


Springer Complexity
Springer Complexity is an interdisciplinary program publishing the best research and academic-level
teaching on both fundamental and applied aspects of complex systems - cutting across all traditional
disciplines of the natural and life sciences, engineering, economics, medicine, neuroscience, social and
computer science.

Complex Systems are systems that comprise many interacting parts with the ability to generate a new
quality of macroscopic collective behavior the manifestations of which are the spontaneous formation
of distinctive temporal, spatial or functional structures. Models of such systems can be successfully
mapped onto quite diverse “real-life" situations like the climate, the coherent emission of light from lasers,
chemical reaction-diffusion systems, biological cellular networks, the dynamics of stock markets and of
the internet, earthquake statistics and prediction, freeway traffic, the human brain, or the formation of
opinions in social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the following main
concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dynamical systems,
catastrophes, instabilities, stochastic processes, chaos, graphs and networks, cellular automata, adaptive
systems, genetic algorithms and computational intelligence.

The two major book publication platforms of the Springer Complexity program are the monograph
series “Understanding Complex Systems" focusing on the various applications of complexity, and the
“Springer Series in Synergetics", which is devoted to the quantitative theoretical and methodological
foundations. In addition to the books in these two core series, the program also incorporates individual
titles ranging from textbooks to major reference works.

Editorial and Programme Advisory Board

Henry Abarbanel

Department of Physics, University of California, San Diego, La Jolla, USA

Dan Braha

New England Complex Systems, Institute and University of Massachusetts, Dartmouth

Péter Érdi

Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy of

Sciences, Budapest, Hungary

Karl Friston

Institute of Cognitive Neuroscience, University College London, London, UK

Hermann Haken

Center of Synergetics, University of Stuttgart, Stuttgart, Germany

Viktor Jirsa

Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée, Marseille, France

Janusz Kacprzyk

System Research, Polish Academy of Sciences, Warsaw, Poland

Scott Kelso

Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA

Markus Kirkilionis

Mathematics Institute and Centre for Complex Systems, University of Warwick, Coventry, UK

Jürgen Kurths

Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany

Linda Reichl

Center for Complex Quantum Systems, University of Texas, Austin, USA

Peter Schuster

Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria

Frank Schweitzer

System Design, ETH Zürich, Zürich, Switzerland

Didier Sornette

Entrepreneurial Risk, ETH Zürich, Zürich, Switzerland



Understanding Complex Systems

Founding Editor: J.A. Scott Kelso

Future scientific and technological developments in many fields will necessarily depend upon coming
to grips with complex systems. Such systems are complex in both their composition - typically many
different kinds of components interacting simultaneously and nonlinearly with each other and their envi-
ronments on multiple levels - and in the rich diversity of behavior of which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) promotes new strategies and
paradigms for understanding and realizing applications of complex systems research in a wide variety of
fields and endeavors. UCS is explicitly transdisciplinary. It has three main goals: First, to elaborate the
concepts, methods and tools of complex systems at all levels of description and in all scientific fields,
especially newly emerging areas within the life, social, behavioral, economic, neuroand cognitive sci-
ences (and derivatives thereof); second, to encourage novel applications of these ideas in various fields
of engineering and computation such as robotics, nano-technology and informatics; third, to provide a
single forum within which commonalities and differences in the workings of complex systems may be
discerned, hence leading to deeper insight and understanding.

UCS will publish monographs, lecture notes and selected edited contributions aimed at communicat-
ing new findings to a large multidisciplinary audience.



Leandro Pardo,
Narayanaswamy Balakrishnan,
and María Ángeles Gil (Eds.)

Modern Mathematical Tools
and Techniques in Capturing
Complexity

ABC



Editors

Leandro Pardo
Departamento de Estadística e I. O.
Facultad de Matemáticas
Universidad Complutense de Madrid
28040-Madrid Spain
E-mail: lpardo@mat.ucm.es
http://www.ucm.es/dir/gi001.htm

Narayanaswamy Balakrishnan
Department of
Mathematics and Statistics
McMaster University Hamilton,
Ontario Canada L8S 4K1
E-mail: bala@univmail.cis.mcmaster.ca
http://www.math.mcmaster.ca/bala/

María Ángeles Gil
Departamento de Estadística e I. O. y
D.M.
Universidad de Oviedo
C/ Calvo Sotelo, s/n 33071 Oviedo
Spain
E-mail: magil@uniovi.es
http://bellman.ciencias.uniovi.es/SMIRE

ISBN 978-3-642-20852-2 e-ISBN 978-3-642-20853-9

DOI 10.1007/978-3-642-20853-9

Understanding Complex Systems ISSN 1860-0832

Library of Congress Control Number: 2011928064

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Dupli-
cation of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9, 1965, in its current version, and permission for use must always
be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



This book is prepared as a tribute to
Professor Maŕıa Luisa Menéndez

who was not only an exceptional researcher and teacher,
but was also a person with many notable skills and

and outstanding human qualities
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Preface

“The essence of mathematics is not to make simple things complicated,
but to make complicated things simple.”

Stanley Gudder

Real-life problems are often quite complicated and, for centuries, Mathematics
has provided the necessary tools and ideas to formulate these problems math-
ematically and then help in solving them either exactly or approximately.

This book aims to gather a collection of papers dealing with several differ-
ent problems arising from many disciplines and some modern mathematical
approaches to handle them. In this respect, the book offers a wide overview
on many of the current trends in Mathematics as valuable formal techniques
in capturing and exploiting the complexity involved in real-world situations.

The need for this volume arose in a natural way as many mathematicians
wanted to pay tribute and recognition to their beloved and admired friend and
colleague Maŕıa Luisa Menéndez, who passed away in late 2009 after fighting
cancer courageously for two years. Marisa has been, and will continue to be,
a constant source of inspiration for all of us because of her sweet and strong
personality and her high scientific reputation.

Professor Maria Luisa Menéndez was born on March 15, 1956, in Cuenca,
Spain. Her parents, Mr. Manuel Menéndez and Mrs. Vicenta Calleja, had
two daughters, Maŕıa Dolores and Maŕıa Luisa. Marisa lived in Cuenca and
studied at the public high school “Lorenzo Hervás y Panduro”. After getting
the access to the University, she came to the Complutense University of
Madrid where she studied Mathematics with the specialization in Statistics.
Once she got her Bachelor in Sciences (Mathematics) in 1978, she joined the
Master in Statistics program also at the Complutense University of Madrid.

In October 1978, she joined the Technical University of Madrid in the
Higher Technical School of Architecture, and started to teach also at the high
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school where she got a permanent position in 1979. In 1986 she submitted her
PhD Dissertation in the Computer Science School at the Technical University
of Madrid. In 1988, she got a permanent position as Associate Professor in
the Department of Applied Mathematics in the Higher Technical School of
Architecture and subsequently in 1997 she was promoted to the rank of Full
Professor. In 1990, the General Foundation of the Technical University of
Madrid awarded Professor Menéndez the Prize for the best research developed
by young professors (under 35 years).

In July 1981, Professor Menéndez started her own family when she married
the mathematician Leandro Pardo. They have had two children: Maŕıa Luisa,
who was born in 1983 and graduated in Business Administration some years
ago, and Leandro, who was born in 1989 and studying currently in the fourth
year of the 6 years high degree in Civil Engineering.

Professor Menéndez was an excellent teacher and an exemplary mentor,
and was genuinely interested in the students and their achievements. Her
office door was always open to students. Some of her last students paid her a
warm tribute on 29 October 2010 during the homage that was organized by
the Higher Technical School of Architecture. Details of this homage can be
seen in the web site at http://dma.aq.upm.es/actividades/2010 hmm.

Professor Menéndez was an excellent researcher as is clearly evident from
the international databases. She published nearly 100 papers in different sci-
entifically recognized journals; she presented many papers in international
conferences, and participated in numerous national and international research
projects. Her primary research interest was on Statistical Information The-
ory, a topic in which she created jointly with Professor Leandro Pardo an
internationally renowned and active research group.

Maŕıa Luisa Menéndez, in addition to being an exceptional researcher and
teacher, was one with with many notable skills and outstanding human qual-
ities. She was humble and modest, and always made all the students, col-
leagues and friends at ease and felt welcome. Marisa was a great woman, a
foremost researcher, and a great inspiration to those around and those who
came into contact with her. With a deep humanistic view and attitude, she
faced other people as friends and relatives, and carefully cultivated friendship
with many. Gentle and polite with a distinctive and delicate humor, she was
a source of great joy to anyone who interacted with her. This volume is a
small but sincere gesture from all of us to show how much we appreciated
her and how sorely we miss her!

Madrid-Ontario-Oviedo, February 2011 Leandro Pardo
Narayanaswamy Balakrishnan

Maŕıa Ángeles Gil
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Paloma Máın, Hilario Navarro

Characterization Results for the Skewed Double
Exponential Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Keshav Jagannathan, Arjun K. Gupta, Truc T. Nguyen

Generalized Beta Generated-II Distributions . . . . . . . . . . . . . . . . 141
Kostas Zografos

Part IV: Divergence Measures and Statistical Applications

Using Power-Divergence Statistics to Test for Homogeneity
in Product-Multinomial Distributions . . . . . . . . . . . . . . . . . . . . . . . 157
Noel Cressie, Frederick M. Medak

Statistical Information Tools for Multivariate Discrete
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Ove Frank

Minimum Phi-Divergence Estimators of a Set of Binomial
Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
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A General View of the Goodness-of-Fit Tests

for Statistical Models∗

Wenceslao González-Manteiga and Rosa M. Crujeiras

Department of Statistics and Operations Research, Faculty of Mathematics,
University of Santiago de Compostela, Spain
wenceslao.gonzalez@usc.es, rosa.crujeiras@usc.es

Summary. Goodness-of-Fit tests have been a major topic of research in
Statistics since their introduction by Pearson at the beginning of the last
century. This type of tests has been applied to remarkable curves such as the
distribution, the density or the regression function. In this paper, we provide
a unified approach of the Goodness-of-Fit testing theory based on the for-
mulation of the test statistic as a functional of a certain empirical process.
We will focus our attention in the regression function, revising also some new
testing approaches based on the likelihood ratio test and the empirical distri-
bution of the residuals. Finally, we also collect some ideas for the extension
of Goodness-of-Fit tests to other settings, such as incomplete information or
dependent data.

1 Introduction: From Distribution to Regression

The term Goodness-of-Fit (GoF) was introduced by Pearson at the beginning
of the 20th century and it refers to tests that check how a distribution fits to
a data set in an omnibus way. Since then, many papers have been devoted
to the χ2 test, the Kolmogorov-Smirnov test, the Cramer-von-Mises test and
other related methods.

The basic idea consists in comparing a nonparametric pilot estimator for
the unknown distribution F or the density f , with a consistent parametric
estimator under the null hypothesis. In these cases, the pilot function used for
testing is the empirical distribution or, a density estimator, since the seminal
paper by [4].

It should be also mentioned that [11] and [4] settled the beginnings of the
mathematical developments for GoF tests, based on the estimation of the
distribution and the density function, respectively.

The general statement of the problem is as follows: given a random sam-
ple {X1, . . . , Xn} of X (i.i.d., independent and identically distributed) with
distribution function F , the goal is to test if
∗ We would like to thank the Editors of this book for giving us the opportunity to

honor Professor Marisa Menéndez.
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H0 : F ∈ F = {Fθ}θ∈Θ⊂Rq , vs. Ha : F /∈ F .

The test statistic is based on the discrepancy between a pilot estimator of the
distribution or the density function and the corresponding estimator under
H0. Hence, for a distribution test, we may consider:

Tn = T (Fn, Fθ̂) = T (αn) (1)

where Fn is the empirical distribution given by Fn(x) =
#{j|Xj ≤ x}

n
and

Fθ̂ is a parametric estimator under H0, where θ̂ is usually a
√
n-consistent

estimator.
In expression (1), αn denotes the empirical process with estimated param-

eter θ̂, specifically:
αn(x) =

√
n(Fn(x) − Fθ̂(x)).

This general statement encloses the well-known Kolmogorov-Smirnov test:

T (Fn, Fθ̂) = sup
x

√
n|Fn(x)− Fθ̂(x)| = sup

x
|αn(x)|

and the Cramer-von-Mises test:

T (Fn, Fθ̂) = n

∫
(Fn(x) − Fθ̂(x))2dFn(x) =

∫
α2

n(x)dFn(x).

In fact, a more general approach is obtained taking Tn as any continuous
functional of αn. In this setting, for deriving the asymptotic distribution of
the test statistic, once should note that the limit convergence of αn is given
by a Gaussian process where the covariance structure of θ̂ is directly involved
and tabulation is needed. For a detailed analysis of the empirical process αn,
see [11].

Following the ideas for the GoF tests for the distribution function, in order
to design a testing procedure for the density function, test statistics usually
follow this structure:

Tn = T (α̃n) = T
(√

nh(fnh(·)− Eθ̂fnh(·))
)
,

where fnh(x) = (nh)−1
n∑

i=1

K

(
x−Xi

h

)
is the kernel density estimator, with

K the kernel function and h smoothing parameter (c.f. [32] and [33]). Here,
Eθ̂fnh(x) represents the expected value

Eθfnh(x) =
∫

h−1K(h−1(x − u))dFθ(u),

with θ replaced by a
√
n-consistent estimator.
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Besides, α̃n is the empirical process associated to the density function and
its limit convergence is given by a Gaussian process where the covariance
structure of θ̂ is not involved (c.f. [34]).

The ideas of Bickel and Rosenblatt where extended to the p-dimensional
case in the nineties (see [13] and [15]). For instance, consider the test statistic:

Tn =
∫

α̃2
n(x)ω(x)dx =

∫ [√
nhp

(
fnh(x) − Eθ̂(fnh(x))

)]2
ω(x)dx,

where ω is a weight function included for mitigating the edge-effect in curve
estimation. It holds that:

h−p/2

(
Tn −

∫
K2(x)dx·

∫
f(x)ω(x)dx

)
d−→ N

(
0, 2

∫
(K ∗ K)2(x)dx

∫
f2(x)ω2(x)dx

)

where K ∗K denotes the convolution, and the limit is obtained as h ≡ hn → 0
and nhp

n → ∞. This convergence can be derived with arguments involving
Gaussian processes (see [34]) or using the Central Limit Theorem for U-
statistics with kernels varying with n(see, for instance, [23]).

Also in the nineties, these ideas for GoF testing were extended to the
general case of a regression model, such as in [21] and [19]. Consider, for
example, the regression model with random design:

Y = m(X) + ε

with {(Xi, Yi)}n
i=1 an i.i.d. sample of (X,Y ) ∈ R

p+1. The goal is to obtain a
specification test for:

H0 : m ∈ M = {mθ}θ∈Θ⊂Rq , vs. Ha : m /∈M

where m(x) = E(Y |X = x) is the regression function of Y over X . In this
context, the nuisance functions σ2(x) = Var(Y |X = x) and f appear, where
f denotes the density of the explanatory variable (if exists).

From the initial works of [21] and [19], the statistical literature on this
topic is explosive. The different alternatives are based on the nonparametric
estimator proposed for the regression function. For instance, a Nadaraya-
Watson estimator ([28], [42]):

mnh(x) =
n∑

i=1

Wni(x)Yi, Wni(x) =
K
(

x−Xi

h

)
Yi∑n

j=1 K
(

x−Xj

h

)

being Wni the Nadaraya-Watson weights, or more generally, a local polyno-
mial estimator (c.f. [14]):

mnh(x) = β̂0(x) =
n∑

j=1

Wn,q̄

(
x−Xi

h

)
Yi,



6 W. González-Manteiga and R.M. Crujeiras

where β̂(x) = (β̂0(x), . . . , β̂q̄(x))t, is the minimizer of:

n∑
i=1

(
Yi −

q̄∑
r=0

βr(x−Xi)r

)2

K

(
x−Xi

h

)
,

and Wn,q̄ = ut(XTWX)−1(1, ht, . . . , hq̄tq̄)K(t)
h , with ut = (1, 0, . . . , 0) ∈

R
q̄+1, X = ((x −Xi)j)1≤i≤n,1≤j≤q̄, W = diag

(
K
(

x−Xi

h

))
.

Following the spirit of the previous tests for the distribution and the den-
sity function, the initial empirical process for this regression problem, with a
p-dimensional explanatory variable, is given by:

αn(x) =
√
nhp

(
mnh(x)− Eθ̂(mnh(x))

)

=
√
nhp

n∑
i=1

Wni(x)
(
Yi −mθ̂(Xi)

)

=
√
nhp

n∑
i=1

Wni(x)ε̂i

where Eθ̂ is the estimation of Eθ0 (with θ0 theoretical parameter under H0)
and θ̂ is a

√
n-consistent estimator of θ0 (for instance, least squares or max-

imum likelihood).
We may consider several possible tests based on αn, such as:

Tn =
∫

αn
2(x)ω(x)dx (2)

as a test statistic, which in the case of testing a polynomial regression model:

H0 : m(x) =
q∑

j=1

θjx
j−1, vs. Ha : m(x) 	=

q∑
j=1

θjx
j−1

verifies that (see [1]):

h−1/2(Tn − c1)
d−→ N(0, c2)

where

c1 =
∫

K̃2(x)dx
∫

σ2(x)ω(x)
f(x)

dx, c2 = 2
∫

(K̃∗K̃)2(x)dx
∫

σ4(x)ω2(x)
f2(x)

dx,

being K̃ the equivalent kernel corresponding to a q-th order local polynomial
estimate of m.
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The test statistic in (2) can be seen as a consistent estimator, under H0,
of the expected value

E(C1) = E[E2(ε0|X)ω(X)] = E[(m(X)−mθ0(X))2ω(x)],

where ε0 = Y −mθ0(X). This expected value is equal to zero if and only if
the null hypothesis holds (see [21]). On the other hand, H0 is true if and only
if E(C2) = E[ε0E(ε0|X)f(X)ω(X)] = 0, and this quantity can be estimated
by:

1
n

n∑
i=1

(Yi −mθ̂(Xi))(mnh(Xi)− Eθ̂(mnh(Xi)))fnh(Xi)ω(Xi)

which gives rise to the Zheng’s test (see [44]). Following similar arguments,
H0 is true if E(C3) = E[(ε0 − (ε0 − E(ε0|X))2)ω(X)] = 0, and this can be
estimated by:

1
n

n∑
i=1

(Yi −mθ̂(Xi))2ω(Xi)−
1
n

n∑
i=1

(Yi −mnh(Xi))2ω(Xi),

which produces the variance difference test (see [9], [3]).
All these approaches share some common drawbacks. More specifically, the

bandwidth choice, the slow rate of convergence of Tn to its Gaussian limit
and the estimation of unknown curves involved in the test statistic. This idea
for testing regression models takes as a methodological reference the previous
work for density testing.

Similar to the developments for the GoF distribution tests, we may also
consider the integrated regression function:

I(x) =
∫ x

−∞
m(t)dF (t) = E(Y · I(X ≤ x)),

where I is the indicator. I(x) can be empirically estimated by:

In(x) =
1
n

n∑
i=1

Yi · I(Xi ≤ x)

with associated empirical process:

αn(x) =
√
n(In(x) − Eθ̂(In(x))) =

1√
n

n∑
i=1

I(Xi ≤ x)ε̂i.

This empirical process is the basis for a broad class of test statistics. For
instance, the Cramer-von-Mises test Tn =

∫
αn

2(x)dFn(x) can be analyzed
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taking into account the convergence properties of the empirical process αn

(see [36] for details).

2 Calibration, Size and Power

In the general testing problem:

H0 : g ∈ G = {gθ}θ∈Θ, vs. Ha : g /∈ G = {gθ}θ∈Θ

with test statistic Tn = T (gn, gθ̂) where g may be Fθ, fθ, mθ or Iθ, calibration
of critical points is crucial. The estimation of cα such that PH0(Tn ≥ cα) = α

can be done using the asymptotic normality of the test statistic with known
gn (for nonparametric density or regression estimators) or approximating the
distribution of the corresponding empirical process, typically used in the cal-
ibration of tests for the distribution or the integrated regression function. In
this last situation, the tabulation of the Gaussian limit process (or a contin-
uous functional) is required.

In [35], an approximation of the critical point cα by resampling methods
is proposed. Specifically, if T ∗

n = T (F ∗
n , Fθ̂∗), cα is estimated by ĉα such that:

P
∗
H0

(T ∗
n ≥ ĉα) = α

where P
∗ is the probability under resampling and F ∗

n and Fθ̂∗ are obtained
with the Bootstrap samples {X∗

1 , . . . , X
∗
n} (iid from X∗ ∼ Fθ̂). This idea

has been applied in other tests, such as in [21] for Tn =
∫

αn
2(x)ω(x)dx, in

regression models with kernel estimator; in [1] for the local linear estimator
or in [37], for empirical regression processes.

The key idea in all these approaches lies in the resample {(X∗
i , Y

∗
i )}n

i=1,
which comes from the regression model Y ∗

i = mθ̂(X
∗
i ) + ε∗i . The error term

ε∗i can be obtained from the empirical distribution of the residuals {ε̂i =
Yi −mθ̂(Xi)} as follows:

1. Construct the parametric residuals:

ε̂i = Yi −mθ̂ (Xi) , i = 1, 2, . . . , n.

2. Recenter the previous residuals:

ε̂i = ε̂i − ε̂, i = 1, 2, . . . , n, where ε̂ =
∑n

i=1 ε̂i

n
.

3. Draw bootstrap versions of the residuals, ε∗i , from the empirical cumula-
tive distribution function of the

{
ε̂i

}n

i=1
.

4. Compute Y ∗
i = mθ̂ (Xi) + ε∗i , i = 1, 2, . . . , n (no resampling of the X ’s).
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Another alternative is to use Wild Bootstrap ([43], [26], [21]):

1. Construct the parametric residuals:

ε̂i = Yi −mθ̂ (Xi) , i = 1, 2, . . . , n.

2. Draw independent random variables V ∗
1 , V

∗
2 , . . . , V

∗
n (also independent of

the observed sample) satisfying

E∗ (V ∗
i ) = 0, E∗ (V ∗2

i

)
= 1, E∗ (V ∗3

i

)
= 1

and construct the ε∗i = ε̂iV
∗
i .

3. Compute Y ∗
i = mθ̂ (Xi) + ε∗i , i = 1, 2, . . . , n (no resampling of the X ’s).

The resampling approximation of the test statistic distribution is consistent,
so the problems of the asymptotic approach (for instance, the slow rate of
convergence) are overcome. Related to the calibration problem, other alterna-
tives to Bootstrap have been also proposed, such as the martingale transform
(see [37], [24]) or Monte Carlo methods (see [45]).

Once the test has been calibrated for a certain level α, another problem
arises when choosing the test that maximizes the power. In the regression
context, the comparison between tests can be done with Pitman alternatives:

H0 : m ∈M = {mθ}θ∈Θ⊂R1, vs. Han : mn(·) = mθ(·) + cnd(·)

where cn → 0 and d denotes the direction of the alternative. A test with level
α and with power higher than α, and with the fastest cn tending to zero, will
be the most powerful.

As an example, the F -test in multiple linear regression models with para-
metric alternatives of higher dimension shows cn ∼ n−1/2. On the other
hand, a test for linearity H0 : mθ(x) = θtx, θ ∈ R

q based on a smooth
estimation of the residuals via Tn =

∫
αn

2(x)ω(x)dx has cn ∼ n−1/2h−p/4,
which comprises the price to pay for a nonparametric alternative. Finally, a
test based on the empirical regression process with Tn =

∫
αn

2(x)dFn(x) has
cn ∼ n−1/2. From these results, we may conclude that the tests based on the
empirical regression process are the best ones in practice. However, this is not
true, as it is shown is simulation studies with finite samples (as in [27]). Even
though the tests based on the estimators exhibit the curse of dimensionality,
this is not clear in practice, and some modifications of the test statistic allow
to get cn ∼ n−1/2(log logn)1/2, as in [22], where the following transformation
is proposed:

Tn = max
h∈Hn

∫
αnh

2(x)ω(x)dx − ÊH0(
∫
αnh

2(x)ω(x)dx)

V̂arH0(
∫
αnh

2(x)ω(x)dx)

with Hn being a family of smoothing parameters.
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Nevertheless, there are other issues that make the comparison even more
difficult. The non-existance of a dominant class of tests justifies the variety of
alternatives, finding in the literature tests based on smoothing methods, with
different nonparametric pilot estimators, such as kernels, splines, orthogonal
expansions, etc.

3 Recent GoF Tests for Regression Models

In the last decade, some alternatives procedures for testing a regression model
have been proposed. In this section, we will give some ideas of the extensions
of the likelihood ratio tests, based on the empirical likelihood, as well as other
new tests based on the empirical distribution of the residuals.

3.1 The Generalized Likelihood Ratio Test

In a regression model, assume that ε ∼ N(0, σ2). The Generalized Likelihood
Ratio Test statistic is given by:

Tn = l(mnh, σ̂)− l(mθ̂, σ̂0)

where l(m,σ) is the Gaussian log-likelihood:

l(m,σ) = −n log(
√

2πσ2)− 1
2σ2

n∑
i=1

(Yi −m(Xi))2

and

σ̂2
0 =

1
n

n∑
i=1

(Yi −mθ̂(Xi))2, σ̂2 =
1
n

n∑
i=1

(Yi −mnh(Xi))2

giving the loglikelihood under H0 and the estimated loglikelihood with non-
parametric estimator mnh of the regression function.

This procedure is studied in detail in [16] and more recently, in [17], and it
represents and extension of the natural idea of the likelihood ratio, where un-
der the alternative, the likelihood is evaluated on a nonparametric estimator
of the regression function, which is not the maximum likelihood estimator,
in a general setting.

It should be also noticed that:

Tn =
n

2
log

RSS0

RSS1
≈ n

2
RSS0 −RSS1

RSS0
,

being RRS0 the residual sum of squares under H0 and RSS1 the residual
sum of squares under the alternative, which resembles the F -test expression.
In the numerator, we have the variance difference test, mentioned in Section
1 and this general view allows to establish connection with other tests.

Once again, the calibration can be done by an asymptotic Gaussian ap-
proximation, by resampling or with an intermediate approach using:
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rkTn ∼ χ2√
n, with rk =

1
h

(K(0)− 1/2‖K‖2)2
‖K − 1/(2K ∗K)‖2μ(Supp(X))

where μ denotes the Lebesgue measure and Supp(X) is the support of the
explanatory variable. This is an extension of the Wilks theorem for parametric
alternative hypothesis (see [16] for details).

3.2 The Local Empirical Likelihood Ratio Test

With the view described in this section, the test statistics are now based on
the local version of the empirical likelihood (see [30]). A possible test statistic
is the integrated empirical likelihood ratio test:

Tn =
∫ (

−2 log(Ln(m̃(x, θ̂))nn)
)
ω(x)dx,

where

Ln(m̃(x, θ̂)) = max
n∏

i=1

pi(x),

subject to
n∑

i=1

pi(x) = 1 and

n∑
i=1

pi(x)K
(
x−Xi

n

)
(Yi − m̃(x, θ̂)) = 0, with m̃(x, θ̂) = Eθ̂(mnh(x)).

See [6] and [7] for more details.
For H0 : m ∈M = {mθ}θ∈Θ⊂Rp, this test verifies that:

h−p/2(Tn − c1)
d→ N(0, c2),

where c1 = 1 and

c2 = 2
∫
(K ∗K)2(x)dx∫

K2(x)dx

∫
ω(x)dx.

An interesting property is that the limit is distribution free.

3.3 The Empirical Process Based on the LRT

A recent study in [41] combines the empirical likelihood ideas with the em-
pirical regression process view. Taking into account that:

H0 : m ∈ {mθ}θ∈Θ ⇔ E (I(X ≤ x)(Y −mθ0(X))) = 0,
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for θ0 ∈ θ and x ∈ Supp(X), and using the empirical likelihood for p = 1:

L(F) =
n∏

i=1

(
F(Xi, Yi)− F(X−

i , Yi)− F(Xi, Y
−
i ) + F(X−

i , Y −
i ))

)

with {(Xi, Yi)}n
i=1 iid from (X,Y ) with joint distribution F, the test statistic

can be built based on the empirical likelihood ratio:

Λn(x) =
sup{L(F); EF

(
I(X ≤ x)(Y −mθ̂(X))

)
= 0}

supL(F)

= sup

{
nn

n∏
i=1

pi; pi ≥ 0, i = 1, . . . , n,
n∑

i=1

pi = 1,

n∑
i=1

piI(Xi ≤ x)(Yi −mθ̂(Xi)) = 0

}
.

The test statistic Tn may be any continuous functional of Λn(·). The test
statistic is associated with the process −2 logΛn(x), and its calibration can
be done by Bootstrap, Monte Carlo methods or using the asymptotic distri-
bution.

3.4 Test Based on the Empirical Distribution of the Residuals

Consider the ideas of the location-scale regression model, in a nonparametric
framework:

Y = m(X) + σ(X)ε,

where m(x) = E(Y |X = x) is a smooth regression function, σ2(x) =
Var(Y |X = x) is the variance function and ε denotes the error term (in-
dependent of the covariate) with distribution function:

Fε(y) = P(ε ≤ y) = P

(
Y −m(X)

σ(X)
≤ y

)
.

Assume that {(Xi, Yi)}n
i=1 are i.i.d. observations from (X,Y ). In this context,

[2] proposed estimating the error distribution by the empirical distribution
of estimated residuals:

F̂ε(y) =
1
n

n∑
i=1

I

(
Yi −mnh(Xi)

σ̂(Xi)
≤ y

)
,

where mnh(x) and σ̂2(x) are Nadaraya-Watson estimators of m and σ2:

σ̂2(x) =
n∑

i=1

Wni(x)Y 2
i − m̂2(x),
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where Wni denote the Nadaraya-Watson weights. During the last years, the
estimation of the error distribution has been used to test several hypothesis
about the regression model. The basic idea of the tests consists of getting
a nonparametric estimator of the error distribution, namely F̂ε and a para-
metric estimator under the null hypothesis, F̂ε0. These two estimators can be
compared through a certain criterion and Bootstrap can be used to approxi-
mate the critical values of the test.

An important example is the GoF test for parametric regression models,
which is studied in [40] for p = 1 and [29], for p ≥ 1.

4 GoF in Other Contexts

All the previous GoF tests can be extended in several ways, for instance, ex-
tending the null hypothesis (testing partially linear models, significance tests
or testing additivity) as well as considering incomplete and dependent data.
In this final section, we will give some references on the extensions of the
studied GoF tests to the incomplete and dependent data settings.

4.1 Incomplete Data

A particular case of incomplete information arises when data are censored
and/or truncated. The GoF testing problem for conditional models have been
studied in [5].

In [20], a GoF test adapted to the situation where the Y variable may be
missing is proposed. In the missing data case, we may not observe Yi for some
index i, which implies that we have to deal with: (Xi, Yi) if Yi is observed
and (Xi, ·), otherwise. To control whether an observation is complete or not,
a new variable δ is introduced, as an indicator of missing observations.

Other situations that can be treated in the incomplete data context are,
for example, length biased data and double censored or truncated data.

4.2 Dependent Data

Dependent data usually appear when samples are collected along time and/or
over space. For the time dependent setting, consider {(Xt, Yt}1≤t≤T a se-
quence of observations from a joint stationary density function, f(x, y) cor-
responding to (X,Y ), a (d + 1)-dimensional random vector.

In order to describe the behaviour of (X,Y ), we may consider the con-
ditional density of Y given X = x, denoted by f(y|x) and the conditional
moments mj(x) = E(Y j |X = x), for j = 1, 2, . . .. For j = 1, we have the
conditional expectation and m1 is simply denoted by m. Consider the model:

Yt = m(Xt) + εt, t = 1, . . . , T

where {εt} is an iid sequence with E(εt) = 0 and E(ε2t ) = σ2 <∞ and {Xt}
is strictly stationary. If we are interested in testing the null hypothesis of m
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belonging the a certain parametric family, it is possible to generalize to this
context the test introduced in [21], among others, which have already been
described for the iid case (see [18]).

In addition, the empirical regression process introduced in Section 1 can
be also generalized to a more general framework. For instance, if Xt = Yt−1,
[25] studied the problem of testing linearity (AR(1) assumption). The same
problem is also tackled in [10] taking Xt = (Yt−1, . . . , Yt−s), and in this same
case, [39] introduced a test for the link of a linear model.

In [12], a nonlinear model for m(x) = E(Y |X = x) is tested. The author
introduces a general empirical regression process given by:

Rn,ω(x, θ̂) =
1√
n

n∑
t=1

(Yt −mθ̂(Xt))ω(Xt, x).

Some particular cases taking ω(Xt, x) = I(Xt ≤ x), where I denotes the
indicator function, or ω(Xt, x) = I(β̂tXt ≤ x) are also studied.

In the spatial context, the interest may be focused on the trend function
collecting the large scale variation, or in the dependence structure, being this
last one crucial for prediction. This small scale variability structure is capture
by the covariogramC. For second order stationary processes, the covariogram
C admits a Fourier transform given by the so-called spatial spectral density
f . Hence, the problem of testing a parametric family for the covariogram
can be written in terms of the spectral density. Besides, the spectral density
can be nonparametrically estimated by the spatial periodogram, providing
an alternative statement of the testing problem in terms of f or its logarithm
log f . Actually, the log-spectral density can be seen as a regression function
of the log-periodogram values over the different frequencies.

This alternative statement of the testing problem allows for the application
of the GoF testing methods in regression models introduced in the previous
section, with suitable modifications. In [8], the authors extend the tests of
[16] and [31] to the spatial setting, providing also calibration techniques.

Acknowledgement. The authors would like to acknowledge the financial support

of Project MTM2008-03010, from the Spanish Ministry of Science and Innovation.

References
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Summary. This work provides further contribution to the linear properties
in a continuous time linear model. We deal with linear sufficiency and lin-
ear completeness properties, together with the linear admissibility property.
These concepts were originally introduced and characterized in a discrete
time context and subsequently were extended by the authors of the present
paper to a continuous time linear model. Our objective is to study in depth
these properties showing a general unified context where the classical linear
model appears as a particular case.

1 Introduction

The problem of linear estimation in a linear model has been extensively
studied in the literature. In particular, linear properties have been charac-
terized by different authors in the last years. The concepts of linear suf-
ficiency and linear completeness were introduced by Baksalary and Kala
[1] and by Drygas [6], respectively, in the following way: in a linear model
(Y,Xβ, V ), (E[Y ] = Xβ, V ar(Y ) = V ), a linear combination AY is a linear
sufficient estimator if each BLUE can be written as BAY , for a matrix B. A
linear combination AY is a linear complete estimator if the unique estimator
BAY unbiased for 0 is the 0 estimator. These properties have been studied
in [2], [6] and [10], among others.

The problem of finding and characterizing admissible estimators is an
important topic in this context. In particular, many works have been pub-
lished characterizing the linear admissibility property, see [23], [2] and [3], for
instance.

Recently, we have defined and characterized these properties in a continu-
ous time linear model. Our former works considered integral type estimators
and the results were obtained for this class of estimators. The objective of

∗ In memory of Marisa.
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the present paper is to show in a more general context the linear properties
above mentioned extending some results given in those papers.

The paper is organized as follows: next section establishes the context
in which we develop this work. In addition, we present the construction of
BLUE estimators together with a representation of the deterministic part of
the process. Section 3 deals with the linear sufficiency and linear completeness
properties. The main result of this section is Theorem 3. Finally, in Section
4 we study the linear admissibility property.

2 Framework

From now on, let (Zt, t ∈ T ), with T a compact set of R, be a stochastic
process with distribution P0 in (RT ,FT ) where FT is the σ−algebra gener-
ated by Zt, t ∈ T . Let E0 be the mathematical expectation with respect to
P0. Suppose that E0[Zt] = 0, t ∈ T and E0[ZsZt] = B(s, t), s, t ∈ T is a
known continuous function in T × T . For each θ ∈ R

p, we denote by Pθ the
distribution of the process (Xt, t ∈ T ) which is defined as Xt = A(t)θ + Zt,
t ∈ T , where A(t)′ is a vector in R

p, with known continuous components
in T. Let μ be the normal distribution on (Rp,B(Rp)) with zero mean and
covariance matrix I. P̄ denotes the measure defined on (RT ,FT ) as

P̄ (A) =
∫

Rp

Pθ(A)dμ(θ), A ∈ FT .

The mathematical expectation with respect to P̄ will be denoted by Ē and
with respect to Pθ by Eθ. Thus, the process (Xt, t ∈ T ) is an element of
L2(RT ,FT , P̄ ) with

Ē[Xt] = 0 and Ē[XsXt] = B(s, t) + A(s)A(t)′, s, t ∈ T. (1)

We denote by L̄(Xt, t ∈ T ) the closure on L2(RT ,FT , P̄ ) of the set of finite
linear combinations of type

∑n
i=1 ciXti , ci ∈ R, ti ∈ T . L̄(Xt, t ∈ T ) is a

Hilbert space with the inner product < Y,Z >= Ē[Y Z]. We are interested
in estimators constructed from the observed paths of the process (Xt, t ∈ T )
in a linear way, that is, we are interested in estimators belonging to the
class L̄(Xt, t ∈ T ). We refer to this class of estimators as linear estimators.
With this framework, we can essentially use the same concepts that in a
discrete time context with some technical differences. From now on, the terms
minimum variance, unbiased and uncorrelated estimators are all referred to
the measure Pθ, θ ∈ R

p. When the measure P̄ is involved, it will be mentioned
explicitly.

Now, we define, for each j = 1, . . . , p, the operator Lj as Lj(
∑n

i=1 ciXti) =∑n
i=1 ciA

j(ti), where Aj is the j-th component of A. These operators can be
extended to L̄(Xt, t ∈ T ) in the following way. For each Y ∈ L̄(Xt, t ∈
T ), there exists a sequence Yn =

∑n
i=1 ciXti which converges to Y in
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L2(RT ,FT , P̄ ). We can write Yn =
∫

T Vn(dt)Xt. From (1) it is easy to see
that

Ē[(Yn − Ym)2] = E0[(Yn − Ym)2] +
p∑

j=1

(∫
T

(Vn − Vm)(dt)Aj(t)
)2

.

Since (Yn, n ≥ 1) is a Cauchy sequence in L2(RT ,FT , P̄ ), then (Yn, n ≥ 1) and∫
T
Vn(dt)A(t) are Cauchy sequences, the first as an element in L2(RT , FT , P0)

and the second as a vector of real numbers. This implies that if (Yn, n ≥ 1)
converges to Y in L2(RT ,FT , P̄ ) then it converges to Y in L2(RT ,FT , P0)
and Lj(Yn) =

∫
T
Vn(dt)Aj(t) is convergent. Thus, we can define Lj(Y ) =

limn→∞ Lj(Yn). Therefore, for each j, Lj is a continuous linear operator and,
applying the Riesz representation theorem, we can assure the existence of an
element θ̂j ∈ L̄(Xt, t ∈ T ) such that Lj(Y ) =< Y, θ̂j >, Y ∈ L̄(Xt, t ∈ T ).
Defining θ̂B = (θ̂1, · · · , θ̂p)′ and taking Y = Xt, we have

A(t) =< Xt, θ̂
′
B >= Ē[Xtθ̂

′
B], t ∈ T. (2)

It is immediate that

Eθ[Y ] = Ē[Y θ̂′B]θ, Y ∈ L̄(Xt, t ∈ T ), (3)

and, from (1),

Ē[Y Z] = E0[Y Z] + Ē[Y θ̂′B]Ē[θ̂BZ], Y, Z ∈ L̄(Xt, t ∈ T ). (4)

As we shall see throughout the paper, equality (1) and therefore (10) and,
(11), will play a relevant role in this work. In a discrete time linear model
(Y,Xβ, V ), (E[Y ] = Xβ, V ar(Y ) = V ), the characterizations of the linear
properties have been given in terms of the matrix W = V + XX ′ whose
analogous element in continuous time is Ē[XsXt]. It is easy to verify that X =
WC for some matrix C but, as we have checked, it is not so immediate in this
approach. In fact, in the problem of estimating the expectation of a process
in a continuous time context, most of papers ([5] and [4], see among others)
impose equality (1) with E0 instead of Ē, in order to construct optimum
estimators. In this paper the unique assumption on the expectation and on
the covariance of the process is their continuity, for that reason we have
defined the measure P̄ and we have proved equality (1).

Finally, we present the following notation to be used throughout the paper:
Σ = Ē[θ̂B θ̂

′
B] and C = E0[θ̂B θ̂

′
B] = (I − Σ)Σ. M− denotes a g-inverse of a

matrix M , that is, MM−M = M.

2.1 BLUE Estimators

In this section we show a characterization of the BLUE estimators. Moreover,
we give a representation of the deterministic part of each linear estimator.
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From now on, an estimable linear combination is a linear combination of θ
which can be unbiasedly estimated by elements of L̄(Xt, t ∈ T ). We say that
a linear estimator is the BLUE for an estimable linear combination of θ if it
is of minimum variance among all linear estimators unbiased for the linear
combination.

First, note that (10) implies Ē[Y θ̂′B] = 0 for each linear estimator Y un-
biased for 0 and using (11) we have E0[Y θ̂′B] = 0. This means that θ̂B is
uncorrelated with all linear estimators unbiased for 0, so θ̂B is the BLUE
for its expectation. Thus, A(t)Σ−θ̂B is the BLUE for A(t)θ, t ∈ T , and the
estimator θ̂B generates all BLUE estimators.

As we have commented, it is possible to find deterministic elements in
L̄(Xt, t ∈ T ), since we have not imposed restrictions on the covariance
function B. In fact, an estimable linear combination Mθ, which is com-
pletely determined by observing (Xt, t ∈ T ), can be characterized as fol-
lows: let Y be a linear estimator with M = Ē[Y θ̂′B] and null variance.
We have that Y = MΣ−θ̂B a.s. and 0 = E0[Y θ̂B] = MΣ−C. More-
over MΣ−C = 0 ⇔ MΣ−CΣ− = MP− = 0, where P = ΣC−Σ and
P− = Σ−CΣ−. Thus, each estimable linear combination Mθ which gener-
ates a deterministic BLUE verifies MP− = 0, that is, M ′ = (I −PP−)R for
some R matrix. Thereby, the main deterministic component of the process
can be represented as:

Ct = A(t)(I − P−P )Σ−θ̂B, t ∈ T.

This component coincides with that given by the authors in [9, Lemma 1].
Obviously, we can write

Xt = Ct + X∗
t , t ∈ T,

with X∗
t = Xt − Ct. Each linear estimator θ̂ can be factorized as

θ̂ = Cθ̂ + θ̂∗,

where Cθ̂ = Ē[Y θ̂′B](I − P−P )Σ−θ̂B is a deterministic estimator and θ̂∗ =
θ̂ − Cθ̂ ∈ L̄(X∗

t , t ∈ T ).
The following lemma gives some straightforward properties of the process

(X∗
t , t ∈ T ).

Lemma 1. The process (X∗
t , t ∈ T ) satisfies

(i) Eθ[X∗
t ] = A(t)P−Pθ, t ∈ T , and

(ii) There exists an estimator θ̂∗B ∈ L̄(X∗
t , t ∈ T ) such that E0[X∗

t θ̂
∗′
B ] =

A(t)P−P , t ∈ T . Thus, L̄(X∗
t , t ∈ T ) does not contain deterministic

linear estimators.

Proof. (i) It is immediate by the definition of X∗
t . (ii) Consider θ̂∗B = PΣ−θ̂B.

On the one hand Cθ̂∗
B

= P (I − P−P )Σ−θ̂B = 0 so θ̂∗B ∈ L̄(X∗
t , t ∈ T ).
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On the other hand, E0[X∗
t θ̂

∗′
B ] = E0[Xtθ̂

′
B]Σ−P = A(t)(I − Σ)Σ−P =

A(t)Σ−CΣ−P = A(t)P−P , t ∈ T . �

Lemma 1 proves that θ̂∗B verifies condition (1) with E0 instead of Ē in the
process (X∗

t , t ∈ T ), so θ̂∗B generates the BLUE estimators for this model.
Some results of the present paper are given in terms of Ē and in its equivalent
form in terms of E0. In most cases, we shall omit the proof of this last part.

We conclude this section giving a characterization of BLUE estimators.

Lemma 2. Let Y ∈ L̄(Xt, t ∈ T ) and cθ an estimable linear combination.
Then, Y is the BLUE for cθ if and only if

Ē[Y Xt] = cΣ−A(t)′, t ∈ T, (5)

equivalently
E0[Y Xt] = cP−A(t)′, t ∈ T.

Proof. Suppose that Y is the BLUE for cθ. Then, Y = cΣ−θ̂B a.s. from the
uniqueness of a BLUE estimator. Thus, using (11) we obtain the only if part.
Conversely, (5) and (11) imply

Ē[(Y − cΣ−θ̂B)Xt] = 0, t ∈ T.

Then, Y = cΣ−θ̂B, a.s. and the conclusion follows. The lemma is proved. �

3 Linear Sufficiency and Linear Completeness

The concept of linear sufficiency in this context is straightforward. Let K

be a compact subset of R. We consider a family (θ̂r, r ∈ K) of elements in
L̄(Xt, t ∈ T ). If K is not a finite set then we shall suppose that (θ̂r, r ∈ K) is
continuous in square mean sense. We denote by L̄(θ̂r, r ∈ K) the closure in
L2(RT ,FT , P̄ ) of the linear combinations of (θ̂r, r ∈ K). Then (θ̂r, r ∈ K) is
linearly sufficient if the BLUE of each estimable linear combination belongs
to L̄(θ̂r, r ∈ K). The following characterization is an extension of that given
in [1].

Theorem 1. (θ̂r, r ∈ K) is linearly sufficient if and only if there exists Y ∈
L̄(θ̂r, r ∈ K) such that

Ē[Y Xt] = A(t)′, t ∈ T, (6)

equivalently, there exists Y ∗ ∈ L̄(θ̂∗r , r ∈ K) such that

E0[Y ∗X∗
t ] = PP−A(t)′, t ∈ T.
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Proof. First we prove the right implication. Let Y be the BLUE for Σθ. By
hypothesis, Y ∈ L̄(θ̂r, r ∈ K) and applying Lemma 2, we obtain Ē[Y Xt] =
ΣΣ−A(t)′ = A(t)′, which is (6).

Conversely, if Y ∈ L̄(θ̂r, r ∈ K) satisfies (6), Lemma 2 assures that Y is
the BLUE for Σθ and therefore cΣ−Y is the BLUE for each estimable linear
combination cθ. The theorem is proved. �

Now, we consider the concept of linear completeness whose definition is the
following: (θ̂r, r ∈ K) is linearly complete if for each Y ∈ L̄(θ̂r, r ∈ K) such
that Eθ[Y ] = 0, θ ∈ R

p, we have that Y = 0, a.s.

Theorem 2. (θ̂r, r ∈ K) is linearly complete if and only if

Ē[θ̂rXt] = Ē[θ̂r θ̂
′
B]h(t), t ∈ T, r ∈ K, (7)

for a vector h of continuous functions on T , equivalently

E0[θ̂rXt] = E0[θ̂r θ̂
∗′
B ]g(t), t ∈ T, r ∈ K,

for a vector g of continuous functions on T .

Proof. First, we prove the left implication. Suppose that Y ∈ L̄(θ̂r, r ∈ K)
verifies Eθ[Y ] = 0, for all θ, equivalently Ē[Y θ̂′B] = 0. The construction of
L̄(θ̂r, r ∈ K) and (7) give Ē[Y Xt] = Ē[Y θ̂′B]h(t) = 0, t ∈ T . Since Y ∈
L̄(Xt, t ∈ T ), we obtain Y = 0, a.s. proving the left implication.

For the right implication, first we consider that K is a finite set K =
{r1, . . . , rn}. Define the row vector g(ri) = Ē[θri θ̂

′
B], i = 1, . . . , n and the

n× n matrix G = (g(r1)′, . . . , g(rn)′). Consider the estimator

θ̄ri = g(ri)H−G

⎛
⎜⎝
θr1

...
θrn

⎞
⎟⎠ ,

where H = GG′. Then,

Ē[θ̄ri θ̂
′
B] = g(ri)(GG′)−GG′ = g(ri)H−H = g(ri), i = 1, . . . , n.

On the one hand, the estimator θ̂ri − θ̄ri has 0 expectation and, on the other
hand, θ̂ri − θ̄ri ∈ L̄(θ̂r, r ∈ K). Due to the linear completeness of (θ̂r, r ∈ K),
we conclude θ̂ri = θ̄ri , i = 1, . . . , n, and then

Ē[θ̂riXt] = Ē[θ̂ri θ̂B]h(t),

with h(t) = H−G(Ē[θ̂r1Xt], . . . , E[θ̂rnXt])′, t ∈ T. If K is not a finite set, the
proof is the same with H =

∫
K
g(s)′g(s)ds and θ̄r = g(r)H− ∫

K
g(s)′θsds,

r ∈ K. �
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Note that in the proof of the previous theorem we have obtained the fol-
lowing results.

Corollary 1. (θ̂r, r ∈ K) is linearly complete if and only if θ̂r = g(r)θ̄, a.s.
r ∈ K, where θ̄ ∈ L̄(θ̂r, r ∈ K) and g(r) = Ē[θ̂r θ̂

′
B], r ∈ K.

Corollary 2. (θ̂r, r ∈ K) is linearly complete if and only if

θ̂r = Cθ̂r
+ g∗(r)θ̄∗, a.s. r ∈ K,

where Cθ̂r
is its deterministic component, θ̄∗ ∈ L̄(θ̂∗r , r ∈ K) and g∗(r) =

E0[θ̂rθ̂
′
B], r ∈ K.

To conclude this section, we introduce the concept of linear minimal suf-
ficiency. A linear estimator (θ̂r, r ∈ K) is linear minimal sufficient if it is
linear sufficient and for each linear sufficient estimator (θ̄s, s ∈ S) we have
θ̂r ∈ L̄(θ̄s, s ∈ S), r ∈ K.

Let (θ̂(1)
r , r ∈ K) and (θ̂(2)

s , s ∈ S) be two linear estimators. We consider
the functions

gY (s) = Ē[Y θ̂(2)
s ], s ∈ S, Y ∈ L̄(θ̂(1)

r , r ∈ K). (8)

Thus, we define

Hθ̂(1)(θ̂(2)) = {gY , Y ∈ L̄(θ̂(1)
r , r ∈ K)},

with gY defined in (8). In order to abridge notation we write H(θ̂(2)) when
(θ̂(1)

r , r ∈ K) = (Xt, t ∈ T ) and Hθ̂(1) when (θ̂(2)
s , s ∈ S) = (Xt, t ∈ T ). These

elements allow us to characterize the linear properties in a unified context in
the following way:

Theorem 3. Let (θ̂r, r ∈ K) be a linear estimator. Then,

(i) (θ̂r, r ∈ K) is linearly sufficient ⇔ Hθ̂B
⊆ Hθ̂.

(ii) (θ̂r, r ∈ K) is linearly complete ⇔ H(θ̂) ⊆ Hθ̂B
(θ̂).

(iii) (θ̂r, r ∈ K) is linearly sufficient and linearly complete ⇔ Hθ̂B
= Hθ̂.

(iv) (θ̂r, r ∈ K) is linearly sufficient and linearly complete ⇔ (θ̂r, r ∈ K) is
linearly minimal sufficient.

Proof. (i) First, we observe that Hθ̂B
= {A(t)c, t ∈ T, c ∈ R

p}. On the
other hand, (A(t), t ∈ T ) ∈ Hθ̂ is equivalent to condition (6). Then, applying
Theorem 1 we obtain the claim.

(ii)H(θ̂) ⊆ Hθ̂B
(θ̂) means that for t ∈ T, (Ē[Xtθ̂r], r ∈ K) ⊆ Hθ̂B

(θ̂), that
is, there exists a vector h(t) ∈ R

p such that Ē[Xtθ̂r] = h(t)′Ē[θ̂B θ̂r], r ∈ K,
which is, from Theorem 2, the property of linear completeness.

(iii) First, we prove the left implication. From part (i) of the present
theorem, the inclusion Hθ̂B

⊆ Hθ̂ is equivalent to the linear sufficiency of
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(θ̂r, r ∈ K). On the other hand, Hθ̂ ⊆ Hθ̂B
is equivalent to the following: for

each r ∈ K, there exists a vector cr such that

Ē[θ̂rXt] = c′rĒ[θ̂BXt], t ∈ T.

Then, Ē[θ̂r θ̂
′
B] = c′rĒ[θ̂B θ̂

′
B] = c′rΣ and, therefore,

Ē[θ̂rXt] = c′rĒ[θ̂BXt] = c′rΣ
−ΣĒ[θ̂BXt] = Ē[θ̂r θ̂

′
B]h(t), (9)

with h(t) = Σ−Ē[θ̂BXt], t ∈ T . Equality (9) is equivalent to the linear
completeness of the estimator and it concludes the proof of the only if part.

Conversely, if θ̂r is linearly sufficient and linear complete, it is the BLUE
for its expectation. By applying Lemma 2, we obtain

Ē[θ̂rXt] = Ē[θ̂r θ̂
′
B]Σ−Ē[θ̂BXt],

which yields Hθ̂ ⊆ Hθ̂B
. The other inclusion follows from part (i) of the

present theorem. The proof is complete.
(iv) Suppose that (θ̂r, r ∈ K) is linearly sufficient and linearly complete.

Let (θ̄s, s ∈ S) be a linear sufficient estimator. By definition of this property,
the BLUE for (Eθ[θ̂r], r ∈ K) belongs to the class L̄(θ̄s, s ∈ S). On the other
hand, (θ̂r, r ∈ K) is the BLUE for its expectation because it is linearly suf-
ficient and complete, therefore θ̂r ∈ L̄(θ̄s, s ∈ S), proving the linear minimal
sufficiency of (θ̂r, r ∈ K).

For the converse implication, we have only to prove the linear completeness
of (θ̂r , r ∈ K). Taking into account that θ̂B is a linear sufficient estimator,
we can write θ̂r = cr θ̂

′
B, for a row vector cr. Since θ̂B is a linear complete

estimator we conclude the proof of the theorem. �

Note 1. In a discrete linear model, Drygas [4] obtained the following charac-
terization:

(i) AY is linearly sufficient ⇔ Im(X) ⊆ Im(WA′).
(ii) AY is linearly complete ⇔ Im(AW ) ⊆ Im(AX).
(iii) AY is linearly sufficient and linearly complete ⇔ Im(X) = Im(WA′).
(iv) AY is linearly sufficient and linearly complete ⇔ AY is linearly minimal

sufficient,

where Im(A) denotes the space generated by the columns of the matrix A.

If we substitute the estimator (θ̂r, r ∈ K) by AY , it is easy to check that
Hθ̂B

= Im(X), Hθ̂ = Im(WA′), H(θ̂) = Im(AW ) and Hθ̂B
(θ̂) = Im(AX).

Thus, Theorem 3 is a generalization of the characterizations in discrete time.

4 Linear Admissibility

In this section we deal with the problem of admissibility with respect
to the square mean error for parametric functions Kθ, where K is a
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k × p-matrix. From now on, we shall suppose that Kθ is an estimable func-
tion. More precisely, let θ̂ ∈ L̄(Xt, t ∈ T ) be an estimator (a vector of k
components), it is said that θ̂ is linearly admissible for Kθ if there does not
exist an estimator θ̄ ∈ L̄(Xt, t ∈ T ) such that

Eθ[(θ̄ −Kθ)′(θ̄ −Kθ)] ≤ Eθ[(θ̂ −Kθ)′(θ̂ −Kθ)], θ ∈ R
p,

with strict inequality for at least one value of θ.
The objective of this section is to establish necessary and sufficient condi-

tions for linear admissibility by means of analogous criteria to those given in
[23] and in [2, 3].

In order to establish the main result, first we give the following lemma.

Lemma 3. Let θ̂ ∈ L(Xt, t ∈ T ) be an estimator with Eθ[θ̂] = Mθ. Then,

Eθ[(θ̄ −Kθ)′(θ̄ −Kθ)] = Eθ[(θ̄ −MΣ−θ̂)′(θ̄ −MΣ−θ̂)]

+Eθ[(MΣ−θ̂ −Kθ)′(MΣ−θ̂ −Kθ)].

Theorem 4. Let θ̂ be a linear estimator with M = Ē[θ̂θ̂′]. θ̂ is linearly ad-
missible for Kθ if and only if

(i) Ē[θ̂Xt] = RA(t)′, t ∈ T , for a matrix R.
(ii) M(I −Σ)Σ−K ′ is a symmetric matrix.
(iii) M(I −Σ)Σ−(M −K)′ is a non negative definite matrix.
(iv) There exists a matrix R such that (M −K) = (M −K)(I −Σ)R.

Proof. Suppose that θ̂ is a linear admissible estimator for Kθ. By Lemma
3, θ̂ = MΣ−θ̂B, a.s. and Ē[θ̂Xt] = Ē[MΣ−θ̂BXt] = MΣ−A(t)′, t ∈ T ,
which is condition (i). On the other hand, since θ̂ is linearly admissible for
Kθ in the model (θ̂B, Σθ,Σ(I − Σ)), we can apply [1, Theorem in p.352]
with A = MΣ−, V = W = Σ(I −Σ) and C = KΣ− obtaining the following
conditions:

(ii) AV C′ = MΣ−Σ(I−Σ)Σ−K ′ = M(I−Σ)Σ−K ′ is a symmetric matrix,
(iii) AV (C−A) = MΣ−Σ(I−Σ)(KΣ−−MΣ−)′ = M(I−Σ)Σ−(M −K)′

is a non negative definite matrix, and
(iv) (M −K) = (M −K)(I −Σ)R, for a matrix R.

It concludes the only if part of this theorem.
Conversely, condition (i) is equivalent, from Lemma 2, to that θ̂ is the

BLUE for Mθ, therefore θ̂ = MΣ−θ̂B , a.s. Lemma 3 shows that in order
to find linearly admissible estimators of Kθ, we need to consider only linear
functions of θ̂B. So, if MΣ−θ̂B is admissible for Kθ among linear combina-
tions of θ̂B, θ̂ will be linearly admissible. Applying again [1, Theorem] it is
enough to check that conditions (ii) to (iv) imply the linear admissibility of
MΣ−θ̂B in the model (θ̂B, Σθ,Σ(I −Σ)). The proof is complete. �
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Note 2. It is immediate that conditions (ii) to (iv) can be rewritten in terms
of P in the following way:

(ii) MP−K ′ is a symmetric matrix.
(iii) MP−(M −K)′ is a non negative definite matrix.
(iv) There exists a matrix R such that (M −K) = (M −K)P−PR.

By considering the deterministic part of the process, we can establish the
following result:

Theorem 5. Let θ̂ ∈ L̄(Xt, t ∈ T ) with M = Ē[θ̂θ̂′B ]. Then, θ̂ is a linearly
admissible estimator for Kθ ⇔ θ̂∗ is linearly admissible for KP−Pθ in the
model L̄(X∗

t , t ∈ T ) and (M −K) = (M −K)P−PR.

Proof. First, we establish the equivalent conditions to the linear admissibility
of θ̂∗ for KP−Pθ in L̄(X∗

t , t ∈ T ). For that, we use [7, Theorem 5] with the
matrix P instead of Σ. Thus, θ̂∗ is a linear admissible estimator for KP−Pθ
in L̄(X∗

t , t ∈ T ) if and only if:

(i) Ē0[Xtθ̂] = E0[X∗
t θ̂

∗] = A(t)P−PR = A(t)S, t ∈ T , for a matrix S.
(ii) MP−PP−PP−K ′ = MP−K ′ is a symmetric matrix.
(iii) MP−(M −K)′ is a no negative definite matrix.

By applying Theorem 4 of the present paper we obtain the equivalence of
this theorem. �

Note 3. Since θ̂−Kθ = (M −K)(I−P−P )Σ−θ̂B +(θ̂∗−KP−Pθ) = a+(θ̂∗

−KP−Pθ), condition (iv) is equivalent to a belongs to the space generated
by the columns of (M −K)P−P.

To conclude this paper we show two characterizations of the linear admissi-
bility which appear in [7]. These results assume that condition (1) is verified
with E0 and that θ is linearly estimable.

Theorem 6. θ̂ is linearly admissible for θ if and only if

(i) E0[θ̂′Xt] = A(t)R, t ∈ T , with R a symmetric p× p-matrix, and
(ii) MΣ−1M ′ ≤MΣ−1.

Theorem 7. θ̂ is linearly admissible for θ if and only if

(iii) A(s)E0[θ̂′Xt] := H(s, t), s, t ∈ T is a symmetric function, that is, H(s, t)
= H(t, s).

(iv) The spectrum of M belongs to [0, 1].
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Summary. Due to the fact that the spatial outlier observations depend on
the neighborhood where they are located, a definition of δ-outlier is given, δ
being the diameter of the neighborhood. Two methods to identify δ-outliers
are proposed. One of them for continuous random fields and the other for
Gaussian continuous random fields.

1 Introduction

The treatment of outlier observations in any statistical data analysis is a
crucial step if one want the conclusions drawn from the analysis not to be
affected by such observations. In this article we deal with the case of spatial
outlier observations. These observations are characterized by their local na-
ture, that is to say, they are classified as outliers just in a neighborhood in
which they are located. In this line, we propose a definition of spatial out-
lier observations, which takes into account the diameter of the neighborhood
in which they are located. So, an outlier observation, in the sense of our
definition, may not be an outlier observation for the whole sample.

Once the concept of δ-outlier is introduced, we propose two statistical
techniques to identify such observations. One for the general case of having a
real-valued continuous random field and the other for Gaussian fields. In both
cases, with the aim of developing formally the techniques, we assume that
the random field has locally homogeneous p-expected differences, for some
p > 0. This condition is less restrictive than those usually assumed in other
techniques to identify spatial outlier observations. For example, isotropy of
the field is supposed in many graphical techniques of identification of spatial
outliers (see Wackernagel [11]). Another example is the method proposed by
∗ This paper is dedicated to Marisa, who will certainly be missed by her many

students, colleagues and friends, and will always be affectionately remembered,
not only for her research career, but also for her sterling human qualities.
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Cerioli and Riani [4], which requires practically a intrinsically stationary field
throughout the parameter space.

2 Real Continuous Random Fields

Let T ⊂ R
k and let (T, dT) be a compact metric space, with dT the euclidean

metric. Let (T, T ) and (R,B (R)) be two measurable spaces, where T and
B (R) are the σ-algebra of Borel sets in T and R, respectively. Let B (T) be
the space of bounded real functions defined on T, and let C (T) be the space
of functions in B (T) which are continuous on T, endowed with the supremum
norm.

The functions of the space C (T) are characterized by its modulus of con-
tinuity, Billingsley [3, p. 80]

w∗
X (δ) = sup

{t,s∈T/dT(t,s)≤δ }
|X (t)−X (s)| .

These functions satisfy the following.

Proposition 1. Let X ∈ B (T). Then, X ∈ C (T) if and only if

lim
δ→0

w∗
X (δ) = lim

δ→0
sup

{t,s∈T/dT(t,s)≤δ }
|X (t)−X (s)| = 0.

We will assume that (Ω,A, P ) is a complete probability space and defined
on it we consider the functions X ∈ C (T), defined on Ω, with the adequate
σ-algebra (see Billingsley [3, p. 84]). The functions X generate a real-valued
random field which will be assumed separable and almost surely continuous,
i.e.,

P
[
ω ∈ Ω

/
lim
s→t

|X (ω, s)−X (ω, s)| → 0 ∀t ∈ T

]
= 1.

Next, we define a random field with locally homogeneous p-expected differ-
ences. This concept is crucial for our subsequent developments.

Definition 1. Let p > 0. Let (T, dT) be a compact metric space, with T ⊂ R
k,

and let X ∈ C (T) be a real-valued random field. It is said that X is a random
field with locally homogeneous p-expected differences if ∃r ∈ R, r > 0, such
that ∀t, s ∈ T with dT (t, s) ≤ r, it is satisfied that

E [|X (t)−X (s)|p] = Vp {dT (t, s)}
is a function of the distance between the points t and s.

3 Outlier Observations

The data depuration is one of the most important parts in any statistical data
analysis. In this step it is essential the treatment of outlier observations. The



δ-Outliers and Their Identification in Continuous Random Fields 31

early treatments of such observations are placed by various authors between
the mid-eighteenth century and early nineteenth centuries, as referenced in
Barnett and Lewis [2].

Many definitions of outlier observations have been provided in the statis-
tical literature. The paper by Muñoz-Garćıa, Moreno-Rebollo and Pascual-
Acosta [7] collects a large number of them. All definitions share that outlier
observations deviate markedly from the general behaviour of the available
observations. Some definitions specify that such deviations are with respect
to the statistical analysis to be applied to the data or with respect to some
characteristics of the data.

When the data consist of the realization of a stochastic process, the ex-
isting definitions of outlier observations still share the peculiarity of “deviate
markedly” but, due to the dependence structure, new considerations must be
added. For example, if outlier observations are studied in the context of time
series, terms such as “additive outliers” and “innovation outliers” appear in
the book by Barnett and Lewis [2, p. 396]. The paper by Tsay [9] character-
izes in the time series setting the “level change”, the “transient change” and
the “variance change”. Also in this setting, Wu, Hosking and Ravishankara
[12] propose the “reallocation outliers”.

In the context of spatial data, many definitions of outlier observations have
been also proposed. Next we present the definition given by Wartenberg [10]
because it has some features which are shared with many other definitions
given by other authors. Wartenberg [10] defines the following three types of
outlier observations:

Outlying locations: in some data sets, one (or a few) observations are
situated far away from the others in the geographic space. This positional
anomaly will affect their influence on spatially weighted statistics. In short,
these are isolated observations.

Aspatial outliers: these are observations that are different from all the
others in a data set. This type of observations can be seen as general outliers,
since they do not depend on the parameter space. In this sense, they may
also be called global outliers.

Spatial outliers: these are observations that are different from all the oth-
ers in a neighborhood of the parametric space T. They influence statistics
that asses spatial pattern of variate values because, in comparison with their
neighbors, they show large differences.

In this last definition, we must highlight the local nature that characterizes
the spatial outlier observations. Wartenberg emphasizes that these spatial
outlier observations can be not classified as global outliers, but their be-
haviour is quite different from those in a neighborhood.

A more recent definition is given by Shekkar, Lu and Zhang [8]. They
gave a definition of spatial outlier observation or S-outlier, as they name it,
where in addition to the reference to the neighborhood of the observation,
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they include also a reference to the criterion used to identify this type of
observations.

In these definitions of spatial outliers, it can be seen that they depend on
the neighborhood where they are situated. This forces us to label this type of
observations according to such neighborhood. Observe that the diameter of
the neighborhood where the observation is located can be crucial to classify
it as an outlier. Therefore we propose the definition of δ-outlier, δ being the
diameter of the considered neighborhood.

Therefore the definition of δ-outlier that is proposed for real-valued con-
tinuous random field, is given by

Definition 2. Let {t1, t2, ..., tn} ∈ T be the locations of the observed data of the
real-valuedcontinuous randomfieldX ∈ C (T),{X (t1) , X (t2) , ..., X (tn)}.Let
α ∈ (0, 1) be fixed. It is said that X (ti) is a δ-outlier, for some i ∈ {1, 2, ..., n},
if

max
j∈{1,2,...,n}\{i}

dT(ti,tj)≤δ

|X (ti)−X (tj)| ≥ xα,

where xα satisfies

P

⎡
⎢⎣ sup

s,t∈T

dT(s,t)≤δ

|X (s)−X (t)| ≥ xα

⎤
⎥⎦ ≤ α.

Remark 1. Strictly speaking, it should be named an (α, δ)-outlier, because it
also depends on α. Because in practice α is taken to be small (0.01-0.05), that
is, it always ranges in a narrow interval, he have suppressed the dependence
of α in the name.

4 The α-Percentile, xα

Since (T, dT) is a compact metric space, for any δm > 0, m = 1, 2, . . ., with
δm → 0 when m → ∞, it is possible to have a finite δm-net, Nδm , and the
δm-net family {Nδm} satisfies that TN = ∪m Nδm is a countable dense set in
T (see for example Kolmogorov and Fomin [6, p. 113]). This fact, together
with the condition of separability of the continuous random field, is important
because the continuity of the field X is reduced to equivalent problems on
dense and countable sets.

Let Bm be a finite collection of balls covering T according to the δm-net
Nδm . For each t ∈ T there is an Bm ∈ Bm such that t ∈ Bm. This ball will be
represented by Bm (t). Following to Khoshnevisan [5, pp. 160–161], Bm (t) =
Bm (s) if s ∈ Bm (t). It can be always selected rm (t) ∈ Bm (t) ∩ Bm+1 (t)
satisfying dT (rm (t) , t) ≤ δm, ∀t ∈ T. These points generate the finite sets

Rm = {rm (t) , t ∈ T} .
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Thus, given two points t, s ∈ T with dT (t, s) ≤ δm, there exists two sequences
{rp (t)}p≥m and {rp (s)}p≥m, such that rm (t) = rm (s) and

dT (rp (t) , t) ≤ δp, dT (rp (s) , s) ≤ δp,

with δp ≤ δm. Thus, we can always construct two sequences of balls
{B (rp (t))}p≥m and {B (rp (s))}p≥m, which allow us the use a sort of chain-
ing reasoning in the inequalities that are obtained below.

Proposition 2. Let (T, dT) be a compact metric space and let X be a real-
valued continuous random field. Then, ∀t, s ∈ T with dT (t, s) ≤ δm and
k > m, it is satisfied

P [|X (t)−X (s)| ≥ x′] ≤

P

⎡
⎣|X (t)−X (rm+k (t))|+

k∑
j=1

|X (rm+j (t))−X (rm+j−1 (t))|

+
k∑

j=1

|X (rm+j (s))−X (rm+j−1 (s))|+ |X (s)−X (rm+k (s))| ≥ x′

⎤
⎦ .

Proof. Since X (rm (t)) = X (rm (s))

|X (t)−X (s)| = |X (t)−X (rm (t)) + X (rm (s))−X (s)|
≤ |X (t)−X (rm (t))|+ |X (rm (s))−X (s)|

Now, by applying the triangular inequality we obtain the desired result. �

From this proposition it is immediately obtained the following corollary, by
using the finiteness of the sets Rm.

Corollary 1. Let (T, dT) be a compact metric space and let X be a real-valued
continuous random field. Then, ∀t, s ∈ T with dT (t, s) ≤ δm and k > m, it is
satisfied

P

⎡
⎢⎣ sup

t,s∈T

dT(t,s)≤δm

|X (t)−X (s)| ≥ x

⎤
⎥⎦

≤ P

⎡
⎣2

k∑
j=1

max
τ∈Rm+j

|X (rm+j (τ))−X (τ)| ≥ x

⎤
⎦

The next proposition is the basis for the method that will be proposed in
order to identify δ-outliers.

Proposition 3. Let (T, dT) be a compact metric space and let X be a real-
valued continuous random field. Then, ∀t, s ∈ T with dT (t, s) ≤ δm and
k > m, it is satisfied



34 M.M. Muñoz-Conde, J. Muñoz-Garćıa, and M.D. Jiménez-Gamero

P

⎡
⎢⎣ sup

t,s∈T

dT(t,s)≤δm

|X (t)−X (s)| ≥ x

⎤
⎥⎦

≤
k∑

j=1

#Rm+j

max
τ∈Rm+j

E [|X (rm+j (τ))−X (τ)|p]
(
βj

x
2

)p ,

for p > 0 and 0 ≤ βj ≤ 1 satisfying
∑k

j=1 βj = 1, where #A is the number
of elements in A.

Proof.

P

⎡
⎢⎣ sup

t,s∈T

dT(t,s)≤δm

|X (t)−X (s)| ≥ x

⎤
⎥⎦

≤ P

⎡
⎣2

k∑
j=1

max
τ∈Rm+j

|X (rm+j (τ))−X (τ)| ≥ x

⎤
⎦

≤
k∑

j=1

∑
τ∈Rm+j

P
[
|X (rm+j (τ))−X (τ)| ≥ βj

x

2

]

with {βj} ∈ R, 0 ≤ βj ≤ 1 satisfying
∑k

j=n+1 βj = 1. Now, by applying the
Markov inequality we get

P

⎡
⎢⎣ sup

t,s∈T

dT(t,s)≤δm

|X (t)−X (s)| ≥ x

⎤
⎥⎦

≤
k∑

j=1

#Rm+j

max
τ∈Rm+j

E [|X (rm+j (τ))−X (τ)|p]
(
βj

x
2

)p . �

For the calculation of xα it can be assumed in the previous inequality the
condition of stationarity or homogeneity of the real-valued continuous random
field. This condition is widely used both in theory and in practice, but this
condition is rarely verified in many applications. However, it is also known
that the replication of the field is required in order to calculate averages. To
circumvent this problem, we assume that the field has locally homogeneous
p-expected differences, for some p > 0, which is not a strong restriction.
This allows us to formulate the following corollaries, which are immediate
consequences of the previous proposition.

Corollary 2. Let T ⊂ R
k, let (T, dT) be a compact metric space and let

X ∈ C (T) be a real-valued random field with locally homogeneous p-expected
differences, for some p > 0. Then, ∀t, s ∈ T, with dT (t, s) ≤ δm, it is satisfied
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P

⎡
⎢⎣ sup

t,s∈T

dT(t,s)≤δm

|X (t)−X (s)| ≥ x

⎤
⎥⎦

≤
k∑

j=1

#Rm+j
E [|X (rm+j (τ))−X (τ)|p](

βj
x
2

)p ,

for {βj} ∈ R, 0 ≤ βj ≤ 1, satisfying
∑k

j=1 βj = 1.

Corollary 3. Let T ⊂ R
k, let (T, dT) be a compact metric space and let

X ∈ C (T) be a real-valued random field with locally homogeneous p-expected
differences, for some p > 0. Let α ∈ (0, 1) be fixed. Then, ∀t, s ∈ T, with
dT (t, s) ≤ δm, it is satisfied

xα = p

√√√√√ 1
α

k∑
j=1

#Rm+j
E [|X (rm+j (τ))−X (τ)|p](

βj

2

)p

5 The Gaussian Case

Now the condition of Gaussian is imposed on the real-valued continuous
random field. This condition will allow us to get a more accurate result than
that obtained previously for real continuous random fields, since in this case,
we will use a suitable inequality for Gaussian fields such as the inequality of
Borel-Tsirelson, Ibragimov and Sudakov, which is shown in Adler and Taylor
[1, p. 50]. Next we give this inequality.

Theorem 1. Let Z (y) be a centered Gaussian field, almost surely bounded
on Y. Then

E

[
sup
y∈Y

Z (y)
]
<∞,

and for all u > 0

P

[
sup
y∈Y

Z (y)− E

[
sup
y∈Y

Z (y)
]
> u

]
≤ exp

(
− u2

2σ2
Y

)

where σ2
Y

= sup
y∈Y

E
[
(Z (y))2

]
.

From the above theorem the following corollary is immediately obtained.

Corollary 4. Let Z (y) be a centered Gaussian field, almost surely bounded

on Y. Then, ∀u > E

[
sup
y∈Y

Z (y)
]

it is satisfied
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P

[
sup
y∈Y

Z (y) > u

]
≤ exp

⎛
⎜⎜⎜⎝−

(
u− E

[
sup
y∈Y

Z (y)
])2

2σ2
Y

⎞
⎟⎟⎟⎠ .

These results are now applied to the module of continuity for the random
field X ∈ C (T).

Proposition 4. Let T ⊂ R
k, let (T, dT) be a compact metric space and let

X ∈ C (T) be a centered Gaussian real-valued random field with locally homo-
geneous p-expected differences, for p = 2 . Then, ∀t, s ∈ T, with dT (t, s) ≤ δm

and

∀x > E

⎡
⎢⎣ sup

t,s∈T

dT(t,s)≤δm

(X (t)−X (s))

⎤
⎥⎦ ,

it is satisfied

P

⎡
⎢⎣ sup

t,s∈T

dT(t,s)≤δm

|X (t)−X (s)| > x

⎤
⎥⎦

≤ 2 exp

⎛
⎜⎜⎜⎝−

(
x− E

[
sup t,s∈T

dT(t,s)≤δm

(X (t)−X (s))
])2

2σ2
{t,s∈T,dT(t,s)≤δm}

⎞
⎟⎟⎟⎠ ,

with

σ2
{t,s∈T,dT(t,s)≤δm} = sup

t,s∈T

dT(t,s)≤δm

E
[
(X (t)−X (s))2

]

= sup
t,s∈T

dT(t,s)≤δm

V2 (dT(t, s)) .

Proof. The result follows from Corollary 4 and the following inequality (see
Adler and Taylor [1, p. 51]),

P

⎡
⎢⎣ sup

t,s∈T

dT(t,s)≤δm

|X (t)−X (s)| > x

⎤
⎥⎦

≤ 2P

⎡
⎢⎣ sup

t,s∈T

dT(t,s)≤δm

(X (t)−X (s)) > x

⎤
⎥⎦ . �

Finally, for fixed α we have the following.
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Corollary 5. Let T ⊂ R
k, let (T, dT) be a compact metric space and let

X ∈ C (T) be a centered Gaussian real-valued random field with locally ho-
mogeneous p-expected differences, for p = 2. Let α ∈ (0, 1) be fixed. Then,
∀t, s ∈ T, with dT (t, s) ≤ δm, it is satisfied

xα = E

⎡
⎢⎣ sup

t,s∈T

dT(t,s)≤δm

(X (t)−X (s))

⎤
⎥⎦+

√
2σ2

{t,s∈T,dT(t,s)≤δm}
(
− ln

α

2

)
.
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7. Muñoz-Garćıa, J., Moreno-Rebollo, J.L., Pascual-Acosta, A.: Outliers: A formal
approach. Int. Sta. Rev. 58, 215–226 (1990)

8. Shekhar, S., Lu, C.-T., Zhang, P.: A unified approach to detecting spatial out-
liers. Geoinformatica 7, 139–166 (2003)

9. Tsay, R.S.: Outliers, level shifts, and variance changes in time series. J. Fore-
casting 7, 1–20 (1988)

10. Wartenberg, D.: Exploratory Spatial Analyses: Outliers, Leverage Points, and
Influence Functions. In: Griffith, D.A. (ed.) Spatial Statistics. Past, Present
and Future, pp. 131–156. Institute of Mathematical Geography, University of
Michigan (1990)

11. Wackernagel, H.: Multivariate Geostatistics. An Introduction with Applica-
tions, 3rd edn. Springer, New York (2003)

12. Wu, L.S.-Y., Hosking, J.R.M., Ravishanker, N.: Reallocation outliers in time
series. App. Stat.-J. Roy St. C 42, 301–313 (1993)



Capability Index for Multivariate Processes

That Are Non-stable over Time∗
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Summary. A key element of the management process is to pay close atten-
tion to the strategies that minimize total production cost. One of the ways of
doing this is to minimize stocks. However, planning smaller lot sizes can lead
to a shorter time for process set-up and pre-adjustment, which often gives rise
to processes that are not stable over time. These processes are characterized
by their dual variability: variability between batches (largely attributable
to differences in tuning) and variability within the batch (attributable to
uncontrolled process factors). In order to build the understanding to this
“management process” reality, a new process capability index C(u,v)(po, σo)
based on the proportion of conformance of the process and applications at
an inferential level are developed. For illustrative purposes, a case study of
the manufacture of car hoods and the results of the new methodology are
introduced.

Keywords: capability index, process non stable over time.

1 Introduction

The growing interest of companies in meeting customers’ expectations has en-
tailed, among other things, the need to reduce the costs associated with the
production process. In this respect, the operative actions have been aimed at
the reduction of stocks, in order to minimize financing costs and to guarantee
and minimize production costs, on the basis of reducing the cost of raw ma-
terial, reducing non-conformities, reducing energy costs, reducing movements
or increasing the productivity of workers.

Planning and producing smaller sized batches requires reducing preset
time (tuning of equipment) and this often gives rise to manufacturing with

∗ Since that autumn sun’s morning, we remember Marisa for all the shared ex-
periences and the values she conveyed. Her courage and drive to improve in all
respects have inspired and guided our work towards the continuous improvement
and optimization.
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processes which are unstable over time. These processes are characterized
by their dual variability: variability between batches (largely attributable to
differences in tuning) and variability within the batch (attributable to un-
controlled process factors).

