the same condi-

tion. Pattern recognition in the high dimensionality defined by a hyperspectral

image can be improved through a linear transformation to create a lower

dimensional data set. The resulting transformed image presents a new set of

bands ordered in a manner that presents important image information in the

lower-ordered components with noise increasing as component (band) number

increases. The MNF is mathematically similar to PCA; however, in an image

that displays bands with contrasting levels of noise, PCA may not capture the

expected trend of increased noise with increasing band number. The MNF

transform addresses this potential limitation by normalizing each band in the

image by its noise level. Normalization, in this context, acts to reduce the

influence of noise by de-emphasizing problematic bands in the transformed

image. The MNF algorithm projects the original image into a new space that

is divided into two parts; one part associated with the signal while the second is

dominated by noise. The MNF transform creates a set of images that contain

weighted information regarding signal variance across all the bands that com-

prise the original scene. The transform retains specific band information since all

of the original wavelengths contribute to this new data set. With either the PCA

or MNF approach the data trend is generally explained by the first few bands in

the new image. This feature requires the analyst to select the boundary

separating signal (useful bands) from noise. In most instances selection is

based on a careful evaluation of the eigenvalues visualized using a scree plot

or by subjecting the new band combinations to review using image animation.

4. Endmember selection – As noted previously in our reviewof hyperspectral sensing,

endmembers were characterized as spectra that can be used to classify pixels.

Although they may represent materials of interest in the image, an endmember is
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neither the material nor the spectral signature of a surface type or class. Rather the

endmember is a constituent part of a spectral mixture which may be pure or a

composite ofmaterials at the geographic scale representedby the image. For analysis

to proceed, endmembers must be selected from the spectral library that was derived

either directly from the image or by means of field or laboratory collection. The

actual nature of the endmember and the material or substance it references depends

on the application problem (Rogge et al. 2007). With the objectives of analysis

clearly stated the appropriate library spectra can be gathered andmade available for

use during classification.

5. Spectral classification – Following satisfactory calibration and correction

operations together with the selection of relevant endmembers hyperspectral

processing enters the classification phase. A range of image analysis algorithms

have been developed to extract the extensive information contained in

hyperspectral imagery. The available methodologies fall in one of two

categories: (1) whole-pixel approaches or (2) subpixel methods. Whole-pixel

methods function to determine whether one or more material of interest are

abundant within each pixel that forms the hyperspectral scene. The determina-

tion of abundances is accomplished on the basis of defining a measure of spectral

similarity between the pixel and its reference spectra. Subpixel algorithms are

used to calculate the quantity of a material in mixtures present in each image

pixel (Borengasser et al. 2008). In both approaches the pixels in the scene are

evaluated with reference to the spectra assembled into the reference library file.

A listing of common processing algorithms is provided in Table 10.1 and each

are reviewed later in this chapter. The classification logic applied in classifica-

tion centers around two themes: (1) matching and (2) unmixing. As we recall

from Chap. 9 matching asks the comparatively simple question, “can material A

be found in the image”? The objective of matching is to find spectra of known

materials in a reference set that match those found within the image. According

to this approach, no assumptions are made regarding the materials on the ground

or their spectral properties, although the number and type of reference spectra

are usually limited based on the scope of the problem (Adams and Gillespie

2006). Through this example of spectral modeling physical interpretation, based

on prior knowledge and matching logic, establishes a test to determine how well

image spectra agree with a general hypothesis regarding what the image may

contain. Unmixing can be conceptualized as the “picking apart” of the reflec-

tance spectra. The objective of unmixing is to separate the spectrum addressing

the question: “what does these spectra consist of ”? Through unmixing the

Table 10.1 Common

methods for hyperspectral

analysis and classification

Whole pixel Subpixel

Spectral angle mapper

(SAM)

Complete linear spectral

unmixing

Spectral feature fitting Matched filtering
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membership of individual endmembers with reference to the source spectrum

can be ascertained, creating a measureable result referred to as endmember

abundance.

6. Verification – Spectral classification produces thematic maps that convey infor-

mation about the nature and/or composition of the material surface. Since the

map information are generated from material spectra they portray patterns of

selected materials on the ground or labeled to describe more generalized types

based on the reference endmembers. Since classification develops from the

comparison of ground to reference spectra verification of the results is essential.

Verification considers both the accuracy of a given label and how well materials

at the surface were detected. The challenge using hyperspectral data is to

establish the level of agreement which is made complicated by the spatial

resolution of the imagery. At fine spatial scales pixel footprints can be sampled

for representative locations. However, the pixel footprint requirement can be

relaxed if aggregations of pixels produce a block pattern large enough to permit

the clear identification of a material. From this point on, verification seeks to

determine if the material is present in the sampling unit. This typically requires

choosing an endmember with the highest abundance value as the label for the

pixel to create a thematic representation that can be used to conduct a traditional

accuracy assessment and produce standard accuracy statistics.

The stages outlined above suggest a general script that can be followed to guide

the application of hyperspectral imagery in environmental analysis. The utility of

the thematic information produced from the hyperspectral data, however, rests in

how well the spectrum of measures has been exploited to generate a relevant

information product. Converting the data in the image to information that solves

a problem relies on how well a classification was executed relative to the strategy

chosen to process the data. In the next section, the processing strategies alluded to

above are examined in greater detail.

10.3 Hyperspectral Processing Strategies

Image classification is perhaps the most common method of extracting information

from remotely sensed imagery. Although the product of hyperspectral classification

may fit different objectives when compared to the thematic presentations created

from multispectral analysis, an equally detailed body of techniques have been

introduced to assist with hyperspectral classification that warrant careful review.

A selection of the more widely applied methods is presented. These approaches can

be separated into two dominating strategies: whole-pixel methods and subpixel

techniques.
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10.3.1 Whole-Pixel Analysis

Whole-pixel processingmethods are used primarily to ascertain the relative abundance

of one or more target materials within each pixel in our hyperspectral image.

The general processing convention employed by whole-pixel classifiers involves a

similarity test that compares the target pixel with materials spectra assembled into a

reference library. Common whole-pixel classifiers include the spectral angle mapper

(SAM) and spectral feature fitting (SFF) algorithms each ofwhich implement a specific

spectral matching procedure.

• Spectral angle mapper – The SAM algorithm classifies hyperspectral data based

on a set of reference spectra that define specific surface types or conditions of

interest. The algorithm was introduced by Kruse et al. (1993) and is explained by

the general relation:

Angle ¼ arccos
Sum of ðTðiÞ � RðiÞÞ

Tj j � Rj j
� �

;

where, T(i) is the test spectrum values (i ¼ 1 to n), R(i) is the reference spectrum
values (i ¼ 1 to n), |T| is the square root of (sum of (T(i) � T(i))), and |R| is the
square root of (sum of (R(i) � R(i))).

According to this model, R explains the amplitude of the reference spectra at

band (b) and (i) represents the amplitude of the spectra to be matched at band (b).

Using this formula, the SAM algorithm computes a spectral angle between each

pixel spectrum and each target spectrum. The smaller the spectral angle between

the two conditions, the more similar the pixel is to the band vector or target

(Fig. 10.6). The calculated spectral angle is measured in units of radians that are

assigned to the corresponding pixel producing either a series of raster layers (one

for each reference spectra in the library) or a single raster image that displays for

each pixel in the image of the reference spectrum, which has the smallest angle

and therefore represents the best match. Satisfying a match is a function of

the minimum spectral angle threshold, where smaller angles define close

matches even in situations where one spectrum is much brighter that another.

Fig. 10.6 Spectral angle

mapping logic
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Typically, pixels further away than a specified similarity threshold are not

classified by the algorithm. As a classification strategy, SAM is a comparatively

robust method for identifying the spectral similarity of materials that comprise

the hyperspectral image. The algorithm represses the influence of shading

effects, thereby accentuating the reflectance characteristics of the target. SAM

is also invariant to unknown multiplicative scaling and related deviations that

arise from differential illumination and orientation conditions. However, SAM

classification is perhaps most effective when the image is composed of pixels

that correspond to surface types and conditions that are explained by “pure”

pixels ( single, spectrally distinct material classes) (Kruse et al. 1993; Hunter and

Power 2002; Schwarz and Staenz 2001; Van Der Meer et al. 1997).

• Spectral feature fitting – SFF classification implements a matching algorithm

based on the complete shape of the image spectra when compared to the

reference spectra with a specified wavelength range. The SFF algorithm uses

the absorption features of spectra to perform the comparison test and requires

continuum removal of the spectra prior to processing. Drawing from the

analyst’s prior knowledge of specific materials, a range of spectra are selected

to describe the spectral feature (absorption band). Next, continuum is removed

from the image data and the reference spectra and the continuum-removed

spectra is superimposed over the pixel spectra. A least-squares regression is

calculated on a band-by-band basis where the total RMS (root mean square)

error is used as a measure of goodness of fit. A spectral match is established

based on two measures. The first measurement is the depth of the feature in the

pixel compared to the depth of the features in the reference. The second is a

measure of shape based on the correlation between the shape of the feature in the

pixel and the shape of the feature in the reference (Clark et al. 2000; Gupta

2003). A scale image is produced for each endmember selected for analysis. This

image is created by subtracting the continuum-removed spectra from one what

inverts the spectra; rendering the continuum zero. A single multiplicative scaling

factor is then determined that yields a reference spectrum match with the

unknown spectrum. With selection of a reasonable spectral range, a large scaling

factor is equivalent to a deep spectral feature and a small scaling factor describes

a weak spectral feature. In some implementations of the SFF algorithm a ratio

image of Scale/RMS is available that is used to explain how well the unknown

spectrum matches the reference spectrum on a pixel-by-pixel basis.

10.3.2 Subpixel Analysis

Subpixel processing methods are robust detection algorithms that calculate the

quantity or fraction of materials contained within the pixels that define our

hyperspectral scene. The attraction to this family of image processing techniques
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rests in their capacity to detect quantities of a material or condition that fall below

the spatial resolution of the sensor; features commonly referred to as subpixel

phenomena. It has been demonstrated that in situations where the spectral contrast

between a feature and its background is good, subpixel algorithms can indentify

materials that cover as little as 13% of a pixel (Borengasser et al. 2008). Two of the

more widely used subpixel analysis techniques in hyperspectral remote sensing are

the spectral unmixing and matched filtering algorithms.

1. Spectral unmixing – Unmixing algorithms are based on the premise that the

reflectance spectrum of a pixel is the product of a linear combination of the

spectra of all image endmembers that fall within it. A linear combination in this

context can be conceptualized as a weighted average of each endmember that

contribute to the pixel’s spectrum. The endmembers exert an influence that is

assumed to be proportional to the area they occupy in the pixel. The unmixing

procedure involves decomposing these mixtures of endmembers into their indi-

vidual parts, expressing the resulting pattern as a set of corresponding fractions

or abundances. The endmember fractions describe the proportion each explains

pixel-by-pixel that complete the image (Keshava 2003; Keshava and Mustard

2002). The general unmixing algorithm solves for a set of n-liner equations for
each pixel (Fig. 10.7). The unknown variables in these equations are the

fractions of each endmember in the pixel. Therefore, to solve the linear set for

an unknown mixed fraction, there must be more equations than unknowns.

In practical application this suggests that unmixing can only proceed if there

are more bands in the image than endmember spectra (materials). Endmember

selection can also be problematic when conducting spectral unmixing, since

endmembers are expected to represent “pure” pixels. The linear mixing model

takes the basic form:

Rk ¼
X

rjkFj þ Vk ðk ¼ 1; . . . pÞ;

whereRk represents themean spectral reflectance of a pixel in the k th spectral band,
rjk is the spectral reflectance of the j th component in the kth spectral band, fj is the
proportion of the jth component within the pixel, m is the number of components,

Fig. 10.7 Linear unmixing

methodology
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Vk is the residual, and p is the number of spectral bands for the kth spectral

bands, respectively. Using this fundamental relationship with an image of k
spectral bands, the ith endmember spectrum can be denoted as Si and the abun-

dance of the ith endmember as Ai. Taken together, the observed spectrum X for

any pixel becomes

X ¼ A1S1þ A2S2þ � � � þ AmSmþ Vk:

Linear models such as that expressed above assume no interaction between

materials. There, if each photon on energy sees one material, the signals are

additive. Multiple scattering involving several materials can be thought of as

cascaded multiplications. When multiple scattering occurs nonlinear processes

are at work. In the majority of examples nonlinear mixing tends to be a second-

order effect. Although many surface materials mix in a nonlinear fashion, linear

unmixing, while often producing an approximation of fractional patterns, can

still provide satisfactory estimations. The product of the spectral linear unmixing

algorithm are a series of fractional abundance images; one for each endmember,

where the quantities assigned to each image pixel express the percentage of the

endmember material it contains (Fig. 10.8).

(a) Matched filtering – Matched filtering (MF) is a derivative of the spectral

unmixing algorithm where only a specific user-defined target is subject to

analysis and thematic representation (Williams et al. 2002). Unlike the linear

mixing model, the matched filtering does not depend on obtaining spectra of

Fig. 10.8 Linear unmixing

abundance layer
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all endmembers characterizing the scene. This difference influences how an

analysis is conducted and the type of application suited to the matching

filtering approach. Because extensive endmember information is not required,

matched filtering is often referred to as “partial unmixing” since the unmixing

equations are only partially solved. As a mixed pixel classification strategy,

MF suppressed background noise and estimates subpixel abundance of a

single targeted material or condition based on a three phase procedure outlined

by Mitchell and Glenn (2009) that begins with (1) a MNF of apparent

reflection data, followed by, (2) a matched filtering of the selected material

for abundance information, and culminating with, (3) mixture tuning to

identify infeasible or false-positive pixels. Matched filtering operates under

the assumption that the abundances of a target material in the hyperspectral

scene is comparatively rare. Therefore, when this method is applied to move

general thematic mapping situations, the interpretation of the results produced

by the matching filtering algorithm can be problematic. Matched filtering

scores are calculated for each pixel by projecting the MNF transformed data

onto a matched filter vector. This vector is derived by transforming the target

spectrum into MNF space; a process that requires projecting the vector onto

the inverse covariance matrix of the MNF data and normalizing it to represent

the magnitude of the target material’s abundance. The product of this opera-

tion creates the match filter vector with unit length and corresponds to target

components in the pixel that can range from 0 to 100%. Mathematically, the

matched filter vector is expressed as follows:

V ¼ ½Cmnf ��1 � t�mnf=ðt�ÞT � ½Cmnf � � 1� t�mnf ;

where V is the matched filter vector, [Cmnf]
�1 is the inverse of the MNF

covariance matrix, and t* is the vector of the target spectra in MNF space.

Values of the matched filter are calculated for each pixel to produce a target

abundance image according to:

½MF� ¼ V � ½MNF�:
Because the abundance scores are normally distributed with zero mean,

MF values of zero or less represent background clutter (no target) while

pixels that scores greater than zero explain fractional target components

proportional to the value of their MF score (Mundt et al. 2007). False-

positives, however, are common with matched filtering and can be reduced

by fine tuning the solution. The mixed tuning stage addresses the false-

positive problem by assessing the probability of estimation error using the

concept of mixed feasibility (Mundt et al. 2007). Calculations to determine

the feasibility of the match involves the following:

• Determining the target component for a pixel

• Interpolating the variance eigenvalues respective to the target vector

component
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• Calculating the standard separation between a pixel and its ideal target

vector

The defining equation used to compute the target vector component is

given as follows:

Ci ¼ MFi t
�
mnf ;

where Ci defines the target vector component for pixel I, and MFi represents

the matched filter value for pixel i. The ideal pixel, according to this logic,

will lie on the target vector; however, actual pixels will display some degree

of variability due to noise and background mixing. The proximity of each

pixel in the scene to its ideal location on the target vector served as a measure

of infeasibility. This relationship describes the mixture tuning cone model

and is calculated according to:

Ii ¼ si � cik k
eik k ;

where Ii is the value of infeasibility for pixel I, s is the MNF spectra for pixel

i, e is the interpolated vector of eigen values for pixel i and c is the target

vector component. The product of mixed tuning is a suite of values that

represent the statistical distance from the target mixing vector for each

pixel. Pixels that fall within an infeasibility threshold match the target

while those falling outside this threshold do not (Mundt et al. 2007).

Incorporating the mixed tuning step in matched filtering reduces false-

positives and improves the accuracy of matches above those obtained when

using matching filtering alone since high infeasibility values are likely to be

false-positives despite their matched filter score.

10.4 Interpretation and Explanation

When hyperspectral classification concludes, we are presented with an image set that

portrays the spatial distribution of recorded pixel spectra that either satisfy the criteria

of a “match” with a specific endmember material or explain an identifiable presence

of endmembers in a scene confused by spectral complexity. Using the concept of

“abundance” the unraveled pattern of spectra or the agreement between a known

condition and its occurrence in the image can be expressed as a linguistic variable and

quantified. For some environmental applications simply knowing the pattern of

abundance of a given material is sufficient information to guide assessment or

decision making. However, for detailed environmental studies we can consider the

abundance patterns and matches derived via hyperspectra classification as intermedi-

ate data products that can be subject to more rigorous analytical treatment.
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Treatment implies the desire to refine the patterns of fractional abundance into a

thematic representation that conveys more decision-relevant information. Although

the translation of the intermediate data product into a format that informs is

problem-specific, there are several principles that can guide the process. Because

hyperspectral imagery contains information regarding the material or chemical

composition of the surface, the thematic information extracted from our imagery

can be as varied as the reference spectra assembled for the given application.

As demonstrated previously, spectra can be as diverse as worn concrete surface,

oil-saturated soil, or hardwood trees infested by anthracnose (leaf spot disease).

The possibilities that can be recovered using field or laboratory spectroscopy are

limited only by the practicalities surround the collection of a material spectrum.

When such reference information are available our attention can be directed at both

the spatial identification of a material as well as the relationship this material may

have with respect to other landscape characteristics, such as the pattern of contami-

nation in relation to a sensitive receptor.

The abundance surfaces produced via hyperspectral classification, however, is

somewhat abstract and may be inaccessible to a wider audience (Pu et al. 2008).

Conveying abundance patterns in a meaningful way begins with interpretation. The

spatial distribution of material abundance is expressed over the 0.0–1.0 continuum,

much the same way we saw thematic information portrayed through soft-image

classification. Like the soft-classification example, there is an element of subjective-

technical judgment that is called upon in order to establish categorical boundaries that

place pixels into distinct classes. Interpretation, albeit selective, is also accompanied

by an explanation that is supported by the evidence (Heiden et al. 2007). Several

questions inform this exercise:

• Is a pixel with a match filtering score of 0.40 a match?

• What is the criteria for a reasonable match given the nature of the material and

the complexity of the surface?

• What does a pixel with a 10% soil mixture suggest?

• Should a pixel containing only 20% of an endmember for a contaminant be

considered a contaminated pixel?

