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Preface

The field of bioinformatics has two main objectives: the creation and mainte-
nance of biological databases and the analysis of life sciences data in order to
unravel the mysteries of biological function. Computer science methods such as
pattern recognition, machine learning, and data mining have a great deal to offer
the field of bioinformatics. The Pattern Recognition in Bioinformatics (PRIB)
meeting was established in 2006 under the auspices of the International Associ-
ation of Pattern Recognition (IAPR) to create a focus for the application and
development of computer science methods to life science data.

The 5th PRIB conference was held in Nijmegen, The Netherlands, on 22-24
September 2010. A total of 46 papers were submitted to the conference for peer
review. Of those, 38 (83%) were accepted for publication in these proceedings.
The invited speakers were Rita Casadio (Bologna Biocomputing Group, Italy),
Florence d’Alché-Buc (Université d’Evry-Val d’Essonne, France), Daniel Hu-
son (Tiibingen University, Germany), and Natasa Przulj (Imperial College Lon-
don, UK). Tutorials were delivered by Concettina Guerra (Universita di Padova,
Italy), Clarisse Dhaenens (Laboratoire LIFL/INRIA, France), Laetitia Jourdan
(Laboratoire LIFL/INRIA, France), Neil Lawrence (University of Manchester,
UK), and Dick de Ridder (Delft University of Technology).

We would like to thank all authors who spent time and effort to contribute to
this book and the members of the Program Committee for their evaluation of the
submitted papers. We are grateful to Nicole Messink for her administrative help
and coordination, to the co-organizers of this conference, to the machine learn-
ing group members for their assistance before and during the conference, and
to the EasyChair team (http://easychair.org) for providing the conference
review management system. We acknowledge support from the Netherlands Or-
ganization for Scientific Research (NWO), the Netherlands Bioinformatics Cen-
tre (NBIC), the Radboud University Nijmegen, the SIKS Netherlands research
School for Information and Knowledge Systems, the royal dutch science society
(KNAW) and the EU FP7 network of excellence Pascal2.

Finally, we hope that you will consider contributing to PRIB 2011.

July 2010 Tjeerd MH Dijkstra
Evgeni Tsivtsivadze

Tom Heskes

Elena Marchiori



Conference Chairs

Elena Marchiori
Tom Heskes

Steering Committee

Jagath Rajapakse

Ray Acharya

Guido Sanguinetti

Madhu Chetty

Visakan Kadirkamanathan

Program Chairs

Tjeerd Dijkstra
Guido Sanguinetti
Visakan Kadirkamanathan

Organization

Radboud University Nijmegen
Radboud University Nijmegen

Nanyang Technological University
Pennsylvania State University
University of Sheffield

Monash University

University of Sheflield

Radboud University Nijmegen
University of Sheffield
University of Sheffield

Special Sessions Chair

Lutgarde Buydens

Publicity Chair

Jin-Kao Hao

Tutorial Chair

Bert Kappen

‘Webmaster

Evgeni Tsivtsivadze

Radboud University Nijmegen

University of Angers

Radboud University Nijmegen

Radboud University Nijmegen



VIII Organization

Program Committee

Jesus Aguilar, Spain

Shandar Ahmad, Japan

Florence d’Alché-Buc, France
Tatsuya Akutsu, Japan

Jaume Bacardit, UK

Karsten Borgwardt, Germany
Rainer Breitling, The Netherlands
Nicolas Brunel, France

Sebastian Bocker, Germany
William Bush, USA

C.Q. Chang, Hong Kong
Frédéric Cazals, France

Marco Chierici, Italy

Colin Campbell, UK

Theo Damoulas, UK

Federico Divina, Spain

Bas Dutilh, The Netherlands
Richard Edwards, UK
Alexandru Floares, Romania
Maurizio Filippone, UK

Cesare Furlanello, Italy

Raul Giraldez, Spain

Rosalba Giugno, Italy

Michael Habeck, Germany
Jennifer Hallinan, UK

Jin-Kao Hao, France

Morihiro Hayashida, Japan

Tom Heskes, The Netherlands
Antti Honkela, Finland

Pavol Jancura, The Netherlands
Zhenyu Jia, USA

Rasa Jurgelenaite, The Netherlands
Giuseppe Jurman, Italy

Visakan Kadirkamanathan, UK
Seyoung Kim, USA

Walter Kosters, The Netherlands
Mehmet Koyuturk, USA
Krishna Murthy Karuturi, Singapore
Guillaume Launay, France

Kee Khoon Lee, Singapore
Pietro Lio’, UK

Xuejun Liu, China

Stefano Lonardi, USA
Elena Marchiori, The Netherlands
Francesco Masulli, Italy
Vadim Mottl, Russia

Jason Moore, USA

Alison Motsinger-Reif, USA
Sach Mukherjee, UK
Tamas Nepusz, UK
Mahesan Niranjan, UK
Josselin Noirel, UK
Richard Notebaart, The Netherlands
Carlotta Orsenigo, Italy
Alberto Paccanaro, UK
Andrea Passerini, Italy
Thang Pham, The Netherlands
Clara Pizzuti, Italy

Esa Pitkédnen, Finland
Beatriz Pontes, Spain
Marylyn Ritchie, USA
Simon Rogers, UK

Juho Rousu, Finland
Miguel Rocha, Portugal
Gunnar Rétsch, Germany
Yvan Saeys, Belgium
Guido Sanguinetti, UK

Jun Sese, Japan

Evangelos Simeonidis, UK
Jennifer Smith, USA
Kieran Smallbone, UK
Johan Suykens, Belgium
Roberto Tagliaferri, Italy
Alexey Tsymbal, Germany
Jing Yang, China

Haixuan Yang, UK

Hong Yan, Hong Kong
Andrew Zammit, UK



Table of Contents

Part I: Classification of Biological Sequences

Sequence-Based Prediction of Protein Secretion Success in Aspergillus
MEGET o et et e e
Bastiaan A. van den Berg, Jurgen F. Nijkamp,
Marcel J.T. Reinders, Liang Wu, Herman J. Pel,
Johannes A. Roubos, and Dick de Ridder

Machine Learning Study of DNA Binding by Transcription Factors
from the Lacl Family .. ...... ... . i
Gennady G. Fedonin and Mikhail S. Gelfand

Joint Loop End Modeling Improves Covariance Model Based
Non-coding RNA Gene Search .. ..... ... ... ... .. . ...
Jennifer Smith

Structured Output Prediction of Anti-cancer Drug Activity ...........
Hongyu Su, Markus Heinonen, and Juho Rousu

SLiMSearch: A Webserver for Finding Novel Occurrences of Short

Linear Motifs in Proteins, Incorporating Sequence Context ............
Norman E. Davey, Niall J. Haslam, Denis C. Shields, and
Richard J. Edwards

Towards 3D Modeling of Interacting TM Helix Pairs Based on
Classification of Helix Pair Sequence .............. ... ... ... ......
Witold Dyrka, Jean-Christophe Nebel, and Malgorzata Kotulska

Optimization Algorithms for Identification and Genotyping of Copy
Number Polymorphisms in Human Populations ......................
Gokhan Yavas, Mehmet Koyutiirk, and Thomas LaFramboise

Preservation of Statistically Significant Patterns in Multiresolution 0-1
Data ..o
Prem Raj Adhikari and Jaakko Hollmén

Novel Machine Learning Methods for MHC Class I Binding
Prediction . ...... ...
Christian Widmer, Nora C. Toussaint, Yasemin Altun,
Oliver Kohlbacher, and Gunnar Rdtsch

15

27

38

50

62

74

86

98



X Table of Contents

Part II: Unsupervised Learning Methods for
Biological Sequences

SIMCOMP: A Hybrid Soft Clustering of Metagenome Reads ..........
Shruthi Prabhakara and Raj Acharya

The Complexity and Application of Syntactic Pattern Recognition
Using Finite Inductive Strings .. ........ .. o i
Elijah Myers, Paul S. Fisher, Keith Irwin, Jinsuk Baek, and
Joao Setubal

An Algorithm to Find All Identical Motifs in Multiple Biological

SEQUENICES .« . ottt e et e e
Ashish Kishor Bindal, R. Sabarinathan, J. Sridhar, D. Sherlin, and
K. Sekar

Discovery of Non-induced Patterns from Sequences . ..................
Andrew K.C. Wong, Dennis Zhuang, Gary C.L. Li, and
En-Shiun Annie Lee

Exploring Homology Using the Concept of Three-State Entropy
VECtor . . oo
Armando J. Pinho, Sara P. Garcia, Paulo J.S.G. Ferreira,
Vera Afreizo, Carlos A.C. Bastos, Anténio J.R. Neves, and
Jodo M.0.S. Rodrigues

A Maximum-Likelihood Formulation and EM Algorithm for the Protein
Multiple Alignment Problem ............. .. ... .. ... .. ...
Valentina Sulimova, Nikolay Razin, Vadim Mottl,
Ilya Muchnik, and Casimir Kulikowski

Polynomial Supertree Methods Revisited . ...........................
Malte Brinkmeyer, Thasso Griebel, and Sebastian Bocker

Enhancing Graph Database Indexing by Suffix Tree Structure .........
Vincenzo Bonnici, Alfredo Ferro, Rosalba Giugno,
Alfredo Pulvirenti, and Dennis Shasha

Part III: Learning Methods for Gene Expression and
Mass Spectrometry Data

Semi-Supervised Graph Embedding Scheme with Active Learning
(SSGEAL): Classifying High Dimensional Biomedical Data ............
George Lee and Anant Madabhushi

Iterated Local Search for Biclustering of Microarray Data .............
Wassim Ayadi, Mourad Elloumi, and Jin-Kao Hao



Table of Contents XI

Biologically-aware Latent Dirichlet Allocation (BaLLDA) for the

Classification of Expression Microarray ...............cooeeiieno... 230
Alessandro Perina, Pietro Lovato, Vittorio Murino, and
Manuele Bicego

Measuring the Quality of Shifting and Scaling Patterns in Biclusters.... 242
Beatriz Pontes, Raul Girdldez, and Jesis S. Aguilar-Ruiz

Frequent Episode Mining to Support Pattern Analysis in Developmental
Biology . .o 253
Ronnie Bathoorn, Monique Welten, Michael Richardson,
Arno Siebes, and Fons J. Verbeek

Time Series Gene Expression Data Classification via Li-norm Temporal
SV M L 264
Carlotta Orsenigo and Carlo Vercellis

Part IV: Bioimaging

Sub-grid and Spot Detection in DNA Microarray Images Using Optimal
Multi-level Thresholding . ......... . . .. i, 277
Iman Rezaeian and Luis Rueda

Quantification of Cytoskeletal Protein Localization from High-Content
Images ... .. 289
Shiwen Zhu, Paul Matsudaira, Roy Welsch, and Jagath C. Rajapakse

Pattern Recognition for High Throughput Zebrafish Imaging Using
Genetic Algorithm Optimization .......... ... . ... o ... 301
Alexander E. Nezhinsky and Fons J. Verbeek

Consensus of Ambiguity: Theory and Application of Active Learning
for Biomedical Image Analysis.......... ... i, 313
Scott Doyle and Anant Madabhushi

Semi-supervised Learning of Sparse Linear Models in Mass Spectral

Imaging . ... 325
Fabian Ojeda, Marco Signoretto, Raf Van de Plas,
Etienne Waelkens, Bart De Moor, and Johan A.K. Suykens

Part V: Molecular Structure Prediction

A Matrix Algorithm for RNA Secondary Structure Prediction ......... 337
S.P.T. Krishnan, Mushfique Junayed Khurshid, and
Bharadwaj Veeravalli

Exploiting Long-Range Dependencies in Protein 5-Sheet Secondary
Structure Prediction. ... ... .. . 349
Yizhao Ni and Mahesan Niranjan



XII Table of Contents

Alpha Helix Prediction Based on Evolutionary Computation .......... 358
Alfonso E. Madrquez Chamorro, Federico Divina,
Jests S. Aguilar Ruiz, and Gualberto Asencio Cortés

An On/Off Lattice Approach to Protein Structure Prediction from

Contact Maps .. ..ot 368
Stefano Teso, Cristina Di Risio, Andrea Passerini, and
Roberto Badttiti

Part VI: Protein Protein Interaction and Network
Inference

Biological Protein-Protein Interaction Prediction Using Binding Free

Energies and Linear Dimensionality Reduction....................... 383
Luis Rueda, Carolina Garate, Sridip Banerjee, and
Md. Mominul Aziz

Employing Publically Available Biological Expert Knowledge from
Protein-Protein Interaction Information............................. 395
Kristine A. Pattin, Jiang Gui, and Jason H. Moore

SFFS-MR: A Floating Search Strategy for GRNs Inference ............ 407
Fabricio M. Lopes, David C. Martins-Jr., Junior Barrera, and
Roberto M. Cesar-Jr.

Revisiting the Voronoi Description of Protein-Protein Interfaces:
Algorithms . . ..o oo 419
Frederic Cazals

MC#*: A Tempering Algorithm for Large-Sample Network Inference . . . .. 431
Daniel James Barker, Steven M. Hill, and Sach Mukherjee

Flow-Based Bayesian Estimation of Nonlinear Differential Equations
for Modeling Biological Networks .......... . ... ... 443
Nicolas J.-B. Brunel and Florence d’Alché-Buc

Author Index . ... . 455



Part 1

Classification of Biological Sequences



Sequence-Based Prediction of Protein Secretion
Success in Aspergillus niger

Bastiaan A. van den Berg! 24, Jurgen F. Nijkamp'*, Marcel J.T. Reinders!-?,
Liang Wu?, Herman J. Pel3, Johannes A. Roubos?, and Dick de Ridder!'?*

! The Delft Bioinformatics Lab, Delft University of Technology, The Netherlands
2 Netherlands Bioinformatics Centre, The Netherlands
3 DSM Biotechnology Center, The Netherlands
4 Kluyver Centre for Genomics of Industrial Fermentation, The Netherlands
b.a.vandenberg@tudelft.nl

Abstract. The cell-factory Aspergillus niger is widely used for industrial
enzyme production. To select potential proteins for large-scale
production, we developed a sequence-based classifier that predicts if an
over-expressed homologous protein will successfully be produced and se-
creted. A dataset of 638 proteins was used to train and validate a classifier,
using a 10-fold cross-validation protocol. Using a linear discriminant clas-
sifier, an average accuracy of 0.85 was achieved. Feature selection results
indicate what features are mostly defining for successful protein produc-
tion, which could be an interesting lead to couple sequence characteristics
to biological processes involved in protein production and secretion.

Keywords: Aspergillus niger, protein secretion, sequence-based predic-
tion, classification.

1 Introduction

The filamentous fungus Aspergillus niger has a high secretion capacity, which
makes it an ideal cell-factory widely used for industrial production of enzymes
[11]. Selecting proteins for large-scale production requires testing for successful
over-expression and protein secretion. Because many proteins are of potential
interest, a large amount of lab work is needed. This can be reduced by developing
a software tool to prioritize proteins in advance. Such a tool might also indicate
which gene or protein characteristics influence successful over-expression and
secretion.

Various sequence-based classifiers have been developed, for example, to pre-
dict protein crystallization propensity [6], protein solubility [§], and protein sub-
cellular localization [14], [4]. Subcellular localization predictors have been used
to predict protein secretion [16], [B], but these methods predict if a protein is
inherently extracellular, whereas our aim is to predict successful secretion of a
protein after over-expression.

In this work, we present a classifier to predict if a homologous protein will
successfully be secreted after over-expression in A. niger, using 25 sequence-
based features and providing an accuracy of 0.85.

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 3 2010.
© Springer-Verlag Berlin Heidelberg 2010



4 B.A. van den Berg et al.

2 DMaterials and Methods

2.1 Data Set

The data set D contained 638 homologous proteins from A. niger CBS 513.88
[13] with a signal sequence predicted by SignalP [12]. For each protein, the open
reading frame (ORF) and a binary score for successful over-expression was given.
To obtain this binary success score, each protein was over-expressed through
introduction of the predicted gene using the same strong glucoamylase promoter
Pgiaa- Cultures were grown in shake-flasks and the filtered broth was put on
an SDS-PAGE gel. Successful over-expression was defined as the detection of a
visible band in this gel. D contained 268 successfully detected proteins (Dpos),
and 370 unsuccessfully detected proteins (Dyeq). The data set will be publicly
available soon.

2.2 Sequence-Based Features

For each item ¢ € D, a feature vector d; with 39 sequence-based features was
constructed (Table[Il). Next to simple compositional features, features that relate
to protein solubility and membrane binding were chosen, because it is expected
that these characteristics influence successful protein secretion. Features are cal-
culated using the entire ORF sequence and corresponding protein sequence, in-
cluding the signal peptide. A two-sample ¢-test with pooled variance estimation
was used as class separability criterion to evaluate the performance of each fea-
ture. Features with p-value > 0.001 (gray features in Table [I) were removed,
resulting in a set of 25 features used for classifier development.

For this set of features, a heat map of the hierarchical clustered (complete
linkage) feature matrix is shown in Fig. [[l in which each row is a protein in D
and each column is a feature. The two additional columns on the right depict the
measured and predicted class labels. They show that clustering of the proteins,
using this feature set, already provides a separation of D5 and Dpeg.

Compositional Features. Given a protein sequence, its amino acid composi-
tion is defined as the number of occurrences of the amino acid (frequency count)
divided by the sequence length, providing 20 features. The same was done for
the nucleotide composition of the coding region, providing 4 features.

Additionally, we calculated the compositions of amino acid sets that share a
common property. Given a protein sequence and an amino acid set, the amino
acid set composition is defined as the sum of the frequency counts of each of the
specified amino acids, divided by the sequence length. Eight sets were used: helix
{LL,F,W,Y,V}, turn {N,G,P,S}, sheet {A,E,L,M}, charged {R,D,C,E,H,K,Y},
small{A,N,D,C,G,P,S,T,V},tiny {A,G,S}, basic { R,K,H}, and acidic { N,D, E, Q}.
One nucleotide set was used: GC.

As final compositional feature we used the codon adaptation index (CAI)[I5],
which was calculated with the codon usage index of all genes in the A. niger
genome.



Sequence-Based Prediction of Protein Secretion 5

nREsiirnE
23 2 2 gl lsglez £ '

'E%E‘E 2.!§§§§:«§§-3".9% £ 2 @o..

FlpigigicigiEilgiiteez, 14 Ob.

: I — —— —30

= —{2.0

-3.0

Fig.1. Heat map of clustered feature matrix. The rows are the proteins in D
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on the right depict the predicted and measured class labels respectively.



6 B.A. van den Berg et al.

Table 1. Calculated features with class separability score

guanine (2.5) GC (1.3)
4

Nucleotide adenine (0.4) CAI (5.3)
compositional thymine (2 3)
cytosine (2.9)
alanine (2 3) leucine (90) helix {LL,F,W,Y,V} (()4)
arginine (13.6) lysine (9.3) turn v.a.rs (8.9)
asparagine (15.0)  methionine (6.3) sheet (4,52 (10.8)

aspartic acid (7.2) phenylalanine (0.1) acidic {v,p.50) (7.9)

Amino acid cysteine (0.2) proline (5.4) basic {rxm (15.7)
compositional glutamic acid (5.6) serine (1.6) charged tr.0,0.5m5%v} (5.6)
glutamine (0.2) threonine (8.3) small (awv,p,c6ps1vy (9.7)
glycine (9.2) tryptophan (6.3) tiny (a.¢.5 (3.5)
histidine (4.2) tyrosine (13.6)

isoleucine (0.9) valine (1.9)
Signal-based hydrophobic peaks (9.1)
features hydrophilic peaks (15.5)
GRAVY (1.8)
Global features isoelectric point (16.2)
sequence length (5.4)

Signal-based Features. Two features capture the occurrence of local hydro-
pathic peaks: hydrophobic peaks and hydrophilic peaks, both derived from a
protein hydropathicity signal [I] that was constructed using the (normalized)
hydropathicity amino acid scale of Kyte and Doolitle [7].

An amino acid scale is defined as a mapping from each amino acid to a value.
Given a protein sequence, a hydropathicity signal was obtained by replacing
each residue by its amino acid scale value (Fig. BIA). The signal was smoothed
through convolution with a triangular function (Fig.[2B). To capture the extreme
values of the smoothed signal, an upper and lower threshold were set (Fig. 2C).
Hydrophobic peaks is defined as the sum of all areas above the upper threshold
divided by the sequence length, hydrophilic peaks is defined as the sum of all
areas below the lower threshold divided by the sequence length.

The window size and edge of the triangular function (Fig. 2B), and both
thresholds (Fig. 2C) can be varied. In each CV loop of the training and val-
idation protocol (Section [Z4]), an exhaustive search was applied to optimize
the features’ class separability score, using: window size = 3,5, ...,21; edge =
0.0,0.2,...,1.0; threshold = 0.5,0.54,...,0.86 for hydrophobic peaks and 0.5,
0.45, ..., 0.05 for hydrophilic peaks.

Global Features. Three global features were used: the grand average of hy-
drophobicity (GRAVY), i.e., the sum of all Kyte and Doolitle amino acid scale
values divided by the sequence length; the isoelectric point (pI), i.e., the pre-
dicted pH at which the net charge of the protein is zero; and finally the sequence
length, i.e., the number of residues in the protein sequence.
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Fig. 2. Hydropathic peaks features. A) A raw protein hydropathicity signal ob-
tained by replacing each amino acid in the sequence by its value in the normalized
Kyte and Doolitle amino acid scale. B) Triangular function used to smooth the raw
signal. C) Smoothed signal obtained by convolution of the raw signal in A with the
function in B.

WoLF PSORT. To test whether using predicted localization would improve
performance, WoLF PSORT [4] was used to predict secretion of the proteins
in D. Next to the amino acid composition and the sequence length, which we
also used as features, WoLLF' PSORT uses features based on sorting signals and
functional motifs. To use the prediction as feature, we assigned proteins with
intracellular localization prediction a value of 0, and proteins predicted to be
extracellular a value of 1.

2.3 Performance Evaluation

We used five measures to evaluate classification performance. Four of these are
based on the confusion matrix. This matrix contains the number of true posi-
tives (T'P), false positives (F'P), true negatives (T'N), and false negatives (F'N).
Let the set of positives be P =TP + FN, the set of negatives N = TN + FP,
the set of predicted positives P’ = TP + FP, and the set of predicted nega-
tives N/ = TN + FN. The confusion matrix-based measures are; accuracy =
(TP+TN)/(P+N), sensitivity = TP/ P, specificity = TN/N, and Matthews
correlation coefficient score MCC = (TPXxTN—FPxFN)/v/P x N x P/ x N'.
The MCC-score [9] is suited in case of different class sizes, which applies in
our case. The score ranges from 0 for random assignment, to 1 for perfect
prediction.

The aforementioned scores take into account only one operating point on
the receiver operating characteristic (ROC) curve. As a fifth measure, we took
the area under the ROC curve (AUC), thereby taking into account a range of
operating points. Because the goal is to reduce the amount of lab work, we are
mainly interested in low false positive rates, i.e., the left region of the ROC-
curve. Therefore, we used the AUC over the range of 0 — 0.3 false positive rate
(ROCO0.3) as main performance measure.
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Fig. 3. Training and validation protocol

2.4 Training and Validation Protocol

To avoid overestimation of classification performance, a double 10-fold CV proto-
col was used, based on the protocol in [I7]. We used 10-fold CV feature selection
with classifier performance as selection criterion, in which the expected error
((FP/P+ FN/N)/2) was used as performance measure.

The protocol is shown in Fig. Bl The dataset D is split into ten equal-sized
random stratified sets. In each outer loop, one of the sets is used as test set,
and the remaining nine as the training set (1). An exhaustive search is done
to optimize the parameters of the hydropathic peaks features for maximal class
separability, and 10-fold CV feature selection (inner loop) is applied on the
training set to select an optimal feature set (2). As feature selection methods,
we used both forward and backward feature selection. The optimal feature set
is used to train a classifier on the entire training set (3). The resulting classifier
is applied to the test set that was not employed for training, resulting in a
performance score (4). Finally, the performance scores of the 10 CV loops are
averaged, resulting in an average performance score.

The training and validation protocol was implemented in Matlab, using the
PRTools pattern recognition toolbox [3].

2.5 Classifiers

We tested 8 classifiers: linear and quadratic normal density-based Bayes classi-
fiers (ldc, qdc); nearest mean classifier (nmc); k-nearest neighbor classifier, both
with k£ = 1 and with & optimized by leave-one-out CV (1nnc, knnc), naive Bayes
classifier (naivebc), Fisher’s least square linear classifier (fisherc), and a radial
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basis support vector machine (svm, v = 1/number of features). We used libsvm
[2] for the support vector machine.

3 Results

The classifier performance scores are given in Table2l We compared the ROC0.3
scores of the different methods using a paired t-test (p < 0.05) on the results
of the 10 CV loops. This showed that the nearest neighbor classifiers perform
significantly worse than all other methods, except for qdc with forward feature
selection. The best performance was obtained with Idc and backward feature
selection.

Table 2. Classifier performance scores

classifier ROCO0.3 sensitivity specificity MCC accuracy
lde ! 0.232 +o.03 0.877 +o.0s 0.819 +o.06 0.691 +o.0s 0.843 +o.04
b2 0.236 +o.03 0.873 +o.0s 0.830 +o.05 0.700 +o.07 0.848 +o.03
svm f 0.228 +o.03 0.847 +o.0s 0.857 +0.02 0.701 +0.0r 0.853 +o.03
b 0.232 +o.02 0.843 +o.0s 0.854 +o0.04 0.695 +o.09 0.850 +o.04
fisherc f 0.234 +o.03 0.873 +o.0s 0.819 +o.06 0.688 +o.08 0.842 +o.04
b 0.235 +o.02 0.881 +o.09 0.822 +to.05 0.698 +o.07 0.846 +o.03
naivebe f 0.224 +o.03 0.854 +o.0s 0.800 +o.05 0.649 +o.09 0.823 +o.04
b 0.230 +o.03 0.888 +o.0s8 0.803 +o.03 0.684 +o.07 0.839 +o.03
qde f 0.221 +o.03 0.877 +o.06 0.803 +o.04 0.674 +o.06 0.834 +o.03
b 0.227 +o.03 0.884 +o.05 0.805 +o.04 0.682 +o.0s 0.838 +o.04
me f 0.227 +o.03 0.910 +o.07 0.773 +o.0a 0.678 +o.06 0.831 +o.02
b 0.224 +o0.02 0.899 +o.07 0.773 +o.0a 0.666 +o.05 0.826 +o.02
knne f 0.218 +o.03 0.858 +o.09 0.770 +o.06 0.624 +o.10 0.807 +o.05
b 0.214 +o.02 0.862 +o.06 0.778 +o.06 0.635 +o.05 0.813 +o.03
Inne f 0.195 +o.04 0.798 +o.09 0.781 +o0.09 0.578 +o.15 0.788 +o.07
b 0.190 +o0.03 0.809 +o.09 0.749 +o.0s 0.557 +o.10 0.774 +o.05

! forward feature selection, 2 backward feature selection

Fig.@shows the ROCO0.3 scores of 1dcs trained on each of the 25 single features,
on all 25 features, and on features obtained by backward feature selection. The
classifiers are ordered by score. A paired t-test (p < 0.001) on the 10 CV loops
showed that all single-feature classifiers are significantly outperformed by both
multi-feature classifiers. Although using all features provides a higher average
score than using backward feature selection, the paired ¢-test (p < 0.05) indicates
that the difference is not significant.

Applying WoLF PSORT on our dataset provided a sensitivity of 0.96 and a
specificity of 0.49. It appears that WoLLF PSORT is too optimistic, providing a
large amount of FPs. This could be explained by the difference in the problems
we address; WoLLF' PSORT predicts extracellular proteins, whereas our method
also includes successful protein production and secretion. This means that ex-
tracellular proteins in D, which are positives for WoLF PSORT, can be part



10 B.A. van den Berg et al.

0.30
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0.00
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E]
Fig. 4. Single-feature and multi-feature classification scores

of Dyeq because of unsuccessful protein production. We used the localization
prediction as additional feature. Using ldc with backward feature selection, no
significant improvement was observed, probably because the feature contains
redundant data.

3.1 Operating Point Example

Fig.[HA shows the ROC of the ldc with backward feature selection. One could use
this classifier to screen a set of proteins for potential over-expression candidates.
For example, if we have a set .S of 100 proteins that we want to screen, containing
42 positives (Spos) and 58 negatives (Syeq) (i.e., the same fraction of positives
and negatives as D), and if we use v as operating point, a true positive rate
of 0.8 will be obtained. In this case, the classifier will predict 34 true positives
and 6 false positives, which means that only 40 lab experiments are needed to
identify 34 positives. Without the classifier, to identify 34 positives, both the
false and the true positive rate will be 0.8 (operating point 4'). In this case, 80
lab experiments will be needed to identify 34 positives, which means that the
classifier could reduce the amount of lab work by a factor two (Fig. BIB).

3.2 Feature Optimization

Fig.[Blshows the optimal parameter settings for the hydrophilic and hydrophobic
peaks feature as obtained in one of the CV loops. For both features, the same
optimum was observed in each CV loop.
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Fig.5. ROC-curve. A) Average ROC curve of the ten CV loops (ldc, backward
feature selection). The light gray curves are the ROC curves of the separate CV loops.
The diagonal line illustrates the random selection ROC curve. B) Numeric example
that shows the amount of lab work that could be saved for different operating points.

Interestingly, when using the optimal parameter settings, the raw signal of the
hydrophilic peaks is not smoothed. With window size = 3 and edge = 0.0, the
value at a specific location in the sequence is simply the amino acid scale value
of the amino acid at that specific location. Therefore, the feature is actually the
same as the GRAVY feature, but using an amino acid scale in which all values
greater than the threshold are set to zero, and all other values are set to the
threshold minus the value. In this case, arginine is set to 0.1, lysine to 0.33, and
the rest of the amino acids is set to zero. From another perspective, this feature
can be seen as an amino acid set composition for the set {arginine, lysine} in
which the arginine has a higher weight.

It is questionable if the resulting feature is still related to the proteins hy-
drophilic character. Since both arginine and lysine are also basic amino acids,
it could just as well be related to the proteins basic character. Furthermore,
because of the small window size, the feature does not take into account se-
quence order. However, it could be hypothesized that hydrophilic amino acids
will mainly contribute to the proteins hydrophilic character when they have a
relatively high occurrence within a larger region.

3.3 Feature Correlation

Fig. [[l shows a heat map of the hierarchical clustered (complete linkage) feature
correlation matrix. The cluster at the top left shows relatively high correlations,
which can be explained by the fact that the features contain redundant data:
arginine is part of both basic and charged, basic is a subset of charged, the
isoelectric point is derived from a proteins charge and therefore correlated with
charged, and hydrophilic peaks takes into account the amino acids arginine and
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Fig. 6. Parameter optimization of hydropathic peaks features. A) Class sep-
arability scores for the hydrophilic peaks feature plotted against different parameter
settings. B) The same as in A, but for the hydrophobic peaks feature. Both plots show
the result for one edge value, different edge values provided similar plots. Both plots
were obtained in one of the CV loops, the same optimum was found in all CV loops.

lysine, that are both in basic and charged. There is also a high correlation between
small, turn, and tiny. This can also be explained by data redundancy: both turn

and tiny are a subset of small.

3.4 Feature Selection

Using ldc with forward feature selection, the feature selection results of the 10
CV loops showed that: asparagine was always part of the top-3 selected features
(7 times selected first), either hydrophilic peaks or basic was part of the top-3
selected features 9 times (6 times selected second), hydrophobic peaks was part
of the top-4 selected features 9 times (7 times selected third), and tyrosine was
part of the top-4 selected features 6 times (5 times selected fourth).

The high correlation between hydrophilic peaks and basic (Fig. [0), together
with the fact that both have a high class separability score (Table [Il), explains
their mutual exclusive selection. In Fig. [ the colors above the feature names
depict what features are in the same correlation cluster and the arrows indicate
what features are most often in the top-4 selected features. It shows that these
features are in different correlation clusters, and are the best performing ones
of their cluster. Therefore, feature selection seems to select individual features

that best represent an underlying cluster of related features.

4 Discussion

To be useful for large-scale production, a protein should be produced and se-
creted with high yield. We report a sequence-based approach to classify proteins
into successful or unsuccessful production, which was trained and validated on
a set of 638 proteins. We used 10-fold CV for feature selection and classifier
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Fig. 7. Heat map of clustered feature correlation matrix

training to avoid biased performance results. Since we are mostly interested in
the operating points of the first 30 percent of the ROC-curve, we used the AUC
of this region as the main performance measure.

We calculated 39 features and used the 25 with highest class separability
score for classification. We showed that both a classifier that uses all features
and a classifier trained with feature selection, outperform classifiers trained on
single features. The classifiers trained with feature selection did not significantly
outperform the classifier trained on all 25 features, indicating that all features
contribute to the result.

Furthermore, the feature selection results showed that asparagine, the set
{arginine, lysine}, and tyrosine, as well as the hydrophobic peaks feature, were
most defining in case of the linear discriminant classifier. To get more insight
into protein secretion, it would be interesting to link the biological significance
of these features to protein secretion mechanisms. For example, the asparagine
composition could be related to N-linked glycosylation, a process that in many
cases is important for protein folding and stability [10].
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Abstract. We studied 1372 Lacl-family transcription factors and their
4484 DNA binding sites using machine learning algorithms and feature
selection techniques. The Naive Bayes classifier and Logistic Regression
were used to predict binding sites given transcription factor sequences.
Prediction accuracy was estimated using 10-fold cross-validation. Exper-
iments showed that the best prediction of nucleotide densities at selected
site positions is obtained using only a few key protein sequence positions.
These positions are stably selected by the forward feature selection based
on the mutual information of factor-site position pairs.

Keywords: transcription factors, naive Bayes classifier, logistic regres-
sion, mutual information.

1 Introduction

Many biological processes involve specific interaction between DNA-binding pro-
teins and DNA sites. The mechanisms of the sequence- and structure-specific
recognition remain elusive, despite some advance coming from experimental
mutagenesis studies and computational analysis of known X-ray structures of
protein-DNA complexes [I], [2]. One of the reasons for that may be lack of data.
Indeed, while many complexes are structurally resolved, one of the main results
of the analysis has been the absence of a universal protein-DNA recognition code
[3], [], [5]. On the other hand, experimental analysis has been limited to a small
number of proteins, and again, the obtained results do not seem universal [0].
A different approach is to study the protein-DNA code within large families
of DNA-binding proteins [7], e.g. C2H2 zinc finger, homeodomain and bHLH
domains [8] or TAL receptors [9]. At that, the data may come not only from
experiment, but from comparative genomic analysis of regulatory interactions.
A rich source of such data are bacterial transcription factors, e.g. the Lacl family
considered here. Given the data on sites bound by given proteins, one may study
correlations between the amino acid sequences and corresponding DNA sites,
and then to use the structures, if known, as a sanity check, verifying that the
observed positions indeed form contacts in the protein-DNA complexes.

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 15010.
© Springer-Verlag Berlin Heidelberg 2010
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One observation coming from early studies [I0] has been that the correlations
are not limited to pairs of positions in the protein and DNA alignment: in many
cases the protein preferences to a particular nucleotide at a particular site po-
sition seemed to depend on specific residues at several protein positions. This
leads to the problem of selecting the optimal model complexity. Here we address
this problem using the predictive power of pattern recognition algorithms as a
tool to determine the optimal number of the model parameters.

2 DMaterials and Methods

2.1 Data

The Lacl-family bacterial transcription factor and their binding sites were se-
lected from the LACI DB database (O. Laikova, unpublished). The DNA-binding
domain (HTH LACI) boundaries for each protein were determined using
SMART DB [11]. The obtained sequences were aligned against the standard
HTH LACI domain alignment with minimal manual editing, resulting in an
alignment of 1372 protein sequences. The resulting alignment length was 87
positions. Sixteen positions with more than 30% gaps were removed. The sam-
ple of DNA sites contained 4484 sequences. The data may be downloaded from
the RegPrecise database [12].

Hence, we had a sample of protein-site pairs, and the aim was to predict the
probability density of nucleotides at site positions given the protein amino acid
sequence (AAS). We assumed all site positions to be mutually independent given
AAS, hence each position was predicted separately.

2.2 Cross-Validation

To estimate the prediction accuracy, the initial sample was randomly split into
ten sets, each of which was used as a testing set with training on the remaining
nine sets. Since many proteins in the sample are closely related (and have very
similar AAS) it is reasonable to require the testing set not to contain AASs
too similar to an AAS in the training set. To ensure this, we grouped similar
AASs by similarity into clusters never separated during splitting. At that, we
calculated pairwise similarity (percent of identical amino acid) for all AAS pairs.
Next, we built a full graph with AASs as vertices and edges weighted with the
similarity values, and removed all edges with weight less than a fixed threshold.
The similarity clusters were defined as maximal connected components.

For each split into test and training sets, all algorithms were trained and their
log-likelihoods on the testing set were calculated. Log-likelihood was calculated

as:
> wi s P(nig]S)

22 wi ’

where index i runs over all AAS, index j runs over all sites of the i—th AAS,

ni; is the nucleotide observed at the selected position of the j—th site of the

i—th sequence, w; is the weight of the i—th AAS. The results were averaged. The

procedure was repeated ten times for better averaging.

logL =
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2.3 Algorithms

Weighting amino acid and binding site sequences. The similarity clusters
vary in size with some sequence motifs being overpresented. To compensate for
this, protein sequences were weighted, so that closely related proteins were as-
signed smaller weights than proteins different from all others, using the Gerstein-
Sonhammer-Chotia algorithm. Each protein weight was divided equally among
all its binding sites, resulting in weights of AAS-site pairs.

These weights were used to compute amino acid residue and nucleotide fre-
quencies for building the Bayesian classifier, computation of the mutual infor-
mation, and for training the logistic regression.

Naive Bayes classifier. The Bayesian classifier [13] estimates the occurrence
probability for each nucleotide at each site position using the Bayes formula:

P(n;|S) = >, P(nj)P(SIny) ’

where n; is the i-th nucleotide, S is the amino acid sequence, P(n) is the prior
probability of nucleotide n.

The naive Bayes approach assumes all positions in AAS to be mutually inde-
pendent given site position nucleotide:

P(Sin) = [T Plaln) .

where a; is the amino acid residue at position i. Probabilities P(a;|n) are es-
timated using the corresponding frequencies in the sample, with phylogenetic
weights and pseudocounts.

Logistic regression. The logistic regression [I4] is a popular machine learning
algorithm for two-class classification tasks. The training objects are assumed to
be numerical feature vectors with {—1,1} labels. The algorithm builds a linear
decision rule, weighting each numerical feature:

f(xla s axn) = szgn(z aixi) )
=1

or in the vector form:
f(z) = sign((e, ) ,

where «; is the weight of i-th feature, x; is the value of the i-th feature.
Learning is performed by searching for weights that optimize the quality func-
tion on the training set:

l n
L{a) = sz no(yi(o, x;)) — kZaf — maze ,
1=1 i=1
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where index ¢ runs over all training objects, y; € {—1,1} is the class of the
i-th object, w; is the weight of the i-th object , o(2) = 1+ex;(7z) is the logistic
(sigmoid) function, k3, , o? is a regularization term, k is an a priori fixed
regularization parameter.

Class probabilities given feature vector can be estimated using the sigmoid

function:
1

PO = 1 4 exp(—ylan o))

9

where y € {—1,1} is the class value, x is the feature vector, o is the weight
vector.

The logistic regression requires numeric features. In our case all features are
nominal. We used the standard binarization approach: each amino acid residue
ay, at i-th position was mapped to an indicator binary feature:

1, when a=ay; ;

fila) = {0, otherwise .

To predict four nucleotide probabilities, an individual classifier was trained for
each nucleotide. ASS-site pairs with a given nucleotide at the given site position
were used as positive training examples, all other pairs, as negative ones. The
positional probability of each nucleotide was calculated as:
s =
>j=1 Pi(+19)

where S is the AAS for which predictions are made, P;(+|5) is the positive class
probability computed by i-th classifier.

The weights for the negative objects were set to the weight of the correspond-
ing AAS, and for positive objects, the same weight, multiplied by the frequency
of the given nucleotide at the given site position.

Feature selection using mutual information. The mutual information (MI,
[15]) of the AAS-site position pair is the measure of correlation of these positions,
allowing for a quick estimation of the predicting power of the AAS position
for the nucleotide at the site position. Calculating the MI is fast, making it
convenient for the feature selection.

To offset for unreliable estimations of the frequencies of rare residues and
nucleotides (at a given position), we used pseudocounts, adding small values for
rare events.

The effective frequency of residue a at position ¢ was defined as:

Ni(a) + k=" Ni%’(““)
N + kv/N

where N;(a) is the total weight of AASs with a in position i, N is the total
weight of all AASs in the sample. The transition probabilities P(b — a) were
obtained from BLOSUMG60 [16].

fila) =

b
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The effective frequency of nucleotide n at position j was:

A 32 Nj(m)P(m—n) A 3 Ni(m)
Jin) = Nj(n)+k ’ N _ Nj(n)+ 0.25k N
! N +kvVN N +kvVN ’
where N;(n) is the total weight of sites with n at position j, N is the total weight

of the sample sites.
The observed effective frequency of ‘amino acid - nucleotide’ pair:

Nij(a,n) + kvVN i(a,m)

.0, a’n =
ijan) N + kvVN

where N;j;(a,n) is the total weight of pairs with a at position ¢ of the AAS and
n at the site position j, N is the total weight of sample pairs, ffj(a,n) is the
expected effective frequency of pair (a,n) defined as

fijla,n) = fi(a) fi(n)

where f;(a) and fj(n) are the effective frequencies of residue a at position ¢ and
nucleotide n at position j, respectively.
The mutual information was computed as

fila,n)
”—ZZfUanlogfe( n)

Greedy forward feature selection. Another strategy for feature selection is
searching through subsets of features, training algorithms using feature subsets
on parts of the training set, estimating error on remaining objects and selecting
the subset with the minimal error.

In practice, the exhaustive search is computationally intractable, so we used
the greedy algorithm, successively adding each of the remaining features to the
current best subset and selecting the feature which provides the best classifier.
This feature then is added to the best-feature subset and the process is repeated.

The greedy strategy takes into account feature dependency, but still can lead
to suboptimal subsets. On the other hand, this strategy is the fastest after the
MI-based feature selection.

3 Results and Discussion

We report only the performance of two simple algorithms: Naive Bayes classi-
fier (NB) [13] based on amino acid frequencies estimation and logistic regression
(LR) [I4] with simple AAS encoding to feature vectors. We also tried using
amino acid pairs’ frequencies (and corresponding binarisation) with these algo-
rithms, but the prediction quality was the same. The reason of this might be
the data sparseness, which makes it impossible to estimate frequencies of complex
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events robustly. We also tried linear SVMs with these feature vectors, but the
performance was poor. SVM with a linear kernel is the fastest in training SVM
algorithm, but it is very slow compared with NB and LR. Using SVMs based
on nonlinear kernels for feature selection required computational resources not
available for this study.

3.1 Selecting Site Alignment Positions

Different site positions can be predicted with different accuracy. In this study we
used those site positions, for which significantly correlated AAS positions were
found [10]. We used the mutual information to measure correlation. As one can
see in the heat map in Fig. [Il significant correlations are observed for positions
5, 6, 7, 9 and the symmetric ones. Below we consider only these four positions.

i

Fig. 1. Mutual information of AAS-site position pairs [I0]. Light colors correspond to
significant correlations.

3.2 Selection of Significant Positions

Selection was performed using two methods. Using the MI-based selection, twenty
positions were selected for each of three site positions. Positions were selected
successively, starting from the most informative one. On each iteration, the clas-
sifiers were trained using the current position set and the prediction quality
(testing set log-likelihood) was estimated. The greedy selection was organized
in the same way, but only for ten AAS positions for each site position. In both
cases the process was repeated for different sample splits during 10-fold cross
validation (22).

The prediction quality values for different feature set lengths were plotted on
a graph. The selected positions were tabulated. The selected positions may vary
for different sample splits. Hence we can only report the frequencies of given
positions in position sets selected at algorithm iterations, i.e. the frequencies in
the selected sets of sizes ranging from 1 to 20. To visualize the tables, we ordered
all positions by the total frequency (the sum of frequencies in sets of all lengths)
and report the top ones.
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Only few positions are stably selected by both algorithms, i.e. these posi-
tions are selected with almost any sample split. The maxima of the test set
log-likelihood plots often correspond to these position sets. Further increase of
the position set size leads to overfitting. The selection stability and existence
of well-defined maxima on the log-likelihood plots can be treated as a proof of
connection between the selected AAS positions and the site positions.

While the prediction quality shows large variation, dependent on the split
of the data into training and test sets, the overall results from different runs
(position of the local maxima, selected positions, relative quality of predictions
by different algorithms) are consistent.

3.3 AAS-Position Selection for Position 9 of the Site Alignment

The log-likelihood values obtained on the testing set for position 9 by various
algorithms and selection strategies are plotted in Fig. 2l Well-defined maxima
are obtained on three positions by all methods.
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Fig. 2. The log-likelihood values against the number of selected positions for position
9 of the site alignment

Table [ features the most frequent positions. The column numbers are the
position numbers starting from the most frequent one. The row numbers are the
selected set sizes. The MI-based search and greedy naive Bayes search stably
select three positions 55, 15 and 5. The greedy logistic regression stably selects
the same three positions, and frequently position 27.

The maximum prediction quality is achieved by using three positions. There-
fore, positions 55, 15 and 5 of the amino acid alignment are significantly linked
to position 9 of the site alignment.

3.4 AAS-Position Selection for Position 7 of the Site Alignment

The log-likelihood values obtained on the testing set for position 7 by various
algorithms and selection strategies are plotted in Fig.[3l Well-defined maxima are
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Table 1. Frequencies of six most frequent positions in MI-selected, greedy naive Bayes
classifier (NB) and greedy logistic regression (LR) sets of varying lengths for prediction
of site position 9 (in %)

MI-selected NB LR
Set size 55 15 5 685616 55 15 5 1 7026 55 15 5 2749 56
1000 0000 999 0000 9 4 0O0O0O0
1001000 0 O O 1001000 O O O 1001000 O O O
100 100900 0 O 100100960 0 O 100100909 0 O
100 100 90 20 35 39 100 10099365 6 100 100 96 825 4
100 100 95 50 64 57 100 100 99 52 23 23 100 100 98 94 38 37
100 100 97 79 80 80 100 100 99 68 42 40 100 100 99 96 64 54
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Fig. 3. The log-likelihood values against the number of selected positions for position
7 of the site alignment

obtained on three positions by all methods, except the greedy Bayes classifier,
which has maximum on two positions.

The most frequent positions are listed in Tab. 2] with the notation as above.
The MI-based search stably selects three positions 16, 25 and 15, and sometimes
position 68. The greedy logistic regression stably selects the same three positions,
whereas the greedy Bayes classifier based search makes a mistake on the third
step, stably selecting position 49, which, as seen on the log-likelihood plot, leads
to a dramatic decrease of the prediction quality.

The maximum prediction quality is achieved by using three positions. There-
fore, positions 16, 25 and 15 of the amino acid alignment are significantly linked
to position 7 of the site alignment.

3.5 AAS-Position Selection for Position 6 of the Site Alignment

The log-likelihood values are plotted in Fig. @l The naive Bayes classifier with
the MI-based selection has two maxima at one and three positions, while the
greedy strategy has maxima at one and seven positions. The logistic regression
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Table 2. Frequencies of six most frequent positions in MI-selected, greedy naive Bayes
classifier (NB) and greedy logistic regression (LR) sets of varying lengths for prediction

of site position 7 (in %)

MI-selected

Set size 16 25 15 685 46
1000 0 0 0 O
10096 4 0 0 O

100 100 1000 0 O
100 100 100 84 5 3
100 100 100 94 25 18
100 100 100 97 38 46
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Fig. 4. The log-likelihood values against the number of selected positions for position
6 of the site alignment

curves slowly grow, having many local maxima with highest values around six
and eleven positions for the greedy and MI-based search, respectively.

Table B features the most frequent positions. The MI-based selection has one
absolutely stable position, 16, and two additional stable positions, 25 and 15,
which are interchangeable at the second selection step. The greedy strategies
select two positions, absolutely stable 16 and strongly stable 15. Further selection
is unstable.

In prediction of position 6 in binding sites, different algorithms behave dif-
ferently: the naive Bayes classifier has two maxima, while the logistic regression
seems to overfit. However, all methods stably select position 16 of the AAS
alignment that is significantly connected with position 6 in the site alignment.

3.6 AAS-Position Selection for Position 5 of the Site Alignment

The log-likelihood values obtained on the testing set for position 5 by different
algorithms and selection strategies are plotted in Fig. Bl For the naive Bayes
classifier, both MI-based and greedy, the maximum is reached when only one



24 G.G. Fedonin and M.S. Gelfand

Table 3. Frequencies of five most frequent positions in MI-selected, greedy naive Bayes
classifier and greedy logistic regression sets of varying lengths for prediction of site
position 6 (in %)

MI-selected NB LR
Set size 16 25 1568 26 16 15202749 16 1527 2549
1000 0 O O 1000 O O O 1000 O O O
10060 400 O 100900 100 100855 8 O
10096 910 8 1009461286 1009365194
100 98 95 45 29 100 94 82 64 21 100 95 78 35 22
100 100 97 66 58 100 97 89 82 68 100 98 86 55 47
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Fig. 5. The log-likelihood values against the number of selected positions for position
5 of the site alignment

Table 4. Frequencies of five most frequent positions in MI-selected, greedy naive Bayes
classifier and greedy logistic regression sets of varying lengths for prediction of site
position 5 (in %)

MI-selected NB LR
Set size 20 2527 68 16 20 27 1569 50 20 25 16 50 27
1000 0 O O 1000 O O O 1000 O O O
100953 2 0 100552 200 10054 330 13
100 96 35 41 21 100 61 28 58 18 100 &7 69 16 25
100 99 62 62 53 100 62 48 60 28 100 94 73 60 44
100 99 85 83 77 100 64 67 61 49 100 100 75 85 62

U W N~

position is used for prediction. The logistic regression algorithm plots do not
have a marked maximum.

The most frequent positions are tabulated in Tab. 4l Position 20 is absolutely
stable, position 25 is stable for the MI-based search. Further selection is unstable.
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The maximum prediction quality is achieved by using only one position and
addition of the second position considerably decreases it. Therefore, only position
20 of the amino acid alignment is significantly connected with position 5 of the
site alignment.

4 Conclusions

Experiments showed that knowledge of only a few key protein sequence positions
is sufficient for prediction of nucleotide densities at selected site positions. These
positions form significantly correlated pairs with corresponding site alignment
positions, having high mutual information values. Moreover, the selected pairs of
positions are largely the same for different methods (for any given site position)
and correspond to the contacts in protein-DNA complexes [I0]. On the other
hand, the results show that the dependencies are not limited to simple pairs of
contacting positions. Overall, these observations support the existence of protein
family-specific protein-DNA recognition code. Analysis of other transcription
factor families will show what features of this code are universal.
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Based Non-coding RNA Gene Search
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Abstract. The effect of more detailed modeling of the interface between stem
and loop in non-coding RNA hairpin structures on efficacy of covariance-
model-based non-coding RNA gene search is examined. Currently, the prior
probabilities of the two stem nucleotides and two loop-end nucleotides at the
interface are treated the same as any other stem and loop nucleotides
respectively. Laboratory thermodynamic studies show that hairpin stability is
dependent on the identities of these four nucleotides, but this is not taken into
account in current covariance models. It is shown that separate estimation of
emission priors for these nucleotides and joint treatment of substitution
probabilities for the two loop-end nucleotides leads to improved non-coding
RNA gene search.

Keywords: Sequence analysis, RNA gene search, covariance models.

1 Introduction

Covariance models are an effective method of capturing the joint probability
information inherent in the intramolecularly base-paired positions of a non-coding
RNA molecule [1, 2]. Unlike profile hidden Markov models [3, 4], which have a set
of four emission probabilities over the possible nucleotides at each consensus
sequence position, covariance models allow consensus base pairs to be assigned
sixteen joint probabilities over the possible ordered nucleotide pairs. Covariance
models also allow the probability of insertion or deletion of a base pair to be different
than the sum of the marginal probabilities of insertion or deletion of the individual
nucleotides. The profile hidden Markov model can be viewed as a special form of a
covariance model with no base pairs specified.

Covariance models are finite state machines which require the estimation of state
emission and state transition probabilities as well as model structure. This is normally
done using a family of known sequences in a multiple alignment with secondary
structure annotation. Counts of nucleotide frequencies in unpaired consensus columns
or nucleotide pair frequencies in couples of base-paired consensus columns form the
basis for emission probabilities. Counts of missing nucleotides in consensus columns
and of nucleotide presence in non-consensus columns can be used to generate
transition probabilities in and out of deletion and insertion states respectively.

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 27 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Conceptually, estimation of emission and transition probabilities is as simple as
calculating the observed frequency of occurrence in the multiple alignment. The
reality is much more complex. The very small number of family sequences that most
RNA family models are estimated from is a major problem. In the Rfam 9.1
(December 2008) database of RNA alignments and covariance models, more than half
of the 1371 family models are estimated from ten or fewer sequences [5, 6]. Most of
the possible mutations, insertions, or deletions are never observed even though we
have no particular reason to believe that they should be excluded from consideration.
At very least pseudocounts need to be added to all possibilities such that the
probability estimates do not outright exclude them. Pseudocounts are a form of prior
information used in the estimation.

Far more informative priors than simple pseudocounts are needed for effective
estimation of family models formed from so few sequences. Generic mutation,
insertion, and deletion probabilities are obtained via observed frequency from the
entire database of all RNA families. The generic emission and transition probabilities
are found separately for base-paired and non-base-paired positions and with
dependence on whether adjacent positions are paired or not. It will be demonstrated
that these classifications are not quite fine enough later in this paper. In order to
automatically uncover groups of mutation, deletion, or insertion patterns that tend to
be observed together, these generic priors are estimated as a Dirichlet mixture [7] in
recent versions of the Infernal [8] suite of programs for covariance-model-based RNA
family analysis and search.

When combining the observed-frequency information from the multiple alignment
of a specific family with the generic prior information, it is necessary to obtain a
weighting based on our confidence in the family specific data versus our generic
information. Having more sequences in the specific family increases our confidence
in that data. However, simple counts of number of sequences are not very effective
because our set of known sequences is rarely a random sample of actual sequences
from the true complete family. We may have many sequences that are nearly identical
and only a few with lots more diversity. This causes a simple count of number of
sequences to overestimate the true information content. The usual solution to this
problem is to employ entropy weighting based on the variability of the known family
sequences [9].

There is a large literature on RNA secondary structure estimation based on primary
sequence [10, 11]. Much of this literature uses the results of laboratory thermodynamic
studies of RNA as its basis. These thermodynamic measurements are not used in
covariance-model-based RNA family modeling. Instead, observed mutations,
insertions, and deletions within the family or over the entire database (the priors) are
used. However, it may be useful to study the regularities in RNA free energy
measurements in the laboratory to guide choices in how covariance models are
constructed. From the laboratory, we know that the identities of the nucleotides at the
interface between the stem and the loop of a hairpin structure greatly affect
thermodynamic stability of the hairpin structure. We also know that the length of the
loop is a factor in stability. The mechanisms to capture these regularities are weak and
nonexistent, respectively, in current covariance modeling practice. This paper will
examine the stem/loop interface, but not loop length.
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Some initial evidence that interface nucleotides and loop length might be important
was found by Smith and Wiese [12]. This paper presents much more evidence for the
stem/loop interface. It also looks at implementing a new type of node in the
covariance model that can get around some of the problems encountered in tricking
the existing Infernal program suite into handling the loop end nucleotides jointly.

The next section will review covariance models and estimation of model
parameters in more detail. Section 3 looks at the regularities in free energy change
when forming RNA hairpins observed in the laboratory. Changes to covariance model
structure and parameter estimation procedure that can capture the observed
thermodynamic regularities is presented in Section 4. Results of computational
experiments on data from the Rfam database are presented in Section 5, followed by
conclusions.

2 Covariance Model Structure and Parameter Estimation

Covariance models are finite state machines composed of emitting and silent states
and directed edges connecting some of the states to some of the others. There is a
unique starting state (called the root start state) and one or more terminal states (called
end states). Given any nucleotide sequence it is possible to find the most probable
mapping of the sequence onto model state visits and the associated overall probability
of this mapping. Given a family of sequences, it is possible to find a set of state
emission and state transition probabilities such that the overall probability when
mapping a family member to the model is high and of mapping a dissimilar sequence
to the model is low.

2.1 Model Structure

The states of a covariance model and the connectivity of these states can be
determined from a consensus secondary structure of the RNA family. RNA secondary
structure is a listing of pairs of sequence positions that intramolecularly base pair. The
state structure can be described at a high level through the use of node trees, where
nodes of a given class have identical internal state structure.

Figure 1 shows an example of a consensus secondary structure for an RNA family
(right). The letters refer to the consensus nucleotides and the subscripts to the
consensus sequence positions. The figure also shows the covariance model node tree
for the same secondary structure. S, B, and E-type nodes contain no consensus
emitting states. L. and R-type nodes contain a single-emission consensus state and P-
type nodes contain a pair-emission consensus state. The model is entered at the root
start state located in the SO node and has two exit points at the end states contained in
nodes E12 and E22.

The node tree is simply a guide for constructing the underlying state model. The
state model is the final model of interest. Figure 2 shows internal state structure of
some of the nodes from the node tree in Figure 1. Nodes of the same type have the
same internal structure, so constructing the state machine from the node tree is
straightforward. There is a standard rule for how to connect edges from states in one
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Fig. 1. An example consensus RNA secondary structure (right) and associated covariance
model node tree (left)

node to states in an adjacent node. Each node contains one consensus state and
varying numbers of non-consensus states. P, L, R, IL, and IR states types are emitting
and all others are silent. D states allow for deletions relative to the consensus and IL
or IR states allow for insertions.

2.2 Model Parameters

Once we have state structure, it is necessary to estimate emission probabilities for
emitting states and transition probabilities for each edge connecting states. These
probabilities are converted to log-likelihood ratios so that the total (log) probability of
a particular path can be computed as the sum of transition and emission probabilities
along the path. Dynamic programming can then be used to find the most probable
path for a given sequence.

The parameters are estimated through a weighted combination of observed
frequency of events in the family multiple alignment and the prior for the parameter.
The priors in turn depend on the type of node holding the state and on adjacent node
types. As an example, transition probabilities into and out of the D state in the R3
node at the top of Figure 2 would depend in part on the count of the number of gap
characters in the twenty-third consensus column of the family multiple alignment.
The R state in the R3 node is the consensus state which emits a consensus U and the
D state in the R3 node is used to bypass this emission when a sequence has a deletion
at this position relative to the consensus. Even though U is the consensus nucleotide
for position 23, there are actually four emission probabilities associated with the R
state in node R3. The probability for U is simply the highest of the four.
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A

Fig. 2. Internal state structure of portions of the example covariance node tree from Figure 1

3 Thermodynamic Regularities

The thermodynamic stability of RNA hairpins is a fairly well studied topic [13-18].
Using calorimetry observations of the folding of short synthetic strands of RNA,
models of the free energy of larger hairpin structures can be inferred. These models
are used extensively in algorithms to predict secondary structure of RNA from
sequence. These algorithms are based on the idea that the final conformation of an
RNA molecule will be close to that of the minimum free-energy conformation.