The improvement of processes to reduce and guarantee operative costs
can be approached from different perspectives. One of these is focused on
minimizing variabilities (between and within batches) and on focuses the
process on the objective value. In this context, it is important to ensure the
correct characterization of the capacity index, the analysis of the process to
identify the key elements and the root causes of the non-conformity and the
contrast of alternatives to identify the best production practices.

On the other hand, processes which need to guarantee multiple variables
are increasingly common. In this field, various approaches are possible: the
multi-variant approach (powerful but very difficult to characterize with mixed
variables or with non-normal background distribution), variable to variable
control (costly and with many false alarms when there are many variables), or
characterization based on the percentage of non-conformities (less informative
but often useful).

1.1 Aims and Scope

Optimization of real-world industrial processes require, the guarantee of mul-
tiple variables, with the manufacture of smaller sized batches and control of
the percentage of non-conformities. In this scenario, we have proposed

• Introducing a new capacity index that suitably characterizes this experi-
mental situation.

• Providing tools aimed at identifying the alternatives that optimize capac-
ity. In other words, we introduce statistics and decision criteria. Specifi-
cally a hypothesis test and confidence intervals.

• Applying the methodology developed to a case study. We shows the per-
formance of the methodology for statistical process control of a car hood
manufacturing application. We identify the best option combining tech-
nology and materials.

1.2 Notations and Preliminary Results

The observation of n batches with independent samples of sizes m1,m2,

. . . ,mn, provides an information table with xij values (see Table 1). These
xij values are characterized by pi parameter Bernoulli distributions, being pi

the mean percentage of non-conformities corresponding to batch i.
For processes which are stable over time, the pi (i = 1, . . . , n) parameters

are all the same, whereas for processes that are non stable over time, the
pi parameters are associated with a normal distribution with mean po (the
mean number of non-conformities produced) and variance σ2

o (the variance
between batches).
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Table 1. Data structure

Batch 1 2 . . . n

Data x11 x21 . . . xn1

x12 x22 . . . xn2

...
...

...
...

x1m1 x2m2 . . . xnmn

Mean p̂1 p̂2 . . . p̂n

Regardless of the background distribution, the algebraic decomposition of
the total variability (between batches and within batches):

m+ · p̂o(1− p̂o) =
∑n

i=1
mi · (p̂i − p̂o)2 +

∑n

i=1
mi · p̂i(1 − p̂i)

where m+ = m1 + m2 + . . .+ mn and

p̂o =
m1p̂1 + . . .+ mnp̂n

m1 + m2 + . . .+ mn
(1)

the estimation of variance between batches can be obtained from

σ̂2
o = max

{
0,

1

n − 1

∑n

i=1

mi

m̄
· (p̂i − p̂o)

2 − 1

n · (m̄ − 1)

∑n

i=1

mi

m̄
· p̂i(1 − p̂i)

}

(2)

where m̄ = m+/n (see details Sect. 4).
However, processes which are non stable over time with control of the

percentage of non-conformities (see Figure 1) requires the consideration of
compound distributions and could be done according the following approach:

p̂i ≈
1
mi

B(mi, p)∧
p
N(po, σo) ≈ N(p, σ1)∧

p
N(po, σo) ≈ N(po,

√
σ2

1 + σ2
o)

(3)
where p̂i is the i − th trial as a success obtained with a sample of sizes mi

(which is characterized by the binomial law B(mi, pi)).

Fig. 1. Process behaviour
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1.3 Revisiting the Literature

In process management, the capability of a manufacturing process is mea-
sured using process capability index ratios. Such capability indices are widely
used to evaluate the ability of process to manufacture product that meets
specifications. The analytical formulation of these indices is generally easy
to understand and straightforward to apply. A large number of indices they
have been described in the literature since [8] define the simplest and most
common measure used to describe the performance of a process relative to
the specification limits as:

Cp =
USL− LSL

6σ
(4)

where USL and LSL denote the upper and lower specification limits for the
characteristic X to be measured, and σ denote the process mean and stan-
dard deviation values of the process. The Cp index does not require knowledge
of the process location μ and for this reason it can be viewed as a measure of
the capability of an optimally centered process. It basically reflects changes
in the amount of product that exceeds the specification limits and does not
consider the target value of the process, which is a critical quantity when as-
sessing process performance. The adaptation of (4) to different experimental
situations has given rise to new indices (Cpk, Cpm, Cpmk among others) and
investigations into the properties of existing indices ([6], [9], [3], [13], [1], [19],
[20], [4], [21], [23], [16], [11], [12]).

To facilitate global studies, [20] introduced a general index for the most
widely used indices or their generalizations described in the literature:

Cpa(u, v) =
d− |μ−M | − u|μ− T |
nα/2

√
σ2 + v(μ− T )2

, (5)

where d = (USL − −LSL)/2, M = (USL + LSL)/2, T is the target value,
μ is the production mean, nα/2 is quantile α/2 corresponding to a standard
normal distribution and u, v are non-negative parameters. Revisions of ca-
pability indices have been reported by [10], [17], [18] and [14]. However and
taking into account another point of view, [22] introducing a process ca-
pability index based on the proportion of conformance of the process. The
performance of this capability index is based on the relationship between the
non-conformity ratio accepted by the customer, pc (pL

c or pU
c correspond to

the lower and upper control limits accepted by the customer), and the non-
conformity ratio of the process, po (pL

o or pU
o correspond to the process lower

and upper control limits):

CY B =
pc

po
Cf = min{p

L
c

pL
o

,
pU

c

pU
o

}

According to this new point of view and under distributional assumptions,
point estimators for the process capability index based on the proportion
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of conformance were suggested by [2] and [15]. Also, in this environment,
[7] proposed a process capability index based on Taguchi quadratic quality
loss function. This approach is very attractive when wants to be guaranteed
the quality in stable processes in the time. However, this assumption is not
appropriate for most industrial processes where the strategies are to minimize
stocks in order to make manufacturing processes more flexible.

2 Capability Index: Statistical Behavior

Taking into account the improvement/optimization process, we characterize
the capacity of the non-stable processes over time (in the same way as in
continuous model) and we determine its statistical behavior (according to
the Taylor approximation results).

2.1 Capacity Process: Characterization

For a guarantee level of 1−α for the production process, adaptation of (5) to
variables that describe the percentage of non-conformities requires: the mean
and variance for the percentage non-conformity of the production process,
the percentage non-conformity accepted by the customer, and the target. In
this framework, when only non-conformity percentages higher than the target
are penalized, the index is defined as

C(u,v)(po, σo) =
pc − u ·max{0, po − T }

po + nα/2

√
σ2

o + v · [max{0, po − T }]2
(6)

where po and σo = σ(p1, p2, . . . , pn, . . .) are the mean and standard deviation
of the non-conformity percentages over time.

Under this general expression, many other indices, including that of [22]
for processes stable over time, can be considered a particular case:

C(0,0)(po, σo = 0) =
pc

po
= CY B

and could also be considered a reasonable approximation to a process that is
not stable over time, C(0,0) (po, σo).

Given a random sample from the process, the capability index can be
obtained by replacing po and σo with their estimates (1) and (2):

Ĉ(u,v)(p̂o, σ̂o) =
pc − u ·max{0, p̂o − T }

p̂o + nα/2

√
σ̂2

o + v · [max{0, p̂o − T }]2
(7)

2.2 Capacity Process: Asymptotic Distribution

Based on the first-order Taylor expansion of Ĉ(u,v)(p̂o, σ̂o) around the true
value of the parameter (po, σo),
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Ĉ(u,v)(p̂o, σ̂o) = C(u,v)(po, σo) + (t1, t2)(p̂o − po, σ̂o − σo)t + R2

being

t1 =
∂ C(u,v)(po, σo)

∂ po
, t2 =

∂ C(u,v)(po, σo)
∂ σo

and the asymptotic distribution:

n1/2(p̂o − po, σ̂o − σo)t ≈ N(μ1, Σ1)

where (μ1, Σ1) are the values defined in (15) and (16) (see Sect. 4), the
following result can be obtained.

Theorem 1. For sample size n, if n is sufficiently large, the asymptotic dis-
tribution of the capability index Ĉ(u,v)(p̂o, σ̂o) defined in (7) satisfies

n1/2[Ĉ(u,v)(p̂o, σ̂0)− C(u,v)(po, σ0)] ≈ N(μ, σ) ≈ N(μ̂, σ̂)

where (μ, σ) are the values defined in (21)and (22)(see Sect. 4), and (μ̂, σ̂)
the respectively estimates according to (1) and (2).

3 Inferential Applications

In the analysis given so far, we have dealt only with the definition of some
point estimators of the true value of the capability index. However, knowing
these values is insufficient to measure the capability of a process. It would
therefore be useful to construct confidence intervals for the true values as
well. In fact, given the asymptotic distribution obtained in Theorem (see
Sect. 2), it is possible to build general tests and confidence intervals for the
index and for the difference of indices. In this section we demonstrate how to
build confidence intervals and a hypothesis test.

3.1 One-Sample Hypothesis Test

Ho : C(u,v)(po, σo) = Co
(u,v)

In this experimental situation, the statistic to be used is

Zexp =
n1/2[Ĉ(u,v)(p̂o, σ̂o)− Co

(u,v) + B̂]

σ̂
≈ N(0, 1),

where σ̂ is the estimator defined in (22), B = −n1/2μ the bias estimation of
C(u,v)(po, σo) and μ the value defined in (21).

The decision rule consists of rejection of the null hypothesis if

|Zexp| > zε/2 H1 : C(u,v)(po, σo) 	= Co
(u,v)

Zexp > zε H1 : C(u,v)(po, σo) > Co
(u,v)

Zexp < −zε H1 : C(u,v)(po, σo) < Co
(u,v)

The asymptotic power of the test is obtained by considering the distribution
of the statistic described in Theorem (Sect. 2)
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3.2 Multiple Testing

Ho : C1
(u,v)(po(1), σo(1)) = C2

(u,v)(po(2), σo(2)) = . . . = Cs
(u,v)(po(s), σo(s))

For the experimental situation with s independent populations, the statistic
to be used is

χ2
exp =

∑s

j=1

nj [Ĉ
j
(u,v)(p̂o(j), σ̂o(j))− C̄∗

(u,v) + B̂j ]2

σ̂2
j

≈ χ2
s−1 (8)

where nj , σ̂
2
j are the sample size and variance estimator associated with

C
j
(u,v)(po(j), σo(j)), respectively, and C̄∗

(u,v) is the statistic defined by

C̄∗
(u,v) = [

∑s

j=1

nj[Ĉ
j
(u,v)(p̂o(j), σ̂o(j)) + B̂j ]

σ̂2
j

] / [
∑s

j=1

nj

σ̂2
j

]

where Bj is the bias estimation of Cj
(u,v)(po(j), σo(j)).

Note that the χ2 distribution of the statistic defined in (8) is determined
as follows.

Denoting Co
(u,v) as the common value of the capability indices, we obtain

∑s

j=1

nj [Ĉ
j
(u,v)(p̂o(j), σ̂o(j)) + B̂j − Co

(u,v)]
2

σ̂2
j

=
∑s

j=1

nj [(Ĉ
j
(u,v)(p̂o(j), σ̂o(j)) + B̂j − C̄∗

(u,v)) + (C̄∗
(u,v) − Co

(u,v))]
2

σ̂2
j

=
∑s

j=1

nj [Ĉ
j
(u,v)(p̂o(j), σ̂o(j)) + B̂j − C̄∗

(u,v)]
2

σ̂2
j

+
∑s

j=1

nj [C̄∗
(u,v) − Co

(u,v)]
2

σ̂2
j

+ 2
∑s

j=1

nj [Ĉ
j
(u,v)(p̂o(j), σ̂o(j)) + B̂j − C̄∗

(u,v)][C̄
∗
(u,v) − Co

(u,v)]

σ̂2
j

Taking into account the definition of C̄∗
(u,v), the following result is obtained:

∑s

j=1

nj [Ĉ
j
(u,v)(p̂o(j), σ̂o(j)) + B̂j − Co

(u,v)]
2

σ̂2
j

=

=
∑s

j=1

nj [Ĉ
j
(u,v)(p̂o(j), σ̂o(j)) + B̂j − C̄∗

(u,v)]
2

σ̂2
j

+
∑s

j=1

nj [C̄∗
(u,v) − Co

(u,v)]
2

σ̂2
j
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where ∑s

j=1

nj [Ĉ
j
(u,v)(p̂o(j), σ̂o(j)) + B̂j − Co

(u,v)]2

σ̂2
j

≈ χ2
s

and

∑s

j=1

nj [C̄
∗
(u,v) − Co

(u,v)]
2

σ̂2
j

=
∑s

j=1

⎡
⎢⎢⎣
∑s

j=1

nj [Ĉ
j
(u,v)(p̂o(j),σ̂o(j))+B̂j−Co

(u,v)]

σ̂2
j

(
∑s

j=1

nj

σ̂2
j
)1/2

⎤
⎥⎥⎦

2

≈ χ2
1

In particular, we obtain the statistical χ2
expby application of Cochran’s

theorem:

χ2
exp =

∑s

j=1

nj [Ĉ
j
(u,v)(p̂o(j), σ̂o(j))− C̄∗

(u,v) + B̂j ]2

σ̂2
j

≈ χ2
s−1

3.3 Confidence Intervals

According to the results obtained for Theorem (Sect. 2) confidence intervals
for the capability index and for the differences of capability indices can be
obtained. Thus, the confidence interval associated with C(u,v)(po, σo) is

(Ĉ(u,v)(p̂o, σ̂o) + B̂ − nε/2
σ̂

n1/2
, Ĉ(u,v)(p̂o, σ̂o) + B̂ + nε/2

σ̂

n1/2
) (9)

and for the difference Ci
(u,v)(po(i), σo(i)) − C

j
(u,v)(po(j), σo(j)), the confidence

interval is expressed as

[Ĉi
(u,v)(p̂o(i), σ̂o(i))− Ĉ

j
(u,v)(p̂o(j), σ̂o(j)) + (B̂i − B̂j)]± zε/2

√
σ̂2

i

ni
+

σ̂2
j

nj

In order to improve the accuracy in estimating capability indices, it is in-
teresting to explore confidence intervals that combine analytical results with
computational techniques. A good approach is bootstrap-t confidence inter-
vals with a pivot:

P̂i =
[Ĉ∗

(u,v)(p̂o, σ̂o)i − Ĉ(u,v)(p̂o, σ̂o)]

σ̂∗
i /n

1/2
,

where Ĉ(u,v)(p̂o, σ̂o) is the estimated value of the capability index,
Ĉ∗

(u,v)(p̂o, σ̂o)i are the values obtained from resampling and σ∗
i is the standard

deviation described in Theorem (see Sect. 2).
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4 A Case Study

The automotive industry is involved in the design, development, manufac-
ture, marketing and sale of motor vehicles. As the whole product life cycle
should be regarded in an integrated perspective, representatives from ad-
vance development, design, production, marketing, purchasing and project
management should work together on the ecodesign of further developments
or new products to predict the overall effects of changes in the product and
their environmental impact.

Environmental aspects that should be analyzed for every stage of the life
cycle include consumption of resources (energy, materials, water or land area),
emissions to air or water and human health impacts such as noise and vibra-
tion, among others.

In this section, for illustrative purposes we demonstrate the performance of
the methodology for statistical process control of a car hood manufacturing
application, for which a variety of thermoplastics have been used to obtain
weight reduction, design flexibility and reduced noise transmission.

To meet passenger comfort requirements and to comply with legislation,
polymer-based acoustic hood coverings are widely accepted in the automo-
tive market. The most environmentally friendly option is molding of badges
obtained from prebaked recycled fibers and resins. Standard processes are
usually designed for a specific product and may require cost-intensive equip-
ment that is profitable only for high-volume production. In the automotive
field, where the scale of manufacture means that high production rates are
very difficult, establishing satisfactory performance at the time of commer-
cialization is critical. Thus, the aim is to obtain the highest flexibility and to
fulfill customer needs in a fast and reliable process which minimize stocks and
consequently minimize cost. A flexible method for producing a small series
of high-quality components can be achieved by using flexibility for different
molds, fast adaptation to layout changes and shorter periods for adapting
equipment to the normal process flow. For these reasons and because of the
intrinsic changeability of recycled fibers, the production process is not stable
over time.

The intrinsic characteristics of the product (fireproof function and ab-
sorption of acoustics and vibrations) are guaranteed by the components, the
thickness and the weight/m2, whereas the esthetic characteristics (no resin
spots >2 mm in diameter in the weave, no wrinkles or loose threads, inflexi-
bility, etc.) are subject to self-control and/or final control because they affect
the non-conformity accepted by the customer.

Process capability was determined without withdrawing pieces at any time,
under the following conditions:

Condition 1. Short fibers+30% resin;
Condition 2. Intermediate fibers+28% resin; and
Condition 3. Short fibers+28% resin+2% glass wool.
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For these experimental conditions, the non-conformity percentages observed
for sample sizes (n = 60, 100) are collected in Table 1. We can consider
pc = 0.02 (a common assumption in most “real situations”) as the min-
imum acceptable proportion of non-conformity. According to Table 1, the
C(0,0)(po, σo) values with nα/2 = 3 are:

C1
(0,0)(po(1), σo(1))=0.85 C2

(0,0)(po(2), σo(2))=1.18 C3
(0,0)(po(3), σo(3))=1.25

However, knowledge of these values does not suffice for measuring the ca-
pability of a process. Keeping in mind that multiple testing theory provides
a framework for defining and controlling appropriate error rates in order to
protect against wrong conclusions the hypothesis to be tested is

Ho : C1
(0,0)(po(1), σo(1)) = C2

(0,0)(po(2), σo(2)) = C3
(0,0)(po(3), σo(3))

H1 : There are differences
(10)

where the experimental statistic (8) had a value

χ2
exp =

∑s

j=1

nj [Ĉ
j
(u,v)(p̂o(j), σ̂o(j))− C̄∗

(u,v) + B̂j ]2

σ̂2
j

= 6.79

greater than the significance bound, thus leading to the rejection of the null
hypothesis of homogeneity (p-value =0.034).

In addition, a selection of results for the capability process is given below.
Figure 2 shows the confidence intervals (confidence level 95% according to (9)
for the experimental conditions), while Table 3 summarizes some descriptive
results of the process, obtained from Table 2.

Thus, as a final practical conclusion, we summarized the results:
First of all, talking in plain language, the experimental conditions sug-

gested do not improve the process (capacity process >1.33). Some more work
is necessary to set more clearly the proper experimental conditions and more
flexible methodology for producing high-quality components. However,

1. In terms of multiple testing and confidence intervals, the results show
differences between the experimental conditions examined. In fact, ex-
perimental conditions 2 and 3 show similar C(u,v)(p, σ) values, in both
cases greater than experimental condition 1.

2. On non-stability over time, characterized by σo (see Table 3), the results
show that short fibers (associated with experimental conditions 1, 3)
perform worse than intermediate fibers (experimental condition 2). How-
ever, the non-conformity mean po (see Table 3), associated with the glass
wool effect, suggested better results among the short fibers experimental
conditions.

In addition, a pilot study applying intermediate fibers+resin+glass wool was
considered and the total cost was evaluated. Unfortunately, the results indi-
cated that this new experimental condition was less cost-efficient than the
original one (intermediate fibers+resin).
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Table 2. Non conformity values obtained for every experimental condition

Condition 1 Condition 2 Condition 3

NC∗ Sample size NC Sample size NC Sample size

1 100 1 60 1 60
0 100 1 60 0 60
2 100 2 60 2 60
1 100 0 60 1 60
1 100 1 60 2 60
1 100 1 60 1 60
0 100 2 10 1 60
1 100 1 100 1 60
2 100 2 100 2 100
2 100 2 100 1 100
0 100 3 100 1 100
1 100 1 100 1 100
3 100 1 100 2 100
3 100 2 100 1 100
3 100 2 100 1 100
3 100 1 100 3 100
4 100 2 100 1 100
5 100 2 100 2 100
3 100 1 100 1 100
3 100 1 100

3 100

∗ Non Conformity values

Fig. 2. Experimental conditions. Confidence intervals for a 100(1 − α)% = 95%
confidence coefficient.
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Table 3. Non conformity proportion: Descriptive results

Condition 1 Condition 2 Condition 3

Non-conformity mean po 0.0190 0.0169 0.0160
Non-conformity standard deviation σo 0.0014 0.0000 0.0000
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Appendix 1

Exploiting algebraic structure of sum of squares:
∑n

i=1

∑mi

j=1
(xij − p̂o)2

=
∑n

i=1

∑mi

j=1
((xij − p̂i) + (p̂i − p̂o))2

=
∑n

i=1

∑mi

j=1
(xij − p̂i)2 + 2 ·

∑n

i=1
(p̂i − p̂o)

∑mi

j=1
(xij − p̂i)

+
∑n

i=1

∑mi

j=1
(p̂i − p̂o)2

=
∑n

i=1

∑mi

j=1
(xij − p̂i)2+

∑n

i=1
mi · (p̂i − p̂o)2

we can obtain

m+ · p̂o(1− p̂o) =
∑n

i=1
mi · (p̂i − p̂o)2 +

∑n

i=1
mi · p̂i(1 − p̂i)

being m+ = m1 + m2 + . . .+ mn.
On the other hand and according to the degrees of freedom for each com-

ponent, we can obtain the intra-batch and inter-batch variance estimations
respectively.

σ̂2
1 =

1
n · (m̄− 1)

∑n

i=1
mi · p̂i(1− p̂i)

σ̂2
o = max

{
0,

1

n − 1

∑n

i=1

mi

m̄
· (p̂i − p̂o)

2 − 1

n · (m̄ − 1)

∑n

i=1

mi

m̄
· p̂i(1 − p̂i)

}

Appendix 2

To determine the statistical distribution of the capacity, we obtain the first-
order Taylor expansion of Ĉ(u,v)(p̂o, σ̂o) around the true value of the param-
eter (po, σo).

According to the Taylor expansion of

Ĉ(u,v)(p̂o, σ̂o) = C(u,v)(po, σo) + (t1, t2)(p̂o − po, σ̂o − σo)t + R2,

the following approximation can be obtained:

n1/2[Ĉ(u,v)(p̂o, σ̂o)− C(u,v)(po, σo)] ≈ (t1, t2) · n1/2(p̂o − po, σ̂o − σo)t

where

t1 =
δ1 (po + nα/2δ2)− [1 + nα/2 · V ( δ4

δ2
)]δ3

[po + nα/2δ2]2
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t2 =
−nα/2 · V ( δ3·σo

δ2
)

[po + nα/2δ2]2

δ1 = −u ·max{0, sgn(po − T )} (11)

δ2 = [σ2
o + v · (max{0, po − T })2]1/2 (12)

δ3 = pc − u ·max{0, po − T } (13)
δ4 = v ·max{0, po − T sgn(po − T ) (14)

V (X
Y ) =

{
0 ifY = 0
X
Y ifY 	= 0

sgn(x) = x/|x|,

and R2 is the second-order remainder of the Taylor expansion.
On the other hand, by taking into account the asymptotic distribution

n1/2(p̂o − po, σ̂o − σo)t ≈ N(μ1, Σ1),

where

μ1 = (0, λ1σo), (15)

Σ1 =
(
σ2

ob 0
0 λ2 · σ2

o

)
, (16)

λ1 = n1/2 · (c4 − 1) (17)

σ2
ob =

1
(n− 1)m̄

∑n

i=1
mi (p̂i − p̂o)

2 (18)

λ2 = n− n · c24 (19)

c4 =
E(σ̂o)
σo

=

√
2

n− 1
Γ (n/2)

Γ ((n− 1)/2)
(20)

the following result can be obtained.
For sample size n, if n is sufficiently large, the asymptotic distribution of

the capability index Ĉ(u,v)(p̂o, σ̂o) defined in (7) satisfies:

n1/2[Ĉ(u,v)(p̂o, σ̂0)− C(u,v)(po, σ0)] ≈ N(μ, σ) ≈ N(μ̂, σ̂),

where

μ =
−nα/2 λ1 σo

[po + nα/2δ2]2
V ( δ3·σo

δ2
) (21)

σ =
1

[po + nα/2δ2]2
[
[δ1 (po + nα/2δ2)− [1 + nα/2 · V ( δ4

δ2
)]δ3]2σ2

ob

+ [nα/2 · V ( δ3·σo

δ2
)]2λ2σ

2
o

]1/2

(22)

where δ1, δ2, δ3, δ4, λ1, and λ2 are the values defined in (11), (12), (13), (14),
(17), (19), respectively, and (μ̂, σ̂) the respective estimates according to (1,
2).
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Remark 1. The remainderR2 of the Taylor expansion converges in probability
to zero and is given by

R2 = [(p̂o − po, σ̂o − σo) · C · (p̂o − po, σ̂o − σo)t],

where C is the matrix of the second partial derivatives of Cp with respect to
(po, σo), and

n1/2 R2 = n−1/2[n1/2(p̂o − po, σ̂o − σo) · C · n1/2(p̂o − po, σ̂o − σo)t]

≈ n−1/2
∑

βiχ
2
1,i

n→∞−→ 0,

where βi are the eigenvalues of the matrix CΣ1 and χ2
1,i are the independent

χ2 distributions with one degree of freedom.

The results that allow us to obtain the distribution of the quadratic forms
resulting from the second-order term of the Taylor expansion can be found
in [5].

Remark 2. The asymptotic distribution

n1/2(p̂o − po, σ̂o − σo) ≈ N(μ1, Σ1)

results from taking into account the independence between the mean and the
standard deviation in a simple random sample, the approximation based on
Taylor expansion of the function f(x) = x1/2

σ̂o − σo =
√
σ̂2

o −
√
σ2

o ≈
1

2 · σo
(σ̂2

o − σ2
o),

the convergence of the distribution χ2 to the normal distribution, and the
relation E(σ̂o) = c4σo to adjust the expected value and the variance.
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Summary. We consider the complex Ginzburg-Landau equation with feed-
back control given by some delayed linear terms (possibly dependent on the
past spatial average of the solution). We prove several bifurcation results by
using the delay as parameter. We start proving a Hopf bifurcation result for
the equation without diffusion (the so-called Stuart-Landau equation) when
the amplitude of the delayed term is suitably chosen. The diffusion case is
considered first in the case of the whole space and later on a bounded do-
main with periodicity conditions. In the first case a linear stability analysis
is made with the help of computational arguments (showing evidence of the
fulfillment of the delicate transversality condition). In the last section the
bifurcation takes place starting from an uniform oscillation and originates a
path over a torus. This is obtained by the application of an abstract result
over suitable functional spaces.
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1 Introduction

1.1 Reaction-Diffusion Equations and the Complex
Ginzburg-Landau Equation

The evolution of a chemical system consisting of n species which are react-
ing with each other and allowed to diffuse in a spatially extended medium,
is generally described by a n-component reaction-diffusion equation for the
n−concentrations c(x, t)

∂tc = F(c; p) + DΔc, (1)

where F denotes the typically nonlinear reaction term representing chemical
kinetics, DΔc the diffusion term (being D the diffusion matrix) and p a
scalar control parameter. We assume that this system has a homogeneous,
stationary solution cs which undergoes a Hopf bifurcation at p = p0: i.e., for
p ∈ (p0, p0 + ε) the stationary solution cs becomes a time-periodic solution,
at least for ε > 0 small enough.

It has been shown by Kuramoto and others that the dynamics of any
reaction-diffusion system (1) in the vicinity of a Hopf bifurcation is de-
scribed, by means of suitable parametrizations, by a nonlinear parabolic
equation with complex coefficients, the so-called complex Ginzburg-Landau
equation (CGLE), see, e.g., [12, 8]. The relation between reaction-diffusion
systems and the CGLE has been treated in many texts, here we will follow
the presentation of [10].

After a convenient choice of variables X = c− cs (the concentration devi-
ations) and ε = p− p0, the system can be reformulated as

∂tX = JX + f(x, ε) + DΔX,

where J is the Jacobian matrix for the homogeneous system evaluated at
Xs = 0, i.e. F(c; p) − F(cs; p0) = JX + f(x, ε). At the bifurcation point , J
has two imaginary eigenvalues ±iω0, being ω0 the so-called Hopf frequency.
The corresponding right eigenvectors e1 and e2 = ē1 (normalized with left
eigenvectors e+

i according to e+
i ej = δij) span the center subspace Ec of the

homogeneous solution. The center manifold W c is tangent to Ec at X = 0,
ε = 0. The other n− 2 eigenvalues are all assumed to be large and negative.
This assures that a homogeneous solution converges fast toward W c provided
that X and ε are sufficiently small (for details and further references see [10]).

This allows us to express the concentration deviations X in terms of am-
plitude coordinates Y ∈ Ec by

X = Y + h(Y, ε).

This equation describes a mapping from coordinates in the center subspace
Ec onto the center manifold W c. The function h(Y, ε) is selected in such a
way to successively eliminate as many nonlinear terms as possible from the
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kinetic equations starting from the lowest order [10]. Each kind of bifurcation
is characterized by the specific terms which cannot be eliminated (the so-
called resonant terms). In this way we obtain a general equation valid for
all reaction-diffusion equations undergoing a given bifurcation. In the case of
the Hopf bifurcation, neglecting the diffusion term, to third order we obtain
the so-called Stuart-Landau equation

dY
dt

= (iω0 + σ1ε)Y − g|Y |2Y,

where Y is a complex amplitude given by Y = Y e1 + Y e2. The parame-
ters σ1 and g are complex and given by solutions of lengthy equations given
in [10]. The Stuart-Landau equation represents the normal form of a homo-
geneous system close to a Hopf bifurcation. Performing a similar derivation,
but including diffusion, we arrive at

∂tY = (iω0 + σ1ε)Y − g|Y |2Y + dΔY,

with d = e+
1 ·De1. After rescaling of space, time, and introducing A for Y ,

we finally arrive at the rescaled complex Ginzburg-Landau equation

∂tA = (1− iω)A− (1 + iα)|A|2A + (1 + iβ)ΔA, (2)

where A is the complex oscillation amplitude, ω the linear frequency param-
eter , α the nonlinear frequency parameter , and β the linear dispersion coef-
ficient . All reaction-diffusion systems sufficiently close to a Hopf bifurcation
are described by the complex Ginzburg-Landau equation. The specific details
of the original system are incorporated in the parameter values. If one wishes
to express the solution of the CGLE in the original variables, to first order
the concentrations of the chemical species are expressed by

c = cs +
√
ε(Y (x, t)e1 + Y (x, t)e2).

Different scalings of the CGLE are considered in the literature [3]. Here, we
assume that the Hopf frequency is not scaled out, and hence contributes to
ω in Eq. (2). We also send the reader to Appendix B of [12] for the detailed
derivation of the CGLE associated to the Brusselator model.

1.2 On Feedback Control Using Delayed Terms

Over the decades, the complex Ginzburg-Landau equation has been studied
intensively because of its frequent appearance in different contexts of science,
and its rich repertoire of different spatio-temporal wave patterns like plane
waves, spiral waves, or localized hole solutions [3]. Remarkable, even if the
Hopf bifurcation is supercritical, and hence the limit cycle a stable solution of
the Stuart-Landau equation, the oscillations in the spatially-extended system
may be unstable. The resulting states of spatiotemporal chaos appear if the
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Benjamin-Feir-Newell criterion 1 + αβ < 0 is fulfilled, a phenomenon that is
induced by the diffusive coupling and that is therefore genuine to a system
with spatial degrees of freedom.

Considerable efforts have been made to understand this type of chaotic
behavior and to apply methods to suppress this kind of turbulence and replace
it by regular dynamics. In the context of the reaction-diffusion systems, the
introduction of forcing terms or global feedback terms have been shown to be
efficient ways to control turbulence [13, 11]. Still, control of chaotic states in
nonlinear systems is a wide field of research that we cannot review here [15].

Global feedback methods, where a spatially independent quantity (or, e.g.,
a spatial average of a space-dependent quantity) is coupled back to the system
dynamics, have attracted much attention since in many cases the models
are simpler and easier to be carried out experimentally. Nevertheless, local
methods have gained interest in recent years since they allow to access other
solutions of the systems and may also be implemented, such as in the light-
sensitive BZ reaction or in neurophysiological experiments [13].

Feedback methods with an explicit time delay amplify the range of possi-
bilities of control that can be applied to the system and provide the researcher
with an additional adjustable parameter. On the level of the mathematical
description, the model equations become delay differential equations [9, 4].
Obviously, time delay feedback can be applied to any solution of the dynam-
ics, not necessarily to a chaotic one.

1.3 Main Results

In this paper we analyze several bifurcation effects produced by the delay
time in the behavior of solutions of the complex Ginzburg-Landau equation
with this type of feedback.

In Section 2 we prove a Hopf bifurcation result for the equation without
diffusion (the Stuart-Landau equation) when the amplitude of the delayed
term is suitably chosen. This simplified formulation has the advantage that
closed analytical solutions are possible and the necessary eigenvalue compu-
tations can be carried out in full. The diffusion case is considered firstly in
the case of the whole space (Section 3) and later on a bounded domain with
periodicity conditions (Section 4).

In the case in which the space is the whole R (we consider here the one-
dimensional case) we performed a linear stability analysis of uniform oscilla-
tions with respect to spatiotemporal perturbations following the treatment
made in [16]: we express the complex oscillation amplitude A as the super-
position of a homogeneous mode H (corresponding to uniform oscillations)
with spatially inhomogeneous perturbations,

A(x, t) = H(t) + A+(t)eiκx + A−(t)e−iκx .

With the help of computational arguments we get several bifurcation di-
agrams where, besides the delay time it is possible to use the feedback
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magnitude term. Among many other detailed informations, we obtain nu-
merical evidence of the fulfillment of the delicate transversality condition.

The paper ends by analyzing the case in which the bifurcation takes place
starting from an uniform oscillation and originating a path over a torus. This
time the study is carried out in two spatial dimensions over a rectangle in
which we impose periodic boundary conditions. We show the applicability
of an abstract result ([22]) to our formulation thanks to a suitable choice of
the involved functional spaces. In this way, the spatial perturbations can be
considered in their greatest generality.

The presentation of this chapter is very condensed due to limited space. A
more detailed study will be published elsewhere.

2 Hopf Bifurcation for the Stuart-Landau Equation
with a Time Delay Feedback

For the purposes of clarity and ease of understanding, we start by considering
in this section a very simplified version of the general model to be given later
which has the advantage that closed analytical solutions are possible and the
necessary eigenvalue computations can be carried out in full. Unfortunately,
such precise calculations are not available for the general model and a fairly
complete graphical-numerical study will be given in exchange.

Equation (2) reads

∂tA = (1− iω)A− (1 + iα) |A|2 A + (1 + iβ)ΔA.

In the Stuart-Landau equation, the diffusion term is absent, which amounts
to restricting our study to the spatially homogeneous solutions (which always
satisfy periodic boundary conditions as it will be formulated in Section 4).
On the other hand, we assume that a delayed linear feedback term is added,
so the equation under study in this section will be

∂tA = (1 − iω)A− (1 + iα) |A|2 A+ m1A+ m3A(t− τ). (3)

More general control terms will be considered in the remaining sections of
the paper. The change of variables w(t) = e−iφtA(t) gives

∂tw = (1− iω − iφ)w − (1 + iα) |w|2 w + m1w + m3e−iφτw(t− τ). (4)

We now choose φ = −α − ω and m3 = −eiφτm1 and denote the stationary
solution of

∂tw = (1 + iα)(w − |w|2 w) + m1 [w −w(t− τ)] . (5)

by w0.
In order to check if at some critical value of the delay τ = τ∗ a Hopf

bifurcation takes place, we linearize the equation around w0 = 1 and check
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whether a pair of complex eigenvalues λ(τ) = a(τ)± ib(τ) of the linearization
cross transversally the imaginary axis away from the origin, i.e., they satisfy
a(τ∗) = 0, b(τ∗) 	= 0 and a′(τ∗) 	= 0 (see, e.g., [22]).

Observe now that the complex term |v|2 v, although perfectly differentiable
from the real point of view (in fact, the complex map z �−→ |z|2 z = z2z̄ is
real-analytic), is not an analytic (or holomorphic) function from the complex
viewpoint. Therefore it becomes convenient at this point to abandon the
complex notation and write the system in real form (w = u + iv) as follows

∂t

(
u

v

)
=
(

1 −α
α 1

)(
1− (u2 + v2

)
)
(
u

v

)
+ m1

(
u− u(t− τ)
v − v(t− τ)

)
.

Let us fix our attention to the stationary solution w0 = (u0, v0) = (1, 0). The
linearization around w0 is given by

∂t

(
U

V

)
=
(

1 −α
α 1

)(
−2 0

0 0

)(
U

V

)
+ m1

(
U − U(t− τ)
V − V (t− τ)

)
(6)

and the eigenvalue-eigenvector pairs associated to this vector equation are
the solutions of (6) of the special form U(t) = eλtU0, V (t) = eλtV0 where
λ ∈ C and U0, V0 are (possibly complex) constant (nonzero) 2-vectors. One
thus easily finds

λ

(
U0

V0

)
=
(
−2 + m1 0
−2α m1

)(
U0

V0

)
−m1e−λτ

(
U0

V0

)
,

thus arriving to the characteristic equation∣∣∣∣λ+ 2−m1 + m1e−λτ 0
2α λ−m1 + m1e−λτ

∣∣∣∣ = 0.

This means that we have a double collection of eigenvalues: those satisfying
λ −m1 + m1e−λτ = 0 and those satisfying λ + 2 −m1 + m1e−λτ . Denoting
λ = a+ ib, we identify two classes of eigenvalues:

λ−m1 + m1e−λτ = 0⇐⇒
{
a−m1 + m1e−aτ cos bτ = 0

b−m1e−aτ sin bτ (Class 1)

λ + 2−m1 + m1e−λτ = 0⇐⇒
{
a+ 2−m1 + m1e−aτ cos bτ = 0

b−m1e−aτ sin bτ (Class 2)

We now look for values τ = τ∗ for which a = 0 and b 	= 0. We find no
eigenvalues of this kind for Class 1, since −1 + cos bτ = 0 implies sin bτ = 0,
and hence b = 0 from the second equation.

However, Class 2 does give us some useful values:

2−m1 + m1 cos bτ = 0 =⇒ cos bτ =
m1 − 2
m1

,

b−m1 sin bτ = 0 =⇒ sin bτ =
b

m1
.
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Thus,

1 = cos2 bτ+sin2 bτ =
(
m1 − 2
m1

)2

+
b2

m2
1

=⇒ b2 = m2
1−(m1−2)2 = 4(m1−1).

Hence, if m1 > 1, we have

cos bτ =
m1 − 2
m1

=⇒ bτ = arccos
(
m1 − 2
m1

)

which is well defined for every m1 > 1.
Summarizing, the set of values

b∗ = 2
√
m1 − 1, τ∗ =

1
b∗

[
arccos

(
m1 − 2
m1

)
+ 2kπ

]

corresponds to a (possible) bifurcation point of Hopf type. For instance, for
m1 = 2 we have b∗ = 2 and τ∗ = kπ + π/4.

We now need to compute the derivative a′(τ∗). It is easier now to go back
to the complex formulation of Class 2 eigenvalues

λ + 2−m1 + m1e−λτ = 0,

and find dλ/dτ by implicit differentiation:

dλ
dτ

+ m1e−λτ

(
−dλ

dτ
τ − λ

)
= 0 =⇒ dλ

dτ
=

λe−λτ

1−m1e−λτ τ
=

λ

1−m1eλττ
.

Concentrating on the specific values b∗ = 2 and τ∗ = π/4 we find, at the
bifurcation values τ∗, λ∗ = ib∗, that

dλ
dτ

∣∣∣∣
(τ∗,λ∗)

=
ib∗

1−m1eib∗τ∗
τ∗

= − 4π
π2 + 4

+
8

π2 + 4
i.

Hence
da
dτ

(τ∗) = − 4π
π2 + 4

	= 0

and the transversality condition is satisfied. Therefore, a Hopf bifurcation
occurs, and a periodic orbit of approximate period

T � 2π
b(τ∗)

= π

exists for delay values τ near τ∗.

Remark 1. To decide the sub- or supercritical character of the bifurcation a
much longer analysis is necessary. On the other hand, for τ > 1/2 there are
always positive real eigenvalues coming from the first class, which means that
the stationary point has become already unstable before the delay reaches
τ∗ = π/4 value. Hence the periodic orbit cannot capture the stability lost by
the stationary point, since that stability was already lost.
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3 Hopf Bifurcation for the Complex Ginzburg-Landau
Equation on the Whole Space and with Delayed
Time Feedback

We come back to the consideration of the complex Ginzburg-Landau equation
subjected to a time-delay feedback with local and global terms but now for
the case of a spatial domain given by the whole space:

∂tA = (1− iω)A− (1 + iα)|A|2A + (1 + iβ)∂xxA + F,

F = μeiξ [m1A + m2〈A〉 + m3A(t− τ) + m4〈A(t − τ)〉] ,
(7)

where

〈A〉 =
1
L

∫ L

0

A(x, t) dx

denotes the spatial average of A over a one-dimensional medium of length L.
There are many previous works in the literature dealing with such type of
formulations: [6, 7, 17, 16].

Extensive simulations [17] and an analytical stability analysis [16] for a
special case representing a Pyragas-type feedback [14] (m3 = −m1 = ml,
m4 = −m2 = mg) showed the range of patterns that can be stabilized as
function of the local and global feedback terms. If the feedback is global,
uniform oscillations can be stabilized for a large range of feedback param-
eters, while as the contribution of the local feedback term becomes larger,
the parameter regions increase where the homogeneous fixed point solution,
standing waves and traveling waves are found.

Uniform oscillations A(t) = ρ0 exp(−iθt) are a solution of Eqs. (7) with
amplitude and frequency given by

ρ0 =
√

1 + μ(mg + ml)(cos(ξ + θτ) − cos ξ),

θ = ω + α + μ(mg + ml) [α(cos(ξ + θτ) − cos ξ)− (sin(ξ + θτ) − sin ξ)] .

In [16], we performed a linear stability analysis of uniform oscillations with
respect to spatiotemporal perturbations. There, we expressed the complex
oscillation amplitude A as the superposition of a homogeneous mode H (cor-
responding to uniform oscillations) with spatially inhomogeneous perturba-
tions,

A(x, t) = H(t) + A+(t)eiκx + A−(t)e−iκx . (8)

Notice that here we are using the fact that the equation takes place on the
whole space, which allows the justification of the spatially inhomogeneous
perturbations of the form A+(t)eiκx + A−(t)e−iκx. Inserting Eq. (8) into
Eq. (7), and assuming that the amplitudes A± are small, we obtain a set
of equations for H , A+, and A∗

− (see [16] for details of this derivation). To
investigate linear stability of uniform oscillations with respect to spatiotem-
poral perturbations, we make the ansatz
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A+ = A0
+ exp(−iθt) exp(λt),

A∗
− = A∗0

− exp(iθt) exp(λt),
(9)

where λ = λ1 + iλ2 is a complex eigenvalue. Using ansatz (9), we arrive at
the following eigenvalue equation:

F = (A + iB − iλ2 + D1 + iD2)(A − iB − iλ2 + C1 + iC2), (10)

where we have defined

F = (1 + α2)ρ4
0,

A = 1− λ1 − 2ρ2
0 − κ2,

B = θ − ω − 2αρ2
0 − βκ2,

C1 = μmle
−λ1τ cos(ξ + θτ + λ2τ) − μml cos ξ,

C2 = −μmle
−λ1τ sin(ξ + θτ + λ2τ) + μml sin ξ,

D1 = μmle
−λ1τ cos(ξ + θτ − λ2τ)− μml cos ξ,

D2 = μmle
−λ1τ sin(ξ + θτ − λ2τ) − μml sin ξ.

We point out that the above eigenvalue equation can be obtained also by
a formal linearization argument involving the Fréchet derivatives as in the
next section. There is no general analytic solution to Eq. (10) for λ1,2. Thus,
Eq. (10) must be solved numerically for a given set of parameters. We keep
the CGLE parameters α, β, ω and the feedback parameters ml, mg, and ξ

constant and solve Eq. (10) with the FindRoot routine of the Mathematica
package [21]. We then find, for each point in the (τ, μ)-space, the functional
dependence of λ1 and λ2 on κ. Notice that if we assume κ = 0 the study can
be applied to the case of the Stuart-Landau equation, as in Section 2.

In general, Eq. (10) has multiple solutions, reflected by multiple branches
in the dispersion relation. Stability is determined by the sign of λ1. The curves
λ1(κ) either lie below λ1 = 0, so that uniform oscillations are stable, or they
display an interval of κ-values, where λ1 > 0, so that uniform oscillations are
unstable. At criticality, we have λ1 = 0, ∂ελ1 	= 0, where ε stands for either
μ or τ . For the critical wavenumber κc, there are two possibilities: κc = 0 or
κc 	= 0 (±κc are solutions, although below, we consider only κc > 0 without
loss of generality).

Two instabilities are particularly important in our system: the first one
is associated with κc > 0 and λ2(κc) = 0, and the second one with κc = 0
and λ2(κc) 	= 0. In Figure 1, we show as an example the control diagram in
(μ, τ)-space for ml = 0.4, mg = 0.6. Stable uniform oscillations are observed
above the solid curve and to the right of the dotted curve. At the solid
curve, uniform oscillations become unstable with respect to perturbations
with κc > 0 and λ2(κc) = 0, at the dotted curve, with κc = 0 and λ2(κc) 	= 0.
In Figure 2(a,b), the dispersion relations λ1,2 = λ1,2(κ) are shown for three τ
values close to criticality, demonstrating clearly the nature of the underlying
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κ
c
 = 0, |λ2| > 0

values evaluated in Fig. 2

Fig. 1. Control diagram in (μ, τ )-space for ml = 0.4, mg = 0.6. The other parame-
ters are α = −1.4, β = 2, ω = 2π − α, ξ = π/2. At the solid curve, uniform oscilla-
tions become unstable with respect to perturbations with κc > 0 and λ2(κc) = 0, at
the dotted curve, with κc = 0 and λ2(κc) �= 0. The dots indicate parameter values
further studied in Figure 2.

Fig. 2. Dispersion relations for three parameter sets close to criticality: τ = 0.255
(light grey squares), τ = 0.265 (black circles), τ = 0.275 (dark grey triangles).
(a) Real part of the eigenvalue as function of the wavenumber κ. (b) Imaginary
part of the eigenvalue. The instability is characterized by κc = 0 and λ2(κc) �= 0
and occurs for μ = 1.2 at τ = 0.264399. (c) Real part of the eigenvalue as function
of τ , demonstrating transversality.
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instability. In Figure 2(c), we show that λ1 crosses λ1 = 0 as τ is varied, hence
demonstrating transversality. As the uniform oscillations become unstable
with respect to a mode with complex conjugated eigenvalues and since ρ0

remains finite, we infer the presence of a secondary Hopf bifurcation.

4 Hopf Bifurcation for the Delayed CGLE in a
Bounded Domain

In this section we consider the case of two spatial dimensions varying on the
domain Ω = (0, L1) × (0, L2) (note a slight change of notation with respect
to Sect. 3). Our goal is to show a bifurcation phenomenon near uniform
oscillations for the CGLE in terms of the delay term as parameter. We define
the faces of the boundary

Γj = ∂Ω ∩ {xj = 0} , Γj+2 = ∂Ω ∩ {xj = Lj} , j = 1, 2,

on which we assume periodic boundary conditions and, hence, the problem
under study can be formulated as

(P1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tu− (1 + iβ)Δu = (1− iω)u− (1 + iα)|u|2u
+μeiξF(u, t, τ) Ω × (0,∞),

u|Γj
= u|Γj+2

,(
− ∂u

∂n

∣∣
Γj

=
)

∂u
∂xj

∣∣∣
Γj

= ∂u
∂xj

∣∣∣
Γj+2

(
= ∂u

∂n

∣∣
Γj+2

)
⎫⎬
⎭ ∂Ω × (0,∞),

u(x, s) = u0(x, s) Ω × [−τ, 0],

where n is the outpointing normal unit vector, and

F(u, t, τ) = [m1u(x, t) + m2〈u(t)〉+ m3u(x, t− τ) + m4〈u(t− τ)〉]

with
〈u(s)〉 =

1
|Ω|

∫
Ω

u(x, s)dx.

Again, the parameters α, β, ω, μ, ξ,mi and τ are real, while u(x, t) = u1(x, t)
+iu2(x, t) is complex.

We study the stability of uniform oscillations, i.e., solutions of (P1) of
the form vuo(t) = ρ0e−iθt which determines completely ρ0 and θ. We are
interested in the Hopf bifurcation close to vuo(t) which gives rise to some
paths on a suitable torus (for a different study dealing with invariant tori
see [18]).

In order to avoid the application of very sophisticated techniques (dealing
with periodic solutions), we can reduce the study to the Hopf bifurcation near
a stationary solution of some auxiliary problem by introducing the change of
unknown z(x, t) = v(x, t)eiθt where v(x, t) is a solution of (P1). Thus, z(x, t)
satisfies
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(P2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tz− (1 + iβ)Δz = (1 + iθ)z − (1 + iα)|z|2z + μeiξ×
×[m1z + m2〈z〉 + ei(ω+θ)τ(m3z(t− τ) + m4〈z(t − τ)〉)] Ω × (0,∞),

z|Γj
= z|Γj+2

,(
− ∂z

∂n

∣∣
Γj

=
)

∂z
∂xj

∣∣∣
Γj

= ∂z
∂xj

∣∣∣
Γj+2

(
= ∂z

∂n

∣∣
Γj+2

)
⎫⎬
⎭ ∂Ω × (0,∞),

z(x, s) = u0(x, s)e
i(ω−θ)s Ω × [−τ, 0].

Now, vuo(t) = ρ0e−iθt is an uniform oscillation if and only if z(x, t) =
vuo(t)eiθt = z∞ = ρ0 is an stationary solution of (P2), i.e.,

0 = (1+iθ)z∞−(1+iα) |z∞|2 z∞+μeiξ
[
m1 + m2 + ei(ω+θ)τ (m3 + m4)

]
z∞.

4.1 The Abstract Hopf Bifurcation Theorem for Semilinear
Functional Equations

We shall apply to our setting an abstract result due to J. Wu (see [22],
Theorem 2.1) stated for problems of the type

{
du
dt (t) + Au(t) = L(μ, ut(.)) + g(ut(.)) in X,

u(s) = u0(s) s ∈ [−τ, 0].

on a Banach space X , where ut : [−τ, 0] → X , under the following list of
conditions:

(H1) A generates an analytic compact semigroup {T (t)}t≥0;
(H2) The point spectrum of A consists of a sequence of real number

{μk}k≥1 with the corresponding eigenspace Mk and the projection Pk : X →
Mk. Moreover, if

∑∞
k=1 xk = 0 for xk ∈Mk then each xk must be zero;

(H3) Every x ∈ D(A) has a unique expression x =
∑∞

k=1 Pkx and Ax

=
∑∞

k=1 μkPkx;
(H4) The mapping L : R × C → X (with C := C ([−τ, 0] : X)) is Ck-

smooth (k ≥ 4) and is given by

L(μ, φ) =
∫ 0

−τ

φ(θ)dη(μ, θ)

for any (μ, φ) ∈ R× C, for a function η(μ, .): [−τ, 0]→ B(X,X) of bounded
variation. Moreover, L(μ, Pkφ) ∈ Mk, k ≥ 1, φ ∈ C and L(μ,

∑∞
k=1 Pkφ) =∑∞

k=1 L(μ, Pkφ) for any φ ∈ C such that
∑∞

k=1 Pkφ ∈ C, where Pkφ is defined
by (Pkφ)(θ) = Pkφ(θ) for θ ∈ [−τ, 0];

(H5) g : R×C → X has k-th-continuous Fréchet derivatives with g(μ, 0) =
0 and Dg(μ, 0) = 0 for μ ∈ R;

(H6) There exists μ0 ∈ R and ω0 > 0 such that ±iω0 are simple charac-
teristic values of the linear equation

·
u(t) + Au(t) = L(μ0, ut(.)) (12)

and all other characteristic values have negative real parts;
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(H7) Transversality condition. If μ is near μ0 the eigenvalues of the corre-
sponding problem (12) are given by λ(μ) = α(μ) + iω(μ), λ(μ0) = iω0, λ(μ)
is Ck-smooth in μ and

α′(μ0) 	= 0.

Remark 2. A careful reading of the proof of Theorem 2.1 of [22] allows to see
that the use of the same notation ut in the terms L(μ, ut(.)) and g(ut(.)) does
not needs that the kernels envolved in each of the possible nonlocal terms be
exactly the same. So, in particular, the conclusion remains valid in the special
case in which g(ut(.)) = g(u(.)), i.e., without delay or neutral term.

4.2 Applications of the Abstract Result to the Delayed CGLE
on a Bounded Domain

Motivated by the special form of the nonlinear term of the equation in (P2)
we shall take X = L4(Ω) and Y = L4/3(Ω). A detailed analysis of the
associated diffusion operator is consequence of some previous results in the
literature: see, e.g., Amann [1]. Notice that the operatorAu can be formulated
matricially as (

u1

u2

)
→
(

Δ −βΔ
βΔ Δ

)(
u1

u2

)
.

So, if β 	= 0 the diffusion matrix has a nonzero antisymmetric part. In particu-
lar, A is the generator of a semigroup of contractions {T (t)}t≥0 on X and the
compactness of the semigroup is consequence of the compactness of the in-
clusion D(A) ⊂ X (notice that, since N = 2, W1,4(Ω) ⊂W1,4/3(Ω) ⊂ C(Ω)
with compact imbedding) and some regularity results for nonsymmetric sys-
tems. A study of the eigenvalues of A can be found, e.g., in Temam [19].

Concerning the rest of the terms of the equation in (P2), we define
g(u) = −(1 + iα) |u|2 u with D(g) = L12(Ω). By using the characterization
of the semi inner-braket [, ] for the spaces Lp(Ω) (see, e.g., Benilan, Crandall
and Pazy [5]) it is easy to see that B = −g is an accretive operator on X ,
which is dominated by A; i.e.,

DX(A) ⊂ DX(B) and |Bu| ≤ k
∣∣A0u

∣∣+ σ(|u|)

for any u ∈ DX(A), some k < 1 and some continuous function σ : R → R.
Here and in what follows, |.| denotes the norm in the space X (in contrast

to the norm in space C which will be denoted by ‖.‖ if there is no ambiguity,
when handling two spaces X and Y the corresponding norms will be indi-
cated),

∣∣A0u
∣∣ := inf{|ξ| : ξ ∈ Au} for u ∈ DX(A). In particular, the operator

A + B is also an accretive operator on X .
In order to calculate the Fréchet differential of Nemitsky operator g(u), it

is useful to start analyzing the Gateaux derivative of the complex function
h(z) := ‖z‖2 z in the direction of an arbitrary vector v of C
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lim
β∈R

|β|→0

h(z0 + βv) − h(z0)
|β| = z2

0v + 2 ‖z0‖2 v.

Then, we identify the Fréchet differential of operator g(u) as

DB(y)v = (1 + iα)[y2v + 2 ‖y‖2 v]. (13)

Since we have ‖DB(y)‖ ≤ c ‖y‖2 , by the results on the Fréchet differ-
entiability of Nemitsky operators (see Theorem 2.6 (with p = 4) of Am-
brosetti and Prodi [2]) we get that, if we take Y = L4/3(Ω), then exists
δB > 0 such that B is Fréchet differentiable as function from BδB (w) ={
z ∈ D(B); |w − z| < δB

}
into Y , and that the Fréchet derivative is locally

Lipschitz continuous.
The nonlocal term is defined by

F (ut) = (1 + iθ)u(t)

+ μeiξ
[
m1u(t) + m2〈u(t)〉 + ei(ω+θ)τ(m3u(t− τ) + m4〈u(t− τ)〉)

]
,

is locally Lipschitz continuous and its Fréchet derivative is given by

DF (ŷ) v(t) = −(1 + iθ)v(t)

− μeiξ
[
m1v(t)+m2〈v(t)〉 − ei(ω+θ)τ (m3v(t− τ)−m4〈v(t − τ)〉)

]
.

In consequence, the operator y → Ay + DB(w)y − DF (ŵ)
(
eω∗·y

)
belongs

to A(ω∗ : Y ), for some ω∗ ∈ C with Reω∗ = γ∗ < 0. This means that
the operator y → Ay + DB(w)y − DF (ŵ)

(
eω∗·y

)
+ ω∗y is accretive in Y =

L4/3(Ω). We recall (see Ambrosetti and Prodi [2]) that this differentiability
of B does not hold if we take X = Y = L2(Ω).

We also recall that in [6] the existence (and uniqueness) of a mild solution
of problem (P2) was obtained through a pseudolinearization argument near
a stationary solution ŵ:

Theorem 1 ([6]). Assume (H1)− (H7). Then there exists α > 0, β > 0 and
M ≥ 1 such that if u0 ∈ BX

β (ŵ), u0(s) ∈ DX(B) for any s ∈ [−τ, 0] then the
solution u(· : u0) of (12) exists on [−τ,+∞) and

|u(t : u0)− w| ≤Me−αt ‖u0 − ŵ‖ , for any t > 0.

Moreover, there exists α∗ > 0, β∗ ∈ (0, β] and M∗ ≥ 1 such that if u0 ∈
BX∩Y

β∗ (ŵ), u0(s) ∈ DX(B)∩ DY (B) for any s ∈ [−τ, 0] then, for any t > 0,

|u(t : u0)− w|X + |u(t : u0)− w|Y ≤M∗e−α∗t(‖u0 − ŵ‖X + ‖u0 − ŵ‖Y ).

We can get better a priori estimates on the sup norm of the solution u if
we assume more regular initial data in such a way that u0 ∈ BX∩Y

β∗ (ŵ),



Hopf Bifurcation to Torus in CGLE 71

u0(s) ∈ D(A) ∩ DX(B)∩ DY (B) for any s ∈ [−τ, 0] . Indeed, the solution
can be found (after technical arguments) as a fixed point for the application
f → Q1(Q2(f)), with w = Q2f (for f ∈ W 1,1(0, T : X), for any arbitrary
T > 0) being the solution of the problem

{
dw
dt (t) + Aw(t) + B(w(t)) = f(t) in X,

w(0) = w0,

and Q1 a suitable operator (see [20], Theorem 5.3.1). Since X is a reflexive
Banach space, we know (see, e.g., [5], Lemma 7.8) that w0 ∈ D(A) ∩DX(B)
implies that w(t) ∈ D(A) ∩DX(B) for a.e. t ∈ (0, T ) and that

‖Aw(t)‖X ≤ C(‖Aw0‖X + ‖B(w0)‖X , ‖f‖W 1,1(0,T :X)).

Thus, by the Sobolev imbedding theorems we know that

‖w(t)‖C(Ω) ≤M

for a.e. t ∈ (0, T ) with M = M(‖Aw0‖X +‖B(w0)‖X , ‖f‖W 1,1(0,T :X)). In par-
ticular, this property remains true for the fixed point of Q1(Q2(f)) (see [20],
Theorem 5.3.1) and thus

‖u(t)‖C(Ω) ≤M∗

for a suitable M∗ = M ∗ (‖Au0‖C([−τ,0];X) + ‖B(w0)‖C([−τ,0];X) , F ). In con-
sequence, without any loss of generality we can replace function g by the
truncated one gM∗(u):

gM∗(u) =

⎧⎨
⎩

−(1 + iα) |u|2 u if |u| ≤M∗,

−2(1 + iα) (2M∗)2 u if |u| ≥M∗,

and with gM∗(u) a Ck-smooth function generating an accretive operator
BM∗ = −gM∗ on X dominated by A as before. This proves that, at least for
regular initial data, u coincides with the solution of

{
du
dt (t) + Au(t) = L(μ, ut(.)) + gM∗(ut(.)) in X,

u(s) = u0(s) s ∈ [−τ, 0].

Thanks to this argument we can verify now the assumption (H5) since by the
results of Ambrosetti and Prodi (see [2], Sect. 3, Chap. 1) we know that the
Nemitsky operator associated to gM∗ has k-th-continuous Fréchet derivatives
on any Lp(Ω), p > 1.

Remark 3. By introducing the representation operator P : R
2 → C, P(ρ,φ) =

ρeiφ it is clear that the quasilinear operatorAP(q) obtained from the operator
Au = −(1 + iβ)Δu satisfies also condition A ∈ A(ω) (since P is merely a
change of variables). We point out that
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AP(q) = −(1 + iβ)[Δρ − ρ |∇φ|2 + i(2∇ρ · ∇φ + ρΔφ)]eiφ.

Then, the formal linearization of the operator E(q) := AP(q) at q∗(x, y) :=
y ≡ ρ0 becomes

DE(q∗)(ρeiφ) = −(1 + iβ)[Δρ + iρ0Δφ]eiφ.

Notice that the linearization of C(q)−1AP(q) needs a slight modification
of the above linear expression. Nevertheless by applying the representation
operator P, after the linearization used in the abstract theorem, we get a
curious result relating two nonlinear problems which are closed (in some
sense) in the same spirit as the pseudo-linearization principle obtained in [6].

4.3 Some Comments on the Associated Transversality
Assumption

Concerning problem (P2), we give an outline of the study of eigenvalues and
its implications on the associated transversality condition. The eigenvalue
equation can be obtained by a linearization argument involving the Fréchet
derivative of the nonlinear part, as in the preceding section.

As usual, the linear structure of the equation leads to the search of non-
trivial solutions z(x) of the form Akw

j
k(x), with j = 1, 2, where w

j
k(x) are

the eigenfunctions for the usual Laplacian operator Δ with periodic bound-
ary conditions on Ω = (0, L1) × (0, L2). The eigenvalues of this problem are
given by

λ0
0 = 0, λ0

k = 4π
(
k2
1

L2
1

+
k2
2

L2
2

)
; k1, k2 ∈ N

with the associate eigenfunctions

w0 =
1√
|Ω|

, w1
k =

√
2
|Ω| cos 2πkx, w2

k =

√
2
|Ω| sin 2πkx, with |Ω| = L1L2,

where we have written kx :=
(

k1
L1
x1 + k2

L2
x2

)
. This study can be found in

Temam [19]. We introduce the notation λk = ak + ibk for the real and imagi-
nary parts of the eigenvalues of the problem, and taking into account Fréchet
derivative of the nonlinear part (13), the eigenvalue equations for the prob-
lem (P2) are

⎧⎪⎪⎨
⎪⎪⎩

(ak + ibk)[vr + ivi]− (1 + iβ)(−λk)[vr + ivi]

= (1 + iθ)[vr + ivi]− (1 + iα)[3ρ2
0vr + iρ2

0vi]

+μeiξ
[
m1 + m2δ0k + e−aτ+i(ω+θ−b)τ(m3 + m4δ0k)

]
[vr + ivi],

where vr and vi are the real and imaginary parts of the linearization v, and
δ0k denotes the Kronecker delta function. We arrive at
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

akvr − bkvi = −λ0
kvr + βλ0

kvi +
([

1− 3ρ2
0

]
vr +

[
αρ2

0 − θ
]
vi

)
+μ(m1 + m2δ0k) [vr cos ξ − vi sin ξ] + {μe−akτ (m3 + m4δ0k)

[cos(ξ + (ω + θ − bk)τ)vr − sin(ξ + (ω + θ − bk)τ)vi]} ,

bkvr + akvi = −βλ0
kvr + λ0

kvi + (vi + θvr)−
[
ρ2
0vi − 3αρ2

0vr

]
+μ(m1 + m2δ0k) [vr sin ξ + vi cos ξ] + {μe−akτ (m3 + m4δ0k)

[sin(ξ + (ω + θ − bk)τ)vr + cos(ξ + (ω + θ − bk)τ)vi]}

To show the procedure, without loss of generality, we consider the case

m3 + m4δ0k = 0. (14)

This represents a special, and important, choice of the combination of instan-
taneous and delayed terms in the global feedback, none of them necessarily
zero. The equations for the eigenvalues become

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

akvr − bkvi = −λ0
kvr + βλ0

kvi +
([

1− 3ρ2
0

]
vr +

[
αρ2

0 − θ
]
vi

)
+μ(m1+m2δ0k) cos ξvr − μ(m1+m2δ0k) sin ξvi

bkvr + akvi = −βλ0
kvr + λ0

kvi + (vi + θvr)−
[
ρ2
0vi − 3αρ2

0vr

]
+μ(m1+m2δ0k) sin ξvr + μ(m1+m2δ0k) cos ξvi

If we call

C1

(
μ,m1,m2, ξ, λ

0
k

)
= 1− λ0

k − μ(m1 + m2δ0k) cos ξ,

C2

(
μ,m1,m2, ξ, λ

0
k

)
= 1 + λ0

k + μ(m1 + m2δ0k) cos ξ,

D
(
β, μ,m1,m2, ξ, λ

0
k

)
= −βλ0

k + μ(m1 + m2δ0k) sin ξ,

we obtain{ (
ak −

[
C1 − 3ρ2

0

])
vr −

(
bk +

[
αρ2

0 − θ −D
])
vi = 0(

bk −
[
−3αρ2

0 + θ + D
])
vr +

(
ak −

[
C2 − ρ2

0

])
vi = 0

The compatibility of this system implies

det

(
ak −

[
C1 − 3ρ2

0

]
−bk −

[
αρ2

0 − θ −D
]

bk −
[
−3αρ2

0 + θ + D
]

ak −
[
C2 − ρ2

0

]
)

= 0,

that is { (
ak −

[
C1 − 3ρ2

0

]) (
ak −

[
C2 − ρ2

0

])
=(

bk −
[
−3αρ2

0 + θ + D
]) (

bk +
[
αρ2

0 − θ −D
])
.

(15)

This expression is of the same type as (10) and, similarly, there is no gen-
eral analytic solution for ak and bk. Thus, Eq. (15) must also be solved
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numerically for a given set of parameters, to find the numerical values of the
eigenvalues as in the equation (10). One of the relevant parameter spaces of
the representation is the one of (τ, μ) because they are the parameters of the
perturbation.

Although the explicit analytical representation of the functions ak and
bk is not possible, we can still say something analytic in the study of the
transversality, already proved by the numerical computation of Sect. 3. From
the equation (15), it is possible to find the implicit derivative

[
d
dτ

ak

]
ak=0

.

The analytic computation is rather involved. We show how to proceed in a
simpler, and still very important example

m1+m2δ0k = 0, (16)

where a remark similar as the one made for the expression (14) remains valid,
in this case for the local part of the perturbation. For the case (16), we have

C1

(
μ,m1,m2, ξ, λ

0
k

)
= 1− λ0

k,

C2

(
μ,m1,m2, ξ, λ

0
k

)
= 1 + λ0

k,

D
(
β, μ,m1,m2, ξ, λ

0
k

)
= −βλ0

k.

If we expand Eq. (15) for this case,
{

a2
k − 2

[
1− 2ρ2

0

]
ak +

([
1− λ0

k − 3ρ2
0

] [
1 + λ0

k − ρ2
0

])
=

−b2k + 2
[
−βλ0

k + αρ2
0 + θ

]
bk +

([
−βλ0

k + 3αρ2
0 + θ

] [
+βλ0

k + αρ2
0 − θ

])
,

and differentiate implicitly
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2ak
d
dτ ak − 2

[
1− 2ρ2

0

]
d
dτ ak − ak

d
dτ

(
2
[
1− 2ρ2

0

])

+ d
dτ

(
1−

(
λ0
k

)2 − 2
[
2 + λ0

k

]
ρ2
0 + 3ρ4

0

)

= −2bk d
dτ bk + 2

[
−βλ0

k + αρ2
0 + θ

]
d
dτ bk − bk

d
dτ

(
2
[
−βλ0

k + αρ2
0 + θ

])
+ d

dτ

([
−βλ0

k + 3αρ2
0 + θ

] [
+βλ0

k + αρ2
0 − θ

])
.

The derivative of the real part ak in the value ak = 0 can be written as
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
−2(1− 2ρ2

0)
d
dτ ak

]
ak=0

=
[
− d

dτ

(
1−

(
λ0
k

)2 − 2
[
2 + λ0

k

]
ρ2
0 + 3ρ4

0

)]
ak=0

+2
[
−bk d

dτ bk +
[
−βλ0

k + αρ2
0 + θ

]
d
dτ bk − bk

d
dτ

([
−βλ0

k + αρ2
0 + θ

])]
ak=0

+
[

d
dτ

([
−βλ0

k + 3αρ2
0 + θ

] [
+βλ0

k + αρ2
0 − θ

])]
ak=0

.
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The coefficient of the derivative of ak,

−2(1− 2ρ2
0) = −2 [1− 2(1 + μ cos ξ)] = 2(1 + 2μ cos ξ)

does not vanish either for stability reasons as can be seen, e.g., in [6] and
references therein.
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Summary. For the bundle of linear frames LM of a manifold M , diffeo-
morphism invariance on the vertically adapted linear frame bundle Lπ(LM)
and its infinitesimal counterpart, invariance under the natural representa-
tion of vector fields of M , are analyzed. Furthermore, the structure of the
vector-field-invariant Lagrangians on Lπ(LM) is determined.

1 Introduction

The principal fiber bundle approach is ideally suited for covariant field the-
ories, such as U(1) electromagnetism, Yang-Mills theory, Weinberg-Salam
electroweak theory, and even the Higgs mechanism for mass acquisition via
spontaneous symmetry breaking. This technique is “forced upon [physicists]
by their own perception of nature.” [2, p. xiv] Indeed, it lays out the geom-
etry and topology of the spacetime M in a way that, once a reference frame
for spacetime is chosen (choice of gauge), the transformation to another valid
reference frame (change of gauge) is effected by a unique translation in the
fiber that is equivariant with respect to the group symmetry. This provides
a scenario in which the global structure for the physical situation is readily
manipulated, and there is a straightforward way to view phenomenology in
spacetime from any one of a collection of valid reference frames. The varia-
tional principle for the field theory now can be expressed in terms of varying
a gauge-invariant action defined on the first jet bundle (the bundle of field
configurations and “velocities”) of the principal fiber bundle. Dynamics are
then computed by a choice of gauge with a declared time parameter. Fur-
thermore, physical observables such as field strength are readily computable
on the principal fiber bundle.
∗ Dedicated in honour of Professor Marisa Menéndez.
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If we view general relativity with an eye toward covariance, the gauge
group is the infinite-dimensional group of diffeomorphisms of M , but the in-
duced smooth changes of coordinates are effected by the action of the finite-
dimensional general linear group GL(n,R) on the local coordinate frames.
Hence, the linear frame bundle, the principal fiber bundle over M with fiber
GL(n,R), seems to be the natural framework viewing gravity as an affine
gauge theory (see [2]) and for formulating diffeomorphism-invariant prob-
lems in gauge-theoretical gravity (see [6, 19, 20]). Diffeomorphism invariance
also plays an important role in supersymmetry and gauge theories (see, for
example, [1, 12, 17]), as it allows the formulation of the principle of general
covariance in each of these contexts.

Let M be a smooth connected m-dimensional manifold, and let DiffM
denote the group of diffeomorphisms of M . Let π : LM → M be the bun-
dle of linear frames of M . The variational problems defined by Lagrangian
densities on the bundle of first-order jets J1(LM) are the simplest of the
diffeomorphism-invariant variational problems that appear in G-structure
theory. The more important G-structure is obtained when a closed subgroup
G of the general linear group GL(m,R) is considered. In this case, the G-
structures are classified by sections of the quotient fiber bundle LM/G→M .
Such an approach has the advantage of separating diffeomorphism invariance
from G-invariance.

The Hamiltonian structure of variational problems defined by the natural
basis Li

jk of diffeomorphism-invariant Lagrangians on the first jet bundle of
π : LM →M has been studied in [14]. From the structural point of view, the
invariant Lagrangians Li

jk represent the most elementary diffeomorphism-
invariant variational problems. Hence, although they are too simple to be
of immediate application to field theory, they provide interesting geomet-
ric models, precisely due to their simple properties. In fact, each of the La-
grangians proposed as a relativistic model on LM can be written as a function
of the basic Lagrangians.

Variational problems for a covariant classical field theory may be expressed
using the affine construct of multisymplectic geometry, as developed in [4]
and [5]. The field configurations are represented by a fiber bundle π : E →M ,
where the fibers of E represent the field values. The variational problems are
defined geometrically on the first jet bundle J1E by pulling back the canonical
covariant one-form, that is, the tautological one-form on the affine dual to
J1E, via a Legendre transformation induced by a Lagrangian L : J1E → R.

Subsequently, it has been shown in [9, 10, 11, 13, 16] that the multi-
symplectic geometry for a covariant field theory may be generalized using a
geometry possessed by the vertically adapted linear frame bundle LπE. The
bundle LπE is a symmetry-broken subbundle of the bundle of linear frames
LE in which only the frames adapted to the fibration of E are allowed. If
we apply Norris’ n-symplectic geometry [15], a vector-valued symplectic
geometry on a linear frame bundle in which the soldering (tautological) one-
form is treated as a vector-valued canonical one-form, the subbundle LπE
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naturally inherits from LE a generalized symplectic geometry adapted to the
particular field theory.

The vertically adapted frame bundle LπE is a principal bundle over J1E

(see [13]), and the generalized symplectic geometry of LπE forms a covering
theory (in the sense of [3]) for the multisymplectic geometry of J1E. Fur-
thermore, a Hamiltonian theory on LπE reproduces the Poisson brackets of
momentum observables for a covariant classical field, but in a manner that
removes algebraic obstructions to closure, allowing us to define a full Pois-
son algebra of momentum observables for covariant fields (see [3, 9]). For a
covariant field theory with symmetry, the geometry of the vertically adapted
frame bundle produces vector-valued momentum mappings and, thusly, field
conservation laws. This sets the stage for a finite-dimensional approach to
reduction by symmetry for field theories (see [10]).

The purpose of the present paper is to describe the structure of the diff-
eomorphism-invariant Lagrangians L defined on the vertically adapted linear
frame bundle Lπ(LM) of π : LM → M . This would allow the study of the
generalized geometric structure of a Lagrangian gauge field theory, including
the Poisson algebra of field momentum observables. The G-structure then
could be identified readily in this paradigm by an appropriate symmetry
breaking, and additional symmetries could be used to determine conserved
field quantities.

The outline of the paper is as follows. In §2, we review the construction of
the DiffM -invariant Lagrangians on the first jet bundle in terms of the finite
basis of natural Lagrangians. In §3 we review the geometric structure of the
vertically adapted linear frame bundle of a fiber bundle π : E →M . In §4, we
introduce the coordinates on Lπ(LM) and the soldering form on Lπ(LM).
We define the DiffM -invariance on Lπ(LM) and its infinitesimal counter-
part; i.e., invariance under the natural representation of vector fields of M
into Lπ(LM). Both definitions are not exactly equivalent due to some global
topological obstructions on M , although they are essentially equivalent. We
use the infinitesimal definition of invariance as it allows us to employ tools
such as vector distributions, involutiveness, Frobenius theorem, etc. In this
section we also present the basis of DiffM -invariant Lagrangians in Lπ(LM).
In §5 we state and prove the main result.

2 Diffeomorphism-Invariant Lagrangians on J1(LM)

Let π : LM → M be the bundle of linear frames of M . Let ϕ̃ : LM → LM

be the natural automorphism induced from a diffeomorphism ϕ : M → M

(see, for example, [8]) and let ϕ̃(1) : J1(LM) → J1(LM) be its natural jet
prolongation (see, for example, [18]). A Lagrangian function L : J1(LM)→ R

is said to be invariant under DiffM if L ◦ ϕ̃(1) = L for every ϕ ∈ DiffM .
Let X(M) be the set of all differentiable vector fields of M . If X ∈ X(M) is

the infinitesimal generator of a one-parameter group ϕt of diffeomorphisms,
then ϕ̃t induces a vector field X̃ on LM (see [8]). Let X̃(1) denote the
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first jet prolongation of X̃ . From the invariance condition for L we conclude
that X̃(1)L = 0. The Lagrangians satisfying the latter condition are said to
be X(M)-invariant. Hence invariance under diffeomorphisms implies X(M)-
invariance. The converse is also true (see [14]), except when M is orientable
and admits an orientation reversing diffeomorphism onto itself. As a conse-
quence, throughout this paper we prefer to use the notion of X(M)-invariance
in order to formulate invariance under diffeomorphisms.

Let Li
jk : J1(LM)→ R, j < k, be the functions defined by

Li
jk(j1xs) = ωi([X̄j , X̄k](x)) ,

where (X̄1, . . . , X̄m) is the linear frame attached to the local section s of π,
with dual coframe (ω1, . . . , ωm). Such functions are invariant under DiffM ,
and, in addition, every X(M)-invariant function on J1(LM) can be written
locally as a differentiable function of {Li

jk}i
j<k. Since {Li

jk}i
j<k is functionally

independent and has a geometric meaning, we can say that these Lagrangians
are a natural basis of X(M)-invariant functions; we refer the reader to [14]
for the details.

3 The Vertically Adapted Linear Frame Bundle

Let π : E → M be an arbitrary fiber bundle over M with fiber dimension
k. The vertically adapted linear frame bundle LπE is a subbundle of LE
consisting of the linear frames (Xi, YA), in which i = 1, 2, . . . ,m and A =
m+1,m+2, . . . ,m+k, and the last k vectors {YA} are vertical with respect
to π. Note that throughout the paper the convention is that lower case indices
run from 1 to m, and the upper case indices run from m + 1 to m + k.
The structure group Gv ⊂ GL(m + k,R) of λ : LπE → E is the group of
nonsingular block lower triangular matrices (see [7, 13]),

Gv =
{(

A 0
C B

)
, A ∈ GL(m,R), B ∈ GL(k,R), C ∈ hom(Rm,Rk)

}
.

The vertically adapted linear frame bundle LπE is also a principal bundle
over J1E with structure groupGL(m,R)×GL(k,R); its projection ρ : LπE →
J1E, is given by ρ(e, (Xi, YA)) = τe, where τe ∈ hom(Tπ(e)M,TeE) is defined
by τe(π∗(Xi)) = Xi (see [13]).

4 Lifting Field Theories to Lπ(LM)

4.1 Lifting to Lπ(LM)

If the fiber bundle E is the linear frame bundle LM , the vertically adapted
linear frame bundle λ : Lπ(LM) → M is a principal bundle with structure
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group Gv ⊂ GL(m + m2,R). The bundle Lπ(LM) is also a principal bundle
over J1(LM) with structure group G = GL(m,R) × GL(m2,R). Using the
principal bundle ρ : Lπ(LM)→ J1(LM), every Lagrangian L : J1(LM)→ R

can be lifted to a Lagrangian Lπ(LM)→ R defined by L := ρ∗(L).

Proposition 1. For every diffeomorphism ϕ of M the induced automorphism˜̃ϕ : L(LM) → L(LM) maps an adapted frame (Xi, X
i
j) at e ∈ LM onto

the adapted frame ˜̃ϕ(Xi, X
i
j) = (ϕ̃∗Xi, ϕ̃∗X i

j) at ϕ̃(e) ∈ LM , making the
following diagram commutative:

Lπ(LM)
˜̃ϕ−→ Lπ(LM)

↓ρ ↓ρ

J1(LM)
ϕ̃(1)

−→ J1(LM)

where ϕ̃(1) is the first jet prolongation of ϕ̃.

Proof. Let us denote by τ ′ϕ̃(e) the point in J1(LM) defined as

τ ′ϕ̃(e)(π∗(ϕ̃∗Xi)) = ϕ̃∗Xi

(see [13]), we have

ϕ̃∗τe(π∗Xi) = ϕ̃∗Xi

= τ ′ϕ̃(e)(π∗(ϕ̃∗Xi))

= τ ′ϕ̃(e)((π ◦ ϕ̃)∗Xi)

= τ ′ϕ̃(e)((ϕ ◦ π)∗Xi) = τ ′ϕ̃(e)

(
ϕ∗(π∗Xi)

)
.

Hence, τ ′ϕ̃(e) = ϕ̃∗ ◦ τe ◦ (ϕ∗)−1, and therefore

ϕ̃(1)(ρ(Xi, X
i
j)) = ϕ̃(1)(τe) = ϕ̃∗ ◦ τe ◦ (ϕ∗)−1 = τ ′ϕ̃(e) . �

Definition 1. A function f : Lπ(LM) → R is said to be DiffM-invariant

if f ◦ ˜̃ϕ = f for every ϕ ∈ DiffM . If X ∈ X(M) is the infinitesimal generator
of a one-parameter group ϕt of diffeomorphisms, according to Proposition

1, then ˜̃ϕt : Lπ(LM) → Lπ(LM) induces a vector field ˜̃
X on Lπ(LM). A

function f : Lπ(LM) → R is said to be X(M)-invariant if ˜̃
X(f) = 0 for

every X ∈ X(M).