While these questions are hypothetical, they are not trivial. Rather, they under-

score the issues that surround uncertainty with regard to image processing and

analysis as well as the uncertainty inherent to a specific application problem. As

noted by Adams and Gillespie (2006), image analysts are often disappointed when

image units fail to coincide with units mapped on the ground. However, realizing

the potential of hyperspectral sensing in environmental assessment begins by

recognizing that the spectral properties of the surface are not the sole basis for

thematic presentation. In actuality, thematic presentation is an interpretation and

evaluation of data. The results attained via hyperspectral classification are, in

essence, characterizations of the physical properties of the landscape deemed to

be important by the analyst. The results of analysis also describe the culmination of
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a methodology designed to achieve specific objectives. Flaws in method wild yield

flawed thematic representations as will logical inconsistencies that over-reach the

limitations of hyperspectral technology.

Successful applications of imaging spectroscopy within the domain of environ-

mental assessment are developed around four focusing principles:

1. Definition – Stressing the point that hyperspectral remote sensing moves analysis

into the field of spectroscopy, problem definition centers on application problems

that can benefit from the detailed examination of very accurate spectral data.

2. Diagnostic potential – Problems well suited for hyperspectral analysis are driven

by an evidence-based paradigm where the properties of objects or features serve

to support a given environmental condition.

3. Spatial context – Objects and features display a spatial context that hyperspectral
imagery can exploit. These geographic relationships place measurement into a

context whereby their occurrences are phenomena-driven and can be understood

with reference to their spatial arrangement and juxtaposition.

4. Process inference – Ideas such as unmixing and matching contribute to problems

that require the derivation of logical consequences from the circumstantial

evidence as observed in the imagery. The resulting analysis engages a premise

and provides confirmatory information for reaching a conclusion.

Over the next decade key developments in hyperspectral remote sensing are

likely to propel this science forward and broaden its appeal. Among the likely

technological developments will be the wider availability of hyperspectral data

facilitated by new sensor systems designed with more sophisticated support infra-

structure. The future is also likely to witness a new generation of hyperspectral

sensors that employ on-board intelligent detection and classification algorithms

capable of near-real time transmission of information to ground receiving stations.

Such sensors will enjoy tighter coupling with emerging sensor Web technologies.

As the decade unfolds hyperspectral sensing may give way to ultra-spectral instru-

ments designed to recover surface reflectance over thousands of spectral bands with

spatial resolutions below 15 m. With each of these potential advancements

standardization and improved metadata conventions will evolve to assist the wider

distribution of spectral libraries. Taken together these developments will encourage

data sharing while facilitate the operational use of hypersensing in environmental

analysis.

10.5 Summary

Building on the background introduced in the previous chapter, this chapter

explored the methods and procedures that guide the hyperspectral image classifica-

tion. The goal of hyperspectral classification is to achieve a successful identification

of surface materials and conditions. Beginning with a discussion of processing

fundamentals, this chapter details the methodologies involved in preprocessing as
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well and classification procedures following “whole-pixel” as well as “subpixel”

strategies designed to define the material composition of surface materials. Whole-

pixel analysis methods function to determine whether one or more target materials

are abundant within each pixel in a hyperspectral image based on the spectral

similarity between the pixel and target spectra. Subpixel analysis methods are

used to calculate the quantity of target materials in each pixel of an image which

can support the analysis and detection of quantities of a target that are much smaller

than the pixel size itself.
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Chapter 11

Object-Based Analysis

In the preceding chapter, the techniques available to exploit the spectral content of

our remotely sensed imagery were discussed. The methods and issues reviewed in

Chap. 10 did much to demonstrate the unique and useful sources of information that

can be gained from the expanded spectral domain offered by hyperspectral sensors.

Although essential, spectral data alone does not provide a complete picture of the

environmental system to fully understand process or guide environmental decision

making. One under-utilized quality of an image that can add an additional dimen-

sion to the study of the environment is the explicit spatial arrangements,

juxtapositions and patterns exhibited by our spectral measurements. These unique

arrangements place spectral data in a geographic context where spatial descriptors

such as shape, perimeter, and texture together with other geographic variables

define objects in the image that add an element of knowledge into the classification

problem. These image objects are derived exclusively from the spatial relationships

found in the image and with this additional knowledge they present criteria beyond

the spectral signature which enriches the image classification process. Object-based

analysis offers new possibilities that may extend the role of remotely sensed data in

complex mapping and assessment applications. In this chapter, we will examine the

object-based paradigm and review the fundamental aspects of image classification

based on the analysis of image objects.

11.1 Objects and Segments

When we examine an image display visually on a computer screen or as a “photo-

graphic” product printed on paper media, our eyes and brain strive to organize the

image into definitive shapes and colors that enable us to decipher the scene and

impart meaning to the arrangements we recognize. The geometries we observe

begin to make sense to us and their juxtaposition together with our prior knowledge

and experience enable us to add context to the image. Pattern together with context

allow the image to become “known” to us and we can label the geometric elements

J.K. Lein, Environmental Sensing: Analytical Techniques for Earth Observation,
DOI 10.1007/978-1-4614-0143-8_11, # Springer Science+Business Media, LLC 2012
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that comprise the scene into information that is useful to us. Returning to the

familiar visual cues that are fundamental to the visual interpretation of aerial

photography, we are quickly reminded that there are important clues available in

our images that get lost in the digital processing of spectral measurements that the

computer cannot “see” (Table 11.1). The elements of photo interpretation listed in

Table 11.1 take simple ideas like shape, texture and arrangement and communicate

to us the content of a visual display. This inherently qualitative information can be

interpreted through the lens of culture and assembled into thematic information.

Qualities such as shape or texture define properties of the geometries our eyes see

and our brains assemble into meaning (Fig. 11.1). From an exclusively spatial

perspective these geometries can also be considered geographic primitives that

describe the puzzle pieces that constitute the landscapes geographic form. For

example, in a forested area we can anticipate distinctive separations between stands

of trees, grassland areas, or barren fields where each suggested boundaries

demarcated based on changes in shape, color, apparent texture, or other cues that

are visually noticeable. A line drawn on the image enclosing area where common

visual attributes suggest similar characteristics and imply a common theme. On the

image the line encircling this visual commonality forms a polygon delineated on the

basis of a set of shared attributes. The polygon extracted from the image represents

an object, a geometric feature explained by a set of identifiable characteristics

(Fig. 11.2). This object also becomes the principle unit of abstraction that drives

the object-based paradigm (Lang 2008). The challenge is to move from this

conceptual and qualitative definition to an entity that can be represented numeri-

cally and subject to digital computation. In the machine-processing environment of

our remote sensing system, an object can be explained more precisely as an

Table 11.1 Fundamental recognition elements of photo interpretation

Tone Refers to the relative brightness or color of elements on a image and defines the most

basic of the interpretive elements because without tonal differences none of the

other elements could be understood

Size The relative size of an object

Shape The geometric shapes are usually indicators of surface use or form: cultural features

– geometric, distinct boundaries whereas natural features – irregular shapes and

boundaries

Texture Impressions of “smoothness” or “roughness” of image features is caused by the

frequency of change of tone in photographs where smoothness describes surface

features of similar height and coarseness – irregular surfaces

Pattern Characterizes spatial arrangement where the patterns formed by objects in a photo

can be diagnostic

Repeating simple geometric patterns tend to indicate cultural features

More complex, curving patterns tend to indicate natural features

Shadow Helps to determine the height of objects in aerial photographs

Site Refers to topographic or geographic location and suggests relationships of a feature

to its environment/location

Association Objects are often found in association with other objects. This context surrounding

an object can provide insight into what it is where the presence of one object is

often correlated with the presence of another
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agglomeration of pixels that share similar spectral and spatial properties. Therefore

unlike our visual analogy, image objects are recognized as contiguous regions of

pixels that define uniform radiometric characteristics. Therefore an object in the

image domain corresponds to an area of uniform shape, texture, topology,

Fig. 11.1 Simple spatial

geometric shapes

Fig. 11.2 An image object
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heterogeneity, and spatial relationship. Such objects are formed by aggregating

neighboring pixels with similar spectral or spatial characteristics following an

object-building procedure known as segmentation (Navular 2007; Benz et al. 2004).

The segmentation process requires dividing a remotely sensed image into

objects or areas that share specific properties in common (Fig. 11.3). A variety of

approaches to segment an image into objects have been introduced (Pal and Pal

1993). Regardless of approach, the goal of segmentation is to decompose the image

into spatially discrete, contiguous, nonintersecting and semantically meaningful

regions. Image segmentation can be conducted following either a top-down,

bottom-up, or combined strategy (Table 11.2). Three general forms of image

segmentation have been described by Blaschke et al. (2006):

• Pixel-based segmentation – Pixel-based segmentation stratifies the image into

pixels of two or more values by comparing pixel values to a predetermined

threshold. Each pixel is examined individually to ascertain whether or not it

should be assigned to the object relative to the mean digital value of all pixels

already assigned to that object. The assignment test takes the general form of a

Boolean decision rule, where

Iði; jÞ ¼ 0 BVði; jÞ< threshold

1 BVði; jÞ � threshold

�
;

with BV(i,j) representing the pixel brightness value at location (i,j) and i
describing the segmented image (Gao 2009).

• Edge-based segmentation – Edges describe the boundaries created in image by

abrupt changes in brightness values. Using edges as a delineating criteria, pixels

Fig. 11.3 The pattern of an image following segmentation
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that are enveloped within a polygon boundary formed by edges are assumed to

be homogeneous and therefore can be defined as an object.

• Region-based segmentation – A region describes a geographic area delineated

on the basis of one or more unifying criteria. As per segmentation logic, an

image can be partitioned into regions by applying statistical criteria as a ratio-

nale for establishing uniformity (homogeneity). With these criteria explained

segmentation proceeds following either a region-growing or split and merge

decision rule. Region-growing segmentation employs seed pixels in a compari-

son test with neighboring pixels relative to the selected homogeneity criteria.

Pixels are merged, in an iterative fashion, into larger regions until a homogeneity

threshold is met. The process stops once regions grow to a point where no further

pixels can be allocated and the entire image is segmented. The split and merge

algorithm subdivides the image into uniform square based on initial pixel seeds.

Adjacent regions that are statistically similar are merged until prespecified

termination criteria are reached. The initial segmentation is refined to form

more regular object boundaries using measures of texture, color, mean bright-

ness value, size or shape. Refinement continues iteratively and ends once all the

pixels in the image have been allocated to segments.

Other methods of image segmentation have been introduced including knowledge-

based, multicriteria and multiresolution strategies. Each of these has been extensively

reviewed by Gao (2009). Of the alternative approaches, the multiresolution method is

worth noting due to its successful implementation in commercial remote sensing

software systems. Multiresolution segmentation is a bottom-up region merging strat-

egy where a sample of single seed pixels serve as initial image objects. As the

algorithm proceeds, the individual regions are merged successively into fewer and

larger objects. Merging builds a hierarchy based on a set of evaluative criteria such as

object perimeter, area, and shape along with measures of compactness, texture, and

color each of which are calculated from the segmented regions. Objects form with

each iteration of the algorithm and are clustered based on the calculated variables

Table 11.2 Image segmentation strategies

Method Description

Pixel-based Stratifies an input image into pixels of two or more values by comparing pixel

values with a predefined threshold. Pixels are examined in isolation to

ascertain if they belong to a specific region based on their values

Edge-based Edges describe boundaries between land covers where pixel values change

abruptly. Using edge detection methods, pixels encompassed by edge pixels

are organized into that homogeneous region

Region-based Applies homogeneity criteria to identify regions in the image using either of two

common seeding algorithms: (1) region growing; this approach to

segmentation examines neighboring pixels of initial “seed points” and

determines whether the pixel neighbors should be added to the region or (2)

split and merge; where the input image is subdivided into squares of uniform

size based on the initial seed pixels and adjacent regions that are similar are

then merged together until a termination criteria is reached

11.1 Objects and Segments 263



which serve as indices that construct objects from the image. Optimization methods

are also used to guide the merging process as objects form up through the hierarchy.

As with other segmentation techniques, the multiresolution approach terminated when

all pixels in the image have been assigned to regions, or when a predefined threshold

has been reached. The overall success of this method is therefore dependent on the

parameters supplied by the analyst which typically include a scale parameter and

break-off value together with a set of single layer weights and homogeneity criteria

that drive the algorithm (Baatz and Schape 2000; Gao 2009).

11.2 The Role of Homogeneity

Homogeneity is a critical variable in the segmentation process. Criteria selected to

define homogeneity with respect to segments determine whether a seed pixel’s

neighbor belongs to the seed pixel’s object (Guo et al. 2007). In many respects, the

concept of homogeneity is comparable to the idea of similarity as applied in

mutlivariate statistical operations such as cluster analysis. In the feature space of

a remotely sensed image, two adjacent image objects (or initial seed pixels)C1d and

C2d are considered similar if their features on the feature space of the image are

close to one another. The shorter the distance, the more likely C1d and C2d belong

to the same object. Closeness in this context can be expressed as the degree of fit (b)
such that

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðC1d �C2dÞ2

q
:

The familiar Euclidean distance formula can then be normalized using the

standard deviation to yield,

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðC1d �C2dÞ2

q
sCd

:

The value (b) direct the pair-wise merging of objects under the assumption that

an image object should be merged with the neighboring segment where the reduc-

tion in homogeneity is the lowest.

In image segmentation object homogeneity can be defined in several ways:

1. Color homogeneity – Determined as the sum of the standard deviations of the

spectral values of the object pixels over all the bands in the image

2. Shape homogeneity – Expressed as the relative deviation of the edge length from
the most compact shape (i.e., a circle) which can be quantified using
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(a) Edge criterion that approximate smoothness based on the ratio of object

length (L) and the edge length of a bounding box (b) that explains the

smallest rectangle that completely encloses the object

B ¼ L=b:

(b) Area criterion that approximate the deviation of the object from an ideal

shape expressed as the compactness ratio of object length (L) and the

square root of object size in pixels (n):

B ¼ L=
ffiffiffi
n

p
:

Other examples of homogeneity criteria exist as well which include criteria that

use measures such as

• Absolute spectral distance between the adjacent pixel and seed pixel

expressed as:

B ¼
X

( BVsi � BVniÞ;

where BVsi and BVni represent the digital value for a seed pixel and its adjacent

pixel for the ith spectral band of the image.

• Absolute local spectral distance between two neighboring pixels based on the

formula

B ¼
X

ð�ui � uiÞ2;

with ūi denoting the digital value of a known region pixel and mi is a neighboring
pixel of ūi whose regional assignment has not been determined.

• Relative local difference between two neighboring pixels such that:

h ¼
Pn
i¼1

ðxi � �xÞðyi � �yÞ
� �2

Pn
i¼1

ðxi � �xÞ2 Pn
i¼1

ðyi � �yÞ2
:

Supplied with homogeneity, criterion “best fit” optimization strategies guide the

grouping of objects into similarity clusters. Here, optimization generally relies on

the application of decision heuristics to merge segments using one of several options:

1. Fitting – Where object A is merged with any neighboring object B that fulfills

the homogeneity criteria.

2. Best fit – Where object A is merged with object B that best fulfills the homoge-

neity criteria according to a minimum change constraint.
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3. Local mutual best fit – Which finds for object A the neighboring object B that

best meets the homogeneity criteria.

4. Global mutual best fit – This merges the pair of neighboring objects that best

meet the homogeneity criteria across the entire image (scene).

The image segmentation procedure results in a surface abstracted as a collection of

objects. This new object domain creates a data set that now contains more descriptive

information (dimensions) of the image than simply the brightness value of reflectance

or radiance as recorded for the pixel. With the image defined by a richer data set

the image classification process can effectively draw from many more variables.

The addition of these variables enhances categorization and facilitates a heightened

level of precision. (An example of the data file created by image segmentation that

defines the range of object properties as variables useful to the goals of classification

is given in Table 11.3.) The object properties listed in Table 11.3 encapsulate the state

of the object as a set of attributes and redefine the image according to the structure

of an object-oriented file. Through this process the image is transformed into a

database of objects that conforms to the representational schema of an object-based

spatial database. Using this architecture enables the storage of more attribute infor-

mation along with the objects as vectors which provide more efficient and flexible

manipulation capabilities where compared to the raster/grid format.

11.3 The Object-Based Paradigm

The efficient storage of data for advanced computing purposes remains a central

goal in computer science. The object-based paradigm is one of several methods

used to represent and structure data for applications in a machine environment

(Devereux et al. 2004; Blaschke 2010; Bock et al. 2005). The object database model

emerged in the mid-1980s in response to certain limitations found with the rela-

tional database model that was widely touted at that time. One nagging problem

with the relational mode was that relational databases did not allow users to define

their own data types. The object-bases storage paradigm permits user-defined data

types and enjoys other features such as:

• Containers – Means of representing the result of a query

Table 11.3 Object

properties produced

from segmentation

Attribute Explanation

Color Mean “color” values for each object in each band

Shape Squareness, Roundness, Length/Width Ratio, etc.

Size How large or small/perimeter

Texture Contrast, homogeneity, dissimilarity

Content How does the object relate to its neighbors?

Relationship How individual object characteristics interrelate

to the entire image

Relative location, subobjects, super objects
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• Methods – Which are pieces of computer code that can be associated

with an object

• Rules – Describing computer code that is automatically activated when a specific

event occurs.

All of which give certain advantages to this database schema such as (1) a rich

system type, (2) improved modeling of complex objects, and (3) enhanced

performance. In a spatial context, the object-based data model stores both the
spatial and attribute data of spatial features in a single system. This feature

allows a spatial feature (object) to be associated with a set of properties and
methods.

An object-based data model consists of seven essential ingredients:

1. Objects and object identifiers

2. Complex values and types

3. Classes

4. Methods

5. Subclass hierarchies

6. Inheritance and dynamic binding

7. Encapsulation

As a method for collecting real world entities in a logical manner, the object-

based model attempts to structure data much the same way we conceptualize it.

Extending this idea to the environment as abstracted via our remote sensing system,

the object model is a convenient way to code the patterns and attributes generated

by the segmentation process suggesting landscape entities that explain observable

landscape features. Elements of the landscape abstracted as objects form entities

that can be manipulated by our software such as a value, variable, or function.

Object database methods are appropriate to this task because our data is complex as

are the relationships that result from segmentation. This intuitive approach toward

the regionalization of complex surface arrangements has contributed to a growing

list of applications object-based classification (Gitas et al. 2006; Maxwell 2010;

Jacquin et al. 2008; Bhaskaran, et al. 2010). The growing list of object-based

approaches suggest that image analysis using this paradigm offers certain opera-

tional strengths when compared to pixel-based methods including

• An image portioned into objects in a manner that compliments how we

conceptually organize the landscape

• A basic unit of representation that reduces computational effort while facilitating

more complex analytical techniques

• The creation of objects that retain useful landscape descriptors such as texture,

shape, and contextual relationships that cannot be provided at the pixel level

• The definition of spatial units that are less sensitive to the modifiable area unit

problem by maintaining a structure that corresponds more closely to the phe-

nomena under investigation

• A spatial representation that can be integrated into vector display and vector

analysis using GIS
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Given the challenges that confront environmental analysis, where concern is

often directed at land units described as habitats, patches, or linear features defined

within a complex matrix, the object-based paradigm decreases the level of detail,

reduces image complexity and renders the content of our imagery more accessible.