Two of the major observations from the laboratory data is that hairpin stability
depends on the number of nucleotides in the loop and on the identities of the four
nucleotides at the stem-loop interface. The loop-length observation is relevant to
covariance models and should be addressed, but the focus in this paper is on the stem-
loop interface observation.

In Figure 3, the stem-loop interface is composed of the closing pair U15 and A20
as well as the loop ends A16 and C19. Although the structure appears symmetric in
the figure, the free energy of the structure shown for GGUAACCAUC is different
than its mirror CUACCAAUGG. In other words, it maters which side of the
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stem-loop interface is 5' and which is 3'. Covariance model P nodes can emit any of
the sixteen possible ordered pairs of nucleotides. In the middle of a stem it makes
sense to allow all sixteen possibilities since a mutation from a Watson-Crick or
wobble base pair (a canonical base pair) to a non-canonical pair can be held together
by adjacent base pairs in the stem without necessarily destroying the stem. If the
closing pair becomes non-canonical, then effectively the loop length increases by two
and the next pair up the stem becomes the closing pair. So, there are really only six
consensus ordered pairs to consider for the closing pair: AU, UA, CG, and GC
(Watson-Crick) as well as the wobble pairs GU and UG. In the Rfam database,
consensus wobble pairs are very infrequent at the closing pair position (observed
only about 4.1% of the time in version 8.1).

In the work of Vecenie and Serra [13] a number of regularities are noted regarding
the thermodynamic stability of hairpin structures when different nucleotides are
present in the stem-loop interface. They note that if the closing pair is CG or GC and
loop ends are GA or UU (but not AG), then the hairpin is much more stable. They
also note that if the closing pair has a purine (A or G) on the 5' side, the GG loop ends
are particularly stable.

It is hypothesized here that some RNA families may not be able to function as well
with less stability in one or more of their hairpins. If this is so, then it would be
desirable to penalize database search scores when the database sequence implies a
mutation away from one of the very stable consensus configurations noted above.
Unfortunately, covariance model structure and parameter priors do not allow for these
thermodynamic regularities to be expressed either directly or indirectly.

G13 Co2
CratP1e U
UsgePi7 [ Ang
C18¢1L20)

Eop

Fig. 3. A portion of the RNA secondary structure and covariance node tree from Figure 1
showing a single hairpin with the locations of the stem's closing pair and the loop ends labeled

4 Changes to Model Structure and Estimation

A major problem making expression of the thermodynamic regularities described in
the previous section not possible is that the four nucleotides in the stem-loop interface
are contained in three covariance model nodes with independent emission
probabilities. Another problem is that the priors used for these emission probabilities
are estimated as a mixture of database locations corresponding to stem-loop interfaces
and to other structures.
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To allow for expression of a regularity such as stable GG loop ends when the 5'
side of a closing pair is A or G requires a new type of covariance model node. Such a
node replaces a P node and two L nodes of a hairpin structure. In Figure 3, these are
the P17, L18, and L21 nodes. Two hundred fifty six joint emission probabilities
are needed for the consensus state of this node type. Since 160 of these combinations
are not seen in practice (the combinations with non-canonical closing pairs), they can
simply be assigned a very low probability, leaving only 104 emission probabilities
that need to be estimated. Since wobble pairs are relatively rare, it may also be
desirable to treat them as a class with a single emission probability (but a different
value than for non-canonical pairs). This would leave 64 emission probabilities to be
estimated for the Watson-Crick closing pairs. Clearly, heavy reliance on priors for
these probabilities is needed since so few families have known sequences numbering
in the hundreds and even fewer have enough variation in the observed stem-loop
interface nucleotide combinations.

Implementation of a new node type requires significant programming effort to
rewrite program suites such as Infernal. A partial solution is to at least express the
joint probability of the two loop end nucleotides by tricking the existing algorithms. If
the two loop-end L nodes are replaced by a single P node modeling these loop ends,
expression of the joint probabilities of emission is possible. In Figure 3, the L18 and
L21 nodes would be removed and replaced by a single P18 node directly below the
existing P17 closing-pair node. In practice this can be accomplished simply by
marking the two loop ends as if they were consensus base pairs in the input multiple
alignment file to the cmbuild program of the Infernal program suite.

Using the P-node substitution trick does cause a couple of problems with priors.
Firstly, The closing-pair P node will now use priors associated with a P node with P
node child rather than the correct P node with L node child priors. This first problem
can be solved by running the cmbuild program twice, once with and once without the
loop ends marked as base paired. Then parameter estimates for the closing-pair P
node in the second run are used in place of the estimates in the first run. The second
problem is that the priors for the fake loop-end P node are completely wrong. The
standard P node priors are generated from stem locations in the overall Rfam database
with high probabilities for Watson-Crick base pairs, somewhat lower probabilities for
wobble pairs and very low probabilities for non-canonical pairs. Instead, sets of priors
for these loop-end P nodes are estimated on the side, one set for each possible
consensus closing pair.

The loop-end P-node trick allows for a one-way dependence of loop-end emission
probabilities on consensus closing pairs. It would be possible to also regenerate
sixteen sets of priors for closing-pair P nodes and use the one associated with a given
family's consensus loop ends. This two-way dependence would still not be quite as
good as full use of joint probabilities.

5 Experimental Results

This section looks at results of using a P-node to model loop ends with non-standard
priors on the loop-end P node only (and not for the closing pair P node).
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First, the entire Rfam 8.1 database was processed and all 26,644 hairpin structures
in all the seed sequences extracted. Since some RNA families have no hairpins and
others have multiple hairpins, this number is different than the total number of seed
sequences in the database. Table 1 shows the raw counts of number of observed loop-
end pairs for each observed closing pair. Since wobble closing pairs are infrequent,
they were not compiled separately, but are including the "All" column (such that the
AU, UA, CG and GC columns do not add up to the All column). These raw counts are
not that useful because the background frequencies of A, C, G and U are not each one
quarter. To remedy this, Table 2 shows the same data as base-2 log-likelihood ratios.
The log form is what is used by Infernal in order that the algorithm calculate additions
instead of multiplications and it is visually useful since positive values are more likely
than chance and negative less likely.

Some of the regularities noted in section 3 are apparent in Table 2. GA and UU
loop ends are overrepresented by a factor of four when the closing pair is GC and by a
factor of two when the closing pair is CG (but not for AU or UA closing pairs). Some
other combinations have deviations of up to a factor of eight (for example UG loop
ends on a UA closing pair).

The log-likelihood ratios of Table 2 were used as priors for loop-end P nodes on the
fourteen shortest RNA families in the Rfam database which contained a hairpin
without a pseudoknot. Pseudoknots are a situation where at least one pair of base pairs
is such that neither base pair is completely between the other in sequence [19].
Covariance models use stochastic context-free grammars [20], which are incapable of
describing a pseudoknot. Covariance models handle pseudoknots by treating some of
the actually base-paired positions as if they were unpaired. Since what appears to be a
hairpin in the node tree of pseudoknotted RNA families is actually something
somewhat more complex, they will not be considered. The amount of computation
time require to calculate E-values for covariance models is extremely high and goes up
by more than the square of sequence length and short sequences are the most difficult
to find in database search, so short sequences were chosen for this experiment.

Table 3 shows the results of the computational experiment. The first two columns
show the length of the consensus sequence and the number of known family
sequences. Both the seed sequences used to construct the family models and those
found through database search by the curators of Rfam are included in this number. E-
values are calculated by the Infernal program suite by reshuffling the known sequence
many times (5000 times chosen for this study), scoring each reshuffled sequence
against the family covariance model and then and fitting the resulting scores to a
Gumble extreme value distribution [21]. The score of the unshuffled sequence is then
used to find the probability of matching or exceeding the unshuffled score by pure
chance. Lower E-values imply better specificity given that the threshold is set such
that the sequence is just barely accepted as a true positive. The E-value ratios shown
are the ratio of the E-value using the standard covariance model divided by the E-
value with the loop-end P node. Ratios greater than one mean that using the loop-end
P node has more power than the standard model. A E-value ratio of two means that
we expected twice as many false alarms from the standard model.

On average, in only two cases (Rfam accession numbers RF00469 and RF00496)
did modeling the loop ends jointly do significantly worse and in most cases it did
quite a bit better.
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Table 1. Counts of loop-end nucleotides in the full Rfam database (in 26,644 hairpins from all
seed sequences from Rfam 8.1)

Loop Stem Closing Pair

End AU UA CG GC All
AA 318 302 2173 1098 4054
AC 94 25 293 147 628
AG 113 32 694 114 1013
AU 110 66 454 208 859
CA 671 1269 865 163 3007
CcC 301 72 128 133 692
CG 42 146 1099 86 1405
CU 115 104 678 175 1133
GA 175 182 1387 2270 4202
GC 62 43 170 92 378
GG 94 235 285 160 844
GU 48 34 123 153 410
UA 359 131 450 332 1318
ucC 174 257 238 324 1104
UG 65 23 1158 219 1495
uu 207 140 1204 2459 4102
All 2948 3061 11399 8133 26644

Table 2. Base-2 log-likelihood ratios using raw data from Table 1 (corrected for background
frequencies of A, C, G, and U)

Loop Stem Closing Pair

End AU UA CG GC All
AA 0.16 0.03 0.98 0.48 0.65
AC -0.93 -2.89 -1.24 -1.75 -1.36
AG -0.88 -2.76 -0.22 -2.33 -0.89
AU -1.15 -1.94 -1.06 -1.70 -1.36
CA 1.91 2.77 0.32 -1.60 0.90
CcC 1.43 -0.69 -1.76 -1.22 -0.55
CG -1.64 0.11 1.12 -2.07 0.25
CU -0.41 -0.61 0.19 -1.27 -0.29
GA -0.25 -0.25 0.78 1.98 1.16
GC -1.07 -1.66 -1.57 -1.97 -1.64
GG -0.69 0.57 -1.04 -1.39 -0.70
GU -1.90 -2.45 -2.49 -1.69 -1.98
UA 0.55 -0.96 -1.07 -1.02 -0.75
ucC 0.18 0.69 -1.32 -0.38 -0.33
UG -1.46 -3.01 0.75 -1.17 -0.11

UU -0.02 -0.64 0.57 2.09 1.11
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Table 3. Ratios of E-values using stem closing pair specific priors to E-values using standard
priors on the full set (seed plus those found by search) of sequences in 14 Rfam families

RF Family Properties E-value Ratios

Acc. Length Number Mean Max Min
00032 26 1046 1.64 2.20 1.02
00037 28 318 1.91 2.25 1.58
00453 33 30 2.67 3.60 1.81
00196 35 8 1.21 1.83 0.75
00180 36 30 1.82 3.01 1.08
00469 36 344 0.24 0.34 0.16
00385 41 41 1.66 2.42 1.09
00496 42 13 0.86 0.97 0.75
00164 42 302 1.32 1.91 0.87
00207 44 6 1.41 2.20 0.86
00617 45 426 1.47 2.43 1.16
00197 45 25 0.99 1.13 0.87
00500 45 5 1.58 2.63 0.66
00522 46 63 1.63 291 0.94
Mean 1.46

6 Conclusions

Laboratory studies indicate that there is a significant effect on RNA hairpin stability of
the specific nucleotides at the interface between stem and loop. Covariance models as
currently used for database non-coding RNA gene search can not capture the
thermodynamic regularities know from these laboratory studies. Ideally, modification
of the covariance-model-based search algorithms to jointly model the probabilities of
the four nucleotides at the interface would solve this problem, but at the expense of
significant programming effort. However, some of the benefits of joint modeling can
be had by tricking the existing algorithms by using a P-type node for the loop ends and
using a new set of priors for these nodes than depend on the consensus closing pair.

Limited testing on the fourteen shortest Rfam families with a hairpin and without a
pseudoknot show that specificity does seem to improve given fixed sensitivity when
this P-node trick is employed.

Additional testing is needed to be more conclusive. In order to make this feasible, a
more automated way to generate parameter files for Infernal needs to be developed
(currently, it involves manual cut and paste and running a side program). Also, access
to a computer cluster is needed to calculate E-values for many more and much longer
sequences. These tasks are currently being undertaken by the author.
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Abstract. We present a structured output prediction approach for clas-
sifying potential anti-cancer drugs. Our QSAR model takes as input a
description of a molecule and predicts the activity against a set of can-
cer cell lines in one shot. Statistical dependencies between the cell lines
are encoded by a Markov network that has cell lines as nodes and edges
represent similarity according to an auxiliary dataset. Molecules are rep-
resented via kernels based on molecular graphs. Margin-based learning
is applied to separate correct multilabels from incorrect ones. The per-
formance of the multilabel classification method is shown in our experi-
ments with NCI-Cancer data containing the cancer inhibition potential
of drug-like molecules against 59 cancer cell lines. In the experiments,
our method outperforms the state-of-the-art SVM method.

1 Introduction

Machine learning has become increasingly important in drug discovery where
viable molecular structures are searched or designed for therapeutic efficacy.
In particular, Quantitative Structure-Activity Relationship (QSAR) models, re-
lating the molecular structures to bioactivity (therapeutical effect, side-effects,
toxicity, etc.) are routinely built using state-of-the-art machine learning meth-
ods. In particular, the costly pre-clinical in vitro and in vivo testing of drug
candidates can be focused to the most promising molecules, if accurate in silico
models are available [16].

Molecular classification—the task of predicing the presence or absense of the
bioactivity of interest—has been tackled with a variety of methods, including
inductive logic programming [9] and artificial neural networks [I]. During the last
decade kernel methods [ITUT6/4] have emerged as an computationally effective
way to handle the non-linear properties of chemicals. In numerous studies, SVM-
based methods have obtained promising results [BIT6J20]. However, classification
methods focusing on a single target variable are probably not optimally suited
to drug screening applications where large number of target cell lines are to be
handled.

In this paper we propose, to our knowledge, the first multilabel learning ap-
proach for molecular classification. Our method belongs to the structured output

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 38449,/2010.
© Springer-Verlag Berlin Heidelberg 2010
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prediction family [IST7IT2I13], where graphical models and kernels have been
successfully married in recent years. In our approach, the drug targets (cancer
cell lines) are organized in a Markov network, drug molecules are represented by
kernels and discriminative max-margin training is used to learn the parameters.
Alternatively, our method can be interpreted as a form of multitask learning [5]
where the Markov network couples the tasks (cell lines) and joint features are
learned for pairs of similar tasks.

2 Methods

2.1 Structured Output Learning with MMCRF

The model used is this paper is an instantiation of the structured output predic-
tion framework MMCRF [13] for associative Markov networks and can also be
seen as a sibling method to HM3[12], which is designed for hierarchies. We give
a brief outline here, the interested reader may check the details from the above
references.

The MMCREF learning algorithm takes as input a matrix K = (k(z;, %))an:1
of kernel values k(z;,z;) = ¢(z;)T¢(x;) between the training patterns, where
¢(x) denotes a feature description of an input pattern (in our case a poten-
tial drug molecule), and a label matrix Y = (y;)/~, containing the multilabels
Vi = (Y1, .., yx) of the training patterns. The components y; € {—1,+1} of the
multilabel are called microlabels and in our case correspond to different cancer
cell lines. In addition, the algorithm assumes an associative network G = (V, E)
to be given, where node j € V corresponds to the j’th component of the mul-
tilabel and the edges e = (j,j') € E correspond to a microlabel dependency
structure.

The model learned by MMCRF takes the form of a conditional random field
with exponential edge-potentials,

P(y|z) x H exp (WZ(pe(aj,ye)) = exp (ngo(ac,y)) ,
ecE

where y. = (y;,y;/) denotes the pair of microlabels of the edge e = (j,5'). A
joint feature map @ (x,y) = ¢(x) @ e(ye) for an edge is composed via tensor
product of input ¢(z) and output feature map ¥(y), thus including all pairs
of input and output features. The output feature map is composed of indicator
functions ¥%(y) = [ye = u] where u ranges over the four possible labelings of
an edge given binary node labels. The corresponding weights are denoted by we.
The benefit of the tensor product representation is that context (edge-labeling)
sensitive weights can be learned for input features and no prior alignment of
input and output features needs to be assumed.

The parameters are learned by maximizing the minimum loss-scaled margin
between the correct training examples (z;,y;) and incorrect pseudo-examples
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(z4,¥),y # yi, while controlling the norm of the weight vector. The primal
soft-margin optimization problem takes the form

1 m
ng%geﬂwW+CZ¥i (1)
st whp(,yi) —w o(ziy) = Lyiy) — &,
for all 7 and y,

where ; denote the slacks allotted to each example. The effect of loss-scaling is
to push high-loss pseudo-examples further away from the correct example than
the low-loss pseudo-examples, which, intuitively, decreases the risk of incurring
high-loss. We use Hamming loss

Caly.w) = DTy # ]

that is gradually increasing in the number of incorrect microlabels so that we
can make a difference between 'nearly correct’ and ’clearly incorrect’ multilabel
predictions.

The MMCREF algorithm [I3] optimizes the model () in the so called marginal
dual form, that has several benefits: the use of kernels to represent high-dimensional
inputs, and polynomial-size of the optimization problem with respect to the size of
the output structure. Efficient optimization is achieved via the conditional gradi-
ent algorithm [2] with feasible ascent directions found by loopy belief propagation
over the Markov network G.

2.2 Kernels for Drug-Like Molecules

A major challenge for any statistical learning model is to define a measure of sim-
ilarity. In chemical community, widely researched quantitative structure-activity
relationship (QSAR) theory asserts that compounds having similar physico-
chemical and geometric properties should have related bioactivity [7]. Various
descriptors have been used to represent molecules with fixed-length feature vec-
tors, such as atom counts, topological and shape indices, quantum-chemical and
geometric properties [19]. Kernels computed from the structured representation
of molecules extend the scope of the traditional approaches by allowing com-
plex derived features to be used (walks, subgraphs, properties) while avoiding
excessive computational cost [IT].

In this paper, we experiment with a set of graph kernels designed for classi-
fication of drug-like molecules, including walk kernel [6], weighted decomposi-
tion kernel [I0] and Tanimoto kernel [TI]. All of them rely on representing the
molecule as a labeled graph with atoms as nodes and bonds between the atoms
as the edges.

Walk kernel. [8I6] computes the sum of matching walks (a sequence of labeled
nodes so that there exists an edge for each pair of adjacent nodes) in a pair
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of graphs. The contribution of each matching walk is downscaled exponentially
according to its length. We consider finite-length walk kernel where only walks
of length p are counted. The finite walk kernel can be efficiently computed using
dynamic programming.

Weighted decomposition kernel. [4] is an extension of the substructure kernel by
weighting identical parts in a pair of graphs based on contextual information
[4]. The kernel looks at matching subgraphs (contezrtor) in the neighborhood of
selector atoms.

Tanimoto kernel. [II] is a kernel computed from two molecule fingerprints by
checking the fraction of features that occur in both fingerprints of all features.
Hash fingerprints enumerates all linear fragments of a given length, while sub-
structure keys correspond to molecular substructures in a predefined set designed
by domain experts. Based on good performance in preliminary studies, in this
paper we concentrate on hash fingerprints.

2.3 Markov Network Generation for Cancer Cell Lines

In order to use MMCREF to classify drug molecules we need to build a Markov
network for the cell lines used as the output, with nodes corresponding to cell
lines and edges to potential statistical dependencies. To build the network we
used auxiliary data (e.g. mRNA and protein expression, mutational status, chro-
mosomal aberrations, DNA copy number variations, etc) available on the cancer
cell lines from NCT databasdl]. The basic approach is to construct from this data
a correlation matrix between the pairs of cell lines and extract the Markov net-
work from the matrix by favoring high-valued pairs. The following methods of
network extraction were considered:

— Maximum weight spanning tree. Take the minimum number of edges that
make a connected network whilst maximizing the edge weights.

— Correlation thresholding. Take all edges that exceed fixed threshold. This
approach typically generates a general non-tree graph.

3 Experiments

3.1 NCI-Cancer Dataset

In this paper we use the NCI-Cancer dataset obtained through PubChem Bioas-
say@ [18] data repository. The dataset initiated by National Cancer Institute
and National Institutes of Health (NCI/NIH) contains bioactivity information
of large number of molecules against several human cancer cell lines in 9 differ-
ent tissue types, including leukemia, melanoma and cancers of the lung, colon,
brain, ovary, breast, prostate, and kidney. For each molecule tested against a
certain cell line, the dataset provide a bioactivity outcome that we use as the
classes (active, inactive).

!http://discover.nci.nih.gov/cellminer/home.do
2 http://pubchem.ncbi.nlm.nih.gov
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Fig. 1. Skewness of the multilabel distribution

3.2 Data Preprocessing

Currently, there are 43884 molecules in the PubChem Bioassay database together
with anti-cancer activities in 73 cell lines. 59 cell lines have screen experimental
results for most molecules and 4554 molecules have no missing data in these cell
lines, therefore these cell lines and molecules are selected and employed in our
experiments.

However, molecular activity data are highly biased over the cell lines. Fig-
ure [Il shows the molecular activity distribution over all 59 cell lines. Most of
the molecules are inactive in all cell lines, while a relatively large proportion of
molecules are active against almost all cell lines, which can be taken as toxics.
These molecules are less likely to be potential drug candidates than the ones in
the middle part of the histogram.

Figure 2] shows a heatmap of normalized Tanimoto kernel, where molecules
have been sorted by the number of cell lines they are active in. The heatmap
shows that the molecules in the two extremes of the multilabel distribution form
groups of high similarity whereas the molecules in the middle are much more
dissimilar both to each other and to the extreme groups. The result seems to
indicate that the majority of molecules in the dataset are either very specific or
very general in the targets they are active against. Other kernels mentioned in
section produce a similar heatmap indicating that the phenomenon is not
kernel-specific.

Because of the above-mentioned skewness, we prepared different versions of
the dataset:
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Fig. 2. Heatmap of the kernel space for the molecules sorted by the multilabel distri-
bution

Full. This dataset contains all 4554 molecules in the NCI-Cancer dataset that
have their activity class (active vs. incative) recorded against all 59 cancer
cell lines.

No-Zero-Active. From this dataset, we removed all molecules that are not
active towards any of the cell lines (corresponding to the leftmost peak in
Figure [I)). The remaining 2305 molecules are all active against at least one
cell line.

Middle-Active. Here, we followed the preprocessing suggested in [14], and se-
lected molecules that are active in more than 10 cell lines and inactive in
more than 10 cell lines. As a result, 544 molecules remained and were em-
ployed in our experiments.

3.3 Experiment Setup

We conducted experiments to compare the effect of various kernels, as well as
the performances of support vector machine (SVM) and MMCRF. We used the
SVM implementation of the LibSVM software package written in C++8. We
tested SVM with different margin C' parameters, relative hard margin (C = 100)
emerging as the value used in subsequent experiments. The same value was used
for MMCREF classifier as well.

Because of the skewness of the multilabel distribution (c.f. ) we used the
following stratified 5-fold cross-validation scheme in all experiments reported:

3http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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we group the molecules in equivalence classes based on the number of cell lines
they are active against. Then each group is randomly split among the five folds.
This ensures that also the smaller groups have representation in all folds.

3.4 Kernel Setup

For the three kernel methods, walk kernel (WK) was constructed using param-
eters A = 0.1 and p = 6 as recommended in [6]. The Weighted decomposition
kernel (WDK) used context radius 3 as in [4], and a single attribute (atom type)
was sufficient to give the best performance. We also used hash fragments as
molecular fingerprints generated by OpenBabeﬂ (using default value n = 6 for
linear structure length), which is a chemical toolbox available in public domain.
All kernels were normalized.

4 Results

4.1 Effect of Markov Network Generation Methods

We report overall prediction accuracies on the Middle-Active dataset from vari-
ous Markov networks shown in Figure[Bl X-axis corresponds to different microar-
ray experiments. The accuracies from different Markov networks differ slightly.
The best accuracy was achieved by using maximum weighted spanning tree ap-
proach on RNA radiation arrays dataset, shown in Figure @ which describes
profiles of radiation response in cell lines. This meets our expectations since
cancer cells mostly mutated from normal cells and normal cells with radiation
treatments can possibly explain the mutations.

4.2 Effect of molecule kernels

In Table[Il we report overall accuracies and microlabel F1 scores using SVM with
different kernels on the Middle-Active dataset. The results were from a five-fold
cross validation procedure. Here, the three kernel methods achieve almost the
same accuracies in SVM classifier, while Tanimoto kernel is slightly better than
others in microlabel F1 score. Thus we deemed Tanimoto kernel to be the best
kernel in this experiment and chose it for the subsequent experiments.

4.3 Effect of Dataset Versions

Figure Bl gives overall accuracy and microlabel F1 score of MMCRF versus SVM
for each cell line on the three versions of the data. Points above the diagonal
line correspond to improvements in accuracies or F1 scores by MMCRF classi-
fier. MMCRF improves the F1 score over SVM on each version of the data in
statistically significant manner, as judged by the two-tailed sign test. Accuracy
is improved in two versions, No-Zero-Actives and the Middle-Active molecules,

4http://openbabel . org
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Fig. 3. Effects of Markov network construction methods and type of auxiliary data
(from left to right: reverse-phase lysate arrays, cDNA arrays, Affymetric HU6800 ar-
rays, miRNA arrays, RNA radiation arrays, transporter arrays, and Affymetrix U133
arrays)

Table 1. Accuracies and microlabel F1 scores of MMCRF and SVM with different
kernels

Classifier Kernel Accuracy F1 score
WK 64.6% 49.0%
SVM WDK 63.9% 51.6%
Tanimoto  64.1% 52.7%
MMCRF Tanimoto 67.6% 56.2%

again in statistically significant manner. Among the Middle-Active dataset, the
difference in accuracy (bottom, left of Figure [) is sometimes drastic, around 10
percentage units in favor of MMCRF for a significant fraction of the cell lines.

4.4 Agreement of MMCRF and SVM Predictions

For a closer look at the predictions of MMCRF and SVM, Table 2] depicts the
agreement of the two models among positive and negative classes. Both models
were trained on the Full dataset. Overall, the two models agree on the label
most of the time (close to 90% of positive predictions and close to 95% of the
negative predictions). MMCRF is markedly more accurate than SVM on the
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Fig. 4. Markov network constructed from maximum weighted spanning tree method
on RNA radiation array data. The labels correspond to different cancer cell lines.

Table 2. Agreement of MMCRF and SVM on the positive (left) and negative (right)
classes

Positive class Negative class
SVM Correct SVM Incorrect SVM Correct SVM Incorrect
MMCRF Correct 48.6 £4.1% 7.1 +2.6% 88.0+4.9% 2.2+1.2%
MMCRF Incorrect 3.44+1.3%  40.9 +3.4% 3.8+ 1.7% 6.1 4+ 3.0%

positive class while SVM is slightly more accurate among the negative class.
Qualitatively similar results are obtained when the zero-active molecules are
removed from the data (data not shown).

4.5 Computation Time

Besides predictive accuracy, training time of classifiers is important when a large
number of drug targets need to be processed. The potential benefit of multilabel
classification is the fact that only single model needs to be trained instead of a
bag of binary classifiers.

We compared the running time needed to construct MMCRF classifier (im-
plemented in native MATLAB) against libSVM classifier (C++). We conducted
the experiment on a 2.0GHz computer with 8GB memory. Figure [ shows that
MMCREF scales better when training set increases.
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5 Conclusions

We presented a multilabel classification approach to drug activity classification
using the Max-Margin Conditional Random Field algorithm. In the experiments
against a large set of cancer lines the method significantly outperformed SVM
in training time and accuracy. In particular, drastic improvements could be seen
in the setup where molecules with extreme activity (active against no or a very
small fraction, or a very large fraction of the cell lines) were excluded from the
data. The remaining middle ground of selectively active molecules is in our view
more important from drug screening applications point of view, than the two
extremes.

The MMCRF software and preprocessed versions of the data are available
from http://cs.helsinki.fi/group/sysfys/software.
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Abstract. Short, linear motifs (SLiMs) play a critical role in many biological
processes. The SLiMSearch (Short, Linear Motif Search) webserver is a
flexible tool that enables researchers to identify novel occurrences of pre-
defined SLiMs in sets of proteins. Numerous masking options give the user
great control over the contextual information to be included in the analyses,
including evolutionary filtering and protein structural disorder. User-friendly
output and visualizations of motif context allow the user to quickly gain insight
into the validity of a putatively functional motif occurrence. Users can search
motifs against the human proteome, or submit their own datasets of UniProt
proteins, in which case motif support within the dataset is statistically assessed
for over- and under-representation, accounting for evolutionary relationships
between input proteins. SLiMSearch is freely available as open source Python
modules and all webserver results are available for download. The SLiMSearch
server is available at: http://bioware.ucd.ie/slimsearch.html.

Keywords: short linear motif, motif discovery, minimotif, elm.

1 Introduction

The purpose of the SLiMSearch (Short, Linear Motif Search) webserver is to allow
researchers to identify novel occurrences of pre-defined Short Linear Motifs (SLiMs)
in a set of sequences. SLiMs, also referred to as linear motifs or minimotifs, are
functional microdomains that play a central role in many diverse biological pathways
[1]. SLiM-mediated biological processes include post-translational modification
(including cleavage), subcellular localization, and ligand binding [2]. SLiMs are
typically less than ten amino acids long and have less than five defined positions,
many of which will be “degenerate” and incorporate some degree of flexibility in
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terms of the amino acid at that position. Their length and degeneracy gives them an
evolutionary plasticity which is unavailable to domains meaning that they will often
evolve convergently, adding new functionality to proteins [1]. SLiMs hold great
promise as future therapeutic targets, which makes their discovery of great interest
[3-4].

Once a SLiM has been defined, finding matches in a given set of protein sequences
is a fairly trivial task. Finding biological motifs is a standard pattern recognition task
in bioinformatics. Several web-based methods to discover novel instances of known
SLiMs are available, including ELM [2], MnM [5], SIRW [6] ScanProsite [7] and
QuasiMotifFinder [8], which generally utilize databases of known motif patterns to
search query protein sequences supplied by the user. Whilst finding matches is trivial,
however, interpreting their biological significance is far from easy. The small,
degenerate nature of SLiMs makes stochastic occurrences of motifs common;
distinguishing real occurrences from the background of random motif hits remains the
greatest challenge in a priori motif discovery. One approach is to simply filter out
motifs that are likely to occur numerous times by chance — ScanProsite [7], for
example, has an option to “Exclude motifs with a high probability of occurrence”,
while QuasiMotifFinder [8] uses the background occurrence of motifs in PfamA
families [9] to assess the significance of hits. These strategies work well for longer,
family descriptor motifs (such as are found in the Prosite database [10] used by both
ScanProsite and QuasiMotifFinder) but are not so useful for SLiMs because of their
tendency to occur by chance. Instead, additional contextual information such as
sequence conservation [5, 8, 11-12], structural context [5, 13] or even biological
keywords [6] can be used to assess the likelihood of true functional significance for
putatively functional sites.

Most motif search tools rely on pre-existing motif libraries, such as ELM [2],
MnM [5] or Prosite [10]. Those that permit users to define their own motifs, such as
ScanProsite [7], are generally lacking the contextual information required to aid
functional inference. Recent developments in de novo motif discovery has given rise
to a number of tools that are capable of predicting entirely novel SLiMs from sets of
protein sequences (e.g. PRATT [14], MEME [15], Dilimot [16], SLiMDisc [17] and
SLiMFinder [18]). Although SLiMFinder [18] estimates the statistical significance of
returned motif predictions, correcting for biases introduced by evolutionary
relationships within the data, assessing the biological significance of predicted SLiMs
remains challenging. On approach is to compare candidate SLiMs to existing motif
libraries to identify similarities to previously known motifs [19].When a genuinely
novel motif is predicted, however, knowledge of existing motifs is of limited use.
Instead, it is useful to be able to establish the background distribution of occurrences
of the novel motif, utilizing contextual information to help screen out the inevitable
spurious chance matches.

We recently made our powerful de novo SLiM discovery tool, SLiMFinder [18],
available as a webserver [20]. To aid interpretation of SLiMFinder results, we have
made a new tool available, SLiMSearch, which allows users to search protein datasets
with user-defined motifs, including motif prediction output from SLiMFinder.
SLiMSearch utilizes the same sequence context assessment as SLiMFinder, enabling
results to be masked or ranked based on the important biological indicators of
sequence conservation and structural disorder [12, 21]. SLiMSearch also features the
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same SLiMChance algorithm for assessing statistical over-representation of SLiM
occurrences, correcting for biases introduced by evolutionary relationships within the
data. SLiMSearch is open source and freely available for download. For ease of use,
the main SLiMSearch features have been made available as a webserver, which
enables the user to search proteins for occurrences of user-specified motifs. Motifs
can be searched against small custom datasets of proteins from UniProt [22].
Alternatively, searches can be performed against the whole human proteome, or
defined subsets of it. Underlying methods, results formats and visualizations are fully
compatible with our existing SLiM analysis webservers, SLiMDisc [23],
CompariMotif [19] and SLiMFinder [20], providing a suite of integrated tools for
analyzing these biologically important sequence features.

2 The SLiMSearch Algorithm

SLiMSearch performs its motif finding in three phases: (1) Input sequences are read
and masked; (2) Motifs are searched against masked sequences using standard regular
expression searches; (3) Motif statistics are calculated for identified motif
occurrences. If desired, input sequences, input motifs and motif occurrences can be
filtered based on attributes such as length, number of positions, motif conservation
etc. SLiMs have a tendency to occur in disordered regions of proteins [24] and IUPred
[21] protein disorder predictions can be used for input masking or ranking/filtering
results as described further below. Conservation scoring uses the Relative Local
Conservation (RLC) score introduced by Davey et al. [12] as implemented in
SLiMFinder [20]. Conservation scoring can use pre-generated alignments or construct
alignments of predicted orthology using GOPHER [23], which estimates evolutionary
relationships using BLAST [25] to identify the closest-related orthologue in each
species in the chosen search database. Each putative orthologue retained is: (a) more
closely related to the query than any other protein from the same species; (b) related
to the query through a predicted speciation event, not a duplication event.

2.1 SLiMChance Calculations of Significance

SLiMSearch utilizes a variation of the SLiMChance algorithm from SLiMFinder [18],
which is based on the binomial statistics introduced by ASSET [26] and calculates the
a priori probability of observing each motif in each sequence using the (masked)
amino acid frequencies of input sequences. Observed support is then compared to
expectation at two levels: (1) the total number of occurrences in all sequences; (2) the
number of individual sequences returning the motif. This enables different questions
to be asked of different data types. SLiMChance has an important extension over the
statistics used by ASSET, and homologous proteins are optionally weighted (as in
SLiMDisc [17] and SLiMFinder [18]) to account for the dependencies introduced into
the probabilistic framework by homologous proteins; in this case, SLiMSearch will
also assess these weighted support values. Whereas SLiMFinder is explicitly using
over-representation to identify motifs, it is also of potential interest to see if a given
motif has been avoided in a given dataset and is under-represented versus random
expectation. The SLiMSearch implementation of SLiMChance therefore features an
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additional extension where the cumulative binomial probability is used to estimate the
probability of seeing by chance the observed support or less in addition to the
observed support or more.

3 The SLiMSearch Webserver

The SLiMSearch server is available at: http://bioware.ucd.ie/slimsearch.html. The
purpose of the webserver is to allow researchers to identify novel occurrences of pre-
defined Short Linear Motifs (SLiMs) in a set of protein sequences. Sequences are first
masked according to user specifications before motif occurrences are identified using
standard regular expression searches. The SLiMChance algorithm then estimates
statistical significance of over- or under-representation of each motif searched. In
addition to summary results for each motif, interactive output permits easy
exploration and visualization of individual motif occurrences. The context of each
SLiM occurrence is then calculated in terms of protein disorder and evolutionary
conservation to help the user gain insight into the validity of a putatively functional
motif occurrence. The webserver is powered by the same code as the standalone
version of SLiMSearch, which can be downloaded from the server. The main features
of the webserver are described in more detail in the following sections.

3.1 Input

As input, SLiMSearch needs a set of protein sequences and a set of motif definitions,
which are selected by the user in turn (Fig. 1). Whereas the standalone SLiMSearch
program allows searching of any protein sequences, the webserver restricts the user to
using UniProt sequences [22]. This is because the server relies on pre-computed
alignments to keep run times down. Using UniProt downloads also allows all the
masking options to be utilized (e.g. sequence features). The user is presented with a
choice of two main input types (Fig. 1): (1) a chosen set of up to 100 UniProt entries
can be downloaded for analysis; (2) the user can select from a series of predefined
protein datasets. Currently, the human proteome from SwissProt [22] is available,
along with three subsets defined by their subcellular localization annotation:
cytoplasmic proteins, nuclear proteins and transmembrane proteins. Future server
releases will expand this to other species. When searching these large proteome
datasets, the evolutionary filtering [18] is switched off. To search different datasets,
including datasets over 100 proteins with evolutionary filtering, users are encouraged
to download and install a local version of SLiMSearch.

Once a dataset has been selected, the user must input a set of motifs to search
(Fig. 1). The SLiMSearch server takes a list of motifs, typed or pasted directly into
the text box. Motifs themselves are constructed from a number of regular expression
elements, which are mostly standard but with a couple of additional elements to
represent “30f5” motifs [27] (Table 1). SLiMSearch accepts the same input formats as
CompariMotif [19], including a plain list of regular expressions and output from
SLiMDisc [23] or SLiMFinder [20]. Because the focus of SLiMSearch is short linear
motifs, the maximum number of consecutive wildcards allowed by the server is nine.
Motifs must have at least two defined (i.e. non-wildcard) positions.
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Fig. 1. SLiMSearch input options pages. Users must first either select a predefined human
protein dataset, or enter a list of up to 100 UniProt IDs for a custom dataset. Clicking “submit”
will then progress to Step 2, in which users enter a list of motifs for searching and set any
masking options.

Table 1. Regular expression elements recognized by SLiMSearch

Element Description
A Single fixed amino acid.
[AB] Ambiguity, A or B. Any number of options may be given, e.g.

[ABC] =AorBorC.

<R:m:n> At least m of a stretch of n residues must match R, where R is one of
the above regular expression elements (single or ambiguity).

<R:m:n:B> Exactly mof a stretch of n residues must match R and the rest must
match B, where R and B are each one of the above regular expression
elements (single or ambiguity). E.g. <F:1:2: [DE] > will match
[DE]F, or F[DE].

[~Aa] Not A.

Xor. Wildcard positions (any amino acid).

.{m,n} At least m and up to n wildcards.

R{n} n repetitions of R, where R is any of the above regular expression
elements.

Beginning of sequence
$ End of sequence

(R|8) Match R or S, which are both themselves recognizable regular
expressions. These motifs are not currently supported by the
SLiMChance statistics and, as such, any motifs in this format with be
first split into variants, e.g. (R|S) PP would be split into RPP and
SPP and each searched separately.
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3.2 Masking Options

The standalone SLiMSearch program features all the input masking options of
SLiMFinder [18]. For simplicity, these have been pared down for the webserver to
three sets of masking options (Fig. 1): (1) restricting searches to cytoplasmic tails and
loops of transmembrane proteins; (2) masking out structurally ordered regions (as
predicted by IUPred [21] with a conservative threshold of 0.2) and/or relatively
under-conserved residues [12]; (3) masking out domains, transmembrane and/or
extracellular regions as annotated by UniProt [22]. Any combination of these options
is permitted; users could, for example, restrict searches to cytoplasmic tails and loops
of transmembrane proteins and mask out regions of predicted order, under-conserved
residues and regions annotated as domains in UniProt.

3.3 Submitting Jobs

Once options have been chosen, clicking “Submit” will enter the job in the run queue.
Run times will vary according to input data size and complexity, masking options and
the current load of the server; the server has a maximum run time of 4 hours, after
which jobs will be terminated. (For larger searches, users are encouraged to download
and install a local version of SLiMSearch.) Each job is allocated a unique, randomly
determined identifier. Users can either wait for their jobs to run, or bookmark the
page and return to it later. Previously run job IDs can also be entered into a box on the
SLiMSearch homepage to retrieve the run status and/or results.

3.4 Output

Once a job has run, the SLiMSearch results pages will open (Fig. 2). The main results
page consists of a table of motif occurrences for each motif along with statistics for
each occurrence including conservation (RLC) and disorder (IUPred). All fields can
be sorted by clicking column headings and direct links to UniProt entries for each
sequence are provided. The second primary results page consists of a summary table,
which provides summary statistics for each motif. These include numbers of
occurrences and SLiMChance assessments of over- or under-representation versus
random expectation. Explanations of each field can be found in the SLiMSearch
manual, which is available from the website. All the raw results files can also be
downloaded for further analysis. When a user-defined dataset has been searched,
these raw data files include the UniProt download. A key feature of SLiMSearch
when analyzing user-defined datasets is the adjustment of the SLiMChance over- and
under-representation statistics for evolutionary relatedness; for example, the
probability of observing the Dynein Light Chain ligand “[KR].TQT” [28] in its
annotated ELM proteins [2] by chance increases by eight orders of magnitude from
5.2e-18 to 4.2e-10 when the effective dataset size is reduced from 7 to 4 due to
evolutionary relationships (Fig. 2). Whilst, in this example, the motif is still highly
significant (the search dataset was defined based on the presence of the motif), in
other cases this could be the difference between non-significance and apparent
significance. Due to the size of the datasets, SLiMChance correction for evolutionary
relationships is not available for human proteome searches.
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Fig. 2. SLiMSearch results pages. The main results page consists of a table of motif
occurrences for each motif (top panel) along with statistics for each occurrence including
conservation (RLC) and disorder (IUPred). All fields can be sorted by clicking column
headings. Clicking sequence names will open the corresponding UniProt entry, while clicking
“View” generates a visual representation of the motif. Clicking on different motifs in the
smaller table on the left switches the motif being viewed. A summary table can also be viewed
(bottom panel), which provides summary statistics for each motif. These statistics include
SLiMChance assessments of over- or under-representation versus random expectation.
Explanations of each field can be found in the SLiMSearch manual, which is available from the
website. All the raw results files can also be accessed via the “Raw Data” link.

Individual motif occurrences can also be visualized for contextual information
(Fig. 3). The multiple sequence alignment used for evolutionary conservation
calculations is shown, with the relative conservation and IUPred disorder scores
plotted below. Regions predicted to be ordered (below the disorder threshold of 0.2)
are shaded, indicating areas that were (or would be) masked with disorder masking. In
addition to these data, additional annotation from key SLiM and Protein databases is
added. Annotated and unannotated Regular Expression matches to SLiMs from the
Eukaryotic Linear Motif (ELM) database [2] are displayed above the alignment;
sequence features from UniProt [22], including annotated domains and known
mutations, are displayed between the alignment and RLC/Disorder plots. Users can
hover the mouse over these features for additional information.

3.5 Getting Help

The SLiMSearch webserver is supported by an extensive help section, including a
quickstart guide and walkthrough with screenshots. Example input files are provided.
Fully interactive example output (corresponding to running the example Dynein Light
Chain ligand input with default parameters) is clearly linked from the help pages.
Additional details of the algorithms and options can be found in the SLiMSearch
manual, which is also clearly linked from the help pages.
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Fig. 3. Visualization of LIG_HOMEOBOX in HXAS5 containing a multiple alignment of the
orthologs of HXAS, drawn using Clustal coloring scheme, surrounded by relevant annotation.
The bottom section contains a graph of relative conservation (in red) and [UPred disorder (in
blue), with regions below the disorder threshold of 0.2 shaded (in brown). Above this section
UniProt features are plotted, for example, in the case of HXAS the right most region contains a
DNA-binding Homeobox domain. Above the alignment, the motif row specifies regions
containing a known functional motif (in white) and the RE row species regions matching the
regular expression of a known motif (in green).

3.6 Server Limits

The server is currently limited to jobs with a run time of fewer than 4 hours. Motifs
must have at least two non-wildcard positions defined and individual motif occurrence
data is restricted to motifs with no more than 2000 occurrences in the search dataset.
Custom UniProt datasets can have no more than 100 proteins. For larger analyses,
users must install a local copy of the SLiMSearch software.

4 Example Analysis: HOX Ligand Motif

Homeobox (HOX) genes are a family of transcription factors controlling organization
of segmental identity during embryo development [29] and recognized by a 60 residue
DNA binding domain known as a Homeodomain [30]. HOX proteins recruit another
Homeobox-containing transcription factor, PBX, via a conserved [FY][DEPJWM
motif (“LIG_HOMEOBOX” [2]), binding a hydrophobic pocket created upon
association of PBX to DNA [31]. Alone, the Homeodomain has weak specificity and
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affinity binding to the short DNA sequence TNAT, however following the formation
of a heterodimer complex with TGAT binding PBX, bi-partite recognition increases
specificity and allows HOX to specifically target developmental genes for expression.

A survey of the human proteome for [FY][DEP]JWM PBX-binding motifs was
completed to illustrate the effect of masking of globular regions and under conserved
residues on the ability of a motif discovery tool to return functional motifs. Without
any masking, SLiMSearch returned 53 motifs in 53 proteins, including the 16
annotated functional instances from the ELM database [2] (Supplementary Table 1).
Of the 53 human occurrences, however, 30 were no longer returned following masking
(IUPred masking cut-off 0.2, relative conservation filtering, domain masking and
removal of extracellular and transmembrane regions). Of these 30, only 3 were known
to be functional. The 23 remaining instances are all members of the Homeobox family;
13 of these contain a known annotated PBX-binding motif; given the homology of the
remaining non-ELM containing proteins to the proteins containing function motifs, it is
likely that all 23 instances are functional. The HXAS occurrence, for example, shows a
clear conservation signal characteristic of a functional motif despite not being
annotated in ELM (Fig. 3).

5 Future Work

In addition to evolutionary conservation and structural disorder, successful
identification of novel functional motifs in proteins can benefit from keyword or GO
term enrichment [6, 32]. We are currently working on the incorporation of GO term
enrichment into SLiMSearch analyses for future releases of the webserver. The current
server is also limited to the human proteome only. In future we will expand this to
include other organisms. Initially, these will be taken from the EnsEMBL database of
eukaryotic genomes [33] and then expanded to other taxonomic groups [34]. We
welcome suggestions from users, however, and will work with specific interest groups
to add proteomes from appropriate species to the webserver where possible.

6 Conclusion

Discovering and annotating novel occurrences of Short Linear Motifs is an important
ongoing task in biology, which often involves motif searches combined with additional
evolutionary analyses (e.g. [32, 35]). The SLiMSearch webserver provides the
biological community with an important advance in this arena, allowing evolutionary
and structural context to be automatically incorporated into motif searches and
visualized in user-friendly output. The flexibility of input, allowing known or novel
motifs and user-defined protein datasets, combined with the statistical framework of
SLiMChance for assessing motif abundance, makes SLiMSearch a powerful tool that
should ease future discoveries of functional SLiM occurrences. In addition to the
webserver implementation, SLiMSearch is available as standalone open source Python
code under a GNU license, making it accessible to analyses of experimental biologists
and bioinformatics specialists alike.
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The SLiMSearch server is available at: http://bioware.ucd.ie/slimsearch.html.

Supplementary Table 1 can be viewed at :http://bioware.ucd.ie/~compass/Server_
pages/help/slimsearch/slimsearch_s1.pdf
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Abstract. Spatial structures of transmembrane proteins are difficult
to obtain either experimentally or by computational methods. Recog-
nition of helix-helix contacts conformations, which provide structural
skeleton of many transmembrane proteins, is essential in the modeling.
Majority of helix-helix interactions in transmembrane proteins can be
accurately clustered into a few classes on the basis of their 3D shape.
We propose a Stochastic Context Free Grammars framework, combined
with evolutionary algorithm, to represent sequence level features of these
classes. The descriptors were tested using independent test sets and typi-
cally achieved the areas under ROC curves 0.60-0.70; some reached 0.77.

Keywords: stochastic context-free grammar, evolutionary algorithm,
helix-helix interaction, transmembrane protein.

1 Introduction

It has been estimated that around 30% of proteins in human body are transmem-
brane (TM) proteins [I]. Moreover, since they are more accessible to drugs than
intracellular proteins, they are prime targets for drug design. Unfortunately, the
specific environment of cell membranes, their large size and dynamic behavior
(e.g. ion channels) make them very difficult objects for current experimental tech-
niques in structural biology: fewer than 2% of currently known protein structures
are from TM proteins [2]. Thus, the lack of experimental structures cannot be
compensated by template-based modeling, i.e. homology and threading, which
would require availability of a large dataset of structures. The alternative is use of
ab initio methods, which build protein 3D models directly from their sequences.
However, these approaches have only been successful for small proteins up to
200 amino acids [3], mainly because computational power limits the size of the
conformational phase space that can be searched. Moreover, the energy func-
tion is not accurate enough to guarantee the minimum at the native state [4].
Therefore, for larger proteins, such as protein channels, which typically contain
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1000’s of amino acids, limitations of ab initio methods can only be overcome by
integrating additional knowledge in the modeling process.

Contact maps have been shown to be promising constraints. It was estimated
that as few as one contact in every eight residues would be sufficient to find
the correct fold of a single domain protein [B]. Moreover, even the prediction
of a few contacts is useful to constrain conformational searches in ab initio
prediction [6]. Recent study also suggests that some contacts are structurally
more significant than others [7]. Consequently, the prediction of intramolecular
contacts has become an active field of research. According to [4] homologous
template approaches achieve the highest accuracy (up to 50%). However, they
are not suitable for TM proteins, since very few templates are available. As
correlated mutations methods have the lowest accuracy (around 20%), machine
learning methods seem to be the most appropriate.

Over 80% of known TM structures are classified as alpha-helical [2]. In these
proteins, molecular contacts between helices are crucial as they provide a struc-
tural skeleton. A stable interaction between two helices requires that several
residues from each helix are involved in the helix-helix contact. We call this
structure a helix-helix (H-H) interface and define it more precisely later in the
paper. A recent study by Walters and DeGrado [8] on helix packing motifs has
revealed that 90% of known configurations of H-H interactions in TM proteins
can be accurately represented using only a set of 8 3D templates (Fig. 2,3 in
[]]). In their research, helix pairs were clustered according to the 3D similarity
(RMSD < 1.5 A) of their fragments involved in the H-H contact. Their study
also highlighted position-specific sequence propensities of amino-acids and the
occurrence of the well known [GAS]-X-X-X-[GAS] motif [9].

The problem of H-H interaction prediction was addressed in [3] by creating
sequence profiles from a library of helix pairs whose spatial configurations were
known. In their method a helix pair in the query was compared to helix pairs
in the library by calculating profile-profile scores between the pairs. While the
overall accuracy of helix packing prediction was rather low, it was sufficient
to constrain ab initio prediction of TM protein structures. Significantly, this
approach does not model interactions between contacting residues from the two
helices since this would require a more complex model than sequence profiles.
Waldispuehl and Steyaert [I0] proposed a multi-tape S-attributed grammar to
represent helix bundles in TM proteins. In their model, a single pair of helices is
described by a set of grammar rules of a non-probabilistic context-free language.
At each stage of processing of a sequence, a value or attribute that reflects folding
cost is calculated. The authors report that the predictive power gained from the
ability to represent long range dependencies between contact residues allowed
their method to outperform the best TM helix prediction software.

There are two main approaches for learning grammar rules: Maximum A
Posteriori (MAP) Expectation-Maximization algorithms (EM) and evolutionary
methods (Genetic Algorithms (GA) [III2/I3] or Genetic Programming (GP)
[14]). Both EM and GP approaches managed to, respectively, learn probabilities
of Stochastic Context-Free Grammars (SCFG) for RNA structure prediction
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[I5UT6U1I7] and derive non-probabilistic CFGs for non-biological problems [I8].
Successful applications of evolutionary algorithms to SCFG [19/20/21] include
our earlier research on SCFGs for protein binding sites [22]. Since, unlike EM
techniques, GA-based grammar inference allows introducing pressure towards
more compact grammars (see Methods) and is less dependent on initial estimates
of rule parameters [20], we choose this approach for learning grammar rules.

In this work we exploit the expressive power of Stochastic Context-Free Gram-
mars to represent the subtle and complex sequence motifs underlying H-H inter-
actions in TM proteins. The aim is to facilitate sequence based classification of
helix pairs regarding their three-dimensional configuration. As a result, a class
template can be assigned to a pair of helices with high accuracy. This would
be extremely valuable to constrain ab initio protein structure predictions or for
threading refinement.

2 Materials and Methods

2.1 Datasets

The first dataset was created on the basis of Walters and DeGrado (WDG)
dataset [8]. It includes fragments of helix sequences that are in contact. We
consider only the 4 most populous contact types (classes 1-4). Unlike the original
set where lengths of fragments varied from 10 to 14, we kept only the 10 residues
which provided the closest match with a class template. The second dataset is
based on the non-redundant set of alpha-helical chains from PDBTM database
[2] as of 30th November 2009. Then TM alpha helices with at least one contact
residue according to Promotif3 [23] were extracted. RMSD to the representatives
of the 4 WDG classes were calculated. A helix pair was assigned to a certain class
if its RMSD was lower than the highest RMSD in the class of the original WDG
set, i.e. 0.66, 0.93, 0.76 and 1.11A for classes 1 to 4 respectively. As a result,
the PDBTM set comprises 641 helix pairs with a population of 174, 107, 64 and
69 assigned to classes 1 to 4, respectively. For training, each class used the 20
fragments which were the closest to their representative (PDBTM20). Finally,
homologous sequences (40%) were removed using PAM250 matrix [24] from our
combined training and test sets so that both sets were mutually independent.
As result, the processed WDG test sets (WDGNR) contained 92, 49, 37 and 27
helix pair fragments for classes 1 to 4 respectively.

2.2 Principles and Formal Definitions

Amino-acid interactions between helices are subtle and complex in comparison to
intra-helical interactions. Moreover, they display either parallel or anti-parallel
topologies. Methods typically used for the purpose of protein pattern detection,
Profile HMMs [25], cannot express these dependencies. Therefore, to classify the
contact type class, we use a SCFG, which, not only, is capable of representing
anti-parallel dependencies, but also can be induced automatically from a set
of unrelated protein sequences which share common features [22]. The formal
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definition of a context-free grammar G is the following [20]: G =< V, T, P, S >,
where V is a finite set of non-terminal (NT) symbols, T is a finite set of terminal
symbols, P is a finite set of production rules and S is a special start symbol
(S € V). The sets V and T are mutually exclusive. Each rule from the set P has
the form: A — X, where A € V and X € (V UT)x. For a SCFG, probabilities
are attributed to each rule. Usually, probabilities of all productions for one Left-
Hand Side (LHS) symbol sum to one; the SCFG is then called proper.

Helix interface is defined as a set of residues which are in contact with residues
from the other helix, i.e. distance between residues in contact cannot be greater
than the sum of van der Waals radii of their atoms enlarged by 0.6A [27]. The
residues of the inner or contact face of a helix are separated by either 1 or 2
residues of the outer face so that an average helix periodicity of 3.6 residue is
preserved. Two helices are separated by a coil. In the anti-parallel configuration
these can be described schematically by context-free grammar rules, such as [10]:

Interface —> InsideResl Outerface InsideRes2 | Turn
Outerface -> OutsideResl Interface OutsideRes2 | Turn

More specifically, we modified a non-probabilistic CFG proposed in [I0] to obtain
a grammar that imposes helix periodicity (3-4 residues) and is manageable within
our probabilistic scheme (i.e. not extending ca. 200 rules):

Start -> [ Whatever OuterfaceP Whatever }
| [ Whatever InterfaceP Whatever }
OuterfaceP -> TwoRes InterfaceP TwoRes | OneRes Interfacel TwoRes
| TwoRes InterfaceR OneRes | OneRes InterfaceB OneRes | Turn
Outerfacel. -> TwoRes InterfaceP TwoRes
| TwoRes InterfaceR OneRes | Turn
OuterfaceR -> TwoRes InterfaceP TwoRes
| OneRes Interfacel TwoRes | Turn
OuterfaceB -> TwoRes InterfaceP TwoRes | Coil
InterfaceP -> TwoRes OuterfaceP TwoRes | OneRes Outerfacel TwoRes
| TwoRes OuterfaceR OneRes | OneRes OuterfaceB OneRes | Turn
Interfacel -> TwoRes OuterfaceP TwoRes
| TwoRes OuterfaceR OneRes | Turn
InterfaceR -> TwoRes OuterfaceP TwoRes
| OneRes Outerfacel TwoRes | Turn
InterfaceB -> TwoRes OuterfaceP TwoRes | Turn
Turn -> Whatever ] { Whatever
Whatever -> X Whatever | empty
TwoRes -> OneRes OneRes

where the symbols ', ], '{’ and ’}’ refer to the beginning and end of he-
lix 1 and helix 2 respectively. Four Outer-face and Interface NT symbols
(marked with suffixed P, L, R, B) ensure that each complete helix turn is 3
or 4 amino-acids long, e.g. if Outer-faceP is one-residue long, it can only
be followed by Inter faceB which is always two-residue long. Production rule



66 W. Dyrka et al.

Turn — Whatever|{W hatever imposes helix boundaries on parser by using |
and { terminal symbols. Moreover, the Whatever non-terminal allows to deal
with parts of the helix that are not involved in the contact and thus do not share
contact pattern.

2.3 Representation of Amino-Acid Properties

OneRes symbol refers to one amino-acid in a sequence. However, instead of using
the amino-acid identity, which would make the grammar induction intractable,
information about the level of a physio-chemical property (described later in
this section) of a residue is carried. More specifically, OneRes can be one of
three NT symbols that represent low, medium and high level of the property
of interest, e.g. van der Waals volume: OneRes = Low|Medium|High. The ra-
tionale behind this representation is to integrate quantitative information about
amino-acid properties into our stochastic framework. An important advantage
of this method is that it reduces the number of possible combinations of the
Right-Hand Side (RHS) symbols in production rules. Therefore, a number of
rules, which is maintainable in the learning process, is kept without losing gen-
erality of the grammar in the beginning of induction. For each given property,
our method relies on defining all the terminal rules in the form:

Low -> amino-acid identity 1..20
Medium -> amino-acid identity 1..20
High -> amino-acid identity 1..20

and associating them with proper probabilities which are calculated using the
known quantitative values associated to the amino acid identities. Since all ter-
minal rules are fixed with given probabilities, unlike probabilities of all other
rules, they do not need to be induced during the learning process. Moreover, to
avoid trivial solutions, non-terminals which are Left-Hand Side (LHS) symbols
in the terminal rules are prohibited from being LHS non-terminals of the other
rules. We use the 5 categories of amino-acids from AAindex [28] as suggested in
[22]: beta propensity, alpha and turn propensity, composition, physio-chemical
properties and hydrophobicity.

2.4 Parsing

We use an implementation of the stochastic Earley parser [29]. In our framework
Baum-Welch style Earley algorithm, where a probability for a certain node is
calculated as a sum of probabilities of all sub trees, is used for training during
grammar induction. This helps avoiding rapid convergence to trivial local minima
in the absence of a negative training set. On the other hand, Viterbi style Earley
algorithm is used for scanning, where a probability for any node in the parse
tree is calculated as a maximal probability from all sub trees. According to
our previous experiments, the Viterbi algorithm produces better discrimination
between positive and negative samples and therefore it is more appropriate for
scanning. Moreover [1522] suggest that for a correctly induced grammar, the
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most likely parse tree could reflect structural features of a molecule. The output
of the stochastic parser is the log probability of the couple of residues involved
in a long range helix contact of a certain type, so it is a similarity measure,
which estimates how the sequence of interest matches the rules associated to the
interaction class.