We may now begin the process to determine the structure of the X(M)-
invariant functions on Lπ(LM). Let u = (Xi, X

i
j) be a linear frame in

Lπ(LM) at a point e = (X̄i) ∈ LM over x ∈ M . Let Lh
i : Lπ(LM) → R

be the functions defined by
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(X̄1, . . . , X̄m) = (π∗X1, . . . , π∗Xm)

⎛
⎜⎝
L1

1(u) · · · L1
m(u)

...
. . .

...
Lm

1 (u) · · · Lm
m(u)

⎞
⎟⎠ . (1)

Similarly, let Lsj
ir : Lπ(LM)→ R be the functions defined by

(Ei∗
j )e = Lsj

ir (u)Xr
s (2)

(using index notation here and throughout the paper), or in matrix form

(Ei∗
j )e = (Xr

s )(Lsj
ir (u)),

where (Ei∗
j ) is the global basis of V (LM) associated with the standard basis

(Ei
j) of gl(m,R); i.e., (Ei

j)
h
k = δh

i δ
j
k (see, for example, [8]), where V (LM)

denotes the vertical bundle of LM .

4.2 Coordinates on Lπ(LM)

Each coordinate system (xi) on an open domain U ⊆ M induces a local
coordinate system, (xi, x̄i

j) on V = π−1(U) ⊂ LM , by setting

e = ((∂/∂x1)x, . . . , (∂/∂xm)x) · (x̄i
j(e)), (3)

where x = π(e), and (xi, x̄i
j) induces a coordinate system (xi, x̄i

j , x
i
j,k) on

J1(V ) by setting

xi(j1xs) = xi(x), x̄i
j(j

1
xs) = x̄i

j(s(x)), and xi
j,k(j1xs) =

∂(xi
j ◦ s)
∂xk

(x).

The soldering form θ̄ on LM is the R
m-valued one-form defined on LM by

θ̄(X̄) = e−1(π∗(X̄)), ∀X̄ ∈ Te(LM).

With respect to the standard basis (r̄i) = (0, . . . ,
(i)

1 , . . . , 0) for R
m, we write:

θ̄ = θ̄i ⊗ r̄i, where θ̄i is a differential one-form on LM . In local coordinates,
θ̄i = x̄j

idxj .
Each adapted coordinate system (xi, x̄i

j) on V = π−1(U) ⊂ LM induces a
coordinate system (xi, x̄i

j , v
i
j , v

i
jk, v

ih
jk) on λ−1(V ) ⊂ Lπ(LM), setting

u = ((Xj)e, (Xh
k )e) =

(
vi

j(u)
∂

∂xi

∣∣∣∣
e

+ vi
kj(u)

∂

∂x̄i
k

∣∣∣∣
e

, vih
jk(u)

∂

∂x̄i
j

∣∣∣∣∣
e

)
, (4)
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e = λ(u). We will consider the Lagrangian coordinate system (xi, x̄i
j , x

i
j , x

i
jk,

xih
jk) defined on λ−1(V ) from the above coordinates by

xi
j = vj

i, xi
jk = vk

svi
js, and vih

jkx
bs
ar = δh

aδ
b
kδ

i
rδ

s
j (5)

where (vj
i) = (vi

j)
−1 (see [13]).

The soldering form θ on Lπ(LM) is the R
m+m2

-valued one-form defined
on Lπ(LM) by

θ(X) = u−1(λ∗(X)), ∀X ∈ Tu(Lπ(LM)).

We write
θ = θi ⊗ ri + θi

j ⊗ r
j
i ,

where θi, θi
j are differential one-forms on Lπ(LM) and (ri, r

j
i ) is the standard

basis for R
m+m2

. In Lagrangian coordinates (5) we have

θi = xi
jdx

j and θi
j = −xil

jkx
k
lhdx

h + xil
jkdx̄

k
l . (6)

4.3 Lifting Vector Fields to Lπ(LM)

Let us first compute the local expression of the vector field ˜̃
X ∈ X(Lπ(LM))

for every X ∈ X(M). We begin by computing the local expression of the
natural lift to Lπ(LM) of a vector field X ∈ X(LM).

Locally a vector field on LM is written as

X = f i ∂

∂xi
+ f̄ i

j

∂

∂x̄i
j

, f i, f̄ i
j ∈ C∞(V ).

Hence, the local expression of a vector field X̃ on Lπ(LM) that projects onto
X is given by

X̃ = f i ∂

∂xi
+ f̄ i

j

∂

∂x̄i
j

+ f i
j

∂

∂xi
j

+ f i
jk

∂

∂xi
jk

+ f il
jk

∂

∂xil
jk

.

Let us see that the functions f i
j , f

i
jk, f il

jk can be uniquely determined by using
the assumption that LX̃θ = 0. Applying the local expressions of (θi, θi

j) in (6),
it follows that

0 = LX̃θi = LX̃(xi
jdx

j) =
(
X̃(xi

k) + xi
j

∂f j

∂xk

)
dxk.

Hence,

X̃(xi
k) = −xi

j

∂f j

∂xk
. (7)
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Also,

0 = LX̃θi
j

= LX̃(−xil
jkx

k
lhdx

h + xil
jkdx̄

k
l )

= X̃(−xil
jkx

k
lh)dxh − xil

jkx
k
lhLX̃(dxh) + X̃(xil

jk)dx̄k
l + xil

jkLX̃(dx̄k
l )

= −X̃(xil
jk)xk

lhdx
h − xil

jkX̃(xk
lh)dxh − xil

jkx
k
lh

∂fh

∂xr
dxr

+ X̃(xil
jk)dx̄k

l + xil
jk

(
∂fk

∂xh
dx̄h

l + x̄h
l

∂2fk

∂xh∂xr
dxr

)

=
(
−X̃(xil

jk)xk
lr − xil

jkX̃(xk
lr)− xil

jkx
k
lh

∂fh

∂xr
+ xil

jkx̄
h
l

∂2fk

∂xh∂xr

)
dxr

+
(
X̃(xil

jh) + xil
jk

∂fk

∂xh

)
dx̄h

l .

Hence,

0 = −X̃(xil
jk)xk

lr − xil
jkX̃(xk

lr)− xil
jkx

k
lh

∂fh

∂xr
+ xil

jkx̄
h
l

∂2fk

∂xh∂xr
, (8)

0 = X̃(xil
jh) + xil

jk

∂fk

∂xh
. (9)

Thus, substituting the expression of X̃(xil
jh) in (9) into (8) we obtain

xil
jhX̃(xh

lr) = xil
jk

∂fk

∂xh
xh

lr − xil
jkx

k
lh

∂fh

∂xr
+ xil

jkx̄
h
l

∂2fk

∂xh∂xr
,

and multiplying by v
cj
di , we have

δc
hδ

l
dX̃(xh

lr) = δc
kδ

l
d

∂fk

∂xh
xh

lr − δc
kδ

l
dx

k
lh

∂fh

∂xr
+ δc

kδ
l
dx̄

h
l

∂2fk

∂xh∂xr
.

Therefore,

X̃(xc
dr) =

∂f c

∂xh
xh

dr − xc
dh

∂fh

∂xr
+ x̄h

d

∂2f c

∂xh∂xr
. (10)

Hence, from (9) and (10) we have

X̃ = f i ∂

∂xi
+ f̄ i

j

∂

∂x̄i
j

− xi
k

∂fk

∂xj

∂

∂xi
j

+
(
x̄h

j

∂2f i

∂xh∂xk
+ xh

jk

∂f i

∂xh
− xi

jh

∂fh

∂xk

)
∂

∂xi
jk

− xil
jr

∂f r

∂xk

∂

∂xil
jk

. (11)

Proposition 2. Let X̃(1) be the first jet prolongation of a vector field X on

M (see [14]). There exists a unique vector field ˜̃
X on Lπ(LM) that satisfies

the following two conditions:
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(i) L ˜̃
X
θ = 0, where θ is the soldering form on Lπ(LM);

(ii) ˜̃X is ρ-projectable onto X̃(1); that is, ρ∗(
˜̃
X) = X̃(1).

Proof. The local expression of the natural lift X̃ of a vector field

X = f i ∂

∂xi
, f i ∈ C∞(U),

on M is given by

X̃ = f i ∂

∂xi
+ x̄h

j

∂f i

∂xh

∂

∂x̄i
j

.

Hence, from (11) we have

˜̃
X = f i ∂

∂xi
+ x̄h

j

∂f i

∂xh

∂

∂x̄i
j

− xi
k

∂fk

∂xj

∂

∂xi
j

+
(
x̄h

j

∂2f i

∂xh∂xk
+ xh

jk

∂f i

∂xh
− xi

jh

∂fh

∂xk

)
∂

∂xi
jk

− xil
jr

∂f r

∂xk

∂

∂xil
jk

. (12)

We conclude taking into account the local expression of X̃(1) (see [14]) and

ρ∗

(
∂

∂xi

)
=

∂

∂xi
, ρ∗

(
∂

∂x̄i
j

)
=

∂

∂x̄i
j

,

ρ∗

(
∂

∂xi
j

)
= 0, ρ∗

(
∂

∂xi
jk

)
=

∂

∂xi
j,k

, ρ∗

(
∂

∂xil
jk

)
= 0,

where (xi, x̄i
j , x

i
j,k) are the local coordinate system induced on J1(V ) intro-

duced in §4.2. �

4.4 Local Expression for Lr
h and Lkl

hr

Let us compute now the local expression for the functions Lh
i ,L

sj
ir . Let u =

((Xi)e, (X i
j)e) ∈ Lπ(LM), where e = (X̄i) ∈ LM over x ∈ M . Using the

definition of the functions Lj
i (see formula (1)) and the local expressions of

the vector fields X̄i and Xj (see formulas (3) and (4)), we obtain

x̄k
i (e)

∂

∂xk

∣∣∣∣
x

= Lj
i (u)π∗(Xj) = Lj

i (u)π∗

(
vk

j (u)
∂

∂xk

∣∣∣∣
e

+ vh
kj(u)

∂

∂x̄h
k

∣∣∣∣
e

)

= Lj
i (u)vk

j (u)
∂

∂xk

∣∣∣∣
x

.

Therefore
Lh

i = x̄k
i vk

h .
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In Lagrangian coordinates (see (5))

Lh
i = x̄k

i x
h
k . (13)

Similarly, from the definition of the functions Lsj
ir (see formula (2)) and taking

into account the local expression of Ei∗
j , that is, Ei∗

j = x̄h
i

∂

∂x̄h
j

(see [14]), and

of Xr
s (see formula (4)), we have

x̄h
i (e)δj

b

∂

∂x̄h
b

∣∣∣∣
e

= Lsj
ir (u)(Xr

s )e = Lsj
ir (u)vhr

bs (u)
∂

∂x̄h
b

∣∣∣∣
e

.

Therefore, multiplying by xcb
dh and taking into account the definition of the

Lagrangian coordinates we obtain

x̄h
i δ

j
bx

cb
dh = Lsj

ir v
hr
bs x

cb
dh = Lsj

ir δ
c
sδ

r
d ;

that is,
Lsj

ir = x̄h
i x

sj
rh . (14)

5 Invariant Lagrangians on Lπ(LM)

5.1 Decomposition into Basic Lagrangians

Once the basic Lagrangians have been introduced, we may state the main
result as follows:

Theorem 1. Every smooth X(M)-invariant function on Lπ(LM) can be
written as a differentiable function of the Lagrangians Li

jk ◦ ρ, Lh
i and Lsj

ir .

Proof. From the local expression of ˜̃X (see equation (12)) we conclude that
a function L ∈ C∞(Lπ(LM)) is X(M)-invariant if and only if it satisfies the
following system of m + m2 + 1

2m
2(m + 1) PDEs:

0 =
∂L
∂xi

, (15)

0 = x̄
j
h

∂L
∂x̄i

h

− xh
i

∂L
∂xh

j

+ x
j
hr

∂L
∂xi

hr

− xr
hi

∂L
∂xr

hj

− xrl
hi

∂L
∂xrl

hj

, (16)

0 = x̄
j
h

∂L
∂xi

hk

+ x̄k
h

∂L
∂xi

hj

, (17)

where j ≤ k. Let us consider the distribution D generated by the vector
fields:
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Xi =
∂

∂xi
,

X
j
i = x̄

j
h

∂

∂x̄i
h

− xh
i

∂

∂xh
j

+ x
j
hr

∂

∂xi
hr

− xr
hi

∂

∂xr
hj

− xrl
hi

∂

∂xrl
hj

,

X
jk
i = x̄

j
h

∂

∂xi
hk

+ x̄k
h

∂

∂xi
hj

, j ≤ k .

It is readily checked that: [Xi, Xa] = 0, [Xi, X
b
a] = 0, [Xi, X

bc
a ] = 0,

[Xjk
i , Xbc

a ] = 0, [Xb
a, X

jk
i ] = δj

aX
bk
i + δk

aX
bj
i − δb

iX
jk
a and [Xb

a, X
j
i ] =

δb
iX

j
a− δj

aX
b
i , and therefore the distribution D is involutive. Hence, the num-

ber of invariant functions is equal to

dimLπ(LM)− rk(D) = m2 +
m2(m− 1)

2
+ m4 .

Taking into account the local expressions of the functions Lr
h, Lkl

hr, Li
jk ◦ ρ,

j < k (see formulas (13), (14) and ([14, formula 6])), it is easy to prove that
these functions are functionally independent and satisfy the system (15)-

(17). Therefore, every function L ∈ C∞(Lπ(LM)) satisfying ˜̃
X(L) = 0 can

be written locally as
L = Φ(Lr

h,Li
jk ◦ ρ,Lkl

hr),

where Φ ∈ C∞(RN ), N = m2 + 1
2m

2(m− 1) + m4 . �

5.2 Invariant Functions with Structure Group Symmetry

The smooth X(M)-invariant functions that admit structure group symmetry
may be further classified.

Corollary 1. The smooth X(M)-invariant functions on Lπ(LM) which are
also invariant under the structure group of the projection ρ : Lπ(LM) →
J1(LM) are the differentiable functions of Li

jk ◦ ρ.

Proof. The X(M)-invariant function L = Φ(Lr
h,Li

jk ◦ ρ,Lkl
hr) is invariant un-

der the action of the structure group of the principal bundle ρ : Lπ(LM) →
J1(LM) if

A∗L = 0 ∀A =
(
ai

j 0
0 aik

jl

)
∈ gl(m,R)× gl(m2,R) ,

where A∗ is the infinitesimal generator of Rexp(tA). Let ur
h, ui

jk, ukl
hr, j < k,

be the coordinates in R
N . For every u ∈ Lπ(LM),

d

dt

∣∣∣∣
t=0

xi
j(u · exp(tA)) = xi

h(u)ah
j and

d

dt

∣∣∣∣
t=0

xik
jl (u · exp(tA)) = xik

rs(u)ars
jl ,
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and therefore

A∗L =

(
xi

ha
h
j

∂

∂xi
j

+ xik
rsa

rs
jl

∂

∂xik
jl

)
(L) = xi

ha
h
j

∂Φ

∂ua
b

∂La
b

∂xi
j

+ xik
rsa

rs
jl

∂Φ

∂uab
cd

∂Lab
cd

∂xik
jl

= xi
ha

h
j

∂Φ

∂ua
b

x̄s
bδ

a
i δ

j
s + xik

rsa
rs
jl

∂Φ

∂uab
cd

x̄m
c δa

i δ
b
kδ

j
dδ

l
m

= xa
ha

h
s x̄

s
b

∂Φ

∂ua
b

+ xab
rta

rt
dsx̄

s
c

∂Φ

∂uab
cd

.

Hence, L is (GL(m,R)×GL(m2,R))-invariant if and only if

xa
hx̄

s
b

∂Φ

∂ua
b

= 0 and (18)

xab
rt x̄

s
c

∂Φ

∂uab
cd

= 0 . (19)

Multiplying (18) by xi
h and by x̄s

j and adding in h and s, we have

0 = xa
hxi

hx̄s
bx̄s

j ∂Φ

∂ua
b

=
∂Φ

∂ui
j

,

and multiplying (19) by vtr
ji and by x̄s

k and adding in rt and s, it follows
that

0 = xab
rtv

tr
ji x̄

s
cx̄s

k ∂Φ

∂uab
cd

=
∂Φ

∂u
ij
kd

.

Therefore, if L is (GL(m,R) × GL(m2,R))-invariant, then L = Ψ(Li
jk ◦ ρ),

where Ψ ∈ C∞(Rm2(m−1)/2). �
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On the Computation of Differential

Resultants∗

Sonia L. Rueda

Dpto de Matemática Aplicada, E.T.S. Arquitectura,
Universidad Politécnica de Madrid, Avda. Juan de Herrera 4,
28040-Madrid, Spain
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Summary. The definition of the differential resultant of a set of ordinary
differential polynomials is reviewed and its computation via determinants
is revisited, using a modern language. This computation is also extended
to differential homogeneous resultants of homogeneous ordinary differential
polynomials. A numeric example is included and an example of the appli-
cation of elimination theory to biological modelling is revisited, in terms of
differential resultants.

1 Introduction

The resultant of two algebraic polynomials is a well known tool in elimination
theory (dating back to Euler and Bezout). Given two polynomials f1, f2 ∈
C[x, y] of nonzero degree in y the resultant of f1 and f2 with respect to y

is a polynomial Resy(f1, f2) in C[x]. It is also well known that Resy(f1, f2)
can be computed as the determinant of the Sylvester matrix (see [31], §5.8
or [11], Chapter 3), making it very useful in computer algebra and allowing
its implementation in numerous computer algebra systems.

The resultant of a set of n homogeneous algebraic polynomials in n vari-
ables was defined by Macaulay in [23], where its computation by means of
determinants was also explained (see also [32]). It is called multipolynomial
resultant in [11]. In fact, the multipolynomial resultant of a set of generic
polynomials can be computed as a quotient of two determinants. Unfortu-
nately, multipolynomial resultants often vanish after specialization and a rel-
evant line of research has been conducted on the study of other resultants,
for instance the so called sparse resultants or toric resultants (for an overview
on the subject see [11] and [17]). All of these resultants have proved to be
powerful tools in computer algebra and in particular in elimination theory,
leading the way to numerous applications of algebraic geometry.

The differential resultant problem was first studied for differential oper-
ators by Ore [26], Berkovich and Tsirulik [2], Carra’Ferro [7], Chardin [10]

∗ To our beloved Marisa with great admiration.
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and Li [10]. The differential resultant of two differential polynomials in one
variable was studied by Ritt in [27], p.47, under some hypothesis on the dif-
ferential polynomials. It was G. Carra’Ferro, who gave the definition of a
differential resultant for a set of n ordinary differential polynomials in n− 1
differential variables in [9], and for n = 2 in [8]. The differential resultant
defined by Carra’Ferro is based on the algebraic resultant of Macaulay, and
it was explained in [9] how, for generic differential polynomials, it can be
computed as a quotient of two determinants. Apparently forgotten for some
years, Carra’Ferro’s definition has been used recently by Rueda and Sendra
to approach the linear ordinary differential implicitization problem in [30].
The differential resultant of a set of partial differential operators was used
also by Kasman and Previato in [19], suggesting a revival of the subject (of
differential resultants in general). We may say that the theory of differential
resultants is rather incomplete and offers a wide field of research, in many
different directions. Very recently, Gao et al. in [16] gave a more complete
definition of the differential resultant of n differential polynomials in n − 1
variables, in terms of the generalized differential Chow form.

Differential resultants are over all differential elimination tools. Differ-
ential elimination methods are commonly applied in control theory and,
more precisely, to the identifiability study of differential systems. There is a
broad literature available, of which some examples are [1], [13], [14],[15], [22],
[25], [33]. In particular, there are some interesting applications of differential
elimination techniques in cellular biology developed by Boulier et al. in [6]
and [5].

In this paper, the definition of the differential resultant of a set of ordinary
differential polynomials is revisited, together with its computation via deter-
minants in a modern language. This computation is then extended to the
differential homogeneous resultant, which we defined in [30]. Two examples
of this computation are included: a numeric example and the computation
via differential resultants of an example of application (of differential elimi-
nation) in biological modelling, provided by Boulier in [4].

1.1 The Sylvester Matrix

Let us begin with the construction of the Sylvester matrix Syl(f1, f2), of
the polynomials f1 and f2, to motivate the exposition of this paper. Let
D = C[x], then f1, f2 ∈ D[y] and they have degree in y greater than zero,
di = deg(fi) > 0, i = 1, 2. Then Syl(f1, f2) is the coefficient matrix of the
polynomials in the set (as polynomials in y)

{yd2−1f, . . . , yf, f, yd1−1g, . . . , y g, g}.

If f1(y) = ad1y
d1 + · · · + a1y + a0 and f2(y) = bd2y

d2 + · · · + b1y + b0 with
coefficients in D then
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Syl(f1, f2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ad1 · · · a1 a0 0 · · · 0
0 ad1 · · · a1 a0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 ad1 · · · a1 a0

bd2 · · · b1 b0 0 · · · 0

0 bd2 · · · b1 b0 · · ·
...

...
. . . . . . . . . 0

0 · · · 0 bd2 · · · b1 b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d2 rows

d1 rows

.

Observe that the columns of the previous (d1 + d2) × (d1 + d2) Sylvester
matrix are indexed by the components of the vector (yd1+d2−1, . . . , y, 1).
Therefore, if (f1, f2) is the ideal generated by f1 and f2 in C[x, y] then
Resy(f1, f2) = det(Syl(f1, f2)) belongs to the elimination ideal (f1, f2)∩C[x]
(see [11], Chapter 3 and references therein). It is also well known that in some
extension field E of D it holds:

{f1 = 0, f2 = 0} has a solution in E ⇔ ∂Res(f1, f2) = 0.

1.2 Notation

Let D be an ordinary differential domain with derivation ∂. Let
U = {u1, . . . , un−1} be a set of differential indeterminates over D. For k ∈ N

we denote by ujk the k-th derivative of uj , j = 1, . . . , n − 1. We denote
by {U} the set of derivatives of the elements of U , and by D{U} the ring
of differential polynomials in the differential indeterminates u1, . . . , un−1,
that is

D{U} = K[uj, ujk | j = 1, . . . , n− 1, k ∈ N].

For further concepts and results on differential algebra we refer to [20]
and [28].

2 The Differential Resultant of Carra’Ferro

Let us consider the ordinary differential polynomial fi in D{U} of order oi,
i = 1, . . . , n.

Definition 1. The differential resultant (of Carra’Ferro) ∂Res(f1,. . ., fn),
of f1, . . . , fn, is the Macaulay’s algebraic resultant of the differential polyno-
mial set

P(f1, . . . , fn) = {fi, ∂fi, . . . , ∂
N−oifi | i = 1, . . . , n,N =

n∑
i=1

oi}.
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The Macaulay’s algebraic resultant of a set of homogeneous algebraic poly-
nomials is defined by Macaulay in [23] as the greatest common divisor of a
set of determinants. For nonhomogeneous algebraic polynomials, the same
construction can be used introducing a homogenizing variable. This was
the approach used by Carra’Ferro in [9], to compute ∂Res(f1, . . . , fn) via
determinants.

2.1 Computation via Determinants

In this section, the construction of the matrices used to compute the dif-
ferential resultant in [9] is revisited, but using the notation introduced in
[19] (to define differential resultants for partial differential operators) and
the construction given in [11], Chapter 3, §4 for multipolynomial resultants.
The definition of multipolynomial resultant of a set of algebraic homogeneous
polynomials given in [11], Chapter 3 is intrinsic to its properties, and it is also
proved afterwards that is can be computed as the greatest common divisor
of a set of determinants.

Observe that P(f1, . . . , fn) is a set with L =
∑n

i=1(N−oi+1) polynomials
in the set of L− 1 variables

V = {uj, uj1, . . . , ujN | j = 1, . . . , n− 1},

that is, P is included in the polynomial ring D[V ]. We define the L component
vector

Y = (y1, . . . , yL)

where yl belongs to V ∪ {1}, l = 1, . . . , L. By writing it as a vector, we
are supposing that the variables y1, . . . , yL have an ordering, although the
particular ordering chosen is not important at this point of the discussion.
We call the variable yl0 = 1, l0 ∈ {1, . . . , L} the homogenizing variable,
and it will allow us to use the construction given in [11], Chapter 3, §4 to
compute ∂Res(f1, . . . , fn) via determinants.

We also impose an ordering on the polynomials in P(f1, . . . , fn) (and
again the particular ordering chosen is not important so far). We denote
by PS(f1, . . . , fn) the L component vector

PS(f1, . . . , fn) = (P1, . . . , PL)

where Pl, l = 1, . . . , L belongs to P(f1, . . . , fn).
Let di be the degree of fi, we assume di > 0. We denote by D the positive

integer

D =
L∑

l=1

(deg(Pl)− 1) + 1 =
n∑

i=1

(N − oi + 1)(di − 1) + 1.
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We define the positive integers

L =
(
L− 1 + D

L− 1

)
, Ldi =

(
L− 1 + D − di

L− 1

)
, i = 1, . . . , n.

Given α = (α1, . . . , αL) ∈ N
L, we denote by yα the monomial yα1

1 · . . . · yαL

L

and by |α| =
∑L

l=1 αl. The set

MD = {yα | |α| = D}

has cardinality L. Observe that since yl0 = 1 then the monomials in MD

have degree less than or equal to D as monomials in D[V ]. We establish an
ordering of the elements of MD induced by the ordering of the components
of Y . We denote by YD the L-component vector

YD = (wD
1 , . . . , wD

L
),

whose components run over the elements of MD in the order chosen. For all
i = 1, . . . , n we denote by MD−di the set

MD−di = {yα | |α| = D − di},

which has cardinality Ldi . Observe that since yl0 = 1 then the monomials
in MD−di have degree less than or equal to D − di as monomials in D[V ],
i = 1, . . . , n. We denote by YD−di the Ldi -component subvector of YD

YD−di = (wD−di
1 , . . . , wD−di

Ldi
),

whose components run over the elements of MD−di .
Given a differential polynomial P ∈ D[V ] of degree less than or equal to D,

we denote by v(P ) the L component vector whose l-th entry is the coefficient
of wD

l in P , l = 1, . . . ,L. Thus P = v(P )Yt
D where Y

t
D is the transpose of

YD. Observe that deg(Pl) ∈ {d1, . . . , dn} for all l = 1, . . . , L.

Definition 2. 1. We denote by M(f1, . . . , fn) the (
∑n

i=1(N−oi+1)Ldi)×L

matrix whose rows are

v(wD−deg(Pl)
k · Pl), l = 1, . . . , L, k = 1, . . . ,Ldeg(Pl).

2. By [23], page 4 then ∂Res(f1, . . . , fn) is the greatest common divisor of
a set of polynomials in D, namely

gcd{det(M) |M is an L× L submatrix of M(f1, . . . , fn)}.

We define next an L× L submatrix M of M(f1, . . . , fn) such that, if fi is a
generic polynomials of order oi and degree di for i = 1, . . . , n then

det(M) = ∂Res(f1, . . . , fn) · extraneous factor.
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Furthermore, the extraneous factor can be computed by means of determi-
nants. In fact, if the differential resultant ∂Res(f1, . . . , fn) is not zero after
specialization, it can me computed as the quotient of two determinants (see
[23] and [11], Chapter 3, §4).

Given l ∈ {1, . . . , L}, a monomial yα ∈ MD is said to be reduced in yl

if ydeg(Pl)
l does not divide yα. Observe that, if ydeg(Pl0 )

l0
divides yα then, as a

monomial in D[V ], the degree of yα is less than D − deg(Pl0). We say that
a monomial yα ∈ MD is reduced if ydeg(Plα )

lα
divides yα, for exactly one

lα ∈ {1, . . . , L}. Let us call Ω the set of all reduced monomials in MD.
We define the sets Ml for l = 1, . . . , L as follows:

M1 = {yα/y
deg(P1)
1 | yα ∈ MD is not reduced in y1},

Ml = {yα/y
deg(Pl)
l | yα ∈MD is not reduced in yl,

and it is reduced in yk, k = 1, . . . , l − 1}.

for l = 2, . . . , L. The sum of the cardinalities cl of the sets Ml, l = 1, . . . , L
equals L. We denote by Yl the subvector of YD

Yl = (wl
1, . . . , w

l
cl

),

whose components run over the elements of Ml, l = 1, . . . , L, thus in the
order established in MD.

Definition 3. Let PS = PS(f1, . . . , fn).

1. We define the L× L matrix M(Y,PS) whose rows are

v(wl
k · Pl), l = 1, . . . , L, k = 1, . . . , cl.

2. We define the submatrix A(Y,PS) of M(Y,PS) obtained by removing:
a) The columns corresponding to the monomials in Ω.
b) The rows v(wl

k · Pl) such that wl
k · y

deg(Pl)
l ∈ Ω, l = 1, . . . , L,k =

1, . . . , cl.

It was proved by Macaulay [23] that, if f1, . . . , fn are generic polynomials
then

det(M(Y,PS)) = ∂Res(f1, . . . , fn) det(A(Y,PS)).

Thus, if det(A(Y,PS)) is non zero after specialization of f1, . . . , fn then

∂Res(f1, . . . , fn) =
det(M(Y,PS))
det(A(Y,PS))

.

There are L! ways of ordering the elements in V ∪ {1} to write Y . For some
specialization of f1, . . . , fn, let us suppose that det(A(Y,PS)) = 0 for a
choice of Y , then we can permute the components of Y to get Y ′ such that
det(A(Y ′,PS)) 	= 0.

The next properties of det(M(Y,PS)) make of ∂Res(f1, . . . , fn) an elim-
ination tool. Let [f1, . . . , fn] be the differential ideal in D{U} generated by
the differential polynomials f1, . . . , fn.
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Proposition 1. 1. det(M(Y,PS)) belongs to [f1, . . . , fn] ∩ D.
2. If {f1 = 0, . . . , fn = 0} has a solution in a differential extension field E

of D then det(M(Y,PS)) = 0.

Proof. The first claim follows from [9], Theorem 12. The second claim was
proved in [9], Proposition 11(i).

If fi are polynomials of order oi = 0, i = 1, . . . , n then ∂Res(f1, . . . , fn) is
the Macaulay’s algebraic resultant of a set of algebraic polynomials. Only for
n = 2, the second statement of Proposition 2 is an equivalence.

As mentioned by Gao et al. in [16], the definition of the differential resul-
tant given by Carra’Ferro seems to be incomplete. They gave recently a new
definition of the differential resultant, of a set of n differential polynomials in
n− 1 variables, as a generalized differential Chow form in [16].

A Maple a package of functions that allows the computation of the differ-
ential resultant defined by Carra’Ferro in [9] is available at [29]. The imple-
mentation of the Macaulay’s algebraic resultant, available at [24], could be
also used to compute differential resultants.

2.2 Example

Let D = C(t) and ∂ = ∂
∂t . The differential resultant ∂Res(f1, f2), of the

differential polynomials

f1(u1) = t− 4u11
2 − 4u2

1 − tu11u1 − 5u11 − 4u1,

f2(u1) = t− u1 − 3u11

in D{u1} ( u1i = ∂iu1/∂t
i), is the Macaulay’s algebraic resultant of the set

PS(f1, f2) = {∂f1, f1, ∂f2, f2}. We can compute ∂Res(f1, f2) as the quotient
of two determinants. The numerator is the determinant of a matrix of or-
der 20. The rows of this matrix are the coefficients of the polynomials in
PS(f1, f2), written in decreasing order using first the degree and then the
lexicographic order with u12 < u1 < u11, that is, Y = (u11, u1, u12, 1). The
columns of the matrix M(Y,PS) are indexed by the components of the vector

YD =(u11
3, u11

2u1, u11
2u12, u11u

2
1, u11u1u12, u11u12

2, u3
1, u

2
1u12, u1u12

2, u12
3,

u11
2, u11u1, u11u12, u

2
1, u1u12, u12

2, u11, u1, u12, 1).

The rows of the matrix M(Y,PS) are the coefficients of the following differ-
ential polynomials:

rows 1 . . . 4 → {u11∂f1, u1∂f1, u12∂f1, ∂f1}
rows 5 . . . 8 → {u11f1, u1f1, u12f1, f1}
rows 9 . . . 16 → {u11u1∂f2, u11u12∂f2, u1u12∂f2, u12

2∂f2,

u11∂f2, u1∂f2, u12∂f2, ∂f2}
rows 17 . . . 20 → {u11u1f2, u11f2, u1f2, f2}.
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The matrix A(Y,PS) is the submatrix of M(Y,PS) obtained by removing
rows 1, 2, 5, 6, 10, 11, 12, 17, 18, 19, 20 and columns 1, 2, 4, 5, 6, 7, 9, 10,
12, 17, 18, 20 of M(Y,PS).

Finally, the differential resultant verifies

det(M(Y,PS)) = ∂Res(f1, f2) det(A(Y,PS))

where

det(M(Y,PS)) =− 3888t(3t− 8)(15t7 − 227t6 − 771t5 + 7260t4 + 39993t3

+ 17497t2 + 23115t+ 6078),
det(A(Y,PS)) = 432t(3t− 8),

that is

∂Res(f1, f2) =
−3888
432

(15t7 − 227t6 − 771t5 + 7260t4 + 39993t3 + 17497t2

+ 23115t+ 6078).

The matrix M(Y,PS), obtained using [29], is equal to
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−t −9 −8 0 −t 0 0 0 0 0 −4 0 −5 0 0 0 1 0 0 0
0 −t 0 −9 −8 0 0 −t 0 0 0 −4 0 0 −5 0 0 1 0 0
0 0 −t 0 −9 −8 0 0 −t 0 0 0 −4 0 0 −5 0 0 1 0
0 0 0 0 0 0 0 0 0 0 −t −9 −8 0 −t 0 −4 0 −5 1
−4 −t 0 −4 0 0 0 0 0 0 −5 −4 0 0 0 0 t 0 0 0
0 −4 0 −t 0 0 −4 0 0 0 0 −5 0 −4 0 0 0 t 0 0
0 0 −4 0 −t 0 0 −4 0 0 0 0 −5 0 −4 0 0 0 t 0
0 0 0 0 0 0 0 0 0 0 −4 −t 0 −4 0 0 −5 −4 0 t

0 −1 0 0 −3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 −3 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 −3 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 −3 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 −3 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −3 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −3 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −3 1
0 −3 0 −1 0 0 0 0 0 0 0 t 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −3 −1 0 0 0 0 t 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −3 0 −1 0 0 0 t 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 −1 0 t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3 Differential Resultants of Ordinary Homogeneous
Differential Polynomials

If the polynomials f1, . . . , fn ∈ D{U} are homogeneous then ∂Res(f1, . . . , fn)
is zero, because the column indexed by yl0 = 1 in the matrix M(f1, . . . , fn)
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is a column of zeros. Therefore, the previous definition is not appropriate for
homogeneous ordinary differential polynomial. We gave a definition of the
homogeneous differential resultant in [30] that is included next.

Let hi ∈ D{U} be an ordinary differential homogeneous polynomial of
order oi, i = 1, . . . , n, with N =

∑n
i=1 oi ≥ 1.

Definition 4. The differential homogenous resultant ∂Resh(h1, . . . , hn),
of the homogeneous differential polynomials h1,. . ., hn, is the Macaulay’s al-
gebraic resultant of the differential polynomial set

PSh(h1, . . . , hn) = {∂N−oi−1hi, . . . , ∂hi, hi | i = 1, . . . , n, N − oi − 1 ≥ 0}.

A differential homogeneous resultant was defined also by Carra’Ferro in [8] for
n = 2. In addition, when the homogeneous polynomials have degree one and
n = 2 the differential homogeneous resultant coincides with the differential
resultant of two differential operators, studied by Berkovitch-Tsirulik in [2]
and by Chardin in [10].

Observe that Ph(h1, . . . , hn) is a set with Lh =
∑n

i=1(N −oi) polynomials
in the set of Lh variables

Vh = {uj, uj1, . . . , uj N−1 | j = 1, . . . , n− 1},

that is Ph ⊂ D[Vh]. We define the Lh component vector

Y h = (yh
1 , . . . , y

h
Lh),

where yh
l belongs to Vh, l = 1, . . . , Lh. By writing it as a vector, we are

supposing that the variables yh
1 , . . . , y

h
Lh have an ordering, although the par-

ticular ordering chosen is not important at this point of the explanation. Let
us also impose an ordering on the polynomials in Ph(h1, . . . , hn). We denote
by PSh(h1, . . . , hn) the Lh component vector

PSh(h1, . . . , hn) = (P h
1 , . . . , P

h
Lh),

where P h
l , l = 1, . . . , Lh belongs to Ph.

Let PSh = PSh(h1, . . . , hn), now definitions 2 and 3 apply to M(Y h,PSh)
and A(Y h,PSh). Consequently, for generic polynomials, the differential ho-
mogeneous resultant verifies

det(M(Y h,PSh)) = ∂Resh(h1, . . . , hn) · det(A(Y h,PSh)).

The next properties of det(M(Y h,PSh)) make of ∂Resh(h1, . . . , hn) an
elimination tool.

Proposition 2. 1. det(M(Y h,PSh)) belongs to [h1, . . . , hn] ∩D.
2. If {h1 = 0, . . . , hn = 0} has a solution in a differential extension field E

of D then det(M(Y h,PSh)) = 0.
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Proof. 1. The proof is analogous to the one of [9], Theorem 12.
2. It follows by [18], Proposition 5.

Unfortunately, the condition det(M(Y h,PSh)) = 0 is only sufficient for the
existence of nonzero solutions of the system {h1 = 0, . . . , hn = 0} in the
cases: n = 2 and oi = 0, i = 1, 2 (M(Y h,PSh) is the Sylvester matrix); n = 2
and di = 1, i = 1, 2 (by [2], Theorem 3.1). Counterexamples can be found
in: [8], Example 4 for n = 2, oi 	= 0, di > 1, i = 1, 2; and [30], Remark 6 for
n = 3, di = 1 and oi > 0, i = 1, 3.

4 An Example of Application to Biological Modelling

We revisit an example of application of differential elimination to biological
modelling. This example was presented by F. Boulier in [4] to illustrate how
differential elimination can contribute to the following problem designed in
[12]: Estimate parameter values of parametric ordinary differential systems
whose dependent variables are not all observed. The method developed in [12]
relies on differential elimination combined with a final numerical treatment,
thus it is a hybrid symbolic-numeric method. Some references to the work on
the application of this method to cellular biology developed by Boulier et al.
are [6] and [5].

The differential elimination part of the example was carried out using
the Rosenfeld-Gröebner algorithm developed by Boulier in [3]. We explain
how the differential elimination part in the example may be computed using
differential resultants.

We include next the description of the compartmental model (for two
compartments, the blood and the organ) given by Boulier in [4], §3.1.

A medical product is injected in the blood at t = 0. It can go from the blood
to the organ and conversely. It may also get degraded and exit from the sys-
tem. In order to write the corresponding differential system, some hypotheses
must be made on the nature of the exchanges: exchanges between the two
compartments are assumed to be linear i.e. that, over every small enough
interval of time, the amount of product going from compartment i to com-
partment j is proportional to the concentration of product in compartment i.
The proportionality constant is denoted kij . The degradation is assumed to
follow a Michaelis-Menten law. This law is a bit more difficult to explain. It
can be derived from the modelling of an enzyme-catalyzed reaction by means
of some model reduction. Two parameters are associated to this degradation:
a maximal speed Ve and another constant ke.

Dependent variables x and u1 are associated to compartments 1 (the blood)
and 2 (the organ), which represent the concentrations of product present
in these compartments. Let xi = ∂ix

∂ti and u1i = ∂iu1
∂ti , i ∈ N. A system of

parametric ordinary differential equations is obtained where parameters and
dependent variables are positive real numbers.
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x1 = −k12x + k21u1 −
Vex

ke + x
,

u11 = k12x− k21u1.

It is assumed that some extra information is available: parameters k12 and
k21 are completely unknown, an interval of possible values 70 ≤ Ve ≤ 110 is
known for Ve and ke = 7. Compartment 1 is assumed to be observed (a file
of measures is assumed to be available for x) and compartment 2 is assumed
to be non observed. In this situation, the goal is to estimate the values of the
three unknown parameters: Ve, k12 and k21. A classical numerical solution
relies on the use of a numerical nonlinear least squares solver i.e. a Newton
method. Differential elimination gets involved in the process to help solving
the most difficult part of the Newton method: guessing the starting point.
The idea is to eliminate the non observed variables of the model.

The denominator of the first equation cannot vanish so we can view the
system as a system of differential polynomial equations:

{
f1(u1) = xx1 + k12x

2 + kex1 + (k12ke + Ve)x− k21(ke + x)u1 = 0,
f2(u1) = −k12x + k21u1 + u11 = 0,

where f1 and f2 are differential polynomials in D{u1}, with differential do-
main D = C(t){x} and derivation ∂

∂t . Observe that x and u are differential
variables over C(t). Let us call a0(x) = xx1 + k12x

2 + kex1 + (k12ke + Ve)x
the independent term in f1(u1).

Observe that f1 and f2, both have degree one and order one so D = 1
and L = L = 4. Let Y = (u12, u11, u1, 1) and PS = (∂f1, f1, ∂f2, f2), then
M(Y,PS) is a 4× 4 matrix whose columns are indexed by the monomials in
Y = YD. In this situation

M(Y,PS) =

⎡
⎢⎢⎣

0 −k21(ke + x) −k21x1
∂a0(x)

∂t
0 0 −k21(ke + k21)x a0(x)
1 k21 0 −x1k12

0 1 k21 −xk12

⎤
⎥⎥⎦ .

The differential resultant ∂Res(f1, f2) = det(M(Y,PS)) in this case and
equals

p(x) =k21(k2
ek21x1 + k21x1x

2 + k21keVex + 2k21kexx1 + k21Vex
2 + 2kex2x

+ 2kek12xx1 + k12x
2x1 + k2

ex2 + k2
ek12x1 + x2x2 + Vekex1),

which is k12b(x) with b(x) the differential polynomial provided in [4], §3.3,
where the non observed variable u1 has been eliminated. The polynomial b(x)
is used in [4], §3.3 to estimate the values of Ve, k12 and k21.
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théorique, méthodes effectives et bornes de complexité. PhD Thesis, École Poly-
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Distribution Theory and Applications
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Summary. In this paper, we review some recent results on stochastic com-
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1 Introduction

Bernoulli distribution is one of the most fundamental distributions in
statistics, and has found key applications in statistics, actuarial science,
operation research and reliability theory. Models with independent hetero-
geneous Bernoulli variables come up in a wide array of applied problems.
Specifically, let Xp1 , . . . , Xpn be a sequence of independent Bernoulli random
variables with parameters p1, . . . , pn, respectively. It is well known that if
p1 = . . . = pn = p, then

∑n
i=1 Xi is a Binomial(n, p) random variable. How-

ever, when pi’s are not all equal, there is no simple distributional form for
the convolution of heterogeneous Bernoulli random variables.

In this paper, we will review some recent results on stochastic compar-
isons of convolutions of heterogeneous Bernoulli random variables. We will
then highlight some new applications of these results in statistical inference,
reliability theory and software testing. The rest of this paper is organized as
follows. In Section 2, we describe all the preliminary notions and concepts
that are pertinent to subsequent developments. In Section 3, we present the
main results concerning stochastic comparisons of convolutions of heteroge-
neous Bernoulli variables. Finally, we detail in Section 4 some interesting
∗ It is our distinct honor to present this work to the memory of our beloved lost

friend Maŕıa Luisa Menéndez whose ever smiling face, kindness and generosity
are deeply missed.
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applications of these results in statistical inference, reliability theory and
software testing.

2 Preliminaries

Let us first recall some notions of stochastic orders and majorization orders
which are most pertinent to the main results detailed in the following section.

Definition 1. For two discrete random variables X and Y with common sup-
port on integers N0 = {0, 1, 2, . . .}, let f(k) and g(k) denote their respective
probability mass functions, F (k) = P (X ≤ k) and G(k) = P (Y ≤ k) their re-
spective distribution functions, and F̄ (k) = P (X ≥ k) and Ḡ(k) = P (Y ≥ k)
the corresponding survival functions. Then, X is said to be smaller than Y

in the

1. likelihood ratio order, denoted by X ≤lr Y , if g(k)/f(k) is increasing in
k ∈ N0;

2. hazard rate order, denoted by X ≤hr Y , if Ḡ(k)/F̄ (k) is increasing in
k ∈ N0;

3. reversed hazard rate order, denoted by X ≤rh Y , if G(k)/F (k) is increas-
ing in k ∈ N0;

4. usual stochastic order, denoted by X ≤st Y , if F̄ (k) ≤ Ḡ(k) for all k ∈
N0.

The following implications are well known in the literature:

X ≤lr Y ⇒ X ≤hr(rh) Y ⇒ X ≤st Y.

For a comprehensive discussion on various stochastic orders and their appli-
cations, one may refer to the book by Shaked and Shanthikumar [16].

We shall also be using the concept of majorization in our discussion. Let
x(1) ≤ x(2) ≤ . . . ≤ x(n) be the increasing arrangement of components of the
vector x = (x1, x2, . . . , xn).

Definition 2. For vectors x,y ∈ R
n, x is said to be

• majorized by y (denoted by x  m y) if

j∑
i=1

x(i) ≥
j∑

i=1

y(i)

for j = 1, . . . , n− 1, and
∑n

i=1 x(i) =
∑n

i=1 y(i);

• weakly supmajorized by y (denoted by x
w
 y) if

j∑
i=1

x(i) ≥
j∑

i=1

y(i)

for j = 1, . . . , n.
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For extensive and comprehensive details on the theory of majorization
orders and their applications, one may refer to the book by Marshall and
Olkin [13].

3 Main Results

Convolutions of heterogeneous Bernoulli random variables have a long his-
tory, and was first considered by Hoeffding [7] who established the following
result.

Theorem 1. Let Xp1 , . . . , Xpn be independent Bernoulli random variables
with parameters p1, . . . , pn, respectively. Then,

P

(
n∑

i=1

Xpi ≤ k

)
≤

k∑
j=0

(
n

j

)
p̄j(1− p̄)n−j for 0 ≤ k ≤ np̄− 1,

and

P

(
n∑

i=1

Xpi ≤ k

)
≥

k∑
j=0

(
n

j

)
p̄j(1− p̄)n−j for np̄ ≤ k ≤ n,

where p̄ =
1
n

∑n
i=1 pi.

As a consequence, it follows that, for any two integers b and c such that
0 ≤ b ≤ np̄ ≤ c ≤ n,

P

(
b ≤

n∑
i=1

Xpi ≤ c

)
≥

c∑
j=b

(
n

j

)
p̄j(1 − p̄)n−j .

Using the concept of majorization, Gleser [6] refined the result of by Ho-
effding [7] as follows:

Theorem 2. Let Xp1 , . . . , Xpn be independent Bernoulli random variables
with parameters p1, . . . , pn, respectively. If

(p1, . . . , pn) !m (p∗1, . . . , p
∗
n) , (1)

then

P

(
n∑

i=1

Xpi ≤ k

)
≤ P

(
n∑

i=1

Xp∗
i
≤ k

)
for 0 ≤ k ≤ np̄− 2,

and

P

(
n∑

i=1

Xpi ≤ k

)
≥ P

(
n∑

i=1

Xp∗
i
≤ k

)
for np̄ + 2 ≤ k ≤ n.
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This result was subsequently partly extended by Boland and Proschan [2]
as follows.

Theorem 3. Let Xp1 , . . . , Xpn be independent Bernoulli random variables
with parameters p1, . . . , pn, respectively. If condition (1) holds, then

P

(
n∑

i=1

Xpi ≤ k

)
≤ P

(
n∑

i=1

Xp∗
i
≤ k

)
for pi ≥

k

n− 1
,

and

P

(
n∑

i=1

Xpi ≤ k

)
≥ P

(
n∑

i=1

Xp∗
i
≤ k

)
for pi ≤

k

n− 1
.

In the context of reliability theory, Proschan and Sethuraman [15] proved the
following interesting result:

Theorem 4. Let Xp1 , . . . , Xpn be independent Bernoulli random variables
with parameters p1, . . . , pn, respectively. Then,

(− log(p1), . . . ,− log(pn)) �m (− log(p∗
1), . . . ,− log(p∗

n)) ⇒
n∑

i=1

Xpi ≥st

n∑
i=1

Xp∗
i

(2)

and
(

1− p1

p1
, . . . ,

1− pn

pn

)
!m

(
1− p∗1
p∗1

, . . . ,
1− p∗n
p∗n

)
⇒

n∑
i=1

Xpi ≥st

n∑
i=1

Xp∗
i
.

(3)

This result has been recently strengthened by Xu and Balakrishnan [21], who
established the following result:

Theorem 5. Let Xp1 , . . . , Xpn be independent Bernoulli random variables
with parameters p1, . . . , pn, respectively. Then,

(− log(p1), . . . ,− log(pn))
w� (− log(p∗

1), . . . ,− log(p∗
n)) ⇒

n∑
i=1

Xpi ≥rh

n∑
i=1

Xp∗
i

(4)

and
(

1− p1

p1
, . . . ,

1− pn

pn

)
w
!
(

1− p∗1
p∗1

, . . . ,
1− p∗n
p∗n

)
⇒

n∑
i=1

Xpi ≥lr

n∑
i=1

Xp∗
i
. (5)

Remark 1. Boland et al. [3], [4] studied the comparison of convolutions of het-
erogeneous and homogeneous Bernoulli random variables. Suppose Y1, . . . , Yn

are i.i.d. Bernoulli random variables with parameter p. They then showed that

n∑
i=1

Xpi ≥st

n∑
i=1

Yi ⇐⇒ p ≤ pg (6)
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and
n∑

i=1

Xpi ≤st

n∑
i=1

Yi ⇐⇒ p ≥ pcg,

where pg = n
√∏n

i=1 pi is the geometric mean of pi’s, and pcg = 1 −
n
√∏n

i=1(1− pi) is the complement of the geometric mean of (1 − pi)’s. Fur-
thermore, they proved that

n∑
i=1

Xpi ≥hr

n∑
i=1

Yi ⇐⇒
n∑

i=1

Xpi ≥lr

n∑
i=1

Yi ⇐⇒ p ≤ ph (7)

and
n∑

i=1

Xpi ≤hr

n∑
i=1

Yi ⇐⇒
n∑

i=1

Xpi ≤lr

n∑
i=1

Yi ⇐⇒ p ≥ pch,

where ph =
n

∑n
i=1

1
pi

is the harmonic mean of pi’s, and pch = 1− n

∑n
i=1

1
1− pi

is the complement of the harmonic mean of (1 − pi)’s. It is easy to see that
the results in (4) and (5) generalize the corresponding ones in (6) and (7).
Interested readers may also refer to Boland [5] for an overview of various
developments on this topic.

One of the interesting properties of a convolution of heterogeneous Bernoulli
random variables is its variability. Wang [17] considered the variance of the
convolution of independent Bernoulli random variables and proved the fol-
lowing result.

Theorem 6. Let Xp1 , . . . , Xpn be independent Bernoulli random variables
with parameters p1, . . . , pn, respectively. Then,

(p1, . . . , pn) !m (p∗1, . . . , p
∗
n) ⇒ Var

(
n∑

i=1

Xpi

)
≤ Var

(
n∑

i=1

Xp∗
i

)
,

which means that the variance of the convolution increases as the components
of (p1, . . . , pn) become more homogeneous. Actually, a stronger version of
this result has been established by Karlin and Novikoff [10] by using convex
transforms; see also Ma [12] for a general result.

Theorem 7. Let Xp1 , . . . , Xpn be independent Bernoulli random variables
with parameters p1, . . . , pn, respectively. Then,

(p1, . . . , pn) !m (p∗1, . . . , p
∗
n)⇒ Eφ

(
n∑

i=1

Xpi

)
≤ Eφ

(
n∑

i=1

Xp∗
i

)
,

where φ is any convex function.

One may also refer to Hu and Ruan [9] for a multivariate extension of this
result.
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4 Applications

In this section, we will highlight some interesting applications of Theorem 5
in statistical inference, reliability theory and software testing.

4.1 Statistical Inference

Suppose a person bought n stocks, and for each stock the probability of a
loss is pi, i = 1, . . . , n. In practice, pi’s will not all be equal, for i = 1, . . . , n.
The person would then wish to know whether the average probability of a

loss p̄ =
1
n

∑n
i=1 pi is less than or equal to some fixed personal risk level p0

(a natural choice is, of course, p0 < 0.5). Equivalently, we may express it as
a hypothesis testing problem

H0 : p̄ = p0 vs. Ha : p̄ < p0.

Then, as described in Hoeffding [7], Theorem 3 is directly applicable in this
case. However, if the individual is confident that the average probability of a
loss is at most p∗, then we may use Theorem 5 to arrive at the inequality

P

(
n∑

i=1

Xi ≥ t

∣∣∣∣∣
n∑

i=1

Xi ≤ np∗
)
≥ P

(
n∑

i=1

Yi ≥ t

∣∣∣∣∣
n∑

i=1

Yi ≤ np∗
)
,

where Yi is a Binomial(n, p) random variable, for p ≤ pg, the geometric mean
of pi’s; equivalently, we have

P

(
n∑

i=1

Xi ≥ t

∣∣∣∣∣
n∑

i=1

Xi ≤ np∗
)
≥
∑n∗

x=t∗
(
n
x

)
px(1− p)n−x

∑n∗
x=0

(
n
x

)
px(1− p)n−x

,

where t∗ = "t# and n∗ = $np∗%.

4.2 Reliability Theory

In reliability theory, a system of n components is said to be a k-out-of-n sys-
tem if it functions as long as at least k components work. Let X1, . . . , Xn be
non-negative random variables representing the lifetimes of the components,
and let X1:n ≤ X2:n ≤ . . . ≤ Xn:n denote ordered lifetimes of these compo-
nents. Then, evidently Xn−k+1:n corresponds to the lifetime of a k-out-of-n
system. Now, for i = 1, . . . , n, let

Ypi =
{

1, Xi > t,

0, otherwise,

where
P (Ypi = 1) = P (Xi > t) = pi.
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The lifetime of the k-out-of-n system could then be represented as

P (Xn−k+1:n > t) = P

(
n∑

i=1

Ypi ≥ k

)
.

By using Theorem 5 and the fact that the likelihood ratio order implies the
hazard rate order, the following result then holds.

Theorem 8. Let X1, . . . , Xn be independent non-negative random variables
with survival functions F̄1(t), . . . , F̄n(t), and X∗

1 , . . . , X
∗
n be another set of in-

dependent non-negative random variables with survival functions
F̄ ∗

1 (t), . . . , F̄ ∗
n(t). If

(
1

F̄1(t)
, . . . ,

1
F̄n(t)

)
w
!
(

1
F̄ ∗

1 (t)
, . . . ,

1
F̄ ∗

n (t)

)
,

then, for any 1 ≤ m ≤ k,

P (Xn−k+1:n > t |Xn−m+1:n > t ) ≥ P
(
X∗

n−k+1:n > t
∣∣X∗

n−m+1:n > t
)
.

Remark 2. Properties of conditional order statistics have been studied exten-
sively in the literature; one may refer to Kochar and Xu [11] and Balakrishnan
et al. [1] and the references therein for further details. The result in Theorem
8 gives a new insight into the conditions for stochastically comparing the
lifetimes of two k-out-of-n systems with heterogeneous components.

Remark 3. Theorem 8 also has an interesting application in estimating the
probability associated with number of surviving components. For example, in
the case of a parallel system with n components, if the system is still working
at the end of the experiment, then we may be interested in the number of
surviving components. Theorem 8 would provide lower bounds for associated
probabilities in this case.

Since
Ri(t) = − log pi,

where Ri(t) is the cumulative hazard function, by Theorem 5, we readily
obtain the following result.

Theorem 9. Let X1, . . . , Xn be independent non-negative random variables
with survival functions F̄1(t), . . . , F̄n(t), and X∗

1 , . . . , X
∗
n be another set of

independent non-negative random variables with survival functions F̄ ∗
1 (t), . . . ,

F̄ ∗
n(t). If

(R1(t), . . . , Rn(t))
w
! (R∗

1(t), . . . , R
∗
n(t)) ,

where Ri(t) = − log F̄i(t), then, for any 1 ≤ k < l ≤ n,

P (Xn−k+1:n > t |Xn−l+1:n ≤ t ) ≥ P
(
X∗

n−k+1:n > t
∣∣X∗

n−l+1:n ≤ t
)
.
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Remark 4. The condition in Theorem 9 has also been used by Pledger and
Proschan [14] and Hu [8] for the stochastic comparison of two k-out-of-n
systems, but the result obtained here is a stronger one.

Let us now consider the special case of proportional hazard rates model, which
is commonly used in survival and reliability analyses. Under this model, the
cumulative hazard rates may be expressed as

Ri(t) = λiR(t), Ri(t) = λ∗
iR(t),

where R(t) is some baseline cumulative hazard function. Then, the following
result holds.

Corollary 1. Let Xi (i = 1, . . . , n) be independent non-negative random
variables with survival functions F̄i(t) = e−λiR(t), and X∗

i (i = 1, . . . , n)
be another set of independent non-negative random variables with survival
functions F̄ ∗

i (t) = e−λ∗
i R(t). Then, if

(λ1, . . . , λn)
w
! (λ∗

1, . . . , λ
∗
n) ,

we have, for any 1 ≤ k < l ≤ n,

P (Xn−k+1:n > t |Xn−l+1:n ≤ t ) ≥ P
(
X∗

n−k+1:n > t
∣∣X∗

n−l+1:n ≤ t
)
.

4.3 Software Testing

While testing softwares for faults, it would be impractical to test all possible
inputs, which necessitates the selection of a sample for testing purposes. Two
common sampling schemes are stratified and simple random sampling. It
has been shown by Boland et al. [3], [4], that, under certain conditions, the
number of faults discovered under stratified sampling is greater than that
under random sampling in terms of various stochastic orders. In this section,
we shall use our results from the preceding section to provide some further
discussion in this direction.

Assume that the testing domain of the software is divided into k non-
overlapping subdomains. Let di denote the size of the ith subdomain and Fi

denote the number of failure causing inputs within the ith subdomain. Then,

θi =
Fi

di

corresponds to the failure rate in the ith subdomain (i = 1, . . . , k). Let Xi

be the number of faults found in a random sample of size ni taken with
replacement from the ith subdomain, for i = 1, . . . , k. Evidently, Xi is a
Binomial(ni, θi) random variable, for i = 1, . . . , k, and then X =

∑k
i=1 Xi is

the total number of faults found under the stratified sampling. Next, let Y

denote the number of faults found in a random sample of size n =
∑k

i=1 ni
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taken with replacement from the entire input domain. In this situation, the
distribution of Y is clearly Binomial(n, θ).

Then, Boland et al. [3] showed that

X ≥lr Y ⇐⇒ X ≥hr Y ⇐⇒ θ ≤ θ̄h, (8)

X ≤lr Y ⇐⇒ X ≤hr Y ⇐⇒ θ ≥ θ̄ch,

where θ̄h =
n∑k

i=1

ni

θi

and θ̄ch = 1− n∑k
i=1

ni

1− θi

. They also established that

X ≥st Y ⇐⇒ θ ≤ θ̄g, (9)

X ≤st Y ⇐⇒ θ ≥ θ̄cg,

where θ̄g =
(∏k

i=1 θ
ni

i

)1/n

and θ̄cg = 1−
(∏k

i=1(1 − θi)ni

)1/n

.

Using Theorem 5, we can establish the following two theorems, which
generalize and strengthen the results in (8) and (9) due to Boland et al. [3].

Theorem 10. Let Xi be Binomial(ni, θi) random variables and X∗
i be an-

other set of independent Binomial(n∗
i , θ

∗
i ) random variables, for i = 1, . . . , k.

If there exists some permutation π to make the vectors n = (n1, . . . , nk),
n∗ = (n∗

1, . . . , n
∗
k), θ = (θ1, . . . , θk) and θ∗ = (θ∗1 , . . . , θ∗k) all to be in the

descending order, then
(

1
θ1
, . . . ,

1
θk

)
w
!
(

1
θ∗1
, . . . ,

1
θ∗k

)

and
(n1, . . . , nk)!m(n∗

1, . . . , n
∗
k)

imply
X ≥lr X

∗,

where X =
∑k

i=1 Xi as before and X∗ =
∑k

i=1 X
∗
i .

Proof. Assume that n1 ≥ n2 ≥ . . . ≥ nk (n∗
1 ≥ n∗

2 ≥ . . . ≥ n∗
k). Since

(
1
θ1
, . . . ,

1
θk

)
w
!
(

1
θ∗1
, . . . ,

1
θ∗k

)

implies

⎛
⎜⎜⎝ 1
θ1
, . . . ,

1
θ1︸ ︷︷ ︸

n1

, . . . ,
1
θk

, . . . ,
1
θk︸ ︷︷ ︸

nk

⎞
⎟⎟⎠

w
!

⎛
⎜⎜⎜⎝

1
θ∗1

, . . . ,
1
θ∗1︸ ︷︷ ︸

n1

, . . . ,
1
θ∗k

, . . . ,
1
θ∗k︸ ︷︷ ︸

nk

⎞
⎟⎟⎟⎠ ,
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for θ1 ≥ θ2 ≥ . . . ≥ θn (θ∗1 ≥ θ∗2 ≥ . . . ≥ θ∗n) (see Lemma 2.2 of Zhao and
Balakrishnan [19]), and

(n1, . . . , nk)!m(n∗
1, . . . , n

∗
k)

implies
⎛
⎜⎜⎜⎝

1
θ∗1
, . . . ,

1
θ∗1︸ ︷︷ ︸

n1

, . . . ,
1
θ∗k

, . . . ,
1
θ∗k︸ ︷︷ ︸

nk

⎞
⎟⎟⎟⎠

w
!

⎛
⎜⎜⎜⎝

1
θ∗1

, . . . ,
1
θ∗1︸ ︷︷ ︸

n∗
1

, . . . ,
1
θ∗k

, . . . ,
1
θ∗k︸ ︷︷ ︸

n∗
k

⎞
⎟⎟⎟⎠ ,

by Lemma 2.5 of Zhao and Balakrishnan [19], the required result follows from
Theorem 5. �

Using similar arguments, the following result can also be established.

Theorem 11. Let Xi be a set of independent Binomial(ni, θi) random vari-
ables and X∗

i be another set of independent Binomial(n∗
i , θ

∗
i ) random vari-

ables, for i = 1, . . . , k. If there exists some permutation π to make the vectors
n = (n1, . . . , nk), n∗ = (n∗

1, . . . , n
∗
k), θ = (θ1, . . . , θk) and θ∗ = (θ∗1 , . . . , θ

∗
k)

all to be in the descending order, then

(− log(θ1), . . . ,− log(θk))
w
! (− log(θ∗1), . . . ,− log(θ∗k))

and
(n1, . . . , nk)!m(n∗

1, . . . , n
∗
k)

imply
X ≥rh X∗.

We shall now present some examples to illustrate these results.

Example 1. Suppose there exist different strata with parameters as listed in
Table 1.

Table 1. Parameters of different strata for Example 1

(n1, n2, n3, n4) (θ1, θ2, θ3, θ4)

X (20, 30, 40, 50) (0.05, 0.10, 0.20, 0.25)
Y (25, 25, 40, 50) (0.05, 0.10, 0.10, 0.20)
Z (35, 35, 35, 35) (0.09, 0.09, 0.09, 0.09)

Observe that(
1

0.05
,

1
0.10

,
1

0.20
,

1
0.25

)
w
!
(

1
0.05

,
1

0.10
,

1
0.10

,
1

0.20

)
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and
(20, 30, 40, 50)!m(25, 50, 25, 40).

Then, from Theorem 1, it follows that

X ≥lr Y.

Similarly, since
(

1
0.05

,
1

0.10
,

1
0.10

,
1

0.20

)
w
!
(

1
0.09

,
1

0.09
,

1
0.09

,
1

0.09

)

and
(25, 25, 40, 50)!m(35, 35, 35, 35),

we also have from Theorem 1 that

Y ≥lr Z.

Example 2. Suppose there exist different strata with parameters as listed in
Table 2. For convenience, we shall use the same values of n’s as given in
Table 1, but with difference θ’s.

Table 2. Parameters of different strata for Example 2

(n1, n2, n3, n4) (θ1, θ2, θ3, θ4)

X (20, 30, 40, 50) (0.05, 0.10, 0.20, 0.25)
Y (25, 25, 40, 50) (0.05, 0.125, 0.20, 0.20)
Z (35, 35, 35, 35) (0.125, 0.125, 0.125, 0.125)

Since

(− log(0.05),− log(0.10),− log(0.20),− log(0.25))
w
! (− log(0.05),− log(0.125),− log(0.20),− log(0.20)),

by Theorem 11, it follows that

X ≥rh Y.

Similarly, since

(− log(0.05),− log(0.125),− log(0.20),− log(0.20))
w
! (− log(0.125),− log(0.125),− log(0.125),− log(0.125)),

Theorem 11 readily implies that

Y ≥rh Z.
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Summary. As an alternative to the multivariate normal distribution we have
dealt with a wider class of distributions, including the normal, that considers
slightly different tail behavior than the normal tail. This is the multivariate
exponential power family of distributions with a kurtosis parameter to give
the possible forms of the distributions. To measure distribution deviations
the Kullback-Leibler divergence will be used as an asymmetric dissimilarity
measure from an information-theoretic basis. Thus, a local quantitative de-
scription of the non-normality could be established for joint distributions in
this family as well as the impact this perturbation causes in the marginal and
conditional distributions.

1 Introduction

The multivariate normal distribution is traditionally used as a model for
multivariate data in applications. However, this assumption may be doubtful
in many real data analysis and it demands a wider class of distributions than
the normal to be handled. Our choice is the multivariate exponential power
family of distributions presented in [5] as a generalization of the multivariate
normal family in that a new parameter, β, is introduced, as an exponent
(see (1) below), which governs the kurtosis, and so the sharpness, of the
distribution; for β = 1 we have the normal distribution, thus this parameter
represents the disparity of an exponential power distribution from the normal
distribution.

The multivariate exponential power family is also a generalization of the
univariate one (see [15] and [1, p. 157]) and can be included in the class of
Kotz type distributions (see [4, p. 69] and [13]), which, in its turn, is a subset
of the more general class of elliptical distributions (see a survey on these in
[7]) Also, a matrix generalization of the exponential power distribution can
be found in [6].
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This distribution can be used to modelize multidimensional random phe-
nomena with distributions having higher or lower tails than those of the
normal distribution. Besides, the use of this distribution can robustify many
multivariate statistical procedures. The multivariate exponential power dis-
tribution has been used to obtain robust models for nonlinear repeated mea-
surements [10], to modeling dependencies among responses, as an alternative
to models based upon the multivariate t distribution, and also to obtain
robust models for the physiology of breathing. [2] use the multivariate ex-
ponential power distribution, as a heavy tailed distribution, in the field of
speech recognition.

In this paper we evaluate the effect of this source of non-normality on the
joint distributions and the corresponding marginal and conditional distribu-
tions for a specific partition. To measure distribution deviations, the Kullback-
Leibler (KL) divergence will be used as an asymmetric dissimilarity measure
from an information-theoretic basis. Thus, a local quantitative description of
the non-normality can be established for joint distributions in this family as
well as the impact this perturbation causes in the marginal and conditional
distributions. This approach could be useful in problems where, given a model
for the joint distribution, the interest is focussed in the distribution of a sub-
set of variables given some values of the remaining ones. Such situations occur,
among others, when we deal with Gaussian Bayesian networks for which the
output is the conditional distribution of the variables of interest given fixed
values of the evidential variables and a sensitivity analysis to non-normality is
performed to prove the robustness and accuracy of the inferences.

The paper is organized as follows. In Section 2 the multivariate exponential
power family is presented, highlighting some probabilistic characteristics to
be handled in later sections. Section 3 is devoted to describe the impact of
non-normality on the probabilistic structures of a random vector. The paper
ends with conclusions in Section 4.

2 On the Multivariate Exponential Power Distributions

Next, we summarize the most important features of this family of distribu-
tions. An absolutely continuous random vector X = (X1, . . . , Xn)′ is said to
have a power exponential distribution if its density has the form

f(x;μ,Σ, β) = k |Σ|−
1
2 exp

{
−1

2
(
(x− μ)′ Σ−1 (x− μ)

)β
}
, (1)

with k =
nΓ( n

2 )
π

n
2 Γ(1+ n

2β )21+ n
2β
, where (μ,Σ, β) ∈ (Rn,S, (0,∞)) , S being the

set of (n× n) positive definite symmetric matrices, then, we write X ∼

EPn (μ,Σ, β). The parameters μ and Σ are location and scale parameters.
The parameter β is a shape parameter, as the kurtosis depends only on it.
Figures 1-3 show the graphs of the density EP2 (0, I2, β) for the values 6, 1,
1/2 of β.
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It can be pointed that as β increases the sharpness diminishes; for β going
to infinity, (1) tends to be uniform in the ellipsoid (x− μ)′ Σ−1 (x− μ) and
also when β goes to 0 the pick narrows infinitely and (1) tends to the improper
density constant in R

n.

2.1 Some Related Distributions

Let X ∼ EPn (μ,Σ, β) . If β = 1, then X has a normal distribution: X ∼

Nn (μ,Σ) . In any case, X has an elliptical distribution: X ∼ En(μ,Σ, g) (in
the sense given in [7]) with g (t) = exp

{
− 1

2 t
β
}
.

An exponential power distribution EPn (μ,Σ, β) is a scale mixture of nor-
mal distributions (see [8]) in the strict sense (namely, with respect to a prob-
ability distribution function) if β ∈ (0, 1]. If we exclude the normal case, that
is, if β ∈ (0, 1) , then

f(x;μ,Σ, β) =
∫ ∞

0

Nn

(
x;μ, v2Σ

)
dHβ(v), (2)

where Nn

(
x;μ, v2Σ

)
is the normal density with mean μ and covariance

matrix v2Σ, and Hβ is the distribution function having density

hβ(v) =
21+ n

2 − n
2β Γ

(
1 + n

2

)
Γ
(
1 + n

2β

) vn−3Sβ

(
v−2; 21− 1

β

)
,

where Sβ ( · ;σ) means the density of the (positive) stable distribution having
characteristic function (see [14, p. 8])

ϕ(t) = exp
{
−σβ |t|β e−i π

2 βsign(t)
}

.

For β = 1 (the normal case) (2) holds, of course, Hβ being the distribution
function degenerate in 1. For β ∈ (1,∞), the exponential power distribution
EPn (μ,Σ, β) is a scale mixture of normal distributions too, as all the ellip-
tical distributions are (see [3]), but only in a wider sense, since in this case
function Hβ in (2) is like a distribution function in (0,∞) , but it is not a
nondecreasing function.

2.2 Probabilistic Characteristics

If X ∼ EPn (μ,Σ, β), its characteristic function is

ϕX(t) =
n

Γ
(
1 + n

2β

)
2

n
2β

exp (it′μ)
∫ ∞

0

Ψn

(
r
√

t′Σt
)
rn−1 exp

{
−1

2
r2β

}
dr,

where Ψ1(x) = cosx and Ψn(x) = Γ ( n
2 )

π
1
2 Γ ( n−1

2 )

∫ π

0
exp {ix cos θ} sinn−2 θdθ, for

n > 1. Besides,
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E[X] = μ,

V ar[X] =
2

1
β Γ

(
n+2
2β

)

nΓ
(

n
2β

) Σ,

γ1[X] = 0,

γ2[X] = n2
Γ
(

n+4
2β

)
Γ
(

n
2β

)
(
Γ
(

n+2
2β

))2 − n(n− 2),

where γ1 and γ2 are the asymmetry and kurtosis coefficients as shown in
[12, p. 31].

Figure 4 shows the kurtosis coefficient as a function of β for n = 1 (dotted
line), 2, 3, 5 and 7, supporting the previous comments about the monotony
relation between kurtosis and the non-normality coefficient in this family.

0 1 2 3 4 5 6

0

10

20

ß

n=1
n=2

n=3

n=5

n=7

Fig. 4. Kurtosis coefficient as a function of β

2.3 Marginal and Conditional Distributions and Regression

The marginal and conditional distributions are elliptical. But the regression
function is linear, as in the normal case. Specifically, let X ∼ EPn (μ,Σ, β)
and make X = (X′

(1),X
′
(2))

′, with X(1) = (X1, . . . , Xp)′ and X(2) =
(Xp+1, . . . , Xn)′, with p < n; analogously make μ = (μ′

(1),μ
′
(2))

′ and

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
, where Σ11 is a (p× p) matrix. Then X(1) has an ellip-

tical distribution: X(1) ∼ Ep(μ(1),Σ11, g(1)), where
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g(1)(t) =
∫ ∞

0

w
n−p

2 −1 exp
{
−1

2
(t + w)β

}
dw.

The distribution of X(2) conditional to X(1) = x(1) is elliptical too.
(
X(2)

∣∣X(1)

= x(1)

)
∼ En−p

(
μ(2.1),Σ22.1, g(2.1)

)
, with

μ(2.1) = μ(2) + Σ21Σ−1
11

(
x(1) − μ(1)

)
,

Σ22.1 = Σ22 −Σ21Σ−1
11 Σ12,

g(2.1)(t) = exp
{
−1

2
(
t+ q(1)

)β
}

,

where q(1) =
(
x(1) − μ(1)

)′
Σ−1

11

(
x(1) − μ(1)

)
.

3 The Effects of Deviations from Normality

Now, we are interested in the effects of small changes in the parameter β of the
EPn (μ,Σ, β) distribution taking as a reference the one with β0 = 1, that, as
pointed above, corresponds to a normal distribution with parameters μ and
Σ. When β is close to β0 = 1, that is, β = β0 + δ with δ representing a small
deviation from normality, the Taylor expansion leads to the approximation

DKL(f, f (δ)) ≈ 1
2
Fβ(1)δ2 , (3)

being f the normal density, f (δ) the perturbed density and Fβ(1) the Fisher
information with respect to β in β0 = 1. The same problem can be formulated
in terms of the marginal and conditional distributions for a fixed partition of
the random vector X. From now on, our goal is both analytical and graphical
description of the function (3).

3.1 Joint Distributions

Let f (x) be a density function of the family EPn (μ,Σ, β0 = 1), that is a
normal density Nn (μ,Σ) and f (δ) (x) be the perturbed density
EPn (μ,Σ, β = 1 + δ), then the KL divergence between these densities can be
calculated using that, if X ∼Nn (μ,Σ), the quadratic form
(X− μ)′ Σ−1 (X− μ) is distributed as a chi-square distribution with n de-
grees of freedom. Specifically, since

DKL(f, f (δ)) = Ef

[
log

f (X)
f (δ) (X)

]
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it follows

DKL(f, f (δ)) = log
2

n
2(1+δ)Γ

(
n

2(1+δ)

)

2
n
2 Γ

(
n
2

)
(1 + δ)

− 1
2
{Ef

[
(X− μ)′ Σ−1 (X− μ)

]

− Ef

[(
(X− μ)′ Σ−1 (X− μ)

)1+δ
]
}

that is

DKL(f, f (δ)) = log
2

n
2(1+δ) Γ

(
n

2(1+δ)

)

2
n
2 Γ

(
n
2

)
(1 + δ)

− 1
2

(
n−

2(1+δ)Γ
(

n
2 + (1 + δ)

)
Γ
(

n
2

)
)

(4)

According to this result, the divergence between joint densities depends on
the dimension of the random vector n and the perturbation δ applied to
the reference normal distribution. Figure 5 illustrates the relation (4) when
δ is small and, consequently, the approximation (3) holds. Observe that
there is a monotone behavior with respect to the dimension n with a faster
growth for high dimensions. From a local point of view, Figure 5 confirms the
approximation (3).

Fig. 5. KL divergence of the joint distributions for n = 4, 8, 12
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3.2 Conditional Distributions

Now we focus on the analysis of conditional distributions sensitivity to small
perturbations of the parameter β. Using previous notation it follows

f
(δ)
2.1

(
x(2) | x(1)

)
=

=k1 |Σ22.1|−
1
2 exp−1

2

{[(
x(2) − μ(2.1)

)′
Σ−1

22.1

(
x(2) − μ(2.1)

)
+ q1

](1+δ)
}

,

being

k1 =
Γ
(

n−p
2

)
π

n−p
2
∫∞
0

t
n−p

2 −1 exp
{
− 1

2 (t+ q1)
(1+δ)

}
dt

and consequently the KL divergence is [11]

DKL

(
f2.1, f

(δ)
2.1

)
= log

∫∞
0

t
n−p

2 −1 exp
{
− 1

2 (t+ q1)
(1+δ)

}
dt

2
n−p

2 Γ
(

n−p
2

)

− 1
2

⎡
⎣n− p− q(1+δ)+ n−p

2
1

2
n−p

2

U (a, b, x)

⎤
⎦ ,

where U (a, b, x) is the Confluent Hypergeometric Function calculated in

a =
n− p

2
, b = 2 + δ +

n− p

2
, x =

q1

2
.

Figure 6 shows the KL divergence, as a function of δ, for the conditional dis-
tributions corresponding to selected values of the q1 distribution: the mean
and the 10th and 90th quantiles. In this setting the divergence is affected
by the dimension of X, the dimension of the conditioning random vector
X(1) and the particular value of the conditioning variables through the Ma-
halanobis distance to its mean. As it was expected, the KL divergence has a
quadratic appearance compatible with Equation (3) for δ close to zero. From
a statistical point of view, a larger variability is found for distributions with
lighter tails than the normal. Also, for the chosen values (mean and quantiles)
of the q1 distribution, the KL divergence functions are monotone and their
relative position are directly related to the ratio p/n.

3.3 Marginal Distributions

A similar approach holds for the case of marginal distributions. However,
deriving an exact expression for the KL divergence using analytical methods
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Fig. 6. KL divergence of the conditional distributions: n = 4, 8 ; p/n = 0.25, 0.75

appears to be a complicated task. Here, Monte Carlo simulation data were
used to approximate the value of this measure, under a variety of conditions.

DKL

(
f1, f

(δ)
1

)
= log

2
n

2(1+δ)− p
2Γ

(
n

2(1+δ)

)
Γ
(

n−p
2

)
Γ
(

n
2

)
(1 + δ) exp

(
p
2

)

− logEχ2
p

[∫ ∞

0

w
n−p

2 −1e−
w
2 e−

1
2 (χ2

p+w)δ

dw

]

Figure 7 shows the simulation results obtained for different values of n, p
and δ, using 50,000 replications of the random variable χ2

p for each case. In
general the behavior observed is similar to that of the previous sections.

On the other hand, it is well known that the divergences between the
different distributions we have considered are related as follows

DKL(f, f (δ)) = Ef1

[
DKL

(
f2.1, f

(δ)
2.1

)]
+ DKL

(
f1, f

(δ)
1

)
(5)
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Fig. 7. KL divergence of the marginal distributions: n = 4, 8 ; p/n = 0.25, 0.50, 0.75

and therefore the divergence between marginal densities would also be ap-
proximated from the previous identity with Monte Carlo simulations to esti-
mate the conditional KL divergence mean.

Finally, Equation (5) suggests the definition of a relative divergence mea-
sure for the conditional and marginal distributions in terms of the ratios

Ef1

[
DKL

(
f2.1, f

(δ)
2.1

)]

DKL(f, f (δ))
,
DKL

(
f1, f

(δ)
1

)

DKL(f, f (δ))
.

A recent approach to this problem is presented in [9].

4 Conclusions

In this paper we considered the multivariate exponential power family of
distributions as an alternative model when normality assumption was doubt-
ful. The Kullback-Leibler divergence measure is used as a tool for explor-
ing the influence of deviations from multivariate normal in joint, conditional
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and marginal distributions. The obtained expressions for divergence measures
provide quadratic sensitivity functions both globally and locally. Moreover,
it results that this effect depends on the dimension of the vectors involved
as well as the values of the conditioning variables through the Mahalanobis
distance to its mean, for the case of conditionals.
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Summary. In defining the skew-normal distribution, [1] introduced a method
of modifying symmetric distributions to obtain their skewed counterparts. In
this paper, the authors present moment properties of the distribution ob-
tained by adding skewness to the double exponential distribution, i.e. the
Skewed Double Exponential(SDE) distribution ([6]). The authors also provide
characterization results of distributions in the SDE family of distributions and
present several interesting corollaries of the characterization results.