The image objects into which landscape entities form can be treated as individual

elements of the landscape and the relationships that emerge between objects at

different levels of representation can be subject to analysis. Thus, unlike the pixel,

the object, once expressed according to a set of identifiers, can also be monitored

over time. The only hurdle in this schema involves the question of “meaning”.

Segmentation is an ill-posed problem in that it produces no unique solution (Wang

et al. 2010; Mueller et al. 2004). By simply changing a single parameter or

heterogeneity measure can lead to different image segmentations. The resulting

ambiguity is not unlike the example where to human photo interpreters delineate

features on the same image in slightly different ways. In addition, there is often a

lack of agreement regarding the conceptual foundations of the object-based

approach; a problem that become readily apparent when considering the relation-

ship between image objects (segments) and landscape objects (patches). The

potential disparity underscores what has been termed the “orchard” problem origi-

nally introduced by Lang and Langanke (2006). The orchard problem speaks to the

issue where geographic features exhibit conceptual boundaries rather than real one.

Using the analogy of an orchard where the human eye sees the specific arrangement

of trees in a matrix of grass and the brain applies gestalt rules (heuristics based on

prior experience ) to explain the context inherent to the object. In most instances

there may be little evidence to support the belief that a segmentation-derived object

is an understandable representation of a structural or functional unit of the land-

scape. Without a formal and accepted conceptual foundation there is no consistent

means to establish if a given segmentation is appropriate or more correct than

another (Jyothi et al. 2008).

Despite this potential flaw, object-based image analysis is attractive if only

because it fosters a new way of thinking about remotely sensed data. Instead of the

standard conceptualization of the image as a raster (grid) structure, the object

paradigm redraws the image and casts it into a construct crafted using the principles of

• Abstraction – Denoting the essential characteristics of an object that

distinguishes it from all other kinds of objects and provides crisply defined

conceptual boundaries relative to the analyst’s perspective

• Encapsulation – Explaining the process of compartmentalizing the elements of

an abstraction that express its structure and behavior

• Modularity – Defining the process of decomposing a complex system (scene)

into a smaller, self-contained collection of related classes of objects

• Hierarchy – Describing a ranking or ordering of abstractions, where hierarchies

may be organized according to concepts such as categorization, aggregation,

containment, partitions, or inheritance

The image database generated through the implementation of the object-based

model demonstrates these principles and forms the basis for thematic classification.
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11.4 Object-Based Classification

As suggested by the previous sections of this chapter, thematic extraction following

the object-based model involves the classification of objects based on inquiries

addressed to and exercised through the image transformed into a database. Image

objects, defined on the basis of features connected with direct descriptions, logical

conditions, or relationships between objects, can be assembled into thematic classes

(Mallinis et al. 2008). However, landscape classification employs methods that

sharply contrast to those described in earlier chapters. Object-based classification

exploits the variables generated via segmentation together with spectral informa-

tion to group neighboring pixels into meaningful regions that can be assigned with

thematic labels (Conchedda et al. 2008; Duveiller et al. 2008; Hay et al. 2005).

Through the inclusion of variables such as texture or shape, image classification

expands beyond simple statistical pattern recognition and broadens the explanation

of pattern by adding additional dimension into its expression. In theory with an

expanded representation of pattern, improvements in thematic extraction should

follow.

Object-based image classification centers around two main activities:

1. Object identification – A process is driven largely by the chosen segmentation

procedure.

2. Object labeling – An activity involving the classification of image objects into

thematic classes.

Object identification typically begins with a supervised image classification

procedure. Supervised classification is used in the process to produce training

data that serves as a spectral sample for the land surface types of interest. Samples

may be general land cover classes or more specialized categorical designations

depending on the application. Because segmentation is a form of automated

processing, the results may or may not conform to the desired surface features.

Supervised training creates a type of image knowledge that is called upon to support

the classification of image objects. The training knowledge-base is referred to as a

class hierarchy and it supplies the analyst with specific definitions of the categories

we wish to extract from the scene. It should be understood, however, that there is no

such thing as a perfect segmentation. Segmentation is a means to the end. Classifi-

cation is the goal of object-based analysis not image segmentation. A general rule

gathered from experience demonstrates that a single segmentation is typically never

sufficient for image classification. Rather, repeated merging and segment growing

tends to provide results that generate more meaningful categorizations (Verburg

et al. 2009). In addition, image segmentation is highly scale dependent; therefore,

some adjustment of the scaling parameters read by the segmentation algorithm is

generally required.

Once a segmentation is produced, the next major phase in object-based analysis

involves the construction of a class hierarchy. As noted above, all features of the

land surface that are subject to our analysis must be declared in accordance to their
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representative training samples. This selection procedure is identical to the sam-

pling procedure followed when conducting a supervised classification and entails

consideration of the same requirements. Samples should be representative of the

theme and provide unambiguous spectral detail to reduce error and uncertainty.

Depending on the classification system being used and the level of thematic

discreteness available, the categories may be represented hierarchically to illustrate

their complexity. This option requires the use of different spatial resolution in order

to characterize a reasonable class structure (Fig. 11.4). A perfect class hierarchy

may not be a reasonable or feasible solution given the nature of the problem or the

types of surface features characteristic of the scene. At the conclusion of this stage

in the classification process, the image is now abstracted and described by three

elements: (1) the training data used to provide spectral signatures of the classes of

interest, (2) a segmentation which defines a set of object primitives that further

abstract the image, and (3) a class hierarchy that explains what the signatures mean

with reference to the object primitives.

Depending on the degree of sophistication, the class hierarchy facilitates three

possible object relationships that can be exploited during object labeling:

1. Inheritance – Describing the formation of parent and child classes where the

parent class can pass on its feature descriptions to a child class (which can also

have their own child classes) following the logic of the object-based data model.

Fig. 11.4 A generalized schema of a class hierarchy
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2. Groups – Structures that are formed by semantic relationship among classes that

combine to form larger units.

3. Structure – Identifying object classes that can be combined to form structural

groups as a basis for classification-based segmentation.

In essence a classification hierarchy establishes the rules that will be used to

determine which objects are assigned to which class. By supplying class

descriptions with explicit rules, object assignment proceeds either in a deterministic

fashion by means of thresholds, or through the supervised classification of sample

sites. When sampling is employed, signatures for each class generate nearest

neighbor classification rules that are used to perform object to class assignments.

Classes in the hierarchy either contain or inherit these rules. Other rule-making

strategies are possible including the use of membership functions derived using

fuzzy set theory (Lizarazo and Barros 2010; Liu et al. 2008; Smits and Annoni 1999).

After the objects assembled from the image have been identified, they can be

labeled. This step describes the actual classification of the segmented image using the

decision rules that actively merge and name objects as specified in the hierarchy.

Decision rules employed to conduct the classification of our imagery can be based on

several different combinatorial/labeling strategies:

• Statistical

• Nearest neighbor

• Decision tree

• Semantic rules

• Neural networks

• Fuzzy logic

Implementing a decision rule directs the classification procedure to treat every

image segment or object as a unit of analysis. Pixels comprising an object are

assigned to an informational class by considering its detailed definition and how

well the pixel corresponds to that definition. The comparison of pixels to definitions

invokes a search strategy that employs sample objects that have been declared for

each class. Search the functions to identify the closest sample object in feature

space. The image object that is found to be closest to a given sample class is

assumed to be representative of that class. That image object inherits the definition

and is assigned (labeled) to that particular informational category.

Although the specific workflow followed when conducting an object-based classi-

fication will vary according to the software environment implementing the procedure,

the general processing chain can be described according to seven central activities:

1. Image preprocessing

2. Selection of a classification scheme

3. Image segmentation

4. Training

5. Development of classification rules

6. Classification of segmented image

7. Accuracy assessment
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11.5 Uncertainty Management

As with any image classification procedure error and uncertainty are always

problematic issues that are difficult to resolve and object-based classification is

no exception. The issues related to error when conducting an object-based analysis

of remotely sensed imagery center around the segmentation process and introduce

concerns regarding:

• Sample object size

• Sample object reliability

• Sample object density

• Spatial composition of objects

These four sources of uncertainty are compounded when the pragmatic

implications of decision rule uncertainty, the selection of segmentation scaling

parameters and the selection of threshold values are introduced. Considering the

large array of segmentations algorithms available, deciding on the appropriate

method often relies on the judgment of the analyst. In a review of the image

segmentation problem Zhang (1996) identified three approaches to assess segmen-

tation quality: (1) analytical comparison, (2) empirical goodness, and (3) empirical

discrepancies. The method of analytical comparison considers the segmentation

algorithm and how it performs by examining its underlying principles,

requirements, and complexity. Quality assessment using empirical goodness

methods evaluate the performance of the segmentation algorithm by judging the

quality of the segmented image using “goodness” measures that evaluate:

• Intraregion uniformity

• Interregion contrast

• Region shape

A selection of these measures are presented in Table 11.4 based on Zhang

(1996).Empirical discrepancy methods compare the segmented image to a refer-

ence image assumed to represent a correct or ideal segmentation. In some respects,

this is analogous to “ground truthing” where discrepancies can be compared and

quantified based on measures related to:

• The number of mis-segmented pixels

• The position of mis-segmented pixels

• The number of objects in the image

• The feature value of segmented objects

Although the use of empirical discrepancy indices is an involved procedure, they

may prove to be more effective for remote sensing application focused on the

production of thematic maps (Moller et al. 2007; Zhan et al. 2005). However,

reliable reference data is not always available.

The lack of useful reference data encourages the use of global validation indices

that examine the entire image in order to ascertain the appropriateness of the
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parameters selected to produce a segmentation. One widely used validation index is

the normalized post-segmentation standard deviation (NPSS). This index is

computed according to the formula:

NPSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPno

i¼1 nið�x� �xiÞ2PN
1 ð�x� xÞ2

s
;

where x is the object mean, no represents the number of objects, and N the number

of pixels included in the ith object.

An additional measure of global validation is described by a map complexity

metric termed the comparison index (CI) calculated from:

CI =

Pn
i¼1 CiACi

n
;

where Ci is the comparison class, ACi
is the proportion of Ci within the reference

space and n represents the total number of objects. A series of related complexity

metrics have been evaluated by Stein and DeBeurs (2005). The role complexity

metrics in the evaluation of error is to quantify the precision attained by a given

method of image segmentation and help direct selection of the most feasible

segmentation technique. While this is often a trial and error process, the appropri-

ateness of an object’s delineation and the correctness of boundary locations

establishes the basis from which thematic accuracy can be evaluated and directly

influences map precision. In practice, the implications are clear and suggest that

accuracy when employing an object-based methodology is not only thematic but

also a matter of semantic and geometric agreement.

11.6 Finding a Fit

As a method of analysis, object-based approaches offer unique image classification

solutions that can benefit environmental assessment and decision-making activities.

The attraction to object-based analysis stems from the inherently geographic nature

Table 11.4 Evaluation

methods for image

segmentation

Empirical goodness methods

Goodness based on intraregion uniformity

Goodness based on interregion contrast

Goodness based on region shape

Empirical discrepancy methods

Discrepancy based on mis-segmented pixels

Discrepancy based on position of mis-segmented pixels

Discrepancy based on the number of objects

Discrepancy based on the feature values of segmented objects

Source: Zhang, Y. (1996) A Survey on Evaluation Methods for

Image Segmentation, Pattern Recognition 29(8), pp 1335–1346
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of the object as both a focus of analysis (classification) and understanding (repre-

sentation). Comparing the geometry of the image-object derived via segmentation

to the inflexible sampling design imposed by the pixel, the representation of

landscape elements evidences a morphology more closely matching natural form.

This phenomenological agreement suggests that thematic maps developed from

object-based classification techniques should characterize land surface information

with a closer correspondence to natural boundaries. In studies involving habitat

analysis, the delineation of environmentally sensitive areas or the simple descrip-

tion of land cover types, the potential exists to describe land units that conform to

actual spatial arrangements. This facility of the object model is particularly valu-

able when these data are to be integrated into the database of a geographic

information system. In addition, by taking advantage of a wider description of the

landscape, features such as damaged environment, isolated wetlands, urban

ecosystems become more visible. Incorporating a combination of variables from

the spectral, spatial, morphological, and contextual relationships can be expressed

that enhance the categorization of discrete surface associations. Illustrative

examples of this potential include Frohn et al. (2009) documenting study where

object-oriented analysis was used to detect isolated wetland patches achieving

classification accuracies approaching 98%, Gitas et al. (2004) where object-based

analysis was employed to map areas impacted by forest fire, Guo et al. (2007)

whose study on the application of object-based classification demonstrated unique

advantages in the identification of tree mortality, and Walker and Briggs (2007)

study focusing on urban forest mapping.

Documentation and thematic mapping are only a fraction of the possibilities.

Interest in object-based analysis has also been given to the question of environmen-

tal monitoring and change detection. Object-based change detection removes the

pixel from direct analysis and refocuses the identification of change to the object.

Object change in this context is both thematic and geometric which shifts the study

of change and the problem of environmental monitoring to the per-parcel investi-

gation of image differences. Analysis adopting this direction involves the compari-

son of corresponding objects expressed as a function of time. This implies that the

expression of change is more than simple spectral in nature. Object change, based

on a per-parcel investigation will necessarily include a spatial definition where the

geographic extent of an object differs over time, a morphological change defined by

variations in shape or texture and contextual differences corresponding to changed

relationships to neighboring objects. This suggests that changing objects may not

only change with respect to their thematic label, but also display changes that reflect

geometric and topological properties as well. Introducing these properties into the

study of environmental change facilitates detection of subtle deviation at the

surface and the identification of small change features that are active in the

landscape. This capacity has been well documented in the post-hazard consequence

and damage assessment literature and can support on-going efforts to understand

processes such as cumulative environmental impacts and the more general pattern

of human disturbance in the environment (Aubrecht et al. 2009; Saura and Castro

2007). Conducting an object-based change detection follows the general procedures
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common to the per-pixel-based approaches, However, it is also possible to incor-

porate GIS modeling techniques in order to compare differences in the geometric

patterns of surface arrangements (Bock 2003). The per-object strategy utilizes

multitemporal segmentation and employs polygon overlay of the segmented geom-

etry to distinguish boundary and shape contrasts. Examples of the object-based

analysis of change can be found in Volker (2004), Im et al. (2008), Gamanya et al.

(2009), and Hall and Hay (2003).

11.7 Limitations and Constraints

Object-based analysis in remote sensing has tremendous potential (Table 11.5);

however, as with any image-processing method our enthusiasm must be tempered

by a careful consideration of the limitations that surround this technique. Resting at

the center of this image-processing paradigm is the assumption that objects derived

through segmentation correspond with objects at the surface. Perfect one-to-one

correspondence, however, may not hold true in all instances, particularly if the

object is small, or if the resolution of the imagery is too coarse. In general, object-

based analyses perform best using high or very high spatial resolution imagery or in

situations where land surface objects are comparatively large. Consequently,

object-based analysis and classification is scale dependent and the scale of obser-

vation is critical to a successful classification and image segmentation. This

suggests that the scale parameters selected to guide the segmentation process can

produce very different classification results. Since an optimal method for selecting

an appropriate scale for segmentation, the process relies on experience and judg-

ment. Although subjectivity cannot be avoided, not all surface objects occur at the

same scale therefore a universal value may not be suitable for all applications. Scale

influences can be a source of frustration when implementing the object-based

approach since trial and error together with the looming presence of uncertainty

can introduce time and cost constraints that undermine the effective use of this

technique. Classification is also affected by the selection of training samples,

which, as in the case of supervised image classification, direct the outcome and

correctness of the process. Finally, reasonable concern exists regarding the bound-

ary problem. Because object boundaries may have little relationship to actual

Table 11.5 Utility of

object-based classification
Multiple scales – The spatial relationship information contained

in image objects allow for more than one level of analysis

Spatial relationships – Objects can be classified using their

spatial relationships with adjacent or nearby objects

Information filter – Object-based analysis is able to filter out

meaningless information and assimilate other pieces of

information into a single object

Fuzzy logic – Object-based analysis provides more meaningful

information than pixel-based image analysis by allowing for

less well-defined edges or borders between different classes
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boundaries at the surface, boundary distinctiveness can be called into question.

Boundary error can present itself particularly when natural phenomena exhibit

gradual transitions and a “true” or crisp delineation does not exist. In these

situations objects cannot be realized from a segmentation which can contribute to

misclassifications and an inability to effectively represent a land surface condition

thematically.

11.8 Summary

In recent years, exciting new techniques in remote sensing analysis have emerged

utilizing object-oriented constructs. As long as pixel sizes remained typically

coarser than, or similar in size to the objects of interest, emphasis on per-pixel

analysis, or even subpixel analysis was a reasonable approach, but with increasing

spatial resolutions alternative methods produce more useful results, particularly

those aimed at deriving objects that are made up of several pixels. This chapter

provides an overview of the development of object-based methods, which aim to

delineate readily usable objects from imagery while at the same time combining

image-processing capabilities to guide image classification. At the heart of object-

oriented image analysis is the concept of automated image segmentation. In this

chapter, the process of image segmentation was described leading to a detailed

discussion of the object-based paradigm. From this discussion the chapter reviewed

object-based classification and culminated with a treatment of uncertainty and the

issues surrounding object-based accuracy; summarizing the limitations and

constraints associated with object-based approaches.
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Chapter 12

Forensic Remote Sensing

The application rich areas of remote sensing devoted to environmental analysis and

assessment successfully demonstrate how this technology can be employed to

address important questions concerning resource management, environmental

impact analysis, and environmental planning. Whether focused on understanding

and documenting natural processes or studies that fall under the broad umbrella of

human impact, the capabilities of image processing techniques to provide thematic

information that illuminates critical land surface patterns or confirms underlying

process-response hypotheses is irrefutable. Given the wealth of accumulated

knowledge together with the agglomeration of methods designed to extract infor-

mation from raw imagery, environmental remote sensing is poised to embark on a

new agenda that moves remote sensing technology beyond its predilection for

application research and into a more directed operational setting. Borrowing from

the Latin word “forensic,” meaning public, we can call this new agenda forensic

remote sensing.

Forensic remote sensing considers the investigative use of image processing

technology to support policy decisions regarding the environment and the regulation

of human activities that interact with environmental process and amenities. In this

chapter we will examine the forensic use of remote sensing and discuss its relevance

in the context of human-directed alterations within the environmental system. The

alterations induced by human actions on environmental processes are the nonrandom

consequence of human decisions made to satisfy myriad of social and economic

desires. It has been argued that this decision process is often flawed to the degree that

policy directives that embody these decisions invite environmental damage without a

sound mechanism to identify and evaluate their potential to damage environmental

functioning (Purdy 2006, 2009). Forensic remote sensing is envisioned as one

solution to address the gap between policy and action which places remote sensing

in the role of a practicable decision support technology.