2.5 Learning Method for Stochastic Context-Free Grammars

In order to generate interface specific descriptors using the rules described in
the previous section, a training set composed of positive examples of sequence
fragments containing the interface is used to infer rule weights. The general prin-
ciple behind our framework is to start the learning process with the complete set
of rules expressing prior knowledge of the intra-helix interaction. Then, during
training, rule probabilities are inferred to express contact type specific dependen-
cies. Although this approach leads to quite large sets of rules even for moderate
alphabets, it avoids bias which would be introduced by additional constraints.
In this work, induction is performed by a genetic algorithm.

Similarly to [22] in this work a single individual in GA represents a whole
grammar. The genotype is coded with real numbers (< 0,1 >) linked to rule
probabilities. The original population of size 200 is initialized randomly and
then iteratively subjected to evaluation, reproduction, genomic operators and
finally succession. The objective function of the GA is defined as an arithmetic
average of logs of probabilities returned by the parsing algorithm for all positive
training samples. The reproduction step of the GA uses the tournament method
with 2 competitors [30], which ensures that the selective pressure is held at the
same level during the whole induction process. In addition, the diversity pressure
is kept by using a sharing function that decreases fitness score of individuals on
the basis of their similarity to other individuals in the population. The distance
between individuals takes into account that probability of a rule depends not
only on its own gene but also on all genes referring to rules with the same LHS
non-terminal [22]. In each GA epoch (generation of individuals), only the poorer
50% of the population is substituted by new individuals to ensure the stability
of the GA algorithm. Offspring are produced by averaging genetic information
of two individuals with some random distortion in order to enhance exploratory
capabilities of the algorithm. Subsequently, a classical one point mutation op-
erator is used to mutate randomly chosen genes. The probabilities of crossover
and mutation are 0.9 and 0.01 respectively. The algorithm stops when there is
no further significant improvement in the best scores (ratio 1.001 over 100 it-
erations). The implementation of our grammar induction algorithm is based on
M. Wall’s GAlib library which provides a set of C++ genetic algorithm objects
[22].

A new genotype to phenotype function f2 = phene(gene(W — XY 7)) was
designed to facilitate rapid convergence and enhance exploring capabilities of the
genetic algorithm. Let A — BCD is a context-free rule with LHS non-terminal
A, gene(A — BCD) is a real number from range 0 to 1 linked with A — BCD
rule and geneavg(A) is a mean value of all genes associated with rules that
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start with LHS non-terminal A. Then tmpval(A — BCD) is calculated in the
following way:

if gene(A->BCD)>2*geneavg(A)
then tmpval (A->BCD)=gene (A->BCD)
else tmpval (A->BCD)=gene (A->BCD) 10/ (2*geneavg(A)) ~9.

Finally, normalization is carried out to obtain proper probabilities for each rule:
phene (A->BCD) = tmpval (A->BCD)/sum(XYZ) {tmpval (A->XYZ)}.

Thus, phene(A — BCD) is the proper probability of the rule A — BCD. The
function assures that for a certain range of gene values, even small variations
lead to significant changes in the phenotype. It reduces the number of active
rules, since many of them have a near zero probability from the beginning of the
induction. Thus, it speeds up the processing of each individual. The definition
of the f2 function is consistent with a natural trend during grammar evolution
where probabilities of unnecessary rules are reduced. This is an inherent property
of proper stochastic grammars: distributions of probabilities with a small number
of rules, which express well the pattern of interest, give better scores than even
distributions of probabilities for all possible rules. After grammar induction, the
final set of rules can be pruned to omit those which have a limited impact on
the overall score of a scanned sequence.

Although genetic algorithms converge whatever their initial population [30],
they may not find the global optimal solution. Therefore, for each grammar gen-
eration, we produced several grammars and selected the best one. Time needed
for producing a grammar could take up to ca. 20 hours using Intel Xeon 2.4GHz
quad-core processor systems at Wroclaw Centre for Networking and Supercom-
puting. The scanning took approximately one minute for parsing the whole test
set by one grammar.

2.6 Protocol for Evaluation of Transmembrane H-H Interaction
Prediction

For each of the four H-H interaction classes, 3 grammars were generated using
PDBTMZ20 training set for each of the 6 selected amino-acid properties. The
sequences of helix pair fragments from the WDGNR dataset were parsed for
the four classes using all grammars. As a result, logs of probability that a se-
quence could have been generated by a given grammar were assigned to each
H-H contact. The scores for positive and negative validation sets were analyzed
by means of Receiver Operator Characteristics (ROC) methodology. The Area
Under ROC Curve (AUC ROC) was used for general assessment of classifier
quality and selection of the best grammar. In addition, Specificity and Sensi-
tivity measures were calculated. Although for many applications it is desirable
to maintain high Specificity or Sensitivity, we assume that the highest value of
their product marks the optimal threshold for the parse score. For this threshold,
Accuracy is provided.
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3 Results and Discussion

3.1 Performance of Classifiers on Independent Test Set

The performance of grammar descriptors was assessed in a series of class-by-class
classifications using WDGNR independent test set. On the basis of AUC ROC
results for each class against other 3 classes, the properties, which lead to best
scoring grammars, were selected. These were accessibility for class 1, van der
Waals (vdW) volume for classes 2 and 3 and beta/turn propensity for class 4
(Tab. 1). The overall quality of classifiers measured by the Area under ROC curve

Table 1. H-H contact fragments classification performance using independent test set

Trained for Using property Tested against AUCROC Sensitivity Specificity Accuracy

cl accessibility c2 0.61 0.65 0.55 0.62
c3 0.63 0.51 0.73 0.57

c4 0.55 0.62 0.56 0.61

c2+c3+c4 0.60 0.67 0.52 0.59

c2 van der Waals cl 0.70 0.78 0.63 0.68
volume c3 0.59 0.73 0.51 0.64

c4 0.77 0.58 0.74 0.76

cl4+c3+c4 0.68 0.78 0.61 0.65

c3 van der Waals cl 0.71 0.62 0.78 0.74
volume c2 0.59 0.49 0.76 0.64

c4 0.73 0.54 0.89 0.69

cl+c2+c4 0.68 0.54 0.79 0.75

c4 beta-sheet cl 0.56 0.67 0.48 0.52
propensity c2 0.52 0.56 0.51 0.53

c3 0.73 0.63 0.81 0.73

cl+c2+c3 0.59 0.67 0.50 0.52

Table 2. Properties used by best class-by-class classifiers. Class-by-class classification
of helix-helix pair contact fragments performance measured by Area and ROC curve
using independent test set.

cl c2 c3 c4
cl accessibility 0.61 accessibility 0.63 frequency  0.57
c2 VAW volume 0.70 frequency  0.64 vdW volume 0.77
c¢3 vdW volume 0.71 vdW volume 0.59 vdW volume 0.73

c4 beta prop.  0.56 accessibility 0.59 beta prop. 0.73

varied from 0.59 for c4 to 0.68 for c¢2 and c3. The optimal thresholds for scores
yielded in different balances between Sensitivity and Specificity. More precise
evaluation of the classifiers is possible by analysis of their ROC curves (Fig. 1).
There is a shift towards Sensitivity for c2 and a shift towards Specificity ¢3 vdW
volume grammars. Typically, the relatively worst performance was obtained in
classification of ¢l vs. ¢4 or ¢2 vs. ¢3 classes. This is, however, consistent with
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Fig. 1. ROC curves for H-H contact fragment classifiers: c1 accessibility-based (A), ¢2
vdW volume-based (B), ¢3 vdW volume-based (C) and c4 beta propensity-based (D)

the fact that these pairs of classes are similar in terms of RMSD. They differ in
relative direction of helices (anti-parallel for c1 and c2, parallel for ¢3 and c4).

Representatives of 5 categories of amino-acid properties were utilized for gram-
mar training resulting in varying robustness for different class-by-class compar-
isons. The properties that were used in best scoring grammars are presented in
Table 2. In general, area under ROC curve values of the best grammars, for each
class-by-class classification, were in the range from 0.56 to 0.77. Accessibility
and vdW volume were most useful for distinguishing between classes unrelated
in terms of their 3D shape. Frequency and beta-sheet propensity were the prop-
erties that allow for classification between anti-parallel and parallel versions of
classes that share similar spatial configurations.

3.2 Analysis of Classifiers Features

Our analysis details the features of the SCFG classifiers, which contribute to
the overall performance of the method. Our findings suggest that the difference
in sequence composition, in terms of the property underlying the grammar, is
the main factor. However, in a few cases descriptors that performed better than
expected, according to sequence composition comparison, were obtained. Such
examples include classifications between: ¢l and c¢2 using grammar based on
accessibility, c3 and c14-c4 using grammar based on van der Waals volume and c4
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Fig. 2. Parse trees that would give maximum scores for (A) cl accessibility grammar,
(B) c4 accessibility grammar and (C) ¢3 vdW volume grammar. H, M, L are property
level N'Ts, which refer to high, medium, low level of a given property. X is any amino-
acid (probability of 1/20 to each amino-acid type). S is a start symbol. Subsets of
NTs T,U,V,W and O,P,Q,R are designated to model Inter- and Outer-face of the helix
pair (order of subsets is arbitrary). The sans-serif font for property level NTs for (B)
indicates a modified method of assignment of probabilities to the rules started with
those symbols (in text).

and cl using grammar based on accessibility. The last was obtained in a scheme
that included modified training and test sets. Moreover, property levels were
related to the average property level in a training set, instead of the average over
20 amino-acids as utilized in the basic scheme. In Fig. 2, example of parse trees
that would give maximum scores for these grammars are shown. Although they
would not necessarily result in maximal parse scores for individual sequences,
their structure is very likely to be found in real parses. It would be difficult at this
stage of study to induce relations between parse tree structures and biological
features of helix pairs, especially for classes 3 and 4, which are parallel. However,
the analysis of the parse trees suggests that grammar classifiers can benefit from
representation of dependencies between helices. For example, in (C) the most
probable rules typically require that amino-acids from two helices have similar
size at each stage of derivation. These results confirm the value of a strategy
which uses amino-acid properties instead of amino-acid identities for modeling
non-homologous helix pair sequences. However, the exact assignment of amino-
acid to property levels remains an issue. We noticed that non-terminals related
to property levels underrepresented in H-H bundles were rarely used in induced
grammars, which hampered the capability of representing class defining patterns.

4 Conclusions

Our SCFG framework produced sequence-based descriptors, which represent
classes of transmembrane helix-helix interaction configurations. The grammar
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descriptors were tested using independent test sets. Amino-acid properties most
relevant to each class-by-class classification were selected. Areas under ROC
curves obtained for best classifiers were typically between 0.60 to 0.70 and in
some cases higher. This shows that amino-acid sequence based descriptors can
be used for prediction of H-H interaction structural class, for a pair of H-H
sequences. Thus, they can be used to constrain the search space of an ab ini-
tio prediction method for transmembrane proteins. Another strategy could be
use of predicted conformations of H-H interactions to deprive sets of structures
modeled in the process of ab initio prediction of low quality items.

At this stage of research, the predictive power of the classifiers is mainly
grounded in differences in amino-acid composition of H-H pairs in terms of the
amino-acid properties. However, some grammar descriptors perform above ex-
pected level, based on sequence composition. This suggests that capability of
CFG to represent higher level (anti-parallel) dependencies between interacting
helices can contribute to the classification. Currently, we investigate the influence
of several factors, including choice of the class representatives and the training
sets, definition of the amino-acid property levels and design of the initial gram-
mar structure. We also research the hypothesis that there are subclasses within
WDG classes of H-H sequences more prone to structural description than others.

The other factor, important for the procedure of training, is the selection
of the training set. According to recent publications [3I]], the optimal length of
a helix fragment is from 10 to 14 residues. However the position of cutting of
fragments could potentially have an impact on the quality of prediction. Finally,
the clustering of H-H interfaces is still an open problem. The numbers of PDBTM
sequences assigned to each WDG class representative were linearly correlated to
the cut-off levels. This suggests, that the level of RMSD around 1.50 A prohibits
the classes from overlapping but only conveys a limited biological meaning.

Acknowledgments. This work was partially supported by Ministry of Sci-
ence and Higher Education of Poland (N N519 401537), British Council Young
Scientists Programme (WAR/324/108) and MLODA KADRA Programme.
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Abstract. Recent studies show that copy number polymorphisms (CNPs),
defined as genome segments that are polymorphic with regard to genomic copy
number and segregate at greater than 1% frequency in the populations, are
associated with various diseases. Since rare copy number variations (CNVs)
and CNPs bear different characteristics, the problem of discovering CNPs
presents opportunities beyond what is available to algorithms that are designed
to identify rare CNVs. We present a method for identifying and genotyping
common CNPs. The proposed method, POLYGON, produces copy number
genotypes of the samples at each CNP and fine-tunes its boundaries by framing
CNP identification and genotyping as an optimization problem with an
explicitly formulated objective function. We apply POLYGON to data from
hundreds of samples and demonstrate that it significantly improves the
performance of existing single-sample CNV identification methods. We also
demonstrate its superior performance as compared to two other CNP
identification/genotyping methods.

Keywords: CNV, CNP, optimization.

1 Introduction

Genetic differences that can be identified with single nucleotide polymorphism (SNP)
microarrays include SNPs [1] and copy number variants (CNVs) [2]. CNVs are
defined as chromosomal segments of at least 1000 bases (1 kb) in length that vary in
number of copies from human to human. To date, several methods have been
proposed for inferring CNVs from SNP array data [3-6]. In a recent study [7], we
have formulated CNV identification as an optimization problem with an explicitly
designed objective function that is characterized by several adjustable parameters.
Our method, COKGEN, efficiently identifies CN'Vs using a variant of the well-known
simulated annealing heuristic.

All of these approaches are specifically designed for identifying rare or de novo
CNVs by individually searching a sample’s genome for regions in which evidence of
copy number deviation exists. On the other hand, recent genome-wide association
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studies (GWAS) have underscored the importance of identifying common CNPs,
associating them with several complex disease phenotypes [8-11]. Although these
results highlight the need for dedicated methods for common CNP identification,
most of the methods for CNV identification have not yet separated the ideas of
identification and genotyping of common CNPs from discovery of rare CNVs.

In this paper, we present a method for identifying common copy number
polymorphisms. The proposed method, POLYGON, takes as input the copy number
variants identified by a single-sample CNV identification algorithm (e.g., COKGEN
[7], PennCNV [6], Birdseye [4]) and implements a computational framework to (i)
identify CNVs in different samples that might correspond to the same variant in the
population (candidate CNPs), (ii) adjust the boundaries of these candidate CNPs by
drawing strength from raw copy number data from multiple samples, and (iii)
determine copy number genotypes in the study. The key ingredient of this
computational framework is an explicitly formulated objective function that takes into
account several criteria, which are carefully designed to quantify the desirability of a
CNP genotype with respect to various biological insights and experimental
considerations. Namely, these criteria include minimizing variability in raw copy
numbers of markers that are assigned to the same copy number class across samples,
and maximizing raw copy number differences between samples that are assigned
different copy numbers. We then develop algorithms that find copy number genotypes
that optimize this function for fixed boundaries, and use this algorithm in a
hierarchical manner to precisely adjust the boundaries of each CNP. Our performance
analysis shows that POLYGON dramatically improves the performance of single
sample methods in terms of Mendelian concordance and provides a moderate
improvement in terms of sensitivity. Furthermore, we demonstrate its superior
performance when compared to two other recurrent CNP detection algorithms
presented in [12].

In the next section, we describe the general algorithmic framework for
POLYGON, formulate CNP identification and genotyping as an optimization problem
and present algorithms to solve this problem. Subsequently, in Section 3, we provide
comprehensive experimental results on the performance of POLYGON in inferring
CNPs from CNVs identified by three state-of-the-art CNV identification algorithms;
COKGEN, PennCNV, and Birdseye. We also compare the performance of our
method to two other multi sample methods, COMPOSITE and COVER [12]. Finally,
in Section 4, we discuss these results.

2 Methods

POLYGON first uses an existing algorithm to identify CNVs in each sample. The
output of this step generates a list of CNVs for each sample, which may correspond to
CNPs, rare/de novo CNVs, or false positives. Copy number genotypes for these CNVs
are not required by POLYGON. Subsequently, POLYGON reconciles these CNVs in
two phases:

(i) Clustering of identified CNVs to obtain an initial set of candidate CNPs (clusters
of CNVs that potentially correspond to the same event).

(ii) Fine tuning of the boundaries of candidate CNPs and precise estimation of number
of copies in each sample.
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In the remainder of this section, we explain the algorithmic details of these two
phases.

2.1 Problem Definition

Consider a study in which a set N of samples are screened via SNP microarray
technology to obtain raw copy number estimates for a set M of markers on a single
chromosome (we formulate the problem in the context of a single chromosome since
each chromosome can be processed separately). The HapMap [1] dataset contains
270 samples and a total of approximately 1.8 million markers (for Affymetrix 6.0
SNP array) over 23 chromosomes. The objective of the CNP identification and
genotyping problem is to assign a copy number to all markers in all samples such that
copy number assignment is smooth across markers and consistent across samples.
Formally, we are seeking a mapping S: N x M — C, where C = {0, 1,2, 3, 4} denotes
the set of possible copy numbers and O, 1 2, 3, and 4, respectively denote
homozygous deletion, hemizygous deletion, normal copy number, hemizygous
duplication, and homozygous duplication (some samples may contain more than four
copies, but all such cases are encapsulated into copy number class 4 to have a
compact set of copy number classes). To find the mapping, POLYGON uses two data

types:

(i) The set V = {vy, vy, ... vx} of CNV calls provided by a single-sample algorithm.
Each CNV v € V is a pair (s,, e,) where s, and e, denote the start and end markers of
the region v, and M,={i: s, < i < e,} defines the set of markers flanked by the pair. The
length of CNV v is defined as [, = IM,| = e,—s,+1.

(ii) For each sample marker (n, m) € N x M, the raw copy number estimate R, .
These estimates are also provided by the single-sample algorithms which are utilized
for CNV identification.

POLYGON implements a two-phase algorithm to call CNPs from these raw copy
numbers and initial set of CNVs. The aim of the first phase is to obtain a set, W ={wy,
wy, .., w;}, of candidate CNPs by clustering CNVs identified on different samples
according to their chromosomal coordinates. Each candidate w € W is defined by the
pair (s, e,,) where s,, and e,, represent the start and end markers of the region. Similar
toM,, M,={i: s, <i<e,} defines the set of markers in CNP w. Based on the definition
of w, we reduce the CNP genotyping problem to finding a set of functions S,: N — C
for all w € W where S,, determines the genotype of each sample at CNP w. Then, for
each (n, m) € N x M, S(n, m) is defined as S,,(n) if m € M,, and 2 otherwise for all w
e W.

Thus, in the second phase, we utilize an optimization based framework to find the
optimal §,, for each w € W (hence we obtain the optimal genotyping of all CNPs
which implies optimal S), while fine-tuning its boundaries.

2.2 Identification of Candidate CNPs

In the first phase, POLYGON clusters individual CNVs based on the start and end
markers to obtain the candidate CNPs that represent “similar” CNVs on different
samples. To assess the similarity between two CNVs, we use the minimum reciprocal

overlap (MRO) measure. For two CNVs v, and v,, let o(vl,v2)=|MV‘ nM, | denote the
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Fig. 1. Algorithmic workflow of POLYGON. (a) The raw copy estimates as provided by the
single-sample CNV detection algorithms. (b) Our agglomerative CNV clustering algorithm
takes as input the CNVs identified by the single-sample CNV detection algorithms, to obtain a
set of candidate CNPs. Here, the algorithm is illustrated on a toy example set of CNVs, V = {v,,
Vo, V3, V4, Vs, Vg, V7, Vg, Vo), Obtaining the set of candidate CNPs W={w, w,}. (c) For each w €
W, to obtain the optimal copy number genotyping in each sample for given candidate
boundaries of w, the samples are sorted with respect to average copy number within these
boundaries. Subsequently, high gradient points in this ordering are identified to segregate
samples into copy number classes. The sorted mean raw copy numbers and the associated
genotypes are for a real w identified by POLYGON in the HapMap dataset, and are not related
to the toy example of (b). The samples genotyped with copy number classes 0, 1 and 2 are
shown with colors yellow, orange and red, respectively. (d) The heat map displays the matrix
colored according to the values of the objective function f(M,®®, S,*) at the optimal
genotype solution for each candidate boundary (a,b) as computed by the procedure in (c). Note
that the coordinates on the horizontal and vertical axis correspond to the start and end
coordinates of candidate boundaries for w, and that for demonstration purposes they have been
re-centered so that the initial boundaries are at (0,0). Once this heatmap is obtained, the optimal
boundaries of the CNP are set to (a, b) that correspond to the minimum value in this matrix and
the copy number genotypes are given by the optimal assignment for those boundaries (as
computed in (c)).
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size of the overlap between v, and v,. Then the minimum reciprocal overlap of v, and
v, is defined as

l

vy vy

MRO (v{,v,) = min[o(vl’vz) : O(VI’VZ)] :
Using this similarity measure, POLYGON agglomeratively clusters CNVs using a
conservative complete-linkage based criterion to measure the similarity between
groups of CNVs. We use Il ={p;, p,, ..., p;} to denote a set of CNV clusters where
each p; € II represents a set of CNVs. At the beginning of clustering, each CNV
constitutes a cluster by itself, i.e., 1?9 = {{v}: vi € V}. At each iteration, two
candidate CNV clusters with maximum similarity are merged, where the similarity
between CNV clusters p; and p; is defined as
MRO (p;,p;)= min {MRO (v,,v,)} .
V €LV, EP;

This process continues until the similarity between any two clusters goes below a
predefined threshold. The set obtained through the clustering process I = {p;, p», ...,
p:} is then used to obtain the candidate CNP set W = {wy, w,, .., w;}, where each
w; = (s, e, ) and s, =mi;{sv} and e, =max{e,}. In this study, we have chosen the

i i VE p; VEp;

overlap threshold as 0.5, which guarantees that all the CNVs that correspond to a
single candidate CNP have at least 50% mutual overlap in terms of markers that they
span. Note that we do not take into consideration the type of the CNV (e.g., deletion
vs. insertion) while clustering CNVs. Therefore, it is possible that a loss and a gain
can be represented by the same candidate CNP as long as they share at least 50% of
their markers. The motivation behind this approach is that both gain and loss events
were reported for the same region in different samples in previous research [13]. In
Figure 1(b), this process is illustrated with a toy example.

The next phase of POLYGON processes each candidate CNP individually and
determines the CNP genotype of each sample, while fine tuning its boundaries.

2.3 Identifying CNP Genotypes and Fine-Tuning of CNP Boundaries

Once the set of candidate CNPs are obtained, for each CNP region w, we select a
window of markers to be searched exhaustively to fine-tune the boundaries of w. The
initial boundaries of the window containing w are extended to allow consideration of
the markers bordering initially identified w for enlarging, shrinking or shifting its
markers. We define the search window for w € W as the set of markers Q, = {i:
sy—=[1,/2] i< ent+[1,/2]}.

In order to assess the quality of the boundaries of a CNP and the genotype calls in
each sample, we formulate an objective function that brings together multiple
quantitative criteria that gauge the suitability of CNP genotype calls based on
observed array intensities of all the samples. This objective function takes into
account the smoothness of raw copy number estimates over contiguous markers that
are declared to have identical copy numbers, as well as consistency of genotype calls
of the same CNP across samples.

We define objective function f (M, S,,) as a combination of the following objective
criteria:
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e Variation in raw copy numbers within each copy number class should be
minimized. Ideally, the raw copy number estimates (i.e., R,,) for markers that are
assigned identical copy numbers should be similar. For a given CNP w and copy
number assignment S,, let the set of samples assigned to class ¢ € C be
Y(c)={ne N:S,(n)=c}. The mean raw copy number for class ¢ can be computed as

follows:
Z Z Rn,m + Z Z Rn,m
ne¥(c)meQ ne N\W(c)meQ \M , .
if c=2
|2, [¥ )]+, \ M, |N\¥ ()
H(c) =
YD 3
ne¥ (c)meM .
_ otherwise
M, ¥ (o)

The mean raw copy number values for aberrant copy number classes are simply
calculated by averaging the raw copy estimates in region M, across all samples
genotyped with the specified copy number class. However, for the “normal” copy
number class, this computation is slightly more complicated since the markers in all
samples that are outside the boundaries of w also contribute to the mean of the
“normal” copy number class. Then, the total intra-class variability induced by S, is
given by

oM, S)= 2 X [ 2

Rn,m_tu(z)| + Z z

ne¥Y(2)neQ,

R, —uc)+ ¥ R, — 2
Q\M,

w M

cC\2 nie¥(c)\ meM,,

Consequently, a desirable combination of M, and S, is expected to minimize
oM,,S,) (subject to other constraints). Note that this formulation does not make any

assumption about the expected raw copy numbers at the markers and therefore is
robust to any systematic bias that might be encountered in measurement and
normalization of the R,

e Variation in raw copy numbers across different copy number classes should be
maximized. The criterion formulated above focuses on the internal variation in a
copy number class. However, it is also important to accurately separate different copy
number classes from each other, since the number of variants in the sample is
unknown and intra-class variation can be minimized by artificially increasing the
number of genotype classes across samples. For this reason, we formulate an

objective criterion that penalizes excessive copy number classes. Formally, we define
1

x(M ,,S,)= 23 2 4L D=L (W (e)||¥ (e + )| % 0)
c=0

as an objective criterion to be minimized. Here /(.) denotes the indicator function (i.e.,
it is equal to 1 if the statement being evaluated is true, and O otherwise). Observe that
this function grows exponentially with the reciprocal of the difference between the
mean raw copy numbers of markers assigned to consecutive copy number classes, and
is therefore minimized when similar raw copy numbers are assigned to the same class.
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¢ Filtering out noise by eliminating smaller regions. Longer CNPs indicate higher
confidence as it can be statistically argued that shorter sequences of markers with
deviant raw copy numbers are more likely to be observed due to noise. Thus, we
explicitly consider CNP length as an additional objective criterion. We then define

AM ) :+ as an objective criterion that penalizes shorter CNPs.
2 W

e The optimal CNP identification and genotyping problem. We use a linear
combination of the criteria above as an objective function to assess the quality of a
CNP region and assignment of copy number genotypes. Namely, for a given
candidate CNP w, an assignment of markers M,, to w, and assignment S,, of copy
numbers to these markers in each sample is defined as

fMm,,.S,)=ksoM,,S,)+k,xM,,S,) +kAM,,)

The objective of the CNP identification and genotyping problem is to find M,, and S,,
that together minimize f(M,, S,,). Here, the tunable coefficients .k ,.k; adjust the

relative importance of the objective criteria with respect to each other. In our
experiments, we use a prohibitively large value for k; to eliminate CNP instance calls

on smaller regions that are likely to be false positives. The parameters k, and k, are

used to adjust the apparent trade-off between the intra-class and the inter-class
variation. Without loss of generality, we require that &, +k, =1 so that the parameters

can be adjusted in an interpretable way. For our experimental evaluations reported in
this paper, we use k,=0.5 and k,=0.5. Note also that, for a given M,, and S, the

computation of fiM,, S,) requires O(INIIQ,I) time.

2.4 Algorithms for Optimal CNP Identification and Copy Number Genotyping

We now describe the algorithm we use to find the objective function minimum,
thereby solving the CNP identification and genotyping problem. A solution to a given
instance of the problem is characterized by assignment of marker boundaries to the
CNP (M,) along with the copy number genotyping S,(n) for each sample n € N.
Consequently, an optimal solution to the problem can be determined by finding an
optimal S,, for each possible M,, and choosing the best among these solutions across
all possible assignments of M,,. Since a CNP region is by definition composed of
contiguous markers and the problem is defined within a fixed segment of markers Q,,
there are 1Q,I(1Q,l+1)/2 possibilities for M,, making such an exhaustive search
feasible. Motivated by this insight, we now discuss how an optimal assignment of §,,
can be found for fixed M,,.

(i) Optimal CNP genotyping for fixed CNP boundaries. When the boundaries of
the CNP are fixed, the solution to the CNP genotyping problem is uniquely
determined by the assignment of each sample to a copy number class for the CNP
region at hand. To find an optimal solution to this problem, POLYGON uses a top-
down approach that starts from a conservative solution that assigns all samples to the
same class and iteratively improves this solution by dividing samples into separate
classes as necessary. Initially, all samples are assigned to the “normal” class, i.e.,
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S,\”(n) = 2 for all n € N. At each step of the algorithm, samples that are assigned to
the same copy number class are iteratively considered to check whether it is possible
to further improve the solution by dividing this partition of samples into two sub
partitions with different copy number classes. To find the best possible partitioning of
the samples in a group, we use the mean raw copy number of markers within M,, on
each sample, computed as:

Z Rn,m

me M

l

w

un,M )=

w

Assume, without loss of generality, that the samples are ordered according to u(n,
M,). That is, u(n, M,,) < u(n+1, M,,)) for all i = 1, ..., INI-1. The aim of our algorithm
is to divide the ordered of set samples in up to five partitions such that each partition
corresponds to the set of samples with a copy number class and the objective function
fis minimized for the given class assignments. It can be shown that the optimal copy
number genotype assignment must preserve the u(n, M,) ordering. Based on this
observation, we develop a heuristic based on the notion that a sample at which the
copy number genotype change is most likely to happen is the one at which the
maximum increase is observed in between u(n, M) and u(n+1, M,,) values.

Our algorithm is executed using a series of splits dividing one copy number class
into two at each stage. Let S, denote the solution after the i split where 0 < i < 4
(since there can be at most 5 copy number class partitions) and ¥(c) denotes the set
of samples in the partition for copy number class ¢ € C after the i split. In each
round, our algorithm introduces a new copy number class partition by splitting an
already existing copy number class partition c¢. This is done by choosing a sample n*,
and then either moving all samples n < n* in n*’s copy number class ¢ to copy
number class c-1, or moving all samples n > n* in n*’s copy number class to copy
number class c+1. We call n* a split sample. However, if the algorithm tries to split a
copy number class partition by re-introducing an already existing copy number class
partition (i.e., if copy number c-1 or c+1 is already assigned to some samples), this
split becomes invalid and our algorithm tries another n* for this round of split
procedure. Let Q” denote the set of candidate split samples, i.e., samples that are not
used in one of the previous splits or are skipped by the algorithm . Initially, we have
S P%m)y=2forallne N, ¥P2)=Nand ¥ V(c) =D force C\2,and Q¥ = N.

For each sample 1 < n < INI-1, let A(n) = u(n+1, M) — u(n, My,) denote the
gradient of mean copy numbers at sample n. At each round of the algorithm, the
sample n* =argmax,,eQ(i){A(n)} is selected as the splitting sample, since it would
yield the highest inter-class variance for the new class partitions being created.
Assume that n* is assigned copy number ¢ at this point. One of the sub-partitions
that can be obtained by splitting the partition ¢ will obviously be the old partition c.
In order to determine whether the other sub-partition will be ¢-1 or c+1, we check
the similarity of the mean raw copy number of each sub-partition to that of the
original partition. To do so, the mean raw copy number for each sub-partition is
computed as:

2 HuGM,) 2 HuGM,,) 2 HGM )

_ je¥(c) ’ je¥ (), j<n* 7 e (), jon*

- ’ ,u - ’ luc - 5. -
1D eyl o —min(P O (0) +1 max(¥? (¢)) —n*

c
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There are two cases to be considered.
Case 1:

”)

S|He —He

He = He

In this case, the samples in the lower sub-partition have more similar mean raw
copy number to that of the samples in the original partition. Therefore, the newly
introduced copy number class partition should be c+1 and the samples from
min(‘¥(¢)) to n* will remain in partition ¢ and samples from n*+1 to max(W(c)) will
be assigned to partition c¢+1 in the new solution, i.e.,

(i+1) c+1 for ne ‘P(i)(c) and n>n*
ST m =171 .
S, (n) otherwise

”

Case 2: ﬂc—ﬂc, >|u, — i,

In this case, the upper sub-partition is more similar to the original partition in terms
of mean raw copy number. Thus, the newly introduced copy number class partition
should be c-1 and the samples from n*+1 to max(¥(c)) will be assigned to class ¢ and
samples from min(¥(c)) to n* will be assigned to class c-1 in the new solution, i.e.,

i c—1 forne ¥ (c) and n<n*
va’“’(n):{ «© .

vai) (n) otherwise

Note that splits in cases 1 and 2 are invalid if YOc+1) # & and Y(c-1) = O,
respectively (i.e., the split is trying to introduce a copy number class partition that
already exists). In that case, the algorithm updates the set of candidate split samples as
Q" = Q¥ \ n*, and repeats the procedure for finding a split sample for the current S,,”
as described above. In the case of a valid split, it checks whether the new solution
i improves the current solution S, in terms of the objective function (i.e., if
fiM,, $,"*V) < fiM,,, S, ). If so, the algorithm sets Q™" = Q' \ n*, updates P*"
according to S,*"" and moves to the next splitting round. The algorithm will stop if
the number of copy number class partitions reaches five, the set of candidate split
samples becomes empty (i.e., Q(i) = (), or the new solution Sw(i”) does not improve
the current solution S,” in terms of the objective function. In these cases, S, " is
reported as the optimal solution. Note that the running time of this algorithm is
O(INIIQ, ), since the dominant computation throughout the course of the algorithm is
the computation of f for a constant number of times.

In Figure 1(c), for a CNP w, the ordered samples and the corresponding mean raw
copy numbers u(n, M,,) for each sample n € {1, 2,.., 270} are shown. As evident in
the plot, the top candidate split samples are those where the biggest jumps occur
between consecutive u values. After applying the above procedure, we find that the
CNP w manifests itself in three different copy number classes across the sample set N.
The samples genotyped with copy number 0, 1 and 2 classes are colored with yellow,
orange and red, respectively.

(i) Finding the optimal boundaries of a candidate CNP. The above procedure
gives a solution to the optimal CNP assignment problem for fixed CNP boundaries
(M,). Recall that for each CNP w, an initial estimate of its boundaries is available
from the first phase of POLYGON. We exhaustively search all possible sub-windows
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[a, b] within Q,, (where s,~[i,/2] < a < b < e,+[i,/2]), finding the optimal CNP
genotyping S, *” for each candidate boundary M, . Finally, the M, and S,*"
that minimize f(MW(a‘b), S, @) are returned as the optimal CNP assignment for CNP w.
This procedure is illustrated in Figure 1(d). From the heat map in the figure, it can be
observed that the optimal boundaries obtained after this method is applied are
different from the initial boundaries of w. The total runtime of this algorithm is
O(INIIQ,I*), which is reasonable in practical cases since the size of region Q,, does not
exceed several hundred markers for majority of the CNPs discovered by our method.

3 Results

We apply our algorithm to Affymetrix 6.0 SNP array data from 270 HapMap
individuals. We use three different algorithms, COKGEN [7], PennCNV [6] and
Birdseye [4] to detect the initial set of CNVs that serve as input to POLYGON.

3.1 Methods Used for Comparison

There are few CNP identification methods available for SNP array platforms. Here we
compare POLYGON with two methods, COMPOSITE and COVER, which were
published quite recently [12]. Similar to POLYGON, these two methods use CNVs
identified by other methods to call common CNPs. Thus, they utilize the same type of
data (CNVs mined on the Affymetrix 6.0 SNP array by PennCNV and an annotation
file containing the genomic coordinates of the markers) and produce the same type of
output with POLYGON. It should be noted that there exists another method, Canary
[4], for genotyping CNPs. However, it is designed to genotype the CNP maps given
by [13] and is not a CNP discovery method per se. For this reason, we do not include
Canary in our comparisons.

To simplify the discordance and sensitivity analysis and to be consistent with the
results of the single-sample based CNV identification algorithms, a CNP genotyped by
POLYGON, COMPOSITE or COVER is treated as a single gain or loss CNV event in
the analyses reported here. For the discordance and sensitivity analysis, we use the
MRO measure (as defined in Section 2.2) with a threshold of 0.5 to decide whether two
CNVs identified in two different individuals correspond to the same event.

3.2 Trio Discordance Comparison across Methods

The 60 mother-father-child trios in the HapMap data set were used to assess the
accuracy of CNV genotyping algorithms by measuring the rate of Mendelian
concordance. A gain or loss in a trio child is said to be Mendelian concordant if it
appears in at least one of the parents. Unless the CNV is de novo, any discordance is
either the result of a false positive call in the child or a false negative call in one of the
parents.

For all of the single-sample CNV identification methods, POLYGON greatly
improves trio discordance. POLYGON reduces COKGEN’s trio discordance from
30.8% to 20.1%. Similarly, it reduces PennCNV’s trio discordance from 32.9% to
16.2%. On the other hand, both COMPOSITE and COVER reduce PennCNV’s trio
discordance rate to around 26%. These results demonstrate the superior ability of
POLYGON for CNP identification and copy number genotyping across samples.
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3.3 Sensitivity Comparison across Methods

A recent study [14] assembled a “stringent dataset”, which contains CNVs identified
by at least two independent algorithms. The data set contains a total of 808 autosomal
CNV regions reported to be harbored in at least one of the 270 HapMap individuals.
We use this as a “gold standard” data set on which to evaluate the sensitivity of our
method.

POLYGON improves the sensitivity of two single-sample based CNV
identification methods. While COKGEN achieves a sensitivity of 86%, POLYGON
improves this to 88.3%. Similarly, sensitivity increases from 84.7% to 89.9% when
POLYGON is run with CNVs obtained by Birdseye. Interestingly, on the other hand,
PennCNV and POLYGON on PennCNV achieve the same sensitivity rate of 88.6%.
These figures are clearly superior to the sensitivity of both COMPOSITE (62.8%) and
COVER (40.2%).

wi10
o w1120
2130
m3l1-40
#41-50

COKGEN POLYGON Birdseye POWGON PennCNV POWGON COVERon COMPOSITE
on COKGEN on Blrdseye PennCNV an
Penlll:N'U' PennCNV

Sen!l'hwt\l

Fig. 2. Sensitivity of different algorithms. Each bar represents the sensitivity of the associated
method in the specified frequency stratum.

In Figure 2, we compare the sensitivity of the methods stratified by the gain/loss
frequencies of the CNVs. The purpose of this analysis is to see whether an algorithm
that explicitly targets common CNPs is more successful in calling common CNPs
accurately (as compared to rare CNVs). Indeed, as seen in the figure, POLYGON
improves the sensitivity of all CNV identification methods for gains/losses existing
in more than 20 samples, demonstrating that POLYGON is well-suited to detect
common CNPs. Furthermore, for gains/losses that occur in at least 30 samples,
POLYGON consistently achieves sensitivity above 98%, regardless of the algorithm
that is used to identify the initial set of CNVs. This observation suggests that
POLYGON is also quite robust against changes in the input set of CN'Vs.

4 Conclusion

We have presented a method to detect and genotype germline copy number
polymorphisms (CNPs) from SNP array data and a set of CNVs. Our approach will be
useful for researchers querying constitutional DNA for association of CNP alleles
with disease. Indeed, CNPs are emerging as important factors in a growing number of
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diseases. POLYGON’s ability to identify recurrent variants is particularly crucial in
GWAS, as variations frequently observed in a significant proportion of the population
may have a significant impact on human disease.

The current work shows that the problem of detecting CNPs may be recast as an
optimization problem with an explicit objective function. The objective function
chosen here is quite simple and intuitive, but its effectiveness is clear. With detailed
experimental studies on the HapMap dataset, we have demonstrated its sensitivity to
identify especially common CNPs, while keeping a low false positive rate, as
demonstrated by high Mendelian consistency in trios.
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Abstract. Measurements in biology are made with high throughput
and high resolution techniques often resulting in data in multiple reso-
lutions. Currently, available standard algorithms can only handle data
in one resolution. Generative models such as mixture models are often
used to model such data. However, significance of the patterns gener-
ated by generative models has so far received inadequate attention. This
paper analyses the statistical significance of the patterns preserved in
sampling between different resolutions and when sampling from a gener-
ative model. Furthermore, we study the effect of noise on the likelihood
with respect to the changing resolutions and sample size. Finite mixture
of multivariate Bernoulli distribution is used to model amplification pat-
terns in cancer in multiple resolutions. Statistically significant itemsets
are identified in original data and data sampled from the generative mod-
els using randomization and their relationships are studied. The results
showed that statistically significant itemsets are effectively preserved by
mixture models. The preservation is more accurate in coarse resolution
compared to the finer resolution. Furthermore, the effect of noise on data
on higher resolution and with smaller number of sample size is higher
than the data in lower resolution and with higher number of sample size.

Keywords: Multiresolution data, statistical significance, frequent item-
set, mixture modelling.

1 Introduction

Biological experiments performed with high throughput and high resolutions
techniques often produce data in multiple resolutions. Furthermore, Interna-
tional System for human Cytogenetic Nomenclature (ISCN) has defined five
different resolutions of the chromosome band: 300, 400, 550, 700 and 850[1]. In
other words, chromosomes are divided into 862 regions in resolution 850 (fine
resolution) and 393 regions in resolution 400 (coarse resolution). Thus, data are
available in different resolutions and methods needs to be devised to work with
multiple resolutions of the data. However, current standard algorithms only work
with a single resolution of data. So, sampling in different resolutions possesses
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high importance. In this paper, we model multiresolution data and use statisti-
cal significance testing on data generated by generative models. Finite mixture
models are generative models [2I3] able to generate the potentially observable
data. Over the years, finite mixture models have been extensively used in many
application domains including model based clustering, classification, image anal-
ysis, and collaborative filtering in analysis of high dimensional data because of
their versatility and flexibility. In spite of the wide application areas of mixture
models, the evaluation of mixture models are often based on the likelihood of the
model on the original data, not by testing the data generated by the generative
models.

In [4], the authors used HMO (Hypothetical Mean Organism) motivated from
Bacteriology [5] and maximal frequent itemsets[6] to define the data to the do-
main experts in a compact and understandable manner. Furthermore, in [7], the
authors also compared the frequent itemsets [89] extracted from each cluster
to that extracted globally showing that the frequent itemsets were significantly
different. However, the authors failed to consider the significance of the itemsets
and their preservation by generative models. Study of patterns generated by
the generated models has received little interest. However, preserving patterns
from the original data should be essentially an important property of mixture
models and if properly designed can be one of the benchmarks for selecting bet-
ter mixture models. In this paper, we experiment with finite mixture models of
multivariate Bernoulli distribution to test whether the statistically significant
itemsets are preserved by mixture models. We also extend the ideas in [10] to
observe if the significant itemsets are preserved by the sampling in different
resolutions.

Novelties in this paper are determination of presence of statistically signifi-
cant itemsets with respect to sampling different resolutions and especially by the
data generated through the generative mixture models. Furthermore, we exper-
iment the mixture model with different levels of noise showing that the trained
mixture models are robust to noise in lower resolution and when there is sig-
nificant amount of data to train and constrain the mixture model thus showing
the importance of working in multiple resolutions which is useful for database
integration.

Rest of the paper is organized as follows: Section 2] presents the dataset used
in the experiments. Section [Bl reviews the theoretical framework for experiments
including sampling, randomization and mixture modelling. Section @ explicates
the experiments performed on the data and discusses the obtained results. Sec-
tion [Bl draws conclusions from the experimental results.

2 DNA Copy Number Amplification Dataset

The dataset used in the experiments defines DNA amplifications in different
chromosomes. Amplification is the special case of duplication where the copy
number increases more than 5 [II]. The data was collected by bibliomics survey
of 838 journal articles during 1992-2002 by hand without using state-of-the-art
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(a) Original Data (b) Randomized Data (c) Sampled from Model

Fig. 1. DNA copy number amplifications in chromosome-17, resolution 850. X = (Xj;),
Xij € {0,1} . Each row represents one sample of the amplification pattern for a patient
and each column represents one of the chromosome bands.

text mining techniques [4JI2]. The dataset contained information about the am-
plification patterns of 4590 cancer patients in resolution 400. There was another
set of similar data but in resolution 850 with higher sample size. The dataset
shown in Figure [Tl contains the original data in resolution 850, the randomized
version and sampled from the mixture model. Each row describes one sample of
cancer patient while each column identifies one chromosome band(region). The
amplified chromosome regions were marked with 1 while the value 0 defines that
the chromosome band is not amplified. Patients whose chromosomal band had
not shown any amplification for specific chromosome were not included in the
experiments since we are interested in modelling the amplifications, not their
absence.

3 Theoretical Framework

Determining the significance of the results obtained by any algorithm or method
is an actively researched area. Statistical significance testing have often been
implemented to determine the significance of the results. In this paper, we im-
plement our statistical significance testing on data in multiple resolutions and
data generated by mixture models.

3.1 Sampling Resolutions

We have recently in [10] suggested three downsampling and a simple upsampling
technique for 0-1 data and performed experiments on them showing that the
methods are fairly similar. Upsampling is the process of changing the resolution
of data from coarse resolution to finer resolution and downsampling is the pro-
cess of changing the resolution of data from fine resolution to coarse resolution.
Upsampling makes multiple copies of similar chromosome bands in higher res-
olution. Downsampling, in turn, proceeds with one of three different methods:
OR-function, Majority decision and Weighted Downsampling. In OR-function
downsampling, a cytogenetic band in lower resolution is amplified if any of the
bands in higher resolution which combines to form the cytogenetic band in the
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lower resolution is amplified. In majority decision downsampling method, the
cytogenetic band in lower resolution is amplified if majority of the cytogenetic
band in higher resolution are amplified. In weighted downsampling method, the
length of the cytogenetic bands are considered. The cytogenetic band in lower
resolution is amplified if the total length of amplified band is higher than that
of the unamplified band.

3.2 Randomization

Statistical significance testing on datasets are not trivial as the data belongs
to a class of empirical distributions thus integrating over the PDF(Probability
Density Function) to calculate the p—values is often not possible. Furthermore,
given the data set D, its PDF or true generating model is often unknown. It is
trivial to integrate over the empirical distribution where a null distribution can
be fixed and samples can be drawn from the null distribution. Randomization [I3]
is one of the method to sample from null distribution and it has been proposed
with some plausible results and implemented in various application areas such as
redescription mining [14]. Comparing segmentations of genomic sequences [15]
among many others.

Consider a 0-1 dataset, D with m rows and n columns. Let Dy,Ds...D,
be the randomized data produced using the randomization approach repeated
n times. Also, consider a data mining algorithm A, for instance frequent set
mining and mixture modelling in our case which is run on the data D with the
result A(D). The result A(D) determines the structural measure of the dataset
D, the frequencies of frequent itemset and likelihood in our case. The randomized
datasets Dy, Ds ... D, are also subjected to the algorithm A producing results
A(Dy), A(Dz) ... A(D,). The task is then to determine whether the result on
the original data is different from the results on the randomized data. Empirical
p—values can be used for the same purpose.

Null Distribution: Given a binary dataset D, the null distribution considered
in the paper are all the datasets satisfying all the following properties:

1. The dataset of the same size i.e. number of rows and columns of randomized
data is equal to the number of rows and columns of the original data.

2. The dataset with same row and column margins. Margins here describes
the sums. Thus, row and column sums are exactly fixed. This automatically
preserves the number of ones in the dataset i.e. the number of amplifications.

As the the constraints discussed above increases, the randomization is becomes
more conservative. However, the main focus is to compare the results obtained
with the original dataset with closely related datasets. Furthermore, the number
of datasets satisfying the above constraints are still significantly high. Generally,
the application area determines the constraints of the randomization. Main-
taining row and column margins in this case is adapted from the idea in [I3]
which seems relevant in our case considering the fact that most of the binary
datasets especially in the field of biology such as the amplification data dis-
cussed in Section [ are often spatially dependent and sparse. On the other hand,
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if the randomization is not subjected to the constraints discussed above then any
result of an algorithm turns out to be relevant. With lesser constraints, the num-
ber of randomized datasets to sample for convergence discussed in Section [£.]]
increases which consequently increases the computational complexity of the ap-
proach. Experimental results in [I3] have shown that complexity of using a data
mining algorithm 4 on a dataset has significantly higher computational com-
plexity compared to the generation of randomized dataset under the constraints
discussed above. Similar to [I3], the data is randomomized in the with repeated
0-1 swaps until convergence. The null hypothesis Hy throughout this paper is
that for all datasets D that satisfies the given constraints, the test statistic fol-
lows the same distribution. Test statistic used here is frequency or the support
() in case of frequent itemset and sample likelihood in case of mixture models.

p—Values: p-value can be defined as probability of obtaining a test statistic at
least as extreme as the one that was actually observed, assuming that the null
hypothesis is true [I6JI7]. Let D = {D1,D2, Dy} be the randomized versions,
sampled i.i.d from the null distribution, of the original data D. The one-tailed
empirical p—value of A(D) for A(D) being large is

R (ZI(A(Di) > A(D)) +1>, 1)

where ¢ € {1,2...k} and [ is the indicator variable.

The Equation [ gives the fraction of randomized dataset whose structural
measure, itemset frequency (support) in case of frequent itemset and sample
likelihood in case of mixture models, is greater than the original data A(D). In
one-tailed p—value small value of A(D) are interesting and can be defined simi-
larly for the two-tailed test. In this paper the randomized datasets are produced
using Markov Chain Monte Carlo(MCMC) approach. The samples produced by
MCMC are not independent thus diminishing the reliability of the p—values. To
mitigate this problem and guarantee the ex-changeability of samples, we imple-
ment forward-backward approach discussed in [I8]. The basic idea is to run the
chain, a number of defined steps, say J backwards and forward after reaching
J. In other words, given the original dataset D, a dataset D is obtained such
that the path length between D and D is J. The desired number of K samples of
randomized data is obtained by running the chain J steps forward and obtaining
the samples D; thus producing D, D ... Dy as the set of exchangeable samples.
Furthermore, the p—values were adjusted for multiple hypothesis testing using
the Holm-Bonferroni test correction[T9)].

3.3 Mixture Models of Multivariate Bernoulli Distribution

Cancer is not a single disease but a collection of several diseases. Furthermore,
the amplification data discussed in Section 2l being high dimensional binary data,
finite mixtures of multivariate Bernoulli distribution was selected as the model
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to model the amplification data. The finite mixture of multivariate Bernoulli
distributions is defined as:

J d
p(DI@) =Y m [] 05 (1 —0;)' ", (2)
j=1 i=1

where the data is assumed to originate from the known number of components J.

The mixture proportions 7; satisfy the properties such as convex combination
J

such that m; > 0 and ij =1,Vj = 1,...J. The model parameters @ is
j=1
composed of 1,605,605 . .j. 0, for each component distribution.

Model selection in finite mixture modelling refers to the process of selecting
number of mixture components, J in the data. 10-fold cross-validation [20/21]
is used to select the optimal number of components taking parsimony into ac-
count. The process of model selection employed is similar to [4/T0J22]. Since the
mixture models are complex and sample size of data was small to constrain it,
chromosome-wise mixture modelling was performed for data in different resolu-
tions. Expectation Maximization algorithm [23]24] was used to train the mixture
models using BernoulliMix[25] which is an open source program package for finite
mixture modelling of multivariate Bernoulli distribution.

4 Experiments

4.1 Convergence Analysis of the Swaps

In order to determine the optimal number of swaps to be performed, convergence
test for the randomized data was performed. In our experiments, the process of
randomization is said to converge when the distance between the the original
data and the randomized data changes the least with respect to the predefined
difference measure. Similar to [I3] and [26], the distance measure used here is
the Frobenius norm between the original and the randomized matrix. In order
to test the convergence, first the number of attempted swaps is fixed to 1 and
increased by the step size of 1. The approach used here differs from [I3] and [26]
because they set the initialization point to K equal to the number of ones in
the data and increase the number of attempts in multiples of K. Such approach
could prove beneficial in large datasets but since amplification dataset is small,
it was very easy to compute the swaps thus making it easier to initialize number
of attempted swaps to 1. Furthermore, similar dataset was available in resolution
850 with higher sample size. Thus, the convergence test was performed for both
the data and their upsampled and downsampled versions as shown in Figure 2
Ten different instances of the swaps are performed and the mean of the results
is taken as the final convergence test. Similar, convergence analysis was also
performed for combined data and the sampled data. Convergence of sampled
data was similar to the original data from which the model was trained. However,
in case of combined data, convergence required relatively higher number of swaps
i.e. 700000 swaps. Figure 2] shows that the swap converges when the number of
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Fig. 2. Convergence analysis for randomization with respect to 0-1 swaps

attempted swaps is approximately 16000 for original data in resolution 400. From
the Figure [ it can also be seen that the Frobenius norm increases rapidly until
certain number of attempted swaps and then tends to stabilize. The stabilizing
point is taken as the convergence. As discussed in Section 2] the sample size of
data in resolution 850 was high thus taking longer time to converge. The number
of swap attempted to get the randomized data in this case is 600000.

4.2 Model Selection in Mixture Model

Model selection in the context of mixture modelling is the selection of number
of components of the mixture model. It is often recommended to repeat cross-
validation technique a number of times, at least 10, because a 10-fold cross-
validation can be seen as a “standard” measure of the performance whereas ten
10-fold cross-validations would be a “precise” measure of performance[27]. In
addition, EM-algorithm is highly sensitive to initializations and the global op-
timum is not often guaranteed [28]. Therefore, the cross-validation procedure
was repeated 50 times. Since the analysis was performed chromosome-wise, the
data dimension was relatively less. Thus, the number of mixture components
were varied between 2 and 20. Using higher number components can overfit the
data. Furthermore, our major goal, as in [4], was to generate compact and par-
simonious models. The log-likelihood was averaged for each component and the
interquartile range(IQR) was calculated. Furthermore, the model selection pro-
cedure was also performed for the randomized data. In Figure Bal both training
and validation likelihood are smoothly increasing curves with low variation in
IQR. The number of components selected in this case is 7, taking the parsimony
into account. We also performed similar model selection procedure on the ran-
domized data as shown in Figure It was found that there is no well defined
clustering structure present in the data with respect to the mixture models.
Furthermore, the results on randomized data also proves that the data is not
a random data but there is a well-defined structure present in the data which
mixture model is able to extract.
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Training and Vaidation Likelinood: Chromosome-17 and Resolution-393 s Training and Validation Likelihood: Chromosome~-17 and Resolution-890
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Fig. 3. Model Selection procedure and Model visualization: Example case in combined
data of Chromosome-17 in resolution-400 and its corresponding randomized version.
Corresponding IQR (Inter Quartile Range) for each training and validation run has
also been plotted.
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Fig. 4. Two different models for the combined data trained in resolution 400 and 850

After selecting the number of components, ten different models were trained to
convergence and best of the trained models were used to calculate the likelihood
on data as shown Figure Bhl The model was also used to sample the data to
calculate the significant itemsets in the sampled data. Figures Fal and [40] are the
final models trained to convergence for combined data in resolution 400 and 850
respectively. Similarity of the models can be tracked visually from the model
visualization as in Figuredl For example, component 6 in Figure dal corresponds
to component 1 in

4.3 Significance of Frequent Itemsets and Data Samples

In the experimental setup, first the frequencies of the itemsets of the size two were
determined from the original data. The itemsets of size three and above were dis-
carded from the experiments for simplicity and space constraints for explaining
the results. However, results in [10] has shown that generally the frequent itemsets
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in the amplification data discussed in Section [2] are large and consecutive. The
core of the work was to determine if the statistically significant itemsets were
preserved in different resolutions and by the generative mixture model. First the
itemsets of size two which had a frequency or support(a = 0.5) were determined
and the original data was then subjected to randomization. Randomization pro-
duces 100000 samples of randomized dataset. Larger number of random samples
are chosen because Holm-Bonferroni [I9] used to correct for multiple hypothesis
requires higher number of samples for plausible results. The structural measure
used to calculate the p—values in our case is the support or the frequency of the
itemsets. The choice of frequency or support(a & 0.5) is arbitrary but motivated
by majority voting protocol and constraining the number of frequent itemsets
thus making it easier to interpret and report. Furthermore, itemsets with very
low support but statistically significant are not highly interesting. The samples
of data were generated equal to the number of samples in the original data. Sim-
ilarly, the data generated from the trained mixture models were also subjected
to randomization to determine the statistically significant itemsets.

Table 1. Itemsets of size 2 with their frequency (support) in original as well as sampled
resolution. Results of Downsampling have been omitted because of space constraints.
The symbol Z¢mCie™ suggests combination where subscript n and r determines n
choose r in the combination and superscript determines the item to start and end the
combination.

Significant itemsets of Size 2 at a = 0.05

Data Support Original Data Model Sampled

Original 393 4 {9,10}, {11,12} {9,10}, {11,12}

Upsampled 850 .4 oo, Poid e ocit o3t

Combined 393 .6 {5,7}, {5, 12}, §C%? {5, 7} {5, 12}, {7 12},
8012
6“2

Combined 850 .6 2c, {1216}, {1217}, {°CP,  {12,16}, {12,17},

{12,18}, {13,16}, {13,17}, {12,18}, {12,20}, {13,16},

{1318}, {14,16}, {14,17}, {13,17}, {13,18}, {13,20},

{14,18}, 15C3* {14,16}, {14,17}, {14,18},
{14,20}, 15C3*

The p—values were calculated to test the significance of the itemsets. The
statistically significant itemsets computed at significance level («)= 0.05 in the
original data and the sampled data from the model is compared and analyzed.
Table [l shows that significant itemsets are approximately but not exactly pre-
served by the generative mixture model as well as the sampling of resolutions.
Difference is subtle in higher resolution. The itemsets in lower resolution corre-
spond to itemsets in higher resolution. For example, itemset {11,12} in resolution
400 corresponds to itemset §°C3 in resolution 850. It is to be noted that not all
frequent itemsets are significant and not all significant itemset are frequent. For
example, in case of combined resolution 400, itemset {1,2} is significant where
as it is not frequent. Furthermore, itemset {7,12} is frequent but not significant.
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We also determined the number of significant data samples in different resolu-
tions and from the sampled model. FigureBalsuggests that numbers of significant
data vectors are preserved in the generative models. During our experiments, we
also determined the indices of the significant data vectors and it was seen that
indices of the significant vectors are not preserved i.e. generated of samples of
data are not arranged in similar manner to original data. Furthermore, it was
also seen that finer resolution has higher number of significant data samples be-
cause with increasing dimension the uniqueness of the rows increases and the 0-1
swap strategy used in the randomization ceases to function properly. However,
this has little or no significance because of i.i.d assumption for each data sample.

4.4 Effect of Noise on the Likelihood

Significant Data Samples Effect of noise and resolution on likelinood

1 P —— 0
I Combined:850
09 [ Upsampled:850 || -5
[ Original:850

08 [ Downsampled:400 | | 10
w [ Combined:400
< O 1:400
£, B Original s
3
£ 06 o 20
< z
§ 05 =25
£ 3
@ 0.4 -30
s
° -35
H 03 I Original 400

40| NI Upsampled 850
02 1 ~40| = pownsampled 393
[ Original 850
01 1 ~45[| [ Combined 393
I Combined 850 U
o -
Original Data Model Sampled o 5 10
Noise Level in Percentage
(a) Significant Data Samples (b) Effect of Noise

Fig. 5. Ratio of significant data samples to the number of samples in the left panel
and effect of noise and resolution on the likelihood in right panel

We added random noise to the data. Since the data was binary data, adding
noise is simply flipping the bits i.e. changing ones to zeros and zeros to ones.
Addition of 5% noise means that 5% of total data items in the dataset are
flipped. Figure shows that the effect of noise will be significantly higher for
data in finer resolution than the data in the lower resolution. Furthermore, when
the number of samples is low (Cases: Original 400 and Upsampled to 850),
the difference in the likelihood is large because the number of samples are too
low to constrain the mixture model. However, when the number of samples are
increased, as in case of combined datasets, the variation in likelihood is not
significant. Nevertheless, likelihood for the data in the higher resolution deviates
significantly even when the sample size is increased.