1 Introduction

There are many methods of introducing skewness in statistical models. [2]
introduced the skew-normal distribution, i.e fY (y) = 2φX(y)ΦX(λy) where
φ and Φ represent the standard normal probability density function (p.d.f.)
and cumulative distribution function (c.d.f.) respectively. Although credit is
given to Azzalini, [8] had already used this distribution in studying twin
data. [5] have given a characterization of this distribution. Azzalini however,
introduced a way to “skew” symmetric distributions by considering similar
products of p.d.f.’s and c.d.f.’s of symmetric distributions. [4] and [3] use
this approach to skew a host of symmetric distributions. [6] introduced the
Skewed Double Exponential(SDE) family of distributions and provided a
stochastic representation for the SDE family of distributions. In this paper,
we present moment properties and provide characterizations for the SDE

family of distributions.

2 Definition and Moment Results

The definition of a SDE distribution is given based on the following result.

Lemma 1. Let f be a density function symmetric about 0, and G an ab-
solutely continuous distribution function such that G′ is symmetric about 0.
Then,
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2f(y)G(λy) (−∞ < y <∞) (1)

is a density function for any real λ.

Definition 1. A random variable Y is said to have a skewed double expo-
nential distribution with parameter λ, denoted SDE(λ), if for −∞ < y <∞,
its probability density function is given by

g(y, λ) = 2f(y)F (λy) (2)

where f and F are respectively the density and the c.d.f of a DE(0, 1)
distribution.

Using Definition 1, we have that, for λ > 0, the density of a SDE(λ) distri-
bution is

g(y, λ) =

{
1
2e

(1+λ)y when y < 0
e−y − 1

2e
−(1+λ)y when y ≥ 0

and, for λ < 0, is

g(y, λ) =

{
ey − 1

2e
(1−λ)y when y < 0

1
2e

−(1−λ)y when y ≥ 0

[4] gave a simple formula for this density. It is given by

g(y, λ) =
1
2
e−|y|(1 + sign(λy)(1− e−|λy|) , y ∈ R.

Note 1. Since the distribution function F is symmetric, we notice that
F (−λx) = 1 − F (λx) and hence, we can restrict our attention to the case
when λ > 0.

Graphs of the SDE(λ) density function for different values of λ are given in
Figure 1 and Figure 2.

2.1 Moment Generating Function

In this section, we give the moment generating function (m.g.f) of the
SDE(λ) model defined above and also an expression for the kth moment.

If the random variable Y is distributed as Y ∼ SDE(λ), with λ > 0 and
−(1 + λ) < t < min(1, (1 + λ)), then it has m.g.f given by

MY (t) =
1

2(1 + λ + t)
+

1
1− t

− 1
2(1 + λ− t)

, (3)

and it’s kth moment is given by

μk =
(−1)kk!

2(1 + λ)(k+1)
+ k!− k!

2(1 + λ)(k+1)
, k = 1, 2, . . . (4)
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Fig. 1. Graphs of the SDE(λ) density function for λ = 0, 0.01, 0.1, 0.5

Table 1. Expected and simulated values of skewness of SDE(λ) distribution in
10,000 repetitions

Sample size n
λ 10 50 100 500 1000 5000 True Value

0.01 0.0232 0.0303 0.0315 0.0437 0.0363 0.0413 0.0410
0.1 0.1356 0.2573 0.2717 0.3031 0.3129 0.3132 0.3151
0.5 0.3807 0.6703 0.7429 0.8116 0.8203 0.8287 0.8294
1 0.5058 0.9184 1.0151 1.1131 1.1270 1.1411 1.1423
5 0.8641 1.4963 1.6378 1.8036 1.8242 1.8399 1.8462
10 0.9311 1.5956 1.7389 1.9039 1.9247 1.9479 1.9516

2.2 Skewness and Kurtosis

We calculate the skewness and kurtosis of a SDE random variable in this
section using the moment generating function and moments of all orders
obtained in the previous section.

If a random variable Y has a SDE(λ) distribution with λ > 0, then from
the expression for the kth moment, the skewness(ν1) and kurtosis(ν2) are
given by
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ν1 =
2((λ + 1)6 − 1)

((1 + λ)4 + 2(1 + λ)2 − 1)3/2
, (5)

and

ν2 =
9(1 + λ)8 + 4(1 + λ)6 + 6(1 + λ)4 − 4(1 + λ)2 − 1

((1 + λ)4 + 2(1 + λ)2 − 1)2
. (6)
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Fig. 2. Graphs of the SDE(λ) density function for λ = 0.75, 1, 5, 10

Table 2. Expected and simulated values of kurtosis of SDE(λ) distribution in
10,000 repetitions

Sample size n
λ 10 50 100 500 1000 5000 True Value

0.01 3.0378 4.8104 5.2656 5.8865 5.9307 5.9965 5.9989
0.1 3.0784 4.8276 5.1501 5.7175 5.8584 5.9082 5.9371
0.5 2.9908 4.7905 5.2820 5.6482 5.7464 5.8242 5.8442
1 2.9341 4.8349 5.5630 6.0072 6.1129 6.2686 6.2552
5 3.0932 5.8098 6.6780 7.9184 8.1481 8.3000 8.4012
10 3.1244 6.0746 7.0944 8.3197 8.5705 8.8287 8.8080
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We make a few observations about the skewness and kurtosis based on
their derivatives.

1. The skewness is an increasing function in λ.
2. The kurtosis is also an increasing function in λ irrespective of the sign of

λ as long as |λ| >
√

5/2− 1.

We conduct a simulation study to verify the rate of convergence of the sample
skewness and kurtosis to the respective population parameters. The results
of that study are summarized in Table 1 and Table 2.

The above tables show that the sample skewness and kurtosis converge to
their population parameters at a rate of

√
n.

3 Characterization Results for the SDE(λ) Family of
Distributions

From the definition of a SDE(λ) distribution given by (2) in definition 1, the
density of |Y | is

g|Y |(y) = 2f(y)[F (−λy) + F (λy)]
= 2f(y)
= e−|y|, (7)

since the DE(0, 1) distribution is symmetric about the origin. Hence, |Y | has
an Exp(1) distribution.

Now consider a large family P of distributions that contain the family of
SDE(λ) distributions for all λ ∈ R. A random variable Y is said to have a
distribution belonging to P if |Y | has an Exp(1) distribution. It is trivial to
see that Y has a distribution in P if and only if Y has a density given by

gY (y) = e|y| h(y) , −∞ < y <∞, h(y) ≥ 0, (8)

such that h(y) + h(−y) = 1. ([9])
As shown above, the family SDE(λ), λ ∈ R is a subfamily of P . If Y has

a SDE(λ) distribution, then h(y) = F (λy).
If X and Y are two independent random variables with densities fX(x) =

e−|x| h1(x), h1(x) ≥ 0 and fY (y) = e−|y| h2(y), h2(y) ≥ 0 of P , then |X | and
|Y | are i.i.d. Exp(1) and |X |+ |Y | has a Gam(2, 1) distribution.

The joint distribution of X and Y is

fX,Y (x, y) = e−(|x|+|y|) h1(x)h2(y) −∞ < x, y <∞ (9)

and the joint distribution of X and T = |X |+ |Y | is

fX,T (x, t) = e−t h1(x)h2(t− |x|) + e−t h1(x)h2(−t + |x|)
= e−t h1(x) − t < x < t , t > 0.
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Therefore, the conditional density of X given T = t is

fX|T (x|t) =
h1(x)
t

, −t < x < t, (10)

with h1(x) + h1(−x) = 1 and h1(x) ≥ 0. The following result is a characteri-
zation of a distribution in P .

Theorem 1. Let X and Y be two independent random variables with finite
second moment with E[|X |] = 1. Then the distributions of X and Y are in P
if and only if the conditional density of X given T = |X |+ |Y | = t is

fX | |X|+|Y |=t(x|t) =
h1(x)
t

, for − t < x < t, h1(x) + h1(−x) = 1, h1(x) ≥ 0.

(11)

Proof. We need only to prove the reverse implication. Assume that the con-
ditional density of X |T = t is given by (11). Then,

E[X |T = t] =
∫ t

−t

|x| h1(x)
t

dx

=
∫ t

0

x
h1(x) + h1(−x)

t
dx

=
t

2
(12)

and

E[X2|T = t] = E[|X |2|T = t]

=
∫ t

−t

x2 h1(x)
t

dx

=
t2

3
. (13)

From (12) and (13), multiply both sides by eisT and taking expectations,
the following system of differential equations in characteristic functions of
ϕ|X|(s) and ϕ|Y |(s) is obtained.

E[|X |eisT ] = E[
t

2
eisT ] (14)

E[|X |2eisT ] = E[
t2

3
eisT ] (15)

(14) gives
ϕ′
|X|(s) ϕ|Y |(s) = ϕ|X|(s) ϕ′

|Y |(s) (16)
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(15) gives

2ϕ′′
|X|(s) ϕ|Y |(s) = 2ϕ′

|X|(s) ϕ
′
|Y |(s) + ϕ|X|(s) ϕ′

|Y |(s) (17)

From (16), we get that ϕ|X|(s) = ϕ|Y |(s) = ϕ(s). Substituting in (17), we
obtain

ϕ′′(s)ϕ(s) = 2ϕ′2(s). (18)

The general solution to (18) is

ϕ(s) =
1

D − Cs

From ϕ(0) = 1 and ϕ′(0) = E[|X |] = 1, we get that D = 1, C = i. Hence,

ϕ(s) =
1

1− is
, −∞ < s <∞,

and |X | and |Y | are i.i.d. according to an Exp(1) distribution. Therefore X

has the density e−|x| h1(x) and Y has the density e−|y| h2(y) where h1(x) is
given by the hypothesis of the theorem and h2(y) is an arbitrary function
with h2(y) ≥ 0, h2(y) + h2(−y) = 1.

Theorem 2. Let Y1, . . . , Yn be i.i.d. according to a distribution F with a
finite second moment and E[|Y1|] = 1. Then F is a distribution of P with
density e−|y| h(y), −∞ < y <∞, h(y) + h(−y) = 1 if and only if

fY1|T (y1|t) =
(t− |y1|)n−2

tn−1
h(y1), −t < y1 < t

where T =
n∑

i=1

|Yi|.

Proof. It is trivial that E[|Y1|
∣∣T = t] =

t

n
and

E|Y 2
1 |T = t] = E[|Y |2

∣∣T = t]

=
∫ t

−t

(n− 1)|y1|2
(t− |y1|)n−2

tn−1
h(y1) dy1

=
∫ t

0

(n− 1)y2 (t− y)n−2

tn−1

(
h(y1) + h(−y1)

)
dy

=
∫ t

0

(n− 1)y2 (t− y)n−2

tn−1
dy

=
2t2

n(n + 1)

Using the same technique as in the proof of Theorem 1, the same differential
equation in the characteristic function ϕ of |Y | is obtained,
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ϕ′′ϕ = 2ϕ′2.

Hence, |Y1|, . . . , |Yn| are i.i.d. according to an Exp(1) distribution and there-
fore F has the density e−|y| h(y), −∞ < y < ∞, h(y) + h(−y) = 1 with
h(y) ≥ 0.

The following results are obtained directly from Theorem 2.

Corollary 1. Let Y1, . . . , Yn be i.i.d. according to a distribution F with a
finite second moment and E[|Yj |] = 1. Then F has the density e−|y| h(y),
−∞ < y <∞, h(y) + h(−y) = 1, h(y) ≥ 0 if and only if

f
Y1,...,Yn−1

∣∣T (y1, . . . , yn−1

∣∣t) =

(n− 1)!
n∏

i=1

h(yi)

t!
, : 0 <

n∑
i=1

|Yi| < t,

where T =
n∑

j=1

|Yj |.

Corollary 2. Let Y1, . . . , Yn be i.i.d. according to a distribution F with a
finite second moment and E[|Yj |] = 1. Then F is a SDE(λ) distribution if
and only if

f
Y1

∣∣T (y1

∣∣t) = (n− 1)
(t− |y1|)n−2

tn−1

[1 + sign(λy1)(1− e−|λy1|

2

]
,

where T =
n∑

j=1

|Yj |, −t < y1 < t.

Corollary 3. Let Y1, . . . , Yn be i.i.d. according to a distribution F with a
finite second moment and E[|Yj |] = 1. Then F is a SDE(λ) distribution if
and only if

f
Y1,...,Yn−1

∣∣T (y1, . . . , yn−1

∣∣t) =
(n− 1)!

t!

n−1∏
j=1

[1 + sign(λyj)(1 − e−|λyj|

2

]
,

where T =
n∑

j=1

|Yj | and 0 <

n∑
j=1

|Yj | < t.

4 Conclusion

[6] introduced the SDE family of distributions and provided certain basic
properties as well as stochastic representations of the SDE family of distri-
butions. [7] provides estimation results for the SDE family of distributions.
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This paper presents moment properties of the SDE family of distribu-
tions along with some interesting results based on the characterization of
the SDE family of distributions. The starting point for the SDE family of
distributions is the DE(0, 1) distribution. We can extend the SDE family of
distributions to a location-scale family of distributions by starting with the
DE(η, θ) distribution.
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Generalized Beta Generated-II Distributions∗
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Summary. A family of univariate distributions, generated by beta random
variables, has been proposed by Jones [9]. This broad family of univariate
distributions has received considerable attention in the recent literature since
it possesses great flexibility while fitting symmetric as well as skewed models
with varying tail weights. This paper introduces and studies a new broad class
of univariate distributions which is defined by means of a generalized beta
distribution and includes Jones family as a particular case. Some properties of
the proposed class of distributions are discussed. These properties include its
moments, generalized moments, representation and relationship with other
distributions, expressions for Shannon entropy. Two examples are given and
the paper is completed with some conclusions.

Keywords: beta generated distributions, income distributions, Shannon en-
tropy, maximum entropy principle.

1 Introduction

The last decade is characterized by an increasing effort of the researchers to
introduce and study broad classes of univariate distributions which compose
useful characteristics of two or more univariate distributions. These mod-
els extend well known univariate distributions and provide great flexibility
in modelling data in practice. The beta-normal distribution, introduced by
Eugene et al. [6], is the initial effort in this direction, to the best of our
knowledge. Two years later, Jones proposed, in a discussion paper in TEST
[9], the class of “beta-generated distributions”, which is defined as follows.
For a continuous distribution function F with density f , the family of uni-
variate distributions generated by F , and the parameters α, β > 0, has its
pdf as [9]

g
(B)
F (x;α, β) =

1
B(α, β)

f(x) {F (x)}α−1 {1− F (x)}β−1
, (1)

∗ This paper is devoted to the memory of Maria Luisa Menéndez, an exceptional
scientist and an outstanding human personality. The long standing friendship and
research collaboration with Marisa it was an inexhaustible source of knowledge
and of humaneness to me.
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for α > 0 and β > 0,where B(α, β) =
∫ 1

0 tα−1(1−t)β−1dt is the complete beta
function. If the parameters α and β are positive integers, the beta-generated
model in (1) is the distribution of the i-th order statistic in a random sample
of size n from distribution F , where i = α and n = α+β−1. The above family
of distributions can be, moreover, obtained by means of a transformation of an
initial random variable Y with beta distribution Beta(α, β), α > 0 and β > 0.
In particular, if Y ∼ Beta(α, β), then the density of the random variable
X = F−1(Y ) is given by (1). This representation of X helps to generate
random numbers from (1) while the case α = β = 1 corresponds to the well-
known quantile function representation X = F−1(U), where U ∼ U(0, 1),
which is used in order to generate data from a distribution F . The family (1)
has been recently studied by Zografos and Balakrishnan [24]. Following the
terminology of Arnold in the discussion of Jones’ [9] paper, the distribution
F will be referred to as the “parent distribution”, in the sequel.

It is clear that special choices of the parent model F , lead to specific
models generated by the classic beta distribution. Hence, if F is the c.d.f.
of the normal distribution, then (1) leads to the beta normal distribution of
Eugene et al. [6], if F is the c.d.f. of the exponential distribution, then (1) is
the beta exponential distribution of Nadarajah and Kotz [19] and so on. The
next table summarizes the models obtained from (1) for special choices of the
parent c.d.f. F , where the second ingredient in the name of the distribution
refers to the parent model F .

Table 1. Specific beta generated distributions

Name of the distribution Authors / Year
Beta-Normal Eugene et al. [6]
Beta-Logistic Brown et al. [5] and Olapade [20]
Beta-Frechet Nadarajah and Gupta [17]
Beta-Gumbel Nadarajah and Kotz [18]
Beta-Exponential Nadarajah and Kotz [19]
Beta-Gamma Kong et al. [12]
Beta-Weibull Lee et al. [13] and Zografos [23]
Beta-Pareto Akinsete et al. [3]
Beta-Power Zografos and Balakrishnan [24]
Beta-Generalized Half Normal Pescim et al. [22]
Beta-Generalized Exponential Barreto-Souza et al. [4]
Beta-Burr XII Paranaiba et al. [21]

Several models can be obtained as particular cases of the beta gener-
ated distributions of the above table. We mention, as an example, the Ku-
maraswamy distribution which is introduced recently by Jones [10]. This is
obtained as a particular case of the beta-power function distribution with
density 1

B(α,β)kθ
kαxkα−1

{
1− (θx)k

}β−1, 0 < x < 1
θ , for θ = 1 and α = 1
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(cf. Zografos and Balakrishnan [24]). Another example is the exponentiated
exponential distribution of Gupta and Kundu [7], which is a particular case
of the beta-exponential distribution of Nadarajah and Kotz [19].

This paper concentrates on generalized beta generated distributions which
include as special or limiting cases all of the above models. The generalized
beta generated distributions are defined in Section 2 in a manner quite similar
to that of the definition of the beta generated distributions. To be precise, the
classic beta distribution which is the kernel of the beta generated distribution
is replaced by generalized beta models, considered in the work of McDonald
and his colleagues (cf. McDonald [14], McDonald and Xu [15], McDonald and
Ransom [16]). This work is motivated by the fact that generalized beta dis-
tributions include, as particular cases, models that are suitable to formulate
econometric data with possibly skewed and leptokurtic error distributions.
Hence, it is expected that the introduced here generalized beta distributions,
generated by a parent distribution F , will provide great flexibility in mod-
elling data in practice. Section 3 studies some properties of the introduced
model while some specific examples are presented in the Section 4. The final
section provides with some conclusions and problems for a future work.

2 The Model: Distribution and Density Functions

Generalized beta distributions have been discussed in the papers by McDon-
ald and his colleagues, mentioned above, as income distributions and they
include as particular cases several univariate distributions. A nice presenta-
tion of the generalized beta distributions is provided in the book by Kleiber
and Kotz [11]. Following McDonald and Xu [15], a random variable Y is de-
scribed by a generalized beta distribution (hereafter referred to as GB) if its
density is given by

gGB(y) =
αyαp−1[1− (1− c)(y/b)α]q−1

bαpB(p, q)[1 + c(y/b)α]p+q
, 0 < yα <

bα

1− c
, (2)

and zero otherwise, with 0 ≤ c ≤ 1 and α, b, p, q positive.
Following terminology in Kleiber and Kotz [11], for c = 0, we obtain the

generalized beta distribution of the first kind (hereafter referred to as GB1)
with density

gGB1(y) =
αyαp−1[1− (y/b)α]q−1

bαpB(p, q)
, 0 < y < b. (3)

For c = 1, the GB distribution is reduced to the generalized beta of the
second kind (GB2) with density

gGB2(y) =
αyαp−1

bαpB(p, q)[1 + (y/b)α]p+q
, 0 < y <∞. (4)
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If α = b = 1 and c = 0, then the GB distribution is reduced to the classic
beta distribution Beta(p, q).

In order to define the generalized beta generated distributions by parent
F , consider a parent distribution function F with respective density f and let
Y denotes a random variable with generalized beta distribution and density,
given by (2). Then it can be easily seen that the density function of the
random variable X = F−1(Y ), is the following:

gII
GBG(x) =

α

bαpB(p, q)
f(x)

[F (x)]αp−1[1− (1− c)(F (x)/b)α]q−1

[1 + c(F (x)/b)α]p+q
, (5)

for F−1(0) < x < F−1
(

b
(1−c)1/α

)
and zero otherwise, with 0 ≤ c ≤ 1 and

α, b, p, q positive. The above distribution will be named Generalized Beta
Generated distribution by parent F and it will be hereafter referred to as
GBG-II. It can be seen, by using successive suitable transformation on the
resulting integrals, that gII

GBG(x) is indeed a density function, that is, it
integrates to one.

Remark 1. Two particular Generalized Beta Generated distributions by par-
ent F can be obtained from gII

GBG, given in (5), depending on whether c = 0
or c = 1. For c = 0, the density (5) leads to the Generalized Beta Generated
distributions of the first kind (GBG-1) by parent F , with density,

g
(1)
GBG(x) =

α

bαpB(p, q)
f(x)[F (x)]αp−1[1− (F (x)/b)α]q−1, (6)

for F−1(0) < x < F−1 (b). If b = 1, then g
(1)
GBG is the distribution introduced

recently by Alexander and Sarabia [2]. For c = 1 we obtain the Generalized
Beta Generated distributions of the second kind (hereafter referred to as
GBG-2) by parent F , with density,

g
(2)
GBG(x) =

α

bαpB(p, q)
f(x)

[F (x)]αp−1

[1 + (F (x)/b)α]p+q
, (7)

for F−1(0) < x < F−1 (∞) .

The cumulative distribution function (c.d.f.), denoted by GII
GBG, of the GBG-

II distribution with density (5) is defined by the integral

GII
GBG(x) =

∫ x

F−1(0)

gII
GBG(t)dt.

Using the transformation y = F (t) in the above integral and then the trans-
formation z = (y/b)α, in the resulting integral, we get

GII
GBG(x) =

1
B(p, q)

∫ (F (x)/b)α

0

zp−1[1− (1− c)z]q−1(1 + cz)−(p+q)dz. (8)
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Following exactly the same procedure, it can be shown that the c.d.f. GGB

of the generalized beta distribution of McDonald and Xu [15], with density
(2), is given by

GGB(x) =
1

B(p, q)

∫ (x/b)α

0

zp−1[1− (1− c)z]q−1(1 + cz)−(p+q)dz.

Observe that
GII

GBG(x) = GGB(F (x)). (9)

Remark 2.
(i) It has been just proved that the c.d.f. of the GBG-II distribution coin-

cides with the respective distribution function of the GB distribution, at
the point F (x). Exactly the same behavior it is true between Jones’ [9]
distribution and the classic beta distribution.

(ii)The c.d.f. of the GB distribution with density (2) is not available in a
closed form or, at least, in the form of a series representation, to the
best of our knowledge. The same is also true for the GBG-II distribution,
taking into account equation (9).

(iii) Although it is not possible to obtain the c.d.f. of the GBG-II distribu-
tion in a closed form or in the form of a series representation, it can be
easily obtained, by using (8), the c.d.f. of the GBG-1 and GBG-2 distribu-
tions with densities given by (6) and (7), respectively. Indeed, for c = 0,
equation (8) becomes,

GII
GBG(x) = G

(1)
GBG(x) =

1
B(p, q)

∫ (F (x)/b)α

0

zp−1(1− z)q−1dz.

Taking into account that the incomplete beta function Br(p, q) is defined
by the integral Br(p, q) =

∫ r

0 zp−1(1−z)q−1dz, it is immediate to see that

G
(1)
GBG(x) = 1

B(p,q)B(F (x)/b)α(p, q)

= (F (x)/b)αp

pB(p,q) 2F1(p, 1− q; p + 1; (F (x)/b)α),

where 2F1 is used to denote the hypergeometric function (cf. Abramowitz
and Stegun ([1], pp. 263, 556)). It can be also written as an incomplete
beta function ratio

G
(1)
GBG(x) = Iz(p, q), z = (F (x)/b)α,

and Iz(p, q) = Bz(p, q)/B(p, q), the incomplete beta function ratio. It is
interesting to note that for b = 1, the c.d.f. G(1)

GBG coincides with the
similar one of Alexander and Sarabia [2].

In a similar manner, for c = 1, equation (8) leads to the c.d.f. of the
GBG-2 distribution, with density given by (7). This is given by

G
(2)
GBG(x) =

1
B(p, q)

∫ (F (x)/b)α

0

zp−1(1 + z)−(p+q)dz.
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Based on equation (6.3) of Kleiber and Kotz ([11], p. 184),

It(p, q) =
1

B(p, q)

∫ t

0

zp−1(1 + z)−(p+q)dz, t > 0

and by analogy with the GBG-1 case, discussed above, it can be written
as an incomplete beta function ratio

G
(2)
GBG(x) = Iz(p, q), z = (F (x)/b)α.

3 Properties of the GBG-II Distribution

This section is devoted to the study of some properties of the GBG-II distri-
bution, namely, its moments, generalized moments, representation and rela-
tionship with other distributions, the Shannon entropy.

3.1 Moments

If the random variableX follows the GBG-II distribution, then for k a positive
integer, the moments are defined by

E
(
Xk

)
=
∫ F−1(b/(1−c)1/α)

F−1(0)

xkgII
GBG(x)dx

and using successive transformations: y = F (x), z = (y/b)α and ω = (1−c)z,
c 	= 1, to the respective integrals, we obtain that

E
(
Xk

)
= 1

B(p,q)(1−c)p−1

∫ 1

0

(
F−1

(
bω1/α

(1−c)1/α

))k

ωp−1(1− ω)q−1

×
(
1 + c

1−cω
)−(p+q)

dω,

for c 	= 1 and k a positive integer. This integral is not simplified further.
However, it is possible to obtain the moments of the GBG-II distribution in
a closed form, in some specific cases. For instance, if c = 0 and b = 1 the
above formula is reduced to the moments of GBG-1 distribution and they
are derived in formula (10) of Alexander and Sarabia [2].

3.2 Generalized Moments

For positive integers k and � we are interested in generalized moments of
a random variable X with GBG-II distribution which are defined by the
expected value

Mk,� = EgII
GBG

{
(F (X))k[1− (1− c)(F (X)/b)α]�

}
. (10)
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Using the successive transformations: y = F (x), z = (y/b)α and ω = (1−c)z,
c 	= 1, to the respective integrals, we obtain that

Mk,� = bk

(1−c)p+(k/α)B(p,q)

×
∫ 1

0 ωp+(k/α)−1(1− ω)q+�−1
(
1 + c

1−cω
)−(p+q)

dω,
(11)

for 0 ≤ c < 1. Using the definition of the hypergeometric function (cf.
Abramowitz and Stegun ([1], p. 558)), we obtain

Mk,� =
bkB(p + (k/α), q + �)
(1− c)p+(k/α)B(p, q) 2F1(p+q, p+(k/α); p+(k/α)+q+�; c/(1−c)).

It can be easily seen, from (11), that for c = 0 we can have in a closed form
the generalized moments. In particular,

Mk,� =
bk

B(p, q)
B(p + (k/α), q + �).

The above equation, for b = 1, leads to the equation (13) of Alexander and
Sarabia [2].

Remark 3.
(i) Although the classic moments are not available in an explicit form, we

can have in an analytic form, at least for c = 0, the generalized moments
defined by the formula (10). This permits the development of an alterna-
tive to the method of moments estimation procedure, as it is described in
Zografos and Balakrishnan [24].

(ii)For � = 0, Eq. (10) defines generalized moments of the form EgII
GBG{

(F (X))k
}
, which are quite analogous to the classic moments E(Xk) of

any distribution, for k a positive integer. Given that the first four moments
E(Xk), k = 1, 2, 3, 4, are used to define Pearson’s coefficients of skewness
and kurtosis of a distribution, it would be of interest to be investigated
the role of the analogous generalized moments Mk = EgII

GBG

{
(F (X))k

}
in studying the skewness and kurtosis behavior of the respective GBG-II
distributions.

3.3 Representation of the GBG-II Distribution

When a new distribution is proposed it should includes a theoretical rep-
resentation result to connect the new model with existing distributions. It
is easy to see that the GBG-II distribution is represented by means of the
classic beta distribution as follows.

Let Y be a random variable which is distributed according to a classic beta
distribution Beta(p, q), with density 1

B(p,q) t
p−1(1−t)q−1, 0 < t < 1. Consider

also a parent distribution function F with respective density f . Then it can
be easily seen that the random variable
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X = F−1

{
b

(
Y

1− cY

)1/α
}
, with 0 ≤ c ≤ 1 and α, b > 0,

is distributed according to a GBG-II distribution with density (5). This rep-
resentation can be used to generate random numbers from the new dis-
tribution. In this direction, someone has to generate random numbers y

from a Beta(p, q) distribution. Let t = b
(

y
1−cy

)1/α

and compute F−1(t).

If x = F−1(t), then x is a random number from the GBG-II distribution
with density (5).

3.4 Shannon Entropy

The role of Shannon entropy HSh is seminal in many fields in science and
engineering. In probability and statistics Shannon entropy can be also consid-
ered as a descriptive quantity which provides with useful information about
the shape of a distribution. The applications of this universal quantity are
extended from the formulation of stochastic dependence between two or more
random variables to the development of goodness of fit tests. The maximum
entropy method introduced by Jaynes [8] in statistical physics has become a
popular procedure for the estimation of the unknown distribution in finance
and econometrics. Due to its importance all the recent contributions on new
distributions include explicit expressions of their Shannon entropies.

Shannon entropy of the GBG-II distribution is defined by

HSh(gII
GBG) = −

∫
gII

GBG(x) ln gII
GBG(x)dx

and it is analyzed as follows

HSh(gII
GBG) = − ln

α

bαpB(p, q)
− I1 − (αp− 1)I2 − (q − 1)I3 + (p + q)I4,

where Im, m = 1, 2, 3, 4, are the integrals

I1 =
∫

(ln f(x))gII
GBG(x)dx,

I2 =
∫

(lnF (x))gII
GBG(x)dx,

I3 =
∫
{ln[1− (1− c)(F (x)/b)α]} gII

GBG(x)dx,

and
I4 =

∫
{ln (1 + c(F (x)/b)α)} gII

GBG(x)dx.
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If we consider the density function

h(ω) =
1

B(p, q)(1 − c)p
ωp−1(1− ω)q−1

(
1 +

c

1− c
ω

)−(p+q)

, (12)

with 0 < ω < 1, p > 0, q > 0 and 0 ≤ c < 1, then it can be seen, after heavy
algebraic manipulations, that

I1 = (1 − c)Eh

{
ln
[
f

(
F−1

(
bW 1/α

(1− c)1/α

))]}
,

I2 =
1
α
Eh {lnW} −

(
1
α

ln(1 − c)− ln b
)
,

I3 = Eh {ln(1−W )} ,
and

I4 = Eh

{
ln
(

1 +
c

1− c
W

)}
,

where W denotes a random variable with density h(ω), given by (12). Based
on the above expressions for the integrals Im, m = 1, 2, 3, 4, it can be easily
seen, after some manipulations, that the Shannon entropy HSh(gII

GBG) of the
GBG-II distribution is given by

HSh(gII
GBG) = − ln α

bαpB(p,q) + αp−1
α ln 1−c

bα

−Eh

{
ln
[
f
(
F−1

(
bW 1/α

(1−c)1/α

))]}
− α−1

α Eh {lnW}
+HSh(h)− ln (B(p, q)(1 − c)p) ,

(13)

where W denotes a random variable with density h(ω), defined by (12).

Remark 4.
(i) The mean value Eh {lnW} can be expressed in a series form as follows:

Eh {lnW} = − 1

B(p, q)(1 − c)p

∞∑
ν=1

1

ν
B(p, ν +q) 2F1(p+q, p; p+q+ν; c/(1−c)).

For c = 0, it is easily obtained that Eh {lnW} = (d/dp) lnB(p, q).
(ii)Equation (12) defines the density function of a generalized beta distribu-

tion which is not included, to the best of our knowledge, in the literature
and it needs therefore an independent study. For c = 0 it reduces to the
classic beta distribution.

(iii) The Shannon entropy of the GBG-1 distribution with density given by
(6), can be obtained by using (13) for c = 0. After some algebraic manip-
ulation it can be shown that

HSh(g
(1)
GBG) = − ln α

bαpB(p,q)
− α−1

α
[Ψ(p) − Ψ(p + q)] + (p + q − 2)Ψ(p + q)

−(p − 1)Ψ(p) − (q − 1)Ψ(q) − Eh

{
ln
[
f
(
F−1

(
bW 1/α

))]}
,

where W ∼ Beta(p, q). For F (x) = x, 0 < x < 1 and b = 1 the above
formula coincides with the formula of Proposition 1 of Alexander and
Sarabia [2].
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It is clear that Shannon entropy of the GBG-II distribution is not obtained
in a closed form. It is also observed that it is factorized into two parts. The
first is related to the parameters of the model and the other one is related to
the parent distribution F . Moreover, all the members of the family of GBG-
II distributions are discriminated between each other by means of the term
Eh

{
ln
[
f
(
F−1

(
bW 1/α/(1− c)1/α

))]}
, which depends on the parent distri-

bution F and the parent density f . This term plays a key role to introduce
a test for discriminating between the members of the GBG-II distribution,
in a manner similar to that which is developed in Zografos and Balakrishnan
[24].

4 Examples

It is quite clear that the GBG-II distribution, with density (5), is the basis
for the definition of a multitude of univariate distributions for special cases
of the parent model F and special choices of the parameters of gII

GBG. In this
section two broad models and their relationship with existing distributions
will be defined.

4.1 Generalized Beta Generated by Weibull (GBW)

Let the parent distribution F is the two parameter Weibull distribution with
scale parameter λ > 0 and shape parameter γ > 0. The parent density is
f(x) = γλγxγ−1 exp (−(λx)γ) and F (x) = 1 − exp (−(λx)γ), for x > 0.
Based on (5), the density of the GBW distribution is given by

g
(II)
GBW (x) = α

bαpB(p,q)γλ
γxγ−1 exp (−(λx)γ) [1− exp (−(λx)γ)]αp−1

×{1− (1− c) [(1− exp (−(λx)γ)) /b]α}q−1

×{1 + c [(1− exp (−(λx)γ)) /b]α}−(p+q)
,

for 0 < x < 1
λ

{
− ln

(
1− b

(1−c)1/α

)1/γ
}

and 0 ≤ c < 1, with α, b, p, q positive.

This is a broad family leading to several models. For γ = 1, it is obtained
the generalized beta exponential distribution (GBED) with density

g
(II)
GBEG(x) = α

bαpB(p,q)λ exp (−λx) [1− exp (−(λx))]αp−1

×{1− (1 − c) [(1− exp (−(λx))) /b]α}q−1

×{1 + c [(1− exp (−(λx))) /b]α}−(p+q)
,

for 0 < x < 1
λ

{
− ln

(
1− b

(1−c)1/α

)}
and 0 ≤ c < 1, with α, b, p, q positive.

This model is not appeared in the literature, to the best of our knowledge.
For c = 0 and b = 1 this last distribution leads to the beta generalized
exponential distribution which has been introduced and studied recently by
Barreto-Souza et al. [4]. If, in addition, p = q = 1, then the GBED is reduced
to the exponentiated exponential family of Gupta and Kundu [7].
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4.2 Generalized Beta Generated by Kumaraswamy (GBK)

Let the parent distribution is the Kumaraswamy distribution (cf. Jones [10])
with positive shape parameters α1 and β1 and density and distribution func-
tions, given by

f(x) = α1β1x
α1−1(1− xα1)β1−1, 0 < x < 1,

F (x) = 1− (1 − xα1)β1 , 0 < x < 1.

The Generalized Beta Generated by Kumaraswamy (GBK) distribution has
density

g
(II)
GBK(x) = α

bαpB(p,q)α1β1x
α1−1(1− xα1)β1−1

[
1− (1 − xα1)β1

]αp−1

×
{
1− (1 − c)

[(
1− (1− xα1 )β1

)
/b
]α}q−1

×
{
1 + c

[(
1− (1− xα1)β1

)
/b
]α}−(p+q)

,

for 0 < x <

[
1−

(
1− b

(1−c)1/α

)1/(β1−1)
]1/α1

and 0 ≤ c < 1, with α, b, p, q

positive. For c = 0 and b = 1 it is reduced to the density

g
(II)
GBK(x) =

αα1β1

B(p, q)
xα1−1(1− xα1)β1−1

[
1− (1− xα1)β1

]αp−1

×
{

1−
[
1− (1− xα1 )β1

]α}q−1

, (14)

for 0 < x < 1. It is a quite general model which leads to Kumaraswamy
distribution, the beta distribution, the beta Burr XII distribution, introduced
recently by Paranaiba et al. [21], etc. Plots of the above density for specific
parameter values are given in the next figures.

Fig. 1. Plot of the density of GBK for selected values of α1 and β1
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Figure 1 corresponds to the density (14) for α = 1, p = 3 and q = 3, while
α1 = 3/2, β1 = 1/2 (solid line), α1 = 1/2, β1 = 3/2 (dash),α1 = 3/2, β1 = 7/2
(cross) and α1 = 3/2, β1 = 3/2 (box). It is clear that the parameters α1 and
β1 are related to the skewness of the GBK distribution with density (14).

Fig. 2. Plot of the density of GBK for selected values of p and q

Figure 2 is the plot of (14) for α = 1, α1 = 3/2 and β1 = 7/2, while
p = 3, q = 2 (solid line), p = 4, q = 3 (dash) and p = 5, q = 4 (dash and
point). It is clear that the parameters p and q are related to the kurtosis of
the GBK distribution with density (14).

5 Conclusions

A broad family of univariate distributions is defined in this paper. This family
is created on the basis of a generalized beta distribution which was proposed
by McDonald and Xu [15]. The introduced model includes several univariate
distributions, as particular or limiting cases, with different shapes. Given that
the proposed family is supported on a bounded domain it would be probably
a useful model to formulate size phenomena, such as the distribution of the
income. Some properties of the introduced model have been studied in this
paper. However, much more work is in order, related to the study of other
properties and the development of statistical inference on the parameters of
the GBG-II distribution. The investigation of the usefulness of the proposed
model to formulate and analyze real data is also an appealing problem.
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Summary. Testing for homogeneity in the product-multinomial distribu-
tion, where the hypotheses are hierarchical, uses maximum likelihood esti-
mation and the loglikelihood ratio statistic G2. We extend these ideas to the
power-divergence family of test statistics, which is a one-parameter family
of goodness-of-fit statistics that includes the loglikelihood ratio statistic G2,
Pearson’s X2, the Freeman-Tukey statistic, the modified loglikelihood ratio
statistic, and the Neyman-modified chi-squared statistic. Explicit minimum-
divergence estimators can be obtained for all members of the one-parameter
family, which allows a straightforward analysis of divergence. An analysis of
fourteen retrospective studies on the association between smoking and lung
cancer demonstrates the ease of interpretation of the resulting analysis of
divergence.

Keywords: analysis of divergence, loglikelihood ratio statistic, Pearson’s
X2, power-divergence family.

1 Introduction

The search for similarities among independent groups of experimental units
underlies many scientific investigations. Assume that the experimental units
within each group are distributed among a set of categories according to a
discrete probability distribution. For example, suppose there are r indepen-
dent groups (or strata) and that each experimental unit in a group falls into
one of c categories according to some discrete probability distribution. For
instance, such assumptions are often appropriate when categorical data are
collected at several locations. Our objective in this paper is to present statis-
tical methods for determining which groups are homogeneous, that is, which
groups have similar distributions of experimental units among the categories.
∗ I would like to acknowledge the fruitful collaboration in this area with my friend

and colleague, Leandro Pardo. His wife, Marisa, was my friend too, and she will
be greatly missed. This article was prepared in her memory.
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Suppose that a random sample of experimental units of size ni is drawn
from the probability distribution of the c categories in the i-th group. Then,
the number of experimental units belonging to each of the categories, divided
by ni, yields an estimate of the true probability distribution (i = 1, . . . , r).

To discover which, if any, subsets of the r groups exhibit homogeneity,
we proceed as follows. We assume that the product-multinomial distribution
provides an appropriate probability model for the sampling scheme; that is,
the r multinomial distributions of order c, corresponding to the r different
groups, are assumed independent.

We hypothesize that there is homogeneity among the distributions corre-
sponding to a specified subset of the r groups. For each group in the specified
subset, we could obtain, via maximum likelihood, an estimate (under the
corresponding hypothesis) of the distribution. Finally, to test the fit of the
estimated distributions, we could compare the appropriate loglikelihood ratio
statistic to a chi-squared distribution with a suitable number of degrees of
freedom.

Cressie and Read [6] have shown that the loglikelihood ratio statistic G2,
Pearson’s chi-squared statistic X2, the Freeman-Tukey statistic, the modified
loglikelihood ratio statistic, and the Neyman-modified chi-squared statistic
are members of a one-parameter family of goodness-of-fit statistics called the
power-divergence family. Cressie and Pardo [3] extend this further to the fam-
ily of φ-divergence goodness-of-fit statistics, of which the power-divergence
family is an important subfamily.

Predicated on the equivalence of maximizing likelihood and minimizing
the loglikelihood ratio statistic for the Poisson, multinomial, and product-
multinomial distributions, [6], [4], and [5] consider estimation procedures
based on minimizing members of the power-divergence family. In particu-
lar, for the product-multinomial, [13] obtain closed-form expressions for the
minimum-power-divergence estimators. Using such expressions, we show how
to test hierarchical hypotheses of homogeneity in the product-multinomial
distribution. Further, we show that under mild assumptions the correspond-
ing test statistics have limiting central chi-squared distributions and are
asymptotically independent.

In Section 2, we define and give properties of the power-divergence family.
Section 3 is devoted to developing hierarchical testing procedures for ho-
mogeneity in the product-multinomial distribution. Then, in Section 4, we
give an example with data to illustrate these ideas. Conclusions are given in
Section 5.

2 The Power-Divergence Family

Define the positive orthant of k-dimensional Euclidean space as,

R
k
+ ≡ {z ∈ R

k : zi > 0 , i = 1, . . . , k} , (1)
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and the power-divergence as in[13] as,

2Iλ(x : y) ≡ (2/{λ(λ + 1)})
k∑

i=1

{xi[(xi/yi)λ − 1] + λ(yi − xi)} ;

−∞ < λ <∞ , (2)

where x ∈ R
k

+, y ∈ R
k
+ for λ ≥ 0, x ∈ R

k
+, y ∈ R

k

+ for λ < 0, and R
k

+ ≡ {z ∈
R

k : zi ≥ 0, i = 1, . . . k} is the closure of R
k
+. The cases λ = 0 and −1 are

defined by the limits, λ→ 0 and λ→ −1, respectively, yielding:

2I0(x : y) ≡ 2
k∑

i=1

{xi log(xi/yi) + (yi − xi)} , (3)

and

2I−1(x : y) ≡ 2
k∑

i=1

{yi log(yi/xi) + (xi − yi)} , (4)

where ω · log(ω) ≡ 0, for ω = 0.
Next, define the (k − 1)-dimensional simplex,

Δk ≡
{
γ ∈ R

k :
k∑

i=1

γi = 1 and γi > 0 , i = 1, . . . , k

}
. (5)

Consequently,

2Iλ(p : q) ≡ (2/{λ(λ+ 1)})
k∑

i=1

pi[(pi/qi)λ − 1] ; −∞ < λ <∞ , (6)

where p ∈ Δk, q ∈ Δk for λ ≥ 0, p ∈ Δk, q ∈ Δk for λ < 0, and Δk ≡ {γ ∈

R
k :

k∑
i=1

γi = 1, γi ≥ 0, i = 1, . . . , k} is the closure of Δk. Cressie and Read [6]

call the set of divergences, {2Iλ(p : q) : −∞ < λ <∞}, the power-divergence
family (with index λ).

Some properties of the power-divergence family ([6], [13]) include:

2Iλ(x : y) ≥ 0 , with equality if and only if x = y ; (7)
2Iλ(x : y) = 2I−(λ+1)(y : x) , for x,y ∈ R

k
+ ; (8)

2Iλ(x : y) is strictly convex in both x and y ; (9)
2Iλ(x : y) is continuous in both x and y ; (10)

2Iλ(x : y) ≡
k∑

i=1

hλ(xi, yi) , (11)
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where

hλ(xi, yi) ≡ (2/{λ(λ + 1)}){xi[(xi/yi)λ − 1] + λ(yi − xi)} , (12)
hλ(xi, yi) ≥ 0 , (13)

and

hλ(xi, yi) = 0 if and only if xi = yi . (14)

Property (7) indicates that the members of the power-divergence family
resemble distance functions, while (8) shows that the symmetry property
of a distance function holds only for the λ = −1/2 member of the
power-divergence family. (In fact, the λ = −1/2 member is the square of
a distance function, sometimes called Matusita’s distance or the Hellinger
distance.)

An additional property, which generalizes the recursivity and the strong
nonadditivity properties (e.g., [13], p. 111) and is especially useful when consid-
ering the product-multinomial distribution, is the following. Let {e1, . . . , ek}
represent the standard basis for R

k; that is, ei (i = 1, . . . , k) is the i-th column
of the k×k identity matrix Ik. Further, for i = 1, . . . , p ≤ k, define hi ≡

∑
j∈Si

ej ,

where Si ⊂ {1, . . . , k}, Si ∩ Si′ = ∅ for i 	= i′, and
p⋃

i=1

Si = {1, . . . , k}. Then,

letting H ≡ [h1, . . . ,hp], which is a k × p matrix, one obtains,

2Iλ(x : y) = 2Iλ(HT x : HT y)

+
p∑

i=1

(hT
i x)λ+1(hT

i y)−λ · 2Iλ(xi/hT
i x : yi/hT

i y) , (15)

where xi ≡ BT
i x, yi ≡ BT

i y, and the columns of Bi are those members of
the standard basis indexed by Si. Thus, Bi is a k× |Si| matrix, where |Si| is
the cardinality of Si (i = 1, . . . , p).

The one-parameter family of divergences given in (6) is now extended to
a one-parameter family of test statistics. Let X be a k-dimensional random

vector with nonnegative integer components where
k∑

i=1

Xi = n, and n is

fixed. Define, π ≡ E(X/n); then π is a discrete probability distribution. The
power-divergence family of test statistics is defined as,

2nIλ(X/n : π̂) = (2/{λ(λ + 1)})
k∑

i=1

Xi[(Xi/nπ̂i)
λ − 1] ; −∞ < λ < ∞ , (16)
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where π̂ is an estimate of π based on the data X. The family defined in (16)
contains many of the most common goodness-of-fit statistics. Upon letting
λ = 1, 0,−1/2,−1,−2, we obtain, respectively,

X2 =
k∑

i=1

(Xi − nπ̂i)2/nπ̂i (Pearson’s chi-squared, λ = 1) ,

CR2 = (9/5)
k∑

i=1

Xi((Xi/nπ̂i)2/3 − 1) (Cressie-Read, λ = 2/3) ,

G2 = 2
k∑

i=1

Xi log(Xi/nπ̂i) (loglikelihood ratio, λ = 0),

FT 2 = 4
k∑

i=1

(X1/2
1 − (nπ̂i)1/2)2 (Freeman-Tukey, λ = −1/2),

GM2 = 2
k∑

i=1

nπ̂i log(nπ̂i/Xi) (modified loglikelihood ratio, λ = −1),

NM2 =
k∑

i=1

(Xi − nπ̂i)2/Xi (Neyman-modified chi-squared, λ = −2).

An extension, particularly useful in the product-multinomial case, is obtained
as follows. Define,

X ≡

⎡
⎢⎣

X1

...
Xr

⎤
⎥⎦ , (17)

where, for i = 1, . . . , r, Xi is a c-dimensional random vector with nonnegative
components, ni = 1T

c Xi, ni is fixed, and 1c is a c-dimensional vector of ones.
Further, define πi ≡ E(Xi/ni), for i = 1, . . . , r, so that {πi : i = 1, . . . , r}
is a discrete probability distribution. Then, by (15), we obtain the following
equality between power-divergence test statistics:

2Iλ(X : μ̂) =
r∑

i=1

2niI
λ(Xi/ni : π̂i) , (18)

where π̂i is an estimate of πi based on the data X for i = 1, . . . , r, and
μ̂ ≡ (n1π̂

T
i , . . . , nrπ̂

T
r )T .

3 Minimum Power-Divergence Estimation and Testing
of Hierarchical Hypotheses

We now consider estimation procedures for the product-multinomial distribu-
tion. We shall apply these procedures to hierarchical testing for homogeneity
among the independent multinomials comprising the product-multinomial.
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Define,

X ≡

⎡
⎢⎣

X1

...
Xr

⎤
⎥⎦ , (19)

to be an rc-dimensional vector of nonnegative integers,where the c-dimensional
random vectors Xi, i = 1, . . . , r, are independent. Further, suppose X follows
the r-dimensional product-multinomial distribution of order cwithparameters,

n ≡

⎡
⎢⎣
n1

...
nr

⎤
⎥⎦ , (20)

and

π ≡

⎡
⎢⎣
π1

...
πr

⎤
⎥⎦ , (21)

where n is r-dimensional and π is rc-dimensional. We denote,

X ∼ Multr
c(n,π) ; (22)

observe that,

Pr(X = x) =
r∏

i=1

Pr(Xi = xi) , (23)

where, for each i = 1, . . . , r,

Pr(Xi = xi) ≡ (ni!/xi1! · · ·xic!)
c∏

j=1

π
xij

ij ; (24)

xij ≥ 0 for j = 1, . . . , c;
c∑

j=1

xij = ni; πij > 0 for j = 1, . . . , c; and
c∑

j=1

πij = 1.

Define the general null model for π to be,

H0 : π ∈ Π0 , (25)

where Π0 ⊆ Δr
c and

Δr
c ≡ {γ ∈ R

rc : γ = (γT
1 , . . . ,γ

T
r )T , γi ∈ Δc , i = 1, . . . , r} . (26)
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Now the method of maximum likelihood is equivalent to minimizing G2 (i.e.,
λ = 0) over π ∈ Π0 [2]. That is, find π̂ such that

G2(X : μ̂) ≡ 2I0(X : μ̂) = inf
π∈Π0

2I0(X : μ(π)) , (27)

where π̂ ≡ (π̂T
1 , . . . , π̂

T
r )T , μ(π) ≡ (n1π

T
1 , . . . , nrπ

T
r )T , μ̂ ≡ μ(π̂) and

2I0(X : μ(π)) =
r∑

i=1

2niI
0(Xi/ni : πi).

This leads to the natural generalization, namely, find π̂(λ) such that,

2Iλ(X : μ̂(λ)) ≡ inf
π∈Π0

2Iλ(X : μ(π)) ; −∞ < λ <∞ , (28)

where π̂(λ) ≡ (π̂(λ)T

1 , . . . , π̂(λ)T

r )T , μ(π) ≡ (n1π
T
1 , . . . , nrπ

T
r )T , μ̂(λ) ≡

μ(π̂(λ)), and 2Iλ(X : μ(π)) =
r∑

i=1

2niI
λ(Xi/ni : πi).

Then π̂(λ) (if it exists) is called the minimum power-divergence estimator
(MPE) based on the data X. If it exists, such an estimator is unique by the
strict convexity of Iλ.

Now consider testing for homogeneity among subsets of the r groups. That
is, consider hypotheses of the form:

H0 : πr0+1 = · · · = πr1 = π(1), . . . ,πrk−1+1 = · · · = πrk
= π(k) , (29)

where r0 = 0, rk = r, and π(i) ∈ Δc for i = 1, . . . , k ≤ r are unspecified. That
is, in (25), Π0 = {π ∈ Δr

c : πrj−1+1 = · · · = πrj , j = 1, . . . , k}. In (29), we
have assumed, without loss of generality, that the subscripts are consecutive
integers. Read and Cressie [13] show that the MPEs, π̂(1;λ)

, . . . , π̂(k;λ) of
π(1), . . . ,π(k), respectively, are for t = 1, . . . , k given by

π̂(t;λ)
s = zs(t;λ)/

c∑
j=1

zj(t;λ) ; s = 1, . . . , c , (30)

where zs(t;λ) ≡
[

rt∑
i=rt−1+1

ni(xis/ni)(λ+1)

]1/(λ+1)

; s = 1, . . . , c.

The following theorem establishes the asymptotic behavior of the mini-
mized power-divergence statistic under the model specified in (29).

Theorem 1. Suppose X ∼ Mult r
c (n,π) where π satisfies the null hypothesis

specified in (29); that is, π ∈ Π0. Define n ≡
r∑

i=1

ni, and suppose that ni/n→
γi, as n→∞, where 0 < γi <∞, for i = 1, . . . , r. Then,
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2Iλ(X : μ̂(λ)) D→χ2
(r−k)(c−1) , (31)

as n → ∞, where “ D→” denotes “convergence in distribution” and μ̂(λ) ≡
(n1π̂

(1;λ)T

, . . . , nr1π̂
(1;λ)T

, . . . , nrk−1+1π̂
(k;λ)T

, . . . , nrπ̂
(k;λ)T

)T .

Proof. See the Appendix. �

Next, consider a sequence of hypotheses H0,1, . . . , H0,m of the form,

H0,i : πr0,i+1 = · · · = πr1,i = πi(1), . . . ,

πrki−1,i+1 = · · · = πrki,i
= πi(ki) , (32)

for i = 1, . . . ,m, where the number of groups of equalities satisfies 1 ≤ km <

· · · < k1 ≤ r, r0,i = 0, and rki,i = r (i = 1, . . . ,m). Further, the groups
of equalities in H0,i are formed from those in H0,i−1 by combining groups
of equalities; hence, the sequence of hypotheses in (32) is hierarchical. Now,
(32) is of the form,

H0,i : π ∈ Π0,i , (33)

where

Π0,i ≡ {π ∈ Δr
c : πrj−1,i+1 = · · · = πrj,i , j = 1, . . . , ki} ; i = 1, . . . ,m , (34)

and Π0,m ⊂ · · · ⊂ Π0,1.
Next, define an analysis of divergence for the hierarchy of hypotheses given

in (33) as,

2Iλ(X : μ̂m(λ)) = 2Iλ(X : μ̂1(λ))

+
m∑

j=2

{2Iλ(X : μ̂j(λ))− 2Iλ(X : μ̂j−1(λ))} , (35)

where π̂i(λ) ≡ (π̂i(λ)T

1 , . . . , π̂i(λ)T

r )T denotes the MPE (index λ) of π under

H0,i, and μ̂i(λ) ≡ (n1π̂
i(λ)T

1 , . . . , nrπ̂
i(λ)T

r )T . Thus,

2Iλ(X : μ̂j(λ))− 2Iλ(X : μ̂j−1(λ)) ≥ 0 ,

since Π0,j ⊂ Π0,j−1.
The following theorem establishes the asymptotic distributional and in-

dependence properties of the terms in the analysis of divergence given in
(35).

Theorem 2. Assume X ∼ Mult r
c (n,π). Define n ≡

r∑
i=1

ni, and suppose that

ni/n→ γi, as n→∞, where 0 < γi <∞, for i = 1, . . . , r. Let H0,1, . . . , H0,m
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be the sequence of hierarchical hypotheses given in (35), and assume H0,i′ is
true (i.e., π ∈ Π0,i′). Then,

2Iλ(X : μ̂i(λ))− 2Iλ(X : μ̂j(λ)) D→ χ2
(kj−ki)(c−1) , (36)

as n → ∞, where 1 ≤ j < i ≤ i′ and kt is the number of sets of equal-
ities under H0,t (see (32)). Additionally, the differences 2Iλ(X : μ̂i2(λ)) −
2Iλ(X : μ̂i1(λ)) and 2Iλ(X : μ̂j2(λ))−2Iλ(X : μ̂j1(λ)) are asymptotically inde-
pendent central chi-squared random variables for 1 ≤ j1 < j2 ≤ i1 < i2 ≤ i′.

Proof. See the Appendix. �

4 Using an Analysis of Divergence for Testing
Homogeneity

Table 1 displays data obtained from fourteen independent studies assessing
the association between smoking and lung cancer ([7], [9]). These studies were
conducted in the United States and Northwestern Europe (i.e., England,
Finland, Germany, and the Netherlands). The sample proportions for the
fourteen studies are displayed in Table 2.

Table 1. Fourteen independent retrospective studies on the association between
smoking and lung cancer. [Source: [9], p. 167]

Control Patients Lung Cancer Patients
Study Non-Smokers Smokers Non-Smokers Smokers Total Country

1 14 72 3 83 172 Germany
2 43 227 3 90 363 Germany
3 19 81 7 129 236 Netherlands
4 54 246 4 724 1028 Finland
5 12 174 5 88 279 England
6 61 1296 7 1350 2714 England
7 114 666 8 597 1385 USA
8 81 534 18 459 1092 USA
9 27 106 3 60 196 USA

10 131 299 32 412 874 USA
11 636 1729 39 451 2855 USA
12 28 259 5 260 552 USA
13 125 397 12 70 604 USA
14 56 462 19 499 1036 USA
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Table 2. Sample proportions for the fourteen independent retrospective studies on
the association between smoking and lung cancer in Table 1

Control Patients Lung Cancer Patients
Study Non-Smokers Smokers Non-Smokers Smokers

1 0.081 0.419 0.017 0.482
2 0.118 0.625 0.008 0.248
3 0.081 0.343 0.029 0.547
4 0.052 0.239 0.004 0.704
5 0.043 0.624 0.018 0.315
6 0.022 0.477 0.002 0.497
7 0.082 0.481 0.006 0.431
8 0.074 0.489 0.016 0.420
9 0.138 0.541 0.015 0.306

10 0.150 0.342 0.037 0.471
11 0.223 0.606 0.014 0.158
12 0.051 0.469 0.009 0.471
13 0.207 0.657 0.020 0.116
14 0.054 0.446 0.018 0.482

We wish to determine which, if any, of the fourteen studies exhibit homo-
geneity. A common goal is to find a parsimonious aggregation, that is, a small
value for k in (29), of the independent multinomials. A general strategy is
to start by testing for homogeneity among all the independent multinomials
and then to separate them sequentially (in a hierarchical way). Consider the
following sequence of hierarchical hypotheses:

H0,i : π ∈ Π0,i ; i = 1, . . . , 5 , (37)

where

Π0,1 ≡ {π ∈ Δ14
4 : π7 = π8} ,

Π0,2 ≡ {π ∈ Δ14
4 : π1 = π2,π5 = π6,π7 = π8 = π9}

Π0,3 ≡ {π ∈ δ14
4 : π1 = π2,π5 = π6,π7 = · · · = π14} , (38)

Π0,4 ≡ {π ∈ Δ14
4 : π1 = · · · = π6,π7 = · · · = π14} ,

and

Π0,5 ≡ {π ∈ Δ14
4 : π1 = · · · = π14} .

Notice that Π0,5 ⊂ · · · ⊂ Π0,1, where H0,5 is the hypothesis of homogeneity
among all studies; H0,4 specifies homogeneity among the European studies
and among the US studies; H0,3 specifies homogeneity within countries; H0,2

specifies homogeneity within countries for the European studies and homo-
geneity for the nationwise US studies; and H0,1 specifies homogeneity for two
nationwide US studies.
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An analysis of divergence for H0,1, . . . , H0,5 is presented in Table 3. We
assume that the ratios of the independent multinomial sample sizes to the
total sample size have limiting values between 0 and 1, as the total sample
size goes to infinity; hence, from Theorem 2, we know that under the more
restrictive hypothesis H0,i, the statistic corresponding to testing the model
H0,i against the model H0,i−1, in the analysis of divergence, has an asymp-
totic central chi-squared distribution with degrees of freedom equal to the
degrees of freedom for the model H0,i minus the degrees of freedom for the
model H0,i−1. Notice in Table 3 that, among λ = −1/2, 0, 1/2, 2/3, and 1,
the parameters λ = 2/3 and λ = 1/2 produce intermediate values.

Based on Table 3, we would reject H0,i in favor of H0,i−1 for i = 5, 4, 3, and
2. That is, among H0,1, . . . , H0,5, the only viable candidate is H0,1. Observe
that the minimized power-divergence statistics corresponding to H0,1 (from
the 5th line of Table 3) have values in the range of 7.05 to 7.47. These
values are less than 7.81, the approximate 95% critical value obtained from
the χ2

3-distribution. Thus, applying Theorem 3.1, we may conclude that the
model H0,1 : π ∈ Π0,1 adequately describes the data; that is, US nationwide
studies 7 and 8 have similar distributions of smokers and non-smokers with
and without lung cancer, but the other studies exhibit inhomogeneity.

That hypotheses H0,5, . . . , H0,2 were rejected may seem somewhat sur-
prising since, in view of Table 2, many of the studies compared appear to
give similar proportions of subjects in the four categories. But, with sample
sizes {ni} often of the order of 103, slight differences in proportions become
important (in relation to the standard deviation of their differences).

Table 3. Analysis of divergence for λ = −1/2, 0, 1/2, 2/3, 1, corresponding to the
sequence of hypotheses specified in (37) and (38). The value in the last column is
the 0.95 quantile from the χ2 distribution based on the indicated degrees of freedom
(df).

λ
Source df -1/2 0 1/2 2/3 1 χ2

H0,5 vs. H0,4 3 726.45 652.77 600.51 587.60 568.12 7.81
H0,4 vs. H0,3 9 363.88 355.36 349.77 348.43 346.49 16.9
H0,3 vs. H0,2 15 1169.15 1111.61 1061.21 1046.22 1019.10 25.0
H0,2 vs. H0,1 9 86.10 87.55 89.32 89.89 90.92 16.9
2Iλ for H0,1 3 7.47 7.45 7.31 7.23 7.05 7.81

Total 39 2353.05 2214.74 2108.12 2079.37 2031.68

5 Conclusions

We have developed a method for hierarchical testing of homogeneity of proba-
bilities within the product-multinomial distribution. The concept of an analy-
sis of divergence and its use in testing a sequence of hierarchical homogeneity
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hypotheses were outlined. Further, under mild conditions, the terms in the
analysis of divergence were shown to have independent limiting chi-squared
distributions.

The example in Section 4 illustrates our methods. A recommendation has
been given in [6], [13] to use λ = 2/3, based on power calculations, compar-
isons of exact versus nominal levels for various hypothesis testing situations,
and the rate of convergence of moment approximations. Further, [1] rec-
ommends λ ∈ (2/3, 5/4) based on the small-sample coverage properties of
confidence intervals for the ratio of two binomial proportions. In addition,
[14] compared the choices λ = 0, λ = 2/3, and λ = 1, and recommended
either λ = 2/3 or λ = 1 based on small-sample comparisons for loglinear
models fitted to two- and three-dimensional contingency tables. Moreover,
[10] recommends λ = 2/3 or λ = 1 (with λ = 1 having a slight edge), based
on small-sample comparisons of loglinear models fitted to three-dimensional
contingency tables. However, closer scrutiny of Table IV in [10] reveals that
just the opposite is true ([13], p. 79). That is, λ = 2/3 has a slight edge over
λ = 1. Finally, [11] recommends λ = 2/3 or λ = 1/2 based on nominal versus
exact levels of confidence regions under the trinomial distribution, the rate at
which the exact levels approach the nominal levels for the confidence regions,
and the area of the confidence regions. In conclusion, we prefer to use the
analysis of divergence corresponding to λ = 2/3, rather than that associated
with G2 (i.e., λ = 0) or X2 (i.e., λ = 1), when testing hierarchical hypotheses
using an analysis of divergence such as in Table 3; see also [3].
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Appendix

In this section, the proofs of Theorems 1 and 2 are given. In order to facilitate
these proofs, we introduce some useful notation.

First, notice that H0 in (30) partitions I ≡ {1, . . . , r} into k sets I1, . . . , Ik;
that is,

Ii ≡ {ri−1 + 1, . . . , ri} ; i = 1, . . . , k , (39)

where Ii ∩ Ij = ∅, for i 	= j;
k⋃

j=1

Ij = I, 1 ≤ k ≤ r; r0 = 0; and rk = r.

Without loss of generality, (39) denotes the members of Ii (i = 1, . . . , k)
as consecutive integers.

Now, define

ψj ≡
∑
t∈Ij

(nt)1/2et ; j = 1, . . . , k, (40)

and

φj ≡
∑
t∈Ij

et ; j = 1, . . . , k , (41)

where {e1, . . . , er} is the standard basis for R
r. Then,

Dφj
ψi =

{
ψj , if i = j

0 , if i 	= j ,
(42)

and

Dφj
Dφi

=

{
Dφj

, if i = j

0 , if i 	= j ,
(43)

where Dx is the r × r diagonal matrix whose diagonal elements are given by
x ∈ R

r.
Further, define the r × r matrix Pj as,

Pj ≡ ψj(ψ
T
j ψj)

−1ψT
j ; j = 1, . . . , k . (44)

Then, for j = 1, . . . , k, Pj satisfies,

P 2
j = Pj , (45)

PT
j = Pj , (46)

PjPj′ = 0 , if j 	= j′ , (47)
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and

Dφj
Pj′ =

{
Pj , if j = j′

0 , if j 	= j′ . (48)

Recall, any matrix Pj satisfying (45) and (46) is a projection matrix. Now,
as n→∞,

(ψT
j ψj)

−1/2ψj → βj ; j = 1, . . . , k , (49)

where βj ≡
∑

t∈Ij

(γt/
∑

s∈Ij

γs)1/2et. Hence, as n→∞,

Pj → βjβ
T
j ≡ P ∗

j ; j = 1, . . . , k . (50)

Note, P ∗
j , j = 1, . . . , k, satisfies (45) through (48).

Proof of Theorem 1:
Denote the true value of π ∈ Π0 by,

(π̃(1)T

, . . . , π̃(1)T

, . . . , π̃(k)T

, . . . , π̃(k)T

)T , (51)

where π̃(i) ∈ Δc, for i = 1, . . . , k. Then, under H0, the first-order Taylor
series expansion of the MPE π̂(i;λ) is,

π̂(i;λ) = π̃(i) + [{[ψT
j ψj)

−1/2ψT
j } ⊗H ]ωn + op(1/n) ; i = 1, . . . , k , (52)

where ⊗ denotes the Kronecker (or tensor) product; H is the c× c matrix,

H ≡
[

Ic−1 0
−1T

c−1 0

]
; (53)

Ic−1 is the (c− 1)× (c− 1) identity matrix; 1c−1 is a (c− 1)-dimensional of
ones; and

ωn ≡

⎡
⎢⎢⎣
n

1/2
1 (X1/n1 − π̃(1))

...
n

1/2
r (Xr/nr − π̃(r))

⎤
⎥⎥⎦ . (54)

Under H0, as n→∞,

ωn
D→ω ∼ Nrc(0, Σ) , (55)

where Σ ≡
k∑

j=1

[Dφ
j
⊗ {Dπ̃(j) − π̃(j)π̃(j)T

}].
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Now, from [3] and (52),

2Iλ(X : μ̂(λ)) =
k∑

j=1

∑
i∈Ij

2niI
1(Xi/ni : π̂

(j;λ)) + op(1)

= ωT
n [

k∑
j=1

({Dφj
− Pj} ⊗D−1

π̃(j))]ωn + op(1) ,

where μ̂λ ≡ (n1π̂
(1;λ)T

, . . . , nrπ̂
(k;λ)T

)T . Thus, as n→∞,

2Iλ(X : μ̂(λ)) D→ωTQω ∼ χ2
(r−k)(c−1) , (56)

where Q ≡
k∑

j=1

({Dφ
j
−P ∗

j }⊗D−1

π̃(j)), P ∗
j is given by (50), and ω is given by

(55). Since QΣQΣQ = QΣQ and trace(QΣ) = (r − k)(c − 1), (56) follows
from standard results on quadratic forms (e.g., [15], p. 69).

Proof of Theorem 2:
Without loss of generality, consider

2Iλ(X : μ̂2(λ))− 2Iλ(X : μ̂1(λ)) , (57)

where

2Iλ(X : μ̂i(λ)) ≡ inf
π∈Π0,i

2Iλ(X : μ(π)) ; i = 1, 2 ; (58)

μ(π) ≡ (n1π
T
1 , . . . , nrπ

T
r )T ; (59)

Π0,1 ≡ {π ∈ Δr
c : πri−1+1 = · · · = πri , i = 1, . . . , k, r0 = 0 , rk ≡ r} ; (60)

Π0,2 ≡ {π ∈ Δr
c : π1 = · · · = πr} ; (61)

μ̂1(λ) ≡ (n1π̂
1(1;λ)T

, . . . , nr1π̂
1(1;λ)T

, . . . , nrk−1+1π̂
1(k;λ)T

, . . . , nrπ̂
1(k;λ)T

)T ;

and

μ̂2(λ) ≡ (n1π̂
2(1;λ)T

, . . . , nrπ̂
2(1;λ)T

)T . (62)

In addition, denote the partitions of I induced by H0,1 and H0,2, respec-
tively, as

P(1) ≡ {I(1)
1 , . . . , I(1)

k } , and P(2) ≡ {I(2)
1 } , (63)

where I(2)
1 ≡ I.



Using Power-Divergence Statistics 173

Now, suppose H0,2 is true and denote the true value of π ∈ Π0,2 by

(π̃(2)T

, . . . , π̃(2)T

)T , (64)

where π̃(2) ∈ Δc. Then, the first-order Taylor series expansions of the MPEs
π̂1(i;λ), i = 1, . . . , k, and π̂2(1;λ) are given, respectively, by

π̂1(i;λ) = π̃(2) + [{(ψ(1)T

i ψ
(1)
i )−1/2ψ

(1)T

i } ⊗H ]ωn + op(1/n) ; i = 1, . . . , k ,

and

π̂2(1;λ) = π̂(2) + [{(ψ(2)T

1 ψ
(2)
1 )−1/2ψ

(2)T

1 } ⊗H ]ωn + op(1/n) , (65)

where ψ(1)
i , i = 1, . . . , k, and ψ(2)

1 are defined analogously to (40) and (41),
H is given by (53), and

ωn ≡

⎡
⎢⎢⎣
n

1/2
1 (X1/n1 − π̃(2))

...
n

1/2
r (Xr/nr − π̃(2))

⎤
⎥⎥⎦ . (66)

Under H0,2, as n→∞,

ωn
D→ ω ∼ Nrc(0, Σ) , (67)

where Σ ≡
k∑

j=1

(Dφ(1)
j

⊗{Dπ̃(2) − π̃(2)π̃(2)T

}) and φ(1)
j is defined analogously

to (41), for j = 1, . . . , k.
Then under H0,2,

2Iλ(X : μ̂2(λ))− 2Iλ(X : μ̂1(λ))

=
∑
i∈I

2niI
1(Xi/ni : π̂

2(1;λ))−
k∑

j=1

∑
i∈I(1)

j

2niI
1(Xi/ni : π̂

1(j;λ)) + op(1)

= ωT
n

⎡
⎣
⎧⎨
⎩

k∑
j=1

P
(1)
j − P

(2)
1

⎫⎬
⎭⊗D−1

π̃(2)

⎤
⎦ωn + op(1) ,

where P
(1)
i , i = 1, . . . , k, and P

(2)
1 are defined analogously to (44). Hence, as

n→∞,

2Iλ(X : μ̂2(λ))− 2Iλ(X : μ̂1(λ)) D→ ωTQω ∼ χ2
(k−1)(c−1) , (68)

where

Q ≡

⎧⎨
⎩

k∑
j=1

P
(1)∗

j − P
(2)∗

1

⎫⎬
⎭⊗D−1

π̃(2) , (69)
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and P
(1)∗

i , i = 1, . . . , k, and P
(2)∗
1 are defined analogously to (50). The distri-

butional result in (67) is a consequence of QΣQΣQ = QΣQ, trace(QΣ) =
(k − 1)(c− 1), and standard results on quadratic forms (e.g., [15], p. 69).

Now, we prove the second part of Theorem 2. Suppose, H0,i′ , i′ > 1, is
true. Let,

P(jt) ≡ {I(jt)
1 , . . . , I(jt)

kjt
} ; t = 1, 2 , (70)

and

P(it) ≡ {I(it)
1 , . . . , I(it)

kit
} ; t = 1, 2 , (71)

be the partitions of I induced by 1 ≤ j1 < j2 ≤ i1 < i2 ≤ i′; so, kj1 > kj2 ≥
ki1 > ki2 . From the hierarchical-hypotheses restriction imposed on (33), we
have, for 1 ≤ s < t ≤ m,

I(t)
q =

⋃
d∈S(s,t)

q

I(s)
d ; q = 1, . . . , kt , (72)

and define

P (t)
q ≡

∑
d∈S(s,t)

q

P
(s)
d ; q = 1, . . . , kt , (73)

where S(s,t)
q is the set of indices d such that I(s)

d ⊂ I(t)
q .

Thus, as n→∞,

2Iλ(X : μ̂j2(λ))− 2Iλ(X : μ̂j1(λ)) D→ ωTQ1ω , (74)

and

2Iλ(X : μ̂i2(λ))− 2Iλ(X : μ̂i1(λ)) D→ ωTQ2ω , (75)

where

Q1 ≡
j1∑

j=1

⎡
⎢⎣
⎧⎪⎨
⎪⎩

∑
d∈S(j1,j2)

j

P
(j2)

∗

d − P
(j1)

∗

j

⎫⎪⎬
⎪⎭⊗D−1

π̃(i′)
j

⎤
⎥⎦ , (76)

Q2 ≡
i1∑

i=1

⎡
⎢⎣
⎧⎪⎨
⎪⎩

∑
d∈S(i1,i2)

i

P
(i2)∗

d − P
(i1)∗

i

⎫⎪⎬
⎪⎭⊗D−1

π̃(i′)
i

⎤
⎥⎦ , (77)

and

(π̃i′(1)T

, . . . , π̃i′(1)T

, . . . , π̃i′(ki′ )
T

, . . . , π̃i′(ki′ )
T

)T , (78)
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denotes the true value of π ∈ Π0,i′ . Further,
⎡
⎢⎢⎣
n

1/2
1 (X1/n1 − π̃(i′)

1 )
...

n
1/2
r (Xr/nr − π̃(i′)

ki′
)

⎤
⎥⎥⎦ D→ ω ∼ Nrc(0, Σ) , (79)

as n→∞, where Σ ≡
ki′∑
j=1

[D
φ(i′)

j

⊗ {Dπi′(j) − π̃i′(j)π̃i′(j)T

}].

Since ΣQ1ΣQ2Σ = 0, ωTQ1ω and ωTQ2ω are independent chi-squared
random variables by standard results on quadratic forms (e.g., [15], p. 71).
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1 Introduction

Discrete multivariate data on categorical or numerical variables are common
in all parts of statistics. Less well known in general statistics are the measures
of spread, flatness, association and dependence that are based on entropy and
developed in information theory. This exposition illustrates how a systematic
use of such measures can be beneficial in both exploratory and confirmatory
statistical analyses involving data on nominal and ordinal as well as numerical
scales.

The next section introduces some basic notation and discusses a few ex-
amples of situations in which it might be useful with a systematic approach
to variable selection and preparation of data for further statistical analysis.
Sections 3 - 5 introduce the information theoretic measures and explain how
they can be used to examine and compare distributions of values on one
or several variables. The statistics used as descriptive or exploratory tools
can also be used in confirmatory analyses of testing and estimating proba-
bilistic models. Section 6 illustrates such tests. Section 7 gives some remarks
on literature and further research. Connections with graphical modeling and
statistical lattice theory are mentioned.

2 Variables and Data

To fix ideas, consider an opinion poll using a questionnaire with 15 items that
can be answered by yes or no or don’t know. Consequently there are 315 or
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more than 14 millions possible response patterns, and only a few of these can
be represented among the questionnaires collected from participants in the
investigation. The distribution of response patterns is usually not considered
as a single 15-dimensional distribution. Normally data are separated into
several sets of two- or three-dimensional distributions of items that are related
and considered to be of interest to be seen presented together in plots or
tables. Some items might be found to be redundant since no respondent
answered them by yes or no, and some items might appear to be unreliable
or not sufficiently discriminating between opinions. There might also be other
good reasons to explore the quality of data and prepare interesting subsets
of data for the final analysis.

Another example of a situation that requires analysis of multivariate dis-
crete data is given by economic, social or medical exploratory investigations
in which there is an abundance of available variables on different types of
scales. It might seem convenient to transform some variables to different
scales, to simplify some variables to fewer outcomes by aggregation of similar
outcomes, to combine some variables to an index, etcetera. Such data editing
work could benefit from the tools described in this exposition.

Generally, consider m discrete variables X1, X2, . . . , Xm having finitely
many categorical or numerical outcomes. For variable Xi the possible out-
comes are labeled by integers 1, . . . , ri for i = 1, . . . ,m. Thus the m-variate
variable (X1, . . . , Xm) has at most r = r1 · r2 · . . . · rm possible outcomes.
If data consist of n observations on (X1, . . . , Xm), the distribution of ob-
servations on the possible outcomes is given by the frequencies n(i1, . . . , im)
of observations equal to (i1, . . . , im) for i1 = 1, . . . , r1, . . ., im = 1, . . . , rm.
If the variables are considered as random variables, the relative frequency
n(i1, . . . , im)/n estimates the probability

P (X1 = i1, . . . , Xm = im) = p1,...,m(i1, . . . , im).

If the variables should not a priori be considered as random variables, a
probability distribution can be identified with the empirical distribution, and
probabilistic terms still be used.

It is convenient to use X,Y, Z for arbitrary subsets of variables among
X1, . . . , Xm. The notation X,Y or Z can be used for single variables as well
as for overlapping or disjoint subsets of variables. The numbers of outcomes
of X,Y, Z are denoted by r, s, t. The trivariate probabilities are given by

P (X = i, Y = j, Z = k) = pX,Y,Z(i, j, k)

for i = 1, . . . , r, j = 1, . . . , s, k = 1, . . . , t. The trivariate distribution can be
factorized according to

pX,Y,Z = pX · pY |X · pZ|X,Y

where the conditional distributions are defined when the univariate and bi-
variate conditions have positive probabilities.
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3 Univariate and Bivariate Distributions

Consider a discrete variable X with finitely many outcomes labeled by in-
tegers 1, . . . , r and a probability distribution pX with probabilities pX(i) =
pi > 0 for i = 1, . . . , r satisfying p1 + . . .+pr = 1. The entropy of X is defined
as

HX =
r∑

i=1

pi log
1
pi
.

It is a weighted mean of the logarithms of the inverted probabilities. Since
1/pi ≥ 1, the entropy is non-negative and it is equal to 0 only if r = 1.
In this case there is a one-point distribution pX and X is a constant. The
entropy is also the logarithm of the weighted geometric mean of the inverted
probabilities. Since the weighted geometric mean is at most equal to the
weighted arithmetic mean, it follows that HX ≤ log r. Similarly, the weighted
harmonic mean is a lower bound, which yields that

HX ≥ log
1

r∑
i=1

p2
i

with equality only for the uniform distribution. Consequently,

0 ≤ − log

(
r∑

i=1

p2
i

)
≤ HX ≤ log r.

Thus, the entropy is 0 if and only if there is only one outcome, and the
entropy is log r if and only if there are r outcomes with a flat distribution.
In intermediate cases when the entropy is strictly between 0 and log r, it
can be interpreted as the logarithm of the approximate number of outcomes
that would correspond to a flat distribution. The integer closest to expHX is
this approximate number. The relative entropy HX/ log r can be considered
as a measure of flatness. If the mode is taken as a measure of centrality of
a probability distribution, then a natural measure of spread is the relative
entropy, which can be considered to give the size of the efficient or operative
part of the outcome space.

The bivariate entropy of (X,Y ) is given by

HX,Y =
r∑

i=1

s∑
j=1

Φ(pi,j) where Φ(p) = p log
1
p

if p > 0 and Φ(0) = 0.

Here pX,Y (i, j) = pi,j ≥ 0, pX(i) = pi· > 0 for i = 1, . . . , r and pY (j) = p·j >
0 for j = 1, . . . , s. Using the factorization pX,Y = pX · pY |X it follows that

HX,Y = HX + HY |X ,
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where

HY |X =
r∑

i=1

pi·
s∑

j=1

Φ

(
pi,j

pi·

)
.