J.K. Lein, Environmental Sensing: Analytical Techniques for Earth Observation,
DOI 10.1007/978-1-4614-0143-8_12, # Springer Science+Business Media, LLC 2012
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12.1 Remote “Fingerprinting”

The term “fingerprinting” is a concept taken from the field of environmental

forensics. Within this subject area, fingerprinting is a general term that includes

methods developed to identify specific associations between patterns of a material

sample and sources of pollutants in the environment that may be responsible for the

observed contamination. Fingerprinting is a integral part of environmental

forensics; a field that involves the systematic examination of environmental infor-

mation in order to ascertain the source of chemical contamination, the timing of

pollutant releases to the environment, the spatial distribution of contamination and

the identification of entities that may be responsible for the observed situation.

Central to the definition of fingerprinting is the critical role played by investigative

methodologies that strive to establish patterns of transport and fate together with

explanations or origins and impacts. Frequently, fingerprinting methodologies

require the ability to

1. Distinguish an entity’s contribution to the nature and extent of a contamination

problem

2. Determine the degree of an entity’s involvement in the activities that generated

the pattern of contamination

3. Assess the level of care exercised by the potentially responsible entity

Adapting these ideas to the larger question of human impact introduces an impor-

tant spatial component to environmental forensics that can be addressed using

remote sensing techniques (Brilis et al. 2000).

In a forensic application, satellite imagery highlights the spatial footprint of

human actors in very real and compelling ways (Kalacska et al. 2009). Given the

continuous nature of satellite-based data collection, the spatial relationships

between natural land surface patterns and observed environmental or ecological

damage are presented as “time-stamped” documentation that aptly describes the

extent of human activities (Fig. 12.1). As documenting evidence, imagery can focus

the scope of a forensic investigation. In addition, owing to the highly visual nature

of our imagery and the thematic produces that can be derived via processing, the

spatial representation of documenting evidence is a direct and persuasive way to

identify patterns of damage and potentially connect it to a responsible human

action. The documentation of occurrence patterns, present-day or historical, can

be placed immediately into a geographic context and examined in relation to

locational, physiographic, or other environmental qualities pertaining to the site

and situational characteristics of the aberrant case. To illustrate this capability,

consider for example a documented decline on a riparian wetland. Utilizing

remotely sensed data, activities can be defined to have occurred upstream from or

adjacent to this environmental damage area. Those offending actions can be tracked

and the spatial changes in the extent of damage they produce can be quantified. This

information can be employed to assess the scope of damage, characterize the

continuing threat to the wetland area and guide specific remediation and
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enforcement directives designed to protect this environmentally sensitive feature.

By means of land cover analysis the extent and pace of decline can be measured and

the geographic distribution of land uses known to promote damage can be

“fingerprinted” in the image. In this example and in situations fraught with

“unknowns,” image analysis readily supports investigative assessments to indentify

the cause or pinpoint the source of environmental damage. (Xiao and Ji 2007).

The capacity to employ remote sensing in this role is an important departure in

the design of remote sensing applications (Howard et al. 2002). Forensic remote

sensing capitalizes on the generation of information to investigate a specific event

of condition not to provide broad thematic explanation. In a forensic analysis there

is less concern for pure research but rather immediate problem resolution. How well

satellite image analysis contributes to investigative applications rests on a clear

understanding of:

• The objectives surrounding the specific case

• The compelling enforcement functions or activities involved

• The necessary analytical procedures required

• The explicit requirements that define quality assurance

Remote sensing technology can be introduced into different phases of an envi-

ronmental investigation (Middleton 2002). During the targeting of an prioritization

phase, remotely sensed data at low to high spatial resolutions can provide needed

information regarding an area’s population, natural systems, and obvious environ-

mental impacts. During the planning phase, remote sensing can support change

detection activities that will provide insight into active processes or operational

changes occurring within the specific environmental setting. Change analysis can

Fig. 12.1 The documented footprint of human damage
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document possible activities that fail to comply with legal requirements and

situations where compliances can be called into question. As an investigation

progresses into the field inspection phase, remotely sensed data at medium to

high spatial resolution supports a unique form of virtual field reconnaissance by

giving the analyst an “over-the-fence” view of critical facilities and related land

uses. This perspective allows the site and situational characteristics of the area in

question to be carefully examined and comprehensively explored. During the

inspection phase high spatial resolution imagery serves as a base map to guide

geophysical sampling, ground verification, and related field assessment activities.

In addition, the systematic collection and archiving of imagery facilitates site

monitoring programs that can greatly improve long-term efforts at environmental

amelioration and future environmental appraisals (Cartalis et al. 2000).

The systematic application of satellite data coupled with standardized procedures

for information extraction increases the opportunities for a wide range of environ-

mental oversight activities. Oversight implies a guided review, which in concept has

been an integral element of environmental legislation including diverse instruments

and directives such as

• Post-EIA auditing

• Compliance assessment and enforcement

• Policy review and program assessment

• Zoning and regional plan monitoring

• Land evaluation planning

• Verification studies

• Environmental site assessment

12.2 Baselines and Benchmarks

Remote sensing technology has long been used to study the Earth’s surface. As a

research tool the value of satellite imagery is well understood; however, when

placed into a forensic role remote sensing must contend with policy and operational

constraints that do not introduce themselves in a research setting. These constrains

include factors such as

• Financial limitations

• Institutional and organizational barriers

• Absence of expertise within the jurisdictions involved

• Poor capacity to implement the technology

These constraints can greatly influence the “life-cycle” costs associated

withadopting remote sensing technology and need to be understood. However,

communicating the investigative value of satellite imagery processing begins by

developing cost-effective information products and engaging activities that extend

the effectiveness of environmental policies and programs. In this context, satellite
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remote sensing is a transformative technology with respect to environmental

management and enforcement activities. The challenge is to separate the technical

aspects of remote sensing from the pragmatic policy “tasks” common to environ-

mental protection programs and establishing the connection that link environmental

remote sensing methods to direct and real policy needs. Using the examples listed

previously in this chapter, we can selectively examine where remote sensing can fill

the void and provide a useful and feasible alternative.

1. Environmental impact assessment and post-EIA auditing – Environmental

impact assessment (EIA) describes a systematic evaluation of the potential

effects of a major human action on the environmental system. The EIA process

involves a detailed study of the action under review and how this action may

induce alterations in the physical and human landscape where it is being

proposed. The purpose of this study is to document environmental change before

it occurs. In this regard, the EIA serves as a form of pro-active decision making

that informs policymakers, stakeholders, and the public on the consequences of a

proposal that could significantly affect environmental quality. As a methodol-

ogy, EIA embodies a form of “future-casting” where a human action is placed

into an environmental setting and projected forward into an unspecified future.

Although EIA methods strive to maintain a rigorous scientific footing, uncer-

tainty is an unavoidable aspect of any assessment. Because EIA can be consid-

ered an exercise in forecasting, the obvious question stemming from this process

is whether the changes forecast by an EIA actually occur. To address this

question Post-EIA auditing has been a recommended addition to the EIA

process. Post-EIA audits are a means of evaluating the post-action status of the

affected environment to ascertain the accuracy of EIA projections and to identify

impacts not discovered during the initial assessment (Dipper 1998). In practice,

post-EIA auditing is a field-based activity. The audit team selects the appropriate

field techniques, field sites and develops a detailed study plan (Wilson 1998).

Often included in the field protocol are activities such as site reconnaissance,

field measurements, and the visual interpretation of aerial photography. The

prospects for conducting Post-EIA audits by means of remote sensing depend on

the type of action involved. Several options for remote auditing include

(a) Developing land use/land cover baseline inventories

(b) Examining pre- and post-action conditions of the local environment

(c) Examining changes in selected landscape indicators that define critical

aspects of environmental quality

By reducing dependence on field investigation, remote sensing facilitates

wider post-action review that can be useful for detecting unanticipated changes

and tracking development trends that contribute to cumulative environmental

effects (Lein 2002). Developing a remote sensing solution for post-EIA auditing

can be conducted in either of two ways. Other approaches rely on the final

environmental impact statement (EIS) to provide the information that will focus

the audit. Drawing from the discussion outlining the adverse impacts noted in the
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IS, those that exhibit a spatial expression that can be resolved using remotely

sensed data can be placed into a change detection strategy for evaluation using a

pre-action and post-action framework. Because environmental changes resulting

from an action may occur differentially over time, satellite data supports the

systematic revisit of the site which can be helpful when attempting to establish

trends and document change trajectories. The environmental impacts associated

with an action may be manifested as direct alterations that can be comparatively

easy to identify such as the decrease in habitat or the increase in impervious

surface. More challenging to target are the indirect and secondary changes

attributed to an action; however, with carefully selected indicators surrogate

measures can be obtained that illuminate their presence and consequence. The

alternative approach to post-EIA auditing directs attention to anomaly detection

techniques and their capacity for stopping outlier cases without specific refer-

ence to pre-action conditions. Used in this manner, anomaly detection is not

based on a preselected set of impacts, but rather concentrates observation on the

action, noting the presence and status of deviations in existing condition. Con-

ditional deviation in the patterns of descriptive landscape attributes serve as

indicators of changes that are potentially novel, unexpected, or unanticipated.

Remote surveillance of this type can help document the actual pattern of impacts

that result from the action and may provide essential information regarding the

success and effectiveness of impact mitigation strategies. In the broad setting of

human development actions, adopting a satellite-assisted approach to environ-

mental assessment offers a source of “early warning” information that

encourages regular post-action review or projects, particularly those that may

be controversial in nature. The results taken from the remote audit signals

changing environmental conditions that can help prioritize mitigation measures.

Furthermore, the synoptic scale of the satellite imagery improves the use of post-

EIA auditing as a means of oversight that integrates monitoring as an active

component of long-term environmental review. Overtime, an information

resource is created that enhances our understanding of human-induced environ-

mental change that can assist future attempts at EIA prediction (Cashmore

2004).

2. Environmental compliance assessment – Human activities prone to promote

environmental damage or threaten environmental quality are often the target

of policy instruments designed to regulate their scope and mitigate the

consequences associated with these activities (Berry and Dennison 2000). A

critical element of many environment policy directives and protection strategies

are the enforcement mechanisms introduced to insure regulatory compliance.

The enforcement and systematic review of actions known to damage the envi-

ronmental system is fraught with complications and constraints that limit serious

attempts to engage in comprehensive assessments. Satellite remote sensing

offers courses of information that can support environmental compliance

operations (Purdy 2006; Lein 2009). Environmental compliance may be defined

as the state of being in accordance with a set of guidelines, specifications,

or legislative mandates designed to protect or manage environmental resources
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or amenities (Heyes 2000; Vincoli 1993; Winter and May 2001). As a means of

moderating human impact on the environment, identifying activities that fail to

agree with established control standards remains on solution society relies on

despite its uneven success (Lein 2009). Integrating remote sensing into the legal

setting where environmental compliance takes place requires an understanding

of the governing laws that provide opportunities for the application of this

technology. The physical inspection regimes that typically define how compli-

ance with regulatory statutes is enforced are generally directed toward industrial,

extractive, or agricultural activities whose operation must conform to a specific

set of performance standards. The site-specific nature of compliance assessment

therefore implies that

(a) Evaluation of a given activity is an on-going process that extends over it

operational life-cycle

(b) Evidence exists (in the form of complaints) suggesting that the activity may

not be functioning (or operating) in accordance with one or more governing

statutes or regulations

These defining assumptions supply the needed context that directs integration of

remote sensing into environmental compliance operations. Three analytical

support functions that remote sensing facilitates can be identified:

(a) Systematic damage detection – Although the role of satellite remote sensing

in monitoring environmental processes was discussed previously in Chap. 5,

damage detection carries a more rigorous expectation when included as part

of a compliance inspection regime. Damage characterizes the situation where

an aberrant deviation in the status or behavior of a landscape feature can be

identified in the scene. When observed or detected on the image damage

assumes a pattern that is irregular, abnormal, and difficult to explain in

context to the surrounding and expected land cover relationships. An exam-

ple of this form of discovery on an image might include events such as the

failure of hazardous waste containment or an illegal discharge signaled by an

anomalous pattern of vegetation decline down slope or downstream from the

site. Similarly, events may trigger thermal patterns the deviate from the

expected as well. The remote sensing strategy supporting this form of dis-

covery and detection would depend on (1) a systematic revisit of the site to

define its normal or “ambient” status and (2) a method of detection where the

anomaly emerges from the baseline norm. Success of this type of analysis is

predicated in the selection of an optimal spatial scale to anchor the analysis,

the acquisition of data sufficiently close in time to the event, and use of an

appropriate indicator that highlights the offending pattern.

(b) Remote inspection – Current compliance practice relies heavily on field-

based inspections as the primary means of detecting violations and

evaluating performance. The synoptic view of satellite-based sensors that

enables observations of a site were (1) access is restricted by physical or

institutional barriers, (2) activities are geographically dispersed over the
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region of interest, or (3) resources to support field inspection are limited.

Remote inspection facilitates routine review of facilities in relation to a set

of performance criteria; particularly those criteria that assume a geographic

expression that can be resolved by the sensor (Fig. 12.2). If the location of

features are known, sites falling into the same descriptive category can be

scrutinized based on factors such that the physical placement of storage and

containment facilities, on-site material and waste piles, the location and flow

of discharges into receiving bodies of water, the design, placement, and

characteristics of roads, fencing, buildings, and treatment works. Remote

surveillance directed at a specific class of facility or over a specific geo-

graphic area can produce intermediate thematic products that can be

employed to prioritize field inspections. In this role satellite data serves as

a screening device that can eliminate certain area that satisfy an initial

“remote” evaluation.

(c) Change over time assessment – Perhaps one of the more vexing aspects of

environmental policy solutions aimed at improving environmental quality is

the factor of time. Policy decision making takes place within the institutional

framework of governments and is inherently captive to human conceptua-

lizations of time. Policies are drafted, laws passed, but the attainment of

specific objectives are left for the future to resolve. The environmental

system also exhibits distinct temporal behaviors, but often at time scales

that are cross-generational. Efforts to reclaim or restore, re-establish, or

repair damaged environments are not likely to evidence significant success

at the time frames implied by the majority of environmental policies.

Similarly, human actions also require the passage of time before their

consequences can be fully realized in a given environmental setting. Change

over time assessment directs environmental analysis toward the tracking of

the “long-term” progression of land use or land cover trend linked directly to

the goals and objective articulated in environmental policy. Policy goals

may be couched in terms that characterize management, remediation or

preservation activities but the effectiveness of this application depends on

linking policy of specific metrics. Ideally, such metrics can be derived from

satellite imagery and implemented in a systematic monitoring program. In

the USA for instance, legislation such as the Surface Mining and Reclama-

tion Act, the National Historic Preservation Act, National Environmental

Policy Act, and the Coastal Zone Management Act all carry explicit

requirements to reduce human-induced environmental change; however,

none of these mandates indentify remote sensing as a support technology.

Utilizing specific indicators linked to policy objectives provides crucial

information on the success of these and other similar programs and can

offer early warning feedback of failures that can be used to manage direct

management resources and remediation strategies (Backhaus and Beule

2005). A useful example demonstrating the use of satellite data to evaluate

habitat conservation plans pursuant to the US Endangered Species Act was

reported by Schweik and Thomas (2002). Institutional performance was
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Fig. 12.2 Elements of the compliance landscape: (a) Industrial facility, (b) material processing/

impoundment, and (c) extractive activities
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evaluated across a 12 year time horizon using data acquired from the Landsat

TM system. The results of this assessment showed that land use trends

beyond the habitat conservation area were modifying environmental

conditions that were not initially considered in the habitat conservation

plan. Using the change over time approach, it was possible to document

specific areas where Habitat Conservation Plan “rule breaking” was preva-

lent, demonstrating that existing enforcement regimes were inadequate.

3. Policy and plan review – Environmental planning and policy are future-oriented

activities. With the recognition of a problem or identification of a societal need,

planning sets out to establish goals and objectives together with policy

recommendations designed to achieve a desired future state (Lein 2003).

Whether addressing land use, environmental quality, resource conservation or

public safety concerns, the production of a plan sets out a course of action to

resolve the compelling issues, many of which have a discernable spatial foot-

print. Because planning targets the future, one question that can be challenging

to answer is whether or not the plan or policy has achieved its goal(s). The forces

that direct human/environmental interaction in a spatially explicit manner must

consider the interacting influences of socio-economic drivers, policy decisions

and the environment that anchors the plan. Using remote sensing to guide

Fig. 12.2 (continued)
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planning capitalizes on the unique characteristics of remotely sensed data

(Miller and Small 2003):

(a) The self-consistent synoptic nature of the imagery

(b) The capacity for routine periodic and unobtrusive updating and comparison

(c) The capacity for the description, classification, and measurement of critical

physical properties

Examples of these capabilities include the use of Thematic Mapper imagery to

evaluate permit reviews under the section 404 program of the Clean Water Act

(Swenson and Ambrose 2007), the use of Thematic Mapper data to examine the

impact of land use zoning policy on habitat fragmentation (Munroe et al. 2005),

the application of Landsat ETM+ data to evaluate the appropriateness of develop-

ment density policies with respect to environmental quality objectives (Wilson

et al. 2003) and the application of Landsat TM imagery to assess the effectiveness

of goals guiding watershed restoration strategies (Basnyat et al. 2000). In each of

these case studies the actual plan or a product derived from the plan served as the

basis for comparison. Remotely sensed imagery was employed largely to provide

indicators whose relationship to planning goals could be examined based on

predetermined benchmarks. The implications for plan review are instructive,

showing that remote sensing places planning squarely into a spatial context

where specific planning outcomes can be observed (Fig. 12.3). In addition, this

selective review underscore the forensic and diagnostic value of remote sensing

where the products generated from the raw satellite data become useful

instruments of environmental assessment.

Fig. 12.3 The synoptic plan view in the context of agricultural land valuation
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12.3 Sensing Beyond the Obvious

The wealth of application research within the realm of environmental analysis

supports the use of remote sensing as a means of establishing evidentiary data

concerning the disposition of human activities relative to existing environmental

controls. Research has also moved remote sensing technology into more diagnostic

roles with forensic value. Selections of methods with this type of operational

relevance include the topical areas of environmental health, environmental pollu-

tion, and environmental hazards.

