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1  Introduction 

In the late eighties of the twentieth century I encountered a paper referring to 

mathematics dealing with imprecision applied to medical diagnosis. I was working 

in the area of medical statistics at that time, and obviously I was interested in the 

contents of the paper. After I had read it I became fascinated by new possibilities 

of medical data interpretation and processing proposed by the author. The new 

world of fuzziness, originated by Professor Lotfi Zadeh, seemed to open up to me 

and I started reading all accessible material about fuzzy set theory.

Many years have passed since then. We are now living in the information soci-

ety and we do not experience troubles in reaching scientific material. Lately I have 

read many papers and books about treating medical tasks solved by using fuzzy 

ideas. I am still keen on tracing applications in medicine, and by myself I have 

been contributing to some concepts in this subject that has motivated me to pre-

pare my own book. The objective of writing such a book has been a little particu-

lar, namely, I have intended to present the subject of fuzzy tools and techniques in 

medicine for eventual users. These, maybe representatives of medical or pharma-

cological staffs, are not expected to possess a large amount of mathematical 

knowledge. On the contrary, we have a feeling that mathematics is a subject mak-

ing non-professionally educated specialists almost afraid of meeting comprehen-

sive difficulties. To build a bridge between theoretical, mathematical excerpts and 

practical applications, I have formed my material as a sequence of occurrences in 

which a patient appears to be recovered from his or her illness. The patient needs 

to be diagnosed and treated by effective means to become healthy again. In this 

way the reader should have an impression that he or she follows the patient and 

his or her problems.

Therefore I have decided to avoid inserting a large number of mathematical 

definitions and theorems that have not much meaning in practice. I have only se-

lected formal fuzzy concepts that are needed for medical models. To facilitate the 

understanding process for a reader, I have added many examples in which even 

simple operations are thoroughly analyzed. The user can follow the steps of exam-

ples without implementing a computer program. As we can expect, the book is not 

a survey of all theoretical concepts typical of fuzzy sets; such monographs already 

exist. Nevertheless, some beginners can use it to learn the basics included in fuzzy 

set theory. In spite of limiting the mathematical dimension, the work should con-

vince the reader of the richness of applicable fuzzy models in natural sciences, 

especially medicine. 

Elisabeth Rakus-Andersson: Fuzzy and Rough Techniques in Medical Diagnosis and Medication,

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
StudFuzz 212, 1–2 (2007)



2 1  Introduction

Incidentally, I also discovered the usefulness of rough set theory for the classi-

fication of objects. Thus, some rough classification methods are considered as 

well.

The first part of the book – Chapter 2 – introduces some necessary elements of 

fuzzy set theory to enable the reader to repeat the processes and interpret impre-

cise information in further studies. A classical fuzzy diagnostic model with my 

own extensions is discussed in Chapter 3. Since a diagnostic decision is some-

times not quite clear, I have added Chapter 4 filled with my own contributions to 

improve informative validity of collected data. The model, presenting the essence 

of clinical examinations extended throughout time, constitutes one of the supple-

ments.

After stating the right diagnosis the patient needs to be cured. Methods of drug 

effectiveness measurements are compared in Chapter 5, while a choice of the op-

timal medicine is made in Chapter 6. The last models are totally based on my own 

research results. Lastly, the solution of an approximation problem that is of con-

siderable importance for our discussion is suggested in Chapter 7. Many times we 

obtain very irregular two-dimensional point sets that cannot be approximated by 

applying them to standard numerical methods. Some fuzzy membership functions 

have been adopted to provide the sets with smooth curves acting for them as tight 

envelopes. Even though the method is tested without medical examples, we are 

able to notice its usefulness in practical tests. 

It should be emphasized that all models are also applicable to other fields, espe-

cially to technical domains after necessary adaptations. 

This book could not have filled its role without professional medical support. I 

would like to thank Professors in Medicine – Alicja Kurnatowska and Anna 

Jegier – for a piece of medical advice and simple but illustrative examples. 

I am very grateful to the representatives of Springer Verlag and to the series 

editor Professor Janusz Kacprzyk for giving me a chance to publish this material 

concerning applicable fuzzy medical models presented from my point of view. I 

hope that this work can bridge a gap between scientific reports, strictly treating 

separate domains, and, in this way, interdisciplinary groups of researchers can 

surely notice that there are prospects of linking theoretical fuzzy tools to practical 

medical exercises. 

Karlskrona – Sweden Elisabeth Rakus-Andersson 

 July 2006 



2  Fundamental Items 

2.1  Introduction 

We are still accustomed to our traditional tools of reasoning being strict and pre-

cise. In conventional binary logic a statement can be true or false, and there is no 

place for even a little uncertainty in this judgement. By looking at sets, we can 

state that an element either belongs to a set or does not. We call these kinds of sets 

crisp sets. In practice we often experience those real situations that are represented 

by crisp sets, as impossible to describe accurately. If we assign a truth-value of 

one to the element that is included in the set, and a truth-value comparable to zero 

to such an element that lies outside the set, we create the range of two-valued 

logic. This sort of logic assumes that precise symbols must be employed, and it is 

therefore not applicable to the real existence but only to an imagined existence. 

The creator of fuzzy set theory, Lotfi A. Zadeh, referred to the last hypothesis 

when he wrote: “As the complexity of a system increases, our ability to make pre-

cise and yet significant statements about its behaviour diminishes until the thresh-

old is reached beyond which precision and significance become almost mutually 

exclusive characteristics” [88, 95]. 

If we consider the characteristic features of real world systems, we will con-

clude that real situations are very often uncertain or vague in a number of ways. If 

the information demanded by a system is lacking, the future state of such a system 

may not be known completely. This type of uncertainty has been handled by prob-

ability theories and statistics, and it is called stochastic uncertainty. The vague-

ness, concerning the description of the semantic meaning of the events, phenom-

ena, or statements themselves, is called fuzziness [95]. 

Fuzziness can be found in many areas of daily life, especially in medicine. We 

look for the methods that help us to express the borders of such sets as “young”,

“middle-aged”, “old”, “seldom”, “rarely”, “often”, “high temperature”, “low

sugar level” and the like. By using the traditional methods we are not able to ex-

press exactly the range of a set, e.g., “young” when defining the upper limit as, 

say, 26. Someone can ask “Why not 27?”

Almost every human being cannot be classified as “totally healthy” or “totally

ill” in accordance with the two states of truth assumed by binary logic. It is more 

so since the conditions of health should be characterized by grades of a scale that 

propose the many nuances between “total health” and “total sickness”. Thus we 

introduce the fuzzy apparatus to extend a notion of the set under the circumstances

of vagueness. 

Elisabeth Rakus-Andersson: Fuzzy and Rough Techniques in Medical Diagnosis and Medication,

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
StudFuzz 212, 3–30 (2007)



4      2  Fundamental Items 

2.2  Fuzzy Sets 

If we use the expression “a set” we will interpret it as a given collection of objects 

that are listed exactly, or that have the same property. Define 7,6,5,4A . The 

set A contains a determined number of elements and it thus is called a finite set. If 

we cannot count the number of elements in a set, e.g., ,7,6,5,4,3,2,1B  we 

will call B an infinite set. 

Let us introduce a function 
C

 as a characteristic function of a crisp set C. The 

crisp set C of universe X = {x} is represented by its characteristic function C as 

follows.

Definition 2.1 

The function C : X  {0,1} is the characteristic function of the set C if and only 

if for all x X

Example 2.1 

Figure 2.1 shows the characteristic function of the crisp set C = [4, 8]. 

108642

1

0.75

0.5

0.25

0

x

y

x

y

C

Figure 2.1:  The characteristic function of the crisp set C = [4, 8] 
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In fuzzy set theory classical sets are called crisp sets in order to distinguish them 

from fuzzy sets. Let C be a crisp set defined with the domain named X. Then for 

any element x X (the sign “ ” denotes that an element x belongs to the set X) we 

have that x C or x C if the sign “ ” stands for “does not belong”. In fuzzy set 

theory this property is generalized. Therefore, in fuzzy set A, it is not necessary 

that either x A or x A [10, 12, 14, 40, 41, 44, 48, 54, 55, 69, 88, 89, 95].

The generalization is assumed as follows. According to the above statement for 

any crisp set C it is possible to define a characteristic function C : X 0, 1 . In 

fuzzy set theory, the above characteristic function is generalized to a membership 

function that assigns every x X a value from the unit interval 0, 1  instead of be-

ing assigned from the two-element set 0, 1 . The set A, defined on the basis of a 

generalized characteristic function, is called a fuzzy set. 

Definition 2.2 

The membership function A of fuzzy set A is a function defined as A :X 0, 1 .

Every element x X  has thus a membership degree y = A(x) 0, 1 . The fuzzy 

set A is finally completely determined by the set of pairs

Definition 2.3 

The important part of fuzzy set A is a support denoted by supp(A) and defined as a 

non-fuzzy set (the sign ”:” denotes “for which”) [40, 88, 95] 

Example 2.2 

Suppose that fuzzy set A has the support supp(A) = {x : 0 x  10}, and its mem-

bership function is given by 

.108for5
2

1

,83for1

,30for
3

1

)(

xx

x

xx

xy
A

( , ) ( , ( )) , .
A

A x y x x x Xµ (2.2)

0)(:)supp( xXxA
A

. (2.3)



6      2  Fundamental Items 

By analyzing the last formula we can sketch the membership function of A as a 

graph placed in Fig. 2.2. 

107.552.50

1

0.75

0.5

0.25

0

x

y

x

y )(x
A

Figure 2.2:  Fuzzy set A = {(x, A(x))}, x  [0, 10] 

Fuzzy sets are extremely useful when we want to formalize mathematically the 

descriptions of some uncertain occurrences. How do we define such sets as, for 

example, “young”, “old” or “cold”? We may not decide that the maximal value in 

the set “young” will be 25. The age “26” should be included in “young” as well 

but the association of 26 with “young” will be weaker, for instance, 0.9 instead  

of 1. 

Example 2.3 

Let us state the non-fuzzy finite set “young” = {18, 20, 25, 30, 35, 40, 45, 50}, and 

let us intuitively decide strength of the relationship between the set and each value 

belonging to its support.

)0,50(),1.0,45(),3.0,40(),5.0,35(),7.0,30(),9.0,25(),1,20(),1,18("" young

that now becomes the fuzzy set that can be listed in another shape as 

50
0

45
1.0

40
3.0

35
5.0

30
7.0

25
9.0

20
1

18
1"" young .

We explain that the number over the slash constitutes a value of the member-

ship degree of an element x. The element x is placed under the slash. The sign “+” 

links members of the set and has only a symbolic meaning.

If we design the membership function of the continuous set “young” as the fig-

ure with boundary lines 
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,5025for2
25

1

,250for1

)(
""

xx

x

xy
young

then we will obtain the membership degree of an arbitrary age that belongs to [0, 

50] in conformity with a graph displayed in Fig. 2.3. 

5037.52512.50

1

0.75

0.5

0.25

0

x

y

x

y
)(

""
x

young

Figure 2.3:  The continuous fuzzy set “young”

By examining the membership function sketched in the graph we are able to es-

tablish the connection between a value of age, e.g., x = 33 and the set “young” as 

nearly 0.7. The number indicates the strength of the relationship between the age 

of 33 and the notion of “young”.

When the domain X of fuzzy set A is continuous, then the membership function 

A will be regarded as a continuous membership function. We will designate A as 

a symbolic sum 

for which the -sign denotes an infinite enumeration of its elements. 

The membership function of a fuzzy set, which has the graph designed as a col-

lection of straight lines linked piece by piece, is the easiest one to apply. However, 

the split linear function does not yield the only possibility of expressing an asso-

ciation between the set and its elements. We can – as a prognosis of the mentioned 

relationship – introduce other functions that are continuous and map the support of 

a fuzzy set onto the interval [0, 1]. As an alternative membership function of the 

,,))(,(),(
)(

Xxxxyx
x

x
A

A

Xx

A (2.4)
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fuzzy set A we demonstrate the s-class function s(x, , , ) with the parameters 

,  and  that are included in the formula [2, 3, 12, 40, 41, 49, 50, 67, 70, 91] 

where
2

.

Example 2.4 

The function s(x, 25, 37.5, 50) is plotted in Fig. 2.4. 

5550454035302520

1

0.75

0.5

0.25

0

x

y

x

y

Figure 2.4: The function s(x, 25, 37.5, 50) 

The s-function holds a number of properties that stand out as very advanta-

geous. As a continuous polynomial of the second degree the s-function can assist 

further analytical operations, such as differentiation or integration without making 

them very complicated. It is also evident from the formula (2.5) that the range of s

covers the interval [0, 1] that is a desirable feature of the membership function. 

,for1

,for21

,for2

,for0

),,,()(
2

2

x

x
x

x
x

x

xsxy
A (2.5)



2.2  Fuzzy Sets     9

Example 2.5 

By proposing the membership function of the set “young” as a formula 

)50,5.37,25,(1)(
""

xsx
young

 we create another relationship between the con-

cept of “young” and its elements when comparing to Ex. 2.3. Figure 2.5 interprets 

the alternative set “young”.

5037.52512.50
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0.25

0

x

y

x

y

Figure 2.5:  The membership function of the set “young” as the s-class function 

The same value of age can be a member of many sets with different membership 

degrees. Let us introduce three sets named “young”, “middle-aged” and “old”. To 

suggest a membership function of the set “middle-aged” we test a function of the 

-class constructed as

Example 2.6 

When we decide  = 20 and = 45, we will accommodate (2.6) to the formula 

.for,
2

,,1

,for,
2

,,

),,(

xxs

xxs

xy (2.6)
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.45for65,55,45,1

,45for45,35,25,

)45,20,(

xxs

xxs

xy

The graph of (x, 20, 45) is drawn in Fig. 2.6. 

60504030

1

0.75

0.5

0.25

0

x

y

x

y

Figure 2.6: The function (x, 20, 45) 

By constructing three fuzzy sets with supports that overlap each other we dem-

onstrate again the idea of imprecision in the following task. 

Example 2.7 

Three fuzzy sets of the universe X = [0, 100], made for different groups of age, are 

now put forward as “young” with y = ”young”(x) = 1 – s(x, 25, 37.5, 50), “middle-

aged” with y = “middle-aged”(x) = (x, 20, 45) and, finally, “old” characterized by the 

membership function y = ”old”(x) = s(x, 40, 52.5, 65). The sets have no sharp bor-

ders; on the contrary, some non-empty intersections of all supports are built in the 

sets’ domains. Figure 2.7 visually explains the concept of vagueness even better 

since it helps us to understand the effects of fuzziness when studying the sets that 

are not disjoint in spite of the different classifiers of age. 

We compute that x = 42 belongs to “young” with the membership degree equal 

0.2048 because of 

2

2550

5042
211)50,5.37,25,42(1 sy , 42  (37.5, 50].  

The connection between x = 42 and “middle-aged” is evaluated as 0.955 in rela-

tion to y(42) = s(42, 25, 35, 45). The value of x = 42 is not a member of the set 

“old”.
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Figure 2.7:  The fuzzy sets “young”, “middle-aged” and “old” in X = [0, 100] 

Measurable, medical parameters can be interpreted as fuzzy sets to prepare data 

to models described in the next parts of this work. Clinical symptoms involved in 

mathematical decision patterns will be represented by values of membership de-

grees. The degrees, as numbers, express the intensities of symptom presence or 

symptom importance without engaging in complicated verbal descriptions. The 

possibility of computing with words, which are replaced by real numbers assigned 

to them, facilitates the communication among researchers who represent different 

scientific fields. 

Example 2.8 

The existence of fuzzy sets enables an introduction of medical models that operate 

with clinical symptoms constituting the basis for a decision. To evaluate the im-

portance of increasing body temperature via a corresponding membership degree, 

we propose adopting the fuzzy set “body temperature” with a membership func-

tion expanded by

.4236.6for)42,3.39,6.36,(

,36.635for)6.36,8.35,35,(1
)(

""
xxs

xxs
xy

raturebody tempe

The membership function of the set “body temperature” is sketched in Fig. 2.8. 

The values of membership degrees provide us with an estimation of the tempera-

ture importance for states in which body temperature is too high or too low in 

comparison to its normal value. 
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Figure 2.8:  The membership function of the set “body temperature”

2.3  Basic Operations on Fuzzy Sets 

The definition of a fuzzy set that differs from the concept of a crisp set has en-

tailed new approaches to the operations on fuzzy sets. In order to connect two 

fuzzy sets let us study their union and intersection. 

At first, we recall the classical operation of the union performed on two non-

fuzzy sets. 

Definition 2.4 

The union of two crisp sets A = {x : x A} and B = {x : x B}, A, B X = {x} 

(denoted by “ ”) is a set A B = {x : x A or x B}. We remember that the sign 

”:” is read as “for which”. 

In practice, the set A B is a collection of all elements that belong to either A or 

B provided that identical elements are counted only once. 

Example 2.9 

For A = [2, 6] and B = [4, 9] the union is determined as A B = [2, 9].

A union of two fuzzy sets should also be a fuzzy set. By accepting the operation 

of the classical union for the supports of fuzzy sets, we establish a common sup-

port of the union of fuzzy sets while the connective union operation for member-

ship degrees can be suggested in the following definition. 
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Definition 2.5 

Let ( , ( ))
A

A x xµ  and ( , ( ))
B

B x xµ , Xx , denote two fuzzy sets. The 

union of A and B is a fuzzy set A B = {(x, A B(x))}, x  (supp(A)  supp(B)), for 

which the membership function is given by [12, 40, 88, 95] 

Example 2.10 

If A has supp(A) = [2, 6] and A(x) = 1 – s(x, 2, 4, 6), while B is fixed precisely by 

supp(B) = [4, 9] and B(x) = s(x, 4, 6.5, 9), then the union of A and B will consist 

of supp(A B) = [2, 9] and A B(x) = max(1 – s(x, 2, 4, 6), s(x, 4, 6.5, 9)) for 

every x  [2, 9] in accordance with a dotted curve placed in Fig. 2.9. 

8.757.56.2553.752.5
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0.25

0
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A B(x)

Figure 2.9:  The union of fuzzy sets A and B from Ex. 2.10 

In order to estimate the membership degree of, e.g., x = 4.5 in the union A B

we will follow the expression A B(4.5) = max(1 – s(4.5, 2, 4, 6), s(4.5, 4, 6.5, 9)) 

.28125.0)02.0,28125.0max(
5

45.4
2,

4

65.4
211max

22

The replacement of the operation “max” in the membership function of the un-

ion of the two fuzzy sets A and B by the dual operation “min”, generates an inter-

section of A and B. We state that a support of the intersection between A and B is 

composed of these elements that take place in the union of the sets’ supports. 

Since some elements of the intersection get the membership degrees equal to zero, 

)).(),((max)(
))(supp)supp((

xxx
BA

BAx
BA (2.7)
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then we should reduce the common support to its essential part in which is 

0)(x
BA

.

Definition 2.6 

For ( , ( ))
A

A x xµ  and ( , ( ))
B

B x xµ , Xx , that are two fuzzy sets, the 

intersection of A and B, marked by “ ”, is a fuzzy set A B = {(x, A B(x))} for 

all x  (supp(A)  supp(B)). Its membership function is shaped by [12, 40, 88, 95] 

Example 2.11 

For the sets A and B from Ex. 2.10 the membership function of the intersection is 

indicated by the dotted line drawn in Fig. 2.10. 
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Figure 2.10:  The intersection of A and B from Ex. 2.10 

There also exists the complement of fuzzy set A introduced by the following 

definition [12, 40, 88, 95]. 

Definition 2.7 

Let ( , ( ))
A

A x xµ , Xx . The complement of A, denoted A`, is a fuzzy set 

with the membership function A’ given by the formula 

)).(),((min)(
))(supp)supp((

xxx
BA

BAx
BA (2.8)
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Example 2.12 

Suppose that B – the fuzzy set examined in Ex. 2.10 – is determined by supp(B) = 

[4, 9] and B(x) = s(x, 4, 6.5, 9). We thus establish a membership function of the 

complement B` as the curve presented by Fig. 2.11 for these x that belong to 

supp(B).

8.757.56.255
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0.25

0
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`
xB

Figure 2.11: The complement of the set B from Ex. 2.10

Let us discuss another example that inserts a simple and practical aspect of the 

union and the intersection of two fuzzy sets. 

Example 2.13 

We consider two fuzzy sets “young” and “experienced” in the space of ages X = 

[0, 100]. The set “young” is still determined by the membership function 

,10050for0

,5025for2
25

1

,250for1

)(
""

x

xx

x

x
young

.for),(1)( Xxxx
AA (2.9)
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in accordance with Ex. 2.3. The rule “more experienced with growing age” sug-

gests a creation of the set “experienced” as a fuzzy set related to the membership 

function

.10060for1

,6015for
3

1

45

1

,150for0

)(
""

x

xx

x

x
dexperience

The adaptation of (2.7) to a union of the sets “young” and “experienced” causes 

the existence of a fuzzy set “young or experienced” with the membership function 

,10060for1

,6063.37for
3

1

45

1

,63.3725for2
25

1

,250for1

)(
""

x

xx

xx

x

x
dexperienceoryoung

that is depicted in Fig. 2.12. 

1007550250

1

0.75

0.5

0.25

0

x

y

x

y

”young or experienced” (x)

Figure 2.12:  The membership function of the set “young or experienced”

Equation (2.8) is a tool of deciding an intersection “young and experienced” of 

the sets “young” and “experienced”. This intersection, being a fuzzy set, is mod-

elled by the function 
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Figure 2.13 proposes the graph of “young and experienced”.
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Figure 2.13:  The membership function of the set “young and experienced”

It is easy to verify that the membership function of the intersection operation 

(2.8) then rewritten as 

is a function from 0, 1 0, 1  into 0, 1 . The sign “ ”, used symbolically as a 

notion of the Cartesian product, informs us that we should take a pair of two num-

bers from [0, 1] to map this pair of quantities in another number belonging to the 

interval [0, 1] as well. The minimum function satisfies some pre-defined proper-

ties. If other functions behave themselves like the minimum, then we should gen-

erate for them a class of functions named t-norms. The t-norms have the following 

features

))(),(())(),((min)( xxtxxx
BABA

Xx
BA (2.10)



18      2  Fundamental Items 

For minimum the first condition is fulfilled because t(0, 0) = min(0, 0) = 0 and 

t( A(x), 1) = min( A(x), 1) = A(x).

The minimum operator is a t-norm [12, 41, 44, 95]. If we define any function 

t(a, b) = c for a, b, c  [0, 1], t : 0,1 0,1 0,1 , due to conditions 1-4 in 

(2.11) we will form another intersection operation for two fuzzy sets, e.g., the 

bounded product, the algebraic product, the Einstein product, the Yager product 

and the like [44, 95]. To watch the difference between the minimum norm, called 

also the largest norm, and the bounded norm defined as 

we compare a value of the t-minimum norm for a pair, e.g., (0.8, 0,5) equal to 

min(0.8, 0.5) = 0.5 to the t-bounded norm value calculated as max(0.8 + 0.5 – 1, 

0) = 0.3. 

The membership function (2.7) of the union of two fuzzy sets that is interpreted 

as the function 

also is a mapping from 0,1 0,1  into 0,1  with the following properties 

When checking for the maximum, the reliability of the first condition from 

(2.14), we state that s(1, 1) = max(1, 1) = 1 and s( A(x), 0) = max( A(x), 0) = 

A(x).

The function s(a, b) = c, a, b, c  [0, 1], is called an s-norm (coincidentally the 

same notion like the s-function s(x, , , )). If we propose another definition sat-

isfying the features 1-4 in (2.14) we will create a class of union operations on 

fuzzy sets. 

)).()),(),((()))(),((),((.4

)),(),(())(),((.3

and)()(if))(),(())(),((.2

,),())(,1()1),((;0)0,0(.1

xxxttxxtxt
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xxxxtxxt

Xxxxtxtt
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(2.11)

)0,1)()((max))(),(( xxxxt
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)),(),(())(),((max)( xxsxxx
BABA
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The operations concatenating two fuzzy sets will constitute an important basis 

for solutions to medical projects. 

2.4  Linguistic Variables 

The conception of a variable in classical mathematics makes us think of joining a 

number to a name of a certain symbol, usually denoted by the letters x, y, z and the 

like. Nobody doubts that the classical variable takes values associated with it for a 

hundred percent certainty. In fuzzy set theory we join values to the name of a vari-

able even if the values reveal a weaker relationship with the variable than a “sure 

connection”.

The assigned values to a variable need not be numbers. It is possible to use 

some words or some structures to express a connection between the name of the 

variable and its range if the connection is imprecise and cannot be described ex-

actly.

If we think about the idea of a variable then we can imagine constructing an 

equation

that assigns a value of a to the name x.

Generally, let us accept the name of the variable as X and let us recognize A as a 

set of all values taken by X. The set A is called the range of X. If we further restrict 

the values of the range A by imposing a constraint R(X) A on the values of X, it 

will mean that X takes only the values that belong to R(X). A new equation that 

assigns the value of a to X is derived as 

Suppose that the constraint R(X) is a fuzzy set. The variable X, which takes its 

values in the range A and possesses the fuzzy constraint R(X), is now renamed as a

fuzzy variable [28, 40, 90, 95]. The values assigned to X are the elements of a 

fuzzy set (a fuzzy constraint) and thus they are equipped with a corresponding 

membership degree. 

By using the equation (2.16) we make the next trial of associating the variable X

and its values provided that (2.16) is supplemented by a so-called compatibility

degree c(a)  [0, 1]. The mentioned equation (2.16) is now rewritten in the form 

of

The compatibility degree c(a) is computed for the value of a by adopting a for-

mula of the membership function defined for R(X).

ax (2.15)

)(, XRaax . (2.16)

]1,0[)()),((supp),()(,
)(

acxRaaacax
XR

. (2.17)
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Example 2.14 

Let us examine the relation between a certain diagnosis D and one of clinical 

symptoms typical of D that is named S. The relationship between S and D can il-

lustrate a concept of the fuzzy variable. We pose a question referring to the fre-

quency of the symptom present in the selected diagnosis. We expect – as an an-

swer – such a frequency description like, e.g., “often”, “seldom”, “never”, “almost

always” and other formulations related to intensity of the symptom present. We 

use words as the answers but we wish to convert them into numbers that intend to 

represent the linguistic structures in future computations.

Suppose that a basic reference to set A = {0, 1, 2, …, 100} includes one hundred 

patients. We determine the name of a fuzzy variable X as “often”. Let a fuzzy set 

R(“often”) be the fuzzy constraint laid on the set A by the variable X. The mem-

bership function of R(“often”) is given by the formula 

),70,60,50,()(
)"("

asa
oftenR

that is interpreted in the explicit form, in accordance with (2.5), as 

.70for1

,7060for
5070

70
21

,6050forfor
5070

50
2

,50for0

)70,60,50,()(
2

2

)"("

a

a
a

a
a

a

asay
oftenR

The appearance of a curve plotted in Fig. 2.14 is an instance of influence of the 

constraint R(“often”) on the range of the reference set A. It is no doubt that a status 

of the variable name gives rise to the selection of the parameters ,  and  placed 

in the membership function of R(“often”).

Figure 2.14:  The constraint R(“often”) over the reference set A = [0, 100] 

In the equation “often” = 40, c(40) = 0, the compatibility between the value of 

40 and the frequency notion “often” is equal to zero in the space of one hundred 

patients. If “often” = 58 then 32.0
5070

5058
2)58(

2

c . The grade indicates that 

the strength of the connection between the name “often” and a sample of fifty-

eight patients in comparison with one hundred patients is appreciated as 0.32. An-

other equation – “often” = 72, c(72) = 1 – confirms the total compatibility between 

the name of the variable “often” and its value 72. 
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Figure 2.14: The constraint R(“often”) over the reference set A = [0, 100] 

The introduction of the fuzzy variable “often” allows us to replace the word of-

ten by the set of numbers that are associated with this linguistic item. However, 

we realize that we should operate with many more words or structures to describe 

a certain occurrence like, e.g., intensity of presence introduced in Ex. 2.14. In 

other words, we want to have at our disposal a full list of words, and moreover, we 

would like to be able to express every word in the form of a number set in the 

common space. This idea contributes to the evolution of a variable range by giving 

access as verbal expressions as its members. A linguistic variable that offers 

commonly used words as its range characters is interpreted as such. 

The linguistic variable is a variable taking values expressed by words. These are 

names of fuzzy variables defined in a space such as A = {0, 1, 2, …, 100}. Let us 

denote the linguistic variable by L and a set of its terms by T = {T1, T2, …, Tn},

where each Ti, i = 1, 2, …, n, is the name of a fuzzy variable restricted by a fuzzy 

constraint R(Ti) definable in the space A. An equation

that links a “value” Ti to the linguistic variable L, reveals a relation between a gen-

eral name of the variable and one of its semantic terms.

Example 2.15 

Suppose that we are able to upgrade the frequency of a symptom in the associated 

diagnosis by employing average verbal expressions that emphasize the importance 

of symptom presence. We can thus utilize a list of words to make a conversation 

with a cooperating physician much more comfortable. We should realize that the 

niTL
i

...,,1, (2.18)
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physician must experience some difficulties in telling us his opinion as a strict 

mathematical number that describes the grade of symptom presence. Let us decide 

a content T of the list “presence of symptom S in diagnosis D” as T = {T1 = 

“never”, T2 = “almost never”, T3 = “very seldom”, T4 = “seldom”, T5 = “moder-

ately”, T6 = “often”, T7 = “very often”, T8 = “almost always”, T9 = “always”}. Each 

of the terms from the list constitutes the name of a fuzzy variable placed in the 

reference set A = {0, 1, 2, …, 100}. In order to characterize the intervals in the set 

of one hundred patients that are typical of the names from the list, the following 

restrictions are put forward by their membership functions  

[2, 3, 56]
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Figure 2.15 gives an impression of dividing space A into subintervals that se-

lects the terms assigned to the linguistic variable “presence of symptom S in diag-

nosis D”. It is remarkable to notice that the intervals build non-disjointed intersec-

tions. The occurrence of overlapping the supports of fuzzy sets emphasizes fuzzy 

performance of sets once again. 
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Figure 2.15: The fuzzy constraints of terms representing “presence of S in D”
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The boundary values of fuzzy constraints from Fig. 2.15 have been decided in 

compliance with the physician’s advice. In one of the next chapters we intend to 

introduce formal, mathematical evidence that explains how to construct fuzzy re-

strictions for terms belonging to the list of a linguistic variable. The concept of 

atomic words and hedges will be involved in the evidence as conclusive factors of 

the solutions. 

An equation, in which a term is attributed to the variable name, determines the 

relationship between the linguistic variable, e.g., “presence of symptom S in diag-

nosis D” and one of its terms such as “almost never”. In this way we can state the 

connection

""”“ neveralmostosis DS in diagnf symptom presence o .

The notions of fuzzy variables and linguistic variables constitute very important 

tools in medical models that are discussed in the next chapters. The linguistic vari-

able makes it possible to convert words or other verbal structures into numbers, 

and this possibility then opens up an understandable dialogue between physicians 

and mathematicians working together. 

2.5  Fuzzy Relations 

Fuzzy relations join two-non fuzzy sets in the common set of pairs on condition 

that each pair has the membership degree assigned. 

To understand better the idea of a fuzzy relation let us first study the basic defi-

nition of a Cartesian product of two non-fuzzy sets. 

Definition 2.8 

Let X = {x1, x2, …, xm} and Y = {y1, y2, …, yn} be two finite sets. The Cartesian 

product of X and Y, denoted by X Y, is a set of ordered pairs (xi, yj), i = 1, 2, …, 

m, j = 1, 2, …, n, for xi X and yj Y.

Example 2.16 

If X = {1, 2, 3} and Y = {a, b} then X Y = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, 

b)}.

If each pair (xi, yj) included in X Y is equipped with a membership degree then 

the Cartesian product that is mapped in the interval [0, 1] by a membership func-

tion, will be called a fuzzy relation. Formally, let us introduce the fuzzy relation 

R
~

 in the following way [12, 40, 88, 95]. 
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Definition 2.9 

Let X = {x1, x2, …, xm} and Y = {y1, y2, …, yn} be two finite sets; then 

for i = 1, 2, …, m, j = 1, 2, …, n.

Fuzzy relations are often presented in the form of two-dimensional tables. The 

rows of such a table are all marked by x while the columns are all indicated by y.

An entry of the table corresponds to this membership degree of the pair (x, y) that 

belongs to the intersection of row x and column y.

An m n table-matrix constitutes a comfortable way of entering the fuzzy rela-

tion R
~

 that presents a format suggested below 

Example 2.17 

Let X = ”body height” = [160, 190] and Y = “body weight” = [60, 90] be two sets 

containing the measurements of two parameters x = “height” and y = “weight” that 

are characteristic of the man’s silhouette. We design a relation “a strong and pro-

portional construction of the man’s body”(x, y) = R
~

(x, y), in which the member-

ship degree values of the pairs computed in accordance with the function [28] 
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confirm a grade of adaptation of the physical features to the definition of the rela-

tion. For instance, the pair (170, 65) has )65,170(~
R

 = 
60

6065

60

160170
 = 

0.25, while another pair (182, 89) shows the compatibility degree with the defini-

tion of the relation estimated as equal to )89,182(~
R

 = 
60

6089

60

160182
 = 

0.85.

The general dependence of the membership degrees ),( yx
R

 on the growth of 

both biological parameters can be observed in Fig. 2.16. 

Figure 2.16:  “A strong and proportional construction of the man’s body”

Fuzzy relations can be combined with each other by the operation of “composi-

tion”. In order to understand better the aggregation of two fuzzy relations, let us 

first recall the definition of a matrix multiplication for two matrices (dot product). 

Definition 2.10 

If R = (rij)i = 1, …, m, j = 1, …, n and Q = (qjk)j = 1, …, n, k = 1, …, p then S = R  Q is a product 

matrix with elements 

n

j

jkijik
qrs

1

, i = 1, …, m, k = 1, …, p. The number of 

columns in R must be the same as the row number in Q.
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Example 2.18 

We design two matrices R2 3 and Q3 2.

Let us multiply the matrices 
263

512
R  and 

75

32

24

Q

.

The product matrix S is obtained in conformity with Def. 2.10 as the matrix

3834

4235

723623522643

753122552142

S

.

By returning to fuzzy relations, filled with membership degrees, we will treat 

the operation of “product” as “composition”. To find some adequate operations 

that replace the external sum and the internal multiplication in the product of two 

matrices, the different suggestions have been made. The most popular composition 

is a version with the maximum applied instead of the outer sum, and the minimum 

replaces the inner multiplication. 

Definition 2.11 (max-min composition) [12, 40, 88, 95] 

Let X = {x1, …, xm}, Y = {y1, …, yn} and Z = {z1, …, zp}. We introduce R
~

 with 

),(~
jiR

yx , (xi, yj) X Y, and Q
~

 with ),(~
kjQ

zy , (yj, zk) Y Z, i = 1, …, m,

j = 1, …, n, k = 1, …, p, as two fuzzy relations. The max-min composition of R
~

with Q
~

, denoted by QR
~~

, will be a fuzzy relation [12, 40, 95] 

( , ), ( , ) max min ( , ), ( , ) .

j

i k i k i j j kRR Q Q
y Y

S R Q x z x z x y y zµ µ µ (2.21)

The matrices R and Q in table forms are used to clarify the multiplication. Let 
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The next example throws more light on the last definition by explaining the 

meaning of performed operations. In order to introduce the entry data we propose 

using two rectangular matrices that correspond to two fuzzy relations. 

Example 2.19 

The relation R
~

 reveals via values of membership degrees ),(~
jiR

yx , i = 1, 2, 

j = 1, 2, 3, the connective dependence between X = “the intensity of sun radiation”

= {x1 – “low radiation”, x2 – “high radiation”} and Y = “the daily temperature” = 

{y1 – “the temperature in the morning”, y2 – “the temperature at noon”, y3 – “the

temperature in the evening”}. After inserting the membership degrees to each pair 

of R
~

 we state its content by the matrix 

5.09.04.0

7.05.08.0~

2

1

321

x

x
R

yyy

.

The next relation Q
~

 settles the relationship between Y = “the daily tempera-

ture” represented by y1, y2, y3, and two states of Z = “the moisture of soil” = {z1 –

“low moisture”, z2 – “high moisture”}. The membership degrees ),(~
kjQ

zy ,

j = 1, 2, 3, k = 1, 2, express the truthfulness of a connection between Y and Z as 

7.05.0

3.08.0

9.03.0

~

3

2

1

21

y

y

y

Q

zz

.