Due to the convexity from above of Φ, it follows that

HY |X ≤
s∑

j=1

Φ(p·j) = HY

with equality if and only if X and Y are independent, which is denoted by
X ⊥ Y . The conditional entropy of Y for X = i is given by

∑s
j=1 Φ(pi,j/pi·),

and it takes values between 0 and log si, where si is the number of outcomes
of Y of positive conditional probability for X = i. Now

∑s
j=1 Φ(pi,j/pi·) = 0

only if si = 1, which means that there is a unique j with pi,j = pi·, say
j = f(i). If this holds true for all i = 1, . . . , r, then HY |X = 0 and there is a
(univalent) function f such that Y = f(X). In this case, variable X uniquely
determines variable Y , which is written X ( Y . Thus

HX,Y = HX + HY |X ≤ HX + HY

with equality only if X ⊥ Y . Furthermore, HX ≤ HX,Y with equality only
if X ( Y . Similarly, HY ≤ HX,Y with equality only if Y ( X . If X ( Y ,
then HY |X = 0 and

HX = HX,Y = HY + HX|Y ≥ HY .

This can be expressed in terms of the joint entropy

JX,Y = HX + HY −HX,Y = HY −HY |X = HX −HX|Y

according to
0 ≤ JX,Y ≤ min(HX , HY )

with equality to the left only for independence X ⊥ Y and equality to the
right only for functional dependence X ( Y or Y ( X . The joint entropy
JX,Y measures the amount of entropy shared by variables X and Y . It can
also be interpreted as a measure of divergence of the distribution pX,Y from
the distribution pX ·pY . The influence of X on Y can be measured by relative
joint entropy JX,Y /HY . The ratio JX,Y /HY is a measure between 0 and 1
indicating the degree of dependence from X to Y . It is 0 for independence
X ⊥ Y , and it is 1 for functional dependence X ( Y .

4 Trivariate Distributions

Consider three variables X,Y, Z having r, s, t outcomes and simultaneous
probabilities
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P (X = i, Y = j, Z = k) = pX,Y,Z(i, j, k) = pi,j,k ≥ 0

satisfying

pX(i) = pi·· > 0, pY (j) = p·j· > 0, pZ(k) = p··k > 0,

r∑
i=1

s∑
j=1

t∑
k=1

pijk = p··· = 1

for all i = 1, . . . , r, j = 1, . . . , s, k = 1, . . . , t. From the factorization of the
trivariate distribution according to

pX,Y,Z = pX · pY |X · pZ|X,Y

follows the additivity of entropy in the sense

HX,Y,Z = HX + HY |X + HZ|X,Y .

The bivariate entropy inequality

max(HX , HY ) ≤ HX,Y ≤ HX + HY

yields corresponding trivariate inequalities

max(HX,Y , HZ) ≤ HX,Y,Z ≤ HX,Y + HZ

max(HX,Z , HY ) ≤ HX,Y,Z ≤ HX,Z + HY

max(HY,Z , HX) ≤ HX,Y,Z ≤ HY,Z + HX

that can be combined to

max(HX,Y , HX,Z , HY,Z)≤HX,Y,Z≤min(HX,Y +HZ , HX,Z +HY , HY,Z +HX)

with equality to the left only if one variable is a function of the other two
and equality to the right only if one variable is independent of the pair of
the other two. Note that (X,Y ) ⊥ Z implies X ⊥ Z and Y ⊥ Z, but the
converse is not necessarily true.

By expanding HX,Y,Z = HX +HY,Z|X and using HY,Z|X ≤ HY |X +HZ|X
where HY |X = HX,Y −HX and HZ|X = HX,Z −HX it follows that

HX,Y,Z ≤ HX,Y + HX,Z −HX

with equality only if Y ⊥ Z|X . Interchanging the variables yields the com-
panion inequalities

HX,Y,Z ≤ HX,Y + HY,Z −HY ,

HX,Y,Z ≤ HY,Z + HX,Z −HZ .
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Combining these three inequalities leads to the following upper bound to
trivariate entropy

HX,Y,Z ≤ min(HX,Y +HX,Z −HX , HX,Y +HY,Z −HY , HY,Z +HX,Z −HZ)

with equality only if conditional on one variable, the other two are inde-
pendent. If the sum of the three univariate entropies is denoted by S1 =
HX + HY + HZ , and the sum of the three bivariate entropies is denoted by
S2 = HX,Y +HX,Z +HY,Z, it is possible to express the present upper bound
to HX,Y,Z as

S2 −max(HX,Y + HZ , HX,Z + HY , HY,Z + HX),

and this expression can be seen to be smaller than or equal to the previous
upper bound given as

min(HX,Y + HZ , HX,Z + HY , HY,Z + HX).

This follows from the observation that the difference between the bounds
equals

min(HX,Y + HZ , HX,Z + HY , HY,Z + HX)− S2

+ max(HX,Y + HZ , HX,Z + HY , HY,Z + HX)

= S1 −med(HX,Y + HZ , HX,Z + HY , HY,Z + HX)

where med stands for median value. This difference is non-negative, and it is
equal to zero only if there is independence between the two variables of the
remaining bivariate entropy. Hence the sharpest bounds to trivariate entropy
are given by

max(HX,Y , HX,Z , HY,Z) ≤ HX,Y,Z

≤ min(HX,Y + HX,Z −HX , HX,Y + HY,Z −HY , HY,Z + HX,Z −HZ).

The lower bound is larger than or equal to S2/3 and the upper bound is
smaller than or equal to (2S2 − S1)/3.

5 Multivariate Distributions

For a discrete m-variate distribution of variables (X1, . . . , Xm), let variable
Xk have rk outcomes denoted by integers 1, . . . , rk for k = 1, . . . ,m. Proba-
bilities are given as

P (X1 = i1, . . . , Xm = im) = p1,...,m(i1, . . . , im)

for ik = 1, . . . , rk and k = 1, . . . ,m. The marginal distribution of (Xk :
k ∈ K) where K is a subset of {1, . . . ,m} is denoted pK . The conditional
distribution of (Xk : k ∈ K) given the outcomes of (Xk : k ∈ C) where K

and C are disjoint subsets of {1, . . . ,m} is given by pK|C . In particular, the
factorization
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p1,...,m = p1 · p2|1 · p3|1,2 · . . . · pm|1,...,m−1

implies the additivity of entropy according to

H1,...,m = H1 + H2|1 + H3|1,2 + . . .+ Hm|1,...,m−1.

There are m univariate entropies H1, . . . , Hm with sum S1 =
∑m

i=1 Hi. There
are m(m − 1)/2 bivariate entropies Hi,j for 1 ≤ i < j ≤ m with sum S2.
Generally, there are m!/k!(m − k)! k-variate entropies with sum Sk for k =
1, . . . ,m. The average of the k-variate entropies is denoted by Mk = k!(m−
k)!Sk/m! for k = 1, . . . ,m and the average entropy per variable is Mk/k

among the k-variate distributions for k = 1, . . . ,m. Generally, Mk is non-
decreasing and Mk/k is non-increasing with increasing k for k = 1, . . . ,m. A
way to prove that is to consider the inequalities

HK\{i} ≤ HK ≤ HK\{i} + HK\{j} −HK\{i,j}

where K is a subset of k ≥ 2 elements from {1, . . . ,m}, and i and j are two
distinct elements chosen from K. There are m!/k!(m−k)! choices for K, and
for each K there are k choices for i and k(k − 1)/2 choices for i and j. The
k[m!/k!(m− k)!] left inequalities sum to

Mk−1 ≤Mk

and the [k(k − 1)/2][m!/k!(m− k)!] right inequalities sum to

Mk ≤ 2Mk−1 −Mk−2

for k = 2, . . . ,m, where S0 = M0 = 0. Hence Mk is convex from above, and
it follows by iteration that

Mk ≤ k · Mk−1

k − 1

so that Mk−1 ≤Mk andMk−1/(k−1) ≥Mk/k for k = 2, . . . ,m. In particular,
for k = 2 it holds that M2/2 ≤ M1 ≤ M2 which is S2 ≤ (m − 1)S1 ≤
2S2 and expands to H1,2 ≤ H1 + H2 ≤ 2H1,2 for m = 2 and expands
to H1,2 + H1,3 + H2,3 ≤ 2(H1 + H2 + H3) ≤ 2(H1,2 + H1,3 + H2,3) for
m = 3. Similarly, for k = 3 it holds that M3/3 ≤ M2/2 ≤ M2 ≤ M3

which is 2S3 ≤ (m − 2)S2 ≤ 2(m − 2)S2 ≤ 6S3 and expands to 2H1,2,3 ≤
H1,2+H1,3+H2,3 ≤ 2(H1,2+H1,3+H2,3) ≤ 6H1,2,3 for m = 3. The bounds of
the bivariate and trivariate entropies given in Sections 3 and 4 are somewhat
tighter, and such tighter bounds can be obtained from the general formula

max
i

HK\{i} ≤ HK ≤ min
i,j

(HK\{i} + HK\{j} −HK\{i,j}),

where K, i and j are defined as above.
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The variables in a multivariate distribution can be checked for dependen-
cies and successively simplified by using entropy screening. First the univari-
ate entropies are used to eliminate variables with no or almost no variation
revealed by entropies close to zero. Next the bivariate entropies Hi,j are com-
pared to Hi and Hj to find out whether some variables are redundant and
can be omitted because they are determined as functions of another variable.
If Hi,j is close to its maximal value Hi + Hj the two variables are almost
independent. Functional dependence and independence can conveniently be
investigated using appropriate bounds for the relative joint entropy Ji,j/Hj .
When no remaining variable is functionally dependent on another variable,
there might still be redundancy because some variable might be function-
ally dependent on two other variables. Such redundancies can be detected
by checking trivariate entropies for similarity with bivariate entropies. Func-
tional dependencies involving more variables can be found by similar com-
parisons between higher order multivariate entropies. A simple example will
be used to demonstrate convenient checking procedures.

Consider 15 observations on six binary variables X,Y, Z, U, V,W . Data are
given as a binary 15 by 6 matrix in Table 1. Some rows are equal and the
distinct rows can be reported with their frequencies.

Table 1. Values on six variables representing answers by 15 respondents to six
items in a questionnaire

X Y Z U V W

1 0 0 1 0 0 0

2 0 0 1 0 0 0

3 0 1 0 1 1 0

4 0 1 1 1 0 1

5 0 1 1 1 0 1

6 1 0 0 1 1 0

7 1 0 0 1 1 0

8 1 0 0 1 1 0

9 1 0 0 1 1 0

10 1 0 0 1 1 0

11 1 0 1 1 0 1

12 1 0 1 1 0 1

13 1 1 0 1 1 1

14 1 1 0 1 1 1

15 1 1 0 1 1 1∑
10 6 6 13 9 7

Table 2 is a frequency table for the simultaneous outcomes of the six vari-
ables. Since all variables are binary their entropies are given by Φ(p)+Φ(1−p)
where p and 1 − p are the relative frequencies of the two outcomes of the



Statistical Information Tools for Multivariate Discrete Data 185

variable and Φ(p) = p log(1/p) for 0 < p ≤ 1 and Φ(0) = 0. The en-
tropy is convex from above with maximum log 2 for p = 1/2, and the
entropies of the variables can be ordered according to min(p, 1 − p). In
general, the entropy of a distribution p1, . . . , pr with sum 1 is given by∑

i Φ(pi). When pi = ni/n are relative frequencies it is convenient to ab-
breviate the entropy as h(n1, . . . , nr) =

∑
i Φ(ni/n). The column frequencies

in Table 1 yield the univariate entropies: HX = h(5, 10), HY = h(6, 9),
HZ = h(6, 9), HU = h(2, 13), HV = h(6, 9), HW = h(7, 8). Consequently,
log 2 > HW > HY = HZ = HV > HX > HU > 0.

Table 2. Frequencies of different outcome patterns

X Y Z U V W Frequency

0 0 1 0 0 0 2

0 1 0 1 1 0 1

0 1 1 1 0 1 2

1 0 0 1 1 0 5

1 0 1 1 0 1 2

1 1 0 1 1 1 3

Table 3 shows an entropy matrix for the bivariate entropies with the uni-
variate entropies in the diagonal. It reveals that HZ,V = HZ = HV , so that
Z and V are equivalent. In fact, V = 1 − Z, and V can be omitted. There
are no further functional dependencies between single variables.

Table 3. Entropy matrix

X Y Z U V W

h(5, 10) h(2, 3, 3, 7) h(1, 2, 4, 8) h(2, 3, 10) h(1, 2, 4, 8) h(2, 3, 5, 5)
X = .636 = 1.269 = 1.137 = .861 = 1.137 = 1.323

h(6, 9) h(2, 4, 4, 5) h(2, 6, 7) h(2, 4, 4, 5) h(1, 2, 5, 7)
Y = .672 = 1.339 = .991 = 1.339 = 1.171

h(6, 9) h(2, 4, 9) h(6, 9) h(2, 3, 4, 6)
Z = .672 = .928 = .672 = 1.310

h(2, 13) h(2, 4, 9) h(2, 6, 7)
U = .393 = .928 = .991

h(6, 9) h(2, 3, 4, 6)
V = .672 = 1.310

h(7, 8)
W = .691
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The remaining five variables have their bivariate and trivariate entropies
given in Table 4. Table 4 reveals that HX,Y = HX,Y,U and HZ,W = HZ,U,W ,
so that (X,Y ) ( U and (Z,W ) ( U . Variable U can be omitted. Table 4
also reveals that four of the trivariate entropies are equal, and in fact equal
to the entropy of the initial frequency distribution in Table 2. The remaining
variables X,Y, Z,W have the same simultaneous entropy h(1, 2, 2, 2, 3, 5) as
any of its triples (X,Y, Z), (X,Y,W ), (X,Z,W ), (Y, Z,W ). Any remaining
variable is functionally determined by the other three variables. Thus W

could be removed leaving X,Y, Z as the only remaining three variables.

Table 4. Bivariate and trivariate entropies

X, Y h(2, 3, 3, 7) = 1.269 X, Y, Z h(1, 2, 2, 2, 3, 5) = 1.676

X, Z h(1, 2, 4, 8) = 1.137 X, Y, U h(2, 3, 3, 7) = 1.269

X, U h(2, 3, 10) = .861 X, Y, W h(1, 2, 2, 2, 3, 5) = 1.676

X, W h(2, 3, 5, 5) = 1.323 X, Z, U h(1, 2, 2, 2, 8) = 1.322

Y, Z h(2, 4, 4, 5) = 1.339 X, Z, W h(1, 2, 2, 2, 3, 5) = 1.676

Y, U h(2, 6, 7) = .991 X, U, W h(1, 2, 2, 5, 5) = 1.450

Y, W h(1, 2, 5, 7) = 1.171 Y, Z, U h(2, 2, 2, 4, 5) = 1.525

Z, U h(2, 4, 9) = .928 Y, Z, W h(1, 2, 2, 2, 3, 5) = 1.676

Z, W h(2, 3, 4, 6) = 1.310 Y, U, W h(1, 2, 2, 5, 5) = 1.450

U, W h(2, 6, 7) = .991 Z, U, W h(2, 3, 4, 6) = 1.310

Table 5. Matrix of joint entropy and relative entropy for the column variable

X Y Z U V W

.636 .039 .171 .168 .171 .004
X 1.00 .06 .25 .43 .25 .01

.039 .672 .005 .074 .005 .192
Y .06 1.00 .01 .19 .01 .28

.171 .005 .672 .137 .672 .053
Z .27 .01 1.00 .35 1.00 .08

.168 .074 .137 .393 .137 .093
U .26 .11 .20 1.00 .20 .14

.171 .005 .672 .137 .672 .053
V .27 .01 1.00 .35 1.00 .08

.004 .192 .053 .093 .053 .691
W .01 .29 .08 .24 .08 1.00

When redundancies and functional dependencies have been identified, the
structure and strength of the joint entropies can be examined. Table 5 gives
a matrix of the joint entropies and their relative contributions to the en-
tropies of the column variables. By convenient rounding a structural pattern
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might appear as in the plot shown in Figure 1. Functional dependencies from
variables or groups of variables surrounded by a border line are marked by
thick arrows to the variable determined by them. Degrees of dependencies
between pairs of variables are shown by association arrows and weak associ-
ation arrows. According to the independence tests given in the next section,
the arrows of association and weak association in Figure 1 represent joint
entropy values in Table 5 that correspond to rejection of independence with
confidence levels higher than 98% and 80%, respectively.

Fig. 1. Functional dependencies and associations between variables

6 Statistical Tests of Goodness of Fit

Exploratory statistical analyses of empirical distributions can be purely
descriptive as described above. Dependence measures were conveniently
rounded to distinguish between strong and weak associations. If probabilistic
models should be used, a confirmatory statistical analysis is required, and the
dependence measures need to be compared to critical limits determined by
statistical significance. This section is devoted to some goodness of fit tests of
hypothetical multivariate discrete distributions by using entropy measures.
In particular, significance interpretations are given for the critical limits of
dependence measures.

Let X be a random variable with r outcomes 1, . . . , r of positive probabil-
ities pX(i) for i = 1, . . . , r. Let pi = ni/n ≥ 0 denote the relative frequency
of outcome i among n independent observations of X . The probability dis-
tribution pX is estimated by the empirical distribution p, and the likelihood-
function is estimated by L(p) = exp(−nH) where H = H(p) is the entropy of
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p. If there is a hypothetical specification of the distribution pX , the likelihood-
ratio test of pX has a rejection region defined by large values of L(p)/L(q).
Here L(p) is the estimated likelihood-function with no restrictions on pX ,
and L(q) is the estimated likelihood-function when pX is restricted by the
hypothesis and estimated by q. Twice the estimated log-likelihood-ratio is
known to be approximately distributed as chi-square with d degrees of free-
dom for large n. Here d = d(p) − d(q) where d(p) and d(q) are the numbers
of parameters estimated to get p and q, respectively. The χ2(d)-statistic can
be given as 2n times the divergence from p to q according to

χ2(d) = 2 log
L(p)
L(q)

= 2n
r∑

i=1

pi log
pi

qi
= 2nD(p, q).

A convenient form of the critical region that will be used throughout this
section is

χ2(d) > d + 2
√

2d = d +
√

8d.

It has a confidence level approximately equal to 95%. The divergence is equal
to

D(p, q) = −
r∑

i=1

qiΦ(pi/qi) where Φ(x) = x log(1/x),

and due to convexity from above of Φ it follows that D(p, q) ≥ 0 with equality
if and only if p = q. The empirical distribution has d(p) = r−1. The hypoth-
esis that X is uniformly distributed on r outcomes specifies pX(i) = qi = 1/r
with d(q) = 0. Hence uniformity is tested by

χ2(r − 1) = 2nD(p, q) = 2n[log r −H ],

and it follows that uniformity is rejected if H deviates from its maximum
value log r by more than [r − 1 +

√
8(r − 1)]/2n.

As another example, consider a bivariate random variable (X,Y ) with
empirical distribution pi,j = ni,j/n for i = 1, . . . , r and j = 1, . . . , s with
d(p) = rs − 1. Under the hypothesis that X and Y are independent, the
distribution of (X,Y ) is estimated by qi,j = ni··n·j/n2 with d(q) = r−1+s−1.
It follows that independence is tested by

χ2((r − 1)(s− 1)) = 2nD(p, q) = 2n[HX + HY −HX,Y ] = 2nJX,Y

where the entropies and joint entropy are understood to be the empirical
versions HX + HY = H(q) and HX,Y = H(p) calculated with relative fre-
quencies. Hence independence is rejected when the empirical joint entropy is
larger than [(r − 1)(s− 1) +

√
8(r − 1)(s− 1)]/2n.

As a third example consider a trivariate random variable (X,Y, Z) which
has empirical distribution p with probabilities pi,j,k = ni,j,k/n for i = 1, . . . , r,
j = 1, . . . , s, k = 1, . . . , t and d(p) = rst − 1. Under the hypothesis that
conditional on Z, the other two variables X and Y are independent, the
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distribution pX,Y,Z = pZ ·pX|Z ·pY |Z is estimated by empirical distribution q

with relative frequencies qi,j,k = p··k · (pi·k/p··k) · (p·j,k/p··k) = pi·k · p·jk/p··k,
and it follows that d(q) = t − 1 + t(r − 1 + s − 1). Here d = d(p) − d(q) =
(r − 1)(s− 1)t and conditional independence X ⊥ Y |Z is tested by

χ2((r − 1)(s− 1)t) = 2nD(p, q) = 2n (HX,Z + HY,Z −HZ −HX,Y,Z),

where the entropies are empirical versions HX,Z + HY,Z − HZ = H(q) and
HX,Y,Z = H(p). Hence the conditional independence is rejected when the
empirical trivariate entropies have a difference H(q) − H(p) that is larger
than [(r − 1)(s− 1)t+

√
8(r − 1)(s− 1)t ]/2n.

7 Comments on Literature and Related Topics

The classic paper by Shannon [16] that introduced entropy as a measure of
information in long sequences of letters, digits or signals in communicated
messages can be considered as a source of impact not only to the theory of
information and communication but also to broader fields of data security
and statistics. Kullback [12], Theil [17], Gokhale and Kullback [6], Hamming
[8], Ellis [2], Krippendorff [11], Cover and Thomas [1], Hankerson, Harris and
Johnson [9] are examples of text books that illustrate the rich development
of information concepts in various directions.

The divergence measure used in statistics is often referred to as Kullback-
Leibler information, and it is sometimes considered as an alternative to Fisher
information. Fisher information is developed from likelihood theory for para-
metric families of probability distributions that satisfy certain regularity con-
ditions, and it doesn’t have such general applicability as Kullback-Leibler
information. The divergence measure has also been generalized in different
ways, and in this context it seems appropriate to especially mention the work
by Frank, Menéndez and Pardo [5].

Modern advanced texts in probability and statistics like Kallenberg [10]
and Schervish [15] have sections on information and use information mea-
sures as theoretical tools to evaluate and compare distributions and to derive
asymptotic results. Less well spread are information measures as tools in ap-
plied statistics. It is likely that continued research on the development of
information-based screening methods for data editing and variable selection
combined with development of convenient computer software will make these
methods more accessible and common in applied statistics. Some first steps
towards making entropy methods more accessible are taken by Frank and
Lorenc [4].

Goodman and Kruskal [7] include information measures in their thorough
exposition of association measures. Association can be considered as being
intermediate between functional dependence and complete independence. All
these concepts are central to the variable screening illustrated in the previ-
ous section. For continued research on variable screening, comparisons with
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related graphical models and implication lattices should be of interest. Graph-
ical models plot conditional dependencies between variables and implication
lattices plot incomplete functional relations between variables. Whittaker [18]
and Lauritzen [13] are texts on graphical models. Luksch, Skorsky and Wille
[14] and Frank [3] describe plots of implications between variables.
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Summary. In this paper we consider the product Bernoulli model with dif-
ferent probability success and the related problem of estimation of the prob-
abilities when it is suspected that they are equal. If we are completely sure
that the probabilities are equal we must use a restricted estimator but in
many situations it is not clear if the probabilities are equal or not and then
a better procedure will be to use a ”preliminary test estimator”. Based on
minimum phi-divergence estimator (MφE) we study, in this paper, some esti-
mators for the parameters of the product Bernoulli model: Unrestricted MφE,
Restricted MφE, Preliminary MφE, Shrinkage MφE, Shrinkage preliminary
MφE, James-Stein MφE, Positive-part of Stein-Rule MφE and Modified pre-
liminary MφE. Asymptotic quadratic bias as well as asymptotic quadratic
risk are studied under contiguous alternative hypotheses.

1 Introduction

We consider υ Binomial populations of parameters 1 and θi, 0 < θi < 1,
i = 1, . . . , υ. Let yi1, . . . , yini be a random sample of size ni from the ith
Binomial population. We denote yi =

∑ni

j=1yij , i = 1, . . . , v. The maximum
likelihood estimator (MLE) of θ = (θ1, . . . , θυ)T maximizes the expression

l (θ) =
∑υ

i=1 log
(
θ

yi

i

(
1− θ

ni−yi

i

))
, (1)

i.e., θ̂ = argmaxθ∈Θ l (θ), being

Θ =
{
θ : θ = (θ1, . . . , θυ)T

, 0 < θi < 1, i = 1, . . . , υ
}
. (2)

∗ A draft for this paper was written in the summer 2007 in Soto del Real. We
planned to undertake later a meticulous proofreading together along Christmas
2007 and submit it to a journal. Marisa’s health problems prevented us to do
it. Unfortunately I have had to take up again our former planning three years
later in the summer 2010 in Soto del Real, but this time alone. Nevertheless, I’m
really certain Marisa has been supporting me strongly from wherever she is.



192 M.L. Menéndez and L. Pardo

It is well-known that θ̂ = (θ̂1, . . . , θ̂υ)T , being

θ̂i = yi/ni, i = 1, . . . , υ. (3)

Now if we assume that non-sample prior information on the values θ1, . . . , θυ

is available (either from previous studies or from practical experience of the
researches or experts) and this non-sample prior information can be expressed
by the hypothesis

H0 : θ1 = . . . = θυ = θ0, (θ0 unknown) . (4)

The maximum likelihood estimator, under (3), can be expressed by

θ̃ = arg max
θ∈Θ0

l (θ) ,

whereΘ0 = {θ ∈ Θ : θ1 = . . . = θυ = θ0} . It is well-known that θ̃ = 1
n

∑υ
i=1yi;

(n = n1 + . . . + nυ).
We define,

θ̃ = (θ̃, . . . , θ̃)T = ( 1
n

∑υ
i=1yi, . . . ,

1
n

∑υ
i=1yi) = θ̃Jυ

where Jυ =
(
1, (υ. . ., 1

)T

.

In the following we refer to θ̂ as the unrestricted maximum likelihood
estimator of θ and θ̃ as the restricted maximum likelihood estimator (RMLE)
of θ. When H0 holds, θ̂ has a smaller risk (under quadratic loss) than θ̂. On
the other hand when H0 does not hold, θ̂ may perform better than θ̃. When
the prior information on H0 is rather uncertain it may be desirable to have
a preliminary test estimator (PTE),

θ̂
PTE

= θ̃ + (1− I(0,χ2
υ−1)(LR))(θ̂ − θ̃) (5)

where LR is the likelihood ratio test or a shrinkage estimator (SE),

θ̂
S

= θ̃ +
(
1− (ν − 3) (LR)−1

)
(θ̂ − θ̃), (υ > 3) . (6)

Ali and Saleh [1] introduced these estimators and compared them with the
restricted and unrestricted maximum likelihood estimators. This comparison
was carried out under quadratic loss.

A first generalization of the results obtained by Ali and Saleh [1] can be
obtained if we consider the family of estimators

θ̂h = θ̃ + (1− h(LR))(θ̂ − θ̃), (7)

where h is a real function.
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Estimators (4) and (5) can be considered elements of the family (7). For
h(x) = I(0,χ2

υ−1,α) (x) we get the PTE given in (4) and for h(x) = (υ − 3)x−1

the SE given in (5).
In this paper we consider the family given in (7) but instead of considering

the restricted maximum likelihood estimator of θ we shall consider the re-
stricted minimum phi-divergence estimator (RMφE), θ̃φ, of θ and instead of
the LR we consider the family of phi-divergence test statistics, T φ1,φ2

n . RMLE
of θ , θ̂, can be considered as a particular case of the RMφE (see definition
in (12)) with φ2 (x) = x log x − x + 1 and at the same time the LR can be
considered an element of the family of phi-divergence test statistics, T φ1,φ2

n ,

(see definition in (15)) with φ1 (x) = φ2 (x) = x log x − x + 1. For more de-
tails about MφE and phi-divergence test statistics see Pardo [13]. The RMφE
where considered for the first time in Pardo et al. [12].

Section 2 is devoted to introduce a new family of estimators based on
(7) as well as in RMφE and phi-divergence test statistics. Some asymptotic
distributional results are presented in Section 3. The asymptotic bias as well
as the asymptotic risk of the new family of estimators are given in Section 4
and 5, respectively.

2 The Proposed Family of Estimators

It is not difficult to see that l (θ) , given in (1), can be written as

l (θ) = k −
υ∑

i=1

niDKull (p̂i,p(θi))

where DKull (p̂i,p(θi)) is the Kullback-Leibler divergence measure between
the probability vectors p̂i = (yi/ni, (ni − yi) /ni)

T and p(θi) = (θi, 1− θi) ,
i = 1, . . . , υ.

Therefore the unrestricted and restricted maximum likelihood estimators
of θ can be defined by

θ̂ = arg min
θ∈Θ

υ∑
i=1

niDKull (p̂i,p(θi)) (8)

and

θ̃ = arg min
θ∈Θ0

υ∑
i=1

niDKull (p̂i,p(θi) , (9)

respectively.
If instead of considering in (8) and (9) the Kullback-Leibler divergence

measure we consider a more general family of divergences we could get a fam-
ily of restricted and unrestricted estimators. In this paper we consider the
family of phi-divergence measures introduced by Csiszár [4] and Ali and Sil-
vey [2], simultaneously. The phi-divergence measure between the probability
vectors p̂i and p(θi) is given by
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Dφ (p̂i,p(θi)) = θiφ

(
yi

niθi

)
+ (1− θi)φ

(
ni − yi

(1− θi)ni

)
(10)

where φ is a convex function defined for x > 0, such that at x = 1, φ (1) = 0,
φ′′(1) > 0. In the following we shall assume the conventions 0φ (0/0) = 0
and oφ (p/0) = p limu→∞ φ (u) /u. For a systematic study of phi-divergence
measures see Pardo [13].

As a natural extension of the restricted and unrestricted maximum like-
lihood estimators it is possible to consider the MφE and RMφE defined by

θ̂φ = arg min
θ∈Θ

∑υ
i=1niDφ (p̂i,p(θi)) (11)

and
θ̃φ = arg min

θ∈Θ0

∑υ
i=1niDφ (p̂i,p(θi) , (12)

respectively. We shall denote θ̃φ =
(
θ̃φ, . . . , θ̃φ

)
= θ̃φJυ.

We can observe the following: Minimizing (11) over Θ is equivalent to
finding the minimum in θi of the function Dφ (p̂i,p(θi)). We have,

∂Dφ (p̂i,p(θi))
∂θi

= φ

(
yi

niθi

)
+ θiφ

′
(

yi

niθi

)
yi

ni

(
− 1
θ2

i

)
− φ

(
ni − yi

ni (1− θi)

)

+ (1− θi)φ′
(

ni − yi

ni (1− θi)

)
ni − yi

ni (1− θi)
2 = 0

and θ̂
φ
i = yi/ni, i = 1, . . . , υ, is a solution. Therefore the MφE , θ̂

φ
, is

independent of the function φ and therefore it coincides with the unrestricted
maximum likelihood estimator.

This situation changes when we consider the RMφE obtained by minimiz-
ing the expression (12). For a general function φ it is not possible to have
explicit expression for the RMφE. It is necessary to have explicit expression
of the function φ to get explicit expression of the RMφE. For instance if we
consider the family

φλ (x) =

⎧⎨
⎩

1
λ(λ+1)

(
xλ+1 − x− λ (x− 1)

)
λ 	= 0,−1

x log x− x + 1 λ = 0
log x + x− 1 λ = −1

(13)

we get for λ 	= 0 or −1,

θ̃λ (y1, . . . , yn) =

(∑υ
i=1

yλ+1
i

nλ
i

) 1
λ+1

(∑υ
i=1

yλ+1
i

nλ
i

) 1
λ+1

+
(∑υ

i=1
(ni−yi)

λ+1

nλ
i

) 1
λ+1

for λ = 0 (maximum likelihood estimator),
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θ̃0 (y1, . . . , yn) =
∑υ

i=1yi∑υ
i=1yi +

∑υ
i=1 (ni − yi)

=
1
n

∑υ
i=1yi

and for λ = −1,

θ̃−1 (y1, . . . , yn) =
1

1 +
[

υ∏
i=1

(
ni−yi

yi

)ni
] 1

n

.

The family of divergence measures obtained from (13) is called power-
divergence measure and it was introduced by Cressie and Read [3]. Based
on θ̂ and θ̃φ2 we consider the following family of estimators

θ̂
h

φ1,φ2
= θ̃φ2 +

(
1− h

(
T φ1,φ2

n

)) (
θ̂ − θ̃φ2

)
(14)

where T φ1,φ2
n is the family of phi-divergence test statistics for testing (3) and

whose expression is given by

T φ1,φ2
n =

2n
φ′′

1 (1)
∑υ

i=1niDφ

(
p̂i, p(θ̃φ2)

)
. (15)

In Theorem 1 we shall present the asymptotic distribution of T φ1,φ2
n under

H0 as well as under contiguous alternative hypotheses to H0. In Menéndez et
al. ([6], [7], [8], [9], [10], [11]), Pardo and Menéndez [14] and Pardo et al. [15]
can be seen some estimators of type (14) for different statistical problems.

The election of different functions h gives some well-known estimators.
If we choose h(x) = 0 for all x we get the unrestricted maximum likelihood

estimator, i.e., θ̂
h

φ1,φ2
= θ̂. For h(x) = 1 for all x we get the RMφ2E, θ̂

h

φ1,φ2
=

θ̃φ2 . For h(x) = 1 − a for all x a ∈ (0, 1) , the shrinkage Mφ2E, θ̂
h

φ1,φ2
=

θ̂
SRE

φ1,φ2
. For h(x) = I(0,χ2

υ−1,α) (x) the preliminary Mφ2E, θ̂
h

φ1,φ2
= θ̂

PTE

φ1,φ2
. For

h(x) = aI(0,χ2
υ−1,α) (x) the shrinkage preliminary Mφ2E, θ̂

h

φ1,φ2
= θ̂

SPT

φ1,φ2
. For

h(x) = (υ − 3)x−1 with (υ > 3) the James-Stein Mφ2E, θ̂
h

φ1,φ2
= θ̂

S

φ1,φ2
. For

h(x) = 1−
(
1− (υ − 3)x−1

)
I(υ−3,∞) (x) , (υ > 3) , the positive part of Stein-

Rule Mφ2E, θ̂
h

φ1,φ2
= θ̂

S+

φ1,φ2
. For h(x) = 1 − (1− (υ − 2)x−1)I[χ2

υ−1,α,∞)(x),

(υ > 3) the modified preliminary Mφ2E, θ̂
h

φ1,φ2
= θ̂

PTE+

φ1,φ2
.

3 Some Asymptotic Distributional Results

We define the two following probability vectors,

pn (θ) = (n1θ1/n , (1− θ1)n1/n, . . . , nυθυ/n, nυ (1− θυ) /n)T
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and p̂ = (y1/n, (n1 − y1) /n, . . . , yυ/n, (nυ − yυ) /n)T . We denote

Dθ0 = diag
(
θ
−1/2
0 , (1− θ0)

−1/2
)
.

We have,

diag
(
pn (θ0)

−1/2
)

= diag
((n1

n

)−1/2

, . . . ,
(nυ

n

)−1/2
)
⊗Dθ0 .

and
(
∂pn (θ)
∂θ

)
θ=θ0

= diag
(n1

n
, . . . ,

nυ

n

)
⊗ (1,−1)T θ0 =

(
θ0, ..

(υ., θ0

)
.

By⊗ we are denoting the Kronecker product between the respective matrices.
It is well-known (see p.225 in Pardo [13]) that Fisher information matrix, for
this model, is defined by In (θ0) = An (θ0)

T
An (θ0) = Λnθ

−1
0 (1− θ0)

−1,
where

An (θ0) = Λ−1/2
n ⊗

(
θ
−1/2
0 ,− ((1− θ0))

−1/2
)T

being Λn = diag (n1/n, . . . , nυ/n) .
The unrestricted maximum likelihood, θ̂, of θ0 =

(
θ0, ..

(υ., θ0
)

admits the
following BAN decomposition

θ̂ = θ0 + In (θ0)
−1
An (θ0) diag

(
pn (θ0)

−1/2
)

(p̂− pn (θ0)) + op

(
n−1/2

)
(16)

and its asymptotic distribution is
√
n
(
θ̂ − θ0

)
L−→

n→∞ N
(
0, I (θ0)

−1
)

where

I (θ0) = limn→∞ In (θ0) = Λθ−1
0 (1− θ0)

−1, Λ = diag (λ1, . . . , λυ) and λj =
limn→∞ nj/n, j = 1, . . . , υ.

The null hypothesis given in (3) can be written by hi (θ) = θi − θυ = 0,
i = 1, . . . , υ − 1. If we denote by

B =
(
∂hi (θ)
∂θj

)
i=1,...,υ−1
j=1,...,υ

=
(
I(υ−1)×(υ−1),−Jυ−1

)
(υ−1)×υ

the hypothesis (3) can be given by H0 : Bθ = 0(υ−1)×1 or equivalently,
g(θ) = 0 where g(x) = Bx.

The BAN decomposition of the RMφE, θ̃φ, of θ0 =
(
θ0, ..

(υ., θ0
)

admits
the expansion

θ̃φ = θ0 +Hn(θ0)In (θ0)
−1An (θ0)

T diag
(
pn (θ0)

−1/2
)

(p̂ − pn (θ0))+ op

(
n−1/2

)
(17)

being Hn(θ0) = Iυ×υ − In (θ0)
−1
BT

(
BIn (θ0)

−1
BT

)−1

B.
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For more details see Pardo [12]. Based on (16) and (17) we have

√
n
(
θ̃φ − θ0

)
=Hn(θ0)

√
n
(
θ̂ − θ0

)
+ op(1). (18)

It is not difficult to see that

H(θ0) = lim
n→∞Hn(θ0) = JυJ

T
υ diag(λ), λ = (λ1, . . . , λυ)T

. (19)

Let θn ∈ Θ−Θ0 be a given alternative and let θ0 be the element in Θ0 closest
to θn in the Euclidean distance sense. A first possibility for introducing
contiguous alternative hypothesis is to consider a fixed Δ ∈ R

υ and allowing
θn to move toward θ0 as n increases in the following way

H1,n : θn = θ0 + n−1/2Δ, Δ = (Δ1, . . . , Δn)T
. (20)

A second approach is to relax the condition g(θ) = 0 defining Θ0. Let δ ∈
R

υ−1 and consider the following sequence, θn, of parameters approaching Θ0

according to H∗
1,n : g(θ) = n−1/2δ. Note that a Taylor series expansion of

g(θn) around θ0 ∈ Θ0 yields

g(θn ) = g(θ) + B (θn − θ0) + o (‖θn − θ0‖) . (21)

By substituting θn = θ0 + n−1/2Δ in (21) and taking into account that
g(θ0) = 0, we get

g(θn ) = n−1/2 BΔ+ o (‖θn − θ0‖) (22)

so that the equivalence in the limit is obtained for δ = BΔ.

In the following we shall denote QB =
(
BI (θ0)

−1BT
)−1/2

. It is not

difficult to see, under H1,n, that
√
ng(θ̂) L−→

n→∞ N
(
BΔ,Q2

B

)
.

Now we are going to give, without proof, some asymptotic distributional
results under H1,n.

Theorem 1. Under H1,n the following results follows,

a) Xn ≡
√
n
(
θ̂ − θ0

)
L−→

n→∞ N
(
Δ, I (θ0)

−1
)
, I (θ0) = Λθ−1

0 (1− θ0)
−1

.

b) Y n ≡
√
n
(
θ̃φ − θ0

)
L−→

n→∞ N
(
JυJ

T
υ diag(λ)Δ,ΣY

)
, where

ΣY = I (θ0)
−1 − I (θ0)

−1
BTQ2

BBI (θ0)
−1 = θ0 (1− θ0)JυJ

T
υ .

If we assume λTΔ = 0, then JυJ
T
υ diag(λ)Δ = 0.

c) Zn ≡ √
n
(
θ̂ − θ̃φ

)
L−→

n→∞
N (δ∗,ΣZ ) where δ∗ =

(
Iυ×υ − diag (λ)JυJ

T
υ

)
Δ

and
ΣZ = I (θ0)

−1
BTQ2

BBI (θ0)
−1 = (Iυ×υ −H(θ0)) I (θ0)

−1.

d) We have
(
Xn

Zn

)
L−→

n→∞ N
((

Δ
δ∗

)
,

(
I (θ0)

−1
ΣZ

ΣT
Z ΣZ

))
, where δ∗ and

ΣZ where defined in c).
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e) We have,
(
Y n

Zn

)
L−→

n→∞ N
((

0
δ∗

)
,

(
ΣY 0
0 ΣZ

))
.

f) The asymptotic distribution of T φ1,φ2
n , under H1,n, is a noncentral chi-

square distribution with υ−1 degrees of freedom and noncentrality parameter

μ = θ−1
0 (1− θ0)

−1 diag (λ)JυJ
T
υ = δTQ2

Bδ (δ = BΔ) . (23)

4 Asymptotic Quadratic Bias of θ̂
h

φ1,φ2
under H1,n

Let θ̂∗ be a suitable estimator of θ and we denote by Fθ̂∗
the asymp-

totic distribution of
√
n(θ̂∗ − θn). The asymptotic bias of θ̂∗ is defined

by B(θ̂∗) =
∫
xdFθ̂∗

(x). B(θ̂∗) is not in a scalar form and in order to
be able to do comparisons we consider the asymptotic quadratic bias of it,
B∗(θ̂∗) = B(θ̂∗)T I(θ0)B(θ̂∗). The following theorem gives the expression of
B∗(θ̂∗).

Theorem 2. The asymptotic quadratic bias, B∗
(
θ̂

h

φ1,φ2

)
, of

θ̂
h

φ1,φ2
= θ̃φ2 +

(
1− h

(
T φ1,φ2

n

))
(θ̂ − θ̃φ2), (24)

under H1,n, is given by B∗
(
θ̂

h

φ1,φ2

)
= E

[
h
(
χ2

υ+1 (μ)
)]2

μ, where μ was de-
fined in (23).

Proof. We denote by ηn the (υ − 1)−dimensional random vector defined by

ηn =
(
BIn (θ0)

−1
BT

)−1/2√
ng
(
θ̂
)

(25)

whose asymptotic distribution is normal with vector mean QBBΔ and
variance-covariance matrix the identity matrix I(υ−1)×(υ−1).

A second order Taylor expansion gives

T φ1,φ2
n =

√
n(θ̂ − θ̃φ2)

T In (θ0)
√
n(θ̂ − θ̃φ2) + op (1) .

Now using (17) and (19) we get

T φ1,φ2
n =

√
ng(θ̂)T

(
BIn (θ0)

−1BT
)−1√

ng(θ̂) + op (1) = ηT
nηn + op (1) ,

with ηn defined in (25).
We have,

√
n(θ̂

h

φ1,φ2
− θn) =

√
n
(
θ̃φ2 − θn

)
+
(
1− h

(
T φ1,φ2

n

))√
n(θ̂ − θ̃φ2) + op (1)

=
√
n(θ̂ − θn)−

√
n(θ̂ − θ̃φ2)h(T φ1,φ2

n ) + op (1)

=
√
n(θ̂ − θn)

− In (θ0)
−1BT

(
BIn (θ0)

−1BT
)−1/2

ηnh
(
ηT

nηn

)
+ op(1).
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Therefore, applying 2.2.9 of page 32 in Saleh [16] we get,

B(θ̂
h

φ1,φ2
) = −I (θ0)

−1
BTQBδE

[
h
(
χ2

υ+1 (μ)
)]

and therefore

B∗(θ̂
h

φ1,φ2
) = E

[
h
(
χ2

υ+1 (μ)
)]2
δTQ2

Bδ
T

= μE
[
h
(
χ2

υ+1 (μ)
)]2

.

In the following by Gr (x;λ) we shall denote the distribution function of a
non-central chi-square with r degrees of freedom and noncentrality parameter
λ evaluated at x.

In the following theorem we are going to give some relations among θ̂, θ̃φ2 ,

θ̂
SRE

φ2
, θ̂

PTE

φ1,φ2
, θ̂

SPT

φ1,φ2
, θ̂

S

φ1,φ2
, θ̂

S+

φ1,φ2
and θ̂

PTE+

φ1,φ2
on the basis of the asymptotic

quadratic bias.

Theorem 3. The estimators θ̂, θ̃φ2 , θ̂
SRE

φ2
, θ̂

PTE

φ1,φ2
, θ̂

SPT

φ1,φ2
, θ̂

S

φ1,φ2
, θ̂

S+

φ1,φ2
and

θ̂
PTE+

φ1,φ2
can be ordered in according to the asymptotic quadratic bias in the

following way:

a) B∗(θ̂) ≤ B∗(θ̂
SRE

φ2
) ≤ B∗(θ̃φ2); B∗(θ̂) ≤ B∗(θ̂

SPT

φ2
) ≤ B∗(θ̂

PTE

φ1,φ2
).

b) B∗(θ̂
S

φ1,φ2
) ≤ B∗(θ̂

PTE

φ1,φ2
) iff Gυ+1

(
χ2

υ−1,α;μ
)
≥ (υ − 3)E

[
χ−2

υ+1 (μ)
]

for all α and μ.
c)B∗(θ̂

S+
φ1,φ2) ≤ B∗(θ̂

PTE

φ1,φ2) iff Gυ+1

(
χ2

υ−1,α; μ
) ≥ E

[
1 − (

1 − (υ − 3) χ−2
υ+1 (μ)

)
×I(υ−3,∞)

(
χ2

υ+1 (μ)
)]

for all α and μ.

d) B∗(θ̂
S+

φ1,φ2
) ≤ B∗(θ̂

S

φ1,φ2
) and B∗(θ̂

PTE+

φ1,φ2
) ≤ B∗(θ̂

PTE

φ1,φ2
).

Proof. Based on the expressions of

B∗(θ̂), B∗(θ̃φ2), B
∗(θ̂

SRE

φ2
), B∗(θ̂

PTE

φ1,φ2
),

B∗(θ̂
SPT

φ2
), B∗(θ̂

S

φ1,φ2
), B∗(θ̂

S+

φ1,φ2
), B∗(θ̂

PTE+

φ1,φ2
)

parts a), b) and c) are immediate. We are going to establish d). We denote

s = B∗(θ̂
S

φ1,φ2
)−B∗(θ̂

S+

φ1,φ2
) and we have,

s = (υ − 3)2 μE
[
χ−2

υ+1 (μ)
]2 − μ

{
Gυ+1 (υ − 3;μ) + (υ − 3)E

[
χ−2

υ+1 (μ)
]

− (υ − 3)E
[
χ−2

υ+1 (μ) I(0,υ−3)

(
χ2

υ+1 (μ)
)]}2

= (υ − 3)2 μ
{
E
[
χ−2

υ+1 (μ) I(0,υ−3)

(
χ2

υ+1 (μ)
)]
− 1

υ − 3
Gυ+1 (υ − 3;μ)

}

{
2E

[
χ−2

υ+1 (μ)
]
+

1
υ − 3

Gυ+1 (υ − 3;μ)−E
[
χ−2

υ+1 (μ) I(0,υ−3)

(
χ2

υ+1 (μ)
)]}

.
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Using the probability density function of a noncentral chi-square random
variable as well as relations 2.2.13a and 2.2.13g in pages 32 and 33 in Saleh
[16], it is not difficult to establish that

1
υ − 3

Gυ+1 (υ − 3;μ) ≤ E
[
χ−2

υ+1 (μ) I(0,υ−3)

(
χ2

υ+1 (μ)
)]

and

2E
[
χ−2

υ+1 (μ)
]
+

1
υ − 3

Gυ+1 (υ − 3;μ) ≥ E
[
χ−2

υ+1 (μ) I(0,υ−3)

(
χ2

υ+1 (μ)
)]
,

therefore, B∗
(
θ̂

S

φ1,φ2

)
> B∗

(
θ̂

S+

φ1,φ2

)
.

It is clear that

E
[
χ−2

υ+1 (μ)
]

=
∞∫
0

x−1dGυ+1 (x;μ) ≥
υ−3∫
0

x−1dGυ+1 (x;μ)

= E
[
χ−2

υ+1 (μ) I(0,υ−3)

(
χ2

υ+1 (μ)
)]
.

Therefore, B∗
(
θ̂

PTE+

φ1,φ2

)
≤ B∗

(
θ̂

PTE

φ1,φ2

)
.

5 Asymptotic Quadratic Risk under Null and
Contiguous Alternative Hypotheses

Let θ̂∗ be a suitable estimator of θ and we denote by Fθ̂∗
the asymp-

totic distribution of
√
n(θ̂∗ − θn) and W a positive semidefinite matrix.

The asymptotic distributional quadratic risk (ADQR) of θ̂∗ is given by
R(θ̂∗;W ) =

∫
xTWxdFθ̂∗

(x). The following theorem gives the ADQR of

θ̂
h

φ1,φ2
defined in (14).

Theorem 4. The ADQR of θ̂
h

φ1,φ2
is given by

R
(
θ̂

h

φ1,φ2
;W

)
= δTLTWLδ

{
E
[
h
(
χ2

υ+3 (μ)
)2]− 2E

[
h
(
χ2

υ+3 (μ)
)]

+2E
[
h
(
χ2

υ+1 (μ)
)]}

+ trace
(
I (θ0)

−1
W
)

(26)

− trace (ΣZW )
{
2E

[
h
(
χ2

υ+1 (μ)
)]
− E

[
h
(
χ2

υ+1 (μ)
)2]}

,

where μ = θ−1
0 (1− θ0)

−1 diag (λ)JυJ
T
υ .

Proof. We know,

√
n(θ̂

h

φ1,φ2
− θn) =

√
n(θ̂ − θn)−

√
n(θ̂ − θ̃φ2)h(T φ1,φ2

n ) + op (1) .
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Then,

R
(
θ̂

h

φ1,φ2
;W

)
= lim

n−→∞E

[√
n
(
θ̂

h

φ1,φ2
− θn

)T

W
√
n
(
θ̂

h

φ1,φ2
− θn

)]

= lim
n→∞E

[{√
n
(
θ̂ − θn

)
−
√
n
(
θ̂ − θ̃φ2

)
h
(
T φ1,φ2

n

)}T

W

×
{√

n
(
θ̂ − θn

)
−
√
n
(
θ̂ − θ̃φ2

)
h
(
T φ1,φ2

n

)}]

= lim
n→∞E

[√
n
(
θ̂ − θn

)T

W
√
n
(
θ̂ − θn

)]

− lim
n→∞E

[√
n
(
θ̂ − θn

)T

W
√
n
(
θ̂ − θ̃φ2

)
h
(
T φ1,φ2

n

)]

− lim
n→∞E

[√
n
(
θ̂ − θ̃φ2

)T

h
(
T φ1,φ2

n

)
W
√
n
(
θ̂ − θn

)]

+ lim
n→∞E

[√
n
(
θ̂ − θ̃φ2

)
h
(
T φ1,φ2

n

)2
W
√
n
(
θ̂ − θ̃φ2

)]

= L1 − L2 − L3 + L4.

If X is a random vector with vector mean a and variance-covariance matrix
Σ, then E

[
XTAX

]
= trace(AΣ) + aTAa. In our case

√
n(θ̂ − θn) L−→

n→∞
N (0,I (θ0)

−1), therefore

L1 = lim
n→∞E

[√
n
(
θ̂ − θn

)T

W
√
n
(
θ̂ − θn

)]
= trace

(
I (θ0)

−1W
)
.

We know

√
n
(
θ̂ − θ̃φ2

)
= In (θ0)

−1
BT

(
BIn (θ0)

−1
BT

)−1√
ng
(
θ̂
)

+ op (1)

= In (θ0)
−1
BT

(
BIn (θ0)

−1
BT

)−1/2

ηn + op (1) ,

where ηn is an asymptotic (υ − 1)-dimensional normal random vector with
vector mean QBδ and variance-covariance matrix the identity.

Then,

L4 = E
[
h
(
ηTη

)2
ηTQBBI (θ0)

−1
WI (θ0)

−1
BTQBη

]
.

Now we apply the following result: “Let Z be a p-dimensional normal random
vector distributed as a N (a, I). Then for a measurable function ϕ and a
positive definite matrix A, we have

E
[
ZTAZϕ

(
ZTZ

)]
= trace (A)E

[
ϕ
(
χ2

p+2 (μ)
)]

+ E
[
ϕ
(
χ2

p+4 (μ)
)]
,
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μ = aTAa”(see Judge and Bock [5]), and we get

L4 = trace
(
BTQBBI (θ0)

−1
WI (θ0)

−1
BTQB

)
E
[
h
(
χ2

υ+1 (μ)
)2]

+ δTQ2
BBI (θ0)

−1BT−1BI (θ0)
−1WI (θ0)

−1BTQ2
BδE

[
h
(
χ2

υ+3 (μ)
)2]

= trace (ΣZW )E
[
h
(
χ2

υ+1 (μ)
)2]

+ E
[
h
(
χ2

υ+3 (μ)
)2]

δTLTWLδ,

being L = I (θ0)
−1
BTQ2

B.
We denote by S the random vector obtained by Sn ≡

√
n(θ̂−θn) L−→

n→∞ S,
where S is a υ-dimensional normal vector with vector mean 0 and variance-
covariance matrix I(θ0)−1. Now we are going to obtain L2,

L2 = lim
n→∞E

[√
n
(
θ̂ − θn

)T

W
√
n
(
θ̂ − θ̃φ2

)
h
(
T φ1,φ2

n

)]

= E

[
STWh

(
ηTη

)
I (θ0)

−1
BT

(
BI (θ0)

−1
BT

)−1/2

η

]

= E
[
E
[
ST /η

]
Wh

(
ηTη

)
I (θ0)

−1
BTQBη

]
.

In relation to E[ST /η], we have Sn ≡
√
n(θ̂−θn) L−→

n→∞ S and ηn ≡ QB

√
nB

(θ̂ − θn) + k, therefore,

(
Sn

ηn

)
=

(
I(

BIn (θ0)
−1BT

)−1/2

B

)
√
n
(
θ̂ − θn

)
+
(

0
k

)

and (
Sn

ηn

)
L−→

n→∞ N
((

0
QBδ

)
,

(
I (θ0)

−1
M

MT I

))
,

being M = I (θ0)
−1
BTQ−2

B .
Finally,

E
[
ST /η = y

]
= I (θ0)

−1
BTQB (y −QBδ) = I (θ0)

−1
BTQB −Lδ.

Then,

L2 = E
[
h
(
ηTη

) [
ηTQBBI (θ0)

−1 − δTLT
]
WI (θ0)

−1BTQBη
]

= E
[
h
(
ηTη

)
ηTQBBI (θ0)

−1
WI (θ0)

−1
BTQBη

]

− E
[
h
(
ηTη

)
δTLTWI (θ0)

−1
BTQBη

]
= a1 − a2.
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Now we get a1 and a2,

a1 = trace
(
QBBI (θ0)

−1
WI (θ0)

−1
BTQB

)
E
[
h
(
χ2

υ+1 (μ)
)]

+ δTQ2
BBI (θ0)

−1
WI (θ0)

−1
BTQ2

BδE
[
h
(
χ2

υ+3 (μ)
)]

= trace
(
I (θ0)

−1
BTQ2

BBI (θ0)
−1
W
)
E
[
h
(
χ2

υ+3 (μ)
)]

+ δTLTWLδE
[
h
(
χ2

υ+3 (μ)
)]

and a2 = δTLTWLδE
[
h
(
χ2

υ+1 (μ)
)]

. Then,

L2 = trace (ΣZW )E
[
h
(
χ2

υ+3 (μ)
)]

+ δTLTWLδ
(
E
[
h
(
χ2

υ+3 (μ)
)]
− E

[
h
(
χ2

υ+1 (μ)
)])

.

Remark 1. Under H0 we have δ = 0 and μ = 0, therefore, taking into account
that trace(I (θ0)

−1
W ) = trace (ΣY W ) + trace (ΣZW ), we get

R
(
θ̂

h

φ1,φ2
;W

)
= trace (ΣYW ) + (ΣZW )E

[(
1− h

(
χ2

υ+1 (0)
))2]

and R
(
θ̂

h

φ1,φ2
;W

)
is an increasing function of E

[(
1− h

(
χ2

υ+1 (0)
))2].

Based on this result it is not difficult to establish, under H0, the following
relations,

i) R
(
θ̃φ2 ;W

)
≤ R

(
θ̂

PTE

φ1,φ2
;W

)
≤ R

(
θ̂

SPT

φ1,φ2
;W

)
≤ R

(
θ̂;W

)
.

ii) Assuming υ > 3,

R
(
θ̃φ2 ;W

)
≤ R

(
θ̂

S+

φ1,φ2
;W

)
≤ R

(
θ̂

S

φ1,φ2
;W

)
≤ R

(
θ̂;W

)
and

R
(
θ̃φ2 ;W

)
≤ R

(
θ̂

PTE+

φ1,φ2
;W

)
≤ R

(
θ̂

PTE

φ1,φ2
;W

)
≤ R

(
θ̂;W

)
.

iii) R
(
θ̃φ2 ;W

)
≤ R

(
θ̂

SRE

φ1,φ2
;W

)
≤ R

(
θ̂;W

)
.

Theorems 5 and 6 presents some results, without proof, under contiguous
alternative hypotheses.

Theorem 5. We assume υ ≥ 4. Under H1,n we have

R
(
θ̂

S+

φ1,φ2
;W

)
≤ R

(
θ̂

S

φ1,φ2
;W

)
.

If in addition trace (ΣZW ) ≥ υ+1
2 Chmax

(
I (θ0)

−1
W
)
, where Chmax(G)

represents the largest eigenvalue of the matrix G, we get

R
(
θ̂

S

φ1,φ2
;W

)
≤ R

(
θ̂;W

)
.
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Theorem 6. The following relations are verified:

i) R
(
θ̃φ1,φ2 ;W

)
≤ R

(
θ̂;W

)
iff μ ≤ trace (ΣZW ) .Chmax(I (θ0)

−1W )−1 and

R
(
θ̂;W

)
≤ R

(
θ̃φ1,φ2 ;W

)
iff μ ≥ trace (ΣZW ) Chmin(I (θ0)

−1W )−1, being

Chmin(G) the smallest eigenvalue of the matrix G.

ii) R
(
θ̂;W

)
≤ R

(
θ̂

PTE

φ1,φ2
;W

)
iff

μ ≥ trace (ΣZW )Gυ+1

(
χ2

υ−1,α;μ
) (

Chmin

(
I (θ0)

−1W
))−1

×
[
2Gυ+1

(
χ2

υ−1,α;μ
)
−Gυ+3

(
χ2

υ−1,α;μ
)]−1

and R
(
θ̂

PTE

φ1,φ2
;W

)
≤ R

(
θ̂;W

)
iff

μ ≤ trace (ΣZW )Gυ+1

(
χ2

υ−1,α;μ
)(

Chmax

(
I (θ0)

−1
W
))−1

×
[
2Gυ+1

(
χ2

υ−1,α;μ
)
−Gυ+3

(
χ2

υ−1,α;μ
)]−1

.

If μ→∞ or α→ 1, R
(
θ̂

PTE

φ1,φ2
;W

)
→ R

(
θ̂;W

)
.

iii) R
(
θ̃φ1,φ2 ;W

)
≤ R

(
θ̂

PTE

φ1,φ2
;W

)
iff

μ ≤
(
1−Gv+1

(
χ2

υ−1,α;μ
))

trace (ΣZW ) (Chmax (ΣZW ))−1

×
[
1− 2Gυ+1

(
χ2

υ−1,α;μ
)

+ Gυ+3

(
χ2

υ−1,α;μ
)]−1

and R
(
θ̂

PTE

φ1,φ2
;W

)
≤ R

(
θ̃φ1,φ2 ;W

)
iff

μ ≥
(
1−Gv+1

(
χ2

υ−1,α;μ
))

trace (ΣZW ) (Chmin (ΣZW ))−1

×
[
1− 2Gυ+1

(
χ2

υ−1,α;μ
)

+ Gυ+3

(
χ2

υ−1,α;μ
)]−1

.

If α→ 0, R
(
θ̂

PTE

φ1,φ2
;W

)
→ R

(
θ̃φ1,φ2 ;W

)
.

iv) R
(
θ̂

S+

φ1,φ2
;W

)
≤ R

(
θ̂

PTE+

φ1,φ2
;W

)
if χ2

υ−1,α < υ − 3.

v) R
(
θ̂

SRE

φ1,φ2
;W

)
≤ R

(
θ̂;W

)
iff

μ ≤
(
1− a2

)
trace (ΣZW ) (1− a)−2

(
Chmax

(
I (θ0)

−1W
))−1

and R
(
θ̂;W

)
≤ R

(
θ̂

SRE

φ1,φ2
;W

)
iff

λ ≥
(
1− a2

)
trace (ΣZW ) (1− a)−2

(
Chmax

(
I (θ0)

−1
W
))−1

.
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Detection of Outlying Points in Ordered
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Summary. Ordered polytomous logistic models are used to model relation-
ships between a polytomous response variable and a set of regressor variables
when the response of an individual unit is restricted to one of a finite num-
ber of ordinal values. A method of checking the model’s goodness of fit is
described as well as a procedure to find outlying points. Finally, the paper
concludes with an analysis of real data.

Keywords: ordered polytomous logistic regression, minimum φ−divergence
estimation, goodness-of-fit tests, outlying points.

1 Introduction

The application of ordered polytomous logistic regression in medical research
has greatly increased in recent years. Ordered polytomous logistic regression
is an useful technique for relating a dependent ordered categorical variable to
categorical independent variables. Ordered polytomous regression has been
discussed by McCullagh [11], Anderson and Philips [4], Anderson [3], Agresti
[1], Liu and Agresti [10].

In an ordered model, the response Y of an individual unit is restricted to
one of J ordered values. For example, the severity of a medical condition may
be: none, mild, and severe. The ordered polytomous logistic model or cumu-
lative logit model assumes that the ordinal nature of the observed response is
due to methodological limitations in collecting the data that results in lump-
ing together values of an otherwise continuous response variable (McKelvey
and Zavoina [13]). Suppose Y takes values y1, ..., yJ on some scale, where
y1 < ... < yJ . It is assume that the observable variable is a categorized ver-
sion of a continuous latent variable such that Y = yr ⇐⇒ αr−1 < U ≤ αr,

∗ Memories bring back to our minds and cannot be easily expressed. Our scientific
collaboration with Marisa has been wide and fruitful, but it seems rather small in
contrast to our personal relationship. Thank you, sister, for all the moments we
have shared with you and for your invaluable and unselfish support and affection.
You will be always in our hearts.
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r = 1, ..., J, where −∞ = α0 < α1 < .... < αJ = ∞. It is further assumed
that the latent variable U is determined by the explanatory variable vector
xT = (x1, ..., xm) ∈ R

m in the linear form U = −xTβ + ε, where β is a
vector of regression coefficients and ε is a random variable with a logistic
distribution function. It follows that

Pr
(
Y ≤ yr/x

T
)

= Pr(U ≤ αr) =
exp

(
αr + xTβ

)
1 + exp (αr + xTβ)

, r = 1, ..., J.

(1)
Given x, Y is a multinomial with probability vector πT = (π1, ..., πJ) and
πr = P (Y = yr | xT ), r = 1, ..., J. Suppose we observe the sample Y 1 =
y1, ...,Y N = yN jointly with the explanatory variables x1, ...,xN . The model
(1) can be expressed as

ηi = log

(
Pr
(
Y ≤ yr/x

T
)

Pr (Y >yr/xT )

)
= ZT

i γ (2)

where

ZT
i =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 xT
i

1 xT
i

.

.

.

.

.

.
1 xT

i

⎞
⎟⎟⎟⎟⎟⎟⎠

(3)

and γT =
(
α1, ..., αJ−1,β

T
)
. The usual way to estimate the vector γ of

unknown parameters is using the maximum likelihood estimator (MLE). As
a natural extension of the unrestricted MLE, Pardo [17] defined the unre-
stricted minimum φ-divergence estimator as follows.

γ̂φ = arg min
γ∈Rp

Dφ (p̂,p (γ)) (4)

with p = J − 1 + m,

p̂ =
(y11

n
, ...,

yJ1

n
,
y12

n
, ...,

yJ2

n
, ...,

y1N

n
, ...,

yJN

n

)T

,

with yJi = n (xi)−
∑J−1

s=1 ysi, i = 1, ..., N, n (xi) is the number of observations
with explicative variable xi, n =

∑N
i=1 n (xi) ,

p (γ) =
(
n (x1)
n

π̃T
1 , ...,

n (xN )
n

π̃T
N

)T

being π̃T
i = (πi,1, ..., πi,J ) and

Dφ (p̂,p (γ)) =
J∑

l=1

N∑
i=1

πl(ZT
i γ)

n (xi)
n

φ

⎛
⎝ yli/n

πl

(
ZT

i γ
)
n (xi) /n

⎞
⎠ (5)
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is the φ−divergence measure defined by Ali and Silvey [2], being φ ∈ Φ

and Φ is the class of all convex functions φ (x) , x > 0, such that at x =
1, φ (1) = φ′ (1) = 0, φ′′ (1) > 0, and at x = 0, 0φ (0/0) = 0 and 0φ (p/0) =
p limu→∞ φ (u) /u. For more details about φ-divergences see Vajda [19] and
Pardo [15]. For φ (x) = x log x− x+ 1, we obtain as particular case the MLE
in (4).

Under mild regularity conditions, Pardo [17] established the asymptotic
expansion of the unrestricted minimum φ-divergence estimator which is given
by

γ̂φ =γ0+IF,n

(
γ0
)−1

ZDiag
((
C0

n,i

)
i=1,..,N

)
Diag

(
p
(
γ0
)−1/2

) (
p̂−p

(
γ0
))

+
∥∥p̂−p (γ0

)∥∥α1

(
p̂; p̂−p

(
γ0
))

(6)
where γ0 is the true parameter value of the parameter γ,

C0
n,i = (Cn,i)

0
γ=γ =

[(
n (xi)

n

)1/2
∂π̃ (ηi)

∂ηT
i

Diag
(
π̃(ηi)

−1/2
)]0

γ=γ

, i = 1, ..., N,

IF,n (γ) = ZVn (γ)ZT (7)

with
Z= (Z1, ...,ZN ) ,

V n (γ) = Diag (V n,1 (γ) , ...,V n,N (γ))

being

V n,i (γ) =
n (xi)
n

∂π (ηi)
∂ηi

Σ−1
i (γ)

∂π (ηi)
∂ηT

i

, (8)

Σi (γ) is the inverse of the covariance matrix of Y i and

α1 : R
JN×JN → R

p verifies that α1

(
p;p− p

(
γ0
))
→ 0 as p→ p

(
γ0
)
.

(9)
Suppose that in addition to the linear predictor (2) there are r linearly in-
dependent restrictions on the parameter vector γ, KTγ = ξ where KT is
any matrix of r rows and p columns and ξ is a vector, of order r of specified
constants. There is only the limitation on KT in the sense that it must have
full row rank, i.e., rank(KT ) = r. To fit the unknown parameters, Pardo [17]
defined the restricted minimum φ-divergence estimator given by

γ̂Θ0
φ = arg min

γ∈Θ0

Dφ (p̂,p (γ)) .

where Θ0 =
{
γ ∈ R

p / KTγ = ξ
}
.
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An important step of the modeling process is assessing how well the data
are described by the model. The tests that are used to evaluate fit in this man-
ner are referred to as “goodness-of-fit tests”. The most common goodness-of-
fit tests for ordered polytomous logistic models include the Pearson χ2-test
and the deviance test. In Section 2, we propose a new family of test statistics
based on the φ−divergence that contains the above test statistics. Further-
more, we estimate the unknown parameters of the model using the above
extension of the maximum likelihood estimator, the minimum φ−divergence
estimator.

In practice, however, the model building process can be highly influenced
by peculiarities in the data. For univariate generalized models, Cook and
Weisberg [5], McCullagh and Nelder [12], Pregibon [18], and Williams [20]
have discussed diagnostic tools for detecting outlyings. Lesaffre and Albert
[9] have extended Pregibon’s regression diagnostics to the case where several
groups are envisaged. A wider extension was made by Fahrmeir and Tutz
[7] for multivariate extensions of generalized linear models. Pardo [16] shows
that maximum likelihood and deviance-based diagnostics for multivariate ex-
tensions of generalized linear models extend naturally to the φ−divergences
family. In this paper, new measures based on divergences for detecting out-
lying points in ordered polytomous logistic models are presented in Section
3. For illustration, the procedure is applied to a data set in Section 4.

2 Goodness-of-Fit

After estimating the coefficients γT =
(
α1, ..., αJ−1,β

T
)
, we begin with the

summary measures of goodness-of-fit, as they give an overall indication of
the fit of the model. Because these are summary statistics, they may not
be very specific about the individual components. A small value for one of
these statistics does not rule out the possibility of some substantial and thus
interesting deviation from fit for a few subjects. On the other hand, a large
value for one of these statistics is a clear indication of a substantial problem
with the model.

The two most common measures for fitting the ordered polytomous logistic
regression are the Pearson chi-square statistic defined by

X2 =
N∑

i=1

X2
i , (10)

where

X2
i =

J∑
l=1

(
yli − n (xi)πl

(
ZT

i γ̂
))2

n (xi)πl

(
ZT

i γ̂
) (11)
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with γ̂ the MLE of γ and the deviance statistic defined by

D = 2
N∑

i=1

di, (12)

where

di =
J∑

l=1

yli log
yli

n (xi)πl

(
ZT

i γ̂
) . (13)

It is known that the asymptotic distribution of the test statistics given in
(10) and (12) is a chi-square with (J − 1)N − p degrees of freedom.

The statistics (10) and (12) are used for testing the goodness-of-fit

H0 : p = p (γ) (14)

which are a particular case of the family of statistics

Bφ1,φ2
n =

2n
φ′′

1 (1)
Dφ1

(
p̂,p

(
γ̂φ2

))
. (15)

Note that the above test statistics uses one measure of divergence (φ2) for
estimation and another different measure of divergence (φ1) for testing. In
particular if we consider φ1(x) = φ2 (x) = x log x − x − 1 and for φ1(x) =
1
2 (x− 1)2 and φ2 (x) = x log x− x− 1 we obtain (12) and (10), respectively.

Theorem 1. Let Y i, i = 1, ..., N , independent random variables with multi-
nomial distributions of parameters

(
n (xi) ,π

(
ZT

i γ
))

. Assume conditions
of Theorem 2 of Pardo [17] and that φ1 ∈ Φ. Then under the null hypothe-
sis (14), the family of test statistics Bφ1,φ2

n , given in (15), is asymptotically
distributed as a chi-square with (J − 1)N − p degrees of freedom.

Proof. Firstly, we obtain the asymptotic distribution of the random vector

W = Diag
(
p
(
γ0
)−1/2

)√
n
(
p̂− p

(
γ̂φ2

))
.

Using a Taylor expansion of order one we have

p
(
γ̂φ2

)
−p

(
γ0
)
=
(
∂p (γ)
∂γ

)
γ=γ0

(
γ̂φ2

− γ0
)
+
∥∥γ̂φ2

− γ0
∥∥α2

(
γ̂φ2

; γ̂φ2
− γ0

)

where

(
∂p (γ)
∂γ

)
γ=γ0

= Sn

(
γ0
)
Z

T
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with Sn

(
γ0
)

= Diag

(
n (x1)
n

∂π̃ (η1)
∂η1

, ...,
n (xN )

n

∂π̃ (ηN )
∂ηN

)
and evaluating

in γ0 and

α2 : R
p → R

JN×JN verifies that α2

(
γ;γ − γ0

)
→ 0 as γ→ γ0. (16)

Denoting by

Ln

(
γ0
)

= Sn

(
γ0
)
Z

T
IF,n

(
γ0
)−1

ZDiag
((
C0

n,i

)
i=1,...,N

)

×Diag
(
p
(
γ0
)−1/2

) (17)

we have by (6)

p(γ̂φ2
) − p(γ0) =Ln

(
γ0) (p̂ − p

(
γ0))+Sn

(
γ0)ZT

∥∥p̂ − p(γ0)
∥∥α1(p̂; p̂ − p(γ0))

+
∥∥γ̂φ2

− γ0
∥∥α2(γ̂φ2

; γ̂φ2
− γ0).

Therefore,
(

p̂ − p (γ0
)

p
(
γ̂φ2

) − p (γ0
)
)

=

(
I

Ln

(
γ0
)
) (
p̂ − p (γ0

))

+

(
0

Sn

(
γ0
)
Z

T ∥∥p̂ − p (γ0
)∥∥α1

(
p̂; p̂ − p (γ0

))
+
∥∥γ̂φ2

− γ0
∥∥α2

(
γ̂φ2

; γ̂φ2
− γ0

)
)

.

Applying the Central Limit Theorem we have

√
n
(
p̂− p

(
γ0
)) L→

n→∞ N
(

0,Σpλ(γ0)

)
,

where Σpλ(γ0) = Diag
(
pλ

(
γ0
)) (

I −X
(
γ0
))

and

X
(
γ0
)

= X0

(
XT

0 Diag
(
pλ

(
γ0
))
X0

)−1

XT
0 Diag

(
pλ

(
γ0
))

(18)

with

X0 =

⎛
⎜⎜⎝

1J 0 ... 0
0 1J ... 0
. . ... .

0 0 ... 1J

⎞
⎟⎟⎠

JN×N

, (19)

being 1J the unit vector J × 1−dimensional, then
√
n
∥∥p̂− p (γ0

)∥∥ is
bounded in probability. Also

√
n
∥∥γ̂φ2

− γ0
∥∥ is bounded in probability since

√
n
(
γ̂φ2

− γ0
) L−→

n→∞ N
(
0, IF,λ

(
γ0
)−1

)
.

So,
√
n
(
Sn(γ0)ZT ||p̂− p(γ0)||α1(p̂; p̂− p(γ0)) + ||γ̂φ2 − γ0||α2(γ̂φ2 ; γ̂φ2 − γ0)

)
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converges to 0. Then

√
n

(
p̂− p

(
γ0
)

p
(
γ̂φ2

)
− p

(
γ0
)
)

L−→
n→∞ N

(
0,Σ3

(
γ0
))

where

Σ3

(
γ0
)

=

(
A
(
γ0
)

A
(
γ0
)
Lλ

(
γ0
)T

Lλ

(
γ0
)
A
(
γ0
)
Lλ

(
γ0
)
A
(
γ0
)
Lλ

(
γ0
)T

)

with A
(
γ0
)

= Diag
(
pλ

(
γ0
)) (

I −X
(
γ0
))

and Lλ

(
γ0
)

= lim
n→∞Ln

(
γ0
)
.

From above
√
n
(
p̂− p

(
γ̂φ2

)) L−→
n→∞ N

(
0,Σ4

(
γ0
))

where

Σ4

(
γ0) = A

(
γ0)−A (

γ0)Lλ

(
γ0)T −Lλ

(
γ0)A (

γ0)+Lλ

(
γ0)A (

γ0)Lλ

(
γ0)T

or equivalently
√
nDiag

(
p(γ0)−1/2

) (
p̂− p

(
γ̂φ2

)) L−→
n→∞ N (0,Σ5

(
γ0
)
), (20)

where

Σ5

(
γ0
)

= Diag
(
pλ(γ0)−1/2

)
Σ4

(
γ0
)
Diag

(
pλ(γ0)−1/2

)
. (21)

Taking into account that

a) As
DλDiag

(
pλ

(
γ0
)1/2

)
X0 = 0, (22)

where Dλ = Diag
((
C0

λ,i

)
i=1,...,N

)
with C0

λ,i = limn→∞ C0
n,i, then

Diag
(
pλ(γ0)−1/2

)
Lλ

(
γ0
)
Diag

(
pλ

(
γ0
))
X
(
γ0
)
Diag

(
pλ(γ0)−1/2

)
= Diag

(
pλ(γ0)−1/2

)
Sλ

(
γ0
)
Z

T
(
ZV λ

(
γ0
)
Z

T
)−1

ZDλ

×Diag
(
pλ

(
γ0
)1/2

)
X
(
γ0
)
Diag

(
pλ(γ0)−1/2

)
= 0

with Sλ(γ0) = limn→∞ Sn(γ0) and V λ

(
γ0
)

= limn→∞ V n

(
γ0
)
.

b) By (18) and taking into account (22),

Diag
(
pλ(γ0)1/2

)
X
(
γ0
)
Lλ

(
γ0
)T

Diag
(
pλ(γ0)−1/2

)

= Diag
(
pλ(γ0)1/2

)
X0

(
XT

0 Diag
(
pλ

(
γ0
))
X0

)−1

×XT
0 Diag

(
pλ

(
γ0
))
Lλ

(
γ0
)T

Diag
(
pλ(γ0)−1/2

)

= Diag
(
pλ(γ0)1/2

)
X0

(
XT

0 Diag
(
pλ

(
γ0
))
X0

)−1
XT

0 Diag
(
pλ

(
γ0
)1/2

)

×DT
λZT

(
ZVλ(γ0)ZT

)−1
ZSλ

(
γ0
)T

Diag
(
pλ(γ0)−1/2

)
= 0.
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In a similar way

Diag
(
pλ(γ0)

1
2

)
Lλ

(
γ0
)T

X
(
γ0
)
Diag

(
pλ(γ0)−1/2

)
= 0.

As

Diag
(
pλ(γ0)−1/2

)
Lλ

(
γ0
)
Diag

(
pλ

(
γ0
))
Lλ

(
γ0
)T

λ
Diag

(
pλ(γ0)−1/2

)
= Diag

(
pλ(γ0)−1/2

)
Lλ

(
γ0
)
Diag

(
pλ(γ0)1/2

)
(23)

then

Σ5(γ0) = I−Diag
(
pλ(γ0)

1
2

)
X
(
γ0
)
Diag

(
pλ(γ0)−

1
2

)

−Diag
(
pλ(γ0)

1
2

)
Lλ

(
γ0
)T

Diag
(
pλ(γ0)−

1
2

)
.

Furthermore, the matrix Σ5

(
γ0
)

is idempotent since

Σ5

(
γ0
)2

= Σ5

(
γ0
)
−Diag

(
pλ(γ0)1/2

)
X
(
γ0
)
Diag

(
pλ(γ0)−1/2

)

+Diag
(
pλ(γ0)1/2

)
X
(
γ0
)
X
(
γ0
)
Diag

(
pλ(γ0)−1/2

)

+Diag
(
pλ(γ0)1/2

)
X
(
γ0
)
Lλ

(
γ0
)T

Diag
(
pλ(γ0)−1/2

)

−Diag
(
pλ(γ0)1/2

)
Lλ

(
γ0
)T

Diag
(
pλ(γ0)−1/2

)

+Diag
(
pλ(γ0)1/2

)
Lλ

(
γ0
)T
X
(
γ0
)
Diag

(
pλ(γ0)−1/2

)

+Diag
(
pλ(γ0)1/2

)
Lλ

(
γ0
)T
Lλ

(
γ0
)T

Diag
(
pλ(γ0)−1/2

)

= Σ5

(
γ0
)

where the last equality is obtained by b), thatX
(
γ0
)
X
(
γ0
)

= X
(
γ0
)

and

that Lλ

(
γ0
)T
Lλ

(
γ0
)T = Lλ

(
γ0
)T

.

Such as W TW (Ferguson [8]) has a chi-square distribution with r degrees
of freedom if Σ5

(
γ0
)

is a projection of rank r. The rank of this matrix, to
be idempotent, coincides with its trace. As

i)
Traza(I) = JN

ii)

Traza
(
Diag

(
pλ(γ0)1/2

)
Lλ

(
γ0
)T

Diag
(
pλ(γ0)−1/2

))

= Traza

(
DλZT

(
ZV λ

(
γ0
)
Z

T
)−1

ZDT
λ

)

= Traza
((

ZVλ(γ0)ZT
)−1

ZDT
λ DλZT

)

= Traza(Ip×p) = p
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iii)

Traza
(
Diag

(
pλ(γ0)1/2

)
X
(
γ0
)
Diag

(
pλ(γ0)−1/2

))
= Traza(IN×N ) = N.

We have that

Traza(Σ5

(
γ0
)
) = JN −N − p = N (J − 1)− p.

Taking a second order expansion of Bφ1,φ2
n around p = p

(
γ0
)
,

Bφ1,φ2
n = W TW + op(1),

the result follows. �

3 Detection of Outlying Points

In Section 2 we introduced statistics for checking model fit in a global sense.
The disadvantage of these single overall test statistics of goodness-of-fit is
that it will not usually give constructive guidance on how to deal with any
failure of the original model and is likely to be insensitive in detecting specific
types of departure. Observations that are badly predicted (or allocated) are
termed outlying. Sometimes, it is possible to identify outlying through a
visual inspection of the data. However, it may not be possible to do it and
an outlying observations identification procedure is needed. Residuals are the
most common diagnostic method to identify observations that are not well
explained by the model. An observation that leads to an abnormally large
residual is an outlying.

