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Özyeğin University
Istanbul, Turkey

ISSN 0923-6716 ISSN 2199-1057 (electronic)
ISBN 978-1-4939-2085-3 ISBN 978-1-4939-2086-0 (eBook)
DOI 10.1007/978-1-4939-2086-0
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014950059

© Springer Science+Business Media New York 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


To Dick Wittink (1945–2005),
our colleague, friend,
and one of the founders
of Marketing Science.





Preface

This book is about how models can be developed to represent demand and supply
on markets, where the emphasis is on demand models. Our primary focus is on
quantitative models that can be used by managers to support marketing decisions.
We define a model as a representation of the most important elements of a
perceived real-world system. Appropriately constructed models can provide insights
about structural relations between marketing variables. Since models explicate the
relations, both the process of model building and the model that ultimately results
can improve the quality of marketing decisions. This book is our attempt to provide
a structure for model building. The content of the book should be of interest to
researchers, analysts, managers and students who want to develop, evaluate, and/or
use models of marketing phenomena.

Compared with only a few decades ago, marketing models have become
important tools for managers in many industries. With technological advances (e.g.,
the availability of scanner data, improved hardware and software), the opportunity
to obtain meaningful estimates of demand models vastly improved. The introduction
of the Internet has also changed the landscape of marketing management in the past
decade. Internet offers many opportunities to collect data from individual consumers
and to use new communication vehicles such as social media.

Managers will particularly benefit from models of marketing phenomena if they
understand what these models do and do not capture. With this understanding they
can, for example, augment model-based conclusions with their own expertise about
complexities that fall outside the modelers’ purview. Importantly, the systematic
analysis of purchase and other data can provide competitive advantages to managers.
Model benefits include cost savings resulting from improvements in resource
allocations as we discuss in various applications. And the leaders or first movers
in the modeling of marketing phenomena can pursue strategies not available nor
transparent to managers lagging in the use of data.

In this book we provide the basics, and we discuss the steps of the model
building process. The book is suitable for student use in courses such as “Models in
Marketing,” “Marketing Science,” and “Quantitative Analysis in Marketing” at the
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graduate and advanced undergraduate level. The material can be supplemented by
articles from journals such as Journal of Marketing Research, Journal of Marketing,
Marketing Science, Quantitative Marketing and Economics, and The International
Journal of Research in Marketing.

This book is a revised edition of Building Models for Marketing Decisions
(Leeflang et al. 2000) and is the first of two volumes.

In this volume we discuss the steps of the model building process:

1. specification (Chap. 2);
2. parameterization, i.e. organizing data and estimation (Chaps. 3 and 4);
3. validation (Chap. 5);
4. re-estimation (Chap. 6).

We also spend attention to Bayesian estimation methods in Sect. 6.8 and we specify
models that have been developed for markets in Chaps. 7 (models for aggregate data)
and 8 (individual demand models). We observe that there is a growing attention for
database marketing. In Chap. 9 we discuss models that have been developed in this
area. Finally we discuss issues that deal with the final step of the model building
process: Use/implementation (Chap. 10).

The second volume deals with more advanced topics that are used to model
markets, such as:

• hierarchical models;
• time series models;
• state space models;
• structural models;
• spatial models;
• diffusion models;
• structural equation models;
• mixture models;
• advanced estimation methods such as nonlinear, non-parametric, and semi-para-

metric estimation;
• models that represent competitive reactions, including game theoretical models.

Several colleagues have contributed with their comments on various drafts. We
thank the former authors: the late Dick Wittink, Michel Wedel, and Philippe Naert
and colleagues/assistants of the University of Groningen, viz: Niels Holtrop, Hans
Risselada, Chantal Hagen, and Roos Nijzing. We thank Harald van Heerde for
providing the data for the Verhouten case.

We dedicate this book to our friend and colleague Dick Wittink who passed away
unexpectedly in 2005. Marketing scientists owe much to Dick, one of the founders
of Marketing Science.

Groningen, The Netherlands Peter S.H. Leeflang
Groningen, The Netherlands Jaap E. Wieringa
Groningen, The Netherlands Tammo H.A. Bijmolt
Istanbul, Turkey Koen H. Pauwels
July 2014
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Chapter 1
Building Models for Markets

1.1 Introduction

Managers often use rules of thumb for decisions. For example, a brand manager
may have defined a specific set of brands as the competitive set within a product
category. Usually this set is based on perceived similarities in brand characteristics,
advertising messages, etc. If a new marketing initiative occurs for one of the other
brands, the brand manager will have a strong inclination to react. The reaction is
partly based on the manager’s desire to maintain some competitive parity in the
marketing variables. An economic perspective, however, would suggest that the
need for a reaction depends on the impact of the marketing activity for the other
brand on the demand for the manager’s brand. The models we present and discuss
in this book are designed to provide managers with such information.

Model building in marketing started in the fifties. It is now a well-developed
area with important contributions by academics and practitioners. Models have
been developed to advance marketing knowledge and to aid management decision
making. Closely related to the process and the activity of model building in
marketing is the field of marketing science. One interpretation of marketing science
is that it represents the scientific approach to the study of marketing phenomena. In
its broadest sense this perspective should include the many disciplines relevant to
marketing. However, the term marketing science has been appropriated in the early
1980s by researchers who favor quantitative and analytical approaches.

Several state-of-the-art textbooks, for example Lilien et al. (1992), Leeflang et al.
(2000), Hanssens et al. (2001), Franses and Paap (2001), Blattberg et al. (2008),
Wierenga (2008), Bowman and Gatignon (2010), Diamantopoulos et al. (2012)
and Lilien et al. (2013) review and discuss the models developed in the marketing
science discipline and applied by practitioners. The current book builds on this
tradition, with a specific focus on the steps of the model building process, which
should enhance the usefulness of models for marketing practitioners and scientists.

© Springer Science+Business Media New York 2015
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2 1 Building Models for Markets

Throughout the first six chapters of this book, we use a case derived from practice
to illustrate the methodology and model building process: the Verhouten case. The
case is about a chocolate factory that markets several products. The goal is to
develop a sales model (a “predictive” model) for one of the products. This happens
in a number of steps. We describe this case in Sect. 1.2. We discuss different model
types, such as a predictive model, in Sect. 1.3. This is followed by a discussion about
model benefits in Sect. 1.4. The steps that are usually taken to develop a model are
discussed in Sect. 1.5. Section 1.6 provides an outline of this book.

1.2 Verhouten Case

The chocolate factory Verhouten is a family company founded in 1889 by Cornelis
Verhouten in Haarlem in the Netherlands. Since then, the company has grown
continuously. In 1899 there were two employees and at this moment there are 125.
The turnover was 6,647 guilders in the first year, whereas last year’s (2014) turnover
was about 100 million Euro. Currently, a grand-grand child of the founder, Frans
Verhouten, is member of the board of directors.

In the first years Verhouten sold only chocolate bars of 75 g. The assortment
consists now of four product classes: chocolate bars, candy bars, specialties, and
seasonal products. The chocolate bars carry the brand name Verhouten and they
are available in three weight classes (100, 200 and 400 g), and four flavors: milk,
pure, almond-milk and white. The candy bars are sold under the brand names
Tiger and Dream. The specialties are Belgian bonbons and pastilles. Seasonal
products are sold in December (chocolate letters, and Christmas chocolates), and at
Easter (Chocolate Easter eggs and Chocolate Easter bunnies). Verhouten products
are distributed through several distribution channels. The supermarket channel
distributes 75 %, candy stores 10 %, sport canteens 8 %, gasoline stations 4 %, and
tobacco stores 3 %. The most important supermarkets in the Netherlands are Albert
Heijn (33 % of the supermarket channel), and Jumbo. In this case we focus on the
most important category for Verhouten: chocolate bars.

There are several usage motives for chocolate bars: the functional motive (to
satisfy appetite), the treat-oneself motive, the sharing motive (family, friends), and
the give-away motive (as a present). Chocolate bars are typically not listed on the
grocery list. Instead, while browsing the shelves in a supermarket, a consumer might
notice chocolate and buy a bar on impulse. In many cases, this purchase behavior
is influenced by sales promotions. A display containing chocolate products with
a temporary price decrease or an enlarged quantity for the same price may be
an incentive to purchase. Therefore, sales promotions are used frequently in the
chocolate category. Due to frequent promotions consumers adapt their purchase
behavior. They purchase chocolate products more frequently during promotional
periods and buy less chocolate outside these periods. As a consequence, the
promotional sales spikes are very large. This has consequences for production and
logistics as well. On the one hand, the distribution channel must have sufficient



1.2 Verhouten Case 3

stocks to anticipate these promotion-induced spikes. On the other hand, too much
inventory is very expensive. To summarize, to anticipate the expected effects of sales
promotions, the Verhouten management needs good sales predictions.

Management at Verhouten has shown interest to develop a sales forecasting
model for chocolate bars. Such a model is also called a sales prediction model.
The predictions should be accurate enough so that production and logistic decisions
can be based upon them.

The model should be a test case for this company, and focuses on one chocolate
bar variety sold at one supermarket chain: 100 g of milk chocolate sold at Albert
Heijn. This is the single most important product for Verhouten since it has the largest
turnover of all products in all channels. This test case, if successful, is to be extended
to all products in all chains. But before management is willing to take this step, this
test case should convince them of the usefulness of a forecasting model. The person
who is responsible for this test case is Mrs. Barbara Verhouten. She is marketing
director at Verhouten.

A marketing research company has been asked to perform the model building
effort. The model will be developed based on “chain level” scanner data from Albert
Heijn, contained in the SPSS-file chocolate.sav, that can be downloaded from
http://www.modelingmarkets.com. “Chain level” means that all variables
are at the aggregate chain level, and not at the individual supermarket level. “Scanner
data” are obtained by “scanning” items at supermarket checkouts. In this case,
we have four 100 g milk chocolate brands: Verhouten (brand 1), Droste (brand 2),
Baronie (brand 3), and Delicata (brand 4, Albert Heijn’s private label). We have 68
weekly observations. Each row in the data set is a weekly observation. The first row
is from week 1 of December 2010. In the columns of the data set are the following
variables:

• sales (hundreds of kilos) of Verhouten;
• prices (Euros per unit) of each of the four brands;
• variables for “feature only”: weighted distribution figure at the chain level for a

“feature only” (no display, see below) in a certain week. A “feature only” means
special outside-store attention for the brand, either in the store flier or in an ad in a
newspaper or magazine. At the individual store level this variable is measured as
a dummy: = 1 for feature only, = 0 else. The weighted distribution figure means
that the store-level dummy variables have been weighted with the turnovers of
these stores. Hence, this variable varies between 0 (= no store has a feature-only)
and 1 (= all stores have a feature-only). This variable is available for all four
brands;

• variables for display only: weighted distribution figure for display-only (no
feature) in a certain week. A “display only” means special inside-store attention
for a brand: a temporary shelf on one of the aisles, or a change in the brand’s
regular shelf. At the store level this variable is measured as a dummy: = 1 for
display-only, = 0 else. At the chain level it varies between 0 and 1. This variable
is also available for all brands;

http://www.modelingmarkets.com
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• variables for combined feature and display: again a weighted distribution figure.
It is measured as a dummy at the store-level: = 1 for combined use of feature
and display, 0 else. Hence, at the store level, we have four situations: no
promotion (feature-only, display-only, feature and display all zero), feature-only
promotion: only this variable is 1, others are zero, display-only promotion: only
this variable is 1, the others zero, and combined feature-and-display promotion:
this variable is 1, the others zero. This feature-and-display variable is available
for brands 1, 3 and 4 only;

• average weekly temperature in degrees Celsius.

In this book we use this case and these data to illustrate the development of
a (forecasting) model. Such a model, also called a predictive model, is linked to
its purpose: predicting sales. There are, however, also other model purposes. We
discuss these and other model typologies in Sect. 1.3.

Management of Verhouten were quite skeptic on the development of a “mathe-
matical/statistical” model. They were not convinced about its benefits. In Sect. 1.4
we will give an overview of possible benefits.

Models are built in a number of steps. In these steps model builder and
management may cooperate to build the most adequate, most reliable model. These
steps are discussed in Sect. 1.5.

1.3 Typologies of Marketing Models

1.3.1 Introduction

In this section we present typologies of marketing models. First we elaborate
on the distinction between decision models and models that advance marketing
knowledge (1.3.2). Then we classify models according to their degree of explicit-
ness (1.3.3). This is followed by classification according to the intended use (1.3.4)
and the level of demand (1.3.5).

1.3.2 Decision Models Versus Models That Advance
Marketing Knowledge

A basic distinction can be made between models that are built for the primary
purpose to support decision making of a specific marketing manager versus models
that aim to advance general marketing knowledge. The target audience of the former
will mostly be practitioners, whereas the target audience of the latter will mostly
be marketing scientists. In addition, the former will lead to case-specific insights,
whereas the goal of the latter type of modeling will be generalizable insights in
marketing phenomena.
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Contrary to other parts of this book, in this section, we elaborate on the
development of models when the primary purpose is the advancement of knowledge.
New knowledge is acquired when generalizable phenomena are found, resulting
in laws of marketing or empirical generalizations. In that sense, the approach is
more long-term oriented and it transcends the specificity of a particular problem.
An empirical generalization

. . . “is a pattern or regularity that repeats over different circumstances and that can be
described simply by mathematical, graphic or symbolic methods. A pattern that repeats
but need not be universal over all circumstances” (Bass 1995, p. G7).

A well-known advocate to build models that advance our knowledge of models
is Ehrenberg. His basic model-building philosophy is described in a book on
repeat buying: Ehrenberg (1972), and various other sources (see Lehmann et al.
2011). Ehrenberg distinguishes two kinds of research traditions in marketing: the
Theoretical-in-Isolation (TiI) and the Empirical-then-Theoretical (EtT) approaches
(Ehrenberg 1994).

The two research traditions can each be characterized by two steps. The steps for
TiI or first Theory then Empirical generalization (TE) are:

1. construct a theoretical model or analysis approach;
2. test it on a set of data.

In contrast, the steps for EtT or first Empirical generalization then Theory (ET)
are:

1. establish a (generalizable) empirical pattern;
2. develop a (low-level) theoretical model or explanation.

ET seeks to first establish some empirical patterns that exist across a variety of
product categories, time periods, geographic areas, etc. If the patterns hold in
many different situations, generalizable findings exist and one can establish under
what empirical conditions the findings generalize to form a “law”. Generalizations
that have already been established could, of course, be taken into account in the
development of decision models, and in that sense the ET approach becomes com-
plementary to the prevailing approach in building decision models. For example, the
development of laws of marketing might lead to theoretical premises about certain
model parameters, and restrictions could be imposed a priori on the parameter
values. The relevance of such theoretically-based restrictions can be investigated
when models are validated.

Generalizable knowledge about market phenomena can be generated in several
ways (see Leeflang 2011). One way is to find regularities in customer behavior
data, such as when Ehrenberg (1972, 1988, 1995) revealed that for most frequently
purchased branded goods, market shares of brands related positively to the number
of households purchasing the brands and to purchase frequency per brand. Thus,
smaller brands have fewer buyers and buyers of smaller brands tend to make fewer
purchases in a given period. The combination of these two negatives for brands with
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smaller market shares is often referred to as “double jeopardy”. Ehrenberg et al.
(1990) also found that the buyers of larger brands exhibit unusual high behavioral
loyalty: leading to a “triple jeopardy”.1

Generalizable knowledge also derives from studies that cover many circum-
stances (usually many cross-sectional units, such as brands, markets or countries)
and relatively long time periods. Usually panel data are used for that purpose.
For example, Deleersnyder et al. (2009) investigate the cyclical sensitivity of
advertising expenditures in 37 countries covering four key media forms (magazines,
newspapers, radio and television). For 85 country-media combinations, the authors
use 25 years of data to explain differences between cyclical sensitivity over media
and countries. Other examples of this type of studies are Nijs et al. (2001),
Steenkamp et al. (2005), Lamey et al. (2007, 2012) and Van Heerde et al. (2013).

Alternatively, meta analyses generate generalizable knowledge. Meta-analysis
refers to the statistical analysis of results from several individual studies for
the purpose of generalizing the individual findings (Bijmolt and Pieters 2001;
Borenstein et al. 2009). The primary benefit of meta-analysis in marketing is that
it delivers generalized estimates of various elasticities, quantitative characteristics
of buyer behavior, and an assessment of the moderators related to the empirical and
study context affecting these estimates. The assumption is that different brands and
different markets are comparable at a general level but that at the same time model
parameters to some extent vary systematically over different brand/model settings
in an identifiable manner (Farley et al. 1995, p. G.37).

In the marketing literature an increasing number of meta-analyses and empirical
generalizations are found. In one of the early studies Leone and Schultz (1980)
observed that the elasticity of (selective) advertising on brand sales is positive but
small. For frequently purchased branded goods they report elasticities in a range
from 0.003 to 0.23. In addition, increasing store shelf space has a positive impact
on sales of non-staple grocery items. In meta-analyses conducted by Assmus et al.
(1984) and Lodish et al. (1995) somewhat higher advertising elasticities are reported
than in the study by Leone and Schultz (1980). Lodish et al. (1995) also found
that the advertising elasticities of new products are much higher than the average
advertising elasticities.2 In a meta-analysis on price elasticities, Bijmolt et al. (2005)
find an average price elasticity of −2.62. They find that over the past four decades
sales elasticities have significantly increased in magnitude whereas share and choice
elasticities have remained fairly constant. Kremer et al. (2008) determine the effect
of detailing efforts, journal advertising directed to physicians and direct to consumer
advertising on sales/market share of pharmaceuticals.

1Dyson et al. (1997) have countered this claim though.
2Long-term effects of advertising on sales are studied by Ataman et al. (2010) and Sethuraman
et al. (2011). Sethuraman et al. report an average short-term advertising elasticity of 0.12. The
average long-run advertising elasticity is 0.24.
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Empirical generalizations do not always result in “numbers”. Kaul and Wittink
(1995) describe the relationship between advertising and price sensitivity, and
generate a set of three empirical generalizations:

• an increase in price advertising leads to higher price sensitivity among con-
sumers;

• the use of price advertising leads to lower prices;
• an increase in non-price advertising leads to lower price sensitivity among

consumers.

The increasing amount of research on the effects of promotions has also led to
generalizations such as (Blattberg et al. 1995):

• promotions significantly increase sales;
• higher market share brands are less “promotion” elastic;
• the greater the frequency of promotions, the lower the increase in sales.

Other generalizations refer to the diffusion of new products (Arts et al. 2011), first-
mover advantages (Van der Werf and Mahan 1997), repeat buying, the stationarity
of market shares, the relation between market share, distribution and sales effort,
etc. For a survey of generalizations in marketing, we refer to Hanssens et al. (2001,
Chapter 6) and Hanssens (2009).

The generation of generalizable knowledge is not restricted to B2C research.
The growth in the number of studies that address B2B marketing situations using
models is well illustrated by increasing empirical generalizations about marketing
impacts, as collected and summarized by Hanssens (2009). Examples of empirical
“B2B generalizations” include:

• factors that affect the strength of the B2B relationships (Tuli et al. 2007);
• pioneer survival rates for industrial goods business (Robinson and Min 2002);
• pioneering in B2B (Kalyanaram et al. 1995);
• order of entry (Robinson 1988);
• industrial trade show effectiveness (Gopalakrishna and Lilien 1995).

1.3.3 Degree of Explicitness

In this section we consider a number of ways of representing the “most important
elements of a perceived real world system”. We distinguish implicit models,
verbal models, formalized models, and numerically specified models, and illustrate
different methods of representing systems with an example.

1.3.3.1 Implicit Models

In marketing practice, it is often said that managers approach problems in an
intuitively appealing manner and use experience to solve problems in an ad hoc
manner. One might be tempted to believe that these decision makers do not use
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models. This, however, is not the case. If intuition and experience are the basis for
a solution, decision makers have implicitly made use of a model. But the model is
not necessarily recorded in a communicable form; it is an implicit model which so
far is present only in the brain of the decision maker.

1.3.3.2 Verbal Models

The first step in making a model explicit is for a manager to state in words what he
perceives as the important elements surrounding a problem.

We consider a simple example to illustrate the notion of a verbal model. Take
a monopolist who produces and sells one product. For the last 5 years, price (in
real dollars) has remained constant and sales per capita have also been quite stable.
He wonders whether the current price is optimal in a profit maximizing sense.
He believes that a price reduction will lead to increased unit sales, and a price
increase to reduced unit sales. However, a price reduction will also result in a smaller
unit contribution (unit price–unit cost), while a price increase will make the unit
contribution higher. Thus the monopolist realizes that there is a trade-off between
changes in the number of units sold and changes in the contribution per unit, and
that there is a price that maximizes his total contribution to fixed costs and profit.
What he is really saying is that there exists a demand curve, and by changing the
(real) price he can learn how price influences demand. In this manner the monopolist
can communicate elements that are the basis for a verbal model.

Our monopolist wants to determine the price leading to optimal profit by trial
and error. He is aware of the fact that by using such a procedure, it is unlikely for
him to obtain the exactly optimal price and corresponding profit. Specifically, he
will continue to change his price until the improvement in profit, Δπ, is smaller than
a predetermined amount δ. He might also have other insights such as: “I will not
increase my price by more than 20 %, because then I would be inviting potential
competitors to enter the market. In the long run, my profit figure would shrink”.
His view of the market environment is now somewhat broader. He now wants to
maximize profit, subject to a price constraint pc, reflecting his belief in limit pricing,
although he has probably never heard of this term.3

The verbal model can be represented as in Fig. 1.1.

“I will change my price in steps with each change equal to plus or minus Dp,
until the increase in profit is less than a predetermined amount d, with the 
restriction that price stays below the value pc

.”

Fig. 1.1 Verbal model for profit satisficing monopolist

3A limit price has the property that prices above its value will stimulate entry by competitors,
whereas lower prices will discourage entry.



1.3 Typologies of Marketing Models 9

1.3.3.3 Formalized Models

In most marketing problems, there is a variety of variables which can play an
important role. These variables may have complex effects on the demand. For a
description of the relationships in words it may be difficult or even impossible
to keep all relevant characteristics and conditions in mind. In order to make
relationships more precise it is necessary to formalize them. This means that we
specify which variables influence which other variables and what the directions
of causality between these variables are. The representation of a system through
formalized relationships between the most important variables of a system is called
a formalized model. Within the class of formalized models we make a further
distinction between logical flow models and formalized mathematical models.

A logical flow model represents an extension of the verbal model by the use of
a diagram. This diagram shows the sequence of questions and of actions leading
to a solution of the problem. This kind of model is also known as a graphical
or a conceptual model. The flow diagram makes clear, or more explicit, what the
manager has put in words. Such a diagram can serve as a basis for discussions.4 The
diagram may show discrepancies between the formalized model and the decision
maker’s thinking. It can also be used to identify possible inconsistencies in the
model.

A formalized mathematical model represents a part of the real-world system by
specifying relations between some explanatory (predictor) variables and some effect
(criterion) variable(s).

We now return to the example of the monopolist described before. Our decision
maker wants to try a price increase first, and he wants to change price in increments
equal to Δp. The logical flow model representing the monopolist’s problem is shown
in Fig. 1.2.

In this figure, the following notation is used:

p0 = original or current price,

Δπ = change in profit,

δ = a predetermined amount of Δπ used as a termination measure

for the trial-and-error procedure, and

pc = limit price above which competitive entry becomes likely.

If we assume that price is the only variable which determines sales of the product,
the formalized mathematical model can be represented as in Fig. 1.3.

4A good example can be found in Van Oest et al. (2010). We give an example of a conceptual
model of the Verhouten case in Sect. 2.2.3.
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Fig. 1.2 Logical flow model
for profit satisficing
monopolist

Stop

Yes

Yes

Yes

No

No

No

Change pi by D p:
pi + 1 = pi + D p

Change sign of D p

Next
period:
Dp ≥ d

Has
D p had

both signs?

0 < pi + 1 < pc

Sign of D p = +

Current price
pi = p0

max(p)
p

(1.1)

(1.2)subject to  0 < p < pc

(1.3)

(1.4)

where  p = ( p − c)q − FC

q = f ( p)

Fig. 1.3 Formalized mathematical model for profit optimizing monopolist
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The mathematical symbols are defined as follows:

π = total profit,

p = price per unit,

c = variable cost per unit (assumed constant),

q = number of units sold,

FC = fixed costs,

q = f (p) indicates that q is a function of the price per unit.

Equation (1.3) states that profit is equal to sales revenue (pq), minus variable
production costs (cq), minus fixed costs (FC). This type of model is not very useful
from a managerial decision making point of view because nothing is said about how
demand (q) depends on price. In the logical flow model this relation is approached
by trial-and-error.

1.3.3.4 Numerically Specified Models

In numerically specified models, the various components and their interrelations
are quantified. Numerically specified models are, in many situations, the most
appropriate representations of real-world systems.

First of all, a numerically specified model will allow the decision maker to
quantify the effects of multiple, and potentially conflicting forces. Consider, for
example, the monopolist decision maker who realizes that “there is a trade-off
between changes in sales and changes in (unit) contribution”. Specifying a model
numerically will provide precision to the statements that a price increase results in
a sales decrease and an advertising increase results in a sales increase.

Secondly, we may say that if a numerically specified model constitutes a
reasonable representation of a real-world system, it can be used to examine the
consequences of alternative courses of action and market events. Once various
relationships are quantified, the decision maker can contemplate how the demand
varies with price and other changes. It should be clear that such experiments
are inexpensive, and less risky than the market experiments conducted by the
monopolist. Thus, a numerically specified model gives management the opportunity
to explore the consequences of a myriad of actions, a capability which cannot
normally be duplicated in the real world. These considerations lead to the use of
simulation models, both in the sense of providing answers to “what-if” type of
questions and in the sense of dealing with stochastic (uncertain) elements. Of course,
the representation of real-world systems by numerically specified models provides
advantages, conditional upon the model being a reasonable representation of reality.
How to construct and evaluate such representations is an important objective of this
monograph.
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Having presented some advantages, we should also consider disadvantages.
Building and using models costs money, and the more complicated and the more
explicit models become, the more expensive they will be. Thus weighing the costs
against the benefits will always be a necessary step in the modeling process.

We conclude this chapter by showing in Fig. 1.4 a numerical specification for
the example of the preceding sections. The symbols are the same as in Fig. 1.3. In
Fig. 1.4 we assume that the fixed costs (FC) are equal to $100.

max(p)
p

(1.5)

(1.6)subject to  0 < p < pc

(1.7)

(1.8)

where  p = (p − c)q −100

q = 10 p−2

Fig. 1.4 Numerically specified model for a profit optimizing monopolist

The difference between Figs. 1.3 and 1.4 is the numerically specified relation5

between q and p [relation (1.8)]. This relation is of the form:

q = αpβ (1.9)

and is generally known as a multiplicative function or relation. The coefficients α
and β are referred to as the model parameters, are unknown, but can be estimated
(i.e., numerical values can be obtained) in a number of ways. In some cases, an
analysis of historical data will be possible. Alternatively, we can use subjective
estimation methods.

In order to illustrate how the optimal value for the price variable can be obtained,
we assume that the optimal price is smaller than pc. Once the parameters have been
determined [as in Eq. (1.8)], the optimal price can be obtained by differentiating the
profit function with respect to price, setting it equal to zero, and solving for price.
This is shown below. We start by substituting Eq. (1.8) in Eq. (1.7):

π = (p− c)10 p−2−100 (1.10)

= 10 p−1−10cp−2−100.

5The terms “numerically specified marketing model” and “marketing model” will be used
interchangeably from now on unless otherwise indicated.
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Differentiating this equation with respect to p (assuming c to be constant):

dπ
dp

= −10 p−2 +20cp−3. (1.11)

Setting (1.11) equal to zero and solving for p we obtain:

p = 2c (1.12)

which implies that the monopolist should use a markup of 100 %. To make sure that
p = 2c corresponds to a maximum, second-order conditions should be examined.
For reasonable specifications of demand and profit functions, these will generally
be satisfied. The expression for the second-order condition in our example is:

d2π

dp2
= +20p−3−60cp−4 (1.13)

which for a maximum should be negative.
Substituting p = 2c in (1.13) we get:

d2π

dp2
=

20

8c3
− 60c

16c4
=
−20

16c3
< 0 (1.14)

which means that p = 2c leads to a maximum value of π, under the reasonable
assumption that c > 0.

We want to emphasize that the procedure described above has limited real-world
applicability. Nevertheless, the example illustrates that part of a real-world system
can be represented in different ways, according to the degree of explicitness chosen.

1.3.4 Intended Use: Descriptive, Predictive
and Normative Models

Models can be classified according to purpose or intended use, reflecting the reason
why a firm might want to engage in a model-building project. Different purposes
often lead to different models. We distinguish between descriptive, predictive, and
normative models.6

Descriptive models are intended to describe decisions or other processes. A deci-
sion maker may wonder how particular decisions are arrived at in her organization
or by her customers and to that end a descriptive model may be applied.

6Franses (2005) discusses diagnostic tests for each of the three types of models.
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The decision maker may want to trace the various steps that lead to the
decisions, and identify the forces that influence the outcome(s) of the decision
processes. Descriptive models also refer to models that describe demand and/or
supply relations on markets. These models give answers to questions that may arise
in the Verhouten case such as: which marketing instruments at Verhouten affect
Verhouten’s sales, or which competitive actions affect the sales of Verhouten?

The main purpose of predictive models is to forecast or predict future events. For
example, Verhouten may want to predict sales for a brand under alternative prices,
advertising spending levels, and package sizes.

The final category consists of the normative or prescriptive models. A normative
model has, as one of its outputs, a recommended course of action. This implies that
an objective (for example, profit or customer’s satisfaction) is defined against which
alternative actions can be evaluated and compared.

1.3.5 Level of Demand

The last classification that we want to discuss distinguishes models according to the
level of demand. We distinguish between models for individual demand and models
for aggregate demand. Aggregate demand may refer to:

1. The total number of units of a product category purchased by the population of
all spending units. The corresponding demand model is called an industry sales,
or product class sales model.

2. The total number of units of a particular brand bought by the population of all
spending units. The demand model is then a brand sales model.

3. The number of units of a particular brand purchased, relative to the total number
of units purchased of the product class, in which case the demand model becomes
a market share model.7

We can define the same measures at the segment level and at the level of the
individual consumer leading to models with different levels of aggregation: market,
store, segment, household and so on. Thus we define, for example:

1. category sales for a given household;
2. brand sales for the household;
3. the proportion of category sales accounted for by the brand, for the household

(“share of wallet”).

The market share of brand j is equal to the ratio of brand sales of j and product
class sales (i.e. brand sales summed over all brands). For example, consider total

7The terminology adopted here is not unique. Product class sales, brand sales, and market share
models are also respectively referred to as primary demand, secondary demand, and selective (or
relative) demand models. See, for example, Fischer and Albers (2010).
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sales of beer in period t, sales of, say, Heineken in the same period, and the ratio of
the latter over the former which is Heineken’s market share in period t. Note that all
these variables can be defined in units or in monetary value (e.g. dollars or euros). In
model specifications, it is common that demand variables represent unit sales. One
reason is that the monetary sales variable is the product of two variables, unit sales
and price per unit, and the use of such combinations complicates the interpretation
of effects on demand.

We can use two of the three types of models as part of a more complex model.
For example, to predict unit sales of a brand, we can develop a product class sales
model and a market share model. By multiplying these two performance measures,
product class sales and market share, we obtain brand sales.

Given the classifications that we discussed before we are now able to specify
what the Verhouten Management wants. They want model builders to develop:

• an explicit decision model, which is
• numerically specified, which can be used
• to predict sales, at
• the brand sales level.

1.4 Benefits from Using Marketing Decision Models

Using a marketing decision model may lead to direct and indirect benefits. Although
the line between these two types of benefits is not always easy to draw, we define
indirect benefits to be those that are not related directly to the reasons for which the
model was built in the first place.

1.4.1 Direct Benefits

Companies invest in model building presumably because it leads to better decisions.
“Better” is understood here as contributing to the fulfillment of the company’s goals.
For example, if the firm’s single objective is to maximize profit, the benefits of
a model can be defined as the incremental discounted profit generated by having
the model as opposed to not having it. This requires knowledge of the amount of
incremental profit over time, or of some proxy measure. Furthermore, the relevant
time horizon has to be determined, and a discount rate defined.

We provide a few examples to suggest how direct benefits may materialize:

1. Suppose a model indicates that a firm is overspending on advertising, i.e. the
marginal cost from advertising exceeds the marginal revenue. Adjusting the
spending level will result in higher profitability.
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2. A promotion budget can be allocated over different instruments such as displays,
featuring (support of retailers’ advertising by manufacturers), bonuses, refunds,
samples, etc. A model can help in this allocation process by showing how
the different instruments contribute to the profit resulting from any possible
allocation.

3. Marketing managers are often faced with the question whether they should
increase their advertising budget or whether they should decrease their prices.
A marketing decision model may incorporate the empirical generalization that
the optimal price depends on the advertising expenditures.8

4. In sealed competitive bidding, suppliers submit a price and the lowest bidder
wins. Systematizing information on past bidding behavior into a model may
result in a pricing strategy that will lead to an increase in expected profit.

In some cases it is difficult to measure the benefits directly while in other cases it
is straightforward. The measurement is complicated by the fact that a cost–benefit
evaluation should be carried out before (1) the model is built and (2) before it is
implemented.

1.4.2 Indirect Benefits

A number of indirect benefits can be distinguished:

1. A marketing manager may not have to be explicit about his understanding of
the environment in which he operates. Hence, he may decide on a multi-million
dollar advertising budget without detailed knowledge about the effectiveness of
advertising in influencing sales. A model would force him to explicate how the
market works. This explication alone will often lead to an improved understand-
ing of the role of advertising and how advertising effectiveness might depend
on a variety of other marketing and environmental conditions. Managers may
force themselves to specify how marketing activities affect consumer demand.
This confrontation shows what managers believe they know well and what they
are uncertain about. If the confrontation occurs in a group, the discussion can
provide valuable reasons why marketing activities should provide specified types
of effects. Such an exercise is also very useful prior to model estimation. It puts
management beliefs on record, and this allows for a comparison between model
results with those beliefs.

2. Models may work as problem-finding instruments. That is, problems may
emerge after a model has been developed if the model outcomes are contrary
to expectations. Managers may identify problems by discovering differences
between their perception of the environment and a model of that environment. As

8See Bemmaor and Mouchoux (1991); Kaul and Wittink (1995).
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an example we mention a study9 in the Netherlands in which a negative partial
relation has been discovered between the performance of bars and restaurants
and the strength of the relation between beer brewers and these bars/restaurants.
The stronger the relation in terms of assisting bars/restaurants by the beer brewer
through effective beer tapping installations and particularly premiums, the lower
the profit of the bar/restaurant.

3. Information is often available but not used. There are many examples of
decisions which would have been reversed if available information had been
used. Management may not know that data exist, or may lack methods for
handling the information. Models can be instrumental in improving the process
by which decision makers deal with existing information.

4. Models can help managers decide what information should be collected. Thus
models may lead to improved data collection, and their use may avoid the
collection and storage of large amounts of data without apparent purpose. This
issue is becoming more and more relevant in the ‘Big Data’ era, see also
Sect. 3.5.6. Clearly, model development should usually go hand-in-hand with
data collection.

5. Models can also guide research by identifying areas in which information is
lacking, and by pointing out the kinds of experiments that can provide useful
information. By using models, managers have a better understanding of what
they need to know and how experiments should be designed to obtain that
information. To illustrate, suppose that by estimation of a model we learn that the
average effect of advertising on sales in some periods differs from the average
effect in other time periods. To explain such differences we need additional
information about changes in advertising messages, the use of media, etc.

6. A model often allows management to pinpoint changes in the environment faster
than is possible otherwise. Assume that the model-based forecasts of sales and
actual sales are very close up to a certain moment in time: t. After period t, there
are substantial differences between forecasted and observed values that persist in
subsequent periods. This points to a very useful aspect of models namely, their
diagnostic capacity. Since the deviation after t is larger than in previous periods,
the managers may conclude that something has changed in the environment. It
remains to be determined exactly what has changed, but the model warns the
manager faster than is usually possible without it.

7. Models provide a framework for discussion. If a relevant performance measure
(such as market share) is decreasing, the model user may be able to defend
himself to point to the effects of changes in the environment that are beyond
his control, such as new product introductions by the competition. Of course, a
top manager may also employ a model to identify poor decisions by lower-level
managers. Models are also used in this context to analyze the sources of profit
contributions (Albers 1998).

9See Pleijster et al. (2011).
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8. Finally, a model may result in a beneficial reallocation of management time,
which means less time spent on programmable, structured, or routine and
recurring activities, and more time on less structured ones. Examples of struc-
tured activities are media-allocation decisions, inventory decisions, decisions on
the allocation of the sales force over areas, customers or products, promotion
calendars, decisions on how many mailings to send to each of many (potential)
customers, but also decisions on the offering of personalized products (Zhang
2011) etc.10

By confronting the management team of Verhouten with these direct and indirect
benefits of a model, the team was convinced to proceed. Consequently, we are now
ready to take the next steps in the model building process. These steps are discussed
in Sect. 1.5.

1.5 The Model Building Process

Experience in model building led to the formulation of a sequence of steps for
the development of mathematical models. We propose a model-building process
in which model implementation has a central role: see Fig. 1.5, and we distinguish
the following steps:

1. Opportunity Identification
In this stage a model builder has to evaluate whether the development/use of a
model can improve managerial decision making. The model builder will often
be invited to consider the opportunity by a manager who is overwhelmed by
demands on his/her time or who believes that the effectiveness or efficiency
of decision making can be improved. Ideally the model builder and manager
work together to define the problem, to agree on an approach and to determine
that the expected benefits exceed the costs of model building. In the Verhouten
case, the model should produce predictions that are accurate enough to base
production and logistic decisions on it.

2. Model Purpose
The intended use of the model should be defined as precisely as possible. For
example, the manager may need a model to obtain accurate sales forecasts.
The model builder needs to know the level of demand for which forecasts are
required. The model builder also needs to learn what the manager believes to
be the relevant determinants of demand so that model-based forecasts can be
developed. In the Verhouten case the model focuses on the prediction of sales
of the 100 g milk chocolate bar sold at Albert Heijn.

10See also Wierenga (2011).
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Fig. 1.5 Stages in the
model-building process with
an implementation focus

1. Opportunity identification

2. Model purpose

3. Model scope

4. Data availability

5. Model specification

6. Estimation

7. Validation

8. Cost-benefit considerations

9. Use

10. Updating

3. Model Scope
Model building can take place for a specific type of decision or for a broader
set of decisions. The manager may want the model-building effort to focus
on a single decision variable. Thus, the desired outcome may be a model of
advertising effects. Alternatively, the manager may desire to have a model that
includes the effects of all relevant marketing activities, like is the case in the
model that is developed for Verhouten.

Similar arguments may apply to other decision variables pertaining to non-
marketing activities. For example, promotions such as temporary price cuts
often have strong effects on sales which may require intensive adjustments in
production and distribution. The financial consequences of those adjustments
need to be taken into account by the manager to determine the total profit impact
of the marketing activity. Hence in such a case we need a model with a broader
scope than when the model is restricted to decompose the effects of marketing
variables on sales.

4. Data Availability
One reason a manager may ask for a model-building effort is the increasing
availability of large amounts of data (see also the discussion on “Big Data”
in Sect. 3.5.6). With the introduction of scanners into supermarkets and the
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increased use of customer databases, managers obtain much more detailed
market feedback much more frequently.

5. Specification (or Representation or Structure) is the expression of the most
important elements of a real-world system in mathematical terms. This involves
two major steps:

(a) Specifying the variables to be included in the model, and making a
distinction between those to be explained (the dependent or criterion vari-
ables), and those providing the explanation (the explanatory, independent
or predictor variables).

(b) Specifying the functional relationship between the variables. For example,
the effects of the explanatory variables can be linear or non-linear, imme-
diate and/or lagged, additive or multiplicative, etc.11

6. Estimation is the determination of parameter estimates for a model. For this,
data are needed. These data are sometimes available or can be obtained without
much effort. Apart from data collection issues, we need to identify techniques
to be applied for extracting estimates of the model parameters from the data
collected. The choice of a technique depends on:

• the kind of data available and/or needed;
• the kind of variables (observable/unobservable) in the model;
• the assumptions (of a statistical nature) that are necessary and/or acceptable;
• the computational effort and expense considered to be reasonable.

We note that there is often a trade-off between statistical qualities of the
estimators, and flexibility (and realism) in the specification. Based on data
availability, we consider: data-based parameterization (parameter estimation
from historical data) and subjective estimation (judgment-based parameter
estimation).

7. Validation (or Verification or Evaluation) of a model and its parameters implies
assessing the quality or the success of the model. Possible criteria are:

(a) the degree to which the results are in accordance with theoretical expecta-
tions or well-known empirical facts;

(b) the degree to which the results satisfy statistical criteria or tests;
(c) the degree to which the result is relevant to the original purpose:

• is the model useful for clarifying and describing market phenomena?
• does the model provide an acceptable degree of predictive accuracy?
• are the model results suitable for the determination of optimal

marketing-policies?

8. Cost–Benefit Considerations

11For a definition of these terms, see Sects. 2.3, 2.4 and 2.8.
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We mentioned that in stage 1 (opportunity identification) one should establish
that the expected benefits exceed the (expected) costs of model building. At this
point both benefits and cost should be known with a fair amount of precision.
Before the model is implemented and incorporated in a manager’s decision-
making process, it is appropriate to re-examine the cost–benefit trade-off. The
question now is not whether the model-building effort is worthwhile. Instead,
it is useful to determine if the insights gained appear to be more beneficial than
the costs. One way to make this practical is to compare, in the next stage, the
decisions that will be made with the benefit of the model to the decisions that
would otherwise occur. In this manner it is possible to determine whether the
model should in fact be used. If the model fails on this criterion, we can return
to earlier stages if there is sufficient promise for a modified approach to be
successful.

9. Use
Use of the model requires that the manager fully understands both its strengths
and its weaknesses.

10. Updating
Over time, the manager may develop a better understanding of the marketplace,
and this could require modifications in the model. Even without this, the
continued comparison of actual outcomes with those predicted by the model
may suggest that the model needs to be expanded (e.g. an additional variable or
greater complexity in effects) or that the parameters need to be updated. Thus,
the updating in this stage refers to updating of both the model specification and
the estimation.

The continued comparison of actual outcomes with predictions requires that
differences (errors) be analyzed so that one can distinguish between errors due
to e.g. model specification, measurement error, aggregation, and changes in the
environment.

The “implementable model-building process” is an iterative procedure. The proce-
dure, in its entirety or with only a few stages, can be repeated until an acceptable
model is specified and estimated.

1.6 Outline

In this book we discuss in detail the steps of the model building process. In
Chap. 2, we discuss model specification, in Chap. 3 the data organization, and in
Chap. 4 parameter estimation in the so-called general linear model. We discuss
the basic assumptions for this model, some basic test statistics and we introduce
pooling issues. Testing and validation methods for detecting violations of the basic
assumptions of the general linear model are considered in Chap. 5. In Chap. 6 we
discuss more advanced estimation methods which account for violations of the basic
assumptions of the general linear model. Chapters 7 and 8 discuss examples of
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well-known models in marketing that are specified at the aggregate and individual
demand level respectively. In Chap. 9 we discuss a number of specific models which
have been developed for database marketing decision-making. Finally, we discuss
some implementation issues in Chap. 10. In this monograph we use matrix algebra.
The most important concepts are introduced in Appendix A.
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Chapter 2
Model Specification

2.1 Introduction

Specification is an important step in the model building process. As discussed in
Chap. 1, the goal of this step is to express the most important elements of a real-
world system in one or more mathematical equations. In other words: the outcome
of this step is a formula that summarizes the most important relationships of the
phenomenon that we are studying.

Models should satisfy certain criteria in order to stand a good chance at being
implemented. In Sect. 2.2 we discuss these so-called implementation criteria with
respect to model structure.

Before we turn to the discussion of the model specification process, we introduce
the basic terminology related to models in Sect. 2.3. In Sect. 2.4 we discuss an
important decision that a model builder needs to take in the specification step:
the choice of the functional form that formalizes how the variables in the model
are related. Section 2.5 discusses moderation and mediation effects. We specify
formalized models for Verhouten in Sect. 2.6. In this chapter, the main focus is on
models that capture marketing effects over time for a single entity (e.g. for one
brand, one supermarket or one market). In Sect. 2.7, we discuss how to specify
appropriate models when data for multiple entities are available. We return to this
issue in Sects. 4.5 and 5.4.

Marketing is in essence dynamic. For example, we expect different sales levels
over time, depending on whether the brand is in the introduction phase, in the
maturity phase or in the decline phase of the product life cycle. A brand’s sales will
also change when e.g. more and better packaging is introduced, when competitors
come and go, and so on. Another source of dynamic effects stems from the fact
that the effects of, for example, advertising expenditures do not end when the
campaign is over. The effects, or parts of it, remain perceptible for some future
periods. In Sect. 2.8 we discuss how these dynamic effects can be incorporated in
the specification of a model.

© Springer Science+Business Media New York 2015
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26 2 Model Specification

2.2 Model Criteria

2.2.1 Implementation Criteria Related to Model Structure

In this section we pay attention to the question when a model can be considered
to be a ‘good’ model. Little (1970) proposed criteria for appropriate modeling,
where he takes the model user’s point of view. These criteria consider two aspects
of marketing models: model structure and ease of use. In this chapter we focus on
criteria that relate to model structure. Models should be:

1. simple;
2. complete;
3. adaptive;
4. robust.

To link the criteria “simple” and “complete”, Urban and Karash (1971) intro-
duced the notion of evolutionary model-building. This criterion is also added by
Little (1975a,b) in his later work. The evolutionary criterion of model-building
in fact does not relate to model structure, but to the implementation process.
Evolutionary model-building is one way to reconcile simplicity with completeness.

We do not claim that any model that fails on one of the criteria is unacceptable.
Rather, the criteria, described in detail below, are intended to illustrate desirable
model characteristics. Thus, the more a given model satisfies each criterion, the
greater its likelihood of acceptance.

2.2.2 Models Should Be Simple

All models are simplified representations of real-world phenomena. One way in
which model simplicity can be achieved by the model builder is by keeping the
number of variables small, and only to include the important phenomena in the
model. This can be achieved in one or more of the following ways:

(a) Eliminating Less Relevant Variables
In situations where many explanatory variables are available for possible inclu-
sion in a marketing model, it is tempting to include all variables. However, this
interferes with the simplicity criterion, and possibly also introduces estimation
problems due to multicollinearity (see Sect. 5.2.6) or lack of degrees of freedom
(see “Quantity” in Sect. 3.3). An obvious first reduction of the number of
variables can be realized if the least relevant are not included in the model.
Potentially, this can lead to omitted variable bias (see Sect. 5.2.1), but if the
variables are truly not very relevant, this bias will be small.

(b) Clustering of Variables
Clustering of variables is often done in econometric studies. For example, a
large number of brands assumed to influence the performance of the brand
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under study, may be aggregated into one variable “competition”. Or marketing
instruments are aggregated into a small number of classes, such as pro-
duct, distribution, advertising, promotions, and price. For example, advertising
expenditures separated by media such as television, radio, newspapers, maga-
zines and billboards would be aggregated into total advertising expenditures.
We note that this aggregation implicitly assumes that the marginal effect of an
extra investment in advertising does not differ across the media. If the data are
sufficient, this assumption should be tested.

(c) Introducing Relative Variables
Imagine an equation that specifies total product category expenditures (over
time) in current dollars as a function of total disposable income, also in current
dollars, an inflation index and total number of individuals in the population. This
equation can be simplified as follows. Both product category expenditures and
total disposable income can be expressed per capita, and in constant dollars.
This reduces the number of predictor variables from three to one.

(d) Phasing Variables over Different Levels
In demand models, variables can be divided into classes according to the various
levels of demand that can be distinguished. Fluctuations in product class sales
per capita can be explained by fluctuations in environmental variables, such as
disposable income per capita, a weather index and fluctuations in marketing
instruments such as average price, product class advertising expenditures per
capita, etc. And variations in market share can be explained by variations in
relative or share values of the various classes of marketing instruments. The
phasing of variables over different levels can be accomplished by decomposition
of a dependent variable. For example, revenue for a given time period and a
given territory can be decomposed as1:

Revenue = Price×Quantity (2.1)

and, for the same period and territory:

Quantity = Number of Buyers×Average Size/Purchase (2.2)

× Frequency of Purchase.

Other examples are models in which the impact of marketing variables on
components such as (1) category purchase (product class sales) (2) brand choice
and (3) purchase quantity decisions of households for frequently purchased
goods are determined.2

1Farris et al. (1992); Lam et al. (2001); Van Heerde et al. (2003); Van Heerde and Bijmolt (2005).
2See, e.g., Chintagunta (1993, 1999); Van Heerde et al. (2004). Other examples of decompositions
are found in Gupta (1988); Krishnamurthi and Raj (1988); Bucklin and Lattin (1991); Albers
(1998); Pauwels et al. (2011) and Van Nierop et al. (2011). See also Chap. 8.
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(e) Constraining Parameter Values
If the sales response to advertising expenditures is such that the immediate
effect is largest, and that the effects die out gradually in later periods, the Koyck
model is a useful model. It imposes this structure on the dynamic sales response
coefficients in a parsimonious way, see Sect. 2.8.2.

Points (a)–(e) above represent different ways of obtaining a simple structure, often
through a reduction in the number of variables/parameters. This relates to the
concern of many model builders, especially those with a background in statistics
and econometrics, that models must be manageable and estimable. This calls for
parsimony of the models, i.e. there should be a modest number of parameters, and
for a simple structure, which might mean that linear or linearizable models are
preferred to non-linearizable ones.

The notions of simplicity favored by the model builder will not always be
agreeable to the user. Consider Barbara Verhouten, the marketing director of
Verhouten. One of her marketing mix elements is a temporary price cut or price
promotion offered multiple times per year. The brand is supported by a limited
amount of featuring throughout the year.

During the times of promotion, however, featuring support is usually increased,
primarily to make consumers aware of the price cut. If the model builder wants
to estimate separate effects of promotion and featuring, he is likely to experience
difficulties because these effects are confounded, since heavy featuring spending
coincides with price cut campaigns. Thus he may have to combine the two variables
and measure their joint effect. This, however, may not be acceptable to the model
user. For her, promotion and featuring are separate instruments, even though in some
periods, one might be used to support or complement the other. Combining them for
estimation purposes may result in a loss of quality and prestige of both model and
model builder in the eyes of the user. In such a situation, the model builder may
have to educate the model user about some statistical difficulties and how those
difficulties can be reduced.

We now define more clearly what “simple” means for the user. We cannot expect
managers to be experts in mathematics, statistics, econometrics, operations research
and computer science. They are not, they do not pretend to be, nor do they want to
be. The manager is often not interested in the detailed intricacies of the model. What
she wants is a basic understanding of the logic of the model and of what it can do
for her. For the user, a model will be simple if this basic understanding is provided.
Communication and involvement are two means of achieving this.

Models have become easier to communicate with as a result of the widespread
availability of on-line computer systems and the development of decision support
systems (Lilien and Rangaswamy 2004; Lilien et al. 2013; Wierenga and Van
Bruggen 2000; Wierenga et al. 1999).

To stimulate management involvement the model builder can compile a compre-
hensive list of important factors bearing on the problem in close cooperation with
decision makers. The model structure should also represent the decision makers’
view of how the market works.
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Market research firms, such as AC Nielsen, GfK and IRI, and consulting firms,
such as Accenture, Bain & Company, Booz & Company, the Boston Consulting
Group, Forrester Research, McKinsey & Company and Roland Berger Strategy
Consultants have become heavily involved in the development and estimation of
market response models. Lilien (2011) argues that these “intermediaries serve as
a vital boundary-spanning role in this domain”. These consultants assist many
companies in model-based decision-making through the development of models,
customer friendly dashboards (Pauwels and Weiss 2008; Wiesel et al. 2011) and
providing measures for value-based (marketing) management. Intermediaries are
segmented by Lilien (2011) as:

• infrastructure vendors (SPSS);
• vendors of model solutions (Management Decision Systems);
• large generalist firms (Boston Consulting Group, McKinsey);
• implementation oriented firms (Accenture);
• accounting firms (Deloitte), and
• market research suppliers (Gallup Consulting).

Much of the development is based on client needs, and this requires that implemen-
tation of model results plays a large role. Thus, the model builders have to take into
account how new models fit into the decision-making environment.

2.2.3 Models Should Be Built in an Evolutionary Way

We should, of course, realize that the real world is not simple, and that when a model
represents the most important elements of a system, it will often look uncomfortably
complicated. It is for this reason that Urban and Karash (1971) suggested building
models in an evolutionary way, i.e. starting simple and expanding in detail as time
goes on.3

The basic idea is that one does not build a model with all ramifications from the
start. Manager and model builder begin by defining the important elements of the
problem, and how these elements are related. Based on an initial meeting or set of
meetings, the primary elements are specified. The manager should be fully involved,
so that she is likely to understand what the model does, and is interested in this tool,
because it should represent her view of the world. As the manager uses the model,
and builds up experience with this decision aid, she will realize its shortcomings.
The model will then be expanded to incorporate additional elements. The model is
now becoming more complex, but the manager still understands it, because it is her
realization that something was missing which led to the increase in complexity. In a
sense the model becomes difficult, yet by using an evolutionary approach, it also
remains simple because the manager has a clear understanding of what the model is
supposed to do.

3See, for example, Van Heerde et al. (2002); Leeflang (2008).
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This approach can be accompanied by a two-step presentation. First, a formalized
or conceptual model is presented to management. This model ultimately reflects
management’s own views about the nature of market response. Second, an empirical
model or statistical model is used to convey to management, how much of the overall
response is captured in the model. We return to a discussion about this issue in
Sect. 10.4.

Figure 2.1 is an example of a conceptual model that is constructed for the
Verhouten case. It shows which variables might influence Verhouten sales.

Temperature

Sales of Verhouten

Easter December

Price of Verhouten

Feature of Verhouten

Display of Verhouten

Display & Feature
of Verhouten

Price of competitors

Feature of competitors

Display of competitors

Display & Feature
of competitors

Fig. 2.1 Conceptual model for the Verhouten case

2.2.4 Models Should Be Complete on Important Issues

For a model to be a useful decision-support tool, it has to represent all relevant
elements of the problem being studied. This means that a model should account
for all important variables: the model should be complete. If competitors matter,
then the effects of their actions on a brand under study should be incorporated. The
marketing dynamics should be built in, and so on.
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It should be clear that completeness on all important issues is a criterion which
may conflict with simplicity. As long as simple is roughly synonymous with
understandable, then the model builder can resolve the conflict at least partially by
adopting an evolutionary approach.

There may be other conflicts between the interests of the model user and the
needs of the model builder. Suppose, for example, that the regular price is not an
active marketing instrument, a typical situation in many oligopolistic markets. It
will then be difficult, or impossible, to assess its impact on sales because it does
not show sufficient variation. As a result, the regular price does not appear in the
specification of an econometric model. In that case, the implication is not that price
does not affect sales, but that its effect cannot be measured by analyzing historical
data. To have a “complete” model of demand, the effect of price has to be assessed
through other means.4

Completeness is, of course, a relative concept. It is relative to the problem, to the
organization, and to the user.

Completeness relative to the problem can be illustrated as follows. In modeling
the effects of advertising, we may wonder whether we should focus on total
advertising, i.e. estimate its overall effectiveness, or whether we should differentiate
between the various media vehicles available for the communication of advertising
messages. An initial answer to this question is that it depends on the problem
definition. If the model is intended to aid marketing mix planning at the brand
management level, then the total effect of advertising is what is needed. In that case
it may be appropriate to use the aggregate of all advertising expenditures. However,
if the advertising manager wants to know how to allocate expenditures to the
different media vehicles, data on each of these media are required. The advertising
manager needs detailed understanding of the effects of alternative media vehicles as
well as of different advertising copies and specific advertising campaigns.

This delineation of data needs corresponding to the needs of different managers
may, however, not be sufficient. Even if the marketing manager is only concerned
with the determination of total advertising expenditures, and not its breakdown, it
is possible that the estimation of the effect of total advertising is estimated with
greater validity and precision from a model in which the advertising components
are separated.

At the same time, the size of the organization may influence the desired degree
of completeness. A marketing mix problem for a small firm operating at the regional
level will not be the same as that of a firm selling a national brand.

The desired level of completeness will also depend on the user. Larréché (1974)
has observed that one manager’s integrative complexity, i.e. her ability to integrate
pieces of information into an organized pattern, is not the same as that of another

4Here one may use the outcomes of laboratory experiment to determine price elasticity. See Nies
et al. (2014). Other (field) experiments for this purpose are Gabor-Granger procedures and Brand-
Price Trade-Off analyses. See, for example, Leeflang and Wedel (1993); Kalyanam and Shively
(1998); Wedel and Leeflang (1998). Survey experiments, such as provided by conjoint analysis,
offer additional opportunities; see, for example, Mahajan et al. (1982).
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manager. The desired level of complexity and completeness will, therefore, vary
according to the user. This amplifies the need for intense involvement of the user in
the model-building process.

2.2.5 Models Should Be Adaptive

Market change and market behavior are dynamic. Thus, it is not possible to think
of model building as a one-time affair. Instead, models need to be adapted more or
less continuously. This implies that either the structure and/or the parameters have
to be adapted. For example, the entry or exit of a competitor may imply that certain
model parameters change. In addition, the specification of the model may have to
change.

The changes that require model adaptation can take many forms. The true
values of model parameters can change if the set of consumers that makes product
category purchases changes. We discuss this issue in detail in Volume II (State
Space Modeling, Dynamic Linear Models and Kalman Filtering). Brand parameters
may also change if the amount of advertising for all brands or the average price
in the category changes. Modifications in product characteristics, which are rarely
included in demand models, can change brand-level parameters as well. These
examples suggest why model parameters may vary, even if the structure of the model
can remain as it is. All observable market changes that can be related to model
characteristics give reason for the model builder to respecify the structure and/or
reestimate the parameters. For example, if a firm has traditionally sold its products
through independent distributors but has designed a wholly-owned distribution
network, then the change in the structure of the selling process will require that
a new model be created.

Knowledge of the marketplace, and the changes that require a new model
structure, is the primary determinant of adaptation. A secondary determinant is the
difference between actual and predicted values. The greater this difference, to the
extent that it cannot be attributed to statistical uncertainty, the more reason there
is to adapt. Thus, the greater the prediction error the greater the need to respecify
the model. Is there a missing variable? Should the functional form be modified? Do
consumers respond differently?

It should be clear that both the use of logical arguments (“the model needs to
change because the market environment is different”) and a careful analysis of
prediction errors are critical for continued model use. Alternatively, one can update
parameter estimates routinely, by reestimation each time new data become available.
Routine reestimation is advisable if there are, for example, gradual changes in the
consumer population. It is conceivable that by tracking how the parameter estimates
change over time, short-term projections can be made of how the parameters will
change in the future. Little (1975b, p. 662) stresses the importance of adaptive
control by continually measuring programs and monitoring systems to detect
change.
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2.2.6 Models Should Be Robust

Little defines model robustness5 as a quality characteristic which makes it difficult
for a user to obtain bad answers. He suggest that robustness is achievable through
the specification of a structure that constrains answers to a meaningful range of
values. Application of the robustness criterion requires that the model builder has
an understanding of marketplace behavior. This understanding is necessary for
the model builder to identify relevant constructs, to define valid measures of the
constructs, to specify meaningful functional forms (e.g. nonlinear effects), and to
accommodate appropriate interaction effects.

Empirically, model robustness exists if the model results reflect:

(a) Correct marginal effects and changes therein. Broadly speaking, each marginal
effect should be plausible over a wide range of possible values for the
corresponding predictor variable (appropriate functional form).

(b) Meaningful interaction effects. The marginal effect of a given predictor variable
may depend on the value of another predictor variable: for example, there is a
large body of evidence to support the view that the price elasticity of a brand
depends on the amount of advertising support (Kaul and Wittink 1995).

(c) The endogeneity of variables for which the models are intended to produce
marginal effects. If a predictor variable is manipulated by management based
on realized values of the criterion variable then this “reverse causality” must be
taken into account in the model-building process (Kadiyali et al. 1999).

In practical applications, the argument is often made that it is sufficient to obtain
an estimated equation that produces plausible predicted values over the range of
observed values that occur in the sample for the predictor variables. This is a myopic
perspective. The objective of model building is to enrich our understanding of
relationships beyond historical practices, as much as possible. The best opportunity
to do this is to use a model specification that can provide plausible predictions
outside the range of sample values as well as within. In this regard it is useful to
note that empirical researchers seldom indicate that an estimated equation can only
be used for restricted ranges of values for the predictor variables.

For some criterion variables, it is possible to specify constraints. For example,
if the criterion variable represents a brand’s market share, robustness is violated if
predicted values are less than zero or more than one. Since market share is bounded
by zero and one, it is appropriate to require that predicted market shares satisfy the
same constraints. And, if all brands belonging to a product category are modeled
together, we may insist on an additional constraint: the predicted market shares
should sum to one. Thus, when actual values are subject to certain constraints,
their model counterparts should satisfy the same constraints. Such models are called

5Robustness has a different meaning in statistics and econometrics. According to Theil (1971,
p. 615), a statistical test is called robust if it is insensitive to departures from the assumptions under
which it is derived.
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logically consistent (see, for example, Naert and Bultez 1973) or consistent sum-
constrained. Consistent sum-constrained models are models, specified in such a way
that the sum-constraint is automatically satisfied, which means that the estimated
values of the dependent variables (e.g. market shares) or a subset of the dependent
variables sum to a known number. Let q jt be the demand for brand j in period t.
Product class sales in period t can then be written as: restr·t =

∑n
j=1 q jt, where n is

the number of brands in the market. For sum-constrained models we require:

n∑

j=1

q̂ jt =

n∑

j=1

q jt = restr·t. (2.3)

Consistent sum-constrained models have to satisfy a number of conditions which
have implications for their structure.6

The probability that a model will be implemented also depends on other criteria
as is discussed in Chap. 10. One of the model building criteria which deserves
specific attention in this respect is whether the decision model is “standardized”
or not (idiosyncratic). Standardized models have a larger probability of being
implemented than idiosyncratic models (Hanssens et al. 2005; Vriens 2012).

2.3 Model Elements

In this section we introduce the components or elements of a model, using a simple
linear model for the Verhouten application:

S t = α+β1Pt +β2Ft +β3Dt +β4FDt + εt, t = 1,2, . . . ,T (2.4)

where

S t = sales of Verhouten in week t, measured in hundreds of kilos,

α = an unknown constant (intercept),

β1, . . . ,β4 = unknown slope (effect) parameters,

Pt = price of Verhouten (in euros) in week t,

Ft = use of feature-only in week t,

Dt = use of display-only in week t,

FDt = use of feature and display in week t,

εt = an error term, and

T = the number of observations/weeks.

6See, for example, Leeflang and Reuyl (1979).
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The objective of the specification of relation (2.4) is to explain variation in the
unit sales of Verhouten. Thus, S t is the variable to be explained, the dependent
variable or the criterion variable. In a model, the dependent variable is usually
situated on the left-hand side of the mathematical equation.

Selection of an appropriate dependent variable is essential for successful model
building. It is important that the dependent variable aligns with the intended use of
the model (Sect. 1.3.4) and is measured at the desired level of demand (Sect. 1.3.5).
Common examples of dependent variables for market models are brand level sales,
industry or category level sales, market shares and profits. However, there are many
more possibilities. For example, when a model is used to explain pricing decisions,
price might be the appropriate dependent variable.

The right-hand side of the equation explains the variation in the dependent
variable, and consists of two parts. The first part contains the intercept and the
explanatory variables and their corresponding parameters, the second part is the
error term.

The first part of the right-hand side of the equation is also referred to as the
systematic part of the model, because it indicates how the dependent variable sys-
tematically varies with the variables that are included in the model [in model (2.4),
these are Pt, Ft, Dt, and FDt]. The latter are referred to as independent variables,
explanatory variables, predictors, control variables or regressors.

Each independent variable is associated with a parameter [β1, . . . ,β4 in Eq. (2.4)],
which indicates how strongly the dependent variable responds to a one-unit change
in that independent variable. Therefore, they are sometimes referred to as response
parameters or effect parameters. For example in Eq. (2.4), β1 indicates the change
in sales of Verhouten if a price change of one euro occurs.

The response parameters depend on the scaling of the associated independent
variable and of the dependent variable: if we measure price in euro-cents instead
of euros in Eq. (2.4), the associated parameter will be 100 times as small as β1.
Conversely, if we measure S t in kilos instead of hundreds of kilos, β1 will increase
with a factor 100. Note that in the specification stage it is neither necessary to specify
values for the parameters nor to indicate their sign. The most appropriate values and
signs for the model parameters will be determined in the estimation step.

Selection of appropriate independent variables is very important for any model
building exercise. Similar to the selection of the dependent variable, the set of
independent variables should align with the intended use of the model and be
measured at the right level of demand. In addition, the collection of independent
variables should jointly represent the most important factors that affect the depen-
dent variable. When important independent variables are omitted, their effect may be
absorbed by (or reflected in) the estimated effects of the variables that are included in
the model (omitted variable bias). This relates to the discussion about completeness
in Sect. 2.2.

A sometimes overlooked consequence of omitted variable bias is that also when
the model builder is interested in the effect of only a few factors, it is necessary
to specify a complete model. In such situations, the model builder should not give
in to the temptation to specify a too simple model with a very limited number of
independent variables.



36 2 Model Specification

The foregoing makes clear that for the selection of an appropriate set of
independent variables, a model builder needs profound knowledge of the market
under study. This knowledge can be obtained from earlier studies, expert opinions
or from preliminary data analyses.

The remaining element of the systematic part of an equation is the constant term
or the intercept [α in Eq. (2.4)]. The constant term reflects the average value of the
dependent variable if all the independent variables are zero. In Eq. (2.4) this means
that α reflects the average sales level of Verhouten if price is zero, and features and
displays are not used at all. Because a situation where price is zero will not occur
easily, it is quite hard to interpret α in this case. This changes if the price variable
and the other variables are mean-centered (subtract from each value of a variable the
mean of that variable): then α can somewhat loosely be interpreted as the “baseline
level of sales”; at least it indicates the average sales when the independent variables
are at their mean level. In general, the interpretation of the constant term in a linear
model depends on the centering and the scaling of the variables included in the
model, and does not always have a straightforward interpretation unless all variables
are properly centered and scaled.

The second part of the right-hand side of Eq. (2.4) consists of the error term and is
referred to as the stochastic part of the model. The error term captures the variation
in the dependent variable that is left after all systematic variation due to changes
in the independent variables is removed, and therefore is usually characterized by
a probability distribution, which assumes that this variation can be considered as
being random (or stochastic). Although the disturbance term seems a relatively
unimportant part of the model, it is actually very relevant, and the assumption for the
distribution has important consequences which we will discuss further in Chap. 4.

The fact that a probability distribution is a useful way to characterize the variation
in the error term does not mean that variation in the disturbances is caused by just
random variation:

1. The disturbance term also represents the error due to missing or omitted
variables. Obviously, the sales of Verhouten also depend on variables other
than the four on the right-hand side of Eq. (2.4), such as e.g. competitor’s
marketing actions, environmental variables, etc. Excluding such variables from
the deterministic part of the model means that their effects become part of
the disturbance term. Despite the fact that strictly speaking, their individual
effects on the dependent variable cannot be considered as random, a probability
distribution is a useful way to characterize their joint effect on the dependent
variable. Possible reasons for omitting variables are that no data are available, or
that neither the manager nor the model builder imagines their relevance.

2. The disturbance term is also affected by error in the functional relationship. For
example, in Eq. (2.4) the relation between sales and the independent variables
is assumed to be linear. If the price response is actually nonlinear, a linear
model is inappropriate, and deviations between the linear model and the observed
nonlinearity in the relationship between price and sales is reflected in the
disturbance term.
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3. The variation in the disturbance term is also affected by errors in measurement
of the variables. One reason for this type of error is sampling. For example, in
the Verhouten case, the value for Dt that is recorded in a given week (which
is a weighted distribution figure, see Sect. 1.2) may be based on an audit of a
selection of stores. This can be considered random error if a random sample of
the total set of stores is used, but there may also be systematic measurement error
if some outlets are unavailable for inclusion (e.g. a retailer may refuse the market
research company access to her store).

Errors in measurement may also result from poor measurement instruments
or from the use of approximate (or proxy) variables. For example, when studying
the effect of price sensitivity, a researcher may measure this by an item like:
“I often buy items on promotions” in a survey or by the proportion of items
bought that are on promotion, both being non-perfect representations of true price
sensitivity.

All elements of Eq. (2.4) have now been defined.

2.4 Specification of the Functional Form

Once the dependent and the independent variables are selected, a model builder
should decide on the type of mathematical relationship between the variables. In this
section we focus on the following most common types of mathematical forms:

1. linear in both parameters and variables;
2. nonlinear in the variables, but linear in the parameters;
3. nonlinear in the parameters and linearizable;
4. nonlinear in the parameters and not linearizable.

The distinction is important from the point of view of estimation. Forms 1–3 are
estimable by classical econometric methods, whereas 4 is not.

2.4.1 Models Linear in Parameters and Variables

Models linear in parameters and variables have the following structure:

yt = α+β1x1t +β2x2t + · · ·+βK xKt + εt (2.5)

where

yt = value of the dependent variable in period t,

xkt = value of independent variable k in period t, (k = 1, . . . ,K), and

α,β1, . . . ,βK = model parameters.
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A model that is linear in parameters and in variables is sometimes also referred to as
a linear additive model. It is additive in the sense that the joint effect of the predictor
variables is equal to the sum of their separate effects, as can be seen in Eq. (2.5).

While this is the simplest functional form that can be used for specification of
the relationships between yt and the x-variables, it also has serious drawbacks.

The linearity assumption implies constant returns to scale with respect to each
of the independent variables. This can be seen by taking the first-order partial
derivative of yt with respect to any of the independent variables xkt:

∂yt

∂xkt
= βk, k = 1, . . . ,K (2.6)

which means that increasing xkt by one unit results in an increase of yt by βk units.
This assumption of constant returns to scale is unreasonable in most applications.

For example, if xkt is advertising and yt is sales, we might expect an increment in
xkt to have more effect when xkt itself is lower than when it is higher. This means
that we expect advertising to have decreasing returns to scale.

Another drawback of the linear additive model is that it assumes no interactions
between the variables. Interaction between two x-variables occurs when the effect of
one x-variable on the y-variable depends on the level of the other x-variable. In such
cases, the latter x-variable is said to moderate the effect of the first x-variable on y.

The absence of interaction effects in Eq. (2.5) can again be seen by looking at
the first-order derivative in (2.6). Since it is constant, the effect of xit on yt does not
depend on the values of other independent variables. This assumption is also often
unreasonable. For example, price promotions will have a greater effect on sales if the
brand is available in more rather than in fewer retail stores. At decreasing levels of
availability, price promotions should have increasingly smaller effects. In Sect. 2.5
we discuss how the linear additive model can be extended to include interaction
effects.

2.4.2 Models Linear in Parameters But Not in Variables

A second class of models consists of models which are nonlinear in the variables,
but linear in the parameters.7 They are also called nonlinear additive models.
Equation (2.7) is an example of a model in which three variables (x1t, x2t, and x4t)
are assumed to have nonlinear effects:

yt = α+β1ex1t +β2
√

x2t +β3x3t +β4 ln x4t + εt. (2.7)

7See for an in-depth analysis of the shape of (advertising) response functions, for example,
Vakratsas et al. (2004).
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Equation (2.7) can be turned into a linear additive model relatively easy by
transforming the nonlinear variables as follows before they enter the model:

x∗1t = ex1t

x∗2t =
√

x2t

x∗4t = ln x4t.

After substituting the transformed variables in Eq. (2.7) a linear additive model
emerges:

yt = α+β1x∗1t +β2x∗2t +β3x3t +β4x∗4t + εt. (2.8)

The proposed relation between each independent variable and the dependent
variable should be based on theory or experience. If we know that advertising shows
decreasing returns to scale we can focus on appropriate mathematical formulations.
In addition, as we discussed in Sect. 2.2, model-building criteria can provide
direction with regard to an appropriate model specification.

We next discuss a few formulations of nonlinear additive models, with their
characteristics, advantages, and disadvantages. Consider the following relation:

qt = α+β1at +β2a2
t + εt (2.9)

where

qt = sales in units of the focal brand in period t,

at = advertising expenditures for the focal brand in period t.

To understand the nature of effects, we investigate the first derivative of qt with
respect to at:

∂qt

∂at
= β1 +2β2at.

If β1 > 0 and β2 < 0, we have decreasing returns to scale, because due to β2 < 0,
the marginal sales are smaller for larger values of at. But if

at >
β1

−2β2

sales would decline with further increases in advertising. This phenomenon is
known as supersaturation (Hanssens et al. 2001, p. 42). Supersaturation results if
excessive marketing effort causes a negative response. If this phenomenon runs
counter to our prior beliefs, we could reject the model specified in Eq. (2.9).
Nevertheless, the model may perform well within a certain range of values of at.
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Indeed, if we have no confidence in the estimated model outside a specific range of
variation, we should make this explicit. We discussed this point in more detail in
Sect. 2.2.

There are other ways to represent decreasing returns to scale. In (2.10) sales are
a function of the square root of the independent variable, say advertising,

qt = α+β
√

at + εt. (2.10)

The first-order derivative of qt with respect to at is:

∂qt

∂at
=
β

2
√

at

which shows decreasing returns to scale, and tends to zero when at is very large,
indicating that the marginal sales effect approaches zero for very high levels of
advertising.

Another frequently used mathematical form is the semi-logarithmic specifica-
tion:

qt = α+β lnat + εt (2.11)

where lnat is the natural logarithm of at.
Equation (2.11) shows decreasing returns to scale over the whole range of a jt,

since:

∂qt

∂at
=
β

at

which decreases with at. Again, returns to advertising tend to zero for high levels of
advertising.

The sales-advertising relations (2.9), (2.10), and (2.11) all represent decreasing
returns to scale. All three however, are deficient for high values of advertising: the
first because for high values of at, qt starts to decline; the second and the third
because qt tends to infinity when at tends to infinity. Since we know that sales
potential is a finite quantity, we prefer sales-advertising models in which sales
approaches a saturation level as advertising grows large.

A simple example of a model with a saturation level is the reciprocal relation:

qt = α+β
1
at

+ εt, with α > 0, β < 0. (2.12)

As at increases, qt approaches α asymptotically. Note that if at < −β/α, qt is
negative. Thus, while a reciprocal relation leads to a finite asymptote for qt when at

increases, it can still be problematic for very low values of at.
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Another example of a reciprocal relation is:

qt = α+β
1
pt

+ εt, with α, β > 0 (2.13)

where

pt = price of the focal brand in period t.

It is clear that (2.13) may not be meaningful for extremely low values of pt: as pt

goes to zero, qt goes to infinity. Equation (2.13) may, therefore, only be a reasonable
approximation of reality within a restricted range of values for pt.

If one wants a response function to show increasing returns to scale first, then
decreasing returns, the logarithmic reciprocal relation may be used:

lnqt = α+β
1
at

+ εt. (2.14)

This relation shows increasing returns to scale for at < −β/2, and decreasing
returns for at > −β/2, if we assume that α > 0 and β < 0.

2.4.3 Models That Are Nonlinear in Parameters,
But Linearizable

One of the most frequently encountered marketing response functions that are non-
linear in the parameters (they appear as exponents), is the so-called multiplicative
model:

yt = αxβ1
1t xβ2

2t · · · xβK
Kt εt (2.15)

or more compactly:

yt = α

⎛
⎜⎜⎜⎜⎜⎜⎝

K∏

k=1

xβk
kt

⎞
⎟⎟⎟⎟⎟⎟⎠εt. (2.16)

Model (2.15) can be linearized using a simple transformation. Taking the
logarithm of (2.15) we obtain:

lnyt = lnα+β1 ln x1t +β2 ln x2t + · · ·+βK ln xKt + lnεt. (2.17)

Equation (2.17) is linear in the parameters α∗,β1,β2, . . . ,βK , where α∗ = lnα, and is
referred to as a double-logarithmic or a log-log model.
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The response function (2.15) has several desirable properties. For ease of
interpretation it is convenient to assume throughout that the dependent variable yt

represents sales in units of the focal brand in period t.
Firstly, Eq. (2.15) allows for a specific form of interaction between the various

instruments. This can easily be seen by looking at the first-order derivative with
respect to, say, variable xkt:

∂yt

∂xkt
= αβk xβ1

1t xβ2
2t · · · xβk−1

kt · · · xβK
Kt εt

which can be written as:

∂yt

∂xkt
=
βkyt

xkt
. (2.18)

The impact of a change in xkt on yt is therefore a function of yt itself, which means
that it depends not only on the value of xkt but on all the other variables as well.

Secondly, model (2.15) has a simple economic interpretation. Let us consider ηk,
the elasticity of yt with respect to variable xkt, which is defined as:

ηk =
∂yt

∂xkt

xkt

yt
.

Using (2.18) we find ηk = βk, which means that the exponents in a multiplicative
response model are constant elasticities. This is a disadvantage if one wants ηk to
depend on one or more of the independent variables.

To see the functional form of relations in the multiplicative model, consider the
case with only one explanatory variable:

yt = αxβ1
1t εt. (2.19)

Figure 2.2 shows (2.19) for various values of β1, relative to the case where β1 = 1
(dashed upward sloping line). Curve I represents the case β1 > 1, i.e. increasing
returns to scale. Curve II is typical for 0 < β1 < 1, i.e. decreasing returns to scale.
This is what we might expect if x1t were advertising. Curve III illustrates the case
−1 < β1 < 0, and finally curve IV, β1 < −1. The latter two might apply when x1t is a
price variable, curve III representing inelastic demand and curve IV elastic.

There are many other nonlinear models that can linearized besides the multiplica-
tive model. One is the exponential model:

yt = αeβxtεt (2.20)

which, after taking logarithms, becomes linear in the parameters α∗(= lnα) and β:

lnyt = α
∗ +βxt + lnεt.

This model may, also, with β negative, be appropriate for a sales–price relation.
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b1 = 1

yt

x1t1.0

I:

II:

III:

IV:

a

−1 <  b1 < 0

b1 < −1

b1 > 1

0 <  b1 < 1

Fig. 2.2 Examples of multiplicative relations

For price (xt) equal to zero, sales equal α, whereas for price going to infinity, sales
tend to zero. However, for β > 0, (2.20) has no saturation level. Yet for almost all
products in virtually any market it holds that no matter how much marketing effort is
spent, there is a finite upper limit for sales. We show later how the saturation level is
a finite quantity in the modified exponential model (2.21), which is an intrinsically
nonlinear model.

2.4.4 Models That Are Nonlinear in Parameters
and Not Linearizable

Marketing relations are generally nonlinear in either variables or parameters or
both. In some cases these relations are linearizable while in other cases they are
not. If the model is not linearizable, the model is called intrinsically nonlinear or
intractable. In the past, model builders often went to great efforts to make their
models linearizable. This was primarily due to the fact that estimation methods
in econometrics generally assumed models to be linear in the parameters. In the
mean time, powerful nonlinear estimation techniques have been developed, and
are nowadays available in statistical software packages. Thus, from an estimation
point of view, intrinsic nonlinearity is no longer problematic in a purely technical
sense. It remains true, however, that the statistical properties of nonlinear estimation
techniques are not as well known as those of linear models.
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As an example of an intrinsically nonlinear model, consider the modified
exponential model:

yt = α(1− e−βxt)εt, with α > 0, and β > 0. (2.21)

If xt equals zero, yt also equals zero. As xt goes to infinity, yt approaches α
asymptotically. An interesting characteristic of the model is that the marginal sales
response is proportional to the level of untapped potential (α− yt). This is easily
demonstrated as follows. The first-order derivative of yt with respect to xt is:

∂yt

∂xt
= αβe−βxt . (2.22)

Untapped potential is α− yt = αe−βxt , and it follows from (2.22) that the marginal
sales response is proportional to (α−yt), with β serving as the proportionality factor.

2.5 Moderation and Mediation Effects

In Sect. 2.4.1 we briefly introduced interaction or moderation effects. Schematically,
an interaction effect between xit and x2t on yt can be depicted as in Fig. 2.3.

Fig. 2.3 Schematical
representation of an
interaction effect

ytx1t

x2t

Congruent with the definition of interaction that we discussed in Sect. 2.4.1,
Fig. 2.3 illustrates that the effect of x1t on yt depends on x2t. Alternatively, one can
say that x2t affects the strength of (or moderates) the effect of x1t on yt.

It is possible to extend the linear additive model so that it accommodates
interaction effects by adding the product of the variables that are likely to have
interaction effects. For example, with two predictors x1t and x2t we can add the
product x1t x2t:

yt = α+β1x1t +β2x2t +β3 (x1t x2t)+ εt. (2.23)

The effect of a marginal change in x1t on yt is now:

∂yt

∂x1t
= β1 +β3x2t. (2.24)
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Compared to Eq. (2.6), we see that by adding the product of x1t and x2t as an
additional variable to the model the marginal effect of x1t on yt is no longer constant,
but changes with x2t (assuming nonzero β3, i.e. there is a relevant interaction effect).
For example, if x1t is advertising, and x2t distribution, measured by the number of
retail stores carrying the brand, (2.23) allows for advertising to have a larger effect
if more stores sell the brand.

Note that we cannot distinguish between the situation where the effect of x1t on
yt is moderated by x2t from the case where the effect of x2t on yt is moderated by
x1t (i.e. x1t and x2t can be reversed in Fig. 2.3).

A disadvantage of the interaction term formulation becomes apparent when the
number of predictor variables exceeds two. For example, with three predictors, a
full interaction model becomes:

yt = α+β1x1t +β2x2t +β3x3t (2.25)

+ β4 (x1t x2t)+β5 (x1t x3t)+β6 (x2t x3t)+β7 (x1t x2t x3t)+ εt

and

∂yt

∂x1t
= β1 +β4x2t +β5x3t +β7 (x2t x3t) .

In general, with K predictor variables, a full interaction model contains 2K terms. It
can easily be seen that both estimation and interpretation will become problematic,
even for fairly small values of K. Thus, it is often necessary for a model builder
to specify in advance which of many possible interaction variables to include. For
further in-depth discussion of moderated multiple regression models, we refer to
Irwin and McClelland (2001).

A recent example of a model that accounts for moderating effects is Koschate-
Fischer et al. (2014).8 They demonstrate that the relationship between private label
share and store loyalty is moderated by factors such as:

1. customers’ price orientation;
2. the commodization of the product category;
3. product category involvement and
4. the retailer’s price positioning;

Moderated models are sometimes confused with mediation models. Mediation
models are models that aim to explain the relationship between a independent
variable, say x1t and a dependent variable yt via a third explanatory variable, say
x2t, known as the mediator variable. For instance, the effect of marketing efforts
(x1t) on sales (yt) may be mediated by consumer attitudes/brand health indicators
(x2t), as demonstrated in Hanssens et al. (2014) . Baron and Kenny (1986) is the
seminal paper on mediation, with over 40,000 citations. They offer the diagrams in
Fig. 2.4 to understand mediation.

