Patrick Lambrix
Graham Kemp (Eds.)

Data Integration
in the Life Sciences

7th International Conference, DILS 2010
Gothenburg, Sweden, August 2010
Proceedings

LNBI 6254

@ Springer

Lecture Notes in Bioinformatics 6254
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G.Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Patrick Lambrix Graham Kemp (Eds.)

Data Integration
in the Life Sciences

7th International Conference, DILS 2010
Gothenburg, Sweden, August 25-27, 2010
Proceedings

@ Springer

Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Patrick Lambrix

Linkopings universitet

Department of Computer and Information Science, 581 83 Linkoping, Sweden
E-mail: patla@ida.liu.se

Graham Kemp

Chalmers University of Technology and University of Gothenburg
Computer Science and Engineering, 412 96, Gothenburg, Sweden
E-mail: kemp @chalmers.se

Library of Congress Control Number: 2010932135

CR Subject Classification (1998): H.3,J.3,1.2, H4, C.2, H.5
LNCS Sublibrary: SL 8 — Bioinformatics

ISSN 0302-9743
ISBN-10 3-642-15119-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15119-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The development and increasingly widespread deployment of high-throughput
experimental methods in the life sciences is giving rise to numerous large, com-
plex and valuable data resources. This foundation of experimental data under-
pins the systematic study of organisms and diseases, which increasingly depends
on the development of models of biological systems. The development of these
models often requires integration of diverse experimental data resources; once
constructed, the models themselves become data and present new integration
challenges for tasks such as interpretation, validation and comparison.

The Data Integration in the Life Sciences (DILS) Conference series brings
together data and knowledge management researchers from the computer sci-
ence research community with bioinformaticians and computational biologists,
to improve the understanding of how emerging data integration techniques can
address requirements identified in the life sciences.

DILS 2010 was the seventh event in the series and was held in Gothen-
burg, Sweden during August 25-27, 2010. The associated proceedings contain
14 peer-reviewed papers and 2 invited papers. The sessions addressed ontology
engineering, and in particular, evolution, matching and debugging of ontologies,
a key component for semantic integration; Web services as an important technol-
ogy for data integration in the life sciences; data and text mining techniques for
discovering and recognizing biomedical entities and relationships between these
entities; and information management, introducing data integration solutions
for different types of applications related to cancer, systems biology and mi-
croarray experimental data, and an approach for integrating ranked data in the
life sciences. The invited talk by Juliana Freire reviewed state-of-the-art tech-
niques, research challenges and open problems involved in managing provenance
throughout the data life cycle. Joel Saltz discussed the requirements for and
design of a system for composing, executing and exploring in silico experiments
involving microscopy images.

The editors would like to thank the Program Committee and the external
reviewers for their work in enabling the timely selection of papers for inclusion
in the proceedings. We acknowledge the support of AstraZeneca as well as of
Chalmers University of Technology and Linképing University. We also appreciate
our cooperation with EasyChair as well as our publisher Springer.

June 2010 Patrick Lambrix
Graham Kemp

General Chairs

Graham Kemp
Patrick Lambrix

Local Organization

Rebecca Cyrén
Devdatt Dubhashi
Merja Karjalainen
Anna-Lena Karlsson
Graham Kemp
Caroline Olsson

Program Chairs

Patrick Lambrix
Graham Kemp

Program Committee

Hans Ahlfeldt
Chris Baker
Albert Burger

Sarah Cohen-Boulakia
Terence Critchlow
Christine Froidevaux
Carole Goble

Peter Karp

Graham Kemp
Jessie Kennedy
Patrick Lambrix
Mong Li Lee

Ulf Leser

Frédérique Lisacek
Bertram Ludéscher
Marco Masseroli
Paolo Missier
See-Kiong Ng

Organization

Chalmers University of Technology, Sweden
Linkoping University, Sweden

Chalmers University of Technology, Sweden
Chalmers University of Technology, Sweden
Chalmers University of Technology, Sweden
Chalmers University of Technology, Sweden
Chalmers University of Technology, Sweden
Chalmers University of Technology, Sweden

Linko6ping University, Sweden
Chalmers University of Technology, Sweden

Linko6ping University, Sweden

University of New Brunswick, Canada

Heriot-Watt University and MRC Human
Genetics Unit, UK

Université Paris-Sud, France

Pacific Northwest National Laboratory, USA

Université Paris-Sud, France

University of Manchester, UK

SRI International, USA

Chalmers University of Technology, Sweden

Edinburgh Napier University, UK

Linkoping University, Sweden

National University of Singapore, Singapore

Humboldt-Universitiat zu Berlin, Germany

Swiss Institute of Bioinformatics, Switzerland

University of California, Davis, USA

Politecnico di Milano, Italy

University of Manchester, UK

Institute for Infocomm Research, Singapore

VIII Organization

José Luis Oliveira
Alexandra Poulovassilis
Erhard Rahm

Louiga Raschid
Christopher J. Rawlings
Falk Schreiber

Michael Schroeder
Christopher Southan
Chris Stoeckert
Lena Strombéack
Mark Wilkinson
Anil Wipat

Additional Reviewers

Dimitra Alexopoulou
Jonas Bergman Laurila
Julie Bernauer

Heiko Dietze

Anika Grof3

Toralf Kirsten

Arash Shaban-Nejad
Karen Sutherland
Thomas Wachter

Universidade de Aveiro, Portugal

Birkbeck College, UK

Universitéat Leipzig, Germany

University of Maryland, USA

Rothamsted Research, UK

Martin Luther University Halle-Wittenberg,
Germany

TU Dresden, Germany

AstraZeneca, Sweden

University of Pennsylvania, USA

Linko6ping University, Sweden

University of British Columbia, Canada

University of Newcastle, UK

Table of Contents

Invited Talks

Provenance Management for Data Exploration.......................
Juliana Freire

High-Performance Systems for in Silico Microscopy Imaging Studies
Fusheng Wang, Tahsin Kurc, Patrick Widener, Tony Pan,
Jun Kong, Lee Cooper, David Gutman, Ashish Sharma,
Sharath Cholleti, Vijay Kumar, and Joel Saltz

Ontology Engineering

Discovering Evolving Regions in Life Science Ontologies...............
Michael Hartung, Anika Gross, Toralf Kirsten, and Erhard Rahm

On Matching Large Life Science Ontologies in Parallel
Anika Gross, Michael Hartung, Toralf Kirsten, and Erhard Rahm

A System for Debugging Missing Is-a Structure in Networked
Ontologies . ..ot
Qiang Liu and Patrick Lambriz

Web Services

On the Secure Sharing and Aggregation of Data to Support Systems
Biology Research
Andrew Simpson, Mark Slaymaker, and David Gavaghan

Helping Biologists Effectively Build Workflows, without
Programming.
Paul M.K. Gordon, Ken Barker, and Christoph W. Sensen

A Data Warehouse Approach to Semantic Integration of Pseudomonas
Data ...
Kamar Marrakchi, Abdelaali Briache, Amine Kerzazi,
Ismael Navas-Delgado, José Francisco Aldana-Montes,
Mohamed Ettayebi, Khalid Lairini, and Badr Din Rosst Hassani

Data Mining and Text Mining

The Cinderella of Biological Data Integration: Addressing Some of the
Challenges of Entity and Relationship Mining from Patent Sources
Ithipol Suriyawongkul, Christopher Southan, and Sorel Muresan

19

35

50

o8

74

90

X Table of Contents

Algorithm for Grounding Mutation Mentions from Text to Protein

SEQUEIICES .« v vttt e e e e e e e e e

Jonas Bergman Laurila, Rajaraman Kanagasabai, and
Christopher J.O. Baker

Handling Missing Features with Boosting Algorithms for

Protein—Protein Interaction Prediction.............

Fabrizio Smeraldi, Michael Defoin-Platel, and Mansoor Saqi

Instance Discovery and Schema Matching with Applications to
Biological Deep Web Data Integration
Tantan Liu, Fan Wang, and Gagan Agrawal

Information Management

Integrative Information Management for Systems Biology
Neil Swainston, Daniel Jameson, Peter Li, Irena Spasic,
Pedro Mendes, and Norman W. Paton

An Integration Architecture Designed to Deal with the Issues of
Biological Scope, Scale and Complexity o oo,
Hector Rovira, Sarah Killcoyne, Ilya Shmulevich, and John Boyle

Quality Assessment of MAGE-ML Genomic Datasets Using DescribeX. .
Lorena Etcheverry, Shahan Khatchadourian, and Mariano Consens

Search Computing: Integrating Ranked Data in the Life Sciences.
Marco Masseroli, Norman W. Paton, and Giorgio Ghisalberti

Author Index e

Provenance Management for Data Exploration

Juliana Freire

SCI Institute, University of Utah, USA
Linképing University, Sweden

Computing has been an enormous accelerator to science and industry alike and
it has led to an information explosion in many different fields. The unprece-
dented volume of data acquired by sensors, derived by simulations and analysis
processes, and shared on the Web opens up new opportunities, but it also creates
many challenges when it comes to managing and analyzing these data. In this
talk, T discuss the importance of maintaining detailed provenance (also referred
to as lineage and pedigree) for digital data. Provenance provides important doc-
umentation that is key to preserve data, to determine the data’s quality and
authorship, to understand, reproduce, as well as validate results [9J403]. T will
review some of the state-of-the-art techniques, as well as research challenges and
open problems involved in managing provenance throughout the data life cy-
cle R8TITTR72AGI7TIT3IT2). T will also discuss benefits of provenance that go
beyond reproducibility, including techniques and tools we have developed that
leverage provenance information to support reflective reasoning and collabora-
tive data exploration and visualization [TTVT2523/T522I52TIT4IT9I20]. I con-
clude with a discussion on new applications that are enabled by provenance. In
particular, I present how provenance can be used to aid in teaching [26], to create
reproducible papers [I6/8], and as the basis for social data analysis [TOJI8|2].

References

1. Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., Vo, H.: Managing
the evolution of dataflows with vistrails (Extended Abstract). In: IEEE Workshop
on Workflow and Data Flow for Scientific Applications, SciFlow (2006)

2. CrowdLabs, http://www.crowdlabs.org

3. Davidson, S.B., Boulakia, S.C., Eyal, A., Ludéscher, B., McPhillips, T.M., Bowers,
S., Anand, M.K., Freire, J.: Provenance in scientific workflow systems. IEEE Data
Eng. Bull. 30(4), 44-50 (2007)

4. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and op-
portunities. In: SIGMOD, pp. 1345-1350 (2008)

5. Ellkvist, T., Koop, D., Anderson, E.W., Freire, J., Silva, C.T.: Using provenance to
support real-time collaborative design of workflows. In: Freire, J., Koop, D., Moreau,
L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 266—-279. Springer, Heidelberg (2008)

6. Ellkvist, T., Strombéck, L., Lins, L.D., Freire, J.: A first study on strategies for
generating workflow snippets. In: Proceedings of the ACM SIGMOD International
Workshop on Keyword Search on Structured Data (KEYS), pp. 15-20 (2009)

7. Ellgvist, T., Koop, D., Freire, J., Silva, C., Stromback, L.: Using mediation to achieve
provenance interoperability. In: IEEE Congress on Services, pp. 291-298 (2009)

8. Fomel, S., Claerbout, J.F.: Guest editors’ introduction: Reproducible research.
Computing in Science and Engineering 11, 5-7 (2009)

P. Lambrix and G. Kemp (Eds.): DILS 2010, LNBI 6254, pp. 12010.
© Springer-Verlag Berlin Heidelberg 2010

2

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. Freire

. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks:

A survey. Computing in Science and Engineering 10(3), 11-21 (2008)

Freire, J., Silva, C.: Towards enabling social analysis of scientific data. In: ACM
CHI Social Data Analysis Workshop (2008)

Freire, J., Silva, C., Callahan, S., Santos, E., Scheidegger, C., Vo, H.: Managing
rapidly-evolving scientific workflows. In: Moreau, L., Foster, 1. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 10-18. Springer, Heidelberg (2006)

Koop, D., Santos, E., Bela Bauer, J.F., Troyer, M., Silva, C.T.: Bridging workflow
and data provenance using strong links. In: SSDBM (to appear 2010)

Koop, D., Scheidegger, C., Freire, J., Silva, C.T.: The provenance of workflow
upgrades. In: IPAW (to appear, 2010)

Koop, D., Scheidegger, C.E., Callahan, S.P., Freire, J., Silva, C.T.: Viscomplete:
Automating suggestions for visualization pipelines. IEEE Transactions on Visual-
ization and Computer Graphics 14(6), 1691-1698 (2008)

Lins, L., Koop, D., Anderson, E.W., Callahan, S.P., Santos, E., Scheidegger, C.E.,
Freire, J., Silva, C.T.: Examining statistics of workflow evolution provenance: A
first study. In: Lud&scher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069,
pp. 573-579. Springer, Heidelberg (2008)

Mesirov, J.P.: Accessible reproducible research. Science 327(5964), 415-416 (2010)
Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J., Paulson, P.: The
open provenance model: An overview. In: Freire, J., Koop, D., Moreau, L. (eds.)
IPAW 2008. LNCS, vol. 5272, pp. 323-326. Springer, Heidelberg (2008)

Santos, E., Freire, J., Silva, C.: Information sharing in science 2.0: Challenges and
opportunities. In: ACM CHI Workshop on The Changing Face of Digital Science:
New Practices in Scientific Collaborations (2009)

Santos, E., Koop, D., Vo, H.T., Anderson, E-W., Freire, J., Silva, C.T.: Using
workflow medleys to streamline exploratory tasks. In: SSDBM, pp. 292-301 (2009)
Santos, E., Lins, L., Ahrens, J., Freire, J., Silva, C.T.: Vismashup: Streamlining the
creation of custom visualization applications. IEEE Transactions on Visualization
and Computer Graphics 15(6), 1539-1546 (2009)

Santos, E., Lins, L., Ahrens, J.P., Freire, J., Silva, C.T.: A first study on clustering
collections of workflow graphs. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW
2008. LNCS, vol. 5272, pp. 160-173. Springer, Heidelberg (2008)

Scheidegger, C.E., Koop, D., Santos, E., Vo, H.T., Callahan, S.P., Freire, J., Silva,
C.T.: Tackling the provenance challenge one layer at a time. Concurrency and
Computation: Practice and Experience 20(5), 473-483 (2008)

Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and creat-
ing visualizations by analogy. IEEE Transactions on Visualization and Computer
Graphics 13(6), 1560-1567 (2007)

Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and re-using
workflows with vistrails. In: SIGMOD, pp. 1251-1254 (2008)

Silva, C., Freire, J., Callahan, S.P.: Provenance for visualizations: Reproducibility
and beyond. IEEE Computing in Science & Engineering (2007) (to appear)

Silva, C.T., Anderson, E., Santos, E., Freire, J.: Using vistrails and provenance
for teaching scientific visualization. In: Proceedings of the Eurographics Education
Program (to appear, 2010)

Silva, C.T., Freire, J.: Software infrastructure for exploratory visualization and
data analysis: past, present, and future. Journal of Physics: Conference Se-
ries 25(012100), 15 pages (2008) (SciDAC 2008 Conference)

VisTrails, http://www.vistrails.org

High-Performance Systems for in Silico
Microscopy Imaging Studies

Fusheng Wang!, Tahsin Kurc!, Patrick Widener!, Tony Pan!, Jun Kong',
Lee Cooper', David Gutman', Ashish Sharma', Sharath Cholleti',
Vijay Kumar?, and Joel Saltz!

L Center for Comprehensive Informatics
and Department of Biomedical Engineering
Emory University, Atlanta, Georgia, USA
2 Dept. of Computer Science and Engineering
Ohio State University, Columbus, Ohio, USA

Abstract. High-resolution medical images from advanced instruments
provide rich information about morphological and functional charac-
teristics of biological systems. However, most of the information avail-
able in biomedical images remains underutilized in research projects. In
this paper, we discuss the requirements and design of system support
for composing, executing, and exploring in silico experiments involv-
ing microscopy images. This framework aims to provide building blocks
for large scale, high-performance analytical image exploration systems,
through rich metadata models, comprehensive query and data access
capabilities, and efficient database and HPC support.

1 Introduction

Technologies for in vitro imaging of biological systems at the microscopic level
have advanced significantly in the past decade. Commercial microscopy scanners
are now capable of producing high-magnification, high-resolution images from
whole slides and tissue microarrays within several minutes. These capabilities
reduce dependency on glass slides for expert reviews to assess tissue quality and
diagnose disease stage. Moreover, they enable novel in silico imaging studied] of
normal and disease states of biological systems at cellular and subcellular scales.
High-resolution image data offers enormous information with which to examine
the spatial characteristics and relationships of subcellular structure of specimens
under study. A better understanding of those characteristics can lead to better
biomarkers or unveil new insights into disease mechanisms.

Software for use of digitized slides in clinical setting is typically character-
ized by the functionality it provides for a user to browse, view, and manually

! The term “in silico study” or “in silico experiment” broadly refers to a study or
an experiment performed on a computer via analysis, mining, and integration of
databases and/or through simulations.

P. Lambrix and G. Kemp (Eds.): DILS 2010, LNBI 6254, pp. 3 2010.
© Springer-Verlag Berlin Heidelberg 2010

4 F. Wang et al.

annotate individual slides for tissue quality control and diagnosis. In silico ex-
periments involving image data, on the other hand, have different characteristics
and introduce a richer set of data access and processing patterns.

First of all, image data can reach very large volumes. Each image obtained
from a whole tissue slide using a state-of-the-art scanner can be tens of gigabytes
in size. Large studies may involve thousands of slides obtained from a large
cohort of subjects. The sizes of these image datasets can range from terabytes to
hundreds of terabytes — it is not too far-fetched to expect that dataset sizes will
scale to petabytes, thanks to continued advances in scanning technologies. Such
large scale data poses problems in storing, managing, and querying the data.

Second, image data is processed using simple and complex operations and
by analysis workflows of various types in in silico experiments. Data processing
operations may include filtering, correction of image acquisition artifacts, in-
tensity normalization, registration, segmentation of structures (e.g., nuclei and
blood vessels as shown in Figure [Il), extraction of features, and classification of
segmented structures. These operations can be combined in a variety of ways
to form analysis workflows. The sizes of high-resolution images and the com-
plexity of such operations as segmentation and classification may result in long
execution times and may require large main memory and powerful computers.
Clearly, large scale image analyses are good candidates for execution on parallel
and distributed machines.

Third, results from image analyses, whether obtained via manual classifica-
tion by an expert reviewer or through computer methods, should be expressed
in a form that supports efficient synthesis of information. This is necessary to
enable sharing and further exploration of results from an in silico experiment,
to facilitate comparisons across multiple analyses, and to support rapid devel-
opment and algorithm evaluations — a large scale study may involve hundreds of
methods and analysis workflows. Rich metadata needs to be captured in order
to describe analysis results (e.g., nuclear texture, blood vessel characteristics)
and the context of the image analyses. With large datasets, researchers have to
store, manage, and interact with large volumes of metadata about segmented
anatomic structures, markups and features computed for each anatomic object,
and semantic information associated with annotations (about cell types, genomic
information associated with cells, etc). It is also important to model analytic pro-
cedures and pipelines used to carry out segmentation, feature generation, and
classification.

Furthermore, comprehensive query support is needed. Researchers would like
to query anatomic structures and objects, semantic annotations on objects, and
spatio-temporal relationships in order to mine, explore, and correlate the charac-
teristics of specimens under study and integrate with other types of data such as
omics and clinical data. A researcher may, for example, want to search for blood
vessels by not only shape features like length or thickness but also by their types.
In an algorithm evaluation scenario, queries may look for the amount of overlap
between objects detected by different algorithms or differences in classification
results from an algorithm and a human. A whole slide image may contain millions

High-Performance Systems for in Silico Microscopy Imaging Studies 5

Fig. 1. Examples of image markups: (a) Nuclei; (b) Blood vessels

of anatomic structures, which may have complex shape and texture character-
istics, hence there may be millions of annotations associated with the image.
A repository of analysis results should be able to support queries on terabytes
of image data and hundreds of millions (even billions) of anatomic structures,
features, and semantic annotations.

We have presented and discussed solutions to the first and second challenges
elsewhere [T3IT4UT2]. In this paper, we propose and discuss a data warehouse
framework to support storage, management, and querying of results from in silico
image studies. We present an implementation of the core repository infrastruc-
ture of the proposed framework. This implementation uses an object-oriented
model, called Pathology Analytical Imaging Standard (PAIS) [21], for represen-
tation of image analyses. It employs a relational database management system,
IBM DB2, for data storage and management.

2 An Example Application Scenario

There are a variety of studies that make use of microscopy imaging, including
characterization of the tumor microenvironment and comparative analysis of
tissue microarrays. Here, we present a multi-scale integrative research project in
cancer research as an example application scenario. We will use this example to
illustrate the requirements and design choices to be presented in the following
sections.