In this section, an alternative way for identifying an “outlying” at a des-
ignated case, say i, consists in considering the model,

ηj =
{
ZT

i γ+λi j = i

ZT
j γ j 	= i

j = 1, ..., N. (24)

This model is analogue of the mean slippage model commonly used for outly-
ing detection in linear regression (Cook and Weisberg [5], p.20). To test that
observation xi is an “outlying” is equivalent to

H0 : λi= 0 versus H1,i : λi 	= 0. (25)

If the null hypothesis is rejected, the ith observation will be an “outlying”or
if, we express the model given in (24) as

ηj =
(
Z∗

j

)T
γ∗, j = 1, ..., N

where (Z∗
i )

T =
(
ZT

i ,1
)

and
(
Z∗

j

)T =
(
ZT

i ,0
)
j 	= i with ZT

i defined in (3),
1 is a vector of ones and 0 is a vector of ceros of dimension J − 1 both and
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(γ∗)T =
(
α1, ..., αJ−1,β

T ,λi

)
. Then, to test the hypothesis given in (25) is

equivalent to test

H0 : KTγ∗=0 versus H1,i : KTγ∗ 	=0,

where KT = (0m+J−1, 1) and rank(KT ) = 1. For the above test, Pardo [17]
proposed the following test statistic

T
φ1,φ2
n,i =

2n
φ′′

1 (1)
Dφ1

(
p
(
β̂

H1,i

φ2

)
,p
(
β̂

H0

φ2

))

where β̂
H1,i

φ2
and β̂H0

φ2
are the restricted minimum φ2−divergence estimators

under the alternative hypothesis and under the null hypothesis, respectively.
The asymptotic distribution of this statistic is a chi-square with r = 1 degrees
of freedom. When the candidate case for an “outlying” is unknown, a multiple
testing procedure, such as one based on the first Bonferroni inequality (Miller
[14]), must be used to find significance levels. In our case, we will say that xi

is an “outlying” if
T

φ1,φ2
n,i ≥ χ2

1,1−α/N ,

and the probability to reject incorrectly an observation is given by

Pr

(
N⋃

i=1

(
T

φ1,φ2
n,i ≥ χ2

1,1−α/N

))
≤

N∑
i=1

Pr
(
T

φ1,φ2
n,i ≥ χ2

1,1−α/N

)
= α.

It is straighforward to extend this procedure to study if a set of observations
I = {xi1 ...,xik

} are outlying.

4 Numerical Example

As an illustration of the new tools for diagnostic presented in previous sections
we consider data on the perspectives of students, psychology students at
the University of Regensburg were asked if they expected to find adequate
employment after getting their degree. The response categories were ordered
with respect to their expectation. The responses were ’don’t expect adequate
employment’ (category 1), ’not sure’ (category 2), and ’immediately after the
degree’ (category 3). The data are given in Fahrmeir and Tutz [7]. Table 1
shows the data for different ages of the students.

To fit the model we use the minimum φ−divergence estimator with φ =
φ(a) being φ(a) a parametric family introduced by Cressie and Read [6] that
is defined as

φ(a) (x) = (a (a+ 1))−1 (
xa+1 − x− a (x− 1)

)
; a 	= 0, a 	= −1,

φ(0) (x) = lima→0 φ(a) (x) = x log x− x + 1,
φ(−1) (x) = lima→−1 φ(a) (x) = x− log x− 1.

(27)
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Fitting the ordered polytomous logistic regression

Pr (Y ≤ r/Age) = (1 + exp (− (αr + βlog (Age))))−1
, r = 1, 2,

we obtain the following minimum φ(a2)−divergence estimations for a2 =
0, 2/3 and 1 shown in Table 2.

First of all, the goodness-of-fit statistics B
φ(a1),φ(a2)
n are calculated to value

the fit of the model and they are shown in Tables 3, 4 and 5 for a2 = 0, 2/3
and 1, respectively as well as their p-values.

Table 1. Grouped data for job expectations of psychology students in Regensburg

Number of obs. Age
Y

1 2 3
n (xi)

1 19 1 2 0 3
2 20 5 18 2 25
3 21 6 19 2 27
4 22 1 6 3 10
5 23 2 7 3 12
6 24 1 7 5 13
7 25 0 0 3 3
8 26 0 1 0 1
9 27 0 2 1 3
10 29 1 0 0 1
11 30 0 0 2 2
12 31 0 1 0 1
13 34 0 1 0 1

Table 2. Minimum φ(a2)-divergence estimators

a2 α1 α2 β

0 14.9884 18.1497 -5.4027
2/3 8.4044 11.2404 -3.2143
1 5.8553 8.526 -2.3661

Table 3. B
φ(a1),φ(0)
n for different values of a1 and their p-values

a1 -1/2 0 2/3 1 2

B
φ(a1),φ(0)
n 36.2456 26.7334 31.5669 42.4664 240.5135
p-values 0.0389 0.2675 0.1095 0.0080 0.0000
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Table 4. B
φ(a1),φ(2/3)
n for different values of a1 and their p-values

a1 -1/2 0 2/3 1 2

B
φ(a1),φ(2/3)
n 39.9762 28.5346 27.9965 31.3110 72.9037
p-values 0.0154 0.1962 0.2159 0.1153 0.0000

Table 5. B
φ(a1),φ(1)
n for different values of a1 and their p-values

a1 -1/2 0 2/3 1 2

B
φ(a1),φ(1)
n 42.9673 30.5972 28.5852 30.4439 53.7457
p-values 0.0070 0.1330 0.1945 0.1371 0.0003

Fig. 1. T
φ(a1),φ(0)
n,i for a1 = − 1

2
, 0, 2

3
and 1. Solid line a1 = − 1

2
, dashed line a1 = 0,

dotted line a1 = 2
3

and dash-dotted line a1 = 1.

Fig. 2. T
φ(a1),φ

( 2
3 )

n,i for a1 = − 1
2
, 0, 2

3
and 1. Solid line a1 = − 1

2
, dashed line a1 = 0,

dotted line a1 = 2
3

and dash-dotted line a1 = 1.
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Fig. 3. T
φ(a1),φ(1)
n,i for a1 = − 1

2
, 0, 2

3
and 1. Solid line a1 = − 1

2
, dashed line a1 = 0,

dotted line a1 = 2
3

and dash-dotted line a1 = 1.

The small value of Pearson statistic
(
B

φ(1),φ(0)
n

)
p-value shows a rather

bad fit. The strong difference between Pearson test statistic and the other
statistics may be, such as Fahrmeir and Tutz [7] pointed out in their book,
ought to the assumptions for asymptotics may be violated. Note that the
number of observations for some explicative variable is 1. Anyway, we go on
with the example as Fahrmeir and Tutz [7] do since, on one hand, the bad
fit suggests further investigation and on the other hand, a global measure as
B

φ(a1),φ(a2)
n may not detect some types of deviations of the model.
To detect ‘outlying’ using procedure given in Section 3 we draw the values

of the statistics T
φ(a1),φ(a2)

n,i , i = 1, ..., N = 13 in Figures 1, 2 and 3 for a2 = 0
(MLE), a2 = 2/3 (minimum Cressie-Read estimator) and a2 = 1 (minimum
chi-square estimator), respectively.

The three figures identify observations 7 and 10 as outlying as Fahrmeir
and Tutz [7]. Note that if we consider α = 0.123, this means that at most this
is the probability to reject incorrectly at least one observation. Furthermore,
this means that xi is an outlying if

T
φ(a1),φ(a2)

n,i ≥ χ2
1,α/N = 6.7335,

that is to say, only observations 7 and 10 will be considered outlying. This
conclusion matches with that given in Pardo [16].
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Maŕıa Charco1 and Pedro Galán del Sastre2

1 Instituto de Astronomı́a y Geodesia (CSIC-UCM),
Ciudad Universitaria, Pza. de Ciencias, 3, 28040 Madrid, Spain
mcharco@iag.csic.es
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Summary. Current understanding of critical stages prior to a volcanic erup-
tion is generally based on elastostatic analysis. We investigate the elastic
response of the Earth to an internal load that simulates the effect of a pres-
surized magma reservoir. Firstly, equations describing the Earth’s deforma-
tion for elastic models are introduced and the corresponding boundary value
problem is formulated in a weak sense. Then, a numerical tool to compute
the displacement and stress fields produced by pressurized sources in vol-
canic areas is described. In doing so, we propose the Finite Element Method
for simulating the deformation that Teide volcano (Tenerife, Canary Islands)
would undergo, if a hypothetical magma intrusion would take place in a
shallow magma reservoir beneath its summit. Furthermore, the numerical ap-
proach can be used to estimate the influence of parameters such as size, depth
and shape of a pressurized reservoir, the topography and the medium het-
erogeneities over ground deformation modelling. Therefore, such numerical
approaches can be useful to design and/or improve the geodetic monitoring
system in volcanic areas.

1 Introduction

It is expected that changes within magma system leading to eruption in
volcanic areas will result in precursory deformation measurable by geodetic
techniques. Consequently, geodetic techniques are being used extensively to
monitor ground deformation at active volcanoes. Furthermore, as part of
the geodetic monitoring system, various computational methods have been
proposed for modelling ground deformation since the analysis of such effects

∗ This work is dedicated to our friend and colleague Maria Luisa Menéndez.
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is one of the most important tools for understanding the volcano processes
within the Earth.

The inflation and deflation cycles that geodetic techniques support make
that the Earth can be treated as an elastic solid. Within this elastic frame
a variety of models have been proposed to account for the observed defor-
mation, such as models that include spherical and ellipsoidal sources, ver-
tical and horizontal magma migration, collapse structures, fluid migration
and structural topography (e.g., [22, 24, 12, 20, 5, 13, 9]). The most com-
monly used is the Mogi point dilatation model [22]. It represents the simplest
analytical solution for an inflating/deflating source in a homogeneous elastic
half-space with free surface. However, in the case of fully 3-D rheology and/or
complicated geometrical structures, a numerical method is needed.

The aim of this study is to provide a numerical tool to compute the dis-
placement and stress fields produced by pressurized sources for studying the
deformation that Tenerife (Canary Islands) would undergo, if a hypotheti-
cal overpressurization of a shallow magmatic system beneath Teide volcano
would take place. In doing so, we propose the Finite Element Method (FEM).
The FEM is robust and accurate when dealing with problems for which a
complicated geometry requires an irregular or unstructured mesh. The de-
scription of the problem including equations and formulations is presented
in Section 2. In Section 3, the numerical procedure joint with a validation
test are introduced. Finally, we present the application of the methodology
to Tenerife in Section 4.

2 Problem Statement

Deformation of Earth’s surface reflects tectonic, magmatic, and hydrother-
mal processes at depth that result in strain that is transmitted to the surface
through the mechanical properties of the crust. This is a key assumption be-
hind geodetic effects modelling. Nowadays, ground deformation understand-
ing is generally based on elastostatic analysis. In this section, we present a
brief description of the equations to compute static deformation of an elastic
heterogeneous Earth in response to an internal load.

2.1 Equation of Motion

Consider a solid Ω ⊂ R
3 with boundary Γ , the conservation of linear mo-

mentum states that:

D

Dt

∫
Ω

ρv =
∫

Γ

T +
∫

Ω

ρf , (1)

where T is the traction acting on the boundary Γ , that is related to stress, σ,
via T = σ.n (n being the unit outward normal vector), ρf are body forces per
unit mass (ρ being the density), v is the instantaneous particle velocity and
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D
Dt denotes the material time derivative operator. For an arbitrary domain
Ω, the momentum balance takes the form:

∫
Ω

[
∇ � σ + ρf − ρ

Dv
Dt

]
= 0, (2)

after application of the divergence and Reynolds transport theorems [19].
This must be held for all volume elements so that, at each point, we have the
Cauchy’s Equations of motion:

∇ � σ + ρf = ρ
Dv
Dt

. (3)

We limit our discussion to slow static changes that occur over long time and
to permanent offsets associated with volcanic events. Geosciences researchers
do not like to label any change as static, so they often refer to these very low
frequency ground movements as quasi-static ground deformation. In quasi-
static processes, the stress equilibrium exists at every point at each instant of
time. This join with the fact that, for small deformation, Dv

Dt = ∂2u
∂t2 , where u

is the displacement field, the equation of motion (3) reduce to the quasi-static
equilibrium equation:

∇ � σ + ρf = 0. (4)

Note that this is an Eulerian description where we are neglecting the initial
stress field at depth within the Earth [18].

2.2 Constitutive Law

The Equation (4) together with the constitutive relation between stress and
strain is enough to describe the physics of a solid material. Considering a
purely elastic Earth model,

σij =
3∑

k,l=1

Cijklεkl, (5)

where 1 ≤ i, j ≤ 3, ε denotes the strain tensor and C is a positive-definite
fourth order tensor of elastic coefficients satisfying the symmetries Cijkl =
Cjikl , Cijkl = Cijlk and Cijkl = Cklij . The first two of these are implied by the
symmetry of σ and ε while the third is followed from energy considerations
[19].

The fact that most materials have some internal organization helps to sim-
plify the stress-strain relationship (5). The mathematical models we discuss
represents the Earth as an ideal elastic body that is mechanically isotropic.
The constitutive relation (5) for an isotropic, linearly elastic solid has the
form (Hooke’s law):

σij = λ

3∑
k=1

εkkδij + 2μεij , (6)
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where δij is the Kronecker delta, μ represents the shear modulus, also called
the rigidity modulus or the second Lamé coefficient, that relates shear stress
to strain providing a material rigidity or stiffness under shear, and λ is the
first Lamé coefficient (no physical meaning).

The constitutive relation between stress and strain help us to completely
formulate the Equation (4) in terms of displacements. We assume small de-
formations, i.e., strain and displacement field, u, are related as,

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (7)

Then, Equation (6) may be expressed alternatively as,

σij = λδij∇ � u + 2μ
(
∂ui

∂xj
+

∂uj

∂xi

)
. (8)

Substitution in the equilibrium equation (4) yields the Navier equation of
motion in terms of displacement field, u:

μ∇2u + (λ + μ)∇ (∇ � u) + ρf = 0. (9)

A complication when interpreting ground deformations in volcanic areas is
the choice of the rheology of the medium. Although for many purposes it is
useful to consider a purely elastic, homogeneous medium, there are cases in
which such assumption may have led to misleading results (e.g. [4, 6]). In
general, volcano structure involves sequences of deposition and emplacement
of various materials, magma intrusion, crystallization and alteration, frac-
ture and shallow hydrothermal systems. Thus, conceptual models of volcanic
structure (based on field observations, seismic tomography and geochemical
data) do not occur with the assumption of homogeneous material properties
at a volcano-wide scale, i.e., the rheological behavior of the rocks can have
lateral and depth variations, so that λ = λ (x), μ = μ (x), ρ = ρ (x). In
the absence of material property data for a particular volcano of interest,
reasonable material property specifications can be extracted from laboratory
experiments [11, 10].

P

(b)(a)

Fig. 1. 2-D section of the domain Ω: (a) for the problem (4)-(10); (b) for a model
considering a spherical cavity that expands with uniform pressure ΔP
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2.3 Boundary Conditions

The complete problem statement requires appropriate boundary conditions
for Equation (4). We assume that the domain Ω is bounded and has a Lips-
chitz boundary Γ . As it is shown in Figure 1a, the boundary of the domain
Ω is divided into parts Γ1 and Γ2. The Equation (4) is then followed by the
boundary conditions:

σ � n = 0 on Γ1

u = 0 on Γ2

}
(10)

where n is the outward normal vector to Ω whereas Γ1 ∪ Γ2 = Γ , Γ1∩Γ2 = ∅
and are non-empty. The first condition describes a free surface, the second
corresponds to the fact that, for sufficiently large computational domain Ω,
the displacement field is very small on the subterranean boundaries of Ω.
These assumptions lead to a well-posed problem.

2.4 Body Force

The inflation/deflation of magma reservoirs has usually been modeled by a
spherical pressurized cavity with radius a inside the medium (Figure 1b).
In such a case, we should add to the boundary condition (10) the following
condition on the reservoir walls:

σ � n = −ΔP on Γ3, (11)

that specifies that the normal stresses at the cavity walls are equal to a uni-
form pressure increment ΔP . When interpreting ground deformation at the
Earth surface, these a priory constraints specify in a unique way the stress-
strain distribution at depth. However, it is well known that the solution for
the spherical cavity can also be obtained assuming three orthogonal force
dipoles or center of dilatation (e.g.,[21]), or three orthogonal tensile disloca-
tions (e.g., [27]). These three conceptually different source models yield the
same displacement outside the source provided that the source strength is
suitable chosen.

In this study we consider the inflation/deflation of a pressurized spheri-
cal cavity applying equivalent body forces. In such a case, the displacement
and stress fields due to a center of dilatation are equivalent to the fields ob-
tained by the superposition of three mutually orthogonal dipoles of identical
strength, f0, i.e.,

f = f0∇δx=x′ (12)

where δx=x′ is the Dirac delta distribution that represents a point force at
x′ and f0 = a3ΔP λ+2μ

μ π is the source strength, (a being the radius of the
source). Since the Dirac delta is the limit of a sequence of Gaussian functions
when their variance tends to zero, we use the body force

f = f0
1

σx1σx2σx3π
3/2
∇
(

e
−
(

(x1−x′
1)2

σ2
x1

+
(x2−x′

2)
2

σ2
x2

+
(x3−x′

3)
2

σ2
x3

))
(13)
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for solving (9)-(10), where σ2
xi

is the variance of the Gaussian function in xi

direction. This ensures that the body force function is sufficiently smooth.
Moreover, the Gaussian function can be used to model sources of different
shapes. In fact when σxi = a for all i = 1, 2, 3, (13) represents a spherical
source whereas (13), for σx1 = a, σx2 = b, σx3 = c and f0 = abcΔP λ+2μ

μ π,
can be used to describe an elliptical source with semiaxis a, b and c.

2.5 Weak Formulation

We use the notation L2 (Ω) =
[
L2 (Ω)

]3, H1 (Ω) =
[
H1 (Ω)

]3 throughout
this work. The problem is to find the tensor σ = ((σij))1≤i,j≤3 and the
displacement u = (u1, u2, u3) ∈ L2 (Ω) that satisfies Equations (4)-(10) for
a prescribed f ∈ L2 (Ω) and ρ ∈ L∞ (Ω). For this task, the boundary value
problem is reformulated in a weak sense (e.g., [8]) in order to obtain reliable
numerical solutions. Let us define the space V of the test functions, a bilinear
form a : V ×V → R and a linear functional L : V → R by

V =
{
v ∈ H1(Ω) : v|Γ2 = 0

}
, (14)

a (u,v) =
∫

Ω

⎡
⎣λ (∇ · u) (∇ · v) + 2μ

3∑
i,j=1

εij (u) εij (v)

⎤
⎦ , (15)

L (v) =
∫

Ω

ρf · v, (16)

respectively. The problem may now be formulated in a weak sense as follows:
find u ∈ V that satisfies the following variational equality,

a (u,v) = L (v) ∀v ∈ V. (17)

Moreover we assume ρ, λ, μ ∈ L∞ (Ω) are positive real-valued functions. It is
straightforward to prove that problem (17) is equivalent to (4) with boundary
conditions (10) applying the Green formulae.

Theorem 1. Assume that f ∈ L2 (Ω) and ρ, λ, μ ∈ L∞ (Ω) are positive real-
valued functions. Then, the variational problem (17) has a unique solution.

Proof. The proof is straightforward using the Lax-Milgram theorem and Korn
inequality [8].

Note that the term a (u,v) can be interpreted as the work of the internal
elastic forces and L (v) as the work of external (body and surface) forces.
Thus the expression (17) is a reformulation of the virtual work theorem.
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3 Numerical Solution: The Finite Element Method

The goal of this work is to develop a numerical tool to perform static calcula-
tions in order to compute the horizontal and vertical displacement and stress
fields induced by pressurized sources that may be used to represent magma
reservoirs. In doing so we propose the Finite Element Method.

Suppose that Ω ⊂ R
3 is an open bounded subset with Lipschitz boundary

Γ and Dh is a partition of Ω̄ such that Dh = {Rj}Ne

j=1⊂ Ω̄, where Rj denotes
a quadrilateral prism and Ne is the number of finite elements in the partition.

As usual, we assume that Ω̄ =
Ne⋃
j=1

Rj and the elements Rj satisfy the regular-

ity conditions: (i) any face of Rj is either a subset of Γ or any other face of any
Ri, with i 	= j; (ii) there exists α > 0 such that hj/εj < α for all 1 ≤ j ≤ Ne,
where hj = diamRj and εj = sup {diamS : S a ball contained in Rj}.

Let R̂ = [−1, 1]3 ⊂ R
3 be the reference element, then we define the set

of polynomials of degree≤ m, with m an integer, Pm

(
R̂
)

= Pm ([−1, 1]) ⊗

Pm ([−1, 1])⊗Pm ([−1, 1]). Thus, Pm (Rj)=
{
p̂ ◦ T−1

j ∈ C (Rj) : p̂ ∈ Pm

(
R̂
)}

where we have used the continuous bijective transformation Tj : R̂→ Rj .
Then, the finite element subspaces Vh and Vh0 associated to the partition

Dh are defined as

Vh =
{
vh ∈ C

(
Ω̄
)

: vh|Rj
∈ Pm (Rj) for all 1 ≤ j ≤ Ne

}
Vh0 =

{
vh ∈ Vh : vh|Γ2 = 0

}

so that Vh = Vh × Vh × Vh and Vh0 = Vh0 × Vh0 × Vh0.
Let N = dimVh0 and {ϕi}N

i=1 a basis of Vh0, then we shall denote

ψi =

⎧⎨
⎩

(ϕi, 0, 0) , if 1 ≤ i ≤ N

(0, ϕi−N , 0) , if N < i ≤ 2N
(0, 0, ϕi−2N ) , if 2N < i ≤ 3N

so that {ψi}3N
i=1 is a basis of Vh0. Thus, the finite element solution of (4)

with the boundary conditions (10) is computed by solving the variational
formulation: find uh ∈ Vh0 such that

a (uh,vh) = L (vh) ∀vh ∈ Vh0,

or equivalently: find uh ∈ Vh0 such that

a (uh,ψk) = L (ψk) ∀k = 1, 2, . . .3N (18)

We define the stiffness matrix K ∈M3N×3N (R) and the real vector b ∈ R
3N

such that kij = a (ψi,ψj) and bi = L (ψi). Since uh =
3N∑
i=1

uiψi, the problem

(18) becomes: find u = (ui)
3N
i=1 ⊂ R

3N such that Ku = b.
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Note that the stiffness matrix K is symmetric and positive definite since
the bilinear form a is symmetric and coercive [8], thus we can use the conju-
gate gradient algorithm to compute the numerical solution.

3.1 Validation of the Numerical Procedure: The Mogi Model

Validation is performed on a problem with a known analytical solution which
is the problem of a small pressurized spherical cavity embedded in an elastic
half-space [22]. In such a model all the perturbation quantities tends to zero
as |x| → ∞. The most useful solution is an approximate one given by [20]
that holds when the source is small compare to its depth.

Displacements calculated analytically are compared to numerical results
found using FEM. Note that the FEM solution is computed in a 200× 200×
50 km3 domain that approximate the conditions that the displacement field
satisfies in the boundary of the Mogi model. The displacements are caused
by a center of dilatation of 50 MPa km3 strength located at 4 km depth in a
homogeneous medium with 50 GPa for Young modulus and 0.21 for Poisson
ratio. These corresponds to average for basalts values given by [16]. The vari-
ance of the Gaussian function (13) that represents the center of dilatation is
chosen according to the mesh element size. In this case, σxi = 50 m for i =
1, 2, 3. Figure 2 shows that the homogeneous FEM solution agrees with the
displacement predicted by Mogi analytical solution confirming the reliability
of the chosen mesh and boundary conditions. Since the domain for obtaining
the solution of the Mogi model is different, we cannot compare both solutions
at the exact source location (0, 0, 4) km. In fact, since the source is assumed
to be small (point-like in the ideal situation), the deformation of the interior
is typically ignored with the Mogi model. Nevertheless, even in the proximity
of the source location there is a good agreement between both solutions
(Figure 2c).

Fig. 2. Model comparison of (a) surface horizontal displacements, u1(x1, 0, 0),
(b) surface vertical displacements, u3 (x1, 0, 0), and (c) vertical displacements,
u3 (0, 0, x3) between Mogi’s analytical solution (circles) and FEM solution (solid
line). The displacements are caused by a center of dilatation of 50 MPa km3

strength located at 4 km depth in a homogeneous medium.
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4 Application: Tenerife (Canary Islands)

Tenerife is the largest island of the Canary archipelago where volcanism has
continued over the last 30 Myr. Teide-Pico Viejo complex, which remains ac-
tive nowadays, dominates the eruptive system of the island [1, 2]. Teide and
Pico Viejo are two large stratovolcanoes that overlap to form an elongated
doubled edifice. The highest altitude corresponds to the youngest summit of
Teide (3718 m). The last explosive eruption in the island occurred in Montaña
Blanca, located on the Teide flanks, 2000 years ago. Therefore, due to the
hazard of this kind of volcanic activity, we consider the possibility of erup-
tion in the area of this emission center. To show the application possibilities
of the methodology described above to simulate ground deformation in vol-
canic areas, we present here a 3-D finite element numerical solution for the
volcanic island of Tenerife. The goal of the simulation is to estimate the de-
formation that would undergo the island, if a hypothetical overpressurization
of a shallow magmatic system beneath Teide would take place.

In this application the complexities taken into account are the topogra-
phy and the medium heterogeneities. A system of cartesian coordinates with
the origin located at the sea level, just below the Teide summit, is assumed.
In this case x1 and x2 axis are orientated along WE and SN directions re-
spectively, and x3 axis points up out of the medium. The 3-D computational
domain is a volume extending 200× 200 km2 in the x1 and x2 direction and
from 100 km below sea level to the Earth surface in the x3 direction. The
whole island of Tenerife is covered. The boundary at the ground surface is
constructed from a Digital Elevation Model provided by the Instituto Geo-
gráfico Nacional (IGN), and a bathymetry model from the 1-minute global
elevation database [26]. The uppermost part of the domain is considered as

(a) (b)
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Fig. 3. (a) Detail of the mesh of the computational domain with a spatial resolution
of 50 m in the submit area and around the source location and coarse at greater
distances; (b) a vertical profile at x2 = 0 of the 3-D elastic parameter model for
Tenerife island
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a free surface. The displacements of the outermost lateral boundaries and on
the bottom are fixed to zero representing the tendency of the displacement
field at infinity. The computational domain was meshed into 88055 quadri-
lateral prism elements and 91000 nodes, see Figure 3a. This mesh is locally
refined through the vicinity of the chamber and near the Earth’s surface and
takes into account most important morphologic features of the island. The
source of 50 MPa km3 is located at 4 km depth below Teide volcano sum-
mit, i.e., approximately 300 m below sea level. An important aspect concerns
to the crustal properties. Figure 3b shows a vertical WE profile of the 3-D
model of elastic parameters for this study. The elastic parameters were esti-
mated using density structures determined by means of seismic and gravity
data [7, 28, 17]. We assume an empirical Nafe and Drake relationships be-
tween the compressional velocity and density [23] and the Poisson ratio is
interpolated from PREM [15]. Since there is no analytical solution for vali-
dation, convergence test were performed in order to include medium hetero-
geneities. In this application ground displacements at nodes are calculated as
primary solutions. However, strain and stress can also be obtained as derived
solutions.

The results of this application are illustrated in Figure 4a,b,c. Most of
the deformation is restricted to the vicinity of the volcano since at distances

Fig. 4. Surface displacement field (cm) caused by sources of 50 MPa km3 strength
located at 4 km depth below Teide volcano summit considering medium hetero-
geneities: (a) ux1 , (b) ux2 and (c) ux3 , caused by a spherical source; (d) ux1 , (e)
ux2 and (f) ux3 , caused by a elliptical source
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greater than 10 km from the volcano summit, the related deformation might
be indiscernible from background noise. In particular, most of the predicted
displacements lie inside the caldera walls. The largest component of the dis-
placement field is the vertical one that takes a maximum value of 43 cm at
the volcano summit area. Given the precision attainable nowadays by perma-
nent GPS (Global Positioning System) networks (0.2−0.6 cm and 0.5−1 cm
for horizontal and vertical coordinates respectively [14, 3]) and by GPS cam-
paigns (1 − 3 cm [25]) such a kind of monitoring systems would be able to
detect the magnitude of the displacement field due to the shallow source de-
scribed above. In the elastic case the displacement field is proportional to the
pressure change of the source. Therefore, considering the precision of that
geodetic techniques, even a pressure change of 5 MPa at 4 km depth below
Teide volcano summit would be detected.

Comparing analytical solutions in a half-space, as the one showed in Figure
2, with the numerical solution considering the topography of the island results
in changes in the displacement field pattern. In fact, the vertical displacement
in x1 = x2 = 0 at the surface of the island (corresponding to the top of the
edifice) is actually found to be a local minimum (Figure 4c), while in the half-
space example u3 reaches its maximum value (Figure 2b). This result is in
agreement with the computations of the Indirect Boundary Element Method
by [9].

The displacement field depends on several parameters such as size, depth
and shape of the overpressurized reservoir, reservoir pressure change, the
topography and the heterogeneities of the medium. Different tests have been
performed in order to evaluate the influence of some of these parameters
on the elastic solutions. First, we perform a test, to estimate the influence
of the shape of the chamber, considering an ellipsoidal reservoir with a =
1/3 km (x1-axis), b = 3 km (x2-axis) and c = 1 km (x3-axis) . This choice
ensures that both, the spherical source that we have used in the other test
and the ellipsoidal source, have the same volume. Important discrepancies
are observed when considering the ellipsoidal source (Figure 4d,e,f). The
magnitude of both, horizontal and vertical displacements, is reduced with
respect to the results showed at Figure 4a,b,c. Comparing both Figure 4a,b,c
and Figure 4d,e,f, we can see that the uplift pattern is elongated through
NS and consequently quasi-elliptical in shape. Such effects are due to the
redistribution of ΔP according to the source shape.

In order to test the influence of the medium heterogeneities, a numeri-
cal solution is obtained considering a homogeneous medium with the same
elastic parameters as the domain area where the source is embedded in the
heterogeneous model (Figure 5a,b,c). The magnitude of the vertical and hor-
izontal displacements is reduced with respect to the one provided by the
heterogeneous model. In the heterogeneous model the upper part of the do-
main is softer than the lower one where the source is located (Figure 3b).
Surface displacements are affected mostly by the elastic properties of the do-
main area between the source and the surface. Therefore, this test shows that
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Fig. 5. Surface displacement field (cm) caused by sources of 50 MPa km3 strength
located at 4 km depth below Teide volcano summit considering a homogeneous
medium: (a) ux1 , (b) ux2 and (c) ux3 , assuming the real topography of Tenerife
island; (d) ux1 , (e) ux2 and (f) ux3 , assuming the island as a cone with the same
height of Teide volcano and 16.5◦ slope

the cumulative effect of heterogeneities above the source are important when
interpreting ground deformation.

A 3-D axisymmetrical cone with an approximate topography has also been
studied (Figure 5d,e,f). The island is assumed to be an axisymmetrical cone
with height equal to that of Teide and with average slope of the flanks of
16.5◦. In this case, we consider again the homogeneous medium described
above. The comparison between Figure 5d,e,f and the results obtained by
the 3-D realistic topography (Figure 5a,b,c) illustrates how both are similar
in magnitude, comparing with the results obtained by considering medium
heterogeneities. However, the real topography alters the axisymmetrical pat-
tern of the displacement field caused by a spherical source located under
axisymmetrical volcanoes.

Since surface deformation can be ascribed to a wide variety of tec-
tonic, magmatic, hydrothermal and shallow processes, numerical modelling
of ground deformation at volcanic areas provides further insights into the
mechanism as well as valuable information on the dependence of the re-
sults on rheology and structural features of the medium. Thus the proposed
approaches may be used as preliminary pictures to design or improve the
geodetic monitoring system in Tenerife (Canary Islands).
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5 Concluding Remarks

We have developed a 3-D numerical model by using the Finite Element
Method to simulate the displacement and stress fields predicted by pressur-
ized reservoirs at depth. We have focused on volcanic context because volcanic
activity produces deformation that can be precursors of future eruptions. A
theoretical study is provided in order to simulate deformation at Teide vol-
cano (Tenerife, Canary Islands). The study assumes that the displacement
field is caused by the presence of a shallow magmatic system. In view of
the results we expect that changes within the magmatic system leading to
eruption will result in precursory deformation measurable by GPS networks.

The 3-D FEM model implemented for modelling elastic deformation has
the next properties:

• Real surface topographies can be taken into account,
• The perturbation due to inflation/deflation of reservoirs of any shape can

be modeled,
• The model can include structural features of the medium such as faults

or fractures,
• The vertical and lateral heterogeneities of the medium can be considered

through a density model.

In summary, the proposed model shows that the medium and source features
affect the magnitude and the pattern of the deformation field. Therefore we
point out that structural features and heterogeneities of the medium as well as
complex configurations can influence the estimation of source parameters in
volcanic areas, which is crucial for both the correct interpretation of geodetic
data and the correct evaluation of volcanic crisis.
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Universidad Politécnica de Madrid, Spain
arturo.hidalgo@upm.es

2 Dpto. Matemática Aplicada,
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Summary. In this work we consider a model including the coupling sur-
face/deep ocean first proposed in [20]. It is a diagnostic model which can
be used to understand the long-term climate evolution. The unknown is the
temperature over each parallel and the effect of the deep ocean on the Earth
surface temperature is considered. One of the difficulties of this problem is
the dynamic and diffusive boundary condition. The purpose of this work is
to approximate the solutions by a finite volume scheme. We also compare the
solution of the studied model with the solution of an energy balance model
without deep ocean effect.

1 The Model

A great attention is being paid to problems related to climate change because
of its socio-economic and ecological implications. Climatology is a source
of research problems in many fields ranging from Geology to Mathematics.
Climate system is very complex and involves many components and com-
plicate mechanisms. Different climate models consider only a few of these
components to understand only some of the mechanisms. In this section we
describe a mathematical model which describes the coupling surface/deep
ocean.

The model represents the evolution of the temperature inside an ocean
of depth H. The spatial domain considered is Ω = (−1, 1) × (−H, 0) where
the spatial variables (x, z) represent x = sin(latitude) and −z = depth. The
boundary of Ω is denoted by ΓH ∪ Γ0 ∪ Γ1 ∪ Γ−1, where ΓH = {(x, z) ∈
Ω : z = −H}, Γ0 = {(x, z) ∈ Ω : z = 0}, Γ1 = {(x, z) ∈ Ω : x = 1},
Γ−1 = {(x, z) ∈ Ω : x = −1} and Ω denotes the closure of Ω.
∗ This work is dedicated to our colleague and friend Maŕıa Luisa Menéndez.
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The governing equation for the ocean interior is given by

Ut −
(
KH

R2
(1− x2)Ux

)
x

−KV Uzz + wUz = 0 in Ω × (0, T ), (1)

where the subscript x, z or t denotes partial derivation with respect to the
variable x, z or t, U = U(x, z, t) represents the temperature, KH and KV

are thermal conductivities in x and z direction respectively, w is the velocity,
assumed vertical, R is the radius of the Earth and T is the final simulation
time. In this model the temperature is assumed to be constant over each
parallel, therefore it only depends on latitude and depth. In the rest of the
paper we shall denominate the equation (1) as DOM (Deep Ocean Model).

Concerning the boundary conditions for the ocean bottom, ΓH , we have

wx
∂U

∂x
+ KV

∂U

∂z
= 0 on ΓH × (0, T ). (2)

Budyko [3] and Sellers [14] formulated one layer thermodynamic models of
the Earth’s zonally averaged, mean annual surface temperature field as a
balance. Both models include one important nonlinear mechanism: ice albedo
feedback. The boundary condition in Γ0 is based on such a balance:

Dut − DKH0

R2

(
(1 − x2)

p
2 |ux|p−2 ux

)
x
+Bu+C +KV

∂U

∂n
+wxux ∈ 1

ρc
QS(x)β(u).

(3)

According to Budyko’s model, Bu + C represents the emitted energy by
cooling (that is, the Newton’s cooling law) with B and C representing cooling
parameters (assumed constant in time and space), D is the depth of the
mixed layer, KH0 is the horizontal thermal diffusivity in the mixed layer, Q
is a solar parameter, S(x) is an insolation function and β is the co-albedo.
The coalbedo represents the fraction of the incoming radiation flux which is
absorbed by the surface. Coalbedo is eventually discontinuous in u and it is
introduced in the equation as a continuous graph in order to get a well posed
problem.

In the rest of the paper we shall denominate the equation (3) as EBM (En-
ergy Balance Model). Let us remark that upper-case letter U is used for the
deep ocean temperature while lower-case u represents surface temperature,
this means that U |Γ0 = u.

Regarding the diffusive part in the equation (3) we have followed the ideas
proposed in [16] where nonlinear diffusion is considered and it is given by the
term div(|∇u|∇u), which after being changed into spherical coordinates and
assuming u is constant over each parallel give raise to

(
(1− x2)

3
2 |ux|ux

)
x
,
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where x is the sine of the latitude. We notice that this is a particular case of
the p-Laplacian operator, Δpu := div(|∇u|p−2∇u), with p = 3. From (1),
(2) and (3) and using p = 3 we get the final expression of the model:

Ut −
(
KH

R2
(1− x2)Ux

)
x

−KV Uzz + wUz = 0 in Ω × (0, T ),

wxUx + KV Uz = 0 in ΓH × (0, T ),

Dut −
DKH0

R2

(
(1− x2)3/2 |ux|ux

)
x

+ KV
∂U

∂n

+wxux + Bu + C ∈ 1
ρc
QS(x)β(u) in Γ0 × (0, T ),

(1− x2)3/2 |Ux|Ux= 0 in (Γ−1 × (0, T )) ∪ (Γ1 × (0, T )),

U(0, x, z) = U0(x, z) in Ω,

u(0, x, 0) = u0(x) in Γ0, (4)

where we have added boundary conditions also in vertical borders.

Structural hypotheses

(H1) β is a bounded maximal monotone graph, i.e. |v| ≤ M ∀v ∈ β(s),
s ∈ R.

(H2) S : Γ0 → R, s1 ≥ S(x) ≥ s0 > 0 a.e. x ∈ Γ0.

(H3) w ∈ C1(Ω).
(H4) The constants B, C, R, Q, ρ, c, KV , KH and KH0 are positive.

The existence of solutions of this problem under the previous hypotheses is
proved in [7] by fixed point arguments and extended to higher dimension
in [8]. One of the model main features is its high sensitivity to variation of
parameters. Multiplicity of steady states depending on the parameter Q was
studied in [9].

Remark 1. The term KV
∂U
∂n stands for the coupling atmosphere-ocean in the

sense of analyzing the influence of the ocean temperature in the atmosphere.
In this work we shall show results with and without this term.

Many works are dedicated to the mathematical treatment of global climate
energy balance models (one layer), among them, we mention [5] and the
references there in, [12], [13], [21] and [10]. In [2] a finite element approach is
given to a 2D climate energy balance model without deep ocean effect.
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2 Numerical Approximation

In this section we are interested in computing a numerical solution for the
problem (4). To start with we rewrite this problem as advection-reaction-
diffusion equations, both for the upper boundary EBM and for the DOM. In
particular, for the EBM equation we have

ut − (f (x, u(x, t), ux(x, t)))x = σ

(
x, u(x, t),

∂U

∂n
(x, 0, t)

)
, (5)

where we have used the flux

f (x, u(x, t), ux(x, t)) :=
KH0

R2
(1− x2)3/2 |ux(x, t)| ux(x, t) − w

D
xu(x, t), (6)

and the source

σ

(
x, u,

∂U

∂n

)
:=

1
D

(
−C +

Q

ρc
S(x)β(u) + (ω + xωx −B)u(x, t)−KV

∂U

∂n

)
.

(7)
DOM reads

Ut(x, z, t)−(F (x, Ux(x, z, t)))x−(G(U(x, z, t), Uz(x, z, t)))z = γ(x, U(x, z, t)),
(8)

where
F (x, Ux(x, z, t)) :=

KH

R2

(
1− x2

)
Ux(x, z, t), (9)

G(U(x, z, t), Uz(x, z, t)) := KV Uz(x, z, t)− wU(x, z, t), (10)

γ(x, U(x, z, t)) := ωzU(x, z, t). (11)

In this work we have obtained a numerical solution of this problem using the
finite volume method with Weighted Essentially Non-Oscillatory (WENO)
reconstruction in space and third-order Runge-Kutta TVD for time integra-
tion. For each time step, a numerical solution of the EBM model equation, (3),
is computed and then used as a Dirichlet boundary condition for the DOM,
given by (1). In the following subsections we briefly describe the numerical
scheme developed.

2.1 The Finite Volume Framework

In this section we construct a semi-discrete finite-volume scheme for both the
1D part of the problem as formulated in equation (5), and the 2D part, which
is formulated in (8). To start with, we consider the upper boundary condi-
tion, equation (5). Let us discretize the 1D domain [−1, 1] in Nx intervals,
denominated as control volumes. Then, we integrate equation (5) over each
control volume and divide by its length. That is, given one general control



A Finite Volume Scheme for Simulating the Coupling DOM/AEBM 243

volume Si =
[
xi− 1

2
, xi+ 1

2

]
of dimension Δxi = xi+ 1

2
− xi− 1

2
we integrate

equation (5) in Si and divide it by its length Δxi to obtain the following
ordinary differential equation (ODE)

dui(t)
dt

=
1

Δxi

(
fi+ 1

2
− fi− 1

2

)
+ σi(t) ≡ li(u(t)), (12)

where
ui(t) =

1
Δxi

∫ x
i+1

2

x
i− 1

2

u(x, t)dx , (13)

is the spatial cell average of the solution u(x, t) in the control volume Si at
time t,

fi+ 1
2

= f
(
xi+ 1

2
, u
(
xi+ 1

2
, t
)
, ux

(
xi+ 1

2
, t
))

, (14)

is the right interface numerical flux at time t, and

σi(t) =
1

Δxi

∫ x
i+1

2

x
i− 1

2

σ

(
x, u,

∂U

∂n

)
dx , (15)

is the spatial average of the source term σ(u(x, t)) in the control volume Si

at time t.
In a similar way we apply a finite volume scheme for the DOM. We dis-

cretize the 2D domain [−1, 1] × [0,−H ] in Nx · Nz rectangular cells, also
denominated as control volumes. Let Vi,j be one of these 2D control volumes
of dimensions Δxi ×Δzj where Δxi = xi+ 1

2
− xi− 1

2
and Δzj = zj+ 1

2
− zj− 1

2
.

We integrate the equation in this control volume to yield

dUi,j(t)
dt

=
1

Δxi

(
Fi+ 1

2 ,j − Fi− 1
2 ,j

)
+

1
Δzj

(
Gi,j+ 1

2
−Gi,j− 1

2

)
+ Γij ≡ Lij(t),

(16)
where

Ui,j(t) =
1

ΔxiΔzj

∫ x
i+ 1

2

x
i− 1

2

∫ z
j+ 1

2

z
j− 1

2

U(x, z, t)dzdx , (17)

is the cell average of the unknown inside the cell Vij , while the value Fi+ 1
2 ,j

is the right intercell numerical flux in x−direction and Gi,j+ 1
2

is the upper
intercell numerical flux in z−direction at time t, and

Fi+ 1
2 ,j =

1
Δzj

∫ z
j+ 1

2

z
j− 1

2

F
(
xi+ 1

2
, Ux

(
xi+ 1

2
, z, t

))
dz, (18)

Gi,j+ 1
2

=
1

Δxi

∫ x
i+ 1

2

x
i− 1

2

G
(
U
(
x, zj+ 1

2
, t
)
, Uz

(
x, zj+ 1

2
, t
))

dx, (19)



244 A. Hidalgo and L. Tello

are the spatial average of physical fluxes over cell faces at time t and

Γij =
1

ΔxiΔzj

∫ x
i+ 1

2

x
i− 1

2

∫ z
j+ 1

2

z
j− 1

2

γ(x, U(x, z, t))dzdx, (20)

is the spatial average of the source term γ(x, U(x, z, t)) over the control vol-
ume Vij .

The numerical solution of the EBM given by (12) and the DOM given by
(16) may be advanced in time by means of, for instance, a TVD Runge-Kutta
method. The one we have used in this paper is the third-order method, as
described in [15, 17], whose expressions are

ηk,1 = ηn + ΔtΛ(ηn), ηk,2 =
3
4
ηn +

1
4
ηk,1 +

1
4
ΔtΛ(ηk,1),

ηk+1 =
1
3
ηn +

2
3
ηk,2 +

2
3
ΔtΛ(ηk,2), (21)

where ηn := u(xi+ 1
2
, tn) for the EBM and ηn := U(xi+ 1

2
, tn) for the DOM.

Moreover the operator Λ(·) is the operator l(·) for the EBM and the operator
L(·) for the DOM part.

The process we have applied to solve the problem can be summarized as
follows:

1. Compute the initial cell averages of the solution, both for the EBM and
the DOM. Therefore we have the values

u0
i =

1
Δxi

∫ x
i+ 1

2

x
i− 1

2

u(x, 0)dx, U0
i =

1
ΔxiΔzj

∫ x
i+1

2

x
i− 1

2

∫ z
j+ 1

2

z
j− 1

2

U(x, 0)dzdx.

(22)
2. For each time step:

a) Solve the EBM, according to the following steps:
i) Compute the intercell numerical fluxes using WENO technique,

which will be briefly explained in the next subsection.
ii) Use the intercell numerical fluxes (14) to obtain the operator l(·)

for the EBM using (12).
iii)Solve the ODE (12) using third-order TVD Runge-Kutta scheme

(21) to obtain the cell averages of the numerical solution of the
EBM, un

i .
b) Solve the DOM using the solution of the EBM, un

i , as Dirichlet bound-
ary condition at the upper boundary. The steps to follow are:
i) Compute the intercell numerical fluxes using WENO technique.
ii) Use the numerical fluxes (18), (19), to obtain the operator L(·) for

the DOM using (16).
iii)Solve the ODE (16) using third-order TVD Runge-Kutta scheme

(21) to obtain the cell averages of the numerical solution of the
DOM, Un

i .
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It can be seen that we need to know intercell values and intercell spatial
derivatives from cell averages of the solution in order to be able to calculate
the numerical fluxes to be used in (12) and (16). This is achieved via the
procedure usually called reconstruction. The one used in this paper is de-
scribed in the next subsection. Details about WENO procedure can be found
in many references such as [4, 1, 17, 18].

2.2 WENO Reconstruction

We distinguish two different parts: reconstruction for the Energy Balance
Model and reconstruction for the Deep Ocean Model.

WENO reconstruction for Energy Balance Model

The numerical solution of (12) requires the computation of the intercell nu-
merical fluxes fi± 1

2
. If we consider the expression (14) we notice that we need

to obtain the solution and the spatial derivative of the solution at each cell
interface from the spatial cell averages that are given by

ui(t) =
1

Δxi

∫ x
i+ 1

2

x
i− 1

2

u(x, t)dx. (23)

Since we are working in one space dimension, for an order of accuracy r

we have r candidate stencils each one of them with r cells. We can denote
the r stencils as {Si−r+1, Si−r+2, · · · , Si}, {Si−r+2, Si−r+3, · · · , Si+1},· · · ,
{Si, Si+1, · · · , Si+r−1}. For each one of those stencils we can consider a (r −
1)−th degree interpolating polynomial pl(x), l = 0, · · · , r−1 . The WENO
procedure defines the reconstructed values: u(xi+ 1

2
, t), ux(xi+ 1

2
, t) as a con-

vex combination of the rth- order accurate values of all polynomials taken
with positive nonlinear weights.

Each one of the polynomials considered must be conservative, in the sense
that the integral average of the polynomial is equal to the integral average of
the solution within each cell in the stencil

1
Δxk

∫
Sk

pl(x)dx = uk(t), 0 ≤ l ≤ r − 1, 0 ≤ k ≤ r − 1 (24)

where Sk is each one of the r cells in the stencil used to construct the poly-
nomial pl.

Let us now denote as u
(k,0)

i+ 1
2
, (1 ≤ k ≤ r) the r values taken by the r

polynomials at the cell interface xi+ 1
2

and we denote as u
(k,1)

i+ 1
2
, (1 ≤ k ≤ r)

the r values taken by the first spatial derivative of the r polynomials at xi+ 1
2
.

We define the values u(xi+ 1
2
, t) and ux(xi+ 1

2
, t) as
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u(xi+ 1
2
, t) =

r−1∑
k=0

ωku
(k,0)

i+ 1
2
, ux(xi+ 1

2
, t) =

r−1∑
k=0

ωku
(k,1)

i+ 1
2

(25)

where ωr are the so-called nonlinear weights. They are calculated using

ωj =
αj∑r−1

k=0 αk

where αj =
dj

(ε + βj)p
(0 ≤ j ≤ r − 1). (26)

where we use p = 2 and ε = 10−6 which is introduced to avoid division by
zero. In the expression (26) we have used the so-called smoothness indicators
that are obtained from

βk =
r−1∑
m=0

∫ x
i+1

2

x
i− 1

2

dm

dxm
(pk(x))2Δx2m−1dx (0 ≤ k ≤ r − 1). (27)

Apart from the numerical fluxes we also need to compute the source term
integral given in (15). One possible option is to use a Gaussian quadrature
formula, as the following two-point one, which for the reference interval Ŝ =
[−1, 1] reads

∫ 1

−1

φ(ξ)dξ ≈ φ

(
− 1√

3

)
+ φ

(
1√
3

)
. (28)

We can easily map the interval Si = [xi− 1
2
, xi+ 1

2
] onto the reference interval

Ŝ by means of a linear transformation and obtain the gaussian quadrature
points, denoted as xα,i and xβ,i, and weights, denoted as wα,i and wβ,i, for
Si which are expressed as xα,i = xi − Δxi

2
√

3
and xβ,i = xi + Δxi

2
√

3
, where

xi = (xi+ 1
2

+ xi− 1
2
)/2. The weights are wα,i = wβ,i = Δxi.

Therefore we can approximate the integral of the source term as

σi(t) =
1

Δxi

∫ x
i+1

2

x
i− 1

2

σ(u(x, t))dx ≈ 1
2

(σ (u (xα,i, t)) + σ (u (xβ,i, t))) . (29)

The expression (29) requires to compute the values u (xα,i, t) and u (xβ,i, t),
which can be achieved using the WENO polynomials, pl, previously used. We
obtain the value of the unknown for each Gaussian point as

u (xα, t) =
r−1∑
k=0

Ωku
(k,α), u (xβ , t) =

r−1∑
k=0

Ωku
(k,β), (30)

where u(k,α) and u(k,β) are the values of each polynomial at the gaussian
points xα,xβ and Ωk are the nonlinear weights for WENO interpolation.

In this work we have used piecewise-cubic reconstruction which means that
we have taken the value r = 4. Therefore, we use the four following stencils:
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{Si−3, Si−2, Si−1, Si} , {Si−2, Si−1, Si, Si+1}

{Si−1, Si, Si+1, Si+2} , {Si, Si+1, Si+2, Si+3} .

The extrapolated values of the solution for r = 4 at cell interface xi+ 1
2

are
given by the general expression:

u
(k,0)

i+ 1
2

=
3∑

j=−3

Cjui+j(t), (31)

where the coefficients Cj are given in Table 1.
The extrapolated derivatives of the solution for r = 4 at cell interface xi+ 1

2
are given by the general expression:

u
(k,1)

i+ 1
2

=
1

Δxi

3∑
j=−3

Djui+j(t), (32)

where the coefficients Dj are given in Table 2.

Table 1. WENO coefficients for intercell extrapolated values

k C−3 C−2 C−1 C0 C1 C2 C3

0 0 0 0 1/4 13/12 -5/12 1/12
1 0 0 -1/12 7/12 7/12 -1/12 0
2 0 1/12 -5/12 13/12 1/4 0 0
3 -1/4 13/12 -23/12 25/12 0 0 0

Table 2. WENO coefficients for derivative extrapolated values

k D−3 D−2 D−1 D0 D1 D2 D3

0 0 0 0 -11/12 9/12 3/12 -1/12
1 0 0 1/12 -15/12 15/12 -1/12 0
2 0 1/12 -3/12 11/12 9/12 0 0
3 -11/12 45/12 -69/12 35/12 0 0 0

As optimal weights for intercell values computation we have followed the
idea first proposed in [11] in which a much higher weight is assigned to the
central stencils. The values of this optimal weights we propose are: d0 = d3 =
1, d1 = d2 = 1010. The smoothness indicators, optimal weights in Gaussian
calculation and extrapolated values at Gaussian points can be found in [1, 17].
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Influence of the ocean temperature on the interface

In formula (7) we have the normal derivative KV

D
∂U
∂n which represents the

influence of the temperature in the deep ocean on the interface with the
atmosphere. In order to consider this term in the formulation we first ap-
proximate the normal derivative and integrate this term in the term in the
1D control volume [xi− 1

2
, xi+ 1

2
] to yield: ∂U

∂n ≈ ui(t)−Ui,Nz (t)
Δz/2 where ui(t),

where we have considered integral averages of the solucion of the EBM and
DOM, as defined in (13) and (17). In the numerical examples the effect of
the consideration of this term will be studied.

WENO reconstruction for Deep Ocean Model

In the 2D part of our problem, that is the DOM, we need to obtain the
numerical solution of the scheme (16) which requires to compute the inter-
cell numerical fluxes Fi± 1

2 ,j and Gi,j± 1
2
. Following the ideas put forward in

the previous subsection we shall produce a reconstruction polynomial which
allows us to obtain point-wise values and spatial derivatives wherever they
are needed (in particular at cell interfaces) from cell averages of the solution
calculated in the previous time step

Uij(t) =
1

ΔxiΔzj

∫ x
i+1

2

x
i− 1

2

∫ z
j+ 1

2

z
j− 1

2

U(x, z, t)dzdx. (33)

Following a similar procedure to the one used in the EBM case we apply
WENO reconstruction. In order to proceed we can choose between using a
fully 2D reconstruction polynomial or a dimension-by-dimension reconstruc-
tion, which consists of obtaining two one 1D polynomial for each cartesian
direction. The dimension-by-dimension option is the one we have chosen in
this work, as it is easier to implement, it is less computationally expensive and
it gives good results. Furthermore it can be extended straightforward to the
three-dimensional case. See for example [4, 17, 18] for details on applications
of this kind of reconstruction.

Therefore we are using two 1D reconstructions for each 2D control volume
and applying WENO procedure for both of them. This means that, for each
reconstruction we can use the same process as described previously in this
section.

3 Numerical Treatment of Boundary Conditions

In order to obtain a numerical solution of the EBM using the numerical
method explained so far, we need to consider boundary conditions. The ones
we have applied are ∂u

∂x (t,−1) = ∂u
∂x (t, 1) = 0. In order to carry out WENO

reconstruction we can consider the usually called ghost cells on the left and
on the right side of the domain as depicted in Figure 1.
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H

Vi,0
Vi,-1
Vi,-2

Vi,1

Vi,2

Vi,3

Ghost cells
0Vi,Nz

Vi,Nz-1
Vi,Nz-2

Vi,Nz+1

Vi,Nz+2

Vi,Nz+3
Ghost cells

S-3 S-2 S-1 S0 S1 S2 SNx+3SNx+2SNx+1SNx

x=-1 x=1

Ghost cells Ghost cells
A)

B) C)

Fig. 1. Ghost cells for boundary conditions. A) 1D EBM, B) 2D DOM Upper
boundary, C) 2D DOM Lower boundary.

The usual manner to apply the no flow boundary conditions in 1D is,
for each time step, to set un

0 = un
1 , un

−1 = un
2 , un

−2 = un
3 , un

−3 = un
4 and

un
Nz+1 = un

N ,un
N+2 = un

N−1,u
n
N+3 = un

N−2, where un
i stands for the solution

in cell Si at time step tn.
Concerning the boundary conditions for the DOM we need to use ghost

cells for each boundary. In the boundaries Γ−1 and Γ1 we shall consider no
flow boundary conditions so their treatment will be identical to that men-
tioned for the EBM. Let us consider now the upper boundary Γ0. We must
impose the numerical solution of the EBM as Dirichlet boundary condition.
Let us denote by un

i the EBM solution for interval Si at time tn. In order to
use this boundary condition we consider three rows of ghost cells on top of
the domain. See Figure 1B.

Using simple linear interpolation we can assign one value to each ghost cell:
Un

i,Nz+1 = 2un
i −Ui,Nz , Un

i,Nz+2 = 2un
i −Ui,Nz−1 and Un

i,Nz+3 = 2un
i −Ui,Nz−2

where Un
i,j is the numerical solution for the 2D cell Vi,j at time tn.

Finally we consider the bottom boundary condition. One way to proceed
consists of approximating the spatial derivatives appearing in (2) by the
following centred formulae

∂U

∂x
(xi,−H, tn) ≈ 1

2Δx
(Un

i+1,1 − Un
i−1,1),

∂U

∂z
(xi,−H, tn) ≈ 1

(2j − 1)Δz
(Un

i,j − Un
i,1−j), j = 1, 2, 3, (34)
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where we have assumed that all the finite volumes in the mesh have the
same size Δx ×Δz. Now we introduce the expressions (34) into the bottom
boundary condition given in (2) to obtain the ghost-cell values

Un
i,1−j = ωxi

2j − 1
2Δx

(Un
i+1,1 − Un

i−1,1) + KV U
n
i,j , j = 1, 2, 3. (35)

4 Numerical Example

We consider the system deep ocean-atmosphere. The main processes involved
are incoming solar radiation onto the ocean surface, cooling in the interface
ocean-atmosphere sinking cold water owing to ice melting in the poles. We
consider that melting water sinks all the way down to the bottom, spreads
throughout the bottom of the ocean and, in certain latitudes, rises up towards
the surface.

The mathematical model is the one proposed in (4) using the initial condi-
tions U(x, z, 0) = 18e−x2−z2

for the ocean interior and u(x, 0) = 80e−x2−60.
The physical data used in this example are depicted in Table 3. The first col-
umn represents the physical parameters, most of them taken from [20] while
the data in the second column have been obtained applying the formula:
100 ·Data/L2 where L is a length representing either the radius of the Earth
(R ≈ 6.378 × 106m), when referring to KH and KH0, or the ocean depth
(H ≈ 4000m), when referring to KV . The multiplication by 100 is due to the
conversion of time units into centuries.

We also need to define, to be used in (3), the function S(x). It represents
how the incoming solar radiation is distributed throughout the surface of the

Fig. 2. Physical process involved in Experience 1
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Table 3. Physical data used in the model

Parameter Data Scaled data

KH 2 × 1010m2yr−1 0.049
KH0 2.26 × 108m2yr−1 0.555 × 10−3

KV 2000m2yr−1 0.0125

C,B 190Wm−2 , 2Wm−2oC−1 190, 2
c, ρ 1, 1 1, 1
Q 340 340
D 60 60

ocean such that most of the heat goes to the Equator and a little amount
of heat goes to the poles. Moreover this function must be non-negative ev-
erywhere. To simulate this effect we give the value S(x) = 1− 1

2P2(x) where
P2(x) = 1

2 (3x2− 1) is the second Legendre polynomial in the interval [−1, 1].
The coalbedo β(u) is given by

β(u) =

⎧⎨
⎩
m if u < −10,
[m,M ] if u = −10,
M if u > −10, with 0 < m < M ,

(36)

where m = 0.4 and M = 0.69. The considered velocity depends only on x

and is defined as

ω(x, z) = W (x) =
10(x + 0.75)(x− 0.75)

(0.1 + 10 |x + 0.75|)(0.1 + 10 |x− 0.75|) , (37)

which is displayed in Figure 3.
The spatial domain is the rectangle [−1, 1]× [0,−1]. We have discretized

the domain using 40 cells in x−direction and also 40 cells in z−direction.
Regarding the discretization in time we have taken the time step

Δt = min(αΔx2(KH)−1, αΔz2(KH)−1, αΔx2(KH0 |
du

dx
|)−1),

where α = 0.3 is a diffusion parameter which controls the stability of the
numerical scheme. Numerical experiments have shown that higher values of
the parameter α yield an unstable numerical solution. In Figure 4 we display
the contour plot of the temperature inside the deep ocean.

Figure 4 shows that if we consider the effect of deep ocean on the atmo-
sphere the range of temperatures is more narrow than if we do not consider
it, which is due to the thermostatic behaviour of the ocean. More precisely, if
we call ṽ(x, t) the approximate temperature at the upper boundary without
the deep ocean effect (without the term KV

∂U
∂n ) and if we call v(x, t) the

approximate temperature at the upper boundary with the deep ocean effect
(obtained by this numerical aproximation) then we get that, for every t,

min
Γ0

(ṽ(x, t)) ≤ min
Γ0

(v(x, t)) ≤ max
Γ0

(v(x, t)) ≤ max
Γ0

(ṽ(x, t)).
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Fig. 3. Velocity profile W (x) used in the example

Fig. 4. Solution in the deep ocean for t=10. A) Contour plot for DOM, B) Solution
of the EBM: Full line is with effect of deep ocean, dashed line is without effect of
deep ocean

5 Validation of the Numerical Scheme

In order to carry out the validation of our numerical scheme we consider the
function

U(x, z, t) =
1

1 + t
(x2 − 1)2(1 + z)2, (38)

and construct the auxiliary test problem

Ut − (
KH

R2
(1− x2)Ux)x −KV Uzz + wUz = Φ(x, z, t) in Ω × (0, T ),
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wxUx + KV Uz = 0 in ΓH × (0, T ),

Dut −
DKH0

R2

(
(1− x2)3/2 |ux|ux

)
x

+ KV
∂U

∂n

+wxUx + C + Bu =
1
ρc
QS(x)β(x, U) + ψ(x, t) in Γ0 × (0, T ),

(1− x2)3/2 |Ux|Ux= 0 in Γ−1 × (0, T ) ∪ Γ1 × (0, T ),

U(x, z, 0) = (1 + x2)(1 + z2) in Ω,

u(x, 0, 0) = 1 + x2 in Γ0, (39)

where the source terms Φ(x, z, t) and ψ(x, t) have been added to the original
model such that (38) be the exact solution of the problem (39). Their expres-
sions are not displayed here but they can be easily obtained using a symbolic
computation tool. The physical and discretization parameters are the same
as those used in the previous example.

In the first two plots in Figure 5 it is displayed the contour plot of the nu-
merical solution and the exact one. The third plot represents the comparison
between the numerical solution and the exact one in the upper boundary,
which means the 1D EBM, and in the DOM along the lines z = −0.25 and
z = −0.5. The results show a good agreement between the numerical solution
and the exact one.

Fig. 5. A) Contour plot of numerical solution of (39), B) Contour plot of exact
solution of (39), C) Comparison exact solution (full line) versus numerical solution
(symbols) for: Upper boundary (1D EBM) and DOM, along the lines z = −0.25
and z = −0.5 (with t = 1).
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6 Conclusions

We have obtained a numerical solution of the coupled model atmosphere-deep
ocean, by means of a finite volume approach with WENO−7 reconstruction
and third order TVD Runge-Kutta for time discretization. The evolution of
the temperature in the deep ocean is due to the combined effect of water
going down from the Earth poles combined with heating-cooling processes
taking place in the interface atmosphere-ocean. We have checked the numer-
ical solution using a test problem in which we have added a source term in
order to have an analytical solution, obtaining good results. The results ob-
tained also show that temperatures are smoothed by the effect of the ocean,
in the sense that the maximum decreases and the minimum increases.
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Summary. We consider a non linear elliptic problem arising in the mathe-
matical modeling of the nuclear fusion by magnetic confinement of a plasma
in Stellarator devices. We prove some results about the existence, location
and size of plasma region and vacuum region, and thus about the existence
and location of the boundary of the plasma (the free–boundary for the math-
ematical model). From the point of view of its mathematical approach, we
introduce a suitable auxiliary problem in order to obtain a subsolution of this
new problem and for which our original solution is a supersolution. Finally,
by applying a comparison principle of solutions, we obtain some appropriate
estimates on the location and size of the plasma region and vacuum region.

1 Introduction

We consider the following nonlinear elliptic problem. Let Ω be a bounded
and regular set of R

2. Given the parameters Fv > 0, γ < 0, functions a, b ∈
L∞(Ω), a 	≡ 0, b > 0 a.e. in Ω. The problem is to find two functions (u, F )
such that u : Ω → R, F : R → R with F (s) = Fv for all s ≤ 0, satisfying

(P)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δu (x) = a (x)F (u (x)) + 1
2

(
F 2 (u (x))

)′ + b (x) p′ (u (x)) in Ω,

u (x) = γ, in ∂Ω,∫
{x∈Ω:u(x)>s}

1
2

(
F 2 (u (x))

)′ + b (x) p′ (u (x)) dx = j(s+, ‖u+‖L∞(Ω))

for all s ∈ [ess infΩ u, ess supΩ u].

Here, and in what follows, we shall assume that p ∈ C1(R) such that p(0) =
0, 0 ≤ p′(t) ≤ λt+, and |p′(t) − p′(s)| ≤ L|t − s|α for some λ > 0, L > 0

∗ The author would like to thank L. Pardo, N. Balakrishnan and M.Á. Gil for their
kind invitation to present a contribution in this book in tribute to Professor Maŕıa
Luisa Menéndez.



258 J.F. Padial

and α ∈]0, 1[. For function j, we assume j ∈ C(R × R
+), j(σ, σ) = 0 for all

σ ≥ 0, j′1 ∈ C(R+ × R
+) and η := sup{|j′1(s, σ)| : (s, σ) ∈ R

+ × R
+} < +∞.

We shall always use j′1 to denote the derivative of j with respect to the first
component (i.e. j′1 := ∂

∂sj (s, σ)) and by p′ we denote the derivative of p.
Problem (P) appears in the mathematical treatment of a bidimensional

model arising in the magnetically confined plasma in a Stellarator device.
One of the difficulties of the magnetically controlled plasma fusion, is to de-
terminate the conditions on the magnetic field and on the current density in
order to maintain the plasma far from the camera wall. This variables will
be the unknowns of magnetic confinement problem. In the case of Stellarator
devices, the plasma is assumed to be an ideal fluid and a perfect conduc-
tor. This problem can be modeled by using the ideal incompressible MHD
system (magnetohydrodynamic system). The nonlinear elliptic partial differ-
ential equation is obtained in [4, Appendix A], [5] and [12] from ideal 3D
MHD system, introducing a set of special toroidal coordinates (the Boozer
vacuum coordinates system [2]) and the averaging arguments of [7]. We just
remark that (P) can be viewed as a free–boundary problem since the sets
Ωp := {x ∈ Ω : u (x) ≥ 0} and Ωv := {x ∈ Ω : u (x) < 0} are a priori
unknowns and then their interface. Physically, these two domains correspond
with the plasma region (Ωp), i.e. the region in the Stellarator device where
the plasma is confined, and the vacuum region (Ωv), i.e., where is present no
plasma. The unknown function u is called the flux function and its gradient
represents two of the components of the averaged magnetic field that is con-
fining the plasma. The unknown scalar function F mapping on u, gives the
third components of the averaged magnetic field. Finally, a characteristic of
an ideal Stellarator is that it has zero net current within each flux magnetic
surface, but in practice, however, this ideal condition does not hold, and a
known current arises in the interior of each magnetic surface (see [3] for a
physical modeling). Using the change of variables introduced in [4], the con-
dition of a nonzero current inside each magnetic surface can be expressed
in terms of the family of integrals that appears in (P), involving a given
function j. This family of integral identities is known as the current–carrying
Stellarator condition.

In the case of ideal Stellarator, the net current within each flux magnetic
surface is zero and this can be expressed in terms of the integral condition of
problem (P) assuming j ≡ 0. The existence and regularity of a weak solution
(u, F ) of this problem has been established in [5] and the existence and lo-
cation of the plasma region has been studied in [8]. For the case of non ideal
Stellarator, the condition of non–zero current inside each magnetic surface
can be expressed in terms of the current–carrying Stellarator condition of
problem (P) assuming j 	≡ 0. The fact that j 	≡ 0 makes appear a new non-
linear terms in its mathematical treatment with respect to the case j ≡ 0.
The existence and regularity of a weak solution (u, F ) for this problem, when
j 	≡ 0, have been established in [4] and [12]. The existence and location of the
plasma region for the corresponding evolution problem was studied in [13].
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The main goal of this paper is to obtain the existence and the estimate
on the location and size of plasma region Ωp = {x ∈ Ω : u (x) ≥ 0} and the
vacuum region Ωv = {x ∈ Ω : u (x) < 0} for the non ideal Stellarator device,
that is, when j 	≡ 0. That is stated as follow:

Theorem 1. Let Ω be a bounded open regular subset of R
2 (with C1 boundary

∂Ω) and such that

∃ x0 ∈ Ω verifying Rp :=

⎛
⎝ −4γ
Fv essinf

x∈Ω
a (x)

⎞
⎠

1
2

< d (x, ∂Ω) .

Assume that essinf
Ω

a > 0. Let (u, F ) be a weak solution of (P) such that u

has not flat region and F ∈ W 1,∞(ess infx∈Ω u, ess supx∈Ω u). Then, if λ and
η are small enough, we have that

ΩRp := {x ∈ Ω : d (x, ∂Ω) ≥ Rp} ⊂ Ωp = {x ∈ Ω : u (x) ≥ 0} .

In particular meas {x ∈ Ω: d (x, ∂Ω) ≥ Rp} ≤ |Ωp| (d denotes the Euclidean
distance).

Analogously, we find a similar estimate for the location and size of the
vacuum region Ωv := {x ∈ Ω : u (x) < 0}:

Theorem 2. Let Ω be an open bounded regular (with C1 boundary ∂Ω) subset
of R

2 and such that

∃ x0 ∈ Ω verifying Rp :=

⎛
⎝ −4γ
Fv essinf

x∈Ω
a (x)

⎞
⎠

1
2

< d (x, ∂Ω)

and let R̂ be a positive number such that

0 < ρ < R̂ ≤ Rp + ρ

for a ρ > 0. Assume that for any x̄ ∈ ∂Ω the segment x̄ + rn, 0 <

r ≤ R̂ belongs to Ω where n is the inward normal unit vector to ∂Ω.
Let (u, F ) be a weak solution of (P) such that u has not flat region and
F ∈W 1,∞(ess infx∈Ω u, ess supx∈Ω u). Then, if λ and η are small enough we
have that

{
x ∈ Ω : d (x, ∂Ω) ≤ R̂− ρ

}
⊂ Ωv = {x ∈ Ω : u (x) < 0}.

In particular meas
{
x ∈ Ω: d (x, ∂Ω) ≤ R̂− ρ

}
≤ |Ωp|.

The structure of the rest of the paper is as follows. In Section 2 we introduce
the notion of decreasing and relative rearrangement and we define the non–
local problem (P∗) which is equivalent to our problem (P), but now with only
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one unknown. We give some results proved in previous works concerning to
the existence of solutions for the problem (P) and some a priori estimate of
solutions. Finally we prove some properties for the weak solutions. In Section
3 we prove the main results concerning to the existence and estimate the
location and size of the plasma region and the vacuum region.

2 Previous Results on the Existence and a Priori
Estimates for the Solution of Problem (P)

We start recalling the notion of the decreasing and relative rearrangement.
Let Ω be a bounded and connected open measurable set of R

2 (we assume a
2d–setting motivated by the physical modeling but the definitions and results
that follows hold for any dimension N > 1). Given a measurable function
u : Ω → R, the distribution function of u is given by mu (σ) :=meas{x ∈
Ω : u (x) > σ} (the Lebesgue measure of the set {x ∈ Ω : u (x) > σ} will be
denoted by |u > σ|). It is well–know that the function mu (·) is decreasing
and right semicontinuous. We shall say that u has a flat region at the level
σ if meas{x ∈ Ω : u (x) = σ} (denoting by |u = σ|) is strictly positive. The
generalized inverse of mu is called the decreasing rearrangement of u with
respect to x and it is defined as the function u∗ : [0, |Ω|] → R̄ such that
u∗ (s) := inf{σ ∈ R : mu (σ) ≤ s} for all s ∈ Ω∗, where Ω∗ :=]0, |Ω|[ (see
e.g. [10], [11] for more details about its definition and properties). We recall
some properties: u∗ is decreasing, u∗ (0) = ||u+||L∞(Ω) = ess supx∈Ω u (x), u∗
and u are equimeasurable, and the mapping u ∈ Lp (Ω) to u∗ ∈ Lp (Ω∗) is a
contraction for 1 ≤ p ≤ +∞. Moreover, if u has not flat region, then mu and
u∗ are continuous and u∗ (mu (σ)) = σ (that is, u−1

∗ = mu). On the other
hand, if u ∈ W 1,p (Ω), 1 ≤ p ≤ +∞, then u∗ ∈ W

1,p
loc (Ω∗).

Given a measurable function u : Ω → R, and b ∈ Lp(Ω) with 1 ≤ p ≤ ∞,
we define the function w : Ω∗ → R as

w (s) =
∫
b (x) dx

{x∈Ω:u(x)>u∗(s)}

+

s−|u(·)>u∗(s)|∫ (
b|{x∈Ω:u(x)=u∗(s)}

)
∗ (σ) dσ.

0

The relative rearrangement of b with respect to u is the functions b∗u ∈
Lp (Ω∗) defined by b∗u(s) := dw(t)(s)

ds = lim
σ→0

(u+σb)∗(s)−u∗(s)
σ for all s ∈ Ω∗.

Notice that by this definition, if u has not flat region (that implies that
s−|u > u∗ (s) | = 0) then b∗u(s) := d

ds

∫
{x∈Ω:u(x)>u∗(s)} b (x) dx for all s ∈ Ω∗.

Also, for any measurable function u, the mapping b ∈ Lp (Ω) to b∗u ∈ Lp (Ω∗)
is a contraction for 1 ≤ p ≤ +∞ and in particular ||b∗u||L∞(Ω∗) ≤ ‖b‖L∞(Ω)

(further details on the decreasing and relative rearrangement can be found,
for instance, in [4], [9], [10], [11], [14], [15], [16] and their references).

The notion of decreasing and relative rearrangement and their properties
will be the key to reformulate the problem (P) as a new equivalent non–local
problem (P∗) defined later with only one unknown.
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Before starting the results concerning to the existence and to the a priori
estimates of the solution of the problem (P), we introduce the following useful
convex cone V (Ω) := {v ∈ H1 (Ω) : Δv ∈ L∞ (Ω) , v|∂Ω ≤ 0}. We recalling
the existence result and some a priori estimates given in [4] and [12] about
the solution of problem (P).

Theorem 3. Suppose that γ ≤ 0 and infΩ |a| > 0. Then there exist Λ1, Λ2 >

0 such that if

λ‖b‖L∞(Ω) + η < Λ1 and Λ2 < inf
Ω
|a|Fv

there is a couple (u, F ), u ∈ V (Ω) and F ∈ W 1,∞(]ess infΩ u, ess supΩ u[)
solution of (P) satisfying also that meas{x ∈ Ω : ∇u(x) = 0} = 0.

Following [4], [5] and [12], we can determinate the unknown function F in
terms of the function u by derivating the integral condition of (P) with respect
to the level s. So, for any pair of functions (u, F ) that verify the integral con-
dition of (P), with u ∈ W 2,p (Ω), p ≥ 1, F ∈ W 1,∞ (]ess infΩ u, ess supΩ u[),
F (s) = Fv, if s ≤ 0 and such that meas{x ∈ Ω : ∇u(x) = 0} = 0
(that is means that u has not flat region and thus we can use the fact
that mu and u∗ are continuous functions, u∗ (mu (σ)) = σ and b∗u(s) :=
d
ds

∫
{x∈Ω:u(x)>u∗(s)} b (x) dx), we can obtain that

Proposition 1. Given (u, F ) solution of (P), with meas{x ∈ Ω : ∇u(x) =
0} = 0, then F (s) = Gu (s) for all s ∈ [ess infx∈Ω u, ess supx∈Ω u] and
F (u (x)) = Gu (u (x)) a.e. x ∈ Ω̄ where the function Gu is defined as

Gu (s) :=
[
F 2

v − 2
∫ s+

0

p′ (r) b∗u (|u > σ|) dσ

+ 2
∫ s+

0

j′1(σ, u+∗(0))u′
+∗(|u > σ|)dr

] 1
2

+

(1)

(See [4] and [12] for its proof). In order to simplify the notation, we set

Gu (u (x)) =
[
F 2

v − F1 (x, u (x) , b∗u) + F2 (x, u (x))
] 1

2

+
(2)

where

F1(x, u (x) , b∗u):= 2
∫ |u>u+(x)|

|u>0|
[p (u∗) ]′ (σ) b∗u (σ) dσ, and (3)

F2(x, u (x)):= 2
∫ |u>u+(x)|

|u>0|
j′1(u+∗(σ),u+∗(0))(u′

+∗(σ))2dσ.

This proposition gives us the possibility to define a new non local problem
(P∗) for which u (solution of (P)) will be also a solution.



262 J.F. Padial

Theorem 4. Let (u, F ) be a solution of (P) given by Theorem 3, Then u is
a weak solution of the non local problem

(P∗)
{
−Δu (x) = a (x)Gu (u (x)) + H (u (x) , b∗u) + J (u (x)) in Ω,

u (x)− γ ∈ H1
0 (Ω) on x ∈ ∂Ω

(4)

where the functions H and J are given by

H(u (x) , b∗u) := p′ (u (x)) [b (x)− b∗u (|u > u (x) |)] (5)

and
J(u (x)) := j′1(u+ (x) , u+∗(0))u′

+∗ (|u > u (x) |) . (6)

Reciprocally, if u is a weak solution of (P∗) such that u has not flat re-
gion (meas{x ∈ Ω : ∇u(x) = 0} = 0) and such that Gu > 0 in
[ess infx∈Ω u, ess supx∈Ω u], then (u,Gu) is a solution of (P) where Gu is de-
fined as in (1).

Remark 1. Notice that u is the only one unknown of the problem (P∗).

Remark 2. We can verify that if s ≤ 0 then Gu (s) = Fv > 0 (it comes from
(1)). If u (x) ≤ 0 then Gu (u (x)) = Fv (from (2) and (3)), H(u (x) , b∗u) = 0
and J(u (x)) = 0 from the definition of H , J and the hypotheses on p and j′1.

Remark 3. This theorem allows us to work with u as weak solution of (P∗)
or (u,Gu) as a weak solution of (P) indistinctly. Thus we only consider the
above mentioned regularity with λ and μ small enough in what follows (see
[4] and [5] for more details).

Notice that, in the existence Theorem 3, assuming Λ1 small enough (from λ

and η small enough) we can define the positive number ν such that

ν :=
1
4π

[
21/2η1/2|Ω|1/2‖a‖L∞(Ω) + λ|Ω|oscΩb + η

]
< 1 (7)

(with oscΩb = ess supx∈Ω b − ess infx∈Ω b). The existence of solution was
proved in [4] by using a Galerkin type methods. The solution found in this
way, it is such that verifies the following

Proposition 2. For Λ1, Λ2 > 0 small enough, there exists a solution (u, F )
of problem (P) given by Theorem 3 such that

‖u+‖L∞(Ω) ≤
|Ω|
4π
‖a‖L∞(Ω)Fv

(1 − ν)
:= S, (8)

‖Δu‖L∞(Ω) ≤
‖a‖L∞(Ω)Fv

1− ν
=

4π
|Ω|S, (9)

∥∥∥∥du+∗
ds

∥∥∥∥
L∞(Ω∗)

≤ 1
4π
‖a‖L∞(Ω)Fv

1− ν
=

1
|Ω|S

where ν is a positive number given by (7).
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In particular, we can obtain the following a priori estimates:

Corollary 1. Given a solution (u, F ) of problem (P) as in Proposition 2 we
have that

0 ≤ F1 (x, u (x) , b∗u) ≤2λ ‖b‖L∞(Ω) S, |F2 (x, u) | ≤ 2η
|Ω|S

2,

|H (u, b∗u) | ≤ λoscΩbS, |J (u (x)) | ≤ η

|Ω|S.