8See also Horváth and Fok (2013).
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Fig. 2.4 Schematical
representation of a mediation
model

ytx1t
c

ytx1t

x2t
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a b

The unmediated model in the top diagram shows the total effect (path c) of x1t

on yt. In the mediated model (bottom diagram), path a is the effect of x1t on mediator
x2t, path b is the effect of mediator x2t on yt, and path c′ is the direct effect of x1t on
yt. Complete mediation occurs when path c′ is 0; i.e. x1t no longer affects yt after
x2t has been controlled for. Partial mediation occurs when c′ is not zero but smaller
than c; i.e. the direct effect of x1t on yt becomes smaller after including the mediator
variable.

Continuing our marketing example, marketing may have both a direct, unmedi-
ated effect on sales (e.g. price promotions and reminder advertising increase
transactions with current brand customers) and an indirect effect through improving
awareness, consideration and/or liking among category consumers. Hanssens et al.
(2014) call path a the “responsiveness” of brand health indicators to marketing
actions, path b the conversion of these brand health indicators into sales, and path
c′ the “transactions route” of marketing influence on brand sales. Interestingly,
market-response modeling literature has focused on the unmediated model, while
advertising and attitude literature has focused on responsiveness (path a) and
marketing metrics literature mostly on sales conversion (path b). Only recently,
these elements were integrated by Srinivasan et al. (2010); Pauwels et al. (2013)
and Hanssens et al. (2014).

2.6 Formalized Models for the Verhouten Case

At the end of Sect. 1.3 we concluded that Verhouten Management wants model
builders to develop:

• an explicit decision model, which is
• numerically specified, which can be used
• to predict sales, at
• the brand sales level.

This means that the first three steps of the model building process as discussed in
Sect. 1.5 are concluded. Also, the data is available (Sect. 1.2), so that we are now
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ready to proceed with step 5. We specify two formalized static models that satisfy
the implementation criteria as well as possible. The first model (2.26) is a linear
additive model, the second one (2.27) has a multiplicative specification.

Linear additive sales model:

S 1t = α+

n∑

j=1

β1 jP jt +

n∑

j=1

β2 jF jt +

n∑

j=1

β3 jD jt

+

n∑

j=1

β4 jFDjt +β5Tempt +β6δ1t +β7δ2t + ε1t

(2.26)

where, in week t,

S jt = sales of brand j (Verhouten is brand 1) at Albert Heijn,

P jt = price of brand j,

F jt = use of feature-only of brand j,

D jt = use of display-only of brand j,

FDjt = combined use of feature and display of brand j,

Tempt = average weekly temperature in Celsius,

δ1t = a dummy variable to account for weeks in December,

δ2t = a dummy variable to account for the week before Easter,

ε1t = a disturbance term.

Multiplicative model:

S 1t = θ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n∏

j=1

(

P
γ1 j
jt γ

F jt

2 j γ
Djt

3 j γ
FD jt

4 j

)
⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Temp∗t

γ5γ
δ1t
6 γ
δ2t
7 ε1t. (2.27)

The parameter θ affects the overall level of the model outcomes across all
periods: its function is comparable to that of α in the linear additive model. We
usually do not interpret its value. The γ1 j ( j = 1, . . . ,n) parameters in the model
can be interpreted as the own (γ11) and cross-elasticities (γ1 j, j � 1). The variables
F jt, D jt, FDjt, δ1t and δ2t are used as exponents given that these variables can
attain zero values in some weeks. In such cases, S 1t will be zero at t, which is not
realistic. The associated parameters, γ2 j,γ3 j,γ4 j,γ6 and γ7 are so-called multipliers.
To avoid these issues for the temperature variable we transformed it to Temp∗t , which
is defined as the temperature measured in degrees Kelvin.

Both static models (2.26) and (2.27) are simple. They do not account for leads
and lags and nonlinearities of the variables (2.26). Hence, they are not complete,
yet.
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There is no guarantee that (2.26) is a robust model given that there is no guarantee
that the estimated value at S 1t (Ŝ 1t) are always larger than or equal to zero. The
multiplicative model (2.27) only specifies sales predictions that are larger than
zero and is robust in this sense. In a broader sense, robustness also means that
the parameters have face validity. Here, it means that the own price elasticities
are expected to be negative and the cross-price elasticities to be positive. We also
expect own multipliers to be larger than one, and cross-multipliers to lie in the range
between zero and one.

By adding or deleting variables in an evolutionary way and accounting for
varying parameters over time, the model allows for adaptiveness.

2.7 Including Heterogeneity

Thus far, we have only considered models for a single entity in this chapter. For
example, in the Verhouten case, we have considered a sales model for the Verhouten
brand only. However, in many applications, data of multiple entities is available,
such as data for different stores, regions or brands. This has two consequences for
the model specification step.

The first consequence is that we need to carefully indicate which entity we are
considering. In many cases, this has consequences for the mathematical notation
that is used. Often, additional indices are required to indicate precisely which entity
is referred to in a model. For example, up until Eq. (2.26) the variable S t did not
have an brand index, because we were focusing on the sales of Verhouten only, and
there was no ambiguity when referring to the sales variable. If we would include
sales variables of the other brands as well, we would replace S t with S it, where the
index i refers to the different brands in our data set (i = 1, . . . ,4). This allows us to
precisely indicate which sales observations we are referring to.

The second consequence is that we need to make decisions how to treat the
entities in our model specification. We consider four approaches:

1. aggregation across the entities;
2. specify a different model for each entity (unit-by-unit models);
3. specify a model that is the same for each entity (pooled models);
4. specify a model where some parameters are pooled, and others are entity-specific

(partially pooled models).

Ad 1: Aggregated models.
A first option that can be considered is to aggregate across the entities, and specify a
model on a higher aggregation level. For example, in the Verhouten case, we might
aggregate all variables in the data set across brands and specify a model for the
category sales of chocolate bars at Albert Heijn. Advantages of such an approach
are that we do not need to account for differences between entities, and that model
outcomes are less affected by potential entity-specific irregularities in the data: due
to the aggregation process, such irregularities are ‘averaged’ with data from the other
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entities. A disadvantage is that aggregation changes the demand level, so that the
parameters are not specified at the right level of demand. This potentially interferes
with Step 3 of the model building process (Fig. 1.5), where the scope of the model is
determined. In the Verhouten case, the intended level of demand was set at the brand
level. If we aggregate across brands, this changes the level of demand to primary
demand. This will have consequences for the selection of independent variables,
and the decisions that a manager can make based on the outcomes of the model.
Another disadvantage is that a model builder loses the opportunity to accommodate
differences across entities.

Ad 2: Unit-by-unit models.
A second approach is to specify a model for each entity. This generates a
separate set of parameter estimates for each entity, and provides maximum flexibil-
ity/heterogeneity for accommodating all potential differences between the entities.
This is the preferred approach when there are enough data points available for
estimating all separate models reliably, and when there is interest in obtaining
entity-specific parameter estimates. However, in cases where there is a limited
amount of data, this approach does not exploit the benefits of combining data
across the entities, and does not provide statistical efficiency benefits in estimating
the parameter values. In other cases, it is not interesting to obtain individual-level
parameters, or it is impossible to interpret all parameters. For example, if we would
estimate separate store-level models for all Albert Heijn stores in the Netherlands,
we would need to interpret more than 800 sets of model outcomes, one for each
store or for each store/brand combination, which is an unduly task, especially for
managers that suffer from scarcity of time.

Ad 3: Pooled models.
A third approach is to specify exactly the same model for each entity, and to
utilize the observations of all entities to estimate the parameters in the model. This
approach is quite restrictive because it requires that all parameters do not differ
across the entities. For example, specifying exactly the same model for each of the
four brands in the Verhouten case requires that the intercepts of all brands have
the same value. This is quite unrealistic because not all brands will have the same
base line level of sales. On the positive side, if it is reasonable to assume that all
parameters are the same this strategy ensures that we use all available data points as
efficiently as possible.

Ad 4: Partially pooled models.
The last option that we consider here is when some parameters are restricted
to be the same across entities, whereas others are allowed to differ between
entities. This approach provides statistical efficiency, because it combines data
from multiple categories wherever possible, and accommodates differences across
entities wherever needed. Specifying exactly the same model for each of the four
brands in the Verhouten case requires that customers are equally price sensitive,
irrespective of the brand they typically buy. This might not be very realistic as each
of the brands target different segments in the market, as reflected by their price
positioning.
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Figure 2.5 illustrates the last three options for the Verhouten case. For clarity of
presentation, we assume that we are specifying a simple model, where sales of a
brand is only explained by price. Also, we assume that we only have data of two
brands. In the top panel of Fig. 2.5, the price response and the intercept appear to
be different. Therefore, a unit-by-unit model is a reasonable model for these data.
The corresponding formula indicates that both the intercept and the price response
parameter are brand specific. The middle panel of Fig. 2.5 represents a situation
where a pooled model appears to be reasonable. The formula shows that both the
intercept and the price response are assumed to be the same for both brands. The
bottom panel of Fig. 2.5 depicts a typical situation where partial pooling can be
applied: the intercepts differ between the two brands, whereas the price responses
(slopes) are identical. This is reflected in the corresponding formula: the intercepts
are brand specific, whereas the price response is the same for both brands.

Choosing the right level of pooling in the specification step can be based on
prior research or earlier model building efforts, or on subjective knowledge of the
market, or on exploratory data analysis. We return to the issue of pooling in Sect. 4.5,
where we discuss how to estimate pooled models. In Sect. 5.4 we consider statistical
pooling tests that allow us to validate the pooling choices that are made in the model
specification step.

2.8 Marketing Dynamics

2.8.1 Introduction

Marketing is dynamic in essence. For example, new products are developed, tested,
and launched, more and better packaging is introduced, competitors come and go,
and so on. These effects can be accounted for by adding appropriate variables to
the model that control for these developments. Another type of marketing dynamics
occurs when the effects of, for example, advertising expenditures do not end when
the campaign is over. The effects, or parts of it, remain noticeable for several future
periods. Or, looked at somewhat differently, sales in period t will be affected by
advertising in t, but also by expenditures in t − 1, t − 2, . . .. Thus, one can refer
to the lagged effects of advertising. Similarly, one can also observe a dynamic
sales response when consumers or competitors anticipate a marketing stimulus
and adjust their behavior before it actually occurs. This results in lead effects of
marketing expenditures. Together, these effects are known as dynamic effects of
marketing variables, or simply marketing dynamics.9 In Sect. 2.8.2 we first discuss
the modeling of marketing dynamics in the case of one explanatory variable. Issues

9The term ‘Marketing dynamics’ is also used to indicate a much more broader area of time-series
modeling; see Volume II. This topic has received much attention in the past decade: See for some
surveys for example Pauwels et al. (2004) and Leeflang et al. (2009).
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Fig. 2.5 Three different options to treat brand-level heterogeneity
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related to having more than one independent variable are dealt with in Sect. 2.8.3.
In Sect. 2.8.4 we give attention to lead effects. These dynamic effects are known to
occur for all marketing variables, but we take the relationship between advertising
and sales as a typical example throughout this section.

2.8.2 Modeling Lagged Effects: One Explanatory Variable

The sales effects of an advertising campaign in period t are generally not limited to
that period, but will also have an effect in future periods. These lagged effects of
marketing activities on sales have long been recognized as one of the complicating
features of market measurement. Its existence means that promotional programs
should be evaluated over a longer period than that of the campaign.

We make a distinction between delayed-response effects and customer-holdover
effects.

Delayed-response effects arise from the delay between marketing money being
spent and sales occurring.10 It can happen because of:

• execution delay: the time between management spending money or preparing an
ad and its appearance;

• noting delay: the time between a magazine being published and read;
• purchasing delay: the time between a consumer receiving the stimulus and a

purchase being made.

The delayed-response effect can be simply represented by a relation such as:

qt = α+βat−s + εt (2.28)

where

qt = sales in period t,

at−s = advertising expenditures in period t− s,

εt = a disturbance term,

and s is the number of time periods between, say, the time the advertising money is
spent and the sales that result from this expenditure.

Customer-holdover effects occur because customers sometimes make repeated
purchases for some time, e.g. at times t, t+1, t+2, . . . , t+ s after the initial stimulus
in t, either because of:

• new buyer holdover effects, where marketing activity attracts new customers who
make repeat purchases, or

10See, Lilien and Kotler (1983, p. 80), and Leeflang et al. (1992).
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• increased purchase holdover effects, where the marketing stimulus increases the
average quantity purchased per period for some time.

Taking delayed response and customer holdover effects together, the following
demand function represents a reasonable specification of the dynamic effects of
advertising:

qt = α+β1at +β2at−1 + · · ·+βs+1at−s + εt. (2.29)

Equation (2.29) indicates that advertising has an effect up to s periods into the future.
Given that s is a finite number, (2.29) is called a finite distributed lag model of
order s.

The specification of lagged effects in the demand function (2.29) is difficult for
at least three reasons. First, one has to decide how many lagged terms to include in
the specification, i.e. one has to decide how long the advertising effect lasts. In what
follows, we refer to this as the duration interval, and determining the correct value
of s is called the truncation problem. Secondly, with s lagged terms in the model,
the number of parameters becomes s+2, which might be a large number in relation
to the number of observations. Since data over time may not be available, statistical
problems are likely to arise because of loss of degrees of freedom when estimating
the model in the next model building step. This results both from an increase in the
number of parameters and from a decrease in the number of usable observations. If
s lagged effects are included in the model, the first s observations cannot be used for
estimation because q1,q2, . . . ,qs all require one or more observations of advertising
expenditures before t = 1. These are not available, because we assume that t = 1
represents the start of the data collection period. A third difficulty with direct
specification of lags is that the larger s, the higher the chance that the explanatory
variables become collinear.11

The three reasons above have led researchers to consider relations between the
various βi in (2.29) in order to arrive at a simpler model. A simpler model will have
fewer parameters and will be less troublesome to estimate. Model (2.29) is known
as an unrestricted model.

Many alternative specifications of a relation between the βi’s have been proposed
in literature. We consider the most common ones.12 The most popular lag structure
in marketing studies is the Geometric lag model, Koyck model or exponential decay
model.

11Collinearity or multicollinearity relates to the correlation between explanatory variables. A more
exact definition will be given in Chap. 4. We limit ourselves here to stating that collinearity has the
disadvantage of making the coefficients less reliable.
12For extensive surveys, we refer to Judge et al. (1985, Chapters 9 and 10) at the more theoretical
level, and Leeflang et al. (1992); Hanssens et al. (2001, Chapter 7) and Van Heerde et al. (2000) in
a marketing context.
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First Eq. (2.29) is rewritten with an infinite number of terms, which means that
the entire advertising history is taken into account:

qt = α+
∞∑

�=0

β�+1at−� + εt. (2.30)

It is now assumed that:

β2/β1 = λ,

β3/β2 = λ, or

β3/β1 = λ2, (2.31)

...

β�+1/β1 = λ�,

...

where 0 ≤ λ < 1. The lag structure specified in (2.31) assumes that the advertising
effect is geometrically (or exponentially in the continuous case) decreasing over
time.

Substituting (2.31) in (2.30) we obtain:

qt = α+β1at +β1λat−1 +β1λ
2at−2 + · · ·+β1λ

�at−� + · · ·+ εt. (2.32)

Now we lag equation (2.32) by one period and multiply by λ:

λqt−1 = λα+β1λat−1 +β1λ
2at−2 + · · ·+β1λ

�+1at−�−1 + · · ·+λεt−1. (2.33)

Subtracting (2.33) from (2.32) gives:

qt −λqt−1 = α(1−λ)+β1at + εt −λεt−1. (2.34)

With α∗ = α(1−λ), and ut = εt −λεt−1, we obtain:

qt = α
∗ +λqt−1 +β1at +ut. (2.35)

The estimation problems are now greatly reduced since only three parameters
remain. The procedure is due to Koyck (1954), and is generally referred to as the
Koyck transformation.

The direct (short term) effect of advertising is represented by β1, while λ
measures how much of the advertising effect in one period is retained in the next.
One often refers to λ as the retention rate. The long-term advertising effect is
obtained as follows. If the advertising investment is kept constant (at = a for all t),
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Table 2.1 Implied duration
interval as a function of the
data interval

90 % duration
interval in Number of

Data interval λ̂ months studies

Weekly 0.537 0.9 2

Monthly 0.440 3.0 10

Bimonthly 0.493 9.0 10

Quarterly 0.599 25.1 10

Annual 0.560 56.5 27

Source: Clarke (1976, p. 351)

in equilibrium we have qt = qt−� = q for all t and all �. Or from (2.35), and omitting
the error term:

q = α∗ +λq+β1a or:

q = α+
β1

1−λa.

Thus β1/(1−λ) measures the (total) long term effect of advertising.13

The Koyck model, however, is not without problems. If εt satisfies the assump-
tions of the classical linear regression model, then ut does not.14 We do not discuss
this issue here, but refer to Chaps. 5 and 6.

The duration interval of advertising implied by the Koyck model has been studied
by Clarke (1976) on the basis of a survey of 59 cases. Since (2.35) is an additive
model, the same relation holds for, say, q∗t = qt +qt−1 and a∗t = at +at−1. Hence the
implied duration interval should not vary with the periodicity of the data, expressed
by the data interval. However, from the figures in Table 2.1 it is clear that the implied
duration interval is a function of the periodicity of the data. The table shows the
average value of λ̂, and the average 90 % duration interval, which means the time
it takes for advertising to reach 90 % of its total effect, for each of the five data
intervals. The results indicate a large increase in the implied duration time as the
data interval increases, pointing to a data interval bias.15

Leone (1995) provides a theoretical explanation for the inconsistent findings
from previous econometric analyses of aggregated data concerning the duration

13In an applied setting, estimated values α̂, β̂1, and λ̂ will be used. These estimates are obtained
from the numerical specification of (2.35). Since β̂1 and λ̂ are estimated, β̂1/(1 − λ̂) will be
estimated as well. One difficulty is that the distributional properties of that ratio are not well known.
14In particular, if the residuals εt of the original model are uncorrelated, then the ut must be
autocorrelated.
15The problem is even more striking when very different implied duration intervals are obtained
from one and the same data set. A case in point is the relation between industry sales and industry
advertising expenditures for the West-German cigarette market, which has been estimated by
Leeflang and Reuyl (1985) using annual, bimonthly and monthly data covering the same time
period (1960–1975).
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of advertising carry-over effects. He also adjusted the lagged sales parameter in
models with a data interval/aggregation bias. He found that the average carry-over
effect is between 6 and 9 months. Similar conclusions are based on a meta-analysis
performed by Assmus et al. (1984) and correspond with the findings of Lodish et al.
(1995) and Sethuraman et al. (2011).

We now turn our attention to the shape of the lagged effects. A geometrically
decaying lag structure implies that a campaign in period t has its greatest effect
in the same period. This may or may not be realistic, depending, among other
things, on the periodicity of the data. For example, decreasing lagged effects might
be quite reasonable for annual or even for quarterly data. With monthly data, it is
possible that advertising will reach its peak effect after a few periods. For example,
in their study of the dynamic effects of a communications mix for an ethical drug,
Montgomery and Silk (1972) found that direct mail had its peak effect in the
month after the mailing. Samples and literature similarly peaked after a 1-month
lag. Journal advertising showed a peak, although a modest 1, 3 months after the
advertising appeared in the medical journals.

There are various ways of dealing with such more complex lag structures. The
most obvious way is to include a number of direct lags, and let the geometric decay
take effect after a few periods. In that case, the sales-advertising equation becomes,
for example:

qt = α+β1at +β2at−1 +β3at−2 +β4at−3 +β4λat−4 +β4λ
2at−5 + · · ·+ εt. (2.36)

Applying the Koyck transformation to (2.36), we obtain after rearranging terms:

qt = α(1−λ)+λqt−1+β1at + (β2−λβ1)at−1 (2.37)

+ (β3−λβ2)at−2 + (β4−λβ3)at−3 + εt −λεt−1

and the relation to be estimated is:

qt = α
∗ +λqt−1 +β1at +β

∗
2at−1 +β

∗
3at−2 +β

∗
4at−3 +ut (2.38)

where

α∗ = α(1−λ)
β∗� = β� −λβ�−1 , � = 2,3,4

ut = εt −λεt−1.

Equation (2.38) contains six parameters. Their estimates suffice to obtain estimates
of the parameters in the original model (2.37). Although this formulation allows for
more flexibility in the nature of lagged effects, it reintroduces some of the difficulties
(loss of degrees of freedom and multicollinearity) which we want to avoid.
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The combination of direct lags with geometrically declining lags has been
applied by a number of authors, see e.g. Doyle and Saunders (1985), Leeflang et al.
(1992), or Van Heerde et al. (2000). See for an advanced approach that accounts for
joint lagged effects of several advertising themes: Bruce (2008).

Almon (1965) proposed a method to estimate a model with finite distributed
lags. The relation between the β�’s (� = 1, . . . , s) in (2.29) and the lag length is
approximated by a continuous function of the form:

β� = φ0 +φ1�+φ2�
2 + · · ·+φr�

r, r ≤ s. (2.39)

This equation is a polynomial in �, and if r is strictly less than s, the use of this
approximation imposes restrictions on β�, � = 1, . . . , s. The parameters φi may be
estimated by substituting (2.39) into (2.29). This model has been widely used in
applied econometric work because of the flexibility of the polynomial lag shape, the
decrease in the number of parameters that must be estimated, the ease of estimation,
and the reduction in multicollinearity. In marketing this model has been applied by
Van Heerde et al. (2000) to model dynamic effects of promotions.

In the marketing literature several other distributed lag models have been
developed and applied. We discuss two of them. We take as a starting point a simple
linear additive model, which is in this context also referred to as the current-effects
model:

qt = α+βat +ut. (2.40)

In the current-effects model it is assumed that the disturbances ut are not corre-
lated with the disturbances in preceding periods. If ut is correlated with earlier
disturbances, for example, with ut−1 for t = 1,2, . . ., the residuals are said to be
autocorrelated. In that case we have:

ut = ρut−1 + εt (2.41)

where

ρ = the autocorrelation coefficient, ρ � 0, and

εt = an error term, which is not autocorrelated.

Subtracting ρqt−1 from (2.40), we get:

qt −ρqt−1 = α(1−ρ)+β(at−ρat−1)+ εt (2.42)

which is a linear relationship between a change in the level of demand and a change
in the level of advertising expenditure. If there is no autocorrelation and ρ ≈ 0,
(2.42) reduces to (2.40). However if ρ � 0 we have a dynamic specification. This
autoregressive current-effects model (2.42) is often used by researchers (Kanetkar
et al. 1986).
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Another well-known dynamic model is the partial adjustment model which is
specified as follows:

qt = α+βat +λqt−1 + εt. (2.43)

The partial-adjustment model (2.43) and the geometric lag model (2.35) have similar
structures, which indicates that it may be very difficult to discriminate the different
distributed lag models. Testing procedures have been proposed by e.g. Bass and
Clarke (1972) and Weiss and Windal (1980). We return to these tests in Sects. 5.6.2
and 5.6.3.

2.8.3 Modeling Lagged Effects: Several Explanatory Variables

So far, we have just considered the dynamics of advertising. In this subsection we
discuss how lagged effects of multiple marketing variables can be included in a
sales model. As a start, price (pt) and distribution (dt) can be included as additional
variables in Eq. (2.35):

qt = α
∗+λqt−1 +β1at +β2 pt +β3dt +ut. (2.44)

This may seem quite plausible. It implies, however, that price, distribution and
advertising all have the same decay in their lagged effects. This can be seen by
realizing that Eq. (2.44) was obtained by applying the Koyck transformation to:

qt = α+β1at +β1λat−1 +β1λ
2at−2 + · · ·+β2 pt +β2λpt−1 (2.45)

+β2λ
2 pt−2 + · · ·+β3dt +β3λdt−1 +β3λ

2dt−2 + · · ·+ εt,

which shows that for all three variables in the model, the effect of the first lag equals
λ× (immediate effect), the effect of the second lag equals λ2× (immediate effect),
and so on.

To state that price and advertising have the same lag structure is a heroic
assumption. It is generally accepted that price responses occur much faster. Suppose
that price and advertising are the only explanatory variables, and that both follow a
geometrically declining lag structure, but with different parameters λ1 and λ2. The
basic model becomes:

qt = α+β1at +β1λ1at−1 +β1λ
2
1at−2 + · · · (2.46)

+β2 pt +β2λ2 pt−1 +β2λ
2
2 pt−2 + · · ·+ εt.
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The model transformation now requires two steps. First, Eq. (2.46) is lagged one
period, multiplied by λ1 and subtracted from (2.46), yielding:

qt −λ1qt−1 = (1−λ1)α+β1at +β2 pt (2.47)

+ (λ2−λ1)(β2 pt−1 +λ2β2 pt−2 + · · ·)+ εt−λ1εt−1.

Now (2.47) is lagged one period, multiplied by λ2, and subtracted from (2.47). After
rearranging terms, one obtains:

qt = (1−λ1)(1−λ2)α+β1(at −λ2at−1)+ (λ2−λ1)β2 pt−1 (2.48)

+ β2(pt −λ1 pt−1)+ (λ1 +λ2)qt−1−λ1λ2qt−2 +ut

with

ut = εt − (λ1 +λ2)εt−1 +λ1λ2εt−2.

We observe that (2.48) is not only much more complex than (2.44), but is also
nonlinear in the parameters. The unknown parameters λ1 and λ2 appear both in
the relation and in the expression for the disturbance terms (ut).

In a number of models (advertising) dynamics are modeled through the creation
of an advertising goodwill variable.16 This variable is a weighted average of
advertising expenditure over time. Hence it is assumed that advertising expenditures
create a (goodwill) stock variable which grows and declines (“depreciates”) over
time. Such a variable is also called a stock variable. The stock variable can be
defined as:

mesit = ρdmesi,t−1 +mef it (2.49)

where

mesit = marketing expenditure stock of brand i at t,

mef it = marketing expenditure flow of i at t, i.e. the marketing expenditures in t,

ρd = the discount rate.

The discount rate usually is determined by a grid search. In a study performed
by Leeflang and Wieringa (2010) of the Dutch market of pharmaceuticals, a value
of 0.55 was used.

16See, for example, Rizzo (1999); Dubé et al. (2005); Windmeijer et al. (2005) and Doganoglu and
Klapper (2006).
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2.8.4 Lead Effects

It is possible to extend marketing dynamics to include anticipations as well as carry-
over effects. Leads occur when customers and/or competitors anticipate a marketing
action and adjust their behavior before the action takes place. Consumers may
expect prices to fall or a new product to be introduced. In these cases they may
hold back purchases until the anticipated event occurs.

Consumers may also decelerate their purchases in anticipation of a promotion.
This produces a pre-promotion dip. This theory has some support in the literature
(Krishna 1992) and has been confirmed empirically in studies by Van Heerde et al.
(2000) and Nies et al. (2014). Leads may also occur because sales persons delay
sales if they anticipate or know that selling commissions are to rise (Doyle and
Saunders 1985). Lead effects can be modeled in a similar manner as lagged effects,
at least in principle. As an example we specify

qt = α+β1 pt +β2 pt+1 +β3 pt+2 + εt (2.50)

where

pt = price per unit in period t,and

pt+1, pt+2 = the announced prices or expected prices one- and two

periods ahead, respectively.

If consumers expect price increases in t+1 and t+2, β2,β3 > 0, i.e.: positive leads.
Anticipation of price reductions result in negative leads, where the parameters are
expected to have the same signs, i.e.: β2,β3 > 0. Negative leads were found by Doyle
and Saunders (1985) and Van Heerde et al. (2000).

Lead and lag effects can also be combined: the two preceding subsections offer
several ways to extend Eq. (2.50) so that it also accommodates lagged effects.

Van Heerde et al. (2000) applied three different distributed lead and lag structures
to nine brands in the product categories: tuna fish and toilet tissue. Within each of
three models they varied lead and lag lengths as well as the parameter describing
the lag structure. They find that:

• Significant dynamic promotion effects exist and that these effects are substantial:
between 4 and 25 %. In another study, Van Heerde et al. (2004) found that one
third of the peak sales that result from a promotion are due to anticipation (leads)
and stockpiling (lags) effects.

• Given the complexity of dynamic sales promotion effects, it is advisable to use a
flexible specification such as the unrestricted model or the Almon model.

The selection of a dynamic model, in principle, can be based on theoretical
criteria (size and development of lead/lagged effects over time) and statistical tests.
We return to these tests in Chap. 5.
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We do not specify a dynamic model for the Verhouten case here, but refer to
Volume II of this book, where we will discuss several examples of dynamic model
specifications.
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Chapter 3
Data

3.1 Introduction

Decision making in marketing must be based on appropriate, high quality data.
Revolutionary developments in data collection during the last few decades offer
many opportunities for advanced model building and the application of advanced
research methods. For example, with the scanning revolution, the Internet invasion
(Little 2004) and the “Big Data” era (see Pauwels 2014), we observed exponential
increases in the availability of data.

Ideally, model development should precede data collection (Sect. 1.4). How-
ever, the availability of “good” data is a prerequisite for meaningful, and hence
implementable, model building. For this reason data considerations affects model
development in many practical cases. In this chapter we focus on various data issues
before we turn to specification.

In most cases marketing managers have access to an abundance of data from
different sources such as scanner-based data, Internet data and individual customer
data. Not all sources are equally structured and (directly) suitable for modeling
purposes. In Sect. 3.2 we discuss the most important data structures, and in Sect. 3.3
we explain what we mean by “good” data.

The model building step that follows specification is estimation. An important
estimation issue is the selection of an appropriate estimation technique. In Sect. 3.4
we discuss how the choice for a certain estimation methodology depends on data
characteristics.

In Sect. 3.5, we discuss well-known data sources, including scanner data, for the
measurement of performance indicators and variables that influence performance.
We also spend some attention to “Big Data” and subjective data.
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3.2 Data Structures

Business data sets come in a variety of types. The most important data structures
are:

• cross-sectional data;
• time series data;
• pooled cross-sectional data, and
• panel data.

A cross-sectional data set consists of a sample of customers, firms, brands,
regions or other units taken at a single point in time. A common assumption in
analyzing cross-sectional data is that they were obtained by random sampling from
the underlying population. As a consequence, cross-sectional data typically do not
have a natural ordering. In many practical cases however, this assumption is violated
and researchers are then confronted with a sample selection problem.

Time series data sets consist of observations on a variable or several variables
over time that are measured for a single unit. One feature that distinguishes time
series data from cross-sectional data is that observations of a time series have a
natural, temporal, ordering. In many cases time series observations are related to
earlier observations and are not independent across time i.e., they exhibit serial
correlation.

Data sets may have both cross-sectional and time series features. For example, a
researcher has access on cross-sectional data that refer to January 2013 and January
2014. A pooled cross section is formed by combining the observations of these
months, which increases the sample size.

A panel data (or longitudinal data) set consists of a time series of each cross-
sectional member in the data set (Wooldridge 2012, p. 10). The key feature of panel
data that distinguishes them from pooled cross-sectional data is that the same cross-
sectional units are followed over a given time period.

Depending on the data structure, the marketing model builder faces different
modeling challenges, such as the sample selection problem in cross-sectional
models, the presence of serial correlation in time series analysis (Sect. 5.2.3) and
the treatment of heterogeneity in units in (pooled) cross-sectional and panel data
(Sect. 2.7, Sect. 4.5 and Chap. 8).

3.3 “Good Data”

Even for a very experienced and highly skilled model builder, the quality of the
insights that are generated by an empirical modeling exercise depends strongly on
the data that is used to calibrate the model. Data sets should contain good data.
“Good” data encompasses availability, quality, variability and quantity (see also
Vriens 2012, pp. 28–29).
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3.3.1 Availability

The first requirement for “good” data is their availability. Most companies will have
an internal accounting department that should be able to deliver data on a firm’s
own actions and performance. Thus, in principle, it should be relatively easy to
obtain data on variables such as unit sales, revenues, prices of the firm’s products,
advertising expenditures, wholesale and retail margins, promotions and personal
selling expenditures, and market coverage. The availability of such data does not
imply that the data are directly usable. We return to this issue when we discuss data
quality.

Other data might be more difficult to construct or to extract from company data
bases. Moreover, many marketing models need to incorporate information from
other firms, such as marketing actions for competitive products. For these reasons it
is common for managers to purchase data, gathered regularly or incidentally, from
market research firms. IRI, GfK and ACNielsen provide market feedback reports
on a large number of product categories gathered through scanner equipment in
supermarkets, drugstores, etc. Even then the available data may be incomplete.
Incompleteness in the form of missing predictors is a problem because the estimated
effects of the available variables will be biased (if there is covariation between
included and excluded predictor variables).

Depending on the precise purpose of the model-building effort it may be useful
to gather additional data. This leads to the question of how to properly combine data
from different data sources. For example, a researcher might want to combine
household-level scanner-based sales data with household-level media coverage
data. These data are sometimes available from a single source, but quite often
different data types are collected by different market research agencies. Initially,
ad hoc procedures were used to match households from different data bases on
the basis of similarity in (often demographic) characteristics. A similar problem
arises when a researcher wants to compare the effect of classical (mass) media
and social media.1 Nowadays, data-fusion techniques are available that, based on
multiple imputations of the missing data, yield fused data sets with known statistical
properties (Kamakura and Wedel 1997; McDonnell Feit et al. 2013; Qian and Xie
2014).

Generally speaking, data on industrial markets are harder to obtain than con-
sumer data. Systematic records are rarely kept by individual firms. Although
systematic data gathering by commercial market research agencies is growing, this
is typically limited to larger markets (such as electronic components). Customiza-
tion in industrial markets complicates the problem: products, prices and services
are often customer specific and usually not publicly available, and the actions of
competitors are often unknown (Brand and Leeflang 1994).

1See, for example, Stephen and Galak (2012); Pauwels et al. (2013); De Vries et al. (2014).
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More recently, we observe that researchers study dyadic relationships between
firms (in industrial markets). Examples are studies by Wuyts et al. (2004), Wuyts
(2007), and Van den Bulte and Wuyts (2007).

3.3.2 Quality

The quality of a data set is determined by the validity and the reliability of its data
measures. A measure is valid if it measures what it is supposed to measure. Even if a
measure is valid it will in many cases not be possible to measure it without error. The
degree to which a measure is subject to random error is assessed by its reliability.
Errors in the measurement of predictor variables can cause their estimated effects
to be biased. It is in general quite difficult to define reliable and valid measures
for variables such as “product quality” and “the value of a brand” (brand equity).2

Much effort has been put into the development of appropriate measurement scales.
Handbooks of validated scales are available that inform market research practice
(Bearden et al. 2011). The validity of data used to measure the effectiveness of
such variables on sales or profit is, generally speaking, not high. But the validity of
directly observable data available from, say, the accounting department, may also be
low. Furthermore, data obtained from panels and surveys are subject to biases and
sampling error.

3.3.3 Variability

If a variable shows no variation we cannot measure its impact on the criterion
variable. Generally speaking, the effect of a predictor variable will be estimated
more precisely when the amount of sample variation is larger, where “precision” is
inversely related to the “estimated standard error” or (statistical) unreliability of the
effect estimate.

For models with multiple predictor variables, the “goodness” of the data also
depends on the amount of covariation between the predictors. The precision of
the estimated effect of a predictor variable usually decreases with the amount of
covariation with other predictors.

The variability of marketing mix variables may be less than what is needed for
the estimation of their effects. For example, due to price competition the price range
observed in a market may be low, or the range of variation in a product attribute such
as package size is limited. In such cases the revealed preference data (choices) in
the market place may be supplemented with other data. Experiments may be used in
which desired variation in marketing mix elements is induced. A powerful technique

2See for an overview of brand equity measurement Farris et al. (2006).
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is conjoint choice experimentation in which product profiles are experimentally
designed, and choices among them are made by respondents. Models are available
to integrate such stated preference data with revealed preference data.

Sometimes there are multiple sources of variation that can be used to infer
relations. For example, one may have access to time series data covering 52 weeks
on 60 stores. In such a case it is suggested to use the time series and cross-sectional
variation simultaneously and use parameterization methods that are appropriate for
panel data.

3.3.4 Quantity

The final requirement for “good” data is quantity. If a probability sample of
observations is used to estimate a population mean, the sample size influences the
precision of the estimate. However, if the interest focuses on the relation between
variables, it is the amount of variation in a predictor (as well as covariation between
predictors) that influences the precision of estimated effects.

The quantity of observations is, however, a critical factor for the joint estimation
of all model parameters. At the very bare minimum, the number of observations
should exceed the number of model parameters. This is a necessary condition
that needs to be met, otherwise it is impossible to estimate all parameters. Many
researchers suggest that the quantity (number of observations) should be larger than
five times the number of parameters. However, this is only a general rule of thumb,
and the required number of observations to obtain a given precision depends, as we
argued above, on the amount of variation in and the amount of covariation between
the predictor variables.

Another concern regarding the number of observations is that it is useful
to reserve some data for validation purposes (see Sect. 5.7). Model building is
an iterative process, and if one data set is used to estimate several alternative
specifications before one specification is selected, then the usual statistical criteria
are no longer valid. This type of estimation is often referred to as pretest estimation
(Leamer 1978). If the purpose of the model building is to test theories, the final
specification should be validated on one or more new data sets. These other
data sets could represent different product categories, different regions, different
time periods, etc. If the model results are intended to be the basis for marketing
decisions, an appropriate test is whether the model predictions, conditional upon
specific marketing actions, outperform predictions from a manager (testing the
model against managerial judgment). For more on validation, see Chap. 5.

If the initial quantity of data is inadequate for model estimation, the model builder
can consider constrained estimation methods. For example, suppose one wants to
estimate the demand for one brand as a function of six marketing variables. If there
are nine other brands that belong to the same product category, and it is desirable
to have cross-brand effects for all brands and all variables, then the number of
marketing variable parameters is 60. Obviously 1 year of weekly data is insufficient
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if the data are limited to time-series observations for one cross section. One solution
to the problem is to obtain time-series data for other cross sections. In that case the
issue of pooling cross-sectional and time-series variation has to be considered (see
Sects. 4.5 and 5.4). An alternative solution is to employ constrained estimation. For
example, one could force some of the other brands to have zero cross effects by
eliminating those brands’ variables altogether. Or one could combine some brands
and force these parameters to be the same for brands belonging to common subsets.

3.4 Data Characteristics and Model Choice

In this section we focus on the characteristics of the variable that the model aims
to explain: the dependent variable. In many cases, this is a performance measure
such as sales, purchase intention or the brands that were bought by a certain set
of customers. The scale of the dependent variable determines which models and
estimation techniques are appropriate for analyzing these variables. Table 3.1, which
is taken from Franses and Paap (2001), presents an overview.

An example of a typical continuous dependent variable is sales, measured in
dollars or in Euros. In many cases sales are measured in units and the corresponding
variable is then strictly speaking not a continuous variable, but a count variable.
The regression model is typically also used in such situations because the error of
applying a model for continuous data to count data is fairly small, provided the
numbers are reasonably large. In cases where sales counts are small, as can be the
case in B2B marketing situations, the researcher should use other models (such as
Poisson models; see Sect. 8.3).

An example of a binomial dependent variable is the situation where we are
modeling consumers’ decisions to purchase a product or not. If we consider the
choice between more than two brands, such as A, B and C, we encounter an
unordered multinomial variable. If we only consider two brands, A and B, the
dependent variable takes only two values and is again a binomial variable. If we
measure the quality of a brand on a so-called Likert scale which runs from 1 to 7,
the corresponding (dependent) variable is an ordered multinomial variable.

Censoring and truncation occur when not all values of a variable are recorded. An
example of a censored variable is the situation when we are measuring relationship
duration for a cohort of customers that signed a contract with a company 10 years
ago. For the customers that terminated their contract a relationship duration is
recorded. For those customers where the relation is still ongoing, we do not know
the precise relationship duration, but we know is at least 10 years: this variable is
(right) censored at 10. An example of a truncated variable is the yearly amount of
miles traveled by customers of an airline company that have attained the platinum
status in their frequent flyer program, which requires 80,000 miles. This variable is
said to be (left) truncated at a value of 80,000. The difference between censoring
and truncation is that with censoring we know how many cases are outside the
threshold(s), whereas this is not the case with truncated data.
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An example of a duration variable is the time that elapses between two
purchases: the interpurchase time.

We discuss models for continuous dependent variables in Chaps. 4–7 and in
Chap. 9. Chapter 8 discusses models where the dependent variable is binomial or
multinomial. Models for truncated or censored data and models for duration data
are also briefly discussed in Chap. 8

Table 3.1 Types of
dependent variables and
appropriate
models/estimation techniques

Dependent variable Name of model

Continuous Standard Linear Regression model

Binomial Binomial Logit/Probit model

Unordered multinomial Multinomial Logit/Probit model

Conditional Logit/Probit model

Nested Logit model

Ordered multinomial Ordered Logit/Probit model

Truncated/censored Truncated Regression model

Censored Regression (Tobit) model

Duration Proportional Hazard model

Accelerated Lifetime model

Source: Franses and Paap (2001, p. 27)

3.5 Data Sources

3.5.1 Introduction

Decision making in marketing must be based on profound data. Revolutionary
developments in data collection (see Table 3.2) offer many opportunities for
advanced model building and the application of advanced research methods. For
example, the scanning revolution and Internet invasion (Little 2004) prompted
exponential increases in the availability of data. Advances in data collection and
store technologies have given rise to the customer data intermediary (CDI), a
firm that collects customer data to offer customer-specific marketing services to
marketers; see Pancras and Sudhir (2007). Access to and use of Internet data,
social media, and data from customer relationship management (CRM) systems has
multiplied this increase exponentially.

Before we discuss the most important data sources in more detail,3 we spent some
attention to the metrics/data that are used in marketing practice. Bendle et al. (2010)
demonstrated that financial metrics are widely regarded as the most useful; of the

3For a more extensive discussion see e.g. Malhotra (2010, Chapter 4) and the surveys by the
American Marketing Association which are known as the Honomichl Global Top 25.
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Table 3.2 Data availability

1950:

• Store-level data (bimonthly ACNielsen data)
• (Relatively small and non-representative) samples of consumer data
• More representative and larger samples (Attwood statistics, GfK) (Leeflang and

Olivier 1985)
• Ad hoc surveys (cross-sectional and time-series data)

1985:

• The scanning revolution (Bucklin and Gupta 1999)

– Consumer panel data
– Store-level data
– Cross-sectional and time-series data (panel data)
– Daily data

1995:

• Internet revolution

– Internet data (special issue Marketing Science, vol. 19, no. 1)
– Online publications and offline purchases, combined with website behavior

(Pauwels et al. 2011)
– Search engines (Telang et al. 2004)
– Recommendation systems (Ansari et al. 2000)
– Auctions (Yao and Mela 2008)
– Web-based marketing research (Bucklin and Sismeiro 2009)

2000:

• Databases constructed by individual firms (CRM systems) (Blattberg et al. 2008)

2008:

• Data from social media (e.g. Facebook, LinkedIn, Twitter, Weblogs; Van Laer
and De Ruyter 2010)

Source: Leeflang (2011, p. 81)

metrics that are usually considered marketing metrics, only customer satisfaction
(71 %) and loyalty (69 %) make the top ten list, according to senior managers. In
addition, Verhoef et al. (2009) study the data and metrics stored in the databases
of 183 Dutch firms and find that many firms collect data systematically over time,
a finding that appears clear in comparison with the metrics collected in a previous
survey (Verhoef et al. 2002), as Table 3.3 illustrates. Yet, data collection does not
necessitate that the variables are related formally in marketing decision models.
Verhoef et al. (2009) conclude that only about 20 % of all firms perform statistical
analyses using the data they collect. However, the trends in the types of analyses in
Table 3.4 imply that advanced techniques have gained in importance over time.
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3.5.2 Classification

A well-known classification of data distinguishes primary and secondary data.
Primary data are collected by a researcher for the sole purpose of addressing a
specific problem at hand. Secondary data are data that were gathered for purposes
other than the problem at hand (Malhotra 2010, p. 132). The models that we discuss
in this monograph usually utilize secondary data.

Table 3.3 Data availability:
data stored in customer
databases (percentage of
firms)

2003 2008

Type of product purchased 68 81

Demographics 34 56

Lifestyle data 17 40

Number of offers (outbound actions) 62 72

Share of wallet 7 34

Interaction information 42 76

Customer satisfaction data 12 60

Sources: Based on Verhoef et al. (2002, 2009)

Table 3.4 Use of statistical
techniques for segmentation
and forecasting (percentage
of firms)

2003 2008

Genetic algorithms 3 35

Neural networks 5 44

Factor analyses 19 56

Cluster analyses 32 67

Discriminant analyses 13 43

Logit/probit analyses 6 44

Linear regression analyses 33 60

CHAIN/CART 17 54

Cross tabulations 54 65

RFM analyses 42 52

Sources: Based on Verhoef et al. (2002,
2009)

Secondary data typically are easily accessible, relatively inexpensive, and
quickly obtained. Secondary data may be further classified into external and internal
data. Internal data are generated within the organization for which a model is
developed; for example, transactional data that are stored in a company’s CRM
system. External data are generated by sources outside the organization. Examples
are data provided by a country’s national bureau of statistics and syndicated sources
of data. The latter are provided by (market/marketing) research companies that
collect and sell common pools of data. These companies primarily collect revealed
preference data. Revealed preference data reflect choices and are measured in
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terms of sales and market shares. Sales and market shares and a (sub)set of causal
variables can be measured at, at least, three levels in the marketing channel, viz:

• at the household level, for example, through a household panel whose purchases
are electronically recorded;

• at the retail level by means of a store audit or electronic (scanner-based)
registration of activities;

• at the manufacturer level.

We discuss internal data in Sect. 3.5.3. Then we turn to external data, where
we concentrate on data from syndicated services (Sect. 3.5.4). We discuss the
advantages and disadvantages of household panel data and store-level data in
Sect. 3.5.5. Finally, we spend attention to “Big Data” (Sect. 3.5.6) and subjective
data (Sect. 3.5.7)

3.5.3 Internal Data

Companies store an abundance of data that are recorded for various purposes. For
example, a company’s call center may record the number complaints and qualitative
information about the nature of the complaints as well as the follow-up action. The
financial department may store data about prices, margins and paying behavior of
the customers. The marketing department may store outcomes of market research
studies and details of multi-media promotional campaigns. The sales department
may store the purchasing history of individual customers as well as the amount of
discount each customer received.

In the ideal situation, all these data are readily available to a model builder and
are easily and real-time accessible via a data warehouse.

Some companies indeed have organized their data management process very well
and are able to extract up to several hundreds of variables about the business at any
desired aggregation level very easily. However, in many other situations, this is not
the case, and it typically takes a lot of effort to (1) gain access to all different data
sources, (2) link data from different sources together, and (3) clean the data and put
it in such a format that it is usable for analysis.

Most companies gather (a subset of) the following types of internal variables:

1. Information on key performance indicators, such as:

• sales (Money/units);
• Recency (time since most recent visit/purchase);
• Frequency (number of visits/purchases)
• loyalty/satisfaction measures (e.g. NPS scores);
• conversion rates;
• cross-selling rates;
• Customer Lifetime Value (CLV).4

4See also Sect. 10.5.4 (Tables 10.4 and 10.5).
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2. Information about possible explanatory variables such as:

• number and/or quality of inbound and outbound contacts;
• prices paid;
• discounts given;
• promotions received;
• use of loyalty cards;
• mailings sent, etc.

3. Information about customer characteristics:

• demographics
• interests (lifestyle data)
• activities (memberships etc.)

These databases are in many cases complemented with external data (Kotler and
Armstrong, 2012, p. 123). For example, many companies buy customer lifestyle
data from syndicated data sources to further complete their customer view.

In the past few years many models have been developed in the area of database
marketing that deal with customer acquisition, customer retention, and customer
development. We discuss these models in Chap. 9. For a survey we refer to Bijmolt
et al. (2010).

3.5.4 External Data

Traditionally, and in some countries this is still the default approach, information
from households showing repeat purchase and brand switching behavior is obtained
through diary panels. Such a panel consists of families who use a preprinted diary in
which they record their weekly purchases in specified product categories. Typically,
the item (brand name, type of product, weight or quantity, kind of package), number
of units and price along with store information are reported for each purchase. The
families are geographically dispersed, while the panel is demographically balanced
so the data can be projected to the national level in a given country. Families
are recruited so that the composition of the panel mirrors the population as much
as possible on specified characteristics. Panel members are compensated for their
participation, often with gifts. Families are dropped from the panel at their request,
if they fail to return their diaries, or if their records prove to be unreliable. The
diaries are returned weekly. Clients of diary panel services use the data to assess
among other things: the size of the market for a product, the proportion of families
buying over time, the amount purchased per household, brand share over time, the
frequency of purchase and amount purchased per transaction, average price paid,
etc. In some panels, the members are asked to record whether purchases are on
promotion.
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3.5.4.1 Store (Retail) Level

For many decades, the ACNielsen dominated the industry of systematic data
gathering at the retail level for the purpose of tracking brand performance. The
bimonthly audit data, still available in many countries all over the world, are based
on national probability samples. Auditors visit the same stores every 2 months.
During the visit they take a complete inventory of all items covered (for the product
categories for which manufacturers are clients), and they record all invoices since
the previous visit. Total purchases by the retailer plus the reduction in inventory
provide the revenue (based on the shelf price prevailing at the time of the audit)
and unit sales information for each item per store. Other information collected
includes out-of-stock conditions (at the time of the audit), and certain promotional
activities such as premiums, bonus packs, sampling and featuring. A probability
sample of store data, weighted by certain store characteristics and previous period
results, produces highly accurate estimates of brand performance at the national
level. However, as the coverage of purchases by electronic means increases in a
country, the bimonthly audit service disappears.

Another example of a retail panel is Info Scan Retail Tracking. Info Scan Retail
Tracking, a service from IRI, provides manufacturers and retailers with access
to detailed information on sales, market share, distribution, pricing, and provides
access to a wide variety of retail channels and accounts. For other product categories
not covered by ACNielsen, Audits and Surveys’ National Total Market Audit
provides data in some countries.

3.5.4.2 Manufacturer Level

The manufacturer’s internal accounting system can provide “shipped sales” or
“ex-factory sales”. To measure household purchases, these data have to be corrected
for changes in inventory at the wholesale and retail levels. Inventory changes at
the retail level are obtained through store audits; inventory changes at the wholesale
level are obtained from sales representatives who take on the role of intelligence
gatherers or from wholesale audits. These corrections of the “ex-factory” sales
are performed a couple of times per year. The ex-factory sales of a manufacturer’s
own brand can be combined with the corresponding figures of other brands in
a given product category available from an independent institute. In that way,
estimates of total industry sales, industry sales per segment and brands’ market
shares are obtained.

3.5.4.3 Evaluation

The precision of the data from each of these sources is not guaranteed. Yet, if
household survey- or store audit data are used for marketing decisions, a certain
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rigor must be imposed. Problems in this realm have been identified by, for example,
Shoemaker and Pringle (1980); Leeflang and Olivier (1985) and Plat (1988).

Leeflang and Olivier observed substantial differences for measures of sales,
market share and price between the different levels in the marketing channel that are
distinguished in Sect. 3.5.2. Nonresponse bias is a major reason for problems with
sample survey data. For example, households who buy relatively inexpensive brands
have a higher response rate than households who buy the more expensive brands.
The nonresponse bias in store audit data results from the refusal of some retailers
such as discounters, to cooperate. Leeflang and Olivier (1985) demonstrated that the
data bias leads to large differences in marketing decisions between consumer panel
data and store audit data.

3.5.4.4 Scanner Data

The availability of data for parameterization of marketing models has increased
during the past decade through adoption of scanners by retailers.5 In the early 1970s
laser technology in conjunction with small computers first enabled retailers in the
US to record electronically or “scan” the purchases made in their stores. Since
then, after a period of slow growth, the adoption of scanning has increased rapidly,
and scanner data have become available for decision support in marketing at many
organizations. Although scanning was originally used by retailers simply as a labor-
and cost-saving device, the computerized accumulation of point-of-sale information
puts a library of accurate and detailed purchase records at the disposal of many
marketing researchers and marketing managers.

Several years after the first scanners were installed in the US, scanning was
introduced in Europe. To coordinate the encoding of products and the exchange of
data, several organizations in the European countries established clearing institutes
to amalgamate the data of affiliated retailers. In addition, systems for automated
transmission of transaction data were developed, and the possibilities for natural
electronic funds transfer systems (EFTS) were studied.

Although the original intent for scanner data collected by market research firms
was to aid brand managers, retailers increasingly recognize opportunities too. For
example, scanner data analysis can be the basis for space allocation of items in
a product category to maximize store profits. To be able to do this for as many
stores equipped with scanners as possible, both ACNielsen and IRI have expanded
the number of stores from which they obtain (purchase) data. And since the sales
teams of the manufacturers want to maximize the space for the brands they have
responsibility for, the manufacturers are also interested in having access to data on
all scanner-based stores. Thus, the market research firms now favor having census
of all scanner-equipped retailers. At the same time, manufacturers and retailers have
an increasing need to obtain solutions that maximize their joint profits.

5For a more extensive discussion see Bucklin and Gupta (1999).
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In scanner panels, each household may use an ID-card similar to a credit card.
Panel members are asked to present their card at the checkout counter each time they
shop. This allows each panel member’s ID-number to be recorded next to the set of
items purchased by the member. Such data from scanner panels are supplied by IRI
to clients through its Infoscan Service. Behavior Scan (from IRI) is a household
scanner panel designed to support controlled tests of new products or advertising
campaigns. An alternative to the ID card is to ask households to scan at home or at
the store and to identify the store in which the purchases were made. This is done
by ACNielsen and GfK (Consumerscan and Microscan) both of which supply each
participating household with a wand.

The data from scanning-based store samples are known as “volume tracking
data”. The data provide information on purchases by brand, size, flavor or formula-
tion (Stock-Keeping Unit-level: SKU) and are based on sales data collected from the
checkout scanner tapes. Volume tracking data are supplied through Infoscan (IRI),
Scantrack (ACNielsen), Nabscan (The Newspaper Advertising Bureau) and TRIM
(Tele-Research, Inc.). The following measures are reported:

• volumes (at the SKU-level);
• revenues;
• actual prices;
• ACV = the All Commodity Volume of the store or store revenue;
• ACV Selling = the ACV for an item or group of items reported only in stores

with some movement of that item;
• baseline sales: an estimate of unit sales under non-promoted conditions.

Also, regular prices are estimated to make a distinction between those prices and
promotional prices which reflect temporary discounts.

These descriptions indicate how data on relevant decision variables are captured.
In addition the promotional environment in a store is measured through the
separate collection of information on displays and features. Merchandising is a
generic name for promotional activity conducted by a store to increase sales (Little
1998). The market research companies report four mutually exclusive types of
“merchandising”: (1) display only, (2) feature only, (3) display and feature together,
and (4) unsupported price cuts. Several of these can be subdivided further, if desired,
for example by type of display. Most of these non-price promotional variables are
collected as zero-one measures. Measures of merchandising activity can also be
defined analogously to those for distribution.

A more advanced system consists of the combination of scanner panel data with
cable TV advertising exposure records. If all the information in a data set stems
from one source, such a data set is referred to as single-source data. Single-source
data provide integrated information on household purchases, media exposure, and
other characteristics, along with information on marketing variables such as price,
promotion and in-store marketing efforts.
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3.5.4.5 HandScan Panels

A key issue with retail panel data is that it requires the explicit cooperation from the
retailer, which is not always guaranteed. Thus, panel retail data misses a growing
portion of the grocery retail market. Also, it misses purchases from non-grocery
retailers such as drug stores and gasoline stations. To address these issues, market
research companies such as GfK created consumer hand scan panels. Participating
consumers scan all receipts with a hand scanner, allowing researchers to uncover
purchases and prices at all visited retailers, drug stores and gasoline stations.

As an example of how such data are used for modeling, Van Heerde et al. (2008)
study how the Dutch price war changed consumer shopping patterns and retailer
profits. Their GfK Benelux panel consists of 4,400 households, which represents
a stratified national sample. The panel also provides household perceptions of
retailers, such as their price image and product quality.

3.5.4.6 Causal Data

Price-, promotion-, and distribution data are natural components of the data
collection methods just discussed; however, data on manufacturer advertising and
product quality are not. There are, however, agencies that specialize in the collection
of advertising expenditures, such as Leading National Advertisers (LNA) in
the US. In many models predictor variables such as gross rating points (GRP’s)
on TV-ratings are used. These data are collected, for example, by Nielsen (Nielsen
Media Research6).

In most models discussed in this monograph, the fundamental unit of analysis is
the brand. Given the wide range of assortments offered in many product categories,
the brand is a product line comprising several Stock-Keeping Units (SKU’s). Most
SKU’s can be described in terms of a few physical characteristics to distinguish the
items. Examples are SKU-attributes such as brand name, package size, “formula”,
flavor, etc. Marketing research firms use several criteria7 to determine what can be
treated as an SKU-attribute: each attribute must be recognizable by consumers in
an objective manner (i.e. physically distinguishable), the variation in each attribute
across SKU’s must be discrete, and each attribute must be applicable to every SKU.

3.5.4.7 Other Data Inputs

Other data inputs refer to environmental variables such as size and age distribution
of the population, temperature, and macroeconomic variables such as gross national

6See, for applications, Bass et al. (2007); Chessa and Murre (2007).
7We closely follow Fader and Hardie (1996).
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product, per capita income and employment.8 One can also use stated preferences
and other subjective consumer judgments.

Measures of sales, “merchandising”, distribution, etc. can be defined at different
levels of aggregation with respect to (groups of) stores, regions, time periods, and
products. Little (1998) emphasizes that to be most useful, these measures should
have parallel and consistent meanings across the different levels. He also suggests a
class of integrated measures that start with information routinely provided by data
suppliers. The information is first decomposed and then aggregated analytically to
refer to store groups, product lines, and multi-week periods.

Other external data refer to the use of social media and the measurement of word-
of-mouth (WOM).9 As an example we mention a study by De Vries et al. (2012)
who determine the drivers of liking and commenting. Brand fans can indicate they
like brand posts of brand fan pages or comment on them. Their study is based on
data that are obtained from social networking sites.

3.5.5 Household Data and/or Store Level Data?

There is an ongoing debate10 about the choice to use either household level scanner
panel data or store-level scanner data.11 In this subsection we discuss advantages
and disadvantages of both sources.

Panel data, which tracks purchases of a sample of households on an ongoing
basis, allows managers to explore differences in purchase behaviors and preferences
that lead to segmentation and targeting, to determine how these segments differ
in terms of demographic characteristics, to examine brand switching and loyalty
patterns, to track new product trial and repeat rates, to understand the impact
of marketing variables on purchase timing and stockpiling, and to test theories
of consumer behavior (Gupta et al. 1996). Hierarchical-level scanner panel data
also have some disadvantages. It has been shown that inferences from panel data
are usually not statistically representative (Bucklin and Gupta 1999; Gupta et al.
1996). This is particularly the case for brands with lower market shares and, more
general, for low-incidence product categories. Store-level data are widely available
to marketing managers, are used as a key resource for managerial decision making,
are less expensive for firms to acquire, and require fewer computational resources
than household-level data (Chintagunta et al. 2002). While panel and store-level
data have several complementary uses, analysts in academic and industry settings
use either type of data to predict sales response to price reductions and promotions.

8For a survey of these secondary data services, see Malhotra (2010, Chapter 4).
9See Sect. 9.7 for models that measure the impact of WOM.
10See Bucklin and Gupta (1999); Bodapati and Gupta (2004).
11This text is based on Andrews et al. (2011).
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However, it is unclear whether the predictions from demand models using panel
versus store-level scanner data are more or less biased and under what conditions.
Complicating the comparison of promotional response predictions from models
applied to panel and store-level data is the fact that different forms of consumer
heterogeneity can be captured using the two types of data. With panel data, the focus
is on heterogeneity in preferences and responses to marketing activity across house-
holds. Since store-level data lack household identifiers (Bodapati and Gupta 2004),
heterogeneity recovered by typical store-level applications is actually heterogeneity
across store visits (Besanko et al. 2003) and is often referred to as within-store
heterogeneity. Bodapati and Gupta (2004) demonstrated that parameters from a
store level model explaining within-store heterogeneity can approximate those of
panel data models explaining household heterogeneity, especially when sample
sizes are very large.

Andrews et al. (2011) show via simulation that demand models with various het-
erogeneity specifications do not produce more accurate sales response predictions
than a homogeneous demand model applied to store-level data. In another study it
is confirmed that accounting for heterogeneity in store-level models does not lead
to better predictions.12

3.5.6 Big Data

Big Data is clearly “in”: a Google search reveals over 1.5 billion hits in early 2014,
and the prestigious journal Marketing Science features a special issue on Big Data
in Marketing. The Big Data Market, at $18.6 B in 2014, is expected to grow to
$50 B by 2017. Big Data’s origins go back to 2001, when analyst Doug Laney at
META Group (now Gartner) defined data growth challenges and opportunities in
three dimensions: Volume, Variety and Velocity. Each of these poses a challenge for
managers and researchers (Taylor 2014):

• Increasing data Volume undermines our ability to process using on-hand database
management tools or traditional data processing applications. The challenges
include collection storage, search, sharing, transfer, analysis, and visualization.

• Increasing data Velocity data arriving more quickly is driving us to increasingly
faster analysis and faster action. We have to analyze the data more quickly, give
ourselves time to act on this analysis by pushing our analysis into the future, and
we have to act on our analysis more quickly.

• Increasing data Variety means that data arrives in different formats, such as
structured and unstructured. In marketing, structured data include numerical data
on consumer purchasing, participation in social media, or exposure to online
marketing. Unstructured data, such as text, audio, or even video content are freely

12Andrews et al. (2008).
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provided by consumers. Examples of applications that yield unstructured data are
eye tracking (e.g. via Google Glass), in-store video tracking (Hui et al. 2013), or
users interacting with the apps on their smart phones. Unstructured data can arise
from interactions between humans, (e.g. a sequence of Facebook messages), from
interactions between humans and machines (e.g. a Payment via Paypal) or from
interactions between machines (e.g. a GPS device that receives localization data
from a satellite). The latter is called “the Internet of Things”.

What exactly is considered “Big Data” varies depending on the capabilities of the
organization managing the set, and on the capabilities of the applications that are
traditionally used to process and analyze the data set in its domain.

“For some organizations, facing hundreds of gigabytes of data for the first time may trigger
a need to reconsider data management options. For others, it may take tens or hundreds
of terabytes before data size becomes a significant consideration” (Magoulas and Lorica
2009).

According to McKinsey (2011), Big Data can create value in five ways. First,
Big Data can make information transparent and usable at much higher frequency.
Second, analyzing more transactional data in digital helps companies expose
variability and conduct controlled experiments to improve decisions. Third, Big
Data allows ever-narrower segmentation of customers and therefore much more
precisely tailored products or services. Fourth, sophisticated analytics can substan-
tially improve the decision-making process. Finally, Big Data can guide product
and service development. For instance, manufacturers are using data obtained from
sensors embedded in products to create innovative after-sales service offerings such
as proactive maintenance (preventive measures that take place before a failure
occurs or is even noticed).

What are the implications of Big Data for marketing modelers? According to the
Marketing Science call for papers13:

“High volume implies the need for models that are scalable; high velocity opens oppor-
tunities for real-time, or virtually real-time, marketing decision making that may or may
not be automated; and high variety may require integration across disciplines with the
corresponding sensitivity to various methods and philosophies of research.”

An early example of Big Data application in marketing is Reimer et al. (2014).
The authors take on a data set of over 500,000 customers (Volume) with daily
activities (Velocity) at a digital music download provider, which captures marketing
activity in two ways (Variety): aggregate-level data on “push” mass media (e.g.,
TV, radio, print, banner ads) and customer-level data on what was “pulled” by
the customer to enable purchase (e.g., permission-based communication, coupons
claimed, newsletter emails). This combination should allow companies to profile
customers based on their responsiveness to push marketing as well as their pull
behavior. Unfortunately, realizing this potential is complicated by the sheer size of
the customer base and the lack of a modeling framework combining response-based

13Available at http://pubsonline.informs.org/page/mksc/calls-for-papers (accessed 7-April-2014).

http://pubsonline.informs.org/page/mksc/calls-for-papers
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segmentation with long-term effect estimation. Historically, modeling in marketing
has made use of either information-rich household panel data for a small number
of households or data aggregated over consumers at the store or market-level.
On the one hand, household panel data are used to infer the effects of mostly
tactical actions (price and promotions) on the consumer’s decision process (e.g.,
utility, consideration, learning, etc.) based on relatively small samples of consumers
(typically 2,000–10,000). On the other hand, time series models using aggregate
data are used to understand the short- and long-run effectiveness of aggregate-
level spending (e.g. advertising) on sales. Reimer et al. (2014) parsimoniously
combine individual-level and aggregate modeling to deal with large data sets at
mixed aggregation levels. Latent-class segmentation on customer-level classifies
thousands of consumers based on short-term pull marketing response and profiles
the segments based on other customer information.14 Next, Vector-AutoRegressive
(VAR) models for each segment reveal substantial differences in long-term sales
response to push marketing and guides a better marketing budget allocation across
marketing actions and segments.

3.5.7 Subjective Data

3.5.7.1 Justification

In the previous sections of this chapter we dealt with objective data, data that
represent observed or observable quantities. The question we address now is how
we can model markets in the absence of objective data.

In the absence of models, decision makers (DM’s) make judgments based on
their own experiences, the experience of colleagues or the habits and beliefs that are
part of an organizational culture. The judgments reflect implicit assumptions about
response parameters. Rarely, however, do the implicit parameter values remain
constant across conditions. It is especially for this reason that a “model of man”
can outperform “man”. That is, a model of repeated judgments made by one person
can better predict the actual outcomes of those very judgments.

A benefit that we propose relevant to the use of models from subjective data
is that it formalizes the process of predictions, and allows the decision maker
to diagnose their accuracy. In addition, it forces decision makers to be explicit
about how they believe variables under their control affect certain performance
measures. And, when multiple experts provide judgments, the subjective estimation
separately for each expert shows the nature and the extent of differences. If such
differences get resolved before a decision is made, then the prevailing perspective
gets disseminated. When experts cannot agree, future outcomes can serve as the
basis for a determination of relative accuracy of alternative approaches.

14Latent class segmentation techniques and VAR models are discussed in Volume II.
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The experts who supply subjective data are called assessors. The ultimate
decision makers, internal and external consultants, and sales representatives are all
potential assessors. Members of the sales force can be especially helpful when clues
about future sales levels are gathered. The sales force members are in contact with
customers, and this should allow them to provide relevant expertise. In addition,
if sales forecasts are used for the determination of sales quotas it is helpful to
have sales force members involved in the process. For example, their participation
will increase their confidence in the quotas being fair, and this will increase their
motivation to achieve the quotas. Of course, there is also the possibility that they
will try to “game” the system.15

Sometimes expertise is gathered from various stakeholders whose differences of
opinion can be vast. A broad set of stakeholders may include company executives,
dealers, distributors, suppliers, consultants, forecast experts, etc. Some or all of these
stakeholders may be asked to constitute a jury of executive opinion. When represen-
tatives of various groups of stakeholders get together, the purpose of the meeting is
for the group to come as close as possible to a single judgment. A variation on this
is the Delphi method in which experts write down their judgments in a first round.
Each expert receives summary information about the independent judgments made,
and this information can influence the experts judgments in subsequent rounds.

We now briefly discuss methods of obtaining subjective point estimates, response
functions and probability assessments.

3.5.7.2 Obtaining Subjective Estimates

We consider three categories of subjective data obtainable from a single assessor:

1. point estimation;
2. response functions;
3. probability assessments.

Subjective data consist of opinions (judgments) and intentions. See, for example,
Leeflang and Peluso (2012). Intentions are indications individuals provide about
their planned behavior or about the decisions they plan to make or the outcomes of
those decisions. Intention surveys are frequently used to forecast the demand for a
new product (Jamieson and Bass 1989). Another application involves estimation of
the impact of a possible entrant on a market (Alsem and Leeflang 1994).

Point Estimation

Point estimation provides partial information about the distribution of an unknown
quantity. Suppose we ask an expert: “What is the probability that sales will be no

15Compare Lilien and Rangaswamy (2004, pp. 130–131).
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more than one thousand units next month?” and it is 70 % in the expert’s judgment.
The expert gives us information about the cumulative distribution function of next
month’s sales, but it is only partial in the sense that we do not know the probability
that sales will be no more than, for example, five hundred units. The expert’s answer
gives us one point (A in Fig. 3.1) of a cumulative distribution function. Figure 3.1

0.7

1.0

10000
0

A

Sales

Cumulative
distribution

1

2

Fig. 3.1 Point estimate (A) and two cumulative distribution functions

shows two of the many possible functions that may pass through A. We note that
the manner in which the question is formulated is important. It has, for example,
no meaning for someone who is unfamiliar with the notion of probability. We can
provide some training, or we can change the descriptions, for example by using
“chances” or “odds” which may be more familiar terminology. If we only ask for a
point estimate, we are often looking for a measure of central tendency. The answer
may provide an estimate of the mode, the median, or mean, as illustrated below:

1. “What is your estimate of the most likely level of sales?” gives an estimate of the
mode.

2. “What level of sales do you estimate you have an even chance of reaching?”
provides an estimate of the median.

3. “What level of sales do you expect?” results in an estimate of the mean.

This type of questioning is appropriate if we desire to obtain estimates of such
quantities as market share or sales. However, the assessor will by necessity give an
estimate that is conditional upon an assumed level of various marketing instruments
(for example, price, size of the sales force, etc.).
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Response Functions

A logical extension is to obtain a set of point estimates, one for each of a number
of values of the marketing instruments, which generates a point estimate of a
response function. At the same time, the construction of a subjective response curve
enables us to estimate quantities that cannot normally be assessed directly, such as
elasticities or response parameters. We consider an example from the ADBUDG
model16:

mt = α+ (β−α)
aδt
γ+aδt

(3.1)

where

mt = market share of a brand in period t,

at = advertising expenditures of the brand in period t, and

α,β,γ,δ = the parameters.

Suppose we want to estimate the parameters of (3.1) subjectively. Specifically,
assume that the brand in question is a detergent with a sizable market share. The
obvious person to assist the model builder with parameter estimates is the brand
manager. The brand manager has at least some knowledge of how the market
operates, which competitors matter, and so on. Still, we cannot obtain the desired
information if we simply ask: “what do you think α, β, γ and δ are?” Instead, we
may ask: “what do you think market share will be in a few years, if all advertising
is stopped from now on?” The answer is an estimate of α since for advertising equal
to zero, market share is equal to α according to (3.1). Similarly we can ask the
brand manager what will happen to market share if an unlimited amount is spent on
advertising. The answer to this question is an estimate of β, since if advertising is
very large, aδt /(γ+aδt ) approaches one, and thus m approaches α+ (β−α) = β.

The next question is what market share the brand manager expects to obtain if
advertising is left at its current level, say at = c dollars. Let the answer be mc. And
we may ask what market share will occur if the advertising budget is increased by
50 %. Let the corresponding share be mc+. We then have the following two points
of the market share function:

mc = α+ (β−α)
cδ

γ+ cδ
(3.2)

mc+ = α+ (β−α)
(1.5c)δ

γ+ (1.5c)δ
. (3.3)

16See Little (1970).
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Since α and β are already “known”, (3.2)–(3.3) is a system of two equations in two
unknowns γ and δ. Solving this system yields estimates of the final two parameters.

To complete the process, suppose the brand manager estimates that without
advertising, market share will drop to 10 % (α = 0.10) and with saturation adver-
tising it will reach 70 % (β = 0.70). Suppose further that with the current budget
($810,000), market share is expected to be 0.40, and with 50 % higher advertising
market share should become 0.415. Estimates for γ and δ are then found by solving:

0.40 = 0.10+0.60
(810,000)δ

γ+ (810,000)δ

0.415 = 0.10+0.60
(1,215,000)δ

γ+ (1,215,000)δ
.

The estimated values are approximately: γ = 30 and δ = 0.25. Figure 3.2 shows
the brand manager’s implicit market share function. One may object that the four
parameters in (3.2)–(3.3) are estimated from four observations. Hence the model fits
the data perfectly. But there is no guarantee that additional subjective judgments fit
the market share function shown in Fig. 3.2. Thus, we prefer to collect additional
observations. For example, we may elicit market share estimates for advertising
expenditures equal to the current budget plus 20 %, plus 40 %, . . . minus 20 %,
minus 40 %, and so on, thus providing a scatter of points through which a market
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Fig. 3.2 A brand manager’s implicit market share function
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share function can be fitted using (non-linear) estimation methods. In that case,
deviations of the subjective estimates from the fitted curve allow us to check the
consistency of a manager’s estimates. In case of systematic deviations, we can
consider an alternative functional form, in close cooperation with the manager.

The disadvantage of asking additional judgments is that it requires more time and
effort from the manager. These judgments only capture the manager’s expectations
about market share, given values for one marketing instrument. However, extensions
to multiple predictors are straightforward. Importantly, the judgments about market
share given advertising are conditional on, for example, the brand’s price and the
marketing instruments for other brands.

Probability Assessment

We now consider the notion of a probability assessment, that is the assessment of a
probability distribution. We start with a simple illustration to suggest the usefulness
of eliciting an entire distribution. Suppose that a firm considers a price increase.
The desirability of the increase depends on the subjective estimate of how likely its
sales manager considers the possibility of a price reaction by a major competitor.
Assume that a modal value is used for an initial judgment. If the sales manager has
much confidence in this estimate, implying a tight distribution such as fA in Fig. 3.3,
then the modal value gives very precise information about the competitive price
reaction and this modal value is a good basis for (partly) determining the optimal
price increase, if any.

Competitive price

Density
function

fA

fB

Mode

Fig. 3.3 Subjective estimates of a competitive reaction
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On the other hand, if fB in Fig. 3.3 is the proper density function, then the modal
value is a very uncertain estimate. If we know the prevailing density function we can
conduct sensitivity analyses, i.e. determine how the optimal price increase depends
on alternative competitive price reactions. And, in case the sensitivity is very high,
it may be useful to determine whether the uncertainty about the price reaction can
be reduced.

Examples

Suppose that a DM is interested in a unit sales forecast for a new brand in period
t: Ŝ t. To this end the DM asks two sales representatives (assessors 1 and 2) the
following questions:

• what is your lowest estimate of S t: S L
t ;

• what is your most likely estimate of S t: S M
t ;

• what is your highest estimate of S t: S H
t .

And, assuming that the three values are the only possible outcomes, each assessor
also provides an indication of the probabilities of occurrence. We show the
representatives’ answers in Table 3.5. Assessor 1 is more optimistic about the new

Table 3.5 Sales estimates
and probabilities for two
assessors

Assessor 1 Assessor 2
Estimates Probabilities Estimates Probabilities

S L
t 6 million 0.1 4 million 0.3

S M
t 8 million 0.8 7 million 0.5

S H
t 10 million 0.1 10 million 0.2

E(S t) 8 million 6.7 million

Var(S t) 0.8 million2 4.41 million2

brand’s sales than assessor 2, except for the highest estimate which is the same for
the two assessors. Assessor 1 also has a much higher subjective probability for the
most likely value of sales than assessor 2 does. As a result, the expected value for
sales is higher while the variance is lower for assessor 1.

In the absence of knowledge about the shape of a subjective probability distribu-
tion, we can assess the uncertainty around the estimates by a variety of methods. One
method focuses on the fractions of the Cumulative Distribution Function (CDF).
Typically, five fractiles, 0.01, 0.25, 0.50, 0.75, and 0.99 are assessed. The first
assessment is the 0.50 fractile which is the probability that sales in period t will be
less than 0.50. Q0.50 is obtained from the question: “Considering all possible levels
of sales, what is the amount for which it is equally likely that sales will be more
and that sales will be less than this value?” For assessor 2 in Table 3.5 the response
would have been 7 Million, hence Q0.50 = 7 Million. We can obtain the 0.25 and
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0.75 fractiles by asking: “If sales are, in fact, less than 7 Million, what amount of
sales would divide the interval from 0 to 7 Million units into equally likely parts?”
The resulting value is the 0.25 fractile, denoted as Q0.25. The 0.75 fractile can be
obtained from the question: “How would you divide the interval of sales over 7
Million units into equally likely parts?” Finally, the values for Q0.01 and Q0.99 can
be obtained by asking: “What value of sales would you use such that the changes of
sales being greater (less) than this value is only one in 100?” We can then construct
a CDF-curve of sales by plotting the fractiles and corresponding sales values. We
provide an example in Fig. 3.4.

1.00

0.75

0.50

0.25

0

Probability

7.75 9.576.55.75 Sales (in millions of units)

Q0.99

Q0.50

Q0.75

Q0.25

Q0.01

Fig. 3.4 A cumulative subjective probability function for sales (assessor 2)

In some cases it is possible to specify the distribution a priori. It then suffices
to obtain estimates of the parameters. We consider a few examples. Suppose the
quantity we want to assess is, in the mind of the assessor, a random variable that is
normally distributed. This distribution is then characterized by its two parameters,
the mean μ, and the standard deviation σ. Since most people cannot provide direct
estimates of the standard deviation, we may use two questions to estimate both μ
and σ, for example:

• “What is your estimate of sales such that there is a 2.5 % chance that it will be
higher?” (S H

t ).
• “What is your estimate of sales such that there is a 2.5 % chance that it will be

below that level?” (S L
t ).

The mean is then estimated by taking the average of S L
t and S H

t :

μ̂ =
S L

t +S H
t

2
. (3.4)
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Since 95 % of the possible values of a normally distributed random variable lie
within±1.96 standard deviations of the mean, the standard deviation is estimated by:

σ̂ =
S H

t −S L
t

3.92
. (3.5)

For asymmetric distributions such as the beta distribution, low (S L
t ) high (S H

t ),
and modal (S M

t ) estimates are necessary. The estimates of the mean and standard
deviation are then:v

μ̂ =
S L

t +4S M
t +S H

t

6
(3.6)

σ̂ =
S H

t −S L
t

6
. (3.7)

So far we have considered distributions of the values a random variable may take.
This idea can also be used for distributions of individual points on a response
function. For example, we could construct an optimistic, a pessimistic and a modal
response function. Figure 3.5 shows an example of a market share-advertising
response function for which the degree of uncertainty stays approximately constant
over the whole range of values of advertising. This is not the case in Fig. 3.6, where
the uncertainty is modest for advertising expenditures within the interval RA, but
large outside that interval. This could result if the firm’s advertising expenditure
levels have normally fallen within RA. Managers will be less confident about points
on the response curve that are outside their experience.

Market
share

(M)

(P)

(O)

Advertising expenditures

Fig. 3.5 Optimistic (O), modal (M) and pessimistic (P) market share-advertising response func-
tions (constant uncertainty)
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Market
share

(M)

(P)

(O)

RA

Advertising  expenditures

Fig. 3.6 Optimistic (O), modal (M) and pessimistic (P) market share-advertising response func-
tions (varying uncertainty)
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Chapter 4
Estimation and Testing

4.1 Introduction

In this chapter we turn to estimation, the step in the marketing model building
process that follows model specification, where we consider methods and pro-
cedures for obtaining numerical values for the model parameters in the model.
Throughout this chapter we will mainly consider the case where the independent
variables are linearly related to the dependent variable or where one or more
variables can be transformed in such a way that the relation between the variables
becomes linear. In such cases, it is appropriate to estimate a linear model. Linear
models do not only provide reasonable specifications for many practical applica-
tions, they are also attractive for a careful treatment of model assumptions, and for a
conceptual explanation of the basis for the assumptions. Most of the principles that
apply to the linear model remain relevant as long as nonlinear effects for the original
variables can be accommodated by transforming variables (so that the transformed
variables are linearly related).

We discuss methods and procedures for estimation of linear models in Sect. 4.2,
as well as the assumptions that they require. In Sect. 4.3 we discuss measures of
the goodness of fit and test for the significance of the model and its individual
parameters. In Sect. 4.4 we apply the general linear model to data of the Verhouten
case, and estimate Eqs. (2.26) and (2.27). Estimation methods for pooled models are
discussed in Sect. 4.5.

We note that our discussion is limited to standard procedures. More detailed treat-
ments can be found in econometrics textbooks. Goldberger (1998) and Wooldridge
(2012) provide very clear and lucid discussions. Intriligator et al. (1996), Pindyck
and Rubinfeld (1997), Johnston and Dinardo (1997), Baltagi (2011), and Gujarati
and Porter (2009) are standard texts that contain relatively easy-to-follow treat-
ments. Judge et al. (1985), Heij et al. (2004), Verbeek (1972) and Greene (2012)
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are general state-of-the-art textbooks. Amemiya (1985), Hamilton (1994), David-
son and MacKinnon (2004) and Cameron and Trivedi (2009) provide advanced
descriptions.

4.2 The General Linear Model

In Sect. 2.4 we discussed that an important decision during the specification step
is the selection of a functional form that provides a reasonable mathematical
representation of the relations between the variables in the model. In this section
we explain how linear relations between one criterion variable and one (Sect. 4.2.1)
or more (Sect. 4.2.2) predictor variables are estimated. In Sect. 4.2.3 we list the
assumptions that the estimation procedures require.

4.2.1 One Explanatory Variable

Let us first assume the following simple linear additive relation for T time-series
observations:

yt = α+βxt + εt, t = 1, . . . ,T (4.1)

where, at time t:

yt = the value of the criterion variable,

xt = the value of the predictor variable,

εt = the (unobserved) value of the disturbance term,

α = the unknown intercept,

β = the unknown slope parameter.

In Eq. (4.1), β is the systematic change in yt when xt increases by one unit, and
α represents the value yt when xt equals zero. When data are available for both
variables in the model for t = 1, . . . ,T , the most common method for estimating the
unknown parameters is Ordinary Least Squares (OLS).