By composing the relations R
~

 and Q
~

 we should obtain the result that reveals 

the association between X and Z described by the values of membership degrees as 

follows

))7.0,5.0min(),3.0,9.0min(),9.0,4.0max(min())5.0,5.0min(),8.0,9.0min(),3.0,4.0max(min(

))7.0,7.0min(),3.0,5.0min(),9.0,8.0max(min())5.0,7.0min(),8.0,5.0min(),3.0,8.0max(min(

2

1

21

~

x

x

S

zz

5.08.0

8.05.0

)5.0,3.0,4.0max()5.0,8.0,3.0max(

)7.0,3.0,8.0max()5.0,5.0,3.0max(

2

1

2

1

2121

x

x

x

x

zzzz

.
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The value 0.8 assigned to the pairs (low radiation, high moisture) and (high ra-

diation, low moisture) seems to confirm a truthful association between the exam-

ined parameters “sun radiation” and “soil moisture”. It is also acceptable to admit 

that the connection between low radiation and low moisture or high radiation and 

high moisture is appreciated as true in the grade 0.5. 

Even this simple example convinces us about the importance of a decisive 

character of the max-min composition. In spite of the greatest popularity, the re-

sults of the operation sometimes are interpreted as too “sharp” because of the ac-

tion of the inner operation min that causes an essential consideration of the small-

est values. To smooth this inconvenient effect, it is suggested to introduce another 

general definition of the composition of two fuzzy relations. 

Definition 2.12 

Let R
~

 and Q
~

 be the relations from Def. 2.11. The max-  composition of R
~

 and 

Q
~

is now defined as 

ZzYyXx
kji

,,for , where “ ” is an associative operation that is monotoni-

cally non-decreasing in each argument [95]. 

An arbitrary t-norm satisfies the conditions of monotonicity and associativity 

(properties 2. and 4. in (2.11)); therefore it can be utilized in Eq. 2.22. Two special 

cases of the operation max-  are taken into consideration in the following defini-

tion.

Definition 2.13 

Let R
~

 and Q
~

 be fuzzy relations of the same shape as in Defs 2.11 and 2.12. 

Hence, the max-prod composition QR
~~

 and the max-av composition QR
av

~~
 are 

proposed as fuzzy relations 

and

( , ), ( , ) max ( , ) ( , )

j

i k i k i j j kRR Q Q
y Y

R Q x z x z x y y zµ µ µ (2.22)

( , ), ( , ) max ( , ) ( , )

j

i k i k i j j kRR Q Q
y Y

R Q x z x z x y y zµ µ µ (2.23)
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ZzYyXx
kji

,,for . 

The operation 
R
~ +

Q
~  used in (2.24) has not all properties of a t-norm but it 

fulfils the conditions 2. and 4. composed in (2.11). This classifies the sum of 

membership degrees as the appropriate operation “ ”, accepted in the composition 

of fuzzy relations [95]. 

 We return to the basic relations R
~

 and Q
~

 from Ex. 2.19 to test results of the 

formulas (2.23), (2.24) and to compare these results to the effects of the max-min 

composition already obtained in Ex. 2.19. 

Example 2.20 

Let us compute the relations QR
~~

 and QR
av

~~
 for R

~
 and Q

~
 from Ex. 2.19. By 

applying Eq. (2.23) we obtain

)7.05.0,3.09.0,9.04.0max()5.05.0,8.09.0,3.04.0max(

)7.07.0,3.05.0,9.08.0max()5.07.0,8.05.0,3.08.0max(

2

1

21

~~

x

x

QR

zz

36.072.0

72.04.0

)35.0,27.0,36.0max()25.0,72.0,12.0max(

)49.0,15.0,72.0max()35.0,4.0,24.0max(

2

1

2

1

2121

x

x

x

x

zzzz

while the formula (2.24) used to the max-av composition yields a matrix 

)7.05.0,3.09.0,9.04.0max(
2

1
)5.05.0,8.09.0,3.04.0max(

2

1

)7.07.0,3.05.0,9.08.0max(
2

1
)5.07.0,8.05.0,3.08.0max(

2

1

2

1

21

~~

x

x

QR

zz

av

1
( , ), ( , ) max ( , ) ( , )

2av j

i k i k i j j kRR Q Q
av y Y

R Q x z x z x y y zµ µ µ
(2.24)
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65.085.0

85.065.0

)2.1,2.1,3.1max(

2

1
)0.1,7.1,7.0max(

2

1

)4.1,8.0,7.1max(

2

1
)2.1,3.1,1.1max(

2

1

2

1

2

1

2121

x

x

x

x

zzzz

.

By analyzing the results of three tested operations QR
~~

, QR
~~

 and QR
av

~~
,

we conclude that it would be the most reliable to choose the second composition 

QR
~~

 in further medical investigations. The choice is justified by the fact that the 

difference between two essential stages (high radiation, high moisture) and (high

radiation, low moisture) is emphasized in the remarkable way in the composition 

QR
~~

.

In some special cases, when X = {x1}, the relation R
~

 becomes a one row-

relation. Definition 2.13 thus takes the following modified version. 

Definition 2.14 

Let X = {x1}, Y = {y1, …, yn}, Z = {z1, …, zp}. We set fuzzy relations R
~

 with 

),(
1

~
jR

yx , (x1, yj) X Y and Q
~

 characterized by ),(~
kjQ

zy , (yj, zk) Y Z.

The max-prod composition of R
~

 with Q
~

, denoted by QR
~~

, is a one row fuzzy 

set

ZzYyXx
kj

,,for
1

.

The short and simple introduction that has been accomplished in this chapter is 

necessary to lead to a further discussion about different mathematical fuzzy mod-

els. The models are fitted for the same objective, namely, how to extract different 

concepts and properties developed by fuzzy set theory in order to transform them 

to facilitate solutions to medical problems. 

1 1 1
( , ), ( , ) max ( , ) ( , )

j

k k j j kRR Q Q
y Y

R Q x z x z x y y zµ µ µ (2.25)
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3.1  Introduction 

The creators of fuzzy set theory, who develop mathematical models applied to 

different technical domains, have also made representative contributions in medi-

cal investigations. One of the earliest models created by Sanchez [72, 73] and dis-

cussed by other scientists [6, 8, 11, 17, 27, 45, 48, 56, 69, 70, 74, 75, 76, 77, 87] 

has given some answers to questions concerning a choice of diagnosis. The choice 

should only be made on the basis of clinical symptoms when assuming that the 

symptoms are typical of all considered diagnoses. 

To decide an appropriate diagnosis in one patient we introduce three non-fuzzy 

sets:

the set of symptoms }...,,,{
21 n

SSSS ,

the set of diagnoses }...,,,{
21 p

DDDD ,

the set of patients }{
1

PP .

The symptoms occurring in set S are associated with the diagnoses from set D.

Moreover, we assume that information about all symptoms belonging to S is com-

plete in the patient’s case. By using his medical experience as a foundation a phy-

sician then establishes connections between the symptoms and the diagnoses. 

3.2  The Modus Ponens Law in Medical Diagnosis 

The symptoms S1, S2, …, Sn, that are stated in set S, are included in the pairs (P1,

S1), (P1, S2), …, (P1, Sn). These constitute the relation PS (“patient – symptom”).

Let us write down the fuzzy relation PS as a one-row matrix 

where PS(P1, Sj), j = 1, …, n, is a value of the membership degree providing us 

with evaluation of the intensity of Sj in P1.

The next relation consists of the pairs (S1, D1), (S1, D2), …, (S1, Dp), …, (Sn,

Dp). The fuzzy relation, in which each value of the membership degree tied to the 

pair (Sj, Dk), j = 1, 2, …, n, k = 1, 2, …, p, expresses strength of the relationship

]),(),(),([
121111

21

nPSPSPS

n

SPSPSPPPS

SSS

,
(3.1)

Elisabeth Rakus-Andersson: Fuzzy and Rough Techniques in Medical Diagnosis and Medication,

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
StudFuzz 212, 31–61 (2007)
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between the symptom and the associated diagnosis, is called “symptom – diagno-

sis”. The relation has the name SD and is projected as a matrix 

In the further discussion we suppose that the relation PS is generally interpreted 

as a statement

“p” = ”the symptoms Sj, j = 1, 2, …, n, are found in patient P1”.

The relation SD stands for an implication 

“p´ IMPLIES q” = ”the symptoms Sj confirm presence of the diagnoses Dk (if Sj

then Dk), j = 1, 2, …, n, k = 1, 2, …, p”.

The statement p´ is nearly the same as p, but these two sentences p and p´ do 

not need to be worded identically.

By quoting the rule modus ponens

IF “p” AND “p´ IMPLIES q” THEN q´”

we expect getting the conclusion 

“q´ ”= “the diagnoses Dk, k = 1, 2, …, p, are assigned to P1”.

As the result of the last sentence q´ a relation PD has been produced. The PD

(“patient – diagnosis”) relation is a matrix 

in which the membership degrees reveal associations between the patient and the 

diagnoses.

To make a proper choice of the diagnosis that is the most applicable for the ex-

amined patient when regarding his or her symptoms, we employ the modus ponens

rule as follows. 

),(),(),(

),(),(),(

),(),(),(

21

22212

12111

2

1

21

pnSDnSDnSD

pSDSDSD

pSDSDSD

n

p

DSDSDS

DSDSDS

DSDSDS

S

S

S

SD

DDD

.

(3.2)

]),(),(),([
121111

21

pPDPDPD

p

DPDPDPPPD

DDD

,
(3.3)
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Definition 3.1 

If the premise “the symptoms Sj, j = 1, 2, …, n, are found in patient P1” is given by 

the relation PS, and the hypothesis ”the symptoms Sj imply the diagnoses Dk, j = 1, 

2, …, n, k = 1, 2, …, p” is represented by the relation SD, then the relation 

SDPSPD , formed as a result of the thesis “P1 suffers from Dk”, will be com-

posed of membership degrees allowing us to estimate associations between the 

patient and the considered diagnoses. 

We will study some modifications of Def. 3.1 in the next subsections. 

3.3  The Patient –Symptom Relation 

Each symptom belonging to the set S will be represented as a fuzzy set. 

We adopt three basic types of biological parameters [29, 30, 32, 56]: 

1. Simple qualitative features, 

2. Compound qualitative features, 

3. Quantitative (measurable) features. 

Example 3.1 

Suppose that symptoms from set S, characteristic of P1, are listed as: S1 – “heredi-

tary inclination”, S2 – “ECG changes in resting position”, S3 – “smoking”, S4 – 

“lack of physical activity”, S5 – “pain in chest”, S6 –“breathlessness”, S7 – “feeling

of sickness”, S8 – “hypertension”, S9 – “increased level of LDL-cholesterol”, S10 – 

“obesity”.

By studying the nature of the symptoms we can divide them into three follow-

ing groups: 

1. S1 is interpreted as the simple qualitative feature that is present or lacking; 

2. S2, S3, S4, S5, S6, S7 are investigated with the help of a questionnaire as com-

pound qualitative symptoms; 

3. S8, S9, S10 are typical measurable parameters that are described by values ob-

tained in examinations carried out. 

Since every symptom is considered as a fuzzy set then we should decide the 

set’s support and values of membership degrees assigned to the members of the 

support. The ways of membership degree constructions should reflect intensities 

of symptoms acting as important indications of the patient’s health.

We now intend to concentrate this discussion on three types of symptoms that 

will be designed as fuzzy sets. Since they represent different features then we will 

be obliged to invent varying methods of designing membership functions for 

them.
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3.3.1  Simple Qualitative Biological Parameters 

The fuzzy set characterizing this symptom is defined in a space {0, 1}. If the 

symptom Sj does not occur in the patient, the number 0 will symbolize its lack. It 

means that element x of the fuzzy set Sj takes the value 0, and the membership 

degree of this element is fixed to be 0, too. 

If the symptom Sj is found in the patient, we agree to note this fact down as the 

number 1. Thus, element x takes the value 1 and the membership degree of x is

also determined as 1. 

The fuzzy set Sj corresponding to the symptom Sj is often written down sym-

bolically as

In Eq. (3.4) both the symptom and the fuzzy set representing it have the same 

denotation in order not to introduce too many symbols. 

Example 3.2 

Suppose that patient P1 has had relatives who have suffered from cardiovascular 

system diseases. Hence, his tendency to inherit these diseases is evaluated as x = 1 

and S1(1) = 1. Consequently, the value of S1(1) = 1 takes also its place in the rela-

tion PS that is actualized as 

]1[
1

10987654321

PPS

SSSSSSSSSS

.

The qualitative attribute wearing the simple complexity is the simplest possible. 

It is frequently required to have a wider approach to the ascertainment of qualita-

tive features, for example, by applying a questionnaire with questions and alterna-

tive answers to the questions being posed. This is designed in the case of com-

pound qualitative features for which the construction of fuzzy set Sj corresponding 

to the symptom Sj is thoroughly explained below. 

3.3.2  Compound Qualitative Biological Features 

We assume now that the symptom Sj is no longer determined by one of the alter-

natives “present – absent”, but it needs a certain verbal description. Let us intro-

duce a new variable supporting Sj, the linguistic variable Q
S(j)

, with the set of terms 

formed by the questions (asked by a physician or by a questionnaire) that are de-

noted here by 
questionlastjSjS

p
Qpq

)()(
...,,2,1,  [29, 30, 32, 56, 70]. The symbol 

Q
S(j)-last question

 stands for the quantity of questions associated with the symbol Sj.

1
1

0
0

j
S . (3.4)
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To each of the questions 
)( jS

p
q  posed to the person being examined in connec-

tion with the symptom Sj found, he/she has a possibility of choosing  

one of several answers that are usually furnished with numbers-codes 

Ns
jS

tp
...,,2,1,0

)(

,
,

questionlastjS
Qp

)(
...,,2,1 ,

)(
...,,2,1

p
tt . The symbol t

(p)

designates the number of alternative answers to the question 
)( jS

p
q , and we under-

stand that the value t = 1 is connected to the choice of the code “0”, while t = t
(p)

must be associated with pointing to the code “N”. The codes 0, 1, …, N are hierar-

chical replacements of the answers from the most negative (denying the presence 

of Sj) to the most positive (confirming the existence of the symptom). 

In the further procedure, one should assign weights 
)(

,

jS

tp
w  to the encoded (pro-

posed) answers 
)(

,

jS

tp
s  [70]. These weights are suggested to be numbers belonging 

to the interval [–1, 1]. It is assumed that negative numbers correspond to negative 

answers to the question posed, i.e., ones that do not confirm the occurrence of the 

symptom (never, rarely, very rarely and the like), with that –1 defines the most 

negative answer. The positive value of the weight gives a suitable positive charac-

ter, certifying the presence of the symptom in the patient, and the value +1 con-

firms the entire presence of the symptom. The weight equal to zero (or close to 

zero) is reserved for the case of the lack of the answer or a statement that does not 

bring any (or almost any) information. 

The set of questions in Q
S(j)

 is treated as a list of terms representing the linguis-

tic variable Q
S(j)

. Each question 
questionlastjSjS

p
Qpq

)()(
...,,2,1, , is interpreted 

as a fuzzy variable with the support, established via weights, equal to [–1, 1]. This 

conception helps to build a fuzzy set Sj reflecting the compound qualitative symp-

tom Sj with the same name. 

The value of a weight lying in the subintervals [–1, 0] and [0, 1], respectively, 

depends on the number of a code 1, 2, …, N, chosen by the patient who answers a 

corresponding question. The above-mentioned intervals are, in general, decom-

posed evenly according to the number of alternative answers. The endpoints of the 

subintervals thus formed constitute the values of the weights for all the alternative 

answers. The number of the weights is finite and equal, as a rule, to a slight num-

ber of answers. To represent the symptom Sj by one value being a result of an op-

eration concatenating all weights assigned to the questions 
)( jS

p
q , p = 1, 2, …, 

Q
S(j)–last question

, it seems to be purposeful to bring into use a continuous aggregation 

function.

To sum up, let Sj be the fuzzy set for a compound qualitative feature. This set is 

fully defined when both its support and its membership function is given. The 

function should be, in turn, considered in a real space X and built as a set of 

weight aggregation results. Therefore it is essential to transpose the qualitative 

feature to measurable values, i.e., to values x belonging to X, where X is regarded 

as a support of Sj. To concatenate the weights of all answers as a common value x

describing Sj, we suggest the mapping 
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The operation means the addition of the weights determined for the answers to 

the questions that collect information about Sj (every question is represented by 

only one weight joined to the alternative answer t = 1, …, t
(p)

).

The values of x form an interval bounded below by some number  that is cal-

culated from the formula 

i.e., is assumed to be the sum of the weights, smallest as far as their relative values 

are concerned, assigned to the most negative answers to each question giving a 

picture of Sj.

A number  bounds this interval from above and is fixed in accordance with the 

equation

that means that one should calculate the sum of the weights greatest as far as their 

relative values are concerned. They are quantities representing the extreme posi-

tive answers to the questions concerning the symptom Sj.

The conclusions, implied above, have led to the construction of the support of 

the compound qualitative attribute Sj defined as the interval [ , ]. The member-

ship function over [ , ] is put forward for consideration as [29, 30,  

32, 56] 

in which s(x, , , ) is given by Eq. (2.5). 

Example 3.3 

If a value of the weight assigned to the extreme negative answer is fixed at  –1 and 

the weight of its most positive variant is equal to +1, and the rule is preserved for 

each question, then the graph of the function (3.8), designed for five questions 

characteristic of Sj and formed as the equation )5,0,5,()( xsxy
j

S
, will take 

the symmetrical form as given in Fig. 3.1.

questionlastjS
Q

p

jS

tp
wx

)(

1

)(

,
. (3.5)

questionlastjS

p

Q

p

jS

tp
tt

w

)(

)(

1

)(

,
1

)(min , (3.6)

questionlastjS

p

Q

p

jS

tp
tt

w

)(

)(

1

)(

,
1

)(max (3.7)

),,,()( xsxy
j

S
, (3.8)
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Figure 3.1:  The membership function of the compound qualitative symptom Sj

By analysing the graph we can notice there the number  = –5. That is the sum 

of the minimal weights representing the five answers negating the symptom pres-

ence, it has the assigned membership degree equal to zero. This is a sign of 

“health”. The number  = 5 is a sum of maximally positive weights confirming the 

revealed symptom and, in consequence, the membership degree associated with it 

takes the value 1. An ambiguous piece of information or its lack, expressed by ,

has its mapping in the form of the membership degree of the value 0.5. 

To illustrate the action of computing the membership degrees for compound 

qualitative symptoms, let us state the values of degrees for some of the symptoms 

of this character found in patient P1, with whom we have already made an ac-

quaintance in Ex. 3.1. 

Example 3.4 

By composing a questionnaire, which yields the information of intensity accom-

panying the symptoms S3 and S4, we assign the membership degree to each of 

them.

An inquiry of the first considered symptom S3 – “smoking”, is accomplished by 

answering questions, e.g.: 

)3(

1

S
q =”How often do you smoke cigarettes?”

)3(

2

S
q =”How long have you smoked?”

The alternative answers to these questions may be formulated, for instance, as 

follows:
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– to the first question 
)3(

1

S
q

1. I do not smoke       0
)3(

1,1

S
s 1

)3(

1,1

S
w

2. I smoke seldom      1
)3(

2,1

S
s

2

1)3(

2,1

S
w

3. I smoke moderately     2
)3(

3,1

S
s 0

)3(

3,1

S
w

4. I smoke often       3
)3(

4,1

S
s

2

1)3(

4,1

S
w

5. I smoke constantly     4
)3(

5,1

S
s 1

)3(

5,1

S
w

– to the second question 
)3(

2

S
q

1. I have never smoked     0
)3(

1,2

S
s 1

)3(

1,2

S
w

2. A few months       1
)3(

2,2

S
s

3

2)3(

2,2

S
w

3. 1–2 years        2
)3(

3,2

S
s

3

1)3(

3,2

S
w

4. I cannot determine     3
)3(

4,2

S
s 0

)3(

4,2

S
w

5. 3–4 years        4
)3(

5,2

S
s

3

1)3(

5,2

S
w

6. More than 5 years     5
)3(

6,2

S
s

3

2)3(

6,2

S
w

7. I have smoked since my teens 6
)3(

7,2

S
s 1

)3(

7,2

S
w .

We assume that patient P1 has chosen answer 4. to 
)3(

1

S
q  and answer 6. to 

)3(

2

S
q ; hence, ,0,211,2)1()1(,

6

7

3

2

2

1
x and

2

)2(2

2
21)2,0,2,()(

3

x
xsx

S  in view of x > 0, that is 913.0
6

7

3
S

.

The pair (P1, S3) of the relation PS has therefore the membership degree equal 

to 0.913. This degree characterizes a feature such as “smoking” efficiently, since it 

reflects every subtle distinction in the patient’s report when comparing the ex-

treme information of the type “I smoke” contrary to “I do not smoke”.

The other parameter S4 – “lack of physical activity” can be described, as an in-

stance, by three questions: 

)4(

1

S
q  = ”Do you sometimes exercise?”

)4(

2

S
q  = “How intensively do you exercise?”

)4(

3

S
q  = “How long have you exercised?”
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The answers proposed in the questionnaire with their codes and weights are es-

tablished as: 

– to the first question 
)4(

1

S
q

1. I exercise every day      1
)4(

1,1

S
w

2. I exercise often       
2

1)4(

2,1

S
w

3. I cannot say        0
)4(

3,1

S
w

4. I exercise little        
2

1)4(

4,1

S
w

5. I do not exercise       1
)4(

5,1

S
w

– to the second question 
)4(

2

S
q

1. I exercise very hard      1
)4(

1,2

S
w

2. I exercise rather hard     
2

1)4(

2,2

S
w

3. It is difficult to say      0
)4(

3,2

S
w

4. I do light exercises      
2

1)4(

4,2

S
w

5. I do not do any exercises    1
)4(

5,2

S
w

– to the third question 
)4(

3

S
q

1. I have exercised since my teens 1
)4(

1,3

S
w

2. More than 5 years      
3

2)4(

2,3

S
w

3. 3–4 years         
3

1)4(

3,3

S
w

4. I cannot determine      0
)4(

4,3

S
w

5. 1–2 years         
3

1)4(

5,3

S
w

6. A few months        
3

2)4(

6,3

S
w

7. I have never exercised 1
)4(

7,3

S
w .

Let us notice that the lack of exercising is regarded as a harmful symptom for 

some diseases. This is expressed by assigning the positive values of weights to the 

answers that confirm the bad physical condition. On the contrary, a well-trained 

person does not run a great risk of falling ill. Exercising can increase the health 

condition and therefore is added to prior physical factors. The answers pointing to 

a good physical form have thus the negative weights attached. 
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If patient P1 marks the answers 3. 4. and 4., respectively, we should find the 

value of the element x for S4 as ,3)1()1()1(,
2

1
0

2

1
0x

,0,3111  and 

2

)3(3

3
21)3,0,3,()(

4

x
xsx

S  because of 

the positive value of x that gives 653.0
2

1

4
S

.

The compound qualitative attribute S4 has been assessed by the value of the 

membership degree 0.653. We act in the same way as discussed above to state the 

membership degrees of the rest of the compound qualitative attributes, calculating 

them as, e.g., 

515.0)(
""

2

x
positionrestinginchangesECGS

,

345.0)(
""

5

x
chestinpainS

,

632.0)(
""

6

x
lessbreathnessS

,

720.0)(
""

7

x
sicknessoffeelingS

.

The values of x via weights characterize the questionnaire answers of patient 

P1. The membership degrees of x fill up some remaining empty positions in the 

relation PS. After completing the missing values the relation PS has its content 

presented as 

]720.0632.0345.0653.0913.0515.01[
1

10987654321

PPS

SSSSSSSSSS

.

There still exist three symptoms S8, S9 and S10 that do not have their member-

ship degrees determined. The mentioned parameters belong to the third symptom 

class created for quantitative features. To find their membership values we refer to 

“arguing”, which is portrayed in the next subsection. 

3.3.3  Compound Quantitative Biological Features 

A quantitative (measurable) feature is the last type of a biological parameter for 

which a model of defining the membership degree in the relation PS has been pro-

duced. These features take values continuously from a known interval determined 

by a physician. The measurable symptom Sj can be represented as the fuzzy set Sj

with values from the interval containing all possible quantities taken by this fea-

ture. We denote this interval by [VMIN, VMAX] with the notations; VMIN is the 

minimal value taken by the parameter and, respectively, VMAX is its maximal 

value. Let us give the symbols VN1, VN2 to the limits of the interval in which there 

occur numbers characteristic of healthy man. It should be noticed that, outside the 

interval (VN1, VN2), both the deficiency and the excess of a biological indicator is 
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a disease sign, most frequently connected with different diagnoses. Therefore one 

should divide the interval [VMIN, VMAX] adopted originally and write it down as 

[29, 30, 32, 56] 

The membership function of the set Sj, defined on the interval (3.9) ought to 

express reliably all disease states examined on the basis on the symptom Sj. For 

symptoms whose uniform growth of values is connected with a uniformly pro-

gressing disease, one proposes the membership function 

where x stands for the value taken by Sj.

Example 3.5 

The quantitative symptom S8 – “hypertension” from Ex. 3.1 is a consequence of 

increased values of systolic blood pressure. This parameter has an interval of nor-

mal values, typical of a healthy man, established as (VN1, VN2) = (90 mmHg, 120 

mmHg) while VMIN, VMAX are appreciated as 50 mmHg, 250 mmHg, respec-

tively. It is worth mentioning that high values of systolic blood pressure are as-

signed – as warning signals – to cardiovascular diseases. Opposite to it, very low 

values of systolic blood pressure are typical of, e.g., acute bleeding. On the condi-

tion that the membership function of S8 reflects a uniformly progressive sickly 

state, we propose to explore it by the equation 

,9050for90,
2

9050
,50,1

,12090for0

,250120for250,
2

250120
,120,

)(
8

xxs

x

xxs

xy
S

represented by the graph displayed in Fig. 3.2. 

VMAXVNVNVNVNVMINVMAXVMIN ,,,,
2211

. (3.9)

,for,
2

,,1

,for0

,for,
2

,,

)(

11

1

21

2

2

2

VNxVMINVN
VNVMIN
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VNxVN

VMAXxVNVMAX
VMAXVN

VNxs

xy
j

S

(3.10)
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Figure 3.2: The membership function of the symptom S8

More complicated medical phenomena can be divided into two following 

groups. The physician often finds that the growth of a value characterizing the 

symptom and belonging to the interval [VN2, VMAX] (or to [VMIN, VN1] when the 

value is lowered instead) does not matter essentially till some moment, and only a 

high level of the indicator is connected with a violent deterioration of the health 

condition.

Then it would be purposeful to apply a concentration operation CON for the 

membership function of the fuzzy set Sj over the interval [VN2, VMAX] (or 

[VMIN, VN1]), that is, to use the membership function of the type 

Conversely, if the physician describes that what constitutes the greatest danger 

for one’s health is the growth of the symptom value at the first stage, then it is 

advisable to introduce a dilution operation DIL for the symptom Sj that changes 

the membership function )(x
j

S
 in the following manner 

The membership function of Sj modified by (3.11) or (3.12) better reflects the 

patient’s physical state when an irregular development of the symptom Sj has an 

importance in finding the appropriate diagnosis. 

2

)()(
)()( xxy

jj
SSCON

. (3.11)

)()(
)(

xxy
jj

SSDIL
. (3.12)
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Example 3.6 

The graphs of the function (3.10) as well as the above-described tendencies to-

wards a reliable adoption of the membership function for a measurable feature S8,

discussed in Ex. 3.5, are shown in Fig. 3.3.
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Figure 3.3:  The membership function of the symptom S8 with modifications 

In the description of the figure we have adopted the notations 

.9050for90,
2

9050
,50,1´´

,250120for250,
2

250120
,120,´

xxsM

xxsM

The results of Eqs (3.11) and (3.12) obtained in the form of modified member-

ship degrees, in comparison to the effects of (3.10), are intended to be treated as 

reliable indicators of the symptom’s decisive effect on a diagnosis choice. 

Example 3.7 

The physician decides that the value of S8, found in P1, is equal to 210 mmHg and 

points to a severe state of the patient’s health. We expect that an appropriate 

membership degree will be associated with the value of S8 in order to indicate the 

essential impendence of P1’s health. To start the computations, we choose the first 

part of the function )(
8

x
S

 from Ex. 3.5 because we notice that the value of 

x = 210 belongs to the interval [120, 250].
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250,
2

250120
,120,210)210(

8

s
S

)250,185,120,210(s

2

120250

250210
21 81.0 .

To focus on the essentially heightened blood pressure value of x = 210, which 

convinces us that the patient’s health is in danger, we should increase )210(
8

S

by adopting the dilution operation as 9.081.0)210()210(
88

)( SSDIL
.

It is worth noticing that we should use the third part of the formula derived in 

Ex. 3.5, i.e., 90,
2

9050
,50,1)( xsx

j
S if the value of systolic blood pres-

sure is less than 90 in any patient. It can happen when the patient meets with vio-

lent bleeding. The lower values of systolic blood pressure than the quantities 

placed in [90, 120] characterize another symptom that differs from S8.

The growth of LDL-cholesterol also informs a physician about a worse condi-

tion of the examined patient. To accentuate the importance of the increased level 

of S9 – “increased level of LDL-cholesterol” we try to generate a reliable value of 

its membership degree in PS.

Example 3.8 

By carrying out LDL-cholesterol level examinations in P1, the physician has estab-

lished the value of S9 as 145 mg/dl. If he also decides the values of VMIN = 50 

mg/dl, VMAX = 250 mg/dl and states the interval (VN1, VN2) as (100 mg/dl, 135 

mg/dl), then we are capable of assigning the membership degree of x = 145 in ac-

cordance with the first “branch” of the membership function given by (3.10) as 

02.0
135250

135145
2)250,5.192,135,145()145(

2

9

s
S

. Since the value of x = 

145 does not lay emphasis on any greater threat for P1’s health, then we should 

lower the value of the membership degree for the x-number. We will reduce it if 

we apply the concentration operation (3.11) in the form of )145(
)(

9
SCON

0004.0)145(
2

9
S

.

By using these similar techniques on the symptom S10, we assign to its missing 

representative, in the relation PS, the value of the membership degree decided as 

353.0)(
""

10

x
obesityS

, when measuring “weight” = 115 kg in relation to 

“height” = 1.80 m. The grade of obesity x is determined by applying the body 

mass index x = BMI computed as a quotient “body weight/(body height in me-

ters)
2
” in units equal to kg/m

2
. By taking x = 35.5 kg/m

2
, VMIN = 12 kg/m

2
, VMAX

= 50 kg/m
2
, VN1 = 18 kg/m

2
 and VN2 = 25 kg/m

2
 as the parameters’ values in 

Hence,
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(3.10), we confirm the result 0.353 as the membership degree of S10, provided that 

the growth of body weight has the uniform meaning in the diagnostic decision. 

Possessing all the values of the membership degrees for the symptoms listed in 

Ex. 3.1, we finally complete the matrix PS and save it to further computations as 

]353.00004.09.0720.0632.0345.0653.0913.0515.01[
1

10987654321

PPS

SSSSSSSSSS

.

The next stage in our investigations is to prepare the matrix SD introduced by 

(3.2) that constitutes the other factor (besides PS) in the decision equation 

SDPSPD .

3.4  The Symptom – Diagnosis Relation 

A mathematical process of developing the forms of associations among the symp-

toms Sj, j = 1, 2, …, n, and diagnoses Dk, k = 1, 2, …, p, constitutes another impor-

tant task to be fulfilled in the diagnostic problem posed. The connection between 

Sj and Dk in each pair (Sj, Dk) is rendered as a value of the membership degree 

accompanied by this pair. The membership degree, in turn, expresses the significa-

tion of symptom Sj for diagnosis Dk. To determine the intensity of the symptom 

influence on the diagnosis decisive character, a physician asks two essential ques-

tions, namely [2, 3]: 

1. How often is Sj found in Dk?

2. How often is Sj decisive for Dk?

The physician uses his experience to answer the questions by selecting verbal 

expressions that are included in a certain list. We, by following his advice, con-

centrate on replacing the chosen word by an appropriate number. To begin with, 

let us first decide the terms of a common list identically constructed for “pres-

ence“ and “decisive character”. We decide “presence“ = “decisive character”

={“never”, “almost never”, “very seldom”, “seldom”, “rather seldom”, “moder-

ately”, “rather often”, “often”, “very often”, “almost always”, “always”}. By em-

ploying the membership functions (the constraints) of fuzzy variables that corre-

spond to the expressions collected above, we will try to find these membership 

degrees of the variables that represent them in the most adequate way.

Some suggestions referring to the constraints imposed on fuzzy variables have 

already been made in Ex. 2.15, but we should honestly admit that the borders of 

the restrictions proposed there have been chosen empirically rather than by involv-

ing any computation technique. There exists a domain in fuzzy set theory that 

deals with computing with words. Within this field we can mathematically modify 

some sophisticated linguistic expressions coming from basic verbal items. The 

supports of fuzzy variables and the membership functions laid over them thus will 

be elaborated without guessing their values, which seems to improve a correctness 

of further computations. 
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3.4.1  Numerical Representations of Linguistic Variables 

One of the most important features of fuzzy set theory, which makes it very attrac-

tive for applications, is its potential for the modelling of natural language expres-

sions. Most works done on this topic focus on some parts of natural language, 

mostly those that correspond to the so-called “evaluating linguistic expressions”,

i.e., the dissertations show how to build fuzzy constraints for the expressions that 

mark characteristic limits on an ordered scale [40, 49, 90, 91, 92, 93, 94, 95]. 

Keeping in mind the premises from Subsection 2.4, let us preserve a reference 

set as the range A = [0, Al]. This contains supports of all fuzzy variables corre-

sponding to the terms placed in the lists “presence” and “decisive character”. We 

first define three atomic expressions in A, i.e., “the leftmost” = “seldom”, “in the 

middle” = “moderately” and “the rightmost” = “often”. We thus propose the fol-

lowing constrains for “the leftmost” and “the rightmost” variables, provided that 

the abbreviation “se” points at the parameters of “seldom” [49]: 

while “often” is dependent on the parameters of “seldom” in the way 

After transforming Eq. (3.13) we realize that it is identical with ”seldom”(x) = 1 

– s(x, se,  se,  se) while Eq. (3.14) is identified with ”often”(x) = s(x, of,  of,  of),

where of = Al –  se,  of = Al –  se,  of = Al – se, and the abbreviation “of” is in-

tended for the variable “often”. Let us also suppose that 

2
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Example 3.9 

We accept as a common range for all the variables the reference set A = [0, 1, 2, 

…, 100] by following the results obtained in Ex. 2.15. Then Al takes the value of 

100 as the largest value in the range A. If we also state the values of se,  se,  se as 

30, 40, 50, respectively, in “seldom” and “often” we then will implement the 

membership functions of the “leftmost” and “rightmost” atomic words derived as 

the split definitions 

and

We emphasize that we only need to define “the leftmost” description to imple-

ment both membership functions for “seldom” and “often”.

The membership function of “moderately” still remains equal to the function 

introduced by (2.6), and is adopted here as an atomic expression formulated as “in

the middle”. This takes a form of 

,50for0

,5040for

)4050(2
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,4030for

)3040(2

)30()3040(2
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Example 3.10 

For Al = 100 and se = 30, which generate the borders in (3.17), the last formula 

becomes

.50xfor70,60,50,1

,50for50,40,30,

50,20,

xs

xxs

xy

We often need to widen the list of expressions coming into existence from the 

atomic words with the membership functions established in Ex. 3.9. If we want to 

use the descriptions “very seldom” or “rather seldom”, then we should adjust the 

membership functions of new fuzzy variables that possess names consisting of 

both the atomic words and hedges. The hedges are interpreted as additional de-

scriptions (usually adjectives) added to atomic words. In the word compositions 

“very seldom” or “rather seldom”, the hedges are found as “very” and “rather”. To 

generate membership functions of sophisticated linguistic formulations, including 

such adjectives as “very”, “rather”, ”almost” and the like, we add a parameter  to 

the parameters se, se, se, already existing in (3.13) and (3.14). The action of the 

parameter  introduces either a narrowing or a widening effect in membership 

functions of these fuzzy variables that are derived from atomic expressions. 

Example 3.11 

We suggest the formulas of membership functions with hedges for two groups of 

fuzzy variables. We modify Eq. (3.15) as 

to produce membership functions of the variables originating from “seldom”.

 The changes in (3.16) made as 

,50for0

,5040for
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give a class of functions possessing “often” in their names. 

The parameter  works in accordance with the following criteria [49]: 

1.  = 1 where no hedge in (3.18) and (3.19) is needed (empty hedge);

2. 0 < < 1 is applied for hedges with narrowing effects; 

3.  > 1 is introduced for hedges with widening effects.

Example 3.12 

We have tested different values of a parameter  to finally decide that the most 

appropriate values of  in the case of “seldom” can be stated as  = 0.75 for “very

seldom”,  = 0.5 for “very, very seldom” = “almost never”,  = 0.25 for “very,

very, very seldom” = “never” and  = 1.25 for “rather seldom”. The values of <

1 will narrow supports of “hedge seldom” variables but > 1, on the contrary, 

widens an outlook of “rather seldom”.