The In Silico Brain Tumor Research Center (ISBTRC) is a research project
funded by the National Cancer Institute as one of the six In Silico Research Cen-
ters of Excellence (ISRCE, https://wiki.nci.nih.gov/display/ISCRE). The over-
arching goal of the ISRCE program is to carry out novel scientific research by
analyzing, mining, and integrating publicly available biomedical datasets. The
ISBTRC conducts hypothesis-driven translational research on brain tumors. Ini-
tially the research will focus on mechanisms for better classification of diffuse
gliomas and on the biology of disease progression. This research makes use of

6 F. Wang et al.

complementary genomic, pathology, and radiology brain tumor data from the
Cancer Genome Atlas (TCGA), Rembrandt, and Vasari studies.

The ISBTRC is undertaking multiple approaches to study gliomas. One of
them involves systematically executing and evaluating in silico experiments to
look for relationships between 1) nuclear shape and texture in microscopy images
and gene expression profiles defined by molecular clustering analyses and 2) the
characteristics of angiogenesis (as detected in microscopy images), gene expres-
sion profiles, and neuroimaging features. In the in silico experiments designed
for the pathology data, high-resolution images from whole slides are reviewed
by expert pathologists as well as analyzed by computer algorithms. The pathol-
ogists mark up histological entities of interest on a selected subset of slides,
annotate the structures (i.e., assign a classification value), and grade each se-
lected slide. Computer algorithms segment anatomic structures, compute a set
of features (ranging from the area and elongation of a nucleus to the bifurca-
tions of blood vessels), and annotate each segmented structure with a semantic
classification value (e.g., astrocytoma or oligodendroglioma). The pathologist
reviews are used in validation of image analysis methods and to improve the
algorithms’ segmentation and classification results. Markups and annotations
from multiple algorithms also are compared to assess the relative performance
of the algorithms.

3 A Framework for in Silico Experimentation with
Pathology Images

As we have alluded to in the introduction section, in silico experiments add new
data access and processing requirements on top of the basic requirements of
viewing and manually annotating individual slides. In a typical study, volumes
of image data will be analyzed and mined by computer algorithms to look for
morphological patterns that can assist in developing new hypotheses or prov-
ing/disproving a hypothesis. Since it may not be feasible to manually examine
and classify each slide in a large study, multiple computational methods and
workflows may be employed. By comparing and evaluating results from different
analyses, a researcher can assign a confidence level to the experiment outcome.
The researcher may also design an experiment to rapidly evaluate algorithms in
their early stages of development to assess algorithm accuracy and speed. This
type of experiment would involve running the algorithms possibly many times
against one or more datasets as well as querying, retrieving, and comparing
results from other algorithms and previous runs.

We describe at a high-level a software framework to address these types of
data access and processing requirements. An illustration of this framework is
provided in Figure2l The framework consists of four main components. We now
briefly describe these components.

Analytical Workflow Component. This component implements support for ex-
ecution of analysis methods and workflows. For large datasets, it should take
advantage of parallel and distributed machines and enable data-parallel and

High-Performance Systems for in Silico Microscopy Imaging Studies 7

Metadata XML Schema Schema Annotation Query
Interface
Il
Metadata Database Service
Schema Interface
Image
Analysis
: Image &
Algorithms B Metadata
¥ S = Viewer
Results | ‘@ 5 -r-:
Document g8 D -
Generator @ Z - Application
o = o
3 g
Analytical]
Workflow
In Silico Experiments Repository
777 : Management

Fig. 2. Analytical microscopy imaging framework

task-parallel implementations of workflows that consist of a network of data
processing operations. A subcomponent of this component is the results docu-
ment generator. Each image analysis application or human annotation applica-
tion generates the final result data in a format that conforms to the metadata
model schema. Provenance information also is encoded in the document; the
provenance information could include metadata about algorithm or workflow,
analysis parameters, and input and output datasets. For example, in our im-
plementation for the ISBTRC project, results and provenance information are
submitted to the results repository as XML documents, conforming to the PAIS
metadata model (see Sections [5.1] and [5.2]).

Image Data Management. The image database provides the central repository
for all microscopy images referenced in a study. To optimize data retrieval speeds
for queries on large images and image regions, each image is partitioned into tiles
or chunks. These chunks are distributed across multiple disks or storage systems
to increase parallel I/O opportunities and are clustered on disks to reduce I/0
seek overheads. The images or image tiles are stored in compressed form using
a multi-resolution compression scheme in order to reduce storage and I/O costs.
Multi-resolution spatial indices, such as R-trees, are employed to reduce the
cost of searching the tile set of interest. An implementation of the image data
management component is presented in [6].

Application Server. The application server component provides interfaces for
query, algorithm invocation, data exchange and sharing, and data viewing. The
query interface facilitates a flexible, convenient mechanism to search for and
retrieve the data of interest. Additional user defined functions can also be created
and run in the database engine, and executed from the query interface in order
to provide improved performance. The service interface subcomponent supports
Grid and Web Service interfaces for remote access to analyses and for sharing of

8 F. Wang et al.

experiments and methods through well-defined interfaces. Tools and viewers for
browsing and viewing image data and analysis results are part of the application
server component as well.

In Silico Experiments Repository. This is the central component for manage-
ment of analysis results, which are generated through computer algorithms or
by human experts. The repository is anchored on a data model that consists
of generalized data objects, comprehensive data types, and flexible relationships
between data objects. In an implementation of this repository, the data model
should be designed to capture metadata about in silico experiments, semantic
metadata about segmented and classified structures, and provenance informa-
tion about analyses. The repository instance should be able to allow access to
information via a wide range of queries on metadata, spatial structures and re-
lationships, and semantic annotations and relationships drawn from one or more
domain ontologies. The in silico experiments repository is the focus of this paper
and will be described in greater detail next.

4 Repository for in Silico Microscopy Imaging
Experiments

In this section we discuss the requirements and design of repositories for in sil-
ico imaging experiments. These repositories first and foremost should enable a
research team to efficiently carry out imaging experiments. That is, they should
allow for efficient exploration of analysis results. They should also provide sup-
port for archiving analyses an investigator wants to save, share, and reference in
other studies as well as for agile rapid prototyping and algorithmic exploration.

4.1 Metadata

Rich metadata plays a crucial role in sharing, reusability, and reproducibility
of in silico imaging experiments. Metadata should be able to precisely and un-
ambiguously describe an in silico experiment and its components. One of the
reasons that information derived from biomedical images is underused can be
attributed to lack of efficient and flexible data models to support the modeling,
managing, querying and sharing of analysis results and derived data. The Anno-
tation and Image Markup (AIM) model is a caBIG® standard[7] developed to
provide standardization for image annotation and markup for radiology images.
However, microscopy and pathology images have their unique characteristics.
The immediate challenge is that the metadata model should be efficient to
support large volumes of result sets. For instance, one of the ISBTRC experi-
ments involving 213 whole-slide images has segmented and annotated more than
90 million nuclei. In addition, a single XML-based results document, which con-
tained markups for all nuclei and the 23 features associated with each nucleus
on a single slide, reached 7GB in size. Another challenge is the complexity of
analysis results. The metadata about an in silico experiment can be semantically
complex. The metadata model should be able to represent slide related image,

High-Performance Systems for in Silico Microscopy Imaging Studies 9

markup, feature, and annotation (e.g., classification of anatomic structures) in-
formation. This information includes a) context relating to patient data, speci-
men preparation, special stains, etc, b) human observations involving pathology
classification and characteristics, and ¢) algorithm and human-described segmen-
tations (markups), features, and annotations. Markups can be either geometric
shapes or image masks; annotations can be calculations, observations, disease
inferences or external annotations. The relationships between data elements can
also be complex. For example, additional annotations can be derived from exist-
ing annotations. As a result, generic and extensible metadata models are required
to support different types of experiments and applications.

The metadata model should also include a semantic description of the com-
putation being carried out. At a minimum, the model should allow a user to
express algorithm metadata, parameters, and semantic and concrete identifi-
cation of input and output datasets. A more advanced model could support
ontology-driven semantic descriptions of workflow templates and instances as
well as concrete provenance information about an execution of a given workflow.
Ontology-driven semantic representations provide a richer system of searching
and reasoning about workflows. An example of semantic workflow systems is
WINGS [8]. It provides a core ontology for generic components and data types
to express workflows. This core ontology can be extended to support data types
and data processing components in an application domain [13]. WINGS allows
a user to describe an application workflow using semantic properties associated
with workflow components and data types at a high-level of abstraction referred
to as a workflow template. The workflow template and the semantic proper-
ties of the components and data types are expressed using the Web Ontology
Language(OWLE.

4.2 Query Support

The repository should provide support for metadata based queries (e.g., count nu-
clei where their grades are less than 3), spatial queries (e.g., find density of nuclei
where their grades are between 1 and 3 in selected region of interest), and semantic
queries based on reasoning on spatial relationships and /or ontology relationships.
The types of queries include: i) retrieval of image data and metadata to obtain
data for analytical procedures, ii) queries to compare results generated from dif-
ferent approaches, and validate machine generated results against human obser-
vations; iii) spatial queries on assessing relative prevalence of features or classified
objects, or assessing spatial coincidence of combinations of features or objects;
and iv) queries to support selection of collections of segmented regions, features,
objects for further machine learning or content based retrieval applications.
Many of the analytical imaging results are anatomic objects such as lesions,
cells, nuclei, blood vessels, etc. Spatial relationships among these objects are
often important to understanding the biomedical characteristics of biology sys-
tems. Common spatial relationships include containment, intersection or overlap,

2 http://www.w3.org/ TR /owl-ref

10 F. Wang et al.

distance between objects, and adjacency relationships. Besides spatial relation-
ships, another common requirement is to support calculation of coordinate and
measurement information (such as computing the area, centroid, perimeter, min-
imal bounding box) of a markup object. The ISBRTC in silico experiments, for
example, generate large volumes of results in the form of segmented regions,
markups, annotations, and features. These data elements are stored, managed,
and queried for algorithm validation as well as integration with genomics, clini-
cal, and radiology data. Examples of the types of queries are: (1) Find the num-
ber of nuclei, which are classified by observer A and whose feature f is within
the range of a and b; (2) Which nuclei types preserve nuclei features (distance,
shape, etc) between two images; and (3) Which brain tumor nuclei classified
by observer A and brain tumor nuclei classified by observer B exhibit spatial
overlap in a given region of interest.

Annotations on objects may draw from one or more domain ontologies (e.g.,
cell ontology to describe different cell types, genome ontology to represent ge-
nomic characteristics), creating a semantically rich environment. The repository
should allow for querying of data using semantic information. An example query
from the ISBTRC studies is “Search for objects with an observation concept (as-
trocytoma), but also extend it to include all its subclass concepts (gliosarcoma
and giant cell glioblastoma).” An important aspect of semantic information sys-
tems is the fact that additional assertions (i.e., annotations and classifications)
can be inferred from initial assertions (also called explicit assertions) based on
the ontology and the semantics of the ontology language. This facilitates a more
comprehensive mechanism for exploration of experiment results in the context
of domain knowledge. In some cases, it is desirable to extend an ontology with
new concepts and properties. That is, a researcher may want to define and add
new concepts and classes to the ontology using axioms and rules on existing
classes and computable attributes, such as spatial relationships based on dis-
tance or relationships between computed features. This would allow incorpora-
tion of new knowledge to the system, and might result in new set of inferred
annotations (assertions). Combined use of semantic stores/reasoners [11I22]5]
and rule engines [10] can offer a repository system capable of evaluating spatial
predicates and rules [T9/T15]. In such a system, the rule engine and the semantic
store/inference engine interact to compute inferred assertions based on the on-
tology in the system, the set of rules, and the initial set of explicit assertions (an-
notations). Rules that utilize the spatial-temporal relationships might generate
new instances of ontological concepts based on the evaluation of the rules. These
instances are fed into the semantic inference engine to compute new assertions.
The new assertions are input to the rule engine to compute new instances based
on rules. This process continues iteratively until no more assertions/instances
can be generated.

4.3 High-Performance Computing for Large Data Volumes

In order to scale to large volumes of data, the repository should take advantage of
parallel computation power and I/O access. This can be achieved through data

High-Performance Systems for in Silico Microscopy Imaging Studies 11

c

2 Node A Node B Node C
2

& -

a High Speed Network

: i_l l_l

.2

b=~

& || Collection1 | Collection 2 Collection 3 || Collection 4
&

'5 Slide 11Slide 12| [Slide 21[Slide 22| Slide 31[|Slide 32| |Slide 41Slide 42
é Slide 13(|Slide 14| |Slide 23(|Slide 24 Slide 33(|Slide 34]|Slide 43|[Slide 44

Fig. 3. High performance computing for managing large scale image metadata

distribution and partitioning techniques to take advantage of high performance
computing resources (Figure B) and cluster computing extensions in database
management systems,

Data distribution and clustering to reduce I1/0O costs. Databases can be phys-
ically partitioned into multiple physical nodes on cluster based computing in-
frastructure, which consists of multiple physical servers, where each node has
its own CPUs, disk controllers and disks (shared-nothing architecture). Physical
database partitions across multiple nodes connected through high speed connec-
tions can scale quickly with the power of clusters. Multi-dimensional clustering,
on the other hand, provides a method for automatic physically clustering of
data along multiple dimensions on more than one key (or dimension) simultane-
ously. This reduces seek overheads when accessing the data along one or more
dimensions. Database logical partitions reside on the same physical node can
take advantage of symmetric multiprocessor (SMP) architecture. Having a par-
titioned database on a single machine with multiple logical nodes is also known
as a shared-everything architecture, where the partitions use common memory,
CPUs, disk controllers, and disks. Logical partitioned database can then take
advantage of the parallelism support for both queries and I/O on a single SMP
machine. In addition, table partitioning provides another way of dispersing data
across multiple storage objects. For example, we can partition data in a table
based on slide IDs, or range of dates. This can effectively constrain the search
space to boost query performance.

Semantic Query Execution. With very large datasets, semantic query execution
and on-the-fly computation of assertions may take too long on a single processor
machine to be useful in exploration of datasets. Pre-computation of inferred as-
sertions, also referred to as the materialization process, can reduce the execution
of subsequent queries. Materialized assertions can be stored in the system and

12 F. Wang et al.

optimization techniques including indexing can be utilized. However, the process
of materialization may take very long for large datasets. Execution strategies
leveraging high-performance parallel and distributed machines can reduce exe-
cution times and speed up the materialization process [T4T9IT5]. One possible
strategy is to employ data parallelism by partitioning the Euclidean space in
which the spatial objects are embedded. Another parallelization strategy is to
partition the ontology axioms and rules, distributing the computation of axioms
and rules to processors. This partitioning would enable processors to evaluate
different axioms and rules in parallel. Inter-processor communication might be
necessary to ensure correctness. This parallelization strategy attempts to lever-
age axiom-level parallelism. It will likely benefit applications where the ontology
contains many axioms with few dependencies. A third possible strategy is to
combine the first two strategies with task-parallelism. In this strategy, N copies
of the semantic store engine and M copies of the rule engine are instantiated on
the parallel machine. The system coordinates the exchange of information and
the partitioning of workload between the semantic store engine instances and
the rule engine instances. The numbers N and M will depend on the cost of the
inference execution as well as the partitioning of the workload based on spatial
domain and/or ontology axioms.

5 An Implementation of in Silico Imaging Experiments
Repository

We have developed an implementation of the in silico experiments repository
component (Figure[2) using relational database technology. The database schema
is composed of a set of tables based on the Pathology Analytical Imaging
Standards (PAIS) model [2I]. We describe this implementation in this section.

5.1 PAIS Data Model

The PAIS model is designed to provide an object-oriented, extensible, seman-
tically enabled data model to support pathology analytical imaging and hu-
man observations. PAIS provides highly generalized data objects, comprehensive
data types, and flexible relationships between data objects. PAIS is also storage
and performance efficiency oriented, and supports alternative implementations.
Based on an object-oriented design, PAIS is easily extensible. The logical model
of PAIS is designed in UML, and consists of 62 classes and interclass associ-
ations. The major components (main classes and relationships, not including
attributes) are shown in Figure[dl These classes can be categorized as:

— Image reference information — the reference and metadata of the images.
These include the ImageReference class with subclasses DICOMImageRefer-
ence, and MicroscopylmageReference. The later has two subclasses
WholeSlideImageReference and TMAImageReference. The Region class
specifies which area (e.g., a tile) in the original image is used for the
annotation.

High-Performance Systems for in Silico Microscopy Imaging Studies 13

WholeSlidell Refi TMAImag

_ é; é; Region

pylmag
0.1
o Subject Patient
DICOMImageReference
%7 ! ! Specimen
d f 1 0.
0. 0.1
User o L1 0.7 |AnatomicEntity|
1
0.1
Group 1 !
0.1
0.1 ! PAIS
Project ; !
0.1 ! 0. AnnotationReference
0.* 1 1 1
C
f 0. [0.-
Markup o Annotation o
0.* 0.*
]
Z% 1 1 S
1
| f S .
GeometricShape Surface Field Observation Calculation Inference
1 1
T
Provenance o

o

Fig. 4. Overview of PAIS model with a subset of major classes

Image target information — who, where, and how the images are generated.
These include Subject (such as Patient), Specimen, AnatomicEntity and
Equipment classes.

Organizational information — who performs the study and annotation and for
what purpose. There are four classes: User, Group, Project and Collection. A
collection is a group of items of the same type, gathered for display or study.
For example, results from the same algorithm with different parameters on
the same image belong to the same collection.

Markup. Markup delineates a spatial region in the images and represents a
set of values derived from the pixels in the images. Markup symbols are asso-
ciated with one or multiple images, and can be in form of GeometricShape,
Surface, or Field. Geometric shapes can be Point, Line, Polyline, Polygon,
MultiPoint, MultiLine, MultiPolygon, Rectangle, Circle and Ellipse.
Annotation. Annotation associates semantic meaning to markup entities
through coded or free text terms that provide explanatory or descriptive infor-
mation. There are three types of annotations: Observation, Calculation, and
Inference. Observation holds information about interpretation of a markup or
another annotation entity. Observations can be quantified based on different
measure scales such as ordinal and nominal scales. Calculation stores

14 F. Wang et al.

information about the quantitative results from mathematical or computa-
tional calculations, represented in CalculationResult, such as Scalar, Array,
Histogram, and Matrix. Inference is used to maintain information about dis-
ease diagnosis derived by observing imaging studies and/or medical history.
— Algorithm provenance information. The Provenance class, as illustrated in
Figure @ helps to determine the derivation history of a markup or an-
notation, including algorithm information, parameters, and inputs. Such
information is critical for validating approaches and comparing algorithms.

5.2 Results Documents and Data Loading Protocol

To enable convenient data sharing and exchanging, we use XML based represen-
tation of the PAIS model to represent result documents. The PAIS logical model
is mapped and adjusted into an XML Schema. This schema is used by analysis
workflows to generate compatible PAIS XML documents. To reduce the doc-
ument size for processing, PAIS documents are often generated on partitioned
regions such as tiles, and different PAIS document instances from different re-
gions of the same image will share the same document UID. For example, we
generate a couple of hundred tile based PAIS XML documents for a single whole
slide image. These partitioned PAIS XML documents are further compressed
into zipped files.

The XML representation of PAIS facilitates exchange and verification of doc-
uments in a standards-based manner. However, for very large result sets, it is
not an efficient representation, even with compression of the documents. For
exchanging and storing large static data (considered relative to the metadata
that will be generated), self-describing structured container technologies (such
as HDF5) could provide a more efficient alternative. Such container technologies
provide more efficient storage than text-based file formats like XML, while still
making available the structure of the data for query purposes. For instance, seg-
mented regions and spatial data structures corresponding to multi-dimensional,
multi-resolution data subsets can be stored in HDF5 files.

Data Submission and Staging. PAIS documents generated from image analy-
sis applications can be either submitted to the database server directly by the
application on the fly, or grouped for batch submission. PAIS documents are
compressed and then submitted to the database server for data staging, where
they are stored in a staging table. The database is populated by mapping each
XML document into tables. The database internally loads the documents as
XML typed column in the database. The temporary XML data enables efficient
retrieval for mapping purpose. To map data from XML to the tables, we take ad-
vantage of the XMLTABLE function provided by XML databases, which queries
the XML column, and generates table like representation of results. These values
are then inserted into the tables. To make sure the data loading process works
for large transactions, we keep track of the status of each XML document. Ini-
tially each document is assigned an ”incomplete” status. If a document has been
mapped successfully, the status of the document is changed to complete. At that
point, the XML document can be removed from the database.

High-Performance Systems for in Silico Microscopy Imaging Studies 15

5.3 Relational Database Implementation

The database is currently implemented with IBM DB2 Enterprise Edition 9.7.1
with DB2 Spatial Extender, running on PowerEdge T410 (four quadcore CPUs,
16GB memory, and a 15K rpm hard drive) with CentOS 5.5. The database
includes (1) Image target and reference tables for accessing specimen and im-
age metadata information; (2) Markup tables implemented as one spatial table
(using the DB2 spatial extensions) that stores geometric shapes in a spatial
database, another table that manages association relationship between markups
and annotations, and a third table for managing human markups, which are
often at a different scale; (3) Annotation tables consisting of a table for scalar
based calculation results, a table for quantified ordinal scale observations, and
another table for quantified nominal scale observations; and (4) Provenance ta-
bles for managing metadata about algorithms, algorithm parameters, and input
datasets.