A basic objective for model estimation is that for each t = 1, . . . ,T , the estimated
value of the criterion variable (indicated by ŷt) is close to the observed value yt. This
is measured by the residual, which is defined as:

et = yt − ŷt. (4.2)



4.2 The General Linear Model 97

For each t, given that we know the value for the independent variable, we can obtain
the estimated value for the criterion variable by replacing the unknown parameters
by the estimated values, and assuming that the best prediction for the disturbance
term is zero:

ŷt = α̂+ β̂xt. (4.3)

When the model parameters are estimated with OLS, the requirement that the
estimated values of the criterion variable should be close to the observed ones across
all observations, is translated into the objective that the sum of squared residuals
should be minimized. That is: the parameters estimates β̂ and α̂ are determined in
such a way that:

T∑

t=1

(et)2 (4.4)

is minimal. Substituting (4.2) and (4.3) in Eq. (4.4), the objective for OLS estimation
can be summarized as:

min
α̂, β̂

⎡
⎢⎢⎢⎢⎢⎢⎣

T∑

t=1

(
yt − α̂− β̂xt

)2
⎤
⎥⎥⎥⎥⎥⎥⎦ . (4.5)

The minimum for the part between square brackets in Eq. (4.5) can be found by
taking partial derivatives with respect to α̂ and β̂, and setting those equal to zero:

∂

⎡
⎢⎢⎢⎢⎢⎢⎣

T∑

t=1

(
yt − α̂− β̂xt

)2
⎤
⎥⎥⎥⎥⎥⎥⎦

∂α̂
= 0 (4.6)

∂

⎡
⎢⎢⎢⎢⎢⎢⎣

T∑

t=1

(
yt − α̂− β̂xt

)2
⎤
⎥⎥⎥⎥⎥⎥⎦

∂β̂
= 0. (4.7)

Let us rewrite the part between square brackets:

T∑

t=1

(
yt − α̂− β̂xt

)2
=

T∑

t=1

(

y2
t + α̂

2 +
(
β̂xt

)2−2ytα̂−2β̂ytxt +2α̂β̂xt

)

. (4.8)

Substituting (4.8) in Eqs. (4.6) and (4.7) and taking derivatives we obtain:

T∑

t=1

(
2α̂−2yt +2β̂xt

)
= 0 (4.9)
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T∑

t=1

(
2β̂x2

t −2ytxt +2α̂xt

)
= 0. (4.10)

Solving Eq. (4.9) for α̂ results in the following expression:

α̂ =
1
T

T∑

t=1

yt − β̂
⎛
⎜⎜⎜⎜⎜⎜⎝

1
T

T∑

t=1

xt

⎞
⎟⎟⎟⎟⎟⎟⎠ = ȳ− β̂x̄, (4.11)

and substituting Eq. (4.11) in (4.10) we can derive for β̂:

β̂
T∑

t=1

x2
t −

T∑

t=1

xtyt +

T∑

t=1

(
ȳ− β̂x̄

)
xt = 0

⇒ β̂

⎛
⎜⎜⎜⎜⎜⎜⎝

T∑

t=1

x2
t − x̄

T∑

t=1

xt

⎞
⎟⎟⎟⎟⎟⎟⎠ =

T∑

t=1

xtyt − ȳ
T∑

t=1

xt

⇒ β̂

⎛
⎜⎜⎜⎜⎜⎜⎝

T∑

t=1

(
x2

t − x̄2
)
⎞
⎟⎟⎟⎟⎟⎟⎠ =

T∑

t=1

(xtyt − ȳx̄)

⇒ β̂

⎛
⎜⎜⎜⎜⎜⎜⎝

T∑

t=1

(
x2

t −2x̄2 + x̄2
)
⎞
⎟⎟⎟⎟⎟⎟⎠ =

T∑

t=1

(xtyt − x̄ȳ− x̄ȳ+ x̄ȳ)

⇒ β̂

⎛
⎜⎜⎜⎜⎜⎜⎝

T∑

t=1

(
x2

t −2xt x̄+ x̄2
)
⎞
⎟⎟⎟⎟⎟⎟⎠ =

T∑

t=1

(xtyt − xtȳ− x̄yt + x̄ȳ)

⇒ β̂

⎛
⎜⎜⎜⎜⎜⎜⎝

T∑

t=1

(xt − x̄)2

⎞
⎟⎟⎟⎟⎟⎟⎠ =

T∑

t=1

(xt − x̄)(yt − ȳ) ,

so that the OLS estimator for β equals:

β̂ =

T∑

t=1

(xt − x̄)(yt − ȳ)

T∑

t=1

(xt − x̄)2

. (4.12)

4.2.2 The K-Variable Case

The basic model (4.1) can be extended to include K predictor variables:

yt = α+β1x1t +β2x2t + · · ·+βK xKt + εt (4.13)
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where, in addition to the variables for Eq. (4.1), we define for t = 1, . . . ,T :

xkt = the value of the k-th predictor variable, k = 1, . . . ,K.

We can rewrite the relations in Eq. (4.13) as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2
...

yT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x11 x21 . . . xK1

1 x12 x22 . . . xK2
...
...
...
. . .
...

1 x1T x2T . . . xKT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α

β1

β2
...

βK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1

ε2
...

εT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.14)

which in matrix notation becomes:

y = Xβ+ ε (4.15)

where

y = a column vector of size T with values of the criterion variable,

X = a matrix of dimensions (T ×K +1) with a column of ones and

values of the K predictor variables,

β = a column vector of K +1 unknown parameters, and

ε = a column vector of T disturbance terms.

In Appendix A we discuss the most important aspects and issues of matrix and
vector calculation that are used throughout the text of this monograph.

Parameter estimates for Eq. (4.13) are obtained analogously to the process shown
in (4.4)–(4.12). Thus, the OLS estimates of the parameters α,β1, . . . ,βK in (4.13)
are the values α̂, β̂1, . . . , β̂K which minimize the sum or the squared values of the
residuals e1, . . . ,eT , also known as the Residual Sum of Squares (RSS):

RSS =

T∑

t=1

(et)2 =

T∑

t=1

⎛
⎜⎜⎜⎜⎜⎜⎝yt − α̂−

K∑

k=1

β̂k xkt

⎞
⎟⎟⎟⎟⎟⎟⎠

2

. (4.16)

In matrix notation (4.16) becomes:

RSS = e′e = (y−Xβ̂)′(y−Xβ̂) (4.17)

= y′y−2β̂′X′y+ β̂′X′Xβ̂.
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Differentiating RSS with respect to β̂ and setting the derivatives equal to zero,
we obtain:

−2X′y+2X′Xβ̂ = 0 (4.18)

or

β̂ = (X′X)−1X′y. (4.19)

This expression for the OLS estimator of β is similar to the corresponding expression
of β̂ in the two-variable case, see Eq. (4.12).1

For statistical interference about the parameters of the linear model we also need
a specification of the probability distribution of the disturbance terms. We discuss
such a specification and associated model assumptions in Sect. 4.2.3.

4.2.3 Model Assumptions

When OLS is employed to obtain estimates of the parameter in a model, several
assumptions about the model elements in (4.1) or (4.13) need to be satisfied. Four
of these concern the disturbance term:

1. E(εt) = 0 for all t;
2. Var(εt) = σ2 for all t;
3. Cov(εt, εt′) = 0 for t � t′;
4. εt is normally distributed.

Two other assumptions are:

5. There is no relation between the predictors and εt, i.e. Cov(xt, εt) = 0 (one-
variable case). In other words the xt are nonstochastic, exogenous or “fixed”.
For the K-variable case this implies Cov(X′, ε) = 0, in which case we have
E(ε | X) = E(ε) = 0. If the covariance between the disturbance term and an
independent variable is not zero, we encounter the problem of endogeneity.

6. For the K-variable case, the matrix of observations X has full rank, which is the
case if the columns in X are linearly independent (see footnote 1). This means
that none of the independent variables is constant, and that there are no exact
linear relationships among the independent variables.

The variance-covariance matrix of the disturbance vector summarizes the rela-
tionships in ε, the T -vector of disturbances, and is denoted by Var(ε). Its dimensions
are (T ×T ). The elements on the diagonal of Var(ε) are the variances of the elements

1We assume that X has rank K+1 (or X′X is nonsingular), and therefore its inverse (X′X)−1 exists.
See also Appendix A.8.
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in ε: the element in row 1, column 1 is Var(ε1), the element in row 2, column 2 is
Var(ε2), and so on until the element in row T , column T , which equals Var(εT ). The
off-diagonal elements in Var(ε) represent the covariances between the disturbances:
the element in row t1 and column t2 equals Cov(εt1 , εt2 ). By definition, Var(ε) is a
symmetrical matrix.

If conditions 2 and 3 are both satisfied, Var(ε) has the following structure:

Var(ε) = σ2 I (4.20)

where

I = a T ×T identity matrix.

In Eq. (4.19) we presented the vector of OLS estimates for the parameters in the
model:

β̂ = (X′X)−1X′y. (4.21)

If assumptions 1 and 5 hold, the OLS estimate for β is unbiased, which means that
its expected value equals β:

E(β̂) = E
(
(X′X)−1X′y

)

= E
(
(X′X)−1X′(Xβ+ ε)

)

= β+E
(
(X′X)−1X′ε

)

= β+ (X′X)−1X′E(ε)

= β.

Let us denote the variance-covariance matrix of β̂ in Eq. (4.19) as Var(β̂). We derive
the following expression for Var(β̂):

Var(β̂) = E
(
(β̂−β)(β̂−β)′

)

= E
(
(X′X)−1X′ (Xβ+ ε)−β

) (
(X′X)−1X′ (Xβ+ ε)−β

)′

= E
(
(X′X)−1X′ε

) (
(X′X)−1X′ε

)′

= E
(
(X′X)−1X′ε

) (
ε′X(X′X)−1

)

or

Var(β̂) = σ2(X′X)−1 (4.22)
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because of assumption 2. Since σ2 is unknown it is usually replaced by an unbiased
estimator:

σ̂2 =
1

T −K−1

T∑

t=1

e2
t . (4.23)

σ̂ is also known as the standard error of the regression or the standard error of
estimate.

We have seen that the OLS estimate of β has desirable properties if the
assumptions are satisfied. In fact, it can be shown that in this case, OLS is
the optimal estimation technique. However, when the assumptions are violated,
the statistical inferences in this section and in the next sections are invalid.
In Chap. 5 we discuss possible reasons for violations of each of the assumptions,
the consequence for parameter estimation, how each violation can be detected, and
the available remedies.

4.3 Statistical Inference

If the assumptions for the error-term and other model assumptions are satisfied,
we can evaluate the quality of the model, and identify substantive implications. In
this section we discuss criteria pertaining to the model’s goodness of fit and the
significance of the coefficients.

4.3.1 Goodness of Fit

An important measure for assessing the quality of a model is the extent to which
fluctuations in the criterion variable are explained by the model. This is known as
the “fit” of the model. A criterion for fit is the coefficient of determination or R2. This
measure is also known as the squared multiple correlation coefficient. It measures
the proportion of total variance in the criterion variable “explained” by the model.
With (4.13) as the model, let

ŷt = α̂+ β̂1x1t + β̂2x2t + · · ·+ β̂K xKt (4.24)

and

et = yt − ŷt.
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R2, the coefficient of determination is defined as2:

R2 =

T∑

t=1

(ŷt − ȳ)2

T∑

t=1

(yt − ȳ)2

=
explained variation in y

total variation in y
. (4.25)

The explained variation in y is also known as the explained sum of squares or the
regression sum of squares. The total sum of squares in y is referred to as the total
variation in y. Expression (4.25) can also be written as:

R2 = 1−

T∑

t=1

e2
t

T∑

t=1

(yt − ȳ)2

= 1− unexplained variation in y
total variation in y

. (4.26)

The unexplained variation is also called residual variation, or residual sum of
squares.

Expression (4.26) can be written in matrix notation as:

R2 = 1− e′e
y∗′y∗

(4.27)

where

y∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1− ȳ
y2− ȳ
...

yT − ȳ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We emphasize that R2 is a relative measure. Its value depends on [see (4.26)
or (4.27)]:

1. how well the regression line fits the data as measured by variation in the residuals,
and

2. the amount of dispersion in the values of the criterion variable.

It is tempting for researchers to regard estimated equations with high R2 values
favorably and low R2 values unfavorably. Indeed, it is straightforward to agree with

2If the model does not contain a constant term it is not meaningful to express the observed values
in deviations from the mean, in which case the denominator should read

∑T
t=1 y2

t .
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this notion if everything else remains the same. However, in practice, models that
are structurally deficient (e.g. with implausible substantive implications) can have
higher R2 values than models with acceptable specifications.

In addition, for some types of problems and data, all models necessarily have low
R2 values. Thus, low R2 values should not be interpreted as indicating unacceptable
or useless results nor should high R2 values be interpreted to mean that the results
are useful.

The use of many predictor variables may result in artificially high R2 values. Each
predictor with a nonzero slope coefficient makes a positive contribution to R2, with
the actual contribution determined by the slope and the amount of variation for the
predictor in the sample. Model comparisons based on R2 values are not meaningful
unless the comparisons are made on one set of data for the criterion variable (and
the number of predictors is taken into account).3

The artificiality of R2 is further illustrated by examples that indicate how
researchers can manipulate the value of R2 while the standard deviation of the
residuals remains constant (see Wittink 1988, pp. 209–213). The standard deviation
of residuals is an absolute measure of lack of fit. It is measured in the same units as
the criterion variable, and therefore it has substantive relevance.

If the criterion variable differs between two equations, either in terms of its
definition or in terms of the data, comparisons based on R2 values are meaningless.
Models of the same criterion variable on the same data, that differ in the number of
predictor variables, can be compared on R2

a, the adjusted coefficient of determination
that punishes models with many independent variables. In this coefficient both the
unexplained variation and the total variation are adjusted for degrees of freedom,
(T −K − 1) and (T − 1) respectively. The adjusted coefficient of determination is
defined as:

R2
a = 1− e′e/(T −K−1)

y∗′y∗/(T −1)
. (4.28)

From (4.27) and (4.28) we can show that R2 and R2
a are related as follows:

R2
a = R2−

[ K
T −K−1

]

(1−R2). (4.29)

It follows that R2
a < R2 (except for the irrelevant case of K = 0).

To summarize, the coefficient of determination, R2, is the percent of variation
in the criterion variable, which exists in a sample of data, that is accounted for or
explained by the estimated equation. It can be shown that this measure overestimates
the true explanatory power of the model. A better estimate of the true explanatory
power of this model is provided by the adjusted coefficient of determination R2

a.
In addition, for comparisons of alternative models, applied to the same criterion

3See also Wooldridge (2012, p. 192).
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variable and the same data, R2
a is a more useful basis. Alternatively, statistical tests of

the difference between alternative models are based on the difference in (unadjusted)
R2 values and the difference in degrees of freedom.

We also note that aggregation tends to produce “inflated” R2 values. Thus, models
of monthly scanner data typically have higher R2 values than models of weekly or
daily scanner data. Similarly, models of purchases aggregated across households
will have higher R2 values than models of individual household purchase data.
If high R2 values are desired, the logical conclusion is to use aggregated data.
However, aggregation almost always causes parameter estimates to be biased. Thus,
even though R2 values have some role to play in the model-building process, we
also need other criteria to determine the substantive usefulness of a model.

To illustrate the difficulty associated with the use of relative measures for
substantive questions, we consider the following. As indicated, R2 measures the
percent of variation in the criterion variable explained by the model in the sample.
A related measure determines the marginal contribution of each predictor variable
to the model’s explanatory power. In a simplified setting, imagine that the predictor
variables in (4.13) are uncorrelated. In that case:

R2 =

K∑

k=1

r2
y,xk

(4.30)

where

ry,xk = the simple correlation coefficient of y and xk.

For uncorrelated predictor variables, we can also show that:

r2
y,xk

= β̂2
k

s2
xk

s2
y

(4.31)

where

sxk = the standard deviation in the sample for xk,

sy = the standard deviation in the sample for y.

Thus, (4.30) provides a measure of the contribution for each predictor variable
to the model’s explanatory power. Some software packages automatically provide
standardized regression coefficients, defined as:

betak = β̂k
sxk

sy
. (4.32)

Hence beta coefficients measure the effects not in terms of the original units but in
standard deviation units. The interest in beta coefficients stems from the difficulty
model users have in comparing slope coefficients. As indicated in Sect. 2.3, each
slope coefficient, β̂k, is interpretable only with respect to the unit in which predictor
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variable k is measured. With different units of measurement for the predictor
variables, the slope coefficients are not comparable. The beta coefficients are
unitless, as are the correlation coefficients.

A comparison of (4.32) with (4.30) and (4.31) makes it clear that the beta
coefficients have similar properties as R2. Thus, the shortcomings associated with R2

with respect to substantive interpretations also apply to the beta coefficients. In fact,
if the model user wants to discuss the “relative importance” of predictor variables,
based on the beta coefficients, several conditions must be met. Since the amount of
sample variation in xk plays a role in (4.32), this variation must be obtained through
probabilistic processes. This means that the “importances” of predictor variables
manipulated by managers, such as price and advertising, cannot be meaningfully
assessed in this manner.

To demonstrate the problem for predictor variables manipulated by managers,
consider the demand for a brand as a function of price and advertising. For
these variables, the sample variances are determined by management based on,
say, market characteristics. Suppose that two brand managers operate with similar
products in two different geographic areas. Over time, one manager varies price a lot
but keeps advertising at a fairly constant level. The other manager varies advertising
a lot, but holds price approximately constant. Assume that in both cases, each
variable varies sufficiently for the marginal effects of both predictor variables to be
reliably estimable. But since the units of measurement differ between the predictors,
one might be tempted to use beta coefficients. Since the standard deviation for
the price variable will be large, but for the advertising variable small, the first
manager is likely to conclude that price is “most important”. Conversely, since the
standard deviation for the advertising variable will be large but for the price variable
small, the second manager may conclude that advertising is “most important”. This
example makes it clear why economists do not rely on beta coefficients for policy
questions, and neither should marketing modelers.

On the other hand, household income, demographics, and attitudinal variables
have acceptable properties for the use of relative measures. If the sample data have
been generated via probability sampling it is meaningful to use beta coefficients
for substantive conclusions about the relative importances of such variables in
explaining household behavior. Thus, only if all predictor variables have “natural”
amounts of variation, and the data represent a probability sample, is it meaningful to
use the beta coefficients to infer the relative importances of the predictor variables
in a population.

4.3.2 Assessing Statistical Significance

1. Test of the Equation as a Whole

As the number of predictor variables included in a model increases, the probability
that at least one of the slope coefficients is statistically significant increases, even if
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none of the predictor variables truly relates to the criterion variable. For that reason,
we should first determine whether the equation as a whole is better than what could
be due to chance variation.

The test statistic for this uses the explanatory power of the estimated equation.
The null hypothesis is that the model lacks explanatory power. More specifically, all
slope parameters are zero under the null hypothesis, i.e.:

Null hypothesis (H0) : β1 = · · · = βk = · · · = βK = 0

Alternative hypothesis (HA) : at least one βk is different from zero (k = 1, . . . ,K).

If the error term assumptions stated earlier hold, then under the null hypothesis the
explained variance should be equal to the unexplained variance. The ratio of these
two variances follows an F-distribution with K degrees of freedom for the numerator
and T −K−1 degrees of freedom for the denominator :

T∑

t=1

(ŷt − ȳ)2/(K)

T∑

t=1

(yt − ŷt)
2/(T −K−1)

=
Explained variance

Unexplained variance
∼ F(K,T−K−1). (4.33)

Since R2 is the proportion of total variation in y that is explained by the model and
(1−R2) is the proportion that is unexplained, it is easy to show that an alternative
expression for this F-ratio is:

R2/(K)

(1−R2)/(T −K−1)
∼ F(K,T−K−1). (4.34)

In both expressions (4.33) and (4.34), the number of slope parameters in the model
equals K which is also the number of degrees of freedom used to explain variation
in the criterion variable. The number of degrees of freedom left for the unexplained
variation is (T − K − 1), since one additional degree of freedom is used by the
intercept. If the calculated F-value exceeds the critical value for a given significance
level, we reject H0. Only if the equation as a whole explains more than what could be
due to chance it makes sense to investigate the statistical significance of individual
slope coefficients.

Strictly speaking the F-test is valid only if all error-term assumptions are met. In
practice, it is very difficult to specify a model that is complete and has no identifiable
shortcomings. Typically, the residuals that remain after the model is first estimated
will be reviewed and tested. Based on this residual analysis the model will be
adjusted, and a second model will be estimated. This process often proceeds until
the model builder has a specification that is theoretically acceptable and is consistent
with the data. Such an iterative model-building process, while necessary, reduces
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the validity of statistical inferences. For this reason, and also for other reasons, it is
important for the model builder to “test” the ultimate specification on a validation
sample (see Chap. 5).

2. Tests for (Individual) Slope Parameters

If the null hypothesis that all slope parameters are zero is rejected, we can conduct
statistical tests for individual response parameters in the model. Assuming, again,
that the four assumptions about the error term are valid (Sect. 4.2.3), we can evaluate
the significance of each of the estimates β̂k, (k = 1, . . . ,K). Under these conditions,
for a model linear in the parameters and with normally distributed disturbance
terms, the OLS estimator β̂k of βk also follows a normal distribution. It then follows
that (β̂k − βk)/σβ̂k

is standard normally distributed. The standard deviation σβ̂k
is a

function of σ, the standard deviation of the disturbance term. Since the latter has
to be estimated from the residuals, we replace σβ̂k

by its estimate σ̂β̂k
[Eqs. (4.22)

and (4.23)], so that the test statistic:

β̂k −βk

σ̂β̂k

(4.35)

is t-distributed with (T −K−1) degrees of freedom.4 Usually the null hypothesis is
formulated as follows:

H0 : βk = 0

and H0 is rejected in favor of the alternative hypothesis if the calculated t-value for
a given coefficient is more extreme than can be expected, given H0. The alternative
hypothesis (H1) that corresponds to H0 above is:

H1 : βk � 0

which is a two-sided alternative hypothesis.5

The decision whether or not to reject H0 can be based on so-called “critical
values” or on p-values. Both approaches lead to the same decision.

When the “critical value”-approach is used, a significance level should be
determined a priori. A significance level is the maximum probability of rejecting
H0 when it is in fact true. A 5 % significance level is a well-accepted and popular
choice. Thus, we are willing to accept a probability of up to 5 % that we mistakenly
reject H0 when it is true. The decision rule to reject H0 is based on the test statistic

4For more detail see introductory statistics and econometrics textbooks, such as Wittink (1988);
Greene (2012); Wooldridge (2012). Tables of the t-distribution are also reproduced in most of these
textbooks.
5It is also possible to formulate one-sided tests for βk, but here we limit ourselves to the most
common situation of a two-sided test.
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in (4.35): if its value is more extreme (i.e. either too low or too high) than can be
expected under H0, it is unlikely that H0 is true. To determine cut-off values for the
test statistic in (4.35), we divide the significance level of 5 % evenly over the two
tails of the t-distribution, and we reject H0 if:

β̂k −βk

σ̂β̂k

< tT−K−1
.025 or if

β̂k −βk

σ̂β̂k

> tT−K−1
.975

where tT−K−1
.025 and tT−K−1

.975 are the 2.5th percentile and the 97.5 percentile, respec-
tively, in a t-distribution with T − K − 1 degrees of freedom. Because the t-
distribution is symmetrical, we have that tT−K−1

.025 = −tT−K−1
.975 , so that we can write

the decision rule as:
∣∣∣∣∣∣

β̂k −βk

σ̂β̂k

∣∣∣∣∣∣
> tT−K−1
.975

and tT−K−1
.975 is called the “critical value”.

Most statistical software programs provide p-values, which can also be used for
deciding between H0 and H1. A p-value is the probability of rejecting H0 when
in fact it is true. Alternatively, a p-value can also be interpreted as: ‘the smallest
significance level at which the null hypothesis is rejected’. Given that a common
and quite well-accepted choice for the significance level is 5 %, the decision rule in
the “p-value-approach” is to reject H0 if:

p < 0.05. (4.36)

In most cases, the p-value is reported for a two-sided test for βk.
Whichever of the two approaches we use, when H0 is not rejected this is

expressed as: “we fail to reject H0 at the 5 % level” rather than: “H0 is accepted
at the 5 % level”.

As the amount of empirical evidence with regard to demand sensitivity to specific
marketing instruments accumulates, it seems inappropriate to continue the use of
hypotheses of no effect. Farley et al. (1995) argue that model builders should
instead rely on average estimated effects from previous empirical analyses. Such
average effects have been reported in various meta-analyses (see, for example,
Hanssens 2009). New empirical results for problems studied earlier should then be
tested against prevailing average effects. Suppose that the current average effect for
predictor variable xk is c. Then the null hypothesis is:

H0 : βk = c.

If we cannot reject this null hypothesis, the product/time/region for which data
have been obtained is comparable to previous sources with regard to the average
effect of variable xk. If we obtain an effect that is significantly different from the
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prevailing standard, we have an opportunity to consider the reason(s) for divergence.
Farley, Lehmann, Sawyer argue that this manner of testing will prove to be more
informative than the traditional procedure.

There are many possible reasons why the t-ratio for a given slope coefficient can
be insignificant:

1. the predictor variable has an effect that is different from the functional form
assumed (incorrect functional form);

2. the model excludes other relevant predictor variables (omitted variables);
3. the predictor variable is highly correlated with one or more other predictor

variables included in the model (multicollinearity);
4. the number of data points in the sample is insufficient (lack of power);
5. the predictor variable has no relation with the criterion variable (irrelevance).

Insignificance due to either of the first two reasons should stimulate us to investigate
the existence of superior functional forms and/or additional predictor variables. The
third reason requires the exploration of additional data sources, model reformu-
lation, or alternative estimation procedures (as might be the case for the fourth
reason). Only the fifth reason is a proper justification for eliminating a predictor
variable from the model. We must consider each of these possible reasons before
we eliminate a predictor variable from the model.

We note that in a regression analysis with one predictor variable, the F-test
in (4.33) and the t-test based on (4.35) for testing βk = 0 provide the same
conclusion.6 Curiously, in a multiple regression analysis it is possible to reject the
null hypothesis that all slope parameters are zero and at the same time find that none
of the slope coefficients differ significantly from zero based on the t-test. This may
occur if the predictor variables are highly intercorrelated (multicollinearity). In this
case the estimates for separate influences of xk, k = 1, . . . ,K on y are unreliable (i.e.,
they have large estimated standard errors), while the model’s explanatory power
may be high. Marketing data, especially at high aggregation levels, often have a
high degree of collinearity between the predictor variables. We pursue the issue of
multicollinearity in more detail in Chap. 5.

In some cases it is of interest to test a hypothesis that involves more than one of
the slope parameters β1, · · · ,βK . Assume for example that a company can invest
in advertisements in print (x1) and in commercials on television (x2) and that
management wants to know whether or not the two media are equally effective
(i.e. are the two associated parameters, β1 and β2, similar or significantly different).
To this end one may use a t-test statistic such as (4.37):

t =
β̂1− β̂2

σ̂β̂1−β̂2

(4.37)

6This is true if both tests are conducted at the same level of significance and against the same
alternative (i.e. a two-sided t-test).
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where σ̂β̂1−β̂2
is the standard error of the difference between β̂1 and β̂2:

σ̂β̂1−β̂2
=

√
σ̂2
β̂1
+ σ̂2
β̂2
+ σ̂β̂1β̂2

(4.38)

where σ̂β̂1 β̂2
denotes an estimate of cov(β̂1, β̂2).

4.4 Numerically Specified Models for the Verhouten Case

In this section, we estimate the two models that we specified in Sect. 2.6 for the
Verhouten case. First we estimate the linear additive model that we presented in
Eq. (2.26), thereafter we estimate the multiplicative model of Eq. (2.27). For both
models we present:

1. OLS estimates of the parameters;
2. standard errors of the estimated parameters;
3. t-values of the estimated parameters;
4. p-values of the estimated parameters;
5. the number of observations;
6. R-squared and adjusted R-squared;
7. the standard error of the estimate (the standard deviation of the residuals, σ̂);
8. the Residual Sum of Squares (RSS);
9. the Explained Sum of Squares (ESS);

10. the F-value for testing the equation as a whole, see Eq. (4.33).

Table 4.1 displays the estimation outcomes for the linear additive model for
Verhouten. Note that an estimate for β42, the parameter of Feature and Display for
Droste, is lacking. This is due to unavailability of this variable in the data set.

In order to be able to estimate the multiplicative model with OLS, we first need
to linearize Eq. (2.27) using the logarithmic transformation:

ln(S 1t) = ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
θ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n∏

j=1

(

P
γ1 j
jt γ

F jt

2 j γ
Djt

3 j γ
FD jt

4 j

)
⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Temp∗t

γ5γ
δ1t
6 γ
δ2t
7 ε1t

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= ln(θ)+
n∑

j=1

(
γ1 j ln(P jt)+ ln(γ2 j)F jt + ln(γ3 j)D jt + ln(γ4 j)FDjt

)

+ γ5 ln(Temp∗t )+ ln(γ6)δ1t + ln(γ7)δ2t + ln(ε1t)
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Table 4.1 Estimation results of the linear additive model for Verhouten

Parameter Standard
Equation (2.26) estimates error t-value p-value

Intercept (α̂) 1331.83 139.78 9.53 0.00

Price Verhouten (β̂11) −756.17 51.76 −14.61 0.00

Price Droste (β̂12) −52.07 68.25 −0.76 0.45

Price Baronie (β̂13) 5.96 34.71 0.17 0.86

Price Delicata (β̂14) −2.11 28.02 −0.08 0.94

Feature-only Verhouten (β̂21) −50.50 35.04 −1.44 0.16

Feature-only Droste (β̂22) 98.64 67.30 1.47 0.15

Feature-only Baronie (β̂23) 17.43 22.43 0.78 0.44

Feature-only Delicata (β̂24) 48.39 38.29 1.26 0.21

Display-only Verhouten (β̂31) 22.22 93.76 0.24 0.81

Display-only Droste (β̂32) −1.58 46.52 −0.03 0.97

Display-only Baronie (β̂33) −148.40 89.81 −1.65 0.10

Display-only Delicata (β̂34) 86.93 96.25 0.90 0.37

Feature and Display Verhouten (β̂41) 100.66 167.56 0.60 0.55

Feature and Display Baronie (β̂43) 109.03 113.43 0.96 0.34

Feature and Display Delicata (β̂44) −4.82 45.48 −0.11 0.92

Temperature (β̂5) −2.28 0.77 −2.96 0.00

Dummy variable December (β̂6) −51.76 25.10 −2.06 0.04

Dummy variable Easter (β̂7) −48.86 48.98 −1.00 0.32

Number of observations = 68, R2 = 0.93, R2
a = 0.91, σ̂ = 30.53

RSS = 45685.06, ESS = 631560.45, F-value = 37.63

in which we recognize a linear additive function if we redefine some of the variables
and some of the parameters:

S ∗1t = θ
∗ +

n∑

j=1

(
γ1 jP

∗
jt +γ

∗
2 jF jt +γ

∗
3 jD jt +γ

∗
4 jFDjt

)

+ γ5Temp∗∗t +γ∗6δ1t +γ
∗
7δ2t + ε

∗
1t

(4.39)

where, for j = 1, . . . ,n:

S ∗1t = ln(S 1t),
θ∗ = ln(θ),

P∗jt = ln(P jt),

γ∗2 j = ln(γ2 j),

γ∗3 j = ln(γ3 j),

γ∗4 j = ln(γ4 j),

Temp∗∗t = ln(Temp∗t ),

(4.40)
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γ∗6 = ln(γ6),
γ∗7 = ln(γ7),
ε∗1t = ln(ε1t).

In Table 4.2 we present the estimation results for (4.39).

Table 4.2 Estimation results of the multiplicative model for Verhouten

Parameter Standard
Equation (4.39) estimates error t-value p-value

Intercept (θ̂∗) 20.97 6.15 3.41 0.00

ln of Price Verhouten (γ̂11) −3.87 0.32 −11.99 0.00

ln of Price Droste (γ̂12) −1.24 0.51 −2.45 0.02

ln of Price Baronie (γ̂13) 0.42 0.21 1.98 0.05

ln of Price Delicata (γ̂14) −0.02 0.24 −0.08 0.94

Feature-only Verhouten (γ̂∗21) 0.04 0.17 0.23 0.82

Feature-only Droste (γ̂∗22) 0.10 0.34 0.29 0.78

Feature-only Baronie (γ̂∗23) 0.23 0.11 2.10 0.04

Feature-only Delicata (γ̂∗24) 0.04 0.19 0.19 0.85

Display-only Verhouten (γ̂∗31) 0.35 0.47 0.74 0.46

Display-only Droste (γ̂∗32) −0.24 0.23 −1.01 0.32

Display-only Baronie (γ̂∗33) −0.25 0.45 −0.55 0.59

Display-only Delicata (γ̂∗34) 0.50 0.48 1.03 0.31

Feature and Display Verhouten (γ̂∗41) 0.52 0.84 0.62 0.54

Feature and Display Baronie (γ̂∗43) 0.21 0.57 0.36 0.72

Feature and Display Delicata (γ̂∗44) −0.03 0.23 −0.12 0.91

ln of Temperature in Kelvin (γ̂5) −2.57 1.09 −2.36 0.02

Dummy variable December (γ̂∗6) −0.35 0.13 −2.82 0.01

Dummy variable Easter (γ̂∗6) −0.15 0.25 −0.60 0.55

Number of observations = 68, R2 = 0.93, R2
a = 0.90, σ̂ = 0.15

RSS = 1.15, ESS = 14.25, F-value = 33.78

In Tables 4.1 and 4.2 we report both standard errors and t-values. Some authors
prefer to report t-statistics rather than standard errors. There is some preference for
reporting standard errors, because this makes it easy to compute confidence intervals
(Wooldridge 2012, p. 146).

From Tables 4.1 and 4.2 we observe that:

• The goodness of fit of both models indicates that about 93 % of the fluctuations
of the sales of Verhouten can be explained by the models. Relatively high values
for R2 were expected in this application, given that we deal with time series
data. The adjusted coefficient of determination, R2

a, is 0.91 for the linear additive
model, and 0.90 for the multiplicative model. The adjustments relative to R2 are
due to the large number of independent variables in Eqs. (2.26) and (2.27). The
value of the F-statistic (4.33) is in both cases substantially larger than 1.819,
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which is the critical value of an F distribution with K = 18 degrees of freedom
for the numerator and T − K − 1 = 68 − 18 − 1 = 49 degrees of freedom for
the denominator, assuming a significance level of 5 %. This indicates that both
models are highly significant.

• The number of significant parameters is not the same in both models. In the
linear additive model, the intercept (α) is significant, as well as the parameter for
price of Verhouten (β11), the parameter for temperature (β5) and the parameter
for the December dummy (β6). These parameters are significant because the
corresponding p-values are smaller than 0.05. The same parameters are also
significant in the multiplicative model, but now the parameters for the ln of price
of Droste (γ12), the ln of price of Baronie (γ13), and for feature-only for Baronie
(γ23) are also significant.

• Following Farley et al. (1995)’s suggestion we compare the significant price
estimates to earlier generalizations in literature. Bijmolt et al. (2005) find that
the average price-to-sales elasticity at the brand level equals −2.62. Our estimate
for γ11 indicates a somewhat stronger price response (−3.87), indicating that
the market for chocolate might be somewhat more price sensitive than average.
From earlier studies we know that cross-price-to-sales elasticities are asymmetric
(Blattberg and Wisniewski 1989): the cross-price elasticity of lower-priced
brands on higher-priced brands’ sales is not as large as the cross-price elasticity
of higher-priced brands on lower-priced brands’ sales. The Verhouten brand has
the lowest price, followed by Droste, Baronie, and Delicata respectively. In their
meta-analysis on cross-price elasticities, Sethuraman et al. (1999) estimate that
the average cross-price elasticity of a brand on its closest lower-priced neighbor
is 0.754. If we compare this to −1.24, the estimate for γ12, we find that the
sign is opposite of what we expect and also the magnitude is unexpectedly
high. Apparently, Verhouten’s sales benefit from Droste’s price promotions.
Sethuraman et al. (1999) estimate that the average cross-price elasticity of a brand
on its second-closest lower-priced neighbor is 0.344. This compares favorably to
our estimate of 0.42 for γ13.

• RSS, ESS, and σ̂ are not comparable in size across the models. This is due
to the fact that several variables, including the dependent variable, were ln-
transformed in order to be able to estimate the multiplicative model with OLS. As
a consequence, one can also not compare the estimated values for the parameters
across both models.

Note that the numbers in Table 4.2 are estimates for the parameters in Eq. (4.39),
the linearized version of the multiplicative model. Some of the parameters in this
model correspond directly to the parameters of Eq. (2.27), the original multiplicative
model. In our application these are the four price-coefficients and the temperature
coefficient. Other parameters required a ln-transformation to obtain linearity in
parameters [see Eq. (4.40)]; these are superindexed with an asterisk in Table 4.2.
If we are interested in estimates for the parameters in Eq. (2.27), we need to
apply an ‘anti-ln’ transformation to all estimated values for the parameters that are
superscripted with an asterisk in Table 4.2. It appears sensible to take the exponential
of these values to obtain proper estimates for the parameters in the multiplicative
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model. However, Goldberger (1968) showed that this approach produces biased
results. Wittink et al. (2011) propose a correction to reduce this bias that relates
an estimate for a parameter γ in the multiplicative model to an estimate for the
ln-transformed parameter γ∗ as follows:

γ̂ = exp(γ̂∗)× exp

(

−1
2
σ̂2
γ̂∗

)

, (4.41)

where σ̂γ̂∗ is the estimated standard error for γ̂∗. So, for example, an estimate for γ̂21,
the coefficient of Feature-only of Verhouten, equals exp(0.04)×exp(− 1

2 × (0.17)2) =
1.03.7

4.5 Estimating Pooled Models

4.5.1 Introduction

In Sect. 2.7, we discussed several approaches for treating heterogeneity across
entities or cross-sections. In this section, we discuss how to estimate such models.
Following our line of discussion in Sect. 2.7, we subsequently treat unit-by-unit
models, pooled models, and partially pooled models. We do not consider aggregate
models, as they do not require pooling.

We explain estimation of pooled models using the simple model for Verhouten
that was discussed in Sect. 2.7, where we assumed that there are only two brands
in the market and that a useful model for explaining brand sales included only own
price. For estimation purposes, we assume that we have four (T ×1) vectors of data
available:

S 1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S 11

S 12
...

S 1T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S 21

S 22
...

S 2T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P11

P12
...

P1T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P21

P22
...

P2T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.43)

using notation that was introduced in Sect. 2.6.

7A similar correction is needed when predicting values for the dependent variable, based on
predicted values for the ln-transformed version of that variable. For example, predictions for S 1t

are related to predictions for S ∗1t as follows:

Ŝ 1t = exp(Ŝ ∗1t)× exp

(
1
2
σ̂2

)

, (4.42)

where σ̂2 is an estimate for the variance of the residuals, see Eq. (4.23).
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4.5.2 Estimating Unit-by-Unit Models

The unit-by-unit approach was introduced in Sect. 2.7, where we explained that this
involves estimating a separate model for each entity or cross-section. The top panel
of Fig. 2.5 shows the corresponding model specification:

S it = αi +βiPit + εit , t = 1, . . . ,T, i = 1,2. (4.44)

Estimation of Eq. (4.44) is quite straightforward: it involves running a separate
regression for each of the two cross-sections (brands) in our example. In the first
regression, we regress S 1 on P1, and in the second regression we regress S 2

on P2. This generates a separate set of parameter estimates for each of the two
cross sections, and provides maximum flexibility for accommodating all potential
differences between the brands. As illustrated in the top panel of Fig. 2.5, it allows
for different intercepts, and different response parameters. However, in some cases
this approach is not feasible, for example when T is too small to reliably estimate
all the coefficients for each cross-section separately.

4.5.3 Estimating Fully Pooled Models

The middle panel of Fig. 2.5 depicts a situation where a fully pooled model is
appropriate. In that case it is assumed that all parameters are the same across cross
sections. The corresponding model specification for this approach is:

S it = α+βPit + εit , t = 1, . . . ,T, i = 1,2. (4.45)

Estimation of Eq. (4.45) requires that we first stack the sales vectors and the price
vectors as follows:

S =

(
S 1

S 2

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S 11

S 12
...

S 1T

S 21

S 22
...

S 2T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and P =

(
P1

P2

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P11

P12
...

P1T

P21

P22
...

P2T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.46)

Subsequently, S is regressed on P. This results in a combined estimate for α and
a combined estimate for β. Equation (4.46) illustrates the most important benefit
of pooling: by combining data from cross-sections, there are more data points
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available so that the coefficients can be estimated with greater statistical efficiency
(i.e. smaller variance of the estimates). In general, when data are pooled across n
cross sections, and for each cross section T observations were recorded, the length
of the data vectors becomes n×T .

Baltagi (2008, pp. 6–8) mentions other benefits of pooled models:

1. pooled models offer opportunities to control for heterogeneity (e.g. by using
partial pooling, see below);

2. pooled models give more data, more variability, less collinearity among “inde-
pendent” variables, more degrees of freedom and more efficiency;

3. pooled models are better able to identify and measure effects that are simply not
detectable in pure cross-section and pure time-series models.

If a pooled model is applied while (some of) the parameters are not similar, then
the estimates based on the pooled model (4.45) lack meaning (at best the estimates
represent weighted averages of the separate parameter values). Nevertheless, if the
differences in parameters between the cross sections are small we may be willing
to accept some bias in return for smaller variances of the estimated coefficients.8

Consequently, even if there are differences between the sets of parameters across
the cross sections, pooled models may be preferred over unit-by-unit estimation,
because the statistical uncertainty due to separate regressions on small data sets may
“inflate” the differences considerably. Thus, the model builder faces the question
how to balance bias (unit-by-unit estimation minimizes bias) against variance
(pooled estimation minimizes the variance). In Sect. 5.4 we discuss how to test
whether pooling is appropriate for a given data set.

4.5.4 Estimating Partially Pooled Models

Partial pooling is appropriate when some coefficients are quite similar across cross-
sections, while others are not. The bottom panel of Fig. 2.5 depicts a situation where
the price response parameters are about the same, but the intercepts differ between
the two brands. The corresponding model specification for this approach is:

S it = αi +βPit + εit , t = 1, . . . ,T, i = 1,2. (4.47)

Partial pooling allows a model builder to strike a balance between the benefits of
pooling (increased statistical efficiency) and accommodating heterogeneity between
the cross sections.

Estimation of Eq. (4.47) requires stacking of the dependent variable across cross-
sections as in the fully pooled model. Similarly, the variables whose coefficients we
are planning to pool across cross sections are also stacked. However, those variables

8To this end Wallace (1972) suggested weaker criteria. See also Brobst and Gates (1977).
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that require cross-section specific estimates are not stacked. Since we want to obtain
a different estimate for each cross section for each of these variables, we retain
different variables for the different cross sections. However, in order to make sure
that we can estimate (4.47), all data vectors must be of equal length. To that end, the
remaining elements are filled up with zeros.

Let us illustrate this for the simplified Verhouten case that we consider in this
section. Estimation of (4.47) uses the stacked vectors S and P, because we aim to
obtain a pooled price coefficient. However, we do not stack the part that is required
for estimating the constant. In the first column of the X matrix of Eq. (4.14), we see
that this is a column of ones. Hence, in order to obtain separate estimates for α1 and
α2, we define two variables δ1 and δ2 as follows:

δ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
...

1
0
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and δ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
1
1
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

T observations for brand 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

T observations for brand 2

(4.48)

Note that δ1 and δ2 have the same length as S and P. Subsequently, we regress S
on δ1, δ2 and on P, where we do not estimate an overall constant, since we replaced
the column of ones in Eq. (4.14) by δ1 and δ2. The estimated coefficient for δ1 is
our estimate for α1, the estimated coefficient for δ2 is the estimate for α2, and the
estimated coefficient for P is the estimate for β.

The situation in our example is a special case of partial pooling, where we only
estimate cross-section specific intercepts, while all other parameters are pooled
across cross sections. In that case, the variables that are created to obtain cross-
section specific estimates are dummies as we saw in Eq. (4.48). Therefore, this case
of partial pooling is also referred to as OLS with Dummy Variables, or OLSDV. This
is a type of pooling that is relevant in many marketing applications where the cross
sections have different overall levels of the dependent variable, but it is reasonable
to assume that the response to the marketing instruments is about the same across
the cross sections. This occurs for example in sales models for a specific chain that
are specified at the store level. Store-specific intercepts then capture differences in
store sizes, while it is reasonable to work with pooled estimates of the response
parameters, because, given that they belong to the same chain, the stores are likely
to attract similar customers (see Horváth et al. 2005, for an example).

OLSDV provides a method for estimating models in which a different effect
(i.e. intercept) is specified for each cross section. Such models are referred to as
fixed effects models, to distinguish them from random effects models, that provide
another way of accommodating cross-sectional differences in the intercept.
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In cases where there is only a small number of cross sections, we might be
interested in determining a (fixed) effect for each cross section separately, and
OLSDV can provide these estimates. Random effects models are applicable in
situations where we want to account for differences in the intercepts, but where
we are not interested in obtaining estimates of these effects per se. Such cases may
arise in applications with a relatively large number of cross sections (e.g. stores or
individual customers). Each cross-sectional effect αi is then thought of as a drawing
from a statistical distribution (hence “random effect”), e.g. αi ∼ N(μα,σ2

α), and the
parameters of this distribution (μα andσ2

α) are used to characterize the heterogeneity
in the intercepts. Even with a small to moderate number of cross-sectional units,
estimating the parameters of this distribution (usually only one or two) can be much
more efficient than estimating a separate effect for each cross section. However, the
random effects approach cannot always be applied, because technically, the cross-
sectional differences are included as an additional disturbance term, and the joint
disturbance term needs to satisfy the conditions that we discussed earlier. A full
treatment of the resulting statistical intricacies of fixed and random effects models
is beyond the scope of this monograph, and we refer to Greene (2012, Sections 11.4
and 11.5) or Wooldridge (2012, Sections 14.1 and 14.2) for a detailed discussion.
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Chapter 5
Validation and Testing

5.1 Introduction

Two critical steps in the model building process are model specification and model
estimation. In this chapter we turn to the next stage in model building: validation
(also verification or evaluation).

In its broadest sense validation is an assessment of the quality of the model
outcomes. Validation criteria for model building can relate to:

• the model structure (specification);
• the data quality;
• the estimation method;
• the applicability of statistical tests (e.g. with regard to error term assumptions);
• the correspondence of model results to theoretical and common sense expecta-

tions;
• the model’s (relative) performance against alternative models;
• the relevance of model results for intended use.

In previous chapters we already covered issues related to specification, data quality
and estimation. In this chapter we turn to the four remaining validation criteria.
In Sect. 5.2 we discuss tests that can be used to validate the six assumptions that
required for application of OLS (see Sect. 4.2.3). In Sect. 5.3 we introduce mediation
tests and in Sect. 5.4 we consider several tests that allow us to judge whether
assumptions are jointly satisfied. In Sect. 5.5 we discuss face validity criteria which
are used to determine whether model results are in accordance with theoretical
and/or common-sense expectations. (Literally, face validity refers to the extent to
which one’s face becomes red if one is questioned about the meaningfulness of the
empirical results.)

We introduce criteria for model selection in Sect. 5.6. The idea of model selection
is that we often have alternative model specifications, and we use data to distinguish
between the alternatives. The superiority of one model over another may depend

© Springer Science+Business Media New York 2015
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on the product category and on competitive conditions but also on the quality of
data. Even though theoretical arguments should inform the model specification,
in marketing we want the empirical results to be not only consistent with what
sound arguments dictate but also with how the marketplace behaves. With new data,
the question is whether extant models apply, and with new models the question is
whether the proposed specification outperforms prevailing benchmarks.

If the model-building effort is intended to have descriptive validity, we could
restrict the validation effort to such aspects as model tests and face validity.
However, in marketing, the empirical research almost always includes a measure
of predictive validity. This is perhaps a reflection of the philosophy that for any
model to be useful (even for descriptive purposes), it must have predictive validity.
We introduce a framework, along with criteria, for predictive validity in Sect. 5.7.
Finally, we illustrate the validation of models in Sect. 5.8, using data from the
Verhouten case.

5.2 Testing the Six Basic Assumptions of the General
Linear Model

We have argued in Sect. 4.2.3 that several assumptions concerning different model
elements need to be satisfied when the parameters are estimated with OLS. We
repeat here the disturbance term assumptions:

1. E(εt) = 0 for all t;
2. Var(εt) = σ2 for all t;
3. Cov(εt, εt′) = 0 for t � t′;
4. εt is normally distributed.

The two other assumptions are:

5. There is no relation between the predictors and εt, i.e. Cov(xt, εt) = 0 (one-
variable case). In other words the xt are nonstochastic or “exogenous”. For the
K-variable case this implies Cov(X′, ε) = 0, in which case we have E(ε | X) =
E(ε) = 0.

6. For the K-variable case, the matrix of observations X has full rank, that is the
vectors in X are linearly independent.

In Table 5.1 we show possible reasons for violations of each of the assumptions, the
consequence of this violation for parameter estimates, how each violation can be
detected, and the available remedies.
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Table 5.1 Violations of the assumptions about the disturbance term: reasons, consequences, tests
and remedies

Violated
assumption Possible reasons Consequence Detection Remedy

1. E(εt) � 0 - Incorrect func-
tional form(s)

- Omitted vari-
able(s)

- Varying param-
eter(s)

- Biased
parameter
estimatea

- Plot residuals
against each pre-
dictor variable

- RESET-test

- White test

- Modify the model
specification in
terms of functional
form

- Add relevant
predictors

- Allow parameters
to vary

2. Var(εt) � σ2 - Error propor-
tional to values
of a predictor

- Inefficient
parameter
estimate

- Plot residuals
against each pre-
dictor variable

- Goldfeld/Quandt
test, Breusch–
Pagan test, White
test

- Modify the speci-
fication (e.g. per
capita)

- Use
heteroscedasticity-
consistent
estimation (e.g.
WLS, GLSb)

3. Cov(ε j , εt′ ) � 0,

t � t′
- See 1. - See 2. - Plot residuals

against time

- Durbin Watson
test

- Durbin’s h-test

- See 1.

4. Nonnormal errors - See 1. - p-values
cannot be
trusted

- Plot distribution of
residuals

- χ2-test

- Kolmogorov–
Smirnov

- Shapiro Wilk

- Bera–Jarque

- See 1.

- Robust regression

- Box–Cox-
transformation

5. Stochastic predic-
tor correlated with
the disturbance
term: E(ε | xi) � 0

- Measurement
errors

- Endogeneity
of predictor
variable(s)

- See 1. - Diagnose specifi-
cation

- Simultaneous
equations

- Instrumental Vari-
able estimation

(continued)
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Table 5.1 (continued)

Violated
assumption Possible reasons Consequence Detection Remedy

6. Multicollinearity - Relations
between predic-
tor variables

- Unre-
liable
parameter
estimates

- Inspect the corre-
lation matrix of the
predictor variables

- Regress xk on the
other predictor
variables

- some VIF values
≥ 5

- Reformulate
model

- Create new pre-
dictors (e.g. factor
scores)

- Obtain more data

- Apply other esti-
mation methods

- Eliminate predic-
tor variable(s)

aThe bias due to an omitted relevant predictor variable depends on the correlation between included and
excluded variables. If this correlation is zero, there is no bias (but the estimates are less precise)
bWLS weighted least squares, GLS generalized least squares, VIF variance inflation factor

5.2.1 Nonzero Expectation

Violation of the first assumption, i.e. E(ε) � 0, is the most serious one. One of
the principal desiderata of parameter estimates is unbiasedness (or consistency).
In regression analysis unbiasedness can only be obtained if the model is correctly
specified. All relevant predictor variables should be included, the proper functional
form of the partial relation with respect to each predictor must be accommodated,
etc. Misspecification of the model causes the parameter estimates to be biased. For
example, an omitted predictor variable causes the parameter estimates to be biased,
unless the omitted variable is uncorrelated with the included predictor variables. The
amount of the bias increases with the degree of (positive or negative) correlation.
Because of this, it is always necessary to specify a model that is complete on relevant
issues, even in cases when a researcher is interested in the effect of one specific
variable (see also Sect. 2.2.2). Including irrelevant variables can have undesirable
effects on the variance of the OLS estimates.

Violations of the first assumption are rarely detectable from a plot of the
residuals, et = (yt − ŷt), t = 1, . . . ,T , against each predictor variable. However, if
only the assumed functional form is incorrect, such a plot should show a systematic
pattern in the residual values. On the other hand, this plot will not suggest that a
relevant predictor has been omitted (unless one has information about the values of
the omitted variable).

To test for the possibility of omitted variables, the model can be extended with
additional terms. The explanatory power of these extra terms is then used as a basis
for detecting the omission of relevant predictor variables. A formal statistical test
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for misspecification in this context is the RESET-test.1 The null hypothesis of the
test is Eq. (4.13) and the alternative hypothesis is E(εt) = ξ � 0. The test is based on
the estimation of an extended model:

yt = α+β1x1t + · · ·+βK xKt + (5.1)

+γ1z1t + · · ·+γmzmt + ε∗t , t = 1, . . . ,T

where

z1t, . . . ,zmt = the additional variables chosen in such a way

as to explain the elements ξt, t = 1, . . .T of ξ best.

If E(ε) = 0 is true for (4.13) then γ1 = · · · = γm = 0 in (5.1). The alternative
hypothesis is accepted if γ� � 0 for at least one �, � = 1, . . . ,m. For the additional
variables z1t, . . . ,zmt, Ramsey (1969) recommends adding the powers of ŷt (i.e. ŷ2

t ,
ŷ3

t , ŷ4
t , . . .) obtained from the (OLS-)estimation of the original regression (4.13).

The justification for this is that the powers of ŷt are functions of the powers and
cross products of the original regressors. A limitation is that each power of ŷt is
a linear combination of the original predictor variables, the squared predictors and
cross products along with the coefficients of the original regression.

The RESET-test is an F-test based on incremental R2. We provide details about
this test in Sect. 5.4.1, but mention a few caveats here. First, the test only considers
powers (and cross products, based on Ramsey’s suggestion) of the “original”
predictor variables x1t, . . . , xKt. If the null hypothesis is rejected, the model builder
will lack information about the identity of the “real” missing variables. Interestingly,
and not surprisingly given the use of powers, the test turns out to be useful
for detecting nonlinearities. This weakens its attractiveness for detecting other
specification problems, since rejection of a model may be due to either an omitted
explanatory variable or a wrong functional form. The identification of missing
variables is especially arduous. Second, we mentioned earlier that the bias in
parameter estimates is a positive function of the degree of correlation (absolute
value) between included and excluded predictors: the stronger the correlation, the
greater the bias. However, if this correlation is strong, then the power of the test for
omitted variables based on squared and higher-order terms of included predictors
decreases. Third, the RESET-test is quite sensitive to autocorrelation (which we
argue is likely to occur in the error term in case of model misspecification). Fourth,
the RESET-test is a test of functional form misspecification only for nested models.
The concept of nested models is discussed in Sect. 5.6.2.

In this discussion we emphasize the importance of proper specification of
the predictors. One needs a substantial amount of knowledge about consumers,
competitors, and markets in general (e.g. market structure) and the nature of possible

1Ramsey (1969, 1974).
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effects of marketing instruments to justify a specific model formulation. This
knowledge should be used to the fullest extent possible in the specification of a
theoretically appropriate model. The model can then be tested against alternative
specifications. A possibility to mitigate the omitted variable bias in an equation is to
obtain proxy variables for the omitted variable. A proxy variable is a variable that
is related to the unobserved variable (Wooldridge 2012, Section 9.2). This is called
the plug-in solution for the omitted variable problem.

5.2.2 Heteroscedasticity

The second assumption, that the error term is homoscedastic (i.e. it has the same
variance in all cases either cross-sectionally and/or over time), is not as critical
as the first. Its violation “merely” reduces the efficiency of (OLS) parameter
estimates. Thus if only the homoscedasticity assumption is violated, the least-
squares estimator is (usually) unbiased but does not have minimum variance. In
addition, the covariance matrix of the parameter estimates provides incorrect values
because the estimates of the variances of the parameters are biased. In many cases
the critical remedy is to use an appropriately adjusted formula for the variances and
covariances of the parameter estimates.

The benefit of using an estimator that incorporates the heteroscedasticity is not
always obvious. There are two relevant aspects to this. One is that the true source of
heteroscedasticity is usually unknown. Thus, a deviation from homoscedasticity is
usually determined based on data which introduces uncertainty. The other is that in
this case the theoretically superior estimator is only asymptotically more efficient
than the least-squares estimator. The benefit in practice, therefore, depends also on
the sample size.

Experience in model building reveals that heteroscedasticity occurs especially
if cross-sectional data are used for estimation. Thus, heteroscedastic disturbances

Fig. 5.1 A relation between
the squared disturbance and
income

ê2
i

x1i = Income, i = 1, ..,12
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have traditionally been accommodated in analyses of cross-sectional data. In the
literature, fairly complex tests for homoscedastic disturbances exist. We restrict the
discussion here to the basic phenomenon.

For heteroscedastic disturbance terms, consider a relation between the (squared)
disturbance and a predictor variable such as income, as shown in Fig. 5.1. Income
of family x1i, i = 1, . . . ,12 is measured along the horizontal axis and the squared
residual values occur along the vertical axis. The apparent dependence of the
squared disturbance on income can be tested by estimating the following model:

ε̂2
i = γ0 +γ1x1i + νi (5.2)

where νi = a disturbance term. If H0 : γ1 = 0 is rejected, then the assumption of
homoscedasticity for εi is rejected.

Perhaps the best-known test of heteroscedasticity is the Goldfeld–Quandt test.
This test is applicable if the model builder has a preconceived notion about the
nature of heteroscedasticity (i.e. the residuals are not used to infer the nature of a
possible violation of the assumption). Goldfeld and Quandt considered the problem
that the residuals obtained from estimating one set of parameters from a sample of
data are not independent. Thus, if the 12 observations in the application involving
income as a predictor can be categorized prior to data analysis according to the
expected magnitude of the squared disturbance (i.e. let E(ε2

1) ≥ E(ε2
2) ≥ E(ε2

3) . . .),
the ratio

∑6
i=1ε̂

2
i /

∑12
i=7ε̂

2
i does not follow the F-distribution. This is because the

numerator and denominator in the ratio can be shown to be dependent.
Goldfeld and Quandt (1965) proposed a ratio whose numerator and denominator

are independent under the null hypothesis of homoscedasticity by partitioning the
original data as follows:

[
yA

yB

]

=

[
XA O
O XB

] [
βA

βB

]

+

[
εA

εB

]

(5.3)

where the vectors and matrices with subscript A refer to the first 1
2 n observations

and those with B subscripts to the last 1
2 n (where the observations are still

ranked according to the expected magnitude of the squared disturbance under the
alternative hypothesis of heteroscedasticity). Importantly, the residuals ε̂i, i= 1, . . . ,n
are obtained from fitting separate regressions to the first 1

2 n and to the last 1
2 n

observations. The ratio of the residual sums of squares from these regressions:

ε̂′Aε̂A

ε̂′Bε̂B
(5.4)

is F-distributed with 1
2 n−K − 1 and 1

2 n−K − 1 degrees of freedom under the null
hypothesis.
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A joint test for homoscedasticity and correct model specification is given
by White (1980).2 Another well-known test to detect heteroscedascticity is the
Breusch–Pagan test for heteroscedascticity (Breusch and Pagan 1979). This test is
also based on the idea whether ε̂2

t is related to one or more independent variables:

ε̂2
t = δ0 + δ1x1t + δ2x2t + · · ·+ δK xKt + νt (5.5)

where νt is a disturbance term with mean zero given the xkt, k = 1, . . . ,K. The null
hypothesis of homoscedasticity is:

H0 : δ1 = δ2 = . . . = δK = 0.

The Breusch–Pagan test is based on running the regression (5.5). The R-squared
from the regression is denoted by R2

ε̂2
, and is used to compute the F-statistic

F =
R2
ε̂2
/K

(1−R2
ε̂2

)/(T −K−1)
, (5.6)

which has (approximately) an FK,T−K−1 distribution under the null hypothesis of
homoscedasticity, and where T is the number of observations.

We now examine the heteroscedasticity issue more closely by assuming it to exist
in a prespecified form. To simplify the exposition we consider the basic model (4.1)
and suppose that:

1. E(εt) = 0
2. Var(εt) = σ2x2

t .
(5.7)

This second assumption indicates that the error variance increases with the squared
value of the predictor variable (somewhat analogous to the relation in Fig. 5.1). For
this specific form of heteroscedasticity we can use a transformation that results
in the estimation of a different equation, where the new error term meets the
homoscedasticity assumption and allows OLS estimation of the parameters of
interest. If we multiply both sides of (4.1) by 1/xt we obtain:

yt

xt
=
α

xt
+β+

εt

xt
. (5.8)

In this form the error term εt/xt still has the expected value equal to zero, since
E(εt) = 0 for a given value of xt. The variance of the error term in (5.8) is:

Var

(
εt

xt

)

=
1

x2
t

Var(εt) =
1

x2
t

σ2x2
t = σ

2. (5.9)

2See also Judge et al. (1985, p. 453); Wooldridge (2012, p. 269).
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In this case OLS is best, linear unbiased if it is applied to the new criterion variable
yt/xt and the new predictor variable 1/xt. This transformation involves weighting
each observation by 1/xt so that as the value for xt increases, the weight declines.
This estimation method is also known as weighted least squares (WLS), and it is a
special case of the generalized least squares (GLS-) estimation methods. We discuss
these methods in Chap. 6.

5.2.3 Correlated Disturbances

If the residuals exhibit some systematic pattern over time, some or all of the
covariances between residuals at different points in time will be nonzero, and the
third assumption is violated. An important example is when the residuals exhibit
first-order autocorrelation. Let us illustrate this by a modification of the residual
term of the basic two-variable regression equation (4.1):

yt = α+βxt +ut, t = 1, . . . ,T (5.10)

where we use a different notation for the disturbance term because we assume that
successive disturbances are related as follows:

ut = ρut−1 + εt, | ρ |< 1. (5.11)

We also assume:

E(εt) = 0 (5.12)

Cov(εt, εt′) = 0, t � t′.

In (5.10) the error terms u1,u2, . . . ,uT are not independent but follow a so-
called first-order AutoRegressive (AR) process with parameter ρ. This feature
is called autoregression, autocorrelation or serial correlation. The parameter ρ
is known as the autocorrelation parameter or autocorrelation coefficient. Under
these assumptions, the efficiency of OLS-estimation is reduced, similarly to a
violation of the second assumption. It is possible to show mathematically that
the parameter estimates α and β are unbiased, but in practical applications, the
parameter estimates may exhibit seizable deviations from their true values due to the
reduced estimation efficiency. A violation of the third assumption can result from
model misspecification (e.g. incorrect functional form, omitted variable(s), varying
parameters).

To detect a violation of the assumption that the disturbances for different
observations have zero covariance, one can plot the residuals (ût) against time.
Figures 5.2 and 5.3 show cases of positive and negative autocorrelation, respectively.
In Fig. 5.2, a positive residual tends to be followed by another positive one, and a
negative residual tends to be followed by a negative one. Positive autocorrelation
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means that the residual in t tends to have the same sign as the residual in t − 1.
On the other hand, in Fig. 5.3 we see that the observations tend to have positive
values followed by negative ones, and vice versa, which result in a typical alternating
pattern of negative autocorrelation.

The best-known test statistic to detect (first-error) autocorrelation is the one
developed by Durbin and Watson (1950, 1951). The Durbin–Watson test statistic
is based on the variance of the difference between two successive disturbances:

E(ut −ut−1)2 = E(u2
t )+E(u2

t−1)−2E(ut,ut−1). (5.13)

Residual
yt − yt

Time (t)

+

0

−

ˆ

Fig. 5.2 Positive autocorrelation

If successive disturbances are positively correlated (positive autocorrelation), the
expected value of (5.13) is small, because of the negative sign of −2E(ut,ut−1).
Similarly, negative autocorrelation causes this last part of (5.13) to contribute
to a high expected value for E(ut − ut−1)2. To the extent that the residuals ût

obtained by the ordinary least squares method are satisfactory approximations of the
corresponding random disturbance terms ut, we have a similar result for (ût− ût−1)2.
These considerations lead to the Durbin–Watson test statistic:

DW =

T∑

t=2

(ût − ût−1)2

T∑

t=1

û2
t

. (5.14)

The DW statistic varies between zero and four. Small values indicate positive
autocorrelation, large values negative autocorrelation.
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Time (t)

+

0

−

Residual
yt − ytˆ

Fig. 5.3 Negative autocorrelation

Durbin and Watson (1950, 1951) formulated lower and upper bounds (dL, dU)
for various significance levels,3 and for specific sample sizes and numbers of
parameters. The test statistic is used as follows:

1. Tests for positive autocorrelation:

(a) If DW < dL, there is positive autocorrelation;
(b) If dL < DW < dU the result is inconclusive;
(c) If DW > dU , there is no positive autocorrelation.

2. Tests for negative autocorrelation:

(a) If DW > 4−dL, there is negative autocorrelation.
(b) If 4−dU < DW < 4−dL the result is inconclusive.
(c) If DW < 4−dU, there is no negative autocorrelation.

The Durbin–Watson test is not very powerful in the sense that the inconclusive range
can be quite large. Judge et al. (1985, p. 330) recommend that the upper critical
bound (dU) is used instead of the lower bound. Thus they essentially include the
inclusive region as evidence of autocorrelation. We note that the Durbin–Watson
statistic is a test for first-order autocorrelation, and does not consider higher-order
autoregressive schemes [see: (5.16)].

In the presence of a lagged criterion variable among the predictor variables, the
DW statistic is biased towards finding no autocorrelation. For such models Durbin
(1970) proposed a statistic (Durbin’s h) defined as:

h = ρ̂

√
T

1−T σ̂2
λ̂

(5.15)

3Tabulated values of dL, dU for different significance levels can be found in most textbooks on
econometrics.
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where ρ̂ is an estimate for ρ in (5.11), T is the number of observations, and σ̂2
λ̂

is
the estimated variance of the slope coefficient for the lagged endogenous variable.
Durbin (1970) shows that, asymptotically, h is a standard normal deviate. However
for small samples the Durbin–Watson test is more powerful than the Durbin’s h
statistic in detecting ρ � 0 as demonstrated by Kenkel (1974).

Many software programs automatically compute and report the value of the
Durbin–Watson statistic. This is very useful for longitudinal data, but for cross-
sectional observations the test is meaningless, because the test assumes that the
observations are ordered, which is not the case in a cross-sectional setting.

We note that econometric textbooks suggest a remedy that essentially incorpo-
rates the systematic pattern in the residuals in the estimation method. We discuss
such an approach in Sect. 6.2. We believe that this remedy should only be a last-
resort option. That is, the model builder should first do everything possible to obtain
an acceptable model specification, such that the residuals are uncorrelated. If the
residuals of an early version of a model turn out to be correlated, the first option
should be to investigate whether the model properly accommodates the dynamic
effects of marketing efforts. In Sect. 2.8 we extensively discussed several options
for incorporating marketing dynamics in the model. If none of these options provide
the desired uncorrelatedness of the residuals, the procedure in Sect. 6.2 can be used.

Traditionally, the first-order autoregressive process (AR(1)) represented by (5.11)
has been the primary autocorrelation process considered in econometrics (Judge
et al. 1985, pp. 226–227). For annual data, the AR(1)-process is often sufficient
for models with autocorrelated disturbances (with the caveat that it may mask
other shortcomings in model specification). More recently, for models of frequently
occurring data such as daily online expenditures and with the virtual elimination of
computational constraints in estimation, other specifications have been considered.
These include autoregressive processes of finite order greater than one.4 An autore-
gressive process of order p, AR(p), has the following form (for the disturbance
term):

ut = ρ1ut−1 +ρ2ut−2 + · · ·+ρput−p + εt (5.16)

where εt satisfies (5.12).
To accommodate seasonal processes, for quarterly data, p may be 4. Thomas and

Wallis (1971) suggest that with quarterly data only the disturbances in correspond-
ing quarters of successive years should be correlated. This leads to the specification
of a restricted AR(4)-process:

ut = ρ4ut−4 + εt. (5.17)

For monthly data, p = 12 may be appropriate.

4For other stochastic processes such as moving average processes and combined autoregressive
moving average processes, see, e.g., Judge et al. (1985, Chapter 8).
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Lagrange Multiplier (LM) tests can be used to determine the choice of an
autocorrelation process. For restricted AR(p)-processes, the LM-test statistic T ρ̂2

p

asymptotically has a χ2
(1) distribution where T = the total number of observations,

and

ρ̂p =

T−p∑

t=1

ûtût+p

T∑

t=1

û2
t

(5.18)

where ût, ût+p are the OLS-residuals.
For the more general alternative (5.16), to test the null hypothesis ρ1 = ρ2 = · · · =

ρp = 0 the LM test statistic

T
p∑

r=1

ρ̂2
r (5.19)

asymptotically follows a χ2
(1) distribution.

In Sect. 6.2 we consider how to estimate the parameters in a model with AR(1)
disturbances. For the estimation of models with disturbances that follow higher-
order AR processes we refer to Judge et al. (1985, pp. 293–298).

5.2.4 Nonnormal Errors

The fourth assumption, that the disturbances are normally distributed, may also
be violated due to model misspecification. It makes sense, therefore, that this
assumption will not be examined until the model specification is reconsidered, if
necessary. For the same reason it is efficient to examine the plausibility of the
second and third assumptions before one checks the fourth. The disturbances need
to be normally distributed for the standard test statistics for hypothesis testing and
confidence intervals to be applicable. We can examine the validity of the fourth
assumption indirectly through the residuals. If each error term separately satisfies
all four assumptions, then the estimated error values (residuals) as a group will be
normally distributed. Thus, if the residuals appear to be normally distributed, we
cannot reject the hypothesis that each unobservable error term follows a normal
distribution.

To examine whether the residuals are approximately normally distributed, we
can categorize the residuals and construct a histogram. Such a histogram shows the
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relative frequency with which the (standardized)5 residuals fall into defined classes.
An inspection of the histogram may suggest deviations from normality in the form
of skewness or kurtosis.

The literature on testing for normality is vast. Some commonly used tests are the
Kolmogorov–Smirnov test, the likelihood ratio test and the Kuiper test. Other tests
of the normality assumption are the Shapiro–Wilk test6 and the Jarque–Bera test.7

The Jarque–Bera test statistic for non-normality is chi-square distributed (with two
degrees of freedom):

χ2
(2) =

(T − L)

σ̂2
(ŝk

2
+ 1

4 êk
2
) (5.20)

where

T = number of observations,

L = number of parameters,

σ̂ = standard deviation of the residuals,

ŝk = skewness of the distribution of the residuals (3rd moment),

êk = excess kurtosis of the distribution of the residuals (4th moment).

Thus, this test determines whether the third and fourth moments of the residuals are
consistent with the null hypothesis of normality.

For some models that have nonnormal disturbances a transformation may
produce normally distributed errors. Suppose that, if the effects of predictor
variables are accounted for, yt is log-normally distributed. Then by taking the logs
of yt the new criterion variable lnyt is normally distributed (and hence we have
normally distributed errors). This is a special case of a class of transformations
considered by Box and Cox (1964). They assume that there exists a value λ such
that

yλt −1

λ
= β1x1t + · · ·+βK xKt + εt , λ > 0 (5.21)

where the disturbance term εt is normally distributed (and homoscedastic). It can be
shown that:

lim
λ→0

yλt −1

λ
= lnyt. (5.22)

5The residuals are standardized by dividing the observed values by the standard deviation of the
residuals (the average of the residuals equals zero under usual conditions).
6See Shapiro and Wilk (1965).
7See Bera and Jarque (1981, 1982); Stewart (1991, p. 162).
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Apart from a difference in the intercept, λ = 1 yields the basic model for the K-
variate case (4.13). In general, however, the Box–Cox transformation is applied
primarily to let the data determine the most appropriate functional form. See
Kristensen (1984) for a marketing application.

We note that with increases in sample sizes, the null hypothesis of normally
distributed errors will be rejected more often. Consequently, even minor deviations
from normality can signify a violation of the assumption required for traditional
statistical inference. If the model specification seems appropriate, it will not be
appealing to follow strict rules with regard to such violations. To accommodate
cases in which the normality assumption does not hold but the model specification
is acceptable, researchers have developed robust regression methods. The interested
reader is referred to Huber (1973), Hinich and Talwar (1975) and Judge et al. (1985,
pp. 828–839). For marketing applications, see Mahajan et al. (1984).

One of the reasons why non-normality tests may indicate deviations from the
normal distribution is the presence of outliers in the residuals. Especially in small
data sets the OLS estimates are sensitive to outliers, because large residuals receive
a lot of weight in the least squares minimization problem. Consequently, when
deviations from normality are caused by outliers, OLS results may no longer be
unbiased or efficient. Figure 5.4 shows different patterns of outliers.

In panel (a) of Fig. 5.4, the outlier is an extreme observation relative to the other
observations of both xt and yt, but strengthens the relationship between x and y that
we see in these observations. This outlier does not result in biased estimates, and
actually increases R2. That is not the case in panels (b)–(e). In those situations, the
outliers are not in line with the relationship between x and y that is suggested by
the other observations, and the outliers reduce R2. In panel (b) the outlier is extreme
relative to the other observations of both xt and yt. The outlier in panel (c) is extreme
relative to the other observations of yt but not with respect to the other observations
of xt. In panel (d) the outlier is not extreme relative to the other observations of xt,
but it is relative to other observations of yt. The outlier in panel (e) is neither extreme
in xt, nor in yt.

The take-away from Fig. 5.4 is that we should not judge normality or the presence
of outliers in terms of x or y alone: a proper assessment also takes the relation
between x and y into account. Therefore it is advisable to start with testing the
residuals for outliers and normality. If outliers are detected, x and y variables should
be inspected for anomalies.

In practical settings, it is advisable to estimate the model twice, with and without
outliers, to assess the influence of the unusual observations on the estimation results.
However, inspecting observations in trying to determine which are outliers, and
which ones have substantial influence on the (OLS) estimator is a difficult endeavor
(Wooldridge 2012, p. 316). Formal tests have been developed and are discussed by
Belsley et al. (1980).
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Fig. 5.4 Patterns of outliers

5.2.5 Endogenous Predictor Variables

It is often convenient to consider the error-term assumptions under the condition
that the predictor variables xk, k = 1, . . . ,K are nonstochastic or “exogenous”.
Essentially this means that we would take the observed values for the predictor
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variable(s) as given. The assumption is violated (i.e. E(εt | xkt) � 0) amongst others
if xkt in fact depends on yt. Given that yt depends on εt there is a non-zero
correlation between the independent variable and the disturbance term. This is called
endogeneity. The consequence of a violation of this assumption is that the ordinary
least squares parameter estimates are biased. Endogeneity makes the least-squares
estimator biased and inconsistent. We note that endogeneity is not detectable from
an inspection of the residuals in the original equation. Thus, the model builder must
possess the substantive knowledge that is critical for meaningful model building.
Endogeneity can arise from a number of different sources (Ebbes 2004, pp. 8–15):

1. relevant omitted variables;
2. measurement error in the regressors;
3. serially correlated error in the presence of lagged dependent variables in the set

of regressors;
4. simultaneity.

Proofs of how the first three sources lead to violation of assumption 5 (“endo-
geneity”) are given by, for example, Ebbes (2004) and Wooldridge (2012, p. 491).
Here we discuss how simultaneity leads to endogeneity. If, for example, price and
advertising are used as predictor variables in a demand equation, the model builder
must know how price and advertising decisions are made and whether this decision-
making process should be taken into account. For example, advertising expenditures
of brand j may be based on the sales of brand j, prices may be based on past
prices and sales of brand j, and competitive sales (Horváth et al. 2005). But if price
depends on sales, it is also related to the error term in the sales equation, resulting
in endogeneity. We elaborate on this example in Sect. 6.5.

Before we pinpoint tests for endogeneity, we first briefly touch on possible
remedies to account for or to reduce endogeneity.

One remedy for a violation of the assumption is to find instrumental variables
Z such that E(ε | Z) = 0, while the variables in the matrix Z are highly correlated
with the endogenous variables in X, and the number of variables in Z is at least K.
It is easy to demonstrate that the instrumental variable estimator is consistent since
E(ε | Z) = 0.

Specifically, suppose that only one predictor variable in the X matrix is correlated
with the error term ε, say xk∗ . We then only need to find instrumental variables to
obtain x̂k∗ such that x̂k∗ is uncorrelated with ε but (highly) correlated with xk∗ . For
the other predictors we use X̂k = Xk (k � k∗), since the predictors themselves are
uncorrelated with ε and there are no other variables more highly correlated with Xk

for k � k∗.
We want to employ multiple instrumental variables, if possible, to create the

highest possible correlation between x̂k∗ and xk∗ , subject to E(x̂k∗ | ε) = 0. This
can often be accomplished by using lagged values of the criterion and predictor
variables. Thus, let

xk∗ = Zγ+ v (5.23)
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where

xk∗ = the predictor variable that is correlated with the error term ε,

Z = a matrix of instrumental variables, possibly consisting of all

lagged y and X variables,

v = vector of disturbances.

Then x̂k∗ = Z(Z′Z)−1Z′xk∗ . We replace the values for xk∗ in the X-matrix with the
values for x̂k∗ , and apply least squares (this is the Two-Stage Least Squares or 2SLS
estimator). For further detail, see: Sect. 6.6 and for example Greene (2012, p. 357);
Wooldridge (2012, Chapter 15).

Tests for endogeneity compare the estimates of the so-called instrumental
variables (IV) method with the OLS estimates (Hausman 1978). This Hausman test
and other endogeneity tests are discussed after a more in-depth introduction of the
IV-estimation method in Sect. 6.6.

Other remedies to deal with endogeneity are:

• modeling a simultaneous system of equations (see Sect. 6.5);
• the use of spatial models (Bronnenberg and Mahajan 2001; Van Dijk et al. 2004);
• the use of so-called control variables (Card 1999, 2001);
• latent instrumental variables (Ebbes 2004, Ebbes et al. 2005, 2009);
• a number of specific approaches which are model-specific (Kuskov and Villas-

Boas 2008; Park and Gupta 2009);
• the control function approach (Petrin and Train 2010; Sridhar and Srinivasan

2012);
• copulas (Park and Gupta 2012).

5.2.6 Multicollinearity

Real-world data often show high degrees of correlation between predictors. Take, for
example, the specification of a model to explain the demand for a product category
at the household level. Variables such as household income and age of the head of
the household may be relevant predictor variables. However, these variables tend to
be correlated. In particular, income is partly a function of age.

In Model (4.14) we assume that the matrix of observations X has full rank (see
Sect. A.4 in the Appendix on Matrix Algebra), or that the vectors in X are linearly
independent. If this assumption is violated we encounter perfect collinearity. If X
has a rank smaller than K, X′X has a determinant with value zero. In that case
(X′X)−1 does not exist and the parameter estimates cannot be uniquely determined.
Perfect collinearity is, however, unusual. If it happens, it is often due to a duplicate
variable. The notion of “almost” linearly dependent vectors is, however, meaningful.
This means that the determinant of X′X is not equal to zero, but its value will be near
zero. Hence, (X′X)−1 exists, but its elements will be large. As a consequence, the
parameter estimates will have large variances and covariances [see (4.22)]. Thus,
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multicollinearity (almost linearly dependent vectors in the X-matrix) makes the
parameter estimates unreliable.

Collinearity between predictor variables can also result from decisions made by
managers. Consider again the example that we discussed before, that unit brand
sales is a function of advertising and price. It seems inappropriate to assume that
either variable is “fixed”. Instead, a decision maker manipulates both variables,
based on strategic considerations, marketplace conditions, cost considerations, etc.
Imagine that consumers’ price sensitivity depends on the amount of advertising.8

A manager who manipulates both variables will then refrain from changing
these variables independently. In that case, a real-world correlation between these
marketing decision variables reflects, at least partly, the decision maker’s belief
about interactions between these variables. If her belief is very strong (i.e. price
changes are strongly related to advertising changes), then it can become difficult or
impossible to obtain reliable estimates of the separate main effects from marketplace
data. And, verification of an interaction effect will then be especially difficult.

Some of the procedures for detecting the presence of multicollinearity are:

1. The traditional approach to check for collinearity is to examine the correlation
matrix R of the predictor variables. Highly positive or negative correlations are
indications of potential difficulties in the estimation of reliable effects. Often
empirical researchers examine the matrix of all bivariate correlation coefficients
between the predictor variables. Based on some cut-off value a decision might
be made about which pairs of predictors should not be included together. One
problem with this procedure is that all bivariate correlations may be low and yet
one predictor may be highly related to a linear combination of the remaining
predictors (see approach 3 below). Another problem is that the severity of a high
bivariate correlation between two predictors depends on the sample size. For
that reason statistical tests of multicollinearity9 are meaningless. In this regard,
Mason and Perreault (1991); Cameron and Trivedi (2009, p. 350) demonstrated
that the harmful effects of collinear predictions are often exaggerated and that
collinearity cannot be viewed in isolation. They argue that the effects of a given
level of collinearity must be evaluated in conjunction with the sample size, the
R2 value of the estimated equation, and the magnitudes of the slope coefficients.
For example, bivariate correlations as high as 0.95 have little effect on the ability
to recover the true parameters if the sample size is 250 and the R2 is at least 0.75.
By contrast, a bivariate correlation of 0.95 in conjunction with a sample size of
30 and an R2 of 0.25 results in failure to detect the significance of individual
predictors.10

8For a discussion of theoretical arguments and empirical generalizations, see Kaul and Wittink
(1995).
9See Farrar and Glauber (1967); Kumar (1975) or Friedman (1982).
10Currently, the spectral decomposition of X′X is advocated for the quantification of multi-
collinearity, based on one or more characteristic roots. In this respect researchers quite often use the
condition numbers of X′X, that is the square root of the ratio of the largest to smallest eigenvalue
of X′X; see Cameron and Trivedi (2009, pp. 350–351).
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2. Do a factor analysis of the predictor variables to examine the structure of
overlapping variation between the predictors. This is a more comprehensive
examination of multicollinearity than the traditional approach which considers
only the simple correlations.

3. Use multiple regression with xkt as the criterion variable and the xrt, r =

1, . . . ,K,r � k as the predictor variables, for all k = 1, · · · ,K. Each regression
indicates how much one predictor is related to a linear combination of the other
predictors. The R2

k values that result from these regressions, one at a time, can be
used to quantify the overlap among any number of predictor variables. A related
measure is the Variance Inflation Factor (VIF) computed as 1/(1−R2

k). A VIF
greater than 5 is often taken to signal that collinearity is a problem (De Vaus
2013). An equivalent measure is the “tolerance”, which is 1/VIF.

4. Estimate the complete model with yt as a function of all K predictor variables.
Next, eliminate one of the predictor variables xkt, and re-estimate the model. The
parameter estimates that change the most are associated with predictor variables
that are collinear with the deleted variable xkt. This can be done for each predictor
variable in turn.

5. Comparing results for F-test and t-tests. Multicollinearity may be regarded as
acute if the F-statistic shows significance and none of the t-statistics for the slope
coefficients is significant.

5.2.6.1 Solutions to Multicollinearity

If any two predictors are perfectly correlated, the parameters of a regression
equation cannot be estimated. Thus no solution to a multiple regression problem
(other than combining the two predictors or deleting one) can be obtained if there
is extreme multicollinearity. The approaches available for the resolution of non-
extreme but severe multicollinearity include:

1. obtain more data relevant to the problem;
2. reformulate the model with the specific objective to decrease multicollinearity;
3. create new predictors;
4. apply estimation methods specifically developed for cases with severe multi-

collinearity;
5. eliminate a predictor variable with a t-ratio close to zero.

The last approach is simply that a predictor variable with a statistically insignificant
t-ratio be eliminated. In general, an insignificant t-ratio indicates that the predictor
variable is irrelevant or that it has an effect but we cannot obtain a reliable parameter
estimate. The elimination of such a predictor variable from the model should be a
last-resort option.
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A better solution, of course, is to obtain more data. With more data, especially
data with a reduced degree of multicollinearity, it is more likely that a significant
effect can be obtained for any predictor variable. However, the opportunity to add
data to the sample is often limited.

Another possible solution is to reformulate the model. In some sense, the
elimination of one predictor variable amounts to a model reformulation. But we
may also combine two predictor variables and in that manner resolve the problem.
For example, this is appropriate if the two variables are substitute measures of the
same underlying construct such as when the observations represent characteristics of
individuals, and two of the predictors measure age and work experience. These two
variables tend to be correlated, because both may measure individuals’ learned skills
for a certain job as well as their maturity. It may be sufficient to use one of these
variables or to define a new variable that combines these two predictor variables.