5 Summary and Conclusions

We use statistical significance testing on data in different resolutions and on
data generated by the generative mixture models using randomization. From
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the experiments we conclude that finite mixtures of multivariate Bernoulli dis-
tribution retains the significant itemsets and the significant data vectors in the
original data even when the mixture model is trained parsimoniously. Further-
more, experiments with different levels of noise on the data shows that models
parsimonious models in coarse resolution are more robust to noise. Nevertheless,
when there is adequate amount of data to constrain the mixture model, the effect
of noise diminishes significantly even in higher resolution.
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Abstract. MHC class I molecules are key players in the human immune
system. They bind small peptides derived from intracellular proteins and
present them on the cell surface for surveillance by the immune system.
Prediction of such MHC class I binding peptides is a vital step in the
design of peptide-based vaccines and therefore one of the major problems
in computational immunology. Thousands of different types of MHC class
I molecules exist, each displaying a distinct binding specificity. The lack
of sufficient training data for the majority of these molecules hinders the
application of Machine Learning to this problem.

We propose two approaches to improve the predictive power of kernel-
based Machine Learning methods for MHC class I binding prediction:
First, a modification of the Weighted Degree string kernel that allows for
the incorporation of amino acid properties. Second, we propose an en-
hanced Multitask kernel and an optimization procedure to fine-tune the
kernel parameters. The combination of both approaches yields improved
performance, which we demonstrate on the IEDB benchmark data set.

1 Introduction

Despite the success of traditional whole-organism vaccines in the last century
there is still a lack of effective vaccines for many diseases, for example AIDS and
cancer. A fairly new approach to vaccination, the peptide-based vaccines, shows
great promise here. Peptide-based vaccines utilize peptides, i.e. small protein
fragments, derived from, e.g., viral proteins to induce immunity. In order for a
peptide to trigger an immune response from inside a host’s cell, it has to bind
to a major histocompatibility complex class I (MHC-I) molecule. The resulting
peptide/MHC-I complex will be transported to the cell surface where it can be
recognized by specific immune system cells, the T cells (Fig. [[JA), and thereby
induce an immune response. Thus, MHC-I binding is a prerequisite for pep-
tide immunogenicity. Furthermore, identifying peptides with a high affinity to
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© Springer-Verlag Berlin Heidelberg 2010
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MHC-I molecules is generally considered the best way to identify immunogenic
peptides. Since only immunogenic peptides are suitable candidates for inclusion
in a peptide-based vaccine, the prediction of peptides binding to MHC-I is of
great interest in the field of vaccine design.

A B
Host cell

MHC o Immunogenic M
peptide / :
1)
T cell

Fig. 1. Peptide/MHC-I complex. A) An MHC-I molecule presents an immunogenic
peptide on the cell surface where it is recognized by a T cell. B) The structure of a
nonameric peptide complexed with an MHC-I molecule. The binding groove is closed
at both ends and the peptide is bound in an extended conformation. (PDB-ID: 3L3D
(http://www.pdb.org) [2], plotted with BALLView [I1])

MHC-I molecules are membrane-bound proteins with a closed binding groove
that holds peptides in an extended conformation (Fig. [B). They typically bind
peptides that contain eight to ten amino acids (AAs) with a preference for nine
AAs. The corresponding gene complex is highly polymorphic. As of today, more
than 3,000 different MHC-I alleles are known,each coding for an MHC-I molecule
binding a specific range of peptides. Any human has up to six different types
of MHC-I molecules. This implies that a peptide that is capable of inducing an
immune response in one individual might never be presented on the cell surface
in another. In order to design vaccines effective for a given population, it is
therefore necessary to accurately predict MHC-I binding for a wide range of
different MHC alleles [22].

Many computational methods for the classification of peptides into MHC-I
binders or non-binders have been proposed: ranging from matrices [14,[17] to
machine learning [3,[1].All of these methods require a certain amount of ex-
perimental binding data for each allele under consideration. However, a major
problem in MHC-I binding prediction is the lack of data: for the vast majority
of the known alleles there is no or only little experimental binding data available
yielding the development of accurate prediction methods for most alleles rather
challenging. In 2008, Laurent and Vert [§] proposed a kernel-based approach
that tries to overcome the lack of training data by sharing binding information
across alleles.

In this work, we propose two approaches to improve MHC-I binding predic-
tion. First, we consider an improved string kernel, which takes AA properties
into account and thereby allows more accurate predictions for alleles with little
binding data. Second, we consider an enhanced Multitask learning algorithm,
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which can be used to improve prediction performance for an allele by utilizing
binding data of similar alleles. We are able to show that the combination of both
approaches outperforms existing methods.

2 Improved String Kernels for MHC-I Binding Prediction

Background. String kernels are a very powerful tool for machine learning in
bioinformatics due to their capability to exploit the sequential structure of AA or
nucleotide sequences. They have been successfully applied to various problems in
computational biology, ranging from protein remote homology detection [10],to
gene identification [I6L20], to drug design []].

MHC-I molecules bind peptides in an extended conformation (Fig.[IB). Within
the complex the peptide’s side chains interact with surrounding side chains of
the MHC and also with each other. Each of the peptide’s side chains contributes
to the binding affinity. The respective contribution is influenced by the position
of a side chain within the peptide sequence as well as by the AA types of its
neighboring side chains. A string kernel is very well suited to handle such data
is the Weighted Degree (WD) kernel [I5]. The WD kernel considers sequences of
fixed length L and counts co-occurring substrings in both sequences at the same
position. It is defined as

L—d+1

Zﬁd > I(@jiva = Zita) (1)

i=1

where 83 = 2° pcﬂl is the weighting of the substring lengths.

A major downside to using string kernels on AA sequences is that prior knowl-
edge on properties of individual AAs, e.g., their size, hydrophobicity, charge,
cannot be easily incorporated. Especially when dealing with small training data
sets as common in MHC-I-binding prediction, inclusion of this information in
the sequence representation would be beneficial.

A straightforward approach to utilizing this knowledge is to consider a rep-
resentation of the sequence as vector of the physico-chemical properties of all
sequence elements, i.e. AAs. One may then use a standard kernel to compute
sequence similarities, as, e.g., done in [24,[13]. This approach, however, ignores
the sequential nature of the underlying data.

Here, we propose to combine the benefits of standard string kernels with the
ones of physico-chemical descriptors for AAs.

Idea. As string kernels in general, the WD kernel ([Il) compares substrings of
length ¢ between the input sequences « and z. We can rewrite the corresponding
term I(x = z) as

I(z = 2) = (By(), Bo(=))

where z,z € X* and &, : ¢ — RIZ
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&;(x) can be indexed by a substring s € ¢ and is defined as ®,(x), = 1, if
s = x, and 0 otherwise. Using @; : X' — {0, 1}, a simple encoding of the letters
into |X|-dimensional unit vectors, the substring comparison can be rewritten as

I(z=z2)=]] (@i(z1),P1(21))

4
=1

@, ignores the relations between the letters in the alphabet. Since this is a
problem when considering A As, we replace ¢; with a feature map ¥ that takes
relations between the AAs into account. This leads to the following kernel on
AA substrings:

‘
K (@,2) = [ [ (@(20), #(20)) - (2)

=1
Using the feature representation corresponding to this kernel, we can now recog-
nize sequences of AAs that have certain properties (e.g. first AA: hydrophobic,
second AA: large, third AA: positively charged, etc.): For every combination of
products of features involving exactly one AA property per substring position,
there is one feature induced in the kernel. A richer feature space including com-
binations of several properties from every position can be obtained using the

following two formulations. The first is based on the polynomial kernel:

) d
Kgd(‘l%z) = (Z <!‘p($l)7y7(zl)>> ) (3)

=1

and the second on the RBF kernel:

(4)

Kl (2,2) = exp (_ iy () — W(zl)|2> ’

o2

Improved WD Kernel. Replacing the substring comparison I(x = z) in ([{]) with
one of the formulations in @), [B]), or @) together with a set of features ¥(a) for
each letter a € X (i.e. for each AA), directly leads to a generalized form of the
WD kernel:

L—d+1

R ML S () ®

KZVd’\II is a linear combination of kernels and therefore a valid kernel [I§]. It can
be computed efficiently, with a complexity comparable to that of the original
WD kernel.

The combination of the WD kernel with the RBF substring kernel {) is
particularly interesting:

KZS\II Zﬁd Z exp

L_dt1 471 Ll'/a:j —&DZJ‘ 2
(ZJ_ 1@ () — ¥ ( )I>. (©)

o2
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For a bijective encoding ¥ and o — 0, this WD-RBF kernel corresponds to the
WD kernel: the RBF substring kernel will be one only for identical substrings,
otherwise it will be zero. Thus, employing the WD-RBF kernel will, at least in
theory, always yield equal or better performances than the original WD kernel.

3 A New Multitask Kernel for MHC-I Binding Prediction

We will build upon a kernel-based formulation of Multitask Learning, as pro-
posed by []:

1 n n 5 n
max — DO iy K((xi,9), (x5, 6) + Y s (7)
=1

i=1 j=1
st. aly=0, 0<aq;<CVie {1,n},

where s and ¢ correspond to the tasks associated with examples x; and z;,
respectively.

K’((wz, s),(z;,t) = K(xi, ;) + Kdir“(s,t) K (xi,x5), (8)

where K denotes the base kernel that captures the interactions between examples
from all tasks and K9%%¢(s, ) is defined as

1,ift=s
0, else

(s, = { o
It was shown in previous work [7] that it pays off to use multitask learning
methods for the problem of MHC-I binding prediction. In particular, a multi-
task kernel based on the product of allele (i.e. task) similarity and peptide (i.e.
instance) similarity was used:

EMT((z,5), (2,1) = K¥(s,t) - KPP (x, 2),

which is a generalization of the kernel presented in Equation (8). Here, the
similarity between tasks is explicitly taken into account, instead of solely setting
a higher default similarity for in-domain comparisons. In the case of MHC-I
molecules, the pseudo sequence (i.e. the AAs in the binding groove of the MHC
that interact with the bound peptide) is used as task-feature. Clearly, the more
similar the pseudo sequences are the more similar we expect the tasks to be.
Furthermore, [8] considered several combinations of kernels for K and KPeP.
The best performing combination employed a polynomial kernel on top of a
string kernel of degree d = 1 for both, K®!! and KPP,

We now aim at improving the above multitask kernel KMT as follows. First,
we introduce additional parameters, that allow the specialization of the trade-
off between the in-domain kernel components (i.e. s = t) and the out-of-domain
kernel components (i.e. s # t) dependent on the task.
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While KMT is captures how closely related two tasks are, according to some
task kernel K2 it does not take into account how well information from the
other tasks boosts performance. Clearly, transferring information from other
tasks will become increasingly relevant if only little training data is available.
If there is an abundance of training data for a particular task, it is most likely
sufficient to set a stronger focus on in-domain data.

The above leads us to the following kernel formulation, which introduces a
new multitask kernel composed of a linear combination of two multitask kernels
with two mixing coeflicients 351 and s 2 that have to be adjusted for each task
s independently. Details on how the [ are tuned are given in the following
section.

EMT-WD (1 6) (2,4)) =81 KWVP(s,1) - KWP (2, 2)+ (10)
B2 K92 (s, 1) - KWP (x, 2)

Finally, by combining both lines of work, we propose a multitask kernel that
uses the enhanced WD Kernel KWP-RBF (gee Equation [f) from the previous
section to compute the similarity between instances. We arrive at the following
formulation:

KMT-WDRBF (3 o) (2, 4)) =, 1 K VP (s, ¢) - KWPRBF (¢ )+ (11)

58’2Kdira<:(s’ t) . KWD_RBF(ZL’, Z)

In summary, the new kernel formulation consists of three parts. First, we formu-
late the kernel as a combination of a task specific component and a multitask
kernel component. Second, we introduce task-specific parameters that can be
tuned for each task independently. Third, we combine the previous two ideas
with the novel WD-RBF kernel.

4 Fine Tuning the Kernel with Multiple Kernel Learning

We propose to use Multiple Kernel Learning (MKL) [9] to learn the weights
Bs.k of the individual components (see Equation [IT]) along with the respective
classifiers. In particular, we employ a variant of MKL, which was shown to work
well in the domain of computer vision [5]. Here, the setup is slightly different
from standard MKL, as we first obtain one classifier f; for each kernel K; (i.e.
fi(z) = X2, ajy;Ki(x,z;)) and then find an optimal linear combination of the
learned functions in a second step (i.e. f(z,s) =Y, Bs,ifi(x)). In [5], the authors
propose to use LPBoost for the combination of classifiers. However, LPBoost
yields a sparse solution in terms of kernel weights, which is not what we are
interested in. Therefore, we propose a formulation based on the nu-SVM [19] to
combine the classifiers f;.
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min ||ﬁ—1||2+2@ pv (12)

=1
M
sty Y Bifi(@) +&>pViell,., N,
j=1

Bi >0Viell,.., M)
gi >0Vie [1,..,N]

From preliminary experiments, we observed that 8s; = 1 VsVk often yields a
good solution. We use this as prior knowledge by regularizing the parameter
vector 3 to be close to a vector of ones 1. Intuitively speaking, only the training
error measured by the loss term will cause the (s x to differ from 1.

For the training procedure the training data is split into two parts. The
first part containing 4 of training examples is used to obtain the initial f;.
Subsequently, the second part of the training data is used in the loss term of
Equation (I2), which is solved for each task s individually. After having obtained
the §, we retrain the f; on the entire training data set and use the determined
(3 for the final linear combination f(z,s) = Z?Zl Bs.ifi(x).

5 Experimental Methods

Data. The IEDB benchmark data set from Peters et al. [I2] contains quantitative
binding data (ICs¢ values) for various MHC alleles, including 35 human MHC
alleles. Splits for a 5-fold cross-validation are given. We evaluate the performance
of the proposed methods on a subset of this data set: binding data of nonameric
peptides with respect to human MHC. Peptides with ICs5¢ values greater than
500 nM were considered non-binders, all others binders.

Amino acid descriptors. A wide range of physico-chemical and other descriptors
of AAs have been published. Within this work we use encode each AA by 20
descriptors corresponding to the respective entries of the Blosum50 substitution
matrix [6].

Performance evaluation procedure. For performance evaluation we employ a two
times nested 5-fold cross-validation, i.e. two nested cross-validation loops. The
inner loop is used for model selection (kernel and regularization parameters) and
the outer loop for performance estimation. Performance is measured by averaging
the area under the ROC curve (auROC).

Learning curve analysis. To assess the performance dependence on the amount
of training data, WD kernel and WD-RBF kernel performances were analyzed
on allele A*0201 in 100 cross-validation runs to average over different data splits
to reduce random fluctuations of the performance values. In each run, 30% of
the available data was used for testing. From the remaining data, training sets
of different sizes (20, 31, 50, 80, 128, 204, 324, 516, 822, 1,308) were selected
randomly.
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Performance analysis of the improved WD kernel. Performances of the WD and
the WD-RBF kernel were analyzed on all 35 human MHC alleles contained in
the IEDB benchmark.

Performance analysis of the multitask kernel approach. Performances of three
multitask learning approaches using a) the WD kernel, b) the WD-RBF ker-
nel, and ¢) the WD-RBF kernel with an additional optimization step were also
analyzed on all 35 human MHC alleles contained in the IEDB benchmark.

SVM computations. We used the freely available large scale machine learning
toolbox Shogun [21] for all SVM computations. All used kernels are implemented
as part of the toolbox and will be part of Shogun-0.9.3.

Results and Discussion

The main goal of this work is to present novel ideas for kernel-based MHC-I
binding prediction, namely an enhanced string kernel [23] and a refined model
for multitask learning.

Improved WD Kernel

The more data is available, the easier it will be to infer the relation of the AAs
from the sequences in the training data alone. Therefore, the incorporation of
additional information can be expected to especially improve prediction accu-
racy in cases where less training data is available. We chose the allele with the
highest number of peptides, A*0201, to perform a learning curve analysis for
WD and WD-RBF. Mean auROCs with confidence intervals (o/+/n) over 100
cross-validation runs are shown in Figure 2l It can clearly be seen, that the
fewer examples are available for learning, the stronger is the improvement of the
WD-RBF over the WD kernel.

In a more comprehensive comparison, we assessed the performance of WD
and WD-RBF kernels on all 35 human MHC alleles from the IEDB benchmark.
WD-RBF outperforms WD for 24 alleles (Fig.[B]). This is significant with respect
to the binomial distribution: Assuming equal performance of WD and WD-RBF,
the probability of WD-RBF outperforming WD 24 out of 35 times is = 0.01.

Improved Multitask Learning Kernel

From the results in Figure[d we can make several important observations. First,
in accordance with the results of [7], we clearly see that multitask learning MTL
(WD) greatly improves performance compared to learning individual models
Plain (WD). Second, we observe a slightly improved performance of Plain, when
using the WD-RBF instead of the WD, which is consistent with the results
from the previous section. In accordance with Figure 2l improvements using
the new kernel are rather small as this dataset contains relatively many exam-
ples. Third, Figure @ shows that employing the enhanced multitask Kernel MTL
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Fig. 2. Learning curve analysis on MHC allele A*0201. Shown are areas under the
ROC curves averaged over 100 different test splits (30%) and for increasing numbers
of training examples (up to 70%). The training part was used for training and model
selection using 5-fold cross-validation.
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24

Fig. 3. Performance of WD and WD-RBF kernels on human MHC alleles from the
IEDB benchmark data set: The pie chart displays the number of alleles for which the
WD (green) and the WD-RBF (red) performed best, respectively, and the number of
alleles for which they performed equally (blue).

(WD-RBF) introduced in Equation ([[Il) improves performance compared to the
regular multitask learning kernel using the WD kernel. Note, that here, the G
(see Equation [[T]) are all set to (s, = 1. Lastly, we observe that the tuning the
Bs.1 using Equation further improves performance up to auROC = 0.909,
leaving us with the best performing method in our experiments, which slightly
outperforms the method presented in [7], who reported auROC = 0.903 for this
dataset.

We would like to point out that while the improvement over this previous
method is rather small (0.6% auROC), the ideas presented in this paper have the
potential to contribute to greater improvements for two reasons. First, [7] used
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Fig. 4. Performance (averaged over alleles) measured on the IEDB benchmark data set
for several methods. In Plain (WD)/(WD-RBF) classifiers are trained individually for
each task using the WD kernel, or the WD-RBF, respectively. MTL (WD) employs a
multitask kernel based on the WD, MTL (WD-RBF) compares instances using the WD-
RBF and MTL-B (WD-RBF) employs an additional optimization step (see Equation
[I2) to fine tune kernel components.

a different base kernel. Finding out, whether using this kernel as starting point
to our proposed improvements further boosts performance is subject to future
experiments. Second, the formulation presented in Equation [[2] is extensible to
an arbitrary number of kernel components. With more insight into the problem
domain, it might be possible to carefully engineer a multitask kernel with more
than two meaningful components, which could then be tuned using the proposed
formulation.

6 Conclusion

We have proposed two approaches to improve kernel-based Machine Learn-
ing methods for MHC class I binding prediction. First, a modification of the
Weighted Degree string kernel that allows for the incorporation of amino acid
properties. Second, we present an improved multitask learning approach based
on a new multitask kernel. Finally, we combine these two approaches, which
gives rise to further improvements.

Due to their high dimensional feature space, string kernels require a sufficient
number of examples during training to learn relationships between amino acids.
Standard kernels employing physico-chemical descriptors of amino acids, on the
other hand, cannot exploit the sequential structure of the input sequences and
implicitly generate many features, numerous of which will be biologically im-
plausible. Here, one also needs many examples to learn the subset of features
that is needed for accurate discrimination. The lack of training data for a large
fraction of all known MHC class I alleles, however, calls for approaches that
perform well even when training data is scarce. We could show, that incorpora-
tion of physico-chemical amino acid descriptors into the Weighted Degree kernel
yields significant improvements in the prediction of MHC-binding peptides. This
improvement is particularly strong when data is less abundant.
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We confirmed that multitask learning methods are beneficial for MHC class 1
binding prediction. Furthermore, we presented an enhanced multitask kernel that
incorporates the improved WD kernel and that has additional hyper-parameters,
which are in turn tuned using a variant of the nu-SVM.

Our results show that incorporation of prior knowledge of amino acid prop-
erties as well as a sophisticated approach to fine tuning the multitask kernel
yields improvements in kernel-based MHC-I binding prediction. While this work
focused on the classification into binders and non-binders, the proposed meth-
ods show promise also for the quantitative prediction of peptide/MHC class I
binding affinity.

Acknowledgments. This work was partly supported by Deutsche Forschungs-
gemeinschaft (SFB 685, project B1).
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Abstract. A major challenge facing metagenomics is the development
of tools for the characterization of functional and taxonomic content
of vast amounts of short metagenome reads. In this paper, we present
a two pass semi-supervised algorithm, SimComp, for soft clustering of
short metagenome reads, that is a hybrid of comparative and compo-
sition based methods. In the first pass, a comparative analysis of the
metagenome reads against BLASTx extracts the reference sequences
from within the metagenome to form an initial set of seeded clusters.
Those reads that have a significant match to the database are clustered
by their phylogenetic provenance. In the second pass, the remaining frac-
tion of reads are characterized by their species-specific composition based
characteristics. SimComp groups the reads into overlapping clusters, each
with its read leader. We make no assumptions about the taxonomic dis-
tribution of the dataset. The overlap between the clusters elegantly han-
dles the challenges posed by the nature of the metagenomic data. The
resulting cluster leaders can be used as an accurate estimate of the phy-
logenetic composition of the metagenomic dataset. Our method enriches
the dataset into a small number of clusters, while accurately assigning
fragments as small as 100 base pairs.

1 Introduction

Metagenomics is defined as the study of genomic content of microbial commu-
nities in their natural environments, bypassing the need for isolation and lab-
oratory cultivation of individual species[I]. Its importance arises from the fact
that over 99% of the species yet to be discovered are resistant to cultivation[2].
Metagenomics promises to enable scientists to study the full diversity of the
microbial world, their functions and evolution, in their natural environments.
Metagenomics projects collect DNA from environments that are characterized
by large disparity in sequence coverage and abundance of species distribution.
Sequencing technologies are used to survey the metagenomic content. The re-
cent ultra-high throughput sequencing technologies [3] produce relatively short
reads, 25-400 base pairs(bp), and enormous datasets, thereby creating new com-
putational challenges for metagenomics. It is critical that we develop fast and
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accurate tools for assembling and characterizing the phylogenetic provenance
and the relative abundance of different species in a metagenomic sample. Clus-
tering of metagenome reads is one such tool that provides deeper insight into
the structure of the community and hence, can be used to model the ecological
and population parameters. This pre-processing step can lead to faster and more
robust assembly by reducing the search space[T4].

2 Related Work

Methods for clustering reads proposed so far in literature can be categorized into
two main approaches; comparative(or similarity) and composition based. Com-
parative based methods align metagenomic sequences to close phylogenetic neigh-
bors in existing databases and hence depend on the availability of closely related
genomes in the database[7/6/TT]. Such methods fail to find any homologs for new
families. Composition based methods, on the other hand, distinguish between
clades by using intrinsic features of reads such as oligomer frequencies|[T0/T2IT3],
codon usage preferences[I7] or GC content[I6]. The strength of this approach is
that no reference database is required. However, oligomer composition of reads
shorter than 1 kbp carry insufficient signal to be able to differentiate between
species. Composition based clustering of metagenome reads complements the
comparative analysis[12].

The last decade has seen an explosion in the computational methods developed
to analyze metagenomic data. A number of methods for classifying(as opposed
to clustering) metagenome reads into taxon-specific bins have been proposed
in literature. Phylopythia[l(] is a supervised composition based classification
method that trains a support vector machine to classify sequences of length
greater than 1 kbp. Phymm uses interpolated markov models to characterize
variable length DNA sequences into their phylogenetic groups[12]. Its accuracy
of assignment drops drastically for short reads and reads from unknown species.
Nasser et al.[I4] demonstrated that a k-means based fuzzy classifier, trained us-
ing a maximal order markov chain, can separate 1kbp reads with a high accuracy
at phylum level. All the above supervised methods depend on the availability of
reference data for training. These methods assume the prior knowledge of the
number of classes. A metagenomic dataset may contain reads from unexplored
phyla which cannot be labeled into one of the existing classes.

Li et al. propose a composition based leader clustering algorithm that clus-
ters highly homologous sequences in order to condense a large database[9]. More
recently, Chan et al. developed a semi-supervised seeded growing self-organizing
map to cluster metagenomic sequences[I§]. It extracts 8-13 kbp of flanking se-
quences of highly conserved 16S rRNA from the metagenome and uses them as
seeds to assign the remaining reads using composition based clustering. Com-
postBin uses weighted PCA to project the DNA composition data into lower-
dimensional space, and then uses the normalized cut clustering to classify reads
into taxon-specific bins[20]. Likely-Bin is an unsupervised method for binning
short reads by taxonomy on the basis of their k-mer distributions[21].
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MEGAN, a metagenome analysis software system [I1], on the other hand, uses
sequence homology to assign reads to common ancestors based on best match as
given by BLAST (Basic Local Alignment Search Tool)[I9]. As most of the extant
databases are highly biased in their representation of true diversity, methods
such as MEGAN fail to find any homologs for new families. Most metagenomic
analysis methods until now have been relatively inaccurate in classifying reads
as short as 100 base pairs.

Increased amounts of polymorphism and horizontal gene transfer in
metagenome reads leads to conflicts in assembly and taxonomic analysis. Reads
from closely related species will most likely have homologous sequences shared
between clusters that fuzzify the cluster boundaries[I§]. Another characteristic
of these datasets is the incomplete and fragmentary nature of the metagenome
reads that reduces the quality of annotation. However, clipping low quality reads
such as chimeras can exclude potentially useful sequences. Hence, in light of the
new data, we need to adapt the traditional approaches to metagenome analysis.
Overlapping clusters generated by a soft clustering algorithm such as the one
proposed in this paper elegantly handle the problems associated with the nature
of metagenomic data while providing tolerance for the noise due to errors in
sequencing and fragmentation. The soft boundaries between clusters provide the
flexibility to capture the misplacements of reads due to polymorphism or over
representation of conserved regions, thereby providing interesting insights into
the data.

Our work is inspired by the works of Dalevi et al.[6] and Folino et al.[7]. In
[6], the authors propose a method for clustering reads based on a set of pro-
teins, called proxygenes. The protein hits are obtained by BLASTx (specialized
nucleotide-protein BLAST) of the reads against a reference proteome database.
Their work is extended in [7], where a method based on weighted proteins is
used to cluster the reads, resulting in overlapping clusters, each represented by
a proxygene. The underlying basis of the above methods is that a high sequence
similarity between the read and the proxygene implies phylogenetic proximity
of the organisms from which they originated [6]. Consequently, the taxonomic
annotation of the proxygene can be used in assessing that of the reads in the
cluster. Both the methods use the comparative approach and hence rely on the
use of a reference database that contains closely related genomes. However, in a
typical metagenome dataset, majority of the reads may exhibit no similarity to
any known sequence in the database. In such a scenario, these methods will fail
to assign these reads to any cluster.

In this paper, we propose a two pass semi-supervised algorithm for soft clus-
tering of short metagenome reads. We call our method SimComp; a hybrid of
similarity and composition based methods. The objective of our method is to
enrich the dataset into a small number of clusters such that reads within a
cluster are phylogenetically closer than reads from different clusters. Each clus-
ter is defined by a core consisting of reads that definitely belong to the cluster
and a fringe that has reads which may overlap with other clusters. We make
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no assumptions about the taxonomic distribution of the metagenome dataset.
SimComp makes use of a reference database, however is not dependent on it.

In the first pass, a comparative analysis of the metagenome reads against an
existing database, using BLASTX, extracts reference sequences from within the
dataset to form an initial set of seeded clusters. Reads that have a significant
match to the database are clustered by their phylogenetic provenance. In the
second pass, the global clade-specific characteristics(e.g. oligomer frequency) are
used to cluster the remaining reads by a soft leader clustering algorithm de-
seribed in [1]. Our algorithm groups the reads into overlapping clusters, each
with its read leader. The fringes of the clusters accomodate the ambiguity asso-
ciated with reads in the dataset. It automatically performs the selection of the
number of clusters. Essentially, the comparative analysis of reads avails apriori
biological knowledge in existing protein database to form initial set of seeded
clusters. Then, the composition based characterization of remaining fraction of
reads, thereby facilitating a means of exploring novel species.

3 An Overview of Methods and Algorithm

SimComp is based on the Adaptive Rough Fuzzy Leader Clustering presented by
Asharaf et al.[§]. The authors use rough set theory to define the clusters. Each
cluster has a core(lower bound) and a fringe(upper bound) and is represented
by a read leader. The core contains all the reads that definitely belong to the
cluster. Reads in the core are mutually exclusive between the clusters. There can
be an overlap in the fringes of two or more clusters.

3.1 Comparative Clustering

In the comparative pass of the algorithm, as in [7J6], we associate a list of protein
hits with each read, identified by BLASTx. Each hit consists of one protein, two
score values called bits and identities which describe the significance of read-
protein alignment, and a confidence value called E-value which describes the
likelihood that the sequence will occur in the database by chance. We further
use the measure defined in [7] (explained in the Appendix) for assigning weights
to the each of the proteins, such that proteins that cover more reads are assigned
smaller weights. Proteins that are below a predefined protein threshold form
the proxygenes, the rest are discarded. The proxygenes are clustered with the
corresponding best hit reads(as identified by BLASTx). For each cluster thus
formed, the most representative read is chosen as the leader(seed of a cluster).

3.2 Composition Based Clustering

The reads remaining after the first pass are clustered using the soft leader clus-
tering algorithm based on sequence composition. In this pass, each unclustered
read is compared with the existing read leaders. The similarity between the read
and the leaders along with the sequence thresholds determines whether the read
gets added to the core of some cluster or fringes of one or more clusters, or the
read itself gets added as a leader. The steps in SimComp are outlined below.
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3.3 Definitions

Cluster. Each cluster consists of a read leader, representative of the set of reads
in the cluster. A cluster is defined by the following parameters:

e Protein threshold (PT): Proteins with weight below the threshold form
proxygenes. Each proxygene is representative of a cluster with the cor-
responding reads(as identified by BLASTx). Rest of the proteins are
discarded. The weight assigned to a protein is measured by two score
values, i.e. bits and identities, and a confidence value called E-value[7].

e User defined core and fringe sequence similarity threshold for clusters
(RT¢ and RTF): If the similarity between the read and its nearest leader
is greater than RT¢, the read is added to the core of a cluster. Otherwise,
if the similarity between the read and the corresponding cluster leaders
is greater than RTp, the read is added to the fringes of one or more

clusters.
Sequence similarity. Each sequence is represented by a vector of oligomer
frequencies, v = (f1, fa...fq); where for each oligomer of length n, O =

(01,02...04) is the set of all possible oligomers, f; is the frequency of oligomer
pattern o; in the read, ¢ is the number of oligomer patterns of length n possi-
ble, i.e. 4™. Each vector is normalized relative to the length of the sequence.
S(x,y) gives the similarity between read = and leader y. We define sequence
similarity as the number of fixed length oligomers shared between x and y.

Fuzzy membership. U is the fuzzy membership of the read r; in a cluster
represented by Leader Ly.

N S(ri, L)

Uik = S(TivLj)

(1)

j=1

3.4 SIMCOMP : Outline of the Algorithm

The algorithm proceeds in two passes. Let R = (r1,72,...7,) , be the set of all
reads and N be the number of clusters at any point in the algorithm.

I. Comparative Clustering: In the first pass, metagenome reads are
grouped into clusters based on similarity of the reads to the proteins in
the reference database.

1. Extract all proteins that R has hits to(by BLASTx).

2. Assign weights to all the proteins based on equation described in [7] (see
Appendix). Proteins with weight below PT form proxygenes.

3. Each proxygene, along with the corresponding best hit reads (identified
by BLASTx) form a cluster.

4. For each of the clusters, find a read leader that is most representative of
the reads in the cluster, i.e. one whose sum of sequence similarity from
all the other reads in the cluster is maximum.

II. Composition Based Clustering: In the second pass, we use the simi-
larity measure based on oligomer frequency(defined above) to cluster the
remaining reads.
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1. All the reads from the original dataset that have not yet been clustered
form the remaining read set. For each read in the remaining read set,
compare the read with the existing read leaders. Depending on the value
of RT¢, RTr and sequence similarity between the read and the leaders,
one of the three cases can arise for assignment of the current read:

(a) Tt gets added to the core of a cluster. The current read gets added to
the core of a cluster represented by leader Ly, if max(S(r;, Lx)/k =
1..N) = D;p and D;, > RT¢.

(b) It gets added to the fringes of one or more clusters. r; falls into
the fringes of all the clusters L, for which S(r;,L,) > RTr and
S(’I“i,Lp) < RTc¢.

(¢) Otherwise, r; gets added as leader since it is outside the region de-
fined by any of the existing clusters.

4 Results

We implemented our algorithm in Matlab. All experiments were run on an
IBM X3550 server with 8GB memory. We tested our method on the simulated
metagenome datasets M1, M2 and M3, introduced in [6], each at a coverage of
0.1X. These datasets were sequenced at Joint Genome Institute using the 454 py-
rosequencing platform that produces ~100 bp reads. We present results from ex-
periments on M1 dataset only due to constraints in space. The characterization
of reads at the taxonomic level of an organism for M1 is as shown in Fig [l We
used the default parameters of BLASTx, and NR[I5] (Non-Redundant) protein se-
quence database as our reference. We have conducted experiments for varying val-
ues of user-defined thresholds(RT¢, RTF) and lengths of oligomers. Based on the
evaluation of our method on M2 and M3, we observed that proteins with weight
below the 1°¢ percentile cover all the taxonomies that reads belong to. Therefore,
we selected the 1% percentile of weight as our protein threshold. The most time
consuming component of SimComp is generating the BLASTx output. Once this
output has been generated, the algorithm performs a single pass over the BLASTx
output and the dataset to cluster the reads and hence is very efficient.

4.1 Accuracy across Taxonomic Ranks

In this paper, we use two measures to evaluate the effectiveness of our method:
Mode Cluster Purity and Leader Cluster Purity. Mode Cluster Purity is defined
as the maximum fraction of reads in a cluster belonging to the same taxon[7]. We
define Leader Cluster Purity as the fraction of elements in the cluster belonging
to the same taxon as the read leader. This measure determines how well our
algorithm models the problem of classifying reads from species that have never
been seen before. Depending on the elements of the cluster that we evaluate
on, cluster purity can be further divided into core cluster purity(all the reads
in the core of the cluster) and total cluster purity(all the reads in the cluster).
In evaluating both the measures, we take into account only the non-singleton
clusters, as a singleton cluster has a cluster purity of 1.
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- Frochlorococcus marinus str. MATL2A

- Bacillus weihenstephanensis KBAB4

- Herpetosiphon aurantiacus ATCC 23779

I L actobacillus reuteri 100-23

™ sikaliphilus oremlandii OhiLAs

|:| Caldicellulosiruptor saccharolyticus DSM 8903
:Clnslridium phytofermentans 15Dg

:' Halothermothrix orenii H 168

[ ] cClostridium cellulohyticum H10

Fig. 1. Organism level characterization of M1 dataset

In Fig[2l we plot the taxonomic distribution of reads in M1 at phylum, class,
order and family level(RT¢ = 15 and RTr = 12 and length of oligomer = 6) as
predicted by our algorithm. To measure the taxonomic distribution, all the reads
in the cluster are assigned the same taxa as the read leader. Our method yields
satisfactory results at all ranks. Hence, leaders of the clusters can be used as an
accurate estimate of the phylogenetic composition of the metagenome. In [6lf7],
only those reads that have significant hits in the BLASTx output are selected
for further clustering, the remaining reads are discarded. As opposed to this, in
our method, we cluster all the reads in the dataset, even if no significant hits to
the reference database are obtained. In Fig Bl we have plotted three measures
for dataset M1 across all taxonomic ranks. By definition, mode cluster purity is
greater than or equal to leader cluster purity. From the plot, we conclude that
the cluster purity of the core is higher than that of the entire cluster at all ranks.
This asserts our algorithms ability to filter out low quality reads into the fringe
of a cluster.

4.2 Length of Oligomer

Oligomer frequency of genomes has been shown to reflect clade-specific charac-
teristics and thus form a genome signature[d]. Teeling et al.[5] have shown that
tetranucleotide frequency has a higher discriminatory power than GC content for
phylogenetic grouping of reads. We have evaluated the accuracy of assignment
of reads to clusters for a range of oligomers varying from trimers to hexamers.
Fig M shows the plot of percentage of non-singleton clusters with purity values
in the range [0.1,1] for varying lengths of oligomer. From our experiments, we
conclude that hexamers have the best discriminatory power for clades at higher
taxonomic ranks. With reads as small as 100 bp, not many reads cross that
high a similarity threshold for hexamers. This explains the increase in number
of singleton clusters with the increase in read threshold.



120 S. Prabhakara and R. Acharya

phylum level
Chilorofiexi

Firmicutes
Cyanobacteria I True distiution
i SIMCOMP distribution

0 0.5 1 15 2 25
Occurrences < 10°

class level

Clostridia
Bacilli
Chlorofiexi (class) I Tru= distribution
root [ 1sIMCOMP distribution
0 05 1 15 2
Cecurrences « 10
order level

Herpetosiphonales
Lactobacillales
Clostridiales
Thermoanaerobacterales E
Halanaerobiales

Bacillales I Tru= distribution
Prochlorales [ SIMCOMP distribution
0 2000 10000 15000
Occurrences
family level

Thermoanas robacterales;

Herpetosiphonaceas ﬁ

Bacillaceas
Lactobacillaceae

Clostridiaceae

Prochlorococcaceas

I True distribution
[ 1sIMCOMP distibution

L] 2000 4000 6000 B000 10000 12000
Occumrences

Halanaerchiaceae

Fig. 2. Taxonomic Distribution Across Ranks (Phylum, Class, Order, Family



SIMCOMP: A Hybrid Soft Clustering of Metagenome Reads 121

" Cluster Purity

- 1 5

§ I Total Mode
= - [ core Mode
5 08¢ [—_IcCore Leader
"6 |-

& 06

o

5

o

(%]

< g4l

5

[Z]

3

O 0.2t

@

o

&

[

-

=

phylum class order family genus organism
Taxonomic Ranks

Fig. 3. Average cluster purity across taxonomic ranks for (RT¢c = 15 and RTr = 12
and length of oligomer = 6, Number of Clusters = 2430)

o0

p

80f

70!

60|

50¢

40}

307

% of clusters with purity >

20¢

10¢

ol L L L L L
o 01 02 03 04 05 06 07 08 09

Purity p

Fig. 4. Plot of percentage of non-singleton clusters for different values of purity with
RTc = 25 and RTr = 22 and varying values of oligomers

4.3 Read Threshold

In our method, sequence similarity between two reads is measured as a function of
number of fixed length oligomers shared between the two reads. A read is added
to the core of an existing cluster only if the read similarity between the read
and the cluster leader is above a certain threshold. Fig Bl plots the mode cluster
purity for different values of read thresholds. The curve for RTc = 25 clearly
dominates the others. This is justified as clusters with large read thresholds are
smaller in size and hence are likely to have a high purity. Table.1 summarizes
the results for a fixed oligomer length of 6 and varying read thresholds. Cluster
purity increases with the increase in read thresholds, for the reasons cited above.
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Table 1. Summary of the results of experiments for oligomer length = 6 and varying
Read Thresholds

RTc 10 15 20
RTr 8 12 17
Number of Clusters 1482 2430 14250
Maximum size of clusters 320 415 288
Number of singleton clusters 6 67 5865
Reduction factor 0.042 0.068 0.4

Mode Cluster Purity at Phylum level 79.93 88.14 96.95
Mode Cluster Purity at Organism level 40.88 61.75 88.41

5 Conclusion

In this paper, we proposed SimComp, a soft clustering method that allows com-
plete and accurate characterization of short metagenome reads that come from a
spectrum of known and unknown species. We clustered a simulated dataset using
a hybrid of comparative and composition based method. The overlap between
the clusters accomodates the ambiguity associated with metegenomic data. It
does not require assembled contigs or training on a reference set, nor does it
make any assumptions on the number of species or the nature of the dataset.

The oligomer composition of reads as short as 100 bp does not provide suf-
ficient signal to differentiate between species. For best results, we would like to
test our algorithm on metagenome datasets with larger read length. Phenomena
such as polymorphism and horizontal gene transfer can complicate phylogenetic
clustering. As proposed in this paper, the soft boundary between clusters has
the ability to capture such misplacements providing interesting insights into the
data. We believe soft clustering has a promising role in classifying metagenome
reads and we wish to investigate its scope in the future.
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Appendix

As in [7], from each hit that BLASTx outputs for a given read r, we extract
a 4-dimensional vector h = (p; Sp;Id; E) where p is the matched protein, Sp
the bit score, Id the identities score, and E the E-value of that match. For a
read r let Hit, be the sequence, sorted in increasing order of E-values, of its hits.
Denote by 71, ..., 7, the set of reads r with non-empty Hit,. Let P = {p1,...,pn}
be the set of proteins occurring in U2, Hit; For each protein p € P, the set H,
is defined as:

Hy ={h € UL, Hit;|h(1) = p} (2)
where h(1) denotes the first component of the hit vector h. Thus H,, consists
of the selected hits containing p. We use the equation described in [7] to assign

weights to the each of the protein hits that BLASTx outputs. Weight of protein
p is defined as:

1 mazx score — Sp(h)
=1 H Z 100 100 — Id(h 3
o - [| p| Py ( max score — min Score + ( )ﬂ 3)
€p

where H, consists of hits containing p, Sg(h) and Id(h), the bit and identity
score of hit h respectively. For further details, we refer the reader to [7].
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Abstract. We describe herein the results of implementing an algorithm
for syntactic pattern recognition using the concept of Finite Inductive
Sequences (FI). We discuss this idea, and then provide a big O estimate
of the time to execute for the algorithms. We then provide some empir-
ical data to support the analysis of the timing. This timing is critical
if one wants to process millions of symbols from multiple sequences si-
multaneously. Lastly, we provide an example of the two FI algorithms
applied to actual data taken from a gene and then describe some results
as well as the associated data derived from this example.

Keywords: Pattern Recognition, finite induction, syntactic pattern
recognition, algorithm complexity.

1 Introduction

Despite the fact that there has been extensive research and development within
the pattern recognition topic, new problems continue to emerge that require more
efficient revisions of existing techniques and, occasionally, new techniques to solve
existent problems. For example, the problems associated with finding motifs [IJ,
[2] are particularly difficult due to mutations, unknown boundaries, etc. While
many new problems continue to emerge that could potentially benefit from the
use of pattern recognition, but the current effort reported herein is an extension
with applications of previous work [3] in reference to the field of bioinformatics,
where it is often the case that genetic data is processed for a vast multitude of
diverse purposes. Regardless of the purpose of the research, bioinformatics often
entails processing genetic data in the form of strings consisting of the symbols
A, C, G, and T as well as equivalent protein sequences. This type of string is
suitable for syntactic pattern recognition using finite inductive (FI) sequences,
but again there are some issues that need to be addressed, and we will address
some of them later in this paper. It is the purpose of the FI algorithms [4] to
provide a general technique to achieve pattern recognition when comparing finite
strings in order to determine a) what patterns exist in the examined strings, and
b) whether or not subsequent strings contain similar or identical subsequences
in the same form as such exemplar substrings are known by the algorithms.

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 1254136/ 2010.
© Springer-Verlag Berlin Heidelberg 2010
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2 Review of FI Algorithms and Theory

The idea [4] is to introduce a ‘ruling’ as a finite machine that can, when provided
a short driving sequence, generate a sequence that is much longer. The ‘rules’
called implicants contained within the ruling come from the processing of a
finite sequence of symbols constructed from the designated alphabet. We further
stipulate that the choice of any symbol at any particular position depends upon
only the symbols at the previous n points. The least such n is called the inductive
base (IB) for the sequence. We define an implicant as the pair (w, p) consisting
of a word w over the alphabet and a single member p of that alphabet. We
also require that w occurs at least once, and whenever w occurs, then it is
followed immediately by p. We express this relationship as w—p, and call w the
antecedent and p the consequent. We also assume w is in reduced form: there is
no proper terminal segment that is the antecedent of another implicant. We can
state the following simple properties:
— For any finite sequence, the IB is the maximum length of the antecedents in
the reduced form implicants.
— If an FI sequence has inductive base A and contains b symbols in the alpha-
bet, then the upper bound for the reduced form implicants is b4.

For purposes of simplicity, we will assume there is a distinguished symbol S that
serves as the start symbol for all FI sequences. We also state without proof that
if the original implicants (called prime implicants) generated from the sequence
have inductive bases that differ among themselves, then it is possible to reduce
the inductive base b of the implicants to a value 1 < IB < b.

2.1 Generating and Applying the FI Algorithms

There are two algorithms that make up the FI system. These are called Factoring
and Following. Factoring is the process whereby a storage structure called Ruling
is generated based upon an a’priori IB, and Following is the process whereby the
ruling is applied to unknown patterns.

Example 1: Factoring. Suppose we have a sequence aactgctagt. We append
the start symbol and then begin the process of factoring, and we will allow the
IB to be as large as necessary to accommodate all of the implicants in one level
(called Prime Implicants).

Input Sequence: Saactactagt (1)

Implicants: S — a, Sa — a, aa — ¢, ac — t, ¢t — a, aacta — ¢, tac — t,
tacta — g, and g — t

As can be seen from the implicants, the IB is 5, and there are other implicants
with IB less than 5, so we can reduce these prime implicants to new implicants
with IB say 2. We do so in the following steps:

Step 1: We note that the following implicants meet our new IB value of 2:
S —a,Sa— a,aa — c,ct - a,ac > t,g — t (2)



The Complexity and Application of Syntactic Pattern Recognition 127

This leaves the symbols in the string from (1) as follows in (3) where the
consequents not kept (pushed out) are shown in Level 1:

Level 1S t ¢ ag 3)
Level0Saactactagt

Step 2: We apply the same process of Step 1 to the symbols remaining in Level
1. Level 1 is called the residual for Level 0. This produces the following rules (4)
with an empty residual:

S—tt—c,c—oaa—g (4)

From (2) and (4) we can now define the ruling with inductive base 2 for the
sequence aactactagt with driving sequence S.

Level 1 S -t t ¢ ¢—a a—g
Level 0 S — aSa—aaa —cct >aac —>tg—t

()

Example 1: Following. Suppose we have a new sequence Saactggacattac and
we want to process it against our known sequence as represented by the ruling
in Example 1.

Step 1: We apply all implicants of (5) in Level 0 to see for the given antecedents
if the consequent matches. If it matches, then the consequent is deleted at the
end of the processing for this level. The symbols bolded indicate that the symbol
is deleted.

Saactggacattac

Step 2: We apply the implicants of (5) in Level 1 to the residual of Step 1.

Sggacattac

This results in the residual string S g g a ¢ t t a c. One cannot say much about
the two strings as how they relate to one another, since they do not represent
much data; but we can say in general that the two sequences are not very similar
to one another. At this stage, we could add the sequence of Example 2 to the
ruling, if it was important. In general, the Factoring process can deal with n
sequences simultaneously, so we can deal with permutations of sequences if they
are important. We can also make the rules non-deterministic.

3 Algorithm Overview

Before carrying out an empirical analysis of the implemented FI algorithms, we
first consider how the algorithms were implemented so the analysis will be un-
derstood. Implementation decisions for the general version of the algorithm were
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based on the following two principles: (1) the performance of the algorithm will
be greatly enhanced if we can ensure linear runtime, and (2) the algorithm must
be implemented so it can be applied to strings of considerable length without
causing problems related to memory consumption.

3.1 Factoring Analysis

The first step in the factoring portion of the algorithm is to read each of the
valid symbols in the alphabet from a file, store them in an array that holds
all the alphabet symbols, and assign each one a numerical value based upon the
index where the symbol was stored. The total number of symbols in the alphabet
is b, called the base, due to the fact that alphabet sequences are treated as a
numbers represented in the corresponding base number system for the purposes
of hashing. In order to implement hashing, a second array of size b'Z is created
(IB again is the maximum antecedent length defined as inductive base) with
each index representing a possible rule antecedent. All indices are initialized to
a null value that indicates that the antecedent does not yet have a corresponding
consequent. Symbols from the initial string are read one at a time and placed in
a queue that maintains the previous symbols read, up to the maximum value of
inductive base.

Once the queue fills for the first time each new symbol that is read is treated
as the consequent of the antecedent that is implied by the contents of the queue.
The sequence of symbols that currently fill the queue are hashed to determine
the index of the corresponding antecedent. The current symbol is then compared
to the contents of that index; if the index is empty the consequent is placed at
the corresponding index. If the index already contains a matching consequent
no action is taken. If the index contains a consequent that does not match,
the current symbol in the index is given a special value that indicates that the
antecedent represented by that index is not a valid antecedent. The indices that
are generated by each hash are written to a temporary file each time a hash
occurs to serve as input for the next step of the process.

With every possible antecedent having been marked as empty, invalid, or
containing a valid consequent, the process of generating the residual for the next
level of processing can begin. Each hash index that was previously written to the
temporary file is read while simultaneously examining the symbol from the initial
string that was being examined when the hash occurred. If the hashed address
points to an antecedent index that has been flagged as invalid, the symbol is
written to a file as part of the string that will be factored in the next level. With
the new string generated for the next level, the remaining task is to output
the valid rules based upon the antecedents that have valid consequents in their
reduced form. In order to reduce each rule before outputting it, the task of
examining every antecedent that could keep the rule from being reduced must
be performed (i.e. the rule BA — B can be reduced to A — B as long as AA
— B, BA — B, CA — B, and DA — B are all true or do not exist if the
input alphabet consists only of A, B, C' and D). It is sufficient to state that this
can be accomplished by examining the contents of the array that symbolizes all
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antecedents once for each reduction that is to take place (i.e. a maximum IB of
length three would require two passes through this array to find any rules that
can be reduced to IB of length one). The entire process described to this point
must be repeated for each ruling level that is generated with the exception of
loading the alphabet, which occurs once.

3.2 Following Analysis

The following process is far simpler in design than factoring. The alphabet must
still be initially loaded, and the array to represent all possible antecedents must
still be initialized so that each antecedent is empty. The first ruling level is read
from a file and each valid rule that was found is processed so that the consequent
is placed in the appropriate index that corresponds to its antecedent. Once the
array of antecedents has been filled, the process of reading the target string one
symbol at a time, similar to reading the input string in factoring, is performed,
in the same manner as the factoring process. The only difference is that an
empty antecedent or one that contains a consequent that does not match the
current symbol will result in the current symbol being written to a file as a
residual for this level. Each new corresponding level requires the repetition of
this process with the ruling appropriate for that level and the new target string
that was generated by processing the previous target string using the previous
level’s ruling. Thus when the process is complete the user is left with a file that
contains all of the symbols that did not conform to any implicants in the previous
level of the ruling.

4 Performance Analysis

With a general understanding of how the factoring and following processes are
implemented, we consider the anticipated performance of the algorithm. We are
interested in determining if the algorithm as described can be processed in linear
time. The size of the input is the primary consideration, and expected runtimes
are expressed in terms of input volume.

The factoring process is the more complicated and will necessarily have the
longest performance time. The initial pass through the alphabet can be repre-
sented in terms of b, the number of valid symbols in the alphabet (also known
as the base). The size of the array to represent all possible rule antecedents,
namely b/Z, must be counted each time the array is examined. This occurs once
when initializing each antecedent as empty, and once for each pass to determine
if rules can be reduced (IB - 1). Thus we can represent this element of perfor-
mance by the formulation (IB - 1) (b'Z) + b/B. The length of the initial string
we will designate by N. The entire length is processed three times for each level:
once while scanning symbols to generate consequents, once while examining the
hash addresses that were output, and a third time while examining the hash
addresses. This requires 2N time. Taken together, the algorithm’s performance
for processing a single level can be described by b + b/ + (IB - 1) (b'8) +
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3N. We know this process is repeated with each ruling level L that is generated,
except when loading the alphabet. This estimate is shown in (6).

b+ LB+ (IB —1)(b"P) + 3N] (6)

For following we need to determine the elements that are factors in its expected
performance. The alphabet must still be loaded, and this can again be expressed
by the variable b. The antecedent array still exists and can still be represented
by b'B: however, the number of times that this array is examined differs. The
array is still initialized once while processing the current level, but now it is only
examined one additional time as rules are expanded back into their maximum
antecedent form. This can be represented simply as 2b75. The length of the
compared string, N, is only examined once per level in the process of following,
but we must define a new variable R that corresponds to the number of rules in
the ruling for the level, since each rule must be loaded into the antecedent array.
This yields the upper bound on time complexity of b + R + 2b/% + N for each
level and (7) for all levels.

b+ LR+ 2b'5 + N] (7)

Expressing these equations in terms of Big-O notation yields the equations (8)
and (9) for the factoring and following respectively.

O(b+ L[b'E + (IB —1)(b'B) + 3N)) (8)

O(b+ L[R +2b'5 4 N)) 9)

We can substitute b/Z in for R since this value is the maximum value. Next
expanding (8) yields (10), and with the substitution, (9) can be rewritten as
(11).

Ob + L[IBV'? + 3N]) (10)

O(b+ L[3b"P + N]) (11)

While the term b is variable depending on the problem domain, the value remains
constant within any single problem domain (i.e. the algorithm is not designed
to apply rulings to strings that are formed from a different alphabet than the
string that was examined during the factoring process). Furthermore, the algo-
rithm always utilizes the same maximum IB in the following process as the one
used in the factoring process (i.e. the algorithm may be applied to strings of
any length, but the maximum IB does not vary between the factoring and fol-
lowing processes). It is therefore possible, based on these facts and the fact the
variables are independent of N, to treat these variables as constants. Removing
these variables, along with all other constants from both equations, produces the
equation (12) for both factoring and following.

O(L + LN) (12)
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The worst-case scenario of the FI Algorithm can be determined by examining
cases where the process of factoring is applied to a string that contains few
recognizable patterns or no patterns at all. In the latter case it is evident that
the only rule that can possibly be generated is the rule that defines those symbols
that start the given string. When this type of string is factored it will create a
situation where the number of levels in the ruling will be 1;’ bounded by N if b
is small. Knowing this fact leads to the conclusion that the worst-case scenario
of the FI Algorithm is one where the factored string is entirely random, and the
expected performance time (O(L + LN)) is quadratic (O(N + N?)). We now
show a strategy to prevent this scenario from occurring.

The expected performance of (12) for the factoring and following portions of
the algorithm can be reduced to O(IN) under one of the two following conditions:
1) we can ensure that the term L remains a constant, or 2) we can ensure that L
remains an insignificant factor when compared to the variable N. It is possible
to begin to satisfy the second condition by restricting the strings being factored
by the algorithm to only those that are believed to have significant underlying
patterns. However, this is idealistic in the sense that the randomness of the
factored string would have to be determined beforehand in order to ensure that
this fact remains true. It is a simpler task to allow the user to place an upper
bound on the number of levels that can be produced by factoring the given
string, thus ensuring that L remains a constant that is equal to or less than this
upper bound; it is this strategy that is employed to ensure a linear runtime of
the proposed algorithm.

5 Empirical Performance Test

The following subsections discuss the empirical results of the experiment in order
to determine the accuracy of the predicted expectations that both processes will
perform with linear performance dependent upon the number of input symbols
N.

5.1 Experiment Design

The experiment is designed to allow for the testing of whether or not the factor-
ing and following are producing linear runtimes. In order to fulfill these testing
requirements, the processes of factoring and following have been executed in-
put data sizes increasing by an order of magnitude (i.e. string lengths of 103,
104, 10°, 105, 107, and 108 symbols) using an alphabet that consists of four
symbols: A, B, C, and D. In order to determine linear performance regardless
of the maximum IB used two IBs (5 and 10). The maximum number of levels
that can be processed has been restricted to 100 levels in all cases, and each
process is implemented in C++ with the timing mechanism built into the code
itself.
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5.2 Timing Results

Ten repetitions were done for each experiment with times recorded to the near-
est millisecond. Fig. 1 and 2 provide summary results of these experiments for
factoring and following respectively. The first task in analyzing the resultant
data from the experiment is to determine if the factoring portion of the algo-
rithm is indeed producing slower execution times than the following portion of
the algorithm. The graphical data suggests that the factoring process is produc-
ing slower times compared to the following process, but the question remains as
to how much slower. In analyzing the raw data we obtained from the repeated
experiments, we can compare the performance of the factoring portion to the
following portion of the algorithm. Our empirical results show that the factoring
process required 5.82 times the execution time of the following process when we
are dealing with the longer antecedents and a value of 2.49 times for the shorter
antecedents.
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Fig. 1. Data for the Factoring process

The data recorded in both processes that correspond to a maximum IB of
length five clearly produced a linear progression (as demonstrated by Fig. 1 and
2), despite the fact that there is an increase in the slope of the line that corre-
sponds to the factoring process once the length of the target string exceeds 10*
symbols. A linear progression is also reached in both processes using a maximum
IB of length ten, but the progression does not become completely linear until
the length of the target string has reached 10 and 10° symbols for factoring and
following, respectively.
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6 Application of FI Algorithm to Actual Data

Consider the nucleotide subsequence obtained from [5] shown in (13).

GTGCGATTTTTTTCTCCTCCTTTTTTTACCCTCCCGTT
TTTTTCTTTTCTTTTTTTTTTCCCTATCCTTTTTTTGT (13)

This subsequence begins at the 244" position in the sequence consisting of some
21,069 symbols. Factoring this sequence we obtained 16,916 rules, meaning that
the sequence has 4,153 nucleotides that have duplicate antecedents. This implies
20 % of the subsequences overlap at least with one other subsequence. The
ruling built consists of 18 levels, and since this percentage comes from a multi-
level ruling, this commonality between subsequences may be due to elimination
of symbols at one level producing homogeneous antecedents at the next level.
Fig. 3 shows the number of implicants by level. From Fig. 3, we see that the
number of implicants stays pretty constant through level 8, and then it grows
quickly as the levels increase. This growth can be attributed to the fact that the
sequence becomes choppier, that is, the repeated runs of patterns are removed
by level 9 and so with more disparity, fewer identical antecedents with differing
consequents contradict one another.

From Fig. 3, we see that the number of implicants stays pretty constant
through level 8, and then it grows quickly as the levels increase. This growth can
be attributed to the fact that the sequence becomes choppier, that is, the re-
peated runs of patterns are removed by level 9 and so with more disparity, fewer
identical antecedents with differing consequents contradict one another. For the
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Fig. 3. Number of implicants per each level in the ruling

next step, we factored the subsequence in (13) and used this as the ruling with
an inductive base of length 3, and then processed the entire sequence. Fig. 4
provides the results of this activity. The light gray cells are those that belong to
(13), and the dark gray are those symbols that have an implicant matching one
in the ruling but are not in the subsequence of interest. The basis for this type
of application is well treated in [6].