To support queries on spatial relationships, we model and manage markup
objects as spatial objects, supported by spatial databases. In the PAIS data
management component, we support the following spatial data types: Point,
Line, Polyline, Polygon, Rectangle, Circle, Ellipse, MultiPoint, Multiline, and
Multipolygon. The most commonly used spatial type is polygon. These spatial
data types are represented as vector graphics based format — SVGH, so they
can be represented as text format for convenient data exchange and visualiza-
tion. We leverage the spatial extension of DB2 for efficient management and
query of spatial information. The spatial table in our implementation is defined
as a ST Polygon spatial data type provided by IBM DB2. We also employ in
queries several spatial functions implemented in DB2 such as spatial relationship
functions (ST Contains, ST Touches, etc) and functions that return information
about properties and dimensions of geometries (ST Area, ST Centroid, etc).
Many of our spatial queries are different from traditional GIS queries. An ini-
tial study we have carried out shows that optimizations can be implemented
to reduce query execution times. For example, the performance of spatial joins
between two algorithms on the same image can be much improved by divide-
and-conquer based approach. By dividing a region into four partitions, the cost
of spatial overlap queries can be immediately reduced to less than half.

Our current implementation of the application server (see Section [)) offers
a SQL interface and a caGrid data service interface [20]. We have developed
a caGrid service layer on top of the database to enable data sharing. caGrid
is a Grid middleware infrastructure with a service oriented architecture, where
researchers can share both their data and analytical resources as grid services,
and perform federated queries across distributed databases. We are also building
a Google Map like image and metadata viewer, which can quickly zoom into
different resolutions of images through identifying and retrieving tiled image
portions at specific resolution.

For an initial evaluation of the implementation, we selected 18 slides, and
loaded image analysis results from two different algorithm parameter sets and

3 http://www.w3.org/Graphics/SVG

16 F. Wang et al.

human annotated results. These generate around 18 million markups, and 400
million features. We are able to perform most queries efficiently — the current im-
plementation does not support semantic queries. To support large scale, high per-
formance data management, we plan to use IBM InfoSphere Warehouse Server
to manage our data. InfoSphere Warehouse Server uses DB2 with database par-
titioning features which can effectively support Cluster based and SMP based
computing infrastructures.

6 Related Work

Digital microscopy has become an increasingly important biomedical research
tool as hardware instruments for rapid capture of high-resolution images from
tissue samples have become more widely available. There are several projects
that target creation and management of microscopy image databases and pro-
cessing of microscopy images. The Virtual Microscope system [6] developed by
our group provides support for storage, retrieval, and processing of very large
microscopy images on high-performance systems. The Virtual Slidebox project
[4] at the University of Towa is a web-based portal of a database of digitized
microscopy slides for education. The users can search for virtual slides and view
them through the portal. The Open Microscopy Environment project [9] de-
velops a database-driven system for analysis of biological images. The system
consists of a relational database that stores image data and metadata. Images
in the database can be processed using a series of modular programs. These pro-
grams are connected to the database; a module in the processing sequence reads
its input data from the database and writes its output back to the database
so that the next module in the sequence can work on it. OME provides a data
model of common specification for storing details of microscope set-up and image
acquisition. OpenCCDB [I8[17] is a data model developed to ensure researchers
can trace the provenance of data and understand the specimen preparation and
imaging conditions that led to the data.

The Allen Reference Atlas (ARA) [I], which is funded by Paul Allen of Mi-
crosoft, has a high-resolution anatomical 3-D atlas of the mouse brain. It provides
anatomical information for every voxel (at various resolutions of 100x 100, 50x 50
down to 25x25) in the 3D coronal atlas made up of 130 coronal mouse slices.
The ARA provides a fixed vocabulary of regions names. The Bisque system [16]
and associated tools like the Digital Notebook allow a biologist to capture the
image experimental data and metadata and store these in a relational database.
The eXtensible Imaging Platform (XIP) project is an open source framework for
fostering medical imaging algorithm developments [3]. However, this platform is
mainly designed and used for radiology image analysis. Additionally, this sys-
tem lacks a systematic approach for building application workflows, high perfor-
mance computation and management of image analysis results. DICOM WG 26
is developing a DICOM based standard for storing microscopy images [2], where
headers will store metadata such as patient, study and equipment information.
Tiles are managed as series and the mapping relationship is represented in an

High-Performance Systems for in Silico Microscopy Imaging Studies 17

XML format. However, the metadata is limited and could not be extended for
analysis information, and DICOM itself is a storage and data exchange format
and not suitable for queries.

7 Conclusion

Availability of an increasing array of high-throughput and high-resolution in-
struments has given rise to large datasets of omics data — such as genomics, pro-
teomics, metabolomics — and imaging data — such as radiology and microscopy
imaging. There are an increasing number of research projects that either primar-
ily focus on in silico experiments or involve them as a significant component of
their studies. Microscopy imaging holds tremendous potential for highly detailed
in silico examination of morphology of biological systems. In this paper we ar-
gue that software for in silico imaging experiments will need to implement more
comprehensive support than management, viewing, and annotation of slides. To
fully realize the potential of in silico imaging studies, software will be required
to support rich, semantic metadata models to represent complex analysis re-
sults, databases capable of supporting metadata, spatial, and semantic queries,
and high-performance computing techniques for execution of expensive analysis
operations and queries.

Acknowledgement. This research is supported in part by PHS Grant
UL1RR025008 from the CTSA program, by R24HL085343 from the NHLBI,
by Grant Number R01LM009239 from the NLM, by NCI Contract No. NO1-
CO0O-12400 and 94995NBS23 and HHSN261200800001E, by NSF CNS 0615155,
79077CBS10, and CNS-0403342, and P20 EB000591 by the BISTI program.

References

1. The allen reference atlas, http://www.brain-map.org)
http://mouse.brain-map.org/api/

2. Dicom wg-26, http://medical .nema.org/DICOM/minutes/WG-26/

3. The extensible imaging platform project,
https://collabOla.scr.siemens.com/xipwiki/

4. The virtual slidebox, http://www.path.uiowa.edu/virtualslidebox/

5. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: Horrocks, 1., Hendler, J. (eds.) ISWC
2002. LNCS, vol. 2342, pp. 54-68. Springer, Heidelberg (2002)

6. Catalyiirek, U.V., Beynon, M.D., Chang, C., Kur¢, T.M., Sussman, A., Saltz,
J.H.: The virtual microscope. IEEE Transactions on Information Technology in
Biomedicine 7(4), 230-248 (2003)

7. Channin, D., Mongkolwat, P., Kleper, V., Sepukar, K., Rubin, D.: The caBIG
Annotation and Image Markup Project. Journal of Digital Imaging (2009)

8. Gil, Y., Ratnakar, V., Deelman, E., Mehta, G., Kim, J.: Wings for pegasus: Cre-
ating large-scale scientific applications using semantic representations of computa-
tional workflows. In: AAAI, pp. 1767-1774. AAAI Press, Menlo Park (2007)

http://www.brain-map.org
http://mouse.brain-map.org/api/
http://medical.nema.org/DICOM/minutes/WG-26/
https://collab01a.scr.siemens.com/xipwiki/
http://www.path.uiowa.edu/virtualslidebox/

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

F. Wang et al.

. Goldberg, 1., Allan, C., Burel, J.M., Creager, D., Falconi, A., Hochheiser, H., John-

ston, J., Mellen, J., Sorger, P., Swedlow, J.: The open microscopy environment
(ome) data model and xml file: Open tools for informatics and quantitative anal-
ysis in biological imaging. Genome Biol. 6(R47) (2005)

Hill, E.F.: Jess in Action: Java Rule-Based Systems. Manning Publications Co,
Greenwich (2003)

Kiryakov, A., Ognyanov, D., Manov, D.: Owlim - a pragmatic semantic repository
for owl. In: WISE Workshops, pp. 182-192 (2005)

Kumar, V.S., Rutt, B., Kurg, T.M., Catalyurek, U.V., Pan, T.C., Chow, S., La-
mont, S., Martone, M., Saltz, J.H.: Large-scale biomedical image analysis in grid
environments. IEEE Transactions on Information Technology in Biomedicine 12(2),
154-161 (2008)

Kumar, V.S., Kurg, T.M., Ratnakar, V., Kim, J., Mehta, G., Vahi, K., Nelson,
Y., Sadayappan, P., Deelman, E.,; Gil, Y., Hall, M., Saltz, J.H.: Parameterized
specification, configuration and execution of data-intensive scientific workflows.
Cluster Computing (April 2010)

Kumar, V.S., Narayanan, S., Kurg, T.M., Kong, J., Gurcan, M.N., Saltz, J.H.:
Analysis and semantic querying in large biomedical image datasets. IEEE Com-
puter 41(4), 52-59 (2008)

Kurg, T.M., Hastings, S., Kumar, V.S., Langella, S., Sharma, A., Pan, T., Oster,
S., Ervin, D., Permar, J., Narayanan, S., Gil, Y., Deelman, E., Hall, M.W., Saltz,
J.H.: Hpc and grid computing for integrative biomedical research. IJTHPCA 23(3),
252-264 (2009)

Kvilekval, K., Fedorov, D., Obara, B., Singh, A., Manjunath, B.S.: Bisque: A plat-
form for bioimage analysis and management. Bioinformatics 26(4), 544-552 (2010)
Martone, M.E., Tran, J., Wong, W.W., Sargis, J., Fong, L., Larson, S., Lamont,
S.P., Gupta, A., Ellisman, M.H.: The cell centered database project: An update on
building community resources for managing and sharing 3d imaging data. Journal
of Structural Biology 161(3), 220-231 (2008)

Martone, M.E., Zhang, S., Gupta, A., Qian, X., He, H., Price, D.L., Wong, M.,
Santini, S., Ellisman, M.H.: The cell-centered database: a database for multiscale
structural and protein localization data from light and electron microscopy. Neu-
roinformatics 1(4), 379-395 (2003)

Narayanan, S.: Efficient Virtualization of Scientific Data. PhD thesis, Ohio State
University, Columbus, OH (2008)

Oster, S., Langella, S., Hastings, S.L., Ervin, D.W., Madduri, R., Phillips, J., Kurg,
T.M., Siebenlist, F., Covitz, P.A., Shanbhag, K., Foster, 1., Saltz, J.H.: cagrid 1.0:
An enterprise grid infrastructure for biomedical research. Journal of the American
Medical Informatics Association, 138-149 (December 2007)

Wang, F., Pan, T., Kurg, T., Sharma, A., Saltz, J.H., Chen, W., Chu, V., Hu, J.,
Yang, L., Foran, a.D.J.: Unified modeling of image annotation and markup. In:
APIII: Advancing Practice, Instruction & Innovation Through Informatics, Pitts-
burgh, PA (September 2009)

Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerva: A scalable owl
ontology storage and inference system. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia,
F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 429-443. Springer, Heidelberg (2006)

Discovering Evolving Regions in Life Science Ontologies

Michael Hartungl’z, Anika Grossl’z, Toralf Kirsten'®, and Erhard Rahm'*

! Interdisciplinary Centre for Bioinformatics, University of Leipzig
% Department of Computer Science, University of Leipzig
? Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig
{hartung, tkirsten}@izbi.uni-leipzig.de,
{gross, rahm}@informatik.uni-leipzig.de

Abstract. Ontologies are heavily used in life sciences and evolve continuously
to incorporate new or changed insights. Often ontology changes affect only
specific parts (regions) of ontologies making it valuable for ontology users and
applications to know the heavily changed regions on the one hand and stable
regions on the other hand. However, the size and complexity of life science on-
tologies renders manual approaches to localize changing or stable regions im-
possible. We therefore propose an approach to automatically discover evolving
or stable ontology regions. We evaluate the approach by studying evolving re-
gions in the Gene Ontology and the NCI Thesaurus.

Keywords: ontology evolution, ontology changes, ontology regions.

1 Introduction

Ontologies are heavily used in life sciences, especially to consistently describe or
annotate objects of an application domain [1, 14]. For instance, SwissProt [2] and
Ensembl [10] are two frequently used data sources in which proteins are annotated
(associated) with concepts of the Gene Ontology (GO) [7] to describe their molecular
functions as well as their involvement in biological processes. The high importance of
ontologies is reflected in their growing number and size. Currently, there are about 70
ontologies available in the Open Biomedical Ontology (OBO) foundry [23]. These
ontologies usually underlie a continuous evolution to incorporate the latest require-
ments and insights of a particular domain [9]. For instance, the GO or the NCI
Thesaurus [22] have nearly doubled their size since 2004 [8]. Ontology providers
continuously release new versions of changed ontologies. For example, changes for
GO are released on a daily basis, and for NCI Thesaurus every month.

As a consequence of this evolution ontology users need to cope with these changes.
To determine whether applications or data sources need to be adapted for the newest
ontology versions it is valuable to know what parts of an ontology have significantly
changed or remained unchanged in a specific period of time. Such information can be
utilized in different ways. On the one hand, analysis applications such as functional
profiling [3, 21] that used a heavily changed ontology region should be rerun to de-
termine how analysis results are affected by the ontology changes. On the other hand,
algorithms may use the information that specific ontology parts remained unchanged

P. Lambrix and G. Kemp (Eds.): DILS 2010, LNBI 6254, pp. 192010.
© Springer-Verlag Berlin Heidelberg 2010

20 M. Hartung et al.

for a more efficient computation since they can reuse previous results. For example,
algorithms to match different ontologies [5] can then reuse match results of previous
versions for improved efficiency. The information on stable or changing ontology
regions is also a good indicator where little or much further development is to be
expected. So, unstable ontology regions are a good indicator for ontology developers
to participate within a collaborative ontology development. Furthermore, project
coordinators may use the information about regions to plan future development steps.
The manual discovery of stable and changing ontology regions is not feasible for
large ontologies so that automatic techniques are required. So far only little and pre-
liminary work has been performed in this direction. Previous research in the area of
ontology change (see [6] for a survey) focused on ontology versioning [12, 18], the
ontology evolution process [15, 24, 25] or the change detection between ontology
versions [16, 17, 19, 20]. In our own previous work we quantitatively evaluated evolu-
tion of life science ontologies [9]. Furthermore, we designed a web application [8]
which allows access to information about changes in life science ontologies. However,
to our best knowledge no current work determines the location (region) where changes
occurred in an ontology. We therefore make the following contributions in this paper:

e We introduce and define the notion of ontology regions and corresponding
measures to classify ontology regions according to their change intensity.

e We propose an algorithm for the discovery of stable and unstable ontology
regions. The algorithm is customizable to meet the requirements of different
applications. It (1) considers different change types, (2) uses an extensible set
of measures for regions and (3) allows region discovery over different time
periods. Hence, we can support various application scenarios, e.g., finding
small and unstable, or large and stable ontology regions.

e We evaluate the approach for the Gene Ontology and NCI Thesaurus. Re-
sults show that in both cases unstable and stable regions exist and hence in-
dicate that the proposed approach is applicable for automatic discovery of
evolving regions in large life science ontologies.

The rest of the paper is organized as follows. In Section 2 we present our models for
ontologies as well as ontology changes and introduce the notion of ontology regions.
Section 3 describes the discovery algorithm. We evaluate the approach in Section 4.
We finally conclude and outline possibilities for future work.

2 Preliminaries and Models

We first outline our ontology model including versioning. Next, we describe which
kinds of ontology changes are considered and introduce a corresponding change cost
model. Finally, we define ontology regions and outline possible measures to quantify
the change intensity of regions.

2.1 Ontology Model and Versioning

An ontology O = (C, R) consists of concepts C which are interconnected by relation-
ships in R. Together they form a so-called directed acyclic graph (DAG) representing

Discovering Evolving Regions in Life Science Ontologies 21

the structure of O. Special concepts of C called roots are the topmost concepts of O,
i.e., they have no relationship to any parent concept. If the number of roots is greater
than one, we introduce a virtual root which acts as a single entry point for the ontol-
ogy. Thus, we can define all roots of the ontology as children of the virtual root.

A concept ¢ € C of an ontology is defined by a set of single-valued or multi-valued
attributes. The accession number ¢, is a special attribute to unambiguously identify
ontology concepts. Further typical attributes include the name/label, a definition or
synonyms of concepts. Relationships r € R can be separated into two groups: (1) is_a
relationships and (2) other relationships. Is_a relationships usually form the base
structure of an ontology, hence we will utilize these relationships to define our ontol-
ogy regions (see Section 2.3) and make use of them in our discovery algorithm
(see Section 3). Other relationships extend the basic is_a structure by more specific
relationships, e.g., part_of or has_parts. . The used ontology model represents well
existing life science ontologies, in particular the ones in the OBO Foundry [23].

An ontology version O, = (C, R, t) of version v is a snapshot of an ontology at
a specific point in time . The concepts C and relationships R of O, are valid until a
newer ontology version is released. We assume that versions of an ontology follow a
linear versioning scheme, i.e., each ontology version O; has at most one successor
O,,; and one predecessor version O;;. The first / last ontology versions have no
predecessor / successor version, respectively.

2.2 Ontology Changes and Cost Model

The evolution from an old ontology version O, to a newer ontology version O,,,, can
be described by a set of ontology changes. We distinguish between the basic change
types addition (add), deletion (del) and update (upd) for concepts, relationships and
attributes of an ontology:

concept relationship attribute
add | del | add | del | add | del | upd

Particularly, concepts, relationships and attributes can be added or deleted. In case
of attributes we further use the update change type for attribute value changes in con-
cepts, e.g., the modification of a concept’s name or definition. Note that at the current
stage we do not include complex changes such as merge or split of concepts, since
these changes are typically composed of basic changes that we already cover. How-
ever, complex changes can be included in the future to achieve a more fine-grained
and semantically richer distinction between different changes.

To reflect the impact of changes we introduce a cost model for ontology changes.
Particularly, we assign change costs to the different kinds of ontology changes to
determine their impact on an ontology. For instance, we can assign higher change
costs for delConcept compared to addConcept to consider a higher change impact for
concept deletions vs. concept additions. The individual costs can be assigned to on-
tology concepts affected by an ontology change. Particularly, we distinguish between

22 M. Hartung et al.

OR | abs_size | rel_size |abs_costs | avg_costs

cl 8 8/8=1 7 7/8=0.875
c2 4 4/8=0.5 7 7/4=1.75
c3 3 3/8=0.375 0 0/3=0

Fig. 1. Sample ontology with regions, aggregated costs (left) and corresponding region meas-
ures (right)

two types of costs for an ontology concept: local costs Ic and aggregated costs ac.
Local costs Ic(c) cover the impact of ontology changes that directly affect an ontology
concept c, i.e., changes on the concept itself as well as changes on its relationships
and attributes. For instance, the addition/deletion of a child concept or an attribute
value change have a direct impact. We will later (Section 3.1.1) discuss how local
costs are assigned to ontology concepts based on the change type. We further use
aggregated costs ac(c) to reflect all changes occurring in the is_a descendants of a
concept c. For instance, leaf concept additions/deletions have an indirect impact on
corresponding ancestor concepts in the ontology. In Section 3.1.2 we describe how
aggregated costs are derived from local costs. The sample (changed) ontology version
in Fig. 1 (left) contains aggregated costs (numbers next to a concept) for each con-
cept, e.g., concept c2 has aggregated costs of 7 while its sibling ¢3 has no aggregated
costs ac(c3)=0.

2.3 Ontology Regions and Measures

An ontology region OR is a subgraph of an ontology consisting of a single root con-
cept rc. A region contains all concepts located in the is_a subgraph of rc, i.e., there
exists at least one is_a-path from every concept ¢ € OR to rc. We will aggregate the
concept change costs per ontology region to identify change-intensive or stable re-
gions. Our notion of an ontology region observes that changes often occur in the
boundary of an ontology, e.g., addition of leaves or subgraphs to extend the knowl-
edge of a specific topic. Of course an ontology region also covers changes on inner
concepts since all intermediate concepts between the root and the leaves are part
of the region. In the sample ontology of Fig. 1 (left) several ontology regions
are marked. For instance, the region with root concept c2 consists of the four
concepts c2, ¢5, ¢8 and ¢9. The complete ontology with root ¢/ can also be seen as a
region.

The change intensity of an ontology region OR and other characteristics can be de-
scribed by region measures incorporating aspects such as the local/aggregated costs
or the region size. We will later use these measures in our algorithm for the discovery

Discovering Evolving Regions in Life Science Ontologies 23

of specific ontology regions. We define the following exemplary measures for an
ontology region OR:

e absolute region size abs_size(OR): number of concepts in an ontology region
OR

e relative region size rel_size(OR): relative size of OR compared to the overall
size of the ontology O defined by abs_size(OR) / abs_size(O)

e absolute change costs abs_costs(OR): the absolute costs of OR represented
by its root’s aggregated costs ac(rc)

e average change costs avg_costs(OR): the average costs per concept in OR
defined by abs_costs(OR) / abs_size(OR)

Note that these measures are only examples, i.e., we can extend the set of measures
depending on application requirements. For instance, one may consider other charac-
teristics such as the depth or the compactness of a region. The example regions c/, c2
and c3 of the sample ontology in Fig. 1 show different characteristics based on our
example measures, as shown in the table on the right side of Fig. 1. For instance,
regions ¢2 and c¢3 have a similar size but differ largely in their change intensity
(measures abs_costs and avg_costs). While region ¢3 has not been changed
(avg_costs of 0), region c2 exhibits average costs of 1.75. We will now (Section 3)
explain how we determine aggregated costs (ac) of concepts in general and for our
example ontology of Fig. 1.