If the source of multicollinearity stems from two or more predictor variables that
capture different phenomena, such combinations are not appropriate. However, it
may be possible to redefine the variables. Consider, for example, a demand model
in which product category sales in t (Qt) is explained by predictors such as total
disposable income in t (Inct) and population size in t (Nt). These predictors are
collinear because Inct is a function of the size of the population. However, by
defining the variables on a per capita basis, such as Qt/Nt and Inct/Nt, we create
a simpler model and eliminate the collinearity between Inct and Nt.

Other functional specifications of the model can also reduce multicollinearity.
For example, consider relation (4.13). The predictor variables x1t, . . . , xKt vary over
time,11 and each of these variables may have a component that follows a common
trend. In that case, bivariate correlation between the predictors will be high due
to the common factor. The multicollinearity can be considerably reduced in the
following manner. First specify (4.13) for t−1:

yt−1 = α+β1x1,t−1 +β2x2,t−1 + · · ·+βK xK,t−1 + εt−1. (5.24)

By subtracting (5.24) from (4.13), we express the model in terms of changes over
time:

(yt − yt−1) = β1(x1t − x1,t−1)+β2(x2t − x2,t−1)+ · · ·+βK(xKt − xK,t−1) (5.25)

+(εt − εt−1).

Note that the reformulated model has no intercept. Apart from that, the model
contains the same parameters. Importantly, this reformulation will not have the
same degree of multicollinearity as the original model. Such opportunities for model
reformulation are useful to consider when severe multicollinearity is encountered.

11See also Rao et al. (1988).
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Some researchers advocate the creation of a matrix of orthogonal variables,
constructed as linear combinations of the original predictor variables, based on
principal components analysis or factor analysis.12 If all components or factors
are included in a subsequent multiple regression analysis, we can claim to have
“solved” the collinearity problem in the sense that the components (factors) are
uncorrelated. However, we are unlikely to have a useful substantive interpretation
for the estimated effects. And if we transform these estimated effects based on the
relations between the factors and the original predictors, we will derive exactly the
same slope coefficients as if we had not first constructed the matrix of orthogonal
variables. Only by deleting at least one orthogonal component (e.g. the one with
the smallest explanatory power of y) do we have a chance of improved results. In
this case we can also transform the effects back in terms of the original variables, in
which case we have (slightly) biased effects with reduced statistical uncertainty.

Finally, we briefly consider the consequences of multicollinearity on understand-
ing versus forecasting. If the purpose of the study is to develop a forecasting model,
multicollinearity may not be an issue. For example, suppose x1 is eliminated from
the model because it is highly correlated with a linear combination of the other
predictor variables. If x1 is truly a relevant predictor, then the parameter estimates
for the remaining predictors will be biased. Nevertheless, the forecasts produced by
this otherwise deficient model may still be accurate, since most of the explanatory
power of x1 is contained in one or more other predictor variables. As long as this
correlation between x1 and the other predictors continues to exist, the forecasts from
this deficient model will not be systematically affected. On the other hand, if this
correlation changes, the accuracy of the forecasts will be affected by the model’s
deficiency. This happens especially when the predictor variables are controlled by a
manager or a policy maker. The reason is that the elimination of a relevant predictor
variable biases the coefficients of the remaining predictor variables which affects
the accuracy of conditional forecasts, i.e. the forecasts that depend on the predictor
variables that are controlled by a manager or policy maker.

The nature and magnitude of this bias depends, among other things, on the degree
of multicollinearity. If the degree of multicollinearity changes from the estimation
sample to new data, then the nature of the bias changes, thereby affecting the
forecasting accuracy. Thus, for conditional forecasting multicollinearity is a serious
problem, and the “solution” has to be similar to the situation when the primary
objective of model building is to understand relationships.

If the objective is to understand or describe the relationship between a criterion
variable and several predictor variables, it is critical that all relevant variables are
included in the model. This is also true for normative decisions. The presence of
multicollinearity may make it difficult or impossible to obtain the desired degree of
reliability (i.e., low standard errors) for the coefficients. As a result the computed

12See, for example, Massy (1965) and Sharma (1996, Chapter 4).
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t-ratio for the slope coefficient of one or more predictor variables may be below
the critical value. Yet for understanding it is not advisable to eliminate a (relevant)
predictor.

5.3 Mediation Tests

Using the notation that was introduced in Fig. 2.4 in Sect. 2.5, testing for mediation
involves the steps outlined in Baron and Kenny (1986):

1. Regress the outcome variable yt on the causal variable x1t to confirm x1t

significantly predicts yt (path c).
2. Regress the mediator variable x2t on the causal variable x1t to confirm x1t

significantly predicts x2t (path a).
3. Regress the outcome variable yt on both the mediator (x2t) and the causal (x1t)

variable to confirm that the mediator significantly predicts yt (path b), while
controlling for x1t (path c′).

The steps for testing mediation are the same for different types of models and do
not depend on the estimation method of the model, which could include ordinary
least squares regression, logistic regression and multilevel (e.g. hierarchical linear)
models (Kenny 2013).

For mediation, the path b coefficient (x2t on yt) needs to be significant and the
path c′ coefficient should be smaller in absolute value than the total effect (path c
in step 1). Full mediation occurs when the path c′ coefficient does not significantly
differ from 0.

Unfortunately, this step-by-step testing approach, popular in psychology, has
low statistical power (MacKinnon et al. 2002). From sociology comes the approach
to test for the product of coefficients (a× b): mediation is more likely the higher
the x1t→ x2t effect (path a) and the x2t→ yt effect (path b) are, and the lower their
standard errors. Therefore, this test divides the estimate of the mediating variable
effect a × b by its standard error and compares this value to a standard normal
distribution. The most commonly used standard error is the approximate formula
derived by Sobel (1982) using the multivariate delta method based on a first-
order Taylor series approximation, which is then compared to a standard normal
distribution to test for significance (H0 : a× b = 0). The derivation of the unbiased
variance of the product of two normally distributed variables is based on Goodman
(1960), hence the name ‘Sobel–Goodman’ test. Comparing these and other methods
in a Monte Carlo study, MacKinnon et al. (2002) report an excellent balance of Type
I error and statistical power for this test of the joint significance of the two effects
(a× b) comprising the mediating variable effect. Practically, the Sobel–Goodman
test is incorporated in software packages such as STATA. Alternatives include the
bootstrapping test by Hayes and Scharkow (2013) in SPSS and SAS macros, and the
Monte Carlo Simulation by MacKinnon et al. (2004) in the software package R.13

13Available from Selig and Preacher at http://www.quantpsy.org/medmc/medmc.htm.

http://www.quantpsy.org/medmc/medmc.htm
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Hanssens et al. (2014) use the Sobel–Goodman mediation test (Sobel 1982) on
their model of partial mediation by “brand health indicators” of the marketing-sales
relationship. Examples of these indicators are awareness, consideration and liking.
The results for the Juice category are shown in Table 5.2. The indirect effect of
advertising on sales via brand health indicator “awareness” is 0.0008. The total
indirect effect of advertising via all brand health indicators is 0.0038. The proportion
of the total effect that is mediated due to the brand health indicators is 48.60 % of
the total effect of advertising on brand sales. As expected, the more tactical action
of “promotion” affects sales less through brand health indicators (8.86 %) and thus
more through the direct “transactions” route. Across all studied brands and product
categories, the Sobel–Goodman tests reveal evidence of partial mediation of the
marketing-sales effect by the three brand health indicators. This leads Hanssens
et al. (2014) to include the brand health indicators in their marketing-sales model.

Table 5.2 How brand health indicators partially mediate the effect of advertising on
juice brand sales

Total Direct Mediated

Awareness Consideration Liking indirect effect effect

Price −0.0080 0.0083 −0.0728 −0.0725 −0.2020 26.42 %

Promotion 0.0012 0.0076 0.0007 0.0095 0.0980 8.86 %

Advertising 0.0008 0.0003 0.0027 0.0038 0.0040 48.60 %

Source: Based on Hanssens et al. (2014)

As a final note, Kenny (2013) emphasizes that a mediation model is a causal
model: if the researcher is incorrect on the causation, the results of a mediation
analysis are “of little value”. Using time series data, Srinivasan et al. (2010) show
that marketing actions and brand health indicators Granger cause sales more often
than the other way around (see Sect. 5.4.3 for Granger Causality Tests).

5.4 Joint Tests, Pooling Tests and Causality Tests

In this section we consider joint tests (Sect. 5.4.1), pooling tests (Sect. 5.4.2) and
introduce causality testing (Sect. 5.4.3).

5.4.1 Joint Tests

Most of the diagnostic tests that we have reviewed in this chapter were developed
to validate a single specific assumption of the classical linear model. However,
the tests may require the acceptance of other assumptions. For example, the tests
for autocorrelation assume that the disturbances are homoscedastic. In empirical
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applications, various assumptions may be jointly violated. This implies that the
diagnostic value of individual test results is in doubt. An alternative approach is
to apply joint tests for multiple assumptions. For example, the RESET test can be
considered as a joint test. This test is based on the idea that various misspecifications
can lead to a violation of the assumption that the expected value of the disturbances
is zero. Possible misspecifications include omitted variables, a wrong functional
form, dependence between the regressors and the disturbances, etc. In this sense,
the RESET test is also a joint test.

In this section we consider joint test of subgroups of slope parameters. As we
indicated in the discussions in Sects. 4.3 and 5.2.6, it is possible for F- and t-test
results to be in conflict. If the collinearity is concentrated in a subset of the predictor
variables, then it is possible that two or more slope coefficients are insignificant
based on individual t-tests but provide significant incremental explanatory power as
a subgroup.

Tests of subgroups of variables are also of interest in case the model builder
has arguments for the inclusion or exclusion of two or more predictor variables
jointly. These joint tests are based on the incremental explanatory power of a group
of at least two predictor variables. We use Eq. (5.26), a demand equation for the
product class sales of detergents, to provide an illustration. We show the OLS-results
of (5.26) in Table 5.3.

Q̂t = 202−0.29
Inct

CPIt
−29.5

p̄t

CPIt
+0.31

at−1

CPIt
−0.29t (5.26)

where

Table 5.3 Multiple regression results (5.26)

Predictor Regression Estimated

variable coefficient standard error t-value

1 (Intercept) 202 41 4.93

2 Income −0.29 10.1 0.03

(deflated by Price Index)

3 Average price −29.5 11.7 2.52

(deflated by Price Index)

4 Total advertising expenditures 0.31 0.15 2.07

(deflated by Price Index)

5 Trend −0.29 0.47 0.61

T = 32, R2 = 0.47

Q̂t = the estimated value of the product category sales (detergents)

in thousands of kilos in time t,

Inct = the national income in nominal terms in t,
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CPIt = Consumer Price Index in t,

p̄t = average price of detergents (average over n brands)

in t in Euros,

at−1 = the (lagged) advertising expenditure of all brands

in thousands of Euros in t,

t = time index, t = 1, . . . ,32,

T = the number of observations.

The F-test of the model as a whole indicates that the null hypothesis β1 = · · ·= βK = 0
can be rejected. From tables of the t-distribution we find that the critical value of the
5 % level of significance with 32− 5 = 27 degrees of freedom is 1.70 for a one-
tailed test, and 2.05 for a two-tailed test. Thus, we cannot reject the null hypothesis
that “Income” and “Trend” have no effect on the criterion variable, the demand for
detergents at the product class level.

To test these two predictor variables’ incremental explanatory power jointly, we
estimate an alternative, restricted, model by eliminating Income and Trend. This
restricted model has an R2 of 0.43. The test of the null hypothesis that the parameters
of Income (β1) and Trend (β4) are simultaneously equal to zero is performed using
an F-test based on incremental R2. Hence:

H0 : β1 = β4 = 0

is tested with the statistic:

F =
(R2

F −R2
R)/(dfR−dfF)

(1−R2
F)/dfF

(5.27)

where

R2
F = the unadjusted R2 for the full model,

R2
R = the unadjusted R2 for the restricted model,

dfR = the number of degrees of freedom left for

the restricted model,

dfF = the number of degrees of freedom left for

the full model.

In this example:

F =
(0.47−0.43)/(29−27)

(0.53)/27
≈ 1.02.
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At the 5 % level, the critical F-value equals 3.35 (F2,27). Thus we cannot reject the
null hypothesis that parameters β1 and β4 are jointly zero. We conclude that the
corresponding predictor variables are irrelevant (and that the insignificance of
the individual t-tests is not due to collinearity between these two predictors).

The incremental R2-test is one of the statistical tests that can be used for model
selection. We discuss other statistical tests, for “nested models”, in Sect. 5.6.

5.4.2 Pooling Tests

The F-test is also used to test whether data can be pooled or not across cross sections
(see Sects. 2.7 and 4.5). To this end we define parameter homogeneity as our null
hypothesis. To illustrate this for the Verhouten example: the null hypothesis specifies
that

H0 :

(
αi

βi

)

=

(
α j

β j

)

for all cross sections i � j [Eq. (4.45)]. The alternative hypothesis is:

HA :

(
αi

βi

)

�
(
α j

β j

)

for at least some combination of cross sections i and j (i � j). The classical test
is often referred to as the Chow test.14 The Chow-test is an F-test with degrees of
freedom ν1 and ν2:

Fν1,ν2 ∼
(RSS1−RSS2)/ν1

RSS2/ν2
(5.28)

where

RSS1 = residual sum of squares of the pooled regression

[Eq. (4.45)],

RSS2 = the sum of the residual sum of squares from

the unit-by-unit regressions [Eq. (4.44)],

ν1 = difference in degrees of freedom between the

pooled regression and the unit-by-unit regressions,

14Chow (1960); Fisher (1970).
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ν2 = total degrees of freedom unused from the unit-by-unit

regressions.

If the null hypothesis of parameter homogeneity is not rejected, pooling the
observations is statistically justified. The degrees of freedom can be calculated as the
total number of observations minus the total number of parameters. Assuming that
there are n cross sections, each with T observations, the total number of observations
equals n×T . For fully pooled model with K explanatory variables and one constant,
we estimate in total K + 1 parameters. Hence the degrees of freedom for a fully
pooled model equals nT −K − 1. The total degrees of freedom for the unit-by-unit
models (ν2) can be calculated as follows. The number of degrees of freedom per
cross-sectional unit equals T − K − 1, so that in total there are ν2 = n(T − K − 1)
degrees of freedom for the unit-by-unit approach. Consequently, we have for ν1:

ν1 = (nT −K−1)−n(T −K−1) = (n−1)(K+1). (5.29)

If pooling all data and assuming homogeneity of all parameters is rejected, we may
want to compare the estimation of unit-by-unit models (4.44) with partially pooled
models, e.g. OLSDV models (4.47). The Chow-test can also be used in this case.

A comparison of OLSDV against the estimation of separate parameter vectors
results in the following degrees of freedom for the numerator in (5.28):

ν1 = (nT −n−K)−n(T −K−1) = (n−1)K. (5.30)

In this case, RSS1 is the residual sum of squares of the OLSDV model (4.47).
Another test to determine whether pooling of “individual” outcomes is allowed

or not is the Roy–Zellner test (Roy 1957; Zellner 1962). This test is recommended
in cases with a possibility of heteroscedasticity (Baltagi 2008, p. 61). We return to
an application in Sect. 7.3.2.3.

5.4.3 Causality Tests

Causality tests15 are used to:

• distinguish between causal and noncausal relations or associations;
• establish the direction of causality when variables are related;
• reduce a large set of potential predictors so that multivariate models become

identifiable (based on bivariate tests).

15This section is based on Bult et al. (1997). For an extensive discussion of causality tests see the
special issues of the Journal of Econometrics, vol 39 (1–2). For overviews of causality tests applied
in marketing see Hanssens et al. (2001, p. 314). We note that we use the concept of “causality” that
can be tested with statistical methods. This concept is not based on cause and effect in a strict
philosophical sense (see Judge et al. 1985, p. 667).
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We distinguish bivariate and multivariate causality tests. Although multivariate tests
are preferred for multivariate models, both bivariate- and multivariate tests can
be used to identify causal relations and to distinguish causality from association.
However, if the objective is to reduce the set of potential predictor variables (given
insufficient degrees of freedom) only bivariate tests can be used. In this section we
introduce several bivariate tests.16

Modern tests of causality are based on the following definition of causality
proposed by Granger (1969):

“A variable x is said to cause another variable y, with respect to a given information set
containing x and y, if future y-values can be predicted better using past values of x and y
than using the past of y alone.”

To formalize, suppose a marketing system is defined by the two-variable information
set (x,y). The variable x is said to Granger cause y if the (one-step) expected
quadratic forecasting error Q of using the bivariate model, is smaller than the Q
of the univariate model, for at least one t (Judge et al. 1985, p. 667).

Q(yt+1 | y1, . . . ,yt−P, xt, . . . , xt−P∗) < Q(yt+1 | yt, . . . ,yt−P) (5.31)

where P and P∗ are positive integers, indicating the maximum memory length in x
and y. If (5.31) is not true, y is not Granger caused by x. If x causes y and y causes
x then (x,y) is a feedback system.

We now introduce five bivariate causality tests,17 including two Granger tests and
two Sims tests which are regression methods. The Granger tests are based on the
following model:

yt =

P∑

i=1

π11,iyt−i +

P∑

i=1

π12,ixt−i + εt, t = P+1, . . . ,T (5.32)

where

π11,i, π12,i = parameters,

εt = a serially independent random disturbance term

from a distribution with mean zero and covariance

matrix Σ.

It is assumed that all polynomials have the same order P. If xt does not cause yt,
π12,i = 0 for i = 1, . . . ,P, or

16Multivariate causality tests, such as the VARMA-model (Judge et al. 1985, p. 667), can be used
to detect causality or to determine the direction of causality in a fully specified model. For an
application of the VARMA-model see Boudjellaba et al. (1992).
17Analytical arguments for these tests can be found in for example Chow (1983).
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yt =

P∑

i=1

π11,iyt−i + ε
∗
t (5.33)

where

ε∗t = a random disturbance term.

In both Granger tests (see below) the null hypothesis is that π12,i = 0, i = 1, . . . ,P
in (5.32).

The Granger–Sargent test has the following form:

GS =
(RRSS−URSS)/P

URSS/(T −2P)
(5.34)

where

RRSS = the residual sum of squares of the restricted relation

(5.33),

URSS = the residual sum of squares of the unrestricted relation

(5.32).

Under the null hypothesis and the assumption that the disturbances are normally
distributed with mean zero and variance σ2, the statistic GS is distributed as an
F-random variable with P and (T −2P) degrees of freedom.

The Granger–Wald test has an asymptotic χ2
P distribution under the null hypo-

thesis (and is the asymptotic equivalent of the Granger–Sargent F-test):

GW = T
σ̂2
ε∗t
− σ̂2
εt

σ̂2
εt

(5.35)

where

σ̂2
ε∗t

= the estimate of Var(ε∗t ) in (5.33), and

σ̂2
εt
= the estimate of Var(εt) in (5.32).

The Sims Methods regress xt on past, current and future yt’s. Sims (1972) showed
that under the hypothesis of no causality from x to y, the regression parameters
corresponding to future yt’s are equal to zero. The significance of the coefficients is
tested using:
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xt =

N∑

i=−M

viyt−i + εt, t = N +1, . . . ,T −M (5.36)

where

εt = a random disturbance term,

M,N = the maximum number of “future” and “past” yt’s.

The null hypothesis is vi = 0, i = −M, . . . ,−1. Relation (5.36) is estimated in con-
strained (vi = 0, i = −M, . . . ,−1) and unconstrained form. Under the null hypothesis
and the usual assumptions the statistic SI is distributed as an F-random variable with
M and T −M−N−1 degrees of freedom:

SI =
(RRSS−URSS)/M

URSS/(T −M−N−1)
. (5.37)

One difficulty with the SI test is that the disturbance term εt in (5.36) is in general
serially correlated, and consequently (5.37) does not have the claimed distribution
if the null hypothesis is true (e.g. Geweke et al. 1983). To circumvent this problem
a Modified Sims (MS) test was developed. In MS lagged values of xt and yt are
included in the equations:

xt =

P∑

i=1

γi xt−i +

N+P∑

i=−M

viyt−i +wt, (5.38)

t = N +P+1, . . . ,T −M

where

wt = a disturbance term.

Relation (5.38) is also estimated in constrained (vi = 0, i = −M, · · · ,−1) and uncon-
strained form. The statistic MS is distributed under the null hypothesis as an F
random variable with M and (T −2P−M−N −1) degrees of freedom:

MS =
(RRSS−URSS)/M

URSS/(T −2P−M−N −1)
. (5.39)

A fifth test is the double-prewhitening method or the Haugh–Pierce test (Haugh
1976; Pierce 1977; Pierce and Haugh 1977).18 The direction of causality between
yt and xt is established by cross correlating the residuals of the univariate models
fitted to each. These residuals, say ût and v̂t, are causally related in the same way

18This test has been used in a marketing context by, for example, Hanssens (1980a,b) and Leeflang
and Wittink (1992).
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as y and x. Therefore, causality can be detected by estimating the parameters in
the regression of ut on past, current and future vt’s in the same manner as would
be done by regressing yt on past, current and future xt’s. The difference is that the
residuals ût and v̂t are estimated by applying Box–Jenkins techniques to yt and xt.
These techniques are discussed in Volume II.

There may be little consistency between the outcomes of the different causality
tests. Tests which are only asymptotically equivalent can give very different results
in small samples. For one thing, the tests differ in the effective number of data
points available for analyses. These consequences increase in severity the smaller
the sample size. For more details and recommended tests see Bult et al. (1997).

5.5 Face Validity

Face validity relates to the believability of a model’s structure and its output,
or the validity at face value. Face validity is based on theoretical and common-
sense expectations, and on broadly accepted previous empirical results. This prior
knowledge can be put to work in various ways: in structuring the model, in selecting
appropriate estimation methods and in benchmarking the results with new data.

The use of face validity as a criterion depends, of course, on the model builder’s
prior knowledge with regard to the phenomena under study. This knowledge should
guide model specification (e.g. relevant variables, operationalization of measures,
functional forms). The model structure that is ultimately subjected to estimation
can therefore also be evaluated in terms of face validity. The bases for knowledge
about marketing phenomena include theories developed in relevant disciplines, such
as economics and psychology.19 Additional theoretical knowledge is generated
within the field of marketing. And a large body of empirical results, much of it
generated within the marketing field, can be used to determine the face validity of
new empirical results. Of course, prior knowledge should not stifle the acceptance
of surprising results. Current thinking about (marketing) problems is incomplete
and sometimes incorrect. One purpose of model building is to test the prevailing
theories.

Consider a model of (unit) sales for a brand, as a function of predictor variables
such as own-brand price and own-brand advertising. Except for unusual cases, for
example if price is interpreted by consumers as an indicator of quality, we expect
price to have a negative effect on sales. Advertising, on the other hand is expected
to have a positive effect on sales. Thus, ordinarily we are suspicious of empirical
results that show “wrong” signs for the (partial) slope coefficients.20

Given a relatively large number of empirical studies in which price and adver-
tising effects have been reported, and the meta-analyses completed on estimated

19See for example Alba (2011).
20The criticism will be muted if a coefficient with a sign opposite to expectations is not statistically
significant. If the sign is “wrong” and the coefficient is significantly different from zero, we would
suspect model misspecification.
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effects, the argument has been made that today newly developed results should
be tested against the average effects computed from published studies. The focus
then shifts to a statistical test of the difference from the prevailing average effect,
and the face validity of a significant difference in one direction, as we discussed
in Sect. 4.3.2. In this sense, the basis for face validity considerations about short
run advertising effects can be the average short run advertising elasticity of 0.12
reported by Sethuraman et al. (2011).

5.6 Model Selection

5.6.1 Introduction

The face validation criteria discussed in the previous section may allow a model
builder to reject some models. However, it is common for more than one model
specification to produce plausible results. Thus, face validity considerations may
not suffice when the desired result is to identify one “best” model. If neither
theoretical arguments pertaining to model structure, nor the violation of error-term
assumptions, nor face validity considerations allow the model builder to reject all
but one of the alternative models, we use explicit model comparisons.

There are at least two ways in which explicit comparisons can be made between
alternative models. In this section we discuss statistical methods that allow the
model builder to test hypotheses regarding relative model performance in the esti-
mation sample. We introduce nested model comparisons and applicable statistical
tests in Sect. 5.6.2. In Sect. 5.6.3 we discuss nonnested model comparisons, which
are especially relevant for tests of alternative functional forms.

5.6.2 Nested Models

Nesting is a means of comparing alternative specifications where the parameters
of the so-called lower-order equations are contained within the parameter space of
higher-order ones. We use the dynamic models discussed in Sect. 2.8 to illustrate
the concept of “nesting”.

We first show the structure of a higher-order model, viz. the Partial Adjustment
Autoregressive model (PAA model), which is a partial adjustment model [see
Eq. (2.43)] with autocorrelated disturbances. The model was calibrated by Leeflang
et al. (1992) with sales and promotion data for a pharmaceutical brand in the British
market. The data stem from the “hypnotics and sedatives” segment of the pharma-
ceutical market. The marketing activity consisted of face-to-face communications
“detailing” and impersonal media activity (“advertising”). Sales figures were based
on the volume of drugs sold on prescription by pharmacists. The detailing variable
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measured the time spent by pharmaceutical sales representatives promoting the
drugs. Magazine advertising was the cost of ads at the time of publication and direct
mailing efforts based on the cost at the day of mailing.

In all models, the market share in period t (mt) is related to shares of detailing
effort (dst) and shares of journal and direct mail advertising (ast). All variables were
expressed in terms of deviations from the mean. As a consequence the models have
zero intercepts. The PAA model has the following structure:

mt = β1dst +β2ast +λmt−1 +ut (5.40)

where

ut = ρut−1 + εt,

ut = a disturbance term,

ρ = the autocorrelation parameter, and

εt = an error term.

Introducing the backward shift operator L, where L(mt) = mt−1 and substituting this
operator in (5.40) we get:

mt −λL(mt) = β1dst +β2ast +
εt

1−ρL (5.41)

or

mt =
β1dst +β2ast

(1−λL)
+

εt

(1−λL)(1−ρL)
. (5.42)

The following dynamic models are nested in (5.42):

• Partial Adjustment model (PA) in which there is no autocorrelation, i.e.: ρ = 0
while λ � 0 [see (2.43)];

• the Current-Effects Autoregressive model (CEA), in which λ = 0 but ρ � 0
[compare (2.42)];

• the Current-Effects model (CE), in which ρ = λ = 0 [compare (2.40)].

We show the relations between the various models (CE, CEA, PA, and PAA) in a
nesting scheme, in Fig. 5.5.

Table 5.4 contains the regression coefficients, t-statistics (in parentheses), the
coefficients of determination (R2), the Durbin–Watson statistics and Durbin’s
h-statistics for the Leeflang et al. (1992) application. The coefficients in all
four models are statistically significantly different from zero. The much stronger
explanatory power (R2 value) and the relevance of the lagged endogenous variable
suggest that the partial adjustment (PA and PAA) models are better than the current
effect models (CE and CEA). The estimated adjustment rates λ̂, in the partial
adjustment models, suggest the presence of delayed response effects.
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Equation (5.40)

l = 0

l ≠ 0

r = 0

r ≠ 0

r = 0

CE

CEA

PA

PAA
r ≠ 0

CE = current effects

CEA = current effects with
  autocorrelation

PA = partial adjustment

PAA = partial adjustment
  with autocorrelation

Fig. 5.5 Nesting scheme

Table 5.4 Model estimates and test results (t-statistics in parentheses)

Detailing Advertising Lagged Auto-corr. DW Durbin’s

Model effort β̂1 effort β̂2 end.var λ̂ coeff ρ̂ R2 statistic h-statistic

CE 0.22 0.07 – 0.48 0.78 1.05 –

(4.75) (2.84)

CEA 0.17 0.06 – 0.34 0.64 1.21 –

(3.62) (2.96)

PA 0.07 0.04 0.68 0.06 0.94 2.01 −0.04

(2.15) (3.45) (9.00)

PAA 0.07 0.04 0.68 0.05 0.94 1.95 0.15

(2.22) (3.51) (9.27)

Source: Leeflang et al. (1992, p. 279)

It is interesting that between the two current effects models, the specification
with autocorrelated errors (CEA) shows a substantial degree of first-order autocor-
relation. Both models also have significant DW statistics. On the other hand, when
the lagged endogenous variable is incorporated, the autocorrelation coefficient is
very close to zero. Interestingly, the estimated current effects of both detailing and
advertising are much smaller in the PA and PAA models, and the reduction in the
detailing effect is especially large (both in an absolute and in a relative sense).
The substantive conclusions differ greatly between, for example, the CEA and PA
models.

We also note several other interesting aspects in Table 5.4. We have argued that
the presence of first-order autocorrelation in the disturbance should rarely be treated
through the addition of an autocorrelation parameter. If this were an appropriate
remedy, then the Durbin–Watson (DW) statistic should be close to two in the CEA
model. Since the DW statistic is not much different from its value in the CE model,
it appears that the systematic pattern in the disturbances is not well captured by a
first-order autocorrelated error structure.

The other aspect worth mentioning is that the R2 value for CEA is lower than
the value for CE. This may seem surprising given that the CEA model includes
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an additional parameter (for the autocorrelation). The reason for this “anomaly” is
that OLS maximizes R2. Thus, even if there are statistical arguments that favor the
use of an another estimation method (see Sect. 6.2) over OLS, the fit of the model,
expressed in terms of the original criterion variable, cannot improve.

Although the results in Table 5.4 clearly favor the PA model (the autocorrelation
coefficient is irrelevant) we now formalize the nested model comparisons. Each pair
of nested models can be tested with a likelihood ratio test (statistic):

η = [Σ̂0/Σ̂1]−T/2 (5.43)

where

Σ̂0 = the residual sum of squares of a restricted model

associated with the null hypothesis (H0),

Σ̂1 = the residual sum of squares of a less restricted model

associated with the alternative hypothesis (H1),

T = the number of observations.

The test statistic can be written as:

−2lnη = T ln Σ̂0 −T ln Σ̂1 (5.44)

which is asymptotically chi-squared distributed with (p1 − p0) degrees of freedom
(Greene 2012, pp. 566–567) and where:

p0 = number of parameters in the restricted model, and

p1 = number of parameters in the “unrestricted” model.

Table 5.5 contains comparisons of the specifications for the Leeflang et al. (1992)
application.

Under classical hypothesis testing a more complex (less restricted) model is not
chosen unless there is statistically significant evidence in its favor.21 The first pair of
models in Table 5.5 has the current-effects (CE) model as the restricted model (H0)
and the current-effects autocorrelation model (CEA) as the less restricted alternative
(H1). The associated chi-squared statistic is significant at the 1 %-level, implying
that the autoregressive current effects model is superior to the current effects model.
By the same logic the second test result suggests that the autoregressive partial
adjustment model (PAA) is superior to the autoregressive current-effect (CEA)
model. However, the null hypothesis cannot be rejected based on the test of the

21Compare (Rust et al. 1995a, 1955b).
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Table 5.5 Likelihood ratio
test statistics

Restricted model (H0) Unrestricted model (H1) χ2 test
Model −T ln Σ̂0 Model −T ln Σ̂1 −2lnη

CE -137.2 CEA -144.3 7.1a

CEA -144.3 PAA -181.5 37.2a

PA -181.4 PAA -181.5 0.1
aStatistically significant at the 1 %-level
Source: Leeflang et al. (1992, p. 280)

partial adjustment model (PA) against its autoregressive counterpart (PAA). The
partial adjustment (PA) model therefore emerges as the favored specification.

Other statistical tests for nested models include:

• the F-test of incremental explanatory power of an unrestricted model22;
• the t-test (e.g. on λ, the lagged endogenous variable parameter in the PA model).

Both tests are appropriate if the predictor variables of the restricted model constitute
a subset of the predictor variables of the unrestricted model (specifically one fewer
in case of the t-test). If we apply this test on the model pair PA and CE, using the
result in Table 5.5, we conclude that the PA model should be preferred over the CE
model because λ̂ is (highly) significant.

5.6.3 Non-nested Models

Non-nested models may include the same predictor variables, or they may involve
some variables that are unique to each model. Suppose we consider the following
multiplicative model:

lnmt = α1 lndst +α2 lnast +α3 lnmt−1 + vt (5.45)

where vt = a disturbance term, and all other variables are defined above.
Models (5.40) and (5.45) use the same variables but have different functional

forms. It is impossible to express model (5.45) as a constrained version of
model (5.40), or vice versa, which renders the nested model tests inapplicable. For
non-nested model comparisons and for models estimated with maximum likelihood,
we can use information criteria such as the Akaike Information Criterion (AIC), the
Schwarz criterion, Consistent AIC (CAIC), and a criterion developed by Allenby
(1990). These criteria are full sample criteria (implying that there is no data splitting
required as is often done for predictive validation as we discuss in Sect. 5.7).
The information criteria seek to incorporate, in model selection, the divergent
considerations of accuracy of estimation and the “best” approximation to reality.

22See, for example, Foekens et al. (1999) and the discussion in Sect. 5.4.1.
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The statistics incorporate a measure of the precision of the estimate and a measure
of parsimony in the parameterization of a model.

Akaike (1974) proposed a simple model comparison criterion, based on an
information theoretic rationale. The precision of the estimated model can be
represented by ln L, the natural logarithm of the likelihood L. We discuss the
likelihood concept in more detail in Sect. 6.4. For a given data set a higher ln L
indicates a better fitting model. Similar to the adjusted R2, Akaike proposed to
penalize ln L for lack of parsimony, by subtracting the number of parameters from
ln L:

A = ln L− (number of parameters) (5.46)

where A = Akaike’s criterion. A more common alternative expression of Akaike’s
criterion that embodies the same principle is Akaike’s Information Criterion23:

AIC = −2A. (5.47)

AIC is implemented by default in the output of many statistical software programs.
When comparing different (nested or nonnested models), the model with lowest AIC
is the preferred model.

Schwartz (1978) criticized AIC for being asymptotically nonoptimal. He pro-
posed a revised form of the penalty function as follows:

SC = −2ln L+ lnT × (number of parameters) (5.48)

where SC = Schwarz Criterion, T = the number of observations. SC is also known
as the Bayesian Information Criterion (BIC). The parameter penalty of SC and BIC
is larger, so that model selection based on this criterion leads to a preference for
more parsimonious models.

Bozdogan (1987) proposed a criterion which penalizes overparametarization
even more strongly. He proposed the Consistent AIC (CAIC), which is computed as:

CAIC = −2ln L+ (number of parameters)× (lnT +1) (5.49)

where T = the number of observations. Rust et al. (1955b) examined which of these
and other model selection criteria perform best in selecting the current model based
on simulated data. In their study the Schwarz criterion was the single best selection
criterion. Due to the high correlation between the results for alternative model
selection criteria they also suggest that the use of multiple model selection criteria
may be unwarranted. However, as with all simulation studies, the generalizability
of these results remains to be determined.

Another option for the selection of a functional form is the Box and Cox (1964)
transformation, which includes linearity as a special case. The Box–Cox functional

23Other reformulations are found in Akaike (1981).
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form can be written as24:

y(λ)
t = α+β1x(λ)

1t +β2x(λ)
2t + · · ·+βK x(λ)

Kt + εt (5.50)

where

y(λ)
t =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

yλt −1

λ
for λ � 0

lnyt for λ = 0,

x(λ)
1t , . . . , x

(λ)
Kt = predictor variables defined similarly,

εt = a disturbance term.

Relation (5.50) includes as special cases the models:

yt = α
∗ +β1x1t + · · ·+βK xKt + εt, for λ = 1 (5.51)

where

α∗ = 1+α−
K∑

k=1

βk

and

lnyt = α+β1 ln x1t + · · ·+βK ln xKt + εt, for λ = 0. (5.52)

Although a family of functions is defined by (5.50), a conventional likelihood ratio
hypothesis test of linearity involves the null hypothesis H0 : λ = 1 versus the
alternative H1 : λ � 1.

In cases where the models are non-nested and differ in the set of variables, other
tests are required. Examples are the J-test, the P–E-test and a likelihood ratio test
developed by Vuong (1989). These tests are described in, for example, Cameron and
Trivedi (2009, pp. 279–284).

5.7 Predictive Validity

We have argued that if a model is built primarily for descriptive purposes, it should
have face validity. If its primary purpose is for predictions, one might argue that
face validity is not required. It is well known, for example, that models lacking

24See also Sect. 5.2.4.
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descriptive value can provide accurate forecasts. However, the marketing models
that are the topic in this book should be especially useful for conditional forecasting
purposes. Ideally, a model user specifies alternative marketing programs, and for
each possible program obtains an accurate, model-based forecast of consumers’
purchase behavior. This reflects the idea that a marketing manager’s environment
is to some extent controllable.

In the marketing literature, it is very common for model builders to use some
form of predictive validity as a statement of the model’s usefulness. However, there
is no established standard for the conduct of predictive validation. In this section we
provide a perspective on this popular form of model validation.

Econometricians have derived the statistical properties of model-based forecasts,
given error-term assumptions. For example, if the simple, linear model applies:

yt = α+βxt + εt, t = 1 . . . ,T (5.53)

we can use the estimated parameters and a specific predictor variable value, say x0,
to obtain the (conditional) forecast:

ŷ0 = α̂+ β̂x0. (5.54)

If the error term assumptions hold, we can construct a confidence interval for the
unknown value y0, given x0

25:

ŷ0 ± tT−2
c sŷ0 (5.55)

where

sŷ0 = s

√√√√√√√√√1+
1
T
+

(x0 − x̄)2

T∑

t=1

(xt − x̄)2

,

tT−2
c = the tabulated value of the t distribution, corresponding to

the desired degree of confidence (c) and the model’s degrees

of freedom (T −2), and

s = the estimated value of the standard deviation of y.

If the model is accurate, and generally applicable, then the confidence intervals so
constructed should contain the actual y0 values a specified percentage of the time
(the percentage being equal to the degree of confidence c).

If the model is estimated with cross-sectional data, it is common for model
builders to split the data randomly into two samples. The first (analysis or

25See Wittink (1988, p. 47).
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estimation) sample is used to estimate parameters, to test the error term assumptions,
etc. The second (holdout or validation) sample is used to quantify the predictive
validity (we discuss predictive validity measures below).

The question we pose is whether randomly splitting cross-sectional data into
estimation and validation samples provides a true opportunity for the model builder
to predictively validate the model. If we have built a model that is missing a critical
variable so that one (or more) parameter estimates is (are) biased, will the predictive
validity results be much poorer than the estimation results (e.g. will the predictive
validity results suggest that the estimated model is inadequate)? Unfortunately, this
is very unlikely in the case of random splitting. The reason is that estimation and
validation samples are expected to have the same data characteristics. The bias in
the effect of one or more included predictor variables will not reduce the model’s
predictive performance (relative to the model fit in estimation), if the correlation
between included and excluded variables is the same in the estimation and validation
samples. Thus, in case of randomly splitting the data there is no opportunity to
invalidate the estimated model.

If the model builder uses time-series data, the situation is somewhat improved.
Specifically, it is rare for model builders to split time-series randomly. There are
several reasons for this. One is that the model may contain a lagged criterion variable
in which case it is important to maintain the time sequence in the data. Another is
that the time sequence in the data can be exploited in tests of autocorrelation in the
error term. In addition, it is useful to examine a model’s predictive validity to future
time periods. Thus, if there are 2 years of, say, weekly data, the model builder may
use the first year for estimation and the second year for validation. Time-series data
can then provide an (implicit) opportunity to the model builder to check whether
the results apply to a new time period. However, if the 2 years are very similar in
data characteristics, for example if the market environment has not changed, then the
validation exercise resembles the random splitting of cross-sectional data procedure.
Thus, the larger the changes in the environment over time, the more powerful the
validation exercise. At the same time, the larger the changes, the more likely it is
that weaknesses in the model reduce the predictive validity. This suggests that model
builders should at least report how the validation sample characteristics differ from
the estimation sample.

Time-series data also provide other useful options. For example, model users
may insist on evidence that a proposed model outperforms some benchmark. Brodie
and De Kluyver (1987), Alsem et al. (1989) and Brodie et al. (2001) compared the
performance of marketing-mix models to that of a naive model, which predicts next
period’s value for the criterion variable to be this period’s actual value. One might
argue that little faith should be placed in the parameter estimates, if the proposed
model does not outperform a (naive) model that lacks structural characteristics
consistent with marketing traditions. As shown by Foekens et al. (1994), the relative
performance also depends on the extent to which the characteristics of the data
change between estimation and validation samples.
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Foekens et al. (1994) argue the following:

• It is well known that the uncertainty of individual predictions is influenced by
the distance between the predictor variables’ values and the sample means. For
a new set of data this idea is captured by the change in average values in the
predictor variables between estimation and validation sample data.

• Another way in which the structural similarity of estimation and validation data
can be determined is by the correlation matrix for the predictor variables. For
example, the forecasting accuracy of a misspecified model may not be reduced
if the correlations remain the same. The greater the change in correlations the
more likely it is to obtain poor predictive accuracy for misspecified models.

• One can determine the extent to which the same model, applied separately to
estimation and validation data, produces different parameter estimates. Substan-
tial differences may occur for several reasons. One is that the true parameters
have changed. Another is that the estimated parameters differ because the model
is misspecified, and this misspecification differentially affects the parameter
estimates in the two samples.

• Additionally, the predictive validity will be affected by a difference in error
variance between estimation and validation samples.

We now consider accuracy measures that can be used to assess predictive
validity. To formalize, suppose we have T observations in total, and use the
first T ∗ observations for estimation, leaving (T − T ∗) for validation. Thus, the
unknown parametersα,β1, . . . ,βK in a multiple regression model are estimated using
T ∗ observations. Substituting the estimates α̂, β̂1, . . . , β̂K and using the values of
x1t, x2t, . . . , xKt, for t = T ∗ +1,T ∗ +2, . . . ,T , the following predicted values of yt are
obtained:

ŷt = α̂+ β̂1x1t + β̂2x2t + · · ·+ β̂K xKt, t = T ∗ +1, . . . ,T. (5.56)

Comparing the predicted values ŷt with the actual values of yt, t = T ∗+1, . . . ,T , the
predictive validity of the relation can be determined. To test for a lack of bias we
can use the Average Prediction Error (APE):

APE =

T∑

t=T ∗+1

(yt − ŷt)

T −T ∗
. (5.57)

Note that the denominator in (5.57) is the number of observations in the validation
sample. Also, positive and negative errors are allowed to offset each other. Thus, we
can test the null hypothesis that the mean prediction error is zero, based on the t-test
for the mean. Inability to reject the null hypothesis means that there is no evidence
of bias in the predictions.

We note that this measure of bias is not as useful as one might think at first
glance. A result that APE = 0 means only that on average the actual and predicted
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values are the same. Nevertheless, it is quite possible for some or all predictions to
systematically deviate from the actual values. For example, a model with the wrong
functional form will not produce a positive APE value as long as the positive and
negative prediction errors in the validation sample offset each other. This will occur
if the estimation- and validation sample data characteristics are the same.

To measure the predictive performance of the model, which depends on bias and
variance, we can use the “Average Squared Predictor Error” (ASPE), also known
as “Mean Squared Error” (MSE):

ASPE =

T∑

t=T ∗+1

(yt − ŷt)2

T −T ∗
. (5.58)

The use of squared terms means that large prediction errors are weighted more
heavily than small errors. This measure is consistent with the least squares principle
of regression analysis. However, it has the drawback that it summarizes the
prediction errors in squared units. To obtain a value in the units of measurement
for the criterion variable, we can take the square root of ASPE, which is denoted by
RASPE, and is also known as the Root Mean Squared Error (RMSE):

RASPE =

√√√√√√√√
T∑

t=T ∗+1

(yt − ŷt)
2

T −T ∗
. (5.59)

The value for RASPE can be compared to the standard deviation of residuals in
the estimation sample. In general we expect the value of RASPE to be greater than
the standard deviation of the residuals, the actual difference being a function of the
factors we have mentioned earlier.

A predictive validity measure that is dimensionless, easy to relate to, and
potentially useful if one wants to make comparisons of forecast accuracy across
different settings, is the Mean Absolute Percentage Error (MAPE):

MAPE =
1

T −T ∗
T∑

t=T ∗+1

| yt − ŷt |
yt

×100%. (5.60)

In this measure absolute, rather than squared, errors are computed, and each absolute
error is expressed relative to the actual value, for observation t in the validation
sample. If one believes that the magnitude of an error should be considered relative
to the corresponding actual value, MAPE may be a suitable measure.

Other measures express the predictive performance of a given model relative to
a benchmark model. As we have mentioned earlier, one naive (benchmark) model
is to predict next period’s value for the criterion variable with this period’s actual
value. The following Relative Absolute Error (RAE) measure incorporates this idea:
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RAE =

T∑

t=T ∗+1

| yt − ŷt |
T∑

t=T ∗+1

| yt − yt−1 |
. (5.61)

If RAE is less than one, the model outperforms the benchmark represented by a
naive model that predicts the current value by the previous value (i.e. ŷt = yt−1.)

A measure that is conceptually similar to RAE, but uses squared prediction errors
instead of absolute ones, is Theil’s U-statistic:

U =

√√√√√√√√√√√√√√√√√√

T∑

t=T ∗+1

(yt − ŷt)
2

T∑

t=T ∗+1

(yt − yt−1)2

. (5.62)

As with the RAE measure, if Theil’s U-statistic is less than one, the model
generating ŷt outperforms the naive model.

Theil (1965) shows how ASPE in (5.58) can be decomposed:

ASPE = APE2 + (sŷ− rsy)2 + (1− r2)s2
y (5.63)

where

APE = the Average Prediction Error (5.57),

sŷ = the standard deviation of the predicted values,

sy = the standard deviation of the actual values,

r = the correlation coefficient between actual and

predicted values.

The first term in (5.63) captures the squared bias, while the second and third terms
together account for the prediction error due to unreliability (variance). For a model
that is linear in the original variables, both the first- and the second term are zero in
the estimation sample. The second term captures the difference in variability for the
predicted values (sŷ) and the variability for the actual values (sy) multiplied by the
correlation between actual and predicted values. The third term is the proportion of
the variance in the criterion variable in the validation sample that is not attributable
to the estimated relation.

The advantage of using such a decomposition of the prediction errors is that
the model builder can diagnose the source(s) of the errors. It is, for example, very
useful to distinguish between bias and variance. Consider a comparison of predictive
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validity between two models, one being the “preferred” model, the other being a
simplified version. One would expect that the “preferred” model has less bias but
potentially more variance. The decomposition allows the model builder to separate
a difference in overall performance into differences due to bias and due to other
components. Importantly, the more the validation data characteristics differ from
the estimation data, the greater the expected contribution of the bias component
to ASPE. Once decompositions of prediction errors have been made, the natural
question becomes to what extent the (validation) data provided an opportunity
for the “preferred” model to show better performance than the benchmark model.
For example, in a stable environment in which marketing activities show little
variation, it may be difficult to beat a benchmark model that predicts next period’s
value to be this period’s actual value. On the other hand, if there is a substantial
amount of variation in marketing activities in the validation sample, it should be
possible to “beat” the benchmark model. Another relevant aspect, as we mentioned
earlier, is the extent to which validation sample characteristics differ from the
estimation sample. The greater this difference, the stronger the opportunity to falsify
a (wrong) model. These considerations suggest that model builders should at least
report central tendency and dispersion measures, for both estimation and validation
samples. With access to this information a user can make a judgment about two
relevant aspects:

• the extent to which the validation sample allows for model falsification (perfor-
mance in the validation sample relative to the estimation sample);

• the extent to which the validation sample allows the model to outperform a naive
model.

5.8 Model Validation for the Verhouten Case

In this section we return to the Verhouten case. In Sect. 4.4 we presented the
estimation results for a linear additive and a multiplicative model. The outcomes
indicated that many of the competitive variables are not significant. Therefore, we
continue in this session with a reduced model, that contain only own marketing
variables. Furthermore, to avoid repetition, we will focus on the multiplicative
model in this section. The steps for the linear additive model are very similar and
are left as an exercise. The model that we will work with in this session is a reduced
version of (2.27) and is specified as follows:

S 1t = θ
(
Pγ1

1t γ
F1t
2 γ

D1t
3 γ

FD1t
4

)
ε1t. (5.64)

First we will test the six basic assumptions underlying the linear model in
Sect. 5.8.1. Thereafter, in Sect. 5.8.2, we will assess the predictive validity of the
model. Because our validity assessment needs a hold-out sample, we split the
available data into a calibration sample (the first 60 observations) and in a validation
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sample (the last 8 observations). We now cannot longer use the results in Sect. 4.4,
because these were based on the full set of 68 observations.

5.8.1 Testing the Six Assumptions for the Verhouten Case

To validate the six assumption for Eq. (5.64), we first estimate the following
linearized version of the model using the first 60 observations:

S ∗1t = θ
∗ +γ1P∗1t +γ

∗
2F1t +γ

∗
3D1t +γ

∗
4FD1t + ε

∗
1t (5.65)

where all the variables are defined in (4.40) on p. 112. The outcomes are presented in
Table 5.6. In order to test the first assumption: E(εt)= 0 we plot the residuals against
each predictor variable.26 As an illustration, we plot the residuals against the Price
of Verhouten in Fig. 5.6. The graph does not seem to indicate that for certain price
values the residuals differ systematically from zero. To assess this assumption a bit
more carefully, we employ the RESET test. We compute ŷt and add the second, third,
and fourth power as explanatory variables to the model in Eq. (5.65). The regression
does not indicate significance for any of these terms, so that we conclude that there
is no evidence of misspecification.

In order to test the second assumption: Var(εt) = σ2 for all t, we take another
look at the plots where the residuals are depicted against each predictor variable,
but now with the aim to detect changes in the variability of the residuals. The plot in
Fig. 5.6 shows a somewhat larger range of the residuals at higher prices, compared
to residuals at lower prices. However, because we observe more residuals at higher
prices, it is also likely that we observe more extreme values and consequently, a
larger range. Hence, we need to test for heteroscedasticity more formally. We cannot

Table 5.6 Estimation results of the multiplicative model for Verhouten

Parameter Standard

estimates error t-value p-value

Intercept (θ̂∗) 6.11 0.15 39.81 0.00

ln of Price Verhouten (γ̂11) −3.75 0.34 −10.94 0.00

Feature-only Verhouten (γ̂∗21) 0.05 0.21 0.23 0.82

Display-only Verhouten (γ̂∗31) 0.01 0.42 0.02 0.98

Feature and Display Verhouten (γ̂∗41) 1.16 0.77 1.50 0.14

Number of observations = 60, R2 = 0.87, R2
a = 0.86, σ̂ = 0.17

RSS = 1.64, ESS = 10.78, F-value = 90.25

26Note that the sum of the residuals is equal to zero by construction. Hence, any test on the average
of the residuals is not very informative.
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Fig. 5.6 Plot of residuals against Price of Verhouten

employ the Goldfeld–Quandt test to identify differences in variance of lower prices
and higher prices, because that would involve estimating (5.65) on five observations.
Instead, we utilize the Breusch–Pagan test to detect heteroscedasticity. We regress
the squared residuals on the explanatory variables that appear in (5.65), and find
that the regression is insignificant (the p-value associated with the test in (5.6) equals
0.68). Hence, we conclude that heteroscedasticity is not an issue the Verhouten case.

To assess autocorrelation, we plot the residuals over time, see Fig. 5.7. The
residuals in Fig. 5.7 show shorter and longer runs on either side of the mean value.
As this might indicate positive autocorrelation, further investigation is warranted.
The value of the Durbin–Watson statistic equals 0.851, and the values for dL and
dU with 60 observations and four regressors are dL = 1.444 and dU = 1.727. Since
DW < dL, we conclude that the residuals are positively autocorrelated.

We assess normality of the residuals graphically by comparing a histogram of
the residuals with a normal curve in Fig. 5.8. The histogram indicates that the right
tail is heavier than we would expect for a normal distribution. This is confirmed by
the normal probability plot in Fig. 5.9. To test for nonnormality of the residuals, we
employ the Kolmogorov–Smirnov test and find that the associated p-value equals
0.02. However, the Shapiro–Wilk test returns a p-value of 0.07, and Jarque–Bera’s
p-value equals 0.21. We conclude that there might be a mild issue with the normality
of the residuals. Here we will not investigate transformations to overcome this issue.
Instead, we will interpret the p-values of the outcomes with care.

As we did not yet discuss tests for endogeneity, we do not test for the fifth
assumption.
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Fig. 5.7 Plot of residuals against time
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Fig. 5.9 Normal probability plot of the residuals

For the sixth assumption we inspect the correlation matrix of the explanatory
variables in (5.65) to find indications for multicolinearity:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P∗it Fit Dit FDit

P∗it 1 −0.75 −0.10 −0.04
Fit −0.75 1 0.23 0.26
Dit −0.10 0.23 1 0.92
FDit −0.04 0.26 0.92 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.66)

The correlation matrix indicates that several variables, notably P∗it and Fit, as well
as Dit and FDit are highly correlated. This is confirmed when we investigate VIF
values of the explanatory variables, see Table 5.7. The VIF values and the correlation
matrix reveal that there is a multicollinearity issue with several of the independent
variables in Eq. (5.65). This might be the cause of the non-significance of some of
the parameters in Table 5.6. We return to this issue in Sect. 6.3.

Table 5.7 VIF values of the
explanatory variables
in (5.65)

VIF

ln of Price Verhouten (P∗it) 2.72

Feature-only Verhouten (Fit) 2.84

Display-only Verhouten (Dit) 7.30

Feature and Display Verhouten (FDit) 7.84
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5.8.2 Assessing Predictive Validity for the Verhouten Case

We now turn to the validation sample, which consists of the last eight observations
for the Verhouten case. We enter the new observations for P∗1t, F1t, D1t and FDit

together with the corresponding estimated parameters (Table 5.6) in Eq. (5.65) to
compute out-of-sample predictions for S ∗1t. Figure 5.10 depicts these predictions
(dashed line), together with the observed values for S ∗1t. The predictions match the
observed values quite closely, indicating that the predictive validity of our model is
satisfactory.
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Fig. 5.10 Observations and out-of-sample predictions for S ∗1t in Eq. (5.65)

To assess the predictive validity of our model further we compute the APE, which
equals −0.1164. This means that, on average, S ∗1t is slightly over-predicted in the
validation sample. ASPE is computed as 0.0406, and RASPE = 0.2016. This value
for RASPE indicates that, as expected, the standard deviation of the residuals in the
validation sample is slightly larger than the standard deviation of the residuals in
the estimation sample (compare σ̂ = 0.17 in Table 5.6). The MAPE value for the
out-of-sample predications equals 15.3 % so that we conclude that on average the
predictions for S ∗1t deviate about 15.3 % from the corresponding observed values.

Finally, we compare our model to a naive model where the next observation
for S ∗1t is predicted by the current observation. A value of RAE = 0.3329 implies
that our model outperforms this benchmark model. This is confirmed by Theil’s U,
which is computed as 0.1176.
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Chapter 6
Re-estimation: Introduction to More Advanced
Estimation Methods

6.1 Introduction

In this chapter we consider methods and procedures for the estimation of model
parameters in cases where the basic assumptions of the general linear model are
violated. When this is the case we need either other specifications and/or other
estimation methods: “re-estimation”. In Sect. 6.2 we introduce Generalized Least
Squares (GLS) estimation methods. These models, amongst others, account for:

• heteroscedasticity (violation of assumption 2 in Sect. 4.2.3);
• autocorrelation (violation of assumption 3 in Sect. 4.2.3).

In Sect. 6.3 we revisit the Verhouten case and demonstrate how one may account
for multicollinearity, autocorrelation and heteroscedasticity. In Chap. 4 and Sect. 6.2
we concentrate on least squares methods. In Sect. 6.4 we discuss other methods
to obtain estimates, viz. Maximum Likelihood (ML) methods. These methods
may also account for the above mentioned violations of the general linear model
assumptions and for violations of the normality assumptions of the disturbance term
(non-normality).

While in both Sects. 6.2 and 6.3 we assume one-way causality, we consider
simultaneous causality in Sect. 6.5. The construction of a simultaneous system of
equations offers opportunities to account for endogeneity. Other approaches how
endogeneity can be approached such as Instrumental Variables (IV) estimation
methods are discussed in Sect. 6.6. In Sect. 6.7, we discuss several tests for
endogeneity. Finally, we discuss Bayesian estimation in Sect. 6.8.

In Volume II we discuss other “re-estimation” methods such as:

• non-linear estimation;
• non-parametric and semi-parametric estimation;
• generalized method of moments estimation, and
• structural equation models (SEM).

© Springer Science+Business Media New York 2015
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6.2 Generalized Least Squares

6.2.1 Introduction

Several of the assumptions for the application of OLS involve restrictive assump-
tions about the disturbance term. In this section, we discuss procedures, known as
Generalized Least Squares-(GLS)-methods, that allow for more general disturbance
characteristics. Specifically, GLS can accommodate violations of at least one of the
assumptions 2 and 3 in Sect. 4.2.3.

Consider again the K-variable model, expressed in matrix notation, as in (4.15):

y = Xβ+u (6.1)

where y and X are defined in a similar way as in Sect. 4.2.2, and we used u instead of
ε to denote the disturbances to indicate that the assumptions may not all be satisfied.
The variance-covariance matrix of the disturbances is now defined as:

E(uu′) = Ω (6.2)

where

Ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω11 · · · ω1T
...
. . .

...

ωT 1 · · · ωT T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= σ2Ω∗

which is a positive definite symmetric T × T matrix with full rank T , and where
the ωi j are the covariances of the disturbances. Assumptions 2 and 3 are satisfied if
Ω∗ = I, where I is a T ×T identity matrix. However, if this is not the case, we can
obtain an expression for the generalized least squares estimator of β as follows.

Let the matrix V be a nonsingular T ×T matrix, such that1:

V′V =
(
Ω∗

)−1 or (V′V)−1 = Ω∗. (6.3)

We premultiply both sides of (6.1) by V:

Vy = VXβ+Vu. (6.4)

The variance-covariance matrix of the disturbances (Vu) of (6.4) is:

E
(
(Vu)(Vu)′

)
= σ2VΩ∗V′. (6.5)

1Since Ω, and thus Ω∗, is symmetric and positive definite, so are Ω−1 and (Ω∗)−1, and hence a
matrix V satisfying (6.3) exists. See Appendix A.7.
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Substituting (6.3) in (6.5) we obtain2:

E[(Vu)(Vu)′] = σ2V
(
V′V

)−1 V′ = σ2I. (6.6)

This shows that if we transform the variables by the V-matrix in (6.4), the distur-
bance terms satisfy the error-term assumptions 2 and 3, i.e. they are homoscedastic
and uncorrelated over time. Thus, the OLS-method could be applied to the
transformed variables in (6.4). The Generalized Least Squares estimator3 is:

β̂GLS =
(
X′

(
Ω∗

)−1 X
)−1

X′
(
Ω∗

)−1 y (6.7)

which can also be written as:

β̂GLS =
(
X′Ω−1X

)−1
X′Ω−1y (6.8)

since Ω =σ2Ω∗. This model and estimation method are “generalized” because other
models can be obtained as special cases. The ordinary least squares estimator is one
such special case in which Ω = σ2 I. We discuss other special cases below. The
variance-covariance matrix of the GLS-estimator β̂GLS is:

Var
(
β̂GLS

)
=

(
X′Ω−1X

)−1
= σ2

(
X′

(
Ω∗

)−1 X
)−1
. (6.9)

If Ω is unknown, as it is in empirical work, we replace Ω by Ω̂ and use an Estimated
Generalized Least Squares (EGLS) estimator (also called Feasible Generalized
Least Squares (FGLS) estimator). This estimator is usually a two-stage estimator.
In the first stage, the OLS-estimates are used to define residuals, and these residuals
are used to estimate Ω. This estimate of Ω is used in the second stage to obtain the

EGLS estimator denoted by ˆ̂βGLS.

6.2.2 GLS and Heteroscedasticity

We now consider one special case in which the disturbances are heteroscedastic.
Suppose that the first T ∗ disturbances have variance σ2

1, and that disturbances
T ∗ +1, . . . ,T have variance σ2

2. Such a setting is often encountered when data from
different cross-sections data are used. In such a case, we have:

2To see that the last equality holds, we define the matrix A as: A = V (V′V)−1 V′. If we multiply A
by V, we have that AV = V (V′V)−1 V′V = V, which only holds if A = I.
3First derived by Aitken (1935), and for that reason also known as the Aitken estimator.
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E(uu′) = Ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1
. . . 0
σ2

1
σ2

2

0
. . .

σ2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10)

which is a diagonal matrix with σ2
1, . . . ,σ

2
1,σ

2
2, . . . ,σ

2
2 as diagonal elements. This

special case of GLS is referred to as Weighted Least Squares (WLS), because GLS
can be interpreted as OLS applied to a transformed model [compare (5.8) in which
the transformation involves a predictor variable] with variables:

ỹt =
yt

σ1
and x̃kt =

xkt

σ1
(k = 1, . . . ,K) for t = 1, . . . ,T ∗,

ỹt =
yt

σ2
and x̃kt =

xkt

σ2
(k = 1, . . . ,K) for t = T ∗+1, . . . ,T.

Equation (5.8) suggests that the intercept of the model is also affected by this
transformation. Hence, we need to apply the same transformation to a (T × 1)-
column of ones [see (4.14)] and add this to the set of explanatory variables. The
model should then be estimated without an intercept.

Estimates for σ1 and σ2 can be obtained by taking the square root of the sample
variance of the OLS-residuals in both groups4:

σ̂1 =

√

σ̂2
1 =

√√√
1

T ∗ −1

T ∗∑

t=1

û2
t ,

σ̂2 =

√

σ̂2
2 =

√√√
1

T −T ∗ −1

T∑

t=T ∗+1

û2
t .

In (5.7) the variance of the disturbance increases with the squared value of a
predictor variable.5 Prais and Houthakker (1955) suggested a variance proportional
to the squared expected value of the criterion variable. Hence there are other
opportunities to accommodate heteroscedasticity.

4Formally both estimates need to be pre-multiplied by (T −1)/(T −K), but that does not affect the
estimate for β.
5See Judge et al. (1985, pp. 439–441) for a more general expression.
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6.2.3 GLS and Autocorrelation

A second special case of GLS is typical for time-series data. In this case, the
covariances, Cov(ut,ut′), t � t′ differ from zero (but we assume that the disturbances
are homoscedastic). We consider the case that the disturbances are generated by
a first-order autoregressive scheme, also called a first-order stationary (Markov)
scheme, as in (5.11):

ut = ρut−1 + εt , t = 1, . . . ,T, | ρ j |< 1 (6.11)

where the εt are independent normally distributed random variables with mean zero,
and variance equal toσ2

ε. We also assume εt to be independent of ut−1. By successive
substitution for ut−1, ut−2 in (6.11) we obtain:

ut = ρ
sut−s +ρ

s−1εt−s+1 + · · ·+ρ2εt−2 +ρεt−1 + εt. (6.12)

After multiplying both sides of (6.12) by ut−s and taking expectations, we have:

E(utut−s) = ρ
sE(ut−sut−s)+ρ

s−1E(εt−s+1ut−s)+ · · ·
+ρ2E(εt−2ut−s)+ρE(εt−1ut−s)+E(εtut−s)

= ρsσ2
u (6.13)

since the εt are independent of ut−1 and ut has variance σ2
u.6

The variance-covariance matrix Ω now has the following form:

E(uu′) = Ω = σ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 · · · ρT−1

ρ 1 ρ · · · ρT−2

ρ2 ρ 1 · · · ρT−3

...
...

...
. . .

...

ρT−1 ρT−2 ρT−3 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.14)

An estimate for the autocorrelation coefficient ρ can be obtained as follows7:

ρ̂ =

T∑

t=2

ûtût−1

T∑

t=2

û2
t−1

(6.15)

6It can be shown that σ2
u = σ

2
ε/(1−ρ2).

7This is a least squares estimate of ρ. It differs slightly from the maximum likelihood estimator.
See Greene (2012, pp. 966–967) for other estimators.
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where the ût are the OLS-residuals. Then by substituting ρ̂ for ρ in (6.14), we
obtain Ω̂, and we use the EGLS estimator.

To demonstrate that also in the presence of autocorrelation one can apply OLS to
suitably transformed variables, we return to Eq. (4.13):

yt = α+β1x1t + · · ·+βK xKt +ut , t = 1, . . . ,T, (6.16)

where ut is defined as in (6.11). By lagging this expression one period, and by
premultiplying with ρ, we obtain for t = 2, . . . ,T :

ρyt−1 = ρα+ρβ1x1,t−1 + · · ·+ρβK xK,t−1 +ρut−1. (6.17)

Subtracting (6.17) from (6.16) and using (6.11) we get for t = 2, . . . ,T :

yt −ρyt−1 = (1−ρ)α+β1(x1t −ρx1,t−1)+ · · ·+βK(xKt −ρxK,t−1)+ εt. (6.18)

If ρ̂ is computed as in (6.15), where the residuals are obtained by applying
OLS to (6.16), and ρ̂ is substituted for ρ in (6.18), OLS can be applied to the
transformed variables. Estimating the parameters in (6.18) is known as Cochrane–
Orcutt estimation (Cochrane and Orcutt 1949). Note that this procedure does not
have a data point for t = 1. Prais–Winsten estimation (Wooldridge 2012, p. 411)
adds the following data point for t = 1 to Eq. (6.18):

√

1−ρ2y1 =

√

1−ρ2α+β1

√

1−ρ2x1,1 + · · ·+βK

√

1−ρ2xK,1 +

√

1−ρ2u1.

Asymptotically, it makes no difference whether or not the first observation is used,
particularly because many time series are substantially large. In practice, both the
Cochrane–Orcutt and Prais–Winsten estimation methods are used in an iterative
scheme. Once the EGLS-estimate of ρ is found using (6.15), ρ̂ can be substituted
in (6.18), we can find a new set of residuals, obtain a new estimate of ρ, transform
the data using the new estimate of σ, and estimate (6.18) again, etc. The process can
be repeated until the estimate of ρ differs very little from the previous estimate.

6.2.4 Using Generalized Least Squares with Panel Data

In Sects. 2.7 and 4.5 we discussed the situation where time series of multiple
cross-sections were available. As we indicated in Sect. 6.2.2, heteroscedasticity is
a concern in such situations. Consequently, pooling cross sections is likely to suffer
from the problems indicated in the second row of Table 5.1. Given that there are
data available over time for each of the cross sections, assumption 3 might also be
violated simultaneously. An additional problem might arise if the autoregressive
nature is different across the cross-sections (i.e. when each cross section has a
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different value of ρ). In this subsection, we discuss how to apply GLS in this case.
Our starting point is the K-variable model in Eq. (6.1) for each cross section, indexed
by i:

yi = Xiβi +ui. (6.19)

We allow the disturbances in (6.19) to be simultaneously cross-sectionally het-
eroscedastic and time-wise autoregressive, but we assume that Cov(uit,u jt) = 0, for
i � j and for all t (but relax this assumption below). Suppose that we have N cross
sections, so that we have N vectors of disturbances of size T ×1: u1,u2, . . . ,uN . Let
us now stack these vectors, and let u denote the result:

u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2
...

uN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.20)

The vector u has dimensions NT × 1. Given the violations discussed above, the
variance-covariance matrix of u has the following structure:

E(uu′) = Ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1P1 0
σ2

2P2
. . .

0 σ2
N PN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.21)

Ω is a block-diagonal NT ×NT matrix, where Pi, i = 1, . . . ,N are T ×T matrices that
allow for a different autoregressive parameter ρi for each cross-section i. They are
defined as

Pi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρi ρ2
i · · · ρT−1

i
ρi 1 ρi · · · ρT−2

i
ρ2

i ρi 1 · · · ρT−3
i

...
...

...
. . .

...

ρT−1
i ρT−2

i ρT−3
i · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.22)

All other elements of Ω in (6.21) are zero.
To obtain estimates of the parameters in (6.19) and (6.21), we proceed in several

steps. First we stack the data and express the relations in (6.19) in a system of
equations as follows8:

8Because the N sets of equations in (6.23) do not seem to be related, this structure is referred to as
“Seemingly Unrelated Regressions (SUR)”, see Zellner (1962).
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2
...

yN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1 0
X2
. . .

0 XN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1

β2
...

βN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2
...

uN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or (6.23)

y = Z β+u (6.24)

where

y = a NT ×1 vector,

Z = a NT ×KN matrix,

β = a KN ×1 vector,

u = a NT ×1 vector.

OLS is applied to all NT observations in (6.24) from which residuals ûit

are obtained. We then estimate the autocorrelation parameters and incorporate
these in (6.22) to obtain estimates for Pi (i = 1, . . . ,N). We also estimate the error
variance for each cross section. In this case the relation between the estimated
variance of the autocorrelated disturbance uit and the variance of the error term εit

[compare Eq. (6.11)] is:

σ̂2
ui
=
σ2
εi

1− ρ̂2
i

. (6.25)

We use these estimates in (6.21), to obtain an estimate for Ω, and we apply
GLS [Eq. (6.8)] to estimate β, accounting for cross-section specific (first-order)
autocorrelated disturbances and heteroscedasticity.

Next we relax the assumption that the disturbances are independent between the
cross sections, i.e. the assumption that Cov(uit,u jt) = 0 for i � j.

We assume

E(u2
it) = σ

2
i for all t, (6.26)

Cov(uit,u js) = 0 for all t � s and all i and j, (6.27)

Cov(uit,u jt) = σi j for all t (= σ2
i if i = j) (6.28)

which together imply that there is contemporaneous correlation between the distur-
bances for different cross sections, that there is heteroscedasticity across the cross
sections, but that there is no autocorrelation (this assumption is relaxed shortly).
Using the assumptions in (6.26) through (6.28), we obtain:



6.2 Generalized Least Squares 183

E(uu′) = Ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1I σ12I · · · σ1NI
σ21I σ2

2I · · · σ2NI
...

...
. . .

...

σN1I σN2I · · · σ2
N I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.29)

and

β̂ = (Z′Ω−1Z)−1Z′Ω−1y. (6.30)

Zellner (1962) proposed the following estimation procedure.9 First estimate (6.23)
by OLS. Then estimate the elements of Ω from the OLS residuals:

σ̂i j =

T∑

t=1

ûitû jt

T −K
, for all i and j (6.31)

where σ̂ii = σ̂
2
i . Next, the EGLS estimator is created by substituting σ̂i j for σi j

in (6.29). By iterating this process it is possible to obtain better estimates of σi j (i.e.
when the process converges).

We note that in one application, the σ̂i j values were used to find explanations for
the nature of competition between brands i and j.10 This is conceptually akin to the
idea that in empirical research the presence of autocorrelated (or contemporaneously
correlated) residuals should often be interpreted as indicating that the model
is misspecified. The use of Generalized Least Squares to accommodate such
systematic patterns in the disturbances will not result in improved slope parameter
estimates if the patterns are due to, for example, missing predictor variables or
incorrect functional forms. We emphasize that model builders must be convinced
that they have used the best possible model specification. And model builders should
have a logical, substantively meaningful reason for the disturbances to be correlated
when the model is otherwise assumed to be complete.

Finally, we show the structure of the variance-covariance matrix of the distur-
bances in case of contemporaneous correlation, heteroscedasticity and autocorre-
lation, assuming an autoregressive scheme as described in (6.11) but now with
cross-sectional specific autocorrelation terms ρi � ρ for i = 1, . . . ,N. We then have:

E(uu′) = Ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1P11 σ12P12 · · · σ1NP1N

σ21P21 σ
2
2P22 · · · σ2NP2N

...
...

. . .
...

σN1PN1 σN2PN2 · · · σ2
N PNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.32)

9See Zellner (1962); Kmenta (1971, pp. 517–519). See also Leeflang (1974, pp. 124–127).
10See Clarke (1973). For an asymmetric, non-hierarchical market share model, Carpenter et al.
(1988) use the σ̂i j values to identify potential cross-effects.
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where

Pi j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ j · · · ρT−1
j

ρi 1 · · · ρT−2
j

...
...
. . .

...

ρT−1
i ρT−2

i · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for i, j = 1, . . . ,N.

In sum-constrained models we have that

N∑

i=1

ûit = 0

for each t = 1,2, . . . ,T . By definition there is contemporaneous correlation of the
disturbances in these models. As a consequence, the contemporaneous variance-
covariance matrix (6.29) is singular, because the elements of each row total to zero:

N∑

j=1

σ̂i j =

N∑

j=1

T∑

t=1

ûitû jt

T −K
=

T∑

t=1

ûit

N∑

j=1

û jt

T −K
= 0. (6.33)

To avoid singularity, one equation is deleted. If the matrix Ω is known, the resulting
parameter estimates are invariant to which equation (which cross-sectional unit) is
deleted.11 When the variance-covariance matrix is unknown, as usually is the case,
the parameter estimates depend on which equation is deleted.12

6.3 The Verhouten Case Revisited

In Sect. 5.8 we discussed validation of the Verhouten model. One of the most
revealing problems is the high degree of multicollinearity of the independent
variables. The following variables are highly correlated:

• (natural logarithm of) price of Verhouten and feature only of Verhouten;
• display-only of Verhouten and feature and display of Verhouten.

In this section we demonstrate that reformulation of the model through recoding
variables offers opportunities to reduce multicollinearity. We then treat a second
issue that we encountered in Sect. 5.8: autocorrelation of the disturbance term.
Finally, we illustrate how to resolve heteroscedasticity of the disturbances.

11See McGuire et al. (1968). See also Hanssens et al. (2001).
12See Gaver et al. (1988).
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6.3.1 Multicollinearity

In the Verhouten case we reformulate the variables and ultimately the model
specification to reduce multicollinearity. This is done in a number of steps:

1. Replace the price of Verhouten by a price index:

price index in t =
price in week t
regular price

=
Pt

RP
= PIt (6.34)

We take the median of all prices from week 1 to 40 as the regular price:
RP = e 1.51.

2. We define four price variables:

• PFt = price index if there is feature only support;
• PDt = price index if there is display only support;
• PFDt = price index if there feature & display support;
• PWOt = price index if there is no (feature and/or display) support;

This definition is based on the outcomes of empirical studies such as Van
Heerde et al. (2002, 2004) who found different price effects depending on
the feature/display support condition. We also define new feature and display
variables:

• FWOt = feature only, but without (wo) a price cut;
• DWOt = display only, without a price cut;
• FDWOt = feature and display support, but no price cut.

Given that the Ft, Dt and FDt variables express the support in relative
numbers, we need to define a threshold that distinguishes between occasions
when price discounts are sufficiently supported by featuring and/or displays and
when we consider them to be not supported. We subjectively chose to set the
threshold at 40 %, which means that we consider prices to be supported if at least
40 % or more stores use some form of non-price promotions. Specifically:

• PFt = PIt if Ft ≥ 0.4, and 1 otherwise13;
• PDt = PIt if Dt ≥ 0.4, and 1 otherwise;
• PFDt = PIt if FDt ≥ 0.4, and 1 otherwise;
• PWOt = PIt if Dt < 0.4 and Ft < 0.4 and FDt < 0.4, and 1 otherwise.

The non-price promotion variables FWO, DWO and FDWO are defined in a
similar way. Here we assume that if the price index is larger than 0.8 we deal
with FWO, DWO and FDWO. Hence,

• FWOt = Ft if PIt > 0.8 and 0 otherwise;
• DWOt = Dt if PIt > 0.8 and 0 otherwise;
• FDWOt = FDt if PIt > 0.8 and 0 otherwise.

13Which means that PFt does not pick up any price discounts in these weeks.
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3. We specify and calibrate (estimate and validate) a new model, based on (5.64),
where we use the new variables:

S 1t = α
(
PWOβ1

t PFβ2
t PDβ3

t PFDβ4
t β

FWOt
5 βDWOt

6 βFDWOt
7

)
ε1t (6.35)

where

S 1t = sales of Verhouten (brand 1) at Albert Heijn in week t,

ε1t = a disturbance term, and

all other variables have been defined above. Remember that all variables refer to
brand 1 (Verhouten).

4. We check whether the (new) variables fluctuate sufficiently. We find that PDt,
PFDt, DWOt and FDWOt do not vary sufficiently over time. We delete these
variables from the model and obtain:

S 1t = α
(
PWOβ1

t PFβ2
t β

FWOt
3

)
ε1t. (6.36)

5. We estimate and validate (6.36) using the first 60 observations in the data set, and
obtain the results which are shown in Table 6.1. From Table 6.1 we deduce that

Table 6.1 Parameter estimates and statistics of (6.36) (OLS)

Predictor Regression Estimated
variables coefficient standard error t-value p-value VIF-value

Intercept (ln(α)) 4.54 0.03 148.35 0.00 –

PWO (β1) −3.33 0.48 −6.99 0.00 1.01

PF (β2) −4.00 0.27 −15.21 0.00 1.01

FWO (ln(β3)) 0.38 0.20 1.93 0.06 1.01

Number of observations = 60, R2 = 0.83, R2
a = 0.82, σ̂ = 0.19

RSS = 2.09, ESS = 10.34, F-value = 92.49, DW-value = 1.22

there is hardly any collinearity between the independent variables which is due
to the redefinition of the variables which are by definition (almost) independent.
Comparing β̂1 with β̂2 confirms the findings in other studies (Van Heerde et al.
2002, 2004) that the effect of supported price is larger in absolute value than the
effect of unsupported price.

In Sect. 5.8, we also encountered the problem that the residuals are positively
autocorrelated. Let us now focus on this issue. Just as in Sect. 5.8, the value of
the Durbin–Watson statistic in Table 6.1 indicates that there is (positive) autocor-
relation, and the autocorrelation coefficient is estimated using (6.15) as 0.368. We
accommodate autocorrelation in the next step.
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6.3.2 Autocorrelation

We remove autocorrelation following the procedure outlined in Sect. 6.2.3 by
transforming the variables in Eq. (6.36) as follows:

lnS 1t −0.368lnS 1,t−1 ,

lnPWOt −0.368lnPWOt−1 ,

lnPFt −0.368lnPFt−1 ,

FWOt −0.368FWOt−1 .

Applying OLS to these variables leads to parameter estimates and statistics that
are shown in Table 6.2. We may conclude from Table 6.2 that the Durbin–Watson
statistic indicates that there is no autocorrelation.

Table 6.2 Parameter estimates and statistics of (6.36) (accounting for autocorrelation)

Predictor Regression Estimated
variables coefficient standard error t-value p-value VIF-value

Intercept (ln(α)/(1−ρ)) 2.88 0.02 115.17 0.00 −
PWO (β1) −3.66 0.42 −8.73 0.00 1.07

PF (β2) −3.98 0.23 −17.67 0.00 1.08

FWO (ln(β3)) 0.29 0.18 1.60 0.12 1.03

Number of observations = 59, R2 = 0.86, R2
a = 0.85, σ̂ = 0.17

RSS = 1.67, ESS = 10.17, F-value = 111.7, DW-value = 2.01

As pointed out in Sect. 5.2.3, the parameter estimates are unbiased if there is
autocorrelation. From a comparison of the corresponding parameter estimates in
Tables 6.1 and 6.2, it appears, however, that accounting for autocorrelation also leads
to somewhat different parameter estimates, but these differences are not significant.
The fact that the t-values are higher in Table 6.2 than in Table 6.1 indicates that the
GLS correction leads to more efficient estimation.

Finally, we observe that the R2 in Table 6.2 differs substantially from the R2 based
on OLS (Table 6.1). However, these R2’s should not be compared, because the R2

in Table 6.2 is based on the relation between transformed dependent variables on
transformed independent variables (Wooldridge 2012, p. 412).

6.3.3 Heteroscedasticity

Heteroscedasticity also reduces the efficiency of the (ordinary least squares) param-
eter estimates. Although heteroscedasticity occurs especially if cross-sectional data
are used for estimation (see Sect. 5.2.2), we account for heteroscedasticity in our
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example which is based on time-series data. To this end we make a distinction
between observations which correspond with weeks with substantial promotions
(P1t < e1.45) and “non-promotional” weekly observations. Hence, we divide our
sample of 59 observations that remain after the transformation to account for
autocorrelation into two subsamples: one with 9 observations and one with 50
observations respectively. We apply the Goldfeld–Quandt test which is based on
the residual sum of squares of the two subsamples:

F =
RSS1/(9−3)
RSS2/(50−3)

= 1.972 (6.37)

The critical F-value equals F6
47(0.95) = 2.299, which is larger than the value

of the F-statistic so that we conclude that we find no evidence of significant
heteroscedasticity.14

Although it is not necessary we may apply the transformation of Sect. 6.2.2 to
the intercept and to all the variables of the model. The standard deviation of the 9
promotional residuals is estimated as 0.228, and the standard deviation of the 50
residuals that correspond to the non-promotional weeks equals 0.167. The resulting
parameter estimates deviate very little from the estimates in Table 6.2, which is
expected because a correction for heteroscedasticity was not needed.

6.4 Maximum Likelihood Estimation

There are different ways to obtain estimators. In the preceding sections we concen-
trated on the least squares method. In this section we discuss other methods to obtain
estimators, viz. Maximum Likelihood (ML) methods. In Sect. 6.4.1 we provide a
brief review of the ML estimation method for the simplest case of estimating the
parameters of a distribution, and present a small synthetic example. We discuss the
large sample properties of ML estimators in Sect. 6.4.2. In Sect. 6.4.3 we extend
simple ML estimation to cases where we have explanatory variables. We summarize
some well-known statistical tests based on the likelihood in Sect. 6.4.4 and discuss
an empirical example in Sect. 6.4.5.

6.4.1 Maximizing the Likelihood

The principle of Maximum Likelihood, due to Fischer (1922), provides a statistical
framework for assessing the information available in the data. The principle
of maximum likelihood is based on distributional assumptions about the data.

14We note that this might be due to the small number of observations in the promotional group.
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The likelihood principle is to choose as estimate of the parameter (parameter vector)
θ0 that value of θ that maximizes the likelihood of observing the actual sample. In
the discrete case this likelihood is the probability obtained from the probability mass
function; in the continuous case this is the density. If one value of θ implies that the
probability of the observed data occurring is 0.0012, whereas a second value of θ
gives a higher probability of 0.0014, then the second value of θ is a better estimate
(Cameron and Trivedi 2009, p. 139).

Suppose that we have N random variables {Y1, . . . ,YN} with observations that are
denoted as {y1, . . . ,yN}, such as purchase frequencies for a sample of N subjects.
Let f (yi | θ) denote the probability density function for Yi, where θ is a parameter
characterizing the distribution (we assume θ to be a scalar for convenience).

The Maximum Likelihood principle is an estimation principle that finds an
estimate for one or more unknown parameters (say θ) such that it maximizes the
likelihood of observing the data y = {y1, · · · ,yN}. The Likelihood of a model (L) can
be interpreted as the probability of the observed data y, given that model. A certain
parameter value θ1 is more likely than another, θ2, in light of the observed data, if it
makes observing those data more probable. In that case, the θ1 will result in a larger
value of the likelihood than θ2: so that L(θ1) > L(θ2).

The probability of observing yi is provided by the pf or pdf : f (yi | θ). When
the variables for the N subjects are assumed independent, the joint density function
of all observations is the product of the densities over i. This gives the following
expression for the likelihood:

L(θ) =
N∏

i=1

f (yi | θ). (6.38)

Note that we present the likelihood as a function of the unknown parameter θ; the
data is considered as given.