The graphs of the membership functions generated by “seldom” when taking 

into account the parameters designed above are depicted in Fig. 3.4. 
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Figure 3.4: The membership functions of fuzzy variables generated by “seldom”
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function of “very often”,  = 0.5 gives “very, very often” = “almost always” and 

we get “very, very, very often” = “always” for  = 0.25. To create the membership 

function of “rather often” we exploit the widening effect of  and decide its value 

as  = 1.25. 

The common result of employing the parameter  as a factor changing the 

membership function of “often” for the sophisticated expressions containing this 

word is seen in Fig. 3.5. 
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Figure 3.5:  The membership functions of fuzzy variables generated by “often”

We now sample the results of all latest investigations that have led to the con-

struction of new membership functions. These, as fuzzy variables shown in Fig. 

3.6, represent the terms of “presence” and “decisive character”.

In the further step of our efforts leading to a creation of the SD matrix, we de-

sire to extract only one value of the support that represents each fuzzy variable 

belonging to “presence” and “decisive character”. It seems to be reliable to ac-

cept, as a representative, this element of the variable support that is treated as a 

certain border of the variable’s membership function. We can establish the bound-

ary value, x, as the x-coordinate of an intersection point between the line variable(x)

= 1 and a part of the membership function in which variable(x) < 1. The expres-

sions coming from “seldom” have thus the borders determined as x = 30  while 

the descriptions created by “often” form the group with representatives equal to x

= (Al = 100) – 30 .

The formula (3.19) yields further composed structures proceeding from the 

other atomic word “often”. By determining  = 0.75 we generate the membership 
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Figure 3.6:  The terms from the lists “presence” and “decisive character”

Example 3.13 

The representatives of the variables “never”,…, “always” are sampled in Table 

3.1.

Table 3.1:  The representatives of the variables “never”, …, “always”

Fuzzy variables The representatives for the fuzzy variables in the ref-

erence set [0, 100] 

“never” 0.25 x = 30 · 0.25 = 7.5 

“almost never” 0.5 x = 30 · 0.5 = 15 

“very seldom” 0.75 x = 30 · 0.75 = 22.5 

“seldom” 1 x = 30 · 1 = 30 

“rather seldom” 1.25 x = 30 · 1.25 = 37.5 

“moderately” – x = 50 

“rather often” 1.25 x = 100 – 30 · 1.25 = 62.5 

“often” 1 x = 100 – 30 · 1 = 70 

“very often” 0.75 x = 100 – 30 · 0.75 = 77.5 

“almost always” 0.5 x = 100 – 30 · 0.5 = 85 

“always” 0.25 x = 100 – 30 · 0.25 = 92.5 

To give expression to the verbal descriptions of presence and decisive character 

via values of the membership degrees, we finally plan a common restriction
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that completely covers the space formed for the representative values from  

Table 3.1.

Example 3.14 

Let us accept common = 7.5, common = 50 and common = 92.5 in (3.20). It should be 

mentioned that the borders of the space for “common” are decided to be equal to 

7.5 respectively 92.5 to obtain the value of zero as the membership degree stand-

ing for “never”, and the value of one assigned to “always” in accordance with the 

physicians’ ability to interpret “never” and “always”. By setting the numbers from 

the last column of Table 3.1 in (3.20) as x-values, we decide the association be-

tween the names of variables and the corresponding membership degrees assigned 

to them. We state the results of appropriate computations in Table 3.2. 

Table 3.2:  The numerical description of fuzzy variables in “presence”

Fuzzy variables x
”common”(x)

“never” 7.5 0 

“almost never” 15 0.016 

“very seldom” 22.5 0.062 

“seldom” 30 0.14 

“rather seldom” 37.5 0.25 

“moderately” 50 0.5 

“rather often” 62.5 0.75 

“often” 70 0.86 

“very often” 77.5 0.938 

“almost always” 85 0.984 

“always” 92.5 1 

Table 3.2 provides us with the information on how to tie the words taking place 

in the lists, “presence” and “decisive character”, to real numbers that replace them 

in the fuzzy relations “symptom – diagnosis”, which we will generate in the next 

subsection.

3.4.2  Relations of “Presence” and “Decisive Character”

When a physician is asked to decide, e.g., the presence of a symptom in the corre-

sponding diagnosis, then he should only choose a word from the list containing the 

items that determine “presence”. In computations assisting a mathematical model 

a number replaces the verbal expression approved by the physician. 

),,,()(
"" commoncommoncommoncommon

xsx (3.20)
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We consider three diagnoses D1 = “high risk of cardiovascular diseases”, D2 = 

“coronary heart disease” and D3 = “myocardial infarct”. These are associated with 

the symptoms S1, …, S10 already discussed in Ex. 3.1. To answer the questions: 

”How often is Sj found in Dk?” and ”How often is Sj decisive for Dk?”, j = 1, …, 10, 

k = 1, 2, 3, the physician selects a word from the list defining “presence” and “de-

cisive character”. His answers are collected in Table 3.3.

This table inserts the information in the mathematical model of diagnosing 

sometimes called “medical knowledge” because of its expressing a correlation 

between clinical symptoms and diagnoses. The relations PS, made for individual 

patients vary a lot from each other, but “the medical knowledge” remains invariant 

when looking for the most reliable diagnosis with regards to the same symptoms. 

Table 3.3: Linguistic frequency and importance of S1, …, S10 in D1, D2, D3

Presence Decisive character Symptoms

D1 D2 D3 D1 D2 D3

S1 often often often often often almost 

always

S2 almost

never

rather

seldom

very often very sel-

dom

moderately often 

S3 rather

often

often often almost 

always

often often 

S4 often very often very often often often often 

S5 almost

never

often very often almost 

never

almost

always

always

S6 almost

never

seldom rather 

often

almost

never

seldom often 

S7 almost

never

very sel-

dom

moderately almost 

never

seldom very often 

S8 very often often often very often often often 

S9 very often very often very often very often very often often 

S10 often rather 

often

rather

often

often often moderately 

The results obtained in Table 3.2 are used to the expressions put in Table 3.3 to 

replace them by numbers shown in Table 3.4. 

For example, we ask a physician about the association of symptom S10 = “obe-

sity” and diagnosis D3 = “myocardial infarct” in the context of “presence”. As an 

answer we get a piece of information stated as “rather often”. By applying Eq. 

(3.20) we have computed 75.0
5.75.92

5.925.62
21)5.62(

2

""common
. It means 

that the physician’s statement will be utilized as 0.75 in a mathematical diagnostic 

model.

Example 3.15 



54 3  Medical Diagnosis 

Presence Decisive character Symptoms

D1 D2 D3 D1 D2 D3

S1 0.86 0.86 0.86 0.86 0.86 0.984 

S2 0.016 0.25 0.938 0.062 0.5 0.86 

S3 0.75 0.86 0.86 0.984 0.86 0.86 

S4 0.86 0.938 0.938 0.86 0.86 0.86 

S5 0.016 0.86 0.938 0.016 0.984 1 

S6 0.016 0.14 0.75 0.016 0.14 0.86 

S7 0.016 0.062 0.5 0.016 0.14 0.938 

S8 0.938 0.86 0.86 0.938 0.86 0.86 

S9 0,938 0.938 0.938 0.938 0.938 0.86 

S10 0.86 0.75 0.75 0.86 0.86 0.5 

The contents of Table 3.4 can be rewritten as two matrices named “symptom – 

presence” and “symptom – decisive character”. The first matrix forms a fuzzy 

relation SDP that informs us about the presence of symptoms in the considered 

diagnoses. The other matrix creates a relation SDD containing the knowledge about 

importance of the symptoms for the diagnoses. We introduce the relations as the 

matrices

5.086.086.0

86.0938.0938.0

86.086.0938.0

938.014.0016.0

86.014.0016.0

1984.0016.0
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.

The relations: PS discussed in Section 3.3, SDP and SDD constitute important 

components in the set of equations being the mathematical formalizations of the 

compositional rule of inference modus ponens, already mentioned in Section 3.2. 

Even another mathematical law, modus tollens, is utilized to improve the decision 

making process regarding the most reliable choice of a diagnosis based on clinical 

symptoms.

Table 3.4:  Numerical frequency and importance of S1, …, S10 in D1, D2, D3
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3.5  The Patient – Diagnosis Relation 

Fuzzy relations PS, SDP and SDD are elements of fuzzy relation equations that 

bring solutions regarded as fuzzy relations of the type PD =

”

patient – diagnosis”.

These new relations contain pairs (P1, Dk), k = 1, 2,…, p. By superposing the 

fuzzy relations in the way suggested in Eq. (2.21), we obtain equations with the 

operation of max-min type. 

We return to Def. 3.1, which develops the meaning of the compositional rule of 

inference modus ponens, already cited in Subsection 3.2, to recall its diagnostic 

interpretation:

”

If symptom Sj appears in patient P1 with the membership degree ),(
1 jPS

SP ”

 and 

“If the presence of Sj results in Dk with the membership degree ),(
kjSD

DS
P

or ),(
kjSD

DS
D

”

then

“Diagnosis Dk occurs in patient P1 with the membership degree PD(P1, Dk)”.

Fuzzy relations, replacing the statements of the rule formulated above, are 

components of a fuzzy relation equation [2, 3]

in which the relation PD1 has the membership function (2.21) customized as 

The relation SDD has found its place in the next relation equation 

The membership function of PD2 is derived as 

for j = 1, 2, …, n, k = 1, 2, …, p.

The relations PD1 and PD2, discussed in Eqs (3.21) and (3.23), are involved in 

an equation 

P
SDPSPD

1
, (3.21)

))),(),,((min(max),(
11

1
kjSDjPS

SS
kPD

DSSPDP
P

j

. (3.22)

D
SDPSPD

2
. (3.23)

))),(),,((min(max),(
11

2
kjSDjPS

SS
kPD

DSSPDP
D

j

(3.24)

),min(
213

PDPDPD , (3.25)
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where the membership function of PD3 is constructed as 

The relation PD3 decides about an acceptance of the diagnosis in patient P1 by 

means of comparing the membership degrees in PD3. The higher the membership 

degree of the diagnosis Dk in P1 is, the more certain the approval of Dk will be. 

The membership degrees appearing in the row of P1 in PD3 sometimes do not 

differ essentially to indicate an optimal diagnosis as a clear-cut decision. They 

may sometimes differ in minutely; therefore it is also recommended that one ana-

lyzes the possibility of rejecting the diagnoses. 

Another rule of inference, known as modus tollens, is a logical law of the shape

IF “NOT q” AND “p IMPLIES q” THEN “NOT p”.

If we interpret the premises of the law as 

“NOT q” = “Symptom Sj does not appear in patient P1 with the membership de-

gree ),(1
1 jPS

SP ”

and

“p IMPLIES q” = “Dk requires the presence of Sj with the membership degree 

),(
kjSD

DS
P

”

then we draw the conclusion 

“NOT p” = “Diagnosis Dk is rejected in patient P1 with the membership degree 

PD(P1, Dk)”.

We interpret the mathematical meaning of the modus tollens law as an equation 

The membership function of PD4 is presented in the form of 

for each diagnosis from the set D.

By applying the double negation law “NOT(NOT q)) = q” we modify modus

tollens as a statement 

IF “q” AND “p IMPLIES (NOT q)” THEN “NOT p.”

A translation of the premises in the last version of the modus tollens law into an 

understandable medical sentence can be formulated as follows. 

If

“q” = “Symptom Sj appears in patient P1 with the degree ),(
1 jPS

SP ”

)).,(),,(min(),(
111

213
kPDkPDkPD

DPDPDP (3.26)

P
SDPSPD )1(

4
. (3.27)
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and

“q IMPLIES (NOT p)” = “Dk does not need the presence of Sj with the member-

ship degree ),(1
kjSD

DS
P

”

then we will come to the thesis 

“NOT p” = “Diagnosis Dk is rejected for patient P1 with the membership degree 

PD(P1, Dk)”.

The last adaptation of modus tollens has given rise to a fuzzy relation involved 

in the diagnostic process in the way of a composition

where the relation PD5 is characterized by the membership function 

The fuzzy relations PD4 and PD5 resolve of the rejection of a diagnosis assist-

ing patient P1. The higher the value of the membership degree associated with the 

diagnosis in PD4 and PD5 is, the greater the certainty of the diagnosis rejection 

will be. 

The formulas (3.22), (3.24), (3.26), (3.28) and (3.30) are valid for j = 1, 2,…, n

and k = 1, 2,…, p.

The final decision concerning the acceptance of a proper diagnosis assumes the 

simultaneous and thorough comparison of the membership degrees originating 

from the relations PD3, PD4 and PD5.

Example 3.16 

We can already provide patient P1 with the relations PS, SDP and SDD that have 

been determined for his sake in Ex. 3.8 and 3.15 respectively. A computing proc-

ess of the relations PD1–PD5 is carried through by involving Eqs (3.21)–(3.30), in 

turn, as it is executed below. 

00

If

]353.00004.09.0720.0632.0345.0653.0913.0515.01[
1

10987654321

PPS

SSSSSSSSSS

then we would like to have access to the relation SDP as the second component in 

Eq. (3.21) to appreciate PD1.

 Hence, 

P
SDPSPD

1

)1(
5 P

SDPSPD , (3.29)

))),(1),,((min(max),(
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or

]353.00004.09.0720.0632.0345.0653.0913.0515.01[
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= 86.086.09.0
1

321

P

DDD

.

To calculate a membership degree for the pair (P1, D1) we follow the operations 

recommended by (3.22). Hence, ),(
11

1

DP
PD

 = max(min(1, 0.86), min(0.515, 

0.016), min(0.913, 0.75), min(0.653, 0.86), min(0.345, 0.016), min(0.632, 0.016), 

min(0.720, 0.016), min(0.9, 0.938), min(0.0004, 0.938), min(0.353, 0.86)) = 

max(0.86, 0.016, 0.75, 0.653, 0.016, 0.016, 0.016, 0.9, 0.0004, 0.353) = 0.9. 

In accordance with (3.23) and (3.24) we evaluate 

984.086.0913.0
12

321

PSDPSPD

DDD

D

and by returning to (3.25) and (3.26), we obtain 

86.086.09.0),min(
1213

321

PPDPDPD

DDD

as the final decision of accepting the diagnosis. 

Since the membership degrees in PD3 are almost equal, we should examine the 

possibility of rejecting the diagnoses as a supplementary decisive factor. In further 

computations we exploit two complements to matrices already introduced. Let us 

consequently find 1 – PS as a table

]647.09996.01.0280.0368.0655.0347.0087.0485.00[1
1

10987654321

PPS

SSSSSSSSSS
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filled with membership degrees that are calculated by subtracting PS(P1, Dk) from 

one, k = 1, …, p. The other matrix 1 – SDP, is an algebraic complement to one and 

has a form 

25.025.014.0

062.0062.0062.0

14.014.0062.0

5.0938.0984.0
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We now use (3.27) and (3.28) to state the contents of PD4 as the table 

938.0938.0938.0)1(
14

321

PSDPSPD

DDD

P
.

PD4 is the first matrix that provides us with a decision about excluding the di-

agnoses. By adopting (3.29) and (3.30) we calculate the entries of the matrix PD5

that closes the series of matrices participating in the decision making process with 

respect to the optimal diagnosis. PD5, which is founded on the complement of the 

fuzzy relation SDP, possesses the following membership degrees 

500.0720.0720.0)1(
15

321

PSDPSPD

DDD

P .

To make the final decision let us sum up the obtained data in Table 3.5 

Table 3.5: P1’s diagnostic decision based on PD3, PD4 and PD5

PD3 PD4 PD5

Patient D1 D2 D3 D1 D2 D3 D1 D2 D3

Decision

P1 0.90 0.86 0.86 0.938 0.938 0.938 0.72 0.72 0.5 D1 or D3

After carrying out a thorough analysis of all membership degrees, we agree 

with the decision of accepting D1 or D3 as the disease that patient P1 suffers from. 
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Unfortunately, we cannot decide which disease is right since the obtained informa-

tion is not clear. We motivate making our choice in the way described below: 

1. The membership degree of D1 in PD3 is the largest value that convinces us to 

approve D1 as the most plausible disease; 

2. The matrix PD4 has all the membership degrees equal, which means that the 

decision is lacking; 

3. Finally, by rejecting the diagnoses D1 and D2 in P1, since they have the high-

est membership degrees in PD5, we leave D3 as the most probable diagnosis in 

the considered patient. 

The physician has sampled the data about the patient’s state and confirmed that 

P1’s health state is very severe. He risks a myocardial infarct in the substantial 

grade, which justifies our doubtful decision between D1 and D3.

Let us also provide a bit of information concerning another patient P2.

Example 3.17 

The data sample for P2 is placed in the matrix PS in the symptom order as 

]6.08.09.08.03.01.05.04.02.00[
2

10987654321

PPS

SSSSSSSSSS

.

Table 3.6 contains membership degrees that describe P2’s diagnostic conditions 

to decide his most credible diagnosis. 

Table 3.6: P2’s diagnostic decision based on PD3, PD4 and PD5

PD3 PD4 PD5Patient

D1 D2 D3 D1 D2 D3 D1 D2 D3

Decision

P1 0.90 0.86 0.86 0.86 0.86 0.9 0.8 0.8 0.5 D3

Once again we meet the patient’s case that is not easy to diagnose. The differ-

ences among the membership degrees representing PD3 are not substantial enough 

to indicate the diagnosis accepted for the patient. Even the degrees in the rejection 

matrix PD4, as close to each other, do not convince us completely about the choice 

of a proper diagnosis assigned to P2. Only the informative character of PD5 can be 

considered as reliable because of essential differences among the membership 

degrees placed in this relation. Since the value of D3 is smallest of all in PD5 then 

we will admit that the recognized diagnosis is identified as D3. The patient’s 

medical reports certify this choice as well.

We can observe some harmful effects of the maximum and minimum opera-

tions included in compositions of relations. These operations deprive many mem-

bership degrees of their power in the final decisions. Therefore we need to use 
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“softer” calculations that take into considerations all values presented by the ma-

trices “patient – symptom” and “symptom – diagnosis”.

Many patient cases that do not deliver diagnostic specifications in order to 

make a clear choice among diagnoses should be supported by complementary so-

lutions. We intend to discuss the supplementary details of diagnostic models in the 

next part of the dissertation. 



4 Complementary Solutions in Diagnostic Models 

4.1  Introduction 

We should admit that the case of patient P1 in Ex. 3.16 has not been very easy to 

solve especially when you consider the proper interpretation of PD3. By equipping 

us with equal values of the membership degrees it has not made it easy enough to 

make the proper choice of an unknown diagnosis.

Moreover, the patient has been examined only once according to existing re-

ports about his health. If the patient visits the doctor’s office more than one time, 

then we can notice some changes in values of biological parameters under consid-

eration. The increasing or decreasing values of clinical symptoms, when observing 

them many times, can absolutely exclude this diagnosis that has been approved 

after the first examination. The analysis of a diagnostic model extended in time 

could provide us with more accurate information that assists in making a better 

choice of a disease. 

To limit some doubtful diagnostic decisions made by means of mathematical 

tools, we propose the supplementary solutions handled in this chapter.

4.2  OWA Operators in Decision Relations 

The results from Ex. 3.16, obtained as the membership degrees taking place in five 

decision matrices, are possible to interpret even if the values in PD3 have become 

equal or the values in PD4 have not varied much from each other. Nevertheless, 

we desire to obtain clearer information that is accessible in the model’s final rela-

tions and to be capable of conveying a right conclusion.

The almost equal membership degrees calculated on account of (3.22), (3.24), 

(3.26), (3.28) and (3.30) have been influenced by an action of the maximum 

operation. By taking the maximum values in the sets of minimum compounds con-

sisting of PS and SD we have lost a large part of the useful information since only 

the largest values of compounds have affected output data. Even the application of 

(2.23) or (2.24) does not eliminate an unfavourable impact of the maximum opera-

tor.

To prevent a loss of valuable explanations in the future let us suggest another 

concatenation operation in a composition of two matrices, i.e., such a one which 

takes into consideration all membership degrees included in PS and SD.

Elisabeth Rakus-Andersson: Fuzzy and Rough Techniques in Medical Diagnosis and Medication,

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
StudFuzz 212, 63–91 (2007)
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 A new definition considering weights is now proven to make diagnostic results 

clearly interpretable. To accomplish new computations that should lead to an eas-

ier analysis of final results in the diagnostic model, we suggest making an ac-

quaintance with OWA aggregating operations. We thus cite a general definition of 

an OWA operator [46, 82, 84, 86]. 

Definition 4.1 

If x1, x2, …, xn are some estimates of the same quantity x, then an aggregation op-

eration called Ordered Weighted Averaging (OWA) has a type 

where a0, a1, …, an are constants. 

 The values x(1), x(2), …, x(n) are described in the terms of minimum and maxi-

mum as 
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21)1( n
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nxxx , where x(i) is the minimum of all the values ex-

cept the i
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, i.e.,
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nnxxxx , where x(i, j) is the minimum of 

all the values except the i
th

 and the j
th

;

etc.

Example 4.1 

The mean 
2

21
xx

 is the OWA operation for a0 = 0, a1 = a2 = 
2

1
. It can be ex-

panded in the series (4.1) as ))min(),max(min(
2

1
),min(

2

1

1221
xxxx . If we set x1

= 40 and x2 = 30 then ))40min(),30max(min(
2

1
)30,40min(

2

1

2

40

2

30
35

that is the exact value of the arithmetic mean for 30 and 40. 

Both Def. 4.1 and Ex. 4.1 should convince us about the classification of an 

arithmetic mean as a modern OWA operator. 

)()2(2)1(1021
)...,,,(

nnn
xaxaxaaxxxf , (4.1)
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Definition 4.2

We recall the general equation SDPSPD  showed in Section 3.2 that consti-

tutes the most important part in the diagnostic model. We define an operation, 

denoted symbolically by “ ” in order to compose two fuzzy relations PS and SD

introduced by (3.1) and (3.2) respectively. The membership function of the rela-

tion PD is proposed as 

The value of the quotient PD(P1, Dk) is a number belonging to the interval [0, 

1]. To explain it we first notice that ),(),(),(
1 kjSDkjSDjPS

DSDSSP  since 

both ),(
1 jPS

SP  and ),(
kjSD

DS  are less than one for all j and k, j = 1, …, n, k =

1, …, p. This causes the value of a product to be less than the values of both fac-

tors. We thus conclude that the numerator is less than or equal to the denominator, 

which guarantees that the entire value of the quotient is a member from [0, 1]; 

therefore it can be approved as a membership degree of the pair (P1, Dk).

We also notice that the sum placed in the denominator of the quotient never be-

comes equal to zero, since almost one of the examined symptoms must express 

any presence or decisive character for diagnoses included in the designed model. 

This assumption is very important for truthfulness of the diagnostic model that 

cannot provide operations on undefined structures. 

Let us accommodate (4.2) to the assumptions of (4.1). The value of a sum 

),(),(
1 knSDkSD

DSDS  and even the quantities ),(
kjSD

DS play roles of 

invariants for different patients, i.e., they become unchangeable for varying collec-

tions of ),(
1 jPS

SP , j = 1, …, n. The mentioned invariants can be reasonably re-

garded as constants in coefficients 

used in the sum (4.1). Further,
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for k = 1, …, p. The order of coefficients 
1
j

a , …, 
n

j
a  constitutes a new rear-

rangement of the sequence a1, …, an made in order to fulfil the assumptions of 

Def. 4.1. After explaining the meaning of (4.3) and (4.4) we can claim that the 

proposed operation (4.2) is certified to be assigned to the class of OWA operators. 

In the suggested formula (4.2) all membership degrees from the relations PS

and SD are equally valuable for computations. This means that each of the values 

affects a result. The membership degrees of the k
th

 column belonging to SD act as 

weights that balance the signification of tested symptoms. To summarize, we 

come to a conclusion that a proposed value of the membership degree for the pair 

(P1, Dk), computed by (4.2), has shown itself to be more intermediary when com-

paring it to an effect of the sharp value of maximum.

Let us accomplish necessary changes in (3.22), (3.24), (3.26), (3.28) and (3.30) 

to accommodate them to new circumstances forced by (4.2). 

We begin with the composition 
P

SDPSPD
1

 to change its membership 

function as 

while the relation 
D

SDPSPD
2

 has a membership function derived by the 

replacement of the relation 
P

SD  by SDD in (4.5). This yields a result 

for j = 1, 2, …, n, k = 1, 2, …, p.

The relations calculated by applying of (4.5) and (4.6) are involved in the equa-

tion ),(mean
213

PDPDPD  in which the relation PD3 is characterized by a 

membership function 
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The membership degrees of PD3 decide, as before, the approval of the most 

possible diagnosis in a diagnostic hierarchy. 

We upgrade diagnoses in another hierarchical order when we try to reject them. 

To exclude diagnoses which a patient cannot suffer from, we prepare a member-

ship function of 
P

SDPSPD )1(
4

 as 

for each diagnosis from the set D.

The last equation )1(
5 P

SDPSPD completes the conclusive material that 

helps us to exclude doubtful diagnoses in the examined patient. After adapting the 

operation (4.2) to (3.30) we get 

for j = 1, 2,…, n and k = 1, 2,…, p.

Let us confirm the validity of newly suggested operations (4.5)–(4.9) by recon-

sidering the well-known case that concerns the input data of patient P1 from Ex. 

3.16.

Example 4.2 

We use the entries of the same matrices PS, SDP and SDD that have already been 

tested in Ex. 3.16, but now we intend to perform the operations on their member-

ship degrees by executing the operations related to (4.5)–(4.9). 

The relation 
P

SDPSPD
1

, has a component PS, accepted according with 

Ex. 3.8 as

(4.7)
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]353.00004.09.0720.0632.0345.0653.0913.0515.01[
1

10987654321

PPS

SSSSSSSSSS

.

After the composition of PS with SDP, as recommended by (4.5), we find PD1

in the form of 

]353.00004.09.0720.0632.0345.0653.0913.0515.01[
11

10987654321

PPD

SSSSSSSSSS

75.075.086.0

938.0938.0938.0

86.086.0938.0

5.0062.0016.0

75.014.0016.0

938.086.0016.0

938.0938.086.0

86.086.075.0

938.025.0016.0

86.086.086.0

10

9

8

7

6

5

4

3

2

1

321

S

S

S

S

S

S

S

S

S

S

DDD

 = 
593.0591.0624.0

1

321

P

DDD

.

The membership degree of (P1, D1) has been induced by computations: 

),(
11

1

DP
PD

(1·0.86+0.515·0.016+0.913·0.75+0.653·0.86+0.345·0.016+0.632·

0.016+0.720·0.016+0.9·0.938+0.0004·0.938+0.353·0.86)/(0.86+0.016+0.75+0.86

+0.016+0.016+0.016+0.938+0.938+0.86) = 3.2899/5.27 = 0.624. 

After employing (4.6) the relation PD2 is decided to be a matrix 

1 2 3

2 1
0.635 0.581 0.616

D

D D D

PD PS SD P .

By utilizing (4.7) we determine the elements of PD3 as a one-row table 

604.0586.0629.0),(mean
1213

321

PPDPDPD

DDD

,
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in which the membership degrees distinctly appear as the indicators of a sequence 

of possible diagnoses taken in the order D1, D3, D2.

In order to confirm the decision made above, let us also consider results of the 

operations excluding diagnoses. The matrix PD4, calculated by applying of (4.8), 

is stated as 

407.0408.0375.0)1(
14

321

PSDPSPD

DDD

P .

PD4 clearly provides us with the order of rejected diagnoses. By taking into ac-

count the value order among membership degrees in the last relation, we reject 

diagnoses in P1 in the sequence D2, D3, D1. This still testifies the fact that D1 is the 

most probable illness typical of these symptoms that have been found and reported 

by a doctor for P1’s sake. 

The entries of PD5 are effects of performed operations in accordance with (4.9). 

They are written down in the matrix 

655.0624.0579.0)1(
15

321

PSDPSPD

DDD

P .

The numbers still assure that D1 should be assigned to P1 as the most probable 

diagnosis because of the least value of the membership degree accompanying D1

in the last “rejection” matrix. 

The final decision is now submitted in Table 4.1. 

Table 4.1:  Weighted relation compositions in the diagnostic decision 

PD3 PD4 PD5Patient

D1 D2 D3 D1 D2 D3 D1 D2 D3

Decision

P1 0.629 0.586 0.604 0.375 0.408 0.407 0.579 0.624 0.655 D1

There is no doubt that D1 satisfies all conditions that the optimal diagnosis 

should fulfil. The membership degree of D1 in the matrix of acceptance PD3 is the 

largest of all observed values. The membership degrees of D1 in the matrices of 

rejection PD4 and PD5 are the smallest that confirm the rules already discussed in 

Section 3.4. 

The next example explains how to use the OWA definition to compute the 

membership value of one entry belonging to the relation PD1.

Example 4.3 

The membership degree of (P1, D1), already evaluated in Ex. 4.2, also constitutes a 

result of the OWA definition expansion (4.1). 

If x1, x2, …, x10 are equal to ),(
11

SP
PS

, ),(
21

SP
PS

, …, ),(
101

SP
PS

 respec-

tively, then: 
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a0 = 0; 

x(1) = min(1, 0.515, 0.913, 0.653, 0.345, 0.632, 0.720, 0.9, 0.0004, 0.353) 

= 0.0004, which suggests accepting a1 as

178.0
27.5

938.0

),(),(

),(

11011

19

1
DSDS

DS
a

PP

P

SDSD

SD
;

x(2) = max(min(0.515, 0.913, 0.653, 0.345, 0.632, 0.720, 0.9, 0.0004, 

0.353), min(1, 0.913, 0.653, 0.345, 0.632, 0.720, 0.9, 0.0004, 0.353), 

min(1, 0.515, 0.653, 0.345, 0.632, 0.720, 0.9, 0.0004, 0.353), min(1, 

0.515, 0.913, 0.345, 0.632, 0.720, 0.9, 0.0004, 0.353), min(1, 0.515, 

0.913, 0.653, 0.632, 0.720, 0.9, 0.0004, 0.353), min(1, 0.515, 0.913, 

0.653, 0.345, 0.720, 0.9, 0.0004, 0.353), min(1, 0.515, 0.913, 0.653, 

0.345, 0.632, 0.9, 0.0004, 0.353), min(1, 0.515, 0.913, 0.653, 0.345, 

0.632, 0.720, 0.0004, 0.353), min(1, 0.515, 0.913, 0.653, 0.345, 0.632, 

0.720, 0.9, 0.353), min(1, 0.515, 0.913, 0.653, 0.345, 0.632, 0.720, 0.9, 

0.0004)) = max(0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 

0.0004, 0.345, 0.0004) = 0.345, which generates

003.0
27.5

016.0

),(),(

),(

11011

15

2
DSDS

DS
a

PP

P

SDSD

SD
;

…

x(10) = max(min(1), min(0.515), min(0.913), min(0.653), min(0.345), 

min(0.632), min(0.720), min(0.9), min(0.0004), min(0.353)) = 1. The 

corresponding coefficient a10 is a result of the computation 

163.0
27.5

86.0

),(),(

),(

11011

11

10
DSDS

DS
a

PP

P

SDSD

SD
.

Equation (4.1) is used as a basis of the evaluation of the membership degree 

),(
11

1

DP
PD )10(10)2(2)1(101021

)...,,,( xaxaxaaxxxf  =

0.178·0.0004 + 0.003·0.345 +  + 0.86·1 = 0.624. 

 The performed operations in Ex. 4.3 are not recommended to apply in practical 

cases. We only want to convince a reader that the proposed formula (4.2) is logi-

cally correct as a kind of the OWA operation introduced by (4.1). 

The use of weighed operations in decision equations (4.5)–(4.9) instead of ear-

lier suggested max-min compositions makes the diagnostic process clearer and 

more reliable. The differences among membership degrees in decision matrices 

are large enough to recognize the appropriate diagnosis without making a mistake.

 We can conclude that the common influence of all membership degrees, com-

puted in PS and SD, on values placed in the decision matrices PD1–PD5 improve 

the quality of a final decision. 

Some researchers, who deal with theoretical assumptions of fuzzy set theory, 

sometimes criticize operations containing computations of mean values. To defend 

this sort of calculations involved in the diagnostic model we should emphasize 

that each little change in the symptom index brings valuable information and can-
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not be lost in the decisive process. The results of operations that resemble mean 

estimates of some parameters assure that important input data will not disappear. 

4.3  Fuzzy Set Distances in Diagnostic Decisions 

The new operations introduced by the previous section have substantially eluci-

dated the changes made in the diagnostic model to get clear decisions. However, 

they cannot help when biological parameters measured in a patient indicate a ten-

dency to agree with more diseases than one. We thus observe little differences 

among membership degree values, or contradictory membership values in matri-

ces PD3, PD4 and PD5 that make the obtained specifications of the patient’s data 

almost unreadable. 

We can note that a conception of the metrics is a rather popular tool of investi-

gations in most interdisciplinary fields developed by researchers dealing with 

fuzzy set theory.

Let us recall the formula for computing a distance between two fuzzy sets [40, 

95].

Definition 4.3 

For two fuzzy sets A = {(xi, A(xi))} and B = {(xi, B(xi))}, determined in the uni-

verse X = {xi}, i = 1, …, n, the Euclidean distance d(A, B) between them is ap-

proximated by a formula [40, 95] 

The Euclidean distance d(A, B) maps [0, 1]  [0, 1] into R  {0} (the set of 

non-negative values) and fulfils the following conditions: 

1. d(A, B)  0, 

2. If A = B then d(A, B) = 0, 

3. d(A, B) = d(B, A),

4. d(A, C) d(A, B)” ”d(B, C),

where “ ” is a certain operation, e.g., addition. 

To comprehend an action of the formula (4.10) we go through a simple exam-

ple that explains the order of performed operations. 

Example 4.4 

We define two fuzzy sets A and B in the common universe X = [1, 10], where 

7
1

5
6.0

4
5.0

3
2.0A  and 

10
5.0

9
8.0

8
1

7
6.0

6
4.0

4
2.0B . At 

n

i

iBiA
xxBAd

1

2
))()((),( . (4.10)
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first the distance d(A, B) is pre-evaluated by a number 
2

)),(( BAd
2

)02.0(

2
)2.05.0(

222222
)5.00()8.00()10()6.01()4.00()06.0(

65.2  and afterwards measured by 63.165.2),( BAd .

The concept of a distance between fuzzy sets will be utilized in a diagnostic 

model in order to improve some decision criteria in doubtful cases. We count on 

the helpful role of a complementary distance method when analyzing almost equal 

membership degrees, or opposite values in decision matrices that do not provide 

us with clear conclusions. 

Let us restrict the set of diagnoses D to three diagnoses D1, D2 and D3 to make 

the following discussion comprehensive in details. The mentioned diagnoses can 

be found in patient P.

Suppose that the fuzzy set [56] 

is associated with the state of a total acceptance of each diagnosis. Each value of 

the membership degree in a one-row “ideal” acceptance relation-matrix, PD3,

should be compared to one. This matrix in reality, has other values of membership 

degrees computed for the symptoms evaluated for any patient P. The true set PD3

is generally stated as a fuzzy set (a one-row matrix) 

In Fig. 4.1 we draw ellipses to mark membership degrees of the pairs (P, D1),

(P, D2), (P, D3) coming from the set AP(PD3), and we use squares as symbols of 

genuine membership values found in PD3. Figure 4.1, built artificially for the pur-

pose of making concluding remarks, gives us some hints how to rank diagnoses. 

Due to an impression given by Fig 4.1 we should place them in order D1, D2, D3.

),(
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),( 1DP ),(
2

DP ),( 3DP
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Figure 4.1:  The comparison of sets PD3 and AP(PD3) for patient P

Moreover, Fig. 4.1 has another role to fill in; it ought to, via a general image 

about the distances between real and extreme decision values constructed for PD3,

provide us with conclusions that confirm the diagnostic order stated above. 

Let us now suppose that we theoretically choose diagnosis D1 with the total se-

curity, which introduces the membership degree equal to one in the place of 

),(
1

3

DP
PD

 in the new set 

Analogously, we introduce a set 

if we fully adopt D2 in the theoretical way in spite of its real value ),(
2

3

DP
PD

.

We also construct a set 

that corresponds to the acceptation of diagnosis D3 as a totally true decision. 

Let us first visually estimate a distance of 
1

)(
3 D

PDAP  from AP(PD3) by re-

garding the location of theoretically designed membership degrees of both sets in 

Fig. 4.2. All membership degrees are placed in the same manner as in Fig. 4.1 
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except for the degree of D1. If D1 is theoretically accepted without any doubts, 

then the sign marking its membership degree ),(
1

3

DP
PD

 in Fig. 4.1 should be 

removed to such a position in Fig. 4.2, that shows how the membership degree of 

1

)(
3 D

PDAP  covers the membership degree of AP(PD3) for the mutual diagnosis 

D1.