3 Ontology Region Discovery

In this section we present the algorithm for discovering evolving ontology regions.
We first show how the aggregated costs of concepts are computed for two succeeding
ontology versions. We then present the algorithm for the computation of region meas-
ures. Finally, we combine both algorithms to discover ontology regions for multiple
ontology versions released in a specific period of time.

3.1 Computation of Aggregated Costs for Two Ontology Versions

The algorithm for determining aggregated costs in two succeeding ontology versions
takes as input an old ontology version O,;; and a new ontology version O,,,, as well as
change costs 0 for ontology changes (see Section 2.2). Note that we use dedicated
concept attributes to store local (Ic) and aggregated costs (ac) of concepts, i.e., we
internally extend the given ontology versions to capture assigned costs in each con-
cept. The algorithm computeAggregatedCosts consists of four steps as follows:

Algorithm 1: computeAggregatedCosts (ontology versions Ooid, Onew, change costs a)

AQoid-Onew := diff (Qold, Onew) computes changes between ontology versions (both directions)
assignLocalCosts (AOold-Onew, 0, Oold, Onew)

Ooia:=aggregateCosts (Ooia)

Onew:=aggregateCosts (Onew)

transferCosts (Qold, Onew)

return Onew

24 M. Hartung et al.

We first compute the changes between the input versions (diff). Next we assign local
costs to affected concepts (assignLocalCosts) to determine the added, deleted and modi-
fied ontology elements. Depending on the change type local costs are assigned either to
concepts of the older or the newer ontology version. For instance, the deletion of a
concept can only be captured in the older version since the concept is not available in
the newer one and vice versa for added concepts. Afterwards the local costs are propa-
gated upwards in each ontology version (aggregateCosts) according to the respective
ontology structure. This step ensures that costs from deeper ontology parts are aggre-
gated within inner ontology concepts and finally in the ontology root. Since we like to
discover regions based on the latest ontology version we need to transfer aggregated
costs of older versions to newer ones (transferCosts). The transfer guarantees that costs
originated in older ontology versions such as deletes are also reflected in the newest
ontology version. Finally, the newer ontology version including the computed aggre-
gated costs is returned. We then can use this ontology version for applying our region
measures (see Section 3.2). We also use this enriched version in the iterative algorithm
for dealing with more than two ontology versions (see Section 3.3). We will explain
the steps of computeAggregatedCosts in more detail in the following sub sections. A
simple yet comprehensive example will be used for illustration.

3.1.1 Change Detection and Assignment of Local Costs

Change detection between the two ontology versions O,; and O,,, is based on the
comparison of concept accession numbers which are typically used in life science
ontologies for unambiguous concept identification. Particularly, we determine ontol-
ogy changes by comparing elements of O, with those of O,,,: diff(Oyy O,..)- In this
process we distinguish between concept, relationship and attribute changes. Added
elements (add) are only present in the newer version O,,,, while deleted elements (del)
only exist in the older version O,,. Furthermore, we detect updates (upd) on attrib-
utes, e.g., when the name of a concept has been changed. Thus, we cover all changes
described in Section 2.2. Note that these changes represent the basic change types in
ontology evolution and complex changes such as split or merge can be seen as a com-
position of these.

The example in Fig. 2 shows two ontology versions O,y and O, including
changes in concepts and relationships (for simplicity we omit attribute changes and
focus on is_a relationships). Particularly, from O, to O,,,, two new concepts (c8, c9)
were introduced while one concept (c4) was deleted. Corresponding relationships
were inserted ((¢8,¢2), (¢9,¢5), (¢9,¢8)) and removed ((c4,c2)).

The changes in the diff result and the specified change costs are used to assign local
costs (Ic) to affected concepts in both ontology versions. We assign local costs to
concepts using the assignLocalCosts method in the following way. Costs of additions
and updates are always captured in the new ontology version. In contrast, costs of
deletions are captured in the old ontology version since the affected elements (e.g., a
deleted concept) are only present in this version. The costs of concept and attribute
changes are directly assigned to the affected concept. For relationship changes the
costs are assigned to the source and target concept of a relationship. Note that differ-
ent costs for the source and target concept can be used.

Discovering Evolving Regions in Life Science Ontologies 25

dif(0,,,0,..,) 2 AO,,-O

new

addConcept{c8, c9}

delConcept{c4}

addRelationship{(c8,c2), (c9,c5), (c9,c8)}
delRelationship{(c4,c2)}

new*

assignLocalCosts(AO ;- 0,,.» Oiir O’
OoId: Ie(c2) =1; le(c4)=1
0. :lc(c2)=1; le(c5)=1; le(c8) =2; Ic(c9)=1

new*

Fig. 2. Diff and assignment of local costs for two ontology versions

In Fig. 2 the numbers next to the concepts refer to the associated local costs for the
changes found by diff(O,4, O,...). For simplicity, we assume uniform change costs of 1
per change. Furthermore, we only assign costs to the target of a changed relationship.
In our example the deletion of ¢4 causes the assignment of local costs 1 to ¢4 (del-
Concept) and c2 (delRelationship) in O, The insertion of ¢8 and ¢9 (addConcepr)
leads to the assignment of local costs 1 to both concepts. Concept ¢8 receives addi-
tional costs 1 caused by the insertion of the (c9,c¢8) relationship, thus its overall local
costs are 2 (Ic(c8)=2). Due to the addition of the relationships (c9,c¢5) and (c8,c2)
concepts c¢2 and ¢5 of O,,,, are both assigned local cost 1.

3.1.2 Aggregation of Local Costs
We propagate local costs (Ic) of concepts via is_a paths upwards (in root direction)
and hence aggregate costs of subgraphs in corresponding inner ontology concepts
(aggregated costs (ac) of concepts). The aggregation is applied on the old version as
well as the new version with the intention, that the sum of all assigned local costs is
equal to the aggregated costs of the root, i.e., the root subsumes all costs assigned to
an ontology version.

The aggregation of costs follows one rule. The aggregated costs of a concept is the
sum of the aggregated costs of its direct children plus the local costs of itself:

ac(c) = Z & +lc(c)

1
direct children c'of ¢ | parents(c) l

If a concept ¢ has more than one parent the costs are split into |parents| portions so
that costs/\parents| costs are propagated to each parent. The algorithm aggregateCosts
uses an ontology version O, with associated local costs and propagates them through
the ontology using the given structure of O,

Algorithm 2: aggregateCosts (ontology version Ov)

for all concepts ¢ in Oy do
if local costs Ic(c) > 0 then
aggregate (c, Oy, Ic(c))
end if
end for
return Oy

26 M. Hartung et al.

Ie(c)lac(c) @ Oold On ew aggregateLocalCosts(O)

O, ac(c4)=1+0=1
ac(c2)=1+1=2
ac(cl)=0+2=2

propagated.
costs
aggregateLocalCosts(0,,,):

: ac(c9)=1+0=1
ac(c8)=2+0.5=2.5
ac(c5)=1+40.5=1.5
ac(c2)=142.5+1.5=5
ac(cl)=0+45=5

Fig. 3. Aggregation of costs in both ontology versions

Algorithm 3: aggregate (concept ¢, ontology version Oy, change costs o)
aggregated costs ac(c) :=ac(c) + 0
parent concepts Cparent(c) := getParents(Oy, c)
normalized costs Gnom := G / |Cparent(c)l
for all concepts ¢' in Cparent(c) do
aggregate(c', Ov, Gnom)
end for

Fig. 3 shows the aggregation of local costs in our running example for ontology
versions O,; and O,,,. Each concept is displayed with its local and aggregated costs
(Ie(c)lac(c)), paths are annotated with the propagated costs. For instance, in O,,,, ¢9’s
aggregated costs are equal to Ic(c9) since ¢9 has no children. The relationships (c9,c5)
and (c9,c8) are utilized to propagate c9’s costs to the corresponding parents. Since
two parents exist, ac(c9) is split into two portions of 0.5 which are propagated to c5
and ¢8, respectively. Thus, the aggregated costs of ¢5 are composed of ac(c9)/2 and
le(c5): ac(c5) = ac(c9)/2+Ic(c5) = 0.5+1 = 1.5. The same holds for ¢8: ac(c8) =
ac(c9)/2+lc(c8) = 0.5+2 = 2.5. In the next step ac(c5) and ac(c8) are propagated to c2
and aggregated with lc(c2): ac(c2) = ac(c5)+ac(c8)+lc(c2) = 1.5+2.5+1 = 5. Having
propagated all costs, the aggregated costs of both roots are equal to the sum of all
assigned local costs: 2 for O, and 5 for O,,,, respectively.

3.1.3 Transfer of Aggregated Costs

After separate aggregation of costs in the old and new version the results are now
transferred to the newer version. The transfer ensures that change costs of the old
version are reflected in the new version as well since we like to discover regions of
interest based on the new version. The transferCosts algorithm transfers aggregated
costs of concepts from the old version into the new version. In particular, the method

Discovering Evolving Regions in Life Science Ontologies 27

transferCosts(0,,; O

VIZ’W)

transferCosts(0,,; O,.,):
ac(cl) | ac(c2) | ac(c3) | ac(c4) | ac(c5) | ac(c6) | ac(c7) | ac(c8) | ac(c9)
0,4 2 2 0 1 0 0 0
0,00 5 5 0 1.5 0 0 2.5 1
transfer | 7 7 0 1.5 0 0 2.5 1

Fig. 4. Transfer of aggregated costs from old to new ontology version

sums up the aggregated costs of equal concepts in both versions and stores the result
in the new version:

Algorithm 4: transferCosts (ontology versions Ooid, Onew)

for all concepts ¢ in Oo do
if ¢ € Onew then

ac(c) € Onew += ac(c) € ol
end if
end for

The transfer of costs for our running example is displayed in Fig. 4. The table be-
low shows how the costs of O,,; and O,,,, are summed up in O,,,. Since concepts c/,
c2, ¢3, ¢S5, ¢6 and c¢7 are present in the old and new ontology version their aggregated
costs of both versions are fused, e.g., after the transfer ¢2’s aggregated costs is 7 (2
from O,;, and 5 from O,,,). If a concept is only present in the new version its aggre-
gated costs remain unchanged (e.g., for ¢§8 and ¢9 in O,,,). In contrast, aggregated
costs of deleted concepts can not directly be transferred to the new version (e.g., the
costs of c¢4). However, the cost aggregation described in Section 3.1.2 ensures that
costs of deletions are indirectly transferred. In our case c2’s aggregated costs which
are transferred to O,,,, contain the costs of c¢4’s deletion. Thus, changes on c4 are
indirectly reflected in the new version as well.

3.2 Computation of Measures and Discovery of Ontology Regions

To compute the proposed region measures of Section 2.3 we apply an algorithm com-
puteRegionMeasures which uses available information such as aggregated costs or the
ontology structure. As an example, in case of the rel_size measure we iterate over all

28 M. Hartung et al.

ontology concepts and compute the ratio between the region size of each concept
and the overall ontology size. c/ as the root of our running example exhibits a rel_size
of 1.0 while ¢2 (¢3) show a rel_size of 0.5 (0.375). As one may notice the sample
ontology displayed in Fig. 1 is equal to the result of the transfer of our running exam-
ple discussed in Section 3.1.3. Hence, the results of our example are equal to the ones
presented in Section 2.3.

Based on the results we can discover regions of interest in the new ontology ver-
sion. Particularly, we define constraints on the results and thus select the regions that
satisfy the criteria. Depending on the application different criteria (e.g., relative or
absolute size/cost measures) can be considered and combined. For instance, “large
stable regions” may be defined with the constraints: rel size(OR)>0.2 and
avg_costs(OR)=0. In our case region c3 is the only region satisfying these constraints.
In contrast, one may use rel_size(OR)>0.2 and avg_costs(OR)>1 to select “large un-
stable regions”, e.g., region ¢2 in our running example. Note that we can eliminate
sub-regions of a larger ontology region for a compact result, i.e., only regions satisfy-
ing the given constraints and which are not contained in another selected region are
returned. For instance, the region covered by ¢8 would also satisfy the constraints of
an unstable region (avg_costs(c8)>1 and rel_size(c8)>0.2). However, ¢§8 is contained
in region c2 and thus we only return ¢2 as an identified region.

3.3 Discovery Algorithm for Multiple Ontology Versions

Based on computeAggregatedCosts and computeRegionMeasures we now define the
generalized findRegions algorithm which works on multiple ontology versions released
in a specific time period. The idea of the combined algorithm is the following. Having
n released ontology versions (O, ..., O,) we iterate over all releases and apply com-
puteAggregatedCosts on each pair (O;,0;,,). Thus, we cover all version changes be-
tween succeeding ontology versions and transfer costs from older ontology versions
to the latest ontology version O, where the region discovery is applied (computeRe-
gionMeasures). The algorithm findRegions for n ontology versions looks as follows:

Algorithm 5: findRegions(ontology versions O ... Oy, change costs o)

for all succeeding ontology versions O; — Oi:1 do
Ou1 = computeAggregatedCosts (O, Oi1, 0)

end for

computeRegionMeasures(On)

4 Evaluation

We evaluated the proposed region discovery algorithm for the well-known Gene
Ontology (GO) and the National Cancer Institute Thesaurus (NCIT). After the de-
scription of the evaluation setup we first comparatively analyze the overall ontology
stability for different periods. In Section 4.3 we analyze the distribution of ontology
regions w.r.t. their stability and present how the most (un)stable ontology regions can
be discovered. We finally show how the algorithm can be used to track the stability of
ontology regions over time.

Discovering Evolving Regions in Life Science Ontologies 29

4.1 Evaluation Setup

The two considered ontologies are heavily used in different projects and underlie
continuous changes. GO is widely used for the annotation of proteins w.r.t. Biological
Processes (BP), Molecular Functions (MF) and Cellular Components (CC). NCIT
maintained at the National Cancer Institute consists of 20 main categories which
cover cancer-related topics such as drugs, tissues or anatomical structures. It is util-
ized in US-wide projects such as the Cancer Biomedical Informatics Grid (caBIG) [4]
and its underlying infrastructure caCORE [13].

We integrated available ontology versions between 2004 and 2009 on a monthly
basis in a repository [11]. Note that we include at most one version per month, if there
is more than one version available we use the first release. The repository allows for
the efficient retrieval of versioned ontology information. Thus, we can compare on-
tology versions of a specified time period to determine the ontology changes in our
algorithm. The latest considered GO version of December 2009 consists of 30,304
concepts (GO-BP: 18,108; GO-MF: 9,459; GO-CC: 2,737) while the latest NCIT
version of December 2009 contains 77,465 concepts.

For all evaluation studies we apply the following change costs:

concept relationship attribute
add del add del add del | upd
1.0 2.0 1.0 2.0 0.5 05 | 05

In general concept changes have the biggest impact followed by relationship and
attribute changes. Furthermore, we give concept and relationship deletions more im-
pact, attribute changes are weighted equally. In case of relationships we assign half of
the costs to the target and the other half to the source concept of a changed relation-
ship. The used values are for illustration only and can be changed to meet specific
application characteristics.

4.2 Overall Ontology Stability

We apply our region measures to the root of an ontology for assessing its overall
stability. Particularly, we utilize released versions of a specific time period and assess
the overall stability by taking the measures abs_size(root), abs_costs(root) and
avg_costs(root) into account. Table 1 lists the overall stability of GO (including its
sub ontologies) and NCIT for 2008 and 2009, respectively.

In 2008 GO and NCIT exhibit similar absolute costs (GO: ~24,200; NCIT:
~23,200) but the average change intensity was much higher for GO (avg_costs 0.87
for GO vs. 0.32 for NCIT). In 2009, the change intensity increased for NCIT but de-
creased for GO, but GO still retained an increased change activity (avg_costs 0.64 vs.
0.47). Within the GO sub ontologies GO-BP possesses the highest absolute and aver-
age costs in both periods. In contrast GO-MF can be seen as the most stable sub on-
tology of GO (<0.5 avg_costs in 2008 and 2009). Between 2008 and 2009 the average
costs decreased especially for GO-MF (from 0.5 to 0.32) underlining the improved
stability compared to GO-BP and GO-CC.

30 M. Hartung et al.

Table 1. Overall stability of ontologies in 2008 and 2009

abs_size(root) abs_costs(root) | avg_costs(root)

2008 2009 2008 2009 2008 2009
GO 27,799 30,304 | 24,242 19,412 0.87 0.64
- MF 9,205 9,459 4,636 3,002 0.50 0.32
- BP 16,231 18,108 | 17,594 14,557 1.08 0.80
- CC 2,363 2,737 2,011 1,854 0.85 0.68
NCIT 71,337 77,455 | 23,165 36,562 0.32 0.47

4.3 Discovery of (un)stable Regions

To discover the most stable and unstable regions of an ontology we analyze the dis-
tribution of ontology regions w.r.t. their avg_costs. Figure 5 shows such a distribu-
tion for GO-BP changes in 2009. We consider ontology regions with a minimum
rel_size of 0.3% (~ 50 concepts) and group them according to their average costs
into intervals of size 0.05. Overall we classified 518 regions in 36 intervals
(0.00:0.05 to 1.75:1.80). Most of the regions (~430 regions; ~83%) exhibit average
costs between 0 and 0.5, 60 out of which (~12%) have average costs lower than 0.05
and are thus largely stable. In contrast about 53 ontology regions (~10%) show aver-
age costs above 0.65.

We can thus determine the most stable and unstable ontology regions by focusing
on the two ends of the cost-based distribution. Depending on the application needs
we may use either absolute thresholds (e.g., avg_costs < 0.01 or avg_costs > 0.8)
or percentiles of a distribution to classify regions as stable or unstable. For the
following analysis, we regard all ontology regions of a certain minimal size below
the 5%-percentile as stable and all ontology regions above the 95%-percentile as
unstable.

90
80
70
60 -{p
50 1HHH
40

20 HHHH

? ”H”Uﬂﬂnnnﬂn_u_,_n_ e B @

number of regions

oW oWoW oW oWoWw oW oW oW oW oW o

o S el ol o TG WG O

average costs

Fig. 5. Distribution of regions w.r.t. average costs for GO-BP in 2009

Discovering Evolving Regions in Life Science Ontologies 31

Table 2. Largest (un)stable ontology regions in 2009

accession name abs_size|rel_size| avg_costs
GO:0005102 |receptor binding 408 4.31% 0.95
G0:0009653 [anatomical structure morphogenesis 583 3.22% 1.22
unstable G0:0048856 [anatomical structure development 566 3.13% 0.91
G0:0033643 |host cell part 77 2.81% 1.90
G0:0003676 |nucleic acid binding 241 2.55% 0.86
o G0:0048646 |anatomical structure formation involved in morphogenesis 253 1.40% 0.92
© G0:0031300 [intrinsic to organelle membrane 36 1.32% 0.000
GO:0030054 |cell junction 31 1.13% 0.000
stable G0:0050865 [regulation of cell activation 184 1.02% 0.012
G0:0075136 [response to host 181 1.00% 0.019
GO:0000151 |ubiquitin ligase complex 25 0.91% 0.000
G0:0016860 |intramolecular oxidoreductase activity 71 0.75% 0.000
C28428 |Retired Concept 3,264 | 4.21% 3.49
C53791 |Adverse Event Associated with Infection 1,186 | 1.53% 2.36
C45678 |Industrial Aid 889 1.15% 1.40
unstable| 71044 |Ginical Pathology Procedure 747 | 096% | o084
C66892 |Natural Product 708 0.91% 1.35
'5 (C53543 |Rare Non-Neoplastic Disorder 504 0.65% 1.22
=z C64389 |Genomic Feature Physical Location 1,026 | 1.32% 0.000
C23988 |Mouse Neoplasms 886 1.14% 0.000
stable C48232 |Cancer TNM Finding 742 0.96% 0.000
C53798 |Adverse Event Associated with Surgery & Intra-Operative Injury 707 0.91% 0.000
C43877 |American Indian 555 0.72% 0.000
C53832 |Infection Adverse Event with Unknown Absolute Neutrophil Count 386 0.50% 0.000

Table 2 displays the six largest (un)stable ontology regions of GO and NCIT in
2009. The relative region sizes vary between 0.5% and 5% of the overall ontology
size. In GO the relative sizes of the six largest unstable regions are higher than the
stable ones. Particularly, the largest stable region in GO exhibits a relative size of
1.32% (GO:0031300) whereas the 6™ largest unstable region (GO:0048646) has 1.4%
relative size. The largest stable regions regarding absolute size can be found in NCIT
consisting of more than 400 concepts. Furthermore, all stable regions of NCIT exhibit
no average costs, i.e., in these regions no changes occurred. In contrast, some stable
regions of GO show slight average costs, e.g., GO:0050865 or GO:0075136. We
further observed that in GO-BP “anatomical structure” topics were highly modified in
2009 (see GO:0009653, GO:0048856 or GO:0048646). Furthermore, in GO-MF the
change focus was on special binding functions such as “receptor binding” and “nu-
cleic acid binding”. Particularly, “receptor binding” is the largest unstable region of
GO (rel_size=4.31%). In NCIT “Retired Concept” is the largest unstable region
(rel_size=4.21%). Note that this ontology region is utilized to collect all ontology
concepts that have been retired. Other regions of high interest concern “Drugs and
Chemicals” topics such as “Industrial Aid” or “Natural Product”.