This formulation holds for both discrete and continuous random variables.
Discrete random variables are for example 0/1 choices, or purchase frequencies,
while market shares and some ratings on scales can be considered as continuous
random variables. Important characteristics of these random variables are their
expectations and variances. In the purchase frequency example usually a (discrete)
Poisson distribution is assumed (see Chap. 8):

Yi ∼ f (yi | λ) = e−λλyi

yi!
. (6.39)

The expectation of the Poisson variable in (6.39) can be shown to be E(Yi) = λ, and
its variance is Var(Yi) = λ.

One of the well-known continuous distributions is the exponential distribution:

Yi ∼ f (yi | μ) = μe−μyi . (6.40)
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The mean and variance of the exponential random variable in (6.40) are E(Yi) = 1/μ
and Var(Yi) = 1/μ2. This distribution is frequently used for interpurchase times.15

The functions in (6.39) and (6.40) are known as the probability function (pf )
and probability density function (pdf ), respectively. Both the exponential and the
Poisson distributions belong to the Exponential Family, which is a general family
of distributions that encompasses both discrete and continuous distributions.16 Also
the normal and the Bernoulli distributions belong to the exponential family. The
distributions in this class share some common properties that facilitates studying
these distributions simultaneously.

If f belongs to the exponential family, the expression for the likelihood in (6.38)
simplifies considerably after taking the natural logarithm. The product in (6.38) is
replaced by a sum:

l(θ) =
N∑

i=1

ln f (yi | θ). (6.41)

Since the natural logarithm is a monotonic function, maximizing the log-likelihood
l(θ) in Eq. (6.41) yields the same estimates as maximizing the likelihood L(θ) in
Eq. (6.38).

In the Poisson example, the log-likelihood takes a simple form, as the Poisson
distribution belongs to the exponential family:

l(λ) = ln

⎛
⎜⎜⎜⎜⎜⎜⎝

N∏

i=1

e−λλyi

yi!

⎞
⎟⎟⎟⎟⎟⎟⎠ (6.42)

= −Nλ+ lnλ
N∑

i=1

yi −
N∑

i=1

ln(yi!). (6.43)

The ML estimator of λ is obtained by setting the derivatives of the log-likelihood
equal to zero:

∂l(λ)
∂λ

= −N +
1
λ

N∑

i=1

yi = 0. (6.44)

Solving (6.44) provides the Maximum Likelihood Estimator (MLE) for λ:

λ̂ =
1
N

N∑

i=1

yi , (6.45)

which is the sample mean.

15Gupta (1991). See also Sect. 8.4.
16Cameron and Trivedi (2009, pp. 147–149).
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Similarly, in the example of the exponential distribution, the log-likelihood is:

l(μ) = N lnμ−μ
N∑

i=1

yi. (6.46)

Setting the derivative of (6.46) with respect to μ to zero, and solving for μ yields the
estimator:

μ̂ =
N

N∑

i=1

yi

, (6.47)

which is the inverse of the sample mean.
A graph of the log-likelihood against the corresponding parameter yields a

concave function for the Poisson and the exponential distribution, each with a single
maximum, indicating that the MLE is unique in both cases. This property holds for
all members of the exponential family.

To illustrate ML estimation, we use a small synthetic example. Assume we have
data on yearly purchase frequencies for 10 subjects. The data, generated from a
Poisson distribution with a mean of λ = 25 are shown in the second column of
Table 6.3. Applying Eq. (6.45) we obtain a MLE of λ = 23.4, which is quite close to
the true value of 25.

Table 6.3 Data for the
illustration of ML estimation

Subject i yi

1 25

2 22

3 31

4 21

5 24

6 26

7 20

8 27

9 24

10 14

6.4.2 Large Sample Properties of the MLE

One of the main benefits of the maximum likelihood approach is that it has attractive
large sample properties. Small sample properties of the MLE are usually not known,
except for cases when the likelihood is based on the normal distribution. Asymptotic
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properties of MLEs are obtained if the sample size tends to infinity: N→∞. Under
fairly general conditions, MLEs:

1. are consistent;
2. have asymptotically minimum variance;
3. are asymptotically normal.

The first important property of the MLE is consistency. θ̂ is said to be consistent
for θ if the probability that the estimate differs from the true value by less than any
arbitrarily small number δ, approaches zero as N→∞:

lim
N→∞P(| θ̂− θ |> δ) = 0. (6.48)

This property implies that MLEs tend to their true value in probability for large
samples.

Second, the ML approach yields asymptotically efficient estimators. An estimator
is efficient if it has the lowest possible variance among all estimators in a particular
class, and thus has the highest precision.

Under fairly general conditions, the Cramér-Rao theorem states that17 the
variance of an unbiased estimate for θ is at least as large as (I(θ))−1, where I(θ)
is defined as:

I(θ) = E

⎛
⎜⎜⎜⎜⎜⎝

(
∂l(θ)
∂θ

)2⎞⎟⎟⎟⎟⎟⎠ . (6.49)

If θ is a single parameter, I(θ) is called the Information number. When θ is a vector of
parameters, I(θ) is known as the Information matrix.18 For an intuitive interpretation
of I(θ), one can view I(θ) as the variance of the first derivative of the log-likelihood
in θ. If this variance is relatively large, the data result in relatively large changes
in the slope of the log-likelihood around θ, which means that the log-likelihood is
relatively peaked. Consequently, compared to situations where I(θ) is smaller and
the log-likelihood is thus flatter, the data are more informative for finding a good
estimate for θ. It can be shown that the asymptotic variance of the MLE equals
(I(θ))−1, which makes the MLE asymptotically an efficient estimate.

Another useful expression for I(θ) relates I(θ) to H, the second derivative of l(θ):

I(θ) = −E(H) , (6.50)

where H is defined as (using the notation for the case where θ is a vector of
parameters):

H(θ) =
∂2l(θ)
∂θ∂θ′

. (6.51)

17See e.g. Greene (2012, p. 476).
18When θ is a vector of parameters, the difference between the covariance matrix and (I(θ))−1 is a
nonnegative matrix.
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H is known as the Hessian of the log-likelihood.
In the Poisson example above, the asymptotic variance (AVar) of the MLE for λ

can be computed by differentiating Eq. (6.44) once more with respect to λ. Using
the result in (6.50) gives:

AVar(λ̂) =

⎛
⎜⎜⎜⎜⎜⎜⎝−E

⎛
⎜⎜⎜⎜⎜⎜⎝−

1

λ2

N∑

i=1

yi

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1

λ2
E

⎛
⎜⎜⎜⎜⎜⎜⎝

N∑

i=1

yi

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

. (6.52)

= λ/N

A final important property of the ML estimator is that it is asymptotically normal.19

This property of the ML estimator allows for statistical inference for the parameters
in θ, based on the normal distribution:

θ̂ ∼ N(θ,AVar(θ̂)) , (6.53)

where AVar(θ̂) = (I(θ))−1.
The above asymptotic properties of the likelihood hold under certain regularity

conditions (Lindsey 1996, p. 187). Although a full discussion of these regularity
conditions is beyond the scope of this monograph, the following aspects may be
useful in practice. The log-likelihood function is said to be regular if in an open
neighborhood of the true parameter value, it can be approximated by a quadratic
function. Such an approximation breaks down in situations where the true value
lies on the boundary of the parameter space so that the quadratic approximation
is inappropriate, or when the number of parameters to be estimated increases with
the number of observations. The latter situation occurs if in our Poisson example a
parameter exists for each individual i, i.e. λi for i = 1, . . . ,N.

6.4.3 MLE with Explanatory Variables

In the preceding subsections we discussed MLE in the simplest case of estimating
the parameters in an distribution. Marketing models, however, usually require the
estimation of the effects of explanatory variables, whether we estimate these models
by OLS, GLS or MLE. Fortunately, ML estimation is quite straightforwardly
extended to cases where we use explanatory variables. In such cases, the log-
likelihood has the following form:

l(θ) =
N∑

i=1

ln f (yi|xi, θ) (6.54)

19Compare Lindsey (1996, p. 199).
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where xi is an explanatory variable. Expression (6.54) is called a conditional
likelihood function since it reflects the behavior of the yi given/conditional on xi.
As these models become more complex, the likelihood equations do not yield
closed-form expressions in all cases, and MLEs are determined using methods
that maximize the likelihood numerically. These results extend to multivariate data,
systems of equations, and panel data by replacing the scalars yi and xi by vectors.

To illustrate, let us continue our Poisson example that we started in Sect. 6.4.1.
Let us consider again yearly purchase frequencies, but now assume that these are
driven by household size. Values for yi, the purchase frequency of household i,
are generated by random draws from a Poisson distribution, where the mean (λi)
depends on xi, household size of household i as follows: λi = exp(1.5+0.5xi). This
is a two-parameter Poisson regression model with μ= 1.5 and β= 0.5. Consequently,
θ is now a (2×1) vector:

θ =

(
μ

β

)

.

The simulated values for purchase frequency and household size for ten households
are shown in Table 6.4. Because there are no closed-form solutions for the
two parameters, we apply Newton’s algorithm, to maximize the log-likelihood
numerically.20 Given a set of starting values, θ̂r, the estimate for θ in iteration r,
is determined by:

θ̂r = θ̂r−1 −gH(θ̂r−1)−1S (θ̂r−1) (6.55)

Table 6.4 Data for Poisson
example with an explanatory
variable

Subject i yi xi

1 7 1

2 7 1

3 18 3

4 12 2

5 6 1

6 1 1

7 31 3

8 15 2

9 57 5

10 29 4

20See Scales (1985); Eliason (1993).
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where

g = the step length,

H(θ̂r−1) = the Hessian (the matrix of second-order derivatives of the

log-likelihood) evaluated at θ̂r−1, and

S (θ̂r−1) = the vector of first-order derivatives of the log-likelihood

(as in (6.44)) evaluated at θ̂r−1.

At iteration r, both H(θ̂r−1) and S (θ̂r−1) are evaluated at the previous estimate
θ̂r−1. Table 6.5 shows the iteration process. As starting values for both parameters
we take zero. The algorithm is said to converge if the first derivative of the log-
likelihood (6.44) changes less than 10−5. In this case this took six iterations.
Table 6.5 shows that the ML estimates are close to the true parameter values.

Table 6.5 The iteration
process from Newton’s
algorithm

r μ β g l(θ)

1 0.00 0.00 0.00 −392.06

2 −0.81 0.88 0.10 −152.71

3 0.01 0.70 0.10 −108.10

4 1.35 0.53 0.45 −32.63

5 1.57 0.54 1.00 −29.12

6 1.55 0.54 1.00 −29.07

For specifying models for a wide range of data types the following method can
be used.21 First choose a distribution that is appropriate for the dependent variable y.
Compare in this respect Sect. 3.4 and Table 3.1. Then parametrize the parameter(s)
of that distribution in terms of the regressors and their parameters. Some commonly
used distributions and parameterizations are given in Table 6.6.

Table 6.6 Maximum Likelihood: commonly used densities

Common

Density Range of y Density f (y) parametrization

Normal (−∞,∞)
1√

2πσ2
exp

(

− (y−μ)2

2σ2

)
μ = Xβ
σ2 = σ2

Bernoulli 0 or 1 py(1− p)1−y p =
exp(Xβ)

1+ exp(Xβ)

Exponential (0,∞) λexp(−λy)
λ = exp Xβ, or
1
λ
= exp Xβ

Poisson 0,1,2, . . .
exp(−λ)λy

y!
λ = exp(Xβ)

Source: Cameron and Trivedi (2009, p. 140)

21Based on Cameron and Trivedi (2009, p. 140).
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Table 6.6 is an extension of Table 3.1. We briefly indicate which distributions are
used for which kind of dependent variable22:

• For continuous data on (−∞,∞), the normal distribution is the standard distribu-
tion. The classical linear regression model parameterizes μ = Xβ and assumes σ2

is constant;
• For discrete binary data taking values 0 or 1, the density is always the Bernoulli,

a special case of the binomial with one trial. The usual parameterizations for the
Bernoulli density leads to the logit model, or the probit model. These models are
discussed in Chap. 8;

• For positive continuous data on (0,∞), the default distribution is the exponential,
as indicated by Table 6.6. For specific cases, notably for duration data considered
in Chap. 8, the richer Weibull, gamma and log-normal distributions are often
used;

• For integer-valued count data taking values 0,1,2, · · · the Poisson distribution
that was introduced in Sect. 6.4.1 is the default. Another possibility is to use the
richer negative binomial distribution.

6.4.4 Statistical Tests

In this subsection we introduce some useful inferential tools for ML estimation. First
let us assume that θ consists of a single parameter. With the asymptotic distribution
of θ̂ in Eq. (6.53), we have asymptotically:

z =
θ̂− θ

√
AVar(θ̂)

∼ N(0,1) (6.56)

which converges in distribution to a standard normal distribution. This is a very
useful result that allows statistical tests for hypotheses formulated for θ, for example
H0 : θ = 0, to be conducted using the z-test.

As an illustration, we obtained the following Hessian for the Poisson regression
model in the previous subsection:

H =

[−17.90 −47.50
−47.50 −134.93

]

. (6.57)

Inverting the Hessian after multiplying all values by −1, and taking the square root
of the diagonal elements of the resulting matrix gives us the asymptotic standard
errors (ASE) of the estimates. These are shown in Table 6.7. The t-values in
Table 6.7 show that the null hypotheses that the mean and regression parameters

22We closely follow Cameron and Trivedi (2009, p. 140).
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are zero is strongly rejected. Since the data were actually generated with non-
zero parameter values, the results of the t-tests are consistent with our knowledge
of the true value of the parameters. However, the conditions for the asymptotic
approximations are unlikely to be valid in this example, as we have only 10
observations. These calculation only serve as an illustration.

Table 6.7 Estimation results
of the synthetic data example

Parameter Estimate ASE t-value

μ 1.55 0.29 5.31

β 0.54 0.11 5.11

Equation (6.56) assumes a scalar parameter θ. If, however, θ is a (K × 1) vector
of parameters, then tests on the entire parameter vector (or sub vectors) can be
conducted using the Wald-test, say for H0 : θ = θ0:

W = (θ̂− θ0)′
(
AVar(θ̂)

)−1
(θ̂− θ0) (6.58)

which converges in distribution to a χ2 variable with K degrees of freedom under the
null hypothesis. The advantage of the Wald-test is that it allows for tests on several
parameters of the model, without the need to re-estimate (a restricted version of)
the model. In the Poisson regression example, the Wald test for jointly testing μ = 0
and β = 0 yields a value of 161.87, with 2 degrees of freedom, which is highly
significant.

Another frequently used test is the Likelihood Ratio (LR) test. The LR test is
used to investigate two models that are nested and chooses that model that has the
highest likelihood, given the observed data. A more detailed discussion of this test is
given in Sect. 5.6.2. Two models are estimated, yielding log-likelihood values l1(θ̂)
and l2(θ̃), respectively, where we assume the latter model to be more restricted, for
example because one or more parameters are set to zero. Due to the fact that the
two models are nested, minus twice the difference in their log-likelihood values is
asymptotically distributed as χ2 under the null hypothesis that the restrictions are
valid:

LR = −2(l1(θ̂)− l2(θ̃)) ∼ χ2
df (6.59)

where df is the difference in the number of parameters in θ̂ and θ̃. The LR test
requires estimation of two models, and is thus computationally more intensive than
the Wald test.

If we re-estimate the model for the two-parameter Poisson regression syn-
thetic data in Table 6.4 with the restriction β = 0, we obtain a log-likelihood of
l(θ) = −44.68 (Newton’s algorithm converged in 6 iterations to a parameter value
of μ̂ = 2.89). Thus in this case the LR statistic for testing the models with and
without (see Table 6.7) the restriction equals LR = −2(−44.68+ 29.07) = 31.22,
which is highly significant at one degree of freedom (the difference in the number
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of parameter values for the two models). This is of course expected since these
synthetic data were generated with a nonzero value of β. As a cautionary note we
mention that the asymptotic χ2-distribution for the Wald- and LR tests are unlikely
to hold given the small sample size.

If the models to be compared are not nested, the LR test does not apply.
Information criteria are then commonly used to identify the most appropriate model,
see Sect. 5.6.3.

6.4.5 MLE with Explanatory Variables: An Example

In this section we illustrate the use of MLE with explanatory variables. Van Nierop
et al. (2011) study the effect of the introduction of an informational website by a
large retailer on off-line customer buying behavior. Figure 6.1 depicts the average
monthly number of store visits of registered website users and non-users over time.
The website was introduced during period 15. The figure indicates that the average
registered user of the site visits the store less than the average non-user.

Van Nierop et al. (2011) model the effect of the introduction of the website on
Vit, the number of store visits by customer i in month t. As suggested by Table 6.6,
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Fig. 6.1 Average number of store visits per person. Source: Van Nierop et al. (2011)



6.4 Maximum Likelihood Estimation 199

the Poisson regression model is used for this dependent variable. The probability
that individual i visits the store vit times in month t is written as23:

P(Vit = vit) =
e−λitλvit

it

vit!
. (6.60)

The Poisson parameter λit reflects the expected number of store visits for individual
i in month t, and is explained by K regressors zi1t,zi2t, . . . ,ziKt for individual i at
time t:

lnλit =

K∑

k=1

θkzikt (6.61)

The regressors consist of an intercept, a variable that capture the online behavior of
that customer number, a dummy that indicates when the web site was introduced,
dummies for own and competitive promotions, a trend variable, and individual-
specific customer characteristics. The parameters θ1, . . . , θK describes the effects of
these explanatory variables.

Van Nierop et al. (2011) calibrated Eqs. (6.60) and (6.61) using data of a sample
of 436 customers, consisting of both registered users (209) and non-users (227). All
customers in the sample visited the store or the website at least once during the two
periods before and after the introduction of the website. In total, the 436 customers
generated 4,572 store visits.

Table 6.8 contains the estimation results for the parameter θ1, . . . , θK of the
Poisson model. The number of website visits affects the number of store visits
negatively (θ2 = −0.302,p < 0.001). This means that for an individual customer,
an informational website is expected to cause a reduction in off-line store visits.
Combined with the after-introduction dummy for non-users, this result is striking.
The dummy indicates that after correcting for possible other variables, non-users
of the website visit the store more after its introduction than do registered users
(θ3 = 0.178, p < 0.001). This effect is also reflected in Fig. 6.1.

Table 6.8 also shows that the number of store visits is positively influenced by
the holiday shopping season (θ̂4 = 0.164, p < 0.002) and the general promotion
(θ̂5 = 0.106, p < 0.035). The fashion promotion does not have a significant effect
on the number of store visits (p = 0.180). The effects of the first two promotional
activities by competitor 1 are negative (θ̂7 = −0.177, p = 0.015 and θ̂8 = −0.241,
p = 0.006). The negative coefficient (θ̂11 = −0.137, p = 0.003) for the log of the
time since introduction illustrates a trend effect that can be explained partly by a
macro-economic decline. The distance to the closest store has a negative influence
on the number store visits (θ̂12 = −0.018, p < 0.001), indicating that the farther
away customers live, the fewer store visits they make. Older people visit the store
more frequently than do younger people, though this effect is barely significant

23We closely follow the study by Van Nierop et al. (2011).
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Table 6.8 Poisson parameter estimates for the number of store visits
(N = 4,572)

Variable Coefficient p-valuea

Intercept (θ1) 1.155 <0.001

Number of website visits (θ2) −0.302 <0.001

Dummy user/non-userb (θ3) 0.178 <0.001

Holiday shopping season dummy (θ4) 0.164 0.002

General promotion dummy (θ5) 0.106 0.035

Fashion promotion dummy (θ6) 0.079 0.180

Competitor 1 starts webstore (θ7) −0.177 0.015

Competitor 1 major TV advertisement (θ8) −0.241 0.006

Competitor 1 advertisements in 2001 (θ9) 0.002 0.971

Competitor 2 introduces magazine (θ10) 0.002 0.971

(Log) months since introduction (θ11) −0.137 0.003

Distance to closest store in miles (θ12) −0.018 <0.001

Age in years (θ13) 0.003 0.067

Gender (0 = male, 1 = female) (θ14) −0.023 0.470

Higher education (0 = no, 1 = yes) (θ15) 0.057 0.047
aThis columns shows p-values for two-sided t-tests
bThis variable equals 0 before the introduction of the informational
website; after the introduction, it equals 1 for non-users and 0 for
registered users
Source: Van Nierop et al. (2011, p. 159).

(θ̂13 = 0.003, p= 0.067). There is no difference in the number of store visits between
men and women (p= 0.470). Finally, there is a positive relation between people with
a least a college education and the number of store visits (θ̂15 = 0.057, p = 0.047).

6.5 Simultaneous Systems of Equations

Model building in marketing can involve:

• a single equation;
• multiple equations (such as in the case of multiple brands);
• simultaneous equations.

So far we only considered single- and multiple-equation models. Simultaneous
equations represent a special case of multiple equations, and a system of simul-
taneous equations is used in cases where more than one equation is needed to
properly specify the relations in a market. In such a system there are multiple
endogenous variables which are the variables to be explained by the equations. The
remaining variables are predetermined, consisting of exogenous and (potentially)
lagged endogenous variables. Exogenous variables are considered to be determined
outside the system of equations, and are therefore taken as given. They are similar
to the predictor variables used in a single-equation model.
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The concept of simultaneity refers to the idea that the endogenous variables
are “explained” jointly and simultaneously by the predetermined variables and the
disturbances. Importantly, an endogenous variable may be used both to explain
other variables and to be explained, in different equations. As a result, such an
endogenous variable cannot be stochastically independent of all disturbance terms.
On the other hand, the predetermined variables may be assumed to be independent
of the disturbances.

The need for special estimation methods for simultaneous equations derives
especially from the violation of assumption 5 for the disturbances (Sect. 4.2.3)
which states that the predictors (xkt) and the disturbances (εt) are required to be
independent. Thus, in essence the presence of an endogenous variable which has
both an explanatory role and which is to be explained by the system is one of the
reasons for the violation of assumption 5.

We first discuss in further detail the example that we briefly mentioned in
Sect. 5.2.5 to illustrate the fundamental problem (a violation of assumption 5 with
regard to the error term) caused by simultaneity in the relationships between the
variables that we have in our data set.

Suppose a brand manager is interested in determining the effect of own adverti-
sing expenditures on unit sales. The manager believes that sales are mainly driven
by own and competitive advertising expenditures, and assumes a linear demand
function:

qt = β0 +β1at +β2ac
t + εt (6.62)

where

qt = brand sales in 10,000 units,

at = brand advertising expenditures in thousands of dollars,

ac
t = competitive advertising expenditures in thousands of dollars, and

εt = an error term.

In this example we consider competitive advertising as an exogenous variable.
Let us assume that the brand manager’s advertising spending decisions depend

on the brand’s sales level, and also on advertising spending for other brands in the
firm’s portfolio, due to budget restrictions:

at = α0 +α1qt +α2aP
t + νt (6.63)

where

aP
t = advertising expenditures for other brands in the firm’s portfolio, and

νt = an error term.

We assume that aP
t is an exogenous variable.
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Equations (6.62) and (6.63) jointly constitute a system of two equations that
contains two endogenous variables: qt and at. One fundamental question is whether
at is stochastically independent of εt in (6.62). By substituting (6.62) into (6.63) we
obtain:

at = α0 +α1(β0 +β1at +β2ac
t + εt)+α2aP

t + νt

so that

at =
α0 +α1β0 +α1β2ac

t +α2aP
t + νt

1−α1β1
+

α1

1−α1β1
εt. (6.64)

It is clear from (6.64) that at depends on εt. Thus, error-term assumption 5, required
for single-equation estimation of (6.62) using OLS, is violated.

So far, in the advertising example, we were interested in estimating a single
equation. However, this equation turned out to be part of a system of equations,
which hindered application of OLS to the demand function only. One might also
consider joint estimation of the complete system of equations. In the general we can
specify a system of equations as follows:

YΓ+ZB = E (6.65)

where

Y = a T ×m matrix containing the endogenous variables,

Γ = a m×m matrix of parameters (and constraints),

Z = a T × L matrix with exogenous variables and a

column of ones,

B = a L×m matrix of parameters (and constraints),

E = a T ×m matrix of disturbances.

In the example above, m = 2 and L = 2. This general description makes it possible to
consider a variety of possible conditions. For example, if Γ is diagonal, then none of
the endogenous variables depends on other endogenous variables. This reduces the
problem to one for which it is possible to estimate each equation separately (or treat
it as a multiple equation problem if the disturbances are correlated across equations).

If Γ is triangular (for example, any endogenous variable depends only on other
endogenous variables that exist in equations specified earlier), we have essentially
recursive equations. For example, we could imagine a brand manager with a demand
equation such as (6.62) but an advertising budget that does not depend on current
sales. The adequacy of single-equation estimation procedures is then determined by
the lack of correlation between the disturbances across these two equations.

When Γ is neither diagonal nor triangular (as is the case in the example above),
we need to use special estimation methods. The simplest and perhaps most popular
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one is the two-stage least squares method 2SLS. This method is a special case of
the method of instrumental variables (IV) briefly introduced in Sect. 5.2.5, and
discussed further in the next section.

But first we let us discuss an issue that is related to structure of the system of
equations. To this end, let us consider a simplified version of the system of equations
defined by (6.62) and (6.63) where β2 = 0 and α2 = 0:

qt = β0 +β1at + εt (6.66)

at = α0 +α1qt + νt. (6.67)

We may rewrite (6.67) as

qt = α
′
0 +α

′
1at + ν

′
t

where α′0 = −α0/α1, and α′1 = 1/α1, and ν′t = −ν/α1. Hence, an equivalent represen-
tation of the simplified system of equations is:

qt = β0 +β1at + εt (6.68)

qt = α
′
0 +α

′
1at + ν

′
t . (6.69)

The demand equation in (6.68) has precisely the same structure as the rewritten
budget restriction in (6.69). Consequently, there is nothing in the structure of these
two equations that helps to identify that one is representing the demand function,
and the other the budget restriction function. Hence, we cannot hope to estimate
the four parameters in these equations reliably. This example illustrates the general
phenomenon that the structure of the system of equations can be such that the
parameters cannot be uniquely determined. If that is the case, then the system of
equations is said to be unidentified.

Let us investigate whether the exogenous variables that appear in Eqs. (6.62)
and (6.63) are helpful in identifying the system of equations. The dashed lines in
Fig. 6.2 indicate the relationship between advertising and sales that follow from the
demand function in (6.62). Different levels of competitive advertising (ac

t ) result in
vertical shifts in these relationships. The dash-dotted lines in Fig. 6.2 represent the
relationships between qt and at that follow from the decision function in Eq. (6.63)
for different levels of advertising expenditures for other brands in the firm’s portfolio
(aP

t ), which shift these functions horizontally. Given these relationships, it is likely
that advertising-sales values are observed in the vicinity of the intersections of these
functions, indicated by dots in Fig. 6.2.
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t

Fig. 6.2 Relations between advertising and unit sales for different values of ac
t and aP

t

If a relationship between advertising and sales is estimated with OLS using such
data points, a regression line similar to the solid line in Fig. 6.2 will emerge, which
does not resemble any of the functions depicted in Fig. 6.2. Specifically, the slope
of the solid line differs from β1, the slope of the demand functions, so that the
effectiveness of advertising on sales is wrongly assessed.

We note that β1 can be properly estimated if the regression equation controls for
ac

t (for example by fixing it to a certain level so that we are restricted to one of the
dashed lines in Fig. 6.2). Subsequently, variation in aP

t is then needed to determine
the responsiveness of demand to advertising.

We conclude that adding ac
t does not resolve the identification of the demand

function. Surprisingly, it is the variation in aP
t that allows us to trace the demand

function; ac
t merely serves as a control variable in the demand function. This is

reversed when we consider the identification of the budget restriction function.
The identification issue for this function is resolved by adding ac

t to the system
of equations in the demand function, and now aP

t is only a control variable.
A full treatment of the identification of a system of equations is out of scope for

this text. However, a simple condition might be helpful in making a first assessment
of possible identification issues. The so-called order condition requires that for each
equation in the system:

“the number of exogenous variables that appear elsewhere in the equation system must be
at least as large as the number of endogenous variables in this equation” (Greene 2012,
p. 365).

The order condition is a necessary condition for identification. A sufficient condition
is the rank condition. A detailed discussion of the rank condition requires (a lot
of) matrix algebra will not be covered here (we refer to e.g. Wooldridge 2010,
Chapter 5). However, in the present case, where we have two equations, the rank
condition requires that at least one of the exogenous variables excluded from the
first equation must have a nonzero population coefficient in the second equation,
and vice versa.
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We conclude that the system, consisting of Eqs. (6.62) and (6.63) is identified.
Equation (6.62) is identified by the inclusion of the exogenous variable aP

t in
Eq. (6.63), and Eq. (6.63) is identified by the inclusion of another exogenous
variable, ac

t , in Eq. (6.62).
Now that we have established that the structure of the system of equations allows

us, in principle, to obtain unique parameter estimates, we return to the issue of
resolving the endogeneity bias due to simultaneity in the next section.

6.6 Instrumental Variables Estimation

In the preceding section we mentioned that 2SLS is a special case of IV-estimation.
The IV approach was developed around the following “estimation strategy” (Greene
2012, p. 262). Let us first assume that in the classical model (4.13):

yt = α+β1x1t +β2x2t + · · ·+βK xKt + εt

all of the variables xkt, k = 1, . . . ,K, are correlated with εt (later in this section we
will consider the case where some of the explanatory variables are exogenous).
And imagine that there exists a set of variables z�t, � = 1, . . . ,L, where L ≥ K,
such that the z�t are correlated with xkt but not with εt. Then we can construct
a consistent estimator β′ = (β1, . . . ,βk) based on the relationships between the xkt,
z�t and εt. In this manner the set of original regressors is replaced by a new set of
regressors, that are based on so-called instrumental variables. Instrumental variables
(or: instruments) are variables that are correlated with the endogenous regressors but
uncorrelated with the disturbances. Instruments that satisfy the latter requirement
are valid, and instrumental variables that are highly correlated with the endogenous
regressors are strong instruments. Conversely, weak instruments are not strongly
correlated with the endogenous variables.

To introduce IV estimation a bit more formally, we return to the K-variable
model (4.15):

y = Xβ+ ε.

The IV method is used when the assumption E(X′ε) = 0 is violated. The matrix X
may be substituted by a matrix Z such that E(Z′ε) = 0. Thus, every column of the
new matrix Z is uncorrelated with ε, and every linear combination of the columns of
Z is uncorrelated with ε. If Z has the same number of predictor variables as X (i.e.
K = L), the IV estimator is:

β̂IV = (Z′X)−1Z′y. (6.70)

In cases where the number of instruments L is larger than K, the number of variables
in X, the matrix multiplications in Eq. (6.70) break down, and Z needs to be replaced
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by a matrix with K columns. Several options to choose such a matrix can be found in
the literature. One approach is to choose K linear combinations of the columns of Z.
Of all the different linear combinations of Z that we might choose, X̂ = Z(Z′Z)−1Z′X
turns out to be the most efficient:

β̂IV = (X̂′X)−1X̂′y

=
[
X′Z(Z′Z)−1Z′X

]−1
X′Z(Z′Z)−1Z′y. (6.71)

It can be shown that this expression can also be written as:

β̂IV = (X̂′X̂)−1X̂′y. (6.72)

Equation (6.72) expresses that this IV estimator for β is determined in two steps.
First, the columns in X are fitted on the columns of Z. That is: X̂ is computed as:
X̂ = Z(Z′Z)−1Z′X. In step 2, the estimate for β is determined as in the well-known
OLS formula for β, see Eq. (4.19), with X replaced by X̂. Because X̂ is fitted on
Z, it can be considered as a function of Z, so that E(X̂′ε) = 0, which can easily be
verified. This procedure to obtain an IV estimator is also known as Two-Stage Least
Squares, and is usually abbreviated to 2SLS or TSLS.

Let us now consider the case where some of the explanatory variables are
uncorrelated with ε (i.e. some of the explanatory variables are exogenous). All of
the steps to determine the 2SLS estimator still apply if the matrix Z in Eq. (6.72)
is constructed in such a way that it contains all of the exogenous variables, next
to the instrumental variables. This means that the matrix Z has a column for each
instrument that is needed to resolve the problems associated with the endogenous
explanatory variables, and it also contains a column for every exogenous explana-
tory variable in X. By constructing Z in this way, step 1 of the 2SLS procedure
returns a matrix X̂ that contains a column for every exogenous explanatory variable,
and a column for every endogenous explanatory variable. Moreover, the columns
in X̂ associated with the exogenous variables are identical to the corresponding
columns in X, because fitting an exogenous variable to (a set of variables including)
itself results in a perfect “fit”. Another interesting observation is that, next to the
instrumental variables, also the exogenous variables are used to instrument the
endogenous variables.

In many cases the instruments for the endogenous explanatory variables will be
“new” variables that are not included in the original equation(s).24 In time-series
analyses quite often a lagged endogenous variable is chosen as an instrumental
variable.

To illustrate the 2SLS procedure we return to the advertising example in the pre-
vious section. In Fig. 6.2 we observed aP

t is helpful in tracing the demand function

24See, for example, Fischer et al. (2010); Hui et al. (2013).
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(in fact, we discussed that aP
t identifies the demand equation). Consequently, this

variable is an obvious instrument for at. In step 1 we fit at to aP
t :

ât = π̂0 + π̂1aP
t , (6.73)

where π̂0 and π̂1 are the OLS estimates of the coefficients in a simple linear
regression of at on aP

t . In step 2 we determine the 2SLS estimators for the
coefficients in Eq. (6.62) by applying OLS to:

qt = β0 +β1ât +β2ac
t + εt. (6.74)

Note that applying step 1 to ac
t leaves ac

t unaltered, as this is assumed to be an
exogenous variable.

Tests for significance of individual coefficients that are the results of IV estima-
tion can be performed by the conventional t-tests. An F-test can also be performed
along the lines of Sect. 4.3.2, albeit that in the numerator of expression (4.33), the
IV residuals have to be weighted. We refer to Heij et al. (2004, pp. 406–407) for a
more profound discussion.

An IV approach that is equivalent to 2SLS in case of a linear specification,
is the control function approach. The control function approach also consists of
two steps. Similarly to the first step in the 2SLS approach, we also regress the
endogenous variables on the instruments in the first step of the control function
approach. However, now the residuals and not the fitted values are taken to step 2. In
step 2, the residuals of the first step are simply added as explanatory variables to the
original equation (i.e. the one containing the endogenous explanatory variable(s)),
which is then estimated as if all variables were exogenous.

In the advertising example, we determine ξ̂t = at − ât = at − π̂0 − π̂1aP
t in step 1

[compare Eq. (6.73)], and estimate in step 2 an extended version of Eq. (6.62) where
ξ̂t is added as explanatory variable:

qt = β0 +β1at +β2ac
t +β3ξ̂t + εt. (6.75)

Adding ξ̂t to Eq. (6.62) ‘controls’ for the part of at that is related to εt, so that the
estimate for β1 is not subject to endogeneity bias.

When the control function approach is applied to nonlinear models, the first
step does not change. The residuals of the first stage regression are added to the
set of explanatory variables and the model is estimated using the same non-linear
regression approach that would have been used if all explanatory would have been
exogenous. In nonlinear models the control function approach performs much better
than other IV methods (Luan and Sudhir 2010; Petrin and Train 2010).

Rossi (2014) notes that the control function has a lot of appeal for applied
researchers, because all that is needed is a first stage linear regression in the
instruments and simply add the residual (which are constructed variables) from
this first stage to the linear model. He argues that, despite the ease of use of the
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control function approach, the advantages are less clear from inference point of
view, because the standard errors will be incorrectly estimated as they do not take
into account that some of the variables are constructed.

One of the assumptions of the 2SLS-method is that the disturbances of the dif-
ferent equations of the system are independent. We know from the discussion about
seemingly unrelated regressions in Footnote 8 of Sect. 6.2.4 that parameter estimates
of the system are inefficient if we do not account for contemporaneous correlations
of the disturbances. An estimator that makes use of the cross-equation correlations
of the disturbances is more efficient. The techniques that are generally used for
joint estimation of the simultaneous system of relations include: Three-Stage Least
Squares (3SLS), maximum likelihood (Sect. 6.4) and GMM (Generalized Method
of Moments). Thus the 3SLS method includes the application of GLS to the system
of structural relations.

Briefly, 3SLS works as follows. The estimator of the elements of the variance-
covariance matrix of the disturbances Ω are obtained by first applying 2SLS on the
set of simultaneous equations. The 2SLS residuals are then used to compute Ω̂which
allows 3SLS estimates to be obtained with Ω̂ and the “new regressors” z1t, . . . ,zLt.
It is also possible to iterate the 3SLS estimation method: I3SLS.25

As an example we discuss the study by Carpenter (1987). Carpenter studied
competitive marketing strategies consisting of product quality levels, promotional
expenditures and prices. Using a simultaneous equation model he examined the
interrelations between these marketing instruments. For example he let prices and
promotional spending be signals of product quality and allowed promotional spend-
ing to influence prices. A model of interrelations between marketing instruments
requires the use of simultaneous equation estimation methods. Carpenter used 3SLS
(and 2SLS) on a cross section of business-level data.

Rossi (2014) draws attention to the limitations of instrumental variables estima-
tors. He argues that validity of the instruments, which is a necessary condition for
asymptotic unbiasedness of the estimators, is an unverifiable assumption. And even
if the instruments are valid, he emphasizes that instrumental variable estimators can
have poor sampling properties such as fat tails, high RMSE, and bias. He argues that
in panel or time series data the consequences of misspecification of the functional
form or distribution of the error term are likely to be much more problematic than
potential endogeneity biases.

Consequently, one might wonder whether the use of instrumental variable
estimation methods generates estimates that are preferred over, say, OLS estimates.
Although there are examples of OLS estimates that are almost identical to the
estimates generated by 2SLS or 3SLS,26 the differences between estimates can be
very large. These differences are quite often used for testing purposes. However,

25For applications, see Schultz (1971); Carpenter (1987); Tellis and Fornell (1988) and Hanssens
et al. (2001, p. 90).
26Greene (2012, p. 372).
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Rossi (2014) shows that invalid instruments can cause the estimates to differ even
when there is no endogeneity bias, so that such differences cannot always be
interpreted as evidence of endogeneity biases.

We conclude that IV estimators or other endogeneity corrections should not be
applied by default. Instead, we advise to first consider whether these are needed
(e.g. based on theory or earlier results), and subsequently test for the presence
of endogeneity issues. If an endogeneity correction appears to be necessary, it is
imperative that instruments are used that both valid and strong. Otherwise, the cure
may be worse than the disease. At the end of the next section we discuss tests for
assessing the validity and strength of instruments.

6.7 Tests for Endogeneity

There are several tests for endogeneity. Some authors prefer to test exogeneity, i.e.
they test the null hypothesis E(X′ε) = 0 (e.g. Heij et al. 2004, p. 409). Hence, the
terms endogeneity test and exogeneity test are used interchangeably and depend on
the specification of the null hypothesis.

Examples of endogeneity test are the Hausman test and the Wu test. We consider
both tests in more detail below.

To introduce the Hausman test (Hausman 1978), we return to the 2SLS esti-
mation method, a special case of the IV-method.27 It can be proven that the 2SLS
estimator is less efficient than OLS when the explanatory variables are exogeneous.
Hence, it is useful to have a test for endogeneity of an explanatory variable that
shows whether 2SLS is necessary.

We return to (6.62):

qt = β0 +β1at +β2ac
t + εt

where ac
t is exogeneous and at is a single “suspected” endogeneous variable, given

that there may be relation such as (6.63). If at is uncorrelated with εt, it is optimal
to estimate (6.62) using OLS. In case there is nonzero correlation, 2SLS is a better
option. We can test this by directly comparing the OLS and 2SLS estimates, and
determining whether the differences are statistically significant. The Hausman test
is based on this idea, and utilizes a Wald statistic to test the difference between the
two estimates:

H =
(
β̂IV − β̂OLS

)′
Σ̂−1

(
β̂IV − β̂OLS

)′
(6.76)

where β̂IV and β̂OLS are the 2SLS and the OLS estimates, respectively and Σ̂ is an
estimate of the variance-covariance matrix of (β̂IV − β̂OLS ), which can be computed

27We closely follow Wooldridge (2012, pp. 512–513).
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as Σ̂ = Cov(β̂IV )−Cov(β̂OLS ). H follows a χ2(K∗) distribution, where K∗ is the
number of endogenous explanatory variables in the regression. If the OLS and 2SLS
estimates differ significantly we conclude that at must be endogeneous (maintaining
that ac

t is exogeneous).
Application of the Hausman test can be quite cumbersome, because the inverse

of Σ̂ may not exist. Therefore, in most practical cases, modelers use (asymptotically)
equivalent tests that are easier to implement. For example, a simple regression test
based on the control function approach can be used. The control function approach
was discussed in the previous subsection, and significance of the estimate for β3 in
Eq. (6.75) provides evidence for the presence of endogeneity.

One can also test for endogeneity of multiple explanatory variables. This test is
based on a joint test for the significance of including multiple “step 1 residuals”
of the control function approach, one for each suspect endogenous explanatory
variable. Joint significance indicates that at least one “suspected” explanatory
variable is endogeneous.

Another well-known test for endogeneity is the test developed by Wu (1973). Wu
proposes to apply an F-statistic to test the joint significance of the elements γ in the
(“augmented”) regression (6.77)

y = Xβ+ X̂∗γ+ ε (6.77)

where X̂∗ are the fitted values in the regression of variables X∗ on Z, where Z is
the matrix that has been used in (6.70). X∗ constitutes a matrix that contains L∗ of
the variables in X that are suspected to be endogenous. We refer for other issues
regarding testing for endogeneity to, for example, Wooldridge (2012, pp. 534–535).

In the previous section we discussed that validity and strength are two important
requirements for instrumental variables. We will now address how these require-
ments can be assessed.

Let us first consider the question whether the instrumental variables are valid,
i.e. whether E(Z̃′ε) = 0, where Z̃ consists of the columns in Z that correspond to
instrumental variables. As simple approach is to regress the estimated IV-residuals
eIV = y− X̂β̂IV on Z̃, the instrumental variables. The so-called Sargan-test on the
validity of instruments is an appropriate test in this respect. The Sargan test is a
Lagrange Multiplier (LM) test:

LM = nR2

where R2 results from the regression of the IV-residuals on the instrumental
variables. Under the null hypothesis that the instrumental variables are exogenous,
LM (asymptotically) is χ2(r) distributed, where r is the number of instruments
minus the number of endogenous variables. Failure to reject the Sargan test indicates
that the instruments are not significantly correlated with the disturbance term, and
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that there is no evidence that the instrument are invalid. Note that the Sargan test can
only be applied when there are more instruments than the number of endogenous
variables (Heij et al. 2004, p. 413).

Assuming that the validity requirement is met, let us now consider the strength of
a set of instrumental variables. As we discussed in the previous section, instruments
are strong if they are highly correlated with the endogenous variables, and tests
have been developed that can be used to assess whether the relationship is strong
enough. If there is only one endogenous explanatory variable, the first step of the
2SLS approach can be used to this end. In this first step, the endogenous variable is
regressed on the instruments, and the F statistic that is normally used for evaluating
the overall significance of the regression is now used as a test for the strength the
instruments. An F-value larger than 10 indicates that the instruments are sufficiently
strong (Stock et al. 2002).

If there are two or more endogenous variables one cannot simply apply this pro-
cedure sequentially to each endogenous variable because multicollinearity between
the variables would invalidate the result (Greene 2012, p. 290). A procedure for
calculating F that takes the correlations between the endogenous variables into
account proceeds as follows (Greene 2012, p. 290). First we compute the matrices
A = (X′X)−1 and B = (X̂′X̂)−1, where X̂ is the outcome of the first step of the 2SLS
procedure. Then, for the k-th endogenous variable we determine

R2
k =

Akk

Bkk
(6.78)

where the indices indicate that we take the element in the kth row and the kth
column. The F statistic is calculated as

F =

(
R2

k

)
/(K)

(
1−R2

k

)
/(T −K−1)

(6.79)

where, as usual, T is the number of observations, and K is the number of explanatory
variables.

6.8 Bayesian Estimation

6.8.1 Subjective Data

In Chap. 4 and in previous sections of this chapter we dealt with methods developed
to extract parameter estimates purely from objective data, data that represent
observed or observable quantities. In this subsection we return to the question that
we raised in Sect. 3.5.7 how we can generate similar quantifications in the absence
of objective data.
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To justify the use of alternative bases for the quantification of relations, we refer
to the arguments we have made in favor of model building (see Sect. 1.4). For
example, by formalizing relations between variables we give ourselves, and others,
an opportunity to reflect on the quantified expressions. We can voice our opinions
about what we believe to be incorrect aspects and we start an internal discussion
about the relations in question. Perhaps most importantly, the model builders can
document the performance of models. Such documentation provides us with an
opportunity to determine a model’s actual performance. Without the formalization
of predictions, conditional upon marketing activities, it is impossible to track
the true quality of decisions made by managers. Thus, an important advantage
associated with model use is that managers will apply a systematic procedure to
test the accuracy of model-based predictions. This can be done for a single model
by itself, for multiple models or for models in alternative objective or subjective
bases for predictions.

In Sect. 3.5.7.1, we introduced the concept of “models of man”. There is a large
body of research on the success of “models of man”. For example, a regression
model of an admission director’s judgments of academic performance for MBA
students (as a function of their GMAT scores, undergraduate GPA’s, undergraduate
institution qualities, etc.) predicts actual performances better than the very same
judgments on which the model is estimated. The reason for this result is simple:
the model is consistent. It gives exactly the same prediction today, tomorrow or
any time given a set of values for the predictors. The admission director, however,
makes judgments that are subject to noise (or to conditions that do not relate to
the academic performance of the students). If the admission director’s task were to
admit the applicants who are expected to have the strongest academic performance,
the model of the director’s judgments will tend to generate predicted values with
greater accuracy than the judgments. This illustrates that predictions produced by
a model based on subjective data generally outperforms predictions based on the
subjective data itself.

Of course, we may argue that predictions from a model estimated with objective
data can do even better. This should be true as long as the MBA program content
and other aspects stay relatively constant over time. In that case data from students
who have graduated can be used to obtain the parameter estimates that best explain
their actual academic performance. The estimated model can then be used to predict
the performance of future applicants. This model would of course also give exactly
the same prediction any time it is used for a given set of values for the predictors.
And this “model of outcomes” will outperform the “model of man” as long as the
bases for actual performance remain the same.

However, in the MBA application, past data may be insufficient if the students’
characteristics change dramatically or the curriculum and/or the requirements for
good performance are very different than in earlier times. In general, data insuffi-
ciency may also be due to a lack of variability in one or more predictors, excessive
covariation between predictors or other severe problems. Also, the competitive
environment for marketing decisions can change dramatically, for example, after a
new brand enters the market. Thus, historical data sometimes do not provide insight
into the relations that pertain to the new environment. Most econometric models are
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“static” in the sense that both the structure and the parameters are fixed (adaptive and
time-varying parameter models are a notable exception). Thus, subjective estimation
may not just be attractive in the absence of objective data but also to overcome the
limitations of historical data.

6.8.2 Combining Objective and Subjective Data: Bayes’
Theorem

As a result of the above discussed benefits, the combination of subjective and
objective data has seen much attention in (marketing) modeling literature. Blattberg
and Hoch (1990) suggest that model-based systems for decision making should be a
hybrid system of 50 % judgment (manager) and 50 % model (customer). They find
that this mix does better than either model or manager alone. A hybrid system may
correct for human shortcomings in information processing while the human picks
up on cues, patterns, and information not incorporated in the model (Bucklin et al.
1998, p. 6).

Combining objective and subjective data and estimates can be accomplished by
informal analysis or formal analysis. Informal analysis can be used to adjust or
update empirically determined coefficients. For example, parameter estimates from
sample data can be adjusted by multiplying them by subjectively estimated indices.
Alternatively, we can start with judgmental parameters. Little (1975) does this based
on the idea that people tend to overinterpret patterns in historical data.

Combining subjective and objective information in a formal way is achieved
by Bayesian Analysis.28 We show a general framework for Bayesian analysis in
Fig. 6.3. Suppose a firm wants to estimate the trial rate (θ) for a new product. Based

Obtain subjective
data

Obtain empirical
data

Probability assessment
(Prior)

Sample estimates
(Likelihood)

Combine

Final estimates
(Posterior)

Fig. 6.3 A general framework for Bayesian analysis. Source: Naert and Weverbergh (1981, p. 107)

28For a much more detailed treatment of Bayesian methods we refer to Rossi et al. (2005). See also
Congdon (2003, 2006).
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on experience from launching other products in the same category, the trial rate
is subjectively assessed. This subjective data called prior information and may be
available in the form of a prior distribution f (θ).

The firm may also offer the product in a test market, thus obtaining sample data z.
Let this sample evidence or objective data be available under the form of a sampling
distribution f (z | θ). A decision to launch or not to launch would then be based on
the posterior distribution f (θ | z) obtained from Bayes’ Theorem:

f (θ | z) =
f (θ) f (z | θ)

∫
f (θ) f (z | θ)dθ . (6.80)

Combining objective and prior information also applies to the estimation of response
curves. Assume the following model:

y = Xβ+u (6.81)

where β is a K × 1 vector of unknown parameters. Without prior information β is
estimated by, for example, ordinary least squares:

β̂ = (X′X)−1X′y. (6.82)

Suppose now that prior information is available on K′ of the K parameters, i.e.,
a K′ × 1 vector of prior estimates β̂p. Prior information can be subjective, but
also objective. It can originate from theory, expert judgments, analysis of other
data sources, and/or from a meta-analysis of the existing empirical effect sizes
(Sect. 1.3.2). So, for example, prior value of a price elasticity can be set equal to
−2.62; i.e. the average value found in a meta-analysis by Bijmolt et al. (2005).
Assuming these prior estimates to be unbiased, we have:

E(β̂p) = βp. (6.83)

The prior estimates are subject to error:

β̂pk = βpk +μk, k = 1,2, . . . ,K′ (6.84)

where μk is the error term for the kth estimate. Let the covariance matrix of the error
term of the prior estimates be:

E(μμ′) =Φ. (6.85)

To formally combine objective and prior information, we write (6.84) in matrix
form:

β̂p = Aβ+μ, with A = [I O] (6.86)
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where I is an K′ ×K′ identity matrix, and O is an K′ × (K −K′) matrix of zeros.29

Combining (6.81) and (6.86) we obtain:

y∗ =
(

y
βp

)

=

[
X
A

]

β+

(
u
μ

)

(6.87)

or

y∗ = Zβ+ v

with

E(vv′) =
[
σ2I O
O Φ

]

. (6.88)

Equation (6.87) can be estimated by generalized least squares to obtain an estimate
for β that combines prior information with objective information.

6.8.3 Likelihood, Prior and Posteriors

Key concepts of Bayesian estimation include the likelihood, the prior and the
posterior.

To generalize from a sample to the population, both classic and Bayesian
statisticians rely on the likelihood principle, i.e. all information in the sample is
contained in the likelihood function. The likelihood function tells us how likely
it is that we observe data z, given values for the parameters (see also Sect. 6.8).
In general, the likelihood is defined by

L(θ) = f (z|θ) (6.89)

where z represents the observed data, θ represents the unknown parameters, and f is
some probability density function. Hence, we infer the likelihood of the parameter
values θ, by assessing the probability of observing z, given those parameter values.

Instead of placing the uncertainty of such inference in the data, the Bayesian
approach places the uncertainty in our lack of knowledge about parameters and
operationalizes that lack of knowledge in terms of a (joint) probability distribution
over all unknown quantities, that is, parameters. Before any data are observed,
the Bayesian summarizes everything known about the model parameters in just
such a single distribution, called the prior distribution. The prior distribution is

29We assume that prior information is available on the first K′ estimators. The variables can be
arranged such that this is the case.
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then combined with (often called updated by) the likelihood, to yield the posterior
distribution, which is then used for testing, prediction etc. A key Bayesian property
is that the posterior distribution is proportional to the product of the likelihood and
prior distribution [compare Eq. (6.80)]:

f (θ|z) ∝ f (z|θ) f (θ). (6.90)

The prior distribution f (θ) reflects what we know (or do not know) about the
parameters θ before consulting the data; the posterior distribution f (θ|z) reflects
what we know about the parameters θ after combining both the observed data and
the information contained in the prior. The shorthand notation of θ to denote the
unknown parameters masks the strength of the Bayesian approach (Feinberg and
Gonzalez 2012). Unknown quantities, such as missing data, can be construed as
unknown parameters and included in θ.

6.8.4 Conjugate Priors

Bayesian analysis requires calculating and sampling from the posterior distribution.
A key way to simplify this calculation is by selecting a prior distribution for which
combining it with the likelihood yields the same form for the posterior distribution,
i.e. a conjugate prior (Box and Tiao 1992). “Same form” means that prior and
posterior belong to the same distributional family, differing only in their parameters.
The most well-known example is that a Normal likelihood and a Normal prior
will combine into a Normal posterior distribution. Likelihoods that belong to the
exponential family have conjugate prior distributions, and often this is the Beta or
Gamma. For example, in a model for count data with a Poisson likelihood (see
Sect. 8.3), assuming a Gamma prior will result in a Negative Binomial distribution
for the posterior.

6.8.5 Markov Chain Monte Carlo (MCMC) Estimation

Inferences within the Bayesian framework are based on the posterior distribution,
which can be high-dimensional and very complex. Typically, researchers use
summary measures such as expected value (means) and posterior standard deviation
of the parameters θ. A key complication is that we can rarely sample from the
desired posterior distribution immediately because this would require knowing
approximately where the distribution is the largest, and computing the integral
of the posterior distribution. These computations were very challenging before
the development of simulation approaches such as Markov Chain Monte Carlo
(MCMC) methods.
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The key idea of MCMC is to sample each unknown parameter in turn,
sequentially cycling through each unknown many times, always conditional on
the latest draws for all the other parameters. Theorems show that such sampling will
reach a stationary distribution for the parameters under rather general conditions.
Practically, we choose a start point at random, let the simulation go, and, within
several thousands of iterations reach a stationary distribution. Within MCMC,
Gibbs sampling is popular when the distributions are known and easy to sample
from, while Metropolis-Hastings sampling can handle “ill-behaved” distributions
(Tanner 1996).

During MCMC estimation, diagnostic tests help identify when a stationary
distribution is reached. If parameter estimates still “jump around” after hundreds
of thousands of iterations, the researchers should check his data and model for
sufficient variation in each variable and multicollinearity among the variables. Such
multicollinearity is reflected in stretches of iterations where the model attributes an
effect to a variable, followed by stretches of iterations where the model attributes
that effect to another variable.

Parameter restrictions are easily incorporated into MCMC estimation, because
Bayesian analysis is not concerned with the asymptotic properties of standard
distributional forms (as frequentist statistical analysis is). For example, a diagonal
covariance matrix can be imposed via the prior or within the sampling procedure
by setting any parameter to a specific value (e.g. 0 for all off-diagonal elements of
the covariance matrix), and sampling for all the other parameters conditional on the
constraints.

6.8.6 Bayesian Analysis in Marketing

Marketing has seen numerous applications of Bayesian analysis on a very wide
range of topics and various data types (see Rossi and Allenby 2003 for an overview
till that year). Some of those are based on the science-philosophical debate of the
Bayesian approach with classical or “frequentist” principles regarding the nature
of statistical inference, the role of prior beliefs and claims about how one should
update one’s belief in the light of new information (Feinberg and Gonzalez 2012).
Yet, Bayesian methods based on MCMC have become widely accepted in marketing
science, and many studies have adopted or even developed Bayesian methods to
study marketing phenomena. Practically, there are several conditions that suggest
a Bayesian approach to marketing data and research questions. In our experience,
three conditions stand out:

1. Structurally missing data: missing data are sometimes structural to the problem
the researcher is interested in. For instance, during a product harm crisis,
Kraft withdrew not just its affected brand, but also its flagship brand from
the Australian peanut butter market for several months. Van Heerde et al.
(2007) analyzed marketing effectiveness of Kraft’s and the competing brands
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before, during and after the withdrawal. Because both Kraft brands have zero
sales during the withdrawal, a Bayesian estimation allows their prior (pre-crisis
estimates) to go without updating while the competitors’ estimates get updated,
revealing an increased advertising impact.

2. Shrinkage of parameters over many cross-sections or other hierarchical data
structures: often, marketing models need to be estimated over many cross-
sections, such as consumers or stores of a retail chain. By chance, some of these
section-specific estimates are bound to violate face validity, e.g. positive price
elasticities for a fast moving consumer good at a retail store. Bayesian estimation
allows shrinkage of the cross-section specific parameters towards the overall
mean estimate (e.g. −2.62 across all stores of the chain). For an example, we
refer to the next subsection.

3. Varying parameters based on systematic changes: while frequentist econometrics
can handle time-varying parameters, Bayesian estimation shines when the
parameter varies by a systematic factor, e.g. marketing spending. An example is
the study by Ataman et al. (2008), where own marketing’s effects on new brand
base sales and price elasticities are determined using Bayesian estimation in a
Dynamic Linear Model (West and Harrison 1997).

Thus, Bayesian estimation provides a general framework flexible enough to adapt
to different types of data and research interests. The main costs of coding and
computational complexity have been decreasing steadily over time.

6.8.7 Example: Bayesian Analysis of the SCAN*PRO Model

An interesting example of Bayesian analysis concerns the SCAN*PRO covered
in Sect. 7.3.2.2. Andrews et al. (2008) investigate whether accounting for store-
level heterogeneity in marketing mix effects (through Bayesian shrinkage) offers
a substantial improvement over the original model, which assumes homogeneous
effects. They consider a slight modification of the SCAN*PRO model30 (Wittink
et al. 2011):

qk jt =

⎡
⎢⎢⎢⎢⎢⎢⎣

n∏
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(
pkrt

p̄kr

)βr j 3∏
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⎤
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⎡
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jt
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K∏
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λ
Zk
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⎤
⎥⎥⎥⎥⎥⎥⎦eεk jt (6.91)

where

qk jt = unit sales (e.g. number of pounds) for brand j in store k in week t,

pkrt = unit price for brand r in store k, week t,

30See also Sect. 7.3.2.2.
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p̄kr = the median regular unit price (based on the non-promoted

weeks) for brand r in store k,

D1krt = an indicator variable for feature advertising: 1 if brand r is featured

(but not displayed) by store k, in week t; 0 otherwise,

D2krt = 0 an indicator variable for display: 1 if brand r is displayed

(but not featured) by store k, week t; 0 otherwise,

D3krt = an indicator variable for the simultaneous use of feature and display:

1 if brand r is featured and displayed; 0 otherwise,

Xt = an indicator variable (proxy for missing variables and seasonal effects):

1 if the observation is in week t; 0 otherwise,

Zk = an indicator variable for store k : 1 if the observation is from store k;

0 otherwise

εk jt = a disturbance term for brand j in store k, week t.

The parameters in the model can be interpreted as follows:

βr j = the own price (deal) elasticity if j = r, or cross-price elasticity if j � r,

γ1r j = the own feature ad multiplier if j = r, or cross-feature ad multiplier if j � r,

γ2r j = the own display multiplier if j = r, or a cross-display multiplier if j � r,

γ3r j = the own display and feature multiplier if j = r, or a cross-display feature

multiplier if j � r,

δ jt = the (seasonal) multiplier for brand j in week t,

λk j = store k’s regular (base) unit sales for brand j when there are no temporary

price cuts and no promotion activities for any of the brands.

The size of model depends on:

n = the number of brands used in the competitive set,

K = the number of stores in the sample for a major market, and

T = the number of weeks.

The authors rewrite Eq. (6.91) as

q∗k jt = Xk jtβk + εk jt (6.92)
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where q∗k jt = ln
(
qk jt

)
, the (log-transformed) marketing mix variables and weekly

indicator variables are included in the matrix Xk jt, and the elasticities and log-
transformed multipliers are included in the coefficient vector βk.

In the Hierarchical Bayes (HB) formulation, the authors specify a multivariate
normal population distribution to capture heterogeneity between stores as follows:

q∗k jt = Xk jtβk + εk jt

εk jt ∼ N(0,σ2
k)

βk ∼ N(β̄,Λ)

β̄ ∼ N(b0,D0)

Λ−1 ∼W(ν0,S 0)

σ−2
k ∼G(a,b).

(6.93)

The mean vector β̄ represents the mean marketing mix elasticities and log multipli-
ers in the population of stores, whereas the covariance matrix Λ captures the extent
of heterogeneity and the correlation in marketing mix elasticities and multipliers
between stores. The error variances σ2

k are store-specific. HB models require priors
for the hyperparameters β̄ and Λ and for the variances σ2

k . It is customary to
assume that σ−2

k is distributed gamma G(a,b), that β̄ has a multivariate normal
prior, N(b0,D0), and that Λ−1 has a Wishart prior, W(ν0,S 0). Andrews et al. (2008)
found better fit when constrainingΛ to be diagonal, indicating no covariances among
parameters between stores. They chose the following values for the parameters of
the priors: a = 3, b = 1, b0 = 0, D0 = 103Ir, ν0 = r + 2, and S 0 = (1/ν0)Ir, where
Ir is the identity matrix with dimension r. Because the univariate special case of
the inverted Wishart distribution is the inverted gamma distribution, the diagonal
elements of Λ−1 are assumed to have gamma priors. Given these ‘well-behaved’
distribution, the authors can use standard Gibbs sampling methods, allowing 3,000
iterations for burn-in.

Andrews et al. (2008) compare the fit of this Hierarchical Bayes model with
that of a finite mixture model and the original Ordinary Least Squares (OLS)
estimation. The empirical context is Dutch store-level scanner data in the shampoo
product category. The estimation results show that the HB model has the best fit
for all brands (both in Log Likelihood as in explanatory power. Compared to the
original (OLS) SCAN*PRO model, the HB model has a 4–8 % higher R2. As to
predictive power, the HB estimation also beats the OLS estimation for most brands.
Interestingly however, the HB estimation did not substantially improve parameter
accuracy, so little may be lost by using the original SCAN*PRO model with
Ordinary Least Squares estimation. The authors’ explanation for this unexpected
finding is that the large number of parameters required for the original model,

“creating a difficult environment for recovering heterogeneity in parameters and resulting
in decreasing returns from using additional parameters to explain more variation in sales”
(Andrews et al. 2008, p. 31).
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Chapter 7
Examples of Models for Aggregate Demand

7.1 Introduction

In this chapter we give some examples of marketing models which have been
estimated using the general linear model. Most of these models have been estimated
using aggregate demand data. Aggregate demand refers to the demand across a
sample of customers or households and can be measured at levels such as store,
chain and market demand.

In Chap. 8 we discuss models that are estimated using other models than the
general linear model. These models are briefly introduced in Sect. 3.4; see Table 3.1.
Usually these models are calibrated using individual/household data and thus refer
to what is called “individual demand”. In this chapter we first briefly discuss
relations between individual demand (models) and aggregate demand (models) in
Sect. 7.2.

We continue to discuss descriptive/predictive models in Sect. 7.3. We dis-
cuss illustrations of three classes of demand functions: product category/product
class/industry sales,1 brand sales, and brand market share models. Such a clas-
sification is useful because model specification, both in terms of variables and
mathematical form, can have features that are distinct for each of these three
categories. In Sect. 7.3.1, we discuss product class sales models. Brand sales models
can either be modeled separately as a function of decision- and environmental
variables, or it can be obtained from the product of product class sales and market
share. We illustrate both approaches in Sect. 7.3.2. A detailed analysis of market
share models is given in Sect. 7.3.3, with particular attention to robust market share
specifications.

Finally, we spend some attention to normative models in Sect. 7.4.

1We use the terms industry sales and product class (category sales) interchangeably.
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7.2 An Introduction to Individual and Aggregate Demand

Aggregate demand models can either describe market behavior directly, or indi-
rectly through individual behavior models from which outcomes are aggregated to
determine market response. An aggregate response model, if postulated directly,
is applied to aggregate data and has its own component of response uncertainty
(represented by the properties of the error term). The probabilistic properties of
the indirectly specified aggregate models are derived from the perspectives of the
individual demand models.

The modeling of aggregate response from the addition of behavior across
individuals ideally reflects heterogeneity across households in their intrinsic brand
preferences and in their sensitivities to marketing variables (Chintagunta et al.
1991). Different approaches are available to account for household heterogeneity
at the disaggregate level.2 The question is how to accommodate differences across
households in their brand preferences and sensitivities to marketing variables in
models of aggregate data. Related aggregation questions apply to the aggregation of
store data to the market level.3 We will discuss these issues briefly below.

Some models have been developed which have about the same structure at the
individual (micro) level and at the aggregate (macro) level. For example, Markov
models are often used to accommodate the idea that the last brand chosen (in period
t) affects the current purchase (in period t+1). A first-order Markov model applies
when only the last purchase has an influence on the next one, i.e.

P(Xt+1 = j | Xt = i, Xt−1 = r, · · · ) = P(Xt+1 = j | Xt = i) = pi jt (7.1)

where P(Xt+1 = j | Xt = i, Xt−1 = r, · · · ) is the probability that the brand purchased
at time t + 1 is j, given that the brand purchased at t was i, at t − 1 was r, · · · .
These probabilities are called transition probabilities. A first-order Markov model
applies when only the most recent purchase has an influence on the current one.
In a stationary first-order Markov model the transition probabilities are constant
over time: pi jt = pi j. The transition probabilities are related to the (individual) brand
choice probabilities (π j,t+1) as:

π j,t+1 =

n∑

r=1

pr jπrt, for every j = 1, . . . ,n, t = 1, . . . ,T (7.2)

2Guadagni and Little (1983); Kamakura and Russell (1989); Chintagunta (1992, 1993a); Gönül and
Srinivasan (1993); Gupta and Chintagunta (1994); Rossi and Allenby (1994); Wedel and Kamakura
(1998); Yang and Allenby (2000); Andrews and Currim (2009); Andrews et al. (2011).
3See Christen et al. (1997).
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where

π j,t+1 = probability brand j is chosen at t+1 by an individual

consumer/household,

n = total number of brands.

The unconditional (πrt) and conditional (pr j) probabilities are distributed over the
population of consumers. One may account for heterogeneity by making assump-
tions about these distributions.4 Under the assumption of consumer homogeneity,
i.e. consumers have the same pr j and πrt values, it can be demonstrated that
relation (7.3) holds at the aggregate level:

m j,t+1 =

n∑

r=1

p̃r jmrt, for every j = 1, . . . ,n, t = 1, . . . ,T (7.3)

where

m j,t+1 = market share of brand j in period t+1,

p̃r j = fraction of consumers who buy brand r in t and brand j

in t+1.

The fractions m j,t+1, m jt, p̃r j follow the multinomial distribution with means π j,t+1,
π jt and pr j. Although (7.2) and (7.3) have the same structure, the definitions of the
variables are clearly different between the individual and the aggregate levels.

A second example of similarity in structure between individual- and aggregate
models is the specification of the logit model (see Sects. 8.2.2 and 8.2.3). The
multinomial logit model is a popular model in the marketing science literature since
the pioneering research by Guadagni and Little (1983). We introduce the model
specification at the individual/household level.5 Consider an individual i confronted
with a choice from a set of alternatives, CS i, such as different brands in a product
category. The utility that consumer i expects from alternative (brand) j is U ji. This
utility can be divided into two components, a systematic part (V ji) and a random
component (ε ji). Thus:

U ji = V ji + ε ji. (7.4)

Given a specific set of alternatives, individual i chooses the option with the highest
utility. The probability of choosing j is:

π ji = P[U ji > Uri , r, j
r� j
∈CS i]. (7.5)

4See Chap. 8.
5We closely follow Guadagni and Little (1983). See also Sect. 8.2.2.
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If the ε ji in (7.4) are independently distributed random variables with a double
exponential distribution, then it can be shown6 that individual i’s choice probabilities
have the (simple) form:

π ji = eV ji/
∑

r∈CS i

eVri . (7.6)

The systematic, deterministic component of a consumer’s utility for alternative j
can be expressed as a linear function of observed variables relevant to j (x� ji, � =
1, . . . ,L):

V ji = α0 j +

L∑

�=1

α� j x� ji. (7.7)

Substituting (7.7) in (7.6) we obtain the expression for the multinomial logit model
at the individual level:

π ji = exp

⎛
⎜⎜⎜⎜⎜⎜⎝α0 j +

L∑

�=1

α� jx� ji

⎞
⎟⎟⎟⎟⎟⎟⎠/

∑

r∈CS i

exp

⎛
⎜⎜⎜⎜⎜⎜⎝α0r +

Lr∑

�=1

α�r x�ri

⎞
⎟⎟⎟⎟⎟⎟⎠ (7.8)

where

Lr = the number of predictor variables for alternative r.

From the disaggregate logit model in Eq. (7.8), forecasts of aggregate demand
and market shares can be obtained. The essence is that a prediction of the share
of choices of a brand, needs to be computed from the individual-level choice
probabilities. If the model would have been calibrated on the whole population of I
consumers, this approach would be conceptually simple: the expected market share
of brand j would equal the average of the choice probabilities of the I individuals in
the population:

m j =

I∑

i=1

π ji/I. (7.9)

However, in most cases the individual-level choice probabilities are not known for
all individuals in the population, since the levels of the predictors are unknown
outside the sample. Some researchers have developed solutions for this problem.7

The most important ways of representing heterogeneity in disaggregate models
currently in use are through: (1) either a continuous or a discrete mixture distribution

6Theil (1969); McFadden (1974).
7See, for example, McFadden and Reid (1975).
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of the parameters; see Volume II; (2) through the applications of Bayesian estima-
tion methods8; (3) through the specification of a distribution for one or more of the
parameters which describe consumer demand at the individual level: see Chap. 8.

7.3 Example of Descriptive/Predictive Models

7.3.1 Product Class Sales Models

Product class sales models explain the demand for a certain category through
environmental variables and/or aggregated values of marketing instruments.

If product class sales (industry sales) is to be explained from cross-sectional
data, the explanatory variables are often socio-economic and demographic variables,
such as age, sex, education, occupation, income, location, family size, as well
as marketing variables. However, the effects of marketing instruments cannot be
obtained unless the marketing instruments vary across individuals, or groups of
individuals, or cross sections. Many examples of these models can be found in
the economic and econometric literature. See, e.g. Duesenberry (1949), Klein and
Lansing (1955), Kapteyn et al. (1980), Kapteyn et al. (1997).

An example of a marketing model estimated with cross-sectional data is a model
that captures differences in trade show effectiveness across industries, companies
and countries. The authors of this model (Dekimpe et al. 1997) provide results about
the effects of various show types and tactical variables (booth size, personnel) on
observed performance.

In time-series data, the predictors often consist of both environmental and
marketing variables. Examples of environmental variables are: population size, a
weather index, and information on economic activity. To explain product class
sales through marketing variables it is common for researchers to use aggregate
values of marketing instruments, meaning that aggregation is performed over all
brands that constitute the product class. Examples are total advertising expenditures,
total number of retail outlets and average price.

An example of a product class model is a model that specifies the relation
between industry sales and variables such as industry advertising expenditures in the
West-German cigarette market. One of the non-dynamic relations is relation (7.10):

Qt = eα0+ut

⎛
⎜⎜⎜⎜⎜⎝

n∑

r=1

art

⎞
⎟⎟⎟⎟⎟⎠

α1

(Ct)α2
(
QRt

)α3
(
QPt

)α4
(
QCt

)α5 (7.10)

8See, for example, Sect. 6.8, Andrews et al. (2008) or Andrews et al. (2011).
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where

Qt = total number of cigarettes in t,

ut = a disturbance term,

art = advertising expenditures of brand r,

Ct = household consumption in t,

QRt = industry sales of “roll your own” tobacco, in units in t,

QPt = industry sales of pipe tobacco, in units in t, and

QCt = industry sales of cigars, measured units in t.

Table 7.1 Parameter estimates and statistics of relation (7.10)

Variable Parameter estimate Standard error

Advertising (α1) −0.04b 0.02

Household consumption (α2) −0.60a 0.09

Roll your own tobacco (α3) −0.07b 0.03

Pipe tobacco (α4) −0.07 0.04

Cigars (α5) −0.08 0.05

R2 0.85
aEstimates significant at the 1 % level
bEstimates significant at the 5 % level
Source: Leeflang and Reuyl (1985a, p. 96)

All variables are defined per capita (per person over 15 years of age). After all
variables were regressed against time (to remove trends), the estimated parameters
for the (adjusted) per capita variables in (7.10), obtained from monthly observations,
are those in Table 7.1. Advertising has a significant effect on industry sales. In
another part of their analysis (not shown here) Leeflang and Reuyl demonstrate
that this effect diminishes over time. The estimated coefficient for household
consumption (per capita) indicates that the consumption of cigarettes is quite
responsive to household consumption, albeit that a percentage increase in household
consumption leads to a smaller percentage increase in cigarette consumption. The
cross elasticities are all negative. The cross elasticity for roll your own tobacco is
the only significant cross elasticity.

Several studies have investigated the effects of pharmaceutical marketing efforts
on primary demand.9 We discuss a primary demand model for a pharmaceutical
category (k) developed by Fischer and Albers (2010). In this model primary demand

9See, for example, Narayanan et al. (2004); Chintagunta and Desiraju (2005); Manchanda et al.
(2005); Venkataraman and Stremersch (2007); Kremer et al. (2008); Leeflang and Wieringa (2010);
Wieringa and Leeflang (2013); Ding et al. (2014); Wieringa et al. (2014).
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is explained by aggregate values of marketing instruments and environmental
variables, such as seasonal dummy variables and the time that has been elapsed
since the launch of the first brand in the category k. The model has the following
structure for category k (1,2, . . . ,K) and time period t (1,2, . . . ,T ):

ln Qkt = α0 +α1 ln DETkt +α2 ln
n∑

r=1

arkt +α3 ln DTCkt +α4 ln PRCkt

+α5LCTkt +α6 ln Qk,t−1 +

3∑

h=1

lnβhS Dht+
K−1∑

m=1

lnβ3+mδk +wkt (7.11)

where

Qkt = unit sales of category k in period t,

DETkt = total expenditures on detailing in category k in period t,

arkt = journal advertising expenditures of brand r in category k in t,

DTCkt = total expenditures on direct to consumer advertising in category

k and period t,

PRCkt = unit sales-weighted average price in category k in t,

LCTkt = elapsed time since launch of category k in period t,

S Dht = seasonal dummy variable for quarter h and period t,

δk = category dummy variable for category k,

wkt = a disturbance term which is assumed to be normally distributed:

N(0,σ2
k), where σ2

k is a category specific error variance.

Fischer and Albers (2010) obtained quarterly data from IMS Health for 86
categories (K = 86) in the United States over a 5 year observation period. The
IMS MIDAS database offers information about sales, expenditures on detailing
(sales force efforts), professional journal advertising, Direct-To-Consumer (DTC)
advertising and revenues. In addition, Fischer and Albers collected data about
product launch dates. Using this data and other models they found mean short
term elasticities of 0.033 for detailing and 0.004 for both journal advertising and
DTC advertising. Long-term elasticities appear to be substantially larger, at least
for journal advertising (0.036) and DTC advertising (0.041). The mean value of
the long-term detailing elasticity is 0.047, which is only slightly larger than the
corresponding short-term elasticity. These means have distributions with relatively
large standard deviations. For a substantial number of categories the estimated
elasticities are negative.
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Many other examples of industry sales demand models can be found in the
literature. See e.g. Leone and Schultz (1980); Lancaster (1984); Campo et al. (2000);
Nijs et al. (2001); Ma et al. (2011).10

7.3.2 Brand Sales Models

7.3.2.1 Introduction

Brand sales can either be modeled directly or indirectly. Directly means that sales
of brand j are explained as a function of marketing variables of brand j, marketing
variables of competing brands, and environmental variables. Indirectly means that
brand sales (q jt) obtains from the product of category sales (Qt) and market share of
the brand of interest (m jt). Specification of product class sales was discussed in the
previous section. We discuss market share models in Sect. 7.3.3.

Arguments in favor of modeling brand sales indirectly are:

1. It is possible to distinguish between changes in q jt that are caused by changes
in market size, Qt, and those that come from changes in the relative position of
brand j in that market, expressed by market share, m jt.

2. Using market share rather than sales as the dependent variable has the following
advantages: environmental variables, and seasonal or cyclical factors causing
expansion or contraction of the entire market need not be included.11 The share
model concentrates attention on the competitive interactions between brands in
the product class.

3. By phasing variables over different levels we reduce the potential number of
explanatory variables per equation, which reduces multicollinearity.

Arguments in favor of modeling brand sales directly are:

1. To the extent that marketing activities for individual brands influence product
category sales, it is implausible that those marketing effects are the same for
equivalent increases across the brands that belong to a product category.

2. Product category sales result from the aggregation of sales across brands
belonging to the category. Since brands are heterogeneous in marketing activities
and tend to have unique parameters relating marketing variables to sales, the
interpretation of product category demand model parameters is unclear.

10Calls for advertising bans in different areas such as alcohol and cigarettes continue to echo
around the world on a continuing basis. This explains why so many product class models have
been developed in these areas. See, e.g. Duffy (1996); Franses (1991); Leeflang and Reuyl (1995);
Luik and Waterson (1996); Nelson (2006); Capella et al. (2011).
11The assumption being that such variables affect demand for each brand equally. This assumption
will often be quite reasonable. If not, however, environmental variables affecting brands differently
should be included in the market share function (as well as in the direct estimation of brand sales).
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7.3.2.2 Modeling Brand Sales Directly: The SCAN*PRO Model

We illustrate the direct approach with the well-known SCAN*PRO model (Wittink
et al. 2011) that we introduced in Sect. 6.8.7. This model uses brand sales as
the criterion variable. The SCAN*PRO model is a store-level model developed
to quantify the effects of promotional activities implemented by retailers on a
brand’s unit sales. The model accommodates temporary price cuts, displays, and
feature advertising. In addition, it includes weekly indicator variables to account
for the effects of seasonality and missing variables (such as manufacturer television
advertising and coupon distributions) common to the stores in a metropolitan area,
and store indicator variables. This model has been used in over 3,000 different
commercial applications in the United States, in Canada, in Europe, and elsewhere.
ACNielsen provides data, parameter estimates and possible scenarios for marketing
managers.

A slight modification of the original model is specified as follows, for brand j,
j = 1, . . . ,n in store k = 1, . . . ,K in week t = 1, . . . ,T :

qk jt =

⎡
⎢⎢⎢⎢⎢⎢⎣

n∏

r=1

(
pkrt

p̄kr

)βr j 3∏

�=1

γ
D�krt
�r j

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

T∏

t=1

δXt
jt

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

K∏

k=1

λ
Zk
k j

⎤
⎥⎥⎥⎥⎥⎥⎦eεk jt (7.12)

where the variables were defined in Sect. 6.8.7.
This model has been numerically specified in a study of the model’s forecasting

accuracy at different levels of aggregation (store, chain, market-level). We consider
here the parameter estimates obtained from store-level data only. These estimates
are obtained from scanner data provided by ACNielsen, for one large metropolitan
area in the United States. Weekly data were available for three national brands
competing in a frequently purchased food category. The average values of the
significant parameter estimates are shown in Table 7.2. The averages are averages
over three brands and the 40 stores in the sample.12

As expected, the own-brand price elasticity is negative, and the cross-brand
elasticity is positive. The (promotion) multipliers with a value larger than 1 have
a positive effect on unit sales, while values smaller than 1 have a negative effect. All
cross effects, except feature, have the expected negative impact on qk jt.

The SCAN*PRO model has been used in several studies in which aggregation
effects are considered.13 The model also constitutes the basis for the development of
varying parameter models,14 semiparametric models15 (see Volume II) and models
for the effects of dynamic lead- and lag effects.16

12See Foekens et al. (1994).
13Foekens et al. (1994); Gupta et al. (1996); Christen et al. (1997).
14Foekens et al. (1999).
15Van Heerde et al. (2001).
16Van Heerde et al. (2000); Andrews et al. (2008).
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Store-level SCAN*PRO regression models have been developed to decompose
the sales promotion bump into three parts: cross-brand effects, cross-period effects
and category expansion effects. Across four different store-level datasets it is found
that each of these three parts constitutes about one third on average (Van Heerde
et al. 2004).17 The SCAN*PRO model has been extended in different steps in a
number of ways. These extensions are results of evolutionary model building.18

Table 7.2 Average values of parameter estimates of the SCAN*PRO model

Own-brand effects Cross-brand effects
Feature Feature

Feature Display and display Price Feature Display and display Price

1.63 2.25 3.07 −3.50 1.25 0.87 0.90 0.63

Source: Foekens et al. (1994, p. 260)

7.3.2.3 Modeling Brand Sales Directly: Models
for Pharmaceutical Markets

We now consider examples of brand sales models which have been developed to
model the effects of pharmaceutical marketing. They illustrate several modeling
issues that have been discussed in the previous chapters.19

Rizzo (1999) is one of the first researchers who investigates the effects of
marketing expenditures on:

• pharmaceutical brand sales, and on
• the price elasticity of demand.

The latter topic has received considerable scholarly attention in the past decade
because it is postulated that marketing activities may reduce the price elasticity
of demand, which allows firms to charge higher prices for their drugs. This has
unwanted welfare effects and is sometimes referred to as the persuasive effect of
marketing. Studies by Rizzo (1999) and Windmeijer et al. (2005) find that marketing
reduces the price elasticity of demand and also increases demand. Rizzo (1999)
estimates the effects of promotional efforts on the demand and price elasticity of
demand of anti-hypertensive drugs with the following model:

lnqit = α0 + (α1 +α2 lndit +α3 ln Dit) ln pit +α4 lndit

+α5(lndit)2 +α6 ln Dit +α7(ln Dit)2 +βXit +uit (7.13)

17See also Van Heerde et al. (2003); Leeflang et al. (2008).
18See Van Heerde et al. (2002).
19The following text is based on Wieringa and Leeflang (2013). See also Leeflang and Wieringa
(2010).
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where for pharmaceutical product i in year t:

qit = quantity sold (defined in daily doses),

dit = detailing efforts (flow) [see also Eq. (2.49)],

Dit = detailing stock, Dit = ρdDi,t−1 +dit,

with ρd as the carryover coefficient for detailing,

pit = wholesale price of an initial dosage, such as the dose

for 100 days’ worth of therapy,

Xit = a vector of variables that include competitor prices

and detailing efforts, the length of time the drug has been

on the market, and other product-specific factors.

The parameter α1 is known as the pre-marketing own-brand price elasticity. If
α2 > 0, detailing flow lowers the price elasticity of demand, whereas if α3 > 0, the
detailing stock lowers the price elasticity of demand. The model accommodates the
indirect effects of detailing on demand through price elasticity with parameters α2

and α3, and allows for direct demand effects of both detailing flow and stock on
sales with the parameters α4−α7.

Rizzo (1999) estimates (non-brand specific) parameters of (7.13) using annual
data about 46 antihypertensive drugs, including ACE inhibiters, calcium channel
blockers, beta blockers, and diuretics. The sample consists of 222 observations. He
finds that the pre-marketing own-brand price elasticity is negative and significant
(α̂1 < 0), for various specifications of the model, and that detailing efforts system-
atically lower price sensitivity, because α̂2 > α̂3 > 0. The results also suggest that
sales increase directly with detailing efforts (α̂5 > α̂6 > 0).