C G CGCGGUC A T & 66 € 6 666G CcC Cc G T €
- G G CT T € I T C . T G G - T G C G ATTT
TETEET T C ECRETENCECETE T TR T CINCET S CHC
CREGERTET T T T ST T G T T T T T TR TS T T
CRICHGETAEAN TG CSTEN T T T T T i A A A
A A A GG A G - T € & C - A G T G G
G - T GC A GCGOCOCAGG C G

Fig. 4. Nucleotide sequence starting at position 201 and ending at position 375

Besides the subsequence in Fig. 4, there are other matches. Fig. 5 shows two of
the longer ones. The first subsequence in Fig. 5 starts at position 54 and the sec-
ond starts at position 935. Since the identification of a matching substring is not
difficult, we provide an extension to the matching under random permutations
of the subsequence being used to build the search ruling. We modified 10 % of
the symbols in the substring we were looking for and then followed the unknown
string with a ruling of inductive base 3 and another with inductive base 9. We
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Fig. 5. Two subsequences found by the ruling with white indicating no match

provide the results in Fig. 6, where we only show that portion associated with
the location of the substring we are trying to find. In Fig. 7 we show another
contiguous substring from the unknown string, so that the density of the two
areas can be compared. Comparing the results from these two test blocks, we
obtain the results shown in Table 1. We have also compared the complexity of
such nucleotide sequences by considering their representation within a ruling as
a measure not unlike Kolmogorov complexity [7].

Fig. 6. Results of Following when 10 % of the symbols are changed. White indicates no
change, dark gray are symbols recognized by ruling of IB of 9, light gray are recognized
symbols by ruling of IB 3, and 50 % gray are symbols recognized by both rulings.
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Fig. 7. Results starting from position 450 in the unknown sequence where the color
key is identical to that of Fig. 6

Table 1. Comparative counts for the data of Fig. 6 and 7

IBIB

3 9 Both White
Fig. 622 7 26 30
Fig. 726 1 4 54

7 Conclusion

The results of this work have been to provide a comparative basis for the timing
of an algorithm that will recognize substrings of symbols, even under mutation.
We have shown by logical argument as well as by empirical data that the algo-
rithm operates in linear time with the size of the input data sequence being the
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driving factor. Also as shown in the last section in Table 1, the short inductive
base provides too many extraneous symbol matches, while the long inductive
base provides too few. There must be another inductive base that would be
most appropriate. But even with these two selections, and the selections were
made to first yield a ruling with only one level (IB = 9) and as many levels as we
could obtain (IB = 3), the results provide an upper and lower bound. We still
have more work to do to refine this algorithm to provide a more robust result for
processing large sequences of symbols from a small alphabet. It is clear that the
longer the sequence, the more potential there is for conflict when the inductive
base is fixed to a reasonable value, perhaps 5 to 7 symbols. We have shown that
such conflicts indeed do exist in the early levels of a ruling, limiting their growth.
Lastly, we believe that the approach of non-deterministic rulings may provide
an additional benefit for this kind of processing.
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Abstract. Sequence motifs are of greater biological importance in nu-
cleotide and protein sequences. The conserved occurrence of identical
motifs represents the functional significance and helps to classify the bi-
ological sequences. In this paper, a new algorithm is proposed to find all
identical motifs in multiple nucleotide or protein sequences. The proposed
algorithm uses the concept of dynamic programming. The application of
this algorithm includes the identification of (a) conserved identical se-
quence motifs and (b) identical or direct repeat sequence motifs across
multiple biological sequences (nucleotide or protein sequences). Further,
the proposed algorithm facilitates the analysis of comparative internal
sequence repeats for the evolutionary studies which helps to derive the
phylogenetic relationships from the distribution of repeats.

Keywords: Sequence motifs, nucleotide and protein sequences, identi-
cal motifs, dynamic programming, direct repeat and phylogenetic
relationships.

1 Introduction

A conserved pattern of a nucleotide or amino acid sequence with a specific bi-
ological function is known as a sequence motif and is becoming increasingly
important in the analysis of gene regulations [I]. Research on protein and DNA
sequences revealed that specific sequence motifs in biological sequences exhibit
important characteristics [2]. In DNA sequences, the sequence motif act as spe-
cific binding sites for proteins (nuclease, transcription factors, etc.) and RNAs
(mRNA splicing, transcription termination, etc.) [I]. Further in proteins, these
motifs act as enzyme catalytic sites, prosthetic group attachment sites (haem,
pyridoxal phosphate, biotin, etc.), metal binding amino acids, cysteines involved
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in disulfide bonds or regions involved in binding a molecule [3]. In the recent
years, due to the exponential rise in the volume of nucleotide and amino acid
sequences in their respective databases, identification of sequence motifs using
experimental methods is impossible. In addition, many newly discovered pro-
tein sequences do not share a global sequence similarity with a known protein.
However, they share a short stretch of conserved sequences which represent the
characteristics of similar domains [4]. Over the past years, these problems have
been addressed using newly developed computational methods [5],[6],[7]. To this
end, an efficient algorithm is proposed using the dynamic programming.
Earlier studies indicate that the transcription factor (TF) binding sites are
well conserved motifs of short DNA sequence stretch. The motif size ranges from
5 to 35 nucleotides long and occur in a well-ordered and regularly spaced man-
ner [§],[9]. For example, in eukaryotes the cis-regulatory module (CRMs) usually
occurs in a fixed arrangement and distributed over very large distances. Further,
the repeat occurrence of this binding site will help for the alternate modes of
binding by the same protein which leads to the regulation of transcriptional ac-
tivity. Gene duplications and recombination events are thought to be responsible
for this repeat occurrence of sequence motifs. The distribution of repeats in ar-
chaea indicates that they have an intermediate relationship between prokaryotes
and eukaryotes [I0]. In DNA, these repeats are mainly classified into two groups
such as tandem and interspersed repeats. The tandem repeats are an array of
consecutive repeats and often associated with disease syndromes [II]. On the
other hand, interspersed repeats are copies of transposable elements located at
various regions in a genome. Moreover, the repeats that are separated by inter-
mediate sequences of constant length occurring in clusters are referred to short
regularly spaced repeats (SPSRs) [I2]. Generally, these short repeats indicate
the position of deletion and precise removal of transposable elements [13], where
as, longer identical repeats are responsible for class switching in immunoglobu-
lins [14]. Further, tandem repeats in telomers are involved in the protection of
chromosome end and its length. In some cases, the internal sequence repeats in
proteins adopt similar three-dimensional structures [15],[I6]. However, further
work is necessary to ascertain this aspect. In addition, the internal sequence
repeats are observed to be associated with structural motifs or domains in the
class of repeat protein families [I7]. Further, the repeated sequence motifs play
an active role in protein and nucleotide stability, thus, not only ensuring proper
functioning [I8] but some times cause malfunction and disease [19],]20].

1.1 Existing Algorithms

In the post genomic era, many algorithms are available in the literature to find
the sequence motifs and repeats in biological sequences. However, these algo-
rithms significantly vary in their methodologies. In general, the motif finding
algorithms are divided into two major groups based on their working principle.
The first group of algorithms identifies the motifs with reference to the anno-
tated motif database. For example, the programs InterProScan [5], Motif Scan
[21], ScanProsite [22] and SMART [23] search for motifs against protein profile
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database such as Prosite, Pfam, TMHMM etc. In addition, the above mentioned
programs are limited to only protein sequences. Further, the program MOTIF
[24] identifies the motif in both protein and DNA sequences using the above
profile databases as well as user defined libraries. In contrast, another set of
programs such as MEME [6], TEIRESIAS [7], ALIGN ACE [25], DILIMOT [26]
and Gibbs Sampler [27] identify the motifs without any reference database. How-
ever, they use some statistical methods to identify the motifs and represent the
conserved regions of the motifs in the form of sequence patterns using regular
expressions or sequence logos. It is to note that most of these algorithms lack in
the limitation of input sequence size (TEIRESIAS and ALIGN ACE take around
3,50,000 residues and the program MEME limits only to 60,000 residues).

The proposed algorithm has been developed by keeping the above lacuna in
mind and uses the dynamic programming method implemented earlier [2§] to
identify all identical motifs present in multiple biological sequences (nucleotides
and protein). To the best knowledge of authors, there is no such algorithm exists
in the open literature. The proposed algorithm can be effectively used for the
comparative identification of direct repeat motifs in several biological sequences.
However, inorder to reduce the computational time, the total number of residues
for a single run is restricted to a maximum of 10,00,000 residues.

2 Methodology

The proposed algorithm identifies all motifs which are present in a given set
of biological sequences. Since, the problem of finding identical motifs in mul-
tiple sequences is similar to the problem of finding identical internal repeats
in a sequence, when all sequences are concatenated with a delimiter or special
character (z), where z ¢ > (> represents a set of alphabet characters in the
input sequences). The criteria for the identical motif should be an exact pattern
repeated more than one sequence. Thus, we will refer the identical motif as iden-
tical repeat in the following sections. The algorithm adopts the methodology of
FAIR algorithm [28]. In addition, it has been improved by using hash table to
reduce the time complexity. The working principle of the new methodology is
explained in the subsequent sections.

2.1 Pre-processing Phase

Initially, the uploaded sequences are concatenated with a delimiter at the end of
each sequence and stored in a string S. In addition, the starting position of each
input sequence in the string S is stored in an array. Further, a hash table is cre-
ated to improve the execution time during search phase and to store the positions
or occurrences of each alphabet (X) in the string S. The size of the hash table
is equal to the length of the string S. The number of entries in the hash table
varies for DNA (only four A,T,G and C) and protein (20 amino acids) sequences.
All the positions of a single character (X) present in the string S are stored in
a hash element or key (hash[X]). For example, the hash[X] represents the hash
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key of character X, the vector Voccurence[hash[X]] contains the occurences or
positions of character X in string S and referred as Voccurence[X].

2.2 Searching Phase

The proposed algorithm uses the dynamic programming method to determine
the identical repeats in the string S. The string S is aligned itself by taking the
same on both X- and Y-axes in a two-dimensional space (see Fig. 1). Instead of
creating a two-dimensional matrix for storing the match score values, the algo-
rithm uses the concept of linear space complexity deployed in FAIR algorithm
[28] by using two vectors (current and previous). The size of the current and
previous vectors is equal to N (length of the string S). While scanning, each
element (S[i]) in the Y-axis is used as a probe to search for the match along
X-axis (S[j]), where 1,j € 0 <i<N, 0<j<N (see Fig. 1). During this process, when
an element S[i] from Y-axis is matched identically with the element S[j] of X-
axis, a hit value of one is added to the value of j — 1*" in the previous vector
and the total is assigned to the j** position of current vector. Thus, the current
vector holds the present repeat length with respect to the character S[i] and the
previous vector holds the repeat diagonal up to S[i-1]. Whenever a match is not
found or the sequence ends (j==N), the value of the previous vector is checked
for the size greater than the minimum length of the motif, then the previous
vector value is stored as the length of the repeat (L) and the positions of i-1
and j-1 are stored as repeat end positions (R;—1,—1,r). The above operation
is repeated recursively till the end of i along Y-axis. The pseudo-code for the
recursive operation is given below,

IF S[i] equals to S[j] THEN
set current[j] to previous[j-1]+1;

ENDIF

ELSE

IF previous[j-1]>=minimum of motif length
set repeat length (L) to previous[j-1];
set first repeat end to i-1;
set second repeat end to j-1;

ENDIF

END ELSE

Advantage of using hash table: Since the current and previous vectors are
sparse, the recursive operation at each i (along Y-axis) and j (along X-axis)
takes more time for longer sequence. In order to optimize the execution time,
a new methodology has been implemented for scanning phase using hash table.
The above recursive operation is carried out for each i against X-axis and is
only for some j’s which are the positions of character (S]i]) in string S. i.e., Voc-
curences[S[i]] (see Fig. 1). It is explained by using the following lemma: Lemma
1 states: for each i (0<i<N), the algorithm checks only the positions next to
the previous repeat (see Fig. 1) and at all positions of character Sli], instead
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for all j (0<i<N). As a proof, there can be only three possibilities at each i, such
as: (A) any previous repeat can be continued or extended (extended repeat),
(B) previous repeat can be terminated and are needed for output (terminated
repeat) and finally (C) any new repeat can be a start (see Fig. 1). The above
three repeat possibilities are further classified in two sections: (a) for possibility
A and C, the match of S[i] and S[j] need to be identical. Further, the current
vector of j** element attains the length L > 0, represents the current repeat
(Ri,j,1.). Thus, the current repeat is a start position of a repeat or in the part of
a continuous or extended repeat. (b) In case of B, termination of previous repeat
(Ri—1,-1,.), S[i] and S[j] does not match or the length of j equal to the string
S. It means that the next position to the previous repeat does not match with
the positions of S[i] in (Voccurence[S[i]]) or the repeat is terminated at the end
of the sequence and are referred as terminated repeats (R;—1,j—1,.). Thus, the
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Fig. 1. A sample sequence is aligned along X- and Y- axes in a two-dimensional space.
The number of repeat possible (current, previous and terminated) is highlighted.

algorithm scans only in the regions of positions next to previous repeat and all
positions of character S[i]. The following steps are carried for each iteration of i
with respect to lemma 1;

1. updation of current vector due to current repeat from (a) of lemma 1.
current[j]=previous[j-1]4+1; ¥ j € Voccurrence[S[i]]

2. finding terminating repeat from (b) of lemma 1.
if(previous[j-1] > minimum length of repeat AND j ¢ Voccurrence[S[i]] )
then Vterminated.push(j-1); V j-1 € Voccurrence S[i-1]]

The Vterminated vector stores all the end positions of terminated repeats. More-
over, the algorithm performs the above two operations together by merging Voc-
curence[S[i]] and Voccurence[S[i-1]].
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Pseudo code (entire searching phase using hash table)

WHILE (m < Voccurrence[S[i]].size() && n < Voccurrence[S[i-1]].size() )
IF Voccurrence [S[i]][m]] == Voccurence [S[i-1]][n]]+1) THEN
//current repeat
set current[Voccurrence[S[i]][m]] to previous[Voccurrence [S[i-1][n]]+1;
setmtom+ 1; set n ton + 1;

ENDIF

ELSE IF Voccurence[S[i]] [m]] < Voccurence[S[i-1]][n]+1] THEN
//current repeat with no previous repeat found

current [Voccurence[S[i] [m]]=1;

Set m to mt+1;

END ELSE IF

ELSE IF Voccurence[S[i] [m]] < Voccurence[S[i-1]] [n]]+1 THEN
// no current repeat found and this is terminating repeat

IF previous[Voccurence[S[i-1][n]] >= minimum length of repeat THEN
Vterminated.push(Voccurence[S[i-1] [n]]);

ENDIF

Set n to n+1;

END ELSEIF

ENDWHILE

2.3 Post Processing Phase

In this section, for each terminated repeat (R;—1 j—1,r,) in Vterminated vector,
the repeat length (L) is checked against the length of all the repeats in a previous
vector. If the length is greater than or equal to L (terminated repeat length),
then all such previous repeat (R;_1,j—1,1.) positions are stored in a data structure
motif. These motif are pushed into a vector Vmotif. Further, the value of the
vector Vmotif is sorted (on the basis of repeat string) using a built-in STL
(Standard Template Library) function. Finally, unique motifs are determined
after removing all the redundant entries. The detailed output of the algorithm
contains the length of the motifs and their start and end positions.

2.4 Time Complexity

The computational or time complexity of the algorithm is explained below
based on the following; Preprocessing: In this phase, the positions of each
alphabets in the string S is identified to create a hash table and the scan-
ning process is performed in one-dimensional space with O(N) time complexity,
where N is the length of the string S. Scanning: As explained earlier, the al-
gorithm performs the scanning operations together by merging Voccurence[S[i]]
and Voccurence[S[i-1]]. Thus for each i, the scanning sequence along X-axis takes
O(2N/|>_|) time and ) represents the alphabets in string S, where | Y | repre-
sents the size of > set. During each iteration along Y-axis, the value of current
vector is assigned into previous vector and the current vector is reinitialized to
zero, results in O(N/| > |) time complexity. In addition, the process of Vtermi-
nated repeats requires scanning along X-axis results again in O(N/|>"|) com-
plexity. Thus, the entire scanning phase takes O(4N/| > ) time to find identical
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repeats in the string S. Post processing: In this section, the motif stored in
Vmotif is sorted using the STL sort function which results in (N’logN’) time com-
plexity (where N’ is number of repeats). However, the execution time of STL sort
is less compared to that of the above steps. Considering the above three cases,
the algorithm follows O(4N2/| Y |) time complexity to find the identical repeats
using hash table. The algorithm is more effective with an increase in | > | and
is improved over the existing algorithm, FAIR [28].

3 Results and Discussion

3.1 Case Study 1

To test the efficiency of the proposed algorithm, a set of eight major CRISPR
(Clustered Regularly Interspaced Short Palindromic Repeats) nucleotide se-
quences is considered in this case study. The CRISPRs are direct repeats (iden-
tical repeats) with a length ranges from 24 to 48 nucleotides and the repeats in
DNA are separated by spacers of similar length. These repeats are commonly
present in many bacteria and archaea groups which help for the acquired resis-
tance against phages [29]. The CRISPR sequences used in the present study
are taken from four different species such as Salmonella typhimurium LT2,
Salmonella enteric serovar Typhi Ty2, Salmonella enteric serovar Paratyphi
A Str. AKU 12601 and Salmonella enteric Choleraesuis. The sequences are of
various lengths with a minimum and maximum of 212 and 1982 nucleotides re-
spectively. The input parameters provided for the search are: (a) the length of
motif to be searched (for example: greater than or equal to 30) and (b) the
minimum number of motif multiplicity (for example: greater than or equal to
two). The motif multiplicity is defined as the number of times a motif is re-
peated in all the given sequences. The proposed algorithm identified 118 possi-
ble motifs in all four CRISPR sequences from four different species (Salmonella
typhimuriumLT2 | Salmonella enteric serovar Typhi Ty2, Salmonella enteric
serovar Paratyphi A Str. AKU 12601 and Salmonella enteric Choleraesuis). A
sample output (only a part of the output is shown for clarity) of the result is
shown below.

Input file name: fasta.txt

Length of motif: greater than 30
Motif multiplicity: greater than 2
Output file name: out.txt

Motif: AACGGTTTATCCCCGCTGGCGCGGGGAACAC
Motif length: 31

Motif Occurrences :7

Present in 3 Sequences

>CRISPR-1, SALMONELLA TYPHIMURIUM LT2
Position(s): [304,334]

>CRISPR-2, SALMONELLA TYPHIMURIUM LT2
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Position(s): [427,457] [549,579]
>CRISPR-3, SALMONELLA TYPHIMURIUM LT2
Position(s): [243,273] [793,823] [1586,1616] [1891,1921]

Motif : CGGTTTATCCCCGCTGGCGCGGGGAACACA

Motif length :30

Motif Occurrences:15

Present in 6 Sequences

>CRISPR-1, SALMONELLA TYPHIMURIUM LT2

Position(s): [306,335]

>CRISPR-2, SALMONELLA TYPHIMURIUM LT2

Position(s): [673,702]

>CRISPR-3, SALMONELLA TYPHIMURIUM LT2

Position(s): [612,641] [856,885] [1039,1068] [1100,1129]
[1405,1434] [1466,1495]

>CRISPR-2, SALMONELLA CHOLERAESUIS

Position(s): [306,335]

>CRISPR-1, SALMONELLA PARATYPHI A

Position(s): [184,213] [306,335] [367,396]

>CRISPR-1 SALMONELLA TYPHI TY2

Position(s): [62,91] [184,213] [245,274]

Motif : GCGGTTTATCCCCGCTGGCGCGGGGAACAC

Motif length :30

Motif Occurrences :23

Present in 5 Sequences

>CRISPR-2, SALMONELLA TYPHIMURIUM LT2

Position(s): [123,152] [489,518] [611,640] [672,701] [733,762]
[795,824] [856,885]

>CRISPR-3, SALMONELLA TYPHIMURIUM LT2

Position(s): [61,90] [183,212] [611,640] [733,762] [1038,1067]
[1099,1128] [1221,1250] [1343,1372] [1709,1738]

>CRISPR-2, SALMONELLA CHOLERAESUIS

Position(s): [244,273]

>CRISPR-1, SALMONELLA PARATYPHI A

Position(s): [122,151] [183,212] [244,273] [427,456]

>CRISPR-1 SALMONELLA TYPHI TY2

Position(s): [122,151] [244,273]

It is interesting to note that, the above motif of length 30 residues, GCG-
GTTTATCCCCGCTGGCGCGGGGAACAC, clearly shows the efficiency of the
proposed algorithm in finding the motif in all possible locations of the cho-
sen four nucleotide sequences. Firstly, the different motif locations identified in
the sequences of CRISPR-2 of Salmonella typhimurium LT2 and CRISPR-1 of
Salmnoella Paratyphi A are found to be separated by an approximate spacer of
length 32 nucleotides. Further, it is also to note that the occurrence of the motif
is nearly conserved at the same locations (123 to 152) and (244 to 273). However,
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the number of motifs in each sequence varies (minimum = 1 and maximum 9)
and represent genome variations among the four species.

3.2 Case Study 2

A total of three hexokinase-1 protein sequences from orthologous species such as
Homo Sapiens, Mus Musculus and Rattus norvegicus are considered in this case
study. The minimum length of motif to be searched is given as greater than or
equal to 5 and the motif multiplicity is given as two (by default). The proposed
algorithm identified 85 identical motifs (only part of the output is shown below)
present in all the three sequences. Interestingly, a total of 17 out of 85 identified
motifs are repeated more than once in the same protein sequence (see below for
details). A sample output of the repeat motifs (17) is shown below.

Input file name: fasta.txt

Length of motif: greater than 5
Motif multiplicity: greater than 2
Output file name: out.txt

Motif : FVRSIPDG

Motif length :8

Motif Occurences:4

Present in 3 Sequences
>gi|188497754 |REF |NP_000179.2| [HOMO SAPIENS]
Position(s) : [67,74]
>gil148700161|GB|EDL32108.1| [MUS MUSCULUS]
Position(s) : [66,73]

>gi|6981022|REF |NP_036866.1| [RATTUS NORVEGICUS]
Position(s) : [67,74] [515,522]

Motif : GSGKGAA

Motif length :7

Motif Occurrences:5

Present in 3 Sequences
>gi|188497754|REF|NP_000179.2| [HOMO SAPIENS]
Position(s) : [448,454] [896,902]
>gi|148700161|GB|EDL32108.1| [MUS MUSCULUS]
Position(s) : [447,453] [895,901]
>gi|6981022|REF |NP_036866.1| [RATTUS NORVEGICUS]
Position(s) : [896,902]

Motif : GFTFSFPC

Motif length :8

Motif Occurrences :6

Present in 3 Sequences
>gi|188497754 |REF |NP_000179.2| [HOMO SAPIENS]
Position(s) : [151,158] [599,606]
>gi|148700161|GB|EDL32108.1| [MUS MUSCULUS]
Position(s) : [150,157] [598,605]
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>gi|6981022|REF|NP_036866.1| [RATTUS NORVEGICUS]
Position(s) : [151,158] [599,606]

Motif : VAVVNDTVGTMMTC

Motif length :14

Motif Occurrences :6

Present in 3 Sequences
>gi|188497754|REF|NP_000179.2| [HOMO SAPIENS]
Position(s) : [204,217] [652,665]
>gi|148700161|GB|EDL32108.1| [MUS MUSCULUS]
Position(s) : [203,216] [651,664]
>gi|6981022|REF |NP_036866.1| [RATTUS NORVEGICUS]
Position(s) : [204,217] [652,665]

The above results clearly show that the repeat motifs are conserved in all
three sequences used. It is interesting to note, the three-dimensional structure of
the last two motifs (GFTFSFPC and VAVVNDTVGTMMTC) repeated twice
in Homo Sapiens and are superposed well with a root mean square deviation of
0.17A and 0.27A [16]. Further, the above results have been compared with the
results of sequence alignment programs such as BLASTP [30] and CLUSTALW
[31]. The output (results not shown) of these programs shows that the orthol-
ogous sequences exhibit high sequence similarity of more than 95%. Thus, the
sequences are aligned end to end which leads to complexity in identifying the
repeated motifs.

4 Implementation

The algorithm requires three inputs: a file of nucleotide or protein sequences
in FASTA format, the length of the sequence motif to be searched and the
number of motif multiplicity. The proposed algorithm generates a detailed output
containing the location of motifs in each sequence. An option is also provided for
the users to remove the redundant entries from the given input sequences. For
example, only one sequence will be considered if two of the given or uploaded
input sequences are having sequence identity of more than or equal to 90%.
Due to less time complexity of proposed algorithm, there is no limitation in the
number of motifs to be identified. The proposed algorithm has been written in
C++ and successfully tested on a Linux box (Fedora core 9 and Red hat 9.0)
and Solaris (10.0) environments. A standalone version of the proposed algorithm
can be obtained upon request by sending an E-mail to the corresponding author
Dr. K. Sekar (sekar@physics.iisc.ernet.in). In the future, we also plan to create
an internet computing server for the proposed algorithm.

5 Conclusion

The algorithm finds the identical motifs in both nucleotide and proteins se-
quences. It has been developed with a broad view in mind to provide a compre-
hensive solution to the task of finding conserved as well as direct repeat motifs
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in a given multiple biological sequences. Further, the algorithm helps to analyze
the differences in repeat numbers in various genomes and provides an insight
to the horizontal gene transfer events during microbial evolution. One of the
potential applications of this work is the comparative study of transposons in
different sub species which provides a trace for the analysis of gene duplication.
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Abstract. Discovering patterns from sequence data has significant impact in
genomics, proteomics and business. A problem commonly encountered is that
the patterns discovered often contain many redundancies resulted from fake
significant patterns induced by their strong statistically significant subpatterns.
The concept of statistically induced patterns is proposed to capture these redun-
dancies. An algorithm is then developed to efficiently discover non-induced
significant patterns from a large sequence dataset. For performance evaluation,
two experiments were conducted to demonstrate a) the seriousness of the prob-
lem using synthetic data and b) top non-induced significant patterns discovered
from Saccharomyces cerevisiae (Yeast) do correspond to the transcription
factor binding sites found by the biologists. The experiments confirm the effec-
tiveness of our method in generating a relatively small set of patterns revealing
interesting, unknown information inherent in the sequences.

Keywords: Sequence Pattern Discovery, Statistically Induced Patterns, Suffix
Tree.

1 Introduction

Sequence data is a very significant type of data in many forms: biological sequence,
web click stream, custom purchase history, event sequence, etc. A vast amount of
such data from the genomic, proteomic and business arenas has been collected. The
discovery of new interesting knowledge from these data has important applications
and great value.

Many approaches have been developed to discover patterns from sequences. One
common problem encountered is that the quality of the output patterns is overlooked
resulting in an overwhelming number of output patterns [1]. To reduce the output
size, some methods [1] [2] identify the redundancy among output patterns and dis-
cover those irredundant patterns. Others [3] [4] [5] [6] use statistical hypothesis test to
extract and rank statistically significant patterns based on how much the frequency of
a pattern deviates from the expected one by assuming a background random model. It
is hoped that patterns occurring with significantly higher frequency will correspond to
the functional units inherent in the sequences. However, some of them are fake or
statistically redundant patterns which are considered as significant merely because
they contain very strong subpatterns [7]. This problem is exaggerated in dense data-
sets containing many strong patterns.
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In this paper, we present the concept of statistically induced patterns to caputure
these fake patterns and an efficient algorithm based on generalized suffix tree to dis-
cover statistically non-induced patterns. By removing induced patterns, the quality of
output patterns can be further improved and the ranking of important functional units
can be elevated. Our method is scalable to handle very large sequence data rendering
a more compact ouput. Though our method provides a general data mining frame-
work, here we focus specifically on biological data (transcription binding site data).

2 Related Work

Pattern discovery techniques or motif-finding algorithms have evolved in a fast pace
in bioinformatics. This is driven by the rapid growth of available DNA and protein
sequence database as well as the strong desire to find functional units such as regula-
tion signals embedded in biological sequences. Pattern discovery techniques are de-
veloped to reveal such conserved patterns across sequences. In motif finding, two
main perspectives are adopted: the probabilistic and the combinatorial. The former
uses the profile-based position weight matrix (PWM) to find the location of the motifs
in the sequences [8] [9]. Thus, the best motif is the most probable PWM. In the latter,
a motif is defined as a consensus that occurs repeatedly in sequences [3] [4] [5] [6]
[10]. The problem of producing overwhelming number of patterns is often encoun-
tered in the latter approaches.

Extracting statistically significant patterns is one way of shrinking output size. A
linear time algorithm is presented in [4] to detect statistically significant patterns
(overrepresented d-significant patterns) which are represented by the internal nodes of
the suffix tree. Statistics such as mean and variance are efficiently annotated to each
node. Observing that not all nodes in the suffix tree correspond to overrepresented d-
significant pattern, we develop a method to identify those that are not.

Although extracting only statistically significant patterns greatly reduces the output
size, often these patterns form a large set of patterns with real motifs mixed with
many of their random variations [7]. A background model of order 3 Markov chain
and a greedy algorithm have been proposed to separate the artifacts from the real mo-
tifs. Our definition of statistically induced patterns is a variation of Blanchette and
Sinha's [7] artifact motifs. However, ours uses the Bernoulli scheme instead of
markov chain and hence does not require training a complex Markov model. Further-
more, our method in discovering non-induced patterns is more efficent.

3 Methodology

3.1 Preliminary Definitions

Let X be a set of distinct elements {eq, o, . . ., €|x|}» called the alphabet, and || be its
size. A sequence S over X is an ordered list of elements 5152...5,. A pattern I is a
short sequence P1p2 ...y over X and |P|is its order. We call 7 a consecutive pat-
tern with no gaps. In general, the input data might come as multiple sequences
S1.85,.... Sy with lengths [4. 1o, .... I n respectively. Let L be their overall length.
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The number of occurrences of P in multiple sequences is denoted by kp. The list
of occurrence positions is Lp = {...,(i,j)....} where the ordered pair (7, j) is a
position denoting that P occurs at position j in sequence i. The support of P denoted
by ¢p in the multiple sequences is the number of sequences in which /7 occurs at
least once. A pattern is said to be frequent if its number of occurrences is not less than
a specified minimum requirement 1min... Mathematically, that is k&, > minc..

3.2 Statistical Model for Input Sequences

A background random model for determining the expected frequency of P is needed
to define statistically significant patterns. Without being given specific domain
knowledge for the background model, we adopt a simplest model: the Bernoulli
scheme. With this scheme, the probability of a pattern I? occurring in a position of a
random sequence is pr(P) = [[\", pr(p;), where p; € E. Let X; be a Bernoulli vari-
able that indicates whether P2 occurs in position ¢ of a random sequence. The total
number of possible positions is Tp = >, (l; — m + 1), so the number of occur-
rences of P is a random variable X'p = >, X; which follows a binominal distribu-
tion. Its expected number of occurrences is E(Xp) = pr(P) - Tp.

Definition 1. Statistically significant pattern
To measure how kp of P deviates from its expected frequency if the given se-
quences are generated from the random model, we use the standard residual [11]

_ kp— E(Xp)
E(Xp)

A pattern is statistically significant or overrespresented [12] if zp > t where t is the
predefined minimum threshold.

Definition 2. Significant representative pattern
As observed in the paper [4] [16], patterns can be clustered into equivalence groups
C'.Cs, ...,Cy such that patterns in the same group C'; have the same list of occur-
rence positions L p.

Representative pattern is the pattern in the group C’; that has the highest statistical
significance zp or equivalently has the highest order. Significant representative pat-
tern is both statistically significant and representative.

Definition 3. Statistically induced pattern
Let P’ be a subpattern of P. The conditional statistical significance of P given P'is
defined as

kp — E(Xp|P")
E(Xp|P)

.Cplpr —

where E(Xp|P') = pr(P|P') - kpr = 2555 - kp.
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Fig. 1. Generalized suffix tree T for multiple strings S1 = ATCGATCGS and
Sz = ATCATS. The square node is the root, the solid circles are the internal nodes and the
hollow circles denote the leaf nodes. r. u, v, w and = are the nodes in the suffix tree. Edges are
labelled with substrings. The dotted arrow shows the end point “T” for a path ending inside an
edge. (1, 1) is a position.

Given a set of significant representative patterns, a pattern /2 in it is said to be sta-
tistically induced if there exists a proper subpattern P’ of I such that zpjp <t. A
proper subpattern P’ is not statistically induced.

This conditional statistical significance is used to evaluate how strongly the statis-
tical significance of a pattern is attributed by the occurrences of one of its proper sub-
patterns. Those induced patterns whose significances are due to their proper subpat-
terns by mere chance are fake patterns. Hence removing them would render a more
succinct set of patterns.

3.3 Characterizing Significant Representative Patterns in Generalized Suffix
Tree

First, we introduce the generalized suffix tree as the data structure for representing
strings. It can be constructed in O(L) time and space. The details of it and its linear
time and space construction algorithms can be found in [13]. Here we establish the
connection between consecutive patterns and path labels in the suffix tree. Finally, we
link significant representative patterns with nodes in the suffix tee.

Generalized Suffix Tree
Given a collection of strings Sy, S, ..., Sy over X, the generalized suffix tree T for
these multiple strings is a rooted directed tree with the following properties:

(1) Each leaf node is labelled by a set of positions {. .., (i, j),... } where (, j) indi-
cates a suffix of string .5; starting at the position j.

(2) Each internal node has at least two outgoing edges each of which is labelled with
a non-empty substring of one of the input string. No two edges out of a node can
have the edge-label starting with the same character.

Most often, a termination character $ & ¥ is appended to each string to ensure that 7
exists for this set of multiple strings. Fig. 1 gives an example for two input strings.
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Consecutive Pattern in Suffix Tree

The label of the path from root ending at node v is the string resulted from concatena-
tion of the substrings that label the edges along that path. The label of a path from
root ending inside an edge (v, w), is the label of the path from the root ending at node
v, concatenating with the remaining characters of the label of the edge (v, w) down to
the end of the path. For convenience, the label of a path ending at node v is repre-
sented by pl(v), the path label of v. In Fig. 1, the path label of node u is the substring
TCG of Sy. The label of a path ending in the middle of the edge (v, w) with end point
indicated as “T” is the substring ATCGAT of 5. Accordingly, a consecutive pattern
that occurs at least once in the input strings has its unique path in suffix tree and is
represented by the path label.

Frequent Pattern in Suffix Tree

The number of occurrences of a consecutive pattern is the number of positions found
under its path in the suffix tree. For example, positions {(1,1),(1.5),(2,1)} are
found under the path of pattern ATC. By storing into each node = the number of posi-
tions k(x) in the subtree rooted by it, the number of occurrences of a consecutive pat-
tern can be easily obtained by finding the node at or above which its path ends. For
example, the number of occurrences of pattern TCG whose path ends at u is given by
k(u) = 2. Hence frequent patterns are represented as labels of paths that end at or

above a node & where k(x) >= mingc.

Representative Pattern in Suffix Tree

Note that the paths of representative patterns end at nodes instead of within edges.
A pattern with path ending within an edge can be further extended by at least one
character to the right without decreasing the number of occurrences and thus by
definition cannot be a representative pattern. For example, the pattern A, which
ends inside the edge (r, =), has a superpattern AT ending at node = with the same
number of occurrences indicated by &(z) = 4.

However, it is not a one-to-one mapping; not all nodes correspond to representative
patterns. As we might notice that the pattern associated with the path ending at the
node u in Fig. 1, pl(u) = TCG, is not a representative pattern because it has a super-
pattern pl(v) = ATCG with the same number of occurrences as indicated by
k(wu) = k(v) = 2 which has higher statistical significance. Hence, we need to identify
nodes corresponding to representative patterns in the tree. This can be efficiently
achieved by utilizing the suffix links. A suffix link of v points to u if pl(v)is an one
character left extension of pl(u). The node u is called the suffix node of v because
pl(u)is the suffix of pl(v). For example, pl(v) = ATCG is a string by appending A
to the left of pl(u) = TCG. Only one suffix link is shown in Fig. 1.

In summary, a representative pattern corresponds to a node  in a suffix tree that is
not a suffix node of the other node. A representative pattern pl(x)is statistically sig-
nificant if z,,,, > t. For example, {ATCG, TCG, CG} forms an equivalence set
and the representative pattern is ATCG and hence corresponds to the node v that does
not have suffix link pointing to it.
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3.4 Discovering Non-induced Patterns

Although significant representative patterns contain fewer redundancies, they could
still be too many for human experts to interpret. As noted in Definition 3, some sig-
nificant representative patterns can be statistically induced by others and should be
removed. Here we describe an efficent algorithm to find non-induced patterns.

If pattern P is not induced by the proper subpattern P’ that has the smallest condi-
tional statistical significance zp|pr among all proper subpatterns of 2, where we de-
notes P’ as the valid pattern for P, then P is not statistically induced. In other word,
if P is non-induced, then zp|pr >= t for any proper subpattern P’ of it, including the
one with smallest zp|pr. Thus, we develop Algorithm 1 to efficiently discover non-
induced patterns by identifying the valid pattern for each significant representative
pattern from the lowest to highest order. Note that each representative pattern corre-
sponds to a node in the suffix tree.

Algorithm 1. Discovery of non-induced patterns

Construct a generalized suffix tree T' for the input sequences
Annotate % () the number of positions under each node v of T
Extract a set of nodes whose k(v) = min ..
Sort the above nodes in ascending order according to order of pl(v) using counting sort.
For each node v

a)Find the valid node w for v using Procedure 1

b)If v is not a suffix node and z,(,,y = ¢ and pl(v)is not induced by pl(w)

Output pl(v)
End if

End for

kv =

Procedure 1. Find valid node for v

1. Let s and vp be the suffix node and parent node of ¥ respectively
2. If pl(vg) is non-induced
Let 1y be s
3.  Else
Let w be the valid node of Vg
End if
4. If pl(vp)is non-induced
Let wo be vp
5. Else
Let 19 be the valid node of vp
End if

6.  Pick one node with the smallest conditional statistical significance out of u'; and w2 to be
the proper node of v

Running time analysis for Algorithm 1. Step 1-3 can be achieved in linear time.
Step 4 uses counting sort to sort the nodes according to the path length and can thus
be done also in linear time. Steps 5a and 5b take constant time. Step 5 can be done in
O(L) time. Therefore, non-induced patterns can be found in linear time.
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Fig. 3. Highest ranking patterns discovered by Weeder and YMF. The implanted patterns are
bolded.

4 Experimental Results

Two sets of experiments were conducted for performance evaluation. In both experi-
ments, 111, is set to 5 and the statistical threshold £ is set to 3.

4.1 Experiment on Synthetic Data

To show that our method could remove statistically induced patterns and raise
the ranking of the truly significant patterns, 100 random sequences of 1000 bases
over DNA alphabet are created. Three strong patterns /?} = TCCGCGGA ,
P, = CTGTACAG and P; = CGATATCG are implanted into these sequences such
that their standard residuals =y, zo and z3 are 48, 24, and 12 respectively. We apply
Method 1 to discover significant representative patterns and Method 2 to obtain non-
induced patterns.

Fig. 2 shows the patterns of P;, P and P and their superpatterns and subpat-
terns which are ranked higher than P; according to their standard residual. Those
patterns in italic font are superpatterns induced by P, P, and P; (indicated by their
conditional statistical significance, i.e. less than the prescribed threshold of 3),
hence they are removed by method 2. After these induced patterns are removed, the
ranking of 3 according to the standard residual is raised from the 42th to the 7th.
The number of patterns reported by method 1 is 527 while the number of patterns
reported by method 2 is reduced to 315 with a 40.2% reduction rate. Hence, as an-
ticipated, a more compact set of patterns is obtained by ensuring that patterns are
non-induced and the rankings of the real significant patterns are elevated.
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Two well known motif finding tools YMF [3] and Weeder [10] are applied to the
synthetic data respectively for comparison. For Weeder, medium mode is selected.
For YMF, no spacers and degenerate symbols are allowed and the motif length is
fixed to 8. Both methods require specifying the organisim from which the input se-
quences are obtained. Since the synthetic data does not come from any real organisim,
we choose an arbitary organism Saccharomyces cerevisiae (SC) for both methods.
The highest ranking patterns discovered by Weeder and YMF are shown in Fig. 3.
Most discovered patterns are related to the strong implanted pattern P°; and can be
considered as induced patterns. P; is among the top 15 patterns from Weeder while
YMF discovered all implanted patterns 7, P’ and P5 within top 10 patterns. Note
that YMF has the advantage position by knowing the pattern length in advance. Com-
pared to Weeder and YMF, our method is more general: (1) it searches for patterns
with arbitrary length while pattern length is restricted from 6 to 10 for the other two;
(2) it does not require background information while the others require specifiying the
input organisim. In other words, YMF and Weeder are designed more specifically for
TF binding site discovery.

4.2 Experiment on Transcription Factor Binding Sites

We next examine the capability of our method in discovering biological functional
units, which is the foremost fundamental step towards understanding the complex
mechanism of the gene expression regulations. We apply our method to identify tran-
scription factor (TF) binding sites on Yeast using the widely studied SCPD database
[14] with many of its TFs known along with their regulated genes. They are from the
upstream (promoter) regions of genes regulated by one or more TFs. Each set of
genes is called regulon and is associated with one or more TFs. The genes are be-
lieved to be co-regulated by specific TFs and the binding sites for them are experi-
mentally determined in the database. Three conditions are imposed when choosing the
regulon: (1) the number of genes in it should be at least three, (2) the consensus bind-
ing sites are available, and (3) the number of gaps or “don’t care” characters in the
consensus should be at most two. The condition (3) is imposed since we discover only
consecutive patterns in the current stage. There are totally 18 such regulons. For each
regulon of the TF(s), the upstream sequences of genes are extracted from position +1
to -800 relative to the ORF (translation start site).

We design a score combining the statistical significance and support to rank the
discovered patterns since the former is based only on its number of occurrences and
no information of its support is used. However, to find transcription binding sites
amongst multiple sequences, the number of supports is important. These genes are
regulated by one or more TFs, and thus we expect that each upstream region of the
input gene sequence contains one or more binding sites. Hence, patterns with higher
support should be considered more important than those with less support. For exam-
ple, if we have discovered two patterns TTTAAA and CTTCCT with close statistical
residual but different support, say 2 and 7, then the latter will be more important and

more likely to correspond to binding sites. Hence, a combined score is defined as
score = PR Gtandard residual.

No. of genes
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Fig. 5. Number of reported patterns after removing induced patterns among significant repre-
sentative patterns

In DNA sequences tandem, repeats are common. For example, in a sequence like
AAAAAATTTTTT, the pattern AAAA occurs at positions 1, 2 and 3 which overlap
multiple times. Hence, a post-processing step is applied to further remove patterns
whose occurrences overlap in the original sequences.

We discovered the non-induced patterns for each dataset and compared the result
with YMF and Weeder respectively (Table 1). We ranked the discovered patterns
according to the combined score and chose the top 15 ones for comparision. For
YMEF, we used its webserver and obtained 5 best motifs through FindExplanators [7]
for motif length from 6 to § (all available parameters), resulting a total number of 15
patterns. O spacers and 2 degnerate symbols are allowed in the motif definition. For
Weeder, we downloaded the standalone platform and used the medium mode. All
motifs recommend in the final output are used for comparison. For each motif re-
ported by Weeder, we use only the best occurrences with the percentage threshold
greater than 90 as binding site predictions. We use the measures nSn (sensitivity),
nPPV (positive preditive value), nPC (performance coefficient) and nCC (correlation
coefficient) defined in [15] in comparison.

Among the 18 datasets, our discovered patterns within rank 13 match the consen-
sus binding sites in 14 datasets and 4 of them are ranked top. The patterns in bold
do not match the binding sites in the remaining 4 datasets CPF1, CSRE, MATal-
pha2 and SFF. The reason why our discovered patterns have no match in CPF1,
CSRE and SFF is that their consensus binding sites have fewer than 2 occurrences.
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As for MATalpha2, the consensus has 6 occurrences, but it has many substitutions.
Because our program runs with min,.. =5 and is confined to discovering con-
secutive patterns, these consensuses are not discovered.

The overall performances of Weeder, YMF and our method across 18 datasets are
evaluated by the combined measures in [15] and shown in Fig. 4. It indicates that the
overall perfromance of our method is better than YMF. Weeder does not perform well
comparatively and the reason might be that the percentage threshold 90 is too strict.
However, Weeder does not provide a good strategy in choosing this parameter.

Fig. 5 shows the number of reported patterns in terms of non-induced pattern and
significant repressentative patterns. After removing induced patterns among signifi-
cant repressentative patterns, our method produces a relative small set of patterns of
which the number of reported patterns ranges from 8 to 67. The result shows that our
method is able to retain those patterns associated with conserved functional units in
the promoter regions while reducing the number of patterns.

Table 1. Comparison of our method, YMF and Weeder on SPCD datasets (the pattern among
the top 15 that achieves the best nSn is used for comparison). IUPAC Nucleotide Code is used.

TF Motif/Pattern nSn nPPV nPC nCC Rank
CARI1 Consensus AGCCGCCR
Weeder CCTAGCCG 0.23 0.09 0.07 0.14
YMF GCCGCCG 0.7 1 0.7 0.84
Our Method AGCCGCC 0.88 1 0.88 0.94 6
CPF1 Consensus TCACGTG
Weeder CACGTGGC 0 0 0 -0.01
YMF YCACGWG 1 0.5 0.5 0.71
Our Method TTC 0.29 0.01 0.01 0.04 10
CSRE Consensus YCGGAYRRAWGG
Weeder GCGGTCGG 0 0 0 -0.01
YMF CGGATRRA 0.58 0.22 0.19 0.35
Our Method CCGG 0.33 0.08 0.07 0.15 1
GCN4 Consensus TGANT
Weeder TGACTC 0.07 0.13 0.05 0.08
YMF TGWCTR 0.18 0.51 0.15 0.29
Our Method TGACT 0.34 1 0.34 0.57 13
GCR1 Consensus CWTCC
Weeder TCTGGCATCC 0.1 0.2 0.07 0.13
YMF TCTYCCY 0.3 0.48 0.23 0.37
Our Method TTCC 0.68 0.39 0.33 0.5 9
MATalpha2 Consensus CRTGTWWWW
Weeder GGAAATTTAC 0.13 0.14 0.07 0.13
YMF ACGCGT 0 0 0 0
Our Method GAAAAAAG 0 0 0 -0.01 1
MCB Consensus WCGCGW
Weeder AGACGCGT 0.19 0.08 0.06 0.1
YMF ACGCGT 0.68 1 0.68 0.82
Our Method ACGCGT 0.68 1 0.68 0.82 1
MIGI1 Consensus CCCCRNNWWWWW
Weeder CCCCAG 0.39 0.1 0.09 0.19
YMF CCCCRS 0.5 0.21 0.18 0.32
Our Method CCCCAG 0.33 0.29 0.18 0.3 2
PDR3 Consensus TCCGYGGA
Weeder GTCTCCGCGG 0.32 0.14 0.11 0.19

YMF TCCGYGGA 1 1 1 1
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Table 1. (continued)

Our Method TCCGCGGA 0.64 1 0.64 0.8 1
PHO4 Consensus CACGTK
Weeder GAAACGTG 0.07 0.02 0.02 0.02
YMF CACGTGSR 0.71 0.75 0.58 0.73
Our Method CACGTG 0.71 1 0.71 0.84 1
RAPI Consensus RMACCCA
Weeder AGCACCCA 0.13 0.23 0.09 0.17
YMF CACCCA 0.64 0.86 0.58 0.74
Our Method CACCCA 0.64 0.86 0.58 0.74 8
REB1 Consensus YYACCCG
Weeder ACCCGC 0.14 0.05 0.04 0.08
YMF TTACCCG 0.7 1 0.7 0.84
Our Method TTACCCG 0.7 1 0.7 0.84 7
ROX1 Consensus YYNATTGTTY
Weeder CCTATTGT 0.28 0.05 0.04 0.07
YMF TTGTTS 0.48 0.29 0.22 0.35
Our Method ATTGTT 0.6 0.63 0.44 0.6 6
SCB Consensus CNCGAAA
Weeder AGTCACGAAA 0.47 0.26 0.2 0.31
YMF CACGAA 0.61 1 0.61 0.78
Our Method CACGAAA 0.71 1 0.71 0.84 1
SFF Consensus GTMAACAA
Weeder CTGTTTAG 0.13 0.02 0.02 0.04
YMF TAAWYA 0.38 0.08 0.07 0.17
Our Method AAAGG 0.13 0.04 0.03 0.06 2
STE12 Consensus TGAAACA
Weeder ATGAAACA 0.2 0.05 0.04 0.07
YMF ACATGS 0.06 0.1 0.04 0.07
Our Method TGAAAC 0.86 0.7 0.63 0.77 3
TBP Consensus TATAWAW
Weeder CCGCTG 0 0 0 -0.02
YMF CRCATR 0.01 0.02 0.01 0
Our Method ATATAAA 043 0.89 041 0.62 13
UASPHR Consensus CTTCCT
Weeder TGTCAGCG 0 0 0 -0.01
YMF CCTCGTT 0.14 0.21 0.09 0.17
Our Method CTTCCTC 0.71 0.86 0.64 0.78 9
Average Weeder 0.16 0.09 0.05 0.09
YMF 0.48 0.51 0.37 0.47
Our Method 0.54 0.65 0.44 0.56

5 Conclusion and Future Work

This paper presents an efficient algorithm to discover non-induced patterns from a
large sequence data. It uses a generalized suffix tree to assist the identification of
significant representative patterns and the removal of the induced patterns whose sta-
tistical significance is due to their strong subpatterns. By ensuring that each pattern
discovered is non-induced, our method produces a more compact pattern set.

The results from TF binding sites experiment confirm the algorithm’s ability to ac-
quire a relatively small set of patterns that reveal interesting, unknown information
inherent in the sequences. While the algorithm drastically reduces the number of
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patterns, it is still able to retain patterns associated with conserved functional units in
the promoter regions without relying on prior knowledge.

Our future work will advance in the following directions: (1) Extending our
method to discover patterns with gaps; (2) Discovering distance patterns in protein
sequences and relating the discovered patterns to three-dimensional conformation and
low sequence similarity.
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Abstract. The three-base periodicity usually found in exons has been
used for several purposes, as for example the prediction of potential
genes. In this paper, we use a data model, previously proposed for encod-
ing protein-coding regions of DNA sequences, to build signatures capable
of supporting the construction of meaningful dendograms. The model re-
lies on the three-base periodicity and provides an estimate of the entropy
associated with each of the three bases of the codons. We observe that
the three entropy values vary among themselves and also from species to
species. Moreover, we provide evidence that this makes it possible to as-
sociate a three-state entropy vector with each species, and we show that
similar species are characterized by similar three-state entropy vectors.

Keywords: DNA signature, DNA coding regions, DNA entropy, Markov
models.

1 Introduction

It is well-known that there are periodicities in DNA sequences, the strongest
of which is generally associated with the period three that can be found in the
exons of prokaryotes and eukaryotes [I4J2]. This three-base periodicity has been
used, for example, for predicting potential protein-coding regions [AT367I15)
and for finding potential reading frame shifts in genes [5].

In a previous work [3/9], we have used this property for exploring the possi-
bility of using a three-state finite-context model with the aim of improving the
compression of the protein-coding regions of the DNA sequences. That study led
us to the conclusion that, for those protein-coding DNA regions, a model that
switches sequentially between three states provides better compression than a
model based on a single state. Moreover, the three-state model looses its efficacy
when applied to unrestricted DNA sequences, which provides additional evidence
towards the distinctive three-base periodicity of the protein-coding regions.

Besides the observation that a three-state finite-context model works better
than a single-state model in protein-coding regions, we also observed a phe-
nomenon that caught our attention. Each of the three states of the finite-context
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model can be viewed as a model of the information source associated to each
of the three nucleotides that form a codon. Since we are able to estimate the
entropy of each of the three states of our model, we are also able to estimate the
average information carried out by each of the three nucleotides. The interesting
finding that we have made was that both the absolute and the relative values of
these entropies vary among the species [3[9]. In other words, the average infor-
mation conveyed when the first, second or third bases of a codon are specified is
not the same, and the differences depend on the species.

In this paper, we further investigate this phenomenon and, particularly, we
try to find out if the differences among the values of the entropies of the three
base positions of the codon could be used as a species signature. Although still
preliminary, the results obtained suggest that this is in fact true, i.e., that we are
able to construct a low-dimensional entropy vector capable of correctly clustering
similar species. Therefore, these findings may contribute to the development of
new methods for alignment-free sequence comparison.

2 Materials and Methods

2.1 DNA Sequences

In this preliminary study, we used thirteen species, nine eukaryotes (five ani-
mals and four plants) and four prokaryotes (bacteria), listed in Table [l When
available, we used the RNA data provided in a single file. In the other cases, we
used the data of the “.ffn” files. In the case of the Ricinus communis we used
the “.cds” data. Because the performance of the three-state model is affected by
losses of synchronization in the reading frame, i.e., it assumes that, for example,
the first base of the codon is always handled by state one of the model, we only
considered sequences whose length is a multiple of three and that do not contain
undefined symbols. Moreover, for these experiments, and also with the aim of
avoiding inconsistencies in the expected codon structure, we did not consider
those that do not start with ATG.

2.2 Finite-Context Models

Consider an information source that generates symbols, s, from the alphabet
A = {A,C,G,T}. Consider that the information source has already generated
the sequence of n symbols ™ = x5 ... Ty, x; € A. A finite-context model (see
Fig. [[) assigns probability estimates to the symbols of the alphabet, regarding
the next outcome of the information source, according to a conditioning context
computed over a finite and fixed number, k > 0, of the most recent past outcomes
€ = Tp_kt1.-.Tpn_1Ty (order-k finite-context model) [TJTOITT]. Therefore, the
number of conditioning states of the model is 4F.

The probability estimates, P(X,+1 = s|c),Vsca, are usually calculated us-
ing symbol counts that are accumulated while the sequence is processed, which
makes them dependent not only of the past k symbols, but also of n. In other
words, these probability estimates will in general vary as a function of the posi-
tion along the sequence.
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Table 1. Organisms used in this study

Organism Reference

Homo sapiens (human) Build 37.1

Pan troglodytes (chimpanzee) Build 2.1

Macaca mulatta (rhesus macaque) Build 1.1

Mus musculus (mouse) Build 37.1

Rattus norvegicus (brown rat) Build 4.1
Arabidopsis thaliana (thale cress) NC003070/1/4/5/6
Populus trichocarpa (black cottonwood) Version 2.0

Vitis vinifera (grape vine) Build 1.1

Ricinus communis (castor oil plant) Release 0.1

Streptococcus pneumoniae strain ATCC 700669 NC011900
Chlamydia trachomatis strain D/UW-3/CX NC000117
Mycoplasma genitalium strain G-37 NC000908
Streptococcus mutans strain UA159 NC004350

Typically, the probability estimates produced by the finite-context model are
used to drive an arithmetic encoder, which is able to generate output bit-streams
with average bitrates almost identical to the entropy of the model [TITO/TT]. The
theoretical bitrate average of the finite-context model after encoding n symbols
is given by

1 n
H,=— log, P(X; = x;]¢) bpb, 1
n;ogz (X; =4lc) bp (1)

where ¢ = x;_k ... xi_ow;_1 and “bpb” stands for “bits per base”. Recall that
the entropy of any sequence of four symbols is limited to two bits per symbol, a
value that is obtained when the symbols are independent and equally likely.

The probability that the next outcome, X,,11,is s, wheres € A = {A,C,G, T},
is obtained using the estimator

&
ng + o

Py =sl0) = 0% ojap

(2)
where n¢ represents the number of times that, in the past, the information source
generated symbol s having as conditioning context ¢ = z,_gy1 ... Tp—1T, and

where
ne =3 ne (3)
sEA

is the total number of events that has occurred so far in association with context
c. The parameter a controls how much probability is assigned to possible but
yet unseen events. In this work, we used o = 1, which transforms the estimator
into the multinomial extension of Laplace’s rule of succession [§].

Note that, initially, when all counters are zero, the symbols have probability
1/4, i.e., they are assumed equally probable. The counters are updated each time
a symbol is encoded. Since the context template is causal, the decoder is able to
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Tn—aq 1

Tp
cla[a]r]alc]af€]c|T]G

Input
symbol

FCM

P(X,11 = s|c¢)

\

Encoder —
Output
bit stream

Fig. 1. Example of a finite-context model: the probability of the next outcome, X, 41,
is conditioned by the k last outcomes. In this example, A = {A,C,G, T} and k = 5.
The “Encoder” block is usually an arithmetic encoder.

reproduce the same probability estimates without needing additional informa-
tion. In other words, this model is self-contained, in the sense that it is capable
of recovering the original sequence based only on the bit-stream produced by
the encoder.

2.3 The Three-State Model

Figure [2 shows the model addressed in this paper. It differs from the finite-
context model displayed in Fig. [Tl by the inclusion of three internal states. Each
state is selected periodically, according to a three-base period, and comprises a
finite-context model, similar to the one presented in Fig. [l

The three-state model, originally introduced in [3l9] with the purpose of com-
pressing protein-coding regions of DNA, is revisited in this paper with the aim
of exploring homology using the idea of a three-state entropy vector.

With this model, probabilities depend not only on the k£ last outcomes, but
also on the value of (n mod 3), which is used for state selectivity. In this case,
the probability estimator is given by

ns? +
P(Xpt1 = = 3 , 4
(Kot =310 = oo 4 ol W
where
¢p=nmod3+1 and n®? = Z n?. (5)
seA

Therefore, three different sets of counters are used, one for each state. More-
over, only the counters associated with the chosen state are updated. It is worth
noting that, in order to be able to operate, this model does not require the
knowledge of the correct reading frame. However, once a particular initial po-
sition has been chosen, the corresponding reading frame should be maintained,
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Tn—4 Tnt1
clalalr][afc]a]€]c]T]c

"= State 1 ! Input
! ! symbol
3 | \i
i > State 2 :P( ntl 7s|c_l Encoder —»
| / ! Output
! n mod 3+1 ! bit stream
. L» State 3 3
FCM

Fig. 2. Three-state model, exploiting the three-base periodicity of the DNA protein-
coding regions. In this case, the probability of the next outcome, X, 1, is conditioned
both by the k last outcomes and by the value of (n mod 3 + 1).

otherwise the statistics will become mixed and the model will not work prop-
erly. Notwithstanding, if we intend to determine the entropies associated with
each of the three base positions inside the codons, we need to know which base
position corresponds to each state of the model. Moreover, note that () needs
to be modified accordingly, leading to the entropies

/3]
H, = n/3 Z log, P(X3i—2 = x3i-2]c), (6)

where ¢ = x3;_p_o...T3,_4%3;_3,

/3]
1
Hyy = /3] Z log, P(X3i—1 = 3i-1]c), (7)

where ¢ = x3;_p_1...%3,_3%3;_2, and

[n/3]
Hg Z 10g2 Xgi = $3Z“C), (8)

where ¢ = T3i—k---L3;—2L35—1-

For the cases reported in this paper we always started the model at the begin-
ning of a codon, implying that state one corresponds to the first base position
of the codon, state two to the second base position and state three to the third
base position.
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Fig. 3. Plots showing the distribution of the information among the three bases of the
codon for H. sapiens, P. troglodytes and M. mulatta

3 Results

We ran the three-state finite-context model for the DNA sequences under analy-
sis, using contexts of depths one to six, i.e., from k = 1 until k¥ = 6. Figures BHf|
display graphics of the average number of bits per base obtained. Each graph
contains three curves, one for each of the three bases of the codon, i.e., the values
of H}, H2 and H3 after having processed the whole sequence.

As can be seen, the plots shown in Fig.[3] corresponding to the H. sapiens, P.
troglodytes and M. mulatta organisms, present a significant similarity. Moreover,
for most of the values of k (the depth of the context) the entropy associated to
the second base of the codon is the largest, followed by the first and third bases.

This behavior is also observed in the graphs of Fig. [, where the M. musculus
and R. norvegicus organisms are addressed. However, in this case, and in contrast
to the previous one, it can be seen a clear inversion of the entropy of the first
and third bases for k = 1.