1. Environmental health – The continued population pressures exerted on planetary
ecosystems coupled with the probable shifts in environmental conditions

resulting from climatic and ecological change introduce broad global and com-

munity health concerns. Satellite-based sensors with improved spectral, spatial,

and temporal resolution have been shown to provide useful data products for the

assessment of health risks (Beck et al. 2000; Herbreteau et al. 2007; Leblond

et al. 2007). Applications focus largely on converting satellite observations into

vegetation land surface temperature, atmospheric moisture and rainfall indices

to produce models of critical environmental conditions that promote disease

transmission, vector production, the emergence and maintenance of disease foci

and risk factors influencing human–vector contact. The derivative products

generated from the satellite imagery typically characterize habitat conditions,

vector sources and human settlement relationships that can be extracted from the

data (Goetz et al. 2000). Although specific methodologies will vary, the common

theme centers around the identification of environmental conditions that are

suitable for the specific disease vector to establish itself. The list of environmen-

tal factors that can effect suitability include

(a) Vegetation/NDVI
(b) Land use type(s)
(c) Soil type
(d) Moisture
(e) Temperature

The relationship between known cases of disease and the satellite

measured environmental factors are used to construct a statistical model of the

general form:

P ¼ baþ bX1 þ bX2 þ � � � þ bnXn;

where the presence (incidence of the disease vector (P) is functionally related to a
set of independent environmental variables (X). The statistical procedures selected
to derive a model range from multiple regression discriminant analysis, principal

components analysis or the focus on developing specific disease incidence indices

(Tran et al. 2002; Arboleda et al. 2009). The statistical surface generated by these

models describe a prediction that is then compared to human population and
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activity pattern data in order to assess environmental exposure patterns. The

salient features of this approach have been described by Ford et al. (2009)

(Fig. 12.4). The majority of modeling efforts, however, are retrospective in design.

This is due largely to geographic and seasonal influences that modify the distribu-

tion of many infectious diseases in relation to the environmental conditions to

which they are inherently linked. Establishing effective correlates between satel-

lite measurements and disease incidence rate can yield predictive indicators that

can be employed in early warning systems and support studies tracing outbreaks

back to their probable geographic origins.

2. Environmental pollution – The forensic analysis of pollution using space-borne

sensors exploits reflectance contrasts in the environmental media that can then

be related to approximate concentrations of specific contaminants. In the atmo-

sphere this could be particulate matter or a specific gas or compound. In water,

contaminants can range from suspended sediment, algae, or various forms of

organic matter. In either instance, remote sensing methods focus on measuring

those substances or conditions that become recognized as a change in the optical

or thermal properties of the environmental media. Substances that do not directly

alter optical or thermal characteristics can only be inferred by measuring

surrogates, such as vegetation, which may display a changed response to an

input of a chemical or biological contaminant. Although not a panacea, the value

of remote sensing lies in its ability to provide both a spatial and temporal view of

selected environmental quality parameters that may not be available using field

sampling techniques. A selection of methods concentrating on water quality and

air pollution analysis demonstrates remote sensing’s salient contributions.

(a) Water quality assessment – The basic logic applied to remote estimation of

water quality involves separating the radiance of the parameter of interest

Fig. 12.4 Satellite-based

health-exposure modeling
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from all other radiance components recorded by the sensor. Symbolically

this can be explained simply as the relation:

R1 ¼ Rt � ðRp þ Rs þ RbÞ;

where R1 is the radiance of the parameter of interest, Rt is the total radiance

recorded by the sensor, Rp is the atmospheric attenuation, Rs is the surface

reflectance, and Rb is the bottom reflectance.

As various substances are introduced into a body of water they produce a

change in its backscattering characteristics. A sample of the factors that affect

water quality are listed in Table 12.1. The changes produced when a substance is

introduced can be measured as a spectral response pattern as a function of the

water body in relation to the modification the substance creates in backscattering

(Fig. 12.5). Recognizing that the optimal wavelength used to measure water

quality parameters will depend on the substance involved, its concentration and

the resolution characteristics of the sensor, it becomes possible to relate

measured contrasts in backscatter to a sampled concentration of a given water

Table 12.1 Factors impacting

water quality
Microbial contamination

Mineral content

Heavy metal contamination

Chemical contaminants

Fig. 12.5 Water Quality

Issues in the Maumee Basin

Lake Erie
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quality parameter using empirical or analytical models (Ritchie et al. 2003).

Empirical solutions take the general form

Y ¼ aþ bX or

Y ¼ abx;

where Y defines the satellite measured radiance, X explains the selected water

quality parameter and a and b express empirically derived coefficients. Analytic

approaches replace statistical modeling with algorithm based on the optical

properties of water and water quality parameters. Such approaches often employ

unique band ratios together with parameter-specific indices (Table 12.2). Simple

classification of radiance differences can also be developed using unsupervised

or supervised classification procedures. The main objective following this strat-

egy is to discover the presence of contaminant in a water body without reference

or fit to a known concentration level. Generally, wavelengths between

0.45–0.52 mm and 0.63–0.69 mm are useful for these purposes as are the thermal

bands. Overall, remote assessment of water quality tends to focus on measuring

suspended sediments, chlorophylls, and temperature. Suspended sediments have

the distinction of being among the most typical pollutant in terms of volume and

weight in an aquatic system. Suspended sediment is also a useful surrogate

contaminant for other pollutants such as insecticides, metal, and other inorganic

substances that adhere to sediment particles and contribute to ecological expo-

sure. In the visible and near infrared portions of the spectrum, suspended

sediments increase reflectance of surface waters; a pattern clearly discernable

using wavelengths between 0.7 and 0.8 mm. Thermal discharges and thermal

enrichments define pollution sources emanating from sites where water is used

as a cooling agent. Utilizing thermal brightness temperature, illegal discharges

as well as improper cooling impoundment facilities can be retrieved from

satellite imagery. Estimates of chlorophyll content can also be re-retrieved

from satellite data. Because the concentration of chlorophyll serves as an

indicator of eutrophication, developing associations between radiance in narrow

bands or band ratios can guide the management on impacted watersheds and

Table 12.2 Typical water qualities indices

Dissolved oxygen

Fecal coliform

pH

BOD (Biochemical Oxygen Demand)

Temperature

Total phosphate

Nitrates

Turbidity

Total solids
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receiving bodies of water. Several algorithms have been introduced to estimate

chlorophyll-a content (Gohin et al. 2002, 2008). Examples include band ration

algorithms and statistical models developed with the assistance of field sampling.

(b) Air quality – Satellite remote sensing of air quality has developed rapidly

over the last decade (Hoff and Christopher 2009). Much of the focus has

been directed toward (1) the development of processing methods to infer

aerosol optical (thickness) depth from space and (2) producing estimates of

air quality that compare with ground-based measurements. Aerosol optical

thickness defines the degree to which aerosols in the atmosphere prevent the

transmission of light. It can be expressed more formally as the integrated

extinction coefficient over a column or unit cross section of the atmosphere.

Aerosol optical thickness is a measure widely used to monitor sources and

sinks of suspended particles and gases such as haze, smoke, and a range of

air pollutants. Satellite observations of aerosols offer a source of information

with broad scale spatial coverage that facilitates:

• Emission characterization for the source and transport of contaminants

such as NO2, NOx, and particulate matter (PM)

• Estimation of biogenic VOC through the process of satellite-derived

formaldehyde signals

• Pin-pointing the location and source strength of wildfires and dust plumes

• Accountability analysis through the assessment of air quality manage-

ment programs

Useful reviews and case studies detailing satellite-based air quality analysis

can be found in Hidy et al. (2009), Martin (2008), Liu et al. (2005), and Gupta

et al. (2006). The success of these applications hinges on the sophistication of the

aerosol optical thickness (AOT) retrieval algorithm (Retalis and Sifakis 2010;

Hoyningen-Huene et al. 2003). A simplifying solution to the algorithm issue

involves the use of processed data such as the MODIS MOD04 Aerosol Product

(Fig. 12.6). The MODIS product monitors the ambient optical thickness and can

be sued to evaluate the sources and sinks of aerosols over both the land and

ocean surface (Remer et al. 2005).

3. Environmental hazards – Environmental hazards describe a range of events that

can lead to harm. Although not a concept that is simple to explain, attention is

general directed toward geophysical processes that can harm and disrupt human

populations (Gillespie et al. 2007). Also important in this explanation is the manner

by which social systems interact with natural processes that are often extreme. It

should be understood, however, that environmental hazards also can include

(a) Chemical
(b) Physical
(c) Mechanical
(d) Biological
(e) Psychological
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Actors that present “threats” to society that require some type of response or

adjustment. Under this expanded definition we can characterize environmental

hazards as either natural events such as floods, earthquakes, tornados, or

elements of human creation which are toxic or harmful to some degree

(Table 12.3). The hazard exists because human populations are exposed to

their behavior in an otherwise neutral environment. A pivotal factor in the

explanation of an environmental hazard is the notion of risk; a concept that is

applied in close association to the definition of a hazard. Risk explains the actual

occurrence of an event and is typically expressed as the probability of a given

occurrence and its consequence. The relationship between a hazard and a risk is

complex and it is not always possible to distinguish the effects of an event from

their causes or to determine their significance. Attempts to assess environmental

hazards build from the recognition that as an inherent element of the landscape,

events that maybe classed as hazards describe a spatiotemporal, physical, and

human dimension which implies that a set of common elements exist that can be

understood using remote sensing technologies’:

Fig. 12.6 Satellite-derived aerosol product
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Table 12.3 Environmental

hazards
Natural hazards

Geological hazards

Avalanche

Earthquake

Lahar

Landslides and mudflows

Sinkholes

Volcanic eruption

Hydrological hazards

Flood

Limnic eruption

Whirlpool

Maelstrom

Seiche

Tsunami

Climatic and atmospheric hazards

Blizzard

Drought

Hailstorm

Heat wave

Cyclonic storms

Ice storm

Tornado

Climate change

Geomagnetic storm

Wildfire hazard

Disease

Human/technological hazards

Sociological hazards

Crime

Civil disorder

Terrorism

War

Technological hazards

Industrial hazards

Structural collapse

Power outage

Fire

Hazardous materials

Transportation
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(a) Areal extent

(b) Intensity of impact

(c) Duration of impact

(d) Rate and pattern of onset

(e) Spatial dispersion or spread

With these characteristics in mind, the assessment of risk becomes a data-driven

procedure that involves

(a) Identification and description of the hazard, its geographic distribution and

potential effects

(b) Assessment of vulnerabilities

(c) Identification and measurement of exposure patterns of population and

infrastructure

(d) Identification of major public problems associated with the event

(e) Identification of the costs and features of mitigation measures

(f) Identification and description of the public policies that enable hazard

response, reduction, and mitigation

These elements of classic risk assessment draw from both qualitative and

quantitative information sources. Qualitative assessment is informed by

gathering knowledge of the hazard and patterns of exposure to characterize

risk. Quantitatively, assessment strives to collect measures of critical attributes

of risk. Remote sensing provides important information to support both activities

in key aspects of the assessment problem including

(a) Hazard characterization and mapping – Relying on fine to moderate reso-

lution sensors, landforms and land use types can be delineated to assist with

the identification of flood plains, detection of thermal hot spots, infrastruc-

ture review, mitigation assessment and the mapping of natural hazard

patterns such as landslide zones and volcanic features (Tralli et al. 2005;

Sanyal and Lu 2004).

(b) Vulnerability assessment – Estimating populations and utilizing these

estimates to characterize exposure patterns and risk (Harvey 2002; Wu and

Murray 2007).

(c) Event detection and early warning – Involving the development or event

detection systems and the tracking of events using satellite-based data

(Zschau and Kuppers 2003).

(d) Post-event analysis – Employing the synoptic scale nature of the imagery to

examine damage patterns to provide profiles of infrastructure failures and

population displacement (Adams and Huyck 2006).

(e) Disaster recovery – Utilizing fine to moderate resolution data to track the

pace of recovery and the effectiveness of emergency response (Hall et al.

2006).
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12.4 Creative Problem Solving

Although the forensic use of remote sensing is not a panacea, important information

can be gathered by recognizing what the technology does well and where its

constraints limit its effectiveness. Remote sensing can be an effective method of

data collection for

• Comparatively large areas where time constraints limit other approaches

• Inaccessible regions or dangerous locations

The data acquired from our sensors facilitate machine processing techniques that

can be difficult to produce using manual methods and with the addition of creative

thinking novel solutions can obtained that address unique problems. This highlights

the experimental nature of the technology. Since forensic investigation centers on

deriving clues that suggest a pattern or point to an anomalous situation, remote

sensing accommodate ill-defined problems. Given the repeat coverage aspects of

the data, investigations can span time scales that vary with respect to duration and

frequency that filed analysis cannot achieve. This forensic investigation can effec-

tively review a previous state of the system of interest and continue over weeks,

months or beyond, paced to the cyclic nature of an event of the intermittent

behavior of human activities. Satellite data, however, are not direct samples of

phenomena, they require calibrations against a reality and this calibration is never

exact. Nevertheless, remote sensing technology provides the opportunity to densely

characterize the near surface where success is realized by:

1. Achieving a sound theoretical understanding of the sensor

2. Comprehending the significance of measurement uncertainty

3. Possessing detailed knowledge of the phenomena under considerations

12.5 Summary

Exploring the role of remote sensing beyond land cover mapping formed the focus

for this chapter. Using the concept of “forensic” analysis, this chapter explored the

use of remote sensing in an investigative capacity. Although not necessarily

directed on specific legal issues, the notion of forensic remote sensing suggests

that data analysis can be performed to derive information products that hold specific

analytical value in areas that are concerned with environmental compliance and

enforcement issues, as well as those related to impact analysis, policy review, and

topics concerning environmental health and quality. Beginning with a discussion of

baselines and benchmarks, the review of methods and applications suggested a

value-added quality of satellite-based image processing that can contribute to a

wider array of environmental questions. Although the forensic use of remote

sensing is not a panacea, important information can be gathered by recognizing

what the technology does well and where its constraints limit its effectiveness.
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Remote sensing can be an effective method of data collection for comparatively

large areas where time constraints limit other approaches or for inaccessible regions

or dangerous locations.
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Chapter 13

Integrative Sensing

An exercise in remote sensing commonly results in the production of a thematic

map that depicts characteristics of the land surface germane to the motivating

application. The cartographic convention of the map effectively communicates

information that documents the spatial disposition of the desired elements, land-

scape elements and aids decision making as the patterns revealed on the map are

interpreted and appraised. However, the outcome of a remote sensing investigation

also serves as data for additional analytical treatment and wider forms of inquiry.

When working in concern with complimentary geospatial technologies, remote

sensing embodies a core methodology within the expanding field of geoinformatics;

a discipline which integrates the acquisition, modeling, analysis, and management

of spatially referenced data. Understanding remote sensing’s contribution to this

larger endeavor not only strengthens its role as an information technology, but

further demonstrates the uniqueness of the remote sensing solution. As innovation

continues to propel geospatial technologies forward, integrative sensing with

remote sensing as the center-piece can be anticipated. Realizing this future depends

on how and when remote sensing can be marshaled to support extended geomatic

studies and where an appropriate technological fit can be achieved. In this chapter,

we will examine the concept of integrative sensing. From this discussion we can

explore the connection between geo-imaging as realized via satellite remote sensing

and the field of geoinformatics as evidenced in the defining technologies of geograp-

hical information systems (GIS), environmental sensor networks, and geosimulation.

13.1 Integrative Sensing: Geomatics in Action

The multifacetted nature and complexity of present-day environmental concerns

reflect high-variety and ill-structured problems that demand a synthesis of informa-

tion and ameans of analysis that can elucidate critical processes and define causation

(Dar et al. 2010). Although the thematic map may be the intended product of image

J.K. Lein, Environmental Sensing: Analytical Techniques for Earth Observation,
DOI 10.1007/978-1-4614-0143-8_13, # Springer Science+Business Media, LLC 2012

303



processing methods, increasingly environmental analysis seeks to address more

detailed question whose answers reside just below the thematic representation of

the pixel (Merchant and Narumalani 2009). Exploiting the products generated from

image processing and analysis for these purposed concentrates on the analytical

manipulation of the surface representations created. In this context, remote sensing

provides input to a higher-order geographical interrogation assisted by a set of

specialized operations standardized within the software environment of a GIS

(Weng 2010).

The combined use of remote sensing and GIS is well established (Hinton 1996;

Estes 1992; He et al. 1998; Wilkinson 1996). Through the integration of these

technologies a “value-added” dimension is available and new information products

are possible that amplify and advance critical aspect of the problem under investi-

gation. In many cases these products reveal hidden characteristics of the problem

and in other situations they describe sources of derived data that assists in the

management of ill-defined and ill-structured problems. Developing integrative

solutions depends exclusively on how GIS is employed given the questions asked

of the data. Because our data and processing environments are inherently spatial our

questions assume a geographic disposition focused on considerations of

Location and extent

Distribution, pattern, or shape

Spatial association

Spatial interaction

Spatial change

The GIS helps to form, generate, and define geographic questions and support

methodologies that can be developed to provide answers to them (Table 13.1).

When the results of a sensing application are imported into the GIS environment,

analysis is informed by these questions in order to determine (1) what and where

features of interest are, and (2) how and why they are there. By asking the right

question via GIS answers unfold as spatial realization that impart meaning to the

observed arrangements that help unravel the spatial associations evidenced in the

scene. A compliment of analytical functions exist in GIS that assist in crafting

solutions to the questions asked of the data. These functions are assembled to form

specific methodologies within a given problem-domain.

Table 13.1 Fundamental

geographic questions in

directing GIS analysis

Where? ! Location

What is there? ! Basic inventory

What spatial

patterns exist?

! Patterns

Why there? ! Cause and effect

What has changed

since. . .?
! Trends

What if. . .? ! Modeling
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Although the analytical engine of a GIS is constantly evolving, there is a set of

fundamental operations that can be drawn from to enrich a remote sensing investi-

gation. These operations fall into two broad categories: (1) spatial analysis and (2)

raster modeling. Under the spatial analysis heading three widely applicable

operations include (1) selection and classification, (2) distance and proximity

analysis, and (3) overlay. Typically, these spatial operations are used sequentially

to address a problem forming chain operations which may end with a single map

output or as “new” data to incorporate into other GIS operations. Raster modeling is

based on the principles of map algebra; a set of operations performed on raster data

using Boolean logic, Bayesian probability or approximate reasoning methods such

as fuzzy set theory or Dempster–Shafer Theory of Evidence (Malpica et al. 2007).

Raster analysis is generally performed using overlay operations to implement local

functions such as

Mathematical operations – Addition, subtraction, exponentiation

Logical operations – Designed to reduce, simplify or combine data based on

Boolean AND, OR, and NOT

Neighborhood operations – Employing “moving window” operations to modify or

calculate attributes populating the raster surface

Taken in total, these GIS capabilities create new representations of the original data

at local (cell), neighborhood (window), or global (surface) levels.

13.2 GIS Primitives

The analytical manipulation of spatially referenced data in a GIS proceeds

according to the level of functionality descriptive of the software environment.