Windmeijer et al. (2005) modify this model slightly for their study for the Nether-
lands’ Bureau for Economic Policy Analysis. They calibrate a Rizzo-type model
using monthly data from the Dutch market for 140 products from 11 therapeutic
markets. Their findings are similar to those of Rizzo (1999), though not quite as
strong. They also find a (slightly) negative average pre-marketing own-brand price
elasticity, but it is significant only at the 10 % level. On average, Windmeijer et al.
(2005) find that pharmaceutical marketing reduces price sensitivity. Pharmaceutical
marketing (flow and stock variables) also increases demand, but this effect weakens
at higher levels of marketing expenditures.

Through a critical evaluation of the frequently cited and often applied Rizzo
model, we specify four concerns. First, the model pools data over brands and
markets, which means that it assumes:

• the marketing expenditures of all brands in all categories have the same effect on
demand;

• the marketing expenditures of all competitive brands have the same effect on
demand (i.e. the competitive structure of each product category is the same).
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Second, the assumption that pooling is allowed is not formally tested in applications
of Rizzo’s model. Third, the model does not account for varying parameters over
the brand’s life cycle. Fourth, some applications of the model (De Laat et al. 2002;
Windmeijer et al. 2005) effectively assume that all marketing expenditures (e.g.,
direct mail, detailing, journal advertising) have the same effect on demand, because
these expenditures are aggregated. To investigate the first two concerns initially, we
apply Rizzo-type models at the individual brand level and test whether pooling is
supported.

We consider five relevant submarkets of prescribed drugs in the Dutch market20:
ulcers, hypertension, cholesterol, depression, and asthma. We use monthly data
covering the period 1994–2001 for the brands in each submarket. We obtained data
about expenditures on detailing efforts, medical journal advertising, and direct mail
(in Euros), whereas Rizzo (1999) only considers expenditures on detailing efforts.
Therefore, we replace dit and Dit by mef it (marketing expenditures f low of brand
i in month t) and mesit ( marketing expenditures stock of brand i in month t),
respectively. Our results show that variation in the parameter estimates is substantial
across the 84 brands, which is in line with findings of Venkataraman and Stremersch
(2007). In Table 7.3, we summarize for each parameter the variation in brand-
specific estimation results. The “mean” column indicates the mean value of the
84 parameter estimates, the columns labeled p.05 and p.95 show the 5th and the
95th percentiles of the set of parameter estimates, and the column labelled “fraction
significant and correct sign” indicates the fraction of parameters that are statistically
different from 0 and have the right sign.

Table 7.3 Brand-level results of Rizzo’s (1999) model

Fraction significant
Coefficient of Mean p0.05 p0.95 and correct sign

ln pit (price) −0.08 −2.60 3.18 0.13

lnmef it × ln pit (interaction flow) −0.25 −1.79 0.96 0.05

lnmesit × ln pit (interaction stock) 0.20 −0.57 1.80 0.12

lnmef it (marketing flow) 0.001 −0.85 0.94 0.08

(lnmef it)
2 (marketing flow)2 −0.01 −0.04 0.02 0.12

lnmesit (marketing stock) −0.29 −2.75 1.04 0.10

(lnmesit)2 (marketing stock)2 0.02 −0.02 0.14 0.07

Source: Wieringa and Leeflang (2013, p. 3392)

To determine whether pooling of individual brand-level outcomes is allowed, as
assumed by Rizzo (1999) and Windmeijer et al. (2005), we conduct a Roy–Zellner
pooling test separately for each of the five submarkets. We show the F-values and
the corresponding critical values in Table 7.4, which strongly indicate that pooling
for each of the five submarkets is not appropriate. Accordingly, pooling over all the

20These markets also have been studied by Windmeijer et al. (2005).
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categories is not allowed either, and estimates of pooled relations cannot be used to
characterize brand behavior.

Table 7.4 Roy–Zellner test
per submarket

Submarket F-value Critical value

Ulcers 611.9 1.16

Hypertension 1070.7 1.08

Cholesterol 578.5 1.20

Depression 896.2 1.17

Asthma 386.5 1.39

Source: Wieringa and Leeflang (2013,
p. 3392)

Because pooling is not allowed, we perform separate analyses for established and
new brands. We define established brands as those on the market before January 1,
1994, which is the first observation in our sample. New brands are those introduced
during the observational period.

We estimated the effects of pharmaceutical marketing expenditures on demand
for 64 established brands. The effects center close to zero; the mean is negative. For
only eight out of 64 established brands promotional expenditures have a positive and
significant effect on demand. This finding may emerge because sales of established
pharmaceuticals show modest growth, and marketing expenditures tend to decline
over time.

In contrast with Rizzo (1999) and Windmeijer et al. (2005), we thus conclude
that for established brands, pharmaceutical marketing does not increase demand
on average, and therefore, we cannot conclude that marketing expenditures have
an effect on either category demand (market making) or substitute brands (market
stealing).

With respect to the role of price, we note that pharmaceutical prices are heavily
regulated in the Netherlands, so managers of branded pharmaceuticals cannot
engage in price competition, even after patent expiration. Nevertheless, considering
Rizzo’s (1999) and Windmeijer et al.’s (2005) focus on the role of price, we estimate
both pre- and post-marketing prices elasticities. The average pre-marketing price
elasticity is very close to 0.

Of the brands with negative pre-marketing price elasticities, four reveal a sub-
stantially positive interaction effect, and one has a substantially negative interaction
effect. These findings do not support the conclusion offered by Rizzo (1999) and
Windmeijer et al. (2005) that marketing tends to reduce the absolute value of the
price elasticity to 0. Thus, we cannot confirm the presence of persuasive effects of
marketing efforts in these markets.

Overall, our results for established brands provide no evidence in support of
Rizzo’s conclusion that (1) marketing expenditures systematically lower price
sensitivity and (2) sales increase with marketing expenditures.

We estimated several models do determine the effects of marketing expenditures
on the sales of new brands. Diffusion models with marketing variables (see Volume
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II) outperform other models. The parameter estimates of these models also confirm
the finding of the established brands that the effects of marketing efforts on sales
are significant for only a small portion of brands and tend to be moderate in size
(Wieringa and Leeflang 2013, p. 3398).

7.3.2.4 Modeling Brand Sales Indirectly

By definition, brand sales, q, equals product class sales, Q, times market share,
m.21 To model brand sales indirectly, we closely follow the derivation in Lambin
et al. (1975). They observed that for profit maximization the Dorfman–Steiner
theorem (derived in the Appendix to this chapter) remains valid independent of
whether the market is a monopoly or an oligopoly, making a separate derivation
for each case unnecessary.22 For an oligopoly, however, brand sales elasticities can
be decomposed. We illustrate this below for the brand sales advertising elasticity.23

We formulate the relation between brand sales-, product class sales-, and market
share elasticities as follows.

q = Qm. (7.14)

Differentiating brand sales with respect to advertising (a) gives,

∂q
∂a

= m
∂Q
∂a

+Q
∂m
∂a
. (7.15)

Multiplying both sides by a/q, we obtain,

a
q
∂q
∂a

= m
a
q
∂Q
∂a

+Q
a
q
∂m
∂a

(7.16)

which can also be written as,

a
q
∂q
∂a

=
a
Q
∂Q
∂a

+
a
m
∂m
∂a

(7.17)

or

ηq,a = ηQ,a +ηm,a. (7.18)

21The time and brand index are omitted for notational convenience.
22In normative marketing mix studies one generally seeks the optimal policy for one brand assum-
ing particular competitive reaction patterns. This means that one does not derive a simultaneous
optimum for all brands in the product class. The latter would call for a game theoretical approach.
We discuss game theoretical approaches in Volume II.
23For a more formal treatment, extending to other variables as well, see Lambin et al. (1975,
pp. 106–115). In that paper the special character of quality as a decision variable is also discussed.
A generalization to multiproduct markets is given by Bultez (1975), whereas Plat and Leeflang
(1988) extend this model to account for more segments.
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i.e., the brand sales elasticity with respect to advertising, ηq,a, is equal to the total
product class sales elasticity, ηQ,a, plus the market share elasticity, ηm,a, with respect
to the same variable. Thus the brand sales elasticity can be obtained indirectly from
the sum of the product category sales- and the brand market share elasticities.

Relation (7.18) can be extended to account for competitive reactions. These
reactions with the same (advertising) or other marketing instruments (for example,
price) are called indirect effects. They may influence ηQ,a and/or ηm,a, as will be
discussed in Volume II.

7.3.3 Market Share Models

7.3.3.1 Attraction Models

Market share models can be specified to be logically consistent, in the sense that
predicted values satisfy range (being between zero and one) and sum (summing to
one across brands) constraints. One class of models that satisfy these constraints are
the attraction models. The attraction of a brand depends on its marketing mix. Let
A jt be the attraction of brand j in period t (note that this symbol is also used for total
advertising expenditures). Market share attraction models are defined as:

m jt =
A jt

n∑

r=1

Art

(7.19)

where n is the number of brands on the market. If A jt is specified to be nonnegative,
the attraction model has the desirable characteristics of both satisfying the range
constraint (0 ≤ m jt ≤ 1 for all j), and the sum constraint (

∑n
r=1 mrt = 1). In this

section, we focus on this type of model.
Equation (7.19) represents the overall structure. The attraction function itself

remains to be specified. We present six different specifications. Two well-known
market share specifications are the MCI model and the MNL model. The attraction
for brand j in the “Multiplicative Competitive Interaction” (MCI) model is specified
as24:

A jt = exp
(
α j

) L∏

�=1

xβ�
� jtε jt (7.20)

where

x� jt = the value of the �-th explanatory variable for brand j,

in period t,

24The MCI models have been developed by Nakanishi and Cooper (1974, 1982). These and other
market share models are discussed extensively in Cooper and Nakanishi (1988).



238 7 Examples of Models for Aggregate Demand

ε jt = a disturbance term,

L = the number of marketing instruments.

Throughout it is assumed that L is independent of j.
The attraction for the MultiNomial Logit (MNL) market share model is

specified as:

A jt = exp

⎛
⎜⎜⎜⎜⎜⎜⎝α j +

L∑

�=1

β�x� jt + ε jt

⎞
⎟⎟⎟⎟⎟⎟⎠ . (7.21)

The structure of this component is similar to the specification of the numerator of
the MNL model at the individual level (7.8).

While the attraction specification (7.20) has attractive characteristics, there are
also two disadvantages. First, the attraction is zero if one of the explanatory variables
(for example, advertising) is zero in period t. This problem does not apply to the
MNL model (7.21). Second, the response parameter for instrument � is β�, which
is assumed to be equal for each brand. Marketing executives, in general, find the
assumption of equal response parameters across brands unacceptable.

An extension that allows a variable’s response to vary across brands is the
extended attraction model [versus the simple attraction model (7.20) and (7.21)].
This model is also known as the differential effects model25:

MCI-Differential Effects model: (MCI-DE):

A jt = exp
(
α j

) L∏

�=1

x
β� j

� jtε jt. (7.22)

MNL-Differential Effects model: (MNL-DE):

A jt = exp

⎛
⎜⎜⎜⎜⎜⎜⎝α j +

L∑

�=1

β� jx� jt + ε jt

⎞
⎟⎟⎟⎟⎟⎟⎠ . (7.23)

Before we introduce the last two of the six attraction specifications, we present
expressions for elasticities.

7.3.3.2 Own-Brand Elasticities

Market share elasticities need to be determined separately for each attraction
model. That is, the formula depends on the attraction specification. The direct
or own market share elasticities (e�j) for models (7.20)–(7.23) are (ignoring time
subscript t):

25Cooper and Nakanishi (1988, Chapters 3 and 5).
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MCI : e�j =
∂m j

∂x� j
× x� j

m j
= β�(1−m j)

MNL : e�j = β�(1−m j)x� j

MCI-DE : e�j = β� j(1−m j)

MNL-DE : e�j = β� j(1−m j)x� j.

(7.24)

Note that the four elasticities differ with regard to the homogeneity/heterogeneity
of the marketing variable parameters and in the presence/absence of the marketing
variable itself. Specifically, the DE versions have β� j (versus β�), indicating that
the parameter is brand-specific (heterogeneous). Apart from this distinction, each
elasticity expression includes a marketing effort responsiveness parameter and
the share of the market not captured by the brand (1 −m j). Thus, even if the
responsiveness parameters are homogeneous, the elasticities differ across brands
according to the remaining share. The inclusion of this (1 − m j) term has the
desirable property that the elasticity goes toward zero as the brand’s market share
goes to one.

The MNL-based elasticities differ from the corresponding MCI-based ones in the
inclusion of x� j, which measures the marketing effort for variable � used by brand
j. Holding market share constant, the elasticity expression shows that an increase
in marketing effort, for β > 0, increases the elasticity. However, we know that
market share is affected by marketing activities. Also, it is generally accepted that it
becomes harder to gain share as the marketing effort increases.26 The MNL-based
elasticity expression implies that if own-brand market share increases proportionally
faster than the marketing effort, the own-brand market share elasticity will decrease
with increasing x� j. Cooper and Nakanishi (1988, p. 35) find that MNL-based
elasticities increase to a point and then decrease.

7.3.3.3 Cross-Brand Elasticities

We now turn to a discussion about cross elasticities, which are defined as:

e�j,r =
∂m j

∂x�r
× x�r

m j
(7.25)

where x�r = value of marketing instrument � of competitor r,r � j.

26We assume β�, β� j ≥ 0 for all �, j which applies to variables such as distribution, selling effort,
advertising, and sales promotions. For variables such as price for which β�, β� j ≤ 0 an analogous
reasoning can be formulated.
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The expressions for the cross elasticities of the four attraction models are:

MCI : e�j,r = −β�mr

MNL : e�j,r = −β�x�rmr

MCI-DE : e�j,r = −β�rmr

MNL-DE : e�j,r = −β�r x�rmr.

(7.26)

The four cross-elasticity expressions have properties that are similar to the own-
brand elasticities. The effect of r’s activity on brand j’s attraction is either
homogeneous (−β�) or heterogeneous (−β�r), and MCI and MNL differ with regard
to the exclusion (MCI) or inclusion (MNL) of the effort for instrument � by brand r.
Also, all expressions include mr, implying that the cross elasticity is more negative
(stronger) as r’s market share is larger. The cross elasticity does not depend on
the market share of the focal brand j that is affected by the marketing efforts of
competitor r. However, the actual change in a brand’s share varies, reflecting its
current level. The new share of any brand other than r may be simply calculated by:
new share of brand j = (1− new share of brand r) × old share of brand j, j � r.

Because the expressions (7.26) are independent of m j, the effects of marketing
variable x�r are distributed among its competitive brands in proportion to their mar-
ket shares. The models (7.20)–(7.23) constrain the competition to being symmetric.
This symmetry is the result of the Independence of Irrelevant Alternatives (IIA)
assumption.27 This assumption implies that the ratio of two (market) shares does not
depend on the presence or absence of other choice alternatives. That this assumption
holds for the models (7.20)–(7.23) can be demonstrated easily by taking the ratio of
the market share attractions of two brands j and r. These ratios are independent of
the other brands r′, r′ � j,r. The IIA-properties also hold for the individual choice
models such as, for example, (7.8).

An equality of cross elasticities, symmetry between brands, does not fit what we
tend to observe in the market place. Brands belonging to a given product category
are usually not equally substitutable. For example, Blattberg and Wisniewski (1989)
found that consumers who normally purchase brands with low regular prices (e.g.
store brands) are sensitive to temporary price cuts for (national) brands with high
regular prices. On the other hand, consumers normally purchasing these national
brands tend to be insensitive to temporary price cuts for store brands.

There are a number of alternative ways to account for asymmetric competi-
tion.28 Briefly, one possibility is to expand the differential effects models one
step further. Relations (7.27) and (7.28) are (the numerators of) attraction models

27See Luce (1959); Debreu (1960); Ben-Akiva and Lerman (1985); Sethuraman et al. (1999).
28See Foekens (1995); Bronnenberg and Wathieu (1996); Cooper et al. (1996). Examples are the
Cluster-Asymmetry Model (Vanden Abeele et al. 1990), the CCHM-model (Carpenter et al. 1988)
and hierarchical models (Foekens et al. 1997).
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with differential cross-competitive effects, called Fully Extended Attraction (FEA)
models. We consider two versions of FEA models.

Fully Extended MCI model (FEMCI):

A jt = exp
(
α j

) L∏

�=1

n∏

r=1

x
β� jr

�rt ε jt. (7.27)

Fully Extended MNL model (FEMNL):

A jt = exp

⎛
⎜⎜⎜⎜⎜⎜⎝α j +

L∑

�=1

n∑

r=1

β� jr x�rt + ε jt

⎞
⎟⎟⎟⎟⎟⎟⎠ . (7.28)

For the own- and cross elasticities the following expressions can be derived:

FEMCI : e�j,r = β� jr −
n∑

r′=1

β� jr′ ×mr′

FEMNL : e�j,r =

⎛
⎜⎜⎜⎜⎜⎝β� jr −

n∑

r′=1

β� jr′ ×mr′

⎞
⎟⎟⎟⎟⎟⎠ x�r.

(7.29)

These formulas apply to both own- and cross elasticities. The own elasticities are
obtained from (7.29) by letting j = r. The above expressions indicate that the effects
of changes in marketing variables differ between the brands. Thus the FEMCI- and
FEMNL-models account for asymmetric competition.29

In their monograph on market share models and market share analysis, Cooper
and Nakanishi (1988, p. 18) raise the question:

“Why, . . ., are the MCI and MNL models not used more extensively?”

given that these models are flexible in the parameters, are logically consistent, and
can account for asymmetric competition.

“The answer is that for a time both of these models were considered to be intrinsically
nonlinear models, requiring estimation schemes which were expensive in analysts’ time and
computer resources. This, however, turned out to be a hasty judgment because these models
may be changed into a linear model (in the model parameters) by a simple transformation”
(Cooper and Nakanishi 1988, p. 28).

These transformations, known as log-centering, are briefly introduced below for
the MNL model [Eqs. (7.19) and (7.21)]. First (7.21) is substituted in (7.19). Then
taking logarithms on both sides yields:

29For a more thorough discussion see Cooper and Nakanishi (1988, pp. 62–65).
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logm jt = α j +

L∑

�=1

β�x� jt + ε jt

− log

⎛
⎜⎜⎜⎜⎜⎜⎝

n∑

r=1

exp

⎛
⎜⎜⎜⎜⎜⎜⎝αr +

L∑

�=1

β�x�rt + εrt

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠ . (7.30)

Summing (7.30) over j ( j = 1, . . . ,n) and dividing by n gives:

logm̃t = ᾱ+ ε̄t +
1
n

n∑

r=1

L∑

�=1

β�x�rt

− log

⎛
⎜⎜⎜⎜⎜⎜⎝

n∑

r=1

exp

⎛
⎜⎜⎜⎜⎜⎜⎝αr +

L∑

�=1

β�x�rt + εrt

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠ (7.31)

where

m̃t = geometric mean of m jt, m̃t =

⎡
⎢⎢⎢⎢⎢⎣

n∏

r=1

mrt

⎤
⎥⎥⎥⎥⎥⎦

1
n

,

ᾱ =
1
n

n∑

r=1

αr,

ε̄t =
1
n

n∑

r=1

εrt.

If we subtract (7.31) from (7.30) we obtain the following form, which is linear in
the parameters:

logm jt/m̃t = α j − ᾱ+
L∑

�=1

β�x� jt − 1
n

n∑

r=1

L∑

�=1

β�x�rt + ε jt − ε̄t,

= α∗j +
L∑

�=1

β�

⎛
⎜⎜⎜⎜⎜⎝x� jt − 1

n

n∑

r=1

x�rt

⎞
⎟⎟⎟⎟⎟⎠+ ε

∗
jt. (7.32)

The intercepts α j can be estimated up to an arbitrary constant. Hence, if we set α1

equal to zero, (7.32) can be written as:

log(m jt/m̃t) =
n∑

r=2

(

dr − 1
n

)

αr +

n∑

r=1

L∑

�=1

(

dr − 1
n

)

x�rtβ� + ε
∗
jt (7.33)

where dr = 1 if r = j, and 0 otherwise.



7.4 Examples of Normative/Prescriptive Models 243

Model (7.33) requires transformations of all the variables. There is an equivalent
model of (7.33) which yields identical estimates for both intercepts and response
parameters but does not require any variable transformation apart from taking
logarithms of m jt. This model has the form30:

logmrt = α0 +

n∑

r=2

drαr +

T∑

t′=2

Dt′Θt′ +
L∑

�=1

β�x�rt + εrt (7.34)

where

α0 = overall intercept,

Dt′ = 1 if t′ = t and 0 otherwise.

Equation (7.34) has the same structure as (7.32) where Θt′ +α0 is interpreted as an
estimate for the logarithm of the denominator of (7.19) for period t′. Equation (7.34)
involves T additional parameters α0 and Θt′ , t′ = 2, . . . ,T .31,32

Many books and articles on market share response models and their use have
been published, documenting the successful formulation and implementation of this
class of models. An example is a study by DeSarbo et al. (2002) who develop a
generalization of this class of models to a latent structure framework incorporating
within-segment random brand effects.

Competitive reactions to entry using a market share model have been investigated
by Fok and Franses (2004) while Klapper and Herwartz (2000) investigate the
predictive abilities of market share direction models.33,34

7.4 Examples of Normative/Prescriptive Models

7.4.1 Introduction and Illustrations

7.4.1.1 Basic Model

In this section we briefly discuss normative models. Their purpose is to determine a
recommended course of action that should improve performance. In other words,

30See Nakanishi and Cooper (1982).
31This has consequences for the degrees of freedom and the estimated standard errors. See Foekens
(1995, p. 169).
32We do not discuss the assumptions of the disturbances nor the estimation techniques required to
estimate these relations.
33See also Brodie and De Kluyver (1984); Naert and Weverbergh (1981, 1985); Leeflang and Reuyl
(1984) and Brodie et al. (2001).
34Other, more recent application of market share response models are Mukherjee and Kadiyali
(2011) and Leeflang and Parreño Selva (2012).
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one wants to determine which decision is best for an objective such as profit
maximization. We discuss a marketing mix problem to illustrate a normative model
for profit maximization.

The objective of this model is to evaluate the profitability of advertising, holding
other variables constant. The model is based on demand equation (7.35), which
numerically specifies the demand35 for 24 bottles of Heineken beer (consumer price
6 Euro).

q̂t = −32,733+12,423logInct +0.507qt−1+1,777log10 at

−2.2wit +843log ft (7.35)

where

qt = sales per 1,000 potential consumers,

Inct = real private disposable income,

qt−1 = lagged sales,

at = real advertising expenditures per 1,000 potential consumers,

wit = weather index (rainfall), and

ft = visit frequency to sales outlets by sales representatives,

t = year.

There is no price variable among the explanatory variables in the demand equation.
In the original specification, price was included but it was dropped because the
estimated effect was statistically insignificant. This is one of the dilemmas often
faced in applied econometrics. We know that price affects demand in general.
However, if price (or any other variable for that matter) is relatively stable over the
period of observation, then it cannot have much explanatory power in the sample.
If price is excluded, its effect will be taken up by the constant term, the implication
being that, on the basis of historical data, nothing can be said about the impact of
price on sales. Thus, if the objective is to determine the optimal marketing mix,
the information contained in the historical data would be insufficient. Other means,
such as experimentation or subjective judgment may provide useful insights. The
lack of sufficient price variation is of no consequence if the model is to be used
for a determination of optimal advertising spending, under the assumption that the
actual level of advertising does not depend on price. The output is a recommended
budget. In this sense, the model is normative. However, from a practical point of
view, the word “normative” is perhaps too strong. What one is really interested in
is to determine whether current advertising expenditures are too high, too low, or

35This model is a modification of a model developed by Lambin (1969).
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about right. The model can produce a specific figure but it is useful to take it as a
guideline rather than as something absolute. We provide the following reasons why
we might not use the word “normative” in an absolute sense:

1. the demand equation is estimated, which implies that there is uncertainty about
the true values of the response coefficients;

2. advertising is only one instrument in the firm’s marketing mix;
3. the firm faces multiple objectives, while most models assume the existence of a

single objective such as profit maximization;
4. the effectiveness of advertising depends on the quality of the copy, the selection

of media, and so on. The regression coefficient gives at best an idea of an average
effect per Euro advertising expenditures.

We now derive an optimal advertising budget for the profit-maximizing firm whose
demand function is given by (7.35). We first show how to optimize advertising
expenditures when lagged effects of advertising are not taken into account. After
that an optimal solution is derived which assumes that the lagged sales variable
represents advertising dynamics.

7.4.1.2 Determination of the Short-Term Advertising Budget

Since advertising spending is the object of the study, we assume that other variables
(price, visit frequency) have been decided upon, and uncontrollable variables have
been predicted. For example, national statistics can be used to predict future levels of
disposable income. Substituting the values of these variables, Eq. (7.35) reduces to:

q̂t = −2,231+1,777log10 at. (7.36)

The objective of the firm is to maximize profit per 1,000 potential consumers, πt:

π̂t = (pt − ct)q̂t −at (7.37)

where ct is unit variable cost. In the remainder of this discussion, we assume that ct

is constant, i.e. ct = c for all t. In other words, variable cost (c) and marginal cost
(MC) are equal. Fixed costs can be ignored since these do not affect the optimal
level of advertising spending. Given that price is predetermined, we let pt equal p,
so that (7.37) reduces to:

π̂t = (p− c)q̂t−at. (7.38)

To maximize profit, the following relationship needs to hold36:

μ = 1/w (7.39)

36Following the Dorfman and Steiner (1954) theorem derived in the Appendix to this chapter.
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where

μ = p
∂q
∂a

= marginal revenue product of advertising, and

w =
p−MC

p
=

p− c
p

= percent gross margin.

Currently, average advertising expenditure for 1,000 potential consumers is
ā = 3,440 Euro, with corresponding sales, q̄ = 4,060.

The price is 6 Euro (average price paid by the retailer to the manufacturer) and
marginal cost (assumed constant over the relevant range) is 2.70 Euro. The percent
of gross margin for the manufacturer is then:

w = (6−2.70)/6×100%= 55%. (7.40)

From (7.39) we find that at the optimum the marginal revenue product of advertising
should satisfy:

μ = 1/0.55 = 1.818. (7.41)

Since μ = p
∂q
∂a

, at optimality we should have:

∂q/∂a = (1.818)/6= 0.303. (7.42)

In general, ∂q/∂a can be written as follows37:

∂q
∂a

=

[
∂q

∂ log10 a

][
∂ log10 a

∂ lna

][
∂ lna
∂a

]

which is

∂q
∂a

=

[
∂q

∂ log10 a

][

0.4343× 1
a

]

. (7.43)

It follows from (7.43) that the optimal advertising spending level a∗ should satisfy:

a∗ =
(∂q/∂ log10 a)(0.4343)

∂q/∂a
. (7.44)

From (7.35) we know that ∂q/∂ log10 a = 1,777, and from (7.42) ∂q/∂a = 0.303.
Thus a∗ equals:

a∗ = (1,777)(0.4343)/0.303= 2,545 Euro.

37This rather complex expression results from the fact that in Eq. (7.35) logarithms to the base ten
were used.
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Compared to actual expenditures of 3,440 Euro, it appears that the firm is
overspending on (short-term) advertising. It is, however, instructive to determine
how sensitive profit is to changes in advertising spending. We first examine the
profit when the firm continues the current advertising spending. Profit is predicted
to be:

π̂ = (p−MC)q̂−a = 3.3q̂−a.

With ā = 3,440 Euro, we found q̄ = q̂ = 4,060, so that current profit is predicted
to be:

π̂ = 3.3×4,060−3,440= 9,958 Euro.

At optimality, a∗ = 2,545 Euro, with corresponding sales:

q̂ = −2,213+1,777log10 2,545

= −2,213+1,777×3.4057= 3,839.

Maximum profit is then:

π̂ = 3.3×3,839−2,545 = 10,124 Euro.

We see that, if only short-term effects are considered, actual advertising expendi-
tures exceed the optimal level by about 35 %. However, current profit is only about
1.5 % below its maximum value. This suggests that profit is quite insensitive to
changes in advertising expenditures.

7.4.1.3 Determination of the Long-Term Advertising Budget

The effect of advertising in period t also occurs in later periods. Let λ be the
retention rate of advertising. An advertising investment of at in period t, yields qt

sales in t, λqt in t+ 1, λ2qt in t+ 2, . . . However, given that an Euro of profit in the
future is less valuable than the same profit today, we adjust for the time value of
money when we evaluate an advertising investment. Let the discount rate be i. The
present value of the long term (LT ) profit stream π(LT ) generated by an advertising
expenditure of a dollars is:

π(LT ) = q(p− c)

[

1+
λ

1+ i
+
λ2

(1+ i)2
+
λ3

(1+ i)3
+ . . .

]

−a. (7.45)

Since 0 ≤ λ < 1, we also have 0 ≤ λ

1+ i
< 1, and (7.45) reduces to:

π(LT ) =
q(p− c)

1−λ/(1+ i)
−a.
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At optimality we should have38:

μ

1−λ/(1+ i)
=

1
w
. (7.46)

Recall from Eq. (2.43) that the coefficient of lagged sales qt−1, in Eq. (7.35) is an
estimate of λ. Thus λ = 0.507, and if we further assume a discount rate of i = 8 %,
the long-term optimal value of μ is39:

μ = 1.818

(

1− 0.507
1+0.08

)

= 0.965, and therefore

∂q/∂a = 0.965/6= 0.161.

If the firm takes a long-term view, the optimal advertising budget is:

aLT = (1,777)(0.4343)/0.161= 4,801 Euro.

Corresponding expected sales are:

q̂LT = −2,213+1,777log4,801 = 4,329

and expected long-term profit is:

π̂LT =
(4,329)(3.30)

0.5306
−4,801 = 22,125 Euro.

If advertising expenditures remain at the current level, expected long-term profit is:

π̂LT =
(4,060)(3.30)

0.5306
−3,440 = 21,811 Euro.

Thus, by taking into account the lagged effects of advertising, we find that actual
spending is an estimated 40 % below the optimal amount. Importantly, with positive
lagged effects, the optimal advertising expenditure increases relative to the case
when we ignore these effects. As before, if we increase the advertising budget to the
optimal level, the expected profit increases by only 1.44 %.

We note that sensitivity analyses frequently demonstrate that large percentual
changes in advertising expenditures result in only small percentual changes in
profits over a wide range of expenditure levels. This phenomenon is known as the

38 ∂π(LT )
∂a

=
(p− c)(∂q/∂a)
1−λ/(1+ i)

−1 = 0, or
p∂q/∂a

1−λ/(1+ i)
=

p
p− c

=
p

p−MC
=

1
w

.

39The parameter λ has been estimated from annual data. From Sect. 2.8.2 we know that λ̂ may be
biased upward.
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flat maximum principle (Hanssens et al. 2001, p. 26). In this respect we refer to
Chintagunta (1993b) and note that profit is more sensitive to departures of price
from its optimal level than it is to departures from optimal advertising expenditures.

We have to be careful in the application of optimization rules. In the discussion
above we implicitly assumed that there are no profitable alternatives to advertising
spending. Indeed, the condition μ = 1/w implies that at the optimum:

(p−MC)
∂q
∂a

= 1.

Stated in words, this means that the last Euro invested just pays for itself but nothing
more. In fact the firm can do better, by investing that last dollar in some other venture
where it can earn a return of re percent. The return on the best possible alternative
investment should be considered as an opportunity cost. With an opportunity cost of
re percent, the optimality condition becomes:

μ =
1+ re

w
.

With re = 0.20, and μ = (1+ 0.20)/0.55 = 2.18, at optimality ∂q/∂a should equal
μ/p = 2.18/6 = 0.36364. Applying (7.44) for example, we find an optimal short-
term advertising budget of 2,122 Euro, instead of 2,545 Euro which we obtained
when the opportunity cost was (implicitly) assumed to be zero.

7.4.2 Other Normative Models

We now face many models in which profits, customer life time value and firm value
are used as performance measures and that models are developed to optimize these
measures.40 Examples are:

• models to compute optimal catalog mailing decisions: Gönül and Shi (1998);
Gönül and Ter Hofstede (2006); Van Diepen et al. (2009);

• models to determine the effect of sales promotions on profit: Zhang et al. (2000);
Srinivasan et al. (2004); Ailawadi et al. (2005);

• models to manage channel profits: Jeuland and Shugan (2008); Gensler et al.
(2012);

• advertising budget models: Feinberg (2001); Buratto et al. (2006); Wang and
Zhang (2008);

• (dynamic) pricing models: Zoltners (1981); Narasimhan (1988); Rao (1993);
Kopalle et al. (1999);

40See Albers (2012) for a recent wake-up call to develop optimization models, see also the
discussion in Sect. 10.5.
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• models that are used to determine the optimal sales force: Lodish (1971); Lodish
et al. (1988); Rangaswamy et al. (1990); Gopalakrishna and Chatterjee (1992);

• models that are constructed to specify salesforce compensation plans: Basu et al.
(1985); Lal and Staelin (1986);

• models to determine sales territory design: Zoltners and Sinha (1983, 2005);
• models to optimize retail assortments (Rooderkerk et al. 2013), and
• very specific models to determine optimal fee-based compensation plans for

search engine marketing (Nabout et al. 2012).

In the last decade normative models were developed that optimize and predict
individual customer profitability. Examples can be found in Chap. 9, Blattberg et al.
(2008) and in Rust et al. (2011).

7.4.3 Allocation Models

The marketing literature contains several allocation models, with the following
characteristics. Resources are available in limited quantities; for example, an
advertising manager has a budget, a sales person can work eight hours a day,
potentially supplemented by a few of hours overtime. The purpose of such models
is to allocate this quantity to subvariables (media, market segments, sales accounts
. . .) so as to optimize an objective function (profit, sales, . . .). We consider a few
examples in the areas of advertising, selling, and sales promotions and the allocation
of shelf space.

Blattberg and Neslin (1990, p. 391) suggest that the promotion planning process
consists of three levels of budgeting decisions: the total marketing budget, the
allocation of that budget to promotions (versus advertising and other marketing
mix elements), and the preparation of individual promotion budgets or “individual
events”. The allocation of the total marketing budget over promotions, advertising
and other marketing mix elements can be accomplished by a model with about
the same basic structure as the model used in the Dorfman–Steiner theorem (see
the Appendix to this chapter).41 A model which allocates the promotion budget
over advertising and trade promotion expenditures was developed by Neslin et al.
(1995). This model represents the manufacturer’s attempt to maximize profits by
advertising directly to consumers and offering periodic discounts to the retailer in
the hope that the retailer will in turn “pass through” a promotion to the consumer.
The model considers the allocation in a manner that appears to fit the last two levels
of budgeting decisions defined by Blattberg and Neslin.

The best-known allocation models are the media allocation models. Some of
these only consider the allocation of a given advertising budget to a number of
alternative media vehicles. Examples are Lee and Burkart (1960); Lee (1962), and

41It is also conceivable, of course, to have both budget determination and allocation in one single
model. An example is the “integrated model for sales force structuring” developed by Rangaswamy
et al. (1990).
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Ellis (1966). Others have modeled the timing of the insertion in the various media.
Examples are: Lee (1963); Little and Lodish (1969); Srinivasan (1976); Mahajan
and Muller (1986); Feinberg (1992); Bronnenberg (1998); Naik et al. (1998). Reddy
et al. (1998) developed the SPOT (Scheduling Programs Optimally to Television)-
model. This model is used for optimal prime-time TV program scheduling. Because
the advertising revenues of TV-networks are linked directly to the size of the
audience delivered to the advertiser, this type of scheduling model is also relevant
for decision makers in marketing. The issue of advertising schedules, specifically
whether advertising should be steady (constant) or turned on and off (pulsed),
has also received attention (Freimer and Horsky 2012; Hahn and Hyun 1991).
Objective functions in media allocation models vary from the maximization of reach
to maximization of a discounted profit stream over a finite time horizon. Danaher
and Dagger (2013) develop a budget allocation model that considers ten (10) media.
Their model is based on individual loyalty program data.

An advertising budget can be allocated to subvariables other than media vehicles
as well. The subvariables could be market segments such as, for example, different
geographic regions. Alternatively an advertising budget can be allocated to different
products (Doyle and Saunders 1990). Pieters and Wedel (2004) develop methods to
allocate the surface of advertising pages over three key ad elements (brand, pictorial,
and text).

The allocation of sales effort has also been the subject of numerous studies.
Zoltners and Sinha (1983, 2005), Skiera and Albers (1998) examined the spatial
allocation of a sales force. Brown et al. (1956) studied the optimal frequency
of visiting actual and potential buyers. Lodish (1971) developed procedures to
optimize a salesman’s allocation of time spent on different accounts. Montgomery
et al. (1971) present a procedure to help a salesperson in determining how much
time to spend on various products to be sold. Dong et al. (2009) allocated detailing
visits across individual physicians.

The allocation of the (sales) promotion budget to individual events deserves more
attention. Relevant to this question is the empirical result that the frequency and
magnitude of price discounts have significant effects on the (own)price elasticities.42

Higher and more frequent discounts lead to less negative price elasticities. Thus the
timing and the determination of the size of the discount are important determinants
of the managers’ profit optimization problem.43 However, the allocation of the total
amount to discounts in specific time periods and the magnitude of each discount
remain important optimization questions.

We note that the allocation of shelf space requires the development of idiosyn-
cratic models. See, for example, Lim et al. (2004); Rooderkerk et al. (2013). We
introduced idiosyncraticy briefly in Sect. 2.2.6 and we will discuss it in more detail
in Sect. 10.2.2.2.

Fischer et al. (2011) developed a dynamic marketing budget allocation model
for multiproducts, multicountry firms. Their model allocates budgets across coun-

42See, for example, Raju (1992); Foekens et al. (1999).
43See also Tellis and Zufryden (1995).
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tries, products and marketing activities for Bayer, one of the world’s largest
pharmaceutical and chemical firms. They demonstrate that implementation of this
model leads to an improvement of profits of more than 50 %.

Appendix: The Dorfman–Steiner Theorem

Let q = q(p,a, x̃), be demand (q) as a function of price (p),

advertising (a), and quality (x̃).

c = (q, x̃), be variable cost per unit, and

FC = fixed cost.

Profit π is:

π = pq(p,a, x̃)− c(q, x̃)q(p,a, x̃)−a−FC. (7.47)

If the objective is to maximize profit, at optimality we should have44:

∂π

∂p
= q+ p

∂q
∂p
− c
∂q
∂p
−q
∂c
∂q
∂q
∂p

= 0 (7.48)

∂π

∂a
= p
∂q
∂a
− c
∂q
∂a
−q
∂c
∂q
∂q
∂a
−1 = 0 (7.49)

∂π

∂x̃
= p
∂q
∂x̃
− c
∂q
∂x̃
−q
∂c
∂q
∂q
∂x̃
−q
∂c
∂x̃

= 0. (7.50)

Dividing (7.48) by (∂q/∂p) we obtain:

q
∂q/∂p

+ p− c−q
∂c
∂q

= 0. (7.51)

Total variable production cost equals c ·q. Marginal cost (MC) is then:

MC =
∂(cq)
∂q

= c+q
∂c
∂q
. (7.52)

Using (7.52), we can write (7.51) as:

−q
∂q/∂p

= p−MC.

44We assume that second-order conditions are satisfied.
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Dividing both sides by p, and letting:

w =
p−MC

p
= percentage of gross margin

we obtain:

−ηp = 1/w (7.53)

where

ηp =
∂q
∂p

p
q
= price elasticity.

Dividing (7.49) by (∂q/∂a),

p− c−q
∂c
∂q
− 1
∂q/∂a

= 0

or

p−MC =
1
∂q/∂a

.

After dividing both sides by p, we find:

μ = 1/w (7.54)

where

μ = p
∂q
∂a

= marginal revenue of product advertising.

Finally, we divide (7.50) by ∂q/∂x̃:

p− c−q
∂c
∂q
−q
∂c/∂x̃
∂q/∂x̃

= 0

or

p−MC
p

=
q∂c/∂x̃
p∂q/∂x̃

or

ηx̃
p
c
= 1/w (7.55)
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where

ηx̃ =
(∂q/∂x̃)/q
(∂c/∂x̃)/c

.

At optimality (7.53), (7.54), and (7.55) should hold simultaneously, or:

−ηp = μ = ηx̃
p
c
=

1
w
. (7.56)

This result is generally known as the Dorfman and Steiner (1954) theorem. This
theorem has been modified and extended in many directions. Examples are the
models of Lambin (1970); Lambin et al. (1975); Leeflang and Reuyl (1985b); Plat
and Leeflang (1988); Mantrala et al. (2007).
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Chapter 8
Individual Demand Models

8.1 Introduction

According to Wyner (2013) some of the biggest potential growth areas in marketing
research include:

• more data: measurement of more consumer behaviors;
• more control: predictability of consumers’ response to marketing initiatives;
• more depth: understanding how consumers’ minds work, especially the non-

rational side.

As we discussed in Sect. 3.5.6, Big Data obtained through web search, digital media,
e-commerce, mobile and social media have become important for understanding
consumers’ behavior. Studying and modeling individual behavior has become
more and more the focus in marketing research. Individual demand constitutes an
important part of individual behavior, but we are now also able to study word-of-
mouth (WOM-behavior), online-browsing, co-creation, etc. (see Chap. 9).

In this chapter we concentrate on individual demand models. Consumers choose
to buy or not to buy. If they decide to buy they choose a certain product category and
within that category a certain brand. Next they decide to buy 1, 2, 3, . . . units of the
chosen brand. Finally consumers have to time their purchase. Hence, we have four
decisions: “whether to buy”, “what to buy”, “how much to buy” and “when to buy”.
We start to discuss choice models that are developed for the first two decisions in
Sect. 8.2. We discuss models that explain how much people buy in Sect. 8.3. These
models are called purchase quantity models. The timing of the purchase (“when
to buy”) is the focus of the purchase timing/duration models. These models are
discussed in Sect. 8.4. Section 8.5 discusses models that are used to describe and
predict multiple decisions at the individual level. Here we spend attention to the
so-called Tobit models.
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8.2 Choice Models

8.2.1 Introduction

Choice modeling has grown to be a very substantial area in marketing research over
the past few decades.1,2 We distinguish binary choices from multinomial choices.
Many marketing problems are binary. Examples are: what is the probability that a
consumer i:

• wants to spend money (spending versus saving money)?
• wants to buy a product in a certain product category (and not in a competing

product category, i.e. booking a vacation instead of buying clothes)?3

• buys a certain brand in that category and not a competing brand?
• terminates her contract with a certain company?
• responds to a direct mail campaign?
• will not pay her bills?
• will adopt a new product?, etc.

In all these cases we have two outcomes: 0 or 1, or Yes or No, with probabilities
P(Yi = 0), P(Yi = 1). Hence, the dependent variable takes two values and is called
binomial. Because there are no other outcomes than these two we have:

P(Yi = 1)+P(Yi = 0) = 1. (8.1)

Let us consider a firm that targets its customers with a direct mail campaign. The
question is whether the probability that a consumer i responds P(Yi = 1) = πi or not
responds P(Yi = 0) = 1−πi to the direct mail campaign depends on x1i, the amount
that customer i spent earlier on products of that firm. To this end, we specify the
following model:

Yi = β0 +β1x1i + εi, i = 1, . . . ,N (8.2)

where

Yi = the dependent variable that can take the values 0 or 1,

β0 = an unknown intercept,

β1 = an unknown slope parameter,

x1i = the amount that customer i spent earlier with the firm (continuous variable),

1See, for example, the Special Issues on Choice Models of Marketings Letters, vol 8(3), 1997; vol
10(3),1999; and Chandukala et al. (2007).
2The authors like to thank Hans Risselada who provided important information for this chapter.
3Du and Kamakura (2008).
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εi = the (unobserved) value of the disturbance term,

N = the number of consumers in a sample.

In our discussions of the General Linear Model we have so far assumed that the
disturbance term is normally distributed (see Sect. 4.2.3). However, if we assume
that the εi are normally distributed in Eq. (8.2) Yi is also, by definition, normally
distributed. This, however, is a heroic assumption given that Yi can only take on
two values: 0 or 1. As a consequence we have to make other assumptions about the
disturbance terms which will lead to other models than the General Linear Model.
Figure 8.1 illustrates what goes wrong if we make the assumption that the εi are
normally distributed. Figure 8.1 shows the fit of an OLS regression of Yi on an
intercept and the amount that customer i spent earlier on products of that firm. The
graph in Fig. 8.1 clearly demonstrates that the assumption of normally distributed
disturbance terms is unlikely to be useful. Similar arguments hold when we consider
the situation that the dependent variable has more than two choice options; in such
cases the dependent is said to be multinomial.
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Fig. 8.1 OLS regression of Yi on amount spent with the firm and an intercept

In what follows we discuss the following (brand) choice models:

• 8.2.2. Binary choice models;
• 8.2.3. Multinomial choice models;
• 8.2.4. Markov models.
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8.2.2 Binary Choice Models Specification

8.2.2.1 Basic Model

Consider the linear model4

Yi = β0 +β1xi + εi, i = 1, . . . ,N (8.3)

where

Yi =

{
1 if consumer i buys brand A,
0 if i buys brand B,

xi = the price difference between A and B for consumer i,

εi = the (unobserved) value of a random disturbance term.

We define P(Yi = 1) = πi as the probability that brand A is chosen and by definition
P(Yi = 0) = 1−πi. These probabilities depend on the intercept, the slope parameter
and xi. Hence, instead of considering the precise value of Yi one may focus on the
probability that, for example, Yi = 1 given β0, β1, xi and εi:

πi = P(Yi = 1 | β0,β1, xi, εi). (8.4)

Hence, the probability that brand A is chosen is conditional on the β parameters, xi

and εi. In binomial (and multinomial) models these probabilities are not observed;
we only observe the binary (or multinomial) values of the final choices of the
individuals. The idea is that high probabilities (πi) “predict” that Yi = 1. In choice
modeling these probabilities are estimated (e.g. by Maximum Likelihood) and it is
determined how these probabilities are affected by the independent variable(s).

Franses and Paap (2001, p. 52) discuss two interpretations for the fact that in
binomial models the focus is on modeling probabilities instead of on observed
values. The first interpretation is that the probability that Yi = 1 (choice of brand
A) depends on the value of a so-called latent variable y∗i . A latent or unobservable
variable may be distinguished from observable variables or indicators. An explana-
tory observable indicators xi may be related to y∗i in, for example, the following
way:

y∗i = β0 +β1xi + εi (8.5)

where we leave the distribution of εi unspecified. In (8.5) the latent variable y∗i can be
interpreted as the difference between unobserved preferences between the brands A
and B for each individual i. The relation between y∗i and Yi , the observed dependent
variable can be specified as:

4The text of this subsection is based, a.o., on Franses and Paap (2001, Chapter 4) and Wooldridge
(2012, Chapter 17).
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Yi =

{
1 if y∗i > 0
0 if y∗i ≤ 0.

(8.6)

A second interpretation towards modeling probabilities is based on microeco-
nomic theory. The choice of either brand A or brand B is based on utilities UAi and
UBi which are assigned to brands A and B respectively by consumer i:

UAi = β0A +β1Axi + εAi

UBi = β0B +β1Bxi + εBi.
(8.7)

One may define that individual i buys A if the utility of A exceeds that of B:

P(Yi = 1 | β0A,β0B,β1A,β1B, xi, εAi , εBi)

= P(Yi = 1 | Zi)

= P(UAi > UBi | Zi) (8.8)

= P(β0A−β0B + (β1A−β1B)xi > εBi − εAi | Zi)

= P(εi ≤ β0 +βixi | Zi)

where Zi =
{
β0A,β0B,β1A,β1B, xi, εAi , εBi

}
and

εi = εBi − εAi ,

β0 = β0A−β0B, and (8.9)

β1 = β1A−β1B.

Expressions (8.9) demonstrate that one cannot identify the individual parameters
in (8.7). The specification of the distribution of εi has to make sure that the
probabilities are between zero and one. The last line of (8.8) states that the
probability of observing Yi = 1 given Xi is equal to the cumulative distribution
function of εi evaluated at β0 +β1xi. We can specify this as:

πi = P(Yi = 1|Zi) = F(β0 +β1xi) (8.10)

where F(β0 +β1xi) denotes the cumulative distribution function of εi. The two most
considered distributions are either the logistic distribution function or the normal
distribution function.

In the first case, we have:

F(β0 +β1xi) =
exp(β0 +β1xi)

1+ exp(β0 +β1xi)
. (8.11)
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If this distribution is chosen the logit model will result, and logistic regression can
be used to estimate the relation. Equation (8.11) can be generalized if there are more
explanatory variables:

F(X′iβ) =
exp(X′iβ)

1+ exp(X′iβ)
, (8.12)

where Xi the matrix of observations of the independent variables for consumer i,
and β is a vector of parameters.

The second commonly considered cumulative distribution that satisfies the
condition that the πi’s are between zero and one is the standard normal cumulative
distribution. Now F(X′iβ) is expressed as an integral:

F(X′iβ) =
∫ X′iβ

−∞
φ(u)du (8.13)

where φ(·) is the standard normal density function. This assumption about the
cumulative distribution leads to the probit model.

Both cumulative distribution functions are quite similar. The specification of
a logit model is often preferred because of mathematical convenience. Also the
interpretation of the parameter estimates is (somewhat) easier for the logit model
as compared to the probit model.5

Equation (8.3) can be modified in several ways to account for unobserved
heterogeneity. The individual parameters could be consumer-specific (see, e.g.
Wedel et al. (1999), who use latent classes of consumers), and/or consumer-specific
variables such as e.g. income, age or gender could be included in the model (Franses
and Paap 2001, p. 72). We return to the issue of heterogeneity in binomial and
multinomial models at the end of Sect. 8.2.3.

8.2.2.2 Estimation

Logit and probit models are estimated by Maximum Likelihood estimation methods.
The models are then written in terms of their joint density distribution P(y|X,β)
where y are the observed variables, X is a matrix of observations of the independent
variables and β a vector of model parameters. The likelihood functions for observa-
tion i can be written as:

Li(β) = P(yi|X,β) (8.14)

5Economists, however, tend to favor the normality assumption for εi which is why the probit model
is more popular than logit in econometrics (Wooldridge 2012, p. 562).
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and the logarithmic likelihood function (log-likelihood function) as:

LLi(β) = li(β) = ln(Li(β)). (8.15)

The log-likelihood function for a sample size N is obtained by summing li(β) over
all observations l(β) =

∑N
i=1 li(β) [compare Eq. (6.41)]. The maximum likelihood

estimator of β, denoted by β̂, maximizes this log-likelihood.
The maximization of (8.15) has to be done using a numerical optimization

algorithm (Franses and Paap 2001, p. 59). Because of the nonlinear nature of the
maximization problem we are not able to write formulas for the logit or probit
maximum likelihood estimates (Wooldridge 2012, p. 564).

8.2.2.3 Numerical Examples

We consider Eq. (8.3) and assume that the parameter estimates (β̂0, β̂1) are (4,−2).
The price differences between brand A and brand B is 1.44 (Euro). Then: ÛAi = 4+
(−2×1.44)= 1.12. Using (8.11) we find that F(1.12)= exp(1.12)/(1+ exp(1.12)) =
0.75. This is the probability that individual i buys brand A given the parameter
estimates and xi = 1.44.

We can simply extend our analysis including several independent variables. Let
us, for example, assume that the utility that someone buys at Hennes and Mauritz
depends on income (per month, x1) and gender (x2,0=male,1= female). The utility
of a consumer i of buying at Hennes and Mauritz can be specified as:

Ui = β0 +β1x1i +β2x2i + εi. (8.16)

We suppose that β̂0 = 0.5, β̂1 = −0.01 and β̂2 = 1.1. From these estimates it is clear
that when customer i has a high income the utility is lower than when i has a low
income. The utility to buy at Hennes and Mauritz is higher for women than for men.
The probability that a female student with a monthly income of 400 Euro will buy
at Hennes and Mauritz is:

πi = exp(0.5−0.01×400+1.1×1)/(1+ exp(0.5−0.01×400+1.1×1))

= exp(−2.4)/(1+ exp(−2.4))

= 0.08.

The probability that a male student with the same income (400) will buy at Hennes
and Mauritz is 0.03 (3 %).
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8.2.2.4 Validation

Logit and probit models are validated using several criteria. Statistical programmes
provide estimates of the standard error of the parameters. The expressions for the
standard error are quite complicated. Once we have the standard errors, we can
construct (asymptotic) t-tests and confidence intervals just as with the General
Linear Model. Also p-values are often used to determine the significance of the
individual parameters. An alternative test to determine the significance of individual
parameters is the Wald test (see Sect. 6.4.4).

An important criterion to interpret the parameters of the logit model is the odds
ratio: the probability of Yi = 1 divided by the probability of Yi = 0:

Odds ratio =
P(Yi = 1|xi)
P(Yi = 0|xi)

=
πi

1−πi
. (8.17)

An odds ratio of 3 means that the probability of Yi = 1 is three times larger than
the probability of Yi = 0. For the logit model with one variable, it is easy to see
using (8.11) that:

Odds ratio = exp(β0 +β1xi) . (8.18)

It is common practice to consider the log odds ratio:

logodds ratio = log

(
πi

1−πi

)

= β0 +β1xi. (8.19)

When β1 = 0, the log odds ratio equals β0.6 If β0 is also equal to zero, then the log
odds ratio is equal to zero which means that the probabilities of observing Yi = 0
and Yi = 1 are the same and equal 0.5.

In the output of most statistical packages that are used to estimate a logit model
we find expressions for eβk . This indicates the change in odds ratio if the k-th
variable changes one unit. So, for example, if the variable xk represents gender
(0=male, 1= female), a parameter estimate of βk = 0.693 means that a one-unit
increase in the explanatory variable xk results in a change in the odds ratio of
exp(βk) = 2. Hence, the odds ratio for females is twice the odds ratio for males.

The probit model is based on the cumulative distribution function of a standard
normal distribution (with mean zero and variance 1). The coefficients of the probit
model are the effects of the explanatory variables on a cumulative standard normal
function of the probabilities that the response variable Yi = 1. The coefficients are the
changes in the z-scores of that distribution [see (8.13)]. If the coefficients are zero,
then there is no relation, a z-score larger (smaller) than zero indicates a positive
(negative) relation.

6We closely follow Franses and Paap (2001, p. 57).
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To assess the fit of a choice model, we cannot directly compute an R2 as in the
linear model (see Sect. 4.3.1). To facilitate interpretation, several so-called pseudo
R-squared statistics have been developed that have a similar interpretation as the
R2 of a linear model. These pseudo R-squares are all based on comparing the log-
likelihood of a model with only an intercept (LL0) with the log-likelihood of a model
with K explanatory variables (LLK). Popular pseudo R squares are:

McFadden R2 = 1− (LLk/LL0) (8.20)

Cox and Snell R2 = 1−
(−2LL0

−2LLK

)2/N

(8.21)

Nagelkerke R2 =

⎛
⎜⎜⎜⎜⎜⎝1−

(−2LL0

−2LLK

)2/N⎞
⎟⎟⎟⎟⎟⎠

/(
1− (−2LL0)2/N

)
(8.22)

where the last two measures correct for the number of observations (N). If the
covariates xk have no explanatory power, the parameters will be estimated as zero.
This results in LLK = LL0 and the pseudo R-squares are zero, just as the usual R-
squared is zero in a linear regression.

The choice between models can be performed using the Hit Rate, the likelihood
ratio test, and information criteria (see Sect. 5.6). For determining the Hit Rate,
the observations are classified into two groups. The first group consists of the
observations for which the model predicts that Yi = 1, based on the estimated πi. The
second group contains the observations for which the model predicts that Yi = 0. The
Hit Rate measures the percentage of correctly classified observations. A Hit Rate of
80 % indicates that 80 % of the values Yi = 1 or Yi = 0 are correctly predicted by the
model. Typically, observation i is classified in the Yi = 1 group if π̂i ≥ 0.5, and to the
Y1 = 0 group otherwise. Other classification rules than using a threshold value of
0.5 may be more appropriate. An example of such a threshold is to use the fraction
of successes in the sample, i.e. the percentage of customer for which Yi = 1. If this
fraction is 8 %, one may use a threshold of 0.08 (Wooldridge 2012, p. 566).

The above diagnostic checks implicitly consider the adequacy of the functional
form. There are, however, no clear guidelines as to how one should choose between
a logit and probit model (Franses and Paap 2001, p. 63).

8.2.2.5 Empirical Example7

Wieringa and Verhoef (2007) studied the switching behavior of customers who
preferred another electricity supplier. They estimate a logit model [see Eq. (8.12)]
with the probability that a consumer i prefers a different electricity supplier as the
dependent variable and the following explanatory variables:

7We closely follow Wieringa and Verhoef (2007).
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PC1i = relationship quality (high to low),

PC2i = switching cost (high to low),

PC3i = attractiveness of switching (low to high),

Usagei = a measure of the demand for electricity by consumer i,

NumContri = the number of contracts (e.g. electricity, gas maintenance, cable)

respondent i holds with the local company.

It is assumed in this study that the error term follows the standardized logit
distribution with mean zero. The estimation results of this model are shown in
Table 8.1. The variables in Table 8.1 significantly affect customer switching (χ2(6)=
2.015, p < 0.01) and the model fit is reasonable with a McFadden R2 of 0.255.

Table 8.1 Logistic regression results of Wieringa and Verhoef (2007)

Variable Parameter estimate Standard error

Constant −0.566∗ 0.098

PC1: Relationship quality (high to low) 1.391∗ 0.043

PC2: Switching costs (high to low) 0.652∗ 0.035

PC3: Attractiveness of switching (low to high) 0.343∗ 0.034

Usage −0.008∗ 0.002

NumContr −0.291∗ 0.036

(McFadden) R2 = 0.255

% correctly classified (Hit Rate) = 82.6 %
∗Significant at the 0.01 level (two-tailed)
Source: Wieringa and Verhoef (2007, p. 180)

The percentage of correct classifications by the model is 82.6 %, which compares
favorably to the benchmark accuracy of 76.5 and 69.7 % that is achieved by using the
so-called maximum chance criterion or proportional chance criterion, respectively,
as defined by Morrison (1969).

8.2.3 Multinomial Choice Models

8.2.3.1 Structure

In a multinomial choice model an individual chooses between n alternatives.
The choices are either unordered or ordered, but always discrete. An ordered
multinomial variable differs from an unordered multinomial variable by the fact that
the values that the variable can attain are ranked. Such a variable is, for example,
obtained when a Likert scale is used with items “very bad”, “bad”, . . ., “good”,
“very good”, “excellent”. There are not many empirical marketing models that
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are specified as ordered multinomial models. Examples are Verhoef et al. (2001);
Sridhar and Srinivasan (2012). We concentrate on the unordered multinomial
models and refer for the ordered multinomial models to Franses and Paap (2001,
Chapter 6).

Unordered choice models considers the case an individual chooses between n
alternatives. The binomial model is a special case for which n = 2. This means that
many topics that are discussed in Sect. 8.2.2 also apply for the multinomial case.
Let us first return to the case where n = 2. If the random variable Y takes one of
only two values (representing two brands, or a purchase and non-purchase situation)
Y = 1, with probability π, and Y = 0, with probability 1−π we obtain the so-called
Bernouilli model:

P(Y = y) = πy(1−π)1−y. (8.23)

The expectation of the Bernouilli distribution is E(Y) = π, and its variance is
Var(Y) = π(1− π). This is a distribution for an individual consumer. Let T be the
number of purchase occasions for each consumer in the population. All have the
same probability of purchasing a brand and 1− π is the non-purchase probability.
Hence, we assume homogeneity of all consumers. Then π× T = η is the expected
number of purchases by a consumer. The probability that y purchases takes place is
represented by a Binomial distribution:

P(Y = y) =

(
T
y

)

πy(1−π)T−y, y = 0,1,2, . . . ,T. (8.24)

In a multi-brand market, brands are denoted by j = 1, . . . ,n. Next, we assume that
each consumer i = 1, . . . , I may purchase a brand j with probability π j, j = 1, . . . ,n.
We do not consider the situation of a non-purchase for convenience, and assume T
purchase occasions. We observe y j, the number of times brand j is purchased, for
each j. Let T =

∑n
j=1 y j denote the total number of purchases observed. Now the

multinomial model applies:

P(Y1, . . . ,Yn = y1, . . . ,yn) =

(
T !

y1!, . . . ,yn!

) n∏

j=1

π
y j

j . (8.25)

The multinomial model arises from T Bernouilli trials (8.23). The expectation of the
multinomial random variable is: E(Yj) = π jT , its variance is: Var(Yj) = π j(1−π j)T ,
and the covariance is Cov(Yj,Yk) = −π jπkT . The binomial distribution results if
n= 2. Thus, in Bernouilli, binomial and multinomial models the market is described
by a set of (stationary) probabilities, describing the purchase probabilities (or
alternatively the market shares) of the brands.

Similarly to the assumption for binary choice models (see Sect. 8.2.2), we assume
for a multinomial choice model that a consumer will choose the alternative that gives
him maximal utility (see, for example, Luce 1959). The utilities are assumed to have
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a fixed component and a random component. Hence for each individual i, we can
specify Ui, an (n× 1) vector that contains the (unobserved) random utilities that
individual i derives from the n alternatives. The jth element of this vector is denoted
by Ui j and is the utility that individual i associates with the jth alternative. Ui j can
be represented as:

Ui j = x′i j β+ εi j (8.26)

where x′i j is a (1× L) row-vector of marketing variables related to the j-th choice
for the ith individual, β is a (L× 1) vector of unknown parameters, and εi j is the
error term or the random part of utility. Each individual i chooses the brand with the
maximal utility. Thus the observed choice variable Yi j is defined as:

Yi j =

{
1 if Ui j > Uir for all r � j, r = 1, . . . ,n,
0 otherwise.

(8.27)

Define πi j = P(Yi j = 1). If the εi j are independently and identically distributed
with Weibull density functions, the multinomial logit model applies. The choice
probability of an individual i for alternative j, given a multinomial logit model, can
be expressed as:

πi j =
exp

(
x′i j β

)

n∑

r=1

exp
(
x′ir β

)
. (8.28)

This leads to a multinomial distribution of the choice probabilities as in (8.25). There
are several opportunities to specify the nominator of (8.28). Assuming a single
variable wi j we may specify:

exp
(
β0 +β1wi j

)
(homogeneous parameters) (8.29)

exp
(
β0 j +β1wi j

)
(fixed effect) (8.30)

exp
(
β0 j +β1 jwi j

)
(heterogeneous parameters) (8.31)

or accounting for multiple explanatory variables:

exp
(
β0 j +β1wi j +β2 jvi

)
(8.32)

exp
(
β0 j +β1wi j +β2 jvi +β3z j

)
. (8.33)

In (8.32) the choice probabilities depend an explanatory variable wi j which has
a common impact β1 on the probabilities, and on an individual-specific variable
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vi whose effect on the probabilities differs per brand. In (8.32) wi j could be the
number of direct mailings that individual i received from brand j, whereas vi may
be gender. This model is called the Conditional Logit model (McFadden 1974).
Expression (8.33) includes an additional explanatory variable z j that is different
across categories/brands, but the same for each individual. The z j often represent
marketing instruments: price, advertising expenditures, etc. of the category/brand j.
This expression is called the General Logit specification.

Because the probabilities πi sum to 1, a base category has to be assigned. We
assume that the “last brand” n is picked as the base category. It is quite common that
this base refers to a “no buy”-situation or an “outside (category) option” (Chib et al.
2004). All utilities are defined relative to n and the utility of alternative n is zero.
We are now able to specify the probabilities of (8.28) in more detail where we opt
to specification (8.32):

πi j =
exp

(
β0 j +β1wi j +β2 jvi

)

1+
n−1∑

r=1

exp(β0r +β1wir +β2rvi)

for j = 1, . . . ,n−1 (8.34)

and

πin =
1

1+
n−1∑

r=1

exp(β0r +β1wir +β2rvi)

. (8.35)

From (8.34) and (8.35) it is clear that
∑n

r=1 πir = 1. Note that when n = 2 (8.34)
and (8.35) reduce to the binomial model.

As a small numerical example of the foregoing, consider the case where
exp(U1)= 4, exp(U2)= 3, exp(U3)= 1. If n= 3 is the base, then πi1 = 0.5, πi2 = 0.375
and πi3 = 0.125.

Estimation and validation of the multinomial model is similar to that of the
binomial model. Odds ratios, relative to the base case, may be used to interpret the
estimated parameters. The multinomial logit model is perhaps the most frequently
used choice model in marketing (as well as in other disciplines).8 Important
application areas include the analysis of household-level scanner data (Guadagni
and Little 1983) and conjoint choice experiments (Louvière and Woodworth 1983).

8For marketing applications see, for example, Punj and Staelin (1978); Guadagni and Little (1983);
Louvière and Hensher (1983); Carpenter and Lehmann (1985); Kamakura and Russell (1989);
Chintagunta et al. (1991); Erdem (1996); Ainslie and Rossi (1998); Seetharaman (2004); Gilbride
and Allenby (2006); Chandukala et al. (2007). An overview of issues arising in logit model
applications in marketing is provided by Malhotra (1984); McFadden (1986); Franses and Paap
(2001, Chapter 5); Hruschka et al. (2004).
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The multinomial logit model, however, suffers from the Independence of
Irrelevant Alternatives (IIA) property, which states that the odds of choosing one
alternative over another is constant regardless of whichever other alternatives are
present. Formally if C and D ⊂ C denote two sets of alternatives, then the IIA-
assumption for two alternatives j and r (Luce 1959) is:

P( j |C)
P(r |C)

=
P( j | D)
P(r | D)

. (8.36)

In the multinomial logit model this property arises directly from the independence
assumption of the error terms. It may not be realistic in many marketing applica-
tions, especially if some of the alternatives are close substitutes. On the positive side,
if the IIA-assumption holds, future demand can simply be predicted with the closed-
form expression (8.28) and the estimated values of the parameters (Urban and
Hauser 1980, Chapter 11). However, if similarities across alternatives are incorrectly
assumed away, the estimated effects of marketing variables are incorrect.

McFadden (1986) shows how one can deal with problems that arise from the IIA-
assumption, including statistical tests of IIA. If IIA does not hold, other models can
be used, often at the cost of computational complexity. A number of these models
have been discussed in Sect. 7.3.3. The structure of these models, that are specified
at the aggregate demand level, can also be used to model asymmetric individual
choice behavior. Another example is Rooderkerk et al. (2011) who proposed a
choice model that explicitly accounts for the fact that consumer choice behavior
is affected by the composition of the choice set. In particular, their model accounts
for three context effects, which are a function of the composition of the choice set.
First, the compromise effect refers to the phenomenon that the middle option of a
choice set tends to get a relatively large choice share. Second, the attraction effect
causes that a relatively large choice share for items that are superior to otherwise
similar items. Finally, the similarity effect refers to the phenomenon that items are
affected more by similar than by dissimilar items. By decomposing the utility of an
item into a context-free part and a context-dependent part, the model by Rooderkerk
et al. (2011) accommodates these context effects and the model is no longer affected
by the IIA assumption.

Other models that are developed to alleviate the IIA assumption are the Nested
MultiNomial Logit (NMNL) model and the MultiNomial Probit (MNP) model.

In the NMNL model (McFadden 1981), consumer choice may follow a hierarchy
of differentiating characteristics. We consider an example from Foekens et al. (1997)
in which consumers consider products in the detergent market according to two
main characteristics: the brand name and the package size. Following structure 1 in
Fig. 8.2 a consumer first chooses a brand with probabilities πr, r = 1, . . . ,7, and then
conditional upon the choice of the brand, a certain package size j with conditional
probability π j|r.9 We assume that there are five package sizes: j = 1, . . . ,5.

9See also Roberts and Lilien (1993).
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If a consumer first chooses a package size and then a brand we have the
conditional probabilities πr| j: see structure 2 in Fig. 8.2.

We continue with structure 1 and we assume that a consumer’s utility can be
separated into two components, one attributable to brand (r) and the other to the
package size ( j)10:

U jr = Ur +U j|r = Vr +V j|r + εr + ε j|r (8.37)

where Vr is the deterministic part of the utility associated with the highest level
of the hierarchy (the brand), and V j|r is the systematic part of the utility that is
associated with the second level in the hierarchy (the package size, given the brand).
Analogously to the derivation of (8.28), we specify the choice probability at the
lowest level of the hierarchy (package size j given brand choice r) as:

π j|r =
exp

(
V j|r

)

n∑

k=1

exp
(
Vk|r

)
. (8.38)

AA B C D E F G

1 2 4

1 2 3 4 5

A B C D E F G

Structure S1 (brand-size hierarchy)

Structure S2 (size-brand hierarchy)

(Assuming E is the brand chosen)

(Assuming 2 is the size chosen)

Fig. 8.2 Two alternative hierarchical structures with respect to the choice of brands (A, . . ., G) and
package sizes (1, . . ., 5)

10We assume that the hierarchical structure is consumer specific. See also Vanden Abeele and
Gijsbrechts (1991) and Siddarth et al. (1995).
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The choice at the highest level of the hierarchy [brand choice, (r)] can be derived
from utility maximization:

πr = P

(

max
j

U jr >max
j

U jr′ for all r′ , r′ � r

)

(8.39)

= P

(

Ur +max
j

U j|r > Ur′ +max
j

U j|r′ for all r′ = 1, . . . ,n′ , r′ � r

)

. (8.40)

An expression for max
j

U j|r can be obtained from the properties of the double expo-

nential distribution, since the maximum of a set of double exponentially distributed
variables (with unit variance) also follows a double exponential distribution with
expectation:

E

(

max
j

U j|r
)

= ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j′=1

eV j′|r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (8.41)

Expression (8.41) is called the “inclusive value” of the utility for the brand name
which is included in the utility for the form as shown in (8.42). From (8.39)
and (8.41) the choice probabilities at the highest level of the hierarchy can be shown
to be:

πr =

exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
Vr + ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j′=1

eV j′|r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n′∑

r′=1

exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
Vr′ + ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j′=1

eV j′|r′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8.42)

The unconditional choice probability of any alternative, jr, is simply π jr = π j|r ×πr.
In this model the brand utilities at the lowest (brand name) level of the hierarchy
affect the utilities at the highest (form) level through the inclusive values. For a
comprehensive treatment of the NMNL model see Ben-Akiva and Lerman (1985,
Chapter 10), who include extensions to higher-order nestings and implications for
the elasticity structure. Other models which are based on a hierarchical structure
such as the Fully Extended Multinomial Logit model and the Extended Multinomial
Logit model also accommodate for asymmetry. For a specification of these nested
models at the aggregate level, see Foekens et al. (1997).

In the MultiNomial Probit (MNP) model the n disturbances of the random util-
ities for individual i in (8.26) are assumed to follow an n-dimensional multivariate
normal distribution:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εi1

εi2
...

εin

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ Nn(0,Ω). (8.43)

This distribution allows the utilities of alternatives to be correlated, so that the IIA-
assumption can be relaxed. However, a closed-form expression for the probability
that individual i chooses alternative j cannot be derived, because it involves a
multidimensional integral. Probabilities can be obtained by numerical methods if the
number of choice alternatives is limited to 3 or 4. Early applications include those
by Currim (1982) and Kamakura and Srivastava (1984, 1986). A comprehensive
treatment of the MNP model is given by Daganzo (1979) and Franses and Paap
(2001, pp. 86–88).

8.2.3.2 Heterogeneity

The choice models discussed so far in this section assume that the effect parameters
are the same across consumers, the so-called homogeneity assumption. Heterogene-
ity can be taken into account in the binomial model by allowing π to follow a beta
distribution across the population of consumers. The beta distribution is a flexible
distribution that can take a variety of shapes:

f (π | α1,α2) =
Γ(α1 +α2)πα1−1(1−π)α2−1

Γ(α1)Γ(α2)
(8.44)

with α1 and α2 as parameters and Γ(·) are gamma distributions. From (8.24)
and (8.44) the number of purchases (y) can be shown to follow a Beta-Binomial
(BB) distribution:

f (y | α1,α2) =

(
T
y

)
Γ(α1 +α2)Γ(y+α1)Γ(T − y+α2)
Γ(T +α1 +α2)Γ(α1)Γ(α2)

(8.45)

with mean: E(Y) = α1T/(α1 +α2).
In a similar way, heterogeneity can be accounted for in multinomial models

describing multi-brand markets. Goodhardt et al. (1984) proposed a Dirichlet
distribution for the choice probabilities. The Dirichlet can be seen as a multivariate
extension of the beta distribution. The Dirichlet distribution is defined as:
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f (π1, . . . ,πn | α1, . . . ,αn) =

Γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1

α j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n∏

j=1

π
α j−1
j

n∏

j=1

Γ(α j)

. (8.46)

By compounding the multinomial and the Dirichlet the DirichletMultinomial (DM)
is obtained:

f (y1, . . . ,yn | α1, . . . ,αn) =

T !Γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1

α j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n∏

j=1

Γ(y j +α j)

Γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1

α j +T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n∏

j=1

Γ(α j)y j!

. (8.47)

The mean of Yj equals E(Yj) = α jT/
(∑n

r=1αr

)
. The Beta-Binomial in Eq. (8.45)

arises as a special case for a two-brand market (n = 2).
Strong empirical support for the DM is provided by Ehrenberg and coauthors in

their work over the past 30 years (see for example Ehrenberg 1988; Uncles et al.
1995). They discuss many applications where the DM is a useful description of
brand purchase behavior. Regularities based on the DM have been found in product
markets for food and drink products, personal care products, gasoline, aviation fuel,
and motor cars, OTC medicines, as well as in TV program and channel choice and
shopping behavior. In many markets, the DM model does a good job of explaining
observed regularities in purchase behavior, such as the percentage of consumers
buying in a certain period, the number of purchases per buyer, the repeat purchases,
the percentage of loyals, etc.

8.2.4 Markov Models

8.2.4.1 Markov Models

Markov brand choice models are based on Markov chains, in which one considers
probabilities such as11:

P(Yt = j | Yt−1 = i,Yt−2 = k, . . .) (8.48)

i.e. the probability that brand j is purchased at time t, given that brand i was
purchased at t−1, brand k at t−2,. . .. These probabilities are called transition

11We only consider so-called discrete-time Markov chains.
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probabilities. A simple specification of the transition probability in (8.48) is
obtained by assuming that the conditional probability at t depends only on the
purchase at t−1. This is the first-order Markov model. The Markov assumption
implies that:

P(Yt = j | Yt−1 = i,Yt−2 = k, . . .) = P(Yt = j | Yt−1 = i) = pi jt. (8.49)

If Yt satisfies (8.49), it is said to follow a first-order Markov chain. In general, a
stochastic process is said to be t′-order Markov if:

P(Yt = j | Yt−1 = i,Yt−2 = k, . . . ,Yt−t′ = l, . . .)

= P(Yt = j | Yt−1 = i,Yt−2 = k, . . . ,Yt−t′ = l).
(8.50)

In this section we only consider first-order (t′ = 1) and zero-order (t′ = 0) Markov
models.

One refers to a zero-order (Markov) model, if the probability of purchasing a
particular brand at t does not depend on purchasing behavior at t−1, t−2, etc. In other
words, a zero-order model applies when current and future purchasing behavior does
not depend on past purchase history.12 Thus (8.49) reduces to:

P(Yt = j | Yt−1 = i,Yt−2 = k, . . .) = P(Yt = j). (8.51)

If the random variable takes two values, we obtain the Bernoulli model (8.23).
If the random variable takes more than two values, we obtain the multinomial
model (8.28).

Because the pi jt are (conditional) probabilities, they must have the following
properties:

0 ≤ pi jt ≤ 1, for all i, j = 1, . . . ,n, t = 1, . . . ,T (8.52)

n∑

j=1

pi jt = 1, for all i = 1, . . . ,n, t = 1, . . . ,T, (8.53)

where n is the number of brands. We assume consumer homogeneity, i.e. consumers
have the same pi jt (compare Sect. 7.1). If one makes the additional, simplifying
assumption that pi jt = pi j, for all i and j, i.e. the transition probabilities are
independent of time, the resulting Markov chain is said to be stationary. The
transition probabilities pi j can be represented in a matrix. This transition probability
matrix TP is represented as:

12Massy et al. (1970, Chapter 3).



280 8 Individual Demand Models

TP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p11 p12 · · · p1n

p21 p22 · · · p2n
...
...
. . .
...

pn1 pn2 · · · pnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.54)

The diagonal elements (p11, p22, . . . , pnn) are the repeat purchase probabilities. The
off-diagonal elements are the brand-switching probabilities.

We illustrate the use of Markov models by using examples and variables that are
defined at the aggregate level. Hence, the probabilities are now interpreted as market
shares and the transition probabilities as percentages of consumers who remain loyal
(pii) or switch (pi j, i � j).

If the market shares in period t are in the (row) vector mt = (m1t,m2t, . . . ,mnt)
one can use the transition probability matrix, TP, to predict market shares in future
periods through the relation between the market shares at t + 1, mt+1 = (m1,t+1,
. . . ,mn,t+1) and market shares in period t, mt, written in matrix formulation as:

mt+1 = mtTP. (8.55)

We illustrate this with an example of two brands. Consider the following transition
probability matrix:

TP =

(
0.8 0.2
0.3 0.7

)

and assume that the current (period 0) market shares are m10 = 0.50, m20 = 0.50. In
period t = 1, the predicted market shares are computed as the matrix product mtTP:

m̂11 = m10 p11 +m20 p21

= 0.5×0.8+0.5×0.3= 0.55

and

m̂21 = m10 p12 +m20 p22

= 0.5×0.2+0.5×0.7= 0.45.

Predicting further into the future, we use the relation:

mt = m0TPt (8.56)

where TP2 = TP × TP, and TP3 = TP × TP × TP, and so on. Using this relation,
one obtains the market shares shown in Table 8.2. In equilibrium (steady state), the
predicted market shares are respectively 0.60 and 0.40. These steady state market
shares collected in the vector m, are independent of time, and satisfy:
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Table 8.2 Market shares
predicted with a first-order
Markov Model

Time period Market share brand 1 Market share brand 2

0 0.5 0.5

1 0.55 0.45

2 0.575 0.425

3 0.5975 0.4025
...

...
...

∞ 0.600 0.400

m = m×TP↔ m(I−TP) = 0 (8.57)

which shows that m is a (left) eigenvector of TP corresponding to the eigenvalue 1.
In the particular example above with two states:

m =

(
p21

p21 + p12
,

p12

p21 + p12

)

. (8.58)

The stationary market shares in Table 8.2 can be directly computed from Eq. (8.58)
as: m1 = 0.3/0.5, and m2 = 0.2/0.5. It can be shown that under suitable conditions
the Markov chain reaches an equilibrium situation, in which m0 → m as t → ∞,
regardless of the initial market shares m0.

We illustrate the use of a Markov model through a study by Gensler et al.
(2007).13 Gensler et al. (2007) examined customers’ behavioral channel loyalty
and inter-channel switching behavior for a large European home-shopping company
than runs two direct sales channels: a call center and an Internet channel. The cost
per order is substantially lower when customers use the Internet channel. Hence,
management has a strong preference to migrate customers to this channel. Gensler
et al. (2007) proposed the Colombo and Morisson (1989)-model to determine

• the customers who are intrinsically loyal and stay with the same sales channel:
the hard-core loyal;

• the customers who potentially switch from sales channel to another on every
purchase occasion: potential switchers.

In the Colombo–Morrison-model (stationary) probabilities (pii, pi j) are linked to
choice probabilities (πi) through:

pii = αi + (1−αi)πi for i = 1,2,3 (8.59)

pi j = (1−αi)π j for j = 1,2,3, (i � j), (8.60)

13We closely follow Gensler et al. (2007).
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where

pii(pi j) = conditional probability that a consumer who last used channel i

will next use channel i( j),

αi = fraction of channel i’s current customers who are completely

loyal to that channel (hard-core loyals),

πi(π j) = fraction of potential switchers who will next use channel i( j).

In the Colombo–Morrison-model the diagonal elements of the matrix of transition
probabilities is decomposed into repeat purchases from hard-core loyal (αi) and
soft-loyal customers (1−αi)πi.

Call center customers are indexed by j = 1, Internet customers by the index
j = 2. To accommodate customers who did not use any sales channel within the
observation period, a “no purchase option” ( j = 3) is introduced.

The estimation of the parameters is based on Maximum Likelihood. Table 8.3
shows the aggregate matrix of transition probabilities based on data on about 1.5
million customers for 15 consecutive months of observations. We may deduce from

Table 8.3 Aggregate matrix
of transition probabilities

Call center t Internet t No option t

Call center t−1 94.7 0.7 4.6

Internet t−1 22.6 67.9 9.5

No option t−1 7.0 0.5 92.5

Source: Gensler et al. (2007, p. 19)

Table 8.3 that 94.7 % of the current users of the call center and 67.9 % of the
internet channel users would be considered loyal to these channels. A decomposition
of these fractions shows that α̂1 = 84.3 and α̂2 = 66.4. This means that for the
call center a substantial fraction (94.7%− 84.3% = 10.4%) of the customer have
considered a potential switch, which is substantially larger than for the Internet
channel (1.5% = 67.9% − 66.4%). Gensler et al. (2007) constructed switching
matrices for different time periods. They found that the fraction of hard-core loyal
call-center users experienced a significant drop off over time which was in line with
management’s aspiration to see more channel migration towards the more profitable
Internet channel.

A specific class at Markov models is the Markov response models in which the
transition probabilities pi jt are related to customer characteristics and/or decision
variables. Early examples are found in Leeflang (1974, Chapter 7); Horsky (1977)
and Givon and Horsky (1990). A more recent example of a Markov response model
is given by Freimer and Horsky (2012) who study the effect of advertising (pulsing)
on buying or not buying a brand.
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A general framework for including marketing decision variables and other
variables into Markov models is provided by Zufryden (1981, 1982, 1986) and
Jones and Landwehr (1988). They demonstrated that the multinomial logit model
framework (8.28) can be used to estimate Markov response with explanatory
variables. Zufryden introduces a last-state specification vector zi, for individual
i, where z = (z1i,z2i, . . . ,zni) is a vector of zeros and ones indicating the state an
individual was last in. For example, z1i = · · · = zn−1,i = 0, zni = 1 indicates that brand
n was purchased last by individual i. This last-state specification vector is included
among the explanatory variables xi j in a logit specification analogous to (8.28),
resulting in:

πi j|zi =
exp

(
z′iγ+ x′i jβ

)

n∑

r=1

exp
(
z′iγ+ x′ir β

)
. (8.61)

Thus, this model includes past purchases of individual i as a predictor in a logit
model with a parameter vector γ indicating the effect of a previous brand purchase
on the probability to choose j, πi j|zi . Including z′iγ into the logit model (8.61) results
in a specification of the conditional probability of choosing j, given a previous
purchase by individual i, indicated by zi.

The zero-order multinomial model (8.28) is a restricted version of the
model (8.61). The first-order Markov hypothesis is maintained if we do not reject
the null hypothesis γ = 0. If the evidence favors (8.61), the implication is that if
the values of the explanatory variables xi j change, the first-order Markov transition
probabilities also change. We note that a more general formulation can be obtained
if the impact of the explanatory variables is allowed to depend on the last brand
purchased, which amounts to including an interaction of xi j and zi in Eq. (8.61).