4.4 Tracking the Stability of Ontology Regions

A sample application of our discovery algorithm is tracking the stability of ontology
regions over time. Particularly, we apply our region measures for different time peri-
ods to determine the change intensity of different regions over time. We can thus
observe certain trends in the evolution of ontologies that are of interest to ontology
users.

32 M. Hartung et al.

1.2

-+ = = =C14250 {Orgamsns)

., e C1908 (Dirugs and Chemicals)

C12219 (Anatonie Structure System or Substance)

-~
*g R . P
(=]] I ~
z (] l-.
LY
%D ! N A
g L v, -
2 L 1
= ¥ \
\\z .
- g
A .
T zg235rw22222555:sLc828322322323¢%2¢23
c g EEY¥egs EESergs EAEfeE s EEEgEY s REEYE g
ogﬁ-:f».\-o;qﬁ-:E«o.a&-c'g«om&«:f.?:o;qﬂ-:f»qon
time

Fig. 6. Tracking of avg_costs for sample regions in NCIT (2004-2009)

As an example we applied region tracking on NCIT between 2004 and 2009 for its
20 main categories. The computation uses a sliding window in the following way. We
apply our algorithm for a window of size ‘half year’ (window step: 1 month), i.e., for
each window we compute region measures for the selected categories and consider
them for a final trend analysis. Hence, we can study variances in the measured results
over time, e.g., to find out where and when massive development took place or not.

The chart in Fig. 6 shows the tracking of average costs for three selected main
categories of NCIT between 2004 and 2009. We can distinguish different patterns.
First, we observe regions, such as “Drugs and Chemicals”, that are always unstable,
i.e., they experience higher average costs due to frequent modifications. Such regions
represent active research fields, and will likely be modified in the near future as well.
Furthermore, there are regions such as “Organisms” which exhibit both, periods of
high stability mixed with periods of substantial instability. Its instability peaks (Mar
2006-Feb 2007, Mar 2008-Mar 2009) may be caused by new research findings or
restructuring decisions by the project consortium which coordinates the ontology
development. Finally, there are regions which have become stable over time. For
instance, “Anatomic Structure System or Substance” had change activities until the
end of 2006, but remained largely stable since 2007. Hence, such a region can be
considered as almost finished, i.e., the probability for dramatic changes in the near
future is low. This observation especially holds for ontology regions covering ac-
cepted / standardized knowledge, e.g., anatomy in the life sciences.

5 Conclusion and Future Work

We introduced the notion of ontology regions and corresponding measures to deter-
mine the change intensity or stability of ontology parts. Based on this notion we pro-
posed an algorithm to discover evolving (un)stable regions in life science ontologies
by taking ontology changes and the ontology structure into account. The presented

Discovering Evolving Regions in Life Science Ontologies 33

algorithm utilizes an adaptable change cost model to reflect the impact of different
ontology changes. Our approach can be used in different scenarios, e.g., by ontology
users to find out the need to rerun analysis applications or by ontology engineers to
notice past and ongoing work in regions of an ontology. We applied our algorithm in
a comparative study for two large life science ontologies for different time periods.
We observed that the algorithm is able to discover (un)stable ontology regions. The
tracking of ontology region stability over time showed different evolution patterns,
e.g., ontology regions which are always heavily modified or others that have become
stable over the past years.

We see several directions for future work. First, we can consider high-level ontol-
ogy changes such as merge or split of concepts to achieve a more fine-grained repre-
sentation of ontology evolution. Second, we plan to integrate the region discovery
algorithm into our OnEX system [8]. Finally, we will investigate how algorithms for
ontology matching can utilize information about (un)stable regions to determine new
ontology mappings in a more efficient way.

Acknowledgments. This work is supported by the German Research Foundation
(DFG), grant RA 497/18-1 (“Evolution of Ontologies and Mappings”).

References

1. Bodenreider, O., Stevens, R.: Bio-ontologies: current trends and future directions.
Briefings in Bioinformatics 7(3), 256-274 (2006)

2. Boutet, E., Lieberherr, D., Tognolli, M.: UniProtKB/Swiss-Prot. Methods in Molecular
Biology 406, 89-112 (2007)

3. Boyle, E.I,, Weng, S., Gollub, J., et al.: GO:TermFinder - open source software for ac-
cessing Gene Ontology information and finding significantly enriched Gene Ontology
terms associated with a list of genes. Bioinformatics 20(18), 3710-3715 (2004)

4. caBIG Strategic Planning Workspace: The Cancer Biomedical Informatics Grid (caBIG):
infrastructure and applications for a worldwide research community. Studies Health Tech-
nology and Informatics 129, 330-334 (2007)

5. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)

6. Floris, G., Manakanatas, D., Kondylakis, H., et al.: Ontology change: classification and
survey. The Knowledge Engineering Review 23(2), 117-152 (2008)

7. The Gene Ontology Consortium: The Gene Ontology project in 2008. Nucleic Acids Re-
search 36(Database issue), D440-D444 (2008)

8. Hartung, M., Kirsten, T., Gross, A., Rahm, E.: OnEX — Exploring changes in life science
ontologies. BMC Bioinformatics 10, 250 (2009)

9. Hartung, M., Kirsten, T., Rahm, E.: Analyzing the Evolution of Life Science Ontologies
and Mappings. In: Bairoch, A., Cohen-Boulakia, S., Froidevaux, C. (eds.) DILS 2008.
LNCS (LNBI), vol. 5109, pp. 11-27. Springer, Heidelberg (2008)

10. Hubbard, T.J., Aken, B.L., Ayling, S., et al.: Ensembl 2009. Nucleic Acids Re-
search 37(Database issue), D690-D697 (2009)

11. Kirsten, T., Hartung, M., Gross, A., Rahm, E.: Efficient Management of Biomedical On-
tology Versions. In: Meersman, R., Herrero, P., Dillon, T.S. (eds.) OTM 2009 Workshops.
LNCS, vol. 5872, pp. 574-583. Springer, Heidelberg (2009)

34

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

M. Hartung et al.

Klein, M., Fensel, D.: Ontology versioning on the Semantic Web. In: Proceedings of the
International Semantic Web Working Symposium (SWWS), pp. 75-91 (2001)
Komatsoulis, G.A., Warzel, D.B., Hartel, F.W., et al.: caCORE version 3: Implementation
of a model driven, service-oriented architecture for semantic interoperability. Journal of
Biomedical Informatics 41(1), 106—123 (2008)

Lambrix, P., Tan, H., Jakoniene, V., Strombéck, L.: Biological Ontologies. In: Semantic
Web: Revolutionizing Knowledge Discovery in the Life Sciences, pp. 85-99 (2007)

Noy, N., Chugh, A., Liu, W., et al.: A Framework for Ontology Evolution in Collaborative
Environments. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 544-558. Springer,
Heidelberg (2006)

Noy, N., Klein, M.: Ontology evolution: Not the same as schema evolution. Knowledge
and Information Systems 6(4), 428—440 (2004)

Noy, N., Musen, M.: Promptdiff: a fixed-point algorithm for comparing ontology versions.
In: Proc. 18th Intl. Conference on Artificial Intelligence, pp. 744-750 (2002)

Noy, N., Musen, M.: Ontology versioning in an ontology management framework. IEEE
Intelligent Systems 19(4), 6-13 (2004)

Papavassiliou, V., Flouris, G., Fundulaki, L., et al.: On Detecting High-Level Changes in
RDF/S KBs. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D.,
Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 473-488. Springer,
Heidelberg (2009)

Plessers, P., De Troyer, O.: Ontology Change Detection Using a Version Log. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 578—
592. Springer, Heidelberg (2005)

Priifer, K., Muetzel, B., Do, H.H., et al.: FUNC: a package for detecting significant asso-
ciations between gene sets and ontological annotations. BMC Bioinformatics 8, 41 (2007)
Sioutos, N., de Coronado, S., Haber, M.W_, et al.: NCI Thesaurus: A semantic model inte-
grating cancer-related clinical and molecular information. Journal of Biomedical Informat-
ics 40(1), 30-43 (2007)

Smith, B., Ashburner, M., Rosse, C., et al.: The OBO Foundry: coordinated evolution of
ontologies to support biomedical data integration. Nature Biotechnology 25(11), 1251-
1255 (2007)

Stojanovic, L., Maedche, A., Motik, B., et al.: User-driven ontology evolution manage-
ment. In: Goémez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI),
vol. 2473, pp. 285-300. Springer, Heidelberg (2002)

Stojanovic, L., Motik, B.: Ontology evolution within ontology editors. In: Proceedings of
the International Workshop on Evaluation of Ontology-based Tools, pp. 53—62 (2002)

On Matching Large Life Science Ontologies in Parallel

Anika Grossl’z, Michael Hartungl’z, Toralf KirstenZ’S, and Erhard Rahm'?

! Department of Computer Science, University of Leipzig
? Interdisciplinary Centre for Bioinformatics, University of Leipzig
? Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig
{gross,hartung, rahm}@informatik.uni-leipzig.de,
tkirsten@izbi.uni-leipzig.de

Abstract. Matching life science ontologies to determine ontology mappings has
recently become an active field of research. The large size of existing ontolo-
gies and the application of complex match strategies for obtaining high quality
mappings makes ontology matching a resource- and time-intensive process. To
improve performance we investigate different approaches for parallel matching
on multiple compute nodes. In particular, we consider inter-matcher and intra-
matcher parallelism as well as the parallel execution of element- and structure-
level matching. We implemented a distributed infrastructure for parallel
ontology matching and evaluate different approaches for parallel matching of
large life science ontologies in the field of anatomy and molecular biology.

Keywords: ontology matching, matching performance, parallel matching.

1 Introduction

Ontologies and their applications have become increasingly important especially in
the life sciences [19, 5]. Typically they are utilized to semantically annotate molecu-
lar-biological objects such as proteins or pathways. For instance, the popular Gene
Ontology (GO) [10] is the primary ontology for annotating proteins with information
on the functions and processes they are involved in. Other life science ontologies,
e.g., in the Open Biomedical Ontologies Foundry (OBO) [31] contain information
about anatomical structures for different species (e.g., human, mouse, fly) or diseases.
The increasing number and availability of different life science ontologies enables
new types of analysis, experiments and applications.

Recently, the development and maintenance of ontology mappings interconnecting
different (multiple) related ontologies have gained importance, e.g., to integrate het-
erogeneous information sources (e.g., [15]), to merge ontologies [18], or to support
analysis such as the comparison of expression patterns [2]. Since the manual creation
of such ontology mappings is time-consuming or even infeasible their semi-automatic
generation called ontology matching [24, 9] has become an active research field
especially for life science ontologies (e.g., [22, 4, 17, 26]).

Effective ontology matching, i.e. the computation of high quality mappings, typi-
cally entails the combined execution of several matchers to determine the similarity
between ontology elements based on metadata or instance data (see [24, 9]). For large

P. Lambrix and G. Kemp (Eds.): DILS 2010, LNBI 6254, pp. 35 010.
© Springer-Verlag Berlin Heidelberg 2010

36 A. Gross et al.

ontologies these matchers are often very time-consuming and memory-intensive. This
is because metadata-based matchers, e.g., comparing the names of ontology concepts,
typically evaluate the Cartesian product of all element pairs leading to a quadratic
complexity w.r.t. ontology size. The performance requirements are further multiplied
by the number of different matchers or when applying ontology matching on multiple
ontology versions [12, 32]. Ontology matching is also memory-intensive for large
ontologies because matching is typically performed on memory representations
(graph structures) of the ontologies and requires the maintenance of several similarity
values for every element pair from the Cartesian product.

The results of previous OAEI contests [20] on matching anatomical ontologies
have shown that systems need execution times of up to several hours. This is despite
the fact that the considered ontologies are only of medium size of around 3,000 ele-
ments (Mouse Anatomy Ontology [13] with ~2,800 elements was matched against the
anatomy part of the NCI Thesaurus [30] with ~3,300 concepts). The Cartesian product
thus has about 9-10° element pairs to be evaluated. Larger ontologies lead to even
higher resource requirements. For instance, matching the two sub ontologies Molecu-
lar Functions and Biological Processes of GO with 10,000 and 20,000 ontology con-
cepts results in approx. 2-10° pairs to compare, i.e., 22 times more than in the OAEI
match problem. The memory requirements just for the similarity values are in the
order of several GB.

These examples illustrate that it is valuable to have a match system providing high-
performance ontology matching especially for interactive (online) applications where
fast response times are required or when multiple match configurations have to be
evaluated. While improving ontology matching performance has received some atten-
tion recently (see Related Work section), to the best of our knowledge the parallel
execution of ontology matching on multiple compute nodes has not been studied so
far. However, the broad availability of multi-core systems and multiple computing
machines makes parallel ontology matching very attractive. Partitioning a large match
problem into smaller parallel match tasks also helps to reduce the memory require-
ments per task. We therefore study strategies for parallel ontology matching and make
the following contributions in this paper:

e We propose different strategies for parallel ontology matching, in particular
inter- and intra-matcher parallelization. While the former approach executes
independent matchers in parallel, the latter performs an internal paralleliza-
tion of matchers based on a partitioning of the ontologies to be matched.
Both strategies can be combined for additional performance improvements.

e We show how different kinds of matchers (element-level, structure-level,
instance-based matchers) can be parallelized.

e We implemented a distributed infrastructure for parallel ontology matching
and evaluate different approaches for parallel matching of large life science
ontologies in the field of anatomy and molecular biology. The results show
the effectiveness and scalability for single matchers and complete match
strategies.

The rest of the paper is organized as follows. In Section 2 we introduce our ontology
model and provide background information on ontology matching. Section 3 dis-
cusses inter- and intra-matcher parallelization and outlines how different matchers can

On Matching Large Life Science Ontologies in Parallel 37

be executed in parallel. The infrastructure for parallel ontology matching is presented
in Section 4. We evaluate our approaches in Section 5 and discuss related work in
Section 6. Finally, we summarize and outline possibilities for future work.

2 Preliminaries

We first introduce our ontology model. We then discuss the ontology matching prob-
lem and common match approaches.

2.1 Ontology Model

An ontology O = (C, R) consists of concepts C which are interconnected by directed
relationships in R. A special concept called root has no relationships to any parent.
The directed relationships can be of different type. The most common relationship
type in ontologies is ‘is_a’ describing an inheritance between two concepts. Further-
more the ‘part_of relationship type is used to model part-whole relationships be-
tween concepts. Life science ontologies use further semantic relationship types, e.g.
‘regulates’. We allow several parents and therefore several root paths per concept.
The structural information (context) of concepts is used by structure-based match
approaches to determine the concept similarity.

Furthermore, a concept ceC of an ontology is defined by a set of single- or multi-
valued attributes. For instance, the concept name is a single-valued attribute that is
frequently used for ontology matching. Some ontologies (e.g., GO) support multi-
valued synonym attributes containing alternate names for a concept. Usually there is
also an identification attribute or accession number c,... These concept identifiers are
used for annotating biological objects (proteins, genes, etc.) [11] and can be useful for
instance-based ontology matching.

2.2 Ontology Matching

Ontology matching is the process of determining a set of semantic correspondences
(ontology mapping) between concepts of two related ontologies O; and O,. The corre-
spondences are determined by matcher algorithms determining the similarity
sim(c;,c2)el0...1] between concepts c;€0; and c,e0,. Matchers can roughly be classi-
fied into metadata- or schema-based and instance-based approaches [24]. Metadata-
based matchers do not utilize instance data but focus on ontology information and
optionally some background information such as dictionaries. Metadata-based match-
ers can be further classified into element-level and structure-level matchers. Element-
level matchers utilize information from concept attributes, such as determining the
similarity of concept names and synonyms, €.g., based on some string similarity such
as ExactMatch, n-Gram or EditDistance. Element-level matchers are almost always
used and combined with other approaches. Structure-level matchers consider the
ontology structure for matching, e.g., to determine the context similarity of concepts.
Typical matchers evaluate the children, leaves, siblings and ancestors of concepts. In
contrast, instance-based matchers do not depend on the ontology metadata but utilize
existing associations between ontology concepts and instances and consider two
concepts as similar if they share similar instances. One way to determine instance

38 A. Gross et al.

similarity is to measure the degree of instance overlap between concepts, e.g., based
on a Dice or Jaccard measure. The complexity of matchers is usually quadratic by
comparing all concepts of the first ontology with all concepts of the second ontology
(evaluation of the Cartesian product).

A single matcher is typically not sufficient for high match quality so that one has to
combine several matchers within a so-called match strategy or workflow. Match pro-
totypes such as COMA++ therefore provide many matchers and support their flexible
combination [1, 6, 7]. The matchers may be sequentially executed so that the results
of a first matcher are refined by the following matchers. Alternatively, the matchers
are independently executed and combined. Match workflows may use different meth-
ods to combine match results of individual matchers, e.g., by performing a union or
intersection or by aggregating individual similarity values. The final match result is
typically restricted to correspondences for which the similarity values exceed a prede-
termined threshold. In the next section, we discuss how such match strategies as well
as single matchers can be parallelized.

3 Parallelization Strategies

In this section, we discuss possibilities of parallelizing ontology matching workflows
consisting of several matchers that are either sequentially or independently executed.
We assume that a computing environment of multiple locally interconnected multi-
core computing nodes is available for matching.

A straight-forward approach to parallel ontology matching is inter-matcher paral-
lelism, i.e., to process independently executable matchers in parallel on different cores
or computing nodes. In addition, we want to support intra-matcher parallelism, i.e.,
the internal parallelization of individual matchers. Furthermore, we can combine
both kinds of parallelism. In the following, we discuss these parallelization strategies
in more detail. For intra-matcher parallelism (Section 3.2) we focus on the parallel
similarity evaluation of the Cartesian product of concept pairs according to a parti-
tioning of the input ontologies. In particular we will describe how we can parallelize
element-level, structure-level and instance-based matchers.

3.1 Inter-matcher Parallelization

Inter-matcher parallelization enables the parallel execution of independently
executable matchers to utilize multiple processors for faster match processing. The
example match workflow in Figure la utilizes inter-matcher parallelization for n
matchers (M;, ..., M,). The match results can be combined by different aggregation
and selection strategies to achieve the final result. Ideally, the inter-matcher paralleli-
zation improves the execution time by a factor n if the matchers are of similar com-
plexity. This kind of parallelism is easy to support and can utilize multiple cores of a
single computing node or multiple nodes. However, inter-matcher parallelization is
limited by the number of independently executable matchers. Furthermore, matchers
of different complexity may have largely different execution times limiting the
achievable speedup (the slowest matcher determines overall execution time). More-
over, the memory requirements for matching are not reduced since matchers evaluate
the complete ontologies.

On Matching Large Life Science Ontologies in Parallel 39

Match
Result

Match
Result

Fig. 1a. Inter-matcher parallelization Fig. 1b. Combination of inter-matcher
parallelization and sequential matching

The degree of parallelism is also limited for sequential matcher execution (e.g., if a
structure-level matcher depends on a previously executed element-level matcher) or
when the number of available processors is smaller than the number of independently
executable matchers. As illustrated in Figure 1b, in such cases inter-matcher parallel-
ism can be applied for a subset of matchers. The shown example assumes that only
two cores can be utilized and that the most complex matcher M; is assigned to one
core while M; and M, are executed sequentially on the other core.

3.2 Intra-matcher Parallelization

Intra-matcher parallelization deals with the internal decomposition of individual
matchers or matcher parts (e.g., tokenization of concept names) into several match
tasks that can be executed in parallel. We focus on a general approach to support
intra-matcher parallelism based on partitioning the input data (the ontologies). Such a
partitioning is very flexible and scalable and can be used to generate many match
tasks of limited complexity. Furthermore, intra-matcher parallelism can be applied for
sequential as well as independently executable matchers, i.e., it can also be combined
with inter-matcher parallelism.

Figure 2 illustrates intra-matcher parallelization for n matchers that are executed in
parallel (i.e., in combination with inter-matcher parallelism). For each matcher the
input ontologies are first partitioned followed by the generation of multiple match
tasks M, ..., My (i = 1, ..., n). These match tasks are executed in parallel, the union
of the match task results gives the complete match result. In the example, all match
tasks of the n matchers can be concurrently executed on the available compute nodes
to achieve a maximal reduction of the execution time. Note that the match tasks only
match partitions of the two ontologies and have thus reduced memory and processing
requirements compared to a complete matcher. Hence, intra-matcher parallelization is
especially promising for matching large ontologies.