))((
3

PDAP

1

))((
3 DPDAP

),(
1

DP ),(
2

DP ),( 3DP

1.0

+

Figure 4.2:  The distance between 
1

)(
3 DPDAP  and AP(PD3)

To compare some measurements between other characteristic fuzzy sets, we 

theoretically accept D3 as an absolute diagnosis in P. This entails the following 

changes in Fig. 4.2: we move the membership degree of D3 to the position of one, 

and return with the membership degree of D1 to the previous location as calculated 

in PD3. By making the recommended corrections in Fig 4.2, we obtain Fig. 4.3 to 

evaluate the distance between the sets 
3

)(
3 D

PDAP and AP(PD3).

))((
3

PDAP

3

))((
3 DPDAP

),(
1

DP ),(
2

DP ),( 3DP

1.0

+

Figure 4.3:  The distance between 
3

)(
3 DPDAP  and AP(PD3)
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The closer analysis of Fig. 4.1, combined with visual estimations of distances 

revealed by Figs 4.2 and 4.3, provides us with the following conclusion: the larger 

value of the distance between 
k

D
PDAP )(

3
, k = 1, 2, 3, and AP(PD3) points to this

Dk that possesses the value of one in the set 
k

D
PDAP )(

3
 as the more truthful di-

agnosis in P.

It is obvious that D1, which has the largest value of all the membership degrees 

in the set PD3 in accordance with Fig 4.1, is the approved diagnosis in P. At the 

same time the distance of the set 
1

)(
3 D

PDAP , which is associated with D1, meas-

ured from AP(PD3) is the largest in comparison to other distances with respect to 

D2 and D3. This finally confirms that D1 should be approved as a recognized ill-

ness for P.

Let us formulate a conclusion by summing up the premises expressed above. 

Conclusion 4.1 

If the membership degrees in the acceptance matrix PD3 are almost equal or they 

differ a little from each other, then it will be rather impossible to find a proper 

diagnosis. We thus recommend an additional method based on distances between 

fuzzy sets. 

We will successively calculate the distances ),)(),((
33

k
Dk

PDAPPDAPdd

3,2,1k , in the case of three diagnoses belonging to the set D = {D1, D2, D3}.

The set D can be extended to as many diagnoses as we can assign to the consid-

ered symptoms. We finally approve this Dk that has contributed in the largest 

value of the distance dk, k = 1, 2, 3.

We apply (4.10) to find that 

and

To reach a higher grade of accuracy in medical diagnosis, we can also investi-

gate a possibility of rejecting the diagnoses when we still face some unclear data 

in PD3. If membership degrees in the matrices PD4 and PD5 do not differ essen-

2
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2331
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tially from each other, then they will concern us enough to make the best possible 

decision. To omit this obstacle we propose another diagnostic method based on 

distances. We preserve D = {D1, D2, D3} as a set of diagnoses. Let us introduce 

two sets 

and

The sets (4.19) and (4.20) correspond to the states of total rejections of all diag-

noses in P while the sets PD4 and PD5, constructed for patient P, are generally 

denoted as fuzzy sets (one row-matrices) 

and

Figure 4.4 lets us perceive the range of the distance between true rejection sets 

and total rejection sets if we preserve the indications (ellipses and squares) intro-

duced in Fig. 4.1. 

))(( )5(4PDJP

)( )5(4PD

),( 1DP ),(
2

DP ),( 3DP

1.0

Figure 4.4:  The comparison between PD4 (or PD5) and JP(PD4) (or JP(PD5))
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By following the same way of reasoning as in the case of accepted diagnoses, 

we consider a secure, theoretical choice of D1. This implies the set 
1

)(
4 D

PDJP in

which the membership degree of D1 takes the value of one. The set has an appear-

ance as a fuzzy set 

Since we are furnished with two matrices of rejection we should also introduce 

the set 
1

)(
5 D

PDJP , as a counterpart of 
1

)(
4 D

PDJP , in the form of 

The sets 
2

)(
4 D

PDJP and
2

)(
5 D

PDJP  correspond to an unquestionable exclu-

sion of D2 and are arranged as 

and

Finally, to refuse entirely an existence of D3 we place the value of one as the 

membership degree of D3 in sets 

and

Looking at Fig. 4.4 we experience that the larger value of a distance be-

tween
k

D
PDJP )(

4
, k = 1, 2, 3, and JP(PD4) (or

k
D

PDJP )(
5

 and JP(PD5)) is re-

lated to the more sensible rejection of this Dk that is recognized by the value of 

one in 
k

D
PDJP )(

4
 or 

k
D

PDJP )(
5

.
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D1, which now is represented by the smallest value in the rejection matrices 

PD4 and PD5 according to Fig. 4.4, is still the approved diagnosis for P. This holds 

true because the distance of the set 
1

)(
4 D

PDJP  from JP(PD4) (and probably the 

distance of 
1

)(
5 D

PDJP  from JP(PD5)) is smallest of all distances computed for D2

and D3 with respect to 
)()5(4

32

)(
DD

PDJP  and JP(PD4(5)).

We go through the observations that have been made lately and write them 

down as the following outline. 

Conclusion 4.2 

If the membership degrees in the rejection matrices PD4 and PD5 differ a little 

from each other, or they induce a contraposition in the diagnostic exclusion, then 

we will experience difficulties in pointing out some rejected diagnoses. In spite of 

this inconvenience we supply the next trial of the model improvement still based 

on distances between fuzzy sets. 

We estimate a sequence of distances 3,2,1),)(),((
44

'
kPDJPPDJPdd

k
Dk

,

(or ))(),((
55

''

k
Dk

PDJPPDJPdd ) for three diagnoses belonging to set D ={D1,

D2, D3} (the number of D’s members can be definitely enlarged). We reject this 

Dk, which has the largest value of the distance 
'

k
d  (or 

''

k
d ), k = 1, 2, 3.

Let us derive formulas for making calculations of distances. We introduce 

quantities of 

as well as 
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and

To make a final decision regarding a choice of the most probable diagnosis in 

vague decision circumstances we should elaborate the analysis of all obtained dis-

tances in accordance with the following criteria: 

1. We agree to this diagnosis Dk, for which the distance 
k

d , k = 1, 2, 3 (gener-

ally k = 1, 2, …, p) is largest; 

2. We neglect this diagnosis Dk, that influences the distance 
'

k
d  or 

''

k
d  to be the 

largest value for k = 1, 2, 3 (generally k = 1, 2, …, p).

The method based on distances assists the diagnostic model projected for the 

next patient P3, whose indices fit for all adequate diagnoses that have been associ-

ated with a collection of chosen symptoms. 

Example 4.5 

We assume that patient P3 suffers from one of the diagnoses that have already 

been investigated in Ex. 3.16. The examinations of ten symptoms, listed in Ex. 

3.1, have been converted to the values of membership degrees that constitute the 

contents of the one-row matrix PS. We exploit the formulas (4.5)–(4.9) to make 

the necessary computations collected in Table 4.2. 

Table 4.2:  The diagnostic decision concerning patient P3

PD3 PD4 PD5Patient

D1 D2 D3 D1 D2 D3 D1 D2 D3

Decision

P3 0.755 0.795 0.62 0.3 0.62 0.755 0.82 0.41 0.41 unknown

By taking into consideration the membership degrees in PD3, we are able to as-

sign to P3 either a D1 or D2 since they have the largest membership degrees. With 

respect to PD4 we should exclude D3 and D2 because they show the largest in 

magnitude degrees. However, this contradicts the results obtained in PD5 where 

D1 ought to be rejected since its membership degree is largest of all. We have 

come to contradictory conclusions that make P3’s diagnostic problem unsolvable.
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 In order to improve the data's decisive character we estimate the distances kd ,

'

kd  and 
''

kd , k = 1, 2, 3. Table 4.3 now consists of the revised specification of P’s

health conditions. 

Table 4.3:  The distances 
k

d ,
'

k
d  and 

''

k
d , k = 1, 2, 3, evaluated for patient P3

D1 D2 D3Patient

d1 '

1
d

''

1
d

d2 '

2
d

''

2
d

d3 '

3
d

''

3
d

Decision

P3 0.43 0.45 0.83 0.45 0.74 0.61 0.32 0.8 0.61 D1

Having compared 
1

d ,
2

d  and 
3

d  we can admit to a placement of D1 or D2 at 

the top of a hierarchy ladder of the considered diagnoses. The revision of 
'

1
d ,

'

2
d

and
'

3
d  gives us a tool for deciding that D2 and D3, as the diagnoses with the larg-

est rejection distances 
'

2
d  and 

'

3
d , are not taken into consideration anymore as 

possible diagnoses in P3. The numbers 
''

1
d ,

''

2
d  and 

''

3
d  do not vary from each 

other in the substantial grade anymore, which allows us to omit their influence on 

the final decision. Since D1 is characterized by the essential low value of 
'

1
d , and 

by the substantial high value of 
1

d  then we can take a risk of choosing this diag-

nosis as a primary diagnosis in the patient. The choice is confirmed by the experi-

enced physician who has examined P3.

The distance method of diagnosing can be helpful in cases that contain hardly 

interpretable or vague decision data, but we can imagine that a physician should 

obtain better diagnostic results after more than one examination of a patient. Some 

wider and richer reports of symptom observations can prevent a diagnostician 

from making a mistake when the clinical state of a patient shows a tendency to 

some changes. 

4.4  Diagnostic Processes Extended in Time Intervals 

This section refers to earlier results obtained in Chapter 3 and Section 4.2 and 

constitutes their essential complement and extension. A new assumption aims at 

the introduction of repeated medical examinations in which measurements of 

symptoms are regularly made. In this way we can render all essential changes in 

symptom values resulting in making an appropriate diagnostic decision. The 

model offered below concerns the observations of symptoms in an individual pa-

tient at a time interval. 

The behaviour of the symptoms over a period of time, conduces to the access of 

some additional information. This sometimes is very important in a diagnostic 

process in which several clinical pictures of a patient, obtained during a certain 
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time interval, differ from each other and point to different diagnoses. It may occur 

that the change in the intensity of a symptom decides an acceptance of another 

diagnosis, when, after some time, the patient does not feel better. 

The objective now is to fix an optimal diagnosis on the basis of clinical symp-

toms typical of several diagnoses with respect to the changes of these symptoms 

throughout time. Both the intensity of some symptoms, and the retreat of another 

group of them observed during a certain specific period of time, constitutes an 

additional factor that supports the selection of a diagnosis. 

In order to solve a diagnostic model extended in time, we again modify fuzzy 

relation equations as discussed in Subsections 3.4 and 4.2. Moreover, in the final 

decision concerning the choice of an adequate diagnosis, the adoption of a normal-

ized Euclidean distance is suggested as a measure between an objective decision 

and an ”ideal” decision. As usual we check the relevance of the model by testing 

some sampled clinical data. 

We consider three non-fuzzy sets representing only one patient [56, 58, 61]: 

1. A set of ”stages of observations” T = {T1, T2,…, Tm}, where each symbol Ti, i

= 1, 2, …, m, stands for a new phase of the examination; 

2. A set of symptoms S = {S1, S2,…, Sn} in which each biological symptom-

parameter Sj, j = 1, 2, …, n, has been described or measured in the successive 

examination Ti;

3. A set of diagnoses D = {D1, D2,…, Dp}, where to each diagnosis Dk, k = 1, 2, 

…, p, one may assign the symptoms occurring in the set S.

Each of the symptoms Sj S, j = 1, 2, …, n, is a fuzzy set with the membership 

function being modelled according to a kind of symptom (see Section 3.3) and 

allowing one to assign the membership degree to a fix value of this symptom. 

The ”stage – symptom” fuzzy relation formed as a collection of membership 

degrees of the pairs (Ti , Sj), i = 1, 2,…, m, j = 1, 2,…, n, is written down as a ma-

trix

The fuzzy relation TPS1  introduced by a membership function 

is one of components taking part in decision equations.

We now focus on the presence of symptom Sj in diagnosis Dk on one hand, and 

on the other hand, the decisive character of Sj for Dk so as to allow one to judge 
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the intensity of a relationship between the symptoms Sj and the diagnoses Dk. To 

each pair (Sj, Dk) we assign two membership degrees fixed for the linguistic vari-

ables ”presence” and ”decisive character” (see Subsection 3.4.1). By employing 

the technique already described in Subsection 3.4.2, we insert two fuzzy relations 

of “medical knowledge” listed as 

and

The fuzzy relations (4.35), (4.37) and (4.38) are elements of equations yielding 

relations TPD standing for connections ”stage – diagnosis”. These consist of pairs 

(Ti, Dk), i = 1, 2, …, m, k = 1, 2, …, p. By superposing the fuzzy relations TPS

with SDP or SDD with respect to the operation “ ” we reproduce the membership 

functions of relations TPD in accordance with the general formula 

for i = 1, …, m, j = 1, …, n and k = 1, …, p.

The inference rule modus ponens (cited in Subsections 3.2 and 3.4) induces an 

interpretation:

”If the symptom Sj emerges in stage Ti with the membership degree ),(
jiTPS

ST ”

and

“If the appearance of Sj results in Dk with the membership degree ),(
kjSD

DS
P

or ),(
kjSD

DS
D

”
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then

“The diagnosis Dk occurs in the stage Ti with the general membership degree 

TPD(Ti, Dk)”.

On the basis of the rule above we will consider a fuzzy relation equation 

as well as 

The relations TPD1 and TPD2 are parts of a mean rule leading to 

provided that the relation TPD3 is a crucial factor deciding the final acceptance of 

an optimal diagnosis after each examination T1, …, Tm.

An acceptance criterion for the diagnosis Sj at the stage Ti is the same as the 

conclusion stated in Section 3.4, i.e., the higher membership degree of the diagno-

sis Dk at the stage Ti corresponds to the more certain approval of Dk.

It can happen that the membership degrees in the row Ti of the relation TPD3

(i.e., at the stage Ti) differ a little and do not indicate the optimal diagnosis as a 

clear-cut decision. Therefore it is also recommended to inspect an opportunity of 

rejecting the diagnosis. 

Another rule of inference modus tollens, already familiar to us, creates a foun-

dation for the statement: 

”If the symptom Sj does not appear in stage Ti with the membership degree 1 – 

),(
jiTPS

ST ”

and

“It is true that Dk requires presence of Sj with the membership degree 

),(
kjSD

DS
P

”

then

“The diagnosis Dk is rejected in the patient at the stage Ti with the membership 

degree TPD(Ti, Dk)”.

The above interpretation of the modus tollens law involved in the diagnosis ex-

clusion gives rise to setting the next fuzzy relation equation 

P
SDTPSTPD

1 (4.40)

D
SDTPSTPD

2
. (4.41)
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By proving a modification of the same logical modus tollens law, we formulate 

the next equation as the compound operation involving the relations TPS and 1 – 

SDP in a relation 

The fuzzy relations TPD4 and TPD5 play an essential role in the rejecting of in-

adequate diagnoses at the successive stages Ti, i = 1, …, m. The higher the mem-

bership degree value of Dk at the Ti stage in TPD4 and TPD5, the greater the cer-

tainty that the Dk-diagnosis will be rejection. All the conclusions are valid for i =

1, 2, …, m, j = 1, 2, …, n and k = 1, 2, …, p.

The final decision concerning the acceptance of the proper diagnosis assumes a 

thorough analysis of the entire period of observations at the stages T1, T2,…, Tm.

The hierarchy of diagnoses during this period of time in a considered patient is 

established by the estimation of the Euclidean distances between fuzzy sets. 

Each diagnosis Dk, k = 1, 2, …, p occurring as the k
th

 column in the relations 

TPDt (“stage – diagnosis”), t = 1, 2, 3, 4, 5, is interpreted as a fuzzy set 

Let us demonstrate an uncomplicated example to make an interpretation of the 

set Dk a bit easier. 

Example 4.6 

We consider three diagnoses D1, D2, D3 in a relation TPD1, computed for four 

stages of symptom observations. The relation TPD1, written down as the matrix 
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introduces diagnosis D1 as the fuzzy set 
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A set of “total acceptance” or “total rejection” of diagnosis Dk on the basis of 

observed symptoms at stages T1, …, Tm, is assumed to be the set given by 

because the membership degree of the fully accepted diagnosis Dk in the relation 

TPD3 and the totally rejected diagnosis in TPD4 and TPD5, when considering each 

stage, should be equal to the rarely achieved value 

”

one”.

 The distance of the set Dk from the set D is estimated by applying the Euclidean 

normalized distance 

for t = 3, 4, 5 and k = 1, …, p.

It is easy to conclude that there exist some relationships between magnitudes of 

the distances ek estimated for Dk and the decisions of its acceptance or rejection 

from a set of diagnoses possible in a patient. The smaller the distance from the set 

D to the fuzzy set Dk, created in TPD3, the stronger the acceptance of the diagnosis 

Dk will be assumed in the considered patient. A similar conclusion concerns the 

diagnoses forming the columns of the relations TPD4 and TPD5, i.e., the small 

distance of Dk from set D that indicates the excluded illness in a patient. 

It ought to appear a theoretical connection, e.g., for two diagnoses D1 and D2:

a) If D1 is the accepted diagnosis, then D1 tends to have the smaller distance 

e(D1, D) than e(D2, D), for D1, D2 taken as the columns in TPD3.

b) If D2 is the rejected diagnosis, then D2 shows the smaller distance e(D2, D)

than e(D1, D), for D1, D2 appearing as the columns in TPD4 and TPD5.

The next medical sample of data is tested to prove the successful action of ob-

servations throughout time. 

Example 4.7 

The relation TPS, built for patient P1, collects the membership degrees assigned to 

his symptom values that have been estimated three times during separate visits at 

the hospital. We introduce TPS as the matrix 

m
TTT

D 111
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(4.46)
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326.00005.06.0436.0543.0634.0436.0320.0712.01

342.00008.07.0641.0576.0543.0569.0523.0875.01

353.00004.09.0720.0632.0345.0653.0913.0515.01

3

2

1

10987654321

T

T

T
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SSSSSSSSSS

.

 We note that the patient has improved the values of some unfavourable parame-

ters like smoking, hypertension and lack of physical activity after his first consul-

tation with a doctor. We can imagine that P1 has taken the doctor’s advice into 

serious consideration. 

 By using Eqs (4.40)–(4.42) we compute membership degrees of the relation 

TPD3 whereas Eqs (4.43) and (4.44) give rise to TPD4 and TPD5. All relations are 

demonstrated in Table 4.4. 

Table 4.4:  The relations TPD3, TPD4 and TPD5 made for P1

TPD3 TPD4 TPD5Stage

D1 D2 D3 D1 D2 D3 D1 D2 D3

Decision

T1 0.629 0.586 0.604 0.376 0.408 0.407 0.579 0.625 0.655 D1

T2 0.520 0.539 0.583 0.481 0.462 0.426 0.641 0.649 0.590 D3

T3 0.445 0.485 0.510 0.553 0.519 0.497 0.560 0.539 0.488 D3

The final decision, pointing out a right diagnosis, is rather clear on the basis of 

clinical symptoms observed during each distinct visit at the doctor’s. Let us prove 

the distance method according to (4.47) that helps us to weigh intensities of the 

examined symptoms in time. To carry out the comparison of all involved distances 

we place the obtained results in Table 4.5. 

Table 4.5:  The final acceptance of diagnosis by means of distances 

TPD3 TPD4 TPD5Patient

e1 e2 e3 e1 e2 e3 e1 e2 e3

Decision

P1 0.474 0.465 0.436 0.534 0.539 0.558 0.408 0.398 0.428 D3

To explain the procedure of computing the membership degrees that are the re-

sults of (4.47), we go through a basic example of executing the necessary opera-

tions to get e1 in TPD3 as 
222

3

1

1
)1445.0()1520.0()1629.0(e  = 

0.474.

We should reject D1 and D2 on the basis of the relations TPD4 and TPD5 for 

which e1 and e2 are the smallest values. The value e3 computed for TPD3 as the 

smallest of all confirms that D3 should be recognized for P1’s sake. We thus de-

cide that P1, who has suffered from D1 at the first examination stage, actually runs 

the high risk of going down with D3 (infarct) if he is not careful enough and does 

not improve risk factors in his parameters. 
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 The proposed method for establishing the correct diagnosis on the basis of 

clinical symptoms observed in time, constitutes an essential improvement of the 

diagnostic process because it optimizes the diagnosing by correction and verifica-

tion of decisions with respect being paid to the variability of symptoms in time. 

The changes in intensities of symptom presence at some time influence not only a 

choice of the most appropriate diagnosis, but also affect a rejection of less accu-

rate diseases. 

4.5  Rough Set Theory in the Classification of Diagnoses 

Rough set theory is a new mathematical approach to intelligent data analysis and 

data mining [50, 51, 52, 53].

Rough set philosophy is founded on the assumption that some information is 

associated with every object of the considered universe set. The objects character-

ized by the same information are indiscernible (similar) in view of the available 

information about them. The indiscernibility relation generated for similar objects 

is the mathematical basis of rough set theory. Any set of similar objects, being the 

equivalence class of the similarity relation, is called an elementary set. Any union 

of some elementary sets (equivalence classes) is a crisp set (a precise set). Such 

union of elementary sets, which has boundary-line cases, i.e., objects that cannot 

be classified with certainty, constitutes a rough set (an imprecise, vague set). 

 With any rough set, a pair of precise sets – called a lower and an upper ap-

proximation of the rough set – is associated. The lower approximation consists of 

all objects that surely belong to the set, and the upper approximation contains all 

objects that possibly belong to the set. A difference between the upper and the 

lower approximation constitutes the boundary region of the rough set. Approxima-

tions are two basic operations in the rough set theory. 

 Let us first introduce the theoretical background of rough sets and afterwards 

let us prove their usefulness via presenting a practical problem concerning medical 

diagnosing. All conceptions and annotations will be accommodated to a medical 

model to make it easier at the stage of practical interpretation.

 We start with an information system constructed as a data table whose columns 

are labelled by attributes. Objects of interest label the table rows, and entries of the 

table are attribute values. In a new scenario of the diagnostic discussion, inter-

preted now as a classification of diagnoses, we adopt the set of patients P = {P1,

…, Pm} with objects Pi, i = 1, …, m, as a universe set P. The set of condition at-

tributes S is established as a set of symptoms S = {S1, …, Sn}. With every attribute 

Sj S, j = 1, …, n, we associate a set }...,,,{
)(21 j

jjjj

St

SSSS
xxxV  of its values, 

called the domain of Sj. In the diagnostic problem the set 
j

S
V  will contain some 

linguistic terms or values of the membership degrees of Sj expressed by codes that 

correspond to the intensity grades of Sj. Any subset B of S determines a binary 

relation I(B) on B, which will be called an indiscernibility relation. The relation 

I(B) is defined by an inclusion operation 
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for each Sj B S, i, l = 1, …, m, j = 1, …, n, where Sj(Pi) denotes the value 

c

S
j

x , c = 1, …, t(Sj), of attribute Sj for the element Pi.

 The relation I(B) is reflexive because )()()(),(
ijijii

PSPSBIPP  for 

each Pi P.

 Since )(),()()()()()(),( BIPPPSPSPSPSBIPP
ilijljljijli

for Pi, Pl I(B), then I(B) will be a symmetric relation, too. 

 Finally, the assumptions (Pi, Pl) I(B) and (Pl, Pr) I(B) for Pi, Pl, Pr P

imply )(),()()( BIPPPSPS
rirjij

. I(B) thus is a transitive relation. 

 The sign “ ” is interpreted as “which is equivalent to”. 

 For the reason of such properties as reflexivity, symmetry and transitivity I(B)

is recognized as an equivalence relation.

 It is possible to make a partition of the set P, with respect to B, by means of the 

relation I(B) to obtain equivalence classes IB(Pi) defined by 

for each i, l = 1, …, m. The classes IB(Pi) are additionally called elementary sets. 

We realize that these sets contain the objects Pi, which are identical, i.e., in the 

considered case, they gather patients who suffer from a presence of the same 

symptoms characterized by the same intensity. 

 The symptoms Sj constitute the condition attributes in the diagnostic model. 

Besides these, we also consider a decision attribute – the diagnosis D1. D1 has a set 

of values determined as “yes” if it is found in the patient, “no” if the patient is free 

from it and “unknown” when a decision about the presence of the diagnosis cannot 

be clearly formulated.

By resuming the assumptions made so far we can come to a conclusion that the 

contents of the classification table, giving rise to the indiscernibility relation I(B),

corresponds to a triple (P, S, D1) in the model of diagnoses. The patients Pi are 

placed in the first column of the table, the three values of D1 appear in the last 

column while the rest of the table positions are filled with the values of condition 

attributes.

The aim of the classification, accomplished by I(B) or rather its equivalence 

classes, is to divide the patients belonging to P in three groups. These three groups 

are; a group of patients who surely are ill with D1, a sample of patients who may 

suffer from D1 and a collection of patients who do not have diagnosis D1.

Let us create a set Pyes P in accordance with the following definition 

)()(if)(),(
ljijli

PSPSBIPP , (4.48)

)}(),(:{)( BIPPPPIB
lili

, (4.49)
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for i = 1, …, m.
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 We now state two sets surrounded Pyes P that are treated as its lower and up-

per approximations. 

 The lower approximation B*(Pyes) of Pyes is built by an inclusion operator as 

and rendered as a set of these Pi that have D1 assigned with a full security. 

 Another set, the upper approximation B
*
(Pyes) of Pyes is designed by 

and accepted as a sampling of those objects Pi that possibly are members of the 

class D1 possessing the attribute “yes” (D1 = “yes”).

 The set Pyes is thus bounded by two sets in compliance with the inclusion 

B*(Pyes)  Pyes B
*
(Pyes) and referred to the approximation sets as rough or inex-

act with respect to B.

 Even a boundary set 

contains some useful information about the objects that are uncertain members of 

the class D1 = “yes”.

To measure a grade of membership uncertainty in D1 = “yes” for each Pi, we 

recommend applying the formula for computing membership degrees

in which the symbol “ ” denotes  the cardinality of a set (the number of elements 

belonging to a set). 

 A selection of the B-subset of S should be made with the special care to assure 

good classification results. We can measure a coefficient 
B

 called the accuracy 

of approximation in conformity with

to measure an adaptation grade of B to the decision table (P, S, D1).

yesiiyes
PPIBPPB )(:)(
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 We demonstrate the utility of rough sets in the diagnosis classification process 

by studying steps of the following example. 

Example 4.8 

In Ex. 3.1 we have already listed 10 symptoms that are the elements of the set of 

symptoms S. Let us select set B S as B = {S3, S4, S8, S9, S10}. Set B contains the 

most significant symptoms that are characteristic of diagnosis D1.

 We now prepare sets of values corresponding to the selected symptoms. 

 Since S3 and S4 are compound qualitative parameters measured by means of a 

questionnaire, then we can place their membership degrees in the continuous in-

terval [0, 1]. The quantitative indicators S8, S9 and S10 possess the same property. 

In order to vary some intensity grades of the symptoms’ appearance as discrete 

characteristic quantities, we construct the following codes associated with the 

membership values )(
iS

P
j

, j = 3, 4, 8, 9, 10, belonging to subintervals of [0, 1]. 

We assign the code 0 to 25.0,0)(
iS

P
j

, 1 – to 5.0,25.0)(
iS

P
j

, 2 – to 

75.0,5.0)(
iS

P
j

 and, finally, 3 – to 1,75.0)(
iS

P
j

. The codes generate 

sets }3,2,1,0{
j

S
V , j = 3, 4, 8, 9, 10.

Suppose that P = {P1, P2, P3, P4, P5, P6}. The patients P1, P2, P5 suffer from D1,

P3, P6 have D2 assigned and the diagnosis concerning D4 is unknown. We decide 

the members of set Pyes = {P1, P2, P5}. To regard Pyes as rough, we should find its 

lower and upper approximation. In this way we count on classifying the unknown 

object P4.

By assuming that the knowledge of clinical symptoms is absolutely correct, we 

fill in Table 4.6 known as (P, S, D1) that constitutes a basis for establishing an 

indiscernibility relation I(B).

Table 4.6:  The table (P, S, D1) in diagnosis classification 

Codes characteristic of symptoms Patients

S3 S4 S8 S9 S10

Decision

about D1

P1 1 1 2 1 2 yes

P2 2 3 1 2 3 yes

P3 2 2 2 3 1 no

P4 2 3 1 2 3 unknown

P5 1 2 2 2 2 yes

P6 1 1 3 2 1 no

 The relation I(B) consists of the pairs of patients (Pi, Pl), i, l = 1, …, 6, which 

when comparing rows i and l, all have equal codes. 

 We list I(B) as I(B) = {(P1, P1), (P2, P2), (P3, P3), (P4, P4), (P5, P5), (P6, P6), (P2,

P4), (P4, P2)}. The elementary sets of I(B) or its equivalent classes are given as the 

sets IB(P1) = {P1}, IB(P2) = {P2, P4}, IB(P3) = {P3}, IB(P4) = {P2, P4}, IB(P5) = 

{P5}, IB(P6) = {P6}.
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The lower approximation of Pyes is established as )(
* yes

PB {P1, P5} while its 

upper approximation is obtained as )(
*

yes
PB {P1, P2, P4, P5}.

The boundary set },{)(
42

PPPB
yesborder

.

The membership degrees, whose sizes confirm the patients’ membership in the 

D1 = “yes” class, have been evaluated as
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 We can assume that P1 and P5 have D1 with a one hundred percent confidence, 

while P2 and P4 may suffer from D1 to a certain grade. We can also notice that P4

affects a status of P2 negatively, and to the contrary, we can see that P2 upgrades 

an importance of P4 as a member in the D1 = “yes”-class.

 The accuracy approximation coefficient 
2

1
)(

yesB
P  does not give us a feel-

ing of absolute trust in the choice of set B as a reliable source of information in the 

finished classification. This configuration of symptoms is not sufficient for a reli-

able classification since the accuracy coefficient has a low value of 0.5. 

 The supplementary solutions, proposed in Chapter 4, may improve the basic 

diagnosis model discussed in Chapter 3. We may apply them in the patients’ cases 

that provide us with fuzzy data difficult to interpret in order to make a reliable 

decision. We thus should realize that a combination of different mathematical 

methods could support and improve an appropriate solution that is founded on 

clinical symptoms. 



5  Evaluation of Medicine Action Levels 

5.1  Introduction 

In the previous chapters, we have discussed some ways of determining the most 

credible diagnosis in a patient who could be identified by his set of clinical symp-

toms. The same symptoms are usually found in several illnesses. Therefore, it is 

often difficult to recognize the value of each of their deterministic yet individual 

characteristics all at once. After improving the diagnostic model by adding com-

plementary solutions we are at last aware of a diagnosis of the patient. The next 

step would be to prescribe him medication that will lead to a cure. It is seldom 

possible to give the patient only one remedy to remove completely all unfavour-

able symptoms. In order to broaden a list of medicines that complement each 

other, we usually want to evaluate levels of one medicine and its impact on all of 

the symptoms. Preferably, we want to estimate the lowest and the highest levels of 

effectiveness of the medicines tested, one by one, when considering their curative 

powers.

 We make a simple attempt of eigen fuzzy set theory applications to respond to 

the question concerning the possibility of deciding the degree of effectiveness on a 

drug that is expected to affect some of the determined symptoms. It can be con-

cluded that a final minimal and maximal level of the drug's action, found theoreti-

cally, does not change even if the patient takes the medicine for a long time. Such 

a conclusion is the result of adopting the eigen fuzzy set associated with a given 

fuzzy relation.

The existence of the greatest eigen fuzzy set of a fuzzy relation was confirmed 

in the 1980's [34, 72, 73, 78]. In the latest investigations, the scientists have 

proved that even the least eigen fuzzy set can be generated for the given relation 

[4, 24, 37]. The eigen fuzzy sets have already been applied to the evaluationf of a 

medicine's action levels when considering the medicine influence on clinical 

symptoms [27, 31, 64]. 

The basic operation, performed in the eigen problem, is the max-min composi-

tion already introduced in Chapter 2.

5.2  Theoretical Assumptions of Eigen Fuzzy Problem 

By studying the contents of Def. 2.11 we have approached the conception of a 

composition of two fuzzy relations.

Elisabeth Rakus-Andersson: Fuzzy and Rough Techniques in Medical Diagnosis and Medication,

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
StudFuzz 212, 93–126 (2007)
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 If we suppose that one of these relations is a fuzzy set, we can make the max-

min composition between the relation and the set, see Section 2.5. If the result of 

the composition is known in advance, then we will be prepared for demonstrating 

a particular case of the relation composition known as the eigen fuzzy problem. 

Definition 5.1 

Assume that }{xX  is a set of real numbers. The eigen fuzzy set of a fuzzy rela-

tion XXR  is a set XA  that satisfies the condition ARA .

R is the fuzzy relation determined as XXR with the membership function 

1,0),(,1,0: xxXX
RR

, x, x´ X. We prove that the eigen fuzzy set 

XA , 1,0)(,1,0: xX
AA

, x X, satisfying ARA , should exist. 

Some theoretical considerations that confirm the existence of set A are based on 

the papers of Sanchez [73, 74].

We define set A0 with 
0

)(
0

ax
A

 for all x X, where 

)),(max(min
0

xxa
R

XxXx

.

 The fuzzy connection 
00

ARA  is a true equality because of 

.,),()),(max,min(

))),(,(min(max))),(),((min(max)(

0

00

00

0

Xxxxaxxa

xxaxxxx

AR
x

R
x

RA
x

RA

 Hence, A0 is an eigen fuzzy set of R.

We have shown that at least one eigen fuzzy set can be found because the equa-

tion
00

ARA  is a true statement. 

The next set A1 is identified by its membership function given by

for all x´ X.

 The fuzzy sets, which are members of the sequence (An)n

exist for all integers n > 0. 

 The sets satisfy inclusions 

Before starting to prove (5.3) we will insert the definition of an inclusion A B

for two fuzzy sets A and B [12, 40, 88, 95]. 

),(max)(
1

xxx
R

Xx
A (5.1)

,,,,
11

2

123

1

112

n

nn
RARAARARAARARAA (5.2)

.
1210

AAAAA
nn (5.3)
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Definition 5.2 

Let A = {(x, A(x))} and B = {(x, B(x))} be two finite fuzzy sets in X. We say that 

A is a fuzzy subset of B (A B) if A(x) B(x) for every x X.

Example 5.1 

We define X = [0, 100]. Let A be a fuzzy set given by A(x) = s(x, 30, 50, 70) and 

let B be another fuzzy set introduced by B(x) = s(x, 10, 50, 90). Since A(x)

B(x) for all x X, as Fig. 5.1 reveals, then A B.

1007550250

1

0.75

0.5

0.25

0

x

y

x

y

)(xA

)(x
B

Figure 5.1: A B for A(x) = s(x, 30, 50, 70) and B(x) = s(x, 10, 50, 90) 

To confirm (5.3) we apply the mathematical induction. This method helps to 

prove the validity of a formula that contains a non-negative integer n. In order to 

accomplish the induction proof we follow three steps: 

1. The formula should be true for n = 0 (or other low values of n).

2. We assume that the formula is valid for n.

3. We prove the reliability of the formula for n + 1 by applying the induc-

tion assumption in the proof. 

Let us take n = 0. On the basis of the definition of A0 we conclude that 
10

AA

since )),(max(min)(
0

xxx
R

xx
A

)(),(max
1

xxx
AR

x

. We will deduce 

that an inclusion 
12

AA  is also true. By conveying, that )()(
12

xx
RAA
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))),(),((min(max
1

xxx
RA

Xx

)(),(max
1

xxx
AR

Xx

, for every x` X, we use 

Def. 5.2 to state that 
12

AA .

 We should now prove that an assumption 
1nn

AA  induces the conclusion 

nn
AA

1
, n N  {0}. We start with the assumption to get an implication 

nnnnnn
AARARAAA

111
, whose thesis 

nn
AA

1
is the true 

statement (the sign “ ” still stands for “is equivalent to”). 

The set A0 is the eigen set of R. A1, the other introduced set, rarely is a solution 

of the restriction 
11

ARA . If 
nn

ARA , for An being a member of the se-

quence of sets given by (5.2), we will allege that An is the expected greatest eigen 

set of the relation R that differs from A0. The set A0 is the least set in the chain of 

sets in (5.2), and all sets included between A1 and An are not eigen. 

Suppose that 
1210

AAAAAA
nnkn

; then the composition 

RA
n

leads to RRARA
n

n

1

1
.

11 nn

n
AARA

An thus is the greatest eigen fuzzy set of R provided that An = An+1. The inclu-

sion (5.3) ensures that 
1

AA
n

. Moreover, the inclusion confirms the existence 

of at least one An.