Functionality reduces to a selection of task-specific algorithms that act on the

spatial data to model a desired quality of characteristic. Algorithm function centers

around three activities or actions:

Selection and classification – Because the primary data model of a remotely sensed

image is a two-dimension grid or raster, selection and classification actions involve

manipulating the values represented by the pixels comprising our scene. Selection,

within this representational schema explains the process of identifying a feature

(label) in the data that satisfies a condition or criteria, preserving that selected

feature onto a new map representation and eliminating all other irrelevant features.

In this example, classification entails recoding the desired value or label according

to a simple “binary” logic where the desired condition is preserved by recoding the

appropriate cells with the value (symbol) 1 and relegating all other cells in the raster

to a value of zero (Fig. 13.1). As Fig. 13.1 demonstrates, the thermal surface

characterizes surface temperatures across the scene; however in this example,

analysis would like to select out only those areas that have temperatures about

20�C. The resulting selection displays those areas as a new image layer. A second

type of selection uses a classification operation to impose order or structure the data

into a meaningful categorization. In the example of continuous data such as the
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thermal surface presented in Fig. 13.1, the range of temperatures may be grouped

into a pre-determined number of classes or based on mathematical properties or

arbitrary system chosen by the analyst.

Proximity analysis – Proximity operations implement distance metrics to modify

existing features on the image to form a new feature relationship. Distance as an

operand produces a buffer geometry that encompasses the feature of interest

(Fig. 13.2). Buffer generation entails calculating the separation outward from a

Fig. 13.1 Simple Boolean

logic

Fig. 13.2 GIS produced

buffer generation
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source pixel to all other pixels centers. The resulting geometry defines a geographic

area that meets a specific distance requirement. For example, a remote sensing

investigation using hyperspectral analysis may have identified land areas that match

the spectra of an industrial gray-field. Environmental officials would now like to

know if any of these sites are within 1 km of a ephemeral stream. Generating this

information uses distance to calculate an outward spread from the target (Gray-

field) pixels which is then followed by a binary classification that simplifies

distance into a two-valued categorization; areas inside the threshold and areas

greater than the threshold (Fig. 13.3).

Raster overlay – Overlay operations are perhaps the most recognized feature of GIS

analysis. With respect to raster data, overlay describes the pixel-by-pixel combina-

tion of two surfaces. Assuming that the input raster surfaces are compatible, data

from one layer at a given pixel location (row, column) is combined with the

corresponding pixel in the second layer. Combination implies that a logic is in

use that guides how the two layers are joined in to produce a new representation.

The guiding logic is a pseudo-arithmetic manipulation of the attribute values within

the raster. The arithmetic operation yields a result that satisfies the desired combi-

nation. For example, in the previous illustration where thermal data was subject to

reclassification, suppose instead we wanted to know what land cover types corre-

spond to areas that display the highest temperature. We could use addition to simply

add the value of one surface to those of another. In this case given six land cover

classes the possible combinations created from the addition operation would be

confusing to interpret. However, if wemultiplied the highest temperature surface (1)

by land cover class only those areas where both 1 (highest temperature) and the land

cover class existed together would be preserved. All other cells would result in zero

or null values in the product image. A second type of map surface combination does

not involve direct overlay but can be extremely useful when attempting to establish

the statistical association between two raster surfaces. This is the procedure referred

Fig. 13.3 A simple

proximity surface
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to as cross-tabulation. Based on the use of categorical data, cross-tabulation help

illuminate how raster layers interrelate through the calculation of a two-dimensional

contingency table that records the frequency of cells in a cross-wise comparison of

their attributes (value). The cross-tabulation table provides a wealth of information

including statistics such as chi-square andKappa that can be interpreted to determine

the significance of the associations between the two input surfaces.

13.3 Raster Modeling

The concept of raster modeling was introduced by Tomlin (1990) and explains a

procedural logic for manipulating surface representations in a GIS environment

(DeMers 2002). Building on the GIS primitives described previously, rater (or

cartographic) modeling organizes these basic operations into a logical sequence

of analysis designed to develop a specific information product from the GIS data.

As a logic, raster modeling can be conceptualized as a collection of raster surfaces

registered to a common cartographic reference. The individual layers are linked by

the basic GIS operations which perform on the data in a manner analogous to how

one would solve a set of algebraic equation to determine unknowns (Fig. 13.4).

Depending on the nature of the problem, raster modeling can require a detailed

series of steps that involve numerous geoprocesing operations and several raster

data layers, or it can be relatively simple in design. The value of this technique is

that it demands considerable fore-thought in crafting the solution. Fore-thought is

often communicated in the form of a flow chart that outlines the relationship

between data inputs, the GIS functions needed to transform them, and the

anticipated output results. Raster modeling unlocks the power of GIS and facilitates

its role in descriptive and prescriptive analysis (Lein 1997).

Deriving meaningful answers to the problems addressed using raster modeling

places emphasis on two critical aspects of a modeling application:

• Knowledge of the problem – Because environmental processes are often com-

plex, prior understanding of the variables required to both define the problem

and explain causality is critical. With this fundamental understanding, the next

challenge is to appreciate what tasks are needed to move the data toward the

solution. As with any algebraic equation, to obtain an answer, one needs to

understand the steps needed to solve it.

• Knowledge of GIS primitives – Seeing the solution also focuses attention on

knowing which geoprocessing functions are needed to transform the data into

the desired information. Since raster modeling algorithms are application spe-

cific, the conceptual framework outlining the approach has to be formalized

ultimately into a set of geoprocessing operations that when executed in the

proper sequence craft the solution.
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Raster modeling operations are frequently described according to four main

categories that explain how our data are being modeled with respect to spatial

juxtaposition:

• Local operations – Operations of this type define GIS procedures that create an

output surface on which the value of each cell is a function of the corresponding

cell location on the input surface. Examples of local operations include mathe-

matical functions, Boolean operations, reclassification, and overlay.

• Focal operations – Working within “neighborhoods” this class of operations

implements a moving window algorithm to modify cell values in the input layer.

• Global operations – Global operations explain functions applied to an extended
neighborhood to produce a new raster surface.Examples of global operations

include various statistical operations, proximity analysis, geometric transformations,

buffering and surface modeling such as viewshed analysis and cost surface

mapping.

Fig. 13.4 GIS modeling in: (a) raster and (b) vector mode
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• Zonal operations – These functions are applied to define regions or zones in the

input surface. Zones explain collections of cells that exhibit similar attributes

which can be created using (1) reclassification calculations based on area, shape

or perimeter or (2) categorical overlay developed from binary “cookie cutters” to

extract cell values from a raster layer (Fig. 13.5).

13.4 Image-Based Modeling

Environmental modeling and simulation are integral activities in both the study of

environmental process and the analysis of human impact on the environmental

systems (Ford 1999; Shenk and Franklin 2001; Wainwright and Mulligan 2004).

The activity of modeling and the production of models that capture the behavior of

complex environmental processes support a societal need to consider the

consequences of human decisions on the environment and to develop a better

understanding of the interconnectedness and interactions that shape the landscape

system. When examined from this perspective modeling becomes a useful way to

characterize those patterns of the environmental systemwe are interested in knowing

more about and although models are abstraction and simplified analogies of real

systems, they have a value as a means of (1) prediction and comparison, and (2) as an

aid to thought, communication and as a device for experimentation. An additional

quality somemodels posses is that the process they explain are often spatial in nature.

Fig. 13.5 The concept of GIS overlay
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Models that are inherently spatial represent the real world setting in a geographic

context that preserves locational attributes and describes behaviors in a spatially

explicit manner. In most cases models of this type abstract the landscape using a grid

or polygonal arrangement. Using this geometry, calculations are performed to mimic

critical aspects of key processes we wish to understand, calculations drawn from the

physical laws, measured values and assumed relationships. Through the simulation

process the ensuing results are assembled onto the abstracted landscape and the

spatial patterns of the modeled response variables are displayed.

Spatial models, of course, are fed data where the driving input variables and

parameters are themselves, spatial. Increasingly, remote sensing technology has

been looked upon as an important source of data to support spatial modeling

(Brimicombe 2003). Remote sensing serves other central aspects of the modeling

problem as well including:

• Data input – The information products derived from image analysis and classi-

fication, from land cover, NDVI to temperature, represent land surface

characteristics in a grid-based format that easily accommodates modeling

efforts. In addition, objects at the surface, such as building footprints, roads

and related features can be extracted from imagery and used as input to drive or

parameterize the appropriate model.

• Model validation – Validation and verification are critical steps in the modeling

and simulation process designed to establish the level of confidence in the model

and the inference drawn from the simulation. Since models are essentially

theories describing the structure and interrelationships of an observed phenom-

ena, how well the model “fits” or compares against the real process determines

whether or not the insights gained from the model are reasonable. Remotely

sensed data can be employed to validate select models by providing an observed

condition against which modeled results can be compared. In some instances, it

may also be desirable to assemble a long-sequence time series to capture the

actual progression of a system and its change over time with intervals set to the

time step used to model the process.

A range of methodologies have been introduced to engage the environmental

modeling problem. Rather than attempt to review each method in detail we can

focus on a selection of two common modeling recipes that are readily adaptable to

the use of remotely sensed data. The recipes described are basic representational

schemas for expressing causality and approximating the spatial behavior of

elements that form the landscape system.

1. Markov processes – This modeling recipe is based on the assumption that the

future state (behavior) of an active process is influenced largely by its previous

state of condition. Characterizing the environment following this logic explains

system behavior in terms of probabilities where the likelihood of a process under

investigation being in a given state at a particular point in time is determined

from its previous state (Harbaugh and Bonham-Carter 1981). The progression of

a system under the Markov design can be conceptualized as a chain of discrete
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states in time or space where the probability of moving from one state to any

other possible state in the sequence depends on the previous condition exhibited

by the system. Therefore, a Markov process describes a series of transitions

between different states defined by probability values associated with each

transition exhibited by the system. Consequently, Markov processes in their

general form contain a finite number of states. The probabilities associated with

the transitions from state to state explain process for only a single step at a time;

a property reference to as a first-order Markov chain. Perhaps the most signifi-

cant aspect of Markov chains is that they exhibit a dependence on the

probabilities associated with each transition of the immediately preceding

state. In order to apply this modeling recipe the phenomena we wish to model

must possess this property. In most instances, the thematic information we

extract from remotely sensed data satisfies this condition which has supported

the use of Markov models to explore a range of dynamic landscape processes

(Riitters et al. 2009; Weng 2002; Wu et al. 2006; Guo et al. 2009).

2. Cellular automata – A cellular automata is a model that can be employed to

explain how elements of a system interact. Models based on this design define a

simulation environment represented by a grid space. On this grid space a set of

rules are used to determine the attributes of a cell taking into account the

attribute condition of its neighbors. The cell is not only an element in this raster

representation of a geographic area, but also a type of memory element that

stores states that represent characteristics of the system being modeled. In a

cellular automaton all cells behave identically, have the same connectivity, and

are directed based on three characteristics properties:

(a) States – The number of distinct states or conditions a cell can be in

(b) Neighborhood – The description of how cells are connected to each other

(c) Transition rules – The decision o how a cell’s state should change based on

the state of its neighbors

Change is introduced based on the rules added to the model which direct the

system to its ext time step. Defining these rules rests at the core of the model

since they (1) establish the logical relationships of the process subject to

simulation and (2) determine their spatial evolution. All interactions in a cellular

automaton are local, with the next state of a cell determined as a function of the

current state of that cell and its neighbors. The rules for transition from one cell

to another explain a general condition of either growth or decline, such as a

change from land cover type x to land cover type y. This direction of change is

a function of behaviors taking place in the neighborhood surrounding the cell, a

neighborhood region that can assume several different geometries (Fig. 13.6).

At the most basic level, we can reduce the concept of a transition rule to a single

IF–THEN relationship that can take the form:

IF – something acts on the neighborhood of a cell

THEN – some related behavior alters the cell
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The example above describes a type of decision rule that moves the simulation

forward. Although cellular automata are based on transformations produced

locally (at the cell level) they generate a global pattern. The “cell” framework

permits encoding the desired attributes of the landscape into the simulation

model such that the state of cell can be made to represent land use, land cover

or other conditions at the surface. The rules created to drive the model capture

the dynamics of change and can be devised to mimic how phenomena in the real

world behave. Interesting implementations of cellular automata using satellite-

derived data inputs include Fan et al. (2008), Han et al. (2009), Bone et al.

(2007), and He et al. (2005).

13.5 Environmental Sensor Nets and Webs

Although the definition of remote sensing implies that in situ data collection can be

replaced by the imaging technologies embedded in the space-borne sensors, field

data collection remains an important and often indispensible part of an environ-

mental remote sensing investigation (McCoy 2005). Recently, sensor networks are

related technologies have emerged that moves field data collection in a very

different direction and presents new opportunities for gathering land surface

Fig. 13.6 Cellular neighborhoods

13.5 Environmental Sensor Nets and Webs 313



information that amplifies the utility of remotely sensed data (Ho et al. 2005; Porter

et al. 2005; Kussul et al. 2009). While still in their infancy, environmental sensor

networks and their assimilation into sophisticated sensor webs describe powerful

combinations of distributed sensing capacity, real-time data, geographically

anchored analysis, and coupled integration with adjacent networks and remote

sensing data streams (Rundel et al. 2009). As this technology evolves, environmen-

tal analysis will be supplied with an enabling capacity to measure, map, monitor,

and model earth environments in detailed and dynamic ways.

An environmental sensor network can be defined broadly as an array of sensor

nodes distributed in the field together with a communication system that allows data

they collect to reach a server (Hart and Martinez 2006). A general configuration

illustrating the basic structure of an environmental sensor network is shown in

Fig. 13.7. As Fig. 13.7 suggests, the sensor nodes deployed in the network collect

data autonomously and this data stream is transmitted to one or more base stations

which then forward the data stream to a computer functioning as a network server.

Ideally, communication in the network is managed using wireless communications

systems. The wireless connectivity allows sensor networks to be placed into remote

and sensitive environments. Also, by employing wireless protocols, environmental

sensor networks are capable of capturing local and broadly dispersed information

simultaneously. In addition, sensor networks posses the capacity to respond to

changes across the network of sensor elements by triggering observations selec-

tively. Sensor networks therefore are a robust and dynamic approach to environ-

mental observation (van Zyl et al. 2009).

Fig. 13.7 General schema of an environmental sensor network
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The sensor nodes configured into a network can collect data on a wide range of

environmental variables. The actual sensor elements selected depends largely on

the goals established for the network. Typical environmental variables include

temperature, humidity, pressure, soil moisture, and solar radiation; however,

more specialized sensors can be introduced including GPS, air quality, and water

quality indicators (Rundel et al. 2009). Ideally, sensor nodes can store data and

make decisions about what data to transmit and when condition are appropriate (or

optimal) to actually take measurements. The sensor network is therefore not only an

observation platform, but also a communication platform where the communication

abilities of the sensor nodes enable remote deployment. To be effective and

efficient observation devices serving as sensor nodes should share a set of common

traits including:

• Low cost

• Low power need

• Automated

• Robust

• Scalable

• Wireless

• And plug and play capable

Since sensor nodes are likely to be deployed in uncertain environmental

conditions they should be designed to operate un-obtrusively in rugged outdoor

setting.

As an information technology, environmental sensor networks are a type of ad

hoc network that does not rely on a pre-existing infrastructure such as router or

access points common to most managed computer network systems. Because of

their ad hoc nature, sensor networks function well where central nodes cannot be

easily configured. Their minimal design requirements and quick deployment

features when coupled with dynamic and adaptive routing protocols enable ad

hoc networks to form rapidly. However with ireless ad hoc networks, nodes

compete to access the shared wireless medium which often results in data packet

collisions. This problem is addressed by using some form of cooperative wireless

communication such as a wireless mess topology (Akyildiz and Wang 2005).

A wireless mesh network consists of radio nodes (sensors) organized in a mesh

design (Fig. 13.8). Networks following this topology have three main elements: (1)

mesh clients, (2) mesh routers, and (3) gateways. Clients in a mesh network can

range from laptop computers to cell phones, but any wireless device such a sensor

node can be incorporated into the network. Mesh routers forward information to and

from gateways which can be connected to the internet. The coverage area for a

mesh is called the mess cloud and access to the cloud depends on the nodes working

in concert to form the network. An important feature of this design is its redundancy

which makes this topology suitable for a range of environmental applications. With

redundancy, when one node fails the remaining nodes can still communicate with

directly or through one or more of the intermediate nodes that complete the

network.
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Since most networked elements relay their data using radio links, communications

are a critical feature of sensor networks. Network communication may be hampered

by the environmental setting into which the sensor network is placed. Radio trans-

mission is often constrained by power requirements; however, in complex terrain

high power levels can be impractical. Generally, sensor networks transmitting on

high frequencies are more depended on line-of-sight between stations. Unfortunately,

current radio frequencies used by the majority of sensor nodes developed transmit

over comparatively short distances. These factors conspire to restrict the current

generation of sensor networks to areas not exceeding one square kilometer

(Hart and Martinez 2006).

The challenges encountered in the design and deployment of environmental

sensor networks has been summarized by Martinez et al. (2004) and includes

consideration of factors such as

Miniaturization – Elements comprising the network must be unobtrusive, conse-

quently size is a consideration that must be carefully balanced against the power

requirements of each sensor node.

Power management – Long-term operation is critical to a successful deployment

which demands the integration of systems to manage power and switch power

supplies.

Fig. 13.8 Characteristic design of a wireless mesh network
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Scalability – Scalability explains the ability to add sensors to the network. Ideally

sensor networks should be able to grow and needs dictate.

Remote management – Environmental sensor networks deployed in remote

locations require a means to enable remote access.

Usability – Components of a network should be comparatively easy to install and

maintain particularly if “off-the-shelf” turn-key systems are involved.

Standardization – Standardization implies compatibility with network components,

operating systems, and data exchanges.

Security – Security issues are critical at all levels of the network to protect against

physical and data interference.

An attractive feature of an environmental sensor network is that it enables the

integration of information obtained from multiple sensors into a larger world-view

not detectable by any single sensor alone (Rundel et al. 2009). Moving beyond the

sensor network takes this concept of a distributed sensing into the realm of the

sensor web. The sensor web concept has been described in detail by Delin (2002).

In its most general form, a sensor web explains a “macro-instrument” comprised of

spatially distributed sensor platforms that for temporally synchronous, geographi-

cally amorphous networks that form an embedded monitoring presence. This

evolving vision of a “network or networks” provides an infrastructure that supports

the integration of sensor systems that allow access to a range of instruments, sensor

networks and their corresponding observational data sets (van Zyl et al. 2009).