- Match Task
Ontology ateh s
(0] Lo Generation M,
1 Partitioning
. Match
: Result
C Ontology
Partitionin Match Task
c Generation M

Fig. 2. Intra-matcher parallelization

40 A. Gross et al.

Before we discuss how we can parallelize element-level, structure-level and in-
stance-based matchers we first outline our approach for ontology partitioning. In this
initial study of parallel ontology matching we focus on a simple but yet flexible size-
based approach that enables the parallel matching of the Cartesian product of the
concepts from the two input ontologies O; and O,. To generate match tasks of similar
complexity we partition both ontologies into partitions of equal size (number of con-
cepts); the partition size is a parameter that can be chosen according to the size of
input ontologies and the complexity of the utilized matcher. Each task matches one O;
partition with one O, partition so that we generate p; - p, match tasks for p; (p)
equally sized partitions of O; (0,). For instance, if we partition two ontologies of
10,000 concepts into 10 partitions each, we generate 10-10=100 match tasks. As we
will discuss in Section 4, generated match tasks are managed in job queues from
where they are scheduled for parallel execution.

This size-based ontology partitioning has significant advantages besides its sim-
plicity: (1) it is scalable to large ontologies by choosing manageable partition sizes
and thus enables unproblematic processing and reduced memory requirements per
match task, (2) it supports good load balancing because of equally sized partitions and
match tasks, (3) it helps optimizing performance without sacrificing match quality
since the full Cartesian product is evaluated, and (4) it can be utilized for element-
level, structure-level and instance-based matchers as we will discuss in the following.

3.2.1 Parallelization of Element-Level Matchers

To parallelize element-level matching approaches based on the introduced size-based
partitioning is relatively easy. This is because element-level matchers compare ontol-
ogy concepts with each other by utilizing metadata from the concepts themselves, i.e.,
their attribute values such as the name or synonyms. By partitioning the ontologies
into subsets of concepts we retain the information needed for matching the concepts.
Hence, element-level matchers can easily be applied to ontology partitions.

Figure 3 shows a running example for matching two ontology parts c;, ..., c; € O;
and d;, ..., ds € O,. As shown, concept c¢; has two children ¢, and c¢;. The concept d;
of O, is assumed to have two parent concepts d;, d, (multiple inheritance). Some
concepts have associated instances that will be considered later for instance-based
matching. We assume that the concepts should be matched with each other by a

0.6 0.5
Acc:c, Acc:d, Acc:d, corr(c,d) | simy,,,.(cd)
Name: c/.namel Name: d,.name Name: d . name
CQancsD =08
QoD [F=—
c,—d, 0.9
¢, —d; 0.7
Acc:c, Acc: g Acc:d, Acc: d; Acc: dy c3—d, 0.7
Name: ¢,.name || Name: c;.name Name: d,.name|| Name: d;.name|| Name: d,.name
c;—d; 0.9
0.9 /
0.7

Fig. 3. Element-level matching on Name attribute

On Matching Large Life Science Ontologies in Parallel 41

string-based name matcher. The name matcher evaluates the string similarity (e.g.,
TriGram) for all (3-:5=15) concept pairs. The result set (shown on the right of Figure 3)
contains six correspondences with similarities ranging from 0.5 to 0.9; all other
concept pairs are assumed to have similarity 0, i.e., they do not match.

3.2.2 Parallelization of Structure-Level Matchers

Structure-level matchers are more difficult to parallelize than element-level matchers
since they utilize information from the structural context or neighborhood of concepts
(e.g., children, parents, siblings) or even the whole ontology. Hence, an ontology
partition consisting of a certain number of concepts does generally not provide all
information needed for structure matching. Even more difficult is the parallelization
of iterative structural matchers such as Similarity Flooding [21] that start with initial
element-level similarities and iteratively propagate these along the concept relation-
ships across the whole ontologies. For such matchers parallelization is inherently
difficult and has likely to be restricted to the initial element-level matching.

We therefore focus on structural matchers that utilize information from a restricted
neighborhood (local context) of concepts. To limit the resource and memory require-
ments we do not want the match tasks to work on the whole ontologies but to restrict
them to input partitions of restricted size similar to parallel element-level matching.
This can be achieved by extending the concept-level information, within special
multi-valued context attributes, by information from the local context that is needed
for structure-level matching. The values for these context attributes, e.g., Child,
Parents, NamePath, are determined in a preprocessing step by traversing the input
ontologies once (linear effort) to collect the necessary context information about
children, parents, etc. Concepts with these additional context attributes can then
be partitioned as for element-level matching. Each match task performs structure
matching for a pair of partitions utilizing information from the context attributes.

Figure 4 illustrates the context attribute approach for a Children matcher for our
running example of Figure 3. The matcher determines the similarity between two
concepts by calculating the average element (e.g., name) similarity between their
children, i.e. it takes the sum of the name similarities between any two children and
divides by the total number of child pairs. Note that this is only one possibility to
compute the children similarity, used for illustration. For the example of Figure 4, we
obtain that ¢; is more similar to d; than to d, as c¢; and d, share more similar children
(using the similarity values of Figure 3). To execute this matcher we use a multi-
valued Child context attribute for each (non-leaf) concept and populate it during the
preprocessing step, in our case with the name values of child concepts. A child match
task matches each concept c of an O, partition with each concepts d of an O, partition
by merely comparing all Child-attributes of ¢ with all Child-attributes of concept d
w.r.t. their string (name) similarity and dividing it by number of possible child pairs:
Simcniiaren(C,d) = Y3 iSiMyame(c.child;, d.child;) / (Ic.childl\d.childl).

The context attribute approach can similarly be applied for other local context
matchers such as Parents, Siblings or NamePath. For instance, to realize the Name-
Path matcher we determine a concept’s predecessors in a root path and store their
concatenated names in a multi-valued NamePath context attribute during preprocess-
ing. Matching is then similar to name element-matching but uses the NamePath

42 A. Gross et al.

0.8 04
Acc:c, é;'cliidii ézicliid; corr(c,d) Sim Cpiggren(€A)
Child: ¢, name ild: d,.name s dy.name
Child: L'?namg Child: d;.name | | Child: d..name ¢;—d; |(0.9+0.7+0.7+0.9)/(22)=0.8
Pad AN ¢;—dy |07+0+0+09)/(22)=04
Acc:c, Acc:cy Acc: d, Acc: d; Acc: ds
Child: ... Child: ... Child: ... Child: ... Child: ...

Fig. 4. Attribute-based child matching

attribute and its structural information about the names of the predecessor concepts. In
previous evaluations [7], NamePath was shown to be one of the most effective single
matchers so that it is valuable to have a parallel implementation of it.

3.2.3 Parallelization of Instance-Based Matchers

Finally, we discuss how instance-based matching approaches can be parallelized. One
common approach evaluates the instances associated to ontology concepts and con-
siders two concepts as similar if they largely share similar instances [17]. Since in-
stances are directly associated to concepts, we can determine the concept similarity
using concept-specific information. This allows us to apply a similar parallelization
strategy as for local-context structure matching and element-level matching.

As illustrated in Figure 5 instances are mapped to a multi-valued attribute Instance
during preprocessing. For example, Instance may contain the accessions of biological
objects associated to a GO concept. Size-based partitioning is applied to the input
ontologies and the associated instances. A Dice-based measuring of the instance
overlap similarity [17] would count the common Instance attribute values N,; of two
concepts ce0;, deO,, and compute the similarity simp,..(c,d) = 2-N.; / (N+N,;) where
N, (Ny) is the number of instances of concept ¢ (d). In our example (Figure 5) the
match result contains two correspondences with a higher similarity for concepts c¢;-d;
sharing more common instances than c;-d.

08 04
Acc: ¢, Acc: d, Acc:d, corr(c,d) Simp;c ()
Instance: z:nstanz:el Instance: z:nstanz:el Instance: z:nstance.? c—d, |22/G+2)=08
Instance: instance2 Instance: instance2| | Instance: instance4
Instance: instance3 c;—dy |21/(3+2)=04

T

Acc: d, Acc:d; Acc: ds
Instance: ... Instance: ... Instance: ...

Acc: c3
Instance: ...

Acc:c,
Instance: ...

Fig. 5. Attribute-based instance-based matching

4 Infrastructure for Parallel Ontology Matching

To execute ontology matching workflows in parallel we have implemented a distrib-
uted and service-based infrastructure illustrated in Figure 6. It consists of several
services including a central workflow service, a data service, and multiple match
services that are implemented in Java. These services run on different loosely coupled

On Matching Large Life Science Ontologies in Parallel 43

servers or workstations. While the workflow service coordinates the execution of the
complete match workflow, match services compute the ontology mapping for two
ontologies or ontology partitions. The data service manages all ontology and instance
data forming the input of a match workflow and stores the final ontology mapping
as result. The data service implements the repository schema proposed in [16] to
efficiently store ontology and mapping versions.

Match applications (e.g., matching tools such as COMA++ [1]) use the workflow
service to centrally access the match infrastructure. We assume that these applications
configure a concrete match workflow, i.e., they specify the ontologies and instance
data (or versions of both) as input data as well as utilized matchers and steps to pre-
process the matcher input and to post-process match results (e.g., ontology partition-
ing and mapping manipulations including union and majority as well as filtering).
Within this specification the match and manipulation steps are interconnected such
that the workflow defines which matchers can be executed in parallel (inter-matcher
parallelization) or in sequential order. The workflow service takes this configuration
as input and processes the specified match workflow.

The workflow service performs ontology preprocessing if necessary, in particular
for determining the values of context attributes for structure-level matching (see
Section 3.2). The workflow service executes the matchers in the workflow in the
specified order for sequential matchers or in parallel. For this purpose, it maintains a
job queue for each matcher. For intra-matcher parallelism the workflow service gen-
erates all match tasks and stores them in the matcher-specific job queue. Without
intra-matcher parallelization the job queues consist of only a single match(er) job. The
workflow service sends the queued match jobs to available match services as long as
there are unprocessed jobs available. The match services execute the jobs and send

External Applications ‘ ’ User Interfaces ‘ I:] Match Service ,
Match Thread ,; |5
Process Match : .
Configuration Result Match Thread , %
Match Thread ;, | <

Workflow Service Match Service ;
Match Job > o)
Process _ 2
Job < Match Result Match Thread ;; | 5
Queve i Match Thread ;. | £
Ge;’;’ﬁ’amr % Match Thread;, | <

0 Match
Source| Regult
Data v

R Match Service
Data Service =
Match Thread ,; | 5
N [
@ Ej Ej Match Thread ,, . %
Repositories storing ontology, Match Thread ©
instance, and mapping versions nm | =

Fig. 6. Distributed infrastructure for matching ontologies in parallel

44 A. Gross et al.

their results back to the workflow service which unifies the partial match results. For
efficiency reasons, the match jobs are restricted by a similarity threshold so that they
only return concept correspondences exceeding the minimal similarity.

The match services run on dedicated nodes to fully exploit their compute power.
Each match service contains several concurrently working match threads executing
the match jobs (one thread per job at a time). The number of match threads per service
can vary according to the number of available cores on the node. Hence, the infra-
structure can cope with heterogeneously configured computing environments, i.e.,
servers and workstations with different number of cores and speed can be used for the
proposed infrastructure. The match threads obtain their input data (ontology parti-
tions) from the match job and execute the specified matcher implementation from a
comprehensive matcher library.

5 Evaluation

We used the ontology matching infrastructure to evaluate the proposed parallelization
strategies. We first describe the evaluation setup, in particular the considered ontolo-
gies and matchers. In Section 5.2 we show results for parallel matching on a single
multi-core node. We then analyze the scalability of parallel ontology matching on
multiple compute nodes.

5.1 Evaluation Setup

We use up to four nodes for running match services each consisting of four cores,
i.e., we utilize up to 16 cores. Each node has an Intel(R) Xeon(R) W3520 4x2.66GHz
CPU, 4GB memory and runs a 64-bit Debian GNU/Linux OS with a 64-bit JVM. We
use 3GB main memory (heap size) per node. The workflow and data services run on
additional nodes.

In our experiments we consider a medium-scale as well as a large-scale match
problem. For the medium-scale problem we match the AdultMouseAnatomy (MA)
(2,737 concepts) with the anatomical part of the NCI Thesaurus (NCIT) (3,289 con-
cepts) as in the OAEI 2009 contest. The large-scale match problem computes an on-
tology mapping between the two GO sub ontologies Molecular Functions (MF) and
Biological Processes (BP) consisting of 9,395 and 17,104 concepts, respectively (ver-
sions of June 2009). For intra-matcher parallelism we use different partition sizes for
the two match problems. For the medium-scale problem we set the maximum parti-
tion size to 500 concepts resulting in 6 (7) partitions for MA (NCIT) and thus 42
match tasks. For the large-scale match problem the max. partition size is set to 1,500.
Hence, MF (BP) is split into 7 (12) partitions which results in 84 match tasks.

In this first evaluation analysis we focus on element-level and structure-level
matchers. We applied three different single matchers namely NameSynonym (NS),
Children (CH) and NamePath (NP). NS determines the maximal TriGram similarity
for the name (label) and multi-valued synonym attribute values between concepts. CH
and NP use TriGram similarity on the context attributes Child and NamePath, respec-
tively (see Section 3.2.2). NamePath is restricted to at most three ancestor levels

On Matching Large Life Science Ontologies in Parallel 45

“NS-CH-NP peedup NS -speedup CH-speedup NP “NS-CH-NP peedup NS -speedup CH-speedup NP
500 25,000
450 22,500

g 400 éza,aon

2350 £ 17,500

=300 © 15,000

<250 = 12,500

S 200 £ 10,000

3150 3 7,500

2100 g 5,000

50
0

2,500
o

threads # threads

Fig. 7. Intra-matcher parallelization on 1 node: Fig. 8. Intra-matcher parallelization on 1
medium-scale problem node: large-scale problem

including ‘is_a’ and ‘part_of’ paths. These matchers are evaluated individually as
well as within combined match strategies. In this study we focus on evaluating the
efficiency (execution times) and not the matching effectiveness (e.g., precision,
recall). This is because our parallel match approaches only target efficiency but do
not affect quality since we always evaluate the Cartesian product, e.g. when using
size-based partitioning (as described in Section 3.2).

5.2 Individual Matcher Parallelization on a Multi-core Node

We first analyze intra-matcher parallelization of individual matchers (NS, CH, NP) on
a single multi-core node. Figures 7 and 8 show the execution time and speedup results
for parallelizing the three matchers for up to eight parallel match threads for the me-
dium-scale and large-scale match problems, respectively. We observe that execution
times can be significantly improved by increasing the degree of parallelism for all
matchers and both match problems. The NP matcher with its long concatenated name
strings is by far the most expensive matcher with about four times longer execution
times than CH; for the large-scale problem it takes more than 6 hours without paral-
lelism. For the medium-scale match problem NS and CH take about the same time
while NS takes much more time for the large-scale problem. This is because GO has
many synonyms per concept so that for every concept pair about 11 (instead of 3 in
the medium-scale problem) comparisons have to be computed.

For all matchers we achieve excellent speedup values of up to 3.6-4.2 for the me-
dium-scale problem and even 4.5-5 for the large-scale problem. For up to four threads
(= number of cores) we achieve almost linear speedup (up to 3.5). Increasing the
number of threads brings further improvements (especially for the large-scale prob-
lem) but at a reduced level. This is likely because the additional threads can utilize the
cores when other match threads are waiting for new tasks to process.

5.3 Parallel Ontology Matching on Multiple Nodes

We now evaluate parallelization strategies using up to four compute nodes (16 cores)
running up to four threads per node. In this experiment we combine the three individ-
ual matchers NP, CH and NS according to the following parallelization strategies: no

46 A. Gross et al.

NoPar Inter =Intra =speedup Intra
=Intra “intra&inter ~Intra&Inter ~speedup Intra&inter
800l | 40,000, 16
¢ 700 N ., 35,000 14
% 600 # 30,000 12
- =
g500 < 25,000]
400 & 20,000 8 %
= 300 £ 15,000 6 @
H)
% 200 10,000 4
@
100 i _— - € 5,000 2
0
O T 345678 901213141516 72345667 6510111213141616 °
cores # cores
Fig. 9. Parallelization strategies for medium- Fig. 10. Intra-matcher parallelization strate-
scale problem gies for large scale problem

parallelization (NoPar), inter-matcher parallelization (Inter), intra-matcher paralleli-
zation (Intra) as well as the combination of both intra- and inter-matcher paralleliza-
tion (Intra&lInter).

Figure 9 shows the execution time results for these strategies on the medium-scale
match problem. NoPar is the base case that does not benefit from multiple threads and
cores. The other parallelization strategies lead to a performance improvement using
more than one core. However, there are differences. Inter benefits only to a small
degree since we do not apply intra-matcher but only inter-matcher parallelism. Since
we apply three matchers we can only improve execution times for up to three
cores/threads, i.e., multiple cores are not utilized for our match strategy. The total
execution time is limited by the slowest matcher (NP). In contrast, Intra and In-
tra&inter are very effective and achieve matching times of under 100 s. The com-
bined Intra&Inter parallelization is slightly better than only using Intra and achieves
a speedup of up to 10.6 (vs. 8.6). This is because Intra executes the three matchers
sequentially resulting in some execution delays between matchers that are avoided for
the combined approach.

Figure 10 shows the execution time and speedup results for the two parallelization
strategies Intra and Intra&Inter for the large-scale match problem. Due to the large
ontology sizes we omit the cases without intra-matcher parallelism and partitioning
(NoPar, Inter). The sequential match time for the three matchers is 11h. Using 16
cores Intra and Intra&Inter reduce the overall execution time to 55 and 50 min and
achieve thus an impressive speedup of 11.9 and 12.5, respectively. So, the speedup
could be increased compared to the medium-scale match case, similar to the paralleli-
zation on a single node. This shows Intra and Intra&lInter are especially valuable for
parallel matching of large ontologies.

6 Related Work

Matching life science ontologies has attracted considerable interest, particularly the
matching of anatomy ontologies [22, 33] and molecular biological ontologies [4, 17,
26]. Typically, these studies aim at improving the quality of match results while effi-
ciency aspects found only little attention. The performance of matching large schemas
and ontologies in general is considered an open issue [3, 29]. In the past different

On Matching Large Life Science Ontologies in Parallel 47

algorithmic optimizations and fragmentation techniques for improving ontology as
well as schema matching performance have been proposed.

Some approaches aim at reducing the search space compared to the Cartesian
product for improved performance. Several divide-and-conquer approaches have been
proposed where only parts of the input ontologies are matched against each other.
[25,7] propose a fragment-based schema matching approach for COMA++ [1] where
only similar fragments / sub-schemas need to be matched with each other. [14] parti-
tion entities of the input ontologies into sets of clusters and construct blocks which are
matched based on pre-calculated anchors. The authors assess that the anchor pre-
calculation consumes a main part of the overall runtime. The Anchor-Flood algorithm
proposed in [28] also uses anchors (pairs of look-alike concepts) to gradually explore
neighboring concepts in order to match only between ontology segments. In [27]
nodes are clustered based on a linguistic label similarity and performance can be im-
proved through minimization of the search space.

[23] propose a rule-based optimization technique to rewrite match strategies for
improved performance. In particular, newly added filter operators allow a reduction of
a matcher output and can thus speedup subsequently executed matchers. QOM [8]
uses heuristics to reduce the number of candidate mappings to avoid the complete
pair-wise comparison. These candidate mappings are classified into promising and
less promising pairs by exploiting the ontological structures.

All these optimizations rely on algorithmic optimizations or partitioning/ fragmen-
tation strategies to reduce the number of comparisons for improved performance.
However, these approaches often lead to reduced match quality because relevant
correspondences can be missed. Furthermore, the applicability of the approaches is
dependent on the considered ontologies and match techniques. In contrast our paral-
lelization strategies are orthogonal and general techniques to improve the perform-
ance of matchers and match strategies. They are especially valuable for large-scale
match problems. We have shown their usefulness for evaluating the Cartesian product
but they should also be usable in combination with other performance optimizations
such as reduced search spaces.

7 Conclusion and Future Work

We propose general strategies for parallel ontology matching on multiple compute
nodes, namely inter- and intra-matcher parallelization and their combination. They
allow us to execute whole matchers in parallel and to parallelize matchers internally
using data partitioning. For intra-matcher parallelism we propose a size-based parti-
tioning enabling good load balancing, scalability and limited memory consumption
without reducing the quality of match results. We described how element-level, struc-
ture-level, instance-based matchers can be parallelized and use multi-valued context
attributes for structural matching. We implemented a distributed infrastructure that
enables parallel ontology matching and evaluated our approach for large life science
ontology match problems. The results show the efficiency and scalability for single
matchers as well as combined match strategies, especially for large match problems
and for the combination of inter- and intra-matcher parallelism.