The introduction of the eigen set item is sufficient for medical applications pro-

posed in the further part of this chapter. For more mathematical details; we refer to 

works by Sanchez and other authors who have developed this topic [34, 72, 73, 

78].

There exist three fundamental algorithms of determining GEFS (the Greatest 

Eigen Fuzzy Set). We prefer adopting the procedure that consists of the commands 

listed below. 

Algorithm 5.1 

A relation XXR with the membership function ),( xx
R

is given. 

1.  Find the set A1 identified by ),(max)(
1

xxx
R

Xx
A

for all x´ X.

2.  Set the index n = 1. 

3.  Calculate RAA
nn 1

.

4.
3step toGo1

.

?

1
1

nnNo

AAYesnn
n

AA

We recall that membership degrees of An+1 are calculated as 

for each x´ X.

We demonstrate an action of the algorithm by selecting the greatest fuzzy set 

of a matrix introduced in the next example. 

))),(),((min(max)()(
1

xxxxx
RA

Xx
RAA

nnn (5.4)
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Example 5.2 

We wish to find the greatest fuzzy set of a matrix 

2.08.09.0

3.06.04.0

1.05.07.0

3

2

1

321

x

x

x

R

xxx

defined on X × X, for X = {x1, x2, x3}. The set A1 has the membership degrees of xj

found as the largest values in columns j, j = 1, 2, 3, and is thus determined as 

3.08.09.0
1

321

A

xxx

.

For n = 1 we obtain 

3.06.07.0

2.08.09.0

3.06.04.0

1.05.07.0

3.08.09.0
12

RAA .

 We estimate )(
1

2

x
A

, according to the max-min composition, as the quantity 

7.0)))9.0,3.0(),4.0,8.0(),7.0,9.0max(min(()(
1

2

x
A

.

 Since 
12

AA , we set n = 2 in Step 4. of Algorithm 5.1 in order to compute A3

as a set 

3.06.07.0

2.08.09.0

3.06.04.0

1.05.07.0

3.06.07.0
23

RAA

that satisfies the equality 
23

AA . The set A3 is accepted as the greatest eigen 

fuzzy set of the relation R and we notice that A3 holds A3 A2 A1.

It can be desirable to find the smallest eigen fuzzy set of a given fuzzy relation 

as well. In spite of some accomplished investigations [4, 24] let us propose our 

own contribution as the following proof of the least eigen fuzzy set existence. 

We define a new set A0 with 
0

)(
0

ax
A

 for all x X, where 

)),(min(max
0

xxa
R

XxXx

. A0 is the eigen set of R as it has been proved before.

The set A1 also gets new membership degrees determined by 
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for all x´ X.

 We preserve the same sequence of fuzzy sets (An)n, ,
1

112
RARAA

n

nn
RARAARARAA

11

2

123
,,  that satisfy inclusions 

 The boundary inclusion 
01

AA  in the chain is true because of

)(),(min)),(min(max)(
10

xxxxxx
AR

x
R

xx
A

.

To prove other inclusions in (5.6) we once again recall the assumptions of 

mathematical induction. To check if 
21

AA  we evaluate relationships among the 

membership degrees of both investigated sets. We make a comparison

)()(
12

xx
RAA

))),(),((min(max
1

xxx
RA

Xx

),(min xx
R

Xx

)(
1

x
A

,

with respect to x´ X, to get 
12

AA  according to Def. 5.2. 

The last connection certainly confirms that 
21

AA  since )(
1

x
A

)(
2

x
A

.

 The induction assumption 
nn

AA
1

 is utilized in the proof to get the conclu-

sion
1nn

AA . We begin with 
nn

AA
1

to compose both sides of the inclusion 

with R in the way: RARA
nn 1

. The last inclusion is equivalent to 

1nn
AA .

As in the previous case the set A0 is the eigen set of R, while A1 seldom is re-

garded as eigen. Let us assume that An is one of the sets listed in (5.6) and fulfils 

nn
ARA for .

0121
AAAAAA

knnn
 Then An will be the 

least eigen fuzzy set (LEFS) of the relation R that is different from A0. We notice 

that A0 is the greatest set in the collection of sets in (5.6) and eigen as well, and we 

cannot find other eigen sets between A1 and An, thus An must be the least eigen set. 

To evaluate the least eigen fuzzy set of R we make an important change in Al-

gorithm 5.1, namely, we state A1 accordingly to the definition proposed by (5.5). 

Algorithm 5.2 

A relation XXR with the membership function ),( xx
R

is given. 

1.  Find the set A1 defined by ),(min)(
1

xxx
R

Xx
A

for all x´ X.

2.  Set the index n = 1. 

3.  Calculate RAA
nn 1

.

4.
3step toGo1

.

?

1
1

nnNo

AAYesnn
n

AA

),(min)(
1

xxx
R

Xx
A (5.5)

.
0121

AAAAA
nn (5.6)
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Example 5.3 

By returning to Ex. 5.2 we repeat the matrix 

2.08.09.0

3.06.04.0

1.05.07.0

3

2

1

321

x

x

x

R

xxx

defined on X × X, X = {x1, x2, x3}. We then intend to calculate the entries of the 

least eigen fuzzy set. The membership degrees of xj in the set A1 are the smallest 

values in columns j, j = 1, 2, 3, when applying (5.5). Hence, 

1.05.04.0
1

321

A

xxx

.

For n = 1 we create A2 as a fuzzy set

3.05.04.0

2.08.09.0

3.06.04.0

1.05.07.0

1.05.04.0
12

RAA .

that satisfies 
12

AA . We thus put n = 2 in Algorithm 5.2 to find A3

3.05.04.0

2.08.09.0

3.06.04.0

1.05.07.0

3.05.04.0
23

RAA .

A3 is the component of the equality 
23

AA . The set A3 will be treated as the 

least eigen fuzzy set of the relation R. By the way, we check that A1 A2 A3,

which confirms the proper choice of the least set. 

The relation R keeps the given fuzzy set invariant. An occurrence in which the 

system (the matrix) does not produce any effect on the given input (the eigen set), 

apparently fits to the medical appearance when a medicine has no more effect in 

the curative process. If the relation is stated as “pharmacological knowledge” 

about some configurations of drug effectiveness created for pairs of symptoms, 

then an eigen set of the relation estimates, via its membership degrees, the medi-

cine effectiveness level related to each symptom.

 In the next subsection, we will suggest two definitions of fuzzy relations of the 

“pharmacological knowledge” type. The relations contribute in deciding the mem-
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bership degrees of eigen fuzzy sets associated with them. These in turn give us a 

tool of determining the lowest and the highest threshold of the drug action on a 

collection of selected medical symptoms. 

5.3  Eigen Sets in Medicine Effectiveness Levels 

By possessing the results of examinations carried out on a group of patients with 

some symptoms, we can then estimate a theoretical level of effectiveness concern-

ing medicine that is recommended to the patients belonging to the considered 

group. We involve the eigen problem technique for fuzzy sets to make a trial of 

finding the minimal and the maximal level of recovery. Although the range is 

stated theoretically, it ought not to change in practice during an extended period of 

treatment.

 Let us assume that some characteristic symptoms are found in a sample of m

observed patients. All patients have the same symptoms. These should disappear 

entirely after the treatment if the drug is highly effective. Nevertheless, the symp-

toms can persist when the drug is not efficient enough.  

 Let us denote a set of symptoms by S = {S1, …, Sn}. Sj is the j
th

 symptom, j = 1, 

…, n, and S is non-fuzzy. 

 The estimation of the maximal level is possible by employing a fuzzy relation, 

created due course to the definition formulated by a sentence: “The action of the 

drug on the j
th

 symptom is equal or stronger than on the k
th

 symptom in patient, j, k

= 1, …, n”. We call the relation Rmax and we realize that Rmax is a set of pairs (Sj,

Sk). The membership degree ),(
max

kjR
SS , as a number from the range [0, 1], 

indicates the grade to which the statement defining Rmax is true for the j
th

 and the 

k
th

 symptom [27, 31].

 A comparison of the drug's influence on the considered symptoms has to be 

executed for each pair of the relation Rmax. Suppose that m denotes a number of 

patients having been examined (the sample cardinality). If b stands for a number 

of patients for whom the description of Rmax constitutes a true sentence, then we 

will compute the membership degrees ),(
max

kjR
SS  as 

for j, k = 1, …, n.

Example 5.4 

As a simple example that explains a way of estimating the membership degree for 

two symptoms included in the same pair, we consider a group consisted of seven 

patients. Suppose that “–” is assigned as the lack of a symptom after the treatment 

and “+” designates its presence in the patient after the medication [27, 31]. 

m

b
SS

kjR
),(

max
(5.7)
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 To count b, we should consider two configuration patterns of these signs, i.e.,

“–” “–” that is interpreted as “The drug acts as strongly on Sj as on Sk”,

 “–” “+” that corresponds to “The drug acts more strongly on Sj than on Sk”.

 The first combination of signs signals that the examined patient is now rid of 

both symptoms tied to each other by the considered pair order. The second ar-

rangement of signs explains that the patient is recovered from the first symptom 

while the second symptom is still prevailing after the treatment. 

 These configurations can be arranged as the contents of Table 5.1. 

Table 5.1:  Sign configurations for symptoms Sj, Sk in P1–P7

Patient Sj Sk

P1 – – 

P2 – + 

P3 – + 

P4 + + 

P5 – – 

P6 + – 

P7 + + 

 The membership degree of the pair (Sj, Sk) is evaluated as 0.571 (4/7) and for 

(Sk, Sj) as 0.429 (3/7). 

 The fuzzy relation Rmax can be written down as a matrix 

 We should emphasize that a diagonal entry ),(
max

jjR
SS of Rmax has b esti-

mated as a number of “–” signs counted for Sj.

 Next, we utilize the conception of the greatest eigen fuzzy set associated with 

the relation Rmax. Due to Def. 5.1 there exists the greatest fuzzy set in the universe 

S that is associated with Rmax. The set is called Amax, and we include it, as a crucial 

part, in an equation 

Amax is a result of computations due to Algorithm 5.1, in which A1 is defined by 

(5.1). The relation, designed in accordance with the statement: “The drug acts 

equally or more strongly on the j
th

 symptom than on the k
th

 symptom, j, k = 1, …, 

n”, has its eigen set Amax. The set Amax does not change in spite of many composi-

tions with the relation. This lack of variations leads to a conclusion that the mem-

),(),(),(

),(),(),(

),(),(),(

maxmaxmax

maxmaxmax

maxmaxmax

21

22212

12111

2

1

max

21

nnRnRnR

nRRR

nRRR

n

n

SSSSSS

SSSSSS

SSSSSS

S

S

S

R

SSS

.

(5.8)

maxmaxmax
ARA . (5.9)
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bership degrees of Amax show a level: “the drug action on the considered symp-

toms is not stronger”. Amax can thus be an indicator of how to estimate the maxi-

mal level to which the medicine can be effective since, evidently, Amax is the great-

est solution of Eq. (5.9) in the sense of the largest membership degree values. 

 Estimation of the minimal medicine effect aims at stating another fuzzy relation 

Rmin proposed as a clue: “The action of the drug on the j
th

 symptom is equal or 

weaker than on the k
th

 symptom in patient, j, k = 1, …, n.” The suggested formula 

of calculating membership degrees of Rmin is similar to Eq. (5.7), but arrangements 

of the signs used before should be reconsidered to find b. We take into account the 

configurations:

“–” “–” that is valid if: “The drug acts as strongly on Sj as on Sk”,

“+” “–” that is approved if: “The drug acts more weakly on Sj than on Sk”.

The relation Rmin also generates its own, this time the least, eigen fuzzy set Amin

that constitutes the compound of an equation 

To decide Amin we perform the steps of Algorithm 5.2 in which the membership 

function of A1 is yielded by (5.5). 

Since Amin does not change its membership degrees after the next composition 

with Rmin = “The drug works equally or more weakly for the j
th

 symptom in com-

parison to the k
th

 symptom”, then the membership degrees of the least eigen set, 

corresponding to symptoms S1, …, Sn, should point out the minimal effectiveness 

level. Amin is the least eigen set of Rmin, and its existential meaning can be adequate 

to the thesis “the action of the medicine on the considered symptoms cannot be 

weaker”.

We treat the values of )(
min

jA
S  and )(

max
jA

S , j = 1, …, n, as borders of this 

interval that limits the range of medicine effectiveness for each symptom Sj. Even 

if we obtain ranges for single symptoms, we should realize that these results are 

effects of the simultaneous appreciation of the medicine strength measured for 

pairs of symptoms when following the relations’ definitions. 

Example 5.5 

The diagnosis D known as a throat inflammation is recognized by the set of symp-

toms S = {S1 = “sore throat (pain)”, S2 = “temperature”, S3 = “inflammation

state”}. The physician has prescribed Bayer’s aspirin as a remedy that should im-

prove the health conditions in the group of 30 patients suffering from throat in-

flammation.

 By applying Eq. (5.7) and the sign pattern “–” “–” and “–” “+” we compute 

Amax as 

minminmin
ARA . (5.10)
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6.06.06.0

8.08.08.0

5.05.05.0

3

2

1

max

321

S

S

S

R

SSS

with the corresponding greatest eigen fuzzy set decided as 

8.08.08.0
max

321

A

SSS

.

 Equation (5.7), in which the quantity of the associations “–” “–” and “+” “–” 

constitutes a basis of the b value computations, results in the relation Amin yielded 

as the matrix 

6.08.05.0

6.08.05.0

6.08.05.0

3

2

1

min

321

S

S

S

R

SSS

possessing the least eigen set

6.08.05.0
min

321

A

SSS

.

 By interpreting the membership degrees of Amin and Amax in the percentage scale 

we conclude that Bayer’s aspirin removes S1 in 50%–80% and S2 – in 80%. S3

disappears in 60%–80% in the sample of examined patients.

By constructing the relations we consider the drug influence on pairs of symp-

toms to learn about the symptoms’ interactions in the process of reacting on the 

treatment. Even if we appreciate effectiveness levels for individual symptoms, we 

will be aware of the complex dependency among symptoms that affects single 

ranges. This aspect of complexity is an advantage of fuzzy research when compar-

ing fuzzy results to computations of statistical ranges that do not consider interac-

tions among the examined objects.

 We have engaged two different eigen sets to estimate effectiveness ranges. In 

spite of this, we sometimes could not find two boundaries of the range as in the 

case of S2. In the next subsection, we will extend the procedure of deciding eigen 

sets by adding to them fuzzy numbers. 
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5.4  Order Operations on Fuzzy Numbers

Our next attempt to appreciate a drug level is accomplished by using another ap-

proach to eigen fuzzy sets. In contrast to the previous method presented in Section 

5.3, we introduce fuzzy numbers as the membership degrees of a relation R instead 

of real numbers belonging to the interval [0, 1].

 The fuzzy number is also a fuzzy set that fulfils some particular conditions. 

Since we do not intend to apply fuzzy numbers defined on finite sets, we would 

like to quote the definition of the fuzzy number that has a continuous support [19, 

20, 22, 23, 25, 36, 40, 42, 47, 95]. 

Definition 5.3 

The fuzzy number N is a fuzzy set of L-R type in the real universe Z if there exist 

two continuous reference functions L, R and scalars 0 , 0  included in the 

membership function of N as follows 

z Z, where m, called the mean value of N, is a real number, and  and  are 

called the left and right spreads, respectively. The functions L and R map 

1,0inR . L should satisfy L(0) = 1, L(z) < 1 for every z > 0; L(z) > 0 for every z

< 1; L(1) = 0. The same conditions refer to R. Symbolically, N is denoted by N =

(mN, N, N). We state a notion of the space of fuzzy numbers in the L-R represen-

tation as FN(LR). For the purpose of medical applications, we suppose that only 

fuzzy numbers satisfying the condition mN  0 belong to the space.

 To be able to construct a practical version of the membership function we 

propose the L(z) and R(z) functions as [25, 63, 64] 

for z Z.

By studying (5.11) and (5.12) we realize that N is such a fuzzy set whose mem-

bership function forms a triangle with the peak at the point (mN, 1). The left side of 

the triangle has increasing values of the membership degrees from zero to one, 

while the right side is as a slope that goes down to zero. 

 The triangles constitute the most popular shapes of membership functions as-

signed to fuzzy numbers.

,for

,for

)(

mzm
mz

R

mzm
zm

L

z
N (5.11)

1)()( zzRzL (5.12)
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Example 5.6 

We perform the operations defined by (5.11) and (5.12) to find a membership 

function of the fuzzy number N = (40, 2, 3). 

 We accommodate (5.11) to m = 40,  = 2,  = 3. The argument z in L(z) is re-

placed by 

2

40 z
and in R(z) – by 

3

40z
. We obtain a function 

,4340for
3

43

3

40
1

3

40

,4038for
2

38

2

40
1

2

40

)(

z
zzz

R

z
zzz

L

z
N

that is plotted in Fig. 5.2.

4542.54037.535

1
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0.5

0.25

0

mi(z)

z

mi(z)
N(z) 

Figure 5.2: The fuzzy number N = (40, 2, 3) 

The arithmetic over the space FN(LR) is discussed in many research reports 

[19, 20, 22, 25, 26, 36, 40, 42, 47, 95]. In particular, order operations in FN(LR)

attract the scientists’ attention [16, 18, 19, 20, 23, 36, 42, 47, 79, 95]. Below we 

discuss two sorts of order operations on fuzzy numbers in the L-R form to select 

the most applicable operations and to reconsider the eigen fuzzy model.

Let us first study an approach to minimum and maximum operations proposed 

by Dubois and Prade [19, 20]. 
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Definition 5.4 

Minimum for two fuzzy numbers ),,(
111

1 NNN
mN , ),,(

222
2 NNN

mN  is 

decided to be a fuzzy number

or

Example 5.7 

We set N1 = (25, 2, 3) and N2 = (40, 1, 5). Since the sets supp(N1) = [23, 28] and 

supp(N2) = [39, 45] have no common elements we immediately decide that 

min(N1, N2) = N1 as pointed out in Fig. 5.3. 

50454035302520

1

0.75

0.5

0.25

0

x

y

x

y

N1=min(N1,N2)

                      N2

z

(z) 

Figure 5.3:  Minimum for N1 = (25, 2, 3) and N2 = (40, 1, 5) according to (5.13) 

Let us explain the meaning of (5.14) by investigating data involved in the next 

example.

0)supp()supp(andif
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21

21

21

111
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mNN

NN

NNN

(5.13)
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212121

NNmmmm

mmNN

NNNN
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(5.14)
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Example 5.8 

We let N1 = (40, 2, 3) and N2 = (42, 1, 5). In accordance with (5.14), when the 

intersection of supp(N1) = [38, 43] and supp(N2) = [41, 47] is not the empty set, 

we decide min(N1, N2) = (min(40, 42), max(2, 1), min(3, 5)) = (40, 2, 3). 

The membership function of the minimal fuzzy number (40, 2, 3) has a formula

,4340for
3

43

,4038for
2

38

)(
)3,2,40(

z
z

z
z

z

illustrated by the graph drawn in Fig. 5.4, see Ex. 5.6. 
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Figure 5.4:  Minimum for N1 = (40, 2, 3) and N2 = (42, 1, 5) made by (5.14) 

 Another definition lets us determine the largest fuzzy number chosen for two 

numbers from the pair (N1, N2).

Definition 5.5 

Maximum for ),,(
111

1 NNN
mN  and ),,(

222
2 NNN

mN  is a fuzzy number

alternatively

0)supp()supp(andif

),,(),max(
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21
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NNmm

mNN

NN

NNN

(5.15)
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Example 5.9 

For two numbers from Ex. 5.7 N2 is found as the rightmost element and the maxi-

mal fuzzy number in the pair (N1, N2) in compliance with Fig. 5.5. 
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212
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Figure 5.5:  Maximum for N1 = (25, 2, 3) and N2 = (40, 1, 5) due to (5.15)

Example 5.10 

Again we set N1 = (40, 2, 3) and N2 = (42, 1, 5). By applying (5.16) we choose 

max(N1, N2) = (max(40, 42), min(2, 1), max(3, 5)) = (42, 1, 5). 

The maximal fuzzy number is given by a membership function 

,4742for
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5

42
1

5

42
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sketched in Fig. 5.6. 
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N2=max(N1,N2)N1

Figure 5.6:  Maximum for N1 = (40, 2, 3) and N2 = (42, 1, 5) computed by (5.16)

We emphasize that the results of (5.13)–(5.14) and (5.15)–(5.16) are fuzzy 

numbers preserving the L-R representation and a triangular shape. To make some 

conclusions about the usability of different approaches to the concept of order 

among L-R fuzzy numbers, let us also study another attempt of defining the order 

operations proposed by Chih-Hui Chiu and Wen-June Wang [16].

We start with the minimum notion. 

Definition 5.6 

1) Suppose that two fuzzy numbers N1 and N2 given in the L-R representation 

satisfy the condition supp(N1)  supp(N2)  0 (the supports of numbers are 

not disjoint). If continuous membership functions of N1 and N2 have one inter-

section point possessing the z-coordinate equal to zm that lies between the 

mean values 
1

N
m  and 

2
N

m , then 

2) If supp(N1)  supp(N2) = 0 (the supports of fuzzy numbers are disjoint) then 

we will exploit (5.17) for any value of zm that fulfils the restriction 

0))((
21

mNmN
zzzz  for all )(supp
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 and all )(supp
2

2

Nz
N

.

Let us first concentrate on the first part of Def. 5.6 that entails some comments. 
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Example 5.11 

Once again we consider N1 = (40, 2, 3) and N2 = (42, 1, 5).

N1 has the membership function expanded as (see Ex. 5.6 and Ex. 5.8) 

,4340for
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z
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while the function of N2 is expressed by (see Ex. 5.10) 
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Both functions have an intersection point between the lines 
3
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1
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N
 that provides us with zm = 41.5. Hence, we use (5.17) to get

.)(

,4743for0

,435.41for
3

43

))(),((min

,5.4140for
3

43

,4038for
2

38

))(),((max

)(

1

21

21

21

475.41

5.4138

),(min

z

z

z
z

zz

z
z

z
z

zz

z

N

NN
z

NN
z

NN

The result of applying (5.17) is exactly the same as the effect of adopting 

(5.14).

To study better the action of case 2) in Def. 5.6 we should go through the next 

example.

Example 5.12 

We test (5.17) related to case 2) of Def. 5.6 on N1 = (25, 2, 3) and N2 = (40, 1, 5). 

By returning to (5.11) and (5.12) we develop the membership function of N1 as
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while the membership function of N2 is equal to 
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The supports [23, 28] and [39, 45] are disjoint sets. We can thus choose the 

value of zm, say, 35 because of the condition 0)35)(35(
21

NN
zz  that is satis-

fied for all 28,23
1

N
z  and all 45,39

2
N

z . By returning to (5.17) we decide 

minimum for N1 and N2 as
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Maximum for two fuzzy numbers, from the point of view presented by [16], is 

outlined in the following statement. 

Definition 5.7 

1) If two fuzzy numbers N1 and N2 obtained in the L-R representation have a 

non-empty intersection between supp(N1) and supp(N2), and if there exists one 

intersection point for continuous membership functions of N1 and N2 that has 

the z-coordinate equal to zm placed between the mean values 
1

N
m  and 

2
N

m ,

then

2) For disjoint fuzzy numbers N1 and N2 (supp(N1)  supp(N2) = 0) we apply 

(5.18) for any value of zm, provided that 0))((
21

mNmN
zzzz  for all 

1
N

z )(supp
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N  and all )(supp
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Example 5.13 

We recall N1 = (40, 2, 3) and N2 = (42, 1, 5) from Ex. 5.11. For zm = 41.5 we de-

cide max(N1, N2) by means of its function

.)(
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 For two non-disjoint fuzzy numbers with one intersection point between their 

membership functions the results of Defs 5.4, 5.6 and Defs 5.5, 5.7 are coincident. 

We now discuss the case of searching the minimal number for a pair (N1, N2) that 

consists of fuzzy numbers intersecting each other in at least two points. 

Example 5.14 

Let N1 = (40, 7, 8) and N2 = (42, 3, 2). Let us set the numbers in (5.14) to establish 

min(N1, N2) = (min(40, 42), max(7, 3), min(8, 2)) = (40, 7, 2) that preserves the 

triangular shape in the L-R form, see Fig. 5.7. 

To watch effects of (5.17) we find the membership function of (40, 7, 8) as

.4840for
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The membership function of (42, 3, 2) is computed as
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As zm we accept the z-value solving the equation 
3

39

8

48 zz
. We find zm = 

41.45 and we check that it satisfies the inequality 
21

NmN
mzm .
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Figure 5.7:  Minimum for N1 = (40, 7, 8) and N2 = (42, 3, 2) as the result of (5.14)

By expanding (5.17) we construct a function presented below and depicted in 

Fig. 5.8. 
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 The result of (5.17), found as a minimal fuzzy number for N1 = (40, 7, 8) and 

N2 = (42, 3, 2), does not emerge as a fuzzy number in L-R representation, and 

moreover, this minimum does not maintain the shape of a regular triangle. 

The thorough analysis of properties, typical of the most popular approaches to 

order operations on fuzzy numbers, provides us with important hints as to the use 

of one alternative in further medical application. We wish to utilize these defini-

tions of order operations on fuzzy numbers that are easy to apply, and preferably, 

we expect the operations to yield triangular numbers in the L-R form. 
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Figure 5.8:  Minimum for N1 = (40, 7, 8) and N2 = (42, 3, 2) due to (5.17) 

 Hence, we choose operations (5.13)–(5.14) to look for the minimum and 

(5.15)–(5.16) to find the maximum for two fuzzy numbers in the L-R form. The 

formulas, selected above, are supposed to replace the order operations performed 

in algorithms that are developed to reveal eigen fuzzy sets. 

5.5  Eigen Fuzzy Sets with Fuzzy Numbers 

We use the operations on fuzzy numbers suggested by (5.13)–(5.14) and (5.15)–

(5.16) to propose a new conception of the composition of a relation with a set. 

This time both the relation and the set have membership degrees formed as fuzzy 

numbers in the L-R form.

Definition 5.8

We recall that FN(LR) = {N : N = (mN, N, N)}.

Let R be a fuzzy relation YXR , X = {x}, Y = {y}, with the membership 

function )(: LRFNYX
R

, )(),( LRFNyx
R

, YXyx ),( , and let A be 

a fuzzy set XA given by the membership function )(: LRFNX
A

, )(x
A

)(LRFN , Xx .

If the membership degrees )(x
A

),,(
)()()( xxx

AAA

m  of set A and the 

degrees ),( yx
R

),,(
),(),(),( yxyxyx

RRR

m  of the relation R are expressed by 
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fuzzy numbers belonging to FN(LR), then we will identify the set as RAB  by 

its membership function [34, 64] 

for all y Y. We keep in mind that the maximum and minimum operations are 

performed on fuzzy numbers from FN(LR) due to (5.13)–(5.16). 

Example 5.15 

Let X = {10, 20, 30}. Set A X is a fuzzy set whose membership degrees are 

stated as the L-R fuzzy numbers, e.g., in set Z = [0, 50]. For instance, A can be 

proposed as 

)4,3,15()2,3,20()7,5,30(
30

)4,3,15(

20

)2,3,20(

10

)7,5,30(

302010

A .

 The fuzzy relation XXR  (Y = X) is constructed in the form of a 3  3 

matrix. Each entry of the matrix R is approved as a fuzzy number with the support 

constituting a subset of Z. We can suggest the matrix R as a table 

)4,1,24()5,3,18()4,5,9(

)2,3,13()6,4,5()8,2,25(

)5,6,11()4,4,42()7,3,3(

30

20

10

302010

R

.

 We execute the operations suggested by (5.19), via (5.14)–(5.16) (see Ex. 

(5.7)–(5.10)), to get a subset of X denoted by B and computed as the fuzzy set 

30

)4,3,15(

20

)7,5,30(

10

)2,3,20(
)4,3,15()7,5,30()2,3,20(
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)4,3,15()2,3,20()7,5,30(B

B possesses the fuzzy numbers as its membership degrees.
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Example 5.16 

We intend to explain the difference between a type-1 (simple) fuzzy set B1 and a 

type-2 (compound) fuzzy set B2. In B2 the membership degrees are given as fuzzy 

sets. Let us accept 
30

15.0
20

3.0
10

2.0
1

B  while B2 is considered as, say, the 

result of Ex. 5.15. We thus take 
30

)4,3,15(

20

)7,5,30(

10

)2,3,20(
2

B .

The membership degrees of B1 are real values from [0, 1]. Hence, set B1 can be 

sketched in the x- (x) coordinate plane as the set of points (x, (x)) marked by 

ellipses in Fig. 5.9. 
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1.0

2.0

3.0

4.0

5.0

x

)x(µ

Figure 5.9:  The type-1 fuzzy set B1 = {(10, 0.2), (20, 0.3), (30, 0.15)} 

The picture of B2, see Fig. 5.10, is more sophisticated. We first assign supports 

of fuzzy numbers to the x-elements 10, 20, 30 belonging to X, and then we design 

the membership function for each support. The way from x to (z) via z is now 

three-dimensional and can be described as a path from the x-value to a segment 

along the z-axis and finally up along the (z)-axis for z  [0, 50]. 

When set B remains equal to A after the max-min composition with the relation 

R (see Def. 5.8) then we will regard A as the eigen fuzzy set of relation R. We still 

assume that all membership degrees of the set and the relation appear as L-R fuzzy 

numbers.
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Figure 5.10:  The type-2 set B2 = {(10, (20, 3, 2)), (20, (30, 5, 7)), (30, (15, 3, 4))} 

Definition 5.9 

The eigen fuzzy set of a fuzzy relation XXR  is a set XA , X = {x}, that 

satisfies the condition ARA .

R is the fuzzy relation with the membership function )(: LRFNXX
R

,

),( xx
R

)(LRFN , x, x´ X. We should prove that the greatest eigen fuzzy set 

XA  of relation R, )(: LRFNX
A

, )(x
A

)(LRFN , x X, which consti-

tutes a crucial part of the equation ARA , exists [64]. 

Some theoretical considerations that warrant the existence of the eigen fuzzy 

set, possessing fuzzy numbers as the contents, are similar to the conclusions in-

cluded in Subsection (5.2) and the papers of Sanchez [72, 73].

Let us first verify that the set A0 with its membership function defined by 
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since ),,(
000

NNN
m  is a constant fuzzy number. 

We further define the set A1 by its membership function 

for all x´ X, and we introduce the sequence (An)n of the type-2 fuzzy sets (the sets 

whose membership degrees are determined by other fuzzy sets – in this case – 

fuzzy numbers) 

for all integers n > 1. 

We conclude that 

that can be compared to (5.3). 

We prove the inclusions (5.22) in the same manner as the inclusions (5.3) but 

all the operations assisting the proofs are performed with respect to fuzzy numbers 

from FN(LR).

The set A0 always is the eigen set of R, while A1 sometimes is regarded as an 

eigen set of the considered relation. When 
nn

ARA  for An from the collection 

(5.21) then An will be the greatest eigen set of the relation R, and An seldom equals 

A0. To put this assertion to the test we repeat this method of concluding that was 

already accomplished in section 5.2, but we remember that fuzzy numbers replace 

membership degrees in all developments involving fuzzy sets and fuzzy relations. 

To find the greatest eigen set 
n

AA  of the fuzzy relation R we access Algo-

rithm 5.1 in which we execute the operations on fuzzy numbers in accord with 

(5.19). As the minimum and maximum operations, we exploit (5.13)–(5.16), 

which warrant that the results will be obtained as numbers in the L-R forms. The 

L-R forms in turn facilitate the interpretation of number membership functions. 

 The eigen value model producing eigen sets with fuzzy numbers as the mem-

bership degrees is essential in the fitness procedure when appreciating an upper 

threshold of the drug action. The supports of fuzzy numbers are supposed to indi-

cate effectiveness levels of the medicine that should bring some relief to a patient. 

),,(max

),(max),,()(

),(),(),(

)()()(
1111

xxxxxx
Xx

R
Xx

xxxA

RRR

AAA

m

xxmx

(5.20)

n

nn
RARAARARAARARAA

11

2

123

1

112
,,,  (5.21) 

1210
AAAAA

nn
, (5.22)



5.6  The L-R Fuzzy Numbers as Drug Efficiency Intervals     119 

5.6  The L-R Fuzzy Numbers as Drug Efficiency Intervals 

To obtain levels of drug efficiency that are bounded by a lower and an upper limit, 

we make a new attempt of solving the problem of appreciating the effectiveness 

level of a medicine when using it against the symptoms typical of an illness. We 

introduce a fuzzy relation with elements equal to fuzzy numbers in the L-R repre-

sentation to describe some connections among the symptoms. The fuzzy numbers 

that appear in the relation replace the verbal expressions decided by physicians in 

accordance with the definition of the relation. 

The fuzzy relation discussed in Subsection 2.5 is a counterpart of the fuzzy 

relation filled with fuzzy numbers. The latter produces an eigen fuzzy set whose 

membership degrees also are structured as fuzzy numbers. These, via their sup-

ports, appreciate the levels of drug influence on clinical symptoms [64]. 

Assume that a certain disease is characterized by some typical symptoms 

placed within the set of symptoms 
n

SSS ,,
1

. We try to appreciate the in-

fluence level of the drug on each symptom by researching an eigen fuzzy set asso-

ciated with the fuzzy relation SSR . We believe in the physicians’ experience 

and therefore we believe that the essential relief concerning one symptom, e.g., 

sharp ache, improves the patient’s mood and physical condition even if other 

symptoms still are present. We agree with this observation of the patients’ reaction 

on the treatment, and as an expression of our belief, we define the relation R by R

= “the cumulated effectiveness of the drug action for Si and Sj, i, j = 1, …, n”.

Let us state a content of the list with verbal descriptions of the effectiveness in 

accordance with the physician’s advice. The list containing the grades of growing 

effectiveness is proposed to be L = {N0 = “none”, N1 = “almost none”, N2 = “very

little”, N3 = “little”, N4 = “rather little”, N5 = “medium”, N6 = “rather large”, N7 = 

“large”, N8 = “very large”, N9 = “almost complete”, N10  = “complete”}.

In order to replace words by fuzzy numbers in the L-R form we utilize (5.12) 

and construct the membership functions of Nk, k = 0, 1, 2, …, 10, as 

Hence

 We are enabled to derive Eqs (5.23) in another manner as well. In similarity 

with Examples 3.9–3.11 we can arrange three atomic effectiveness descriptions 

such as “seldom”, “medium” and “large” to get the rest of formulations by adding 
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model shapes of all membership functions assigned to the effectiveness terms. 

Example 5.17 

The overview of different effectiveness designs is available in Fig. 5.11. We as-

sume that an adequate theoretical reference set for all terms describing effective-

ness is chosen as Z = [0, 100]. This even corresponds to the percentage scale 0%–

100%. Let us extend the interval to [–10, 110] to make space for all supports of the 

fuzzy numbers associated with the effectiveness. The numbers are placed along 

the z-axis that constitutes their common domain. 
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Figure 5.11:  Terms of drug effectiveness expressed as fuzzy numbers 

For instance, we set the value of k = 3 in (5.23) and involve (5.12) when we 

want to evaluate the membership function of “little” = N3. The structure “lit-

tle” )10,10,30(=
3

N has a membership function derived as 
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Denote the set of N0, …, N10 by E={Nk}, k = 0, 1, …, 10. The supports of the 

fuzzy numbers Nk are the subsets of the set 110,10  (the technical extension of 

[0, 100] that is the best reference set used in medicine). The spreads 10

are modelled after the consultation with the physicians who have advised these 

numbers as proper for the considered problem. 

hedges. Later, the specified values of the parameter  (see Subsection 3.4.1) let us 
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the effectiveness and the fuzzy numbers suggested by (5.23), we create the con-

tents of the relation R. The physician assigns the semantic structure describing the 

effectiveness of a tested medicine to the single symptom Si, i = 1, …, n. The fuzzy 

number Nk, k = 0, …, 10 substitutes this word afterwards. Nevertheless, we realize 

that we should propose a connective operator for fuzzy numbers representing the 

pairs of symptoms with regard to the definition of R.

The values of “effectiveness
k

ii
NS )( ” and “effectiveness

k
jj

NS )( ”, de-

scribing the medicine curative power in the case of the symptoms Si, Sj,

10,,1,0k , ,, ENN
kk

ji
 constitute crucial factors of the membership degree 

),(
jiR

SS  fixed by a formula [64] 

for nji ,,1, .

The aggregation operation for two fuzzy numbers suggested in (5.25) is based 

on the mean values that sometimes are the items of critical remarks. In spite of 

them, experienced physicians recommend the mean operations in medicine to 

avoid accepting too sharp results being effects of maximum and minimum opera-

tors. We even know that OWA aggregation operator techniques based on mean 

values [46, 81, 83, 85], already discussed in Subsection 4.2, have acquired a high 

preference in different applications. 