Figure [ displays the entropy graphs for the four plants used in this prelim-
inary assessment, namely the A. thaliana, P. trichocarpa, V. vinifera and R.
communis. For these organisms, the entropy of the first base is generally larger
than that of the second one, which is larger than the entropy of the third base.



Exploring Homology Using the Concept of Three-State Entropy Vector 167

2 T T T T 2 T T T T
Codon base 1 —e— Codon base 1 —o—
Codon base 2 ——*— Codon base 2 ——*—
Codon base 3 ~—#- Codon base 3 -
() o
0 7
(] o
Q Q
8 1.9 8 1.9
Q =1
0 w
o -
Pt b=t
[ m
M musculus R norvegicus
1.8 . . . . 1.8 . . . .
1 2 3 4 5 6 1 2 3 4 5 6
Context depth Context depth

Fig. 4. Plots showing the distribution of the information among the three bases of the
codon for the M. musculus and R. norvegicus
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Fig. 5. Plots showing the distribution of the information among the three bases of the
codon for A. thaliana, P. trichocarpa, V. vinifera and R. communis

Therefore, in comparison to the five animals, there is a change in the relative
position of the curves regarding the first and second bases of the codon.

This same ordering can be found in the curves corresponding to the S. pneu-
moniae, C. trachomatis, M. genitalium and S. mutans organisms, presented in
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Fig. 6. Plots showing the distribution of the information among the three bases of the
codon for S. pneumoniae, C. trachomatis, M. genitalium and S. mutans

Fig. 6l However, whereas for the plants the difference between the values of the
upper and lower curves is typically less than 0.05 bpb, in the case of the four
bacteria this difference is typically larger than 0.1 bpb.

In order to better understand the similarities and differences of the entropy
values among the analyzed species, we have built a dendogram (Fig. [1) with
the PHYLIP package (http://evolution.genetics.washington.edu/phylip.
html)), constructed using the unweighted pair group method with arithmetic av-
erage (UPGMA), also known as average linkage method [I2]. The distance matrix
was obtained by computing the Euclidean distance between vectors built from
the three-state entropy vectors corresponding to context depths from one to six.
Therefore, each organism is represented by a vector with eighteen elements, i.e.,
the concatenation of six groups of three-state entropies.

Regarding this dendogram, we have some remarks. The prokaryotes (lower
branch) are correctly separated from the eukaryotes (upper branch), except for
the bacterium C. trachomatis. Amongst the prokaryotic branch, all bacteria are
correctly grouped. The clades for the animals and plants are also well identified.
Amongst the plants, P. trichocarpa should be classified closer to R. communis,
as they belong to the same order. As for the animals, the human should be
closer to the chimpanzee, then to the Rhesus macaque, and finally to the mouse
and brown rat. Tough these minor misclassifications, this methodology correctly
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Fig.7. Dendogram, based on UPGMA, obtained from the matrix of the Euclidean
distance between the three-state entropy vectors for context depths from one to six

identifies overall clades, making these preliminary results encouraging in the
exploration of three-state finite-context models for a meaningful classification of
organisms.

4 Conclusion

The three-base periodicity of the exons has been used since its discovery mostly
as an aid in gene finding. More recently, it was noted that the three entropy
values associated to each of the three base positions of the codon are not the
same, and that the differences vary from organism to organism. We refer to these
three entropy values as the “three-state entropy vector” of the organism.

The work presented in this paper is a start towards a deeper investigation
of the implications of this observation, particularly in what concerns its use for
species classification. The preliminary results obtained suggest that the infor-
mation gathered from the three-state entropy vector alone seems to be sufficient
for building meaningful dendograms, encouraging further study.
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Abstract. A given group of protein sequences of different lengths is con-
sidered as resulting from random transformations of independent random
ancestor sequences of the same preset smaller length, each produced in
accordance with an unknown common probabilistic profile. We describe
the process of transformation by a Hidden Markov Model (HMM) which
is a direct generalization of the PAM model for amino acids. We formu-
late the problem of finding the maximum likelihood probabilistic ancestor
profile and demonstrate its practicality. The proposed method of solv-
ing this problem allows for obtaining simultaneously the ancestor profile
and the posterior distribution of its HMM, which permits efficient deter-
mination of the most probable multiple alignment of all the sequences.
Results obtained on the BAIiIBASE 3.0 protein alignment benchmark
indicate that the proposed method is generally more accurate than pop-
ular methods of multiple alignment such as CLUSTALW, DIALIGN and
ProbAlign.

Keywords: Multiple alignment problem, protein sequences analysis,
EM-algorithm, HMM, common ancestor.

1 Introduction

The problem of multiple alignment of protein sequences is a fundamental prob-
lem for modern bioinformatics. It arises from applications such as secondary and
tertiary structure prediction |1], reconstructing complex evolutionary histories
[2,13], locating conserved motifs and domains [4], and constructing phylogenetic
trees [4].

The bioinformatics literature is replete with diverse alignment methods and
tools. However, only few of them, such as multidimensional dynamic program-
ming [6], have a mathematically strict problem formulation followed by a sound
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optimization procedure. Those with mathematical formulations which try to take
into account information about protein evolution |7] are NP-hard and cannot be
applied for aligning more than a few sequences [§]. Approximations which are
not based on evolutionary trees and stars |9] and other fast heuristics, such
as approaches like those which include a large family of progressive alignments
[10, 111], are less biologically relevant.

Profile-based algorithms with iterative updating [12] and HMM-based ap-
proaches [13-16] have an essential common disadvantage: their results strongly
depend on the initial approximation. An additional problem which is typical
for HMM-based multiple alignments is that of deciding on how to select model
parameters.

In this paper, we consider a new approach to the problem of multiple align-
ment on the basis of the simplest probabilistic model of protein evolution built
as a relatively straightforward generalization of Margaret Dayhoff’s PAM model
(Point Accepted Mutation) developed for the alphabet of single amino acids
A= (a'...a?) [17]. It is assumed that the amino acid sequences w; = (wj; €
A, t =1...N;) forming the set to be processed jointly 2* = {w;,j =1... M}
are results of independent random Markov chains of insertions/substitutions ap-
plied to some unknown n-length ancestor sequences ¥; = (Vj,i =1...n),j =
1...M, specific for each w; of greater length, n < min{N;,j =1...M}. The
elements of the hidden sequences ¥;; are a priori assumed to be randomly and in-
dependently chosen by nature according to a sequence of n unknown probability
distributions over the set of 20 amino acids ¥; € A.

The goal of the analysis is to estimate these probability distributions as the
sought-for n-length profile playing the role of a model of the given protein set.

Such a result is not in itself a multiple alignment, but any instance of the j-th
insertion/substitution transformation cuts out a n-length subsequence from the
corresponding amino acid sequence wj; = (...@j4 ... Wyt - - - Wy, - - - ), which is
associated with the successive elements of the supposed ancestor (1...n). This
process will generate a vast diversity of versions of how these positions could be
assembled into n relatively conserved columns.

The algorithm yields the posterior distribution over the set of possible multiple
alignments relevant to the given set of proteins, covering the large variety of
versions of how these positions can lead to n relatively conserved columns. So
we can easily find the most probable multiple alignment.

2 Dayhoff’s PAM Model of Evolution within the Amino
Acid Alphabet

The formulation of the multiple alignment problem considered in the present
paper is based on the pioneering model of amino acid evolution Point Accepted
Mutation (PAM) introduced by M. Dayhoff in 1978 [17]. The PAM model rep-
resents predispositions of amino acids towards mutual mutative transformations
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as a square matrix of conditional probabilities that amino acid o will be sub-
stituted at the next step of evolution by amino acid o/ :

¥ = (¢Y(d]a’), o, o’ € A)(20 x 20), Z W(ad|at) = 1. 1)
aleA
The main probabilistic assumption underlying the PAM model is that the Markov

chain defined by the transition matrix ¥ possesses the two classical properties:

— ergodicity, namely, existence of a final probability distribution over the set
of amino acids £(a?) = 3 i c 4 ()Y (o),
— and reversibility £(a®)y(a?|a?) = £(a?)p(at|ad).

3 Model of the Common Origin of a Set of Proteins

Let 2 be the set of all finite amino acid sequences w = (w¢,t = 1,...,N),
wy € A = {al,...,a?"}. We shall use also the notation 2, = {w = (w;,t =
1,...,N),ws € A/ N = n} for the set of all sequences having a fixed
length n.

We proceed from the following probabilistic assumptions on the common ori-
gin of the proteins to be analyzed jointly 2* = {w;,N; > n,j = 1,...,M}.
These assumptions are essentially based on those taken in [18], aimed at an
evolution-based pairwise comparison of proteins. On the one hand, we simplify
them, because we use here only one particular class of described in [18] random
transformations of sequences. But, on the other hand, we generalize this model
because several amino acid sequences can be jointly processed here instead of
just two.

Hypothesis 1. Each of the amino acid sequences in the given set 2* = {w; =
(Wi, t =1,...,N;),5 =1,...,M} is considered as having evolved from its spe-
cific hidden ancestor 9; = (¥;; € A, i = 1,...,n) € {2, through independent
known random transformations represented by the family of conditional proba-
bility distributions @, (w|d;) , ZWEQNJ» Yin(wl¥;)=1.

Hypothesis 2. Let the length n of the random ancestors ¥; € (2, be fized,
and their elements 95 be drawn from the alphabet of amino acids in accordance
with a common sequence of unknown independent probability distributions (ﬂi(ﬁ),

IEA), Yyen Bild) = 1.

Each of these distributions is completely represented by a 20-dimensional
vector of probabilities 3, = (8},...,3?9) € R29, ZiO:l BF = 1. It should be
noticed that the sequence of distributions 8 = (8,,i = 1,...,n) € R?°" corre-
sponds to the notion of the probabilistic profile, which is commonly adopted in
bioinformatics.
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This profile is the common parameter of identical independent probability
distributions of the hidden ancestors ¥; for each of the observed amino acid
sequences :

Pa(951B) = pu (@1, ... Ujnl By .- B,) = [ [ Bi(¥si)- (2)
=1

So, it is assumed here that the entire given set of amino acid sequences 2% =
{wj,N; >n,j=1,..., M} has evolved from the same hidden profile 3.

Hypothesis 3. The transformation onn(w|9) of the n-length ancestor ¥; € §2,,
into some random protein w; of random length N; > n is a concatenation of the
two following random mechanisms.

The first step of the transformation is a random choice of the structures

= (1 < v < -+ < vy,) of transformations independently for each of the
resultmg sequences ¥ — w, v, < N, namely, assigning the positions w =
(.. @y, -+ Wy, ... Wy, ...)into which the elements of the ancestor 9= (¥4, ..., 9, )
will be mapped. These positions are called in [18] key positions. The apriori dis-
tributions of the respective key-position vectors gn,(v) = gnn(v1,...,v,) are
assumed to take into account only the gaps between the key positions v; — v;_1
and be indifferent to the lengths of both tails v; and N —wv,,. Distributions ¢x, (v)
are necessarily specific for each of the lengths N;,j = 1,..., M, because of the
constraints v,, < Nj:

n

X H g(,UZ _Ui71|a7b)vvn < Nja
=2

=0,v, > Nj,

qn;n(vla,b) =

. Ldi =v; —vi_1 =1,
g(vi = vi-1la, b) o {exp [—cla+b(v; —vi—1))],di > 1,
a>0,b>0,c>0.

Such a distribution ranks one long gap as more preferable than several short
ones adding up to the same length.

The second step is filling the key positions in the resulting sequences with
random amino acids in accordance with Dayhoff’s conditional mutation proba-
bilities ¢ (wy,|¥;) (). The structure-dependent conditional transformation dis-
tributions are assumed to be completely uniform relative to amino acids in other
positions:

(]9, v) oc [T v(wn, [9:), (4)

i=1
where v € Vy,, for each specific N = N; , and Vy,, is the set of all n-length

transformation structures with respect to the length of the sequence 1 < v; <
< v, <N.
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It follows from Hypotheses Bl that each transformation ¥ — w = w;, N = N;,
is defined as the mixture

onn(w|d) = Z qnn (V) (W], v),w € N2, (5)

vEVNR

and, in accordance with Hypotheses 2] the marginal conditional distribution of
the sequence of length IV is expressed as

InwIB) = Y qna(v)in(wlB,v),w € 2y, (6)
vEVNR
where ~ -
G(@]B,v) = Y (W[, v)pa (9]B) (7)
9en,

is the conditional distribution of a single random sequence with respect to the
assumed structure v € Vy,, of its evolving from the unknown random ancestor
of length n.

4 Maximum-Likelihood Estimation of the Common
Profile

It follows from Hypothesis 1 that the joint distribution of independent sequences
making the given set 2* = {w;,j =1... M} is the product of individual distri-
butions (&)

E

F(27|B) = H S (w;|B). ®)

This is, in effect, a likelihood functlon with respect to the sought-for profile
whose maximum-likelihood estimate will be given by the maximum point of this
function:

M
B = argmaxIn F(£2*|8) = argmalen Z an,n (V)G (wj]8,v). 9)

B B j=1 weVn;n

The presence of a sum within the logarithm seems to hinder the maximization.
But on the other hand, the set of sequences 2* = {w;,j = 1... M} is the
observable part of the two-component random object (£2*,7,,) whose hidden
part 15, = (v; € V;pn,j = 1...M) is the collection of the sequence-specific
transformation structures.

This fact suggests the application of the Expectation-Maximization (EM)
principle, which results, in this case, in the following iterative procedure s =
1,2,3,... , starting with an initial approximation 8, = (B1.os-+Bno) € R207,

Let B, = (ﬂl,s, . ,,Bn,s) be approximation at step s, and
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be the a posteriori probability of the event v;; = ¢ in the transformation structure
vj = (1 < w1 <--- < vjp) , which means that the i-th element 3; ; of the
profile B, = (B, ---,B,.,) is associated with the ¢-th element wj; of the j-th
sequence w; = (wj1, .. .,w;n;). The next value of the i-th element of the profile
Bisi1 = (Blairr- - 07%,1) € R* is defined as

20 20
(ﬁ}’sﬂ, e ’52‘2,2“) = argmax hé In 3 ¥(at|a®) Z’»“,
(BL,...,B20)€R20 [=1 k=1

n (11)
S Bk =1,8>0k=1,...,20,
k=1

M N _
where bl = 3" 3" Iwj; = a!]pi(B,, w;) , and indicator function Ifw;; = o!] = 1
j=1i=1
if the condition wj; = a! is met, or 0 if not. Solving this problem is provided by
the well-known gradient projection algorithm.

Theorem 1. The choice of B,y = (B1o11---Bnst1) in accordance with (I
provides that the inequality F((Z*|Bst1) > F(£2*|8,) holds true at each step s

Proof. The proof directly follows from the standard derivation and reasoning for
EM algorithms.

Computation of posterior probabilities (0] is also a standard problem, in this
case, in the theory of hidden Markov models, because the random transformation
structure v = (1 < vy < -+ < v,) with independent gaps defined by (3) is a
Markov process for each amino acid sequence in the data set under analysis
2 :{Wj,jzl,...,M}.

5 Choosing Main Parameters of the Algorithm

The main parameters of the proposed algorithm are the length n of the common
profile B = (B4,...,,) and the initial approximation for the profile B, =
(Bo,1s- -+ Bon)-

These parameters can be chosen by a number of different ways. For example
it appears reasonable to take the value n which provides the minimum average
entropy of the profile columns:

= arg;nin (—711 zn: zn:ﬁf lnﬁf) (12)

i=1 k=1

>

This criterion satisfies the requirement of the final goal of the analysis, which is
understood as finding the most conserved columns of amino acids in the given
set of proteins.

When the likelihood function (&) has only one maximum, i.e., the set of its
stationary points {8 : VzF(£2*|8) = 0} C R?" is convex, the choice of the
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initial approximation 3, = (Bo.1>--->B0.,) is not too significant. For instance,
it is enough to take the sequence of uniform distributions over the set of amino
acids By ; = (1/20,...,1/20) e R*®, i =1,...,n.

However, when the sequences under analysis 2* = {w;,j = 1...M} have
low identity, the likelihood function has a tendency to be not unimodal. In this
paper, we choose both parameters n and 3, € R2°" at once by computing them
using the multiple alignment obtained by some different method, for example
ProbAlign. The number of columns without gaps in this alignment defines the
length of the common profile n, and the distributions of amino acids in these
columns are taken as the initial distributions B ;,..., 8, The efficiency of
such approach is confirmed by results of experiments.

6 The Most Probable Multiple Alignment

The n-column profile 3 found as the maximum-likelihood estimate (@) of the
fuzzy common subsequence of the assumed preset length n in the given set of
proteins may be considered as the goal of their joint analysis. But the final
a posteriori probabilities p;(8,w;) = P(v;; = t|3,w;) ) of the positions
associated with each of the single amino acid sequences for successive elements
of the supposed common ancestor (1,...,n) show a vast variety of versions of
how these positions could be assembled into relatively conserved columns. This
is the posterior distribution over the set of possible multiple alignments relevant
to the given set of proteins.

The a posteriori most probable one will be given by the solutions of separate
optimization problems corresponding to single proteins wj,j =1...M:

n

v; = arg max ~.A,w',
5 = argmax [ pu. (8, ;) (13)

Vji 2 ’Uj’i,hi =2...n.

This is a standard dynamic programming problem.

7 Experimental Results and Discussion

7.1 Characteristic Features of the Proposed Alignment and Its
Visual Representation

It should be noted, that the form of multiple alignment obtained in accordance
with ([[3) is different from the most conventional form of multiple alignment. The
proposed approach actually produces only n columns without gaps, each of which
corresponds to the respective i-th (i = 1...n) element of the alleged common
ancestor of the sequences. Other amino acids are not aligned. An example of a
visual representation of a multiple alignment produced in accordance with our
approach is presented in Figure 1,b. In contrast, Figure 1,a shows the traditional
form of the benchmark multiple alignment produced by biologists.
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The main part of our alignment in Figure 1,b is separated from the rest at
the left and at the right by three empty columns, each of which contains only
gaps. Left fragments of the sequences, which precede the main part, are flushed
right, whereas right fragments, following the main part, are flushed left. Amino
acids located between the ungapped aligned columns are conventionally flushed
to the centers of idle intervals.

Corspriaton

W
only ungapped columns are aligned

Fig. 1. Examples of multiple alignments: (a) manually-refined benchmark alignment
and (b) alignment produced by the proposed approach

7.2 Alignment Benchmark

We tested our approach on a subset of BAIIBASE 3.0 @], which is the database
of manually-refined multiple sequence alignments specifically designed for the
evaluation and comparison of multiple sequence alignment programs.

For our tests we used families of short proteins from 3 different
sets of BALiBase RV11, RV12 and RV20. The set RV11 contains equidistant
families with sequence identity less than 20%, while RV12 contains equidistant
families with sequence identity between 20% and 40%. Both of these sets lack
sequences with large internal insertions (> 35 residues). The set RV20 contains
families with > 40% similarity and an orphan sequence which shares less than
20% similarity with the rest of the family.

The main characteristics of the tested families are presented in Table [l

7.3 Determining Prediction Accuracy

Given a true and an estimated multiple sequence alignment, the accuracy of
the estimated alignment is usually computed using two measures: the sum-of-
pairs (SP) and the true column (TC) scores. The SP score is a measure of
the number of correctly aligned residue pairs divided by the number of aligned
residue pairs in the true alignment, and TC is the number of correctly aligned
columns divided by the number of columns in the true alignment. Both of them
are standard measures of computing alignment accuracy. The source code of a
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Table 1. Characteristics of the considered families

Set Family Description Number of Lengths Number of
name sequences columns with-
out gaps in
benchmark
laab high mobility group protein 4 83 —91 76
- laboA SH3 8 52 — 193 47
> 1bbt3  foot-and-mouth disease virus 6 186 — 283 150
B lesy SH2 4 104 — 540 91
1dox ferredoxin [2fe-2s] 4 97 — 337 78
laxo toxin II 8 58 — 85 51
2 1fj1A homeodomain 9 49 — 254 49
> 1lhfh factor h 4 118 — 129 115
~ lhpi high-potential iron-sulfur protein 6 71 — 85 65
1krn serine protease 5 79 — 475 78
lidy myb dna-binding domain 38 54 — 256 45
S 1pamA cyclodextrin 16 247 — 527 215
> lpgtA glutathione 31 202 — 244 175
% JtvxA pertussis toxin 29 64 — 167 50
lubi ubiquitin 47 76 — 155 67

program for computing these scores is available for download at the BALiBase
site [20]. However, this program is not accurate enough, it has a tendency to
overstate the TC and SP scores and, moreover, to give values greater then 1,
which is impossible given the definition of these scores.

In this connection, we use our implementation of the procedure for computing
Bali-scores. It should be noticed that our procedure, in contrast to the original
one, takes into account only pairs of amino acids which belong to the columns
without gaps. This approach is much more appropriate for the principle of mul-
tiple alignment proposed in this paper but, as a rule, yields smaller values of
scores.

7.4 Experimental Setup and Results

For each family under consideration, four multiple alignments were computed.
Three of them were produced by the popular multiple alignment tools
CLUSTALW, DI-ALIGN and ProbAlign, which were run on their respective
servers. The value of the constant for the ProbAlign algorithm, called ”the ther-
modynamic temperature”, was chosen to be 5 as the most reasonable value
according to publications [14]. The remaining parameters of this and other al-
gorithms were set at their default values.

Finally, the 4-th alignment was produced in accordance with the proposed
approach, started from the resulting alignment of ProbAlign as initial approxi-
mation.

The four-way comparison of SP and TC scores is presented in Table 2. The
best values of scores are highlighted in bold font.
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Table 2. Results of comparing multiple alignment procedures. TC/SP scores of mul-
tiple alignments produced by different algorithms.

Set Family CLUSTALW DIALIGN ProbAlign The proposed
approach
laab  0.92/0.96  0.91/0.93 0.83/0.87 0.99/0.99

— laboA  0.00/0.38  0.00/0.00 0.00/0.54  0.00/0.45
S 1bbt3  0.00/0.20  0.00/0.00 0.29/0.42  0.28/0.36
M lesy 0.37/0.42  0.31/0.37  0.46/0.56  0.51/0.56
ldox  0.00/0.24  0.40/0.46 0.62/0.71  0.64/0.75
laxo  0.29/0.54  054/0.64 0.69/0.87 0.87/0.93
~  IfilA  1.00/1.00  069/0.76 0.79/0.84  1.00/1.00
S 1hfh 0.68/0.78  0.39/0.53 0.78/0.85 0.75/0.85
 lhpi 0.59/0.72  0.37/0.57  0.40/0.55  0.75/0.82
1krn 0.53/0.69  0.47/0.68 0.60/0.75  0.79/0.88
lidy  0.00/0.62  0.00/0.00 0.00/0.33  0.00/0.60
S lpamA  043/0.77  029/0.58 0.74/0.84  0.69/0.83
= lpgtA  0.47/049  014/052 0.26/0.69  0.27/0.68

ltvxA  0.00/0.64  0.00/0.00  0.00/0.41  0.00/0.46
lubi  0.00/0.68  0.00/0.03 0.09/0.49  0.08/0.48
mean  0.35/0.61  0.30/0.41  0.44/0.65 0.51/0.71

As can be seen, in more than half of all the above cases our proposed approach
yields the best results. The greatest success is achieved for families of the set
RV12. But also for other families, the TC and SP scores of our approach are
larger, in many cases, than scores of the main competitor ProbAlign. As a result,
the average scores for the proposed approach are the best.

In addition, some interesting statistics computed from Table [2 are presented
in Table Bl for comparing the proposed approach with the ProbAlign.

Table 3. Statistics computed from Table 2 for comparing the proposed approach with
the ProbAlign

TC / SP
The number of cases when our proposed approach 11(73%) / 10(67%)
is better or equal
The mean increment of scores 0.112 / 0.127
The mean percentage increment of scores 23% / 21%
The mean decrement of scores 0.025 / 0.036
The mean percentage decrement of scores 6% / 7.1%

8 Conclusions

In this paper we have proposed and tested a new formulation of the multiple
alignment problem. It is based on a deliberately simplified model of proteins
evolution, which is a direct generalization of the PAM model for amino acids. For
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solving the respective optimization problem we have used an iterative procedure
based on the EM-algorithm.

The first experiments show that the proposed approach outperforms other

methods of multiple alignment by mean values of TC and SP scores. It does not
yield the best scores for all considered cases, but it can be seen that, as a rule,
our method shows small decreasing and large increasing of scores in contrast to
other methods.
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Abstract. Supertree methods allow to reconstruct large phylogenetic
trees by combining smaller trees with overlapping leaf sets, into one, more
comprehensive supertree. The most commonly used supertree method,
matrix representation with parsimony (MRP), produces accurate su-
pertrees but is rather slow due to the underlying hard optimization prob-
lem. In this paper, we present an extensive simulation study comparing
the performance of MRP and the polynomial supertree methods Min-
Cut Supertree, Modified MinCut Supertree, Build-with-distances, PhySIC,
and PhySIC IST. We consider both quality and resolution of the recon-
structed supertrees. Our findings illustrate the trade-off between accu-
racy and running time in supertree construction, as well as the pros and
cons of voting- and veto-based supertree approaches.

1 Introduction

In recent years, supertree methods have become a familiar tool for building
large phylogenetic trees. Supertree approaches combine input trees with over-
lapping taxa sets into one large and more comprehensive tree. Since the in-
troduction of the term supertree and the first formal supertree method [II,
there has been a continuous development of supertree methods, see e.g. [2]. The
supertree approach has certain advantages over standard phylogenetic recon-
struction methods, both on the theoretical and practical side [3]: It allows to
combine heterogeneous data sources, such as DNA hybridization data, morpho-
logical data, and protein sequences. Furthermore, it enables inference for groups
where most species are represented by very few genes and sequences, and the
major part of sequences is available only for few species, which makes deriving a
balanced molecular phylogeny difficult. On the theoretical side, it is well known
that inferring optimal trees from sequences is a computationally hard problem
under the maximum likelihood (ML) [4] and the maximum parsimony (MP)
criterion [5], so we have to rely on heuristics that cannot guarantee to find the
optimal solution. Even for a moderate number of species, the sheer size of tree
space prohibits to search for optimal trees under these criteria. Current supertree
methods can roughly be subdivided into two major families: matrix representa-
tion (MR) and polynomial, mostly graph-based methods. The former encode the
inner vertices of all input trees as partial binary characters in a matrix, which is
analyzed using an optimization or agreement criterion to yield the supertree. Ma-
trix representation with parsimony (MRP) [6L[7], the first matrix-based method,

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 183 2010.
© Springer-Verlag Berlin Heidelberg 2010
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is still by far the most widely used supertree method today. Other variants have
been proposed using different optimization criteria, e.g. matrix representation
with flipping (MRF) [8] or matrix representation with compatibility (MRC) [9].
All MR methods have in common that the underlying optimization problems
are computationally hard, and heuristic search strategies have to be used. As for
ML and MP, it is unclear how close the resulting tree is to the optimal one.

Graph-based methods make use of a graph to encode the topological informa-
tion given by the input trees. This graph is used as a guiding structure to build
the supertree top-down from the root to the leaves. The MinCut Supertree algo-
rithm (MC) [I0] and a modified version, Modified MinCut Supertree (MMC) [11],
use a minimum-cut approach to construct a supertree if the input trees are con-
flicting. The Build-with-distances algorithm (BWD) [12] is the first graph-based
method that uses branch length information from the input trees to build the
supertree. Ranwez et al. [I3] presented a new graph-based method, the PhySIC
algorithm. The method ensures that the reconstructed supertree satisfies two
properties: it contains no clade that directly or indirectly contradicts the input
trees and each clade in the supertree is present in an input tree, or is collectively
induced by several input trees. Supertree methods guaranteeing the first prop-
erty are called veto methods, that, in case of highly conflicting and/or poorly
overlapping input trees, tend to produce unresolved supertrees. Scornavacca et
al. [I4] presented a modified version of PhySIC, PhySIC IST, that tries to over-
come this drawback by proposing non-plenary supertrees (i.e. supertrees that
do not necessarily contain all taxa from the input trees), while still assuring
the properties mentioned above. PhySIC IST works in a stepwise fashion, iter-
atively adding leaves to a starting tree consisting of two nodes. In contrast to
MR methods, the MC, MMC, BWD, PhySIC and PhySIC IST algorithms have
polynomial running time.

As an increasing number of supertree methods is available, simulation stud-
ies are needed to compare the behavior and performance of the methods under
various conditions. The advantage of simulation studies is that the results of
different methods can be compared to a known model tree and thus the meth-
ods can be compared at an absolute scale. Although several simulation studies
focusing on different aspects of the investigated supertree have been carried out
(e.g. [15], [16]), they have only just begun to provide useful comparisons of al-
ternative methods. This paper focuses a special subset of supertree construction
methods: we are in particular interested in the comparison of the accuracy of
the MRP method as exponent of the MR based family of supertree methods, for
which it has been shown that they are accurate and highly resolved but require
long running times, and the mentioned polynomial supertree methods, which are
swift but possibly less accurate and in case of PhySIC and PhySIC IST, also
possibly less resolved. Here, we present a large-scale simulation study conducted
to compare the accuracy and the resolution of MRP, MC, MMC, BWD, PhySIC,
and PhySIC IST supertrees. Additionally, we explore new variations of BWD,
trying to improve its performance. Our simulation study follows the established
general scheme to assess the performance of supertree methods: (1) Construction
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of a model tree under a Yule process, (2) simulation of DNA alignments along
that tree, (3) random deletion of a proportion of taxa (4) reconstruction of trees
by ML, (5) construction of supertree from the inferred ML trees, and, finally (6)
comparison of the supertree to the model tree using distance and similarity mea-
sures and evaluation of its resolution. Our results demonstrate that the BWD
and the PhySIC IST method perform significantly better than MC and MMC,
and are, with respect to the accuracy of the reconstructed supertree, sometimes
even comparable with MRP. Moreover, as we also consider the resolution of the
supertrees, our findings illuminate the trade-off between accuracy and running
time in supertree construction, as well as the pros and cons of voting and veto
approaches.

2 Methods under Consideration

Build and MinCut supertrees. The first graph-based supertree method is the
Build algorithm [I7], an all-or-nothing approach that encodes the input trees
into a graph structure and returns a supertree only if the input trees are com-
patible. The MinCut Supertree algorithm (MC) [10] was the first extension of
Build capable of returning a supertree if the input trees are not compatible.
The incompatibilities are resolved by deleting a minimal amount of information
present in the input trees in order to allow the algorithm to proceed. Page [11]
presented a modified version of MC that uses more information from the input
trees. By using a variation of the underlying graph structure, the Modified Min-
Cut Supertree (MMC) algorithm ensures to incorporate all clades from the input
trees with which no single tree directly disagrees.

Build-with-distances supertrees. Willson [12] presented another extension of Build,
the Build-with-distances (BWD) algorithm that, in addition to the branching
information in the input trees, uses branch lengths to build the supertree. Basi-
cally, the method follows the same recursive schema as Build, MC, and MMC.
The main observation underlying the BWD algorithm is that branch lengths
may carry phylogenetic information, such as an estimated number of mutations.
Clearly, the use of branch length is only justified if these are comparable amongst
the input trees, i.e. the input to the method has to be carefully selected, or the
branch lengths have to be reconciled or normalized in some way. The BWD algo-
rithm incorporates branch lengths from the input trees to add more information
to the used graph. BWD uses different support functions, which basically esti-
mate the evidence that two taxa should be in the same clade of the supertree.
We find that in our simulation study using the accumulated confirmed support
function (SAC) consistently outperforms other support functions. Hence, we will
concentrate on SAC in our evaluations as well as a new established support func-
tion, SACmax. Details are deferred to the full version of this paper. In contrast
to the minimum-cut approach used by MC and MMC, Willson uses the bisection
method to deal with incompatible input trees.
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PhySIC and PhySIC IST supertrees. Unlike all methods mentioned before, the
PhySIC algorithm [I3] applies a veto philosophy. Following Ranwez et al. [13],
supertree methods are either voting or veto procedures. A characteristic of the
voting approach is that the input trees are asked to vote for clades in the phy-
logeny to be inferred; the most frequent alternatives are chosen. Voting methods
resolve conflicts by using an optimization criterion in order to select between
different possible topologies [I§]. When input trees conflict, voting methods as
MRP can infer supertrees in which clades are present that are contradicted by
each of the input trees (e.g. [19]). In contrast to voting methods, the veto ap-
proach is more conservative in handling conflicts among the input trees: the
inferred supertree has to respect the phylogenetic information of each source
tree and is not allowed to contain any clade that is contradicted by one or more
of the input trees. Thus, conflicts among the input trees are removed [18§], for ex-
ample by proposing multifurcations in the supertree or by pruning rogue taxa.
Scornavacca et al. [14] presented PhySIC IST, a modification of the PhySIC
algorithm, aiming to circumvent a main drawback of veto supertree methods:
These tend to return highly unresolved supertrees if the input trees imply a high
degree of incompatibility, or do not have a high degree of overlap. To overcome
this shortcoming, PhySIC IST modifies the original approach non-plenary su-
pertrees (i.e. supertrees that do not necessarily contain all taxa present in the
input trees) and by using a preprocessing step called STC (Source tree correc-
tion), which analyzes and modifies the input trees concerning the conflicts they
contain. Basically, it removes parts of each source tree that significantly conflict
with other source trees.

Matriz Representation with Parsimony (MRP). MRP encodes the inner vertices
of all input trees as partial binary characters in a matrix, which is analyzed using
the parsimony criterion as objective function. Two different coding schemes have
been suggested to decompose trees into an matrix representation: the Baum-
Ragan (BR) and the Purvis (PU) coding scheme. Furthermore, two kinds of
parsimony can be used: reversible Fitch parsimony and irreversible Camin-Sokal
parsimony. MRP with BR and Fitch is commonly used and generally accepted
as standard method for supertree construction.

3 Simulation Study

In this section we present a large scale simulation study conducted to evaluate the
accuracy and resolution of the methods MRP, MC, MMC, PhySIC, PhySIC IST,
and BWD (with modifications). An overview of the simulation layout can be
found in Figure[ll Each step is described in detail below.

Generating Model Trees and DNA Sequences. We generated model trees ac-
cording to a stochastic Yule birth process using the default parameters of the
YULE C procedure from the program r8s [20] with either 48, 96 and 144 taxa.
For each model tree size we generated 100 different model tree replicates. By
the use of the program Seq-gen v1.3.2 [21], nucleotide sequences were simulated
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along each of the model trees according to the general time reversible process
(GTR) model [22] with parameters Lset Base = (0.3468 0.3594 0.0805), Rmat =
(0.6750 27.9597 1.1677 0.4547 20.8760), gamma rate heterogeneity o = 1.1999
and PINVAR = 0.4954, taken from [23]. For each model tree we generated se-
quences ranging from 2000 to 20000 base pairs in steps of 2000, yielding in ten
different sequence alignments per model tree.

Generating Input Trees. All models of molecular substitution implemented in
Seq-Gen assume evolution is independent and identical at each site. Hence, con-
tiguous blocks of sequences represent randomly subdivided data set. We par-
titioned each alignment into blocks of 1000-base pair data sets and randomly
deleted 25%, 50% and 75% of sequences from each alignment to simulate differ-
ent taxa overlaps observed in real data sets. For each resulting alignment block
we inferred a maximum likelihood tree using RAXML v 7.0.0. [24] with default
parameters. This yields in sets ranging from 2 to 20 input trees belonging to one
model tree.

Supertree construction. MRP supertrees were estimated using PAUP* 4.0b10
[25] with TBR branch swapping as heuristic search, random addition of se-
quences and a maximum 10.000 trees in memory. The search time for a single
MRP supertree run was delimited by 300 seconds. The strict consensus tree
of all most-parsimonious trees was used as final MRP tree. We computed MC
as well as the BWD supertrees using our own implementations embedded in
our software framework EPod]. MMC trees were generated using Rod Page’s
implementatiorﬂ For the PhySIC and PhySIC IST supertrees we used the im-
plementations provided from the authors of the corresponding paperﬂ. To test
a broader range of the PhySIC IST STC preprocess (-¢ option), we used 0, 0.5
and 1 as parameters. In our setting, the results for 0 and 0.5 are similar; there-
fore, only the 0 and 1 parameter results are shown. In the following we will refer
these as PhySIC IST 0 and PhySIC IST 1.

Measuring accuracy and resolution. To evaluate the accuracy of the supertrees
build by the different methods we compared the supertrees to the model trees
using different distance and similarity scores, namely the Robinson-Foulds metric
(RF distance) [26], the maximum agreement subtree score, MAST score [27], and
the triplet distance [I1]. We stress that each of these methods has its particular
shortcomings, for a discussion and implementation details see the full version of
this paper. The resolution was measured as the number of clades in the inferred
supertree relative to the total number of clades on a fully binary tree of the same
size (n - 2 for an unrooted tree, where n = number of taxa). Resolution varies
between 0 and 1, where 0 indicates a unresolved bush and 1 indicates a complete
binary supertree.

!http://bio.informatik.uni-jena.de/epos/

2 http://darwin.zoology.gla.ac.uk/~rpage/supertree/
3http://www.atgc-montpellier.fr/physic/binaries.php
4http://www.atgc-montpellier.fr/physic_ist/


http://bio.informatik.uni-jena.de/epos/
http://darwin.zoology.gla.ac.uk/~rpage/supertree/
http://www.atgc-montpellier.fr/physic/binaries.php
http://www.atgc-montpellier.fr/physic_ist/

Polynomial Supertree Methods Revisited 189
4 Results

Results of our simulation for 48 taxa are reported in Figure 2l where we plot
resolution and triplet distance against the number of input trees. In Figure[3, we
use our simulations on 96 taxa and plot MAST score and RF distance against
number of input trees. One would expect that results improve if more input data
becomes available, as this helps us to identify bogus information. Hence, triplet
distance and RF distance should decrease, whereas the MAST score should in-
crease when more input trees are available to the supertree method. We now
discuss the observed patterns in more detail.

Resolution. In our setting PhySIC mostly returns star trees. The two variations
of the BWD algorithm build the most resolved supertrees compared to all other
methods, independent from the deletion frequency the number of input trees. In
general, this also holds for MMC and MC. In case of 25% deletion frequency,
MRP behaves similar to MMC and MC, but is significantly less resolved than
all others at 75% deletion frequency. In case of 25% and 50% deletion frequency
PhySIC IST 0 produces more resolved supertrees than PhySIC IST 1. In com-
parison to all methods, the PhySIC IST 1 supertrees are least resolved. With
75% deletion frequency, the resolutions of the PhySIC IST 0 and PhySIC IST
1 supertrees are quite similar. In general, one can see that BWD as an ad-
vanced graph-based supertree method outperforms the classical parsimony ap-
proach (MRP) as well as the conservative, veto based algorithm (PhySIC IST)
in terms of resolution. The results also clearly show that the more conservative
PhySIC IST 1 produces less resolved trees than PhySIC IST 0, reflecting the
influence of the STC parameter.

Triplet Distance. In the majority of cases, MC algorithm performs worst com-
pared to all other algorithms and an increasing number input of trees has no
positive effect on the accuracy. The MMC algorithm generally performs better
than MC, but its accuracy also does not significantly increase with the number of
input trees, except for the case of 25% deletion frequency. Both BWD methods
perform better than MC/MMC but their accuracy also does not significantly
benefit from a growing number of input trees. In case of 25% and 50% deletion
frequency, PhySIC IST 1 produces less accurate supertrees with an increasing
number of input trees. This can be explained by the decreasing resolution, which
has direct impact on the number of matching triplets. In contrast, the accuracy
of PhySIC IST 0 is relatively stable and independent of the deletion frequency
and the number of input trees. MRP always performs better than the algorithms
mentioned so far. The number of input trees has in general a slight positive effect
on the accuracy.

MAST score. In general, the MC algorithm provides supertrees with the worst
MAST score compared to all other methods. Only in the case of 25% deletion
frequency MC performs slightly better than PhySIC IST 1. PhySIC IST 1 be-
haves generally like the MC algorithm. PhySIC IST 0 produces supertrees with
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Fig. 2. The left column of the figure shows the average resolution of the supertrees
constructed from model trees with 48 taxa and different taxon deletion rates (top 25%,
middle 50%, bottom 75%). The right column shows the average triplet distances of
the supertrees constructed from model trees with 48 taxa and different taxon deletion
rates (top 25%, middle 50%, bottom 75%).
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a considerably better MAST scores than MC and PhySIC IST 1, but the num-
ber of input trees has no significant effect on the MAST score. MMC algorithm
performs slightly better than PhySIC IST 0 and 1 as well as the MC method
in case of 25% deletion frequency With 25% deletion frequency MMC’s MAST
score increases with more input, in both other cases the score is relatively con-
stant. The MRP method performs better than all other methods in the case of
25% and 50% deletion frequency and significantly benefits from a growing num-
ber of source trees. With 75% deletion frequency the MAST score of all methods
under consideration are quite low and MRP can only outperform PhySIC IST
1, PhySIC IST 0, MC and MMC with a large number of input trees. For 75%
deletion frequency, the BWD methods outperform MRP and show an increas-
ing MAST score with an increasing number of input trees. With 25% and 50%
deletion frequency, both BWD methods are only outperformed by MRP. In both
cases the number of input trees has a positive effect on the MAST score.

RF distance. For all combinations of model tree sizes and deletion probabilities,
the MC methods performs worst compared to all other methods. As with the
triplet distance and the MAST score, MMC shows an improvement over the
original method. The PhySIC IST 1 performs generally better than MC and
MMC. The number of input trees has in general a positive effect on the RF
distance. In case of 25% and 50% deletion frequency all other methods perform
similar, although MRP produces slightly better results.

5 Conclusion

We have presented a large-scale simulation study to assess and compare the
accuracy and the resolution of polynomial supertree methods and the de facto
standard supertree method MRP. Our results show that recent, polynomial su-
pertree methods can sometimes compete with the classical MRP approach while
providing a significantly better running time (which did not exceed a few sec-
onds for all polynomial methods). The BWD method that incorporates branch
length information from the input trees, significantly enhances the graph-based
approaches concerning accuracy and resolution, without sacrificing short running
times. For example, the MAST score at 75% deletion (Fig. Blleft) is consistently
better for BWD than for MRP, for any number of input trees. Veto approach
such as PhySIC have certain appealing properties but also certain drawbacks:
the resolution of reconstructed supertree rapidly decreases when there are too
many conflicts among input trees, and/or small taxon overlap. PhySIC IST, in
combination with the STC preprocessing, significantly enhances the veto ap-
proach in terms of resolution and accuracy, but at the cost that taxa are not
included in the supertree.

For medium-sized studies with hundreds of taxa and tens of trees, we propose
to use several of the supertree methods presented here, and to manually compare
the results. But when the sheer size of the problem renders it impossible to use
matrix-representation methods such as MRP, then novel polynomial-time meth-
ods such as BWD and PhySIC IST will greatly improve the quality of results,
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compared to early methods such as MC or MMC. Although formal supertree
methods have been around for a quarter of a century, our simulation also show
that there is still much room for improvement, and that novel ideas and methods
can greatly improve the quality of constructed supertree.
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Abstract. Biomedical and chemical databases are large and rapidly
growing in size. Graphs naturally model such kinds of data. To fully
exploit the wealth of information in these graph databases, scientists re-
quire systems that search for all occurrences of a query graph. To deal
efficiently with graph searching, advanced methods for indexing, repre-
sentation and matching of graphs have been proposed.

This paper presents GraphGrepSX. The system implements efficient
graph searching algorithms together with an advanced filtering
technique.

GraphGrepSX is compared with SING, GraphFind, CTree and GCod-
ing. Experiments show that GraphGrepSX outperforms the compared
systems on a very large collection of molecular data. In particular, it re-
duces the size and the time for the construction of large database index
and outperforms the most popular systems.

Keywords: subgraph isomorphism, graph database search, indexing,
suffix tree, molecular database.

1 Introduction and Related Work

Application domains such as bioinformatics and cheminformatics represent data
as graphs where nodes are basic elements (i.e. proteins, atoms, etc.) and edges
model relations among them. In these domains, graph searching plays a key role.
For example, in computational biology locating subgraphs matching a specific
topology is useful to find motifs of networks that may have functional relevance.
In drug discovery, the main task is to find novel bioactive molecules, i.e., chemical
compounds that, for example, protect human cells against a virus. One way to
support the solution of this task is to analyze a database of known and tested
molecules with the aim of building a classifier which predicts whether a novel
molecule will be active or not. Future chemical tests can focus on the most
promising candidates (see Fig. [I]).

The graph searching problem can be formalized as follows. Given a database
of graphs D = {G1,Ga,...,G,} (e.g. collection of molecules, etc.) and a query
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Fig. 1. Querying a database of graphs. Graphs represent molecules. During the match
process, edge information is ignored. Query occurrences are shown in bold. For Q2,
since query matches overlap, only one occurrence in each molecule is depicted. The
number of occurrences is also given. Molecular descriptions include hydrogen atoms
for search accuracy. In a context where hydrogen atoms are not considered, query Q2
is present 11 times in G1, 6 in G2 and 10 in G3. The approximate query specifies
any path of an unspecified length between atoms C and N. Approximate queries may
also contain atoms with unknown label (they match any atom). In this paper we do
not exploit approximate queries since the compared systems do not deal with such
scenarios.
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graph @ (e.g pattern), find all graphs in D containing @ as a subgraph. Ideally,
all occurrences of @ in those graphs should be detected. Since most of these
problems involve solutions of the graph isomorphism problem, an efficient exact
solution cannot exist. In order to make searching time acceptable, research ef-
forts have tried to reduce the search space by filtering out the graphs that do
not contain the query. After candidate graphs have been selected, an exhaustive
search on these graphs must be performed. This step is implemented either by
traditional (sub)graph-to-graph matching techniques [73] or by an implementa-
tion that extends the SQL algebra [g].

For a database of graphs a filter limits the search to only possible candi-
date graphs. The idea is to extract structural features of graphs and store them
in a global index. When a query graph is presented, its own structural fea-
tures are extracted and compared with the features stored in the index to check
compatibility [AI2/10]. Most existing systems use subgraphs (paths [AT2I5/6],
trees [I5JT], graphs [14]) of small size (typically not larger than 10 nodes).

In order to apply such systems on large graphs, SING [5] tool stores the
starting node of each feature. This is done to capture the notion of features that
are branches of trees. The matching algorithm is also modified to start the search
on a selected node whose label is present in the query and not from a random
one.

However, even though small subgraphs are used, the size of the index and its
time construction may be high. Therefore, high-support/high-confidence mining
rules are used to index only frequent and non-redundant subgraphs (i.e. a sub-
graph is redundant when its presence in a graph can be predicted by the presence
of its subgraphs) [I5IJ14]. More precisely, gIndex [I4] stores, in a compact tree,
all discriminat and frequent subgraphs. FGIndex [14] uses two indexes: the first
one is stored in main memory, the second one is on disk. In order to assign a
feature to an index, the query is performed on the main-memory-resident in-
dex. If it doesn’t return any result, this index is used to identify the blocks of
the secondary memory index to be loaded. GraphFind [6] uses the low-support
data mining technique (Min-Hashing [2]) to reduce the index size. It is shown
that such a mining technique can be successfully applied to enhance other sys-
tems such as glndex. The above tools all require an effective but expensive data
mining step.

Several indexes are based on capturing other discrimant characteristics of the
graph. CTree [9] applies a graph closure to the database graphs, aligning vertices
and edges using a fast approximate algorithm called neighbor biased mapping.
It stores an ouput synthesized graph in a R-tree-like data structure. During the
filtering phase an approximate match is executed on the closure graphs of the tree
in a top down approach. Ctree spends much of its time in this matching phase.
GCoding [I6] uses graph signatures made by concatenating vertex signatures. A
vertex signature is built from its label, neighbor labels and higher eigenvalues
of the adjacency matrix of a tree representing all length n paths starting from
a random node. The signature graph set is inserted into a B-tree-like structure
index. In this way GCoding allows a compact representation of the indexes,
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but the cost of the eigenvalue computation and the high number of produced
candidates reduce the method’s efficiency.

In this paper, we propose GraphGrepSX, a novel approach inspired by the
GraphGrep ([12J6]) system. GraphGrepSX uses paths of bounded length as fea-
tures stored in a Suffix tree [13] structure. By exploiting path prefix sharing, the
algorithm reduces redundancies and achieves a more compact representation of
the index. This approach is particularly effective on graphs with a small label
space (e.g. chemical molecules). In such a case, the same partial combination of
labels could be present several times in the features of different graphs. Although
such a representation is very natural and simple, GraphGrepSX is able to speed
up both the index construction and the filtering phases. Moreover since it has a
low index loading time, it is suitable for searching on dynamic datasets. To eval-
uate the performance of GraphGrepSX, we compare it with the most prominent
graph search systems.

2 GraphGrepSX

GraphGrepSX uses paths of bounded length as features stored in a Suffix tree [13]
structure. In what follows we describe the phases of the method.

2.1 Preprocessing Phase

The preprocessing phase extracts the features from the graph database and
inserts them into the global index. Every node v; of a graph G; of the database
is visited by a depth-first search. During this phase, all the paths of length up
to and equal to [, are extracted. Each path is represented by the labels of its
nodes. Each path (vq,vs,...,v;,) is then mapped into its corresponding sequence
of labels (I1,12,...,1;,). All the subpaths {(v;,...,v;) for 1 <i < j <1[,} of a path
(v1,v2,...,v1,) are features which will be included in the global index also.

For each extracted path, we keep track also of the number of time it appears in
every single graph of the database. All these features are then stored in a Suffix
tree. Each node of the tree represents a path obtained during the depth-first
search traversal. The path can be reconstructed using its ancestors in the Suffix
tree. Each node of the tree also stores the list of graphs containing it together
with the number of times the path appears in each graph. The construction and
update of the Suffix tree are done during the depth-first search of each graph.
GraphGrepSX implements the Suffix tree as an N-ary tree in which the children
of a node are represented by a linked list. The list of the occurrences of the
features of the graphs is stored in a binary tree indexed by a unique graph id.
The Suffix tree and the occurrences list are also stored in an archive file using a
compact representation.

The worst case cost to search the child of a given node in the Suffix-Tree is |I5],
where |I5] is the maximum number of distinct labels in the graph G, because the
child list is represented as a linked list. Since the list of the feaures occurrences
is stored in a binary tree, the cost to update a value is log|D|. The cost of each
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depth-first visit is nimi;p, where n; and m; are respectively the number of the
nodes and the maximum valence (degree) of the nodes in the graph G;. The

total cost to build the database index is O(Z‘,D‘ ls|log |DYJ)).

Plnamy

2.2 Filtering and Matching Phases

Given a query graph ¢, the filtering phase tries to filter out those graphs that
cannot match the query graph. This phase is done in two steps. In the first step,
the query graph ¢ is processed and its features are extracted and stored in a
Suffix Tree. In contrast to the preprocessing phase, here we consider only the
maximal paths visited during the depth-first search of the query graph ¢. A path
is considered maximal either if its length is equal to I, or the path has length
less than [, but cannot be further extended, because the depth-first search can
not continue. The nodes of the Suffix tree storing the end-point of a maximal
path are marked. Only the occurrences of the maximal paths are stored in the
marked nodes of the index.

In the second step the pruning of the candidate graphs of the database is per-
formed by matching the query suffix tree against the suffix tree of the global in-
dex. Each marked node of the query tree representing a labeled path (1,2, ..., ;)
is searched in the Suffix tree of the global index. Those graphs which either do
not contain such a path or have such path with an occurrence number less than
the occurrence number of the query are discarded. Those that remain represent
the candidate set of possibly matching graphs.

The tesing of each candidate graph uses the VF2 [3] library for exhaustive
subgraph isomorphism. VF2 is a combinatorial search algorithm which induces
a search tree by branching states. It uses a set of topological feasibility rules and
a semantic feasibility rule, based on label comparison, to prune the search space.
At each state if any rule fails, the algorithm backtracks to the previous step of
the match computation.

Builds Load
Suffix Tree Query Suffix_Tree GraphDatabase

Filter (select only candicate graphs)
by trees matching

Run exaustive subgraph matching
(VF2) on candidates

Fig. 2. Figure shows the filtering phase and the candidates verification phase made by
GraphGrepSX
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Let T, to be the query Suffix-Tree and |T;| the number of nodes inside it.The
building cost is O(nqufﬂs\) where ng is the number of nodes in the tree, m, is
the maximum degree of a node and |l4| is the maximum number of distinct labels
in the query graph. The cost of the pruning step is given by matching time of the
query Suffix-Tree against the database index, i.e. O(|Tg||ls|), plus the average
time of the occurrences verification, i.e. O(|D|log|D|). Therefore the total time
is O(|T4||ls||D|log |D|) and, let C' be the set of candidates graphs, the cost for
each candidate C; verification is O(|V[Ci]|!|[V[C]])-

2.3 Experimental Results and Biological Application

GraphGrepSX was implemented in C++ and compiled with the GNU compiler
3.3. In order to evaluate the performance of the proposed approach, it has been
compared with the main graph search systems: GraphFind [6], CTree [9], GCod-
ing [I6], and SING [5]. Notice that, in what follows, we refer to GraphFind as
GraphGrep since we do not use the mining step in the index construction phase.
Moreover we do not report comparisons with gIndex [14] since GraphFind out-
performs it without using mining. The system has been tested using the Antiviral
Screen Dataset [1I]. The AIDS database contains the topological structures of
42,000 chemical compounds that have been tested for evidence of anti-HIV ac-
tivity. It contains sparse graphs having from 20 to 270 nodes. The entire set was
divided into three subsets of sizes 8000, 24000 and 42000 respectively. Queries
were randomly extracted from the AIDS database selecting a vertex v from a
graph of the database and proceeding with a breath-first visit. This process gen-
erate groups of 100 queries from each database having a number of edges with
4, 8, 16, and 32 edges. Table [l shows the index building time for each subset.

Table 1. Index building time (sec)

DB dim. GraphGrepSX GraphGrep CTree GCoding SING

8000 16.51 550.4 8.21 632.21 22
24000 38  10399.39 25.34 1956.36 66
42000 66  45600.49 42.42 2944.8 108

GraphGrepSX and CTree yield comparable index construction time and out-
perform the other approaches. The sizes of the generated indexes are shown in
table2l Thanks to the compactness of its suffix tree structure, GraphGrephSX re-
duces the redundancy of the index. Therefore GraphGrepSX outperforms the lat-
est graph matching tools. It outperforms SING if used with dynamically changing
datasets.

In what follows we show the execution times of the filtering and verification
phases. These results report tests made on the entire 42000 AIDS molecular
dataset grouped by queries dimension. In table Bl we report the filtering time.
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Table 2. Indexes size (Kb)

DB dim. GraphGrepSX GraphGrep CTree GCoding SING

8000 3684 293992 13884 6687 8445
24000 11020 928912 41372 20088 22279
42000 18668 1577012 70208 30651 42830

Table 3. Filtering time (sec)

Query dim. GraphGrepSX GraphGrep CTree GCoding SING

4 0.05 0.012 1.34 0.0042 0.51
8 0.05 0.006 1.57 0.01 0.76
16 0.041 0.005 1.51 0.026 0.17
32 0.04 0.014 1.01 0.059 0.071

Table 4. Query time (sec)

Query dim. GraphGrepSX GraphGrep CTree GCoding SING

4 14.9 15.41 13.27 23.61 124
8 17.5 7.1 44.24 15.79 15.24
16 2.08 12.78 51.07 5.39 0.798
32 1.07 3.56 50.91 1.25 0.136

Table ] shows the total time. The number of generated candidates after the
filtering step is shown in table[ll CTree and GCoding generate smaller candidates
sets. This is due to the fact that such indexes are able to capture the structure
of the graphs. Unfortunately, they require more execution time because of the
approximate match on the closure graphs and the mining operations during the
filtering step.

Table 5. Number of generated candidates

Query dim. GraphGrepSX GraphGrep CTree GCoding SING

4 26865 29196 16704 16188 23170
8 21337 13920 5840 8567 14012
16 1629 7053 289 1648 214

32 142 3193 3 142 4
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Table 6. Total time time (sec)

Query dim. GraphGrepSX SING

4 15.89 23.39
8 18.56 26.42
16 3.07 1f1.45
32 2.04 10.68

GraphGrepSX and GraphGrep uses the same matching algorithm, but the
first generates a smaller number of candidates by applying a redundant check
deletion phase.

In Table [l we report the total time needed by GraphGrepSX and SING to
execute a single query. SING has an overhead of 10.5 seconds to load the index.
Whereas GraphGrepSX needs less than one second (0.93 seconds) to load the
index.

3 Conclusion

Indexing paths instead of subgraphs may result in more preprocessing time and
indexing space. However, paths require less filtering and querying time. Results
show that a further improvement on path-index base system is achieved by
making use of Suffix Trees. GraphGrephSX reduces the size and time needed
for the construction of large database index compared to the most prominent
graph querying systems. Furthermore, GraphGrephSX outperforms all compared
systems when the index structure needs to be rebuilt. It can be considered to be
a good compromise between preprocessing time and querying time.
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Abstract. In this paper, we present a new dimensionality reduction
(DR) method (SSGEAL) which integrates Graph Embedding (GE) with
semi-supervised and active learning to provide a low dimensional data
representation that allows for better class separation. Unsupervised DR
methods such as Principal Component Analysis and GE have previously
been applied to the classification of high dimensional biomedical datasets
(e.g. DNA microarrays and digitized histopathology) in the reduced di-
mensional space. However, these methods do not incorporate class label
information, often leading to embeddings with significant overlap be-
tween the data classes. Semi-supervised dimensionality reduction (SSDR)
methods have recently been proposed which utilize both labeled and un-
labeled instances for learning the optimal low dimensional embedding.
However, in several problems involving biomedical data, obtaining class
labels may be difficult and/or expensive. SSGEAL utilizes labels from
instances, identified as “hard to classify” by a support vector machine
based active learning algorithm, to drive an updated SSDR scheme while
reducing labeling cost. Real world biomedical data from 7 gene expres-
sion studies and 3900 digitized images of prostate cancer needle biopsies
were used to show the superior performance of SSGEAL compared to
both GE and SSAGE (a recently popular SSDR method) in terms of
both the Silhouette Index (SI) (SI = 0.35 for GE, SI = 0.31 for SSAGE,
and SI = 0.50 for SSGEAL) and the Area Under the Receiver Operating
Characteristic Curve (AUC) for a Random Forest classifier (AUC = 0.85
for GE, AUC = 0.93 for SSAGE, AUC = 0.94 for SSGEAL).

1 Introduction

Dimensionality reduction (DR) is useful for extracting a few relatively simple
patterns from more complex data. For very high dimensional data, such as gene
expression, the original feature space could potentially span up to tens of thou-
sands of features. This makes it difficult to build generalizable predictors on
account of the curse of dimensionality problem [1], where the feature space is
much larger than the number of samples available for classifier training. There-
fore, DR methods are often utilized as a precursor to classification. Predictors

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 207 2010.
© Springer-Verlag Berlin Heidelberg 2010
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can then be trained on low dimensional embedded features, resulting in improved
classification accuracy while also allowing researchers to visualize and interpret
relationships between data points [1].

Most commonly used DR methods, such as Principal Component Analysis
(PCA) [2], Graph Embedding [3], or Manifold Learning |2] schemes are unsu-
pervised, meaning they do not take into account class label information. These
methods essentially use cost functions assuming that the best features lie in a
subspace of the original high dimensional space where most of the variance in
the data is centered. Supervised DR methods such as linear discriminant analy-
sis (LDA) |1] employ cost functions where class labels are incorporated to help
separate known classes in a low dimensional embedding.