48

A. Gross et al.

There are several opportunities for future work. Parallel ontology matching can be

investigated for additional matchers. Furthermore, parallelization can be combined
with algorithmic performance optimizations and advanced fragmentation strategies
proposed in previous work. Moreover, parallel ontology matching may be extended to
larger configurations such as cloud infrastructures.

Acknowledgments. This work is supported by the German Research Foundation
(DFG), grant RA 497/18-1 (“Evolution of Ontologies and Mappings”).

References

11.

12.

13.

14.

15.

. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with

COMA++. In: Proc. of ACM SIGMOD Intl. Conference on Management of Data, pp.
906-908 (2005)

Bastian, F., Parmentier, G., Roux, J., et al.: Bgee: Integrating and Comparing Heterogene-
ous Transcriptome Data Among Species. In: Bairoch, A., Cohen-Boulakia, S., Froidevaux,
C. (eds.) DILS 2008. LNCS (LNBI), vol. 5109, pp. 124-131. Springer, Heidelberg (2008)
Bernstein, P.A., Melnik, S., Petropoulos, M., Quix, C.: Industrial Strength Schema Match-
ing. ACM SIGMOD Record 33(4), 38-43 (2004)

Bodenreider, O., Burgun, A.: Linking the Gene Ontology to other biological ontologies. In:
Proc. of 8th ISMB Meeting on Bio-Ontologies, pp. 17-18 (2005)

Bodenreider, O., Stevens, R.: Bio-ontologies: current trends and future directions. Brief-
ings in Bioinformatics 7(3), 256-274 (2006)

Do, H.H., Rahm, E.: COMA — A System for Flexible Combination of Schema Matching
Approaches. In: Proc. of the 28th Intl. Conference on Very Large Databases (VLDB), pp.
610-621 (2002)

Do, H.H., Rahm, E.: Matching large schemas: Approaches and evaluation. Information
Systems 32(6), 857-885 (2007)

Ehrig, M., Staab, S.: QOM — Quick Ontology Mapping. In: Mcllraith, S.A., Plexousakis,
D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683-697. Springer, Heidel-
berg (2004)

Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)

The Gene Ontology Consortium: The Gene Ontology project in 2008. Nucleic Acids Re-
search 36(Database issue), D440-D444 (2008)

Gross, A., Hartung, M., Kirsten, T., Rahm, E.: Estimating the Quality of Ontology-Based
Annotations by Considering Evolutionary Changes. In: Paton, N.W., Missier, P., Hedeler,
C. (eds.) DILS 2009. LNCS (LNBI), vol. 5647, pp. 71-87. Springer, Heidelberg (2009)
Hartung, M., Kirsten, T., Rahm, E.: Analyzing the Evolution of Life Science Ontologies
and Mappings. In: Bairoch, A., Cohen-Boulakia, S., Froidevaux, C. (eds.) DILS 2008.
LNCS (LNBI), vol. 5109, pp. 11-27. Springer, Heidelberg (2008)

Hayamizu, T.F., Mangan, M., Corradi, J.P., Kadin, J.A., Ringwald, M.: The Adult Mouse
Anatomical Dictionary: a tool for annotating and integrating data. Genome Biology 6(3),
R29 (2005)

Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer approach.
Data & Knowledge Engineering 67(1), 140—160 (2008)

Jakoniene, V., Lambrix, P.: Ontology-based integration for bioinformatics. In: Proc.
VLDB Workshop on Ontologies-based techniques for Databases and Information Systems
(ODBIS), pp. 55-58 (2005)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

On Matching Large Life Science Ontologies in Parallel 49

Kirsten, T., Hartung, M., Gross, A., Rahm, E.: Efficient Management of Biomedical On-
tology Versions. In: Meersman, R., Herrero, P., Dillon, T.S. (eds.): On the Move to Mean-
ingful Internet Systems Workshops. Proceedings. LNCS, vol. 4544, pp. 172-187. Springer,
Heidelberg (2007)

Kirsten, T., Thor, A., Rahm, E.: Instance-based matching of large life science ontologies.
In: Bairoch, A., Cohen-Boulakia, S., Froidevaux, C. (eds.) DILS 2008. LNCS (LNBI),
vol. 5109, pp. 11-27. Springer, Heidelberg (2008)

Lambrix, P., Edberg, A.: Evaluation of ontology merging tools in bioinformatics. In: Proc.
of the 8th Pacific Symposium on Biocomputing, pp. 589-600 (2003)

Lambrix, P., Tan, H., Jakoniene, V., Strombick, L.: Biological Ontologies. In: Semantic
Web: Revolutionizing Knowledge Discovery in the Life Sciences, pp. 85-99 (2007)
Ontology Alignment Evaluation Initiative, http://20.ontologymatching.org/
Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Match-
ing Algorithm and Its Application to Schema Matching. In: Proc. of the 18th Intl. Confer-
ence on Data Engineering (ICDE), pp. 117-128 (2002)

Mork, P., Bernstein, P.A.: Adapting a Generic Match Algorithm to Align Ontologies of
Human Anatomy. In: Proc. of the 20th Intl. Conference on Data Engineering (ICDE), pp.
787-790 (2004)

Peukert, E., Berthold, H., Rahm, E.: Rewrite Techniques for performance Optimization of
Schema Matching Processes. In: Proc. 13th Intl. Conference on Extending Database Tech-
nology (EDBT), pp. 453-464 (2010)

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
Journal 10(4), 334-350 (2001)

Rahm, E., Do, H.H., Massmann, S.: Matching large XML schemas. ACM SIGMOD Re-
cord 33(4), 26-31 (2004)

Rance, B., Gibrat, J.F., Froidevaux, C.: An Adaptive Combination of Matchers: Applica-
tion to the Mapping of Biological Ontologies for Genome Annotation. In: Paton, N.-W.,
Missier, P., Hedeler, C. (eds.) DILS 2009. LNCS (LNBI), vol. 5647, pp. 113-126.
Springer, Heidelberg (2009)

Saleem, K., Bellahsene, Z., Hunt, E.: PORSCHE: Performance ORiented SCHEma media-
tion. Information Systems 33(7-8), 637-657 (2008)

Seddiqui, H., Aono, M.: An efficient and scalable algorithm for segmented alignment of
ontologies of arbitrary size. Web Semantics: Science, Services and Agents on the World
Wide Web 7(4), 344-356 (2009)

Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. In: Proc. of on the Move to
Meaningful Internet Systems (OTM), pp. 1164-1182 (2008)

Sioutos, N., de Coronado, S., Haber, M.W., et al.: NCI Thesaurus: A semantic model inte-
grating cancer-related clinical and molecular information. Journal of Biomedical Informat-
ics 40(1), 3043 (2007)

Smith, B., Ashburner, M., Rosse, C., et al.: The OBO Foundry: coordinated evolution of
ontologies to support biomedical data integration. Nature Biotechnology 25(11), 1251-
1255 (2007)

Thor, A., Hartung, M., Gross, A., Kirsten, T., Rahm, E.: An evolution-based approach for
assessing ontology mappings - A case study in the life sciences. In: Proc. Conference of
the Business, Technology and Web (BTW), pp. 277-286 (2009)

Zhang, S., Bodenreider, O.: Aligning Representations of Anatomy using Lexical and
Structural Methods. In: Proc. of AMIA Annual Symposium, pp. 753-757 (2003)

A System for Debugging
Missing Is-a Structure in Networked Ontologies

Qiang Liu and Patrick Lambrix

Department of Computer and Information Science
Linkopings universitet, 581 83 Linkdping, Sweden

Abstract. Ontologies are recognized as a key technology for semantics-based
integration of the many available biomedical data sources. However, develop-
ing ontologies is not an easy task and the resulting ontologies may have defects
affecting the results of ontology-based data integration and retrieval. In this pa-
per we present a system for debugging ontologies regarding an important kind of
modeling defects. Our system supports a domain expert to detect and repair miss-
ing is-a structure in ontologies in a semi-automatic way. The input for our system
is a set of ontologies networked by correct mappings between their terms. Our
tool uses the ontologies and mappings as domain knowledge to detect missing is-
a relations in these ontologies. It also assists the user in repairing the ontologies
by generating and recommending possible ways of repairing and executing the
chosen repairing strategy. The detection and repairing phases can be interleaved.
We present our approach, an implemented system as well as an experiment with
two anatomy ontologies.

1 Introduction

The success of the large data generation projects in the Life Sciences in combination
with the popularity of the World Wide Web have made a large amount of biomedical
data available to the scientific community through the Internet [2]. The resulting data
sources are heterogeneous in different ways and how to integrate this heterogenous data
has become one of the most challenging problems facing bioinformatics today [11]. To
deal with this, ontologies are recognized as a key technology. Intuitively, ontologies
can be seen as defining the basic terms and relations of a domain of interest, as well as
the rules for combining these terms and relations [21]. As a basis for interoperability
between data sources, ontologies facilitate information reuse, sharing and portability
across platforms, and improved documentation, maintenance, and reliability. The work
on ontologies is recognized as essential in some of the grand challenges of genomics
research [4] and there is much international research cooperation for the development
of ontologies (many of which are available from Open Biological and Biomedical On-
tologies (OBO) [23]]) and the use of ontologies for data source annotation, and data
search, integration and exchange [[15]].

Developing ontologies is not an easy task. When the ontologies grow in size contain-
ing thousands to tens of thousands of terms, it is difficult to ensure the correctness and
completeness of the ontologies. The resulting ontologies may be not consistent or struc-
turally complete. For instance, in [[13]] it was shown that for the two real-world ontologies

P. Lambrix and G. Kemp (Eds.): DILS 2010, LNBI 6254, pp. 502010.
(© Springer-Verlag Berlin Heidelberg 2010

A System for Debugging Missing Is-a Structure in Networked Ontologies 51

used in the Anatomy track in the 2008 and 2009 Ontology Alignment Evaluation Initia-
tive (OAEI), Adult Mouse Anatomy Dictionary [[16]] (MA, 2744 concepts) and the NCI
Thesaurus anatomy [20]] (NCI-A, 3304 concepts), at least 121 is-a relations in MA and
83 in NCI-A are missing. This is not an uncommon case. It is well-known that people
that are not expert in knowledge representation often misuse and confuse equivalence,
is-a and part-of (e.g. [3]), which leads to problems in the structure of the ontologies.

Such ontologies, although often useful, also cause problems for the intended use.
Wrong conclusions may be derived or valid conclusions may be missed. For instance, the
defect of incomplete structure in ontologies influences ontology-based search, in which
queries are refined and expanded by moving up and down the hierarchy of concepts. As
an example, suppose we want to find articles in MeSH (Medical Subject Headings [[19])
Database of PubMed [24] using the term Scleral Diseases in MeSH. By default the query
will follow the hierarchy of MeSH and include more specific terms for searching, such
as Scleritis. If the relation between Scleral Diseases and Scleritis is missing in MeSH,
we will miss 738 articles (about 55% of the original result) in the search result.

To deal with ontological defects, we need to debug ontologies [26]], i.e. detect miss-
ing and wrong information and then repair the ontologies. Up to date most work has
been performed on debugging the semantic defects such as unsatisfiable concepts and
inconsistent ontologies (e.g. [2541011819]]). Detecting and resolving modeling defects
requires, in contrast to semantic defects, the use of domain knowledge. One interesting
kind of domain knowledge are the other ontologies and information about connections
between these ontologies. For instance, in the case of the Anatomy track in OAEI,
we were able to detect the missing is-relations by using MA and NCI-A as domain
knowledge for each other together with a partial reference alignment (PRA, a set of
correct mappings between the terms of the ontologies) containing 988 mappings. Re-
cently, more and more mappings are being produced and thus more and more ontologies
are being networked, and a number of systems and portals have been set up that store
mappings between ontologies (e.g. Unified Medical Language System (UMLS) [27],
BioPortal [22]).

Once the missing is-a relations are found, the ontology can be repaired by adding a
set of is-a relations (called a structural repair in [[14]) such that when these are added,

Joml of

verlebral arch

Missing is a relations

o wrist joint is a joint

® hip joint is a joint

o Jnee joint is a joint

o elbow joint is a joint

® ankle joint is ajoint

o shoulder joint is a joint

o metacarpo phalangeal joint is a joint

hmderllmb Joml forellmbjomt

metacarpo phalangeal joint

Fig. 1. A part of MA regarding the concept joint

52 Q. Liu and P. Lambrix

all missing is-a relations can be derived from the extended ontology. Clearly, the miss-
ing is-a relations themselves constitute a structural repair, but this is not always the
most interesting solution for a domain expert. For instance, Figure [I] shows a part of
MA regarding the concept joint (is-a relations shown with arrows). Using NCI-A and
the PRA as domain knowledge, 7 missing is-a relations are found. These missing is-a
relations themselves could be a structural repair. However, for the missing is-a relation
“wrist joint is-a joint”, knowing that there is an is-a relation between wrist joint and
limb joint, a domain expert will most likely prefer to add the is-a relation “limb joint
is-a joint” instead. This is correct from a modeling perspective as well as more infor-
mative and would lead to the fact that the missing is-a relation between wrist joint and
Jjoint can be derived. In this particular case, using “limb joint is-a joint” would actually
also lead to the repairing of the other 6 missing is-a relations, as well as others that
were not found before (e.g. “hand joint is-a joint”). In general, such a decision should
be made by domain experts.

2 Related Work

There is not much work on detecting and repairing modeling defects in networked on-
tologies. In [1]] and [13] similar strategies to detect missing is-a relations are described.
Given two pairs of terms between two ontologies which are linked by the same kind of
relationship, if the two terms in one ontology are linked by an is-a relation while the
corresponding terms in the other are not, it is deemed as a possible missing is-a relation.
The preliminary work of this paper is in [[14], where we presented a system that sup-
ports the repairing of the missing is-a structure in a single ontology when some missing
is-a relations are known.

Related to the detection of missing relations, there is much work on finding relation-
ships between terms in a single ontology in the text mining area. Much of the work on
detecting is-a relations is based on the use of Hearst patterns [7] or extensions thereof
(e.g. [3128]). Most of these approaches have good precision, but low recall. A semi-
automatic approach for ontology refinement (including is-a relations) is given in [29].
In [30] it was shown that superstring prediction and co-occurrence analysis may be used
to detect is-a relations. In [32]] a statistical approach is used. An overview of approaches
in ontology learning is given in [[17].

3 Overview of the Debugging Approach

In this section, we give an overview of our debugging approach. For the theory behind
our approach as well as details about the algorithms we refer to [12] As illustrated in
Figure[2] the whole process consists of 5 phases and is driven by a domain expert.

The input is a set of ontologies networked by a set of PRAs which contain equiv-
alence and subsumption axioms. First, missing is-a relations for all the ontologies in
the network are detected (Phase 1). The intuition is that, for each ontology, if there is
an is-a relation between a pair of concepts not derivable from the ontology alone, but

! This work is an extension of the work presented in [14].

A System for Debugging Missing Is-a Structure in Networked Ontologies 53

C USER)
! ! 1 1 i
Choose an Choose a missing Choose a
ontology is arelation repairing action
| |
- | | | 2
Phase 1 : Phase 2 Phase 3 : Phase 4 : Phase §
Detecting l—_‘u> Generating ::> Ranking lﬁ> Recommending li> Executing
missing is a | repairing missing is a | repairing | repairing
relations | actions relations | actions | action
| | |
7 | vy |
LT . il ! !
‘ Ontologies and PRAs ‘

‘ Missing is a relations (per] ontology) ‘

‘ Repairing actions (per missing is a relation) ‘

Fig. 2. Approach for debugging missing is-a structure in networked ontologies

derivable from the ontological network, it is identified as a missing is-a relation. This is
how we found the 7 missing is-a relations in Figure [Tl

After this, the user can choose an ontology and generate possible ways of repairing,
called repairing actions, for all missing is-a relations in the ontology (Phase 2). The
resulting repairing actions are presented as two sets of concepts, called Source and
Target sets. A possible repairing action is an is-a relation “A is-a B” where A is an
element from the Source set and B is an element from the Target set. Any pair from
Source x Target would allow us, when added to the ontology, to derive the missing is-a
relation. As an example, for the missing is-a relation “wrist joint is-a joint” in Figure
[l the Source and Target sets will be {wrist joint, forelimb joint, limb joint} and {joint,
Jjoint of vertebral arch, joint of rib} respectively, which give 9 possible repairing actions.
For the computation of possible repairing actions, we have implemented two algorithms
that implement three heuristics. The first heuristic prefers not to use non-contributing
is-a relations for repairing. The second heuristic prefers to use the most informative
repairing actions. The third heuristic prefers not to change is-a relations in the original
ontology into equivalence relations. For details we refer to [[14]]. In practice, there will
be many missing is-a relations that need to be repaired and some of them may be easier
to start with such as the ones with fewer repairing actions. We therefore rank them with
respect to the number of possible repairing actions (Phase 3).

Then the user can select a missing is-a relation to repair and choose between possible
repairing actions. To facilitate this process, we developed a method to recommend the
most informative repairing actions based on domain knowledge (Phase 4). In the pre-
vious example, the recommended repairing action for the missing is-a relation “wrist
Jjoint is-a joint” given by WordNet [31] is “limb joint is-a joint”.

Once the user chooses a repairing action to execute, the chosen repairing action is
then added to the ontology and the consequences are computed (Phase 5). Some other
missing is-a relations may be repaired by the executed repairing action, such as in the
case in Figure[Tl when the repairing action “limb joint is-a joint” is executed. For some
other missing is-a relations, the Source and Target sets may change. Further, some new
missing is-a relations in ontologies may be found.

At any time during the process, the user can switch the ontology to repair or start
earlier phases.

54 Q. Liu and P. Lambrix
4 Implemented System

We implemented our system RepOSE (Repair of Ontological Structure Environment)
based on the approach described in Section[3] We use a framework and reasoner pro-
vided by Jena (version 2.5.7) [8]]. The domain knowledge that we use includes WordNet
and UMLS. Here, we show its use using pieces of MA and NCI-A regarding the concept
Jjoint, as well as a PRA with 8 equivalence mappings.

As input our system takes a set of ontologies in OWL format as well as a set of PRAs
in RDF format. The ontologies and PRAs can be imported using the Load Ontologies
and PRAs button. The user can see the list of ontologies in the Ontologies menu (see
Figure B). Once the Detect Missing IS-A Relations button is clicked, missing is-a rela-
tions are detected in all ontologies. Then, the user can select which ontology to repair,
and the Missing IS-A Relations menu shows the missing is-a relations of the currently
selected ontology. In this case the ontology joint mouse anatomy.owl is selected and it
contains 7 missing is-a relations (same as the case in Figure 1).

Clicking on the Generate Repairing Actions button, results in the computation of
repairing actions for the missing is-a relations of the ontology under repair, which is
preceded by a two-stage preprocessing step. During the preprocessing, one stage is to
identify the missing is-a relations which are actually equivalence relations and repair
them by adding the equivalence relations. The other is to identify and remove the re-
dundant missing is-a relations which are derivable from the ontology extended with
other missing is-a relations. Then, repairing actions for each missing is-a relation are
computed and presented as Source and Target sets. The selection of the useExtendAlg
checkbox makes the computation use our extended algorithm, otherwise our basic algo-
rithm is used. Once the Source and Target sets are computed, the missing is-a relations

© mepost A8
o g
[] H
..‘.. ll(’ l")hl = Repuir of Ontological Structwre Environ

Ontokoges networked by PRAS

Fig. 3. User interface of RepOSE

A System for Debugging Missing Is-a Structure in Networked Ontologies 55

are ranked with respect to the number of possible repairing actions. The first missing
is-a relation in the list has the fewest possible repairing actions, and may therefore be
a good starting point. When the user chooses a missing is-a relation, the Source and
Target sets for the repairing actions are shown in the panels on the left and the right,
respectively (as shown in Figure 3). Both these panels have zoom control and could
be opened in a separate window by double clicking. The concepts in the missing is-a
relation are highlighted in red. In this case, the repairing actions of the missing is-a rela-
tions are generated using the basic algorithm. The selection of the missing is-a relation
“wrist joint is-a joint” displays its Source and Target sets in the panels. They contain 3
and 26 concepts respectively.

For the selected missing is-a relation, the user can also ask for recommended repair-
ing actions by clicking the Recommend Repairing Actions button. The two checkboxes
allow the user to specify the external domain knowledge used for generating recommen-
dations. In our case, the system uses WordNet and recommends to add an is-a relation
between limb joint and joint. In general, the system presents a list of recommendations.
By selecting an element in the list, the concepts in the recommended repairing action
are identified by round boxes in the panels. The user can repair the missing is-a relation
by selecting a concept in the Source panel and a concept in the Target panel and click-
ing on the Repair button. The repairing action is then added to the ontology, and other
missing is-a relations are updated, as well as the set of missing is-a relations of every
ontology in the network.

At all times during the process the user can inspect the ontology under repair by
clicking the Show Ontology button. The is-a structure of the repaired ontology will be
shown in a separate window with newly added is-a relations being highlighted. The user
can save the repaired ontology into an OWL file by clicking the Save button, or select
another ontology to repair. The whole debugging process runs semi-automatically until
no more missing is-a relations are found or unrepaired in the networked ontologies.