The central theme of this vision is that the sensor web instrument facilitates spatio-

temporal understanding of an environment through the coordinated measurement of

a multiple number and type of sensing platforms including both orbital and terres-

trial, fixed and mobile (Delin 2002; Delin et al. 2005). As an open-complex

adaptive system the sensor web can be defined by four unique characteristics

(van Zyl et al. 2009):

• Heterogeneous components arranged into a self-organizing network structure

that is robust and dynamic

• Open sensor resources that interact either directly or by means of a mediator or

proxy

• A network of sensor networks that highlight internet communication protocols

• External access to the constituent components that form the sensor web that

serve as sensor resources defined as data or metadata

By design the sensor web spreads collected data and processed information

throughout its entire network. The general schema of this design is illustrated

in Fig. 13.9. However, unlike a typical wireless network, there is no design criterion

for routing a sensor web. Information is spread everywhere and the communication

protocol is structured for omni- and bi-directional flow. Because there is no specific

routing of information, all sensor elements share everything with each other. These

qualities together with the schema illustrated in Fig. 13.9 suggest that sensor webs

are comprised of three fundamental layers; (1) an information layer, (2)
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a communication layer, and (3) a sensor logic (Liang et al. 2005). These layers can

be described accordingly:

Information layer – This is the component of the sensor web where the sensing

resources are stored, disseminated, exchanged displayed and analyzed. Sensing

resources include the various sensors deployed in the web, the sensor locations,

their real-time, near-real time or archived measurements, control elements and

other information pertinent to sensor web users. This layer displays significant

variety of data transport and access demands, data uses and data users where

interoperability is essential. The information, given these demands should support

data from different sources and facilitate their combination and integration.

Communications layer – This layer controls how data and commands are transmit-

ted within the sensor web. Included at this level are the media, protocols and

topologies that organized the web. Typically this takes form as an internet, satellite,

cell-phone, or radio-based network. The specific configuration of this layer depends

exclusively on the environmental setting and the requirements and constraints

imposed by the purpose the web was developed to support.

Sensor layer – The sensors identify devices that provide usable output in response

to a specific physical quantity, property or condition which is the subject of

measurement. Advances in sensor technology have produced devices capable

of measuring physical, chemical and biological attributes. Many of these sensors

have become smaller, more reliable, less expensive, more efficient, and intelligent

and capable of operating in situ or remotely. In situ sensors tend to be less costly per

Fig. 13.9 Generalized pattern of an environmental sensor web
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unit and enjoy higher accuracies and temporal resolutions. Remote sensors have the

advantage of a much wider spatial extent. However, sensor webs employ both in

situ and remote sensors to achieve truly integrated sensing capabilities.

Examples of integrated sensing using sensor web technologies coupled with

satellite-based platforms have been discussed by Chien et al. (2005) and Mandl

(2004). Although the systems described are largely experimental, these prototypes

demonstrate the value of sensor web implementations and how Earth observing

satellites such as the Advanced Land Imager (ALI), Hyperion, and EO-1 together

with the MODIS and ASTER instruments can be assimilated in a collaborative

manner to address high-value environmental applications.

13.6 Sensing on the Horizon

The nature of environmental problem-solving and the need to provide timely

information to guide decision making will encourage continued research in the

use of remotely sensed data. One of the more promising and interesting

developments that has the potential to advance remote sensing science and its

role in environmental analysis in the near-future is the deployment of small-satellite

systems (Xue et al. 2008; Kramer and Cracknell 2008). Small satellites, although

common in the early days of space exploration, have witnessed resurgence due to

their comparative cost advantage, short development cycle, and simplicity

(Fig. 13.10).

The term small satellite is typically applied to systems that have an on-orbit mass

ranging from 500 kg to as a little as 1 kg (Table 13.2). Aside from the smaller,

Fig. 13.10 Qualities of small-satellite systems
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cheaper, faster philosophy propelling development of small satellites, one attractive

feature of this technology is their potential for customization. Given this low cost

over traditional systems, it becomes feasible to deploy small satellites as remote

sensing platforms that can meet very specific and specially tailored information

needs. Here, the design capabilities of the satellites can be matched exclusively to

the requirements of a well-defined and narrow application problem. An example of

this potential is described by Guelman and Ortenberg (2009) were the requirements

for implementing small-satellite solutions for hyperspectral imaging is examined.

As experience with small satellites grows, customized earth imaging systems can be

presented to a user community that may present lack of capacity for remote data

collection. Transmitting customized solutions directly to end users enables all

organizational levels in both the public and private sector to access remotely sensed

information in an unprecedented fashion.

The future of environmental assessment activities and our societal response to

human-induced change to our environmental system will invariably depend on the

creative influences of many diverse groups together with new and continued

improvements to the science of Earth observation. Already innovative ideas such

as satellite constellations, where two ormore sensor platforms in similar orbit reduce

the time required to achieve daily coverage of the earth’s surface, and formation

flying, where two ormore satellites orbiting closely spaced in time record data across

a full suite of sensor instruments, offer unique opportunities to implement

distributed remote sensing systems. Small satellites will figure prominently in this

model, expanding the role of remote sensing and improving our ability to:

Table 13.2 Characteristics of small satellites

Parameter

Low-end buses

(w/o options)

High-end buses

(w/o options)

Design life (years) 1–3 �5

Reliability (at design life) 0.8–0.9 0.8–0.9

Avionics redundancy Limited Extensive to full

Bus mass (kg) 150–300 425–650

Payload mass (kg) 100–300 300–500

Payload power (orbital average, W) 60–125 100–500

Propulsion authority (kg hydrazine) 0–25 33–75

Pointing accuracy (deg 3-sig) 0.02a–0.25 0.01a–0.03a

Pointing knowledge (deg 3-sig) 0.001a–0.2 0.003a–0.008a

Data storage (Gbit) 2–64 12–200

Downlink (Mbps) 2–4 at S-band; 100 at X-band

available on SA200S

2 at S-band, 320

at X-band

Note: The low-end buses are the Spectrum Astro SA200S, Swales, and the three-axis TRW

STEP; the high-end buses are the Ball RS2000, Lockheed Martin LM900, and TRW SSTI-500

Source: Rapid Spacecraft Development Office (RSDO). 1999. Available online at http://rsdo.gsfc.

nasa.gov
aWith star trackers
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• Access any area on the earth within 24 h

• Obtain coordinated measurements over a range of sensor instruments

• Collect critical data regarding the disposition of our environment

When these innovations are brought together the future of environmental sensing

promised to be dynamic and exciting.

13.7 Summary

Satellite remote sensing can be considered one facet of an expanding list of

geospatial technologies. In this chapter, the integration of remote sensing into this

larger information technology framework was described examining first how the

results of a remote sensing investigation can fit seamlessly into the analytic engine of

GIS. Here, by exploring a set of GIS primitives, the information content of a remote

sensing product can be maximized and the raster format of the remote sensing

product can flow directly into a range of raster modeling applications. Image-

based modeling concepts were examined using Markov processes and cellular

automata has examples. Geographic information systems, however, are only one

integrative technology. Also considered in this chapter was the potential for

deploying environmental sensor networks and the expansion of environmental

sensing opportunities through the design of sensor webs. From this discussion the

future of remote data collection was examined through the introduction of small-

satellites and their role in environmental analysis and assessment.

References

Akyildiz, I andWang, X. (2005), “A Survey onWireless Mesh Networks,” IEEE Communications

Magazine, 43, s23–s30.

Bone, C., Draagicevic, S., Roberts, A. (2007) Evaluating Forest Management Practices using

GIS-based Cellular Automata Modeling Approach with Multispectral Imagery. Environmental

Modeling and Assessment, 12, 105–118.

Brimicombe, A. (2003) GIS, Environmental Modelling and Engineering, Taylor and Francis,

London, 312p.

Chien, S., Cichy, B., Davies, A., Tran, D. (2005) An Autonomous Earth-Observing Sensorweb,

IEEE Intelligent Stem, 16–24.

Dar, I., Sankar, K Mithas, D. (2010) Remote sensing technology and geographic information

system modeling: An integrated approach towards the mapping of groundwater potential zones

in Hardrock terrain, Mamundiyar basin Journal of Hydrology, Vol. 394, Issue: 3-4, November

26, 2010. pp. 285–295.

Delin, K. (2002) The Sensor Web: A Macro-Instrument for Coordinated Sensing, Sensors,

2, 275–286.

Delin, K, Jackson, S., Johnson, D. Burleigh,S. (2005) Environmental Studies with the Sensor Web:

Principles and Practice, Sensors, 5, 103–117.

DeMers, M. (2002) GIS Modeling in Raster, Wiley and Sons, New York, 203p.

References 321



Estes, J. (1992) Remote sensing and GIS integration - Research needs, status and trends , ITC

Journal , no. 1, pp. 2–10. 1992.

Fan, F., Wang, Y., Wang, Z. (2008) Temporal and Spatial Change Detecting (1998-2003) and

Predicting of Land Use and land Cover in Core Corridor of Pearl River Delta (China) by Using

TM and ETM + Images, Environmental Monitoring and Assessment, 137, 127–147.

Ford, A. (1999) Modeling the Environment: An Introduction to System Dynamics Modeling of

Environmental Systems, Island Press, Washington, DC., 401p.

Guelman, M., Ortenberg, F. (2009) Small Satellite’s Role in Future Hyperspectral Earth Observa-

tion Missions, Acta Astronautica, 64, 1252–1263.

Guo, Zhongyang; Dai, Xiaoyan; Wu, Jianping (2009) Study on land use/land cover change in

Jintai and Weibing districts of Baoji city in Western China based on remote sensing technology

and Markov method, Journal of Applied Remote Sensing, Volume 3, 332–347.

Han, J., Hayashi, Y., Cao, X., Imura, H. (2009) An Application of and Integrated System

Dynamics and Cellular Automata Model for Urban Growth Assessment: A Case Study of

Shanghai, China, Landscape and Urban Planning, 91, 133–141.

Harbaugh, J and Bonham-Carter, G. (1981) Computer Simulation in Geology, Robert E. Krieger

Publishing, Malabar, FL, 575p.

Hart, J., Martinez, K. (2006) Environmental Sensor Network: A revolution in the Earth Systems

Science?, Earth-Science Review, 78, 177–191.

He, C., Zhang, Q., Li, Y., Li, X., Shi, P. (2005) Zoning grassland Protection Area Using Remote

Sensing and Cellular Automata Modeling- A Case Study in Xilingol, Steppe Grassland in

Northern China, Journal of Arid Environments, 63, 814–826.

He, Hong S., David J. Mladenoff, Volker C. Radeloff, and Thomas R. Crow. 1998. INTEGRA-

TION OF GIS DATA AND CLASSIFIED SATELLITE IMAGERY FOR REGIONAL FOR-

EST ASSESSMENT. Ecological Applications 8:1072–1083. [doi:10.1890/1051–0761(1998)

008[1072:IOGDAC]2.0.CO;2].

Hinton, J.C. (1996) GIS and remote sensing integration for environmental applications. Int. J. GIS

10: 877–890.

Ho, C., Robinson, A., Millerm D. and Davis, M. (2005) Overview of sensors and needs for

environmental monitoring, Sensors, 5, 4–37.

Kramer, H. and Cracknell, A. ( 2008) An Overview of Small satellites in remote Sensing,

International journal of remote Sensing, 29, 4285–4337.

Kussul, N., Shelestov, A. and Skakun, S. (2009) Grid and sensor web technologies for environ-

mental monitoring Earth Science Informatics. Vol. 2, no. 1–2, pp. 37–51. June 2009.

Lein, J. (1997) Environmental Decision Making: An Information Technology Approach,

Blackwell Science, Malden, MA., 213p.

Liang, S., Croitoru, A., Tao, V. (2005) A Distributed Geospatial Infrastructure for Sensor Web,

Computers and Geosciences, 31, 221–231.

Malpica, J A | Alonso, M C | Sanz, M A Dempster-Shafer Theory in geographic information

systems: A survey Expert Systems with Applications. Vol. 32, no. 1, pp. 47–55. Jan. 2007.

Mandl, D. (2004) Experimenting with Sensor Webs Using Earth Observing 1, IEEE Aerospace

Conference Proceedings, 176–183.

Martinez, K., Hart, J., Ong, R. (2004) Environmental Sensor Networks, Computer, 37, 50–56.

McCoy, R. (2005) Field Methods in Remote Sensing, The Guilford Press, New York, 158p.

Merchant, J.W.; Narumalani, S. Integrating remote sensing and geographic information systems.

In The SAGE Handbook of Remote Sensing; Warner, T.A., Nellis, M.D., Foody, G.M., Eds.;

SAGE Publications Ltd: London, UK, 2009; pp. 257–268.

Porter, J., Arzberger, P., Braun, H., Brynat, P., Gage, S., Hansen, T., Lin, C., Lin, F., Kratz, T.,

Michener, W., Shapiro, S. and Williams, T. (2005) Wireless Sensor Networks for Ecolog,

BioScience, 55, 561–572.

Riitters, K., Wickham, J., Wade, T. (2009) An indicator of forest dynamics using a shifting

landscape mosaic, Ecological Indicators, 9, 107–117.

322 13 Integrative Sensing



Rundel, P., Grham, E., Allen, M., Fisher, J., and Harmon, T. (2009) Environmental sensor

networks in ecological research, New Phytologist, Volume 182, Issue 3, pages 589–607.

Shenk, T and Franklin, A. (2001) Modeling in Natural Resource Management, Island Press,

Washington, DC., 223p.

Tomlin, C. (1990) Geographic Information Systems and Cartographic Modeling, Prentice-Hal,

Englewood Cliffs, NJ., 249p.

van Zyl, T., Simonis, I. and McFerren, G. (2009) The Sensor Web: Systems of Sensor Systems,

International Journal of Digital Earth, 2, 16–30.

Wainwright, J. and Mulligan, M. (2004) Environmental Modeling: Finding Simplicity in Com-

plexity, Wiley and Sons, New York, 408p.

Weng, Q. (2002) Land Use Change Analysis in the Zhujiang Delta of China using Satellite , GIS

and Stochastic Modeling, Journal of Environmental Management, 64, 273–284.

Weng, Q. (2010) Remote Sensing and GIS Integration: Theories, Methods and Applications,

McGraw-Hill, 416p.

Wilkinson, G.G. (1996) A review of current issues in the integration of GIS and remote sensing

data. International Journal of Geographical Information Systems, 10(1), pp. 85–101. ISSN
(print) 0296–3798.

Wu, Q., Li, H., Wang, R, Paulussen, J, He, Y., Wang, M, Wang, B., Wang, Z. (2006) Monitoring

and Predicting Land Use Change in Beijing Using Remote Sensing and GIS, landscape and

Urban Planning, 78, 322–333.

Xue, Y., Li, Y., Guang, J., Zhang, X., Guo, J. (2008) small Satellite remote Sensing Applications –

History, Current and Future, International Journal of Remote Sensing, 29, 4339–4372.

References 323



Index

A

Advanced very high resolution radiometer

(AVHRR)

characteristics, 64

description, 60, 64

normalized difference vegetation index

(NDVI), 64, 65

objective, 64

Aerosol optical thickness (AOT), 294

Anomaly detection

algorithms

causal R(x) algorithm, 209

geo-thermal activity/subsurface coal

fires, 210

Grubbs test, 206

Kernel functions, 207

K-nearest neighbor/simple Euclidean

distance, 207

Mahalanobis distance formula, 208

moving window concept, 209

Parzen-window density estimation, 207

regression-based approach, 207

statistical inference testing, 206

and mapping

classes, 205

conditions, 206

detection types, 205

image derived indicators, 203

nonconforming pixels, 205

pixel visualization, 204

point, contextual and collective

anomalies, 205

surface/image, 204

thermal, defined, 203–204

AOT. See Aerosol optical thickness
Atmosphere correction now (ACORN), 229

Atmosphere removal (ATREM), 229, 246

C

Canadian geospatial data infrastructure

(CGDI), 19

CGDI. See Canadian geospatial data

infrastructure

Change detection algorithms

algebraic

change vector analysis, 185, 187

image differencing, 183–184

image ratioing, 184–185

image regression, 185

simple image subtraction and band

ratio approach, 184

classification-based

multidate composite analysis,

186, 187

postclassification, 185–187

unsupervised, 186

pixel identification, 182

senor–scene–environmental irregularity,

182–183

Comparison index (CI), 273

D

Defense meteorological satellite program

operational linescan system

(DMSP-OLS), 65

E

Earth observation

complexity confrontation

natural interaction, 5

properties, 5

technology, 3

theory, 3–4
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Earth observation (cont.)
thinking, 5–6

types, 4–5

environment

data, 2–3

decision making, 3

information, 2

satellite-remote sensing, 2

remote sensing (see Remote sensing)

traditional bottlenecks, 20

EIA. See Environmental impact assessment

Enhanced vegetation index (EVI), 151

Environmental characterization

“baseline” information, 136

classification

advantages, classifier approach,

143–144

Anderson–Hardy system, 141

attributes, 143

description, 141

dichotomous and modular-hierarchical

phase, 143

“index”, land cover, 142

land cover classes and definition, 142

LCCS, 143, 144

NVCS and NLCC, 141

defined, 136

geographic levels, 140

indicators and transforms

customized band ratios, 158–159

landscape metrics, 153–158

statistical estimation, 159–164

vegetation, 148–153

indicator science

agency adoption, 147

communication, 145

DPSIR model, 146–147

goals, environmental sensing, 145

selection, 145–146

type A and B, 147–148

mapping and field data collection, 137

multidimensional nature, 137

pathways tracing, 135

sensor resolution requirements,

discreteness, 141

site planning and inventory, 137

status and active process, 135

targets, 138–140

Environmental impact assessment (EIA)

and post-EIA auditing

anomaly detection techniques, 284

description, 283

“early warning” information, 284

remote auditing, 283

Environmental monitoring and change

detection

algorithms (see Change detection
algorithms)

principles

assessment criteria, 173

conceptual model, 172, 173

earth orbiting satellites, surveillance, 170

issues, 171

modeling building, 172

remote sensing and assessment

literature, 169

remote sensing/environmental

monitoring “loop”, 171

types, monitoring, 170

remote monitoring

crafting and active, program, 175

data availability and selection, 176

phases, 175

satellite remote sensing, 174

top-down and bottom-up method,

174–175

sensing change

accuracy and quality assurance, 181

adjectives and challenges, 177–178

alteration and spectral movement/

contrast, 176–177

change analysis, 181

cost factors, 180

data preparation, 180

effects/sensor perturbations

gaps, 180

feature selection, 180

geometric registration and radiometric

correction, 181, 182

operational remote sensing, 179

phases, 178, 179

precisely defined problem, 178–179

spatial resolution, 179

terminology, conversion/modification,

177

terrestrial ecosystems, 176

thematic and geometric accuracy, 179

sensing domain, 169

thresholding

advantages and limitations, 186

auto-thresholding techniques, 188

error treatment, 188

multilayer image stack, 187

Environmental pollution, forensic analysis

air quality

aerosol optical thickness, 294
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satellite-derived aerosol product,