Example 5.18 

The mean 

2

kjki
NN

mm

 is the OWA operation for a0 = 0, a1 = a2 = 
2

1

and can be expanded in the sum (5.25) as 
1

min ,
2

i jk k
N N

m m

1
max min ,min

2
j ik k

N N
m m  accordingly to Def. 4.1.

If
ki

N
m = 40 and 

kj
N

m  = 30 then ))40min(),30max(min(
2

1
)30,40min(

2

1

2

40

2

30
35 .

)
2

,
2

,
2

(

2

),,(),,(

2
),(

kjkikjkikjki

kjkjkjkikikikk

NNNNNN

NNNNNNji

jiR

mm

mmNN
SS

(5.25)

After determining some relationship between the verbal expressions graduating 
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arithmetic mean is classified as a modern OWA operator and there is nothing 

wrong in its adaptation. 

If some symptoms are more important than others in the clinical picture of the 

disease, then a weighted aggregation operation ought to be used. We define a sim-

ple and intuitive scale of weights as the set, e.g., 4,3,2,1,,,
4321

hhhhH ,

where the value of 4 is reserved for symptom Si revealing the greatest importance 

in the observed disease. By importance we mean the harmful impact of a symptom 

on the patient’s state. Let us estimate a membership grade ),(
jiR

SS  of (Si, Sj) as 

for 4,3,2,1,10,,1,0,,,1,,,,, lknjiENNHhh
kkll

jiji
. The pro-

posed weights are related to the symptoms when the importance of the symptoms 

should be emphasized. 

If all weights are equal to 1 it will mean no important difference among the 

symptoms, and consequently we return to (5.25). 

Example 5.19 

Even the operations defined by (5.26) belong to the OWA category operators. For 

the mean value of the fuzzy number (5.26) we consider two cases: 

1) If 
kjki

NN
mm then, for a0 = 0, 

ll

l

ji

i

hh

h
a

1
and

ll

l

ji

j

hh

h
a

2
we create 

),max(),min(
kjki

ll

l

kjki

ll

l

ll

kjlkil

NN

ji

j

NN

ji

i

ji

NjNi

mm
hh

h
mm

hh

h

hh

mhmh

.

When we set, e.g., 30
ki

N
m , 50

kj
N

m , 4,3
ll

ji
hh then we will make 

a calculus 
43

504303
)50,30min(

43

3
),50,30max(

43

4
 see (5.26). 

2) For 
kjki

NN
mm we put a0 = 0, 

ll

l

ji

j

hh

h
a

1
and

ll

l

ji

i

hh

h
a

2
in the mean 

value of (5.26). We compute 

),min(
kjki

ll

l

ll

kjlkil
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ji

j

ji

NjNi

mm
hh

h

hh

mhmh

),max(
kjki

ll

l
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ji

i
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hh

h
.

ll

kjlkil

ll

kjlkil

ll

kjlkil

ll

kjkjkjlkikikil

ll

klkl

ji

NjNi

ji

NjNi

ji

NjNi
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NNNjNNNi
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jjii

jiR

hh

hh

hh

hh

hh

mhmh

hh

mhmh

hh

NhNh
SS

,,

),,(),,(

),(

(5.26)

The functional significance of Def. 4.1 is authorized by the results obtained in 

Ex. 5.18. We should now be totally convinced that the operation of computing an 
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43

304503
)50,30min(

43

4
)50,30max(

43

3
.

The relation R expresses the synchronized effectiveness of the drug action for 

every pair of symptoms. R has its eigen fuzzy set A that does not change after the 

next composition with it. The support of A consists of the elements of S, and the 

membership grades )(
jA

S  of Sj, j = 1, …, n, belonging to A are fuzzy numbers 

in the L-R representation. Furthermore, the supports of the numbers can be inter-

preted as the levels of medicinal action for the examined symptoms one by one.

 Set A, fulfilling ARA , is represented by the following connection derived 

for the membership functions, see (5.19) 

in which the maximum and minimum operations are performed due to (5.13)–

(5.16) for nji ,,1, .

 Let us designate ),,()(
)()()(

jAjAjA
SSSjA

mS  as A(Sj) in the next step 

of investigations. 

Even if the levels concern single symptoms, we shall remember that the posi-

tive reaction after the treatment, assigned to one symptom, also affects the ranges 

of other symptoms. The levels, established by means of the eigen set, do not 

change in spite of the extended curative period. 

Example 5.20 

We intend to test the designed model on clinical data from Ex. 5.5 that we have 

already been acquainted with.

By giving the patients Bayer’s aspirin we cure the inflammation of the throat. 

Patients who suffer from it are often troubled with selected symptoms; S1 = “sore 

throat (pain)”, S2 = “temperature”, S3 = “inflammation state”. Due to the physi-

cian’s opinion the approximate effectiveness of the drug has been decided as “m” 

= “medium” for S1, “vlg” = “very large” for S2 and “lg” = “large” in the case of S3.

The fuzzy relation R = “the cumulated effectiveness of the drug action for Si and 

Sj, i, j = 1, 2, 3” is then expressed by the table 

,)(),(),(),(

),,,()())),(),((min(max)(
)()()(

LRFNSSSS

mSSSSS

jiRjAiA

SSSjAjiRiA
SS

jRA
jAjAjA

i

(5.27)

If , for example, 50
ki

N
m , 30

kj
N

m , 4,3
ll

ji
hh , then we will prove 
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lg"" vlg"andlg""m""andlg""

lg""andvlg""vlg""m""andvlg""

lg""andm"""vl"andm""m""

3

2

1

321

g

S

S

S

R

SSS

.

After assigning the weights 4, 2 and 3 to S1, S2 and S3 respectively, we form in 

accordance with (5.24) and (5.26) the table

3

)10,10,70(3

23

)10,10,80(2)10,10,70(3

43

)10,10,50(4)10,10,70(3

32

)10,10,70(3)10,10,80(2

2

)10,10,80(2

42

)10,10,50(4)10,10,80(2

34

)10,10,70(3)10,10,50(4

24

)10,10,80(2)10,10,50(4

4

)10,10,50(4

R

as a counterpart of the linguistically defined relation R. We compute the entries of 

R to get it in the final version 

)10,10,70()10,10,74()10,10,59(

)10,10,74()10,10,80()10,10,60(

)10,10,59()10,10,60()10,10,50(

R

.

To determine the corresponding greatest eigen fuzzy set A we exploit the steps 

of Algorithm 5.1 as follows. 

1. A1 is decided as a type-2 fuzzy set 

)10,10,74()10,10,80()10,10,60(
1

321

A

SSS

.

2) The action of (5.13)–(5.16) leads to the first composition of A1 with R and re-

sults in 

.)10,10,74()10,10,80()10,10,60(

)10,10,70()10,10,74()10,10,59(

)10,10,74()10,10,80()10,10,60(

)10,10,59()10,10,60()10,10,50(

)10,10,74()10,10,80()10,10,60(
2

A

3) Since A2 = A1 we accept A = A2.



5.6  The L-R Fuzzy Numbers as Drug Efficiency Intervals     125 

levels of Bayer’s aspirin curative effect as supports of the fuzzy numbers A(S1),

A(S2) and A(S3), specified by membership functions

,7060for
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,6050for
10
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)(
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z
z

z
z

z
SA

,9080for
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,8070for
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z
z

z
SA

and

.8474for
10

84

,7464for
10

64

)(
)(

3

z
z

z
z

z
SA

.

The membership functions of A(S1), A(S2) and A(S3) are drawn in Fig. 5.12.

The results can be interpretable in the percentage scale, for the supports of 

fuzzy numbers are subsets of the standard population 0, 100 . We take into con-

sideration the most important parts of the number supports associated with the 

membership grades greater than, say, 0.5. Summing up, we make a trial of ap-

proximating the curative effect of Bayer’s aspirin in 55%–65% for S1, 75%85% 

for S2 and 69%–79% with respect to S3.

Let us emphasize some advantages of the application of the eigen fuzzy model 

with fuzzy numbers to an appreciation of the drug level as follows. 

Even if the fuzzy relation has the elements equal to fuzzy numbers, the eigen 

fuzzy set associated with the relation will exist. The supports of fuzzy numbers 

obtained in the eigen fuzzy set yield the expected levels of drug action for every 

distinct symptom. 

The levels are the most optimistic prognoses of drug action since the given ei-

gen fuzzy set is greatest. Moreover, the effects of common medicine action in re-

gard to pairs of symptoms positively influence the range of single levels. 

By coming back to the formula 1)()( zzRzL  we finally determine the 
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Figure 5.12:  Fuzzy numbers A(S1), A(S2), A(S3) of the eigen set A of the relation R

Even the importance of symptoms in a disease also affects the appreciation of 

levels. The results do not depend on any sample size that can be unstable, but they 

are based on the stabile expressions formulated by experienced physicians. 

At last, the results should satisfy the expectations of medicine manufacturers 

who wish to recommend the most efficacious, curative remedy. 

We have been concentrating our attention on the estimation of one-drug levels 

concerning several symptoms. In the next chapter, we maintain the same collec-

tion of symptoms but we make some different approaches. We will attempt the 

selection of the best medicine from a sample of remedies recommended in a cer-

tain disease. 



6  The Choice of Optimal Medicines

6.1  Introduction

We have already used many auxiliary methods coming from fuzzy set theory to 

make attempts at solutions in such medical tasks as diagnosing or appreciation of 

drug efficiency. In Chapter 5 we have tested eigen fuzzy set techniques to appreci-

ate the optimal levels of one drug action in the case of several symptoms charac-

teristic of a disease.

We often experience that there can occur such a pathologic process in which 

the symptoms do not disappear after the treatment when using only one medicine. 

The medication can improve too high or too low of a level of the quantitative 

symptom, but the symptom still indicates the presence of the disease. We some-

times have some problems in making a choice of this medicine, which acts best; 

because it can happen that most drugs influence the same symptoms while they do 

not improve the others.

By employing different fuzzy decision-making models, we try to make it easier 

to find such a drug that affects most of the symptoms in the highest degree. We 

also want to discuss the task of selecting the best possible medicine within the 

circumstances provided when some decision-makers have different opinions about 

the priority of tested drugs. 

In fuzzy decision making models, often applied to technical solutions like in 

[33], we also use non-fuzzy sets. It is remarkable to observe how the assumptions 

of fuzzy set theory link crisp sets to imprecise collections of elements to obtain a 

harmonic mixture of decisive information.

Some readers may still experience the advantage of translating average words 

originating from “spoken” languages into numbers (we have already discussed the 

problem in Chapter 3). This emphasizes the richness of applications offered by 

processes of numerical fuzzifying of some appearances that cannot be strictly de-

fined.

6.2  Fuzzy Utilities in Decision-Making Models

Let us introduce the notions of a space of states-results 
m

xxxX ...,,,
21

and a 

decision space 
n

aaaA ...,,,
21

. The mentioned universes of discourse consti-

tute the main data basis in Jain’s decision-making model. 

Elisabeth Rakus-Andersson: Fuzzy and Rough Techniques in Medical Diagnosis and Medication,

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
StudFuzz 212, 127–154 (2007)
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6.2.1  Jain’s Utility Matrix as the Drug – Symptom Table 

If a rational decision maker makes a decision ai A, i = 1, 2, …, n, concerning 

states-results xj X, j = 1, 2, ..., m, then the problem is reduced to the considera-

tion of the ordered triplet UAX ,, , where X is a set of states-results, A – a set of 

decisions and U – the utility matrix [38, 39, 40] 

in which each element Uij, i = 1, 2, …, n, j = 1, 2, …, m, is a fuzzy set defining the 

fuzzy utility following from the decision ai with the result xj.

Assume now that the state-result is not exactly known, but as a fuzzy set 

XS  given in the form 

A decision method thus concerns such fuzzy decision situation in which both 

the knowledge about the state and the utilities are fuzzy. To solve the decision 

problem under circumstances that are given above, means to find the best decision 

ai influenced by all constraints. 

The theoretical model with the triplet UAX ,, and the fuzzy set of states S,

thus very shortly sketched, can find its practical application in the processes of 

choosing an optimal drug. If a given disease is recognized by the symptoms ac-

companying it, then we, by giving a medicine, try to liquidate these symptoms or 

at least try to reduce their unfavorable influence upon the patient’s health. Not all 

symptoms retreat after the cure has been carried out. Sometimes, one can only 

soothe their negative effects by, for example, the lowering of an excessive level of 

the indicator, the relief of pain, and the like, but cannot ascertain that the patient is 

fully free from them. The problem of choosing an optimal drug (decision), which 

soothes the symptoms or has some power to eliminate them in full, corresponds to 

the theoretical assumptions presented above [59, 60, 62].

In order to show the algorithm for finding such a decision let us consider a 

model with n drugs Aaaa
n

...,,,
21

. On the basis of the physician’s decision, the 

drugs are prescribed to the patient (thus may be treated as decisions 
n

aaa ...,,,
21

)

with a view to have an effect on m symptoms Xxxx
m

...,,,
21

 representing cer-

tain states characteristic of the given disease. We actually rename the symptoms as 

xj instead for Sj as we used in Chapters 3–5 to agree with some symbolic terms 

assigned to states-results being parts of fuzzy decision-making models. To sim-

nmnn
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plify the symbols let us further assume that each symptom Xx
j

, where X is a 

space of symptoms (states), is understood as the result of the treatment of the 

symptom after the cure with the drugs 
n

aaa ...,,,
21

 has been carried out. On the 

basis of earlier experiments the physician knows how to define in words the cura-

tive drug efficiency in the case of considered symptoms. In accordance with his 

advice, we suggest a list of terms, already known from Section 5.6 that introduces 

a linguistic variable named “the curative drug effectiveness regarding a symptom” 

= {R1 =”none”, R2 = “almost none”, R3 = “very little”, R4 = “little”, R5 = “rather

little”, R6 = “medium”, R7 = “rather large”, R8 = “large”, R9 = “very large”, R10 =

“almost complete”, R11 = “complete”}. Each notion from this list of terms is the 

name of a fuzzy set. Assume that all sets are defined in the space 100,0Z , see 

Ex. 5.17, which is suitable as a reference set to measure a number of patients who 

have been affected by a medicine in the grade corresponding to each name. We 

use this technique of building a list of expressions for the third time. Each time we 

change the forms of constraints to demonstrate how many options in the creation 

of membership functions are allowable. 

To avoid further complicated computations we suggest membership functions 

of the fuzzy sets from the list, called “the curative drug effectiveness regarding a 

symptom”, as simple linear functions [2, 59, 60, 62] 

and

where z is an independent variable belonging to [0, 100] and , ,   are some pa-

rameters.

Let us define 

and

,for1
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,for0
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in which z Z = [0, 100], while k, k,   are borders for the fuzzy supports and 

they also constitute some numbers from the interval [0, 100]. 

Let us further decide the values of the boundary parameters k, k,  in order to 

construct constrains for the fuzzy sets that represent the terms of the mentioned list 

“the curative drug effectiveness regarding a symptom”.

Example 6.1 

We suggest the following linear functions that can be approved as the membership 

functions of terms constituting the contents of the effectiveness list 

)20,0,(1)()(
""

1

zLzz
noneR ,

)30,10,(1)()(
""

2

zLzz
nonealmostR

,

)40,20,(1)()(
"

3

zLzz
little"veryR

,

)50,30,(1)()(
"

4

zLzz
little"R

,

)60,40,(1)()(
"

5

zLzz
little"ratherR

,

)70,50,30,()()(
"

6

zzz
medium"R

,

)60,40,()()(
"

7

zLzz
large"ratherR

,

)70,50,()()(
"

8

zLzz
large"R

,

)80,60,()()(
"

9

zLzz
large"veryR

,

)90,70,()()(
"

10

zLzz
complete"almostR

,

)100,80,()()(
"

11

zLzz
complete"R

for z  [0, 100].

The parameters k k and in equations above have been proposed in confor-

mity with the physician’s suggestion. In order to give an image of the restrictions’ 

appearance we sketch them in Fig. 6.1. 

The membership functions presented in Ex. 6.1 can be adopted as a foundation 

of other fuzzy sets, this time finite sets corresponding to R1–R11. To accomplish a 

process of generating a class of discrete sets, replacing R1–R11, we take only the 

essential parts of sets into consideration, i.e., the elements of their supports that 

possess membership degrees greater than 0.5. The continuous membership func-

tions serve as a tool for calculating the membership degrees of some of the chosen 

elements coming from the set supports. 

),,,()(
66

6

zz
R (6.6)



6.2  Fuzzy Utilities in Decision-Making Models   131 

1007550250

1

0.75

0.5

0.25

0

x

y

x

y

z

(z)

Figure 6.1:  The fuzzy constraints R1–R11

Example 6.2 

By involving the patterns from Ex. 6.1, we form the following discrete fuzzy sets, 

which act on behalf of R1–R11

8
6.0

6
7.0

4
8.0

2
9.0

0
1""

1
noneR ,

18
6.0

16
7.0

14
8.0

12
9.0

10
1""

2
ealmost nonR ,

28
6.0

26
7.0

24
8.0

22
9.0

20
1""

3
every littlR ,

38
6.0

36
7.0

34
8.0

32
9.0

30
1""

4
littleR ,

48
6.0

46
7.0

44
8.0

42
9.0

40
1""

5
tlerather litR ,

,
58

6.0

56
7.0

54
8.0

52
9.0

50
1

48
9.0

46
8.0

44
7.0

42
6.0""

6
mediumR

60
1

58
9.0

56
8.0

54
7.0

52
6.0""

7
largeratherR ,

70
1

68
9.0

66
8.0

64
7.0

62
6.0"

8
large"R ,

80
1

78
9.0

76
8.0

74
7.0

72
6.0"

9
largeveryR ,
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90
1

88
9.0

86
8.0

84
7.0

82
6.0""

10
pletealmost comR ,

100
1

98
9.0

96
8.0

94
7.0

92
6.0""

11
completeR .

The fuzzy sets Uij from the utility matrix U can be now replaced by the built 

fuzzy sets R1–R11. To state a connection between ai (medicine) and the effective-

ness of the retreat of xj  (symptom) the physician uses the word from the list “the 

curative drug effectiveness regarding a symptom” and this word is “translated” 

into the fuzzy set Rk, k = 1, 2, …, 11. 

Let us also admit that the physician possesses a general experience as to the 

“difficulties” in the remission of the symptoms xj, j = 1, 2, …, m. His medical 

knowledge, based on observations, can contribute in a classification of symptoms 

that are harder to treat, and those symptoms that recede more readily during the 

treatment process. Via the words from the list, “the curative drug effectiveness 

regarding a symptom”, one may assign to each symptom a general ability to re-

treat, fixed, for instance, by observing the cure of many patients with different 

drugs. For instance, it is commonly known that a fever disappears quicker than 

some changes in tissues after inflammation. Such an average classification of 

symptoms found its place in the fuzzy set S defined theoretically by (6.2), in 

which the membership degrees )(
jS

x , j = 1, 2, ..., m, correspond now to the 

fuzzy sets Rk, k = 1, 2,…, 11. These express the mean effectiveness of treatment 

independently of a prescribed medicine. By the “cure”, one can mean the level of 

the retreating symptom, the decrease of the heightened index, and the like. 

In accordance with Jain’s theory of decision-making, the fuzzy utility [38, 39, 

40, 59, 60, 62] for each decision-drug ai, i = 1, 2, …, n, with the fuzzy state S X

characterized by means of the membership degrees S(xj) is defined to be the set

for i = 1, 2, …, n. The set allows observing the relationship between the general 

ability to soothe, and this effect in soothing which the drug ai causes for each 

symptom xj. Both the membership degrees S(xj) and the elements Uij in the sup-

port of the set 
i

U  are the fuzzy sets of the discrete type R1–R11.

It is not possible to make further calculations on such sets that have fuzzy sets 

as the elements of supports and the membership degrees. We thus need an opera-

tion that reduces this family of fuzzy sets to one fuzzy set. This is grounded on the 

single support with clearly determined membership degrees. We test a concatena-

tion operator [59, 62] 

im
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in which S(xj) is the equal of a fuzzy set 

r

t
t

tR

z

z
k

1

)(
 while Uij is another fuzzy 

set given as 

q

c
c

cR

z

z
k

1

)(
 for 

kk
RR and belonging to the class of the sets R1–

R11. Each Uij expresses the fuzzy utility following the decision ai with the result xj.

However, by S(xj) we judge if xj is a symptom having a tendency to disappear. 

When the same element z in the support of the fuzzy set appears with different 

membership degrees 1(z) and 2(z), we will aggregate their values by adopting 

the Jain operation 

The sign “ ” denotes a symbolic addition of two different membership degrees 

assigned to the same support element. 

Example 6.3 

Suppose that 
3

1
2

2.0
2

5.0
3

4.0
2

8.0A . Since the support members x = 

2, 3 appear more than once then we should rearrange A due to the following opera-

tions

3
1

2
2.0

2
5.0

3
4.0

2
8.0A =

2
5.08.05.08.0

2
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We notice that this sort of a concatenation operation, recommended by (6.9), 

raises the aggregated values of membership degrees computed for the same ele-

ments in the support of a fuzzy set when comparing them to primary values. We 

will employ the operations of the (6.9) type to induce the most optimistic progno-

sis in further investigations. 

6.2.2  The Solution of Jain’s Decision Case

The problem of choosing an optimal decision is solved according to the algorithm 

developed by Jain [38, 39]. The steps of the action line are listed in the following 

order.

Algorithm 6.1 

1. We form a non-fuzzy set Y as the union of supports characteristic of Ui, i = 1, 2, 

…, n. This set contains the elements z  Z, which appear in all sets Ui. Hence, 

we have access to the range of the common utility expressed as 

n

i

i
UY

1

)(supp .

2. We select the maximal element of the set Y, so-called 
max

z .

3. We define the fuzzy sets Ui

´
 as 

for z  supp(Ui). This means that the supports of Ui

´
 and Ui are the same sets. 

The membership degrees of Ui

´
 are computed by means of the formula 

where z
Ui

 stands for an element belonging to the support of the set 
i

U .
i

U ’s

membership degrees evaluate the “deviation” between the elements of Ui, and 

the maximal z found in the union of all Ui.

4. The next introduced fuzzy set has the form of 

Zz

U

i z

z
U i

)(
(6.10)

max
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z

z
z

i

i

U

U
, (6.11)
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)(
0

0
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provided that the membership degree )(
0

z
i

U
 is calculated according to the rule 

The fuzzy utility Ui0, constructed for each medicine ai gathers all possible fac-

tors that can affect appreciation of the soothing power of ai. The minimum op-

eration is used in (6.13) in order to reduce too large values of final results, 

which as we remember, are effects of the operation  induced by (6.9).

5. We slowly close the action of Algorithm 6.1 by the adoption of a new fuzzy set 

A* composed of elements a1, a2, …, an (ai A, i = 1, 2, …, n) and formalized 

by

The membership degree for each ai is generated by 

In practice we compute the arithmetic mean for a sample of membership de-

grees appearing in each set Ui0. This value expresses the decisive character of 

every ai in accordance with a rule: the higher the value of the membership de-

gree assigned to ai is, the better the influence of ai on the patient’s health is to 

be expected. 

6. To terminate the choice of an optimal decision a* we accept as a* this ai whose 

membership degree satisfies the equation 

and we ascertain that the application of the drug a* should yield the best effects 

in the retreating process of the symptoms xj, j = 1, 2, …, m.

Example 6.4

The Jain model is tested on the clinical data coming from the investigation carried 

out among patients who suffer from D = “coronary heart disease”. We consider 

the most typical symptoms accompanying the illness, i.e., x1 = “pain in chest”, x2

= “changes in ECG”, and x3 = “increased level of LDL-cholesterol”. A physician 

has recommended a1 = nitroglycerin, a2 = beta-adrenergic blockade, a3 = acetyl-

salicylic acid (aspirin) and a4 = statine LDL-reductor as the medicines expected to 

improve the patient’s state. The physician has also decided that the set S and the 

matrix U should have the following descriptions 

))(),(min()(
0
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. (6.13)
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We begin the computations with determining supports of the sets Ui. For in-

stance, the set U1 is decided as 
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when applying (6.8) and (6.9).

 By repeating the procedure developed above we obtain the sets 
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 The non-fuzzy sum of all supports emerges as a set 

4

1

)(supp

i

i
U =

{31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 

52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 77, 78, 79, 

80, 81, 82, 83, 84, 85} 

in which the largest element is found as zmax = 85. 

Equations (6.10) and (6.11) give rise to the creation of new sets 
i

U , i = 1, 2, 3, 

4.
1

U  – the first set in the sequence – appears as the following fuzzy collection of 

elements
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 The other sets of 
1

U ’s type, i = 2, 3, 4, are expanded as 
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We follow the next step of Algorithm 6.1 to arrange the sets Ui0, i = 1, 2, 3, 4 as
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The decision set A* has been decided as 

.603.0527.0611.00.685
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The magnitudes of the membership degrees give us a hint about priorities of 

drugs, i.e., a1 should have the strongest soothing power when regarding the con-

sidered symptoms, and it should be accepted as the optimal decision-drug. More-

over, we can state the hierarchy of drugs in the following order: 
3421

aaaa .

The notion 
ji

aa  indicates that ai acts better than aj, i, j = 1, 2, 3, 4. 

6.3  Group Decision-Making in the Selection of Drugs

We have followed the procedure of comparing the healing effect of medicines on 

the condition that some descriptions, which concern the decisive character of the 

pairs “drug – symptom”, are made by one physician. Nevertheless, everyone 

knows that such opinions are often shared. If we involve several physicians in a 

discussion about the drug priority, then we can experience that they will hold dif-

ferent views about the curative power of considered medicines. In this section we 

will give a piece of information about a new technique contributing in the choice 

of an optimal medicine in spite of contradictory judgements. 

Each physician treated as a decision-maker would like to create the matrix U

and the set S according to his own experience and judgement. As a result, we ob-

tain different priorities in the set A*. How shall we choose the best medicine in the 

case when the sets A* differ a greatly from each other? The question is answered 

by means of the algorithm based on graphs [40]. We thus adapt the theoretical 

graph model to a medical task that is sketched below [62].

Let us state a set of physicians 
t

PPPP ...,,,
21

 who appreciate the drugs be-

longing to set 
n

aaaA ...,,,
21

. A fuzzy relation A A with the member-

ship function 1,0: AA , called the group order, is represented by mem-

bership degrees ),(
ji

aa . These, in turn, appreciate the intensity grade of pref-

erence concerning decision ai in comparison with aj. If we define

s = 1, 2, …, t, i, j = 1, 2, …, n, then we will generate membership degrees in rela-

tion  as

We now need a definition for the -level of a fuzzy set and apply it in the fur-

ther part of the discussed many-decision-making-model [12, 40, 95]. 

:
ij s s i j

P P tells that a aδ , (6.17)

t
aa

ij

ji
),( . (6.18)
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Definition 6.1 

For a fuzzy set A = {(x, A(x))}, x X, we determine a non-fuzzy set

called the -level of A.

Example 6.5 

Suppose that
10

6.0
9

1
8

9.0
7

8.0
5

7.0
4

5.0
3

4.0
2

2.0
1

1.0A  in X

= {1, …, 10}. If  = 0.4 then A0.4 = {3, 4, 5, 7, 8, 9, 10}. 

For A given by the membership function A(x) = (x, 20, 50) we state, e.g., A0.5

= [40, 60] in accordance with Fig. 6.2. 

7562.55037.525

1

0.75

0.5

0.25

0

x

y

x

yA(x) 

5.0
A

Figure 6.2:  The 0.5-level of A characterized by (x, 20, 50) 

Analogously, the -level R  of the relation  is decided as the set 

For the greatest  we seek a set R  that contains all decisions ai and is totally 

ordered. We treat ai values as vertices in a directed graph. The order in the pair (ai,

aj) indicates the direction of the arrow that ties ai and aj together. We should ex-

plain that the order in the graph is interpreted as total if each pair of nodes has a 

})(:{ xxA
A

, (6.19)

, : ,
i j i j

R a a a aα µ α . (6.20)
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connection formed by the arrow. The vertex, that concentrates the most endpoints 

of the arrows in accordance with R , is determined as a group decision. 

The steps that follow the determination procedure of selecting an optimal medi-

cine are collected in the algorithm developed below. 

Algorithm 6.2 

1. Find }...,,,{}indifferentare),(:),({values""
21 pjiji

aaaa

as a set of values arranged in the descending order. 

2. Set k = 1. 

3. Find 
k

R , k = 1, …, p, and sketch a directed graph for 
k

R  due to the pair or-

der. The notation 
ji

aa  corresponds to the ordered pair (ai, aj) generating the 

direction
ji

aa .

4.
3StepToGo.1SetNo.

decisionoptimalanas

endpointsarrowofnumberlargest  thewith  vertex  theChooseYes.
 total?inorder theIs

kk

k

R

Example 6.6 

In order to test the group decision model of choosing the best medicine among the 

four drugs already introduced by Ex. 6.4, we have asked six physicians P1, P2, …, 

P6 for evaluating the curative effects of the drugs: a1, a2, a3, a4. The medicines, as 

we remember, show a healing power in “coronary heart disease”. The priority 

levels are listed in the following schedule:

),(
3421431

aaaaPPP

),(
32412

aaaaP

),(
34125

aaaaP

).(
31426

aaaaP

We adopt (6.18) to decide the contents of the matrix  as 

0117.017.0

0000

83.01033.0

83.0167.00

4

3

2

1

4321

a

a

a

a

aaaa

.

The “ -values” set is sorted as “ -values” = {1, 0.83, 0.67, 0.33, 0.17}. 

For k = 1 we find )},(),,(),,{(
3432311

aaaaaaR .The associated graph R1, plot-

ted in Fig. 6.3, does not reveal the total order. 
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1
a

2
a

3
a

4
a

Figure 6.3:  The set R1 as the directed graph 

If k = 2 we set )},(),,(),,(),,(),,{(
424134323183.0

aaaaaaaaaaR that constitutes 

a basis of the graph R0.83 presented in Fig. 6.4. 

1
a

2
a

3
a

4
a

Figure 6.4:  The set R0.83 as the directed graph 

The graph R0.83 has not the total order either, since the pair (a1, a2) is lacking a 

connection.

We thus prove if the set ),,(),,(),,(),,(),,{(
424134323167.0

aaaaaaaaaaR

)},(
21

aa , generating the graph R0.67 drawn in Fig. 6.5, will be totally ordered. 
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1
a

2
a

3
a

4
a

Figure 6.5:  The set R0.67 as the directed graph

Finally, we have determined the set of pairs that form the total order in the as-

sociated graph. By counting the number of arrow endpoints, tended towards each 

vertex, we should state the group decision concerning a hierarchy of drugs as 

3421
aaaa .

The models discussed in Sections 6.2 and 6.3 should be simple for an eventual 

user since they do not require deep knowledge in making calculations.

In the last models the physicians’ data reports have been tested very thoroughly 

because of introducing the finite fuzzy sets of effectiveness. We want to empha-

size that even one value representing the effectiveness – we have numerically 

stated presence in the diagnostic model in such a way – should yield satisfactory 

results. However, the occurrence of expressing the effectiveness terms as fuzzy 

sets, eliminates a risk of casual results and should be admitted by users as a safe 

decision step. The decisions obtained lately seem to be very reliable in spite of 

different interactions between the drugs and their influence on the symptoms. The 

hierarchy of drugs is even debatable when involving many decision-makers in the 

process of their evaluation. Physicians often share different opinions concerning 

medicine priorities, but it is still mathematically possible to sum up all conclusions 

as a final selection of the most efficacious remedy. The obtained results have also 

been confirmed by experienced pharmacologists.

6.4  Unequal Objectives in the Choice of Medicines 

The purpose of this section is to present some ideas on the applications of fuzzy 

sets to multi-objective decision making, with particular emphasis on a means of 
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including differing degrees of importance to different objectives. Different ap-

proaches to aggregation of weighted decision criteria have constituted a subject of 

lively discussions during last decades [5, 13, 21, 57, 80, 83, 85]. 

The primary reasons for the usefulness of fuzzy sets in handling multi-

objectives are: ability to represent objectives, convenient forms for combining 

objectives and means of including differing degrees of importance to the objec-

tives [81].

6.4.1  The Design of Objectives-Constraints

We still consider a decision model in which n drugs Aaa
n

...,,
1

 act as deci-

sions. These affect m symptoms Xxx
m

...,,
1

 that are typical of a morbid unit 

under consideration. The drugs-decisions constitute n elements in supports of 

fuzzy sets Kt, t = 1, …, m, m+1, m+2, determined as some criteria-objectives re-

stricting the set A. Thus, we can recognize each set Kt as a fuzzy subset of A, i.e., 

,1,0: A
t

K
2...,,1 mt . In the model of accepting the most optimal medi-

cine Ai, i = 1, …, n, we assume that some of restriction sets Kj, j = 1, …, m, are 

defined by 

In spite of drug effectiveness, which definitely is the most important factor in 

the appreciation of drug action, we can introduce other important factors assisting 

drug decision-making like side effects of medicines or their prices. We thus form 

the following fuzzy sets 

and

in order to enlarge a number of decisive indications.

n

jnj

jnj

a
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Example 6.7 

We return to the clinical data from Ex. 6.4, which concerns D = “coronary heart 

disease”. We still consider the symptoms x1 = “pain in chest”, x2 = “changes in 

ECG” and x3 = “increased level of LDL-cholesterol”. Even the medicines are un-

changed and we list them as a1 = nitroglycerin, a2 = beta-adrenergic blockade, a3

= acetylsalicylic acid (aspirin) and a4 = statine LDL-reductor.

The procedure of stating effectiveness has been based on fuzzy sets in Ex. 6.2. 

Nevertheless, even if the mathematical presentation of each effectiveness as a dis-

tinct fuzzy set has been very efficient and thorough, we probably do not need such 

accuracy in determining the sets Kj, j = 1, …, m, because of concentration on their 

importance instead. We assign only one value to every effectiveness term that is 

an approved procedure as shown in Chapter 3. To decide adequate representatives 

z  [0, 100] of the effectiveness descriptions from Ex. 6.2, we take, when we re-

turn to (6.5), z = 
k

 for k = 1, 2, 3, 4, 5, and z = 
k

 for k = 7, 8, 9, 10, 11, respec-

tively z =  for k = 6 due to (6.6). On the basis of Ex. 6.1, we select z-values,

which stand for the exponents of the following expressions: z”none” = 0, z”almost none”

= 10, z”very little” = 20, z”little” = 30, z”rather little” = 40, z”medium” = 50, z”rather large” = 60,

z”large” = 70, z”very large” = 80, z”almost complete” = 90, z”complete” = 100. If we fit a mem-

bership function )100,0,()(
""

zLz
esseffectiven

 over [0, 100] as recommended by 

(6.3), we will obtain the final membership values (z) for z sorted above. These 

replace the terms of effectiveness according to the pattern shown in Table 6.1. 

Table 6.1:  The representatives of linearly modeled effectiveness terms 

Effectiveness Representing z-value (z)

“none” 0 0 

“almost none” 10 0.1 

“very little” 20 0.2 

“little” 30 0.3 

“rather little” 40 0.4 

“medium” 50 0.5 

“rather large” 60 0.6 

“large” 70 0.7 

“very large” 80 0.8 

“almost complete” 90 0.9 

“complete” 100 1 

We reconstruct the sets Kj, j = 1, 2, 3, due to (6.21), by applying the columns 

from the matrix U introduced by Ex. 6.4. Hence 

,3.03.05.01

"on,,,ofinfluence"

4321

4321

143211

aaaa

a
little

a
little

a
medium

a

complete

xaaaaK
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4321

4321

243212

3.03.05.08.0

"on,,,ofinfluence"

aaaa

a
little

a
little

a
medium

a

largevery

xaaaaK

and

.8.02.03.01.0

"on,,,ofinfluence"

4321

4321

343213

aaaa

a

largevery

a

littlevery

a
little

a
nonealmost

xaaaaK

The physician has estimated side effects of the drugs in the set K4 by assimilat-

ing the words from the first columns of Table 6.4. The side effects of ai, i = 1, …, 

n, are rather unfavorable occurrences; therefore their lack in ai, e.g., “side effects

of ai” = “almost none”, should be emphasized by the larger membership value 

assigned to ai as an indication of safe medicine consumption. For the purpose of 

enlarging membership values of these medicines that do not have side effects, we 

use the complement operation 1 – estimation of side effects. Set K4 is established 

in accordance with (6.22) as 

.8.04.07.08.00.210.610.310.21

1111

"positivelydecision thesupporting,,,ofofestimation"

43214321

4321

43214

aaaaaaaa

a

littlevery

a

largerather

a
little

a

littlevery

aaaatsside effecK

The prices of all medicines are not in the least inconvenient for patients to pur-

chase them. Thus, if we note that the large value of a membership degree corre-

sponds to a rather cheap and available medicine we can state the set K5 by adopt-

ing (6.23) as 

.8.09.08.08.0

",,,forofestimation"

4321

43215

aaaa

aaaalabilityprice avaiK

After preparing the criteria-objectives we are ready to make a fuzzy decision, 

which is affected by all of them. 