5 Discussion

We tested the feasibility of our approach using MA and NCI-A. After loading the two
ontologies and the PRA, our system found 199 missing is-a relations in MA and 167 in
NCI-A during the initial detection phase. These missing is-a relations are preprocessed
before the computation of the repairing actions. For MA, 6 missing equivalence rela-
tions are identified and repaired immediately, while 74 redundant missing is-a relations
are found and removed. For NCI-A, the numbers of missing equivalence relations and
redundant missing is-a relations are 3 and 84 respectively. As a result, we have 119
missing is-a relations to repair in MA and 80 in NCI-A after the preprocessing. As for
the computation of repairing actions, for MA, our basic algorithm generates for 9 miss-
ing is-a relations only 1 repairing action (which is then the missing is-a relation itself).
Therefore these could be immediately repaired. For NCI-A this number is 5. Of the
remaining missing is-a relations there are 64 missing is-a relations for MA that have
only 1 element in the Source set and 2 missing is-relations that have 1 element in the
Target set. For NCI-A these numbers are 20 and 3, respectively. These are likely to be
good starting points for repairing. For most of the missing is-a relations the Source and
Target sets are small and thus can be easily visualized in the panels of our system.

56 Q. Liu and P. Lambrix

After this, we run the repairing session completely. As we are not domain experts, we
used [6] to decide on possible choices along with the recommendation algorithm based
on WordNet. Clearly, we aim to redo this experiment with domain experts. However,
this run has given us some interesting information. It took about 3 hours to repair these
two ontologies. During the process, we found 6 new missing is-a relations in MA and 10
in NCI-A by repairing other is-a relations. In most cases the recommendations seemed
useful. For NCI-A the system recommended repairing actions other than the missing is-a
relation itself, for only 5 missing is-a relations and each of these received 1 recommended
repairing action. For MA 23 missing is-a relations received 1 recommended repairing
action, 11 received 2 and 2 received 3. For 27 missing is-a relations in MA and 10 in
NCI-A the Target set was too large to have a good visualization in the tool.

6 Conclusion

In this paper we presented a system for debugging the missing is-a structure in net-
worked ontologies. We proposed an approach, developed algorithms and implemented
a system that allows a domain expert to detect and repair the is-a structure of ontologies
in a semi-automatic way.

There are a number of directions that are interesting for future work. Since this work
uses PRAs as domain knowledge assuming that the given mappings are correct, a direct
extension is the case when these mappings are not necessarily correct. In this case, we
will need to also deal with the repairing of the mappings (semantic defects) such as
in [9]] and [18]]. Another interesting direction is to deal with ontologies represented in
more expressive representation languages, and investigate possible influences between
semantic defects and modeling effects.

References

1. Bada, M., Hunter, L.: Identification of OBO nonalignments and its implication for OBO
enrichment. Bioinformatics 24(12), 1448-1455 (2008)

2. Cheung, K.-H., Smith, A., Yip, K., Baker, C., Gerstein, M.: Semantic web approach to
database integration in the life sciences. In: Baker, Cheung (eds.) Semantic Web: revolu-
tionizing knowledge discovery in the life sciences, pp. 11-30. Springer, Heidelberg (2007)

3. Cimiano, P, Staab, S.: Learning by googling. ACM SIGKDD Explorations Newsletter 6(2),
24-33 (2004)

4. Collins, F., Green, E., Guttmacher, A., Guyer, M.: A vision for the future of genomics re-
search. Nature 422, 835-847 (2003)

5. Conroy, C., Brennan, R., O’Sullivan, D., Lewis, D.: User evaluation study of a tagging ap-
proach to semantic mapping. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath,
T., Hyvonen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS,
vol. 5554, pp. 623-637. Springer, Heidelberg (2009)

6. Feneis, F., Dauber, W.: Pocket Atlas of Human Anatomy, 4th edn. Thieme Verlag (2000)

7. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: 14th Int. Conf.

on Computational Linguistics, pp. 539-545 (1992)

. Jena, http://jena.sourceforge.net/

9. Ji, Q., Haase, P,, Qi, G., Hitzler, P., Stadtmuller, S.: RaDON - repair and diagnosis in ontology
networks. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 863—-867. Springer,
Heidelberg (2009)

o]

http://jena.sourceforge.net/

11.

12.

19.
20.

21.
22.
23.
24.
25.
26.
217.

28.

29.

30.

31.
32.

A System for Debugging Missing Is-a Structure in Networked Ontologies 57

. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes in OWL

ontologies. Journal of Web Semantics 3(4), 268-293 (2006)

Lacroix, Z., Critchlow, T.: Bioinformatics: managing scientific data. Morgan Kaufmann, San
Francisco (2003)

Lambrix, P., Liu, Q.: Debugging the missing is-a structure within ontologies networked by
partial reference alignments (forthcoming)

. Lambrix, P, Liu, Q.: Using partial reference alignments to align ontologies. In: Aroyo,

L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvonen, E., Mizoguchi, R., Oren,
E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 188-202. Springer,
Heidelberg (2009)

. Lambrix, P., Liu, Q., Tan, H.: Repairing the missing is-a structure of ontologies. In: 4th Asian

Semantic Web Conf., pp. 371-386 (2009)

. Lambrix, P., Strombéck, L., Tan, H.: Information integration in bioinformatics with on-

tologies and standards. In: Bry, Maluszynski (eds.) Semantic Techniques for the Web: The
REWERSE perspective, pp. 343-376. Springer, Heidelberg (2009)

. MA. Adult mouse anatomical dictionary,

http://www.informatics.jax.org/searches/AMA_ form.shtml

. Maedche, A., Pekar, V., Staab, S.: Ontology learning part one - on discovering taxonomic

relations from the web. In: Zhong, Liu, Yao (eds.) Web Intelligence, pp. 301-322. Springer,
Heidelberg (2003)

. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In: 20th Na-

tional Conf. on Artificial Intelligence, pp. 1408-1413 (2007)

MeSH. Medical subject headings, http://www.nlm.nih.gov/mesh/

NCI-A. National cancer institute - anatomy,
http://www.cancer.gov/cancerinfo/terminologyresources/

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., Swartout, W.: Enabling
technology for knowledge sharing. Al Magazine 12(3), 36-56 (1991)

Noy, N.F., Griffith, N., Musen, M.: Collecting community-based mappings in an ontology
repository. In: 7th Int. Semantic Web Conf., pp. 371-386 (2008)

OBO. Open biological and biomedical ontologies, http://obo.sourceforge.net/
PubMed, http://www.ncbi.nlm.nih.gov/pubmed/

Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Gémez-Pérez, A.,
Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 226-240. Springer, Heidelberg (2005)
Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description
logic terminologies. In: 18th Int. Joint Conf. on Artificial Intelligence, pp. 355-360 (2003)
UMLS. Unified medical language system,
http://www.nlm.nih.gov/research/umls/about_umls.html

van Hage, W.R., Katrenko, S., Schreiber, G.: A method to combine linguistic ontology-
mapping techniques. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 732-744. Springer, Heidelberg (2005)

Volker, J., Hitzler, P., Cimiano, P.: Acquisition of OWL DL axioms from lexical resources.
In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 670-685.
Springer, Heidelberg (2007)

Wiichter, T., Tan, H., Wobst, A., Lambrix, P., Schroeder, M.: A corpus-driven approach for
design, evolution and alignment of ontologies. In: Winter Simulation Conf., pp. 1595-1602
(2006) (invited contribution)

WordNet, http://wordnet .princeton.edu/

Zavitsanos, E., Paliouras, G., Vouros, G.A., Petridis, S.: Discovering subsumption hierarchies
of ontology concepts from text corpora. In: IEEE/WIC/ACM Int. Conf. on Web Intelligence,
pp- 402-408 (2007)

http://www.informatics.jax.org/searches/AMA_form.shtml
http://www.nlm.nih.gov/mesh/
http://www.cancer.gov/cancerinfo/terminologyresources/
http://obo.sourceforge.net/
http://www.ncbi.nlm.nih.gov/pubmed/
http://www.nlm.nih.gov/research/umls/about_umls.html
http://wordnet.princeton.edu/

On the Secure Sharing and Aggregation of Data
to Support Systems Biology Research

Andrew Simpson!, Mark Slaymaker!:?, and David Gavaghan®-2

1 Oxford University Computing Laboratory
Wolfson Building
Parks Road
Oxford OX1 3QD
United Kingdom
2 Oxford Centre for Integrative Systems Biology
Department of Biochemistry
South Parks Road
Oxford OX1 3QU
United Kingdom

Abstract. The development of tools and technologies to facilitate ap-
propriate and effective data sharing is becoming increasingly important
in many academic disciplines. In particular, the ‘data explosion’ prob-
lem associated with the Life Sciences has been recognised by many
researchers and commented upon widely, as have the associated data
management problems. In this paper we describe how a middleware
framework that supports the secure sharing and aggregation of data from
heterogeneous data sources—developed initially to underpin the sharing
of healthcare-related data—is being used to support Systems Biology re-
search at the University of Oxford. As well as giving an overview of the
framework and its application, we attempt to set our work within the
wider context of the emerging challenges associated with data sharing
within the Life Sciences.

1 Introduction

The emerging data challenges facing researchers in the Life Sciences—in terms
of, for example, capture, storage and curation—are significant, and it is well
understood that the pressing need to develop appropriate tools and technologies
to facilitate effective data management is likely to become increasingly urgent
in the coming years.

These challenges have, of course, been recognised and commented upon by
many authors; for example, to quote Kim [IJ:

“Modern large-scale data collection efforts require fundamental infras-
tructure support for archiving data, organizing data into structured in-
formation (e.g., data models and ontologies), and disseminating data
to the broader community. Furthermore, distributed data collection ef-
forts require coordination and integration of the heterogeneous data
resources.”

P. Lambrix and G. Kemp (Eds.): DILS 2010, LNBI 6254, pp. 58 2010.
© Springer-Verlag Berlin Heidelberg 2010

On the Secure Sharing and Aggregation of Data 59

A further challenge—and one with which we are fundamentally concerned in
this paper—involves determining how such data might be shared effectively and
appropriately.

The Oxford Centre for Integrative Systems Biology (OCISB was established
to “strengthen existing and forge more interdisciplinary collaborations in the
pursuit of joint experimental and theoretical research in Systems Biology”—
with data sharing being at the heart of such collaborations. The Centre brings
together the expertise of 17 investigators from 9 different departments, and cur-
rently employs 17 post-doctoral researchers. In this paper we report upon how
a middleware framework that facilitates the integration of heterogeneous data
resource (a la Kim) and supports appropriate data sharing via a fine-grained au-
thorisation mechanism is being utilised within OCISB to support collaboration
between researchers from different disciplines.

The middleware framework, sif (for service-oriented interoperability frame-
work) [2], which is based on Java and web services, was developed initially
within the context of the GIMI (Generic Infrastructure for Medical Informatics)
project [3/4] as a means of facilitating the secure sharing of medical data (see, for
example, [5] and [6]). However, sif’s generic nature—it provides secure access to,
and aggregation of, data from any structured source—means that it has been
used in a variety of other contexts, including, for example, the integration of
student administration data within the University of Oxford.

Importantly, we wish to hide issues of heterogeneity from the end-user. To
this end, we utilise the classifications of Ouksel and Sheth [7], where:

— system heterogeneity is concerned with the combination of software and
hardware associated with a data source;

— syntactic heterogeneity is concerned with the low-level encoding of data;

— structural heterogeneity is concerned with representation of data; and

— semantic heterogeneity is concerned with the meaning and interpretation of
data.

sif protects application developers and end-users from issues of systems and
syntactic heterogeneity; issues of structural and semantic heterogeneity are also
hidden from end-users—but the responsibility for their resolution resides with
application developers, who are, typically, domain experts.

Our particular concern in this paper is not sif per se—the framework is de-
scribed in detail elsewherdd—but its application to supporting collaboration
within the Systems Biology context. To this end, we report upon its support
for a particular application within OCISB, in which codes and simulation data
are shared between cancer modellers.

The structure of the remainder of the paper is as follows. In Section [2] we
describe the motivation for our work, giving particular focus to issues of data

! See http://www.sysbio.ox.ac.uk/

2 For example, sif’s support for federation is described in [8]; its support for fine-
grained access control is described in [9]; and sif’s ‘plug-in’ mechanism—which gives
rise to sif’s data agnosticism, therefore resolving issues of system and syntactic
heterogeneiry—is described in [10].

60 A. Simpson, M. Slaymaker, and D. Gavaghan

sharing and integration within the Life Sciences. In Section [l we provide a neces-
sarily brief overview of our middleware framework, sif. In Section] we describe
how sif has been utilised to support the aforementioned application, and also
describe briefly a second application. Finally, in Section Bl we summarise the
contribution of this paper and give an overview of our immediate areas of future
work.

2 Motivation

Our primary concerns are data integration—facilitating the aggregation of data
from disparate data sourcesd—and data sharing—ensuring that those researchers
with appropriate credentials and permissions can access relevant research data to
enable collaboration. A consideration of some the relevant issues in this respect
is given by Ives [I3]:

“One of the open challenges . ..lies in developing the right architectures
and models for supporting effective data integration and exchange in
science.”

Ives goes further, in arguing:

“Clearly, an enterprise-oriented view of data integration is mismatched
for the needs of the life sciences. We instead need a data sharing scheme
that:

— Accommodates multiple, community-specific schemas and vocabu-
laries that may evolve over time.

— Supports highly dynamic, repeatedly revised, frequently annotated
data.

— Facilitates sharing across different communities in a way that scales
with the amount of invested effort: limited data sharing should be
easy, and further time investment should enable greater data sharing.

— Tolerates disagreement among different communities about data it-
ems (hypothesized facts).

— Restricts the exchange of data based on assessments of source au-
thority and mapping quality.

— Allows end users to integrate data across individual data sources
without understanding SQL or schema mappings—but takes into
account the query author’s perception of the authority or relevance
of specific databases.”

3 An authoritative (if a little dated) survey of the challenges of integrating data in the
Life Sciences is given in [II], while [I2] provides an excellent overview of the issues
pertaining to integrating data in contexts in which a global data schema is present.
Our approach assumes that a global schema data is not present—although this is
not disallowed, with the task of integration being simplified considerably if one does
exist.

On the Secure Sharing and Aggregation of Data 61

This view of lightweight mechanisms to facilitate integration is supported by
Paton in [I4], in which it is noted that there is “increasing interest in approaches
with reduced up-front costs.”

Fundamental to our approach—and this is consistent with the arguments of
both [13] and [14]—is the assumption of a ‘bottom-up’ philosophyt] with re-
spect to the construction of virtual organisations: there is no assumption of a
global data schema. This approach is, in other contexts, termed a peer-to-peer
approach [I6]: peer-to-peer systems such as Piazza [I7], PeerDB [I§] and Or-
chestra [15] all allow queries to be formulated on one peer and subsequently
propagated.

The relevance, and, indeed, the appropriateness, of such a bottom-up approach
is argued in [I5]:

“In bioinformatics today there are many ‘standard’ schemas rather than
a single one, due to different research needs, competing groups, and
the continued emergence of new kinds of data. These efforts not only
fail to satisfy the goal of integrating all of the data sources needed by
biologists, but they result in standards that must repeatedly be revised,
inconsistencies between different repositories, and an environment that
restricts an independent laboratory or scientist from easily contributing
‘nonstandard’ data.

“The central problem is that science evolves in a ‘bottom-up’ fashion,
resulting in a fundamental mismatch with top-down data integration
methods.”

An excellent distinction between what might be considered ‘top-down’ and
‘bottom-up’ approaches is given in [19], in which data integration approaches
in the Life Sciences are classified into two broad types.

The first type includes

“projects that achieve a high standard of quality in the integrated data
through manual curation, i.e., using the experience and expertise of
trained professionals. We call this type of projects ‘data-focused’. A
prominent example for this class of integrated systems is Swiss-Prot [20],
collecting and integrating data on protein sequences from journal publi-
cations, submissions, personal communications, and other databases by
means of approximately two dozen human data curators. Data-focused
projects are typically managed by domain experts, e.g., biologists. Data-
base technology plays an only minor role. All effort is put into acquiring
and curating the actual data that is usually maintained in a text-like
manner. If detailed schemata are developed and used, they are not ex-
posed to the user for structured queries.”

* Tt should be noted that [T5] uses the same term.

62 A. Simpson, M. Slaymaker, and D. Gavaghan

And the second type includes

“projects, which we call ‘schema-focused’, [which] are aimed at pro-
viding integration middleware rather than building concrete databases.
They mostly deal with schema information, using techniques such as
schema integration, schema mapping, and mediator-based query rewrit-
ing ... [they] require for each integrated data source the creation of
some sort of wrapper for query processing, and a detailed semantic map-
ping between the heterogeneous source schemata and a global, mediated
schema.”

Our approach fits into this second category. For example, taking a simplified view
(and leaving aside higher-level concerns such as semantics), one might characterise
data interoperability as facilitating both database interoperability (between Dr
Smith’s breast cancer research database in San Francisco and Dr Thomas’ col-
orectal cancer research database in New York) and database management system
interoperability (between the IBM DB2 database utilised by Dr Smith and the Or-
acle database utilised by Dr Thomas). Our concern is the latter; issues of seman-
tic interoperability are left to application developers. Application developers then
only need to worry about interoperability between relevant data sources—rather
than worrying about interoperability across the whole virtual organisation.

To reprise an example from [2], suppose, say, that, data source S1 might
contain data and files pertaining to both breast and colorectal cancer, data
source S2 might contain data and files pertaining to breast cancer, and data
source S3 might contain data and files pertaining to colorectal cancer. S1 and S2
might form one virtual organisation that is concerned with breast cancer; S1 and
S3 might form a second virtual organisation that is concerned with colorectal

VO1
VO?2 VO3
App 1 App 2
sif
Source 1|| |Source 2| |Source 3 Source 4 Source 5

Fig. 1. Three virtual organisations

On the Secure Sharing and Aggregation of Data 63

cancer. Each virtual organisation, then, would be concerned with facilitating
semantic interoperability to share relevant data: breast cancer in the case of the
first virtual organisation, and colorectal cancer in the case of the second virtual
organisation. If, at a later date, the two virtual organisations were to merge to
form a single community of interest, then, at that point, issues of interoperability
between the breast and colorectal cancer data sets would have to be considered.

Such a state of affairs is illustrated in Figure [} VO1 involves three data
sources, accessed via Application 1; VO2 involves two data sources (two of which
also participate in VO1), accessed via Application 2; and VO3 exists in isolation
from VO1 and VOZ2.

3 sift A Service-Oriented Framework for the Secure
Sharing and Aggregation of Data

In this section we provide a necessarily brief overview of our middleware frame-
work, sif (service-oriented interoperability framework).

sif is fundamentally concerned with supporting ‘big ideas’—bigger and better
research; personalised healthcare; joined up e-government—but in a way that
doesn’t require organisations to throw away existing systems, change practices,
or invest heavily in new technology.

Our drivers can, therefore, be characterised in terms of:

— interoperability, heterogeneity and portability: any kind of data stored on
any kind of database or file system should be capable of being accessed and
shared via a standard interface;

— secure data sharing: data access and transfer should be in accordance with
the data owners’ wishes, no matter how prescriptive;

— low costs of entry—in terms of installation and deployment, system footprint
and effort required on behalf of application developers; and

— abstraction: via a simple API, application developers can construct appli-
cations to aggregate and utilise data without concerning themselves with
issues such as secure data transport.

The philosophy behind sif was originally described in [2I]. There, a virtual
organisation—spread across two or more geographically or physically distinct
units—was characterised in terms of the diagram of Figure 2] Deployments com-
municate via their external interfaces (represented by E), with data being ac-
cessed via an internal interface, I. The permitted access to the data is regulated
by policies, represented by P. Key to this representation is the concept that
each organisation has ultimate control over the access to the data it holds—
when sharing data within the context of a virtual organisation, this allows a
data provider to share only the data that the data owner wishes. This leaves the
responsibility for defining the policies associated with the access to data to the
institution that owns the data (although the deployment of ‘top-down’ global
policies can be supported if necessary).

64 A. Simpson, M. Slaymaker, and D. Gavaghan

Virtual Organisation

[site1] Site 2_J

Fig. 2. The sif view of a distributed system

sif’s users are (typically) application developers—individuals responsible for
developing applications to support data sharing; end-users are (typically) re-
searchers that interact with applications built on top of sif.

The sif middleware exposes as much to the application developer as is consid-
ered useful for the application in question. It follows that it is the responsibility
of the application developer to determine how much underlying detail is to be
exposed to the end-users: it may be appropriate to expose the whole underlying
data structure, allowing users to construct SQL queries; alternatively, a simple
interface supporting pre-formulated queries might be appropriate—resulting in
much less flexibility. A ‘portal’ approach—in which users can construct queries
dynamically via a graphical interface—is also possible, and becoming increas-
ingly popular; the benefits of such an approach are articulated in [22]:

“For bench researchers, the web-services world might not look very differ-
ent from the current one. Online databases would still exis