294, 295

water quality assessment

factors, 292

Maumee Basin Lake Erie, 292

parameter-specific indices, 293

radiance, separation, 291, 292

suspended sediments, 293

Environmental sensing

definition, 24

disturbances

description, 35

landscapes, human action, 36

managed vegetation, 36

regime, 35–36

human dimension

agricultural intensification, 40

corridors, 41, 42

cultural perceptions, 38

decision-driven mosaics, 39

deforestation, 40–42

population demand and economic

growth, 38

rangeland alteration, 40, 41

satellite image, 38

technological discovery and political

institutions, 38

urbanization, 39

may be logic

outcome and event, 46

problem-solving schemas, 46

skills, 47

tenants (rules), 46

measurement, 44–46

patches and progressions

connectivity, 37

heterogeneous land areas, 36

land transformations, 37

patch dynamics, 37

surface arrangements, 37

pattern

analytical scale, 33

“brash” equations and set, 30–31

“cone of resolution” model, 31, 32

macro and meso scale, 31–32

scale, defined, 31

spatial scale/sensor resolution

relationships, 33

process

active events, 35

causal mechanisms,

change, 35

described, 33–34

temporal influences, 34

remote, 24

system

biomes, 24, 25

changes, 26–28

complexity, 30

interdependent elements, 25, 26

land covers, 27–29

process-response progression, 25

structure and behavior, 30

structure categories, 29–30

temporal influences, 34

uncertainty

epistemic, 43

linguistic ambiguity, 43

management, 44

“realities”, 43

remote sensing investigations, 44

EVI. See Enhanced vegetation index

F

Fast line of sight atmospheric analysis

of spectral hypercubes

(FLAASH), 229, 246

Forensic remote sensing

creative problem solving, 298

EIA and post-EIA auditing, 283–284

environmental compliance assessment

change, time, 286, 288

defined, 284–285

human activities, 284

remote inspection, 285–288

site specific nature, 285

systematic damage detection, 285

environmental hazards

description, 294–295

elements, risk assessment, 297

natural and human/technological,

295, 296

risk, 295, 297

environmental health

factors, 290

salient features, 291

satellite-based sensors, 290

statistical model, 290

environmental pollution

air quality, 294

water quality assessment,

291–294

“fingerprinting”

change analysis, 281–282

environmental legislation, 282
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Forensic remote sensing (cont.)
human damage footprint, 281

methodology requirements, 280

satellite image analysis, 281

“time-stamped” documentation, 280

policy and plan review

agricultural land valuation, 289

goals and objectives, 288

Thematic Mapper and Landsat TM

imagery, 289

G

GeoEye–1 sensor, 77

Geographical information systems (GIS)

geographic questions, 304

overlay concept, 310

primitives

knowledge, 308

proximity analysis, 306–307

Raster overlay, 307–308

selection and classification, 305–306

GIS. See Geographical information systems

H

High accuracy atmosphere correction for

hyperspectral data (HATCH), 229

HYPERION

characteristics, 75

description, 74

Hyperspectral classification

description, 239

goal, 256

hyperprocessing

atmospheric correction, 245–246

data preparation, 243–245

data reduction, 246

endmember selection, 246–247

operation and workflow, 242, 243

spectral, 247–248

verification, 248

image, 248

interpretation and explanation

“abundance” patterns, 254, 255

imaging spectroscopy applications,

principles, 256

questions, 255

thematic presentation, 255–256

treatment, 255

processing

classification problem, twofold

task, 239

“hourglass” model, 242

matching, 240–241

material cover representations,

240, 241

procedure, processing chain, 242

surface fractions representation, 240

unmixing logic, 241–242

subpixel analysis

description, 250–251

linear mixing model, basic form,

251–252

linear unmixing, 251, 252

MF, 252–254

multiple scattering, 252

spectral unmixing, 251

whole-pixel analysis

SAM and SFF, 249–250

spectral angle mapping logic, 249

Hyperspectral sensing

applications development

analysis goal, 235

deductive analysis, 235

environmental analysis, 234

mapping exercise, fundamental

processing steps, 235

classification and detection, 216

compiling spectral libraries

application-specific, 234

reference spectra, 233

endmember spectra

absorption features and diagnostic

value, 225, 227

calcite and kaolinite, 227

description, 222

image, 222, 223

information gathering, 223

material, 224–225

vegetation, 224

imaging spectroscopy (see Imaging

spectroscopy)

information source, 216

landscape analysis and mapping, 236

managing endmembers

extraction and reference spectra

derivation, 230

ground-based, 232–233

image, 231–232

pixel, 230

measurement “depth”, 215

mixtures and models

image spectra, 228

reflectance conversion methods, 229

types, 228

vs. multispectral imagery, 213–214

multispectral remote, 213

pixel, 214–215

spectrometer, 216
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I

IKONOS system

characteristics, 76

description, 75

Image-based modeling

cellular automata

characteristic properties, 312

description, 312

neighborhoods, 313

transition rule, IF-THEN relationship

form, 312

Markov processes, 311–312

remote sensing

data input, 310

validation, 310

spatial models, 311

Image processing

classification

accuracy assessment, 102–106

advantages, clustering algorithms, 94

classifier selection and implementation,

98–100

data clustering algorithms, 89

data selection and simplification, 95–96

decision rule schemas, measurement

space, 87

definition, 85

distance measures, 90, 91

goals, determination, 95

hierarchical clustering, 90, 91

information, 106–107

initial evaluation, 100–101

ISODATA clustering, 92

K-means clustering, 92–93

method/logic, impose order, 86

pattern, 85

pattern and structuring, numerical

data, 86

post classification refinement, 101–102

sequential clustering, 92

“signal” and “noise”, 86

supervised image, 94, 95

training samples, 96–98

unsupervised image, 89, 90

information defined

characteristics, 84

issues, 84

properties, 84

requirements, 85

pattern recognition

agricultural field, 89

electromagnetic radiation, 88

numerical arrangements, 89

spectral bands, 88

spectral response pattern, 88

spectral signature, 87

Imaging spectroscopy

absorption bands, 222

Beer’s law, 221

data collection capabilities determination,

220–221

emission spectra, 217

laboratory spectra, 218

materials detection, factors, 217–218

oak leaf and fiberglass roof, 218, 219

reflectance, 218

spectrometer, categories, 217

vegetation, 219–220

Indicators and transforms, environmental

classification

customized band ratios

formula, 158

power discrimination factors, 159

reflectance bands, Landsat TM, 158

functional relationship, 159

image-based construction

common factor analysis, 164

“degraded” areas, 163

principal component analysis, 163–164

statistical modeling factor analysis, 163

Landsat TM data, factor anlysis, 164

landscape metrics

comprehensive listing, 155–157

core set selection, 154, 157

detection, ecological, 158

indicators, map patterns, 153

levels, metric quantification, 154

relationship, structure and function, 153

regression

field data collection, 160

image sampling and model

building, 162

model testing and implementation, 162

sample registration, 161

satellite data acquisition, 160–161

simple tally matrix, 162

vegetation

biophysical parameters, 149

description, 148

empirical evidence, 148

energy absorption, leaf pigments, 149

index and equations, 149

Kauth–Thomas transform, 151–152

LAI, 152–153

NDVI, 149–151

wavelength reflectance, 160
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Integrative sensing

environmental sensor nets and webs

characteristics, 317

design and deployment, factors,

316–317

layers, 317–318

“macro-instrument”, 317

network, defined, 314

pattern, 318

remote sensing, definition, 313

sensor nodes, traits, 315

wireless mesh, 315, 316

geomatics, action

data and processing environments, 304

GIS analysis, 304

operations categories, 305

Raster analysis, 305

thematic map, 303–304

GIS primitives, 305–308

horizon

remote, 320–321

small-satellite systems, 319–320

image-based modeling

recipes, 311–313

remote sensing, 311

spatial models, 311

Raster modeling

description, 308

GIS primitives knowledge, 308

knowledge, problem, 308

operation categories, 309–310

K

Kauth–Thomas transform

brightness indicator, 151–152

greenness and wetness indicator, 152

haze, 152

satellites, 152

tassle-cap greenness surface, 151, 152

K-means clustering

description, 92

limitations, 93

method, 93

L

LAI. See Leaf area index
Land cover characterization system (LCCS),

143, 144

LCCS. See Land cover characterization system

Leaf area index (LAI)

indicator, 153

SAVI, 153

structural plant canopy, 152

M

Matched filtering (MF)

description, 252–253

target vector component, 254

Medium resolution imaging spectrometer

(MERIS), 67, 68

MF. See Matched filtering

Microwave sensors

backscatter intensity, 78

Envisat, 78–79

ERS, 79

passive and active, 78

Radarsat, 78, 79

Minimum noise fraction (MNF)

data reduction techniques, 246

MF scores, 253

PCA, 246

vector, 253

MNF. See Minimum noise fraction

Moderate resolution imaging spectrometer

(MODIS)

aerosol product, 67

characteristics, 67

MOD 01 and MOD 02, 66

normalized water-leaving radiance, 67

MODIS. See Moderate resolution imaging

spectrometer

N

National aeronautics and space administration

(NASA), 73–74

National land cover characterization

(NLCC), 141

National vegetation classification system

(NVCS), 141

NDVI. See Normalized difference vegetation

index

NLCC. See National land cover

characterization

Normalized difference vegetation index

(NDVI)

EVI, 151

image representation, 150

index calculation, 150–151

SAVI, 151

TVI, 151

visible and near-infrared portion,

electromagnetic spectrum, 150
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Normalized post-segmentation standard

deviation (NPSS), 273

NVCS. See National vegetation classification

system

O

Object-based analysis

approaches, image, 267

classification

class hierarchy, 270–271

decision rules, combinatorial/labeling

strategies, 271

elements, 270

pattern representation, thematic

extraction, 269

processing chain activities, 271

supervised, 269

construct crafted, principles, 268

data model, essential ingredients, 267

fit finding, 273–275

homogeneity role

absolute spectral and local spectral

distance, 265

degree, fit, 264

Euclidean distance formula, standard

deviation, 264

image segmentation object, defined, 264

optimization, 265–266

properties production, segmentation, 266

relative local difference, 265

image classification process, 259

limitations and constraints

automated image segmentation, 276

boundary problem, 275–276

scale parameters, segmentation

process, 275

utility, classification, 275

“orchard” problem, 268

and segments

edge-based segmentation, 262–263

geometries, 259–260

image object, 260, 261

image segmentation strategies, 262, 263

multicriteria and multiresolution

strategies, 263–264

pattern, image following

segmentation, 262

photo interpretation fundamental

recognition elements, 260

pixel-based segmentation, 262

region-based segmentation, 263

simple spatial geometric shapes, 260, 261

storage, user-defined data types, 266–267

uncertainty management

analysis, 273–274

approaches, segmentation quality, 272

CI calculation, 273

“ground truthing” measures, 272

image segmentation evaulation

methods, 272, 273

NPPS index computation formula, 273

object change, 274–275

sources, 272

Open source software

benefits, 17

Bilko, 20

description, 16

MultiSpec, 17

OpenEV, 19–20

Opticks, 17, 18

OSSIM, 17, 18

rules, 16

SPRING, 19

Optical/infrared sensors

high resolution systems

EO–1, 73–75

Indian Remote Sensing Program,

72–73

LandSat TM and ETM+, 67–70

SPOT, 70, 71

TERRA-ASTER, 71, 72

low resolution systems

AVHRR, 60, 64–65

DMSP-OLS, 65

Orbview–2/ SeaWIFS, 65–66

medium resolution systems

defined, 66

European Space Agency ENVISAT,

67, 68

MODIS, 66–67

very high resolution systems

GeoEYE, 77

IKONOS–2, 75–76

Obrbiew–3, 77

Quickbird–2, 76–77

P

Patch dynamics, 37

PCA. See Principal components analysis

PDF. See Probability density function

Principal components analysis (PCA)

data reduction techniques, 246

MNF, 246

Probability density function (PDF), 207
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Q

QuickBird system

characteristics, 76

imagery, 77

swath width, 76

R

Raster modeling

description, 308

knowledge

GIS primitives, 308

problem, 308

operation categories

global, 309

local and focal, 309

zonal, 310

Remote sensing. See also Satellite remote

sensing

accuracy assessment

error, 102–103

higher spatial resolution imagery,

103–104

math, 104–106

reference data, 103

reference maps, 104

sample, 104

site visitation, 104

classes, 59

data collection and image processing, 140

“degraded” land, 163

Dempster–Shafer theory, 123

earth

accuracy issues and data timeliness, 14

AmericaView, 16

Data Pool, 15

free software, freedoms, 16

gaps, 14

GLOVIS, 14–15

LP DAAC, 15–16

MODIS reprojection tool web

(MRTWeb), 15–16

OhioView program, 16

open source software, 16–20

USA, 13

USGS, 14, 15

and GIS, 304

hyperspectral analysis, 307

imaging spectroscopy, 218

information application, 106–107

IRS, 72–73

“loop”, 171

microwave, 77–78

modeling, 311

monitoring methodology, 179

object-based analysis (see Object-based
analysis)

phases, 51–52

small-satellite systems, 319–320

spectral bands configuration, 53

theory

assessment, results, 12

computer processing, 11

data analysis, 12

electromagnetic (EM) spectrum, 7

elements, 10

energy interactions, factors, 9

identification, signature pattern, 8

methodology, investigation, 11

presentation and knowledge

application, 12–13

principles, measurement tool, 6–7

problem and data definition, 12

radiant energy, detection and

recording, 8

resolutions, 9–10

satellite-based, 6

spectral response pattern, land covers, 8

steps, 11

systematic nature, 10–11

thermal

principles, 193–197

S

SAM. See Spectral angle mapper

Satellite remote sensing

air quality, 294

analytical scale, 33

described, 174

disadvantages, 1

earth observation, 2

geospatial variables, 114

USA, 13

SAVI. See Soil-adjusted vegetation index

Sea viewing wide field-of-view sensor

(SeaWIFS)

characteristics, 66

uses, 65–66

SeaWIFS. See Sea viewing wide field-

of-view sensor

Sensors and systems

data acquisition

digital image, 55, 56

electromagnetic spectrum, 52–53

gray-scale concept, 55
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locations and patterns, atmospheric

windows, 53

mixed pixel, 54

phases, 51–52

radiometric sensitivity, 55

spatial resolution, 54

spectral bands, remote sensing, 53

spectral resolution, 53, 56

time, representation, 56–57

earth observational satellites and sensors,

61–63

footprints and format

geocentric orbits categories, 57

observational orbit, earth, 58

satellite orbits, 57, 58

swatch width, 58, 59

groups, spectral regions, 60

microwave sensors

backscatter intensity, 78

Envisat, 78–79

ERS, 79

passive and active, 78

Radarsat, 78, 79

optical/infrared sensors (see Optical/
infrared sensors)

passive and active, 59

satellite-based sensors, 59

thermal infrared systems

earth observational satellites, 80

imagery, 79

SFF. See Spectral feature fitting
SMA. See Spectral mixture analysis

Soil-adjusted vegetation index (SAVI),

151, 153

Spectral angle mapper (SAM)

algorithm, 249

classification strategy, 250

common whole-pixel classifiers, 249

Spectral feature fitting (SFF)

classification, 250

common whole-pixel classifiers, 249

Spectral mixture analysis (SMA)

hyperspectral imagery, 130

net radiance, sensor, 129

steps, 130

subpixel mapping, 128

Supervised image classification

accuracy assessment, 102–106

classifier selection and implementation

maximum likelihood classification,

99–100

minimum distance to means, 99

nearest-neighbor, 100

parallelepiped, 98–99

training samples derivation

delineating polygon size and sample

location, 97

internal consistency and uniformity, 97

pixel quality per sample, 96

quality assessment and evaluation,

97–98

samples number, 97

T

Thermal infrared data (TIR)

ASTER bands, 202

brightness temperature values, 201

earth-orbiting satellites, 202

radiometric calibration, 198

relative coarse spatial resolution, 203

Thermal infrared systems, 79–80

Thermal sensing

anomaly detection (see Anomaly detection)

land surface characterization, 193

measurement

ASTER sensor conversion, spectral

radiance, 202

“at-satellite” brightness

temperature, 202

brightness temperature, 198, 199

emissivity factors, 198

empirical measurements, 199

image (Landsat ETM+), 199

mapping and characterization, 197

radiometric calibration, TIR data, 198

single-channel algorithms, 200–201

split-window algorithms, 200

TIR data, 201

TIR detectors, 202

principles

ASTER, MODIC, and AVHRR, 194

atmospheric constituents, 196

electromagnetic spectrum, 196

emissivity, 194–195

geologic and military remote

sensing, 193

Kelvin temperature, 197

Kirchoff’s law of thermal

radiation, 195

radiant flux, 195

radiant temperature, 194

TIMS scanner, characteristics, 194

Wien’s displacement law, 196–197

windows, remote sensing

application, 196
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TIR. See Thermal infrared data

Transformed vegetation index (TVI), 151

TVI. See Transformed vegetation index

U

Uncertainty sensing

alternatives, soft classification, 114

Bayesian classification

defined, class membership, 126

pixel and soft classification, 127

principles, 126

prior probability term, 126–127

vegetation index (VI), 127

Boolean logic, 111

data, description, 114

evidence-based classification

belief functions, 124

“belief”, spatial representation, 123

Dempter–Shafer theory, 122, 125–126

mathematical functions, 124–125

remote sensing, 123

fuzzy-based implementation

cluster mean, 122

fuzziness, 122

K-means/ISODATA algorithms, 121

maximum likelihood classifier, 121

spectral response translation, 120–121

fuzzy classification

degree, compatibility, 117

description, 115

expert judgment, 118

fuzzification, conditions, 117

fuzziness, pixel proposition, 115

fuzzy set, defined, 116

Gaussian representation, 120

judgment based method, 118

membership function, parameters, 119

membership grade, 118

pixel, membership function, 116

schema, fuzzy set, 116

shouldered representation, 119–120

sigmoid membership function, 119

trapezoidal membership function,

119, 120

triangular membership function,

119, 120

urban class determination, 117

imprecision

delineation, 113

gray-scale visualization, 113

hard vs. soft classification logic, 112

human–environmental process, 111

pixels, 112

satellite remote sensing, 112

soft classification, 114

thematic information, 113

mapping, degraded land/deforested

area, 111

mixtures and subpixel analysis

SMA, 128

spectral response patterns, 128

“unique” spectral pattern, 128

unmixing and mixture, spectral,

129–131

pattern discovery process, 115

techniques, 114

V

Vegetation index (VI), 126, 127

VI. See Vegetation index

334 Index


	Environmental Sensing
	Preface
	Contents
	Chapter 1: The Earth Observation Perspective
	Chapter 2: Environmental Sensing
	Chapter 3: Sensors and Systems
	Chapter 4: Fundamentals of Image Processing
	Chapter 5: Sensing Uncertainty
	Chapter 6: Environmental Characterization
	Chapter 7: Environmental Monitoring and Change Detection
	Chapter 8: Thermal Sensing and Anomaly Detection
	Chapter 9: Hyperspectral Sensing
	Chapter 10: Hyperspectral Classification
	Chapter 11: Object-Based Analysis
	Chapter 12: Forensic Remote Sensing
	Chapter 13: Integrative Sensing
	Index