Proof. From Proposition 2 and the definition of F1, F2, H and J , we can
prove that

0 ≤ F1 (x, u, b∗u) ≤ 2
λ|Ω|
4π

‖b‖L∞(Ω) ‖Δu‖L∞(Ω) ≤ 2λ ‖b‖L∞(Ω) S,

|F2 (x, u (x)) | ≤ 2η|Ω|
‖Δu‖2L∞(Ω)

(4π)2
≤ 2η
|Ω|

(
|Ω|
4π
‖a‖L∞(Ω)Fv

1− ν

)2

=
2η
|Ω|S

2,

|H (u (x) , b∗u) | ≤ λoscΩb‖u+‖L∞(Ω) ≤ λoscΩbS,

|J (u (x)) | ≤ η

4π
‖Δu‖L∞(Ω) ≤

η

4π
‖a‖L∞(Ω)Fv

1− ν
=

η

|Ω|S. �

From the above corollary we can obtain the following estimates for F (u (x))
for a.e. x ∈ Ω and F (s) for all s ∈ [ess infΩ u, ess supΩ u]:

Corollary 2. Given a solution (u, F ) of problem (P) as in Proposition 2 we
have that for a.e. x ∈ Ω

0 ≤ F (u (x)) ≤ Fv +S

√
2η
|Ω| , F 2 (u (x)) ≥

[
F 2

v − 2λ ‖b‖L∞(Ω) S −
2η
|Ω|S

2

]
+

and ∣∣∣∣12
(
F 2 (u (x))

)′∣∣∣∣ ≤
(
η

1
|Ω| + λ ‖b‖L∞(Ω)

)
S.

The same estimate holds for the function F (s) and s ∈ [ess infΩ u, ess supΩ u],
that is

0 ≤ F (s) ≤ Fv + S

√
2η
|Ω| , F

2 (s) ≥
[
F 2

v − 2λ ‖b‖L∞(Ω) S −
2η
|Ω|S

2

]
+

and ∣∣∣∣12
(
F 2 (s)

)′∣∣∣∣ ≤ η

|Ω|S + λ ‖b‖L∞(Ω) s+ ≤
(
η

1
|Ω| + λ ‖b‖L∞(Ω)

)
S.

Moreover, for all x ∈ Ω,

|a (x)F (u (x)) + 1
2

(
F 2 (u (x))

)′
+ b (x) p′ (u (x)) | ≤ K

with K := ||a||L∞(Ω)Fv + S
(
||a||L∞(Ω)

√
2η
|Ω| + η

|Ω| + 2λ||b||L∞(Ω)

)
.
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Proof. Considering that estimates given in Corollary 1, we get to

0 ≤ F (u (x)) = Gu (u (x)) =
[
F 2

v − F1 (x, u, b∗u) + F2 (x, u)
] 1

2

+

≤
[
F 2

v +
2η
|Ω|S

2

] 1
2

≤ Fv + S

√
2η
|Ω| ,

F 2 (u (x)) =
[
F 2

v − F1 (x, u, b∗u) + F2 (x, u)
]
+

≥
[
F 2

v − 2λ ‖b‖L∞(Ω) S −
2η
|Ω|S

2

]
+

and ∣∣∣∣12
(
F 2 (u (x))

)′∣∣∣∣ ≤ η
1
|Ω|S + λ ‖b‖L∞(Ω) u+ (x)

≤
(
η

1
|Ω| + λ ‖b‖L∞(Ω)

)
S.

Analogously, we obtain the estimates for F (s), F 2 (s) and
∣∣∣ 12
(
F 2 (s)

)′∣∣∣ and us-
ing these, we obtain the estimate about the right hand side of problem (P). �
Corollary 3. For this solution (u, F ), assuming λ and η small enough in
order to have

F 2
v − 2λ ‖b‖L∞(Ω) S −

2η
|Ω|S

2 > 0, (10)

we have that F (s) > 0 for all s ∈ [infΩ u, supΩ u] and F (s) is Lipschitz, i.e.
there exists a positive number C (λ, η) only dependents of λ and η, such that

|F (s)− F (σ) | ≤ C (λ, η) |σ − s| ∀s, σ ∈ [inf
Ω

u, sup
Ω

u] .

Moreover C (λ, η) goes to zero when λ and η go to zero.

Proof. From the assumption (10) and the last two corollaries, we have that

F (s) > 0 for all s ∈ [ess inf
Ω

u, ess sup
Ω

u].

Thus,

F 2 (s) =
[
F 2

v − 2
∫ s+

0

p′ (r) b∗u (|u > r|)

+ 2
∫ s+

0

j′1 (r+, u+∗ (0))u′
+∗ (|u > r|) dr

]
+

=F 2
v − 2

∫ s+

0

p′ (r) b∗u (|u > r|)

+ 2
∫ s+

0

j′1 (r+, u+∗ (0))u′
+∗ (|u > r|) dr.
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By the last identity (we can assume σ ≥ s ≥ 0 without lost of generality)

F 2 (s)− F 2 (σ) = 2
∫ σ+

s+

p′ (r) b∗u (|u > r|) dr

− 2
∫ σ+

s+

j′1 (r+, u+∗ (0))u′
+∗ (|u > r|) dr

and from the estimates of p′, b∗u, j
′
1 and u′

+∗ we have that

|F 2 (s)− F 2 (σ) | ≤ λ ‖b‖L∞(Ω) |σ2
+ − s2+|+ 2η

1
|Ω|S|σ+ − s+|.

On the other hand

F (s) + F (σ) ≥ 2
[
F 2

v − 2λ ‖b‖L∞(Ω) S −
2η
|Ω|S

2

]1/2

from Corollary 2. Notice that F 2
v − 2λ ‖b‖L∞(Ω) S −

2η
|Ω|S

2 > 0 form assump-
tion (10) of corollary. Since

|F (s)− F (σ) | = |F 2 (s)− F 2 (σ) |
F (s) + F (σ)

,

by replacing the last two inequalities in this identity and considering that
σ+ and s+ are less or equal than ‖u+‖L∞(Ω) ≤ S, we get that for all s, σ ∈
[ess infx∈Ω u, ess supx∈Ω u]

|F (s)− F (σ) | =

[
λ ‖b‖L∞(Ω) |σ+ + s+|+ 2η 1

|Ω|S
]

2
[
F 2

v − 2λ ‖b‖L∞(Ω) S −
2η
|Ω|S

2
]1/2

|σ − s| ,

|F (s)− F (σ) | ≤

(
λ ‖b‖L∞(Ω) + η 1

|Ω|
)
S

[
F 2

v − 2λ ‖b‖L∞(Ω) + 2 η
|Ω|S

2
]1/2

|σ − s| .

Let C (λ, η) :=
(λ‖b‖L∞(Ω)+η 1

|Ω| )S

[F 2
v −2λ‖b‖L∞(Ω)+2 η

|Ω|S
2]1/2 be. C (λ, η) is a positive constant.

The last assertion of the corollary comes form the definition ofC, S and ν. �

Lemma 1. Let (u, F ) be the given solution of (P), then

u (x) ≥ γ a.e. x ∈ Ω.

Proof. Since γ < 0, multiplying the elliptic equation of problem (P) by
(γ − u)+ := max (0, (γ − u)) we obtain



266 J.F. Padial

0 ≥ −
∫

Ω

−Δ (γ − u (x)) (γ − u (x))+ dx

= −
∫

Ω

|∇ (γ − u (x))+ |
2dx

=
∫

Ω

(
a (x)F (u (x)) +

1
2
(
F 2 (u (x))

)′
+ b (x) p′ (u (x))

)
(γ − u (x))+

=
∫
{y∈Ω:u(y)<γ}

a (x)Fvdx ≥ 0.

Thus ∫
Ω

|∇ (γ − u (x))+ |
2dx = 0

and then (γ − u)+ is constant for a.e. x ∈ Ω̄. Since u (x) = γ on ∂Ω, we
obtain that (γ − u)+ ≡ 0 in Ω and so u ≥ γ in Ω. �

3 Estimate on the Location and Size of the Plasma
Region and the Vacuum Region

We consider the following approach: (i) to give a condition for the existence
of the free–boundary (i.e. Ωp 	= ∅), (ii) to verify that the solution u is a super-
solution for an auxiliary problem in a test balls in Ω, (iii) to give a suitable
local subsolution u for this auxiliary problem satisfying the hypotheses of the
comparison principle in the sense of Hopf [6] and finally (iv) to compare u

with u. This way to work will be the same for to study the plasma region
and the vacuum region.

Let ϕ1 be a normalized eigenfunction associated to the first eigenvalue λ1 of
the operator −Δ on Ω with Dirichlet boundary condition, i.e., ϕ1 ∈ H1

0 (Ω)
and −Δϕ1 = λ1ϕ1 on Ω. We know that ϕ1 > 0 on Ω. Besides, we can
renormalize it such that λ1

∫
Ω ϕ1dx = 1.

The following proposition guaranties the existence of free–boundary and
thus meas{x ∈ Ω : u (x) > 0} = |Ωp| > 0.

Proposition 3. Assume that

−γ < Fv

∫
Ω

a(x)ϕ1(x)dx,

then any solution u of (P∗) satisfies u+ 	≡ 0.

Proof. Arguing by contradiction (see [4]). �

We will use the following general result

Lemma 2. Let B ⊂ R2 and open ball of radius R centred at the origin and
assume â ∈ L∞ (B) be radially symmetric (i.e. â (x) = ã (|x|) a.e. x ∈ B).
Then, unique solution u ∈W 2,p (B), p ∈ [1,∞), to problem
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(PB)
{
−Δu = â in B

u = γ on ∂B

satisfies:

if
∫ R

0

(
1
r

∫ r

0

sã (s) ds
)
dr + γ = 0 then u (0) = 0,

if
∫ R

0

(
1
r

∫ r

0

sã (s) ds
)
dr + γ < 0 then u (0) < 0,

if
∫ R

0

(
1
r

∫ r

0

sã (s) ds
)
dr + γ > 0 then u (0) > 0.

Moreover, if
∫ r

0
sã (s) ds ≥ 0 ∀r ∈ (0, R] then u decreases along the radius

r = |x|.

Proof. The existence, regularity and uniqueness of u, solution of (PB) is a
well-known result (see for instance [1]). Moreover, u is a radial symmetric
function in B (i.e. , so, u (x) = ũ (|x|) x ∈ B) and is the unique solution to
ordinary differential equation

⎧⎨
⎩
−1
r

∂

∂r

(
r
∂

∂r
ũ

)
= ã (r) in 0 < r < R,

ũ (R) = γ ũ (0) = 0.

By integration, we obtain the exact solution for previous ordinary differential
equation

ũ (r) =
∫ R

0

(
1
r

∫ r

0

sã (s) ds
)
dr + γ r ∈ [0, R]

and from this and the fact that u (x) = ũ (|x|) x ∈ B, we prove the lemma. �

Proof (Theorem 1). Let x0 ∈ Ω such that d (x0, ∂Ω) ≥ Rp with Rp =√
−4γ

Fv essinfx∈Ω a and B0 := BRp (x0) = {x ∈ Ω : d(x, x0) < Rp}. Since (u, F )
is a solution of problem (P),

0 = −Δu (x) − a (x)F (u (x))− 1
2
(
F 2 (u (x))

)′ − b (x) p′ (u (x)) in Ω.

Now, by the properties of b, p′, we have that b (x) p′ (u (x)) ≥ 0 a.e. x ∈ Ω

and by estimates on
(
F 2 (u (x))

)′ and u (see Corollary 2) and the fact that
u has not flat region, we have that

0 ≤ −Δu (x)− aF (u (x)) + 2λ ‖b‖L∞(Ω) u+ (x) + η
1
|Ω|S in Ω.

Then
−Δu + f (x, u) ≥ 0 in B0 (11)
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where f : Ω × R → R
+ is defined by

f (x, τ) = −aF (τ) + 2λ ‖b‖L∞(Ω) τ+ + η
1
|Ω|S.

Notice that f (x, ·) is non–decreasing in τ since F is a non–increasing function.
So we can apply the comparison principle for quasi-linear problems (see e.g.
[6]). Now, we consider the solution u given in Lemma 2 with B = B0 =
BRp (x0) and â := Fv essinf

x∈Ω
a (x). So, u is verifies

(PB)

{
−Δu (x) = Fv essinf

x∈Ω
a (x) in B0,

u (x) = γ on ∂B0

and by property of Rp, u (x) < 0 for all x ∈ B0 \ {x0}. Notice that, by
integration, the exact solution u is given by

u (x) = γ + Fv

(
Rp − |x− x0|2

)
essinf
x∈Ω

a (x) for all x ∈ B0

and
u (x0) = γ + FvRp essinf

x∈Ω
a (x) = 0

from the definition of Rp. On the other hand

f (x, u) = −a (x)Fv + η
1
|Ω|S

≤ −Fv essinf
Ω

a + η
1
|Ω|S < 0 a.e. in B0 (12)

from the assumption of theorem. So, we get that

−Δu + f (x, u) < 0 ≤ −Δu+ f (x, u) in B0,

u (x) = γ ≤ u (x) on ∂Ω

form (11), (12) and the property u ≥ γ in Ω (see Lemma 1). By the compar-
ison principle, we conclude that

u ≥ u in B̄0 then u (x0) ≥ u (x0) = 0.

Since the solution u has not flat region, we can deduce that

u > 0 a.e. in {x ∈ Ω : d (x, ∂Ω) ≥ Rp}

and thus

{x ∈ Ω : d (x, ∂Ω) ≥ Rp} ⊂ Ωp := {x ∈ Ω : u (x) > 0}. �

Remark 4. Theorem 1 gives a sufficient condition on the size and the geometry
of Ω for the existence of free–boundary and, hence, for the size and geometry
of plasma region Ωp.
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Analogously, we prove an estimate for the vacuum region Ωv := {x ∈ Ω :
u (x) < 0}:

Proof (Theorem 2). Let ρ =
(

2S
K

)1/2
be the positive constant introduced in

Theorem 2 with K the bound obtained in Corollary 2. Then Rv := R̂ −(
2S
K

)1/2
. We take a point x1 ∈ Ω such that d (x, ∂Ω) = Rv and a point

x̄1 ∈ ∂Ω such that d (x1, ∂Ω) = d (x1, x̄1). Then x1 = x̄1 +Rvn and {x : x =
x̄1 + rn, 0 ≤ r ≤ R̂} ⊂ Ω̄. On this segment, (u, F ) satisfies the nonlinear
equation

−u′′ (r) = a (r)F (u (r)) +
1
2
(
F 2 (u (r))

)′
+ b (r) p′ (u (r))

for 0 < r < R̂ (here, for a given function h : Ω → R, we use the notation
h (r) := h (x̄1 + rn)). From Corollary 2, −u′′ (r) ≤ K. Moreover

u (0) = u (x̄1) = γ and u(R̂) = u(x̄1 + R̂n) ≤ ‖u+‖L∞(Ω) .

As in the proof of Theorem 1, we can to find a bound for the right hand side
and u verifies the equations

{
−u′′ (r) ≤ K in (0, R̂),

u (0) = γ, u(R̂) ≤ ‖u+‖L∞(Ω) ≤ S .

Notice that u ≥ γ and γ < 0, thus if u(R̂) ≤ 0 then u(R̂) ≤ ‖u+‖L∞(Ω); and
if u(R̂) > 0 then u(R̂) = u+(R̂) ≤ ‖u+‖L∞(Ω). Now, we consider the real
function v (r) := S − 1

2K(R̂− r)2 for r ∈ [0, R̂]. Then, by definition of v, on
has that v(R̂) = S, v (Rv) = S− 1

2K(R̂−Rv)2 = 0 and since v is increasing in
(0, R̂) then v (r) ≤ 0 in (0, Rv). One the other hand, v is the unique solution
to the linear boundary problem

(BP )
{
−v′′ (r) = K in (0, R̂),
v (0) = γ, v(R̂) = S.

Thus, u (r) ≤ v (r) in (0, R̂). Moreover, by construction v

v (Rv) = 0 > v (r) ≥ u (r) for any r ∈ [0, Rv).

In particular for all 0 < r < Rv, one has that u (x̄1 + rn) < 0 and then the
segment {x = x̄1 + rn, 0 < r < Rv} ⊂ Ωv = {x ∈ Ω : u (x) < 0}. Thus
{x ∈ Ω : d (x, ∂Ω) ≤ R̂− ρ} ⊂ Ωv = {x ∈ Ω : u (x) < 0}. �

Remark 5. It is known that if Ω is a disk, then the level sets of u are concentric
circles. From the last two theorems we can deduce how is the shape of free–
boundary for a more general domain Ω. In Theorem 2 we have assumed that
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0 <

(
2S
K

)1/2

< R̂ ≤ Rp +
(

2S
K

)1/2

.

If we choose R̂ = Rp +
(

2S
K

)1/2
, then Rv = R̂ −

(
2S
K

)1/2
= Rp (Rp is the

constant given in Theorem 1). Since Ω = {x ∈ Ω : d (x, ∂Ω) ≤ Rp}∪{x ∈ Ω:
d (x, ∂Ω) ≥ Rp} = Ωp ∪ Ωv and from Theorem 1 and Theorem 2 we have
that {x ∈ Ω : d (x, ∂Ω) ≤ Rp} ⊂ Ωp, {x ∈ Ω:d (x, ∂Ω) ≥ Rp} ⊂ Ωv we can
obtain exactly the free–boundary

∂Ωp = {x : u (x) = 0} = {x : d (x, ∂Ω) = Rp}.

The hypothesis of Theorem 1 and Theorem 2 about Ω, that is, Ω be an open
bounded regular (with C1 boundary ∂Ω) subset of R

2 and such that

∃ x0 ∈ Ω verifying Rp :=

⎛
⎝ −4γ
Fv essinf

x∈Ω
a (x)

⎞
⎠

1
2

< d (x, ∂Ω)

defines a type of domains Ω more general that a disk for which we can obtain
the shape of free–boundary for the solution of problem (P).
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Summary. In this paper we present a new power index for spatial games. We
study some of its properties and indicate its advantages in comparison with
the other existing indexes. Finally we illustrate our results with an example
taken from a Spanish regional Parliament.

1 Introduction

One interesting application of cooperative game theory is its use in the anal-
ysis of voting institutions. In a voting institution a finite group of agents N
makes decisions by voting. The decisions considered here are of the kind “we
take a particular action” or “we do not take the action.” A voting institution
is characterized when we give N and the class of subsets of N which have
enough power to win a voting, i.e. the class of winning coalitions. This is
what we call a simple game.

Spatial games are a more sophisticated model which incorporates ideo-
logical considerations to voting institutions. A spatial game is a simple game
together with a collection of points, one for each voter, whose coordinates de-
scribe the ideological positions of the voters with respect to certain selected
variables. The voters vote for taking or not actions which might also be lo-
cated in the ideological space. A winning coalition can enforce any decision
on which its members agree. Moreover, we assume that the closer an action
is to the ideological position of a voter the more likely is that the voter votes
for it.

The problem we tackle in this paper is the following: we would like to define
an index which measures the power of each voter in one of these spatial games,
if we mean by power a voter’s capacity for influencing the group decisions.
This problem has already been treated in [3], [5] and [4]. In those papers
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two indexes for spatial games are proposed, both being modifications of the
Shapley-Shubik index, originally introduced for simple games (see [6]).

The organization of the paper is as follows. In Section 2 we formally intro-
duce spatial games and two power indexes for them. In Section 3 we propose
a new power index and study some of its properties. Finally, in Section 4 we
apply this index to analyse a real Parliament: the Parliament which ruled
Catalonia (a Spanish region) in the period 2003-2006.

2 Spatial Games

We start this section giving the definition of a simple game, a mathematical
model which formalizes voting institutions. N denotes the finite set of players
{1, 2, . . . , n}. Any subset S ⊆ N is said to be a coalition. A winning coalition
is a subset of N which has the power to enforce a decision when it has been
unanimously adopted by its members.

Definition 1. A simple game (N,W) consists of a finite set of players N

and a family of winning coalitions W, which is a collection of subsets of N
with the following properties:

• ∅ /∈ W,
• N ∈ W,
• if S ∈ W and S ⊂ T , then T ∈ W (monotonicity).

A minimal winning coalition of (N,W) is a winning coalition which does
not contain any other winning coalition as a proper subset, i.e., S ⊆ N is
a minimal winning coalition if S ∈ W and T 	∈ W for every T ⊂ S. The
set of minimal winning coalitions is denoted by Wm. By the monotonicity
property, it is clear that a simple game is characterized if we give its set of
minimal winning coalitions.

A power index is a function g which assigns to each simple game (N,W)
a vector g(N,W) ∈ R

N where each component gi(N,W) provides a measure
of the power of player i in the simple game (N,W).

The most well-known power index is the Shapley-Shubik index, introduced
in [6]. It is the restriction of the Shapley value, defined for a wider class
of cooperative games, to the class of simple games (see, for instance, [2]
for details on the Shapley value). The Shapley-Shubik index can be easily
introduced using the notion of pivot, that we define below.

Definition 2. Let (N,W) be a simple game and let π be a permutation of
N. For every i ∈ N , let S (i, π) be the set of players that precede i in the
order defined by π. Then, i is the pivot of π if and only if S (i, π) /∈ W, while
S (i, π)∪{i} ∈ W. Notice that the properties in the definition of simple game
imply that each permutation π has a unique pivot. We denote by Πi(N,W)
the set of permutations of N for which i is the pivot in (N,W).
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Definition 3. The Shapley-Shubik index provides for every simple game
(N,W) the vector g(N,W) such that, for each i ∈ N ,

gi(N,W) =
|Πi(N,W)|

n!
,

where |Πi(N,W)| denotes the cardinal of the set Πi(N,W).

Notice that the Shapley-Shubik index of a simple game can be interpreted
as the vector assigning to each player the probability that this player is
a pivot, assuming that all permutations of N are equally probable. This
assumption is quite reasonable when dealing with simple games, where only
the set of winning coalitions is known. However, it is not so reasonable when
dealing with more sophisticated models. One of those models are spatial
games, introduced in [3]. A spatial game is a simple game together with
a collection of points, one for each player, whose coordinates describe the
ideological positions of the players with respect to certain selected variables.

Definition 4. An m-dimensional spatial game is a triplet (N,W , {Qj}j∈N )
such that:

• (N,W) is a simple game, and
• Qj ∈ R

m for all j ∈ N . Qj is said to be j’s ideal point and represents j’s
ideological position in the ideological space R

m. We assume that Qj 	= Qk

for all different j, k ∈ N .

In spatial games the players vote for taking or not actions which can be
located in the ideological space. It is reasonable to assume that the closer an
action is to the ideological position of a player the more likely that the player
votes for it. In this paper we define an index which measures the power of each
voter in one of these spatial games, if we mean by power a voter’s capacity
for influencing the group decisions. Moreover, our index is a modification of
the Shapley-Shubik index for spatial games.

There exist two other modifications of the Shapley-Shubik index for spatial
games. All such modifications are based on the same idea: when the ideolog-
ical positions of the players are added to a simple game, the assumption that
all permutations are equally probable is not reasonable any more.

2.1 The Owen Index

The first modification is the Owen index introduced in [3]. The Owen index
is defined as follows. Take a spatial game (N,W , {Qj}j∈N ). Now consider the
sphere S with the lowest dimension which contains all the ideal points of the
players. If we choose a point z ∈ S, the distances between z and the ideal
points of the players can be computed. Then z determines a permutation of
N : the one which gives rise to the order of increasing distances from the ideal
points {Qj}j∈N to z (notice that the set of all points of the sphere which
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produce ties in the collection of distances has measure zero). Now, for each
i ∈ N , define Ai as the set of points z ∈ S such that i is the pivot in the
permutation determined by z. The Owen index is defined as follows.

Definition 5. The Owen index provides for every spatial game
(N,W , {Qj}j∈N ) the vector fO(N,W , {Qj}j∈N ) such that, for each
i ∈ N ,

fO
i (N,W , {Qj}j∈N ) =

λ(Ai)
λ(S)

,

where λ denotes the Lebesgue measure.

A fundamental drawback of the Owen index is that its computation can be
extremely hard even for small problems. Hence, Shapley proposed another
index for spatial games in [5], which was further analysed by Owen and
Shapley in [4]. We call it the Owen-Shapley index.

2.2 The Owen-Shapley Index

In order to define the Owen-Shapley index take an m-dimensional spatial
game (N,W , {Qj}j∈N ). The unit sphere in R

m is the set S
1
m = {u ∈

R
m |

∑m
i=1 u

2
i = 1}. Now, every u ∈ S

1
m determines the permutation of

N which gives rise to the following order: given i, j ∈ N , i precedes j if and
only if

∑m
k=1 ukQ

i
k <

∑m
k=1 ukQ

j
k (notice that

∑m
k=1 ukQ

i
k is the scalar prod-

uct of the vectors u and Qi). Owen and Shapley proved that the set of points
in S

1
m which produce ties when comparing these scalar products has measure

zero. Now, for each i ∈ N , define Bi as the set of vectors u ∈ S
1
m such that

i is the pivot in the permutation determined by u. The Owen-Shapley index
is defined as follows.

Definition 6. The Owen-Shapley index provides for every m-dimensional
spatial game (N,W , {Qj}j∈N ) the vector fOS(N,W , {Qj}j∈N ) such that, for
each i ∈ N ,

fOS
i (N,W , {Qj}j∈N ) =

λ(Bi)
λ(S1

m)
,

where λ denotes the Lebesgue measure.

The computation of the Owen-Shapley index is also quite hard, but it is fea-
sible if the dimensions of the problem are small. We provide now an example.

Example 1. In this example we illustrate the computation of the Owen-Shapley
index in the following two-dimensional spatial game. The simple game
is given by N = {1, 2, 3, 4} and Wm = {{1, 4}, {2, 4}, {3, 4}, {1, 2, 3}}. The
ideal points of the players are displayed in Figure 1. Take for instance the vector
u = ( 1√

5
, 2√

5
) ∈ S

1
2. The permutation determined by u is π(1) = 1, π(2) = 3,

π(3) = 4, π(4) = 2. After some algebra, it can be obtained that the realization
of the Owen-Shapley index in this game is (0, 0.1982, 0.3137, 0.4881).
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Q1

Q2

Q3

Q4
u =

(
1√
5
, 2√

5

)

Fig. 1. Order determined by the vector u

3 A New Power Index for Spatial Games

In this section we propose a new variation of the Shapley-Shubik index for
spatial games. In our variation, all permutations are possible and the prob-
ability of each permutation depends on the distance among the ideal points
of the players taking into account the induced order. This new index that we
call distance index have good computational properties and other advantages
with respect to the two existing indexes presented before. Let us formally
introduce the distance index.

To start with we give a notion which is in the basis of our index:
the length of a permutation. Let (N,W , {Qj}j∈N ) be an m-dimensional
spatial game. Given a permutation π : N → N of the set of play-
ers, we consider the derived polygonal given by the sequence of segments
[Qπ(1), Qπ(2)], [Qπ(2), Qπ(3)], . . . , [Qπ(n−1), Qπ(n)]. The length of π is the sum
of the lengths of these segments. The formal definition is given below.

Definition 7. Let (N,W , {Qj}j∈N ) be an m-dimensional spatial game and
let π be a permutation of N . The length of π is defined as

l(π) =
n−1∑
i=1

√√√√ m∑
j=1

(Qπ(i)
j −Q

π(i+1)
j )2.

The length of a permutation can be seen as a measure of its internal
instability. The more lengthy a permutation is, the less likely that it
describes a cooperation route. The distance index is a modification of
the Shapley-Shubik index for spatial games which considers that each
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permutation has a probability inversely proportional to its length. Remember
that Πi(N,W) denotes the set of permutations of N for which i is the pivot
in (N,W). Denote by Π(N) the set of all permutations of N .

Definition 8. The distance index provides for every m-dimensional spatial
game (N,W , {Qj}j∈N ) the vector fD(N,W , {Qj}j∈N ) such that, for each
i ∈ N ,

fD
i (N,W , {Qj}j∈N ) =

∑
π∈Πi(N,W)

1
l(π)∑

π∈Π(N)
1

l(π)

.

Example 2. We compute the distance index for the spatial game given in
Example 1. Figure 2 displays the segments needed for the computation of
l(π) for permutation π(i) = i, for all i ∈ N . After some algebra, it can be ob-
tained that the realization of the distance index in this game is (0.1507, 0.1718,
0.1765, 0.5010).

Let us see now a couple of properties of the distance index. The first one has
to do with the so-called null players. A null player of a simple game (N,W)
is an i ∈ N such that i 	∈ S for all S ∈ Wm; so, a null player is one which is
not necessary for the formation of a winning coalition. Intuitively, it is clear
that a null player has no power in the voting institution described by the
simple game. On the contrary, every player which is not null has some power
in that voting institution. If we add a set of ideal points to the simple game,
null players still have no power, and the other players still have some power
(maybe modified by the new elements of the model). These intuitive consid-
erations are well reflected by the distance index as the following proposition
shows.

Q1

Q2

Q3

Q4

Fig. 2. Length of π
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Proposition 1. Let (N,W , {Qj}j∈N ) be an m-dimensional spatial game and
take i ∈ N . Then fD

i (N,W , {Qj}j∈N ) = 0 if and only if i is a null player of
(N,W).

Proof. fD
i (N,W , {Qj}j∈N ) = 0 if and only if Πi(N,W) is an empty set, and

Πi(N,W) is an empty set if and only if i is a null player of (N,W).

Notice that the Owen-Shapley index does not satisfy the property in Propo-
sition 1 as Example 1 shows. In that example, player 1 is not a null player
but it has power zero according to the Owen-Shapley index. The interest of
this property will emerge again in the example discussed in Section 4.

The second property has to do with symmetry taking into account the
spatial features of the model. First we introduce some notation. Let (N,W ,

{Qj}j∈N ) be an m-dimensional spatial game and take i ∈ N . We build now
the partition of Πi(N,W) given by the lengths of its elements:

• Π0
i (N,W) = ∅.

• For every integer r ≥ 1 with Πi(N,W) \ ∪r−1
k=0Π

k
i (N,W) 	= ∅, define

Πr
i (N,W) recursively as the following set:

{π ∈ Πi(N,W)\∪r−1
k=0Π

k
i (N,W) | l(π) ≤ l(π̃) ∀π̃ ∈ Πi(N,W)\∪r−1

k=0Π
k
i (N,W)}.

It is clear that there exists ri ∈ N such that Πi(N,W) = ∪ri
r=1Π

r
i (N,W). The

set Π1
i (N,W) contains all the permutations with the smallest length among

those for which i is the pivot, and Πri

i (N,W) contains all permutations with
the largest length among those for which i is the pivot. For each i ∈ N and
each r ∈ {1, . . . , ri}, π, π̃ ∈ Πr

i (N,W) if and only if l(π) = l(π̃). Next we give
the notion of spatially symmetric players in a spatial game and illustrate this
definition with an example.

Definition 9. Let (N,W ,
{
Qj}j∈N

)
be an m-dimensional spatial game and

take i, k ∈ N . We say that i and k are spatially symmetric players if and
only if ri = rk and, moreover, for every r ∈ {1, . . . , ri} it holds that:

• |Πr
i (N,W)| = |Πr

k(N,W)|, and
• l(π) = l(π̃) for every π ∈ Πr

i (N,W) and π̃ ∈ Πr
k(N,W).

Example 3. Let (N,W , {Qi}i∈N ) be a two-dimensional spatial game where N
is the set {1, 2, 3, 4, 5}, the collection of minimal winning coalitions is

Wm = {{1, 2}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}},

and the ideal points are those displayed in Figure 3. It is not difficult to
check that 1 and 2 are spatially symmetric. It can also be seen that, even
though players 3 and 5 satisfy that |Π3(N,W)| = |Π5(N,W)|, they are not
spatially symmetric. To verify that 3 and 5 are not spatially symmetric take
for instance the permutation π̃ given by π̃(1) = 3, π̃(2) = 2, π̃(3) = 5, π̃(4) =
4, and π̃(5) = 1. Clearly π̃ ∈ Π5(N,W); however there is no π ∈ Π3(N,W)
such that l(π) = l(π̃).
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Q1 Q2

Q3Q4

Q5

Fig. 3. Ideal points of the spatial game in Example 3

Clearly, spatially symmetric players in a spatial game are in some sense
interchangeable and have the same power. Thus a sensible power index for
spatial games should treat spatially symmetric players accordingly. The dis-
tance index does have this property as the following proposition shows.

Proposition 2. Let (N,W , {Qj}j∈N ) be an m-dimensional spatial game with
a pair of spatially symmetric players i, k ∈ N . Then

fD
i (N,W , {Qj}j∈N ) = fD

k (N,W , {Qj}j∈N ).

Proof. For each r ∈ {1, . . . , ri}, take πr ∈ Πr
i (N,W) and π̃r ∈ Πr

k(N,W).
Then,

fD
i (N,W, {Qj}j∈N ) =

∑ri
r=1

|Πr
i (N,W)|
l(πr)∑

π∈Π(N)
1

l(π)

=

∑ri
r=1

|Πr
k(N,W)|
l(π̃r)∑

π∈Π(N)
1

l(π)

= fD
k (N,W, {Qj}j∈N ).

The distance index satisfies the two properties above but there are other
power indexes for spatial games satisfying them. An open and interesting
question for future research is to find a collection of properties (including the
two treated in this paper) which characterize the distance value.

4 An Example

In this section we illustrate with an example the behaviour of the distance
index and we compare it with the Owen-Shapley index.

The example deals with the Catalonia Parliament resulting after the elec-
tions held on November 16, 2003, Catalonia being one of the seventeen Span-
ish regions. This Parliament has also been analysed in other papers, like
for instance in [1]. The parties that obtained some of the 135 seats of the
Parliament in those elections were:
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CiU Catalan nationalist middle-of-the-road federation of two parties; 46
seats.

PSC Moderate left-wing socialist party. It is a Catalan party federated to
the Spanish socialist party; 42 seats.

ERC Catalan nationalist left-wing party; 23 seats.
PPC Moderate right-wing party. It is the Catalan delegation of the main

Spanish right-wing party; 15 seats.
ICV Coalition of Catalan left-wing parties (federated to a Spanish left-

wing federation) and Catalan ecological groups; 9 seats.

The analysis performed in [1] does not use spatial indexes. However, the au-
thors implicitly build a spatial game. They write that “in Catalonia, politics is
based on two main axes: the classical left-to-right axis and a cross one going
from Spanish centralism to Catalanism (Catalan nationalism).” Moreover,
they give the coordinates of the five parties above in this two-dimensional
ideological space. We display those coordinates in Figure 4. Spatial Game 1
(in short SG1) is the spatial game given by the simple game associated to the
Catalan Parliament (when a coalition is winning if it has 68 or more seats)
plus the collection of points in Figure 4.

RightLeft

Catalanism

Centralism

CiU

PSC

ERC

ICV

PPC

Fig. 4. Positions of the parties at the beginning of the Legislature

The coordinates in [1] are possibly appropriate to describe the ideological
position of the parties in 2003, at the beginning of the Legislature 2003-2006
(prematurely finished). However, at its end, PSC and ICV had moved in the
centralism-Catalanism axis in the direction of Catalanism. Thus, the coor-
dinates in Figure 5 seem to be more appropriate to describe the ideological
positions of the parties in 2005 and 2006. Spatial Game 2 (in short SG2) is the
spatial game given by the simple game associated to the Catalan Parliament
plus the collection of points in Figure 5.
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RightLeft

Catalanism

Centralism

CiU

PSC

ERC

ICV

PPC

Fig. 5. Positions of the parties at the end of the Legislature

Now we compute the Owen-Shapley index and the distance index for the
spatial games SG1 and SG2. The results are displayed in Table 1.

Table 1. Spatial Indexes for SG1 and SG2

Parties
SG1

Owen-Shapley
SG1

Distance
SG2

Owen-Shapley
SG2

Distance

CiU 0.4304 0.4017 0.3280 0.3943
PSC 0.2246 0.2249 0.3280 0.2348
ERC 0.3450 0.2502 0.3440 0.2442
PPC 0 0.0580 0 0.0578
ICV 0 0.0652 0 0.0688

Now let us make some comments on the results in Table 1. First a minor
comment: although CiU and PSC appear to have the same power in SG2
according to the Owen-Shapley index, it must be noted that this is a rounding
effect. In fact, the power of CiU is slightly larger according to this index.

Observe that PPC and ICV have no power according to the Owen-Shapley
index. It is clear that, because of their number of seats and of their ideological
positions, their influence is not large; but they do have some influence. In
fact ICV was represented in the Government of Catalonia in that period.
This feature is better reflected by the distance index, which gives small but
non-zero power to both parties.

It is interesting to notice that, according to the distance index, the two
parties which moved their positions throughout the Legislature 2003-2006,
PSC and ICV, increased their power. This effect is not perceived by the
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Owen-Shapley index, since it considers that PPC and ICV have no power
in both scenarios. An especially relevant application of the spatial indexes is
that they can help a party to find positions in the ideological space that, while
being compatible with its most important ideological characteristics, enforce
its influence and power. This example suggests that the distance index is
more sensitive and, then, more useful in this respect.
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Summary. Since there is no supranational institution which can enforce
International Environmental Agreements (IEAs), international cooperation
proves difficult in practice. Global emissions exhibit negative externalities in
countries other than their country of origin and hence there is a high interde-
pendence between countries and strategic considerations play an important
role. Game Theory analyzes the interaction between agents and formulates
hypotheses about their behavior and the final outcomes in games. Hence,
international environmental problems are particularly suited for analysis by
this method. The purpose of this chapter is to present an introduction to the
main aspects of the formation and stability of IEAs using Game Theory.

1 Introduction

When we study the interlinkages between the economy and the environment,
we see that environmental resources provide four functions: first, the pro-
duction sector extracts energy resources (such as oil) and material resources
(such as copper) from the environment and these are transformed into out-
puts, second, the environment is a sink or receptacle for waste products ob-
tained directly from production or from consumption, third, the environment
acts as a supplier of amenities which are “consumed” directly by individuals
in the form of clean air, water for household uses or recreational services in
natural areas, and fourth, the environment provides global life-support ser-
vices such as maintenance of an atmospheric composition suitable for life,
maintenance of temperature and climate or recycling of water and nutrients.

Along with other economic goods and services, environmental resources
contribute positively or negatively, directly or indirectly to individual well-
being. The environmental functions, and therefore the assets which provide
them, are in fact also economic goods or services because in modern society
they are not free; their provision, maintenance and conservation entails the
sacrifice of other goods or services. They are distinguished, however, from
conventional economic goods and services in that their use does not always
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involve market transactions. Consequently, explicit market-determined valu-
ation, that is prices, usually does not exist for them. That is why they are
often referred to as “non-market” goods (Shechter [17]).

Economic agents through consumption or production impose external costs
on society in the form of air, soil and water pollution, landscape degradation,
health risks and loss of biodiversity. An important reason for the absence
of prices for environmental commodities is that they are typically public
goods. A pure public good has the following two properties: non-rivalry (con-
sumption of the public good by one consumer does not reduce the quantity
available for consumption by any other) and non-excludability (if the pub-
lic good is supplied no consumer can be excluded from consuming it). This
means that once an environmental good, for example clean air, is provided,
consumption by one economic agent does not interfere with another agent’s
consumption, that is, the additional costs of another economic agent con-
suming the environmental good is zero. Moreover, if clean air is provided,
no consumer can be excluded from consuming that good. Most public goods
eventually suffer from congestion when too many consumers try to use them
simultaneously. For example, parks and roads are public goods that can be-
come congested. The effect of congestion is to reduce the benefit the public
good yields to each user. Public goods that are excludable, but at a cost, or
suffer from congestion beyond some level of use are called impure.

Public goods do not conform to the assumptions required for a compet-
itive economy to be efficient. Their characteristics of non-rivalry and non-
excludability lead to the wrong incentives for consumers. Since they can share
in consumption, each consumer has an incentive to rely on others to make
purchases of the public good. This reliance on others to purchase is called
free-riding, and it is this that leads to inefficiency. Efficiency in consumption
for private goods is guaranteed by each consumer equating their marginal
rate of substitution to the price ratio. The strategic interaction inherent with
public goods does not ensure such equality. The efficient condition in the
case of public goods involves the sum of marginal rates of substitution and
is termed the Samuelson rule (Hindriks and Myles [12]).

The government assumes a role in the provision of environmental com-
modities by means of environmental protection. A wide array of the so-called
“policy instruments” have been designed to implement and enforce environ-
mental policies, including command and control regulations, environmental
taxes, subsidies, marketable pollution permits, deposit-refund systems, bond-
ing systems, liability systems or voluntary agreements. In the absence of
markets the government decides about the optimal level of provision of en-
vironmental protection on the basis of cost-benefit analysis. At first sight
this framework of domestic environmental policy is also applicable to envi-
ronmental problems that occur internationally. However, in the case of an
international environmental problem, the impacts of the externality are not
confined to the country of origin. The absence of an international institu-
tion or government with the jurisdiction to enforce environmental policy
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internationally means that the only way to tackle an international environ-
mental problem such as ozone layer depletion, climate change or acid rain is
through self-enforcing International Environmental Agreements (IEA). This
requires that countries which harm the environment as a consequence of pur-
suing their self-interest should be given enough incentives to make it beneficial
for them to join an agreement by outweighing the possible increased costs of
complying with it.

Game Theory has been a fundamental tool in the design and study of
IEAs since the pioneering papers by Tulkens [18] and fundamentally Mäler
[15]. The purpose of this chapter is to present an introduction to the main
aspects of the formation and stability of IEAs using Game Theory.

2 International Environmental Agreements

In accordance with Folmer and De Zeeuw [10], we start this section by consid-
ering the three most important reasons for countries involved in an interna-
tional environmental problem to cooperate, that is, to conclude an agreement
with respect to an overall emissions reduction programme including an abate-
ment specification per country: 1) Effectiveness. Unilateral actions or actions
by a small proportion of the countries involved in an international environ-
mental problem are usually futile. 2) Efficiency. In many instances there are
substantial differences in abatement costs among the various countries. Effi-
ciency requires that abatement takes place where the least-cost option exists.
3) Welfare. The foregoing implies that cooperation leads to higher welfare
or total net benefits for all countries involved together in comparison with
the non-cooperation outcome. An individual country’s welfare, however, may
suffer from cooperation.

As there is no international institution or government that can establish
binding agreements, cooperation faces three fundamental constraints (Finus
[8]): 1) IEAs have to be profitable for all potential participants. Profitability
implies that countries must find it beneficial to participate in the IEA. A
country must have a higher welfare from being a signatory country than a
non-signatory one. 2) The countries must agree on the particular design of an
IEA by consensus. Critical issues are the level of abatement, the allocation
of abatement burdens, and the level, kind, as well as the net donors and
recipients of compensation payments. Generally, it seems relatively easy for
countries to agree on “framework conventions”, which are mainly declarations
of intentions, but far more difficult to agree on “protocols” with explicit and
serious emission reductions. 3) IEAs must be self-enforcing. No country can
be forced to sign an IEA, and signatories to an IEA can always withdraw
from the agreement. Two types of free-riding can be distinguished: the first
type implies that a country is either not a member of an IEA or is a member
of an agreement that contributes less to the improvement of environmental
quality than members of other agreements. The second type of free-riding
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implies that a country is a member of an IEA but does not comply with the
terms of the agreement.

In Barrett [2] information on more than 300 international environmental
treaties is provided (from the International Convention for the Prevention
of Pollution of the sea by oil, adopted in 1954, to the Persistent Organic
Pollutants Treaty, adopted in 2000) and a number of case studies is analysed
in detail. The essential lesson of that book is that treaties should not just tell
countries what to do . Treaties must make it in the interest of countries to
behave differently. That is, they must restructure the underlying game. Most
importantly, they must create incentives for states to participate in a treaty
and for parties to comply.

In the process of treaty-making the following five stages can be distin-
guished: pre-negotiation, negotiation, ratification, implementation and
renegotiation.

3 Game Theory

Game Theory provides general mathematical techniques for analyzing si-
tuations in which two or more individuals (or groups of individuals) make
decisions that will influence one another’s welfare. An important objective of
Game Theory consists of, given whatever game, to deduce through analysis
which are the reasonable ways of playing and, as a consequence, to predict
the results of the game.

Game Theory was born officially in 1944, with the book Theory of Games
and Economic Behaviour, by John von Neumann (a mathematician) and Os-
kar Morgenstern (an economist). In 1994 Nash, Selten and Harsanyi received
the Nobel Prize in Economics, which can be considered as a recognition of the
importance of Game Theory in Economics. In 2005 Aumann and Schelling,
other important specialists in Game Theory, also received the Nobel Prize
in Economics. Also, Vickrey in 1996 (with Mirlees), Akerlof in 2001 (with
Spence and Stiglitz) and Maskin and Myerson in 2007 (with Hurwicz), all
with important contributions to Game Theory, received the Nobel Prize in
Economics. Nowadays it is a fundamental tool in Economic Analysis. For
example, in whatever advanced book of Microeconomics some chapters on
Game Theory are found. A lot of different research problems appearing in
Economics are studied and analysed using Game Theory.

As Finus [9] writes, since the early papers by Hoel [13], Chander and
Tulkens [6], Carraro and Siniscalco [3] and Barrett [1], there is a sharply
increasing number of publications that analyze the formation and stability
of IEAs using Game Theory. This is not surprising for at least two reasons.
Firstly, Game Theory is a mathematical method that studies the interac-
tion between agents based on behavioral assumptions about the preference
of agents and makes prediction about the outcome of these interactions by
applying various equilibrium concepts. Thus, Game Theory seems to be an
ideal tool to study IEAs as they provide a public good with transboundary
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externalities from which nobody can be excluded. Secondly, environmental
problems with an international dimension become more and more threaten-
ing and receive an increasing coverage in politics, the media and the public.
However, despite good intentions and many public statements by politicians,
progress is often slow: free-riding is still the most important obstacle for
successful IEAs. In order to mitigate free-riding, it is important to bear in
mind the strategic considerations of the actors causing transboundary envi-
ronmental externalities for which Game Theory is an ideal method. In that
interesting paper, Finus also analyses and comments on some critiques about
game theoretic analysis of these problems.

4 International Environmental Problems and Game
Theory

In this section we will present the basic framework, some simple illustrations
and how the basic framework can be extended using issue linkage (another
important extension of the basic framework is through side payments). Some
general books on Environmental Economics such as Kolstad [14], Perman,
Ma, McGilvray and Common [16] or Hanley, Shogren and White [11] contain
some introduction about this topic. Finus [7] is a specialized book.

4.1 Basic Framework

Consider N countries denoted by subscripts i = 1, 2, . . . , N. Let ei be the
emissions of country i. Since production and consumption are not possible
without emissions, let us consider a gross benefit function, for country i,
defined as

Bi = Bi(ei), i = 1, 2, . . . , N. (1)

Country i benefits from its own emissions ei. It is usually assumed that
benefits increase (B′

i > 0) at a decreasing rate (B′′
i ≤ 0). Emissions can be

viewed as an input in the production and consumption of goods.
Pollution also causes damage in the form of environmental degradation.

Country i suffers damages from its own (ei) and foreign (ej , j 	= i) emissions.
The transportation coefficient Tij , 0 ≤ Tij ≤ 1, indicates the proportion of
pollution generated in country j, which is deposited in country i. For local
pollutants, Tii = 1 and Tij = Tji = 0, for j 	= i. For global pollutants, such
as greenhouse gases, Tij = 1, ∀i, j. Let us define the damage function, for
country i, defined as

Di = Di

⎛
⎝ N∑

j=1

Tijej

⎞
⎠ , i = 1, 2, . . . , N. (2)
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It is usually assumed that damages increase in depositions (D′
i > 0) at an

increasing rate (D′′
i ≥ 0).

Combining 1 and 2 gives the net benefit function, defined as

Wi = Bi(ei)−Di

⎛
⎝ N∑

j=1

Tijej

⎞
⎠ , i = 1, 2, . . . , N. (3)

Now we consider three approaches that countries can adopt with respect to an
international environmental problem: the market, non-cooperative and fully
cooperative approach.

Under the market approach, the gross benefit function (or the net ben-
efit function, ignoring the damage component) is maximized. Therefore a
total absence of pollution regulation in each country is assumed. That is, for
country i,the market outcome is given by

max
ei

Bi(ei), i = 1, 2, . . . , N. (4)

The optimal solution has to satisfy the first order conditions

B′
i(ei) = 0, i = 1, 2, . . . , N. (5)

Let eM
i the optimal level of emissions of country i under the market approach.

The market approach is quite rare in industrialized countries nowadays
because of the growing environmental concern.

In the non-cooperative approach each of the N countries pursues its
own interest, that is each country i = 1, 2, . . . , N, solves the following
problem

max
ei

Wi = Bi(ei)−Di

⎛
⎝ N∑

j=1

Tijej

⎞
⎠ , taking ej , ∀j 	= i as given (6)

The optimal solution of this problem has to satisfy the first order conditions

B′
i(ei) = TiiD

′
i

⎛
⎝ N∑

j=1

Tijej

⎞
⎠ , taking ej , ∀j 	= i as given, i = 1, 2, . . . , N.

(7)
In this approach, country i will continue increasing its pollution as long as
the benefits of each additional unit of pollution exceed the damage to coun-
try i itself. The optimal level of emissions eNC

i , under the non-cooperative
approach, given the emissions of the other countries, is determined by the
equality between the marginal benefits and marginal damage in the home
country.
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In the case of fully cooperative approach, country i not only takes its
own benefits and damages into account but also the damages of its emissions
in other countries. Therefore the corresponding problem of country i (for
i = 1, 2, . . . , N) is

max
ei

Ui = Bi(ei)−
N∑

k=1

Dk

⎛
⎝ N∑

j=1

Tkjej

⎞
⎠ , taking ej , ∀j 	= i as given. (8)

The first order conditions for optimality are, in this case

B′
i(ei) =

N∑
k=1

TkiD
′
k

⎛
⎝ N∑

j=1

Tkjej

⎞
⎠ , taking ej , ∀j 	= i as given, i = 1, 2, . . . , N.

(9)
Let eFC

i be the optimal level of emissions of country i, under the fully coop-
erative approach, given the emissions of the other countries.

A comparison of 5, 7 and 9 shows that under the market approach there
are no restrictions on emissions whereas under the non-cooperative approach
emissions in the home country are restricted by the damage they cause in the
country itself, and under the fully cooperative approach they are even further
restricted because the damages in other countries are taken into account as
well. In Figure 1 the result is illustrated for the case in which both marginal
benefit and cost functions are linear.

In Figure 1, the amount of emissions of country i is represented on the
horizontal axis, while marginal benefits (MB) and marginal costs (MC) of
pollution are represented on the vertical axis. Since the marginal costs curve

EmissionsM
ie

N
ie

C
ie

MB
MC

MB

MCN

MCC

Fig. 1. The market, non-cooperative and fully cooperative outcome
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under the full cooperative approach comprises both the marginal costs in the
home country and those in other countries, MCFC coincides with or lies
above MCNC . It follows that emissions under the fully cooperative approach
(eFC

i ) are equal to or lower than emissions under the non-cooperative ap-
proach (eNC

i ). Emissions under the market outcome are equal to or exceed
emissions under the non-cooperative approach (Folmer and De Zeeuw [10]).

The simultaneous solution of the N first order conditions in 7 delivers the
non-cooperative Nash equilibrium emission vector

eNC = (eNC
1 , eNC

2 , . . . , eNC
N ). (10)

Since this equilibrium implies that countries form singleton coalitions, it is
usually assumed that it represents the status quo before an IEA is adopted.
If all the countries were to pursue the common interest, that is, in the full
cooperative approach, they would maximize the aggregate payoff over all
countries. Then the mathematical problem would be

max
e1,...,eN

N∑
k=1

Wk, (11)

then the first order corresponds to 9 and the simultaneous solution of that
N first-order conditions delivers the full cooperative (also called globally or
socially optimal) emission vector eFC = (eFC

1 , eFC
2 , . . . , eFC

N ). This may be
interpreted as if all countries form a grand coallition and jointly maximize
the aggregate welfare of their coalition. Since eFC 	= eNC as long as there is
some transboundary pollution (Tij 	= 0, for some i 	= j), global welfare could

be raised through cooperation, that is,
N∑

i=1

Wi(eNC) <
N∑

i=1

Wi(eFC) (Finus

[8]).
The main impediments to the fully cooperative approach are the following:

1) The fully cooperative approach may imply net welfare gains for some
countries and at the same time, net welfare losses for others. Those countries
that incur negative benefits would have an incentive not to cooperate or to
default from a concluded agreement. 2) Even if the net benefits of cooperation
are positive , a country has an incentive to free-ride. The reason is that by
staying out of an agreement or by defaulting from a concluded one it may be
possible for a country to reap virtually the same benefits of pollution control
as by joining it, without incurring abatement costs. Hence it will be better
off because the net benefits will be larger than when it cooperates fully. Free-
riding is an especially attractive option in the case of global environmental
problems because under these circumstances each country’s contribution is a
relatively small proportion of total pollution. This implies that each country’s
loss of environmental quality is small or even negligible (Folmer and De Zeeuw
[10]).

An equivalent way to tackle the problem consists of taking abatements
(from the optimal market level of emissions) instead of emissions as
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strategies. Then the payoff function for a country i is represented as net
benefits from abatement, that is benefits from abatements minus abatement
costs. Benefits from emissions reduction (or abatement) are a function of
the overall level of abatement of the N countries because of the public good
nature of the problem. Abatement costs only affects country i. The payoff
function of country i is then

πi = bi

⎛
⎝ N∑

j=1

σijqj

⎞
⎠− ci(qi), i = 1, . . . , n (12)

where qi is the abatement level of country i, and σij is the part of the abate-
ment of country j that benefits i.

4.2 Some Simple Illustrations

Let us consider the following two player pollution abatement game: There
are two countries, 1 and 2. Each of the countries has to choose between
two strategies: pollute or abate. The unit of pollution abatement comes at
a cost of 9 to the abater, but confers a benefit of 7 to each country (if both
abate, each country has a benefit of 14). The pay-offs from the four possible
outcomes are indicated in Table1.

Table 1. A two player abatement game

Country 2 Abate Pollute
Country 1

Abate 5,5 -2,7

Pollute 7,-2 0,0

If Country 2 chooses Abate, then the best choice of Country 1 is Pollute,
because 7 > 5. If Country 2 chooses Pollute, then the best choice of country
1 is Pollute, because 0 > −2. Therefore, for whatever decision of Country
2, the best reply of Country 1 is Pollute, in accordance with the pay-offs
of the game. Pollute is a dominant strategy for Country 1. As the game is
symmetric, the same applies to Country 2. Then (Pollute, Pollute) is an equi-
librium in dominant strategies, and the corresponding pay-offs are (0,0). It is
the non-cooperative equilibrium, which is not Pareto efficient, because if the
countries play (Abate, Abate), then they both obtain higher pay-offs (5,5).
(Abate, Abate) is the full cooperative solution. However this solution is not
an equilibrium, because each country has incentives to deviate unilaterally
from abatement because then they can obtain 7, which is higher than 5. This
is a Prisoner’s Dilemma game.

Let us assume now that a fine of 6 is imposed if a country pollutes. Then
the previous game changes to the game of Table 2. Now (Abate, Abate) is an
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equilibrium in dominant strategies, with pay-offs (5,5), and that equilibrium
is Pareto efficient. The non-cooperative and the cooperative solutions are the
same. However in practice, even if countries have previously negotiated an
agreement with built-in penalty clauses for default, countries have incentives
to renege on promises and not to pay the fine.The problem again is the
absence of an international institution or government with the jurisdiction to
enforce environmental policy internationally.

Let us now assume a situation in which the pay-offs of the game are as in
Table 1, except that doing nothing exposes both countries to serious pollution
damage, at a cost of 4 to both countries. This situation corresponds to what
in the Game Theory literature is called a “chicken” game. We have two Nash
equilibria (Abate, Pollute) with pay-offs (−2, 7) and (Pollute, Abate) with
pay-offs (7,−2). The first is better for Country 2 and the second is better for
Country 1.

Table 2. A fine of 6 if a country pollutes

Country 2 Abate Pollute
Country 1

Abate 5,5 −2,1

Pollute 1,−2 −6,−6

Table 3. A “chicken” game

Country 2 Abate Pollute
Country 1

Abate 5, 5 −2,7

Pollute 7,−2 −4,−4

Game Theory predicts that a Nash equilibrium will be played. Here there
are two Nash equilibria (bottom left and top right cells), so there is some
indeterminacy in this game. How can this indeterminacy be removed? One
possibility arises from commitment or reputation: Suppose that Country 2
commits itself to pollute, and that Country 1 regards this commitment as
credible. Then the left column of the matrix becomes irrelevant, and country
1, faced with pay-offs of either −2 or −4, will choose Abate. Another pos-
sibility arises if the game is played sequentially rather than simultaneously.
Now the question is: can it be advantageous to move first? The answer is yes.
Suppose that country 1 chooses first. In Figure 2 we have the extensive form
of the game.

This game can be solved by backward induction. Assume that when player
2 has to choose, the game has arrived to the top part (because previously
player 1 chose Abate), in that case player 2 has to choose between a pay-off
of 5 and a pay-off of 7, he will prefer 7 and therefore will take the strategy
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-2, 7

7, -2
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Fig. 2. Extensive form of the “chicken” game

Pollute. If player 2 has to choose in the bottom part (because previously
player 1 chose Pollute), he will take the strategy Abate, because a pay-off
of -2 is better than a pay-off of −4. Then, player 1 knows that if he chooses
Abate, as player 2 will choose Pollute, he will win −2, and that if he chooses
Pollute, as player 2 will choose Abate, he will win 7. As 7 > −2, player 1 will
play Pollute and player 2 will play Abate, and the pay-offs will be (7,−2),
and the player having the first move will obtain a better result.

4.3 Issue Linkage

Countries are usually simultaneously engaged in several areas of negotiation.
The basic framework previously introduced can be enlarged by coupling the
negotiations on the environmental problem with negotiations on other issues.
Such issue linkage was introduced in the economic literature on international
environmental cooperation to solve the problem of asymmetries among coun-
tries. Simultaneous involvement in negotiations on several issues of inter-
est opens up the possibilities for exchanging concessions in fields of relative
strength. A prerequisite for such an exchange or interconnection is that the
net benefits of cooperation are reversed in the problems in which the coun-
tries are involved. The following example taken from Folmer and De Zeeuw
[10] illustrates this point very well.

Consider the environmental problem in which the costs associated with
abatement of a unit of pollution are 6 for Country 1 and 5 for Country 2.
The benefits of reduction of a unit of pollution are 5 in Country 1 and 2
in Country 2, regardless of which country makes the reduction. We can see
this game in Table 4. Again (Pollute, Pollute) is an equilibrium in dominant
strategies, with pay-offs (0,0). The cooperative solution is (Abate, Abate)
with pay-offs (4,−1), but that solution is good for Country 1 and bad for
Country 2. Country 1 could compensate Country 2 through side payments.
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Table 4. The international environmental game

Country 2 Abate (A) Pollute (B)
Country 1

Abate (A) 4,−1 −1,2

Pollute (B) 5,−3 0,0

Suppose that the same two countries are also involved in a trade dispute
with net benefits that are an exact mirror image of the net benefits of the
environmental game. The international trade game is represented in Table 5.

Table 5. The international trade game

Country 2 Cooperate (C) Not to cooperate (N)
Country 1

Cooperate (C) 1, 4 −3,5

Not to cooperate (N) 2,−1 0,0

This game has an equilibrium in dominant strategies (Not to cooperate,
Not to cooperate), with pay-offs (0,0). The cooperative solution is (Cooper-
ate, Cooperate), with pay-offs (1,4), but that solution is better for Country
2 than for Country 1.

The trade and environmental game can be interconnected in the sense that
the interconnected game comprises simultaneous play of the two games such
that each country plays a strategy containing actions of both games rather
than one strategy for each game separately. Pay-offs of the interconnected
game are unweighted sums of the pay-off from the constituting isolated games.
Interconnection yields the game represented in Table 6. That game has an
equilibrium in dominant strategies ((P,N), (P,N)) with pay-offs (0,0). The
cooperative solution is ((A,C), (A,C)), with pay-offs (5,3). However in this
case a cooperative solution can be played because that is better for both
players, and then in the first game country 2 chooses Abate, but in the
second game player 1 plays Cooperate. Each country contributes in the game
in which the other obtains better results, and globally are better. Each player
knows that if he defaults in one game, then the other player will also default
in the other game.

Table 6. The interconnected game

Country 2 (A,C) (A,N) (P,C) (P,N)
Country 1

(A, C) 5, 3 1, 4 0, 6 −4,7

(A, N) 6,−2 4,−1 1, 1 −1,2

(P, C) 6, 1 2, 2 1, 4 −3,5

(P, N) 7,−4 5,−3 2,−1 0,0
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5 Concluding Remarks

As has been written in Section 3, there is a sharply increasing number of
publications that analyze the formation and stability of IEAs using Game
Theory. This chapter is introductory. With the references given at the end of
the chapter it is possible to learn much more about this important research
area. In the literature two approaches can be distinguished: cooperative and
non-cooperative.The main results of each of the two approaches can be found
in Finus [8]. The advantage of the non-cooperative over the cooperative ap-
proach is that it captures externalities between players and coalitions better.
The non-cooperative approach has developed strongly in the last 20 years,
creating a place for the Coalition Theory Network.

A lot of works using Game Theory to study International Climate Change
Negotiations have been published recently. Abstract models used to obtain
analytical results have to capture the fundamental elements of the problem to
be studied but usually have to leave aside other elements which can have some
influence on the results. In non-cooperative coalition theory many empirical
papers have been published, using models of the global economy in which
some of the assumptions of the theoretical models are relaxed and where
important interactions among countries are taken into account. A good survey
is Carraro and Massetti [4], with comments in Cerdá [5].

References

1. Barrett, S.: Self-enforcing International Environmental Agreements. Oxford
Econ. Pap. 46, 878–894 (1994)

2. Barrett, S.: Environment & Statecraft. The Strategy of Environmental Treaty-
Making. Oxford University Press, New York (2003)

3. Carraro, C., Siniscalco, D.: Strategies for the International Protection of the
Environment. J. Pub. Econ. 52, 309–328 (1993)

4. Carraro, C., Massetti, E.: International climate change negotiations: lessons
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5. Cerdá, E.: A discussion of International climate change negotiations: lessons
from theory, by Carlo Carraro and Emanuele Massetti. In: Cerdá, E., La-
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Summary. A Fay-Herriot model having both fixed and random effects is
introduced to estimate linear parameters of small areas. The model is appli-
cable to data having a small subset of domains where direct estimates of the
variable of interest cannot be described in the same way as in its complemen-
tary subset of domains. Algorithms and formulas to fit the model, to calculate
EBLUPs and to estimate mean squared errors are given. A Monte Carlo sim-
ulation experiment is carried out to investigate the gain of precision obtained
by using the proposed model. An application to Spanish Labour Force Survey
data is also given.

Keywords: small area estimation, linear mixed models, Fay-Herriot regres-
sion model, fixed effects, random effects, EBLUP, Labour Force Survey.

1 Introduction

An area level linear mixed model was first proposed by Fay and Herriot [2]
to estimate average per-capita income in small places of the United States.
Since then, Empirical Best Linear Predictors (EBLUP) are commonly used to
estimate domain linear parameters. These models typically assume that the
regression parameter is constant but the intercept is random with realizations
on the domains. Searle et al. [9] provide a detailed description of linear mixed
models and Ghosh and Rao [3], and more recently Rao [7] and Jiang and
Lahiri [4], discuss their applications to small area estimation.
∗ The research in this paper was done in memory of our beloved friend Maŕıa Luisa

Menéndez. It was a great honor to coauthor papers and to live beautiful moments
with her.
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When estimating totals or means we may often find that there exist a small
proportion of domains where direct estimates behave in a different manner;
for example they can be much higher than the rest. In these cases traditional
random intercept models do not fit well to data because some domains may
be responsible for producing an overestimated intercept variance affecting
negatively to EBLUP estimates. We may also consider the case, quite com-
mon in practice, that some few direct estimates have been obtained with
large sample sizes and therefore they are reliable. For this last case it should
be interesting to use models with the property that direct estimates coincide
with EBLUP estimates in some selected domains. It is thus necessary to in-
troduce EBLUP estimators of linear parameters based on an area-level linear
mixed model with one factor having both fixed and random levels.

A general theory for a case where a factor has both fixed and random effects
was developed under a one-way ANOVA model by Njuho and Milliken [5].
In this paper their model is extended to an area level linear regression model
with an intercept being fixed in part of the domains and being random in the
rest of them. Estimation procedures for the fixed effects, variance components
and regression parameters are considered and EBLUP estimators of domain
parameters are derived. The approximation given by Prasad and Rao [6] and
extended to a general class of linear mixed models by Das et al. [1] is applied
to obtain estimators of the mean squared errors of the EBLUP estimates.

The paper is organized as follows. In Sections 2-4 we introduce the pro-
posed model, we give a Fisher-scoring algorithm to calculate the maximum
likelihood estimators of model parameters, we derive the expression of the
EBLUP estimator of a domain linear parameter and we give an estimator
of its mean squared error (MSE). In Section 5 we present a simulation ex-
periment to investigate the behavior of the EBLUP estimates under some
proposed setups. In Section 6 we illustrate the use of the proposed model
with data from the Spanish Labour Force Survey (SLFS) and from some
administrative registers. Finally, in Section 7 we give some conclusions.

2 The Proposed Model

We suppose a model having both fixed and random levels which can be
written in terms of fixed effect (F ) part and random effect (R) part in the
following way

(F ) yd = xdγ + μd + ed, d = 1, . . . , DF ,

(R) yd = xdγ + ud + ed, d = DF + 1, . . . , D,

where yd is a direct estimate of a linear parameter (typically, a mean or a to-
tal) of area d, xd is a row vector of auxiliary variables, γ is a column vector of
unknown parameters, μ1, . . . , μDF are the unknown parameters correspond-
ing to the fixed effect levels and uDF +1, . . . , uD are i.i.d. random variables
independent of the random errors ed.
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Using matrix notation parts (F ) and (R) of the model can be written in
the form

yF =XFγ + μ+ eF = [XF IDF ]
(
γ
μ

)
+ eF ,

where the dimensions of yF , XF , μ and γ are DF × 1, DF × p,DF × 1 and
p× 1 respectively,

yR = XRγ + u+ eR = [XR IDR ]
[
γ
u

]
+ eR ,

where the dimensions of yR, XR, u and γ are DR × 1, DR × p,DR × 1 and
p × 1 respectively, and DR = D −DF . We can express the complete model
in the form

y =
(
yF

yR

)
=
[
XF IDF

XR 0DR×DF

](
γ
μ

)
+
[
0DF ×DR

IDR

]
u+

(
eF

eR

)
(1)

or more simply
y = Xβ +Zu+ e , (2)

where y = yD×1,X = XD×(p+DF ),β = β(p+DF )×1,Z = ZD×DR ,u =
uDR×1 and e = eD×1. We further assume that rank(X) = p + DF , u ∼
N (0,Σu) and e ∼ N (0,Σe) are independent, Σu = σ2

uIDR and Σe =
diag{σ2

1 , . . . , σ
2
D}, where σ2

1 , . . . , σ
2
D are known. Thus y ∼ N (Xβ,V ) with

V = ZΣuZ
t +Σe = diag(v2

1 , . . . , v
2
D), where

v2
d =

{
σ2

d for d = 1, . . . , DF ,

σ2
d + σ2

u for d = DF + 1, . . . , D.
(3)

If σ2
u > 0 is known, the best linear unbiased estimator (BLUE) of β = (β1, . . . ,

βp+DF )t and the best linear unbiased predictor (BLUP) of u = (u1, . . . , uDR)t

are

β̂ = (γ̂t
, μ̂t)t = (XtV −1X)−1XtV −1y and û = ΣuZ

tV −1
(
y −Xβ̂

)
.

Components of û are

ûd =
σ2

u

σ2
u + σ2

d

(yd − xdγ̂) , d = DF + 1, . . . , D.

BLUP of the components of the linear parameter τ =Xβ +Zu are

τ̂
blup
d =xdβ̂+zdû =

{
xdγ̂ + μ̂d, d = 1, . . . , DF ,

xdγ̂ + ûd = σ2
u

σ2
u+σ2

d
yd + σ2

d

σ2
u+σ2

d
xdγ̂, d = DF + 1, . . . , D,

(4)
where xd (zd) is the row d of matrix X (Z). EBLUP of the components of
τ are obtained by substituting σ2

u by an estimator σ̂2
u in (4).
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3 Maximum Likelihood Estimates

The parameter space of the supposed model is

Θ = {θt = (βt, σ2
u) : β ∈ Rp+DF , σ2

u ≥ 0} (5)

and the corresponding log-likelihood function is

�(β, σ2
u;y) = −D

2
ln 2π − 1

2
ln |V | − 1

2
(y −Xβ)tV −1(y −Xβ).

The derivatives of the log-likelihood function with respect to parameters are

Sβ = XtV −1(y −Xβ) =
D∑

d=1

xt
d

yd − xdβ

v2
d

,

Sσ2
u

= −1
2
tr(V −1V u) +

1
2
(y −Xβ)tV −1V uV

−1(y −Xβ)

= −1
2

D∑
d=DF +1

1
v2

d

+
1
2

D∑
d=DF +1

(yd − xdβ)2

v4
d

,

where V u = ∂V
∂σ2

u
= diag(b1, . . . , bD) with bj = 0 if 1 ≤ j ≤ DF and bj = 1 if

DF + 1 ≤ j ≤ D. The second order derivatives of the log-likelihood function
with respect to parameters are

Hββ = −XtV −1X, Hβσ2
u

= −XtV −1V uV
−1(y −Xβ),

Hσ2
uσ2

u
=

1
2
tr(V −1V uV

−1V u)− (y −Xβ)tV −1V uV
−1V uV

−1(y −Xβ).

The components of the Fisher information matrix are

F ββ = XtV −1X =
D∑

d=1

v−2
d xt

dxd, F βσ2
u

= F σ2
uβ = 0,

Fσ2
uσ2

u
=

1
2

tr(V −1V uV
−1V u) =

1
2

D∑
d=DF +1

v−4
d .

Updating equations of the Fisher-scoring algorithm are

σ2(k+1)
u = σ2(k)

u + F−1

σ
2(k)
u σ

2(k)
u

S
σ

2(k)
u

, β(k+1) = β(k) + F−1
β(k)β(k)Sβ(k). (6)

4 MSE of EBLUP

Prasad and Rao [6] give an approximation to the mean squared error of the
EBLUP in Fay-Herriot models. In our case the approximation is
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MSE(τ̂eblup
d ) ≈ g1(σ2

u) + g2(σ2
u) + g3(σ2

u),

where

g1(σ2
u) =

{
0 if 1 ≤ d ≤ DF
σ2

uσ2
d

σ2
u+σ2

d
if DF + 1 ≤ d ≤ D

g2(σ2
u) =

{
xdF

−1
ββx

t
d if 1 ≤ d ≤ DF

σ4
d

(σ2
u+σ2

d)2
xdF

−1
ββx

t
d if DF + 1 ≤ d ≤ D

g3(σ2
u) =

{
0 if 1 ≤ d ≤ DF

σ4
d

(σ2
u+σ2

d)3
var(σ̂2

u) if DF + 1 ≤ d ≤ D

where var(σ̂2
u) ≈ F−1

σ2
u,σ2

u
for MLE. Mean squared error is estimated by

mse(τ̂eblup
d ) = g1(σ̂2

u) + g2(σ̂2
u) + 2g3(σ̂2

u). (7)

Remark 1. An interesting property of the model with fixed and random ef-
fects is that τ̂eblup

d = yd and mse(τ̂eblup
d ) = σ2

d for every d = 1, . . . , DF . These
properties can be proved by straightforward calculations and are very useful
from the applied point of view. For example, imagine that for several domains
we have direct estimators based on large sample sizes, which are thus reli-
able. Then we may be interested in using model-based estimators having the
property that they take the same values as the direct ones for the mentioned
domains. Note also that their corresponding estimates of the model-based
mean squared errors, mse(τ̂eblup

d ), will be equal to the design-based variance
estimates, σ2

d, of the direct estimators.

5 Model-Based Simulation Experiment

We consider the model (1) with D (D = 30) small areas and DF = D/10
small areas with fixed effect. The algorithm of the simulation experiment is
described by the following steps:

1. Sample generation

Model parameters are σ2
u = 1, γ = 1 and σ2

d = 1, d = 1, . . . , D. Auxiliary
variable is

xd =
d

D
, d = 1, . . . , D.

Target variable is

yd =
{
xdγ + μd + ed if d = 1, . . .DF ,

xdγ + ud + ed if d = DF + 1, . . . , D,
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where ud ∼ N (0, σ2
u) and ed ∼ N (0, σ2

d) are independent and

μd = 2 +
d

DF
, d = 1, . . .DF .

2. Parameter estimation and prediction

For each area d, the parameter of interest is

τd =
{
xdγ + μd if d = 1, . . .DF ,

xdγ + ud if d = DF + 1, . . . , D.

We calculate:

1) the maximum likelihood estimates β̂, σ̂2
u of the parameters β, σ2

u using
the Fisher-Scoring algorithm (6) with the corresponding formulas for the
Fisher information matrix F and for the vector of scores S from model
(1),

2) the EBLUP τ̂
eblup
d of τd using the formula (4),

3) the MSE estimator mse(τ̂eblup
d ) using formula (7),

4) the maximum likelihood estimates β̂
∗
, σ̂2∗

u of the parameters β, σ2
u using

the Fisher-Scoring algorithm (6) under the assumption that the model
does not include fixed effects, i.e. DF = 0,

5) the corresponding EBLUP τ̂
eblup∗
d of τ∗d using the formulas (4) under the

assumption DF = 0, and
6) the MSE estimator mse(τ̂eblup∗

d ) using formula (7) under the assumption
DF = 0.

3. Repetition and performance measures

Steps 1-2 are repeated K = 104 times obtaining thus in each iteration τ
(k)
d ,

τ̂
eblup(k)
d and mse(τ̂eblup(k)

d ). The following performance measures are calcu-
lated.

MEANd =
1
K

K∑
k=1

τ
(k)
d , meand =

1
K

K∑
k=1

τ̂
eblup(k)
d ,

BIASd = meand −MEANd,

MSEd =
1
K

K∑
k=1

(
τ̂

eblup(k)
d − τ

(k)
d

)2

, msed =
1
K

K∑
k=1

mse(τ̂eblup(k)
d ),

Ed =
1
K

K∑
k=1

(
mse(τ̂eblup(k)

d )−MSEd

)2

.

and also, in the same way, mean∗
d, BIAS

∗
d , MSE∗

d , mse∗d and E∗
d .
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Concerning the estimation of τd, performance measures are plotted in Fig-
ure 1. Concerning the estimation of the mean squared error derived from the
estimation of τd, performance measures are plotted in Figures 2 and 3. In all
the figures the areas with fixed effect were shifted to the right end, i.e. they
correspond to the values of d = 28, 29, 30.

In Figure 1 (left) we observe that if the EBLUP estimator is derived under
the true model with DF = 3, then it is basically unbiased. However, if it
is derived under incorrect model with DF = 0, then the unbiasedness is
preserved in the domains of the random effect part but a high negative bias
appears in the domains of the fixed effect part. In Figure 1 (right) we observe
that MSEs of EBLUPs derived under the incorrect model with DF = 0 are
slightly greater than the ones of EBLUPs derived under the true model in the
domains of the random effect part and much greater in some of the remaining
domains.

Fig. 1. BIASd, BIAS∗
d (left) and MSEd, MSE∗

d (right) for DF = 3

Taking into account the different scales, in Figure 2 we observe the same
pattern. If the EBLUP and its MSE estimator are derived under the true
model with DF = 3, then the MSE estimator is basically unbiased. However
if they are derived under the incorrect model with DF = 0, then a moderate
negative bias appears in the domains of the random effect part and a high
negative bias in the domains of the fixed effect part.

In Figure 3 we observe that the estimation of the MSE of the EBLUP is less
precise for the estimator derived under the incorrect model in the domains of
the fixed effect part. In the domains of the random effect part Ed is slightly
smaller that E∗

d . This is not appreciated in Figure 3 because of the scale of
the vertical axis. It is worth to note that for the domains of the fixed part it
holds MSEd = 1

K

∑K
k=1 e

2
d ≈ 1 and msed = 1 (K = 104).
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Fig. 2. MSEd, msed (left) and MSE∗
d , mse∗d (right) for DF = 3

Fig. 3. Ed and E∗
d for DF = 3

6 An Application to the Spanish Labour Force Survey

Data set was elaborated by the Spanish Instituto Nacional de Estad́ıstica
(INE) and contains aggregated data from the Canary Islands in the second
trimester of 2003. Statistical sources were the Spanish Labour Force Survey
(SLFS) and the Spanish administrative register of unemployed people. In the
data set there are D = 50 records corresponding to 25 areas and D = 50
domains (areas crossed with sex). Target population contains all the individ-
uals aged 16 or more with legal residence in the Canary Islands during the
studied period. Target variable is the direct estimate of the domain mean
of ILO (International Labour Office) unemployed people. Auxiliary variables
are the population means (Xd) of the 12 SEX*AGE*WORK categories de-
scribed in Table 1. All the domains are assigned to the random part of the
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model, except the two domains with larger sample size (domains (1,1) and
(2,1)).

Let Pd, Nd and sd be the domain population, size and sample respectively.
Means of variables y and x in domain d are

Y d =
1
Nd

∑
j∈Pd

ydj, Xd =
1
Nd

∑
j∈Pd

xdj,

and direct estimates of Nd, Y d and of the design-based variance of Y d are

N̂d =
∑
j∈sd

wdj , Ŷ
dir

d =
1

N̂d

∑
j∈sd

wdjydj ,

V̂π(Ŷ
dir

d ) =
1

N̂2
d

∑
j∈sd

wdj(wdj − 1)(ydj − Ŷ
dir

d )2.

where the wdj are the sampling weights. In the Spanish LFS wdj are cal-

ibrated inverses of inclusion probabilities. Formula of V̂π(Ŷ
dir

d ) is obtained
from Särndal et al. [9] under the assumptions that sampling weights are the
inverses of the first order inclusion probabilities, wdj = 1/πdj, and that equal-
ities πdii = πdi and πdij = πdiπdj , if i 	= j, hold for the second order inclusion
probabilities.

Table 1. Description of the variables in the data file

Variable Description

AREA small territories of Canary Islands: 1-25
SEX sex categories: 1 if man, 2 if woman
AGE age categories: 1 for 16-24, 2 for 25-54, 3 for ≥ 55
WORK registered unemployment in public office:

1 if YES, 2 if NO

DOMAIN (d) sex-area categories: 1-50
for (1,1),...,(1,25),(2,1),...,(2,25)

UNEMPLOYED (y) ILO unemployment status: 1 if YES, 0 if NO
SEXAGEWORK (x) SEX∗AGE∗WORK categories: 1-12

for (1,1,1), (1,1,2),(1,2,1),...,(2,3,2)

By taking σ2
d = V̂π(Ŷ

dir

d ) we formulate the area-level linear mixed model

Ŷ
dir

d =
{
Xdγ + μd + ed d = 1, . . . , DF ,

Xdγ + ud + ed d = DF + 1, . . . , D,
(8)

where ud ∼ N(0, σ2
u) and ed ∼ N(0, σ2

d) are independent. We consider the
cases DF = 2 and DF = 0 to obtain EBLUP estimates labeled eb2 and
eb0 respectively. The two domains with larger sample sizes, (1,1) and (1,2)
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with 1149 and 1247 observations respectively, have been assigned to the fixed
effect part of the model. For area 1, with the largest sample size for men
and women, eb2 estimates have the desirable property of being equal to the
direct estimates. For the model with DF = 2, the number of parameters (γ,
μd and σ2

u) to be estimated is 12+2+1=15, which is quite high with respect
to the number of domains D = 50. For this reason we do not recommend to
use models with DF > 2 in this practical case. Coefficients of variation (CV)
are calculated with the formulas

cv(dir) =
[V̂π(Ŷ

dir

d )]1/2

Ŷ
dir

d

, cv(ebi) =
[mse(Ŷ

ebi

d )]1/2

Ŷ
ebi

d

, i = 2, 0.