LDA is one of the most popular supervised DR methods; however it does not
consider unlabeled instances [1, |4]. Blum et al. [5] suggested that incorporating
unlabeled samples in addition to labeled samples can significantly improve clas-
sification results. Subsequently, many new DR methods employ semi-supervised
(SS) or weakly labeled learning techniques which incorporate the use of both la-
beled and unlabeled data [4, [6-9]. These SSDR schemes use labeled information
in the construction of a pairwise similarity matrix, where the individual cells
are assigned weights based on class and feature-based similarity between sample
pairs. These weights can then be used to create a low dimensional mapping by
solving a simple eigen-problem, the hypothesis being that embeddings explicitly
employing label information result in greater class separation in the reduced
dimensional space.

Active Learning (AL) algorithms have been utilized to intelligently identify
hard to classify instances. By querying labels for only hard to classify instances,
and using them to train a classifier, the resulting classifier has higher classifi-
cation accuracy compared to random learning, assuming the same number of
queries are used for classifier training |10, [11]. In practice, obtaining labels for
biomedical data is often expensive. For example, in the case of digital pathology
applications, disease extent can only be reliably annotated by an expert pathol-
ogist. By employing AL, the predictive model is (a) cheaper to train and (b)
yields a superior decision boundary for improved discrimination between object
classes with fewer labeled instances.

In this paper we present Semi-Supervised Graph Embedding with Active Learn-
ing (SSGEAL), a new DR scheme for analysis and classification of high dimen-
sional, weakly labeled data. SSGEAL identifies the most difficult to classify
samples via a support vector machine based active learning scheme, which is then
used to drive a semi-supervised graph embedding algorithm. Predictors can then
be trained for object classification in the SSGEAL reduced embedding space.

2 Previous Work and Novel Contributions

2.1 Unsupervised Dimensionality Reduction

PCA is the most commonly used unsupervised DR method. However it is es-
sentially a linear DR scheme [2]. Nonlinear dimensionality reduction (NLDR)
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methods such as Isomap [2] and Locally Linear Embedding [2], are powerful due
to their ability to discover nonlinear relationships between samples. In |1, we
found that nonlinear DR schemes outperformed PCA for the problem of classi-
fying high dimensional gene- and protein-expression datasets. However, NLDR
schemes are notoriously unstable [1, [2], requiring careful tuning of a neighbor-
hood parameter to generate useful embeddings.

Graph Embedding [3], or Spectral Embedding is an alternative unsupervised
NLDR method which does not require adjusting a neighborhood parameter, and
has been found to be useful in applications involving classification of DNA mi-
croarrays, proteomic spectra, and biomedical imaging [1,112]. Normalized cuts [3]
is one implementation of Graph Embedding, which is widely used in the area
of image segmentation. Other versions of graph embedding include Min Cut [5],
Average Cut [3], Associative Cut [3], and Constrained Graph Embedding [13].

2.2 Semi-Supervised Dimensionality Reduction

Sugiyama et al. [4] applied SS-learning to Fisher’s discriminant analysis in order
to find projections that maximize class separation. Yang et al. [8] similarly ap-
plied SS-learning toward manifold learning methods. Sun et al. [9] implemented
a SS version of PCA by exploiting between-class and within-class scatter ma-
trices. SSAGE [6] is a SS method for spectral clustering which utilizes weights
to simultaneously attract within-class samples and repel between-class samples
given a neighborhood constraint. However, these embeddings often contain un-
natural, contrived clusters on account of labeled samples. Zhang [7] uses a similar
approach to SSDR, but without utilizing neighborhood constraints.

2.3 Active Learning

Previous AL methods have looked at the variance of sample classes to identify
difficult to classify instances [14]. The Query by Committee approach [10] uses
disagreement across several weak classifiers to identify hard to classify samples.
In [15], a geometrically based AL approach utilized support vector machines
(SVMs) to identify confounding samples as those that lay closest to the deci-
sion hyperplane. SVM-based AL has previously been applied successfully to the
problem of classifying gene expression data |[11]. Additionally, a clear and easily
interpretable rationale for choice of sample selection exists. All these methods
however have typically been applied to improving classification and not embed-
ding quality per se |10, [14].

2.4 Novel Contributions and Significance of SSGEAL

The primary contribution of this paper is that it merges two powerful schemes -
SSDR with Active Learning - for generating improved low dimensional embed-
ding representations, which allows for greater class separation.
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Figure [ illustrates how Graph Embedding (GE) can be improved with SS-
learning (SSAGE), and even further using AL (SSGEAL). In Figure [i(a), a
simple RGB image consisting of ball and background pixels is shown. Follow-
ing the addition of Gaussian noise, each pixel in Figure [Ih is plotted in a 3D
RGB space (Figure [i(e)). Subsequently, we reduce the 3D RGB space into a
2D embedding via GE (Figure [I(f)), SSAGE (FigureIl(g)), and SSGEAL (Fig-
ure[Ilh)). Figures[(b), d(c), and[l(d) represent a pixel-wise binary classification
into foreground (ball) and background classes via GE, SSAGE, and SSGEAL,
respectively. These were obtained via replicated k-means clustering on the cor-
responding DR embeddings, as shown in Figures [(f), [g), and O(h).

(h)

Fig.1. (a) RGB image containing ball against colored background pixels. (e) image
pixels plotted in 3D RGB space. The binary classifications (b-d) reflect the corre-
sponding quality of embeddings obtained via DR methods (b) GE, (¢) SSAGE, and
(d) SSGEAL. These were obtained via replicated k-means clustering on the reduced
embeddings by (f) GE, (g) SSAGE, and (h) SSGEAL, respectively.

Table 1. Commonly used notation in this paper

Symbol Description
X Set containing N samples

Xi, Xj Sample vector x;, x; € X, i,5 € {1,2,..., N}, x € R"
n Number of features used to describe x;
w Dissimilarity matrix

Y (xi) Labels for samples x;, Y(x;) € {+1, -1}
Z(X,Y (Xrr)) Embedding Z constructed using data X and label set Y (Xr).

Xor Set of labeled training samples x; € X7,
Xrs Set of unlabeled testing samples X5 C X
Xa Set of ambiguous samples X, C Xrs

1) Distance to decision hyperplane F' in SVM-based AL
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3 Review of SSDR and Active Learning Methods

3.1 Graph Embedding (GE)

To obtain low dimensional embedding Z, Graph Embedding |3] utilizes pairwise
similarities between objects x; and x; € X to construct N x N weighted graph
lIx;—xjll2

Wxi,xj)=e -, (1)
where o = 1. W (x;,%;) = (Zf\zf W (xii,%;) XZ;\; W (xi,%45)) "W (x;,%;) is then
used to solve the eigenvalue problem (D — W)z = ADz, where D is a diagonal
matrix containing the trace of W, and z; are the eigenvectors. Embedding Z
is formed by taking the most dominant eigenvectors z; corresponding to the k
smallest eigenvalues A\, where k is the dimensionality of Z. In this implementa-
tion, Graph Embedding does not consider labeled information.

3.2 Semi-Supervised Agglomerative Graph Embedding (SSAGE)

By using known label information, Zhao [6], describes a method for SSDR where
the similarity weights for GE are adjusted such that Equation [l is replaced by

Il —x;ll2 I =112

(e o ke o ) if v (xi)=Y(x;)
Wi(xi,x;) = e o ) ame o), i Yx)£Y (%)) (2)
I P 2 , otherwise

In contrast to simple GE, in SSAGE, known labeled samples are mapped to
be closer in the embedding space Z if both samples x; and x; are of the same
class Y (x;) = Y(x;), and further apart if both samples are of different classes.

3.3 SVM-Based Active Learning to Identifying Ambiguous Samples

A labeled set X, is first used to train the SVM. SVMs [16] project the input
training data onto a high-dimensional space using the kernel I7(x;,x;). A linear

N = a ¥ A
BX, Yx)=-1°_ . o "°, "o, a e T
AX, | Y(x)=+1 . w © R m ©
O X, Unlabeled ° e ° ° N
* X, Ambiguous * * - e * * - s
(a) (c)

Fig. 2. (a) Labeled samples x; € X7, are used to train an SVM model F'. (b) Unlabeled
samples x; € X7, found to be mapped closest to the model hyperplane F' are included
into set Xq. (c) Labels Y(x; € X4) are queried and used to improve the new SVM
model F™, yielding a better predictor compared to F'.
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kernel, defined as IT(x;,x;) = X] x;, can then be used to maximize the margins so
as to decrease prediction risk. A decision boundary F' is created in the trained
feature space by maximizing the margin between classes. Unlabeled instances
x; € X715 are mapped into the same feature space (Figure 2la)).

However, instead of classifying X7, we use boundary F' to find ambiguous
samples x; € X, via measure d, defined as the relative distance to hyperplane F'.
Samples x; € X7, of shortest § represent the most ambiguous samples and are
assigned to set X, (Figure[2(b)). Labels for X, are queried and these ambiguous
samples are added to the subsequent training set X1, = [Xr,, X,]. Learning via
the updated labels Y (X7, ) results in improved class separation (Figure 2l(c)).

4 Semi-Supervised Graph Embedding with Active
Learning (SSGEAL)

4.1 Initialization with Initial Embedding Z,

The schema for SSGEAL is illustrated via the flowchart in Figure Bl Our ini-
tialization comprises of creating an initial embedding Zy and defining the initial
training Xp, for our active learning scheme within Z;,. Given data set X, we use
Graph Embedding as illustrated in Section Bl to obtain our initial embedding
Zo(X) = |21, ..., 21], or simply Z,.

4.2 Active Learning to Identify Ambiguous Samples X,

SVM-based active learning (see Section [3.3)) is used to identify ambiguous sam-
ples x; € X, in embedding Z,, where ¢ represents the specific iteration of an
embedding Z. Initial labeled training samples X, for AL are selected randomly
from X. We begin by training an SVM using Zy(Xr,) and Y (X7,) to create
model F. §(Xrs) can be found using F', where the smallest §(Xrs) are selected
and assigned to set X,. Y(X,) is revealed and X, is added to the training set
X1y, such that Xp, = [ X7, X,

4.3 Semi-Supervised Graph Embedding Z, Using Updated Labels

We utilize an updated version of Zhao’s SSAGE method [6] to map a modified
similarity matrix W into Z using the GE framework discussed in Section [l
This weighting only takes into account samples which are of the same class, using
a gravitation constant G > 1 to attract same-class samples closer. Weights are
adjusted such that Equation 1 is replaced by

. Il —xjll2 if v —y
W(Xi7 X]) = e [[x; ij ll2 ’ Oth:;;)vzse(xj) (3)
€ c )

Unlike the Zhao [6] and Zhang [7] implementations, instances from different
classes are not explicitly weighted to force them farther apart in SSGEAL. The
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rationale for this is that for biomedical data, certain instances within one class
may share several traits with another class. For instance, premalignant lesions
while technically benign, share several hallmarks of malignant tumors. Arti-
ficially forcing instances from different classes farther apart could result in a
pre-malignant lesion being mapped far apart from the cancer class, rather than
in an intermediate class between benign and malignant.

Labels Y (Xrp,) from the updated training set and current embedding Z, are
used to create embedding Zgy1. The new embedding Z,11(Z,, Y (X7,)), or sim-
ply Zg441, is constructed using the current embedding Z, and the exposed label
set Y(Xr,). The process of obtaining new labels from AL and creating semi-
supervised embeddings continues until the stopping criterion is met.

4.4 Stopping Criterion Using Silhouette Index

The stopping criterion is set using the Silhouette Index (¢°7) [17] of the revealed
labels. ¢! is a cluster validity measure which captures the intra-cluster com-
pactness A =3y )y (x,) IXi — %;2, which represents the average distance
of a point x; from other points X; of the same class, while also taking into
account inter-cluster separation Bi = 32, v (x,) 2y (x,) I%i = Xj[l2, the minimum
of the average distances of a point x; from other instances in different classes.
Thus, the formulation for Silhouette Index is shown as

B, — A;
SI § : % %
¢ — max[A;, Bj] (4)
¢°T ranges from -1 to 1, where -1 is the worst, and 1 is the best possible cluster-
ing. When the change in ¢/ falls below threshold 6, such that [¢57, — ¢'| < 6,

the algorithm stops. The algorithm for SSGEAL is presented below.

Algorithm SSGEAL
Input: X,Y(Xr,) 0,0, ¢=0
Output: Z;
begin
0. Build initial embedding Zy(X)
1. while \gbﬁl - qb;?l\ <0
2. Train SVM model F using Xr,.,Y (X7;)

3. Identify x; € X, using measure §

4.  Update X7, = [X71r, X4

5. Update embedding Z,11(Z,, Y (Xr,)) via Equation [3]
6. Compute qﬁgl using Equation [l

7. q=q+1

8. endwhile

9. return Z;

d

)
3
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Fig. 3. Flowchart of SSGEAL

5 Experimental Results and Discussion

5.1 Experiments and Evaluation

Datasets. Table [2] provides an overview of the 7 publically available gene ex-
pression and digitized prostate biopsy images used to test SSGEALL[ For the
gene expression datasets, no preprocessing or normalization of any kind was
performed prior to DR. For the Prostate Histopathology dataset, a set of 14
pixel-wise features were extracted, including first-order statistical, second-order
co-occurrence, and steerable Gabor wavelet features |10, [18] from the images,
digitized at 40x magnification. The images are then broken into 30 x 30 pixel re-
gions, each quantified by averaging the feature values in the region. We randomly
selected 3900 non-overlapping patches from within the cancer and non-cancer re-
gions (manually annotated by an expert pathologist) for purposes of evaluation.

Table 2. Datasets used in our experiments

Datasets Description
Gene Prostate Cancer 25 Tumor, 9 Normal, 12600 genes
Expression  Colon Cancer 22 Tumor, 40 Normal, 2000 genes
Lung Cancer 15 MPM, 134 ADCA, 12533 genes
ALL / AML 20 ALL, 14 AML, 7129 genes
DLBCL Tumor 58 Tumor, 19 Normal, 6817 genes
Lung Cancer(Mich) 86 Tumor, 10 Normal, 7129 genes
Breast Cancer 10 Tumor, 20 Normal, 54675 genes
Imaging Prostate 1950 cancer regions, 1950 benign regions,
Histopathology 14 image textural descriptors

! Gene expression datasets were obtained from the Biomedical Kent-Ridge Reposito-
ries at http://sdmc.lit.org.sg/GEDatasets/Datasets|and
http://sdmc.i2r.a-star.edu.sg/rp
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Table 3. u(¢°7), (29, a(¢°’), and o(¢*V7) across 10 runs using different Xr,
for GE, SSAGE and SSGEAL. The high mean performance and low standard deviation
of these statistics over 10 runs of SSGEAL on 8 datasets demonstrates the robustness
of the algorithm regardless of initial training set Xr,. Best values are shown in bold.
For a majority of the cases, SSGEAL is shown to perform the best.

Silhouette Index Random Forest AUC

Datasets GE SSAGE SSGEAL GE SSAGE SSGEAL

Gene Prostate Cancer 0.54 0.2940.10 0.66+0.01 1.00 0.98+0.04 1.00=£0.00

Expression  Colon Cancer 0.02 0.16+0.01 0.4340.04 0.73 0.924+0.03 0.95+0.05

Lung Cancer 0.64 0.49+0.06 0.65+0.20 0.49 0.95+0.10 0.96+0.09

ALL / AML 0.42 0.2440.04 0.474+0.05 0.95 0.96+0.03 0.974+0.04

DLBCL Tumor  0.20 0.3240.10 0.62+0.03 0.75 0.89+0.04 0.95+0.04

Lung Cancer(Mich) 0.68 0.45+0.02 0.83+0.02 1.00 0.95+0.13 0.99+0.03

Breast Cancer 0.20 0.1940.09 0.454+0.08 0.78 0.904+0.05 0.9640.05

Imaging Prostate 0.35 0.36+0.00 0.35+0.00 0.85 0.9340.00 0.93+0.00
Histopathology

Experiments. Two DR techniques were employed to compete against our al-
gorithm (SSGEAL): one which does not incorporate labels (GE) and one which
utilizes labels (SSAGE). We generated embeddings Z using DR methods GE,
SSAGE, and SSGEAL to show that (a) embeddings generated using SSGEAL
outperform those generated via GE and SSAGE, (b) steady improvement in both
classification accuracy and Silhouette index can be observed via active learning
with SSGEAL, and (¢) SSGEAL is robust to initial training.

Evaluation Measures. Embeddings were evaluated both qualitatively and
quantitatively using ¢! (Equation H) and Area Under the Receiver Operating
Characteristic (ROC) Curve for Random Forest Classification ¢AV¢. For ¢/,
all labels were used. For ¢AU¢ | a randomly selected training pool P consisting of
two-thirds of the instances in X was used, with the remaining samples reserved
for testing. 50 decision trees were trained using a 50 random subsets each con-
sisting of 2/3 of P. Predictions on the testing samples were subsequently bagged
and used to calculate the ROC curve for assessing classifier performance.

Parameter Settings. For our experiments, 2D embeddings Z = [z1,22] are
generated for each DR method. In all cases, no neighborhood information was
used. For both SSAGE and SSGEAL, we ultimately expose 40% of the labels.
For SSGEAL, the gravitation constant G was set to 1.3 and our initial training
set X, was set at 15% of Y (X), revealing 5% of the labels Y (Xr;) at each
iteration ¢ until 40% of the labels were revealed.

5.2 Comparing SSGEAL with GE and SSAGE via ¢5! and ¢AUC

Table [ lists the mean and variance of ¢AY¢ and ¢°! values for SSGEAL, GE,
and SSAGE, over 8 dataset. The same number of labeled samples (40%) were
used for SSAGE and SSGEAL for each data set. To obtain an accurate represen-
tation of algorithm performance, we randomly selected 10 training sets X, for



216 G. Lee and A. Madabhushi

10 runs of SSAGE and SSGEAL for the purpose of testing the robustness of the
algorithms to initial labeling. Note that GE is an unsupervised method and does
not utilize label information, hence there is no standard deviation across multi-
ple runs of GE. 2D embeddings were generated for each set X7, and evaluated
via ¢AUC and ¢57.

For a majority of the datasets, SSGEAL outperforms both GE and SSAGE
in terms of ¢°7 (u(¢°7) of 0.35 for GE, 0.31 for SSAGE, and 0.50 for SSGEAL)
and ¢AUC (u(pAVC) of 0.85 for GE, 0.93 for SSAGE, and 0.94 for SSGEAL).
Furthermore, low standard deviation (o(¢4Y¢), o(¢°7)) over the 10 runs suggest
robustness of SSGEAL to initial X7,

Figure @] shows qualitative illustrations of 2D embeddings for GE and SS-
GEAL over different iterations for 3 selected datasets. We can observe greater
class separation and cluster tightness with increasing iterations for SSGEAL.
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Fig. 4. Scatter plots of the 2 most dominant embedding eigenvectors z1(X;), z2(X;)
for x; € X are shown for different iterations of SSGEAL (a) Zo, (b) Z2, and (c) Z;
(the final stable embedding), for the Prostate Cancer dataset. Similarly, the embedding
plots are shown for the Lung Cancer dataset for (d) Zo, (e) Z2, (f) Z;. Lastly, (g) Zo,
(h) Z2, (i) Zy are shown for the Lung Cancer(Mich) dataset. Note the manually placed
ellipses in (c) and (i) highlight what appear to be novel subclasses.
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Figures[{(a),dl(d), and [g) show embedding plots of GE (Zy). An intermediate
step of SSGEAL (Z,) is shown in Figures E{(b), H{(e), and @(h) and SSGEAL
embeddings (Z¢) can be seen in Figures (c), E(f), and Fi).

6 Concluding Remarks

Semi-Supervised Graph Embedding with Active Learning (SSGEAL) represents
the first attempt at incorporating an active learning algorithm into a semi-
supervised dimensionality reduction (SSDR) framework. The inclusion of ac-
tive learning is especially important for problems in biomedical data where class
labels are often difficult or expensive to come by. Using 8 real-world gene expres-
sion and digital pathology image datasets, we have shown that SSGEAL results
in low dimensional embeddings which yield tighter, more separated class clus-
ters and result in greater class discriminability compared to GE and SSAGE, as
evaluated via the Silhouette Index and AUC measures. Furthermore, SSGEAL
was found to be robust with respect to the choice of initial labeled samples used
for initializing the active learning process. SSGEAL does however appear to be
sensitive to the value assigned to the gravitation constant G. This parameter
may be used to refine the initial graph embedding (Figure Bla)). For the his-
tology dataset, setting G = 1.5 resulted in ¢°! = 0.39 and ¢AYC = 0.94 for
SSGEAL, compared to ¢°! = 0.36 and ¢4V = 0.93 for SSAGE (Figure [). In
future work we intend to extensively and quantitatively evaluate the sensitivity
of our scheme to neighborhood, gravitation, and stopping parameters.
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Fig. 5. Scatter plots of the 2 most dominant embedding eigenvectors are shown for the
Prostate Histopathology dataset. (b) and (c¢) show SSGEAL embeddings with gravita-
tion constants G = 1.3 and 1.5 respectively, suggesting the utility of G for improving
embeddings with large degrees of overlap between the object classes. For comparison,
the embedding graph for GE is also shown for this dataset (Figure Bla)).
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Abstract. In the context of microarray data analysis, biclustering aims
to identify simultaneously a group of genes that are highly correlated
across a group of experimental conditions. This paper presents a Biclus-
tering Iterative Local Search (BILS) algorithm to the problem of biclus-
tering of microarray data. The proposed algorithm is highlighted by the
use of some original features including a new evaluation function, a ded-
icated neighborhood relation and a tailored perturbation strategy. The
BILS algorithm is assessed on the well-known yeast cell-cycle dataset
and compared with two most popular algorithms.

Keywords: Analysis of DNA microarray data, biclustering, evaluation
function, iterative local search.

1 Introduction

With the fast advances of DNA Microarray technologies, more and more gene
expression data are made available for analysis. In this context, biclustering
has been recognized as a remarkably effective method for discovering several
groups of subset of genes associated with a subset of conditions. These groups
are called biclusters. Biclusters can be used for various purposes, for instance,
they are useful to discover genetic knowledge, such as gene annotation or gene
interaction, and to understand various genetic diseases.

Formally, DNA microarray data is usually represented by a data matrix
M(I,J), where the it" row, i € I={1,2,...,n}, represents the i*" gene, the k"
column, k € J={1,2,...,m}, represents the k' condition and the cell M][i, k]
represents the expression level of the i*" gene under the k" condition. A bicluster
of M is a couple (I’,J’) such that I’ C I and J' C J.

The biclustering problem consists in extracting from a data matrix M (I, J) a
group of biclusters that maximize a given evaluation function. The biclustering
problem is known to be NP-hard [T0/22]. In the literature there are two main
approaches for biclustering: the systematic search approach and the stochastic
search or metaheuristic approach. Notice that most of these approaches are
approximate methods.

The systematic search approach includes greedy algorithms [6I9JT0J29], divide-
and-conquer algorithms [I7J26] and enumeration algorithms [4/20]. The meta-
heuristic approach includes neighbourhood-based algorithms [§], GRASP [12[13]

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 21 2010.
© Springer-Verlag Berlin Heidelberg 2010
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and evolutionary algorithms [I5IT6)23]. A recent review of various biclustering
algorithms for biological data analysis is provided in [3].

In this paper, we present a first adaptation of Iterative Local Search (ILS) to
the biclustering problem. The resulting algorithm, called BILS, integrates several
original features. BILS employs a new evaluation function for the assessment of
biclusters. In BILS, we introduce a dedicated neighborhood relation which allows
the search to improve gradually the quality of bicluters. To allow the search to
escape from local optima, BILS uses a randomized, yet guided perturbation
strategy.

To assess the performance of BILS, we applied BILS to the well-known yeast
cell-cycle dataset and validated the extracted biclusters using external biological
information by determining the functionality of the genes of the biclusters from
the Gene Ontology database [2] using GOTermFinder tooll. Genes belonging
to our biclusters were found to be significantly enriched with GO terms with
very small p-values. We also use the web tool FuncAssociate [7] to compute the
adjusted p-values. Our biclusters were found to be statistically significant with
adjusted p-values < 0.001. We also compared our algorithm with two popular
biclustering algorithms of Cheng and Church (CC) [10] and OPSM [0].

The remainder of the paper is organized as follows: In section 2, we describe
our new biclustering algorithm. In section 3, we carry out an experimental study
of BILS and assess its results using the above cited web-tools. Finally, in the last
section, we present our conclusion and perspective.

2 The BILS Algorithm

2.1 Iterated Local Search

Iterated Local Search can be described by a simple computing schema [19]. A
fundamental principle of ILS is to exploit the tradeoff between intensification and
diversification. Intensification focuses on optimizing the objective function as far
as possible within a limited search region while diversification aims to drive the
search to explore new promising regions of the search space. The diversification
mechanism of ILS—perturbation operator—has two aims: one is to jump out of the
local optimum trap; the other is to lead the search procedure to a new promising
region.

From the operational point of view, An ILS algorithm starts with an initial
solution and performs local search until a local optimum is found. Then, the
current local optimum solution is perturbed and another round of local search
is performed with the perturbed solution.

Our BILS algorithm follows this general ILS schema. It uses a Hill-climbing
(HC) algorithm as its local search procedure. In the rest of this section, we
explain the main ingredients of this HC algorithm as well as the perturbation-
based diversification strategy.

! http://db.yeastgenome.org/cgi-bin/G0/goTermFinder
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2.2 Preprocessing Step: Construction of the Behavior Matrix

Prior to the search step using ILS, our method first uses a preprocessing step to
transform the input data matrix M to a Behavior Matriz M’. This preprocessing
step aims to highlight the trajectory patterns of genes. Indeed, according to
[21124)27], in microarray data analysis, genes are considered to be in the same
cluster if their trajectory patterns of expression levels are similar across a set
of conditions. In our case, each column of M’ represents the trajectory of genes
between a pair of conditions in the data matrix M. The whole M’ matrix provides
useful information for the identification of related biclusters and the definition
of a meaningful neighborhood and perturbation strategy.

Formally, the Behavior Matrix M’ is constructed progressively by merging a
pair of columns (conditions) from the input data matrix M. Since M has n rows
and m columns, there is m(m — 1)/2 distinct combinations between columns,
represented by J”. So, M’ has n rows and m(m — 1)/2 columns. M’ is defined
as follows:

1 if M[i, k] < M[i, q
M'[i,l] =< —1 if M[i, k] > M[i,q] (1)
0 if Mi,k] = M[i,q]

with ¢ € [1.n], [ €[1..J"], k €[1l.m — 1], g €[1..m] and ¢ > k + 1.

Using M’, we can observe the behavior of each gene through all the combined
conditions. In our case, the combination of all conditions gives useful information
since a bicluster may contains a subset of non contiguous conditions.

2.3 Initial Solutions and Basic Search Process

Given the Behavior Matrix M’, our BILS algorithm explores iteratively different
biclusters. To do this, BILS needs an initial bicluster (call it s¢) as its starting
point. This initial bicluster can be provided by any means. For instance, this can
be done randomly with a risk of starting with an initial solution of bad quality. A
more interesting strategy is to employ a fast greedy algorithm to obtain rapidly
a bicluster of reasonable quality. We use this strategy in this work and adopt
two well-known algorithms: one is presented by Cheng and Church [10] and the
other is called OPSM which is introduced in [6].

Starting from this initial solution, BILS will try to find iteratively biclusters
of better and better quality. Basically, the improvement is realized by removing
a “bad” genes from the current bicluster and adding one or more other “better”
genes. Each application of this dual drop/add operation generates a new bicluster
from the current bicluster. The way of identifying the possible genes to drop and
to add defines the so-called neighborhood which is explained in detail in section
2.0l

2.4 Solution Representation and Search Space

A candidate solution is simply a bicluster and represented by s = (I, J'). As
explained in the next section, our algorithm explores different biclusters with
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variable number of genes and a fixed number of conditions. The search space is
thus determined by the number %k of genes in the initial bicluster and has size of
29 where g = n — k.

2.5 Evaluation Function

For a given solution (bicluster), its quality is assessed by an evaluation function.
One of the most popular evaluation functions in the literature is called Mean
Squared Residue (MSR) [10]. MSR has been used by several biclustering algo-
rithms [9T3I23]. Yet MSR is known to be deficient to assess correctly the quality
of certain types of biclusters like multiplicative models [T)25/29/9]. Recently, Teng
and Chan [29] proposed another function for bicluster evaluation called Average
Correlation Value (ACV). However, the performance of ACV is known to be
sensitive to errors [9]. Both MSR and ACV are designed to be applied to the
initial data matrix M. In our case, since M is preprocessed to obtain M’, the
above mentioned evaluation functions cannot be applied. For these reasons, we
propose a new evaluation function S to evaluate a bicluster.

Given a candidate solution (a bicluster) s = (I’, J'), the quality of s is assessed
via the following score function S(s):

Z Z Fij (i 95)
el jel’,j>i+1

SO = () - 12

with F;;(.,.) being defined by:

> T(Mfi 1) = M'[j,1])
el

Fij(9i,95) = (3)

1
‘ JSO
where

— T(Func) is true, if and only if Func is true, and T'(Func) is false otherwise.

—iel',jel andi # j, when F isused by Sand, i € I, j € I and i # j
otherwise.

— |J¢ | is the cardinality of the subset of conditions in M’ obtained from s,

- 0< Fij(g9i,95) < 1.

In fact, each F score assesses the quality of a pair of genes (g;,g;) under the
subset of conditions of s. A high (resp. low) Fi;(g:,9;) value, close to 1 (resp.
close to 0), indicates that the genes (g;,g;) (under the given conditions) are
strongly (resp. weakly) correlated.

Given two pairs of genes (g, g;) and (g;,g5), it is then possible to compare
them: (g;, g;) is better than (g;, g;), when Fi;(gi, 9;) > Fij(9;, g})-

Furthermore, S(s) is an average of F;;(gi, g;) for each pair of genes in s. So,
0 <S(s) <1.As Fi;(gi,9;5), a high (resp. low) S(s) value, close to 1 (resp. close
to 0), indicates that the solution s is strongly (resp. weakly) correlated.

Now given two candidate solutions s and s, s is better than s" if S(s) > S(s').
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2.6 Move and Neighborhood

One of the most important features of a local search algorithm is its neighbor-
hood. In a local search algorithm, applying a move operator mv to a candidate
solution s leads to a new solution s’, denoted by s’ = s @ mv. Let I'(s) be the
set of all possible moves which can be applied to s, then the neighborhood N(s)
of s is defined by: N(s) = {s @ mv|mv € I'(s)}.

In our case, the move is based on the drop/add operation which removes a
gene {g;|i € I'} from the solution s and add another gene {g,|v & I'} or several
other genes {gy,...,guwlv € I',...;,w & I'} to s.

The move operator can be defined as follows. Let s = (I’, J’) be a solution and
let A € [0..1] be a fixed quality threshold (See Section 23l for quality evaluation).
Foreachi e I',j € I',r € I' and i # j # r, we first choose a pair of genes (g;, g;)
such that F;;(gi,g;) < A. Such a pair of genes shows that they contributes
negatively to the quality of the bicluster when they are associated. Now we look
for another pair of genes (g;, g») satisfying Fj,(g;,9-) > A. By this choice, we
know that g; contributes positively to the quality of the bicluster when it is
associated with g¢,. Notice that for both choices, ties are broken at random in
order to introduce some diversification in the move operator.

Finally, we remove g; which is a bad gene among the genes belonging to I’
and we add all the genes {gy,...,guw|v & I',...,w & I'} such that the values
Fow(Grs 9v), -y Frw(gr, gw) are higher than or equal to A. Such an operator
clearly help improve the quality of a bicluster, but also maximize the bicluster
size [T423).

Applying the move operator to a solution s leads to a new bicluster s, called
neighboring solution or simply neighbor. For a given bicluster s, all possible
neighbors define its neighborhood N(s). It is clear that a neighboring solution
s" has at least as many genes as in the original solution s.

2.7 The General BILS Procedure

The general BILS procedure is given in Algorithm [Il Starting from an initial
solution (call it current solution s, see section 23], our BILS algorithm uses the
Hill-climbing strategy to explore the above neighborhood. At each iteration, we
move to an improving neighboring solution s’ € N(s) according to the evalua-
tion function S(s). This Hill-climbing based intensification phase stops when no
improving neighbor can be found in the neighborhood. So, the last solution is
the best solution found and corresponds to a local optimum. At this point, BILS
triggers a diversification phase by perturbing the best solution to generate a new
starting point for the next round of the search.

Our perturbation operator changes the best local optimum by deleting ran-
domly 10% of genes of the best solution and adding 10% of genes among the
best genes that are not included in the best solution. This perturbed solution is
used by BILS as its new starting point.

The whole BILS algorithms stops when the best bicluster reaches a fixed
quality or when the best solution found is not updated for a fixed number of
perturbations.
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Algorithm 1. General BILS Procedure

1: Input: An initial bicluster so, quality threshold A

2: Output: The best bicluster

3: Create the Behaviour Matrix M’

4: Compute F for all pairs of genes to create I'(so)

5: s = so // current solution

6: repeat

7 repeat

8: Choose a pair of genes (g;,g;) belonging to s such that Fi;(gs, g5) < A
9: Choose a pair of genes (g5, gr) belonging to s such that F;r(g;,g-) > A
10: Identify all genes g,, v € I’ such that Fr(gr, gv) > A
11: Generate neighbor s’ by dropping g; from s and adding all g,
12: if (S(s’) > S(s)) then s = s’
13: endif
14:  until (no improving neighbor can be found in N(s))
15:  Generate a new solution s by perturbing randomly 10% of the best solution
16: until (stop condition is verified)
17: Return s

3 Experimental Results

3.1 Dataset and Experimental Protocol

In order to analyze the effectiveness of the proposed algorithm, we used the
well-known yeast cell-cycle microarray dataset. The yeast cell-cycle dataset is de-
scribed in [28]. It is processed in [I0] and publicly available from [IT]. It contains
the expression profiles of more than 6000 yeast genes measured at 17 conditions
over two complete cell cycles. In our experiments we use 2884 genes selected by
[10].

The obtained results have been compared with two popular biclustering algo-
rithms: the one proposed by Cheng and Church (CC) [10] and OPSM described
in [6]. For these reference algorithms, we have used Biclustering Analysis Toolbox
(BicAT) which is a recent software platform for clustering-based data analysis
that integrates these biclustering algorithms [5].

For this experiment, the A threshold of BILS is experimentally set to 0.7. In
fact, for each experiment ten values are tested between 0.1 and 1 with a stepwise
of 0.1. With A = 0.7, we have obtained the lowest p-values. The threshold § of
CC is selected as 300 like used in [10] and the default parameter setting is used
for OPSM. With these algorithms, we have obtained 10 biclusters for CC and 14
biclusters for OPSM. Post-filtering was applied in order to eliminate insignificant
biclusters like Cheng et al. [9]. This led to 8 biclusters CC and for 10 biclusters
for OPSM. These biclusters are used as initial solutions for BILS and we compare
the outputs of BILS with these initial biclusters.

The two web tools Funcassociate [7] and GoTermFindei are used to evaluate
statistically and biologically the biclusters.

2 http://db.yeastgenome.org/cgi-bin/G0/goTermFinder
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Our algorithm is run on a PC with 3.00GHz CPU and 3.25Gb RAM. Com-
puting time is not reported, but let us mention that to improve one bicluster it
takes between 3 and 11 minutes.

3.2 Statistical and Biological Significance Evaluation

Statistical significance of the biclusters is obtained by using the Funcassociate
[7] web tool to compute the p-values and the adjusted p-values.

First, we asses the quality of the group of 18 biclusters obtained by BILS
when it is applied to the 8 initial biclusters provided by CC and 10 initial biclus-
ters given by OPSM. Funcassociate is used to compute the adjusted p-values of
each of our 18 biclusters, leading always to an adjusted p-values < 0.001. This
indicates that all these biclusters are statistically significant.

Now we turn our attention to the interpretation of results using the p-values.
In fact, the p-values show how well they match with the known gene annotation.
The closer the p-value is to zero, the more significant is the association of the
particular Gene Ontology (GO) with the group of genes. For this purpose, we
decide to examine for each algorithm only two biclusters: the bicluster having
the maximum p-value and the one having the minimum p-value. Let B x40 p
(resp. B xzppinp) denote these biclusters for algorithm zz = CC or xz = OPSM.

Table [Il summarizes the largest (column 2) and the smallest (column 3) p-
values of the eight biclusters obtained from CC and the ten biclusters obtained
from OPSM. The obtained biclusters from these algorithms with largest/smallest
p-values are improved with BILS (row 3 for CC and 5 for OPSM). For instance,
the element 0.000010 at row 2 and column 2 is the p-value of the bicluster
B CCurazp of CC while the element 2.220e-17 at row 3 and column 2 is the
p-value of the improved bicluster B CCjsq,.p by BILS.

From the table, we see that BILS successfully improves the biclusters of CC
and OPSM. In fact, both the maximum and minimum p-values of BILS are
always better than those of CC and OPSM. This demonstrates that BILS is able
to replace bad genes of the candidate solution by good genes by applying our
move operator. Thus we can say that the biclusters of BILS are more statistically
significant than those of CC and OPSM.

Table 1. P-values of the genes of the biclusters for BILS, CC and OPSM

Algorithms Maximum p-value Minimum p-value

cC 0.000010 4.096e-40
BILS 2.220e-17 2.860e-70
OPSM 0.0000012 1.587e-13
BILS 1.156e-10 4.865¢e-24

In addition to the above statistical significance validation, we also apply the
GoTermFinder web tool on the biclusters used at the Table [l to evaluate their
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biological significance, i.e., to show significant enrichment with respect to a spe-
cific GO annotation, in terms of associated biological processes, molecular func-
tions and cellular components respectively compared to CC and OPSM.

Table 2. Most significant shared GO terms (biological process, molecular function,
cellular component) of CC and BILS for two biclusters on yeast cell-cycle dataset

Algorithms  Biological Process Molecular function Cellular component
cC unknown unknown Cytoplasm
(B CCraxp) (0.00932)
BILScc: Maturation of SSU-rRNA structural constituent cytosolic ribosome
improved (4.54e-05) of ribosome (4.14e-17) (2.94e-21)
B CCuyazp  Maturation of SSU-TRNA  Structural molecule activity ribosomal subunit
by BILS from tricistronic rRNA (1.97e-15) (4.27e-17)
transcript(SSU-rRNA, 5.8S cytosolic part
rRNA, LSU-rRNA) (2.04e-16)
(0.00088)
Cell cycle (0.00107)
cC translation structural constituent cytosolic ribosome
(B CCuminp) (8.33e-23) of ribosome (7.83e-42)
cellular protein (1.03e-36) ribosome (3.80e-36)
metabolic process structural molecule cytosolic part
(3.17¢-10) activity (3.91e-28) (1.82¢-35)
gene expression helicase activity
(6.48e-10) (0.00021)
BILScc: translation structural constituent cytosolic ribosome
improved (2.86e-35) of ribosome (2.50e-70) (1.05e-76)
B CChrrinp  cellular protein Structural molecule activity ribosomal subunit
by BILS metabolic process (6.06e-54) (1.08e-68)
(2.59¢-16) translation factor cytosolic part
cellular macromolecule activity, nucleic acid (1.01e-66)
biosynthetic process binding (0.00445)
(1.74e-15)

For this, Table2land B describe the top GO terms of the three categories with
the lowest p-values. The value within parentheses after each GO term, e.g., Table
R second column third line, such as (4.54e-05) indicates the statistical significance
which is provided by the p-value. We observe that BILS can obtain improved
biclusters not only in terms of p-values, i.e., quality of biclusters, but also in terms
of GO annotation. For example Table 2] (resp. Table [B)) shows that CC (resp.
OPSM) can not identify any biological process and molecular functions (resp.
biological process and cellular component) for the bicluster B CChujazp (resp.
B OPSMysinp). However, BILS can produce biclusters with all categories, i.e.,
biological processes, molecular functions and cellular components. This shows
that our algorithm is able to identify biological significant biclusters.
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Table 3. Most significant shared GO terms (biological process, molecular function,
cellular component) of OPSM and BILS for two biclusters on yeast cell-cycle dataset

Algorithms Biological Process Molecular function Cellular component

OPSM sister chromatid unknown spindle

(B OPSMazp) segregation (0.00337) (0.00196)
chromosome segregation microtubule cytoskeleton
(0.00478) (0.00295)
microtubule-based process chromosomal part
(0.00588) (0.00991)

BILSopsm: cellular component structural constituent  nucleus

improved organization (1.71e-07) of cytoskeleton (3.83¢-12)

B OPSMpazp nucleic acid (0.00099) nuclear part

by BILS metabolic process (1.72e-06) RNA polymerase 11 (3.91e-09)
cellular nitrogen transcription factor chromosomal
compound metabolic process (0.00640) (2.26e-08)
(7.88¢-06)

OPSM unknown oxidoreductase activity unknown

(B OPSMasinp) (6.78e-06)

oxidoreductase activity,
acting on CH-OH group
of donors (0.00075)
oxidoreductase activity,
acting on peroxidase

as acceptor

(0.00078)
BILSopsm: response to stimulus structural constituent  cytosolic ribosome
improved (0.00092) of ribosome (1.09¢-23)
B OPSMinp response to stress (9.19e-24) ribosomal subunit
by BILS (0.00454) structural molecule (3.28¢-23)
activity (3.78e-12) cytosolic part
oxidoreductase activity (7.35e-22)
(2.36e-05)

4 Conclusion and Future Work

In this paper, we have presented a new biclustering algorithm using Iterative Lo-
cal Search (BILS). BILS combines a dedicated Hill-climbing based local search
procedure and a perturbation strategy. For the intensification purpose, BILS
employs a new evaluation function and a dedicated neighborhood relation. We
have tested and assessed our algorithm on the yeast cell-cycle dataset. The ex-
perimental results show that the BILS algorithm can successfully improve all
biclusters of CC and OPSM according to statistical and biological evaluation
criteria.

The work reported in this paper correspond in fact to an ongoing study. Sev-
eral improvements to the proposed work can be envisaged. One immediate possi-
bility would be to study alternative neighborhoods to introduce more biological
knowledge to provide more effective guidance of the local search process. An-
other natural extension would be to reinforce the basic local search procedure by
more powerful metaheuristics such as Tabu Search. Moreover, BILS explores the
space of biclusters by changing only the subset of genes of a bicluster without
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changing the conditions of the initial bicluster. It is natural to design similar
strategies to optimize the subset of conditions of a bicluster or eventually to
optimize simultaneously both the set of genes and conditions. Finally, another
possible experimentation is to assess the algorithm on a synthetic data.
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Abstract. Topic models have recently shown to be really useful tools
for the analysis of microarray experiments. In particular they have been
successfully applied to gene clustering and, very recently, also to sam-
ples classification. In this latter case, nevertheless, the basic assump-
tion of functional independence between genes is limiting, since many
other a priori information about genes’ interactions may be available
(co-regulation, spatial proximity or other a priori knowledge). In this
paper a novel topic model is proposed, which enriches and extends the
Latent Dirichlet Allocation (LDA) model by integrating such dependen-
cies, encoded in a categorization of genes. The proposed topic model
is used to derive a highly informative and discriminant representation
for microarray experiments. Its usefulness, in comparison with standard
topic models, has been demonstrated in two different classification tests.

1 Introduction

Microarrays represent a widely employed tool in molecular biology and genet-
ics, which have produced an enormous amount of data to be processed to infer
knowledge. Computational methodologies may be very useful in such analysis:
among others, clear examples are tools aiding the microarray probe design, im-
age processing-based techniques for the quantification of the spots, segmenta-
tion of spots/background, grid matching, noise suppression [5], methodologies
for classification or clustering [22]. In this paper we focus on this last class of
problems, and in particular on the samples classification task. In this context,
many approaches have been presented in the literature in the past, each one
characterized by different features, like computational complexity, effectiveness,
interpretability, optimization criterion and others — for a review see e.g. [13121].

In particular, very recently, a class of approaches have shown to be useful and
discriminant in this context: the so called topic or latent models — the two most
famous examples being the Probabilistic Latent Semantic Analysis (PLSA — [10])
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and the Latent Dirichlet Allocation (LDA — [3]). These powerful approaches
have originally been introduced in the text analysis community for unsupervised
topic discovery in a corpus of documents, in order to correlate the presence of a
word to the particular topic discussed; the whole corpus of documents can then
be described in terms of these topics. These techniques have also been largely
applied in the computer vision community [4].

One of the main characteristics of this class of approaches is represented by
their interpretability [7]: they can model a dataset in terms of hidden topics
(or processes), which can reflect underlying and meaningful structures in the
problem. This characteristic may be extremely useful in bioinformatics, where
interpretability of methods and results is crucial. Topic models have already
been applied in the context of expression microarray analysis: a tailored version
of LDA (called Latent Process Decomposition — LPD), explicitly modelling ex-
pression levels, has been proposed in [I9], with the aim of clustering expression
microarray data; moreover, an application of topic models to biclustering has
been recently proposed in [I].

A somehow unexplored scenario is represented by the application of such
models in the classification context — a preliminary evaluation of standard topic
models have been recently proposed in [2]. Even if supported by very promising
results, a clear drawback is represented by the underlying basic assumption that
each gene expression is independently generated given its corresponding latent
topic.

In this paper a novel topic model is proposed, which we call BaLDA
(Biologically-aware Latent Dirichlet Allocation), which starts from the Latent
Process Decomposition [19], introduced in the context of clustering, and defines
a new model able to take into account the given dependence between genes. This
dependence is introduced in the graphical model through a variable, modeling a
categorization of genes (namely a subdivision of genes in groups), which can be
inferred by a priori knowledge on the genes of the analyzed problem. As a further
refinement, a better modelling of the expression level is achieved by substituting
the Gaussian pdf — present in the LPD — with a more descriptive Mixture of
Gaussians.

We will show the usefulness of BaLDA in two classification experiments, as-
sessing the impact of the different introduced modifications; a comparison with
the LPD topic models and state of the art methods demonstrates the competi-
tiveness of the proposed approach.

The rest of the paper is organized as follows: in Sec. 2 technical prelimi-
naries about topic models are given. In Sec. 3 the model, together with learn-
ing/inference mechanism presented. An exhaustive experimental section is
presented in Sec. 4, and, finally, in Sec. 5, we draw some conclusions.

2 Background

In this section the background concepts are reviewed. In particular, after intro-
ducing the general ideas underlying the family of topic models, we will present
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Laten Dirichlet Allocation using the terminology and the notation of the docu-
ment analysis context. Then we will briefly review how these models have been
applied to the microarray scenario.

2.1 Topic Models

Topic models were introduced in the linguistic scenario, in order to describe
and model documents. The basic idea underlying these methods is that each
document is characterized by the presence of several topics (e.g. sport, finance,
politics), which induce the presence of some particular words. From a probabilis-
tic point of view, the document may be seen as a mixture of topics, each one
providing a probability distribution over words.

A variety of probabilistic topic models have been used to analyze the content
of documents and the meaning of words. In the following section we will briefly
present the LDA model, mainly to set up notations used in the remainder of the

paper.

2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) was first introduced by Blei in [3]. In the
LDA model, words are the only observable variables and they implicitly reflect
a latent structure, i.e., the set of K topics used to generate the document. Gen-
erally speaking, given a set of documents, the latent topic structure lies in the
set of words itself. In generating the document, for each word-position a topic
is sampled and, conditioned from the topic, a word is selected. Each topic is
chosen on the basis of the random variable # that is sampled for convenience
from a Dirichlet distribution p(f|a) where « is a hyperparameter. The topic z
conditioned on 6 and the word w conditioned on the topic and on § are sampled
from multinomial distributions p(z,|6) and p(ws, |zn, 3) respectively. 3 represents
the word distribution over the topics. Given the parameters a and (3, the joint
distribution of a topic mixture €, a set of N topics z,, and a set of N words w,
that compose the document is given by

N

p(6.2,wla, 8) = p(la) - [] p(z0l6) - plwnlzn, B) (1)

n=1

where p(z,, = i|6) is simply 6; for the unique i such that 2! = 1. Integrating over
f and summing over z, we obtain the probability of a document.

2.3 Topics Models in Bioinformatics

The representation provided by topic models has one clear advantage: each topic
is individually interpretable, providing a probability distribution over words that
picks out a coherent cluster of correlated terms, see for example [6J2IT9]. This
may be really advantageous in the expression microarray context, since the final
goal is to provide knowledge about biological systems, and discover possible
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hidden correlations. In particular there is a straightforward analogy between
the pairs word-document and gene-sample: the expression level of a gene in a
sample may be easily interpreted as the level of the presence of a word in a
document (the higher the level the more present/expressed the word/gene is).
In this sense, a particular topic model assumes that microarray data (represented
as the gene-expression matrix) arises from a mixture of topics, whose number is
fixed; changing the topic allows different subsets of genes to be prominent.

A possible problem which may arise is that expression microarray data is
described with a matrix of real numbers, not as a non-negative integer matrix.
This problem has been solved in [19] by modifying the standard LDA via the
introduction of Gaussian distributions in place of word multinomial distributions
(; this results in a novel and efficient probabilistic model called Latent Process
Decomposition (LPD), where LDA topics are called “processes”. The model has
been successfully applied to clustering. Some modifications of the LPD model
have been recently introduced: in particular, an optimized training version can
be found in [23]; moreover, in [15], the LPD has been equipped with learned
hyperpriors on the gaussian word-topic distributions. A method for maximizing
lower bounds by re-estimating hyperparameters leaded to more accurate clus-
tering results.

A somehow unexplored scenario is represented by the application of such
models in the classification context; only very recently PLSA and LDA have
been employed to classify expression microarray samples, with really promising
results [2]. In particular, in [2], the original topic models [3/I0] have not been
changed; instead the gene expression matrix has been transformed, by a proper
scaling and shifting, to a positive integer valued matrix, thus interpretable as a
count matrix in the original LDA-PLSA formulation. Despite the method lacks
biological motivations, it yielded very good classification results.

3 Biologically-aware Latent Dirichlet Allocation
(BaLDA)

The main contribution of this paper is the definition a novel topic model for the
analysis of expression microarray data, which directly improves the one provided
in [T9]. This novel topic model has two clear advantages with respect to the
Latent Process Decomposition (LPD), detailed in the following.

The first (and most important) advantage starts from the observation that
the major drawback of the PLSA, LDA and LPD models is the assumption that
each gene expression is independently generated given its corresponding latent
topic. While such representation provides an efficient computational method,
it lacks the power to describe the coherent expression of different genes in a
subset of samples, this aspect being widely known in the biology. In the proposed
approach we include a mechanism in the graphical model that permits to include
a priori knowledge on the relation between genes. This a priori information is
expressed in terms of a gene categorization, namely a subdivision of the genes in
groups of related genes based on external information, like known co-regulation,
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Fig. 1. A) Biologically-aware Latent Dirichlet Allocation Bayesian Network. Shaded/
Unshaded nodes are visible/hidden variables (v/h). The model parameters {2 are rep-
resented with a letter outside a node. B) A second version of the Biologically-aware
Latent Dirichlet Allocation. The clustering result is fed into the model by means of the
visible variable k.

spatial proximity or similarity of nucleotidic sequences to name a few. This
categorization (i.e. clustering), which may be directly fed to the model, can be
computed beforehand or can be simultaneously estimated while estimating the
topic model.

The former option result in a straightforward modification of LDA; we add a
visible variable k that influences the hidden topic variable z (see Fig.[IB). More
interesting is the latter option, which permits LDA to deal with the uncertainty
associated to the clustering. In this case (see Fig.[TIA), the variable k is hidden,
and depends on the visible variable g. which represents the external information.
These variables are modelled through a set of parameters which are learned
simultaneously with the other parameters.

The second novelty of the proposed approach is related to the modelling of
the word/topic distribution: in the original Latent Dirichlet Allocation, a word is
generated by a multimodal distribution 3, where (3, » represents the probability
of finding the word w when the document is “speaking” about the topic z. In
the LPD [I9] the word-topic probability is modeled by a single gaussian, thus
reflecting the continuous nature of the expression level, which is not captured
with the original discrete formulation. Nevertheless, the monomodal nature of
the Gaussian may not properly capture the possibly multimodal behavior of the
gene-topic distribution: in particular, within a gene, a topic can be assigned to a
single expression level. This limitation is removed in the proposed model, where
the single Gaussian is replaced by a mixture of C' Gaussians; which for large C,
goes towards the multimodal spirit of the original multinomial 3, still maintain-
ing the appealing characteristic of modelling continuous expression levels.
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3.1 BaLDA

The Bayesian network of Biologically-aware Latent Dirichlet Allocation (BaLDA)
is depicted in Fig[ll The model is characterized by two observations, g. and ge
(visible variables v) which respectively govern the clustering and the topic sub-
modules.

The variable k clusters the N genes in K components, while the parameters
Ay, represent the parameters of the particular probability density function cho-
sen. For microarray expression are often used gaussians, t-distributions or factor
analyzers [16]. We used gaussian clustering, so Ax = {pk, o}

((Qc,n*;kﬂ)
p(gc,n|ka A) = p(gc,n‘Ak) = e —29% (2)

1 .
V(2r)o

The parameter 73, is a multinomial distribution that represents the prior on the
cluster assignment.

Each n-th gene expression ge , is assigned a topic z, = {1...Z} evaluating
the gene-topic distribution and using a topic prior 6. We have that

1 ((Qe,n*;z,c,n)2>
P(genlz, p,0) = Zp(ge,nlz,c,,u,o) = Zﬂz,c,n' AT 3)
% % V(@mo

where is now visible the mixture of Gaussians palette we introduced. With [c] we
indicate the values the variable ¢ can assume. The prior on such topic assignment
depends on the co-regulated genes (see the link & — 2 in the Bayesian network).

p(z=alb,k) =0, (4)

where 0 are multinomial distributions that represent the topic proportions used
to generate each sample. Each distribution 6j is governed by a Dirichlet prior
p(0k|ag), where « is hyperparameter that represent the strength of a topic within
a dataset.

(06 end) = TTwt0rlen) = TT( 5, T2 ®)
(K] (k] #

Again the products are taken over the values of k and z and Z(«) is Dirichlet
distribution normalization constant.

At this point we can write the joint probability which describes the generative
model as

p(gC’ Je; C, kv 2, 9|a7 u, 0, A7 Te, Trk) = p(C|7TC) : p(kj|7rk) ' p(9|a)
H(p(gc,n k, A) - p(genlc, z, 11, 0) -p(zn|9))

n

where each conditional distribution has already been parameterized.
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3.2 Inference and Learning

Under the model so far described, each t-th observation g' is characterized by
four hidden variables h* = {k*, ¢!, 2%,0!} which in turn are governed by the
following parameters 2 = {Ag, T, fic, O, Te, O}

As in LDA, exact inference is intractable: we approach it using the variational
inference [12]. We introduce a tunable distribution ¢(h) over the hidden variables
which defines the free energy F

_ t g(h')
F= Zj(}lqum Jlog i vl (6)

We used the following form for the approximate posterior distribution, g(h?) =
q(0") - 11, a(zh, ch) - q(kL) with ¢(%) being a Dirac function centered at the
optimal vectors 6t. After plugging the approximate posterior and the joint dis-
tribution in the free energy formulation, we can iteratively decrease F with
the Expectation-Maximization (EM) algorithm. The EM algorithm alternates
in minimizing the free energy with respect to ¢(h) (E-Step) and with respect
to the model parameters {2 (M-Step). When updating ¢, the only constraint is
that 3=, ¢q(h') =1 for each hidden variable h and for each sample ¢. The update
rules are simply obtained by setting the derivatives of F equal to zero and this
reduces to the following formulas:

(EM a(k2)- (2 (B,0) (T ék,w))
(7)

where ¥ is the derivative of the logl™ function, computable via Taylor approx-
imation (for further details see [3]), and A is the normal probability function
(see Eq2). The remaining updates of the E-step are

b0 < e+ Y alkl, =) qlz], = a) (8)

q(kl, = k) oc g - N(ge,ns pie, k) 9)

In the M-step the collected posterior distributions ¢ are used to compute an
estimate {2 of the model parameters

CI(ZZ =a, sz = b) X T 'N(ge,n§ Ha,b,ns Ua,b,n) =

_ Yialen=2) qlch =) gt
Hmes =Sz = 2) - ale, = ) o
s (e =2) alch = 0) - (g — pine.s)?
Oncz = Zt q(zn = 2) - q(ct, = ¢) (11)

Te,z,n = ZQ(Cn = C) ' Q(Zn Z) (12)

t

The appropriate update on topic proportions’ priors aj can be obtained using a
gradient descend

{Gro} = arg maXZ(oqw —1)log by (13)
t
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subject to the appropriate normalization constraint.
We omit the update formulas for py, of and 7, which can be computed in a
very similar fashion.

3.3 Expression Microarray Samples Classification

In general, topic models have been originally introduced for clustering sets of
documents: given the dataset, models are trained and analyzed in order to find
clusters. Nevertheless, recently, they have been also successfully employed in
the classification scenario — see for example [I2]. The main idea is to employ
a hybrid generative-discriminative approach [I1], which exploits the generative
model to extract a set of features to be classified with a discriminative classifier.
More in detail, the training phase is carried out by first learning the models
on the training set. Then a set of features is extracted from each sample; the
transformed training set is then used to train a classifier. In the testing phase,
the same feature extraction process is applied to the test sample, resulting in a
feature vector to be classified using the trained classifier. In our work we em-
ployed the scheme proposed in [412], i.e. we employ the mixture of topics 6* as
sample descriptor. This have been demonstrated to be really discriminant [4J2].
Another benefit of this representation is that we are reducing the dimensionality
from the number of genes N to the number of topics K, with K <« N — thus
providing a compact and more interpretable representation. Finally, we are de-
scribing samples with a multinomial distribution whose characteristics will be
exploited by the particular chosen classifiers.

4 Experiments

The proposed classification scheme has been evaluated using two different datasets,
both related to tumors. The first derives from a study of prostate cancer by
Dhanasckaran et.al [20], and consists of 54 samples with 9984 features. Such
samples are subdivided in different classes: 14 samples are labelled as benign
prostatic hyperplasia (labelled BPH), 3 as normal adjacent prostate (NAP),
1 as normal adjacent tumor (NAT), 14 as localized prostate cancer (PCA), 1
prostatitis (PRO) and 20 as metastatic tumors (MET). The 6 classes can be di-
vided in three macro-classes: non-cancer (BPH,NAP,PRO), cancer (NAT,PCA),
metastatic tumor (MET). This dataset has been also employed by the authors
of [19] in their study for LPD. The second dataset we employed contains the
expressions of 90 brain tissues used to study central nervous system embryonal
tumor [I8]. Each sample is characterized by 5920 features. The 90 samples in-
clude 60 with medulloblastomas, 10 with malignant gliomas, 5 with AT/RTSs, 5
with renal/extrarenal rhabdoid tumors, 6 with supratentorial PNETS, and 4 nor-
mal cerebellum (5 classes in total). As in many expression microarray analysis,
a beneficial effect may be obtained by selecting a sub group of genes, in order to
limit the dimensionality of the problem and to reduce the possible redundancy
present in the dataset. Here, as in [19], we decided to perform the experiments
filtering the genes by variance and keeping only the top 500 genes.
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In all the experiments we set g. = ge, namely we clustered the genes by looking
at their expression levels in all the samples. This choice of course does not exploit
the full potentiality of the method, but it permits to already obtain promising
results (see tables below). Currently we are planning to perform an experiment by
fully exploiting the potentialities of the model, considering different information
(like spatial proximity or sequence similarity). In all the experiments, Z, K, and
C, representing the number of topics, the number of clusters and the number of
components in the mixture of Gaussians, respectively, are set in the following
way: Z was found by applying the hold out log likelihood procedure described
n [I9], K has been automatically determined using Affinity Propagation [9] and
C = 3 has been set after several tests.