The fuzzy decision D, which takes into account K1 and K2 and … and Km+2 is 

made in accordance with the minimum decision rule [9, 40] 
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This provides us with the membership function 

for each ai A.

The optimal drug-decision is accepted as this ai, i = 1, …, n, which has the 

maximal value of the membership degree in D as defined by (6.16).

6.4.2  The Power-Importance of Objectives

If we can associate with each fuzzy objective Kt, t = 1, …, m, m+1, m+2, a non 

negative number that indicates its power or importance in the decision according 

to the rule: the higher the number the more important criterion Kt, then we could 

raise each fuzzy criterion set to this power before combining to form D. We regard 

w1, w2, …, wm, …, wm+2 as powers-weights of K1, K2, …, Km, …, Km+2 to modify 

(6.24) as a richer and more extended decision 

in which the membership degree of each ai A is determined as 

We note that each Kt always takes the values of membership degrees from [0, 

1]. If wt gets bigger then t

t

w

iK
a ))(( , t = 1, …, m, …, m + 2, i = 1, …, n, will get 

smaller, closer to zero. On the contrary, wt 0 implies 1))(( t

t

w

iK
a . This be-

haviour of Kt’s membership degrees emphasizes that the choice of the minimum 

operation in (6.27) is proper. The membership grade in all objectives having little 

importance (wt < 1) becomes larger, and while those in objectives having more 

importance (wt > 1) become smaller. Since we use the minimum operation to the 

membership degrees in the decision set D, we will exclude the larger values that 

are rather unimportant. This has the effect of making the membership function of 

the decision set D as useful in the decision making process as possible when tak-

ing care of all decisive factors. 

A procedure for obtaining a ratio scale of importance for a group of m + 2 ele-

ments (like in the drug-decision model) was developed by Saaty [68].

Assume that we have m + 2 objectives and we want to construct a scale, rating 

these objectives as to their importance with respect to the decision. We ask a deci-

221 mm
KKKKD . (6.24)
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sion-maker to compare the objectives in paired comparison. If we are comparing 

objective t with objective l, we assign the values btl and blt as follows 

(1)

tl

lt
b

b
1

.

(2) If objective t is more important than objective l then btl gets assigned a num-

ber according to the following scheme:  

Intensity of importance    Definition 

expressed by the value of btl

1            Equal importance of Kt and Kl

3            Weak importance of Kt over Kl

5            Strong importance of Kt over Kl

7            Demonstrated importance of Kt over Kl

9            Absolute importance of Kt over Kl

2, 4, 6, 8         Intermediate values  

If objective l is more important than objective t, we assign the value of blt.

Having obtained the above judgments an (m + 2)  (m + 2) importance matrix B

is constructed in the drug decision problem sketched above. 

Example 6.8 

By involving the computation technique suggested in the description of matrix B

we try to find the weights for objectives Kt, t = 1, …, 5, already stated in Ex. 6.7. 

The physical status of a patient is subjectively better if the pain disappears that 

means that a physician tries to release the patient from symptom x1 = “pain in 

chest”. The next priority is assigned to x2 = “changes in ECG” and finally, we 

concentrate our attention on getting rid of x3 = “increased level of LDL-

cholesterol”. The last symptom does not disappear very quickly and the patient 

must be treated for some time to be free from it.

These remarks are helpful when constructing a content of the matrix B as 

1
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7731

77531

3
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1
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1

3
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54321

K

K

K

K

K

B

KKKKK

.

Matrix B constitutes a crucial part in the procedure of determining the degrees 

of importance w1, …, wm, …, wm+2 that affect the decision set D in a substantial 
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way (in accord with (6.27)). The weights are decided as components of this eigen 

vector which corresponds to the largest in magnitude eigen value of the matrix B.

Definition 6.2 

The value of  and the vector V are called “the eigen value of the matrix B” re-

spectively “the eigen vector of the matrix B” if they satisfy the equation 

B has type (m + 2)  (m + 2). We can find m + 2 eigen values of B by solving a 

characteristic equation 

where I is a unit matrix of the same type (m + 2)  (m + 2).

Among m + 2 roots of (6.29) there exists the largest one. By returning to Eq. 

(6.28) we determine the coordinates of a corresponding eigen vector V. These con-

stitute weights of the objectives taking place in the decision set D.

Example 6.9 

Equation (6.29) results in a determinant equation 

032014402172675135

1

31

771

7731

77531

det
245

3

1

7

1

7

1

7

1

7

1

7

1

7

1

3

1

5

1

3

1

which has only one real root  = 5.5805. The associated eigen vector V = 

(0.83215, 0.46393, 0.26609, 0.08575, 0.055586) is composed of components that 

are interpreted as the weights sought for Kt, t = 1, …, 5.

The sets Kt, t = 1, …, 5, already found in Ex. 6.7, are now completed by intro-

ducing their grades of importance. 

Thus,

,0.30.30.51

4

0.83215

3

0.83215

2

0.83215

1

0.83215

1 aaaa
K

,0.30.30.50.8

4

0.46393

3

0.46393

2

0.46393

1

0.46393

2 aaaa
K

VBV . (6.28)
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,0.80.20.30.1
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and

.0.80.90.80.8

4

0.055586

3
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1
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K

The final decision D is obtained as a fuzzy set due to the recommended Eqs 

(6.26) and (6.27) 

.0.36710.36710.56160.5418

)0.988,0.981,0.942,0.572,0.367min(
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We conclude that the curative power of considered medicines is ranked in the 

order
3412

aaaa . We have not only considered the effectiveness of drugs 

regarding their action on symptoms, but also the priority of symptoms. The impor-

tance order among the symptoms points out that the ones that should disappear 

first, for the reason of their harm, mostly influence the patient’s mental and psy-

chical condition. 

6.4.3  Minimization of Regret 

The action of the minimum operation in the final decision formula has provided us 

with a very cautious prognosis referring to the drug hierarchy. Some high values 
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of degrees that reflect a positive effect of medicine, impact on considered symp-

toms and have no chance of influencing finally computed decision values. We can 

even say that the minimum operation acts as a filter for high values by depriving 

them of their power. 

We try to obtain clearer results by applying another fuzzy decision-making 

technique known as a minimization of regret [84]. Let us prepare a new medical 

apparatus by reorganizing the sets previously introduced. We preserve a decision 

space (a space of alternatives) 
n

aaA ...,,
1

 but we complement a space of 

states as 
2121

,,...,,,
mmm

xxxxxX . In X there are symbols possessing the 

following meanings: x1 – the 1
st
 symptom, …, xm – the m

th
 symptom, xm+1 – medi-

cine side effects, xm+2 – medicine price availability. We form a basic payoff matrix

where cit is the payoff to a decision-maker if he connects ai to xt, i = 1, …, n, t = 1, 

…, m+2.

In a continuation of the proposed approach to the choice of an optimal medi-

cine, we first obtain the regret matrix R. Its components rit indicate the decision-

maker’s regret in selecting alternative ai when the state of X is xt. We then calcu-

late the maximal regret for each alternative. 

A procedure of selecting an optimal ai should follow some steps listed below: 

1. For each xt calculate 
it

ni
t

cC
1

max . 

2. For each pair ai and xt calculate 
ittit

cCr .

3. Suppose that matrix B from Subsection 6.4.2 consists of btl, which now de-

scribe the importance scale when comparing states xt and xl, t, l = 1, …, m + 2. 

The coordinates of this eigen vector that assists the largest in magnitude eigen 

value of B still constitute weights w1, …, wm+2 assigned to states x1, …, xm+2

stated in X. The weights are involved in the computations of estimates 

2,211 mimii
rwrwRT  for each ai. It can be proved that the formulas de-

rived for calculations of RTi satisfy the conditions of OWA operators [82, 86].

4. Select ai*, such that 
i

ni
i

RTRT
1

*
min . 

The values rit constitute the entries of the matrix R called the regret matrix. We 

shall refer to Ct as the horizon under xt.

it

n

i

mt

c

a
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a

C

xxx

1

21
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,

(6.30)
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Example 6.10 

The sets K1–K5 found in Ex. 6.7 are now utilized as columns of the matrix C, de-

termined by a table 

8.0*8.0*8.03.03.0

*9.04.02.03.03.0

8.07.03.05.05.0

8.0*8.01.0*8.0*1

4

3

2

1

54321

a

a

a

a

C

xxxxx

in which “*” points to the largest element in each column due to Step 1. 

The regret matrix R is computed as the next table 

1.0005.07.0

04.06.05.07.0

1.01.05.03.05.0

1.007.000

4

3

2

1

54321

a

a

a

a

R

xxxxx

.

For w1  0.83, w2  0.46, w3  0.27, w4  0.09, w5  0.05 (Ex. 6.9) the values of 

RTi, i = 1, …, 4, are appreciated as 

194.01.005.0009.07.027.0046.0083.0
1

RT ,

RT2 = 0.702, RT3 = 1.009, RT4 = 0.816. 

Finally, we decide the hierarchical order of drugs with respect to their curative 

abilities. We state them in sequence 
3421

aaaa  that totally confirms the 

results obtained by the technique of unequal objectives. Moreover, we notice that 

the last decision is very clearly interpretable and easy to understand without spe-

cial doubts. This emphasizes an advantage of applying the OWA weighted opera-

tions that prevent a loss of substantial information. The OWA operations have 

resulted in the simultaneous engagement of all effectiveness quantities in mean 

decision-making values involved in the regret model. 

In Section 6.4 we have adapted Yager’s theoretical fuzzy decision models in 

the process of extracting the best medicine from the collection of proposed reme-

dies. The basis of the investigations has been mostly restricted to a judgment of 

medicinal influence on clinical symptoms that accompany the disease. By employ-

ing the factors of importance associated with decisive objectives we could 

strengthen their crucial power as well. 
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We have shown some useful fuzzy decision making models in the process of 

selecting the most efficacious medicine. The decision patterns should be particu-

larly helpful in doubtful cases when we observe unequal, curative abilities of dif-

ferent medicines in the case of the same symptoms, or, when some specialists who 

make a trial of prioritizing the medicines have shared opinions in their judgments. 



7  Approximation of Clock-like Point Sets 

7.1  Introduction 

This chapter has a theoretical character and can be studied by some medical staff 

researchers that seek methods of approximation of very irregular point sets. When 

the shape of an obtained polygon based on the point set is similar to a chain of 

bells, then it will be difficult to find a continuous standard curve that should ap-

proximate the polygon without making a large approximation error. The studies of 

some medical data give rise to the creation of polygons consisting of finite num-

bers of points tied together. Since the polygons are not formalized by some 

mathematical expressions, we suggest creating continuous functions that approxi-

mate them thoroughly in spite of their irregular shapes. To warrant a high accu-

racy of approximation, otherwise impossible to obtain when using standard 

curves, we test a continuous function composed of joined truncated -functions or 

joined truncated s-functions.

By operating with the functions representing polygons that have unusual 

shapes, we attempt a classification of medical data. We adopt rough sets to assign 

the members to an investigated medical class even if their origin sometimes is 

unknown.

Since we do not possess medical data that comes from solidly accomplished in-

vestigations, we will discuss the matter of approximation and classification theo-

retically. Nevertheless, we hope that some scientists can find patterns of points in 

their research work that resemble the shapes assumed below. In this way they can 

find the proposed approximation method useful in possible research investigations 

of medical results. 

7.2  Fitting of -functions to Clock-like Polygons

Some examinations of the behaviour of the two variables named X and Y, provide 

us with strings of values x and y, which can be included in the pairs (x, y), and 

treated further as the coordinates of points in the two-dimensional system. We 

suppose that the finite set A consists of the points (x, y), thus it can be illustrated as 

a polygon with its points joined together by segments of straight lines. 

Certain experiments, in which y  [0, 1], deliver the polygon (set A) composed 

of parts looking like bells (or hills), e.g., like A, sketched in Fig. 7.1. The polygon,  

Elisabeth Rakus-Andersson: Fuzzy and Rough Techniques in Medical Diagnosis and Medication,

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
StudFuzz 212, 155–181 (2007)
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which ties a lot of straight-line bits, cannot constitute a piecewise interpolation of 

the points. There can be too many first-degree equations to make the further 

analysis of set A efficient, and moreover, the linear interpolation is not smooth 

enough.

The most popular classical method of approximating applied to a set of points 

is known as the least-square regression with modern variants [15]. Other algo-

rithms of approximating that we can mention, adopt such technical tools as cubic 

polynomials based on four points [43], tangent curves [1], free algebras [35] or 

weighted approximations [71]. 

As the counterpart of the listed procedures, we consider an approximation of 

multi-shapes from Fig. 7.1 by -truncated functions used piecewise [65, 66]. The 

y-values of functions and the y-coordinates of the points constituting the ele-

ments of A belong to the interval [0, 1]. The procedure forms the approximation of 

A by truncated -functions, and tied by pieces of straight lines if needed. 

Example 7.1 

In experimental domains of science like some medical investigations, we encoun-

ter polygons as results of accomplished observations in which the variable Y is 

dependent on the variable X. We observe the behaviour of two variables X and Y,

to determine a finite set of pairs A = {(x, y)}, x  [0, 50], y  [0, 1]. Suppose that 

an experiment delivers set A resembling the polygon from Fig. 7.1 
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Figure 7.1:  The polygon reflecting A = {(x, y)}

.
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We will introduce “the sampled truncated ” as a split curve that approximates 

the polygon 7.1. This will consist of first and second degree-polynomials. The 

curve should follow the polygon’s shape very closely to cumulate a very low error 

referring to deviations between the approximating curve and the polygon. We as-

sume that a continuous function, which provides us with y-values corresponding to 

regularly chosen x (not always appearing in the set of points), is more useful in the 

further analysis of polygons, e.g., their comparison. 

We now intend to explain how to adjust a -function to the shape of a polygon. 

Let us first suppose that one part A1 of the obtained polygon A, whose shape re-

sembles a bell, is determined by a set of pairs ),( yx  that represent the finite set of 

pairs A1 A.

37.53532.53027.5

0.3

0.25

0.2

0.15

0.1

0.05

0

x

y

A1

Figure 7.2:  The polygon representing A1

Example 7.2 

We examine the values of pairs included in set A1, which constitutes a part of A

presented by Fig. 7.1, over the interval (30, 35). We find that A1 is determined by 

A1 = {(30, 0.03), (31, 0.06), (31.5, 0.17), (32, 0.20), (33, 0.25), (33.5, 0.23), (34, 

0.14), (35, 0.06)}. The points corresponding to the pairs given above are tied to-

gether to build the polygon A1 drawn in Fig. 7.2. 

To an approximation of the pattern of points from Fig. 7.2, the -function, al-

ready inserted by (2.6) best fits because of its clock-like shape and its range 

constituting the interval [0, 1]. 

We quote the formula of in the fully developed form as [65, 66] 
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The function possesses six standard parameters 1, 1, 1, 2, 2, 2, and it has 

the additional parameter , added in (7.1), which accommodates the height of the 

function to the real data existing in set A1. The parameters 1 and 2 are estimated 

by

Example 7.3 

Once again we intend to recall what the -function given by (7.1) and (7.2) looks 

like. If we suppose that, e.g., 1 = 30, 1 = 2 = 32.5, 2 = 35, and  = 0.25 then 

25.31
2

5.3230

1
, 75.33

2

355.32

2
 and the function will have the 

graph depicted in Fig. 7.3. 

The pairs in set A1 from Ex. 7.2 have no y-coordinates equal to zero and that 

means that the values of 1, and 2 in the -function, which is expected to ap-

proximate A1, are unknown. By accepting the value of  as the largest y-coordinate

in A1, corresponding to the x-coordinate taken as 1 = 2, we reconstruct the values 

of remaining parameters 1, 2 according to the following patterns: 
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Figure 7.3:  The -function for 1 = 30, 1 = 2 = 32.5, 2 = 35 and  = 0.25

Case of 1

Denote by A1(X) all x-values that belong to n points from A1. If the pair 
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equality )(2
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. This case entails the changes in (7.1) in ac-

cordance with
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)(21
min
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x
. Then the )(x  formula appears as

Case of 2

The pair ))(,(
maxmax

xyx  is the last pair in set A1, which is associated with the 

formula
max

x )(,max
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. Hence 
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xy . We thus suggest the following changes in (7.1) to adapt it to the 

new assumptions 
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. We adjust the )(x  formula as
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The modified  constitutes a segment of the classical -function, therefore we 

will name it a truncated -function.

We select the minimal and the maximal x-values as well as the maximal y-value

existing in set A1 by examining the slope of A1. Equations (7.3)–(7.6) are applied 

to computations of unknown parameters 1 and 2. The point in which the y-

coordinate takes the -value and the x-coordinate – the 2 = 1 value, belongs both 

to the polygon and the function . In spite of reconstructing the values of 1 and 

2, the approximating function is not intersected by the x-axis. The domain of 

begins with A1(X)’s minimal x-value and is ended by the maximal x value in A1(X).

This warrants that the polygon and the curve lie very close to each other. 

Example 7.4 

The adjustments, accomplished for the data describing A1 from Ex. 7.2, should be 

made by applying both (7.3) and (7.5). We determine xmin = 30, xmax = 35 and  = 

0.25. The x-coordinate associated with the largest y-value in A1 accepted as is

equal to 1 = 2 = 33. Since )(
min

xy  = 0.03 satisfies the condition 
2

)(
min

xy ,

then we will compute the lacking value of the function parameter 1 as 

2

)(

2

)(

1min

1

min

min

1
xy

xy
x

0278.29

1

3330

25.02

03.0

25.02

03.0

.

The value of y(xmax) = 0.06 fulfils 
2

)(
max

xy  and we will generate

2

)(

2

)(

2max

2

max

max

1
xy

xy
x

0918.36

1

3335

25.02

06.0

25.02

06.0

. With 1 = 31.0139 and 2 = 

34.5459 as the complementary parameters of the truncated 1-function accommo-

dated to the set A1, now has a full expansion as

.355459.34for
330918.36

0918.36
225.0

,5459.3433for
330918.36

33
2125.0

,33for25.0

,330139.31for

0278.2933

33
2125.0

,0139.3130for
0278.2933
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Figure 7.4 shows the total effects of evaluating the finite point set A1 by a con-

tinuous function )(
1

x  possessing the reconstructed parameters 1 = 29.0278, 2 = 

36.0918 and = 0.25. 
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Figure 7.4:  The approximation of A1 by the truncated -function

To get the collection of split definitions covering the total x-interval of A, we 

divide A’s x-interval in subintervals according to the magnitude of y-values. If the 

points included in A create structures that resemble bells, then the y-coordinates of 

the points should be arranged in ascending order until they reach the maximal 

value. Afterwards the y-values ought to be placed in a sequence that is character-

ized by their descending order. If the order is ascending again, we should design a 

new interval for another truncated  function. A straight line will tie the borders of 

two adjacent  curves.

Example 7.5 

Let us add the next set of points to A1, known from Ex. 7.2, over the interval [35, 

39] to introduce A* = {(30, 0.03), (31, 0.06), (31.5, 0.17), (32, 0.20), (33, 0.25), 

(33.5, 0.23), (34, 0.14), (35, 0.06), (36.5, 0.07), (36.9, 0.08), (37.2, 0.09), (38, 0.1), 

(38.2, 0.08), (38.5, 0.06), (38.7, 0.04), (39, 0.02)}. We study the slopes of the 

polygon A* by examining the inequality relations among the y-values as 0.03 

0.06 < 0.17 < 0.20 < 0.25 > 0.23 > 0.14 > 0.06 < 0.07 < 0.08 < 0.09 < 0.1 > 0.08 > 

0.06 > 0.04 > 0.02. The y-values form two clock shapes over [30, 35] and [36.5, 

39]. We thus recognize two point sets A1 = {(30, 0.03), (31, 0.06), (31.5, 0.17), 

(32, 0.20), (33, 0.25), (33.5, 0.23), (34, 0.14), (35, 0.06)} and A2 = {(36.5, 0.07), 

(36.9, 0.08), (37.2, 0.09), (38, 0.1), (38.2, 0.08), (38.5, 0.06), (38.7, 0.04), (39, 

0.02)} in A*. The approximation of A1 has already been accomplished in Ex. 7.4. 

By repeating the steps of the procedure from Ex. 7.4, we decide the unknown pa-

rameters of 2 that intends to approximate A2. We find xmin = 36.5, xmax = 39 and 



= 0.1. The x-coordinate corresponding to  has a value of 1 = 2 = 38. We check 

that )(
min

xy  = 0.07 fits for 
2

)(
min

xy , which generates the parameter 1 as 

124.34
5.3638

38

1.02

07.01.0

2

)(

min1

11

min
xy

x
. The value of y(xmax) = 0.02, how-

ever, satisfies the constraint 
2

)(
max

xy ; therefore we will calculate the value of 

2

)(

2

)(

2max

2

max

max

1
xy

xy
x

449.39

1

3839

1.02

02.0

1.02

02.0

. The additional parameters 1 = 

36.062 and 2 = 38.724 are also included in the truncated 2-function that matches 

set A2 in accordance with (7.4) and (7.5).

For two points (x1, y1) = (35, 0.06) that ends A1 and (x2, y2) = (36.5, 0.07) which 

begins A2, we apply the equation of a straight line y = kx + l in order to tie them 

together.

The coefficients k and l are computed by the formulas

0067.0
355.36

06.007.0

12

12

xx

yy
k  and 

12

12

22
xx

yy
xyl

355.36

06.007.0
5.3607.0 1746.0 .

Figure 7.5 presents the graphs of A1 and A2 as well as the approximating curves 

1 and 2 joined by y = 0.0067x – 0.1746. 
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Figure 7.5:  The approximation of A* by truncated  functions
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If we add the function created for A1 in Ex. 7.4 to 

,3938.724for
38449.39

449.39
20.1

,38.72438for
38449.39

38
211.0

,3836.5for
124.3438

38
211.0

,5.3635for1746.00067.0

2

2

2

x
x

x
x

x
x

xx

y

then we will obtain the total approximating function for A*.

By using the same procedure to all “bells” visible in A in Fig. 7.1, we obtain 

other functions of the  type. We join the functions by inserting equations of 

straight lines to plot a full, continuous curve (x) approximating A entirely. 

Since we adapt several functions to truncated forms, then we will call a sam-

pled approximation “sampled, truncated ”.

Example 7.6 

Figure 7.1 is an example of the point set, which delivers an irregular polygon A =

{(x, y)}. The polygon is composed of segments of straight lines that tie (x, y) to-

gether. Figure 7.6 gives the approximation of the shape's image from Fig. 7.1, by a 

collection of truncated functions joined together by pieces of lines to guarantee 

continuity of the approximating function. 

It is worth noticing that the collective error that measures the deviations of 

from A is not large and that is very important for the approximation of a composed 

polygon consisting of many “bells”. 

A number of split functions that are included in the sampled definition of (x)

is substantially less than a number of linear functions that define short line pieces 

placed among the nodes (x, y) in the polygon A. One  segment can surround a 

great many pairs (x, y). This reduces the number of piecewise definitions and the 

number of subintervals in the “sampled truncated ”. By introducing  we sim-

plify a collective definition of the function approximating A when comparing it to 

the linear parts taking place in the interpolation of A. This property of  should be 

regarded as its advantage. 
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Figure 7.6:  The sampled  in the approximation of A

7.3  Rough Sets in Classifying of Clock-like Polygons 

In order to include the unknown sets of the A type within classes already possess-

ing the declared members, we apply some elements of rough set theory [50, 51, 

52, 53] that have already proven useful in the process of a disease classification.

The y-axis in Fig. 7.6 is divided in five regions. We would like to assign codes 

associated with the subintervals of the same length created for the y-values. Some 

scientists have a custom of applying fuzzy sets with their membership functions to 

accomplish the determination of interval borders [50]. Anyhow, we do not want to 

engage new elements of fuzzy set theory in this chapter, we only want to announce 

another possibility of finding the boundaries for the named intervals by drawing 

five membership functions along the y-axis in Fig. 7.6. Independently of the 

method, we list intervals of the y-variable and associated with them codes in Table 

7.1.

 Each considered point set has an envelope created by a continuous function that 

approximates it. When regarding any value placed on the x-axis we are capable of 

establishing the association between the x-value and the code. To achieve this we 

should first compute the (x) value and then place it in the appropriate interval 

from Table 7.1. We thus accept the set A = {(x, y)}  {(x, (x))} = {(x, code(x)},

where code(x) is the code of the (x) interval. 
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Interval of y-values Code 

(0.0, 0.2) 1 

(0.2, 0.4) 2 

(0.4, 0.6) 3 

(0.6, 0.8) 4 

(0.8, 1.0) 5 

 Let us introduce a universe set U={A1, …, An} composed of clock-like poly-

gons. Assume that some of them are members of class “Class 1”, while the others 

have an unknown membership or belong to a different class other than “Class 1”. 

Our purpose is to assign membership degrees to all polygons from U in order to 

classify them within “Class 1”.

The objects of U are determined by two groups of attributes, so called condition 

and decision attributes, presented by the sets B and D respectively. We assume 

that set B consists of m chosen x-sizes xj, mapped into a set of values )(
jA

xcode
i

,

i = 1, …, n, j = 1, …, m. The codes are equal to the integers 1, 2, 3, 4, 5. Set D has 

an attribute stated as “the membership of a polygon in “Class 1””, where the 

membership is expressed as “yes”, “no” and “unknown”.

The triple I = (U, B, D) forms the decision table that constitutes a data basis for 

an equivalence relation I(B) called the indiscernibility relation and defined by the 

relationship

where j = 1, 2, …, m, i, k = 1, 2, …, n.

We find the equivalence classes of the relation I(B), i.e., the blocks IB(Ai) as the 

sets

By following a general rough set procedure we create a set X = {Ai : member-

ship “yes” to “Class 1” is assigned}. 

The first decision set (the lower approximation of X)

reveals the polygons which surely match “Class 1”. 

The other decision set (the upper approximation of X)

contains these members of U that may belong to “Class 1”. 

( ) ( , ) : ( ) ( ) ,
i k

i k A j A j j
I B A A code x code x for each size x (7.7)

)(),(:)( BIAAAAIB
kiki

. (7.8)

XAIBAXB
ii
)(:)(

* (7.9)

0)(:)(
*

XAIBAXB
ii

 (7.10) 

Table 7.1:  The relationship between y-values and codes 
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The elements of a boundary set 

are interpreted as members of “Class 1” in a certain grade. 

The membership degree of Ai, interpreted as a degree of being a member in 

“Class 1”, is computed as

Example 7.7 

We collect the data concerning six point sets A1–A6 and approximate the obtained 

polygons by “sampled truncated ” 1– 6 as shown in Fig. 7.7. The continuous 

and smooth curves replace sharp polygons to give access to every pair (x, y) over 

the common x-interval under consideration. 

Figure 7.7: 1– 6 in approximation of polygons A1–A6

We state 
654321

,,,,, AAAAAAU .

The decision table I = (U, B, D), made for the condition (codes 1, 2, 3, 4, 5) and 

decision (yes, no, unknown) attributes, shows the properties of members of U ex-

panded in Table 7.2. 

)()()(
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*
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border
 (7.11) 
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Ai\xj 0 4 8 12 16 20 24 28 ”Class 1” 

A1 1 5 1 2 1 1 1 1 yes

A2 1 5 1 1 1 2 1 1 yes

A3 5 5 1 2 1 1 1 1 yes

A4 1 5 1 2 1 1 1 1 yes

A5 5 1 1 1 1 1 1 1 no

A6 1 5 1 2 1 1 1 1 unknown

The equivalence relation I(B) is formed by a set of pairs 

)}.,(),,(),,(),,(),,(),,(),,(),,{()(
4664665544332211

AAAAAAAAAAAAAAAABI

The equivalence classes of I(B) are created as the sets 

466

55644332211

,)(

,)(,,)(,)(,)(,)(

AAAIB

AAIBAAAIBAAIBAAIBAAIB

according to (7.8). 

The semantic value of the decision attribute “Class 1” = “yes” generates set 

4321
,,, AAAAX  that in turn is an essential factor implementing the sets 

321*
,,)( AAAXB ,

64321

*
,,,,)( AAAAAXB  and 

64
,)( AAXB

border
.

The polygon membership degrees whose sizes confirm the membership in 

“Class 1” are obtained as

.
2

1
)(,0)(

,
2

1
)(,1)(,1)(,1)(

6"1"5"1"

4"1"3"1"2"1"1"1"

AA

AAAA

ClassClass

ClassClassClassClass

We can assume that A1, A2 and A3 are the true members of “Class 1” in U while 

A4 and A6 may belong to the investigated class to certain degrees. We can also 

notice that A6 affects a status of A4 negatively, and on the contrary, we can see that 

A4 upgrades the importance of A6 in the considered class “Class 1”. 

7.4 s-functions in Fitting to Letter-shaped Polygons 

As effects of some experiments, in which y  [–1, 1], we obtain polygons (sets A)

composed of parts looking like bells or even half-bells that lie over and under the 

x-axis.

Table 7.2:  The decision table I = (U, B, D) of clock-like polygons A1–A6
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Example 7.8 

Consider the polygon A sketched in Fig. 7.8.
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Figure 7.8:  The example of a letter-shaped polygon reflecting A = {(x, y)}

We assume an approximation of multi-shapes from Fig. 7.8 by s-truncated

functions used piecewise as another approach to the numerical problem of a 

smooth curve fitting to point sets. Since we recognize half-bells as dominant 

shapes in A, then we should prefer adopting the appearance of the s-functions as 

approximating segments. “The sampled truncated s”, as we call an entire approxi-

mation curve, consists of first and second degree-polynomials. This would follow 

the polygon’s shape very closely and results in cumulating very low error, measur-

ing deviations between the approximating curve and the polygon.

Let us suppose that the y-values of curves, that are similar in shape to the set 

depicted in Fig. 7.8, are important indicators in the further classification process of 

the curves. These can resemble some letters, e.g., N, W, or M, and can occur in 

different places along the x-axis. In order to assign the curves to proper classes 

denoted by N, W or M, we should compare their y-coordinates. It is not possible if 

the curves are scattered in different segments of the x-axis. To make the curves 

comparable, we should move them over the interval [0, 1]. 

The approach to approximation of irregular polygons presented below consti-

tutes a solution [65, 66, 67] that differs from other modern procedures of seeking 

approximation curves [1, 15, 35, 43, 71]. 

We discover that the x-values of pairs included in A belong to interval 

)(),(
maxmin

AxAx , in which xmin(A) is the smallest and xmax(A) is the largest x-

value in A. In the next step we divide the whole x-interval into subintervals 

)max()min(
,

jj
AA

xx , where Aj, j = 1, 2, …, Q, are parts of A. In parts Aj we can 

experience either the growth or the decrease of the y-values corresponding to these 
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perience either the growth or the decrease of the y-values corresponding to these x

that are placed between the borders 
)min(

j
A

x and
)max(

j
A

x  functioning as the 

smallest, and respectively, the largest value of x in Aj. S-functions or segments of 

straight lines attached to two adjacent s-curves approximate the Aj components.

Example 7.9 

The pairs, which create the polygon depicted in Fig. 7.8, are the members of A = 

{(1.1, 0.05), (1.15, 0.03), (1.19, 0.01), (1.3, 0.05), (1.54, 0.15), (1.76, 0.27), (1.87, 

0.33), (2.4, 0.25), (2.55, 0.2), (2.76, 0.12), (2.87, 0.1), (2.96, 0.08), (3.1, 0.02), 

(3.14, 0), (3.21, 0.07), (3.48, 0), (3.49, –0.03), (3.67, –0.12), (3.84, –0.15), (3.9, –

0.19), (4.02, –0.15), (4.09, –0.06), (4.12, –0.01), (4.16, –0.02), (4.3, –0.03)}. By 

measuring the direction of changes in the y-values, which point out extreme nodes 

in A’s shape, we consider the subintervals [1.1, 1.19], [1.19, 1.87], [1.87, 3,14], 

[3.14, 3.21], [3.21, 3.43], [3.43, 3.9], [3.9, 4.12], [4.12, 4.3]. Over the intervals 

either s-functions or straight lines will be applied as approximation tools. 

The s-function with the standard parameters , ,  and an additional parameter 

, introduced by (2.5) and modified by the equation 

where
2

, is suitable for the occurrences of “half-bells” Aj. Since the y-

values of the classical s belong to the interval [0, 1] (–s has its y-values in [–1, 0]) 

then we should insert an additional parameter  in (7.13) to accommodate a height 

of the function to the data existing in the set Aj, j = 1, 2, …, Q. We have already 

introduced the partition of A by means of subsets Aj, looking like “half-bells”, then 

we should denote each s-function that approximates Aj by ),,,,(
jjjjj

AAAAA
xs .

We now discuss different cases of Aj’s approximation that is dependent on the 

sizes of y-coordinates in the set Aj.

Let us assume that the values of the y-coordinates in Aj associated with the x-

values belonging to 
)max()min(

,
jj

AA
xx  appear in the ascending order, and let us no-

tice that no y-coordinate is equal to zero. The pair ))(,(
)min()min(

jj
AA

xyx

(( )(
)min(

j
A

xy  corresponds to 
)min(

j
A

x ) begins the set Aj but we cannot identify 

)min(
j

A
x  as 

j
A

. Thus, the value of 
j

A
 in the 

j
A

s -function, expected to approxi-

,for21)2(

,for2)1(

),,,,(
2

2

x
x

x
x

xsy (7.13)
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mate Aj, is unknown. To find 
j

A
 we, at first, accept the value of 

j
A

 as the larg-

est y-coordinate in Aj associated with the x-coordinate
j

A
. We can now recon-

struct the value of the remaining parameter 
j

A
 according to patterns that are al-

most identical with “Case of 1” already discussed for -functions:

a)

jA

jA

jA

jA

jj

j xy

xy

AA

A

x

2

)(

2

)(

)min(

)min(

)min(

1

 for 
2

)(
)min(

j

j

A

A
xy . It changes (7.13) as 

b)

jA

jAjA

jj

jj xy

AA

AA

x

2

)(

)min(

)min(

 for 
2

)(
)min(

j

j

A

A
xy . The )(xs

j
A

 formula ap-

pears as

It happens that the position of pairs in the set Aj introduces the descending order 

among points with respect to the y-coordinate values. We assume that none of 

them is equal to zero. The pair ))(,(
)max()max(

jj
AA

xyx  will end the set Aj, but 

)max(
j

A
x

j
A

. Let us assign the largest value of y in Aj, regarded as 
j

A
, to the x-

coordinate
)min(

j
A

x =
j

A
. Then it is possible to restore the missing value of 

j
A

,

which is one of the parameters included in function ),,,,(1
jjjjj

AAAAA
xs

applied to approximate Aj.

We make the following distinction between two different cases of adjusting the 

parameter
j

A
 to the data set Aj:

.for21)2(
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c)

jA

jA

jA

jA
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jA xy

xy

AA
x

2
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2

)(

)max(

)max(

)max(

1

 for 
2

)(
)max(

j

j

A

A
xy . We suggest the follow-

ing changes in (7.13) to adapt it to the new assumptions 

d)

jA

jAjA

jj

jj xy

AA
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x

2

)(

)max(

)max(

 for 
2

)(
)max(

j

j

A

A
xy . We adjust the )(xs

j
A

 for-

mula as

The
j

A
s function is a section of the classical s-function and therefore we will 

name it a truncated s-function. By selecting the minimal and the maximal x-value

and the maximal y-value, which exist in the set Aj, we prepare (7.14)–(7.17) for 

computing the unknown parameters 
j

A
 or 

j
A

. The point, in which the y-

coordinate takes the 
j

A
-value and the x-coordinate is the equal of the 

j
A

 value 

for the function ,,(
jj

AA
xs ,

j
A

,
j

A
)

j
A

, and respectively the 
j

A
 value for the 

complement ),,,,(1
jjjjj

AAAAA
xs , is one of the vertices in A and it con-

stitutes the common element of Aj and the function 
j

A
s , j = 1, …, Q. The total 

approximation sA of A is called “sampled truncated s”.

To preserve the right shape of the approximating curve, it is advisable to tie two 

adjacent functions 
j

A
s ,

1j
A

s  between the points ))(,(
)max()max(

jj
AA

xyx , ,(
)min(

1j
A

x

))(
)min(

1j
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xy  by the segment of a straight line having an equation 
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Example 7.10

The “sampled truncated s”, made for the data from Ex. 7.8, is shown in Fig. 7.9. 
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Figure 7.9:  The approximation of A by “sampled truncated s”

The first set of points A1 A, in which the y-coordinates form the descending order, is 

placed over [1.1, 1.19] as decided in Ex. 7.9. Since no y-value is equal to zero we will re-

construct the value of a parameter 2316.1

1

1.119.1

05.02

01.0

05.02

01.0

1
A

 for 05.0
1

A
,

1.1
1

A
, 19.1

)max(
1

A
x and 01.0)(

)max(
1

A
xy in accordance with c). 