8.2.4.2 Hidden Markov Models

In the past decade the attention for Markov models has been intensified through
the development of Hidden Markov Models (HMMs). In our discussion of Markov
models so far, we mainly used the Markov property to capture the “transitions”
of customers between brands over time. More generally, we can define “states” to
describe the behavior of customers. For example, in brand choice Markov models, a
customer is in state j at time t, if brand j was purchased in t by that customer. In such
cases, the “states” are observed. In HMMs however, the states are not observed (or
latent), but the state that customer i is in at time t influences her observed behavior
at time t.
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We illustrate these ideas with a study by Netzer et al. (2008)14 in which they
capture the dynamics of customer relationships using a HMM. They consider a
university-alumni customer relation data set, and identify three states: dormant,
occasional, and active donors. These states are unobserved, but influence the
observed donations of the alumni. Alumni can move from one state to another
over time, and these transitions are determined by several university-alumni (time-
varying) interactions, also called relationship encounters, such as reunions and
possibilities to volunteer for a university role. These variables fulfill a similar role
as the decision variables in (8.61).

Observed
and
unobserved
brand
interactions
at times
1,…, t − 1

Relationship states

S = NS: very strong

S = NS − 1: strong

S = 1: very weak

State dependent
choice

P(Choicet|S = NS )

P(Choicet|S = NS−1)

P(Choicet|S = 1)

Observed
choice at
time t

Fig. 8.3 Structure of a Hidden Markov Model of Customer Relationships. Source: Netzer et al.
(2008, p. 189)

Figure 8.3 graphically illustrates the structure of their Hidden Markov Model
for customer relationships. From left to right we see that the customer-“brand”
interactions until time t − 1 affect the state a customer is in at time t. The states
S range from S = 1, indicating a very weak relationship to S = NS , which means
that the customers perceives a very strong relationship with the brand. These states
are not observed, but they influence the probability that the brand is chosen, which
in turn influences the observed brand choice at time t.

The relationship state of customers in Fig. 8.3 can change over time, and the
transitions between the states are modeled as a Markov process. However, since
the state of a customer at time t also depends on customer-brand interactions until
time t − 1, the transition probabilities are not constant over time, which means
that the associated Markov chain is not stationary. The customer- and time-specific
transition probability matrix is given in Eq. (8.62):

14Other examples of HMM’s in marketing are Liechty et al. (2003); Montgomery et al. (2004);
Moon et al. (2007); Paas et al. (2007); Ebbes et al. (2010); Kumar et al. (2011); Schwartz et al.
(2014); Zhang et al. (2014).
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In Eq. (8.62) pi,t,s,s′ is the probability that customer i moves from relationship state s
to relationship state s′ at time t. HMMs are usually estimated using a Markov chain
Monte Carlo (MCMC) Hierarchical Bayes procedure (see Sect. 6.8 and Rossi and
Allenby 2003).

8.3 Purchase Quantity Models

8.3.1 General Structure

Purchase quantity models describe the total number of units bought of a particular
brand (brand sales) or product category (industry sales).15 The dependent variable
of interest in these “count models” is a count variable which can take on nonnegative
integer values: {0,1,2, . . .}. We are interested in cases where the dependent variable
takes on relatively few values, including zero. For the same reason discussed for
binary and multinomial responses the General Linear Model might not provide the
best fit given that the distribution of the disturbances and hence the distribution of
the dependent variable, in general, will be very different from normal. Instead the
distribution for count data is the Poisson distribution (Wooldridge 2012, p. 580).

Early purchase quantity models were applied in marketing by Ehrenberg (1959,
1972, 1988) and Chatfield et al. (1966). These models are based on the Poisson
process, which has the property that the distribution of the number of units
purchased in any interval depends only on the length of that interval. The random
variable (Yit), denoting the number of units purchased by consumer i in a certain
time period t, then follows a Poisson distribution with parameter λ:

P(Yit = yit) = f (yit | λ, t) = e−λt(λt)yit

yit!
, i = 1, . . . , I, t = 1, . . . ,T.

15Purchase quantity models at the product category level have often been used to explain the
composition of shopping baskets. See, for example, Manchanda et al. (1999); Seetharaman et al.
(2005); Blattberg et al. (2008, Chapter 13); Chen and Steckel (2012).
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The Poisson process has expectation: E(Yit) = λt, which shows that λ can be
interpreted as the rate of the process. Its variance is equal to the mean. The
probability of at least one purchase in the interval t, the penetration, which is of
primary interest in purchase incidence models is:

P(Yit > 0) = 1− e−λt. (8.63)

The interpurchase times in the Poisson process follow an exponential distribution
with mean 1/λ:

f (t | λ) = λe−λt. (8.64)

An estimator for λ in the Poisson process is simply the mean of the observed

purchase frequencies: λ̂ =
I∑

i=1
yit/It, where I is the total number of consumers.

8.3.2 Heterogeneity in Count Models

The assumptions underlying the Poisson process are quite restrictive in many
marketing applications. For example, the assumption that all consumers have the
same value of λ is unrealistic. Heterogeneity has been accommodated in several
ways, most frequently by assuming that λ is a random variable that follows a gamma
distribution across individuals:

f (λ | β,α) =
αβλβ−1e−αλ

Γ(β)
(8.65)

with α and β being parameters of the gamma distribution and Γ(·) the gamma
function. The gamma distribution is a very flexible distribution that can take on
a variety of shapes. We note that if β = 1,2,3, . . ., takes on integer values, then
an Erlang distribution arises. From (8.63) and (8.65) the number of purchases
for a (randomly selected) individual can be shown to follow a Negative Binomial
Distribution (Ehrenberg 1959; Morrison and Schmittlein 1988; East and Hammond
1996):

f (yit | β,α) =

(
yit +β−1

yit

)(
α

α+ t

)β ( t
α+ t

)yit
. (8.66)

The NBD has expectation: E(Yit)= βt/α, and its variance is: Var(Yit)= βt/α+βt2/α2.
Thus, the variance of the NBD exceeds that of the Poisson distribution, which
equals the mean βt/α. The probability of at least one purchase in the interval t,
the penetration, is:

P(Yit > 0) = 1−
(
α

α+ t

)β
. (8.67)
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Estimators for α and β can be derived for example from the estimated mean ȳ and
variance σ2 of the NBD: α̂ = (ȳt)/(σ̂2− ȳ) and β̂ = (σ̂ȳ)/t. Morrison and Schmittlein
(1988) derive conditions under which the NBD at the brand level leads to a NBD at
the product class level. In empirical applications, the NBD seems to fit either well
at both levels or at neither level.

In the past decades many other solutions than the gamma distribution are
suggested to accommodate heterogeneity in the purchase rate.16 A specific category
of models arises when the heterogeneity distribution is assumed to be discrete: the
so-called finite mixture models.

A problem of the Poisson and NBD purchase incidence models is that they
do not accommodate individuals who never buy. Both models predict that every
individual will eventually buy the product, as t increases. Since for most products
and categories there is a group of individuals who never buy, these purchase quantity
models tend to underestimate the percentage of zero purchases. One solution
(Morrison and Schmittlein 1988) is to add a component to the model that allows
for an additional spike at zero, due to the class of non-buyers, with proportion π0.
The Zero-Inflated Poisson (ZIP) model (also called the “Morrison-model”) is:

P(Yit = yit) = π0 + (1−π0)
e−λt(λt)yit

yit!
. (8.68)

The ZIP model has a mean: E(Yit) = π0 + (1−π0)λt, and a variance: Var(Yit) =
λt(1−π0)(1−π0λt). The penetration is:

P(Yit > 0) = (1−π0)(1− e−λt). (8.69)

Estimates of π0 and λ can be obtained from the equations for the mean ȳ= (1− π̂0)λ̂t,
and the proportion of zeros: P0 = π̂0+(1− π̂0)e−λ̂t. These equations need to be solved
by iteration.

A straightforward extension accounts for both added zeros and heterogeneity,
giving rise to the Zero-Inflated Negative Binomial Distribution (ZINBD). See
Schmittlein et al. (1993) for an application.

Much research in purchase quantity modeling has focused on finding the
appropriate distribution for purchase frequencies, and estimating important quan-
tities from the data, including penetration, lost buyer percentages and so on.
More recently, successful attempts have been made to include marketing decision
variables as predictors into these models. The primary extension is that one
parameterizes the mean of the distribution as a function of predictors. In such
response types of purchase quantity models, the effects of decision variables

16See Sichel (1982) who has proposed the family of generalized inverse Gaussian distributions;
Sikkel and Hoogendoorn (1995) who consider the inverse Gaussian, the lognormal and the Weibull
distributions. Abe (2009) extends the Poisson purchase incidence model in several ways to account
for drop outs of customers of a customer-base. See also: Fader et al. (2005).
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are measured by changes in the shapes and/or the parameters of the probability
distributions.

We consider the simplest case, a Poisson distribution for the purchase quantity
of a particular product. Assume there are marketing decision variables x�, � =
1, . . . ,L, including for example the product’s price, frequency of promotions, etc.,
but also consumer characteristics zi�′ , �′ = 1, . . . ,L′, such as demographic and socio-
economic variables. The idea is that the expected number of purchases by individual
i in the period under consideration (μi), is related to those explanatory variables:

μi = exp

⎛
⎜⎜⎜⎜⎜⎜⎝

L∑

�=1

β�x� +
L′∑

�′=1

β�′zi�′

⎞
⎟⎟⎟⎟⎟⎟⎠ . (8.70)

Model (8.70) accounts for variation in the number of purchases across the sample
as a function of the explanatory variables. The mean of the purchase quantities
is μi. The exponent in (8.70) guarantees that the predicted purchase amount is
positive. With this formulation we can assess the effects of marketing variables
or consumer characteristics. For example, if “Gender” has been included as an
explanatory variable (0 = male; 1 = female) and the corresponding parameter is
estimated as β̂�′ = 0.693, then exp(β̂) = 2, and the expected purchase quantity is
2 times higher for females than for males. In Sect. 6.4.5 we already discussed an
application of a Poisson model. We return to this application in Sect. 8.5.2.

8.4 Purchase Timing: Duration Models

8.4.1 Introduction

Duration models deal with duration or timing variables. Examples of duration
variables are: interpurchase time, the time between sending a mailing and the
response to that mailing, the time between the introduction of a new product
and the adoption of the new product by customer i, etc. Duration models do not
answer questions such as which brand/category is chosen and how many units are
purchased. The questions that are answered by duration models deal with “when”
will a category/brand be purchased. Duration variables which measure the time
between two events are often censored. In many cases we do not know events prior
to the observation period (left censoring). In other cases the event (e.g. a purchase,
adoption, customer churn) did not happen yet at the end of the observation period
(right censoring). If the event can only occur during the observation period, the
duration variable is fully observed and hence uncensored.
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8.4.2 Hazard Models

Researchers have used hazard models to account for censored duration variables.17

The major advantage of this approach is that it accounts for so-called right-
censoring. Right censoring occurs if a sample of consumers or households is
observed for a time period of fixed length only, causing longer interpurchase times
to have a larger probability of falling (partially) outside the observation period. If
one does not account for right-censoring, the estimates are biased.

In hazard models the probability of a purchase during a certain time interval, say
t to t+Δt, given that is has not occurred before t, is formulated as:

P(t ≤ T ≤ t+Δt | T ≥ t) (8.71)

where T is the random interpurchase time variable.18 Parametric methods for
interpurchase times involve assumptions about their distribution. Two distinct
classes of hazard models arise according to whether a discrete or a continuous
distribution of the interpurchase times is assumed.

In discrete-time hazard models, the probability of a purchase in Eq. (8.71) is
specified directly for given values of Δt. In the continuous-time approach, Δt
approaches zero in (8.71), to yield a continuous hazard rate λ(t):

λ(t) = lim
Δt↓0

P(t ≤ T ≤ t+Δt | T ≥ t)
Δt

. (8.72)

The hazard rate can be interpreted as the instantaneous rate of purchasing at time
t, given that purchasing has not occurred until t. The distribution function of
interpurchase times can then be derived:

f (t) = lim
Δt↓0

P(t ≤ T ≤ t+Δt)
Δt

= λ(t)P(T > t). (8.73)

Alternatively, (8.73) can be written as f (t) = λ(t)S (t). Here, S (t) = P(T > t) is
the probability (or survival) that a purchase has not yet occurred at t where S (t)
is the so-called survivor function. The advantage of this formulation becomes
apparent in case of censoring, because f (t) represents the density of any uncensored
observation such as a completely observed interpurchase time. If, due to censoring,
an interpurchase time is not completely observed, S (t) provides the probability that
the purchase has not yet occurred, since we only know that the interpurchase time
is larger than t, the end of the observation period. The continuous-time approach

17See, for example, Gupta (1991); Jain and Vilcassim (1991); Gönül and Srinivasan (1993); Helsen
and Schmittlein (1993); Wedel et al. (1995); Dekimpe et al. (2000); Prins and Verhoef (2007);
Schweidel et al. (2008); Risselada et al. (2014).
18An extension of the formulation to multiple purchases is straightforward.
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appears to be the most commonly used approach in the marketing literature. If the
interpurchase times follow an exponential distribution (and the purchase incidence
is Poisson), then the hazard rate and survival functions are:

λ(t) = λ (8.74)

and

S (t) = e−λt. (8.75)

Thus, for the exponential distribution the hazard of a purchase is constant and
independent of time. Also, purchases occur at random time periods, independent
of past purchases. For other distributions the hazard rate and survivor functions can
be formulated as well.

Flinn and Heckman (1983) proposed a very flexible (Box–Cox) formulation for
hazard functions. This is applied to brand switching problems by Vilcassim and
Jain (1991). It includes many of the frequently used distribution functions as special
cases, and the hazard rate is formulated as:

λ(t) = exp

⎛
⎜⎜⎜⎜⎜⎜⎝γ0 +

L∑

�=1

γ�
tv� −1

v�

⎞
⎟⎟⎟⎟⎟⎟⎠ . (8.76)

This formulation includes a variety of interpurchase time distributions as special
cases. For example, if γ� = 0 for all �, then λ(t) = exp(γ0) is constant, and the
exponential distribution arises. If γ� = 0 for � > 2, and v� = 1, then λ(t) = exp[γ0 −
γ1 + γ1t] which is the hazard rate of a Gompertz distribution. For all interpurchase
time distributions except for the exponential, the hazard rate varies with time, so
that those distributions account for nonstationarity of purchase timing and incidence
(i.e. their distribution is allowed to change over time). A decline in the event
rate as a function of the elapsed time is often called inertia and is observed for
interpurchase times (Helsen and Schmittlein 1993). A hazard rate that increases with
time is often called a snowballing phenomenon, observed in new-product adoption
processes (Helsen and Schmittlein 1993). Another useful way to accommodate
nonstationarity is through the so-called piecewise exponential formulation. The
piecewise exponential formulation assumes that the total observation period can
be decomposed into, say, R shorter periods, in which the hazard is (approximately)
constant. Thus, one considers, for example, R weekly or monthly purchase intervals,
denoted by tr, r = 1, . . . ,R, and tr+1 = tr +Δt where:

P(tr ≤ T ≤ tr+1) = λr. (8.77)

Note that the hazard rate is constant within each period, but varies from period
to period, thereby accounting for nonstationarity. This approach is quite flexible,
because across time periods the hazard may take an arbitrary form. Since the hazard
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between tr and tr+1 is constant for all r, the model assumes random purchase timing
within each period. Several hazard models have been compared empirically.19 One
of the main conclusions is that the simple exponential model does not seem to
describe interpurchase timing processes well. Each of the models used in the studies
referred above, however, is more complex than the ones described here in that
they accommodate heterogeneity of the hazard rate across subjects, and/or include
marketing decision variables. We discuss these two topics below.

8.4.3 Heterogeneity in Duration Models

The hazard modeling approach discussed in the previous subsection assumes that
consumers are homogeneous. Gupta (1991) handled heterogeneity in a way that
is comparable to the approach described before in purchase incidence models. He
assumed a parametric distribution of interpurchase times, specifically exponential
or Erlang-2, and let heterogeneity be captured by a gamma distribution for the scale
parameter β. The advantages of this approach are that it provides a natural extension
of the NBD models discussed in Sect. 8.3, and that β can be directly interpreted as a
measure of heterogeneity.

Heterogeneity can also be accommodated through the inclusion of consumer
characteristics and other explanatory variables. The basic idea for models that
allow marketing decisions to influence purchase timing is to reformulate the hazard
function. An important case is presented by so-called Proportional hazard models
(Cox 1975), for which:

λ(t | x(t)) = λ0(t)exp
(
x(t)′β

)
(8.78)

where

λ0(t) = the baseline hazard,

x(t) = a vector of explanatory variables at time t,

β = vector of parameters.

Model (8.78) has two multiplicative components. The first term, λ0(t) is called the
baseline hazard, and captures the changes of the hazard over time. The baseline
hazard is the same for all customers, and is often modeled as a polynomial function
in t. As an example, consider the case when customers become more likely to
adopt an innovation over time. The upward trend in the baseline hazard can be
modeled with a linear function in t. In proportional hazard models the baseline
hazard can take any of the discrete or continuous time specifications outlined above
[compare (8.71)].

19See, for example, Jain and Vilcassim (1991); Bayus and Mehta (1995); Wedel et al. (1995);
Chang et al. (1999); Schweidel et al. (2008).
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The second term in Eq. (8.78) shifts the hazard up or down proportionally
dependent upon the effects of marketing decision variables and/or customer char-
acteristics. The hazard is shifted upward if the explanatory variables and the
corresponding are such that exp(x(t)′β) > 1, and downward if exp(x(t)′β) < 1.

Consider the case where we are modeling response time to adoption of a new
product and that we like to know whether there are differences in the adoption
role between men and women. We assume that x (in (8.78)) is a dummy variable
indicating gender: 1 =female, 0 =male. The hazard rate for female consumers is
λ0(t)exp(βgender) and for male consumers: λ0(t)exp(0) = λ0(t). It is found that
βgender = ln2. Using the so-called hazard ratio (HR) is it found that:

HR =
λ0(t)eln2

λ0(t)
= 2, (8.79)

which means that the adoption rate of women is twice that of men, at any time t. If
the parameter which corresponds to a variable x is β then the hazard increases by
{100×(

exp(β)−1
)}% for a unit increase of x. This example demonstrates why (8.78)

is called a proportional hazard model.20

We now specify a hazard model developed by Sinha and Chandrashekaran (1992)
which is used to model the diffusion of an innovation, or rather the timing of the
adoption of an innovation. They explicitly account for the fact that a proportion of
the subjects will never adopt the product. If the proportion of adopters is denoted by
π0, then the probability of observing a certain adoption time, given that the adoption
occurs in the time period under study (y = 1) is:

f (t | y = 1) = π0λ(t)S (t) (8.80)

which is the probability of an adoption times the rate of purchase at time t multiplied
by the probability of no purchase at time t. The probability of not adopting during
the sample period (y = 0) is:

f (t | y = 0) = (1−π0)+π0S (t) (8.81)

which is the probability of never adopting plus the probability of eventual adoption
after the sample period (i.e. censored in the particular sample). If the distribution of
the adoption time is assumed to be exponential, so that the hazard rate and survival
function are provided by (8.74) and (8.75) respectively, this model is equivalent to
the ZIP model for purchase incidence described in Sect. 8.3.

20An alternative model is the so-called accelerated lifetime (hazard) model. In this model one may
scale (or accelerate) t by a function of explanatory variables (Franses and Paap 2001, pp. 165–166).
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8.4.4 Estimation and Validation of Duration Models

The estimation of duration models is usually done via ML-methods that we discuss
next. The model fit is determined using the estimated values of the likelihood (8.14),
the log-likelihood (8.15), the pseudo R2s introduced in Sect. 8.2, etc. Model
selection is performed using the likelihood ratio test (nested models) and the use
of the familiar AIC and BIC as discussed in Sect. 5.6.3. An illustration is presented
in Table 8.4 in which we show the result of a study by Prins and Verhoef (2007) that
we discuss next.

Prins and Verhoef (2007) specified and estimated a hazard model in which they
account for a group of customers that will probably never adopt a new service of
a telecommunications operator. The probability of adoption of these customers is
zero. They applied the so-called split hazard approach developed by Schmidt and
Witte (1989). In this approach both the adoption probability and the adoption timing
of the new service of existing customers are modeled. Adoption timing is modeled as
a hazard function of both time-varying marketing communication effects and time-
invariant covariates such as relationship characteristics and customer characteristics.
The hazard part of the Prins–Verhoef-model is specified as:

λi(t) = 1− exp
[
−exp

(
β0 +β1t+β2t2 +β3DMCit +β4S At +β5S At−1 +β6BAt

+β7BAt−1 +β8CS At +β9CS At−1 +β10CBAt +β11CBAt−1 +β12RAi +β13RA2
i

+β14S Ui +β15S U2
i +β16Agei +β17Age2

i +β18Gendi +β19Innovi

)]
(8.82)

where

DMCit = dummy for individual offer by telephone by customer i,

S At = advertising expenditures in millions of euros in months related to the new

service in t,

BAt = advertising expenditures in millions of euros in month t, not related to the

new service

CS At = competitive advertising expenditures in t related to the service,

CBAt = competitive advertising expenditures in t not related to a similar service,

RAi = number of years customer i has been with the provider,

S Ui = average monthly amount spent by i before t = 1,

Gendi = gender (male = 0, female = 1),

Agei = age at t = 1, and

Innovi = dummy for usage of prior generation of service by i.
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Prins and Verhoef (2007) model the unobserved probability of eventual adoption
as a logit function of time-invariant customer characteristics and relationship
characteristics:

πi = 1/
[
1+ exp

(
−

{
γ0 +γ1RAi +γ2RA2

i +γ3S Ui +γ4S U2
i

+γ5Agei +γ6Age2
i +γ7Gendi+γ8Innovi

})]
(8.83)

where πi is the probability of eventual adoption.
The log-likelihood function of the total model is:

LL =

N∑

i=1

di× ln
[
πi×λi(t)×S i,t−1

]
+ (1−di)× ln

[
(1−πi)+πi×S i,t

]
(8.84)

where

N = number of customers,

di = 1 if adoption is observed and 0 if the observation is censored, and

S i,t = the survival rate.

From (8.84) we observe that the contribution to the likelihood function by customer
i at time t is the probability that he or she will eventually adopt, as given by πi,
multiplied by both the conditional probability of adoption at t, as given by the hazard
rate λi(t), and the probability that he or she has not adopted before t as given by the
survival rate S i,t−1. Prins and Verhoef estimate this model by maximum likelihood.
Table 8.4 shows the estimation results of the adoption model (πi) and the hazard
part.21 From Table 8.4 we conclude from the logit part of the model [Eq. (8.83)] that
relationship age has a positive (although diminishing) effect on adoption and service
usage rate has a negative effect. Direct marketing communication, service and brand
advertising have a positive effect on adoption timing. For example, the parameter for
direct marketing communication (dummy for whether or not an individual offer by
telephone has been made) is estimated as 1.865, which means that a phone call
leads to an exp(1.865)= 6.457 times higher hazard rate, and a shorter expected time
to adoption. Competitive service advertising has a positive effect on the adoption
of the new service which is due to “market marking” effects. Competitive brand
advertising has a significant negative effect which implies that it lengthens the time
to adoption.

21We do not show the results that have been obtained through the inclusion of interaction effects:
see Table 3 in Prins and Verhoef (2007).
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8.5 Integrated Models

8.5.1 Integrate Incidence, Timing and Choice

In the previous sections we described models for purchase incidence, brand
choice, purchase quantity and purchase timing separately. Several authors have
integrated such descriptions of separate consumer behavior processes into one single
framework. Some of these models have also included components of market seg-
mentation. The purpose of those models is to provide managers with insights about
the possible sources of gains and losses of sales, about the consumer characteristics
and marketing variables that affect sales, and about the causes of brand loyalty
and brand switching. Many of the approaches compound the (Poisson- or NBD-)

Table 8.4 Estimation results of Eqs. (8.83) and (8.84)

Logit part: p(Adoption) Hazard part: time to adoption
Variables Coefficient z-value Coefficient z-value
t NA 0.1618 1149∗∗∗

t2 NA −0.0048 −9.82∗∗∗

DMCit NA 1.8652 43.20∗∗∗

S At NA 0.2243 7.22∗∗∗

S At−1 NA 0.0012 0.05

BAt NA 0.0521 2.25∗∗

BAt−1 NA 0.0432 1.88∗

CS At NA 0.0969 4.85∗∗∗

CS At−1 NA −0.0065 −0.29

CBAt NA −0.0863 −10.26∗∗∗

CBAt−1 NA −0.0078 −0.85

RAt 0.8493 1.75∗ 0.0521 1.00

RA2
t −0.1296 −1.86∗ −0.0033 −0.42

S Ut −0.2164 −3.00∗∗∗ 0.0580 4.45∗∗∗

S U2
t 0.0032 2.35∗∗ −0.0009 −2.45∗∗

Agei −1.6270 −0.88 −0.2123 −1.55

Age2
i 0.2413 0.97 −0.0075 −0.46

Gendi 0.4401 0.62 −0.1486 −2.44∗∗∗

Innovi −0.2685 −0.44 0.3166 2.48∗∗∗

Constant 5.5730 1.67∗ −3.6189 −11.98∗∗∗

Log-likelihood −13,586.947

Likelihood ratio test χ2(28) = 1935.99∗∗∗

AIC statistic 27,229.89

BIC statistic 27,401.83
∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01 (two-sided)
Note: NA not applicable
Source: Prins and Verhoef (2007, p. 178)
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distributions for purchase frequency or distributions of purchase timing (exponential
or Erlang) with (multinomial, Dirichlet-Multinomial, or Markov) models of brand
choice. Early examples of this approach are Jeuland et al. (1980) and Goodhardt
et al. (1984). However the importance of this stream of research was recognized
through the seminal work of Gupta (1988). The basic setup of these approaches is
as follows:

1. Assume a Poisson distribution for purchase frequency, y: P(y | λ).
2. Assume a gamma heterogeneity distribution for the purchase rate: G(λ).
3. Obtain the unconditional distribution of y by integrating out the heterogeneity

distribution. This leads to a NBD (see Sect. 8.3):

NBD(y) =
∫

P(y | λ)G(λ)dλ.

4. Assume a multinomial distribution for choice, x: M(x | p).
5. Assume a Dirichlet heterogeneity distribution for the choice probabilities: D(p).
6. Obtain the unconditional distribution of x by integrating out the heterogeneity

distribution. This leads to a Dirichlet-Multinomial (DM) distribution:

DM(x) =
∫

M(x | p)D(p)dp.

7. In the final step, the joint distribution of purchase frequency and choice is
obtained, assuming independence: NBDM(y, x) = NBD(y)×DM(x).

From this framework, important quantities such as market share, penetration,
duplication, brand switching and repeat buying can be obtained. Most approaches
in this field follow a similar format, but there are many variations.22

8.5.2 Tobit Models

8.5.2.1 Introduction

Tobit models constitute a specific subset of “integrated” models. Tobit models
are used when the dependent response variable (usually demand or response to a
mailing, a promotion, etc.) is a limited continuous variable. The demand and/or
response are only observed for those customers who purchase/respond. For a
customer that does not purchase/respond, the variable equals zero. Given that we
usually do not have information about customers who do not buy/do not respond

22Some examples of integrated models are Böckenholt (1993a,b); Bucklin et al. (1998); Song
and Chintagunta (2007); Andrews and Currim (2009); Vroegrijk et al. (2013). An aggregate level
version of the integrated model by Gupta (1988) was proposed by Pauwels et al. (2002), who
show that the long-term brand sales effects of price promotions are mostly due to lifts in category
incidence, not brand choice.
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within the given observation period, the continuous demand variable is censored.
In Tobit models one specifies two equations: one to explain the decision to respond
and one to explain the demand (in units or amount spent). Hence, in these models
one integrates two decisions: which factors determine whether one responds or not
and, if there is a response, which factors determine the size of the response. In Tobit
models one accounts for values of the dependent variable which are zero or below
another threshold. One may, for example, consider only these expenditures of a
customer on a shopping trip that exceed $ 10. Then the threshold is $ 10. In this way
one “truncates” the values of the (continuous) dependent variable.23 If one does not
account for the truncated observations the parameter estimates are biased.24

To describe the fluctuations of a censored dependent variable one may apply the
Censored Regression models such as the Type-1 Tobit and Type-2 Tobit models.

8.5.2.2 Type-1 Tobit Model

In Sect. 8.2.2 we specify the relation between a latent variable y∗i and Yi, the
observed dependent variable: compare Eqs. (8.5) and (8.6). In the Tobit models
indicators are also related to the latent variable y∗i , like in (8.5). The specification
of a Type-1 Tobit model is:

Yi = 0 if y∗i = x′i β+ εi ≤ 0 (8.85)

Yi = x′i β+ εi if y∗i = x′i β+ εi > 0 (8.86)

where

Yi = a variable for individual i which takes the value 0 if a latent/unobserved

variable y∗i is smaller than or equal to zero, and x′i β+ εi if this latent

variable is positive,

xi = a vector of explanatory variables including an intercept,

β = a vector of unknown parameters,

εi = a normally distributed disturbance term: εi ∼ N(0,σ2).

23One way to deal with these truncations is to estimate a model using Truncated Regression. See,
for example, Wooldridge (2012, pp. 589–591).
24This bias can be measured by the so-called inverse Mills ratio; see, for example, Franses and
Paap (2001, p. 138).
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The equations (8.85) and (8.86) may represent the online-demand for a product by
customer i. The equations jointly model the decision whether or not to purchase, and
if so, how much is purchased. Note that in the Type-1 Tobit, model, the same set of
explanatory variables and effect parameters are used for (1) explaining whether or
not a purchase will be made by individual i (y∗i ≤ 0 versus y∗i > 0) and (2) how
much will be purchased if a purchase does occur Yi. Hence, the same drivers and
effects are assumed for both outcomes. That might be a heroic assumption in many
applications. The Type-2 Tobit model relaxes this assumption.

8.5.2.3 Type-2 Tobit Model

The Type-2 Tobit model can be formulated as:

Yi = 0 if y∗i = x′i α+ ε1i ≤ 0 (8.87)

Yi = x′i β+ ε2i if y∗i = x′i α+ ε1i > 0 (8.88)

where, at least in principle, α � β. The disturbances ε1i are N(0,1)-distributed25 and
ε21 ∼ N(0,σ2

2).26 Both error terms may be correlated: E(ε1i, ε2i)=σ12. In this model
we may account for the fact that age income and experience may have other effects
on ordering online than the amount spent if people order. So, for example, age and
income have a negative effect on the probability that one orders. These variables
may, however, have a positive effect on the amount spent online. Note that Type-2
Tobit model in Eqs. (8.87) and (8.87) accommodates cases where the decision to
order is driven by other explanatory variables than the decision how much to order
(by setting appropriate elements of α and β to zero)

The Tobit models can be estimated by ML-methods. A simpler method to
obtain estimates is known as the Heckman (1976, 1979) two-step procedure. This
procedure is also used in cases where the variables in the right-hand part (also
called the participation part) are different from the variables in the left-hand part
(also called the intensity equation) (Greene 2012, Chapter 19). The model which is
specified in this way is also known as an hurdle model.27

Example To conclude this chapter we give an example of the use of a Type-2
Tobit model. To this end, we return to the study by Van Nierop et al. (2011) that
we discussed in Sect. 6.4.5.28 Van Nierop and colleagues studied the effect of the

25They correspond with the Probit part.
26This is the standard regression model for the positive values of y∗i .
27First the parameters of the first equation (the probit part) are estimated using ML. Correcting for
the bias using the inverse Mills ratio, the parameters of the second equation can be estimated using
a regression model.
28Other examples of the application of Type-2 Tobit models in marketing are found in, for example,
Bucklin and Sismeiro (2003); Fox et al. (2004); Prins et al. (2009); Danaher and Dagger (2013).
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introduction of an informational website on the number of store visits of a large
retailer. As discussed in Sect. 6.4.5, they find negative effects of the number of
website visits on the number of store visits. Using a Type-2 Tobit model they also
investigate how the variables that are discussed in Sect. 6.4.5 affect:

1. the purchase incidence of a consumer to buy in a category c in month t, and
2. the amount spent by individual i in category c in month t.29

Following Eqs. (8.87) and (8.88) a Type-2 Tobit model for Yitc, the amount that
individual i spends in category c in month t, can be written as:

Yitc = 0 if y∗itc = z′itcα+ ε1itc ≤ 0 (8.89)

Yitc = z′itc β+ ε2itc if y∗itc = z′itcα+ ε1itc > 0 (8.90)

where zitc is a K−vector of explanatory variables for customer i, in month t, for
category c. The explanatory variables in Eqs. (8.89) and (8.90) are the same as those
that are discussed in Sect. 6.4.5, with the exception of the number of website visits.
For the Type-2 Tobit model this variable is measured per category, which explains
the addition of an index c. Furthermore,α and β allow for individual-specific effects,
so that variables that only vary across customers drop out. For this reason, the age
variable is not included in this analysis.

The elements in α describe the effect of the explanatory variables on purchase
incidence, whereas the elements in β indicate which explanatory variables influence
the amount spent by customer i in category c in month t. Van Nierop et al.
(2011) specify multivariate error distributions for ε1itc and ε2itc to accommodate
contemporaneous correlation of the disturbances across product categories, which
might occur because excess expenditures in one category may result in either
less spending in substitute categories, or in additional spending in complementary
categories.

Based on pooling test, Van Nierop and colleagues estimate separate Type-2
Tobit models for six product categories: Ladies’ Fashion, Men’s Fashion, Children’s
products, Accessories, Living and Sport. Table 8.5 contains the outcomes that are
obtained using Markov Chain Monte Carlo (MCMC) methodology (see Sect. 6.8)
for two categories: Ladies’ Fashion and Men’s Fashion.

29The following text is taken from Van Nierop et al. (2011).
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Table 8.5 Parameter estimates for the multivariate Type-2 Tobit model [Eqs. (8.89) and (8.90),
N = 4,572]

Ladies’ fashion Men’s fashion
Variable Purch. Inc. (α) Amount (β) Purch. Inc.(α) Amount (β)

Intercept −0.241∗ −0.238∗∗ −0.973∗∗∗ −0.917∗∗∗

Number of category pages visiteda −0.441∗∗∗ −0.105∗∗ −0.550∗∗∗ −0.078

Dummy user/non-userb 0.171∗ 0.222∗∗∗ 0.099 0.139

Holiday shopping season dummy −0.022 −0.027 −0.023 −0.019

Fashion promotion dummy 0.183∗∗∗ 0.166∗∗∗ 0.230∗∗∗ 0.233∗∗∗

General promotion dummy 0.147∗∗ 0.142∗∗ 0.251∗∗∗ 0.249∗∗∗

Competitor 1 starts webstore −0.195∗∗∗ −0.199∗∗∗ −0.157∗∗ −0.156∗∗

Competitor 1 major TV advertisement −0.194 −0.188 −0.363∗∗ −0.351∗∗

Competitor 1 advertisement in 2001 −0.091∗∗ −0.086∗∗ −0.002 −0.002

Competitor 2 introduces magazine −0.010 0.008 0.003 −0.003

(Log) months since introduction 0.077 0.065 0.013 0.007

Distance to closest store in miles −0.017∗ −0.011∗∗ −0.009 −0.003

Gender (0 = male, 1 = female) 0.084 0.130∗∗ −0.313∗∗∗ −0.245∗∗∗

Higher education (0 = no, 1 = yes) −0.080 −0.057 0.072 0.058
aBecause this is a category-specific model, a category-specific number of website visits is
included that replaces the overall number of website visits in Table 6.8
b This variable equals 0 before the introduction of the international website: after the introduction
it equals 1 for non-users and 0 for registered users (compare Table 6.8)
∗Zero is not contained in the 90 % HDP (highest posterior density) interval; ∗∗zero is not contained
in the 95 % HDP interval; ∗∗∗zero is not contained in the 99 % HDP interval
Source: Van Nierop et al. (2011, p. 161)

The performance of the Purchase Incidence stage of the Type-2 Tobit model is
computed by a Hit Rate that indicates the percentage of observations for which
the model correctly classifies purchase incidence (see Sect. 8.2.2). In the estimation
sample a Hit Rate of 72 % is achieved, for a hold-out sample this value equals 66 %.
Across (six) categories a pseudo R2 of 0.77 is found. From Table 8.5 two main
conclusions can be drawn:

1. Website visits significantly decrease purchase incidence for the two categories.
The partial relation between website visits and the average amount of money
spent indicates a negative sign for ladies’ fashion.

2. The parameters associated with the dummy for non-users after the introduction
of the website does not change and even increases in the category ladies’ fashion.

For other conclusions we refer to Van Nierop et al. (2011). With the multivariate
Type-2 Tobit model it is also possible to investigate which product categories
are correlated. The coefficients that indicate contemporary correlation suggest
cross-category or co-occurrence effects (Manchanda et al. 1999). Van Nierop and
colleagues encountered co-occurrence effects for the Ladies’ Fashion category with,
among others, Men’s Fashion. These categories are complementary.
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Chapter 9
Examples of Database Marketing Models

9.1 Introduction

Database marketing and list management are more vital than ever, as marketers
have troves of consumer information at their fingertips (Marketing News, October
2013, p. 54). Data are available in large quantities and originate from many different
sources, as we already discussed in Chap. 3. Database management systems, also
called, Customer Relationship Management (CRM) systems organize, at least in
principle, all of this information.

Following Blattberg et al. (2008, p. 3) we define database marketing as:

“The use of customer databases to enhance marketing productivity through more effective
acquisition, retention, and development of customers”.

Database marketing is the main driving force behind customer management.
Customer management is a view and a strategy where the marketing efforts of the
firm are organized through the clustering of customers into groups or “portfolios”.
Each “portfolio” is managed by a customer manager. The customer manager’s goal
is to increase, or even, to maximize value of the customers in her portfolio. This is
called customer value management (Verhoef et al. 2007). Until recently, firms did
not have the data management systems nor the statistical tools required to pursue
customer management activities such as:

• selecting and acquiring customers;
• customer development including up- and cross-selling;
• retention/loyalty management, and
• chain management.1

1Blattberg et al. (2008, p. 55).
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The classic view2 is that the customer is exogenous to the firm and is the passive
recipient of the firm’s active value creation efforts, and values created in “the
factory” (Deshpandé 1983). A different perspective is now emerging, namely, that
customers can co-create value, co-create competitive strategy, collaborate in the
firm’s innovation process, and become endogenous to the firm. Central in this new
view is the concept of customer engagement, defined as the behavioral manifestation
from a customer toward a brand or a firm which goes beyond purchase behavior
(Van Doorn et al. 2010). This behavioral manifestation may affect the brand or firm
and its constituents in ways other than purchase such as Word-Of-Mouth (WOM),
co-creation, referrals, participation in the firm’s activities, suggestions for service
improvements, customer voice, participation in brand communities, or revenge
activities. As a consequence, the relation between a company and its customers
becomes closer, more selective and may become so familiar that even the term
intimacy is used (Treacy and Wiersema 1993).

Customer engagement is connected to customer value management through its
objective, namely, to maximize the value of a firm’s customer base. However, in
customer value management, the value of a customer is generally linked to direct
customer outcomes such as its current and future transactions with the firm. In
contrast, customer engagement (additionally) includes behavioral manifestations of
a customer with a rather indirect impact on firm performance.

We start to discuss some data issues which are inherent to database marketing in
Sect. 9.2. We then discuss models that are used to determine the customer lifetime
value (CLV) in Sect. 9.3. CLV plays a pivotal role in the models that support
database marketing. Then we discuss:

• models for customer selection and acquisition (Sect. 9.4);
• models for customer development (Sect. 9.5);
• models for customer retention (Sect. 9.6);
• models for customer engagement (Sect. 9.7).

9.2 Data for Database Marketing

In this monograph we discuss data issues in Chaps. 3 and 10 and in this section.
Here we discuss the data that are used for database marketing.

There are three fundamental reasons for companies to practice database market-
ing. According to Blattberg et al. (2008, p. 45) these are:

• enhancing marketing productivity;
• enabling the enhancement of customer relationships;
• establishing a sustainable competitive advantage.

2The following text is based on Bijmolt et al. (2010).
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Development in information technology, the growth of the Internet, and the
availability of large volumes of very detailed customer-level data (see the discussion
on Big Data in Sect. 3.5.6), are reasons why many companies now invest in database
marketing and database marketing systems/customer relationship marketing (CRM)
systems. We now observe that many companies such as banks, insurance companies,
telecom companies (O2), hotels (NH), credit card companies, retailers (Tesco in the
UK), airlines, etc. are now active in database marketing.

Effective management of an organization’s data that is coming from different
sources is the foundation of the platform that will drive data-driven marketing. We
distinguish at least three types of variables in a database3:

• demographics: name, address, phone number, age, family composition, income,
cultural background;

• performance measures: sales, recency of sales (interpurchase time), frequency,
amount of money spent, profit contribution, way of payment, channel used,
length of the relationship, satisfaction measures, meanings and opinions, where
all measures are defined of the individual consumer/firm-level;

• marketing efforts: calls/mailings etc. to the customer, price paid, discounts
offered, rewards, customer contacts, use of loyalty card, etc.

The database may also contain other performance measures (see Table 10.4) and
metrics (Table 10.5). Developments in data collection and data storage technologies
mean that marketing databases have proliferated and grown in both size and
complexity and new sources of data have emerged.

Large data sets create other challenges for the marketing scientist. The past
15 years have seen Bayesian statistical methods evolve from being a topic of
intellectual curiosity to an essential component of any marketing scientist’s toolkit
(Rossi et al. 2005). Central to this shift was the development of Markov Chain
Monte Carlo (MCMC) methods that involve thousands, if not million, of passes
through the data.4

Next to the increased size of databases, an important issue is that organizations
think more about operating in “real time”. Hence, another data “reality” is that of
processing streams of data in real time. While such real-time analysis is vital in
telecommunications, financial services, and online settings, it may not be necessary
for other customer analytics settings. There is a need to think about the “need
for speed” in various analytical activities supporting management of customer
engagement.

The same information technology developments that have lead to the massive
growth in customer data have also lowered the costs of some traditional data sources
while facilitating new data sources. For example, online surveys tools make it
extremely easy for firms to survey their own customers. As a consequence, merging
attitudinal data collected via surveys with transaction data (e.g., Kamakura et al.
2003) becomes even more important.

3See also Sect. 3.5.3.
4See Sect. 6.8.
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Finally, a substantial part of customer behavior occurs in an online setting,
resulting in new sources of data for studying customer engagement. For example,
the emergence of social media forms an important development for the customer-
firm relationship (Kaplan and Haenlein 2010).5

9.3 Modeling Customer Life Time Value

CLV is one of the cornerstones of database marketing. This metric quantifies the
customer’s long-term value to the firm. The CLV for a single customer is6:

CLV =

T∑

t=0

mt × rt

(1+ i)t −AC (9.1)

where

mt = margin received from customer purchases at t,

i = discount rate/cost of capital for the firm,

rt = probability of customer repeat buying or being “alive” at time t,

T = time horizon for estimating CLV , and

AC = acquisition cost of this “single customer”.

The net contribution of the customer is determined by:

• the (expected) relationship duration, which is determined by T and rt;
• the (expected) revenues generated by the customers in t (mt);
• the (expected) acquisition costs (AC);
• the discount rate (i).

If mt = m, rt = r and if we use an infinite time horizon, then (9.1) simplifies to
(following the derivation of Gupta and Lehmann 2005, Appendix A):

CLV =

∞∑

t=0

m× rt

(1+ i)t −AC

=
m(1+ i)

(1+ i− r)
−AC. (9.2)

5For a more in-depth discussion about the way data is organized in firms and more specifically the
problems that inherent in collecting and storing data, we refer to Blattberg et al. (2008, Chapter 3);
Bijmolt et al. (2010); Rust and Huang (2014).
6See Reinartz and Kumar (2003); Gupta et al. (2004); Blattberg et al. (2009).



9.3 Modeling Customer Life Time Value 311

Alternatively one might assume that

mt = (1+g)tm (9.3)

where g is the growth rate, and

CLV =

∞∑

t=0

(1+g)tm× rt

(1+ i)t −AC. (9.4)

Finally, we give an example where we determine CLV given that the firm has
multiple products and accounts for the probability that the other products are sold
to the “single customer”. Then we express CLV (assuming a zero growth rate) as:

CLV =

T∑

t=0

(r)t [mt + cstmcst]
(1+ i)t

(9.5)

where

cst = the probability that there is cross-selling at t, and

mcst = the margin of the product that is cross-sold.

Models have been developed in which the components of CLV are explained by
marketing efforts, demographics, purchase histories, etc.7:

• hazard, Markov, NBD, logit and probit models are used to model retention
(Venkatesan and Kumar 2004);

• regression, logit and probit models have been developed to explain margins
(Venkatesan and Kumar 2004);

• cross-selling has been modeled using logit and probit models (Verhoef et al.
2001).8

Also models have been developed that predict customer probability in future periods
and where all relevant components are modeled in an advanced manner (Rust et al.
2011).

The CLV-metric must be aggregated at a higher level to be useful for managers.
For this purpose one may focus on customer equity (CE) which is defined as the
lifetime value of current and future customers.9 To estimate the lifetime value of the

7Based on Gupta (2009).
8There are a number of surveys of studies to estimate CLV and its components. See: Donkers et al.
(2007); Gupta and Lehmann (2008); Reinartz and Venkatesan (2008); Blattberg et al. (2009).
9Rust et al. (2004); Gupta and Lehmann (2005); Gupta and Zeithaml (2006).
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entire customer base we consider cohorts of customers.10 Each cohort of customers
goes through the defection and profit pattern shown in Table 9.1. The firm acquires
n0 customers at time t = 0 at an acquisition cost of c0 per customer. Over time,
customers defect such that the firm is left with n0r customers at the end of period 1,
n0r2 at the end of period 2, and so on.

Table 9.1 Number of customers and margins for each cohort

Cohort 0 Cohort 1 Cohort 2
Time Customers Margin Customers Margin Customers Margin

0 n0 m0

1 n0r m1 n1 m0

2 n0r2 m2 n1r m1 n2 m0

3 n0r3 m3 n1r2 m2 n2r m1

· · · n1r3 m3 n2r2 m2

· · · · · n2r3 m3

· · · · · · ·
Source: Gupta and Lehmann (2008, p. 275)

The lifetime value of cohort 0 at time t = 0 is:

CLV0 = n0

∞∑

t=0

mtrt

(1+ i)t −n0c0. (9.6)

A similar expression can be derived for cohort 1. The lifetime value of cohort 1 at
t = 1 is given by:

CLV1 = n1

∞∑

t=1

mt−1rt−1

(1+ i)t−1
−n1c1. (9.7)

The present value of Eq. (9.7) at t = 0 equals:

CLV1 =
n1

(1+ i)

∞∑

t=1

mt−1rt−1

(1+ i)t−1
− n1c1

(1+ i)
. (9.8)

The customer equity value (CE) is then the sum of the lifetime value of all cohorts11:

CE =

∞∑

k=0

nk

(1+ i)k

∞∑

t=k

mt−krt−k

(1+ i)t−k
−
∞∑

k=0

nkck

(1+ i)k
. (9.9)

10We closely follow Gupta and Lehmann (2008).
11See Gupta et al. (2004) for an empirical application.
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CE can be determined, at least in principle, when the key inputs to this model
(nk, mt−k, r, ck and i) are estimated. Equation (9.9) can be modified taking time
and cohort dependent retention rates into account. One may also account for
heterogeneity (for all customers or the customers within a cohort).12 Migration
models acknowledge that customers might migrate in and out of being a customer
during the course of their lifetime.13 Here Markov and Hidden Markov models are
used (see Chap. 8).

It has been demonstrated that there are close links between CE and firms’ market
value which emphasizes the importance of this concept. A discussion about these
links is, however, beyond the scope of this monograph on “modeling markets”.14

9.4 Models for Customer Selection and Acquisition

9.4.1 Models for Customer Selection

The initial goal of customer acquisition is to select the “right” prospects for the
acquisition campaign.15 Depending on the objective function a “right” prospect
can be someone with maximum response likelihood, maximum purchase proba-
bilities/levels or, as most in line with the customer relationship management (CRM)
principles, maximum expected CLV.

Historically, the most frequently used selection technique has been the Recency,
Frequency, and Monetary value (RFM) model. The core concept of the RFM model
is based on empirical evidence and experiences in practice, particularly in Direct
Marketing. Experience learned that customers that responded well in the past are
likely to respond in the future. The three most important variables that summarize
past consumer behavior are recency (R), frequency (F) and monetary amount (M).
Building on the assumption that the “right” customer in the future looks a lot like the
“right” customer in the past, the traditional RFM modeling approach creates groups
of customers based on their RFM characteristics of prior purchases and then assigns
probabilities or “scores” to each group in accordance with its differential response
behavior. Marketing programs such as mailing campaigns are then prioritized based
on the scores of different RFM groups (Gupta et al. 2006). Extensions of the RFM
scoring approach define the customer groups using other behavioral (non-RFM) or
sociodemographic variables.

Statistical models that are frequently used include Automatic Interaction Detec-
tion (AID) and Chi-square Automatic Interaction Detection (CHAID) selection

12See, for example, Blattberg et al. (2008, Chapters 5 and 6); Chan et al. (2011); Rust et al. (2011).
13Pfeifer and Carraway (2000).
14See Gupta and Zeithaml (2006); Wiesel et al. (2008); Blattberg et al. (2009); Schulze et al.
(2012).
15We closely follow Bijmolt et al. (2010).
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techniques (David Shepard Associates 1999), CART (classification and regression
trees), parametric regression-based (scoring) models (Malthouse and Blattberg
2005), discriminant analysis, and log-linear models (LLM).

Columbo and Jiang (1999) developed a stochastic RFM model. The model
is closely related to the models that we discussed in Chap. 8 [Eq.(8.25)]. The
distribution of the number of responses (R) to mi solicitations, given that customer i
has a true response probability of πi can be specified as:

P
(
R = ri | mi,πi

)
=

(
mi

ri

)

π
ri
i (1−πi)

mi−ri (9.10)

where ri is the number of responses of customer i. The distribution of the response
probabilities πi is heterogeneous across customers, and Columbo and Jiang (1999)
assume that the πi’s have a beta distribution [compare Sect. 8.2.3, Eq. (8.44)]:

f (π | α, β) = Γ(α+β)
Γ(α)Γ(β)

πα−1(1−π)β−1. (9.11)

The observed number of responses (ri) to mi solicitations can be shown to follow a
Beta-Binomial distribution16:

P
(
R = ri | mi,α,β

)
=

(
mi

ri

)
Γ(α+β)Γ(mi− ri +β)
Γ(α)Γ(β)Γ(α+β+mi)

. (9.12)

Once α and β are estimated, the expected response probability for customer i can be
calculated as:

E
(
πi | ri,mi,α,β

)
=
α+ ri

α+β+mi
. (9.13)

Equation (9.13) only requires the number of solicitations (mi) and the number of
responses (ri). The selection at customers can be based on the estimated response
probabilities for each consumer i.

Other models that are used to select “new” customers are the so-called probability
models in which the probability that a customer will react to an invitation (a call or
a mail) is related to individual’s behavioral characteristics (Fader and Hardie 2009).

The models for customer selection discussed so far in this subsection are
suited for “classical” RFM data, that is, purchase data collected in physical stores.
However, one of the main challenges of models for customer acquisition is that
the transaction history is not available for prospects. Hence, the researcher is
left with less informative variables such as demographics and psychographics for
profiling the top tier customers and identifying prospects that resemble these top tier
customers. The models developed in the online marketing literature, for example,

16Compare Eq. (8.45).
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Moe and Fader (2004), provide insights on how to deal with this challenge by
exploiting clickstream data or data on other non-purchase behavior.

Just as purchase data can be collected in physical stores, it can also be collected
in virtual stores, with the only difference that the data set of the virtual store, entails
more information. In particular, in online shopping environments, it can not only be
observed if, when, and what the customer purchased but also customer movements
“through the store” can be tracked; that is, what items visitors looked at, how long
they considered their decisions, in which sequence they bought items, and so on.
The availability of these click-stream data has led to another stream in research
focusing on the development of models that account for the richness of these data
sets and allow scholars to obtain customer insights at an unprecedented level of
granularity. Many of these models, at least implicitly, address customers’ future
purchasing probability. For example, Moe and Fader (2004) offer an individual-level
probability model that predicts the visits that are likely to convert to purchases. Not
only does their model control for different forms of customer heterogeneity, it also
allows shopping behaviour to evolve over time as a function of prior experiences.
Contrary to Moe and Fader (2004), Sismeiro and Bucklin (2004) take individual-
level sequencing information into account and propose a sequential probit model
that predicts online buying by linking the purchase decision to what visitors do
and to what they are exposed to while browsing a particular website. Montgomery
et al. (2004) propose a dynamic multivariate probit model that utilizes page-level
movements through a website to predict of purchase conversion. They model
clickstream data on a very disaggregate level, thereby improving the predictive
power with regard to understanding which users are likely to make a purchase and
which ones are not. Venkatesan et al. (2007) develop a selection model using CLV
as the selection criterion. Their model consist of different parts:

1. a joint model for purchase timing and purchase quantity;
2. a model that rank-orders customers by their maximized CLV;
3. a selection model that selects customers until the budget constraint is exhausted.

The first model predicts the CLVs for customers. The second and third model use
these predicted values to allocate the firm’s resources.

9.4.2 Models for Customer Acquisition

Once the decisions regarding which customers to focus have been taken, the next
question is how to allocate resources among marketing variables for leveraging
customer acquisition. Firms use various types of marketing activities for customer
acquisition, which differ according to the communication channel through which a
prospect is acquired and the message that is used to attract the prospect (Reinartz
and Venkatesan 2008). At the acquisition channel level, firms can acquire customers
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directly (i.e., marketing induced customer acquisition) through one of the following
channels: personal selling, mass media (e.g., radio and television), direct marketing
channels (e.g., direct mail and telemarketing), Internet, and retail outlets (Bolton
et al. 2004). At the same time, firms can use different messages (in terms of content
and design) to attract different customers. For example, messages may contain
brand-related information or price-related information.

Under the notion that different acquisition channels lead to different “qualities”
of customers (Villanueva et al. 2008), researchers have modeled the effectiveness of
different acquisition channels and have developed models to allocate the acquisition
budget more efficiently. Most of the applied models are probability models,
which incorporate covariates to explain variation in selected customer probability
metrics. For example, Verhoef and Donkers (2005) use variants of probit models to
explore how retention rates and cross-selling opportunities differ among the various
acquisition channels that a financial services provider uses.

Content-related and design-related attributes of the acquisition message are other
key elements of any marketing-induced acquisition campaign. Several researchers
have modeled the effects of price discounts on various customer metrics and
have provided models to improve price-related decision making in the context of
customer acquisition management. For example, Anderson and Simester (2004)
use a Poisson count model (Sect. 8.3) to conclude that customers acquired through
catalogs with more discounted items have higher long-term value.

We discuss a model which has been developed by Reinartz et al. (2005) to
balance acquisition and retention resources to maximize customer profitability. This
normative model consists of three parts:

• an acquisition model;
• a relationship duration (retention) model, and
• a customer profitability model.

Reinartz et al. (2005) specify a so-called probit two-stage least squares model which
consists of the following equations17:

z∗i = α
′
svi +μis (9.14)

zi =

{
1
0

if z∗i > 0
if z∗i ≤ 0

(9.15)

yDi =

{
β′DsxDi + εDis

0 otherwise.
if zi = 1

(9.16)

yLi =

{
β′LsxLi +γ

′
syDi + εLis

0 otherwise.
if zi = 1

(9.17)

17We closely follow Reinartz et al. (2005). A related model that studies acquisition and retention
simultaneously has been developed by Schweidel et al. (2008).
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where

z∗i = a latent variable indicating customer i’s utility to engage in a

relationship with the firm,

zi = an indicator variable showing whether customer i is acquired

(zi = 1) or not (zi = 0),

vi = a vector of covariates affecting the acquisition of customer i,

yDi = the duration of customer i’s relationship with the firm,

xDi = a vector of covariates affecting the duration of customer i’s

relationship with the firm,

yLi = the cumulative profitability of customer i,

xLi = a vector of covariates affecting customer i’s lifetime value,

αs,βLs,βDs = segment-specific parameters, and

μis, εLis, and εDis = error terms.

Equations (9.14) and (9.15) form the acquisition model. Equation (9.16) is the
relationship duration model and (9.17) is the cumulative profitability equation.
This is a recursive simultaneous system of equations model (compare Sect. 6.5).
Equations (9.14) and (9.15) constitute a probit model (compare Sect. 8.2.2) that
determines the selection/acquisition process. The duration (9.16) and profitabil-
ity (9.17) are observed only if the customer is acquired. Equations (9.16) and (9.17)
are conditional regressions determined partly by the acquisition likelihood of a
customer. Because of the structure of the recursive system of relations (9.14)–(9.17)
the model can be estimated in stages.18

Reinartz et al. (2005) calibrate the model using data from a large multinational
B-to-B high-tech manufacturer. The customers are B-2-B and B-2-C firms. The
products are durable goods. The marketing manager of this firm has the following
information at her disposal: data of each purchase, number of proactive manufactur-
ers, initiated marketing campaigns before that date, type of the campaign (telephone,
face-to-face, e-mail, website). Explanatory variables in (9.14) the variables are
different types of pre-acquisition contacts. Additional variables are the amount of
acquisition dollars spent for each prospect. The standardized parameter estimates of
the acquisition relation are shown in Table 9.2.

18The linkages among the three equations are captured by the error structure of this probit model
two-stage least squares model. Unbiased estimates are obtained, the inverse Mills ratio is estimated
and included in the duration model. Compare Sect. 8.5 (Footnote 24).
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Table 9.2 Standardized
parameter estimates of the
acquisition relation (9.14)

Variable Parameter estimates

Acquisition dollars −0.559∗∗

Squared acq. dollars −0.012∗

Telephone 0.298∗∗

Face-to-face 0.452∗∗

E-mail 0.271∗

Telephone × e-mail 0.086∗∗

Face-to-face × e-mail 0.052∗∗

Web 0.376∗∗

Industry type (B-to-B/B-to-C) 0.306∗

Annual revenue (of the customer) 0.414∗∗

Size of the demanding firm (employees) 0.370∗∗
∗p < 0.10; ∗∗p < 0.05
Source: Reinartz et al. (2005, p. 71)

From Table 9.2 we conclude that:

• all communication models have a positive impact on acquisition, face-to-face
communication having the greatest impact;

• there are positive synergies between telephone and e-mail and face-to-face and
e-mail;

• as the firm increases the acquisition budget, the associated acquisition rate will
be less responsive.

We return to the retention equation (9.16) in Sect. 9.6.

9.5 Models for Customer Development

CLV’s can grow through many marketing activities.19 This ultimately results
in growth in sales and margins (profitability), cross-buying, and upgrading (up-
selling). Many studies that propose models for customer development have appeared
in recent years.20 Venkatesan and Kumar (2004) use a regression model based on
past transactions and marketing mix variables to predict the contribution margin.
Using systems of equations within an extended service-profit chain framework,
Bowman and Narayandas (2004) link customer management efforts to customer
profitability.

19We closely follow Bijmolt et al. (2010).
20See Blattberg et al. (2008, Chapter 21); Reinartz and Venkatesan (2008); Bijmolt et al. (2010).
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Another class of models investigates cross-selling (e.g., Kamakura 2008).
Building on the idea that customers have predictable life cycles and, as a result,
buy certain products before others, Li et al. (2005) model the demand for multiple
products of the same provider (of banking services) over time. To this end, they
use a multivariate probit model. Lemon and Von Wangenheim (2009) develop a
“dynamic” model of cross-buying across loyalty program partnerships using data
form European airlines. Reinartz et al. (2008) apply a causal model to investigate
the direction of the relationship between cross-buying and behavioral loyalty. They
find that purchasing items for multiple categories is a consequence of behavioral
loyalty, and not an antecedent.

Other approaches to cross-selling comprise recommendation systems. The hid-
den Markov model of Netzer et al. (2008) that we discussed in Sect. 8.2.4 is another
example of a customer development model. The model guides the firm’s marketing
decisions to alter the long-term buying behavior of its customers.

An important development for consumers is their increased opportunity to collect
information and to order products from many channels. These channels include
the Internet, call centers, sales forces, catalogs, retail stores, interactive television,
and so on. Customers not only have more opportunities to contact firms, but the
number of opportunities for home delivery increased also. Companies such as
Peapod allow their customers to organize, in a customized fashion, their shopping
behavior electronically already for some time.

A related topic that receives also much attention is the modeling of channel
migration strategies: Hitt and Frei (2002) and Gensler et al. (2012, 2013) use
matching methods to determine the effects of channel migration.

9.6 Models for Customer Retention

Customer retention focuses on preventing customer attrition or churn, that is, the
termination of the contractual or non-contractual relationship between the customer
and the company. Reward/loyalty programs support marketing decisions that may
either lead to customer development and/or the reduction of churn.21 We make a
distinction between models that model the effects of reward/loyalty programs and
churn prediction models.

9.6.1 Models to Support Loyalty/Reward Programmes

Consumer participation in Loyalty Programs (LPs, also known as loyalty card,
rewards scheme, point card, advantage card or club card) continues to increase.22

21Surveys of research on loyalty programs are Bijmolt et al. (2010); Breugelmans et al. (2014).
22This text is based on Bijmolt et al. (2010).
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Academic research on LPs has been substantial with numerous issues which seem
not to abate over time. For example, the effectiveness of LPs remains a debated
issue in the literature. While some studies show positive impact of LPs on customer
behavior and firm performance (Liu 2007; Leenheer et al. 2007), other researchers
question the effectiveness of LPs (Hartmann and Viard 2008; Shugan 2005).

In most models that determine the effectiveness of LPs, the number of points
(“miles flown”, “coins”) are related to one or more components of customer’s CLV.
Examples are models by Kopalle and Neslin (2003); Lewis (2004) and Dorotic et al.
(2014). Dorotic et al. (2014) determine the effects of LP rewards and LP-related
promotions of a multi-vendor loyalty program (MVLP). In a MVLP cardholders
receive promotions intended to increase sales of the multiple participating vendors.
Dorotic et al. (2014) find low responsiveness of cardholders to loyalty program
related promotions.23

We now return to Eq. (9.16), the “retention model”. The duration of the relation-
ship with the firm is influenced by the amount of money that is spent on retention
(retention dollars), the contact channels that are used [as in Eq. (9.14)] and a number
of other variables such as the frequency of transactions, the number of categories the
customer buys in (cross-buying), the customer’s share of wallet with the local firm
and the relationship duration. The parameter estimates of the (censored) duration
relations are shown in Table 9.3.

Table 9.3 Standardized
parameter estimates of the
relationship duration
model (9.16)

Variable Parameter estimates

Acquisition dollars 0.501∗∗

Squared acquisition dollars −0.101∗

Telephone 0.328∗∗

Face-to-face 0.381∗∗

E-mail 0.152∗

Telephone × e-mail 0.093∗∗

Face-to-face × e-mail 0.077∗∗

Web 0.386∗∗

Frequency 0.417∗∗

Squared frequency −0.079∗

Cross-buying 0.288∗∗

Share-of-wallet 0.335∗∗

Lambda 0.299∗∗
∗p < 0.10; ∗∗p < 0.05
Source: Reinartz et al. (2005, p. 71)

Reinartz and colleagues find that many of the communication channels have the
same effect on duration as on acquisition. A remarkable difference is the positive but
decreasing effect of retention dollars on the duration. The parameter lambda, which

23A similar study has been performed by Lemon and Von Wangenheim (2009). More specifically
they model cross-buying across loyalty programs.
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represents the inverse Mills ratio, (0.299) reveals that the duration of a relationship
is correlated with the likelihood of acquiring a customer. This finding posits that a
customer who is more likely to be acquired is also expected to engage in a longer
relationship with the firm.

Reinartz et al. (2005) performed several simulations on the equations for
acquisition, duration and customer profitability and derive an optimal resource
allocation strategy.24

9.6.2 Churn Prediction Models

9.6.2.1 Introduction

Customer churn management25 focuses on the retention component rt(r) in
Eq. (9.1). Churn (c) is one minus the retention rate: c = 1 − r. At the customer
level churn refers to the probability the customer leaves the firm in a given period.
At the firm level, churn is the percentage of the firm’s customer base that leaves in
a given time period.

Several studies have investigated the churn or retention drivers in order to provide
companies tools on how to improve the effectiveness of retention programs and
hereby prolong the lifetime of customers.26 For instance, Verhoef (2003) found
affective commitment and loyalty programs to reduce churn.

In a non-contractual setting, the challenge is to infer whether a customer is still
active or not. Most models that have been developed to assess the probability that
a customer is still alive are probability models, such as the Pareto/NBD model
(Schmittlein et al. 1987). In contractual settings (e.g., mobile phone subscriptions),
customer churn is defined as the termination of the contract between the company
and its customer. In this context, the churn problem is traditionally stated as a
binary issue, where the aim is to predict whether or not a customer is likely to
defect during a pre-given time period. Neslin et al. (2006) provide an overview
of the binary models that were used by several academics and practitioners in the
context of the churn modeling tournament. Various binary choice models have been
used in the past. They include logistic regression analysis (Risselada et al. 2010),
decision trees, and discriminant analysis (see Kamakura et al. 2005 for a review).
An alternative way to tackle customer churn is to model the duration of customer
relationship with the firm. This stream of research uses hazard models (Sect. 8.4) to
predict the probability of customer defection (Bolton 1998).

A different approach consists of considering customers defections as transient.
The “always a share” retention model typically estimates transition probabilities of

24We neither discuss these results nor the parameter estimates of the profitability equation (9.17).
25Text based on Bijmolt et al. (2010).
26Overviews are given by Blattberg et al. (2008, Chapter 24) and Risselada et al. (2010).
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customers being in a certain state, where customer defection is defined as one of
these states. Transition probabilities are estimated using Markov models (Pfeifer
and Carraway 2000).

There a couple of issues that are specific for churn prediction models:

• aggregation of predictions of different models;
• specific validation criteria.

9.6.2.2 Aggregation27

Predictions that are based on churn models are biased on in-period or one-period-
ahead forecasts. The quality of these predictions depends heavily on the specific
sample. Building churn prediction models is a time-consuming and therefore costly
operation (Malthouse and Derenthal 2008). To obtain long-term churn predictions
firms need a good prediction method. We discuss four ways to obtain “good”
predictions. Risselada et al. (2010) study the so-called “staying power” of various
churn prediction models. Staying power is defined as the predictive performance of
a model in a number of (for example: three) periods after the estimation period.
Risselada et al. (2010) examine logit models and classification trees, both with
and without applying a bagging procedure. Bagging consists of averaging the
results of multiple models that have each been estimated on a bootstrap sample
from the original sample. Bootstrap samples are random samples of size n drawn
with replacement. The number of original observations in the bootstrap samples is
smaller than in the complete sample. Each sample leads to predictions and these
predictions can be averaged. This is also called “aggregation”. The intuition behind
aggregating multiple model results is that the quality of a single predictor might
depend heavily on the specific sample. Averaging predictions that vary substantially
will result in more stable predictors. Risselada et al. (2010) test the models using
customer data of two firms from different industries, namely an internet service
provider (ISP) and insurance markets. The results show that the classification tree
in combination with a bagging procedure outperforms the other three methods. It
is shown that the ability to identify high risk customers of this model is similar
for the in-period and one-period-ahead forecasts. However, for all methods the
staying power is rather low, as the predictive performance deteriorates considerably
within a few periods after the estimation period. This is due to the fact that both
the parameters estimates change over time and the fact that the variables that are
significant differ between periods. Their findings indicate that churn models should
be adapted regularly.

9.6.2.3 Validation Criteria

A measure that is commonly used for churn models is the top-decile lift (TDL). The
TDL is defined as the fraction of churners in the top-decile divided by the fraction of

27The following text is based on Risselada et al. (2010).
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churners in the whole set. This measure represents the ability of a model to identify
those customers that have a high churn probability, the so-called high risk customers.
The TDL can be computed as follows:

• use a model to predict churn probabilities;
• rank all customers on these probabilities from high to low risk;
• divide customers in ten groups;
• group 1 consists of these customers that have highest predicted churn probabili-

ties;
• TDL = (actual churn rate of group 1/overall churn rate)*100.

The second measure is the Gini coefficient, which does not only focus on the high-
risk customers, but considers the performance of the model across all customers.

The Gini coefficient is based on the cumulative lift curve,28 which graphs the
cumulative percentage of customers ordered by predicted churn rate (high to low)
on the horizontal axis against the observed cumulative percentage of churners on
the vertical axis. The solid line in Fig. 9.1 provides an example of a lift curve.
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28We closely follow Blattberg et al. (2008, pp. 329–320).
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The lift curve is compared against the base case where every customer has the
same churn probability, and churn predictions are based on random selection. The
lift curve for the base case is expected to look like the dashed line in Fig. 9.1. The
more the actual lift curve deviates from the base case, the better the churn model
can identify churners and non-churners. For example, in Fig. 9.1, by focusing on
the top 10 % high-risk customers, more than 30 % of the total number of churners
can be identified. The Gini coefficient is defined as the area between the model’s
cumulative lift curve and the lift curve that would result from random prediction
(area A in Fig. 9.1), divided by the theoretical maximum of this area, which is area
A + area B in Fig. 9.1. By construction, the Gini coefficient can only attain values
between zero and one, and a higher Gini coefficient indicates a better performance
of the churn model.

The Gini coefficient can be calculated as:

Gini coefficient=
N∑

i=1

(ci − ĉi)/(1− ĉi) (9.18)

where

ĉi = the proportion of the customers who have a predicted churn

probability equal or greater than customer i’s,

ci = the proportion of actual churners who are ranked equal or higher

than customer i in their churn probability,

N = the number of customers.

Hence, ĉi is the position of customer i on the dashed line in Fig. 9.1, and ci is the
position of customer i on the cumulative lift curve.

9.6.2.4 Application

Figure 9.2 shows the average top-decile lifts of the four different models which
have been investigated in the study by Risselada et al. (2010). The results have
been aggregated across estimation periods for the sake of clarity. The estimation
period is denoted by t. The ability of the estimated models to correctly identify
high risk customers is decreasing over time, since all lines are downwards sloping.
A substantial decrease in period t+2 can be observed. Furthermore, the figure shows
that the classification trees outperform the logit models in this respect, because both
the line of the tree model and the line of the tree + bagging model are above the lines
of the logit model. With respect to the effect of applying a bagging procedure, the
following can be observed. The logit model does not benefit from this procedure,
since both lines overlap in Fig. 9.2. However, the bagging procedure improves the
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Fig. 9.2 Average top-decile lifts of models estimated at time t (ISP data). Source: Risselada et al.
(2010, p. 203)

predictive performance of the classification tree substantially. Both for the in-period
and the one-period-ahead predictions the TDL is higher for the tree in combination
with a bagging procedure than for the single tree.

In Fig. 9.3, the average Gini coefficients of the four models are shown. Similar
to what we found for the top-decile lift, the overall performance of all models
decreases over time, indicated by the downwards sloping lines. Again, the tree
models outperform the logit models and the bagging procedure improves the
predictions of the classification trees but has little effect on the logit model results.

We now discuss the estimation results of one of the churn prediction models that
have been estimated by Risselada et al. (2010). In Table 9.4 the parameter estimates
of the single logit models are presented for each estimation period. The most
important observation is that the significance and size of the parameter estimates
change over time. Only 4 of the 25 variables (16 %) have a significant effect on
churn in all periods. None of these four effects changes in sign. Customers with a
higher revenue on their fixed phone line have a higher probability to churn on their
internet description and those with the cheapest fixed phone subscription (type 1)
have a higher churn probability than those with a more expensive subscription.
Customers that used carrier pre-select in the past have a higher probability to churn
and older people (age ≥ 65) have a lower churn probability than young people.
Three additional variables have a significant effect of the same sign in three of the
four periods and four variables have a significant effect in the same direction in
only two periods. There are five variables that have a significant effect only in Q1,
where the sign of the effect mostly stays the same in the subsequent periods though
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the effect is no longer significant. Finally, the effects of two variables, relationship
age ISP and connection speed medium are significant in Q1 and Q3, but the sign
of the effects is opposite in the two periods; in Q1 the effect is positive, in Q3 it is
negative, which clearly indicates low parameter stability.

9.7 Models for Customer Engagement

9.7.1 Customer Engagement and Customer Management

In Sect. 9.1 we define customer engagement as the behavioral manifestation from
a customer toward a brand or a firm which goes beyond purchase behavior (Van
Doorn et al. 2010).29 In this past decade much attention in marketing management
has been directed to customer engagement and customer value management.

Neglecting behavioral manifestations of this kind can lead to a highly biased
perception of a customer’s contribution to a firm. For example, Von Wangenheim
and Bayón (2007) find that the lack to incorporate WOM in the customer lifetime
value (CLV) calculation could lead to an underestimation of the CLV by up to

29Parts of this section are based on Bijmolt et al. (2010).
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Table 9.4 Parameter estimates of the single logit model (ISP data)

Period
Variable Q1 Q2 Q3 Q4

Revenue fixed phone line (e) 0.1038∗∗ 0.1605∗∗ 0.1097∗∗ 0.1248∗∗

Carrier pre-select 0.1608∗ 0.4869∗∗ 0.5716∗∗ 0.3507∗∗

Revenue fixed phone line (e) 0.1038∗∗ 0.1605∗∗ 0.1097∗∗ 0.1248∗∗

Relationship age company (months) 0.0000 −0.0007∗∗ −0.0010∗∗ −0.0012∗∗

Relationship age ISP (months) 0.0084∗∗ 0.0009 −0.0019∗ 0.0001

Connection speed (ref. cat. “slow”)

Medium 0.7834∗∗ 0.0199 −0.5348∗∗ −0.1809∗

High 0.8992∗∗ 0.3996∗∗ −0.1658 −0.1195

Fixed phone subscription (ref. cat. “standard”)

Type 1 (cheapest) 0.7715∗∗ 1.0344∗∗ 0.9207∗∗ 0.4580∗∗

Type 3 −0.2412∗∗ −0.1509∗ −0.0198 0.0340

Type 4 −0.2957∗∗ −0.0438 −0.1181 0.0846

Type 5 −0.4219∗∗ −0.2906∗ 0.1256 0.1229

Household size (ref. cat. “3”)

1 −0.3177∗∗ −0.1016 −0.1293 −0.1103

2 −0.1597∗ −0.0426 −0.0191 −0.0756

4 0.0132 −0.0853 −0.1349 −0.0796

5 0.3009∗∗ 0.1406 −0.0562 0.0100

>6 0.1219 0.0628 −0.2390 −0.3527∗

Age (ref. cat. “25–35”)

<25 0.0626 −0.0240 −0.1151 0.2874∗

35–45 0.0909 0.0048 −0.1234 −0.112∗

45–55 0.1169 0.0947 −0.0257 −0.0088

55–65 −0.2477∗∗ −0.2320∗ −0.1151 −0.1338

≥65 −0.4017∗∗ −0.2286∗ −0.3038∗∗ −0.3023∗∗

Income (ref. cat. “1.5 times standard”)

<Standard income 0.2101 0.2119∗ 0.3205∗∗ 0.4043∗∗

Standard income 0.0757 0.1762∗ 0.1109 0.3189∗∗

2 times standard income 0.0094 −0.1038 −0.0048 0.0173

>2 times standard −0.2028∗∗ −0.2498∗∗ −0.2147∗∗ −0.0876

Value added services fixed phone line −0.0057 −0.1553∗ −0.0476 −0.0603
∗p < 0.10; ∗∗p < 0.05
Source: Risselada et al. (2010, p. 204)

40 %. Thus, it seems essential to establish measures and models accounting for key
behavioral manifestations of customer engagement.

Customer engagement may be generated in different stages of the customer
life cycle: customer acquisition, customer development and customer retention
(including churn). We discuss models that can be used as supporting tools for each
at these stages.
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9.7.2 Customer Engagement and Acquisition/Selection

At the heart of the models for customer selection and customer acquisition,
discussed in Sect. 9.4, is an objective function used to discriminate among prospects
who differ in terms of their response likelihood for a campaign or their purchase
level. In the context of customer engagement, these rather purchase-related objec-
tives can readily be replaced by behavioral manifestations other than purchase
and be included in the “traditional” modeling approaches. For example, instead
of predicting future purchase levels, analytical models may be aligned to predict
the number of WOM referrals. Given the assumption that WOM communication
positively affects revenues, firms may be interested in targeting customers with a
high propensity to WOM. Bowman and Narayandas (2001) estimate two models for
predicting WOM. First, using a logistic regression model, they determine whether
a WOM referral is made. Then applying a truncated-at-zero NBD model, they
estimate the actual number of referrals, given that at least one referral was made.
A slightly more convenient approach for predicting WOM is offered by zero-
inflation models allowing a joint estimation of the binary and the count model. For
example, Von Wangenheim and Bayón (2007) use a zero-inflation Poisson (ZIP)
model (Sect. 8.3.2) in which the standard Poisson model is complemented by a
logit model. While the logit specification determines whether a referral is made, the
Poisson count model subsequently predicts the number of referrals. An appealing
side aspect of this model is that it allows for different sets of independent variables
predicting the binary and the Poisson model.

At the acquisition channel level, firms not only acquire customers directly
but also indirectly through referrals form the prospects’ social network. Under
the assumption that different acquisition channels lead to different “qualities” of
customers (Lewis 2006), firms also need to understand in which way the fact that a
customer acquired through WOM impacts its lifetime value. A suitable model for
this issue has been proposed by Villanueva et al. (2008) who developed a Vector-
Autoregressive model (VAR) model in order to capture WOM effects of a new
customer acquisition on customer equity growth.30

From a strategic perspective understanding how the process of consumer adop-
tion is affected by information communicated through mass media (external influ-
ence) and then spread via WOM (internal influence) has great importance for
customer acquisition. Different research methodologies attempt to investigate the
role and measurement of WOM:

1. There is a classic line of modeling based on Bass’ (1969) well-known diffusion
model. This classic line of research attempts to explain how marketing mix
strategies affect new product diffusions (Mahajan et al. 2000) and shows that
WOM effectively encourages people to start using a product. Usually, these
models use aggregate data.

30VAR-models are discussed in Volume II.
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2. The class of agent-based simulation models is a methodology that is especially
useful when agent rules and characteristics can be defined on an individual level,
when the population that adopts a new product is heterogeneous, and/or when the
topology of the interactions between individuals is complex and heterogeneous.
Examples of studies that use agent-based modeling are Goldenberg et al. (2009),
Katona et al. (2011), and Van Eck et al. (2011).

3. Discrete choice models. See, for example, Yang et al. (2012) who developed a
model to study consumer WOM generation and WOM consumption decisions
simultaneously using individual data.

4. VAR models, discussed in Volume II.
5. Spatial models, discussed in Volume II.

The acquisition of new customers can also be realized by seeding strategies.
In a seeding strategy one determines which kind of people one wants to sent a
message. Should one “seed”, “hubs” (well-connected people with a high number of
connections to others), “fringes” (who are poorly connected), and “bridges” (who
connect to otherwise unconnected parts of the network).31 The choice of a seeding
strategy determines the success of a viral marketing campaign.32

Godes and Mayzlin (2009) developed a model to find out what kind of WOM
drives sales. Their model studies WOM for a restaurant chain which does business
in 15 (regional) markets in the United States. The restaurant chain maintains a
loyalty program centered around one of their five product line categories. BzzAgent
is a marketing agency engaged in the business of creating WOM communication
for its clients. Godes and Mayzlin (2009) designed and implemented a field test
to determine the effects of WOM of loyal/non-loyal customers, of opinion/non-
opinion leaders, of acquaintances/friends and relatives on sales. The field test, which
lasted 13 weeks, involved a comparison of the WOM created by the members of the
firm’s loyalty program on the one hand, and the agency’s panel (BzzAgent) who
approached the non-members of the loyalty program on the other hand. Godes and
Mayzlin (2009) estimated their model using data of the amount of WOM created
by each agent over those 13 weeks and the recipients. Agents made reports and
determined the type of relationship. Their (aggregate market-level) model has the
following structure:

S it =
∑

j∈{C,N}

⎡
⎢⎢⎢⎢⎢⎣

∑

r∈R
wr

jWOMr
i j,t−1

⎤
⎥⎥⎥⎥⎥⎦+

15∑

i=2

μi +

12∑

t=2

τt + εit (9.19)

where

S it = sales of a certain category in market i in week t,

31See Trusov et al. (2010); Hinz et al. (2011).
32Van der Lans et al. (2010).
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WOMr
i j,t−1 = WOM the total number of reports filed in week t−1 in market

i that reflect WOM from someone in condition j (customer or

non-customer) to a person or people with whom they have a

relationship that can be characterized by r,

r ∈ R = friend, relative, acquaintance, stranger, other: the set of possible

relationships between the sender and receiver of WOM information,

j ∈ {C,N} = the customer condition of the sender where a distinction is made

between a customer (C) and a non-customer (N),

μi = fixed effects for the regional market (where the restaurant chain

operates), i = 1, . . . ,15,

τt = fixed effects for the week, t = 1, . . . ,13, and

εit = a disturbance term.

Godes and Mayzlin find that different forms of WOM have different effects on sales.
So, for example, the WOM created by the agency (non-customers) has a significant
and measurable effect on sales. These effects are higher than the effects of WOM
created by customers.

Another area to account for customer engagement in the context of acquisition
models is to predict consumers’ willingness/ability to engage in co-creation activ-
ities for new product development (Fuchs et al. 2010). Since customers often vary
highly in their willingness and ability to participate in co-creation tasks (Hoyer
et al. 2010), firms are becoming increasingly interested in preselection mechanisms
to identify segments of consumers who might be particularly willing and able to
participate (Hoffman et al. 2010). Here, customer selection models incorporating
major drivers of customer willingness and ability to co-create, such as scoring
models can be applied. In addition, co-creation, especially in an online environment,
is likely to produce large volumes of customer input that often requires a firm
“screening millions of idea” (Hoyer et al. 2010). In order to overcome this problem,
firms are interested in suitable preselection models. An example of such a selection
model is a logistic regression model developed by Bayus (2013). Bayus studied 2
years of publicly available data form Dell’s IdeaStorm community. Dell (computers)
and Starbucks (coffee) have large communities that suggest, discuss and vote on
thousands of new product and service ideas. Dell is outsourcing their ideation
efforts in an attempt to get fresh ideas into their innovation process. Dell uses
crowdsourcing:

. . .“the act of taking a task once performed by an employee and outsourcing it to a large,
undefined group of people external to the company in the form of an open call.” (Bayus
2013, p. 226)
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The selection and acquisition of customers is heavily influenced by online reviews,
search (engine) advertising (Ghose and Yang 2009; Joo et al. 2014; Anderson and
Simester (2014); Zenetti et al. 2014), brand posts on brand fan pages (De Vries et al.
2012), and blogs (Gopinath et al. 2013).

A number of models determine the effects of (online) product ratings on sales.33

Research shows that positive online reviews are less valued than negative reviews.
The selection/acquisition of customers based on online reviews is also influenced by
social dynamics. Ratings behavior is significantly influenced by previously posted
ratings. Sridhar and Srinivasan (2012) developed a (nested) ordered logit model
in this respect. Moe and Trusov (2011) develop a rating model based on a hazard
model. Ho-Dac et al. (2013) demonstrated that online customer reviews have no
significant impact on the sales of strong brands. They discovered a positive feedback
loop between (high) sales and the number of positive online customer reviews for
weaker brands. Ho-Dac et al. (2013) estimated a three-equation model to account for
endogeneity between the dependent variables such as sales and positive and negative
online reviews.