In order to capture the different contributions of the two innovations of the
model, we also tested the model with i) the clustering module but with only one
Gaussian per gene (C=1), ii) the model enriched by the mixture of Gaussians
gene-topic distribution, without the clustering information (K=1). We will refer
to these two versions as BaLDA v1 and BaLDA v2 respectively.

The extracted features have been classified using Support Vector Machines
employing a variety of kernels. Beside the standard linear kernel (LI), the prob-
abilistic nature of the extracted features has been exploited by the use of differ-
ent kernels on measures — also called information theoretic kernels [14], which
provide similarity between probabilistic distributions; we employed some recent
kernels, like the Kullbach-Leibler (KL), the Jensen-Shannon (JS) and the Jeffries
kernels (JE). Finally we report also results with the K- Nearest Neighbor rule,
using an approach similar to [2].

The proposed model has been compared with [I9/2]. Even if [19] was designed
for clustering data, it can be straightforwardly adapted to the classification sce-
nario, following exactly the same hybrid scheme we employed. In order to have
a fair comparison, we used the authors’ implementation. Moreover, for a given
choice of (K, Z) in BaLDA, we trained two LPD models: one with the same num-
ber of topics Zpp = Z, and one with the same complexity Zppp = K - Z; this
permits to give to the LPD the same number of processes that we have in our
model. It is important to notice that the optimal Z for LPD, found by applying
to the hold out log likelihood procedure, has been used also for BaLDA. In fact
it is not obvious that the optimal Z; pp will be the optimal for BaLDA as well.
Classification errors have been computed using 10-fold cross validation (with 40
repetitions). In order to augment the statistical significance of the results, the
generative models have been trained 4 times and results averaged.

Results, for both datasets, are reported in Table [ and B respectively.

From the tables it is evident the improvement obtained with the BaLDA mod-
els. In particular, in all the provided experiments the full model is performing
better than the original LPD model (except in one case), with very remarkable
improvements in the first dataset, also employed in the original paper of [19].
Moreover, by comparing the results of BaLDA vl and BaLDA v2, we can ob-
serve that the improvement introduced by clustering the genes is more relevant
than the other; however the combination of the two eventually yielded the best
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Table 1. Results obtained from Prostate Cancer Dataset. See the text for the kernel
abbreviations. We tested [2] also using the information theoretic kernels reporting the
accuracies for the best Z.

7 K C LI KL JS JE KNN
LPD [19] 3 mna. na. 6541 66.04 68.55 6855 77.70
LPD [19] 12 n.a. na. 86.16 8239 8553 85.53  82.22
2] 3 mna. na. 8238 83.64 78.60 84.90 77.89
BaLDA v1 3 4 1 86.80 88.68 88.05 89.94  88.17
BaLDA v2 3 1 3 7798 76.73 76.73 7547  76.67
BaLDA 3 4 3 89.94 89.31 91.20 91.20 85.24

Table 2. Results obtained from Brain Tumor Dataset. On the bottom, we reported
the best accuracies of three other state of the art methods.

Z K C LI KL JS JE KNN

LPD [19] 15 n.a. na. 8333 8148 81.85 84.07 78.56
LPD [19] 90 n.a. na. 66.67 66.67 66.67 66.67 82.11
BaLDA vl 15 6 1 8556 85.56 88.15 88.52  82.74
BaLDA v2 15 1 3 76.67 84.08 76.67 80.37  76.48
BaLDA 15 6 3 8519 8519 87.87 88.89 81.15

Comparison with the state of the art
Method Acc.  Method Acc. Method Acc.
17 86.50 8] 86.20 2] 84.1

result. Considering the classifiers, it is not clear which is the best combination
of kernels and classifiers — this depending on the given dataset and on the given
generative model. As a general comment, it can be said that information theo-
retic kernels are working better than the linear one, so confirming the intuition
that exploiting the probabilistic nature of the features may be useful.

A final comment regards the interpretability of the method. Figure[2 describes
topic proportions of the different models. We can observe that the topics can
capture the different classes of the problem (with our model producing a qual-
itative better result — for more comments see the caption of the figure). This
appealing interpretability of the topic models has been recently exploited in a
biclustering scenario (see [1]).

5 Conclusions

In this paper we proposed a novel topic model, which enriches and extends the
Latent Dirichlet Allocation (LDA) model by integrating genes’ dependencies,
encoded in a categorization of genes which better models the gene-topic distri-
bution, leading to better classification of samples. The proposed model, called
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Fig. 2. Topic proportions € of the prostate cancer dataset. We depict each of the classes
with different colors. A) By clustering the genes BaLDA is able to use different topics
to describe the 3 macroclasses; for example for the genes of the fourth cluster (K=4),
the first topic describes the non-tumoral samples, the second topic the tumoral samples
and the third the metastatic tumors. Again other clusters seem to highlight one of the
three classes (the third cluster — K=3 — highlights metastatic using topic 2, etc). B)
Comparison with [I9] using a model with the same complexity. C) Comparison with
[19] using the same number of topics. D) Comparison with [I9] using the optimal topic
number.

BaLDA has used to derive a highly informative and discriminant representa-
tion for microarray experiments. An experimental evaluation of the proposed
methodologies on standard datasets confirms the effectiveness of the proposed
techniques, also in comparison with other classification methodologies. Future
works will focus on the biological interpretation of the results; it is evident that
the interpretable topic representation of the expression matrix can be exploited
to highlight genes strictly involved in the biological problem of interest, e.g.
cancer or tumoral processes [I].
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Abstract. The most widespread biclustering algorithms use the Mean
Squared Residue (MSR) as measure for assessing the quality of biclus-
ters. MSR can identify correctly shifting patterns, but fails at discovering
biclusters presenting scaling patterns. Virtual Error (VE) is a measure
which improves the performance of MSR in this sense, since it is effective
at recognizing biclusters containing shifting patters or scaling patterns
as quality biclusters. However, VE presents some drawbacks when the
biclusters present both kind of patterns simultaneously. In this paper,
we propose a improvement of VE that can be integrated in any heuristic
to discover biclusters with shifting and scaling patterns simultaneously.

1 Introduction

The use of microarray techniques allows to study the activity of thousands of
genes at a time, producing in this way a huge amount of data. Usually, the re-
sulting data is organized in a matrix, called an expression matrix, where columns
may represent genes and rows represent experimental conditions. An element of
such expression matrix stands for the expression level of a given gene under a
specific condition [3/T§].

The interest in discovering knowledge from gene expression data has exper-
imented an enormous increase with the development of microarray techniques.
Biclustering [12] is becoming a popular data mining technique due to its ability
to explore at the same time both dimensions of data, as opposed to clustering
techniques [19], that can only use one dimension. In this sense, microarray is
a suitable context for the application of biclustering techniques, since they can
consider both genes and experimental conditions at extracting useful knowledge.
Thus, in this context, a bicluster is a subset of genes under a subset of condi-
tions. In particular, those biclusters where the subset of genes shows a common
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tendency under the subset of conditions are of special interest. In general, bi-
clustering is much more complex than clustering [I4]. In fact, finding significant
biclusters in microarray data has been proven to be a NP-hard problem [17].

Cheng and Church [7] were the first in applying biclustering to gene expression
data. They introduced one of the most popular biclustering algorithms that
combines a greedy search heuristic for finding biclusters with a measure for
assessing the quality of such biclusters. This measure, named Mean Squared
Residue (MSR), has been used by many researchers who have proposed different
heuristics for biclustering biological data. Aguilar et al. [2] developed an approach
based on local nearness. Yang et al. |[2I] proposed an iterative algorithm for
finding a predefined number of biclusters. Cano et al. [6] based their proposal on
fuzzy technology and spectral clustering. Other approaches, such as Divina and
Aguilar [10] and Bleuler et al. [4], have been based on evolutionary computation,
while Bryan et al. [5] applied simulated annealing as heuristic. Recently, MSR
has also been incorporated as cost function in multiobjective heuristics based on
Particle Swarm Optimization [I3] and Artificial Immune Systems [9].

Although MSR has been used in many proposals for finding biclusters, it
nevertheless has been proven to be inefficient for finding certain types of biclus-
ters in microarray data, especially when they present strong scaling tendencies
[1]. Thus, we introduced in previous works an alternative measure named Vir-
tual Error (VE) [15]. This measure is based on the concept of behavioural pat-
terns, which aim at identifying common patterns between genes or conditions.
VE is effective at recognizing biclusters containing shifting patters or scaling
patterns as quality biclusters. However, it presents some drawbacks when both
kind of patterns are presented simultaneously in the same bicluster. In this pa-
per, we propose a novel variant of VE, called Transposed Virtual Error (VE?),
that allows to find biclusters that MSR and VE do not recognize as interesting
ones.

This paper is organized as follows. In the next section, an description of the
shifting and scaling patterns is given. We then provide a formal definition of
VE! in Section 3] followed by a formal analysis in Section dl demonstrating its
strength with regard to the behavioural patterns. In Section [l we discuss the
consequences of the theorems presented in this work, providing a test of the
effect of the noise on the VE!. Finally, we summarize the main conclusions in
Section

2 Behavioural Patterns in Gene Expression Data

When all the genes of a bicluster follow a similar tendency under the set of condi-
tions, then such a bicluster may be potentially biologically interesting. Therefore,
it seems to be a good idea to develop a quality measure for biclusters based on
the idea of behavioural patterns for gene expression. Aguilar [I] presented an
in-depth discussion on the possible patterns in gene expression data. He de-
scribed formally two kind of patterns: shifting and scaling patterns. They have
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been defined using numerical relations among the values in a bicluster. Several
works based their principle in the pattern concept in order to mine the data.
Xu et al [20] propose a biclustering algorithm for mining shifting and scaling co-
regulation patterns on gene expression data. Nevertheless, they do not provide a
quality measure, but use a model-based heuristic instead. Furthermore, they are
only able to identify global shifting and scaling patterns, while local ones seem
to be more interesting since they depict the general situation [I]

Let B be a bicluster made up of I experimental conditions and J genes. Each
element in B is represented by b;; € B. This way, the bicluster B follows a perfect
shifting pattern if its values can be obtained by adding a constant-condition
number f; to a typical value for each gene (m;). [3; is said to be the shifting
coefficient for condition ¢. In this case, the expression values in the bicluster
fulfil the following equation:

bij =mj + Bi (1)

Similarly, a bicluster follows a perfect scaling pattern changing the additive value
in the former equation by a multiplicative one. This new term «; is called the
scaling coefficient, and represents a constant value for each condition. The fol-
lowing equation defines whether a bicluster follows a perfect scaling pattern or
not:

bij = mj X (2)

Shifting and scaling patterns may be put together in a new kind of pattern called
combined pattern. In fact, it is the most probable situation when working with
real genetic data. In this situation, the expression values can be obtained using
both coefficients, shifting and scaling coefficients. The equation that must be
fulfilled by the values in this case can be represented by merging [l and 2}

bij = mj X a; + s (3)

Figure[Ilshows an example of a bicluster obtaining from synthetic data. This is a
typical visualization of bicluster, where conditions are represented in the x-axis,
the values of gene expression are represented in the y-axis and each line is a
gene. As we can see, there are four genes g; (with 1 < j < 4) and five conditions
¢; (with 1 <4 < 5). This bicluster contains both shifting and scaling patterns.
The matrices below describe the factor decomposition of the numerical values.
Having a look at figure [[l we could say that genes g1, g3 and g4 present a similar
behaviour across the conditions, although g4 has a different tendency between
the last two conditions. On the contrary, the tendency of gene go varies from the
other genes, since its behaviour is always increasing across all the conditions.
Gene go is difficult to be associated to a perfect pattern visually because its
shifting coefficients (3; are closed to the product m; x o;. Therefore, identifying
biclusters with both shifting and scaling patterns might be a difficult task due
to the complexity inherent in equation [3l
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Fig. 1. Bicluster containing perfect shifting and scaling patterns

3 Transposed Virtual Error

Virtual Error (VE) had been designed as an evaluation measure for biclusters
[15]. VE is based on the concepts of shifting and scaling patterns and is capable of
identifying both kind of patterns within biclusters, although not simultaneously.
This way, VE improves MSR effectiveness, since the last one can only recognize
shifting patterns. The basic idea behind VE is to measure the extent to which the
genes in a bicluster are similar to the general tendency. The general tendency is
represented by a Virtual Gene which is created taking into account the values for
every gene across the experimental conditions, but trying to capture the general
behaviour with independence of the concrete numerical values. VE will have a
lower value for those biclusters in which its genes are closer to the virtual gene.
This is due to the fact that VE computes the numerical differences between each
standardized gene and the standardized virtual gene. Therefore, the better a
bicluster is, the lower its VE value will be. Furthermore, it is obvious that VE
will always be greater or equal than zero.

VE has been used in various evolutionary algorithms in order to find one
hundred biclusters in several gene expression matrices [I511]. These two previous
works have allowed us finding interesting biclusters that could not have been
obtained using MSR alone. Furthermore, the VE value for biclusters with perfect
shifting and scaling patterns seems to be very close to zero [16] (magnitude of
10~%%). Nevertheless, VE cannot be proven to recognize both kind of patterns
simultaneously.
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In this work, we present an enhanced version of VE, named VE?, from Trans-
posed Virtual Error. We analytically prove that VE! is zero for those biclusters
with perfect shifting and scaling patterns. This variation of VE has been mo-
tivated by [8], where several numeric transformations have been applied to the
data in order to detect both kind of patterns.

VE! is computed similarly to VE but considering the transposed bicluster. The
idea here would be to create a Virtual Condition, instead of a virtual gene, and
measure the differences between the standardized values for every condition and
the standardized virtual condition. In the following, we explain how to create the
virtual condition for a certain bicluster B, in order to compute VE! afterwards.

Definition 1 (Virtual Condition). Given a bicluster B with I conditions and
J genes, we define its virtual condition as a collection of J elements p;, each of

them defined as the mean of the j" column: p; = Z"EII bij, where bj; € B,1 <
1 <Tandl<j< J.

This way, each element of the virtual condition represents a meaningful value
for all the conditions, regarding each gene. Once the virtual condition has been
created, the next task would consist of quantifying the way in which all the ex-
perimental conditions in the bicluster are similar to it. In order to perform an
appropriate comparison, we first carry out a standardization of the virtual con-
dition and of every experimental condition in the bicluster. This standardization
allows us to capture the differences among the tendencies, with independence of
the numerical values.

Definition 2 (Standardization). We define the standardized bicluster B from

bicluster B as a new bicluster in which its elements b;j are defined by b;j = bijo_l_“" ,

where 0., and ., represent the standard deviation and the arithmetic ave;age
of all the expression values for condition i, respectively.

It has already been said that the virtual condition needs also to be standard-
ized. Equation Fl shows how the values of the standardized virtual condition are
obtained, where p; refers to the virtual condition value for gene j, while y, and
o, refer to the average and the deviation of the values of the virtual condition,
respectively.

. P
pj = ]U g (4)
P

Definition 3 (Transposed Virtual Error). Given a bicluster B, and the vir-
tual condition p, Transposed Virtual Error (VE') can be defined as the mean of
the numerical differences between each standardized condition and the values of
the standardized virtual condition for each gene:

| i=li=d )
VE'(B) =, > (i - p)) (5)
i=1 j=1
Next, we present three theorems and their proofs that demonstrate the strength
of VE! with regard to the shifting and scaling patterns.
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4 Analysis

This section includes formal proofs that bear out the hypothesis that VE? is zero
for those biclusters with perfect shifting and scaling patterns, either separately
or simultaneously.

Theorem 1. A bicluster presenting a perfect shifting pattern has VE' equal to
zero.

Proof. Let B be a bicluster with a perfect shifting pattern, then it is possible to
refer to its elements as b;; = m; + 5;. Applying two simple arithmetic propertiesd],
the mean and the deviation for each condition ¢; can be expressed by:

,ucq',:/fé‘n""ﬁi y Oc¢; =O0nx

where i, and o, represent the mean and the deviation of the 7 values, respec-

tively. Using these results we obtain the standardizes values for b;;:
i).,_bij_lu/ci_7rj+ﬁi_/’(“lr_ﬁi_7rj—/j,7r
[/ — =

O¢,

i

O O

Combining the former properties® it is easy to express the mean and standard
deviation for the virtual condition as:

Hp =z + 13 ;5 0p=0g
Finally, the standardized values for the virtual condition are the following:
N Pi T Hp T+ Hg — U — 13 Tj — [y — b
P = = = = 04y
Op Or Or
As it can be seen above, the standardized virtual condition is equal to all the

real conditions after being standardized. Therefore, VE! has been proven to be
zero for those biclusters with perfect shifting patterns. |

Theorem 2. A bicluster presenting a perfect scaling pattern has VE' equal to
zero.

Proof. Let B be a bicluster following a perfect scaling pattern, then its elements
can be expressed by b;; = m; x oy. Following the same reasoning that in the
former proof, the mean and deviation of each condition ¢; are:

Mg = Qi X b5 O¢; = Qj X O

From these results we obtain the standardized values for b;;:
s i — e, | T X Q= X flr T g
bij = = =

Oc, a; X Op Or

Next we obtain the mean and deviation for the values of the virtual condition:

Bp = Hr X Ho 5 Op = Ha X Og

! Being f(z) = g(z) X c1 + c2, the properties related to the arithmetic mean (5 (,))
and the standard deviation (o y(,)) of f(x) are the following: pis(z) = pg(w) X €1 + c2
and Of(z) = Og(z) X C1-
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And finally the standardized values for the virtual condition are:
. Pj T Hp T X o = P X o T T M -
Op Mo X O Or
As in the previous proof, we obtain that the standardized values for the virtual
condition are equal to de standardized values for all the real experimental con-
ditions. As a consequence, VE! will be zero for every bicluster with a perfect
scaling pattern. |

Theorem 3. A bicluster presenting a perfect combined pattern (shifting and
scaling) has VE' equal to zero.

Proof. If B contains a perfect combined pattern, its values can be represented
by b;; = m; x a; + B;. Using the same arithmetic properties as in the former
proves, the mean and deviation for each condition ¢; are:

fe, = 0 X fir + 55 3 0, = 0 X 0p

And the standardized values for b;; can be expressed as:

I;H_bij_,uci X o+ B X e + B T — g
i = = =
J Oc, o X g o

i

The mean and deviation for the virtual condition are the following:

Hp = fim X fla + U5 5 Op = fha X Og
And the standardized values for the virtual condition:

5 PP Mo _ T X fa g = fr X fla — g _ T~ fx g
p; = = _ b,
o) Lo X O or

Again, the standardized values for the virtual condition match up with the stan-
dardized values for the original conditions. Therefore, VE! will also be zero for
those biclusters following a perfect shifting and scaling pattern. |

These results confirm that VE? is the first measure up to the date capable of rec-
ognizing combined patterns in gene expression data. While MSR is only capable
of detecting shifting patterns, and VE cannot recognize both kind of patterns
simultaneously, VE! has been proven to go beyond the other two measures.

5 Discussion

In this section, we discuss the use of VE! for bicluster evaluation. In particular,
we study the value of VE! for those biclusters in which the presence of patterns
is not perfect. That is, when the tendency of the data in a bicluster is similar to
a perfect pattern but does not completely match with the equation [l

In order to check the behaviour of VE! whenever a bicluster does not follow a
perfect pattern, we add an additive term €;; to the combined pattern equation.
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The meaning of this new term corresponds to the error made by the assumption
that the bicluster can be represented by a perfect pattern.

bij =mj X a; + G; + Eij (6)

It is possible therefore to study the variations produced to VE! depending on
the values of €;;. Nevertheless, it is not so simple due to the huge amount of
situations depending on the distribution and the magnitude of the €;; values in
the data matrix.

In two specific situations the value of VE! will not be affected when the errors
could be included in the former equation[6l These two cases correspond to those
in which €;; values are either a constant or constants per conditions (rows). In
both cases it is possible to eliminate the term €;; from the equation, since it can
be considered to be a part of ;.

Nevertheless, the cases in which €;; cannot not be included in the perfect
pattern equation are very difficult to study analytically. For this reason, we have
performed a test to check the tendency of the VE! values with regard to the
error values. This test consist of the addition of random errors to a synthetic
bicluster with perfect shifting and scaling patterns. The original bicluster is the
one shown in Fig. [Il Specifically, we have generated 100 synthetic biclusters
adding random errors to the bicluster in the figure, and we have repeated this
process 200 different times, varying the amplitude of the errors from one time
to another. We start adding negative errors in the range of [—10, 0], and obtain
100 different biclusters. Then we decrease the amplitude by 0.1 and repeat the
process (range [—9.90,0]). Once the amplitude of the errors has reached the
zero value, we start again generating biclusters with positive errors, increasing
the amplitude from 0.1 up to 10. The whole process produced 100 sets of 100
biclusters with negative errors and 100 sets of 100 biclusters with positive errors
(built using the same strategy as for negative). Therefore, the random errors have
been drawn from an uniform distribution corresponding to the ranges. Note that
the type of the error values is a double type. This introduces more diversity in
the distribution of the error data.

Within the process, we evaluate each produced bicluster using the three mea-
sures: MSR, VE and VE!. Then we obtain the mean of each measure for each
group of 100 biclusters of the same range of errors. This data has been repre-
sented in Figs. 2 Bl and @, where the x-axis represents the mean of the error for
each amplitude (this value matches up with the value in the middle of the range
of errors) and the y-axis corresponds to the mean of the specific measure for
each figure.

From Fig. @] it is possible to observe that VE! presents a linear decreasing
tendency in relation to the amount of error in a bicluster. In other words, the
similar a bicluster is to a perfect pattern, the lower its VE! value will be, and
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we can establish a linear relationship between VE! and the amount of error.
Nevertheless, it is not possible to come to the same conclusion for either VE
or MSR. Figs. Bl and H depict the connection of the errors with VE and MSR,
respectively. Although the general tendency seems to be that both measures are
higher for biclusters with higher error values, we cannot establish any correspon-
dence between them. In both figures it is possible to see some cases in which the
mean of the biclusters with errors is lower than the original bicluster.

As a conclusion, VE? outperforms both MSR and VE efficacy for identifying
behavioural patterns in synthetic data. Our expectations are that this behaviour
would be extensive to real gene expression data.

6 Conclusions

This work introduces an enhanced version of a previous measure for evaluating
biclusters from gene expression data. This new variant, named VE?, allow finding
biclusters with both shifting and scaling patterns simultaneously in gene expres-
sion data. No previous evaluation measure for biclusters is able of identifying
this kind of pattern, for this reason we are sure VE! constitutes an important
contribution to the topic.

This paper also includes analytical proofs which demonstrate the capability
of VE! for detecting any kind of perfect pattern in gene expression data. Fur-
thermore, we have also proved that VE! presents a linear relationship with the
amount of error in a bicluster.

For future work, we have planned to use VE! together with an evolutionary
framework in order to search for biclusters in gene expression data. The obtained
results will be compared to those obtained by similar heuristics and evaluation
measures. Biological validation of the results will also be performed in order to
validate our approach.
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Abstract. We introduce a new method for the analysis of heterochrony in
developmental biology. Our method is based on methods used in data mining
and intelligent data analysis and applied in, e.g., shopping basket analysis,
alarm network analysis and click stream analysis. We have transferred, so
called, frequent episode mining to operate in the analysis of developmental
timing of different (model) species. This is accomplished by extracting small
temporal patterns, i.e. episodes, and subsequently comparing the species based
on extracted patterns. The method allows relating the development of different
species based on different types of data. In examples we show that the method
can reconstruct a phylogenetic tree based on gene-expression data as well as
using strict morphological characters. The method can deal with incomplete
and/or missing data. Moreover, the method is flexible and not restricted to one
particular type of data: i.e., our method allows comparison of species and genes
as well as morphological characters based on developmental patterns by simply
transposing the dataset accordingly. We illustrate a range of applications.

Keywords: frequent episode mining, heterochrony, pattern analysis,
developmental biology.

1 Introduction

The relation between evolution and development is intriguing [11,12] and considered
essential for gaining understanding in the tree of life. Heterochrony, defined as the
change of timing in events in development leading to changes in size and shape of
species, facilitates analyzing differences in species. The key goal in heterochrony
analysis is to relate evolutionary distance between species to changes in timing of
developmental events. Tools to analyze developmental timing in a quantitative way
have shown not to perform adequately for large datasets. In addition, for assessment,
a relative timing is required and such is not present in existing computational
approaches. Therefore, complementary to other methods, such as event-pairing [11]
and Search-based Character Optimization [15], we developed a method for
heterochrony analysis that includes efficient extraction of developmental patterns and
at the same time allows using different types of data, e.g. morphological and gene-
expression, in a universal manner. To that end we propose an analysis of

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 2531263,|2010.
© Springer-Verlag Berlin Heidelberg 2010
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developmental sequences based on, so called, episodes [13]. Episodes are small,
partially ordered, sets of events that frequently occur in the data. A collection of
episodes extracted from a developmental sequence provides a good basis for further
analysis of that sequence. For our method to run efficiently a special data structure is
required to accomplish fast updates on the extracted patterns. We, therefore, propose a
data structure referred to as the episode tree which is specifically designed for and
tailored to this kind of application.

Our analysis starts with a dataset containing developmental sequences (cf. § 2.2)
and from this dataset an episode tree is created by sliding a window over the
developmental sequences; all episodes found in this time window are added to the
episode tree. Subsequently, a distance measure, based on the concept of heterochrony,
is used between the entities in our dataset (species). After computation of the
distances and clustering based on these distances, results are obtained and visualized
as cladogram; typically showing evolutionary distance between species.

Experiments with artificial, morphological and gene expression datasets are used to
illustrate the scope of this method. In each of the experiments the entities we compare
to each other can be different, i.e. clades, species or genes. Importantly, using a gene
expression dataset as input, results in a cladogram similar to those from biological
literature. For our experiments we consider gene expression as extracted from patterns
of gene expression from “in situ” hybridization, these are directly related to
morphological characters. At this point, Micro Arrays gene expression patterns are
not considered.

2 Materials and Methods

Here, we will describe the Frequent Episodes mining in Developmental Analysis
(FEDA). The method is centered on a database (MySQL [2]) that contains the data to
be analyzed as well as the patterns extracted. This approach facilitates the selection of
interesting patterns for further analysis. The data were extracted from the literature
and imported in the database (Fig. 1A). The software runs on a standard PC.

N\
/

N ~ - ‘/"C*\\
\B)

get data @

FEDA k _ »  Database > Clustering

insert patterns get sequence prT)ﬁles

AN //

A~ select patterns - display cluster results .
®) 0
~ » )

patternl o 7100%‘ speciesl

L . |
patternl Y ‘
patternl [ I species2

Fig. 1. Overview of FEDA architecture centered on a database. (A) Data import in the database.
(B) FEDA finds frequent episodes and inserts these back in database. (C &D) Visual output, like
clustering developmental profiles (C & D) or a pattern shift diagram (E) from frequent episodes.
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2.1 Finding the Episodes

We propose a method for finding sequence heterochrony in developmental sequences
(Fig. 1B). Using small frequently occurring patterns, called episodes, we try to find
differences between developmental sequences. In order to have an unequivocal idea
of the major concepts we define the core entities.

Definition 1 Developmental Sequence: A developmental sequence is an ordered list
of pairs. A pair consists of a developmental events and a timepoint. The list is ordered
on the timepoints and describes the timing of these events within one species.

Definition 2 Episode: An episode [13] is a small ordered set of events that is frequent
over all developmental sequences.

Definition 3 Frequency: The frequency of an episode is the total sum of the
occurrences (cf. Def. 4) of this specific episode in all sequences. For each occurrence
its size is equal to or smaller than the maximum episode size.

Definition 4 Occurrence: For an episode to occur in a sequence, the events in this
sequence need to be strictly ordered in the same order as the events in the episode.
Events in between that are not part of the episode may exist. Consequently, gaps
between events in an episode can exist; i.e., events in an occurrence do not have to be
contiguous.

Definition 5 Episode Size: The size of an episode occurring in a sequence s is the size
of the smallest subsequence s’ of our sequence in which the episode can still be
matched. Such “match” is called an occurrence of the episode in s. To limit the
amount of episodes that can be identified, the size of the episodes has been restricted.
The maximal episode size is the upper bound on the episode size.

FEDA uses the episode tree to store this collection of episodes together with their
frequency.

Definition 6 Episode Tree: An episode tree is a prefix-tree data structure on the
episodes with the following features:

1.  consists of nodes and children
the tree has an empty root node; the start of all the episodes

3. each node has zero or more child nodes and each node contains: an event, a
frequency and a binary list

4. anode with no child nodes is called a leaf

The FEDA algorithm starts with a given maximal episode size and an empty episode
tree as parameters. FEDA processes all the sequences in the data and integrates all
occurrences of the episodes identified in each sequence. This results in a collection of
all episodes with the given maximal size together with their frequency. The root node
is the empty episode from which all other episodes are extended. All children of this
root-node are episode trees containing episodes that start with the event contained in
this node. In addition, each of the children stores a binary list with length equal to the
number of sequences in the dataset and it holds a 1(frue) at position 1 if the episode is
found in the first sequence. This is the same for the other sequences in the dataset. In
an episode tree the events found in all nodes passed in the path from the root to
another node is an episode. An example of an episode tree is depicted in Figure 2.
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Episode
Frequency

01

Fig. 2. An Episode Tree; the root is the start of all episodes contained in the tree. The
highlighted path from the root to a leaf (end node) is the episode A-C-D with a frequency 1, as
stored in the last node of the episode.

2.2 Episodes in Heterochrony Analysis

After computation of all the frequent episodes it is exactly known which patterns
occurred in which developmental sequence and the frequency of each pattern in all
the developmental sequences. From the data developmental profiles are constructed;
these are defined as:

Definition 7 Developmental Profile: A developmental profile is a vector that exactly
shows which episodes where found in a given developmental sequence. The number
of elements in this vector is equals the number of episodes found by FEDA. All
episodes are indexed for the developmental profile. The value at each index is frue if
the episode was found or false if not found.

The developmental profiles can be used in standard clustering algorithms while
still being able to capture the temporal dependencies in the developmental sequence.
Furthermore, filters can be used to control the size of the profiles. A possible filter is
to use all maximal frequent episodes instead of all frequent episodes and thereby
choose a minimal frequency as a threshold.

Definition 8 Maximal Frequent Episodes: An episode is maximal frequent if it is not
part of a larger frequent episode, i.e. a collection of maximal frequent episodes does
not contain small episodes that are part of other larger episodes in the collection.

2.3 Clustering of Developmental Profiles

After the episode mining step, a developmental profile is obtained, indicating which
episodes have been found in each of the sequences. This profile is used as a feature
vector describing each of the sequences. The similarity/dissimilarity between
sequences in the data is visualized by application of clustering on the developmental
profiles (Fig. 1C). The measurement of the distance between sequences requires a
specific distance measure that excludes, in the distance, those episodes not present in
both of the developmental profiles. The choice of the distance measure is motivated
by the fact that an episode not being present in both developmental profiles is not
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contributing information on the biological difference between these two
developmental profiles. This feature is typically expressed in the Jaccard distance [9],
defined as:

b+c

Jaccard|i, jl= ——,
a+b+c

where both i and j are developmental profiles; a is the number of episodes present in
both i and j, b is the number of episodes present only in i, ¢ those only in j. In
addition, d represents the episodes in none of the two profiles, d is not used in the
computation but completes a cross table in the analysis of the profiles (Fig. 3). It is
easily seen that the Jaccard distance is a normalized figure; O for b,c=0 and 1 for a=0.

Nl 1] 0
o Lilol il ilo] A .
’ ‘ ‘ ‘ ‘ ‘ 12 dl Jaccard[i,j] = m
i 1{ o] O0f 1|1 ol €1 1

Fig. 3. Shown from left to right: the profiles i and j; a cross table recording the number of
episodes shared by i and j (a) all episodes possessed by only one profile (b and c) and those
contained in none of the profiles (d); the computation of the Jaccard distance.

In our analysis, the Jaccard distance reflects a relevance of the identified episodes.
The Jaccard distance is used constructing a dissimilarity matrix by computing it for
all possible pairs of two species (Fig. 3). Subsequently, this matrix is used in the
clustering. The agglomerative hierarchical clustering with complete linkage [10] is
used; this is an unsupervised clustering method which initiates with a cluster for each
of the entities present [1, hclust]. Subsequently, the two clusters that are closest are
merged in a larger cluster and merging continues until all entities are in one cluster.
The distance between two merged clusters is computed using complete linkage; i.e.,
all distances between all pairs of entities are computed and the largest of these
distances is considered the distance between the two clusters. From the clustering
result a cladogram can be derived (Fig. 1D) visualizing the distances between all
sequences in the dataset. The root of this cladogram is the point at which all species
are joined in one large cluster whereas the leaves represent clusters containing only
one species.

3 Results

As a proof of principle to show the different aspects of the method we present results
of a number of experiments using three datasets: a small artificial dataset to
demonstrate the method (§ 3.1), a dataset of morphological events over time (§ 3.2)
and a gene expression dataset (§ 3.4). The data are obtained through literature
analysis. All the experiments produce a taxonomy tree that is compared to literature.
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3.1 Artificial Data

We will illustrate our method with a simple dataset, obtained from the literature [15],
consisting of 3 taxa and one outgroup. It illustrates that FEDA treats the episodes as
dependent features and as such is not prone to errors found in event pairing [11,12]
where events are treated independently and as a result shifts in timing cannot be
attributed to one event. Feature dependency is preserved in the ordering of events in
the episodes (Table 1). We start with building a list of all episodes found in this
dataset; we adhere to only adding episodes that are found in the data instead of all
possible combinations of events that are found in our dataset. Table 2 contains a list
of all the episodes that were found in each sequence resulting in a developmental
profile for all 4 sequences. In Table 2 a “1” indicates that the episode was present in
the sequence and a “0” indicates it was absent. Next, the dissimilarity matrix between
all sequences is computed by summing all differences between each pair of profiles.
For taxa 1 and 2 this results in 6 differences in their profiles (AB, AC, BA, CA, ABC,
BCA). Repeating this for all sequences in the example results in a distance matrix
(Table 1B). This distance matrix shows that the distances between Taxa 1, 2 and 3 are
all 0.86; the distance is computed using the Jaccard distance for all pairs of taxa. All
pairs have 6 episodes for which the occurrence is different and 1 episode that is
present in both taxa, resulting in a dissimilarity score of 6/7 between all the taxa, and
a dissimilarity of O between the Outgroup and Taxon 1.

Finally, agglomerative clustering with complete linkage is applied, using the
previously obtained distance matrix. The result is presented in Figure 4. The
cladogram is realized by starting with all taxa in different clusters at the bottom of the
cladogram and then merging clusters of the closest taxa. At completion, we end up
with all taxa and the outgroup in one cluster at the top of the cladogram.

Table 1. (A) Dataset of 3 taxons and 1 outgroup (B) Distance Matrix showing the distance
between each pair of taxa based on Jaccard distance. All taxa are equally close to one another.

A | Sequence | B Out Tl T2 T
Outgroup ABC Out 0

Taxon 1 ABC T1 0 0

Taxon 2 BCA T2 0.86 0.86 0

Taxon 3 CAB T3 0.86 0.86 0.86 0

Table 2. Developmental Profiles recording the frequent episodes that occur in each taxon as
well as the total number of times each episode occurs in the dataset.

A A B B C C A B C
Outgroup 1 1 0 1 0 0 1 0 0
Taxon 1 1 1 0 1 0 0 1 0 0
Taxon 2 0 0 1 1 1 0 0 1 0
Taxon 3 1 0 0 0 1 1 0 0 1
Totals 3 2 1 3 2 1 2 1 1
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Outgroup Taxon 1 Taxon2 Taxon3

Fig. 4. The cladogram resulting from clustering the taxa based on the in Table 1B

3.2 Sequences of Morphological Characters in Development

Next, we illustrate FEDA with a more complex dataset [11] containing timed
sequences of morphological events. Each event is taken from the development of one
species. An event happens only once in a species. The dataset contains 14 entities
(species), and one developmental sequence containing morphological events per
entity (Fig. 5).
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Fig. 5. Part of a recording of 2 developmental sequences presenting morphogical events over
time. Here only spiny dogfish and giant salamander are depicted (dataset contains 14 species).

If all frequent episodes were used in the clustering this would result in long
runtimes and therefore the frequent episode set is reduced. Using only maximal
frequent episodes (cf. Def. 8) in our experiments reduces the number of episodes in
the clustering, as only the larger episodes are extracted. The window size was
increased to obtain a sufficient number of features to cluster the data. For this
particular dataset the parameters for FEDA were set to a window size of 8 and a
frequency threshold of 0.05, resulting in obtaining 983 episodes. In Figure 6 the
resulting cladogram is depicted. The clustering is almost the same as the Taxonomy
common tree [3], only minor differences are seen in the amphibians. The results
obtained from event-pairing on this dataset [11] show the same pattern
acknowledging that the granularity of the dataset is, actually, insufficient.

3.3 Relative Timescale in Development

To allow linking patterns between different species, a relative timescale is introduced
and used in the computations. This timescale is based on percentage of development
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Fig. 6. Cladogram of the results computed by FEDA from a dataset of morphological events
(right) compared to the taxonomy common tree from the NCBI (left)

of the species under study [23] and events are linked relative to the developmental
scale this species. E.g. gene tbx5 is active in Zebrafish in [5% - 10%] of development
(Fig. 7).

O -
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Zebrafish

Fig. 7. Data recording of a selection of gene expression patterns in zebrafish in a relative time
scale: tbx5, msxb, ssh, fgfS, hoxb9. At 10% of development 4 of the genes are expressed
whereas at 14% development only 3 of the genes are expressed.

3.4 Sequences of Gene Expression in Development

Next, FEDA is applied to patterns of genes expression as found in the development of
several model species. The clustering was performed with a window size of 4 and a
minimal frequency of 0.04; the result corresponds with consensus in biological
literature [14]. This result indicates that there is sufficient information in the data to
differentiate between groups of species. The gene expression is analyzed to clades and
therefore, subsequently, visualized as a cladogram. This cladogram is depicted in
Figure 8.
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Fig. 8. Cladogram computed by FEDA based on gene-expression data (right) compared to a
phylogenetic tree taken from biological literature [14] (left)

4 Conclusions and Discussion

We presented a method for the discovery of frequent patterns in a group of
developmental sequences for quantitative analysis of heterochrony. All the episodes
found in developmental sequences are found together with their frequency and a list
of supporting sequences. These episodes are used in further analysis, such as
clustering. Compared to previous experiments [4] our method is considerably more
efficient. Furthermore, we demonstrated that transpositions of the data enable
comparing morphological characters and genes as well as species in a transparent
way. We have illustrated that our algorithm works with artificial as well as biological
data

Currently, two methods are used for the analysis of developmental sequences of
events, i.e. Event-pairing [18,11,16,17,8] and Search-Based Character Optimization
[15]. Over Event-pairing [11] our method has two advantages. It uses the data to
determine which pairs are the most interesting to use and the “event-pairs” can
contain more than two events, so, in fact they are groups of developmental events that
co-occur frequently. Groups of events found by FEDA contain more information
about developmental sequences compared to event-pairs.

Search-Based Character Optimization [15] shows excellent clustering results and
can possibly also be applied in the analysis of gene expression data. Over this method
FEDA has two advantages. It allows insight in clustering, because FEDA is based on
frequent developmental patterns and these patterns can later on be used to obtain more
insight into which patterns cause the tree to branch. In addition, FEDA scales better to
the size of the dataset and the number of events used in the analysis. FEDA is only
based on patterns that are frequent, thus allowing it to handle large amount of data
with a large number of developmental events. This does not restrict our method to
sequences that contain all events because in sequences with missing events we are
still able to find developmental patterns, just not the patterns that contain this missing
event. Furthermore, our method does not use an edit cost matrix. For long
developmental sequences with a large number of possible events this edit cost matrix
extends to enormous and impractical proportions. Our method has the advantage that
no step costs have to be determined, because the distances between species are only
based on the data and the developmental patterns found.

The FEDA algorithm is developed to scale to larger datasets that will become
available from genomics and developmental biology [5,6,7,19,20,21]. In that respect
future directions for usage will extend beyond the analysis of heterochrony and
include other aspects of computational evo-devo.
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Abstract. Machine learning methods have been successfully applied to
the phenotype classification of many diseases based on static gene expres-
sion measurements. More recently microarray data have been collected
over time, making available datasets composed by time series of expres-
sion gene profiles. In this paper we propose a new method for time series
classification, based on a temporal extension of Li-norm support vec-
tor machines, that uses dynamic time warping distance for measuring
time series similarity. This results in a mixed-integer optimization model
which is solved by a sequential approximation algorithm. Computational
tests performed on two benchmark datasets indicate the effectiveness of
the proposed method compared to other techniques, and the general
usefulness of the approaches based on dynamic time warping for labeling
time series gene expression data.

Keywords: Time series classification, microarray data, Li-norm sup-
port vector machines, dynamic time warping.

1 Introduction

In the last decade several machine learning methods have been proposed for
the classification of gene expression data based on static datasets |1-4]. These
datasets are usually composed by a huge number of features (genes) and a rela-
tively few number of examples, and their values represent gene expression levels
observed in a snapshot under precise experimental conditions.

The analysis of microarray expression levels recorded at a single time frame
has proven to be effective for several biomedical tasks, among which the most
prominent one is the phenotype classification in the early stages of a disease.
However, it may appear inadequate to properly grasp the complex evolving in-
teractions steering the biological processes. For example, in functional genomics
studies the automatic categorization of genes based on their temporal evolution
in the cell cycle plays a primary role, since genes with similar expression profiles
are supposed to be functionally related or co-regulated [5]. As another example
consider the prediction of the clinical response to a drug [6], where patients may
exhibit different rates of disease development or treatment response. In this case,
the overall profiles of the expression levels of two patients may be similar but not

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 264 2010.
© Springer-Verlag Berlin Heidelberg 2010
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aligned, since individuals may progress at different speed [7]. In both scenarios
it is required to analyze gene expression profiles as they evolve over time and,
consequently, to develop classification methods able to consider also the tempo-
ral dimension. Over recent years a growing number of microarray experiments
have been performed in order to collect and analyze time series gene expression
profiles. The resulting datasets then provide examples of labeled time series that
can be useful for classifying new temporal sequences whose label is unknown,
and for identifying hidden explanatory biological patterns.

More generally, time series classification is a supervised learning problem
aimed at labeling temporally structured univariate or multivariate sequences.
Several alternative paradigms for time series classification have been proposed
in the literature; see the review [§]. A common approach is based on a two-
stage procedure that first derives a rectangular representation of the time series
and then applies a classification method for labeling the data. An alternative
approach relies on the notion of dynamic time warping (DTW) distance, an ef-
fective measure of similarity between pairs of time series. This distance allows
to detect clusters and to predict with high accuracy the class of new tempo-
ral sequences by using distance-based methods, such as the k-nearest neighbor
classifier [9, 10]. Furthermore, kernels based on DTW have been devised and
incorporated within traditional support vector machines in [11-13].

In this paper we propose a new classification method based on a temporal
variant of Li-norm support vector machines (SVM), denoted as L;-TSVM. The
resulting mixed-integer optimization model, solved by a sequential approxima-
tion algorithm, takes into account the similarity among time series assigned to
the same class, by including into the objective function a term that depends
on the warping distances. A first research contribution along these lines is pre-
sented in [14], in which authors propose a temporal extension of discrete SVM,
a variant of SVM based on the idea of accurately evaluating the number of
misclassified examples instead of measuring their distance from the separating
hyperplane [15, 16]. In this paper Li-norm SVM [17-19] have been preferred as
the base classifier for incorporating the temporal extension since they are effi-
cient and well suited to deal with datasets with a high number of attributes,
particularly in presence of redundant noisy features.

A second aim of the paper is to investigate whether DTW distance can be
generally beneficial to different classifiers for labeling time series gene expression
data. To this purpose, we comparatively evaluated the performances of five alter-
native methods beside L;-TSVM: these are Li-norm SVM, Ls-norm SVM with
radial basis function and DTW as kernels, and the k-nearest neighbor (k-NN)
classifier either based on Euclidean or DTW distances. Computational tests per-
formed on two datasets seem to indicate that the proposed method L{-TSVM
has a great potential to perform an accurate classification of time series gene ex-
pression profiles and that, in general, SVM techniques based upon DTW perform
rather well with respect to their non-DTW-based counterparts.

The paper is organized as follows. Section [2] defines time series classification
problems and the concept of warping distance. In section [3] a new classification
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model based on Li-norm temporal SVM is presented. In section ] computational
experiences are illustrated. Finally, section [l discusses some future extensions.

2 Time Series Classification and Warping Distance

In a time series classification problem we are given a set of multivariate time se-
ries {A;}, i € M ={1,2,...,m}, where each A; = [a;;] is a rectangular matrix
of size L x T; of real numbers. Here [ € £ = {1,2,..., L} is the index associated
to the attributes of the time series, whereas t € 7; = {1,2,...,T;} is the tempo-
ral index, that may vary in a different range for each A;. Every time series is also
associated with a class label y; € D. Let H denote a set of functions f : R" — D
that represent hypothetical relationships between {A;} and y;. The time series
classification problem consists of defining an appropriate hypotheses space H
and a function f* € H which optimally describes the relationship between the
time series {A;} and their labels {y;}, in the sense of minimizing some measure
of misclassification. When there are only two classes, i.e. D =2 and y; € {—1,1}
without loss of generality, we obtain a binary classification problem, while the
general case is termed multicategory classification.

The warping distance has proven to be an effective proximity measure for
clustering and labeling univariate time series |9, [10]. Indeed, it appears more
robust than the Euclidean metric as a similarity measure, since it can handle
sequences of variable length and automatically align the time series to identify
similar profiles with different phases.

In order to find the optimal alignment between two time series A; and Ay,
let G = (V,E) be a directed graph whose vertices in V' correspond to the pair
of time periods (r,s),r € 7;,s € Tx. A vertex v = (r, s) indicates that the r-th
value of the time series A; is matched with the s-th value of Aj. An oriented
arc (u,v) connects vertex u = (p, q) to vertex v = (r, s) if and only if one of the
following mutually exclusive conditions holds

{r=p+ls=qtv{r=p+1l,s=q+1}V{r=ps=q+1}. (1)

Consequently, each vertex u € G has at most three outgoing arcs, associated
to the three conditions described in ([l). The arc (u,v) connecting the vertices
u = (p,q) and v = (r, s) has length

L

Yuv = Z(ailr - ak:ls)27 (2)

=1

given by the sum over the attributes of the squared distances associated to the
potential alignment of period r in A, to period s in Aj. Let also vy = (1,1) and
vy = (T}, Tk) be the vertices corresponding to the alignment of the first and last
periods in the two sequences, respectively.

A warping path in G is any path connecting the source vertex vy to the
destination vertex v;. It identifies a phasing and alignment between two time
series such that matched time periods are monotonically spaced in time and
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Fig. 1. Alignment of A; and A,with Euclidean distance (a) and DTW distance (b)

contiguous. The warping distance between time series A; and Ay is then defined
as the length of the shortest warping path in G, and provides a measure of
similarity between two temporal sequences which is often more effective than
the Euclidean metric, as shown in Figure 1.

The warping distance between A; and Ay can be evaluated by a dynamic opti-
mization algorithm, with time complexity O(T?2,,.) (Tmaz = max{T; : i € M}),
based on the following recursive equation

g(r,s) = Yuv + min{g(r - 178 - 1),9(7’ - 1,8),9(7’,8 - 1)}7 (3)

where g(r,s) denotes the cumulative distance of a warping path aligning the
time series through the periods going from the pair (1, 1) to the pair (r, s).

3 Li-norm Temporal Support Vector Machines

In this section we propose a new classification method based on a temporal
variant of Li-norm SVM, denoted as L;-TSVM. The resulting mixed-integer
optimization model, solved by a sequential approximation algorithm, takes into
account the similarity among time series assigned to the same class, by includ-
ing into the objective function a term that depends on the warping distances.
We confine our attention to binary classification, since multicategory classifi-
cation problems can be reduced to sequences of binary problems by means of
one-against-all or all-against-all schemes [16, [20]. By applying an appropriate
rectangularization preprocessing step, as described in section Ml for the time se-
ries considered in our tests, we may assume that the input dataset is represented
by a m x n matrix, in which each row is a vector of real numbers x; € R" which
represents the corresponding time series A,;.
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A linear hypothesis for binary classification corresponds to a space H com-
posed by separating hyperplanes taking the form f(x) = sgn(w’x — b). In order
to choose the optimal parameters w and b, traditional SVM [21H23], hereafter
denoted as Lo-norm SVM, resort to the solution of the quadratic minimization
problem

1 -
min  [wllz +C ;& (Ly-SVM)
st oy (wxi—b)>1-& ieM (4)

& >0Vi; w,b free.

Here the Ly-norm ||w||2 is a regularization term, aimed at maximizing the mar-
gin of separation, whereas the second term in the objective function is a loss
function expressing the distance of the misclassified examples from the canon-
ical hyperplane delimiting the correct halfspace. The parameter C' is available
for adjusting the trade-off between the two terms in the objective function of
problem Ly-SVM.

The quadratic formulation Ly-SVM has some advantages, which contributed
to its popularity. Among others, it admits fast solution algorithms and, through
its dual problem, it allows to implicitly apply kernel transformations for deriving
nonlinear separations in the original input space from linear separations obtained
in a high-dimensional Hilbert space.

Yet, other norms ||w||, have been considered in the literature as alternative
ways for expressing the margin maximization. In particular, linear formulations
have attracted much attention [17-19] since they can benefit from the high ef-
ficiency of the solution algorithms for linear optimization problems. The linear
counterpart of problem L,-SVM is given by the optimization model

min [[w; +C Y & (L1-SVM)
=1
st oy (wxi—b)>1-& ieM (5)

& >0Vi; w,b free.

Although not suited to host the kernel transformations applicable to Lo-SVM,
the linear problem L;-SVM has proven even more effective to achieve an accu-
rate separation directly into the input space, particularly when the number of
attributes is high and there are noisy unnecessary features.

We propose an extension of problem L;-SVM by defining a new term aimed
at improving the discrimination capability when dealing with time series clas-
sification problems. This additional term is given by the sum of the warping
distances between all pairs of time series assigned to the same class. By in-
cluding this term into the objective function we aim at deriving a separating
hyperplane which maximizes the overall similarity among time series lying in
the same halfspace.
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Let d;;, denote the warping distance between the pair of time series (A;, Ag).
We have to introduce binary variables expressing the number of misclassified
examples as

(6)

In order to determine the best separating hyperplane for time series classi-
fication, the following mixed-integer optimization problem L;-TSVM, termed
Li-norm temporal support vector machines, can be formulated

min zn: uj+C i &+ i i dikTik (L1-TSVM)
j=1 =1

O if wixi—b2>1
Pi= 11 otherwise '

i=1 k=it+1
st y(wx;—b)>1-¢& ieM (7)
—u]‘S’w]‘SUj jEN (8)

1
Sfiﬁpiﬁsfi 1eM 9)
—ri Sy (2pi — 1) Fyr Cpr — 1) <1 ke M,i<k (10)

uj, &, ik > 0V, 4,k p; €{0,1} Vi;  w,b free.

Here S is a sufficiently large constant; C' and ¢ the parameters to control the
trade-off among the objective function terms. The family of continuous bounding
variables uj,j € N, and the constraints (8) are introduced in order to linearize
the first term ||w]|; in the objective function of problem L;-SVM. Constraints (@)
are required to enforce the relationship between the slack variables &; and the
binary misclassification variables p;. Finally, the family of continuous bounding
variables r;, 1, k € M, together with the constraints (1)), are needed to express
in linear form via the third term the inclusion of the sum of the warping distances
between the time series, as shown in [14].

For determining a feasible suboptimal solution to model L;-TSVM, we pro-
pose the following approximation procedure based on a sequence of linear opti-
mization (LO) problems. In what follows R-TSVM denotes the LO relaxation of
model L;-TSVM, and ¢ is the iteration counter.

Procedure L1-TSVMsg1,0

1. Set t = 0 and consider the relaxation R-TSVMq of L{-TSVM.

2. Solve problem R-TSVM;.

3. Suppose first that problem R-TSVM; is feasible. If its optimal solution is
integer, the procedure is stopped and the solution generated at iteration ¢
is retained as an approximation to the optimal solution of L;-TSVM; other-
wise, proceed to step 5.

4. Otherwise, if problem R-TSVM; is unfeasible, modify previous problem
R-TSVM;_; by fixing to 1 all of its fractional variables. Problem R-TSVM;
redefined in this way is necessarily feasible and any of its optimal solutions
is integer. Thus, the procedure is stopped and the solution found is retained
as an approximation to the optimal solution of L;-TSVM.
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5. Next problem R-TSVM,;; in the sequence is obtained by fixing to zero
the relaxed binary variable with the smallest fractional value in the optimal
solution of the predecessor R-TSVM;y; then proceed to step 2.

4 Computational Experiments

Computational experiments were performed on two datasets both composed by
microarray time series gene expression data. As stated in the introduction our
aim was twofold; from one side, we intended to evaluate the effectiveness of
L1-TSVM and to compare it to its continuous counterpart in terms of accuracy.
From the other side, we were interested in investigating whether DTW distance
may be conveniently used in conjunction with alternative supervised learning
methods for gene expression time series classification.

The first dataset considered in our tests, denoted as Yeast] and originally
described in [24], contains the genome characterization of the mRNA transcript
levels during the cell cycle of the yeast Saccharomyces cerevisiae. Gene expres-
sion levels were gathered at regular intervals during the cell cycle. In particular,
measurements were performed at 17 time points with an interval of ten min-
utes between each pair of recorded values. The gene expression time series of
this dataset are known to be associated to five different phases, namely Early
G1, Late G1, S, G2 and M, which represent the class values in our setting.
The second dataset, indicated as MS-rI[FNf and first analyzed in [6], contains
gene expression profiles of patients suffering from relapsing-remitting multiple
sclerosis (MS), who are classified as either good or poor responders to recombi-
nant human interferon beta (rIFNS). The dataset is composed by the expression
profiles of 70 genes isolated from each patient at 7 time points: before the admin-
istration of the first dose of the drug (¢ = 0), every three months (¢t = 1,2, 3,4)
and every six months (¢ = 5,6) in the first and second year of the therapy, re-
spectively. For a few patients entire profile measurements are missing at one or
two time points. From the complete MS-rIFN( dataset we retained only twelve
genes whose expression profiles at ¢ = 0 have shown to accurately predict the
response to rIFN(, as described in [6]. Furthermore, for each possible number
of time points from 2 to 7 we extracted the corresponding gene expression time
series, in order to obtain six different datasets. The distinctive features of Yeast
and MS-rI[FN@ in terms of number of available examples, classes and time series
length are summarized in Table [Tl

Five alternative methods were considered for comparison with L{-TSVM: L1-
SVM, SVM with radial basis function (SVMgpr) and dynamic time warping
(SVMprw) kernels, k-nearest neighbor classifier based respectively on Euclidean
distance (k-NNgye) and dynamic warping distance (k-NNppw ). For solving L1-
TSVM and L;-SVM models we respectively employed the heuristic procedure
described in section 4 and standard LO code, both framed within the CPLEX
environment; for nonlinear kernels SVM we used the LIBSVM library [25],
extending its standard version with the DTW kernel. Among dynamic time

! http://genomics.stanford.edu/yeast_cell_cycle/cellcycle.html
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Table 1. Summary of gene expression time series datasets

Dataset
Summary Yeast MS-rIFNS
Examples 388 52
Classes Early G1 (67) Good responder (33),

Late G1 (136), S (77) Poor responder (19)
G2 (54), M (54)
Time series length 17 [5,7]

warping kernels we implemented the one proposed in [13], which has been proven
to be positive definite under favorable conditions. Finally, in order to perform
the classification of Yeast, which represents a multicategory dataset, SVM-based
methods were framed within the all-against-all scheme.

A preprocessing step was applied on both datasets before classification. In
particular, each expression profile of Yeast was normalized as described in [24].
The expression levels of MS-rIFNj3 were instead standardized, by subtracting
from each value in a gene profile the mean of the values of the same gene in
temporal-homologous sequences, and dividing the result by the corresponding
standard deviation. Since all methods apart from SVMprw and k-NNprw are
not able to cope with sequences of variable length, we replaced missing profiles
with series of an out-of-range value, and then sequenced genes and time periods
for every patient in order to obtain a rectangular representation for each of the
six MS-rIFN{ datasets.

The accuracy of the competing methods was evaluated by applying five times
4-fold cross-validation, each time randomly dividing the dataset into four folds
for training and testing. To achieve a fair comparison we used the same folds for
all methods. Furthermore, on each training set we applied 3-fold cross-validation
in order to figure out the optimal parameters setting for all classifiers, represented
by the regularization constant C' and the kernel parameter o for Li-norm and
Lo-norm SVM methods, and by the number k of neighbors for k-NN classifiers.
For L1-TSVM a further parameter to be optimized was represented by the weight
¢ in the objective function, regulating the trade-off between misclassification and
the sum of time series warping distances. The values tested for each parameter
are reported in Table

The results of each method are shown in Table Bl which indicates the average
accuracy values obtained by applying five times 4-fold cross-validation. These
results allow us to draw some empirical conclusions concerning the effective-
ness of the proposed method and the usefulness of DTW distance. The tem-
poral variant L;-TSVM was capable of outperforming its counterpart L;-SVM
on all datasets, achieving an increase in accuracy ranging between 0.8% and
5.4%. The novel technique appeared rather accurate also with respect to the
other classifiers, being able to provide the highest rate of correct predictions on
Yeast and on most MS-rIFN{ datasets. Especially on these datasets, in which
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Table 2. Parameters values tested for each family of methods

Method Parameters values
k-NNgucl k=2,4,6,8,10
k-NNpTw

SVMRgF C=107,j € [-1,3]
SVMprw o =107, € [-4,2]

L;-SVM C=10,j € [-1,3]
Li-TSVM  § =107,5 € [-1,1]

Table 3. Classification accuracy (%) on the gene expression time series datasets. In-

tervals in brackets indicate the time points considered for each MS-rIFNG dataset.

Method
Dataset k-NNgua k-NNptw SVMRer SVMprw L1-SVM L1-TSVM

Yeast 68.5 51.8 73.3 73.7 72.4 73.9

MS-rIFNB
te[0,]] 838 76.9 82.7 84.2  76.9 80.8
te[0,2] 819 78.9 82.7 84.6 80.0 85.4
te0,3]  82.7 75.0 81.9 75.4 785 83.8
te[0,4] 769 73.1 76.9 71.2 79.2 80.0
tef0,5] 758 69.2 715 785 79.6 80.8
te0,6] 712 66.9 68.5 70.8 76.5 78.8

examples are composed by sequences of variable length, also the use of DTW
as the kernel function appeared promising. Notice that the average accuracy
provided by most classifiers on MS-rIFN{ datasets decreased when more than
four expression time series were considered for each example. This phenomenon
is possibly related to the increase of missing profiles in the last measurements
which may have slightly compromised the classification results. Nevertheless,
L1-TSVM showed the mildest degradation of its classific