In the next interval A2 = [1.19, 1.87] the value of 
2

A
 should be estimated. If we re-

quest the values of 33.0
2

A
, 87.1

2
A

, 19.1
)min(

2
A

x and 01.0)(
)min(

2
A

xy

then

33.02

01.0

33.02

01.0

1

87.119.1

2
A

=1.0945 due to a). 

The formula of sA for A is expanded as the following split definition 

)min()max(
1

for)(
jjjjj

AAAAA
xxxlxkxliney . (7.18)
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We can prove some additional operations on the s-function values, e.g., 

2

)(xsy  or 2

1

)(xsy  to match a shape of the function to the given polygon 

in the best way.

It is worth noticing that the total error that collects the deviations of )(xs
A

from A is very small. 

The curve created for A has a particular pattern since it resembles the letter N.

In some medical or technical problems we obtain sets of points that will be ap-

proximated by some shapes of letters, e.g., N, M or W. The shapes of mentioned 

letters can be disturbed or vague, which makes difficult to classify them properly, 

i.e., we do not know exactly if we should include the curves in classes determined 

by N, M and W. In order to ensure if a vague or unknown object can belong to the 

considered class or not, we accomplish a classification according to the rules of 

rough set theory.

 If we are given several polygons then we, at the first stage, want to collect all 

approximated objects over a common interval [0, 1] to measure their deviations in 

y-values with respect to the same x values.

Example 7.11 

Suppose that we have obtained different shapes of the curves originating from 

point sets A
1
–A

5
. Each of them is approximated by a continuous function that con-

sists of s-sections and pieces of straight lines that link the parts of s-functions if it 

is necessary. Figure 7.10 provides the polygons and the approximating functions 

over their original intervals along the x-axis. We assume the following polygon 

membership: A
1
, A

3
 and A

5
 belong to the “N” class, A

4
 is a member of the “W”

class, while the origin of A
2
 is unknown.

 In further analysis we use only the continuous curves, also named A
1
–A

5
.
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A
1
          A

2
       A

5
                       A

3
          A

4

1512.5107.552.50

0.4

0.2

0

-0.2

-0.4

x

y

x

y

Figure 7.10:  The approximated polygons A
1
–A

5

 To move all curves to the same starting point settled as the origin of the x-y

coordinate system, we suggest the following transformations. 

 Suppose that the A
i
-curve, i = 1, …, n, is placed in the x-subinterval

)(),(
maxmin

ii
AxAx . We move the j

th
 segment i

j
A

s , approximating the subset 
i

j
A  of 

A
i
, i = 1, …, n, j = 1, …, Q, to a position close to the origin by introducing the 

formula

 The straight line (7.18) is transferred nearby the origin by the action of an equa-

tion
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j
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Example 7.12 

Figure 7.11 shows A
1
–A

5
 attached to the origin after performing (7.19) and (7.20). 

A
1
       A

2
   A

5
       A

3
      A

4

107.552.50

0.4

0.2

0

-0.2

-0.4

x

y

x

y

Figure 7.11: The curves A
1
–A

5
 with their start points at the origin 

 In Fig. 7.11 we recognize A
2
 as A from Ex. 7.8. We decide 1.1)(

2

min
Ax  and 

modify “sampled truncated s” for A2 = A, as a function 

,1.13.41.11479.4for
9958.33.4

)1.13.4(
2103.0

,1.143.31.121.3for

7414.0)31818.0(

1.1)31818.0(

0914.1)31818.0(

,1.11911.116581for
1.12316.1

)1.12316.1(
20.05

,1.1165811.111for
1.12316.1

)1.11.1(
2105.0

)(

2

2

2

2

x
x

x

x

x

.x.
x

.x.
x

xsy
A

which displaces A2’s start point to the origin. 

The comparison of all curves will be successful if we can observe them at a 

common interval. Let us determine the interval [0, 1] as a new domain for all split-

functions A
1
–A

n
. Each piece i

j
A

s  or i

j
A

line , i = 1, …, n, j = 1, …, Q, should be 
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shrunk or enlarged proportionally to fit it for the interval [0, 1] together with other 

pieces.

In order to achieve the required movements of 
i

j
s  over [0, 1], we initiate the pa-

rameter
)()(

1

minmax

iiA
AxAx

i  in (7.19), which generates a new formula [49, 

67]

 Before equipping (7.20) with the parameter i
A

 we should find another form of 

(7.20) adapted to the range [0, 1] as [7, 67] 

 We can now place i
A

 in (7.22) according to a pattern 

Example 7.13 

The applications of (7.21) and (7.23) to every s-section and every line segment 

that takes place in A
1
–A

5
, yields the effect of collecting all curves over the x-

.))(())((for

)(
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,))(())((for
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domain [0, 1]. The curves A
1
–A

5
, lying in [0, 1], are plotted in Fig. 7.12.
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Figure 7.12:  The curves A
1
–A

5
 over the common interval [0, 1]

After the executed transformations (7.21) and (7.23) the y-coordinates of A
2
, for 

which 31.0
1.13.4

1
2

A
, are computed as values 

.31.0)1.13.4(31.0)1.11479.4(for

31.0)995.33.4(

31.0)1.13.4(
2103.0

,31.0)1.143.3(31.0)1.121.3(for
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 The mathematical tools used for polygons result in the creation of a common 

collection of curves representing the polygons over [0, 1]. Next, the selected ele-
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ments of rough set theory will constitute a foundation for the classification of the 

curves.

7.5  The Classification of Letter-shaped Polygons 

We return to the curves presented by Ex. 7.11 in order to accomplish their classifi-

cation provided that we would like to determine their membership in the “N”

class. The y-axis in Fig. 7.12 is divided in three regions. After analyzing the im-

portance of the y-values we consider three intervals for them. The values of y be-

long to the interval (–0.3, 0.35) in the recognized case. Suppose that the y-values,

occurring from –0.1 to 0.1 cannot provide us with essential information about the 

curve character and they are ignored. As a consequence, the code assigned to the 

y-value belonging to [–0.1, 0.1] is equal to 0. For decisive, positive y-values, the 

code of 1 is reserved while the negative y-values of a deterministic character ob-

tain the code stated as –1. 

Let us introduce the universe set U = {A
1
, A

2
, …, A

n
} composed of continuous 

curves A
1
, A

2
, …, A

n
 approximating the polygons bearing the same names and 

representing different shapes of letters. The objects of U are determined by condi-

tion and decision attributes defined by the sets B and D respectively. We assume 

that the set B consists of sizes xk  [0, 1], k = 1, …, m, associated with values 

)(
kA

xcode i , i = 1, …, n that are equal to the integers –1, 0 and 1.

Since we want to assign some members to the “N” class, then set D obtains an 

attribute stated as “the membership of a polygon in “N””, where the membership 

is expressed as “yes”, “no”, “unknown”.

The triple I = (U, B, D) forms the decision table whose analysis generates the 

equivalence relation already introduced by (7.7), its classes given by (7.8) and two 

approximation sets of X, as recommended by (7.9) and (7.10). The relationship 

between class “N” and each member of U is estimated by (7.12).

Example 7.14 

We consider the data concerning A
1
–A

5
 and sampled in Fig. 7.10 as pictures of 

different letter-shaped cases. We decide U = {A
1
, A

2
, A

3
, A

4
, A

5
}. The decision 

triple I = (U, B, D) is expanded in Table 7.3. The objective of investigations is to 

revise the hypothesis formulated earlier in Ex. 7.11. As we remember, we have 

supposed that A
1
, A

3
 and A

5
 fit the “N” class, A

4
 resembles the letter “W”, and we 

cannot strictly decide about the origin of A
2
. Let us accomplish the appropriate 

rough classification by, at first, filling in some entry data in the mentioned deci-

sion table 7.3.
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 The table contains the values of condition and decision attributes. 

Table 7.3:  The decision table I = (U, B, D) for letter-like curves A
1
–A

5

A
i
\xk 0.125 0.250 0.375 0.500 0.625 0.750 0.875 Class”N”

A
1

1 1 1 0 –1 –1 0 yes

A
2

1 1 1 1 0 0 –1 unknown

A
3

0 1 1 1 0 0 0 yes

A
4

–1 0 0 1 0 0 0 no

A
5

1 1 1 1 0 0 –1 yes

 The equivalence relation I(B), provided in accordance with (7.7), is a set of 

pairs )}.,(),,(),,(),,(),,(),,(),,{()(
25525544332211

AAAAAAAAAAAAAABI

The equivalence classes of I(B) are decided as the sets

},{)(,}{)(,}{)(,},{

)(},{)(

525443352

211

AAAIBAAIBAAIBAA

AIBAAIB

.

The value of decision attribute “N” = “yes”, generates the set X = {A
1
, A

3
, A

5
}

that in turn is the most essential factor implementing sets },{)(
31

*
AAXB ,

)(
*

XB },,,{
5321

AAAA  and )(XB
border

},{
52

AA .

The polygon membership degrees, whose sizes confirm the membership in the 

“N” class, are obtained as: 

.
2

1
)(,0)(,1)(,

2

1
)(,1)(

5

""

4

""

3

""

2

""

1

""
AAAAA

NNNNN

By looking at the results of the accomplished analysis we can conclude that A
1

and A
3
 are the true members of the “N” class in U, while A

2
 and A

5
 may belong to 

the investigated class to certain grades. The recognition of the curve nature aims at 

the special treatment of all sure and possible objects belonging to “N”. We often 

know how to handle a class on the condition that its members are recognized. 

Some finite sets of pairs are often interpolated by polygons that seldom have 

convenient equations mathematically expanded. Although there exists a large 

number of approximation methods applied to point sets, especially the different 

variations of least square regressions, we suggest applying a new procedure of 

approximation. This originates from the standard   or s-functions in truncated 

forms that approximate the irregular parts of the polygons very smoothly.

The functions, called by us “the sampled, truncated (s)” are composed of the 

first and second degree-polynomials in the form of split definitions. The low de-

grees of approximating functions make further operations on them rather easy, 

which is an essential advantage of the method. One truncated  or s-segment can 

approximate many nodes belonging to the point set that reduces a number of 

piecewise functions involved in the general definition of an approximating collec-

tion. But most of all we notice that “the sampled, truncated  (s)” follows the 
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changes of the polygon’s pattern very sensitively, which guarantees the high thor-

oughness of approximation results.

 A new process of approximation sometimes is invented in mathematics as an 

interesting theoretical item without greater practical validity. To prove the empiri-

cal aspect of “sampled truncated  or s” we want to consider a classification 

praxis.

The accomplishment of a successful classification of unknown objects, possess-

ing only some features typical of the considered class, is not an easy task. By ap-

plying rough set theory combined with earlier achievements in approximation, we 

could classify polygons within the same class even if they have an unknown ori-

gin. Two introduced sets, B* and B
*
, act as a lower and an upper approximation of 

the investigated class. This makes it possible to assign its sure members and such 

ones that have most of the properties characteristic of the class. Moreover, we can 

easily exclude the polygons that do not satisfy the class’s attributes. 

If we need a pattern for another classification of objects obtained as some point 

sets, we can return to the discussed model and adapt it to other assumptions. 



References

1. Agadi, A., Penot, J-P.: A comparative Study of Various Notions of 

Approximation of Sets. J. of Approximation Theory, vol. 134, nr 1 (2005) 

80-101

2. Adlassnig, K. P.: A Fuzzy Logical Model of Computer-assisted Medical 

Diagnosis. Methods of Information in Medicine 19, nr 3 (1980) 141-148 

3. Adlassnig, K. P.: Fuzzy Modeling and Reasoning in a Medical Diagnostic 

Expert System. EVD in Medizin und Biologie 17, 1/2 (1986) 12-20 

4. Bede, B., Nobuhara, H., Hirota, K.: Numerical Computation of Eigen Fuzzy 

Sets and Applications to Image Analysis. In: Dzitac, I., Maghiar, T., Popescu 

C. (eds.): Proc. of the International Conference on Computers and 

Communications, ICCC 2004. Univ. din Oradea, Romania (2004) 72-77 

5. Baas, S. M., Kwakernaak, H.: Rating and Ranking of Multiple-aspect 

Alternatives Using Fuzzy Sets. Automatica, vol. 13, Pergamon Press (1977) 

47-58

6. Barro, S., Marin, R. (eds.): Fuzzy Logic in Medicine. Studies in Fuzziness 

and Soft Computing Series, Springer-verlag, Berlin Heidelberg New York 

(2002)

7. Bouchon-Meunier, B.: Fuzzy Logic and Knowledge Representation Using 

Linguistic Modifiers. In: Zadeh, L. A., Kacprzyk, J. (eds.): Fuzzy Logic for 

the Management of Uncertainty, Wiley, New York (1992) 

8. Belacel, N., Boulassel, M. R.: Multicriteria Fuzzy Assignment Method: a 

Useful Tool to Assist Medical Diagnosis. Artificial Intelligence in Medicine 

21 (2001) 201-207 

9. Bellman, R. E., Zadeh, L. A.: Decision Making in a Fuzzy Environment. 

Management Sci. Vol. 17, nr 4 (1970) 141-164 

10. Blin, J. M., Whinston, A. B.: Fuzzy Sets and Social Choice. J. Cybern. Vol. 

3 (1974) 28-36 

11. Bortolan, G., Pedrycz, W.: An Interactive Framework for an Analysis of 

ECG Signals. Artificial Intelligence in Medicine 24 (2002) 109-132 

12. Buckley, J., Eslami, E.: An Introduction to Fuzzy Logic and Fuzzy Sets. 

Advances in Soft Computing Series, Springer-verlag, Berlin Heidelberg 

New York (2002) 

13. Carlsson, C., Fullér, R.: Benchmarking in Linguistic Importance Weighted 

Aggregations. Fuzzy Sets and Systems 114 (2000) 35-41

14. Carlsson, C., Fullér, R.: Fuzzy Reasoning in Decision Making and 

Optimization. Studies in Fuzziness and Soft Computing Series, Springer-

Verlag, Berlin Heidelberg New York (2001) 



    References184

15. Cherkassky, V., Gehring, D., Mulier, F.: Comparison of Adaptive Methods 

for Function Estimation for Samples. IEEE Transactions on Neural 

Networks, vol. 7, nr 4 (1996) 969-984 

16. Chich-Hui Chiu, Wen-June Wang: A Simple Computation of MIN and 

MAX Operations for Fuzzy Numbers. Fuzzy Sets and Systems 126 (2002) 

273-276

17. Cohen, M. E.: Comparative Approaches to Medical Reasoning. World 

Scientific, Singapore New Yersey Hong Kong (1995) 

18. Detyniecki, M., Yager, R.: Ranking Fuzzy Numbers Using -weighted

Valuations. Internat. J. Uncertainty, Fuzziness Knowledge-Based Systems 8 

(2000) 573-591 

19. Dubois, D., Prade, H.: Fuzzy Real Algebra. Some Results. Fuzzy Sets and 

Systems 2 (1978) 327-348 

20. Dubois, D., Prade, H.: Operations on Fuzzy Numbers. Int. J. Systems Sci.,

vol. 9, nr 6 (1978) 613-626 

21. Dubois, D., Grabisch, M.: Modave, F., Prade, H.: Relating Decisions under 

Uncertainty and Multicriteria Decision Making Models. Int. J. of Intelligent 

Systems, vol. 15, nr 11 (2000) 967-979 

22. Dug Hun Hong: Shape Preserving Multiplications of Fuzzy Numbers. Fuzzy 

Sets and Systems 123 (2001) 81-84 

23. Facchinetti, G., Ghiselli Ricci, R., Muzziol, S.: Note of Ranking Fuzzy 

Triangular Numbers. Int. J. Intell. Syst. 13 (1998) 613-622

24. Fernández, M., Suárez, F., Gil, P.: T-eigen Fuzzy Sets, Inf. Sci. 75 (1993) 

63-80

25. Fullér, R.: On Product-Sum of Triangular Fuzzy Numbers. Fuzzy Sets and 

Systems 41 (1991) 83-87 

26. Fullér, R., Majlender, P.: On Weighted Possibilistic Mean and Variance of 

Fuzzy Numbers. Fuzzy Sets and Systems 136 (2003) 363-374 

27. Gerstenkorn, T., Kurnatowska, A., Rakus, E.: The Application of Fuzzy Set 

Theory to Medical Diagnosis and Treatment of Inflammation of Genital 

Organs and Urinary tract in Women. Parasitological News, vol. 36, nr 5-6, 

Wroc aw (1990) 251-267 (in Polish)

28. Gerstenkorn, T., Rakus, E.: On the Utility of the Notions of a Fuzzy Variable 

and a Linguistic Variable in Natural Science. Biometrical Letters, vol. 27, nr 

1-2, Pozna  (1990) 3-12 (in Polish)

29. Gerstenkorn, T., Rakus, E.: The Method of Calculating the Membership 

Degrees for Symptoms in Diagnostic Decisions. Cybernetics and Systems 

Research ‘92-Proceedings of the XI th European Meeting on Cybernetics 

and System Research, vol. 1, Vienna (1992) 479-486

30. Gerstenkorn, T., Rakus, E.: On Modelling Membership Function Values in 

Diagnostic Decisions. Biometrical Letters, vol. 3, nr 1, Pozna  (1993)  

3-12



References    185 

31. Gerstenkorn, T., Rakus, E.: An Application of Fuzzy Set Theory to 

Differentiating the Effectiveness of Drugs in Treatment of Inflammation of 

Genital Organs. Fuzzy Sets and Systems 68 (1994) 327-333 

32. Gerstenkorn, T., Rakus-Andersson, E.: Methods for Constructing 

Membership Functions in the Case when the Symptoms are Estimated 

Qualitatively and Quantitatively. Biocybernetics and Biomedical 

Engineering, vol 17, nr 1-2 (1997) 115-126 

33. Ghaius, C.: Fuzzy Model and Control of a Fan-coil. Energy and Buildings 33 

(2001) 545-551

34. Goetschel, R., Voxman, W.: Eigen Fuzzy Number Sets. Fuzzy Sets and 

Systems 16 (1985) 75-85 

35. Haan, O.: A Free Algebraic Solution for the Planar Approximation. Nuclear 

Physics B 705 (2005) 563-575 

36. Heilpern, S.: Representation and Application of Fuzzy Numbers. Fuzzy Sets 

and Systems 91 (1997) 259-268 

37. Jacas, J., Recasens, J.: Fuzzy T-transitive Relations: Eigenvectors and 

Generators. Fuzzy Sets and Systems 72 (1995) 147-154 

38. Jain, R.: Decision Making in the Presence of Fuzzy Variables. IEEE Trans. 

Syst. Man and Cybern. SMC-6 (1976) 698-703 

39. Jain, R.: A Procedure for Multi-aspect Decision Making Using Fuzzy Sets. 

Int. J. Syst. Sci. 8 (1977) 1-7 

40. Kacprzyk, J.: Zbiory rozmyte w analizie systemowej (Fuzzy Sets in System 

Analysis) PWN, Warszawa (1986) (in Polish)

41. Kaufmann, A., Gupta, M. M.: Introduction to Fuzzy Arithmetic Theory and 

Application. Van Nostrand Reinhold, New York (1991) 

42. Kun-lun Zhang, Hirota K.: On Fuzzy Number Lattice. Fuzzy Sets and 

Systems 92 (1997) 113-122 

43. Lavoué, G., Dupont, F., Baskurt, A.: A New Subdivision Based Approach for 

Piecewise Smooth Approximation of 3D Polygonal Curves. J. of Pattern 

Recognition Society, vol. 38, nr 8 (2005) 1139-1151 

44. Lowen, R.: Fuzzy Set Theory: Basic Concepts, Techniques and 

Bibliography. Kluwer Academic Publishers, Dordrecht (1996)

45. Lucas, P.: Model-based Diagnosis in Medicine. Artificial Intelligence in 

Medicine 10 (1997) 201-208 

46. Mesiar, R., Calvo, T., Yager, R. R.: Quantitative Weights and Aggregation. 

IEEE Transactions on Fuzzy Systems 12 (2004) 62-69

47. Mizumoto, M., Tanaka, K.: Some properties of Fuzzy Numbers. In: Gupta, 

M. M., Ragade, R. K., Yager, R. (eds.): Advances in Fuzzy Set Theory and 

Applications, North-Holland Publishing Company (1979) 

48. Mordeson, J. N., Davender, S. M., Shih Chuang Cheng: Fuzzy Mathematics 

in Medicine. Studies in Fuzziness and Soft Computing Series, Springer-

verlag, Berlin Heidelberg New York (2000) 

49. Novák, V., Perfilieva, I.: Evaluating of Linguistic Expressions and 

Functional Fuzzy Theories in Fuzzy Logic. In: Zadeh, L. A., Kacprzyk, J. 



    References186

(eds.): Computing with Words in Information – Intelligent Systems 2, vol. 

33, Studies in Fuzziness and Soft Computing Series, Springer-verlag, Berlin 

Heidelberg New York (1999) 383-406 

50. Pal, S. K., Mitra, P.: Case Generation Using Rough Sets with Fuzzy 

Representation. IEEE Transactions on Knowledge and Data Engineering, 

vol. 16, nr 3 (2004) 292-300 

51. Pawlak, Z.: On Rough Sets. Bulletin of the EATCS 24 (1984) 94-108 

52. Pawlak, Z.: Vagueness - a Rough Set View. Structures in Logic and 

Computer Science (1997) 106-117 

53. Pawlak, Z.: Decision Networks. Proc. of Rough Sets and Current Trends in 

Computing 2004, Uppsala, Sweden (2004) 1-7 

54. Pedrycz, W.: Fuzzy Sets Engineering, CRC Press, Boca Raton, FL (1995)  

55. Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets. Analysis and 

Design. MIT Press (1998)

56. Rakus, E.: Fuzzy Set Theory Assisting Medical Diagnosis and Appreciation 

of Drug Effectiveness. Doctor’s dissertation, Medical Academy of ód

(1991) (in Polish) 

57. Rakus-Andersson, E., Gerstenkorn, T.: A Fuzzy Model of Decision Making 

to the Choice of a Medicine in the Case of Symptoms Prevailing after the 

Treatment. Bulletin of the Polish Academy of Sciences – Technical 

Sciences, vol. 45, nr 4 (1997) 633-641 

58. Rakus-Andersson, E., Gerstenkorn T.: An Application of Fuzzy Set Theory 

in a Diagnostic Process Extended in Time. In: Trappl, R. (ed.): Proc. of the 

XIVth European Meeting on Cybernetics and System Research’98, vol. 1, 

University of Vienna and Austrian Society for Cybernetics Studies, Vienna 

(1998) 160-162 

59. Rakus-Andersson, E.: A Fuzzy Decision Making Model Applied to the 

Choice of the Therapy in the Case of Symptoms not Disappearing after the 

Treatment. In: deBaets, B., Fodor, J., Kóczy, L. T. (eds.): Proc. of 

EUROFUSE-SIC’99, University of Veterinary Science – Department of 

Biomathematics and Informatics, Technical University of Budapest – 

Department of Telecommunications and Telematics, Budapest (1999) 298-

303

60. Rakus-Andersson, E., Gerstenkorn T.: A Comparison of Different Fuzzy 

Decision Making Models Supporting the Optimal Therapy. In: Szczepaniak, 

P., Lisboa, P.J., Tsumoto, S. (eds.): Studies in Fuzziness and Soft Computing 

Series, Springer-verlag, Berlin Heidelberg New York (1999) 561-572 

61. Rakus-Andersson, E., Gerstenkorn, T.: A Diagnostic Process Extended in 

Time as a Fuzzy Model. In: Dubois, D. (ed.): Computing Anticipatory 

Systems. Casys’98 – Second International Conference, American Institute of 

Physics, Woodbury, New York (1999) 283-288

62. Rakus-Andersson, E.: A Fuzzy Group-Decision Making Model Applied to 

the Choice of the Optimal Medicine in the Case of Symptoms not 

Disappearing after the Treatment. In: Dubois, D. (ed.): The International 



References    187 

Journal of Computing Anticipatory Systems, University of Liège, Chaos, 

Liège (1999) 141-152

63. Rakus-Andersson, E.: The Newton Interpolation Method with Fuzzy 

Numbers as the Entries. In: Rutkowski, L., Kacprzyk J. (eds.): Neural 

Networks and Soft Computing, Proc. of the Sixth International Conference 

on Neural Network and Soft Computing, Studies in Fuzziness and Soft 

Computing Series, Springer-verlag, Berlin Heidelberg New York (2003) 

310-315

64. Rakus-Andersson, E.: An Application of Fuzzy Numbers in Eigen Fuzzy Set 

Problem to Differentiating the Effectiveness of Drugs. In: Yinming Liu, 

Guoqing Chen (eds.): Proc. of the International Conference on Fuzzy 

Information Processing – Theories and Applications, Tsinghua University 

Press – Springer (2003) 85-90 

65. Rakus-Andersson, E., Salomonsson, M.: The Truncated -functions in 

Approximation of Multi-shaped Polygons. In: deBeats, B., de Caluwe, R., de 

Tre, G., Fodor, J., Kacprzyk, J., Zadro ny, S. (eds.): Current Issues in Data 

and Knowledge Engineering, Proc. of EUROFUSE 2004 – EURO WG on 

Fuzzy Sets, Exit, Warsaw (2004) 444-452 

66. Rakus-Andersson, E., Salomonsson, M.: -truncated Functions and Rough 

Sets in the Classification of Internet Protocols. In: Yingming Liu, Guoqing 

Chen, Mingsheng Ying (eds.): Proc. of Eleventh International Fuzzy 

Systems Association World Congress – IFSA 2005, Beijing, Tsinghua 

University Press – Springer (2005) 1487-1492 

67. Rakus-Andersson, E.: S-truncated Functions and Rough Sets in 

Approximation and Classification of Polygons. Proc. of Modeling Decisions 

for Artificial Intelligence – MDAI 2005, Tsukuba, CD-ROM, paper nr 049, 

Consejo Superior de Investigaciones Cientificas (2005) 

68. Saaty, T. L.: Exploring the Interface Between Hierarchies, Multiplied 

Objectives and Fuzzy Sets. Fuzzy Sets and Systems 1 (1978) 57-68 

69. Sadegh-Zadeh, K.: The Fuzzy Revolution: Goodbye to the Aristotelian 

Weltanschauung. Artificial Intelligence in Medicine 21 (2000) 1-25 

70. Saitta, L., Torasso, P.: Fuzzy Characterization of Coronary Disease. Fuzzy 

Sets and Systems 5 (1981) 245-258 

71. Salmeri, M., Mencattini, A., Rovatti, R.: Function Approximation Using 

Non-normalized SISO Fuzzy Systems. International Journal of Approximate 

Reasoning 26 (2001) 211-231 

72. Sanchez, E.: Resolution of Eigen Fuzzy Set Equations. Fuzzy Sets and 

Systems 1 (1978) 69-74 

73. Sanchez, E.: Eigen Fuzzy Sets and Fuzzy Relations. Journal of Mathematical 

Analysis and Applications 81 (1981) 399-421 

74. Sanchez, E.: Truth Qualification and Fuzzy Relations in Natural Languages, 

Application to Medical Diagnosis. Fuzzy Sets and Systems 84 (1996) 155-

167



    References188

75. Schmitt, M., Teodorescu, H. N., Jain, A.: Computational Intelligence 

Processing in Medical Diagnosis. Studies in Fuzziness and Soft Computing 

Series, Springer-verlag, Berlin Heidelberg New York (2002) 

76. Steimann, F., Adlassnig, K. P.: Clinical Monitoring with Fuzzy Automata. 

Fuzzy Sets and Systems 61 (1994) 37-42 

77. Steimann, F., Adlassnig, K. P.: Fuzzy Medical Diagnosis. In: Ruspini, E., 

Bonissone, P., Pedrycz, W. (eds.): Handbook of Fuzzy Computation, 

Institute of Physics Publishing, Bristol Philadelphia (1998) G13.1:1-

G13.1:14

78. Wagenknecht, M., Hartmann, K.: On the Construction of Fuzzy Eigen 

Solutions in Given Regions. Fuzzy Sets and Systems 20 (1986) 55-65

79. Wang, X., Kerre, E.: Reasonable Properties for the Ordering of Fuzzy 

Quantities (I), (II). Fuzzy Sets and Systems 118 (2001) 375-385, 387-405 

80. Yager, R. R.: Multiple Objective Decision-Making Using Fuzzy Sets. Int. J. 

Man-Machine Studies 9 (1977) 375-382 

81. Yager, R. R.: Fuzzy Decision Making Including Unequal Objectives. Fuzzy 

Sets and Systems 1 (1978) 87-95 

82. Yager, R. R., Kacprzyk, J.: The Ordered Weighted Averaging Operators: 

Theory and Applications. Kluwer, Norwell, MA (1997) 

83. Yager, R. R.: Modeling Uncertainty Using Partial Information. Inf. Sci. vol. 

121 (1999) 271-294 

84. Yager, R. R.: Decision Making Using Minimization of Regret. Int. J. of 

Approximate Reasoning 36 (2004) 109-128

85. Yager, R. R.: Uncertainty Modeling and Decision Support. Reliability 

Engineering and System Safety, vol. 85 (2004) 341-354 

86. Yager, R. R.: Generalized OWA Aggregation Operators. Fuzzy 

Optimization and Decision Making 3 (2004) 93-107 

87. Yao Janis Fan-Fang, Yao Jing-Shing: Fuzzy Decision Making for Medical 

Diagnosis Based on Fuzzy Number and Compositional Rule of Inference. 

Fuzzy Sets and Systems 120 (2001) 351-366 

88. Zadeh, L. A.: Fuzzy sets. Inf. Control 8 (1965) 338-353 

89. Zadeh, L. A.: Outline of a New Approach to the Analysis of Complex 

Systems and Decision Processes. IEEE Trans. Systems, Man Cybernet. 3 

(1973) 28-48 

90. Zadeh, L. A.: The Concept of a Linguistic Variable and its Application to 

Approximate Reasoning. Inf. Sci. 8 (1975) 199-249 

91. Zadeh, L. A.: Calculus of Fuzzy Restrictions. Fuzzy Sets and Their 

Applications to Cognitive and Decision Processes. Academic Press, London 

(1975)

92. Zadeh, L. A.: A Computational Approach to Fuzzy Quantifiers in Natural 

Languages. Computers and Mathematics 9 (1983) 149-184 

93. Zadeh, L. A.: Test-score Semantics as a Basis for a Computational Approach 

to the Representation of Meaning. Literary and Linguistic Computing 1 

(1986) 24-35 



References    189 

94. Zadeh, L. A.: From Computing with Numbers to Computing with Words – 

From Manipulation of Measurements to Manipulation of Perceptions. IEEE 

Transactions on Circuits and Systems 45 (1999) 105-119 

95. Zimmermann, H. J.: Fuzzy Set Theory and Its Applications. 3
rd

 edn, Kluwer 

Academic Publishers, Boston (1996) 



Index

accuracy of approximation,  89 

-level of a fuzzy set,  141 

atomic expression,  46, 120 

boundary set,  89, 167 

bounded norm,  18 

cardinality of a set,  89 

Cartesian product,  17, 23 

characteristic equation,  150 

characteristic function,  4 

clock-like polygons,  155, 156 

compatibility degree,  19 

complement of a fuzzy set,  14, 15 

compound qualitative feature,  33, 34,

  35 

composition of relations,  25 

 max-av,  28, 29 

 max-min,  26, 33, 55, 56, 57, 94,

  115, 123 

 max-prod,  28 

concentration operator,  42 

crisp set,  5 

criteria-objectives,  145, 148 

decision attribute,  88, 166, 179, 

decision space,  126 

decisive character of symptom for

 diagnosis,  45, 50, 51, 52, 82 

diagnostic process extended in time,  80 

dilution operator,  42 

distance between fuzzy sets,  71, 72, 75,

76, 78, 85 

double negation law,  56 

drug effectiveness level,  102, 123

finite set,  4 

fuzzy constraint,  19, 131 

fuzzy number in the L–R form,  104,

109, 119 

fuzzy relation,  23, 24, 34, 54, 58, 59,

  66, 67, 68, 69, 81, 82, 83, 94,

  96, 98, 100, 101, 102, 119 

fuzzy set,  5, 11, 13, 14, 72, 73, 76, 84,

85, 95, 131, 132, 133, 134, 135, 

145

fuzzy set of type-1,  116 

fuzzy set of type-2,  116, 117, 124 

fuzzy utility,  128, 135 

fuzzy variable,  19, 45, 46 

greatest eigen fuzzy set,  96 

greatest eigen fuzzy set with fuzzy 

numbers,  117, 118 

group order relation,  140 

hedge,  48 

inclusion of fuzzy sets,  94, 95 

indiscernibility relation,  87, 166 

infinite set,  4 

intersection of fuzzy sets,  14 

Jain’s operator,  133 

eigen fuzzy set,  94, 97, 117 

eigen value of a matrix,  150 

eigen vector of a matrix,  150 

elementary set,  87, 88 

equivalence class,  88, 166, 180 

equivalence relation,  88, 166, 179 

largest norm,  18 

least eigen fuzzy set,  97, 98 

letter-like polygons,  168, 169 

linguistic variable,  21, 34, 35, 129 

lower approximation,  89, 166 

matrix,  24 

maximum for two fuzzy numbers,  107, 

111, 112 



medical knowledge,  53, 82 

membership degree,  5, 89, 100, 118, 

121, 122, 135, 140, 148, 167 

membership function,  5, 37, 41, 47, 48,

  49, 50, 55, 56, 57, 65, 66, 67,

  81, 82, 94, 104, 115, 117, 119,  

  130,148 

minimum decision rule,  148 

minimum for two fuzzy numbers,  106, 

109

minimum norm,  18 

minimization of regret,  152 

modus ponens law,  32, 55, 82 

modus tollens law,  54, 56, 83 

multiplication of matrices,  25, 26 

optimal decision,  135, 148 

OWA operator,  63, 64, 66, 70, 121, 122 

patient – diagnosis relation,  32, 55 

patient – symptom relation,  31, 33 

payoff matrix,  152 

-function,  9, 157, 158 

point set,  155 

polygon,  155 

presence of the symptom in diagnosis,

  22, 45, 50, 51, 52, 82 

quantitative feature,  33, 40, 41 

reference functions,  104 

reflexive relation,  88 

set of condition attributes,  87, 166, 179 

set of diagnoses,  31, 81 

set of patients,  31, 87 

set of physicians,  140 

set of stages of observations,  81 

set of symptoms,  31, 81, 87, 119 

s-function,  8, 36, 170 

s-norm,  18 

simple qualitative feature,  33, 34 

space of L-R fuzzy numbers,  104 

space of states-results,  127 

stage – diagnosis relation,  82, 84 

stage – symptom relation,  81 

support of a fuzzy set,  5, 119 

symmetric relation,  88 

symptom – diagnosis relation,  31, 32,

  45 

t-norm,  17, 18 

total acceptance of diagnosis,  85 

total order,  142 

total rejection of diagnosis,  85 

transitive relation,  88 

truncated -function,  161 

truncated s-function,  172 

union of crisp sets,  12 

union of fuzzy sets,  13 

universe set,  87, 166, 179 

upper approximation,  89, 166 

utility matrix,  128 

weights of answers,  35 

weights of criteria-objectives,  148, 150,

153

weights of symptoms,  122 

regret matrix,  152, 153 

rough set,  87, 165,  

sampled truncated ,  157, 164, 167

sampled truncated s,  169, 172 

192    Index



Elisabeth Rakus-Andersson
Fuzzy and Rough Techniques in Medical Models and Medication
The back page

This volume provides readers with selected fuzzy and rough tools used to medical tasks, especially
diagnosing and medication. To build a link between theoretical, mathematical excerpts and practical med-
ical applications, the contents is formed as a sequence of occurrences in which a patient appears to be
diagnosed and cured. The fuzzy and rough elements are inserted in the book in the order required by the
presentation of medical substance to maintain the logical unity of the book’s essence.

In conformity with this pattern the essay presents in turn some necessary elements of fuzzy set theory,
the classical fuzzy diagnostic model with extensions, the fuzzy diagnostic model with clinical examina-
tions extended throughout time based on distance theory, methods of drug effectiveness measurements
and algorithms selecting the optimal medicine. As the complement, the solution of an approximation
problem is suggested to find a curve that surrounds two-dimensional clock-like point sets with the little
approximation error.

A lot of appealing examples are added to facilitate comprehension of theoretical principles for a reader,
so that even a beginner in fuzzy set theory can follow calculation steps without implementing computer
programs. It should be emphasized that all models are also applicable to other fields, especially to technical
domains after necessary adaptations. This confirms the existence of the large spectrum of applicable fuzzy
and rough methods not only in medicine but also in natural sciences.