9.7.3 Customer Engagement and Customer Development

Accounting for customer engagement in the development stage requires under-
standing how behavioral manifestations such as WOM, co-creation activities, and
complaining behavior impact a CLV.

With regard to WOM, Goldenberg et al. (2007) explored the effects of individual
and network-level negative WOM on profits using an agent-based model. They
found that the effect of negative WOM on the Net Present Value (NPV) of the firm
is substantial, even when the initial number of dissatisfied customers is relatively
small. Trusov et al. (2009) study the effect of WOM on member growth at an Internet
social networking site. The authors find that WOM-elasticities are approximately 20
times higher than that of marketing events and ten times than of media appearances.

Brand communities can create value among networked firm-facing actors, as
such, the active management and stimulation to co-create is another important
task. Bagozzi and Dholakia (2006) investigated the antecedents and purchase
consequences of customer participation in brand communities. To disentangle the
many variables that play a role in these interactions between community members,
brands, and purchase they use Structural Equation Models34 on the trade-off
between the costs for a firm to stimulate consumer participation (e.g. financial
rewards) and the benefits that firms receive (Hoyer et al. 2010).

A further manifestation of customer engagement, which is likely to affect CLV
are customer complaints. On the one hand, firms recognize that complaints represent

33See for overviews: Sridhar and Srinivasan (2012); Chen and Lurie (2013).
34Structural Equation Models are discussed in Volume II.
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an opportunity to remedy products or service-related problems and to positively
influence subsequent customer behavior. There is considerable evidence that dealing
effectively with complaints can have a dramatic impact on customers’ evaluations
of customer experiences as well as enhance their likelihood of repurchase and limit
the spread of damaging negative WOM.

9.7.4 Customer Engagement and Retention

Traditional approaches to manage customer retention have focused on predicting
which customers are most likely to churn and then target auctions to those customers
to induce them to stay. However, they have generally mostly ignored the notion of
customer engagement to the firm when making such decisions. Nitzan and Libai
(2011) explore the role of customers’ social network in their defection from a service
provider. They find that exposure to a defecting neighbor is associated with an
increase of 80 % in the defection hazard. Their findings are based on a (proportional)
hazard model (see Sect. 8.4).

Other churn prediction models have been developed by Ascarza and Hardie
(2013) and Haenlein (2013). Haenlein (2013) focuses on the importance of social
interaction in the customer retention process within a social network. His study
provides evidence for social interactions in customer churn decisions. Heanlein
demonstrates that a focal actor is more likely to defect from a provider if other
individuals to whom that actor is socially connected have previously defected from
the provider.

9.8 Summary of Database Marketing Models

In this chapter, we provided key examples of database marketing models helpful to
enhance customer acquisition, development, retention, engagement and marketing
productivity. We explained the concept of customer lifetime value (CLV) as the
cornerstone of database marketing and to demonstrate the value of marketing in
increasing CLV and thus firm profits. Future research may adapt database marketing
to further sustainable competitive advantage. With the increase in Big Data on
customer-specific actions and reactions, we expect database marketing models to
continue to thrive.
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Chapter 10
Use: Implementation Issues

10.1 Introduction

In this chapter we discuss several issues that are related to the actual use of a model.
We first examine the determinants of model implementation. We categorize the
dimensions that contribute to the likelihood of implementation as follows:

• model-related dimensions;
• organization-related dimensions;
• implementation-strategy dimensions.

The likelihood of implementation depends on the model itself. In Chap. 2, we
formulated criteria that a model should satisfy: a model must be simple, complete,
adaptive and robust. If a model satisfies these criteria it has a good chance of
being implemented. However, such model structure “requirements” are necessary
but not sufficient. The model parameters must be estimated reliably, an aspect we
examined in detail in Chaps. 4, 6 and 8. Model acceptance will also be determined
by any validation history, in the sense that successful validation experience will
positively contribute to acceptance (Chap. 5). Model structure, parameter estimation
and model validation are all part of the validity component of the probability of
success in implementation. Another model-related dimension is the cost-benefit
trade-off. A model may do very well in the sense of being correct and complete
and yet it has no chance of being implemented if the model benefits do not exceed
the costs. In Sect. 10.2 we discuss model-related dimensions that affect model use.

The probability of model implementation also depends on a number of contin-
gencies related to the organization for which the model building project is carried
out: organizational validity. Organizational validity comprises personal, interper-
sonal and organizational factors. Personal factors include the characteristics of the
user, interpersonal factors relate to the interface between model user and model
builder, and organizational factors consist of characteristics of the organization, and
its environment. We discuss organizational validity in Sect. 10.3.
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The basic strategy for implementation is the continuous model builder–model
user interface, underlying a process view of model building as described in Sect. 1.5.
Two aspects of the model-building process deserve further comment: model scope
and the evolutionary nature of model building. We examine these aspects along with
the model’s ease of use, another element of implementation strategy, in Sect. 10.4.

Finally, we spend attention to marketing management support systems, dash-
boards and metrics in Sect. 10.5

10.2 Model Related Dimensions

10.2.1 Cost–Benefit Considerations

The development and use of models is justified if the (expected) benefits exceed the
(expected) costs. For a firm that has adopted a model, this implies that profit with the
model should be greater than without it. Of course this is not easily operationalized.
After estimation and validation, we can quantify the benefits and make a comparison
with the costs incurred (see Fig. 1.5).

A decision maker, in choosing a strategy which is based on model assumptions,
weighs two major factors:

• the benefits to be derived from the strategy;
• the cognitive effort and costs associated with:

– building a model, and
– using that model.

The costs of model utilization are important for the model builder and the model
user. If the perceived or actual costs of using a proposed model are excessive, it
may be advisable to formulate a simpler model. The model builder should focus
closely on the effort required for model use, because barriers to model use will lead
to rejection of the model. Counterproductive use may occur if the model is more
complex than needed. Model complexity by itself, however, does not have to deter
the user. Most users do not need to see the model details and they often do not want
to see the complexities. Rather, they want a model that provides output they can
understand and relate to. This output should be valid and reliable, and if the model
allows the user to play relevant “what if” games, the user should not have to confront
the model complexities. This is one of the advantages of using dashboards, that are
discussed in Sect. 10.5.
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10.2.1.1 Benefits

In Sect. 1.4, we made a distinction between direct benefits and side benefits. Direct
benefits are the improvements in decisions that result from model use. Side benefits
are those generated from model use that were not intended or expected.

The quantification of direct benefits is difficult for a number of reasons.

• Often the benefits of a model are determined on the same data used for model
testing and parameter estimation. Such a comparison between situations in which
the model is used versus not used would be biased in favor of the model.1

• For normative models it is possible to compare marketing decisions based on
model output with the decisions that would have been made in the absence
of a model. However, for descriptive models no optimal decisions are implied.
One could propose to compare the estimated parameters with what managerial
judgments would have generated, but such a comparison does not quantify
the (possible) benefits from model use. If an estimated demand model is used
for decision making, then it should be possible to compare the quality of the
decisions with what would have been done without the model. Obviously, these
comparisons are not straightforward.

• In all instances in which comparisons are made, the implicit assumption is that
the model represents reality. In a limited way this is a testable proposition. The
other way to think of it is that the benefits cannot be determined until after
decisions have been made (or could have been made) based on the model. Indeed,
we advocate that this be done repeatedly so that the model’s limitations get
clarified.

Examples are found in the literature that demonstrate how benefits are determined
for specific models.2

10.2.1.2 Costs

We consider the following cost components:

(a) initial development costs;
(b) maintenance costs;
(c) costs inherent to model use;
(d) costs of marketing data.

(a) Initial Development Costs

The cost of initial model development tends to be fixed. It is incurred once, when
the project is first undertaken by the marketing science department or information

1See, for example, Doyle and Saunders (1990).
2See, for example, Bult and Wansbeek (1995); Kumar et al. (2009); Wiesel et al. (2011).
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system group within the firm. Alternatively, an outside consultant may be asked to
develop and test a model for a fixed fee (Lilien 2011). If a model already exists, and
can be rented from a consulting firm, then the entire cost becomes variable in that it
depends on, for example, the frequency of use.

(b) Maintenance Costs

Model development is not a one-shot event. Maintenance costs relate to updating the
model, such as, changing its structure, updating the parameter estimates, etc. These
costs will be partly fixed, partly variable, in the sense that the frequency of structural
change will depend on use intensity as well as dynamics in the marketplace.

(c) Costs Inherent to Model Use

Costs inherent to model use are:

• managerial time;
• the cognitive effort required of the decision maker to interact with the model, and
• the cognitive effort required to process the information generated by the system.

The managerial time required for model development and model use needs to be
considered as a cost. This time may be assessed in terms of the manager’s salary.
This time cost can be compared against the possible reduction in time that results
from having the model do part of the job the manager used to do. For example,
managers may spend less time on programmed and structured activities such as
inventory management, media allocation, sales force management and control,
and judging the consequences of alternative marketing programs. They will have
more time available for unstructured activities such as the creation of entirely new
marketing programs. This reallocation of time can result in important benefits.

(d) Costs of Marketing Data

The model builder has to specify a model that is theoretically appropriate and
substantively meaningful. It also needs to be subjected to data. In order for the model
to provide relevant output, the model builder needs data that fit the properties of the
model. The data have to be collected or purchased.

10.2.2 Supply and Demand of Marketing Response Models

10.2.2.1 Introduction

In the past 30 years market response models have diffused in the practitioners’
community.3 Leading firms, especially in consumer goods and services, database
marketing companies and traditional market research companies develop and use

3The text of this subsection is based on Hanssens et al. (2005).
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increasingly sophisticated models and analyses. The successful implementation of
models depends on data availability, the methodology used, and other characteris-
tics. It appears, however, that sophistication in model specification and estimation
are often not conducive to acceptance. Research on actual model use is scarce.4

Marketing practice commonly focuses on relatively simple approaches such as
data splitting, cross-tabulations and/or univariate frequencies.

It appears that many models appearing in the academic literature have little
relation to marketing practice. Such models often deal with specific problems,
are more descriptive than prescriptive, and include complexities that reduce the
chance of implementation in practice. There is a tension between the objectives
of academic research and the needs of managers. Research tends to be favored
for publication in the premier academic journals if it meets the standards of the
academic community. Neither relevance to real-world problems nor likelihood of
implementation is normally a critical consideration (Leeflang 2011).

In what follows we concentrate on marketing response models that may be
used in marketing practice. We provide an overview of the demand and supply
of these models in Table 10.1. We distinguish standardized models, empirical
generalizations, models of the firm and idiosyncratic models at the supply side.
Model outcomes are used by marketing managers, senior executives, researchers,
public policy officials and attorneys. Most existing models are intended for the
benefit of marketing managers.

Table 10.1 Demand and supply of market response models

Supply
Idiosyncratic Standardized Models of

Demand models models Generalizations the firm

Marketing management ± ++ ++ −
Senior executives + ± ++ ++

Public policy and litigation ++ − − −
++ highly relevant, + relevant, ± maybe relevant, − not relevant
The stated relevance originates from the authors
Source: Hanssens et al. (2005, p. 425)

Much of marketing decision making is of a repetitive or a tactical nature. For
example, advertising expenditures, sales promotion budgets, shelf space allocations,
prices, margins, etc. have to be determined for each period. The consideration
of changes in decisions is facilitated by the development of ever more detailed
databases, for example those developed by AC Nielsen, IRI (Information Resources
Inc.), IMS Health (the leading global provider of market information to the
pharmaceutical and health care industries), and GfK. The availability of these

4An excellent survey of applications of marketing science models is given in Lilien et al. (2013).
See also Vriens (2012, Chapter 4).
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databases also makes it easier to justify the use of econometric modelling (e.g.
bimonthly audit data would not permit the estimation of deal effect curves).5

Furthermore, the increasing frequency and amount of marketplace feedback also
demands a systematic approach for data analysis.

10.2.2.2 Supply Side

Idiosyncratic Models

Idiosyncratic models are developed to tackle specific marketing problems. Most
marketing models are idiosyncratic models. Examples are the customization of
marketing efforts,6 the role of social media,7 banner advertising,8 search engines,9

weblogs,10 and the impact of user-generated content11 in consumer decision making
processes. These are unique models for unique applications and are usually rather
complex. As another example we refer to models that have been developed to
overcome a product-harm crisis (Van Heerde et al. 2007; Cleeren et al. 2008;
Cleeren et al. 2013).

Standardized Models

Standardized models have become important tools to improve the quality of tactical
marketing decisions at functional levels such as brand management. We define a
standardized model as a set of one or more relations where the mathematical form
and the relevant variables are fixed. A variation consists of the use of subsets of
relations as modules. This is attractive if the relevance of modules depends on,
say, client factors. In a module-based approach, the structure of each module is
fixed. Of course the estimated equations will often still vary somewhat between
applications. For example, predictor variables can be deleted from the relations
based on initial empirical results. Standardized models are calibrated with data
obtained in a standardized way (audits, panels, surveys), covering standardized
time periods. Outcomes are reported in a standardized format such as tables with
predicted own-item sales indices for all possible combinations of display/feature and
specific price points (SCAN*PRO, see Sects. 7.3.2.2 and 6.8.7) or predicted market

5Van Heerde et al. (2001).
6See Ansari and Mela (2003); Valenzuela et al. (2009).
7Stephen and Galak (2012); De Vries et al. (2014).
8Manchanda et al. (2006).
9Zenetti et al. (2014).
10Onishi and Manchanda (2012).
11See also the special issue of Marketing Science: vol. 31, no. 3.
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shares for new products (ASSESSOR, Urban 1993). SCAN*PRO was developed
by Nielsen based on clients’ needs for quantified expressions of the impact of
temporary price cuts. The availability of more detailed data (at the SKU level for
many metropolitan areas) at more frequent intervals (weekly versus bimonthly)
avoided many aggregation concerns that used to hamper model estimation, and at the
same time mandated a different approach for managers to interpret market feedback.
IRI created similar models (Abraham and Lodish 1990).

Wide applicability of these models is not possible without the availability
of detailed data sets for many products and access to appropriate software and
estimation methods. The model building exercise is often a compromise between
a desire to have complete representations of marketplace phenomena and the need
to have simple equations. The model builder and the model user must understand
how results can be interpreted, what limitations pertain to the model, and in what
manner the model can be extended to accommodate unique circumstances. To
achieve implementation of model results, the structure of standardized models is
often simple and robust. We provide a few examples of standardized models in
Table 10.2.

One benefit of standardization is that both model builders and users can learn
under which conditions the model fails so that the base model can be adjusted over
time: evolutionary model building: see Sect. 10.4.2.

Table 10.2 Supply: examples of standardized models

Questions Models Suppliers

1 Sales effects SCAN*PRO AC Nielsen

PROMOTION SCAN IRI

MICRO TEST (new product) Research International

BPTO (Brand Price Trade-off Analysis) Research International

MEDIA DRIVER IRI

2 Interaction effects SCAN*PRO AC Nielsen

PROMOTION SCAN IRI

3 Competition SCAN*PRO AC Nielsen

4 Category demand ASSORTMAN AC Nielsen

5 Short versus long term effects RANGE OPTIMIZER Research International

EQUITY ENGINE Research International

LT MEDIA DRIVER IRI

Source: Hanssens et al. (2005, p. 425)

Generalizations

Managers benefit from having performance benchmarks relative to the competition.
The use of benchmarks in market response is subject to the uncertainty inherent
in parameter estimates. Empirical generalizations, derived from meta-analyses of
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market response estimates, provide one basis for benchmarks. For example, extant
research includes average price and advertising elasticities, and decompositions of
sales effects resulting from temporary price cuts. The assumption is that brands,
product categories and markets are comparable at a general level. However, the
analyses also allow for systematic variation across brand/model settings in an
identifiable manner. We discussed a number of these generalizations in Sect. 1.3.2.

Models of the Firm

The empowerment of consumers as active parties in the customization of products
and services and the increasing focus on the creation of customer value bode well for
the strategic importance of marketing.12 This evolution also poses a new challenge
for market response modellers. Recognition of the value of models in the boardroom
requires a broader focus that includes the long-term sales impact, cross-functional
relations, such as supply-chain effects that facilitate consideration of profit, and the
impact on capital markets. Here we touch the marketing/finance interface.

After the start of the financial crisis in 2007 marketers are increasingly being
challenged to measure and communicate the value created by their actions on share-
holder value.13 Such impact on firm valuation may occur through improving the

• magnitude;
• speed, and
• safety,

of cash flows.14 Especially the demand regarding accountability requires marketing
to look beyond its impact on top-line performance to its effects on firm value.
Figure 10.1 presents a framework of how such links may be established through
marketing effects on company cash flows and firm value.

In Fig. 10.1, we posit two process mechanisms that make explicit the contribution
of marketing to firm value creation through the creation of market-based assets
(see also, Joshi and Hanssens 2010). Specifically, we follow the framework of
Srinivasan et al. (2011) in delineating two mechanisms whereby marketing affects
firm value. First is an indirect route wherein the market-based assets enhance firm
value indirectly through their effects on cash flows. Second is a direct route that
considers the market-based asset serves as information. In this route, the marketing
acts as a visible signal of the financial well-being of the firm, and directly influences
firm value.

12See Sect. 9.7.
13This text is based on Srinivasan et al. (2011).
14Srivastava et al. (1998).
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Cash Flow Framework: Marketing as an Asset

The efficient market hypothesis implies that stock prices reflect all known informa-
tion about the firm’s future earnings prospects (Fama 1970). For instance, investors
may expect the firm to maintain its usual level of advertising and price promotions.
Developments (in the form of unexpected changes) that positively affect future cash
flows result in increases in stock price while those negatively affecting cash flows
result in decreases. Srivastava et al. (1998) argue that shareholders are motivated by
three distinct behaviors of cash flows: magnitude, speed and volatility. We discuss,
in turn, how marketing may influence each component.

MARKETING
ACTIONS

Advertising

Promotions

Distribution

Product

CASH
FLOWS

Acceleration of cash flows

Increase in level of
cash flows

Decrease in volatility and
vulnerability of cash flows

FIRM
VALUE

Enhancement of the
residual value of cash flows

Stock returns

Systematic risk

Idiosyncratic risk

Upside risk

Downside risk

Marketing as asset (indirect route)

Marketing as information (direct route)

Fig. 10.1 Conceptual framework: the marketing finance interface. Source: Srinivasan et al. (2011,
p. 89)

Magnitude: Enhancing cash flows. Marketing actions, which can involve sub-
stantial costs in the short run, can increase shareholder value by enhancing the
level of cash flows (i.e., more cash), notably by increasing revenues and lowering
costs. Most previous studies in marketing literature demonstrate this link; whether
the marketing action is new product introductions, price promotions, new distribu-
tion/communication channels or advertising.

Speed: Accelerating cash flows. Marketing investments can enhance shareholder
value by accelerating cash flows (i.e., faster cash). The acceleration of cash flows
is affected by the faster speed of customer-value generating marketing initiatives
relative to competition. For example, when a product extension announcement
occurs, investors will decide to buy or sell company stock based on expectations
of how the new extension will affect future cash flows (Lane and Jacobson 1995).
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If investors value such extensions, this will result in increases in stock price.
Apple’s announcement of successive generations of the iPhone (3G, 3GS, 4G)
resulted in acceleration of cash flows for Apple. There is limited empirical evidence
(Pauwels et al. 2004; Srinivasan et al. 2009) thus far, that relate cash flow
acceleration to shareholder value.

Safety: Lowering volatility of cash flows. Finally, marketing investments can
increase shareholder value by lowering the vulnerability and volatility of these cash
flows (i.e., safer cash), which lowers the firm’s systematic risk and results in a lower
cost of capital or discount rate (e.g., Srivastava et al. 1998; McAlister et al. 2007).
Osinga et al. (2011)’s findings suggest that collective benefits of direct-to-consumer
advertising (DTCA) expenditures for pharmaceuticals insulate a firm’s stock from
market downturns and thus lower its systematic risk. Thus, all else equal, cash flows
that are predictable and stable have a higher net present value and thus create more
shareholder wealth.

Signaling Framework: Marketing as Information

Research suggests that stock markets reflect an environment of information asym-
metry between firms and investors (Myers and Majluf 1984). The signaling
framework contends that economic information that is uniquely known by manage-
ment (e.g., competitive viability) will be conveyed to shareholders through various
signals, one of which is the customer-as-investor-signal. This is the second route by
which marketing can affect firm value as noted by Srinivasan et al. (2011). Several
studies in marketing (Joshi and Hanssens 2010; Osinga et al. 2011) use a signaling
perspective to explain the effects of marketing on firm stock prices. Research
suggests that firms with strong advertising are well-known and this reputation effect
signals lower risks of the firm’s stock to the investors (McAlister et al. 2007; Rego
et al. 2009; Srinivasan et al. 2011; Xiong et al. 2013; Vitorino 2014).15 Also,
advertising increases demand for a firm’s stock as it enhances the firm’s salience for
individual investors (Barber and Odean 2008). The finding of Osinga et al. (2011)
of the positive effect of DTCA on returns is also consistent with the marketing as
information route given that advertising expenditures grew rapidly after the DTCA
regulation relaxation for pharmaceuticals, herewith enhancing the visibility of, and
attention for, pharmaceutical firms. Furthermore, DTCA serves as an informational
mechanism for individual investors, for example about new product launches and
hence should enhance investor involvement with the company. Such involvement
may cause individual investors to pay more attention to firm-specific news, such as
clinical concerns, which would result in a stronger investor response to company
news about stock returns.

15Other marketing efforts also have significant effects on stock prices/value of the firm. Examples
are the timing of the introduction of innovations (Moorman et al. 2012) and brand quality
(Bharadwaj et al. 2011); see Srinivasan and Hanssens (2009) for a survey.
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Other Business Functions

The consideration of marketing models by senior executives requires that the
work is closely aligned with other business functions, in particular with operations
management. For example, response models have been used extensively to estimate
the impact of sales promotions on sales. For a discussion of the challenges in
the integration of marketing and operations management, see Karmarkar (1996)
and the Special Issue on “Marketing and Operations Management Interfaces and
Coordination” of Management Science 50(4) (2004).

10.2.2.3 Demand Side

In the previous section we already discussed the role of models for marketing mana-
gers and senior executives. Here we spend specific attention to the contributions
models may have to solve public policy problems and to the resolution of legal
problems.

Public Policy

Due to increased sophistication in marketing models and access to unique databases,
academic researchers in marketing have an enhanced opportunity to contribute to
the resolution of policy issues. The effect of advertising on consumer demand
for products deemed to be harmful to social interests (public health, consumer
safety, etc.) has received much attention. Examples of such products are tobacco16

and alcoholic drinks. Models used by public-policy makers have been critically
evaluated by marketing model builders. Such models may apply to several levels
of demand. For example, brand sales models are used to estimate the effects
of advertising bans, sales promotion bans, price regulations, etc. on brand sales.
It is often particularly relevant to determine differences in effects between smaller
or newer brands and market leaders. A recurring question in the litigation of
advertising and tobacco products is whether manufacturers are accountable for
damages in proportion to their brands’ market shares or to their advertising spending
levels.

Industry sales models have been used to estimate the effects of public policy
decisions at a broader level. Relevant questions are:

• What is the effect of an advertising ban on total category consumer demand?
• What is the effect of a taxation-induced price increase on demand and on tax

revenues?

16Capella et al. (2011).
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These questions apply readily to tobacco products and alcoholic drinks, but also to
gasoline and electricity markets. Examples of published market response models
include Hu et al. (1995) for cigarettes, and Ornstein and Hanssens (1987) for
distilled spirits and beer. Interaction effects such as the effect of advertising on
price sensitivity are relevant to public policy questions as well. We discussed this
issue extensively for pharmaceuticals in Sect. 7.3.2.3. There we discussed a study of
the effect of marketing expenditures for prescription drugs on the price-elasticity of
demand in the short- and the long-term. If marketing dampens the price elasticity,
policy makers are inclined to believe that marketing should be restricted. However, if
marketing improves the ability of a physician to identify the most suitable treatment
for the disease of a particular patient, the price elasticity should also move toward
zero.

Relatively little attention so far has been given to cross-category effects of an
advertising ban. Duffy (1991) examined this by calibrating a model that accounts
for interactions between beer, spirits, wine, and tobacco. He found a strong negative
relation between tobacco and beer consumption. Thus, the reduced consumption
of tobacco that might follow an advertising ban would be expected to result in a
consumption increase in another “harmful” product category.

Recent time-series models focus on the effects of market shake-ups. Market
shake-ups are events that are expected to change the market structure such as future
values of relevant variables (sales, market shares) and/or relationships between
variables (such as competitive reaction functions). Market shake-ups may appear at
different levels of aggregation. A change in legislation (macro level), the acceptance
of a new technology (industry level) or the entry of a radical new entrant (brand
level) may have a permanent effect on the market structure. Time series models are
useful to detect the long-run consequences of such events.17

The Federal Trade Commission (FTC) considers the impact on competition of
potential mergers and acquisitions. For example, whether Nestle’s acquisition of
Dreyer’s premium ice cream would have deleterious effects on competition was
considered by economists in terms of whether premium ice cream constituted a sep-
arate market. Market-level scanner data were used to estimate own- and cross-brand
price elasticities. However, since most of the price variation represents temporary
discounting, adjustments should be made for cross-period (or stockpiling) effects.

Litigation

Market response models have been used in litigation for a long time. For example,
in the 1960s, the Lydia Pinkham vegetable compound sales and advertising data
became available for research due to a court case.18 Rumors about a brand,
catastrophic events and unfair competition are examples of factors that may have a

17Kornelis et al. (2008).
18Palda (1964).
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negative effect on brand sales. Marketing mix models provide a basis for estimation
of damage caused by these factors. In one case a broadcasting station spread
improper news about a brand and was found liable by the court. Damage to the
brand was to be estimated based on a marketing mix model. However, the model
result revealed that increased competition and lower marketing investments were
the critical factors that accounted for the decrease in brand sales. Thus, the news
item had little negative effect on sales (Exota, Netherlands). In contrast, the well-
publicized sudden acceleration rumor around the Audi 5000 in the US had a strongly
negative sales impact, not only on sales of this product, but on the entire Audi
brand.19

In another case, AKZO(-Nobel) (Germany) was alleged to have supplied harmful
ingredients to a Unilever subsidiary for the production of the brand Iglo (frozen
food, ice creams). Two people were poisoned after consuming Iglo’s frozen food.
Due to an incomplete recall procedure, two more people became sick from Iglo’s
products in a subsequent period. Hence the manufacturer of Iglo incurred two
successive catastrophic events, both of which could affect the brand’s sales, category
sales (frozen food), sales of other Iglo products (cross category effects) and Iglo’s
brand equity. For the estimation of impact, no data on marketing variables were
available so that time series models were applied to category sales, brand sales and
market shares with two intervention dummy variables. The separation of the two
events provided the basis for the allocation of the total damage between the supplier
and the manufacturer.

10.3 Organizational Validity

In this section we discuss personal, interpersonal and organizational factors that
are part of organizational validity. Research on model implementation, database
systems and on computerized decision support systems (Sect. 10.5) has identified
these factors as being influential.

10.3.1 Personal Factors

Models should ideally be custom built, and developed in accordance with the
integrative complexity of the model user. Integrative complexity is the ability of
an individual to integrate information on multiple dimensions in a complex fashion.
Integratively more complex individuals can perform higher levels of information
processing than integratively simple individuals. Thus, a model should be developed
for a specific user in such a way that the model fits the manner in which the user
makes decisions.

19Sullivan (1990).
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Successful implementation also depends on “user involvement” and “personal
stake”.20 Not surprisingly, greater user involvement leads to higher implementation
success rates. User involvement is also central to the degree of interaction between
developer (researcher) and user (manager). The more involvement between the two
sides in terms of quantity and quality of interaction, the more likely it is that mutual
confidence develops (see below).

Personal stake is the extent to which a model leads to better performance for
the model user. If the model can be shown to improve the quality of a manager’s
decision, and if improved decision making leads to better performance, then the
model is more likely to be implemented.

The personal characteristics of the decision maker that affect implementation
success21 include general intelligence, work experience, length of time at the
company and in the job, education, personality, decision style and attitude toward a
model.

10.3.2 Interpersonal Factors: The Model User–Model
Builder Interface

Churchman and Schainblatt (1965) proposed the following matrix to represent four
distinct views of the Model User (MU)–Model Builder (MB) interface.

Table 10.3 Model User (MU)–Model Builder (MB) interface

MU understands MB MB understands MU MB does not understand MU
Mutual understanding Communication

MU does not understand MB Persuasion Separate functions

Source: Churchman and Schainblatt (1965)

“MU understands MB” means that the MU reacts to what the MB is trying to
do in a manner that improves the manager’s chances of successfully exercising the
duties assigned to the MU; see Table 10.3. We discuss distinct elements of these
views below.

1. Mutual Understanding

This position represents an ideal set of characteristics. The model user understands
the pros and cons of making decisions based on model output, and the model
builder knows the various perspectives considered by the model user. The mutual
understanding should lead to increased confidence about the outcome of the model-
building process, and this will facilitate acceptance and use of the model.

20Hanssens et al. (2001, p. 327).
21See also Wierenga et al. (1997).
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2. Communication

In this view, the model user directs the model builder. Essentially, the user has
decided that a model should improve the quality of decisions, and the user has
identified at least conceptually the structure to be used by the model builder.
However, the model builder will not have a complete understanding of the user’s
perspectives. Of course, it is critical that the user has a good understanding of
elements from statistics, econometrics and operations research. The model builder
depends on extensive and thorough communication of the model user’s needs and
expectations.

3. Persuasion

This view applies when the model user is uninformed about the role of models in
decision making. The problem of model implementation is then one of the model
builder selling the features of the model. Among the drawbacks of this position
is that model advocates often promise more than can be delivered. This excess in
promise can show both in the model not fitting the decision making context and the
model not performing at the promised level of accuracy.

The underlying rationale for this position is that model users (managers) are too
busy to learn about models and do not have the patience to discuss details relevant
to model development. It is then the task of the model builder to understand the
manager well enough for the model to be accepted in principle and upon model
completion based on the superiority of results. The persuasion task will require that
the model builder understands the personality of the manager so that resistance to
change can be overcome.

4. Separate Functions

In this view the functions of model builder and model user are essentially separate
and separable. The model builder has the responsibility of generating a workable
model. This model may be intended for use in a large number of settings.
Once the model is completed, its purpose, its function, and its results will be
presented to managers who either accept or reject its use. A modest amount of
customization may be provided, dependent upon the heterogeneity in user needs,
data characteristics, etc.

Based on several studies, it appears that the mutual understanding position is
the most effective interface. This should be true especially if the entire model-
building exercise takes place within an organization. The communication position
may characterize situations in which managers oversee a group of individuals hired
to provide model-building expertise. The last two positions represent cases where,
for example, consultants or market researchers offer their services (Lilien 2011).
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Mutual understanding and communication, are also characterized by a relatively
high degree of user involvement. In the context of model building, user involvement
depends on variables such as22:

• the user’s understanding of model-building arguments and model characteristics;
• the user’s evaluation of the quality of a model and its supporting mechanisms

(people, hardware, data);
• the user’s knowledge about approaches for conflict resolution (between partici-

pants in model development).

Factors that inhibit user involvement and prevent facile communication among the
participants stem from fundamental differences between the personal and other
characteristics of model builders and model users.

10.3.3 Organizational Factors

In Sects. 10.3.1 and 10.3.2 we considered organizational validity in terms of the
behavior of the members of the organization involved in a model-building project.
In this section we discuss implementation issues related to organizational structure
and to relations between members who work at different levels in an organizational
hierarchy.

The primary organizational factors that contribute to the likelihood of model
implementation are:

• top management support;
• a match between model structure and the decision making structure;
• the position of the model builders in the firm.

Top management support refers to (top or divisional) management support, or lack
of resistance, for models. The importance of management support stems from
the resistance to change which is nearly always present when a model is to be
implemented. This resistance is not just due to technical aspects of the model or
lack of understanding. Managers may believe that models present a threat to their
job. Implementation of a model may indeed reduce a manager’s flexibility. The
manager may feel that the model imposes a rigid structure and multiple constraints
on her decision-making authority. The model may be seen as a formal mechanism
to control the manager’s performance. Thus instead of relying solely on one’s
judgment, the manager now may start with model output.

The second organizational factor is the match between model structure and
organizational structure. An often-voiced criticism is that models are partial
representations of reality. For example, advertising budgeting models generally
miss explicit consideration of media allocation, and media planning models often

22See Hanssens et al. (2001, p. 327).
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take the advertising budget as given. To see whether this is a serious pitfall, it
is important to take the structure of the organization into account. If advertising
budget decisions and media allocation decisions are made at different levels in
the organizational hierarchy, then model implementation will be facilitated if the
advertising budget model omits media allocation considerations. We elaborate on
this point in Sect. 10.4.

The third organizational factor relates to the position of the model builders (or the
information systems unit) within the organization. The following characteristics
have been found to determine model acceptance: the size of the unit, its internal
structure, the organizational and technical capabilities of the group, its reputation,
the life cycle stage of the unit and the place of the unit in the organizational structure.
We consider here only the last two points, the others being largely self-explanatory.

The marketing science (model-building) unit’s life cycle stage affects imple-
mentation. In early stages, when strong organizational support is not yet present,
implementation is more difficult than in later stages, when successful performance
should create positive word-of-mouth and requests for other models from satisfied
users.

In some firms marketing science projects are completed in the market research
department. Alternatively, this department is responsible for the purchase of models
from suppliers such as ACNielsen, IRI, GfK, Research International, etc. The
latter situation pertains especially to smaller firms.23 In those firms marketing
science may be a one-person operation. A marketing scientist/model builder is
likely to report to a product manager or marketing manager. Occasionally the model
builder reports directly to the vice president for marketing. The involvement of
higher levels in the organization occurs especially when models are developed on
an ad-hoc basis to solve a specific problem. In many firms marketing research,
analysis, and competitive intelligence are separate functions. Practitioners suggest
to combine these functions and to adopt an insights approach (Vriens 2012, p. xxi).
Decision makers are more and more asking for more and better actionable insights.
Interpretation of the different functions could stimulate the generation of these
insights.

10.4 Implementation Strategy Dimensions

10.4.1 Introduction

The proposed implementation strategy incorporates learning through evolutionary
model building (see Sect. 10.4.2). We return to the topic of the relation between
model structure and organization structure in Sect. 10.4.3 where we discuss issues

23See, for example, Wiesel et al. (2011).
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dealing with model scope. We end this section by discussing how interactive
computer systems can satisfy the ease of use requirement in Sect. 10.4.4.

10.4.2 Evolutionary Model Building

In Sect. 2.2.3 evolutionary model building was introduced as a means to overcome
inconsistency between the model structure criteria of simplicity and completeness.
Simplicity is desired so that managers understand models. We note that understand-
ing does not imply that the user must understand the mathematical, statistical, and
technical aspects of the model. Rather the user must understand what the model
does and does not do.

As an implementation strategy, evolutionary model building increases the like-
lihood of model acceptance for several reasons. First, evolutionary model building
implies continuous user involvement, which should lead to reduced resistance to
change. Second, it leads to a communication pattern that is more favorable to model
acceptance. Since the user must understand the model’s strengths and weaknesses
at a conceptual level, evolutionary model building represents a model user–model
builder interface that corresponds to the “persuasion” position in the Churchman–
Schainblatt framework (see Table 10.3). Third, there exists an optimal match
between the environmental complexity of a model and the integrative complexity
of the user. By adopting an evolutionary model-building approach the user can and
will ask that the model’s environmental complexity is consistent with the user’s
integrative complexity. This should lead to an optimal or near-optimal match.

The adjective “evolutionary” further implies that there are dynamics involved.
That is, a model seen by a user as adequately representing the environment at
one point in time may not receive the same favorable evaluation after learning
has taken place. Experience with the model may lead the model builder and the
user to the realization that some aspects should be added, and that other aspects
should be changed or even deleted. Thus, the optimal match between model and
model user may change over time as a result of learning. Thus, an implementation
strategy should allow for corrective action. Learning will also be operative in
overcoming resistance to change. As such, evolutionary model building is more than
just an adaptation to a user’s wishes. As an implementation strategy it may also be
instrumental in attitude change.

We discussed the SCAN*PRO model developed by Wittink et al. (2011) in
several sections. The original model is defined in Sect. 6.8.7. More complex and
more realistic SCAN*PRO-versions were developed by Foekens et al. (1994) as part
of an evolutionary model building process. The changes involve relaxation of the
homogeneous parameters assumption. Chain-specific (heterogeneous parameters)
were shown to provide better fit and better forecasting accuracy. Van Heerde
et al. (2001) estimated a SCAN*PRO model by a semiparametric method to avoid
inappropriate constraints on functional forms. This evolution is appealing in the
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sense that a user may favor an initial version that is fully parametric because of its
simplicity.

Other evolutionary versions of the SCAN*PRO model are:

• a SCAN*PRO model with varying parameters24;
• a dynamic SCAN*PRO model with leads and lags.25

The leads and lags are critical so that the expanded model allows sales effects
from promotions to be decomposed into, for example, brand switching, stockpiling
and other effects.26 We also mention a step in which competitive reaction- and
feedback effects are added to the SCAN*PRO-model (Horváth et al. 2005). Finally,
we mention the study in which the effects of including heterogeneity on the quality
of the predictions based on the SCAN*PRO model are determined. This study is
discussed in Sect. 6.8.7.

Thus far, evolutionary model building has been proposed as a process of
gradually moving from a relatively simple representation of a given problem to
a more complex representation. There may, however, also be an evolution in the
types of problems being modeled. Urban (1974, p. 9) found that evolutionary
progress often means not only model changes, but also the identification of new
model needs. The chances of successful implementation are seriously impaired
if the model building is very advanced and the user has little or no experience
with models and model building. In that sense, early model-building efforts might
concern well-structured problems, which are easy to systematize. After positive
experience with such simple problems, the model building gradually evolves toward
relatively unstructured problems.

10.4.3 Model Scope

In this section we first examine the global versus local model-building controversy.
We then discuss general versus detailed descriptions of marketing variables and
hierarchical linking (the linking of different decision points).

Model scope is seen as an element of implementation strategy because it relates
to the matching of model structure to organizational structure.

24Foekens et al. (1999).
25Van Heerde et al. (2000).
26Van Heerde et al. (2004). The process of evolutionary model building is also worked out in detail
for models that represent competitive actions and reactions in Leeflang (2008).
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10.4.3.1 Global Versus Local Models

Should one build models for the entire firm (global) or for parts of the company
(local)? This problem has multiple aspects. First, successful model building often
starts at the lower levels in an organization. A major reason is that structured
problems are more likely to be found at the operational levels in the organization,
and as indicated before, structured problems lend themselves more easily to
modeling. Also the appropriate level of aggregation is more easily determined for
structured than for unstructured problems. In that sense, one might argue that trying
to model a firm as a whole is a risky undertaking, and that it is better to build and
use local models, such as a media selection model, a marketing mix model, or a new
product model, and to link the (local) submodels over time. Links and feedbacks
thus come into existence through a natural process rather than being forced onto an
existing structure.27

The business world has embraced the notion that the functional areas of the
firm, such as marketing and production and marketing and finance, should not
act as independent units. Increasingly individual activities, nominally belonging to
different functional areas, are coordinated and sometimes integrated. We discussed
this already in Sect. 10.2.2.2.

10.4.3.2 General Versus Detailed Descriptors of Marketing Variables

For a brand sales model such as that described by Eq. (7.12), one might ask why
the model does not include specific characteristics of the promotion (such as the
content of the feature message, the quality of the display, the media used, etc.)
or specific descriptors of distribution (such as the types of distribution outlets, the
store characteristics, the store locations, etc.). Instead of specifying the marketing
variables in general or broad terms (e.g. Gross Rating Points for advertising or
percent of outlets in which the item is sold for distribution), one could decompose
the variable into its constituent parts and use those components as separate predictor
variables in the model.

Another approach is to specify models where the parameters are functions of
factors that affect the parameter. This approach is known as the specification of
varying parameter models or hierarchical model building (see Volume II).

10.4.4 Ease of Use

By ease of use we mean that the model is:

27See, for example, Fischer et al. (2011).
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• easy to control, and
• easy to communicate with.

“Easy to control” means that the model should be constructed in such a way that it
tends to behave as the manager would want it to. One interpretation of this is that
ideally, if the manager believes that a price increase of 10 % will lead to a 20 %
decrease in sales, then the model should predict just that. If the model produces
predictions that vary wildly from the manager’s experience or judgment, it is likely
that the manager will reject the model. It is critical that the model is tested so that
it not only provides acceptable predictions from the model builder’s perspective but
especially from the user’s perspective. Of course, some education of the user will be
needed if the user’s intuition is demonstrably wrong.

The “easy to communicate with”-characteristic has many aspects. One is that
model builders should be able to communicate their ideas in a manner that suits the
model user. Thus, the model builder must have the user’s perspective in mind to
enhance the likelihood of successful model implementation.

Easy communication also means that it should be easy for the user to specify
model inputs, and for the model to provide output quickly. It may be helpful to
program the model in a worksheet that allows the model user to “play around” with
relevant inputs to see how important output variables respond. Such worksheets can
be quite effective in bringing about ease of use. They:

• reduce barriers between model and user;
• aid the learning process by immediate response;
• make immediate availability of information possible;
• encourage the user to examine a large number of possible plans;
• can be made available to a number of different users.

The degree of interaction afforded by a decision aid is often an important precursor
to usage. And active participation in model development, including the construction
of a frame for output measures by the user, tends to lead to increased commitment,
acceptance, support and use.

10.5 Marketing Management Support Systems (MMSS),
Dashboards and Metrics

10.5.1 Introduction

In this section we discuss three issues that have impact on the ease of use of models
that support marketing decisions. In Chap. 9 we already discussed models that are
used for customer management/database marketing. In Sect. 10.5.2 we discuss other
‘standardized’ systems which have been developed to support a number of more
specific marketing decisions: Marketing Management Support Systems (MMSS).
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Nowadays we observe that more and more companies use so-called dash-
boards. These dashboards replace the MMSS over time. Dashboards are dis-
cussed in Sect. 10.5.3. Finally, we spend attention to relevant marketing metrics in
Sect. 10.5.4.

10.5.2 Marketing Management Support Systems (MMSS)

The use of electronic means to record purchases in supermarkets and other retail
outlets has led to an exponential increase in the availability of data for modeling
purposes.28 McCann and Gallagher (1990, p. 10) suggest that the change from
bimonthly store audit data about brands to weekly scanner data results in a 10,000
fold increase in available data (scanner data also measure more variables for a larger
number of geographic areas at the UPC/SKU-level). Assume a brand group would
normally spend five person-days analyzing one report based on bimonthly store
audit data. Analyzing means here detecting important changes, explaining changes,
discussing reasons for explanations, etc. This group would have to increase its size
about 1,000 times or become 1,000 times more efficient (or some combination of
these) in order to analyze weekly store-level scanner data in the same manner as the
audit data.

Given the new “Big Data” (Sect. 3.5.6) that are now available the challenge to
store and analyze data to support marketing decisions has become immense. To
prevent this explosion in manpower, much of the analysis of more detailed and more
frequently available scanner data has to become automated. One way to accomplish
this is through the development and application of Marketing Management Support
Systems (MMSS). The following types of “computerized Marketing Management
Support Systems” can be distinguished:

• MarKeting Information System (MKIS);
• Marketing Decision Support System (MDSS);
• Marketing Knowledge-Based System (MKBS);
• Marketing Case-Based Reasoning systems (MCBR);
• Marketing Neural Nets (MNN).

A MKIS harnesses marketing-related information to facilitate its use within the
firm (Lilien and Rangaswamy 2004, pp. 372–387). A MKIS consists of a database
(or databank) with marketing data and statistical methods that can be used to analyze
these data (statistical methods bank). The statistical analyses are used to transform
the data into information for marketing decisions.

28We do not discuss the benefits from MMSS here. See, in that respect, Kayande et al. (2009), who
demonstrate that Model-Based Decision Support Systems (MDSS) improve firm’s performance
in many contexts that are data rich, entail uncertainty, and require repetitive decisions. See also
Becker et al. (2010); Wierenga (2011).
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A MDSS differs from a MKIS in that it contains a model base (modelbank) in
addition to a databank and a statistical methods bank. The purpose of a MDSS can be
described as the collection, analysis, and presentation of information for immediate
use in marketing decisions. MKIS and MDSS belong to the category of data-driven,
quantitative MMSSs. Data-driven MMSS deal with structured marketing problems.
Many MMSS are based on customer databases to enhance marketing productivity
through more effective acquisition, retention and development of customers (see
Chap. 9).

Other MMSS deal with specific marketing problems as will be clear from the list
of well-known data driven MMSS below:

• ASSESSOR (Silk and Urban 1978), a measurement and modeling system
designed to estimate the sales potential of new packaged goods before they are
test-marketed;

• BRANDAID (Little 1975), a marketing mix model to assist board managers to
compose their marketing mix;

• CALLPLAN (Lodish 1971)29 a MMSS to allocate sales force effective and to
support sales force decisions;

• TRACKER (Blattberg 1978), a model to predict the potential sales of new
products;

• SCAN*PRO (Wittink et al. 2011, see also Chap. 7), a MMSS/model that can be
used to evaluate sales promotions;

• SH.A.R.P (Bultez and Naert 1988), a supermarket shelf space allocation model;
• CHAN4CAST: a mutichannel, multiregion sales forecasting model and decision

support system for consumer packaged goods (Divakar et al. 2005).

Many marketing decisions are weakly structured. Examples are decisions about
a copy strategy, the planning of a sales promotion campaign, the way international
marketing negotiations should be positioned etc. Knowledge driven MMSS are
used to support these weakly structured marketing problems (Wierenga et al. 1997;
Wierenga 2011). MKBS/MCBR are examples of knowledge driven MMBS.

A MKBS is a more advanced system than the previous two in the sense that
theoretical knowledge and empirical generalizations are included. A restricted
version of MKBS is an “expert system” which is related to the concept of “artificial
intelligence” (AI). AI is concerned with the creation of computer programs that
exhibit intelligent behavior. The program solves problems by applying knowledge
and reasoning that mimics human problem solving. The expert system approach is
one of the earliest techniques for the creation of intelligent programs.

Typically, an expert system focuses on a detailed description (model) of the prob-
lem-solving behavior of experts in a specific area. The expert system is a knowledge-
driven system because it encompasses and uses knowledge from experts but also

29See also Sinha and Zoltners (2001) and Lilien and Rangaswamy (2004, pp. 373–378).
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other knowledge sources such as information available from books and articles,
empirical results and experience. Examples of such systems are30:

• PEP, a system designed to support the planning of consumer sales promotion
campaigns (Bayer et al. 1988);

• ADCAD (ADvertising Communication Approach Design), a system to assist
managers with the definition of marketing and advertising objectives, with
advertising decisions regarding the positioning of a product/service, with the
message, etc. (Burke et al. 1990);

• ADDUCE, a system that predicts how consumers will respond to advertisements
from a description of ad, audience, brand and market characteristics (Burke
1991);

• BMA (Brand Manager’s Assistant), a knowledge based system to assist brand
management (McCann et al. 1991);

• NEGOTEX (NEGOTiation EXpert), a system that provides guidelines to individ-
uals or teams preparing for international marketing negotiations (Rangaswamy
et al. 1989).

• BRANDFAME: an expert system that assists brand managers (Wierenga et al.
2000; Wierenga et al. 2008)

A Marketing Case-Based Reasoning system (MCBR) is based on the fact that
analogical reasoning is a natural way to approach problems. The analogizing
power of a decision maker can be strengthened by a MCBR, a system that stores
historical cases with all the relevant data kept intact. The ADDUCE-system infers
how consumers will react to a new advertisement by searching relevant past
advertisements. Thus, it can be interpreted as a knowledge system with a case-based
reasoning system as one of its components. This indicates that the different systems
are not necessarily distinct. McIntyre et al. (1993) built a MCBR to forecast the
retail sales for a given promotion based on historical analogs from a case base.

Neural networks can be used to model the way human beings attach meaning
to a set of stimuli or signals. Artificial neural networks can be trained to make
the same types of associations between inputs and outputs as human beings do.
An important feature of a neural network is its ability to learn. Marketing Neural
Nets (MNNs) may be useful for the recognition of new product opportunities
and to learn to distinguish between successful and less successful sales promotion
campaigns. Other applications are the design of mailing campaigns and the selection
of potential prospects. For extensive overviews see, for example, Hruschka (2008);
Blattberg et al. (2008).

30See also Van Bruggen (1993).
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10.5.3 Dashboards

Many MMSS work with marketing dashboards that bring the firm’s key marketing
metrics (Sect. 10.5.4) into a single display.31 Many firms have created such a
dashboards either by themselves or together with a dashboard service provider. The
term “marketing dashboard” is borrowed from a vehicle dashboard which reports the
few metrics the driver needs to know. Dashboards are related to MMSS that provide
managers with guidance on decisions such as promotion activities and sales force
allocation (see the discussion above). Hence the dashboard display is the output of
a larger dashboard system. Figure 10.2 provides an illustration of a dashboard.

Fig. 10.2 Example of a Marketing Dashboard. Source: http://www.dundas.com

As many as 40 % of large US–UK companies report substantial efforts in
this area (Clark et al. 2006). Many services firms use such dashboards to track
marketing effectiveness and guide decision making, in industries such as business
communication (e.g. Avaya), pay-TV broadcasting (e.g. British Sky), consumer
credit (e.g. Capital One), online services (e.g. Google), gaming (e.g. Harrah’s), hos-
pitality (e.g. Hilton), investment banking (e.g. Morgan Stanley), systems integration
(e.g. Unisys), and mutual funds (e.g. Vanguard). Moreover, dashboard providers and

31We closely follow Pauwels et al. (2009). See also Peters et al. (2013), who discuss social media
metrics.

http://www.dundas.com
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advisers themselves are offering a service, whether within their company (e.g. to
their CMO or CEO) or to the client company.

The key elements of a dashboard include the summarization and integration
of key performance metrics with underlying drivers to communicate performance
throughout the organization. We define a dashboard as a relatively small collection
of interconnected key performance metrics and underlying performance drivers that
reflect both short- and long-term interests to be viewed in common throughout the
organization.

The creation of a dashboard integrates the information of different functional
areas, such as finance, accounting, R&D etc., and marketing. Integration is an
important characteristic of dashboards in three ways:

• Data: Understanding the firm’s market and its position within the market requires
information and data from diverse sources at different levels of aggregation and
covering different time periods. The dashboard provides a common organizing
framework.

• Processes: The dashboard helps management relate inputs, such as marketing
expenditures, to market performance measures and ultimately to financial perfor-
mance, such as profits, cash flows, and shareholder value, thus building a bridge
between internal and external reporting.

• Viewpoints: Whether assessing the market, performance, or planning, a dash-
board allows different executives, in different departments and locations, to share
the same, equally measured input, that is, to view the firm’s market situation in
the same light.

Pauwels et al. (2009) maintain that the integration of data proves easier than
integrating processes and viewpoints. Performance information needs context, such
as benchmarking, previous results, plan, or competition (Ambler et al. 2004). For
multiservice or multiunit companies, performance is commonly across different
services, market segments, or units. Visually, dashboards do this through devices
such as gauges, charts, and tables, often color-coded for easy summarization (Bauer
2004; Lehmann and Reibstein 2006).

A dashboard enforces consistency in measures and measurement procedures
across department and business units. Second, a dashboard helps to monitor
performance. Monitoring in turn may be both evaluative (who or what performed
well?) and developmental (what have we learned?). Dashboard metrics are early
indicators of performance, and if a dip occurs in, for example, the “trust and privacy”
metric, the company takes corrective action. Third, a dashboard may be used to plan
(what should our goals and strategies be for the future given where we are now?). For
instance, Ameritrade started with corporate scorecards from the strategic planning
department to develop a dashboard that plugs in to the planning cycle and is tied to
quarterly bonuses. Fourth, a dashboard may be used to communicate to important
stakeholders. In particular, it communicates not only what the performance is but
also what an organization values as performance by the choice of metrics on the
dashboard.
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10.5.4 Metrics

In many firms, marketers have a difficult time justifying their expenditures in
terms of direct return on investment.32 In other words, the inability to account for
marketings contribution has undermined its standing within the firm. As McGovern
et al. (2004, p. 74) state:

“the [marketing] field is chock-a-block with creative thinkers, yet it’s short on people who
lean toward an analytic, left-brain approach to the discipline.”

Two aspects are relevant in this respect. First, many marketers do not measure
the effect of their actions, because they are unable or unwilling to do so or
because they do not use the appropriate metrics and/or methods. As a consequence,
many advertisements have no effect on sales (Vakratsas and Ambler 1999), sales
promotions have no persistent influence on sales at either the brand or the category
sales level (Nijs et al. 2001), and new products suffer from low success rates. Not
surprisingly, CEOs cannot get clear, compelling answers about marketing’s impact
(see Kumar 2004, p. vii). Marketing productivity could increase if managers were
able to measure it. Calls for more attention for accountability, marketing metrics,
and dashboard marketing may be helpful in this respect (Farris et al. 2006). Second,
appropriate specifications of metrics, especially metrics that measure long-term or
persistent effects, are lacking. McGovern et al. (2004) argue that many managers
do not know what to measure or how to interpret the results. For example, a
manager might collect customer satisfaction scores and customer retention rates,
but if he or she cannot explain these scores (in relation to marketing activities),
the data are not very useful (Leeflang and Wittink 2000). Accountability also
involves a determination of the effects of marketing activities on the value of the
firm. Some recently successful attempts have helped determine these effects (e.g.,
Gupta et al. 2004; Pauwels et al. 2004; McAlister et al. 2007; Tellis and Johnson
2007; Srinivasan and Hanssens 2009; Joshi and Hanssens 2010; Osinga et al.
2011). The importance of accountability has been acknowledged widely (Lehmann
2004; Rust et al. 2004). Moorman and Rust (1999) show a positive relationship
between accountability and the marketing department’s influence within the firm,
and O’Sullivan and Abela (2007) report that top management is more satisfied with
marketing when it is more accountable. These findings are confirmed in studies by
Verhoef and Leeflang (2009) and Verhoef et al. (2011).

The attention for accountability has stimulated many authors33 to develop “new”
concepts such as “metrics”. A metric is a measuring system that quantifies a trend
or characteristic. Marketing metrics usually refer to

• a monetary value (expenditures);
• a percentage (percentage of stores that stock your brand);

32We closely follow Verhoef and Leeflang (2009). See also Leeflang et al. (2014).
33Ambler (2003); Jeffery (2010); Farris et al. (2006, 2010).
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• a count (number of unit sales);
• a rating (satisfaction);
• an index (price index).

We distinguish metrics that refer to performance measures and metrics that influence
these performances (exogenous variables). The metrics that measure marketing’s
performance (the endogeneous variables) have evolved over time, as illustrated in
Table 10.4. As Table 10.4 shows, there are many studies that relate marketing efforts
to firm performance measures, such as customer life time value, customer equity,
and even firm value (usually in the form of stock prices and volatility in stock
prices). These studies demonstrate the importance and contribution of marketing
efforts to firm value and probably (we hope) can help marketing regain its position
in the boardroom as we discussed before.

Farris et al. (2006) define numerous metrics for exogeneous variables. Table 10.5
gives an overview of the most important metrics.

Ambler (2003) and Jeffery (2010) specify additional metrics. Farris et al. (2006)
also specify metrics which are the outcomes of additional analyses such as:

• analyses in which elasticities are determined;
• analyses in which the baseline sales (total sales less incremental sales generated

by a marketing program) are determined;
• outcomes of break-even analyses;
• outcomes of profitability analyses, etc.

Hence, Farris et al. (2006) also put price, advertising elasticities, margins per unit,
break-even points in their list of metrics.

Many specific metrics have been specified in the area of database marketing.
The (CRM) database contains variables, such as customer equity, customer lifetime
value (CLV or LTV), retention rates, churn rates, etc.34

Other metrics that are useful to collect are the so-called mind-set metrics. Exam-
ples are advertising awareness, brand consideration and brand liking. Srinivasan
et al. (2010) demonstrate that mind-set metrics can be used as advance warning
signals that allow enough time for managerial action before market performance
itself is altered. Mind-set metrics have also shown their value as diagnostic
measures. An elaborate discussion on the use of marketing and financial metrics
is provided by Mintz and Currim (2013).

34Compare, for example, Blattberg et al. (2008, Chapters 8 and 9).
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Table 10.5 Overview of metrics based on Farris et al. (2006)

Products and portfolio management

• Cannibalization rate, sales less from existing products/sales new products
• Brand equity measures
• Quality measures

Sales force and channel management

• Numeric distribution (percentage of outlets, in a defined universe, that stock a
particular brand/product)

• ACV = All Commodity Volume (numeric distribution, weighted by penetrated
outlets’ share of sales of all product categories)

• PCV = Product Category Volume (see ACV, but now obtained for a particular
product category)

• Facings
• Out-of-stock
• Inventories
• DPP = Direct Product Profitability (adjusted gross margin of products, less direct

product costs)
• Sales Force Compensations (money per sales person)
• Sales Force Efforts (size of the sales force)

Pricing strategy

• Price per SKU (Stock Keeping Unit)
• Discounts
• Reservation price (maximum amount an individual is willing to pay for a product)
• Cost price per SKU

Sales promotions

• Redemption rates (coupons redeemed divided by coupons distributed)
• Costs for coupons and rebates
• Percentage sales with coupon
• Percent sales on deal
• Percent time on deal (percentage of time during which temporary promotions are

offered)
• Pass-through rate (promotional discounts provided by the trade to consumers

divided by discounts provided to the trade by manufacturers)

Advertising media and web metrics

• Gross Rating Points (GRP’s)
• Cost per Thousand Impressions (CPM)
• Net Reach
• Average Frequency
• Share of Voice
• Page views (the number of times a web page is served)
• Click-through Rate
• Cost per Click
• Cost per Order
• Cost per Customer Acquired
• Visits
• Visitors
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Appendix A
Matrix Algebra

A.1 Matrices and Simple Matrix Operations

A matrix is a rectangular array of elements. A typical matrix has m rows and n
columns, for example the matrix A given as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...
...
. . .
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By the order of a matrix we mean the number of rows and columns a matrix
has, where we always name the rows of the matrix first. So, for example, the matrix
A has order m× n, because it has m rows and n columns. We call an entry of the
matrix an element and indicate a typical element by ai j, where i denotes the row and
j denotes the column of the element. The element on the first row in the first column
of A is for example a11, while the fourth element on the sixth row of A is denoted
by a64. In this element notation, we can also denote A as A = (ai j)m×n.

Matrix addition and subtraction are defined similarly to their scalar counterparts.
We can only add matrices of the same size, that is with the same number of rows and
the same number of columns. In the new matrix, the sum of the separate elements is
the element of the new matrix. So, for example

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0
9 2 5
−4 0 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 7 1
−3 0 −5
1 8 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 6 1
6 2 0
−3 8 15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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while

[
3 1 7
2 −1 9

]

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 3
8 −3
5 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is not defined because the rows and columns of both matrices are unequal. Matrix
subtraction is defined in a similar way, where we should realize that −A is equal to

−A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a11 −a12 · · · −a1n

−a21 −a22 · · · −a2n
...

...
. . .

...

−am1 −am2 · · · −amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

that is, each element of A is multiplied by −1. Matrix subtraction is thus nothing
else then adding a matrix where each element is multiplied by −1 to another matrix.
An element of the new matrix therefore consists of the difference of the elements of
the matrices to be subtracted, for example

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0
9 2 5
−4 0 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 7 1
−3 0 −5
1 8 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −8 −1
12 2 10
−5 −8 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Again, the number of rows and columns of each matrix should be equal. We have
already seen that multiplication of a matrix by −1 boils down to multiplying each
element by −1. This result holds in general and is known as scalar multiplication.
The product of a matrix A and a scalar r is defined as

r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...
...
. . .
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ra11 ra12 · · · ra1n

ra21 ra22 · · · ra2n
...

...
. . .

...

ram1 ram2 · · · ramn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

so for example we would get

4

[
3 1 7
2 −1 9

]

=

[
12 4 28
8 −4 36

]

.

Another operation we can define is the transpose of a matrix, denoted as A′ or AT .
We will use the notation A′ throughout this text. When we transpose a matrix, the
first row of the matrix becomes the first column, the second row becomes the second
column, and so on. So, for example we would get
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A =

[
3 1 7
2 −1 9

]

, A′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2
1 −1
7 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for a matrix A and its transpose A′. If a matrix and its transpose are the same
(A = A′), we call that matrix a symmetric matrix. A symmetric matrix is by definition
a square matrix (that is, m = n), because otherwise the orders of the matrix and its
transpose would be different even. An example of a symmetric matrix is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 7
1 6 4
7 4 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= A′.

A.2 Matrix Multiplication

While we have seen that matrix addition, subtraction and multiplication by a scalar
are easily done for matrices, the multiplication of matrices is a little more difficult.
In matrix multiplication, the order in which the matrices are multiplied matters and
multiplication is not always possible even. If we wish to multiply two matrices A
and B, it should hold that the number of columns of A is equal to the number of
rows of B. If we let A be a m× n matrix and B a n× k matrix, the product of these
matrices C = A×B is an m× k matrix with typical elements ci j defined as

ci j =

n∑

s=1

aisbs j,

where i= 1, . . . ,m and j= 1, . . . ,k. That is, we get a typical element ci j by multiplying
the element ais in the ith row with the element bs j in the jth column and then adding
all these products. To illustrate this, we will give two examples:

AB =

[
3 1 7
2 −1 9

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
7 −4
−2 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
3(1)+1(7)+7(−2) 3(0)+1(−4)+7(5)

2(1)+−1(7)+9(−2) 2(0)+−1(−4)+9(5)

]

=

[ −4 31
−23 49

]
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BA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
7 −4
−2 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
3 1 7
2 −1 9

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1(3)+0(2) 1(1)+0(−1) 1(7)+0(9)
7(3)+−4(2) 7(1)+−4(−1) 7(7)+−4(9)
−2(3)+5(2) −2(1)+5(−1) −2(7)+5(9)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 7
13 11 13
4 −7 31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that in this case both products AB and BA exist. However, this needs not
always be the case depending on the number of rows and columns both matrices
have. Therefore, one should remember that in general it does not hold that AB= BA.

The transpose operation is also defined in matrix multiplication. If we have that
C = AB, then it holds that C′=B′A′. To see why this holds, we look at one element
of the matrix C, namely the element ci j =

∑n
s=1 aisbs j. Then we get that

c′i j = c ji (Definition of transpose)

=

n∑

s=1

a jsbsi (Definition of matrix multiplication)

=

n∑

s=1

a′s jb
′
is (Again applying definition of transpose)

=

n∑

s=1

b′isa
′
s j (Using that a×b = b×a for scalars)

and we find that C′ is indeed equal to B′A′. This result is easily generalized to
the multiplication of more than two matrices. Hence if D = ABC, we get that D′ =
C′B′A′.

Now that we are familiar with matrix multiplication, we can also define matrix
powers, for example A2, A361 or in general Ak for any non-negative integer k.
Definitions for zero and negative k will follow later. Matrix multiplication can be
seen as multiplying a matrix with itself k times. In the case of A2 we would therefore
get that A2 = AA and in general we have that Ak = AA . . .A(repeat A k times). Notice
however that we can only define matrix powers for square matrices, as we multiply
the matrix by itself and only square matrices have the correct dimensions to do this.
As an example, we will compute the square of the (symmetric) matrix
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 7
1 6 4
7 4 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

as follows:

A2 = AA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 7
1 6 4
7 4 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 7
1 6 4
7 4 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3(3)+1(1)+7(7) 3(1)+1(6)+7(4) 3(7)+1(4)+7(11)
1(3)+6(1)+4(7) 1(1)+6(6)+4(4) 1(7)+6(4)+4(11)

7(3)+4(1)+11(7) 7(1)+4(6)+11(4) 7(7)+4(4)+11(11)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

59 37 102
37 53 75

102 75 186

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This example also demonstrates that the square of a symmetric matrix is also
symmetric.

A.3 Special Matrices

We have already seen that a matrix with the same number of rows and columns
(m= n) is called a square matrix. Besides this matrix, there are several other matrices
that have special properties. The first matrix we will discuss is the identity matrix.
This is the square n× n matrix with ones on the diagonal and zeros on the off-
diagonal. We denote it by In, where n is the order of the matrix. It thus takes the
form

In =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...
...
. . .
...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The identity matrix plays a similar role to that of 1 in scalar algebra. If A is an m×n
matrix, then we have that

ImA = AIn = A
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showing that multiplying with the correct identity matrix just returns the matrix A. It
is also easily seen that I′n = In. Referring to the section on matrix powers, we are also
in a position now to define A0 as the corresponding identity matrix, that is A0 = In if
A is a square n×n matrix.

The identity matrix is a special case of a diagonal matrix, that is matrix with
entries on the diagonal and zero entries for all the off-diagonal entries. Its general
form is

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 · · · 0
0 a22 · · · 0
...
...
. . .
...

0 0 · · · ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the aii are allowed to take on any value. This means that the diagonal entries
can be zero as well. It also is not required that the matrix is n× n, as long as the
matrix contains entries starting from a11 along the diagonal and has zero entries
everywhere else, the matrix is called diagonal. For example,

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 2 0 0
0 0 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

also is called a diagonal matrix, despite not being an n×n matrix.
Related to diagonal matrices are upper and lower triangular matrices. These

matrices have entries on the diagonal and either above or below the diagonal, while
the other part of the matrix consists of zeros. An example for both is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 5 2
0 −4 9
0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0
1 7 0
−7 2 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where A is an upper triangular matrix and B is a lower triangular matrix. These
matrices can be of any size m× n as well, by a similar argument as for diagonal
matrices.

Two other special matrices are the row matrix and the column matrix, where
matrix can also be read as vector in this case. A row matrix has one row, that is
m = 1, while a column matrix has one column, thus n = 1. Examples are

A =
(

1 2 3
)
, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
5
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where A is a row matrix and B is a column matrix.
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Related to matrix powers is the idempotent matrix. We call a matrix idempotent
if A× A = A or in general An = A, that is multiplying the matrix by itself returns
the matrix. A trivial example of such a matrix is the previously discussed identity
matrix. Another matrix is

A =

[
6 −6
5 −5

]

for example. Note that we still require the matrix to be square for it to be idempotent.

A.4 Matrix Inverse

There is another important matrix operation that we have not yet discussed up until
now, namely the inverse of a matrix. When we have a square n×n matrix A, we call
the square n×n matrix B such that

AB = BA = I

the inverse of A and denote it as A−1. Due to definition of B above, we can also that
A is the inverse of B, that is both are inverses of each other. We state here without
proof that each matrix can only have at most one inverse and thus the inverse of a
matrix is unique.

We stated that a matrix has at most one inverse. This already suggests that
not every matrix has an inverse. The existence of an inverse is determined by the
properties a particular matrix has. Although there are several properties that can be
used to determine whether a matrix is invertible, we will focus on one called the
rank of the matrix. To get to the definition of rank, we start as follows: Let A be an
m×n matrix. Then we say that A has full column rank if for any n-vector x it holds
that

Ax = 0⇒ x = 0.

Here the arrow should be read as ‘implies’. If this holds, we say that the n columns
of A are linearly independent. Linear independence in this case thus means that
none of the columns can be formed as a linear combination of the other columns
of the matrix. Now we say that the rank of A is the maximum number of linearly
independent columns that A has. This number is less than or equal to the number
of columns that A has. Because our goal is to define the conditions under which the
inverse of a matrix exists and the inverse only exists for square (m = n) matrices,
this definition of rank is sufficient for our purposes. For a matrix to be invertible,
we require that is has maximum rank or equivalently is of full column rank, that
is rank(A) = n. This implies that all columns of the matrix should be linearly
independent.



380 A Matrix Algebra

Now that we know when an inverse exists, the question arises how to find it when
it does exist. The most general way of finding the inverse matrix is by applying
Gaussian elimination on the augmented matrix [A : I]. We will give an example for
a 3×3 matrix A below. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 0
2 6 −1
−3 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It can be checked that the rank of A is 3, that is the matrix has full rank, as none of
the columns can be formed by a linear combination of the other columns. Now we
form the augmented matrix and apply Gaussian elimination to A:

[A : I] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 0
... 1 0 0

2 6 −1
... 0 1 0

−3 0 7
... 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 0
... 1 0 0

0 −2 −1
... −2 1 0

0 0 1
... −9 6 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
... −21 14 2

0 1 0
... 5.5 −3.5 −0.5

0 0 1
... −9 6 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To obtain the second line we put the matrix A in what is called the row-echelon
form, which is the upper triangular matrix obtained when applying elementary row
operations to the matrix A. To go from the second to the third line, we move from
the row echelon form to what is called the reduced row echelon form, where also
the entries above the diagonal are zero. As we also apply the same operations to the
matrix on the right hand side simultaneously, this matrix changes in each step. The
matrix on the right hand side then is the inverse of A, that is

A−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−21 14 2
5.5 −3.5 −0.5
−9 6 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using this method it is always possible to obtain the inverse matrix, should one
exist. In practice however this procedure gets tedious fast and other methods have
been developed to deal with larger matrices. These methods are incorporated in most
software packages.
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Having defined the inverse matrix, we can also deal with matrix powers that
have negative, integer k as exponent. For these matrices it holds that A−k = (A−1)k =

(Ak)−1, that is we can take the matrix power of the inverse matrix k times or,
similarly, take the inverse of the kth matrix power to obtain the matrix A−k. This
is a straightforward generalization of the earlier theory discussed on matrix powers.

A.5 Determinants

In the previous section we used the rank of a matrix as a criterion for invertibility
of a matrix. We can also use a number called the determinant to judge whether
we can invert a matrix. The determinant is a unique number associated with each
square matrix, which in general is derived in the setting of solving systems of linear
equations or in a geometric setting. For the purpose of exposition it is enough to
know that the determinant is a unique number which we can compute for a square
matrix.

We will start with a 2× 2 matrix and compute the determinant. Consider the
matrix

A =

[
a11 a12

a21 a22

]

.

We can compute its determinant denoted by det(A) as follows: We take the product
of the diagonal elements and subtract from that the product of the off-diagonal
elements, which gives det(A)=a11a22 − a12a22. This is the basic definition of the
determinant in the setting of a 2×2 matrix. This is also makes clear why we did not
start with 1× 1 matrices for our definition, as their determinant would just be the
number in the matrix itself. We will however use this definition for the 1×1 matrix
to generalize the definition of the determinant. To see how, we write

det

[
a11 a12

a21 a22

]

= a11det(a22)−a12det(a21).

We compute the first part of the determinant by taking the entry a11 of the matrix
and multiplying it by the determinant from the matrix obtained by deleting the row
and column containing the entry a11, which is the 1×1 matrix containing det(a22).
The second part of the determinant is computed similarly by taking entry a12 and
multiplying it by the determinant of the matrix that is left when we delete the row
and column corresponding to the entry, which leaves the matrix with a21 as element.
Moreover, observe that the signs given to different parts alternate: The first part gets
a plus sign, the second part a minus sign.

With these observations done in the case of 2× 2 matrices, we are now in a
position to give a general definition of the determinant, which we will illustrate
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for the case of 3× 3 matrices. In general, let A be an n× n matrix. Let Ai j be the
(n−1)× (n−1) submatrix obtained from A by deleting the ith row and jth column.
Let

Mi j = det(Ai j)

which is called the (i, j)th minor of A. Furthermore, define

Ci j = (−1)i+ jMi j

to be the (i, j)th cofactor of A. The cofactor is equal the minor multiplied by 1 or
-1 depending on whether i+ j is odd or even. So, if i+ j is even we have Ci j = Mi j,
while if i+ j is odd we get that Ci j = −Mi j. Check that in the 2× 2 case discussed
previously we get that det(A) = a11M11 − a12M12 = a11C11 + a12C12. We now have
the tools to go beyond 2×2 matrices, as we will show by computing the determinant
for a 3×3 matrix.

For a general 3×3 matrix A, we get

det(A) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= a11C11 +a12C12 +a13C13

= a11M11−a12M12 +a13M13

= a11det

[
a22 a23

a32 a33

]

−a12det

[
a21 a23

a31 a33

]

+a13det

[
a21 a22

a31 a32

]

= a11a22a33−a11a23a32−a12a21a33 +a12a23a31 +a13a21a32−a13a22a31.

Thus, we can compute the determinant by considering smaller and smaller subma-
trices until we reach a point where we can compute the determinant exactly, which
in this case is a 2×2 matrix. This example can directly be generalized to the case of
an n×n matrix, which gives the following definition for the determinant of an n×n
matrix A:

det(A) = a11C11 +a12C12 + . . .+a1nC1n

= a11M11 −a12M12 + . . .+ (−1)n+1a1nM1n.

With this general definition known, we can return to the start of this section where
we remarked that the determinant can be used to determine whether or not we can
invert a matrix. If the determinant of a matrix is not 0, we say that a matrix is
invertible. Subsequently, only matrices with determinant 0 cannot be inverted. This
provides another straightforward way to check for the invertibility of a matrix.
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We will conclude this section with an example. Consider again the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 0
2 6 −1
−3 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for which we have already computed the inverse. We have also shown that this
matrix has full rank. Now we will compute the determinant and show its nonzero as
follows:

det(A) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 0
2 6 −1
−3 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1×det

[
6 −1
0 7

]

−4×det

[
2 −1
−3 7

]

+0×det

[
2 6
−3 0

]

= 1×42−4×11+0×18

= −2.

Hence the determinant of the matrix is −2, which is nonzero, and therefore we can
invert the matrix, as we have seen previously.

A.6 Eigenvalues and Eigenvectors

In this section we will study another aspect of square matrices, namely the
existence of so-called eigenvalues and their corresponding eigenvectors. In short,
the eigenvalue is a number λ which when subtracted from the diagonal of a square
matrix A results in the matrix to be singular. We say that a matrix is singular when
the inverse of the matrix does not exist. This means a.o. that the determinant is 0
and the rank is less than n, as we have seen previously. This might seem abstract,
therefore we give an example. Consider the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 3 3
3 5 3
3 3 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and now subtract 2 from the diagonal elements, which gives

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 3
3 3 3
3 3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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This matrix is singular as all columns are exactly the same now and the rank of the
matrix thus is less than 3. Therefore, the number 2 is an eigenvalue of this matrix.

While it was easy to find the eigenvalue of the matrix above, in general we have
to do some more work to find the eigenvalues of a matrix. However, the way to find
the eigenvalues is similar to that of computing the determinant, which is something
we are capable of doing. The only difference is that, by definition of the eigenvalue,
we need to subtract a number λ from the diagonal. The resulting formula will be a
polynomial which we can solve for the number λ, thus obtaining the eigenvalues.
In fact, we are computing det(A−λI) = 0 when we want to obtain the eigenvalues,
with I the identity matrix corresponding to A. To illustrate, consider the following
example for a general 2×2 matrix:

det(A−λI) = det

[
a11−λ a12

a21 a22−λ
]

= 0

⇔ (a11−λ)(a22−λ)− (a12a21) = 0

⇔ λ2− (a11 +a22)λ+ (a11a22−a12a21) = 0.

Solving this equation for λ gives us the eigenvalues if they exist. To give a numeric
example, we will compute the eigenvalues in the following example:

A =

[
3 0
4 5

]

det(A−λI) = det

[
3−λ 0

4 5−λ
]

= 0

⇔ (3−λ)(5−λ)−0= 0

⇔ λ2 −8λ+15= 0

⇔ λ = 8± √64−60
2

⇔ λ = 5 or λ = 3.

Hence, we see that by solving the polynomial equation we find that the eigenvalues
are 3 and 5 in this case. By computing the determinant of the matrix A− λI and
setting the determinant to 0, we are always able to find the eigenvalues, should they
exist. The number of distinct eigenvalues a matrix can have is smaller than or equal
to the order of the matrix, which is n. That the number can be smaller is caused
by the possibility of one eigenvalue having a multiplicity of 2 or more, which can
happen easily when we consider larger matrices. Another aspect that we need to be
aware of is that eigenvalues can be complex, which is the case if the polynomial
we need to solve has complex solutions. All in all, we can’t say a priori how many
distinct eigenvalues a matrix has just by looking at it.
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Eigenvectors are vectors that correspond to a certain eigenvalue and can be found
by solving the equation

(A−λI) v = 0

for a non-zero vector v, as the zero vector is trivially a solution to this equation. For
illustration, we will compute the eigenvectors for the matrix previously discussed.
We already notice now that eigenvectors are not unique.

(A−3I) v =

[
3−3 0

4 5−3

](
v1

v2

)

= 0

=

[
0 0
4 2

](
v1

v2

)

= 0

=

[
0v1 +0v2

4v1 +2v2

]

= 0

⇒ v =

(
1
−2

)

(A−5I) v =

[
3−5 0

4 5−5

](
v1

v2

)

= 0

=

[−2 0
4 0

](
v1

v2

)

= 0

=

[−2v1 +0v2

4v1 +0v2

]

= 0

⇒ v =

(
0
1

)

.

We thus have found one eigenvector for each eigenvalue. As we remarked before,

eigenvectors are not unique. We could have for example taken

(
2
−4

)

as eigenvector

corresponding to the eigenvalue 3 and still have ended up with a solution to the
system of equations. We therefore always take the vector with the greatest common
divisor as the eigenvector. Also notice that we could have taken the zero vector as
eigenvector corresponding to eigenvalue 5. However, as eigenvectors are required to
be non-zero, we took 1 as the number to be multiplied with 0 in the equations. We
could have taken any other number as well, but it is customary to take 1 in that case.
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A.7 Definiteness of a Matrix

In this section we will present some more results for symmetric matrices related to
what is called the definiteness of the matrix. We will use some results on eigenvalues
to establish the definiteness of a matrix, which is why we have postponed discussion
of this subject until now.

The notion of the definiteness of a matrix can be seen as the matrix equivalent
to the notion of positive and negative real numbers. First we will introduce all the
different versions of definiteness and afterwards we will provide some additional
results. Let A be a symmetric, n×n matrix. Then we call A:

• positive definite if x′Ax > 0 for all x � 0 with x ∈ Rn,
• positive semidefinite if x′Ax ≥ 0 for all x � 0 with x ∈ Rn,
• negative definite if x′Ax < 0 for all x � 0 with x ∈ Rn,
• negative semidefinite if x′Ax ≤ 0 for all x � 0 with x ∈ Rn,
• indefinite if x′Ax > 0 for some x � 0 and < 0 for some other n � 0, both x ∈ Rn.

In the above, Rn denotes the collection of all real numbers in the n-dimensional
Euclidean space. These five notions are used to determine the definiteness of a
matrix. Notice that if a matrix is positive or negative semidefinite, it also is positive
or negative definite by definition. Checking these formal definitions can be tedious
however, as they require checking results for every non-zero vector x. Luckily, using
the eigenvalues of a matrix, we can also determine the definiteness of a matrix. This
boils down to finding all eigenvalues and checking their signs. Using the eigenvalues
as criterion, we say that a symmetric, n×n matrix A is

• positive definite if and only if all eigenvalues are > 0,
• positive semidefinite if and only if all eigenvalues are ≥ 0,
• negative definite if and only if all eigenvalues are < 0,
• negative semidefinite if and only if all eigenvalues are ≤ 0,
• indefinite if A has both eigenvalues that are > 0 and < 0.

Thus, it is enough to know the signs of the eigenvalues to determine the definiteness
of a symmetric matrix. We will present some results without proof that can be
derived using the notions of definiteness. First, let A > 0 denote that A is positive
definite. Similarly, A ≥ 0 then denotes that A is positive semidefinite.

A strong result is that if A > 0, it is invertible, which gives us yet another method
to check whether we can invert a matrix. Furthermore, then it holds that

A > 0⇔ A−1 > 0

or more generally

A ≥ B > 0⇔ B−1 ≥ A−1 > 0.

These results show that computation of the inverse is not necessary if we are
interested in finding out whether or not the inverse is positive (semi)definite.



A Matrix Algebra 387

A.8 Matrix and Vector Differentiation

Vectors and matrices like other mathematical functions can be differentiated. Let x
be a (column) vector with dimension n× 1, x′ a row vector with dimension 1× n,
A a matrix with dimension n×m, γ is a scalar, y is column vector with dimension
m×1. We consider the differentiation of scalars, vectors and matrices, respectively.

First, we show the differentiation of the scalar γ, where γ is defined as

γ = x′a = a′x =
n∑

i=1

axi

and a is a n×1 vector. The derivative of γ to a column vector x can be written as

∂γ

∂x
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂γ
∂x1
...
∂γ
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= a

and similarly

∂γ

∂x′
=

[
∂γ

∂x1
· · · ∂γ
∂xn

]

= a′.

We now consider the case where

γ = x′Ax =
n∑

i=1

n∑

j=1

ai jxix j

where A is a n×n matrix. Differentiation of γ to an element of xk, k = i, j = 1, . . . ,n
gives:

∂γ

∂xk
=
∂
∑n

i=1
∑n

j=1 ai jxix j

∂xk

=
∂
∑n

i=1 aiix2
i +

∑n
i=1,i� j

∑n
j=1,i� j ai jxix j

∂xk

= 2akkxk +2
n∑

j=1, j�k

ak jx j

= 2
n∑

j=1

ak jx j.
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If we perform this operator for each k we obtain:

∂x′Ax
∂x

= 2Ax.

In a similar way we can derive that

∂x′Ax
∂x′

= 2x′A′,

∂x′Ay
∂x

= Ay,

∂x′Ay
∂y

= A′x,

∂x′Ay
∂y′

= x′A.

We apply these findings to derive expressions in the (general) linear model. For
a given cross section j, the relations between the criterion variable y jt and the
predictor variables x� jt, the unknown parameters β� j and the disturbance terms can
be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y j1

y j2
...

y jT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 j1 x2 j1 · · · xL j1

x1 j2 x2 j2 · · · xL j2
...

...
...

x1 jT x2 jT · · · xL jT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1 j

β2 j
...

βL j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u j1

u j2
...

u jT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

y jt = the value of the criterion variable in observation jt,

x� jt = the value of the �-th predictor variable, � = 1, . . . ,L, for observation jt,

β� j = the unknown parameters, � = 1, . . . ,L, for cross section j,

u jt = the value of the disturbance term in observation jt,

T = the number of observations per cross section.

In matrix notation this system becomes:

y j = X j β j +u j,



A Matrix Algebra 389

where

y j = a column vector of T values for the criterion variable,

X j = a matrix of order T × L with values taken by the L predictor variables

x1 j, . . . , xL j,

β j = a column vector of L unknown parameters, and

u j = a column vector of T disturbance terms.

For convenience we delete the index j and have:

y = Xβ+u.

The least squares estimates of β are obtained by minimizing the sum of squares of
the residuals: u′u. We can write u′u as

G(β) = (y−Xβ)′(y−Xβ)

= y′y−2β′y′X+β′X′Xβ.

This expression is minimized by least-squares by differentiating this expression to β:

∂G(β)
∂β

= −2X′y+2X′Xβ,

which we equate to zero. The result may be written as

X′Xβ = X′y,

and

β = (X′X)−1X′y.

Remark that even when X is not a square (n× n) matrix, but has order m× n then
X′X has the order n×n and, when X′X is not singular, its inverse (X′X)−1 exists, at
least in principle.
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