Tables 2 and 3 present the estimates of the means (proportions) of unem-
ployed men and women and the corresponding estimates of their CV’s (mul-
tiplied by 100), in the Canary Islands during the second trimester of 2003.
The two EBLUP estimates decrease in general the coefficient of variation in
comparison with the direct estimator which can be seen particularly from

Table 2. Domain means and CV’s (×100) for men

area n dir eb2 eb0 cv(dir) cv(eb2) cv(eb0)

1 1149 0.0682 0.0682 0.0688 11.55 11.55 10.88
2 726 0.0644 0.0639 0.0635 14.78 13.87 13.95
20 193 0.1217 0.0829 0.0820 21.13 21.29 21.50
13 167 0.0630 0.0714 0.0695 29.59 21.03 21.35
3 144 0.0164 0.0205 0.0202 72.14 51.72 52.39
12 143 0.0800 0.0576 0.0568 31.80 30.50 30.90
15 126 0.0819 0.0652 0.0638 29.38 26.19 26.66
10 115 0.0618 0.0692 0.0673 37.12 25.38 25.86
14 99 0.0148 0.0160 0.0158 71.07 60.93 61.70
18 97 0.0204 0.0158 0.0156 70.27 77.86 78.63
17 86 0.0930 0.0903 0.0870 34.45 23.27 23.72
8 85 0.0304 0.0223 0.0220 57.63 63.33 64.23
7 80 0.0772 0.0422 0.0420 40.18 45.97 46.07
24 75 0.0877 0.0661 0.0636 36.58 29.32 30.14
9 73 0.0250 0.0268 0.0257 70.05 53.14 55.11
22 73 0.0489 0.0653 0.0627 56.44 28.46 29.21
4 60 0.0134 0.0096 0.0095 99.17 122.25 123.11
16 44 0.0497 0.0518 0.0541 68.72 51.47 49.07
5 41 0.0746 0.0195 0.0179 55.50 111.64 120.84
19 37 0.1099 0.0557 0.0541 47.42 39.39 40.38
11 35 0.0640 0.0535 0.0507 68.17 42.20 44.06
21 20 0.0434 0.0077 0.0096 98.05 294.02 234.36
23 19 0.0458 0.0513 0.0459 97.93 50.78 55.04
25 13 0.0000 0.0035 0.0033 0.00 0.00
6 12 0.0000 0.0040 0.0039 0.00 0.00
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Table 3. Domain means and CV’s (×100) for women

area n dir eb2 eb0 cv(dir) cv(eb2) cv(eb0)

1 1247 0.0777 0.0777 0.0774 10.14 10.14 9.68
2 859 0.0742 0.0739 0.0740 12.54 11.76 11.73
20 214 0.1074 0.0934 0.0936 20.53 17.76 17.68
13 160 0.0570 0.0559 0.0565 35.34 29.40 28.93
12 156 0.0332 0.0378 0.0381 41.86 31.92 31.62
3 152 0.0963 0.0869 0.0878 30.03 22.84 22.45
10 143 0.0530 0.0536 0.0546 34.91 28.85 27.92
15 132 0.0580 0.0547 0.0546 37.83 30.03 30.09
18 111 0.0487 0.0472 0.0478 40.14 33.21 32.63
17 95 0.1207 0.0878 0.0885 27.44 23.78 23.53
24 79 0.0244 0.0357 0.0358 70.32 39.61 39.48
8 78 0.0478 0.0486 0.0485 56.06 38.58 38.63
14 77 0.0469 0.0472 0.0485 57.50 39.64 38.02
9 76 0.0231 0.0199 0.0197 69.83 69.00 69.68
7 74 0.0362 0.0407 0.0405 69.71 44.34 44.49
22 71 0.0993 0.0813 0.0828 39.37 26.10 25.26
4 61 0.0175 0.0154 0.0153 98.83 94.61 94.90
19 43 0.0430 0.0465 0.0471 69.34 40.86 40.11
5 41 0.0190 0.0218 0.0210 98.95 70.95 73.12
16 41 0.0738 0.0887 0.0910 55.83 33.57 32.07
11 34 0.0584 0.0683 0.0679 68.53 37.29 37.42
21 20 0.1027 0.0312 0.0308 66.90 78.51 79.37
23 19 0.0478 0.0846 0.0859 97.73 33.21 32.39
6 18 0.0936 0.0785 0.0799 69.00 33.34 32.48
25 15 0.1684 0.0746 0.0761 63.59 37.89 36.82

the Table 3 for women. EBLUP under model (8) with DF = 2 (DF = 0) is
denoted by eb2 (eb0). As the two considered models are not significatively
different one can not observe remarkable differences between the correspond-
ing eblup estimates. Nevertheless, the possibility of obtaining model-based
estimates that coincide with the direct ones in selected domains makes the
use of model (8) with DF = 2 very attractive.

7 Conclusions

In this paper an area-level mixed model having both fixed and random in-
tercepts has been introduced in order to estimate linear parameters of small
areas when some of the areas needs a separated treatment. Algorithms and
formulas to fit the model, to calculate EBLUP and to estimate mean squared
errors are given. An appealing property of the EBLUP based on the proposed
model is that it coincides with the modeled direct estimate in the areas with
fixed effects. So it is recommended to put domains with reliable direct esti-
mates in the fixed part of the model.
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In the presented simulation experiment it is shown that if the proposed
model is true and the standard linear mixed model is used, then a severe
lack of precision is achieved. An application to real data from the Spanish
Labour Force survey shows that the introduced new EBLUP give, without
any loss of efficiency with respect to the standard EBLUP, the same estimates
as the direct one in selected desired domains with large sample size. This
is an interesting property from the point of view of modelers and official
statisticians.
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Summary. In this paper a random regression coefficient model is used to
provide estimates of small area poverty proportions. As poverty variable is
dichotomic at the individual level, the sample data from Spanish Living Con-
ditions Survey is previously aggregated to the level of census sections. EBLUP
estimates based on the proposed model are obtained. A closed-formula pro-
cedure to estimate the mean squared error of the EBLUP estimators is given
and empirically studied. Results of several simulations studies are reported
as well as an application to real data.

1 Introduction

In small area estimation samples are drawn from a finite population, but
estimations are required for subsets (called small areas or domains) where
the effective sample sizes are too small to produce reliable direct estimates.
An estimator of a small area parameter is called direct if it is calculated just
with the sample data coming from the corresponding small area. Thus, the
lack of sample data from the target small area affects seriously the accuracy
of the direct estimators, and this fact has given rise to the development
of new tools for obtaining more precise estimates. See a description of this
theory in the monograph of Rao [8], or in the reviews of Ghosh and Rao
[2], Rao [7], Pfeffermann [5] and more recently Jiang and Lahiri [3]. Mixed
models increase the effective information used in the estimation process by
linking all observations of the sample, and at the same time they can allow
for between-area variation. Further flexibility is obtained by using random
coefficient regression models, which allows the coefficient of auxiliary variables
to vary across sampling units or domains. Moura and Holt [4] suggested the
application of random coefficient models in small area estimation. This paper

∗ The research in the paper is dedicated to our beloved friend Maŕıa Luisa
Menéndez. Her professional honesty and kindness will inspire us in our day-
to-day work.
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follows their recommendation and presents and application to the estimation
of poverty proportions by using data from the Spanish Living Conditions
Survey.

The paper is organized as follows. Section 2 introduces the considered
random coefficient model and Section 3 derives the corresponding EBLUP
estimates. Section 4 deals with the problem of estimating mean squared er-
rors. Section 5 presents several simulation experiments designed to investigate
some practical issues. Section 6 is devoted to the application to real data. Fi-
nally, Section 7 gives some conclusions.

2 A Random Regression Coefficient Model

We consider two models. The first one, which will be called Model B in the
sequel, is the random regression coefficient model

ydj =
p∑

k=0

βkxkdj +
p∑

k=0

ukdxkdj + edj, d = 1, . . . , D, j = 1, . . . , nd, (1)

where ydj is the jth observation from area d, xkdj are auxiliary variables and
βk are unknown regression parameters. Further, random regression coeffi-
cients ukd

iid∼ N(0, σ2
k) and random errors edj∼N(0, w−1

dj σ2
e) are independent,

d = 1, . . . , D, j = 1 . . . , nd, k = 0, . . . , p. If x0dj = 1 for any d and j then
model (1) contains a random intercept of the form β0 + u0d for area d. The
model variance and covariance parameters are σ2

e , σ2
k, k = 0, . . . , p, (2 + p

parameters).
In this paper we will compare model (1) with the standard nested regres-

sion model (denoted as Model A)

ydj =
p∑

k=0

βkxkdj + u0d + edj, d = 1, . . . , D, j = 1, . . . , nd, (2)

where u0d
iid∼ N(0, σ2

0) and edj
iid∼ N(0, w−1

dj σ2
e) are independent, d = 1, . . . , D,

j = 1 . . . , nd. In this section we briefly describe some basic facts for the ap-
plication of Model B to small area estimation. The corresponding derivations
for Model A are straightforward.

In matrix notation model (1) can be written in the form

y = Xβ +
p∑

k=0

Zkuk + e, (3)

where n =
∑D

d=1 nd, β = β(p+1)×1, y = col
1≤d≤D

(yd), yd = col
1≤j≤nd

(ydj), e =

col
1≤d≤D

(ed), ed = col
1≤j≤nd

(edj), uk = col
1≤d≤D

(ukd), X = col
1≤d≤D

(Xd), Xd =

colt
0≤k≤p

(xk,nd
), xk,nd

= col
1≤j≤nd

(xkdj), Zk = diag
1≤d≤D

(xk,nd
), Ia = diag

1≤j≤a
(1),

W = diag
1≤d≤D

(W d), W d = diag
1≤j≤nd

(wdj), with wdj > 0 known, d = 1, . . . , D,
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j = 1, . . . , nd. Note that model (1) is a multilevel model that can alternatively
be written as in Moura and Holt [4], i.e.

yd =Xdγd + ed, γd = β + u.d, d = 1, . . . , D, (4)

where u.d = col
0≤k≤p

(ukd).

Variance matrices of Model B are V e = var(e)=σ2
eW

−1, V uk
=var(uk) =

σ2
kID, k = 0, 1, . . . , p, and

V = var(y) = V e +
p∑

k=0

ZkV uk
Zt

k = diag
1≤d≤D

(V d),

where

V d = σ2
eW

−1
d +

p∑
k=0

σ2
kxk,nd

xt
k,nd

, d = 1, . . . , D.

For model fitting it is worthwhile to consider the alternative parameters σ2 =
σ2

e , ϕk = σ2
k/σ

2
e , k = 0, 1, . . . , p, in such a way that V = σ2Σ and V d =

σ2Σd, where Σ = diag
1≤d≤D

(Σd) and

Σd = W−1
d +

p∑
k=0

ϕkxk,nd
xt

k,nd
, d = 1, . . . , D. (5)

Let ϕ = (σ2, ϕ0, ϕ1, . . . , ϕp) be the vector of variance components, with σ2 >

0, ϕ0 > 0, ϕ1 > 0, . . . , ϕp > 0. Let u = col
0≤k≤p

(uk) with variance V u =

var(u) = diag
0≤k≤p

(V uk
) and Z = colt

0≤k≤p
(Zk). Using this notation the model

(3) can be written in the general form

y = Xβ +Zu+ e.

If ϕ is known, then the BLUE of β = (β0, β1, . . . , βp)t is

β̂ = (XtV −1X)−1XtV −1y =

(
D∑

d=1

Xt
dΣ

−1
d Xd

)−1( D∑
d=1

Xt
dΣ

−1
d yd

)

and the BLUP of u is û = V uZ
tV −1(y −Xβ̂), i.e.

û = diag
0≤k≤p

(V uk
) col
0≤k≤p

(Zt
k) diag

1≤d≤D
(V −1

d ) col
1≤d≤D

(yd −Xdβ̂) .

The empirical BLUE and BLUP (EBLUE and EBLUP) are obtained by
substituting the variance parameters by convenient estimates. We will now
describe the Fisher-scoring algorithm to calculate the residual maximum like-
lihood estimates of the variance components.
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The REML log-likelihood is

lREML(σ) = −1
2
(n−p) log 2π− 1

2
(n−p) logσ2− 1

2
log |KtΣK|− 1

2σ2
ytPy,

where

P = K(KtΣK)−1Kt = Σ−1 −Σ−1X(XtΣ−1X)−1XtΣ−1,

K = W −WX(XtWX)−1XtW

are such that PX = 0 and PΣP = P . From (5) it follows that Σ can be
written in the form

Σ = W−1 +
p∑

k=0

ϕkAk,

whereAk = ZkZ
t
k = diag

1≤d≤D
(xk,nd

xt
k,nd

), k = 0, 1, . . . , p. As ∂P
∂ϕk

= −PAkP ,

by taking partial derivatives with respect to σ2 and ϕk, k = 0, 1, . . . , p, one
gets

Sσ2 = −n− p

2σ2
+

1
2σ4

ytPy, Sϕk
= −1

2
tr{PAk}+

1
2σ2

ytPAkPy,

k = 0, 1, . . . , p. The second partial derivatives are

Hσ2σ2 =
n− p

2σ4
− 1

σ6
ytPy, Hσ2ϕi

= − 1
2σ4

ytPAiPy,

Hϕiϕj =
1
2

tr{PAiPAj} −
1
σ2
ytPAiPAjPy, i, j = 0, 1, . . . , p.

By taking expectations and multiplying by −1, we obtain the components of
the Fisher information matrix (i, j = 0, 1, . . . , p)

Fσ2σ2 =
n− p

2σ4
, Fσ2ϕj

=
1

2σ2
tr{PAj}, Fϕiϕj =

1
2

tr{PAiPAj}.

To calculate the REML estimates, the Fisher-scoring updating formula is

ϕk+1 = ϕk + F−1(ϕk)S(ϕk).

The following seeds can be used as starting values in the Fisher-scoring al-
gorithm

σ2(0) = θ
(0)
0 = ϕ

(0)
1 = . . . = ϕ(0)

p = S2/(p + 2),

where S2 = 1
n−p (y −Xβ̃)tW (y −Xβ̃) and β̃ = (XtWX)−1XtWy.

The asymptotic distributions of the REML estimators of ϕ and β are

ϕ̂ ∼ Np+2(ϕ,F−1(ϕ)), β̂ ∼ Np+1(β, (X ′V −1X)−1),



Small Area Estimation under RRC Models 319

so that the 1− α asymptotic confidence intervals for ϕk and βk are

ϕ̂k ± zα/2 ν
1/2
kk , and β̂k ± zα/2 q

1/2
kk , k = 0, 1, . . . , p,

where ϕ̂ = ϕκ, κ is the last iteration in the Fisher-scoring algorithm,
F−1(ϕκ) = (νk�)k,�=−1,0,...,p, (X ′V −1(ϕκ)X)−1 = (qk�)k,�=0,1,...,p and zα

is the α-quantile of the N(0, 1) distribution. The confidence interval for σ2

is obtained in the same way by using the corresponding diagonal element of
the matrix F−1.

3 EBLUP of the Domain Mean

In this section we consider a finite population of N elements following the
model introduced in (1) with population sizes Nd in the place of sample sizes
nd. From the population a sample of size n with nd elements in area d, n =∑D

d=1 nd, is selected. Without loss of generality we can reorder the population
so that y = (yt

s,y
t
r)

t, where ys is the vector of n observed elements and yr

is the vector of N − n unobserved elements. In the following, the index s for
the sample and the index r for the rest of the population will be used when
appropriate. In this notation and taking into account the reordering we can
write

V = var[y] =
(
V ss V sr

V rs V rr

)
.

We are interested in the estimation of the mean of the small area d, i.e.

Y d =
1
Nd

Nd∑
j=1

ydj = aty = at
sys + at

ryr,

where at= 1
Nd

(
0t

N1
, . . . ,0t

Nd−1
,1t

Nd
,0t

Nd+1, . . . ,0
t
ND

)
and 0t

m =(0, . . . , 0)1×m.
From the general theorem of prediction it follows that the BLU predictor of
Y d, under Model B, is

Ŷ
blupB

d = at
sys + at

r

[
Xrβ̂ + V̂ rsV̂

−1

ss (ys −Xsβ̂)
]
. (6)

In our case it holds V e,rs = 0, V rs = ZrV uZ
t
s + V e,rs = ZrV uZ

t
s and

û = V̂ uZ
t
sV̂

−1

ss (ys −Xsβ̂), so

Ŷ
blupB

d = at
sys + at

r

[
Xrβ̂ +ZrV̂ uZ

t
sV̂

−1

ss (ys −Xsβ̂)
]

= at

[
Xβ̂ +

p∑
k=0

Zkûk

]
+ at

s

[
ys −Xsβ̂ −

p∑
k=0

Zk,sûk

]
.

Since at can be written in the form at = 1
Nd

colt
1≤�≤D

{δd�1t
N�
}, where δab = 1 if

a = b and δab = 0 if a 	= b, it holds that atXβ̂ =
∑p

k=0 Xkdβ̂k and
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atZkûk =
1
Nd

colt
1≤�≤D

{δd�1t
N�
} diag
1≤�≤D

(xk,N�
)ûk = Xkdûkd,

where Xkd = 1
Nd

∑Nd

j=1 xkdj . Thus the EBLUPB of Y d is

Ŷ
eblupB

d =
p∑

k=0

Xkdβ̂k+
p∑

k=0

Xkdûkd+fd

[
yd,s −

p∑
k=0

Xkd,sβ̂k −
p∑

k=0

Xkd,sûkd

]
,

where yd,s = 1
nd

∑nd

j=1 ydj, Xkd,s = 1
nd

∑nd

j=1 xkdj and fd = nd

Nd
. EBLUP under

Model A is similarly introduced and it is denoted by EBLUPA in the sequel.
The mean squared error (MSE) of the EBLUP and its proposed estimator
are given in the next section.

4 MSE of EBLUP

Following Prasad and Rao [6] and Das, Jiang and Rao [1], the mean squared
error (MSE) of the EBLUP of Y d, under Model B, is

MSE(Ŷ
eblupB

d ) = g1(ϕ) + g2(ϕ) + g3(ϕ) + g4(ϕ),

where

g1(ϕ) = at
rZrT sZ

t
rar,

g2(ϕ) = [at
rXr − at

rZrT sZ
t
sV

−1
e,sXs]Qs[X

t
rar −Xt

sV
−1
e,sZsT sZ

t
rar],

g3(ϕ) ≈ tr
{
(∇bt)V s(∇bt)tE

[
(ϕ̂−ϕ)(ϕ̂− ϕ)t

]}
,

g4(ϕ) = at
rV e,rar,

and T s =V u−V uZ
t
sV

−1
s ZsV u,Qs =(Xt

sV
−1Xs)−1, bt = at

rZrV uZ
t
sV

−1
s .

The Prasad-Rao (PR) estimator of MSE(Ŷ
eblupB

d ) is

mseB
d = mse(Ŷ

eblup B

d ) = g1(ϕ̂) + g2(ϕ̂) + 2g3(ϕ̂) + g4(ϕ̂),

where ϕ̂ is REML estimator of ϕ. In what follows we present the calculation
of g1 − g4 for Model B. The derivations under Model A are straightforward.

We employ the notation mse�
d = mse(Ŷ

eblup�

d ), � = A,B, under Models A
and B.

4.1 Calculation of g1(ϕ) under Model B

To calculate g1(ϕ) = at
rZrT sZ

t
rar, basic elements are

at
r =

1
Nd

colt
1≤�≤D

(δd�1t
N�−n�

), Zr = colt
0≤k≤p

(Zk,r), V u = σ2 diag
0≤k≤p

(ϕkID)
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and

T s = V u − V uZ
t
sV

−1
s ZsV u = σ2 diag

0≤k≤p
(ϕkID)

− σ2 col
0≤k≤p

(ϕkZ
t
k,s) diag

1≤�≤D
(Σ−1

�,s ) colt
0≤k≤p

(ϕkZk,s) = (T k1k2)k1,k2=0,1,...,p .

where δk1k2 = 0 if k1 	= k2, δk1k2 = 1 if k1 = k2 and

T k1k2 = σ2ϕk1δk1k2ID − σ2ϕk1ϕk2Z
t
k1,s diag

1≤�≤D
(Σ−1

�,s )Zk2,s.

Therefore

g1(θ) =
1
N2

d

colt
1≤�≤D

(δd�1t
N�−n�

) colt
0≤k≤p

(Zk,r)T s col
0≤k≤p

(Zt
k,r) col

1≤�≤D
(δd�1N�−n�

)

= (1− fd)2σ2

{
p∑

k=0

ϕkX
∗2
kd −

p∑
k1=0

p∑
k2=0

ϕk1ϕk2X
∗
k1dx

t
k1,nd

Σ−1
d,sxk2,nd

X
∗
k2d

}
,

where fd = nd/Nd and X
∗
kd = 1

Nd−nd

∑
j∈r xkdj = (1−fd)−1(Xkd−fdXkd,s).

4.2 Calculation of g2(ϕ) under Model B

From the definition of g2(ϕ) it follows that it can be written in the form

g2(ϕ) = [at
1 − at

2]Qs[a1 − a2],

whereQs is defined on page 320. The first vector from the difference [at
1−at

2]
is

at
1 = at

rXr =
1
Nd

1t
Nd−nd

Xrd = (1− fd)X
∗
d,

where X
∗
d = (X

∗
0d, X

∗
1d, . . . , X

∗
pd). The second vector can be written as

at
2 = at

r colt
0≤k≤p

(Zk,r)T s col
0≤k≤p

(Zt
k,s)σ

−2W sXs

and after some straightforward algebra it takes the form

at
2 = (1− fd)

{
p∑

k=0

ϕkX
∗
kdx

t
k,nd

−
p∑

k1=0

p∑
k2=0

ϕk1ϕk2X
∗
k1dx

t
k1,nd

Σ−1
d,sxk2,nd

xt
k2,nd

}
W d,sXd,s.
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4.3 Calculation of g3(ϕ) under Model B

We recall that g3(ϕ) ≈ tr
{
(∇bt)V s(∇bt)tE [(ϕ̂−ϕ)(ϕ̂−ϕ)t]

}
, where

bt = at
rZrV uZ

t
sV

−1
s = at

r

p∑
k=0

ϕkZk,rZ
t
k,s diag

1≤�≤D
(Σ−1

�,s ).

As ∂Σ�,s

∂σ2 = 0 and ∂Σ�,s

∂ϕk
= xk,n�

xt
k,n�

(k = 0, . . . , p), the derivative with

respect to σ2 is ∂bt

∂σ2 = 0 and the remaining derivatives are

∂bt

∂ϕk
= at

rZk,rZ
t
k,s diag

1≤�≤D
(Σ−1

�,s )

− at
r

(
p∑

i=0

ϕiZi,rZ
t
i,s

)
diag

1≤�≤D
(Σ−1

�,sxk,n�
xt

k,n�
Σ−1

�,s ), k = 0, 1, . . . , p.

As Zk,r = diag
1≤�≤D

(xk,N�−n�
), we obtain for k = 0, 1, . . . , p

∂bt

∂ϕk
= (1 − fd)

[
colt

1≤�≤D
(δd�X

∗
k� x

t
k,n�

Σ−1
�,s )

− colt
1≤�≤D

(
δd�

(
p∑

i=0

ϕiX
∗
i� x

t
i,n�

)
Σ−1

�,sxk,n�
xt

k,n�
Σ−1

�,s

)]
.

Let us define H(ϕ) = (hk1,k2)k1,k2=−1,0,1,...,p , where h−1,k = hk,−1 = 0,
k = −1, 0, 1, . . . , p and

hk1,k2 =
∂bt

∂ϕk1

V s

(
∂bt

∂ϕk2

)t

= σ2(1 − fd)2
{
X

∗
k1dx

t
k1,nd

Σ−1
d,sxk2,nd

X
∗
k2d

− X
∗
k1dx

t
k1,nd

Σ−1
d,sxk2,nd

xt
k2,nd

Σ−1
d,s

p∑
i=0

ϕixi,nd
X

∗
id

−
(

p∑
i=0

ϕiX
∗
idx

t
i,nd

)
Σ−1

d,sxk1,nd
xt

k1,nd
Σ−1

d,sxk2,nd

·
[
X

∗
k2d − xt

k2,nd
Σ−1

d,s

p∑
i=0

ϕixi,nd
X

∗
id

]}

for any k1, k2 = 0, 1, . . . , p. Then

g3(ϕ) ≈ tr
{
H(ϕ)F−1(ϕ)

}
,

where F (ϕ) is the REML Fisher information matrix which approximates the
covariance matrix E [(ϕ̂−ϕ)(ϕ̂−ϕ)t].
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4.4 Calculation of g4(ϕ) under Model B

We recall that g4(ϕ) = at
rV e,rar, where

at
r =

1
Nd

colt
1≤�≤D

(δd�1t
N�−n�

), V −1
e,r = σ−2W r = σ−2 diag

1≤d≤D
{W d,r}.

Therefore
g4(ϕ) =

σ2

N2
d

1t
Nd−nd

diag
j∈rd

{w−1
dj }1Nd−nd

=
σ2

N2
d

∑
j∈rd

1
wdj

.

5 Simulation Experiments

In this section we present several simulation experiments. The first one is
designed to check the behavior of the REML estimates under Model B. The
second simulation experiment is planned to study the behavior of EBLUP a,
a = A,B, under Models A and B. Finally, the third simulation experiment
is carried out to analyze the behavior of the MSE estimates.

In all the simulations, samples are generated as follows.

• Explanatory variable: Take ad = 1, bd = 2 + 8d
D , d = 1, . . . , D. For d =

1, . . . , D, j = 1, . . . , nd, generate
x1dj = (bd − ad)Udj + ad with Udj =

j

nd + 1
, j = 1, . . . , nd.

• Random effects and errors: For d = 1, . . . , D, j = 1, . . . , nd, generate

u0d ∼ N(0, σ2ϕ0), u1d ∼ N
(
0, σ2ϕ1

)
, edj ∼ N(0, σ2),

with σ2 = ϕ0 = 1 and ϕ1 = 2.

• Target variable: For d = 1, . . . , D, j = 1, . . . , nd, generate

ydj = β0 + β1xdj + u1dxdj + u0d + w
−1/2
dij edj, with β0 = 2, β1 = 1.

(Just skipping the term u1dxdj in the case of Model A.)

5.1 Simulation 1

The steps of the simulation experiment are:

1. Repeat K = 104 times (k = 1, . . . ,K)
1.1. Generate a sample of size n =

∑D
d=1 nd and calculate the REML

estimates γ(k) ∈ {β̂0(k), β̂(1k), σ̂
2
(k), ϕ̂0(k), ϕ̂1(k)}.

2. Output:

EMSE(γ̂) =
1
K

K∑
k=1

(γ̂(k) − γ)2, BIAS(γ̂) =
1
K

K∑
k=1

(γ̂(k) − γ).

Table 1 presents the obtained performance measures. In all the presented
cases we observe that EMSE decreases as sample size increases. The conclu-
sion is that the implemented Fisher-scoring algorithm is running properly
and thus the obtained REML parameter estimates are reliable.
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Table 1. BIAS and EMSE for K = 104 under Model B

n 300 600 1200 2400
nd 5 10 20 40

D = 60 BIAS EMSE BIAS EMSE BIAS EMSE BIAS EMSE

β0 = 2 -0.001 0.052 -0.001 0.032 -0.002 0.024 0.000 0.020
β1 = 1 -0.001 0.020 0.000 0.018 -0.001 0.018 0.000 0.017
σ2 = 1 0.006 0.010 0.002 0.004 0.001 0.002 0.001 0.001
ϕ0 = 1 -0.050 0.335 -0.007 0.129 -0.001 0.070 0.002 0.050
ϕ1 = 1 -0.020 0.055 -0.005 0.043 -0.002 0.038 -0.002 0.037

5.2 Simulation 2

The second simulation experiment is designed to investigate the behavior
of EBLUPa, a = A,B, under Models A and B. The steps of simulation
experiment are:

1. Generate deterministically N =
∑D

d=1 Nd x-values with Nd = 100, D =
60 as described at the beginning of this section and calculate Xd, d =
1, . . . , D.

2. Repeat K = 104 times (k = 1, . . . ,K)
2.1. Generate a population of size N and extract a sample of size n =∑D

d=1 nd (nd = 10) under Model B (Model A).
2.2 Calculate the REML estimates under Models A and B.

2.3 Calculate the true value Y
(k)

d and its estimates Ŷ
eblup a(k)

d for a =
A,B.

3. For any a = A,B the output is:

meana
d =

1
K

K∑
k=1

Ŷ
eblup a(k)

d , MEANd =
1
K

K∑
k=1

Y
(k)

d ,

EMSEa
d =

1
K

K∑
k=1

(Ŷ
eblup a(k)

d − Y
(k)

d )2, EMSEa =
1
D

D∑
d=1

EMSEa
d ,

and

BIASa
d =

1
K

K∑
k=1

(Ŷ
eblup a(k)

d − Y
(k)

d ), BIASa =
1
D

D∑
d=1

BIASa
d .

Table 2 presents the basic performance measures of simulations 2. DIFr,
r = A,B, is used to denote the differences EMSEa − EMSEr, a = A,B,

a 	= r. Figure 1 plot EMSEa
d of estimators Ŷ

eblup a

d , a = A,B under Model
A and B, respectively.

We observe that if Model B is true, EBLUP estimate may lose a significa-
tive amount of precision by assuming the wrong Model A. However, the loss
of efficiency is negligible in the reciprocal case.
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Table 2. BIAS and EMSE for D = 60 and K = 104

Model B Model A
Nd = 100, nd = 10 eblupA eblupB eblupA eblupB

102BIAS 0.0046 0.0065 0.0992 0.0993
102EMSE 10.7272 8.513 8.2237 8.2253
102DIFr 2.2142 0.0016

Fig. 1. EMSEd values under the true Model B (left) and Model A (right)

5.3 Simulation 3

The third simulation experiment is designed to analyze the behavior of the
MSE estimates. The steps of the simulation experiment under Model B
(Model A) are:

1-2. Do steps 1-2.3 as in Simulation 2. Do new step 2.4 as follows.
2.4. Calculate the MSE estimates mse

A(k)
d and mse

B(k)
d .

3. For a = A,B the output is:

Ea
d =

1
K

K∑
k=1

(mse
a(k)
d − EMSEa

d )2, Ba
d =

1
K

K∑
k=1

(mse
a(k)
d − EMSEa

d).

Ea =
1
D

D∑
d=1

Ea
d , Ba =

1
D

D∑
d=1

Ba
d ,

where the values EMSEa
d are taken from the results of Simulation 2.

Table 3 presents basic performance measures of Simulation 3.
From the table it can be seen that the two estimators mseB

d and mseA
d

have basically the same behavior under the true Model A. However, under
the true Model B mseA

d has a very poor behavior when it is used to estimate

MSE(Ŷ
eblupA

d ).
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Table 3. Ba and Ea values for K = 104

Nd = 100 Model B Model A

nd = 10 mseA
d mseB

d mseA
d mseB

d

102B 46.5629 0.0098 -0.0146 0.0054
102E 23.0612 0.0029 0.0025 0.0026

6 Estimation of Poverty Proportions

In this section we use data from the 2006 Spanish Living Conditions Survey
(SLCS) with global sample size 34694. The SLCS is the Spanish version of the
European Statistics on Income and Living Conditions (EU-SILC), which is
one of the statistical operations that have been harmonized for EU countries.
Its main goal is to provide a reference source on comparative statistics on
the distribution of income and social exclusion in the European environment.
The sample includes 16000 dwellings distributed in 2000 census sections.

We consider D = 52 domains (provinces) and we are interested in studying
the household normalized net annual incomes at the domain level. The aim
of normalizing the household income is to adjust for the varying size and
composition of households. The definition of the total number of normalized
household members is the modified OECD scale used by EUROSTAT, where
OECD is the acronym for the Organization for Economic Cooperation and
Development. This scale gives a weight of 1.0 to the first adult, 0.5 to the
second and each subsequent person aged 14 and over and 0.3 to each child
aged under 14 in the household. The normalized size of a household is the sum
of the weights assigned to each person. So the total number of normalized
household members is

Hdi = 1 + 0.5(Hdi≥14 − 1) + 0.3Hdi<14

where Hdi≥14 is the number of people aged 14 and over and Hdi<14 is the
number of children aged under 14. The normalized net annual income of a
household (z) is obtained by dividing its net annual income by its normalized
size. Following the standards of the Spanish Statistical Office, the Poverty
Threshold is fixed as the 60% of the median of the normalized incomes in
Spanish households. The Spanish poverty thresholds (in euros) in 06 is z2006 =
6556.60. This is z0-value used in the calculation of the direct estimates of the
poverty proportion

Y d =
1
Nd

Nd∑
j=1

ydj, ydj = I(zdj < z0),

where I(zdj < z0) = 1 if zdj < z0 and I(zdj < z0) = 0 otherwise.
The considered auxiliary variables are nationality (x0) and employed (x1),

both with values 0-1 at the individual level (1 for Spanish citizenship and
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employed). In the SLCS the target variable y is measured at the household
level and the auxiliary variables x1 and x2 at the individual level. For this
reason a data file has been built containing the survey data aggregated at
the level of census sections (territories with around 2000 people). In the
census section file the y variable and the x-variables are calculated by taking
weighted averages on the territory.

Table 4 presents the REML estimates of model parameters and the cor-
responding 90% confidence intervals. We observe that confidence intervals
for parameters ϕ0 and ϕ1 are strictly positive, suggesting that Model B fits
better to data than Model A.

Figure 2 presents the domain mean estimates and their estimated mean
squared error. It shows that EBLUPB has slightly different behavior from
EBLUPA estimates. Figure 2 also shows that the EBLUP estimates behave
more smoothly than the direct ones, which are calculated by means of the
formula

Ŷ
dir

d =
1
N̂d

nd∑
j=1

ωdjydj , N̂d =
nd∑

j=1

ωdj,

where the ωdj’s are SLCS calibrated sampling weights.
Concerning mean squared errors, EBLUPB is the estimator giving the best

results. EBLUP estimators produce some gain of efficiency with respect to
the direct ones. For comparison purposes, design-based mean squared errors
of direct estimators where approximated by

mse(Ŷ
dir

d ) =
1
N̂2

d

nd∑
j=1

ωdj(ωdj − 1)
(
ydj − Ŷ

dir

d

)2
. (7)

The last formula is taken from Särndal et al. [9], pp. 43, 185 and 391, with
the simplifications ωdj = 1/πdj, πdj,dj = πdj and πdi,dj = πdiπdj , i 	= j in the
second order inclusion probabilities.

By observing the signs of the regression parameters, we interpret that
poverty proportion tends to be smaller in those domains with larger pro-
portion of people with non Spanish citizenship (may be because immigrants
tends to go to regions with greater richness where it is easier to find job) and
larger proportion of employed people.

Table 4. Parameter estimates and 90% confidence intervals for models B and A.

Model A Model B
Estim. 90% CI Estim. 90% CI

β0 0.2942 ( 0.1722 , 0.4162 ) 0.3336 ( 0.2197 , 0.4475 )
β1 -0.2900 ( -0.4946 , -0.0854 ) -0.2958 ( -0.5294 , -0.0621 )

σ2 0.0453 ( 0.0430 , 0.0477 ) 0.0457 ( 0.0433 , 0.0480 )
ϕ0 0.1481 ( 0.0865 , 0.2098 ) 0.0689 ( 0.0061 , 0.1317 )
ϕ1 0.1382 ( 0.0478 , 0.2287 )
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Fig. 2. Direct estimates and EBLUP estimates (left) and its estimated mean square
error (right)

7 Conclusions

This paper investigate the use of EBLUPs, based on random regression co-
efficient models, in small area estimation. By looking at the presented sim-
ulations and application to real data, we may conclude that fixed regression
coefficients are sometimes too rigid for modeling real data. Some extra vari-
ability, and better performance of EBLUP estimates, might be obtained by
allowing some variability on the regression (beta) parameters.
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Summary. This work deals with robust estimation of variance components
under a nested error model. Traditional estimation methods include Maxi-
mum Likelihood (ML), Restricted Maximum Likelihood (REML) and Hen-
derson method III (H3). However, when outliers are present, these methods
deliver estimators with poor properties. Robust modifications of the ML and
REML have been proposed in the literature (see for example, Fellner [3],
Richardson and Welsh [14] and Richardson [13]). In this work we explore some
robust alternatives based on the idea of Henderson method III. The work is
organized as follows. In section 2, we introduce the nested error model. In
section 3, we describe the traditional methods for estimating variance com-
ponents. In section 4, several robustified versions of the H3 estimators of the
variance components are presented. In section 5, we present some results on
diagnostics methods. In section 6 we perform a Monte Carlo study to compare
the new robust estimation methods with the non-robust alternatives.

Keywords: Henderson method III, linear mixed models, nested error model,
outliers, robust estimation, variance components

1 Introduction

In the last decades, linear mixed models (Laird and Ware [8]) have received
considerable attention in the literature from a practical and theoretical point
of view (e.g. McCulloch and Searle [10], Verbeke and Molenberghs [17] and
Jiang [7]). These models are frequently used in small area estimation or to an-
alyze repeated measures data, because they model flexibly the within-subject
correlation often present in these type of data. However, there are many other
fields of application of these models, such as clinical trials (Vangeneugden et
al. [16]), air pollution studies (Wellenius et al. [18]), etc. Despite the many
applications in which these models are used, only few works have been done
on model diagnostics, an important step to validate the model. Christensen
et al. [2] studied case deletion diagnostics. Banerjee and Frees [1] developed
influence diagnostics. Galpin and Zewotir [5] extended some results of the
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ordinary linear regression influence diagnostics to the linear mixed models
context such as residuals, leverages and outliers when the variance compo-
nents are known. However, in practice the variance components need to be
estimated from sample data. If sample data are contaminated, then the esti-
mation might be affected and this will in turn affect all diagnostic tools.

Here we focus on a particular linear mixed model with only one random
factor, called nested error model. For this model, we propose several robust
alternatives to the H3 estimators of variance components. Section 2 describes
the data structure and the model. Section 3 summarizes the most common
methods for estimation. Section 4 introduces our proposed robust estimators.
Section 5 describes diagnostic tools for these models and finally, Section 6
reports the results of a simulation study that compares the robustness prop-
erties of the proposed estimators with those of the traditional non-robust
ones. Finally, Section 7 gives some concluding remarks.

2 The Model

In this section we introduce the nested error model and describe some of its
properties. Consider that the sample observations come from D different pop-
ulations groups, with nd observations coming from d-th group, d = 1, . . . , D
and n =

∑D
d=1 nd being the total sample size. Let us denote ydj the value of

the study variable for j-th sample unit from d-th group and xdj a (column)
vector containing the values of p auxiliary variables for the same unit. We
consider the model

ydj = xT
djβ + ud + edj j = 1, . . . , nd d = 1, . . . , D, (1)

where β is the p×1 vector of fixed parameters, ud is the random effect of d-th
group and edj is the model error. Random effects and errors are supposed to
be independent with distributions

ud
iid∼ N(0, σ2

u) and edj
iid∼ N(0, σ2

e).

Stacking the model elements ydj, xT
dj and edj in columns, we can express the

model in matrix notation as

y = Xβ + Zu + e, u ∼ N(0, σ2
uID), e ∼ N(0, σ2

eIn). (2)

where u = (u1, . . . , uD)T and Z is the n×D design matrix associated with
u, containing in its columns the indicators of the groups d = 1, . . . , D.

The expectation and covariance matrix of y are given by

E(y) = Xβ and V ar(y) = σ2
uZZT + σ2

eIn := V.

Let us define the vector of variance components θ = (σ2
u, σ

2
e)T . When θ is

known, Henderson [6] obtained the Best Linear Unbiased Estimator (BLUE)
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of β and the Best Linear Unbiased Predictor (BLUP) of u, which are given
respectively by

β̃ = (XT V−1X)−1XT V−1y, (3)

ũ = σ2
uZ

T V−1(y −Xβ̃). (4)

3 Estimation of Variance Components

The estimator of β and the predictor of u in (3) and (4) respectively depend
on θ, which in practice is unknown and needs to be estimated from sample
data. The empirical versions of (3) and (4), (EBLUE and EBLUP respec-
tively) are obtained by replacing a suitable estimator θ̂ = (σ̂2

u, σ̂
2
e)T for θ in

(3) and (4) and are given by

β̂ = (XT V̂−1X)−1XT V̂−1y, (5)

û = σ̂2
uZ

T V̂−1(y −Xβ̂), (6)

where V̂ = σ̂2
uZZT + σ̂2

eIn.
Next we describe the ML, REML and H3 methods to estimate variance

components.

Maximum likelihood

Maximum likelihood estimation is usually done by assumming that y has
a multivariate normal distribution. Under this assumption, the likelihood is
given by

f(θ|y) = (2π)−
n
2 |V|−1/2exp

{
−1

2
(y −Xβ)T V−1(y −Xβ)

}
.

The log-likelihood is

�(θ|y) = ln(f(θ|y)) = c− 1
2
[ln |V|+ (y −Xβ)T V−1(y −Xβ)],

where c is denotes a constant. Using the relations

∂ ln |V|
∂θ

= tr

{
V−1 ∂V

∂θ

}
and

∂V−1

∂θ
= −V−1 ∂V

∂θ
V−1,

the first order partial derivatives of � with respect to β, σ2
u and σ2

e are

∂�(θ|y)
∂β

= XT V−1(y −Xβ),

∂�(θ|y)
∂σ2

u

= −1
2
tr
{
V−1ZZT

}
+

1
2
(y −Xβ)T V−1ZZT V−1(y −Xβ),

∂�(θ|y)
∂σ2

e

= −1
2
tr{V−1}+

1
2
(y −Xβ)T V−1V−1(y −Xβ),
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and equating to zero we obtain the equations

XT V−1y = XV−1Xβ, (7)

tr{V−1ZZT } = (y −Xβ)T V−1ZZT V−1(y −Xβ), (8)

tr{V−1} = (y −Xβ)T V−1V−1(y −Xβ). (9)

From (7), the ML estimating equation for β is

β̂ = (XT V̂−1X)−1XT V̂−1y

Equations (8) and (9) do not have analytic solution and need to be solved
using numerical methods such as Newton-Raphson or Fisher-Scoring.

Restricted maximum likelihood

REML approach starts by transforming y into two independent vectors, y1 =
K1y and y2 = K2y. The distribution of y1 does not depend on β and satisfies
E(y1) = 0, which means that K1X = 0. On the other hand, y2 is independent
of y1, which means that K1VKT

2 = 0. The matrix K1 is chosen to have
maximum rank, i.e. n− p, so the rank of K2 is p. The likelihood function of
y is the product of the likelihoods of y1 and y2. The variance components
coming from the REML approach are the ML estimators of these parameters
based on y1, see Patterson and Thompson [11]. Similarly to the ML case,
the obtained equations do not have analytic solutions and need to be solved
using iterative techniques. This method takes into account the degrees of
freedom of estimation of β when estimating the variance components and for
this reason it gives less biased estimators.

Henderson method III

ML and REML estimators of θ are typically obtained under the assump-
tion that the vector y has a multivariate normal distribution. In many cir-
cumstances, however, this assumption does not hold. An alternative method
which does not rely on the normality assumption and provides explicit so-
lutions to the variance components estimators is the Henderson method III.
This method works as follows. First, consider a general linear mixed model
y = Xβ+ e, where β might contain fixed and random effects. Let us split β
into two subvectors β = (β1,β2) and rewrite the model as

y = X1β1 + X2β2 + e. (10)

If we treat β1 and β2 as fixed, the total and residual sum of squares are
respectively
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SST = yT y and SSE(β1,β2) = yT Py,

where P = In −X(XT X)−1XT . The sum of squares of the regression is

SSR(β1,β2) = SST − SSE(β1,β2) = yT Qy, (11)

where Q = X(XT X)−1XT . Secondly, consider the reduced model

y = X1β1 + ε, (12)

considering β1 as fixed. The residual sum of squares is given by

SSE(β1) = yT P1y,

where P1 = In −X1(XT
1 X1)−1XT

1 . The sum of squares of the regression is

SSR(β1) = SST − SSE(β1) = yT Q1y,

where Q1 = X1(XT
1 X1)−1XT

1 . The reduction in sum of squares due to intro-
ducing X2 in the model with only X1 is

SSR(β2|β1) = SSR(β1,β2)− SSR(β1). (13)

Now consider model (2) and rewrite it as (10) taking β1 = β, β2 = u, X1 = X
and X2 = Z. This method calculates the expectations of (11) and (13) and
equates the sum of squares to their expectations obtaining two equations.
Solving for σ2

e and σ2
u in the resulting equations, we obtain unbiased estima-

tors for σ2
e and σ2

u (for more details see Searle et al. [15], chapter 5). Let ê
and ε̂ be the vectors of residuals of the submodels (10) and (12), respectively.
If rank(X) = p and rank(X|Z) = p + D, then the Henderson III estimators
of the variance components are given by

σ̂2
e =

∑D
d=1

∑nd

j=1 ê
2
dj

n− p−D
, σ̂2

u =

∑D
d=1

∑nd

j=1 ε̂
2
dj − σ̂2

e(n− p)
tr {ZT [I−X(XT X)−1XT ]Z} , (14)

where êdj is the residual corresponding to observation (xT
dj , ydj) in model (10)

and ε̂dj is the residual for the same observation but obtained from model (12).

4 Robust Estimation of Variance Components

In this section we introduce some new robust estimators of variance compo-
nents based on Henderson method III. We have chosen this method for three
reasons; first, because it provides explicit formulas of the estimators, fact
which will help to decrease the computational time; second, it does not need
the normality assumption; third, the estimation procedure consists simply of
solving two standard regression problems. Let us rewrite the estimators as
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σ̂2
e =

n[
∑D

d=1

∑nd

j=1 ê
2
dj/n]

n− p−D
, σ̂2

u =
n[
∑D

d=1

∑nd

j=1 ε̂
2
dj/n]− σ̂2

e(n− p)
tr {ZT [I−X(XT X)−1XT ]Z} , (15)

These two estimators contain in the numerator sample means of squared
residuals obtained from models (10) and (12) respectively. Then a small frac-
tion of outliers, even a single observation, might seriously affect these esti-
mators. To avoid this problem, we propose to use robust methods to fit the
two models (10) and (12) and then, replacing the means of squared residuals
in (15) by other more robust functions of residuals. Model (12) is a stan-
dard linear regression model, which can be robustly fitted using any method
available in the literature such as L1 estimation, M estimation or the fast
method of Peña and Yohai [12]. Model (10) is a model with a categorical
variable that distributes the observations into groups, which can be robustly
fitted using an adaptation of the principal sensibility components method of
Peña and Yohai [12] to the grouped data structure, or by the M-S estimation
of Maronna and Yohai [9]. These fitting methods would then provide better
residuals edj and εdj, which are in turn used to find robust estimators of the
variance components similar to (15). Below we describe different estimators
obtained using robust functions of these new residuals obtained using the
robust fit of models (10) and (12).

MADH3 estimators

In (15), we substitute the mean of the squared residuals by the square of the
normalized median of absolute deviations (MAD), given by

MAD = 1.481 ·Med(|ξ̂dj |, ξ̂dj 	= 0),

where ξ̂dj is the residual of observation (xT
dj , ydj) under the corresponding

fitted model, either (10) or (12). Then, our first robust proposal for the
estimation of the variance components is given by

σ̂2
e,MADH3 =

n[1.481 ·Medi(|êdj|, êdj 	= 0)]2

n− p−D
(16)

σ̂2
u,MADH3 =

n[1.481 ·Medi(|ε̂dj|, ε̂dj 	= 0)]2 − σ̂2
e,MADH3(n− p)

tr {ZT [I−X(XT X)−1XT ]Z} (17)

TH3 estimators

Trimming consists of giving zero weight to a percentage of extreme cases.
In this case, instead of this, in the two equations given in (15) we trim the
residuals that are outside the interval (b1, b2) with

b1 = q1 − k(q3 − q1) and b2 = q3 + k(q3 − q1). (18)

Here, q1 and q2 are the first and third sample quartiles of residuals and k is
a constant. Based on results obtained from different simulation studies, we
propose to use the constant k = 2, just slightly smaller than that one used
as outer frontier in the box-plot for detecting outliers.
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RH3 estimators

Instead of replacing extreme residuals by zero as in the previous proposal,
we can smooth the residuals appearing in (15) according to an appropriate
smoothing function. Here we consider the Tukey’s biweight function, given
by

Ψ(x) = x[1 − (x/k)2]2, if |x| ≤ k. (19)

5 Model Diagnostics

In this section we describe some diagnostics tools for the nested error model.
Considering that θ is known, the vector of predicted values is defined as

ỹ = (I−R)y,

where
R = V−1 −V−1X(XT V−1X)−1XT V−1. (20)

This relation evokes the definition of the hat matrix as

H = I−R.

The diagonal elements (1 − rdj) of matrix H are measures of the leverage
effect of the observations and are called leverages. Thus, Galpin and Zewotir
[5] proposed the use of the rdjs to identify influential observations. If rdj

approaches zero, this indicates that the corresponding observation (xT
dj , ydj)

has a large leverage effect.
Due to the data structure in nested error models, it seems more relevant to

study the leverage effect of full groups instead of isolated observations. Here
we define the leverage effect of group d as

hd = xT
d (XT V−1X)−1xd, d = 1, . . . , D, (21)

where xd = n−1
d

∑nd

j=1 xdj .
Concerning residuals, the i-th internally studentized residual is defined as

tdj =
edj√

var(edj)
=

edj

σe
√
rdj

(22)

In practice, the variance components involved in (20), (21) and (22) need to
be estimated. When there are outliers, these might affect the estimators of
variance components, and these in turn will change the distribution of stan-
darized residuals. Better versions of these diagnostic tools can be obtained
using the robust variance components estimators introduced in Section 4.
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6 Monte Carlo Simulation

In this section we describe a Monte Carlo simulation study that compares the
robust estimators of the variance components with the traditional ones. For
this, we generated data coming from D = 10 groups. The group sample sizes
nd, d = 1, . . . , D were respectively 20, 20, 30, 30, 40, 40, 50, 50, 60 and 60,
with a total sample size of n = 400. We considered p = 4 auxiliary variables,
and they were generated from normal distributions with means and standard
deviations coming from a real data set from the Australian Agricultural and
Grazing Industries Survey. Thus, the values of the four auxiliary variables
were generated respectively as X1 ∼ N(3.3, 0.6), X2 ∼ N(1.7, 1.2), X3 ∼
N(1.7, 1.6) and X4 ∼ N(2.4, 2.6).

The simulation study is based on L = 500 iterations. In each iteration, we
generated group effects as ud

iid∼ N(0, σ2
u) with σ2

u = 0.25. Similarly, we gen-
erated errors as edj

iid∼ N(0, σ2
e) with σ2

e = 0.25. Then we generated the model
responses ydj, j = 1, . . . , nd, d = 1, . . . , D, from model (1). Observe that in
principle there is no contamination. Finally, we introduced contamination
according to three different scenarios:

A. No contamination.
B. Groups with a mean shift: A subset Dc ⊆ {1, 2, . . . , D} of groups was

selected for contamination. For each selected group d ∈ Dc, half of the
observations were replaced by cd1 = ȳd + k sY,d and the other half by
cd2 = ȳd− k sY,d with k = 5, where ȳd and sY,d are respectively the mean
and the standard deviation of the outcome for the clean data in d-th
group. This increases the between group variability σ2

u.
C. Groups with high variability: A small percentage of contaminated observa-

tions was introduced in each selected group d ∈ Dc, similarly as described
in Scenario B. This increases the within group variability σ2

e .

After each iteration, we fitted the two models (10) and (12) using the pro-
cedure of Peña and Yohai [12], using in the first model an adaptation of
this method for grouped data. Then, we calculated the traditional estima-
tors H3, ML and REML, and the proposed robust estimators, MADH3, TH3
and RH3. After the L = 500 iterations, we computed their empirical bias
and mean squared error (MSE). Table 1 reports the resulting empirical bias
and percent MSE of each estimator under Scenario A, without contamina-
tion. Observe in that table that in absence of outlying observations, the tra-
ditional non-robust estimators, H3, ML and REML, provide the minimum
MSE, but the robust alternatives TH3 and RH3 are not too far away from
them. However, under Scenario B with full groups contaminated with a mean
shift (Tables 2 and 3), the estimators ML, REML and H3 of σ2

u increase con-
siderably their MSE. The estimator TH3 achieves the minimum MSE, fol-
lowed by RH3. Under Scenario C with contamination introduced to make the
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within cluster variability increase (Tables 4 and 5), now the estimators ML,
REML, and H3 of σ2

e increase considerably their MSE whereas the robust
estimator TH3 resists quite well.

Table 1. Theoretical values σ2
u = σ2

e = 0.25. Scenario 0: No contamination

Method Estimators Bias MSE ×102

σ̂2
u σ̂2

e σ̂2
u σ̂2

e σ̂2
u σ̂2

e

H3 0.24 0.25 -0.0081 0.0014 1.43 0.03
ML 0.22 0.25 -0.0298 -0.0011 1.16 0.03
REML 0.25 0.25 -0.0046 0.0014 1.32 0.03
MADH3 0.25 0.25 0.0041 0.0018 2.33 0.09
TH3 0.23 0.25 -0.0189 -0.0019 1.04 0.04
RH3 0.24 0.23 -0.0136 -0.0179 1.25 0.06

Table 2. Theoretical values σ2
u = σ2

e = 0.25. Scenario B: One outlying group

Method Estimators Bias MSE ×102

σ̂2
u σ̂2

e σ̂2
u σ̂2

e σ̂2
u σ̂2

e

H3 1.28 0.24 1.0286 -0.0095 123.73 0.04
ML 1.15 0.24 0.9000 -0.0120 123.27 0.04
REML 1.28 0.24 1.0285 -0.0096 123.38 0.04
MADH3 0.44 0.23 0.1884 -0.0169 7.84 0.10
TH3 0.24 0.24 -0.0089 -0.0142 1.25 0.05
RH3 0.46 0.22 0.2106 -0.0277 6.04 0.10

Table 3. Theoretical values σ2
u = σ2

e = 0.25. Scenario B: Two outlying groups

Method Estimators Bias MSE ×102

σ̂2
u σ̂2

e σ̂2
u σ̂2

e σ̂2
u σ̂2

e

H3 2.79 0.23 2.5375 -0.0242 715.98 0.08
ML 2.13 0.22 1.8807 -0.0266 495.49 0.10
REML 2.37 0.23 2.1179 -0.0242 500.14 0.08
MADH3 1.10 0.21 0.8529 -0.0437 91.67 0.25
TH3 0.27 0.22 0.0227 -0.0319 2.13 0.13
RH3 0.76 0.21 0.5088 -0.0412 31.52 0.19
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Table 4. Theoretical values σ2
u = σ2

e = 0.25. Scenario C: 10% of atypical observa-
tions shared among groups

Method Estimators Bias MSE ×102

σ̂2
u σ̂2

e σ̂2
u σ̂2

e σ̂2
u σ̂2

e

H3 0.23 0.60 -0.0175 0.3512 1.47 12.58
ML 0.21 0.60 -0.0397 0.3450 1.23 12.15
REML 0.24 0.60 -0.0144 0.3512 1.35 12.58
MADH3 0.28 0.27 0.0253 0.0198 2.78 0.14
TH3 0.24 0.25 -0.0073 -0.0012 1.17 0.04
RH3 0.22 0.30 -0.0266 0.0487 1.22 0.26

Table 5. Theoretical values σ2
u = σ2

e = 0.25. Scenario C: 20% of atypical observa-
tions shared among groups

Method Estimators Bias MSE ×102

σ̂2
u σ̂2

e σ̂2
u σ̂2

e σ̂2
u σ̂2

e

H3 0.22 0.93 -0.0268 0.6814 1.50 47.19
ML 0.20 0.92 -0.0489 0.6719 1.32 45.89
REML 0.23 0.93 -0.0236 0.6814 1.39 47.19
MADH3 0.30 0.29 0.0473 0.0406 3.48 0.29
TH3 0.25 0.25 0.0045 0.0003 1.27 0.04
RH3 0.21 0.37 -0.0400 0.1151 1.18 1.35

7 Discussion

In this work we present three robust versions of H3 estimators called MADH3,
TH3 and RH3 estimators. These robust estimators are obtained by first, fit-
ting in a robust way the two models (10) and (12), and then replacing the
means of squared residuals in H3 estimators by other robust functions of the
residuals coming from those robust fittings. In simulations we have analyzed
the robustness of our proposed estimators against two different kind of con-
tamination scenarios: when the between groups variability is increased by
including a mean shift in some groups, and when the within group variability
is increased by introducing given percentages of outliers shared among the
clusters. The new robust estimator TH3 gets the best results in these sim-
ulations, achieving great efficiency under both types of contamination but
preserving at the same time good efficiency when there is not contamination.
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Summary. The problem of missing data is often addressed with imputation.
Traditional single imputation methods, such as the ratio imputation, multi-
ple regression imputation, nearest neighbor imputation, respondent mean
imputation or hot deck imputation, have been widely used to compensate
for non-response. Nonparametric regression methods have been recently ap-
plied to the estimation of the regression function in a wide range of settings
and areas of research. The focus of this work is on replacing missing ob-
servations on a variable of interest by imputed values obtained from a new
algorithm based on Multivariate Adaptive Regression Splines. Some imputa-
tion methods can lead to serious underestimation for measures of population
distributions. This bias can be reduced by adding to the imputed values a
small disturbance drawn from a given distribution. Two different methods of
adding the random disturbance are also described. Numerical examples are
presented to illustrate the theoretical results and analyze the precision of the
proposed method.

1 Introduction

Information plays a very important role in our life. Scientists from different
research areas have developed methods to analyze huge amounts of data
and to extract useful information. Unfortunately, traditional methods usually
cannot deal directly with real-world data because of missing values.

Incomplete data sets are a commonplace problem in several areas of re-
search and in many applications. In fact, they can be encountered in a wide
range of fields, including social and behavioral sciences, biological systems
and computer vision. More examples can be found in clinical studies, in en-
gineering applications, in industrial and research databases, among others.

∗ The authors would like to thank the editors for this opportunity to contribute
to this volume in honour to Maŕıa Luisa Menéndez.
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Incomplete data sets are very common in statistical situations. They can
be a serious problem as standard statistical methods generally work with
complete data sets. For example, applying complete-data based methods with
this loss of scientific information may result in a loss of efficiency and in an
incorrect conclusion.

There exist many techniques to manage data with missing values, but no
one is absolutely better than the others. Different situations require different
solutions. Incomplete-data problems are often addressed with imputation,
which consists on replacing a missing value by a specific value obtained from
an imputation method. By treating these imputed values as true observa-
tions, traditional analysis may be carried out using the standard procedures
developed for data without any missing observations.

Single imputation methods have become one of the most popular tools uti-
lized to deal with non-response, which can be classified into two categories:
random and deterministic. Traditional single imputation methods include the
ratio imputation, multiple regression imputation, nearest neighbor imputa-
tion, respondent mean imputation and hot deck imputation (see e.g. Särndal
and Lundström [29], Schafer [28], Little and Rubin [17]). Comparisons of
several imputation methods are given by Montaquila and Ponikowski [19],
Hu et al. [15] and Nitter [21]. Iacus and Porro [16] describe applications of
regression tree to hot-deck missing data imputation. Ding and Simonoff [9]
consider popular missing data methods for classification tree algorithms ap-
plied to binary response. Other important related works in this area are given
by D’Ambrosio et al. [8] and Conversano and Siciliano [7].

The hot deck imputation is one of the most popular random imputation
methods in practice. The nearest neighbor imputation method consists on
imputing a non-respondent by a respondent from the same variable identified
by distance minimization. The nearest neighbor imputation method is used
in many survey agencies and it has a long history of application in surveys
conducted by Statistic Canada, the US Bureau of Labor Statistic and the US
Census Bureau. The nearest neighbor method does not assume a parametric
regression model, which implies that this method is more robust against
model violations than the methods based upon a linear regression model.
Chen and Shao [4] studied some theoretical results regarding the validity of
the nearest neighbor method.

The mean imputation method distorts substantially the distribution of the
data, and the concentration of all imputed values at the mean creates spikes in
the distribution. Also, the true variance can be seriously underestimated when
the mean imputation is used. An alternative is to use the ratio or regression
imputation methods, which have some relevant advantages in comparison
with the mean imputation method. For example, the ratio and regression
imputation methods provide imputed values with a larger variability, which
may reduce the aforementioned problems of spikes in the distribution and
the underestimation of the true variance.
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Multiple regression estimation is one of the most commonly used imputa-
tion methods. Nevertheless, this method is based on a parametric regression
model, and it states strong assumptions about the functional form of the
underlying regression function. When this assumption does not hold, non-
parametric methods are more appropriate, as only smoothing assumptions
over the regression function are made.

Nonparametric regression methods have been recently applied to the es-
timation of the regression function in a wide range of settings and areas of
research. In particular, the local linear kernel smoother (Ruppert and Wand
[27] and Fan and Gijbels [11], among others) is well known for its good theo-
retical and practical properties. Nevertheless, some nonparametric regression
methods like the above mentioned one do not perform well when the num-
ber of independent variables in the model is large. This problem is usually
referred to as the ’curse of dimensionality’.

Penalized splines regression or P-splines is a nonparametric regression
method developed by Eilers and Marx [10]. They are regression splines fit
by least squares with a more general roughness penalty than the original
smoothing spline. Hastie [14] and Marx and Eilers [18] illustrated their flex-
ibility for additive models and Breidt et al. [1] applied them to the survey
sampling setting. An overview of different applications of P-splines can be
found in Wand [31].

Multivariate Adaptive Regression Splines (MARS) were introduced by
Friedman [13] in the general context of multivariate nonparametric regres-
sion. It is a flexible tool that relies on an adaptive and recursive construction
of the system of basis functions. MARS can easily automate variable selec-
tion and can handle a large number of independent variables. They are an
attractive smoothing method, because of their flexibility and their potential
for application to different settings.

2 An Imputation Method Using MARS

Let U = {1, . . . , N} be the population of N units from which a random
sample s of fixed size n is drawn according to a specified sampling design d.
Let yj be the value of the response variable y for the unit j, and x1j , . . . , xkj

the corresponding values of the auxiliary variables x1, . . . , xk.
Let n2 be the number of missing values in a given sample s of size n. We

denote sr the set of observed data in s, of size n1 = n − n2. If j ∈ sr, yj is
an observed value of the study variable y. If j ∈ s− sr, the observation yj is
missing and will be estimated and denoted by ŷj .

We assume the following model:

yj = m(x1j , . . . , xkj) + ej , j = 1, . . . , N, (1)

where the ej , j = 1, . . . , N , are independent and identically distributed with
E(ej) = 0 and V ar(ej) = σ2, for j = 1, ..., N . The unknown regression
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function m(x) is defined over D ⊆ R
k. We use the MARS technique to

estimate this unknown regression function.
Assuming the recursive partitioning regression methodology (Morgan and

Sunquist [20] and Breiman et al. [2]), the estimation of m(x), say m̂(x), can
be expressed as

m̂(x) =
L∑

l=1

alBl(x), (2)

where L is the number of basis functions, Bl takes the form Bl(x) = I[x ∈ Rl],
where {Rl}L

1 are disjoint regions and I is the indicator function having the
value 1 if its argument is true and 0 otherwise. The aim of this method is
to adjust the coefficient values {al} l = 1, . . . , L to best fit the data and
to derive a data-driven set of basis functions. The partitioning is performed
through recursive splitting of the subregions. At each stage of the partitioning
all existing subregions (called ”parent” subregions) are split into two subre-
gions, so called ”daughter” subregions. The basis functions produced by this
method have the form

Bl(x) =
Kl∏

k=1

H
[
skl(xv(k,l) − tkl)

]
, (3)

where tkl are the knot locations, Kl is the number of factors, skl = ±1, v(k, l)
label the predictor variables.H is a step function defined by H(x) = I(x ≥ 0).

Recursive partitioning regression can be seen as a forward/backward re-
gression stepwise regression procedure giving rise to a local variable selection
method. It tends to overfit the data with a large model and then reduce it with
an backward stepwise strategy. Nevertheless, each basis function represents
disjoint regions, so removing a basis implies leaving a hole in the predic-
tor space and the model will predict a zero response. Hence, this stepwise
deletion basis strategy does not work, as it can not remove a basis without
seriously affecting the quality of the fit. Another limitation of the method is
that recursive partitioning regression models (2) are piecewise constant and
discontinuous at region boundaries, which has an effect on the accuracy of
the approximation.

MARS can be regarded as a series of generalization to recursive parti-
tioning regression. MARS produce continuous models by replacing the step
function with a continuous one. The continuous functions used are the two-
sided truncated splines, which are a mixture of functions of the form

b±q (x − t) = [±(x− t)]q+, (4)

where t is the knot location, q is the order of the spline and the subscript
indicates the positive part of the argument. Using the two-sided truncated
power basis, these multivariate spline basis functions are defined by

B
(q)
l (x) =

Kl∏
k=1

[
skl(xv(k,l) − tkl)

]q
+
,
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where tkl are the knot locations, Kl is the number of factors and skl = ±1.
Note that spline basis (3) are a subset of these basis (q = 0).

To improve the backward stepwise procedure of recursive partitioning re-
gression, MARS enlarges the eligible set to include each basis of the com-
plete tensor product. The simple constant basis function B1(x) = 1 is never
removed and unlike recursive partitioning regression, every basis functions
(parent and daughters) are eligible for the next stage of splitting. Hence, re-
moving a basis function does not produce a hole in the predictor space as
regions are not disjoint and overlap.

The resulting MARS estimator after these two algorithms is a model of
the form

m̂(x) = a0 +
L∑

l=1

al

Kl∏
k=1

[
skl(xv(k,l) − tkl)

]
+
, (5)

where al are the fitted coefficients of the basis function.
Now, we can calculate the ”predicted” value ŷj = m̂(xj) for each missing

value yj , with j ∈ s− sr.
The missing values can be replaced by the predicted values. However, if

we use ŷj as the imputed value, this method artificially reduces the variance
of the variable of interest. To overcome the underestimated variance issue,
we may add a small disturbance dj . Most often a normal distribution is used
to draw the random disturbance. Thus, we propose to generate d1j from a
normal distribution with a zero mean and a variance σ̂2 obtained from the
observed data, and the following complete set of observations of size n is
obtained

y∗1j =
{
yj j ∈ sr

ŷj + d1j j ∈ s− sr,

being ŷj = m̂(xj) the MARS estimated value of yj.
A second method of calculating the disturbance is to consider the normal-

ized residuals, i.e.,

d2j =
(yj − m̂(xj))2

σ̂2

(
1− k

n1

)−1/2

, j = 1, . . . , n1,

and the complete set of observations is now given by

y∗2j =
{
yj j ∈ sr

ŷj + d2j j ∈ s− sr,

Once the missing observations have been estimated, we have a complete set
of values, and standard complete-data methods of analysis can be therefore
used. In addition, parameters such as mean, variance and the distribution
function can be estimated by using the values of any of the variables y∗1
and y∗2 .
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We describe the algorithm including every required operation.

Step 1. Determine if there are missing values of the variable of interest.
Step 2. If Step 1 is true, then a selection of the auxiliary variables with

completed observations is performed. Then, go to Step 4.
Step 3. If Step 1 is false, standard complete data methods of analysis can

be used. Then, Halt.
Step 4. MARS estimation procedure (Friedman [13]), consisting of modifi-

cations to the recursive partitioning regression procedure:
• Use of truncated power basis functions (q = 1) instead of a step

function.
• Not removing the parent basis function B1 and making each basis

function eligible for further splitting.
Step 5. Generate disturbance d1j or d2j to obtain a complete set of obser-

vations y∗1j or y∗2j respectively, then Halt.

3 Some Numerical Examples

In this section, simulations studies are carried out to illustrate the perfor-
mance of the proposed imputation method under different scenarios.

We consider the random sample

(yj , xj , δj) , j = 1, . . . , N, (6)

where all the xj ’s are observed and δj = 0 if yj is missing and δj = 1
otherwise. By a purely nonparametric approach to (6), Chu and Cheng [6]
and Nitter [21] among others, assume that the data are missing completely at
random (MCAR). A relaxed version of MCAR is missing at random (MAR)
(Cheng [5] and Little and Rubin [17]). MAR assumes that there is a chance
mechanism p(x), such that

P (δ = 1 | X = x, Y = y) = P (δ = 1 | X = x) = p(x).

MCAR considers δ independent of both X and Y , for example, p(x) being a
constant between 0 and 1.

First, we consider a simulated population, where x is a standard normal
random variable, and y is obtained by assuming the model (1) with m(x) = x.
Following Cheng [5], the piecewise linear missing function

p(x) =

⎧⎨
⎩

0.9− 0.2|x| if |x| ≤ 4.5

0.1 otherwise

is considered.
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Simulation studies are based on R = 1000 samples drawn under sim-
ple random sampling without replacement. Missing values, with percentages
p = {10%, 30%, 50%}, are generated missing at random (MAR) according to
the probabilities given by p(x).

Various imputation methods are evaluated in the problem of the estima-
tion of the population mean Y = N−1

∑
i∈U yi. The proposed estimators

θ̂prop1 = n−1
∑

i∈s y
∗
1j and θ̂prop2 = n−1

∑
i∈s y

∗
2j based on the complete data

sets are empirically compared to the following estimators based on different
imputation methods. First, we consider the local linear kernel regression es-
timator (θ̂LL) (Fan and Gijbels [11], among others), which incorporates the
disturbance used by θ̂prop1. We also consider the hot-deck and the nearest-
neighbor imputation methods to obtain imputed values, and they are used
to obtain, respectively, the estimators (θ̂HD) and (θ̂NN ), which are calcu-
lated as θ̂prop1 after considering the corresponding imputed values. Finally,
imputed values are also obtained by using the regression imputation method,
which assumes the functional form of the underlying regression function to
be linear. The estimator based on regression imputation method is named
as θ̂reg.

The various imputation methods are compared to the estimator based on
the observed units, θ̂r = n−1

1

∑
i∈sr

yi, in terms of relative bias RB and
relative efficiency RE, where

RB(θ̂) = 100× 1
R

R∑
i=1

θ̂(si)− Y

Y
,

RE(θ̂) =
MSE(θ̂)

MSE(θ̂r)
=

∑R
i=1

(
θ̂(si)− Y

)2

∑R
i=1

(
θ̂r(si)− Y

)2 ,

being R the number of replications, MSE is the mean square error, and θ̂ is
the population mean estimator considered in the comparison.

The calculations, imputes values and estimators were obtained using the
R program and the mda package. Programming details are available from the
authors.

Tables 1 and 2 show the RE and the RB for the estimators obtained
from the different imputation methods. We observe that estimators based on
the proposed imputation method have a good performance in comparison to
theirs competitors.

The regression estimator (θ̂reg) performs better than the local linear kernel
regression smoother, since the regression model is well-specified. However, a
superior efficiency can be gained by the nonparametric regression estimators
when the model is misspecified.
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Table 1. Relative efficiency (RE) for the simulated population. The sample size is
n = 100.

p θ̂r θ̂prop1 θ̂prop2 θ̂LL θ̂reg θ̂HD θ̂NN

10% 1.00 0.75 0.66 0.81 0.69 0.78 0.70
30% 1.00 0.77 0.61 0.84 0.69 0.71 1.14
50% 1.00 0.46 0.36 0.50 0.44 0.42 1.57

Non-parametric estimators (θ̂prop1, θ̂prop2, θ̂LL) are clearly more efficient
than the estimator θ̂r, whereas estimators based on MARS (θ̂prop1, θ̂prop2)
are more efficient than the estimator based on local linear kernel regression
(θ̂LL). Proposed estimators are also more efficient than estimators θ̂HD and
θ̂NN . We also observe that θ̂prop2 is always the most efficient estimator.

Estimators are generally more efficient than θ̂r as the proportion of missing
data, p, increases. An exception is the estimator θ̂NN , which is even less
efficient than θ̂r when the p is larger than 30%.

Estimators give small values of RB, which indicates that they have a good
performance in term of bias. However, estimators θ̂prop1, θ̂prop2 and θ̂reg give
values of RB slightly smaller than the other estimators.

Table 2. Relative bias (RB) for the simulated population. The sample size is
n = 100.

p θ̂r θ̂prop1 θ̂prop2 θ̂LL θ̂reg θ̂HD θ̂NN

10% -0.28 -0.07 -0.05 -0.27 0.09 -0.48 -0.06
30% -0.70 -0.01 -0.09 -0.25 0.05 -0.80 -0.33
50% 0.56 0.04 -0.03 -0.29 0.05 -0.22 -0.37

The various imputations methods are now evaluated under three real-life
populations, which are described as follows. First, we considered the Cana-
dian Prestige Occupational population (Fox [12]). The variable of interest
is the Prestige score for occupation (Pineo et al. [22]), whereas the auxiliary
variables are the average education and the average income of 102 incumbents
in years. A scatter plot of this population is given by Figure 1.

The second population consists of 338 Sugar cane farms. The variable of
interest is income from cane and the auxiliary variables are the area assigned
for growing cane and the costs. This population was used by Chambers and
Dunstan [3] and by Rao, Kovar and Mantel [23]. This population is plotted
on Figure 2.

The third population comprises 281 Swedish municipalities and it was used
by Särndal et al. [30]. This population is named as MU284, and it involves
three auxiliary variables. The variable of interest is revenues from the 1985
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Fig. 1. Scatter plot for the Prestige population

Fig. 2. Scatter plot for the Sugar Cane population

municipal taxation and the auxiliary variables are the number of conservative
seats, the number of socialist seats in municipal councils in 1982 and the
number of municipal employees in 1984.

Imputation methods are again evaluated in the problem of the estimation
of the population mean Y . The aforementioned estimators are considered.
However, θ̂prop2 had the best performance among the non-parametric esti-
mators, and θ̂prop1 and θ̂LL are thus omitted. Missing data are selected for
each sample under a missing completely at random (MCAR) mechanism
and three proportions of missing values (constant values of p(x) in MCAR:
p = 0.1, p = 0.3 and p = 0.5) are considered.
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Tables 3, 4 and 5 show the values of RE obtained from the real populations.
We observe that estimators have negligible biases, with values of RB smaller
than 1%, and they are thus omitted.

Table 3. Relative efficiency (RE) for Prestige population. The sample size is
n = 40.

p θ̂r θ̂prop2 θ̂reg θ̂HD θ̂NN

10% 1 0.83 0.83 1.10 0.94
30% 1 0.62 0.67 1.16 0.93
50% 1 0.38 0.51 1 0.84

Table 4. Relative efficiency (RE) for Sugar cane population. The sample size is
n = 75.

p θ̂r θ̂prop θ̂reg θ̂HD θ̂NN

10% 1 0.92 0.93 1.10 0.96
30% 1 0.70 0.74 1.20 0.78
50% 1 0.46 0.54 1.01 0.60

Table 5. Relative efficiency (RE) for MU284 population. The sample size is n = 75.

p θ̂r θ̂prop θ̂reg θ̂HD θ̂NN

10% 1 0.87 0.88 1.15 0.87
30% 1 0.59 0.62 1.19 0.59
50% 1 0.42 0.44 1.01 0.43

Results derived from this simulation study indicate that the estimator
θ̂prop2 based on the proposed imputation method is more efficient than al-
ternative estimators for every population under study. As p increases, the
proposed estimator continues showing a satisfactory performance in compar-
ison to alternatives estimators.

4 Conclusion and Comments

Among modern strategies used to cope with missing data, a major problem
faced by survey statisticians, imputation is one of the most common. Our
goal in this chapter is to study the application of nonparametric methods to
the problem of imputation.

Multiple regression estimator (θ̂reg) performs well when the regression
model is well-specified. However, a superior efficiency can be gained by the
nonparametric based estimator when the model is misspecified. As the
superpopulation model is typically unknown, the proposed estimator is likely
to be a desirable choice for finite population parameter estimation.
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The proposed method has good flexibility, since it can handle large data
sets and is convenient for computer realization. The proposed method is based
on MARS, which is well-known for its easy applicability and advantageous
properties. We may conclude that the proposed method may be a good alter-
native to other classical imputation estimators. Moreover, it can be applied
to other areas of research and applications where incomplete data exists.

An alternative to single imputation is to use Multiple imputation (MI) (Ru-
bin [24], [25] and [26]). There are plenty of MI computational tools available
for creating multiple imputations, such as NORM (which performs MI under
a multivariate normal model and is free at http://www.stat.edu.psu/˜jls), S-
plus missing data library, Solas v3.0 (a commercial programme for imputing
binary and categorical variables), MICE (which incorporates many condi-
tional distributions and regression models for S-plus or R), among others.

MI is an attractive method, since it can be highly efficient even for small
values of M , the number of multiple imputations (only 3-5 imputations are
needed). Nevertheless, the first step of MI involves building an imputation
model, and the choice of a correct imputation model is one of the uncertainties
of the MI method. Although MI tends to correct itself from choosing an
imperfect one, the use of an appropriate model may improve the efficiency
of the imputation. Other limitations can be also observed by the MI. For
example, MI may not lead to consistent variance estimators for stratified
multistage surveys. Moreover, several statistical agencies seem to prefer single
imputation, mainly due to operational difficulties in maintaining multiple
complete data sets, especially in large-scale surveys.

Nonparametric regression methods are more flexible as they do not place
restrictions on the functional form of the regression function and they are
more efficient than parametric regression estimators when the parametric
model is incorrectly specified.
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Summary. In this paper, the effect of the domain geometry on the local reg-
ularity/singularity properties of the solution to the trace of a multifractional
pseudodifferential equation on a fractal domain is studied. The singularity
spectrum of the Gaussian solution to this type of models is trivial due to
regularity assumptions on the variable order of its fractional derivatives. The
theory of reproducing kernel Hilbert spaces (RKHSs) and generalized random
fields is applied in this study. Specifically, the associated family of RKHSs
is isomorphically identified with the trace on a compact fractal domain of a
multifractional Sobolev space. The fractal defect modifies the variable order
of weak-sense factional derivatives of the functions in these spaces. In the
Gaussian case, random fields on fractal domains having sample paths with
variable local Hölder exponent are introduced in this framework.

Keywords: fractal geometry, multifractional local Hölder exponent, multi-
fractional pseudodifferential operator, reproducing kernel Hilbert space.

1 Introduction

Heterogeneous fractal models were originally introduced to describe complex,
non-stationary, physical and enginering systems (see, for example, [22], [21]).
Special attention has been paid to modeling the spatial distribution of the
kinetic energy dissipation rate in fully developed turbulence ([10], [17], [35]).
We also highlight the characterization of pore systems in rocks ([39]); spa-
tial variability of bioactive marine sediments ([29]); spatial variability of soil
properties ([16], [19], [28], [42]); hydraulic conductivity ([55], [34]); scaling
of intrinsic permeability ([11]); fluctuations of geophysical fields ([36], [41],
[44]). Topography, earthquake activity and surface gravity over various scale
ranges also provide empirical evidence of multifractality ([31], [37], [58], and
especially [20]). Some recent developments on multifractal random measures
and processes include [8], [7], [2], [3], [4], and references therein.

In this paper, we consider the case where the heterogeneous fractality
of the physical law is altered by the fractal geometry of the disordered
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domain of definition. This issue has aroused great interest (see, for instance,
[18], [46], [50], [48], [54]), with a number of problems still remaining open.
The motivation of this paper lies on the need to characterize the influence
of a disordered (fractal) medium on the structure of a chaotic system gov-
erned by a multifractional pseudodifferential equation. The heterogeneous
fractality displayed by the solution to this equation is then affected by the
fractal dimension of the domain. We consider the theory of trace operators
on functional spaces (see [57]) for characterization of the properties of the
solution, which is introduced in a generalized random field framework. This
differs from the approaches where warped processes are considered (for exam-
ple, warped fractional Brownian motion or warped fractional Lévy motion;
see [43]). Specifically, we introduce a class of generalized random fields whose
reproducing kernel Hilbert space (RKHS) is isomorphic to the trace of a mul-
tifractional Sobolev space (see [23], [27]) on a fractal domain. Factorization
of the covariance is then established, allowing their characterization as solu-
tions of multifractional pseudodifferential equations on fractal domains (see
[51], for the fractal case, and [50], for the variable regularity order case on
R

n). Embeddings between fractional Besov spaces allow the strong-sense in-
terpretation of the results derived in the weak sense ([32], [57], [52]). Thus,
the weak-sense fractional variable order of differentiation of the solution is
interpreted in terms of its Hölder spectrum. The definition of a class of ran-
dom fields on fractal domains with increments having heterogeneous local
mean quadratic variation is then obtained. In particular, the multifractional
exponent of the associated variogram depends on the second-order variable
regularity order of the model and on the local dimension of the fractal
domain.

In the Gaussian case, the multifractional exponent of the variogram defines
the local regularity properties of the sample paths of the solution. The mod-
ulus of continuity of the sample paths then depends on the exponent of the
mean quadratic local variation of the increments (see [1]). The methodologi-
cal proposal made in this paper thus opens a new research line in relation to
the introduction of continuous multifractional Gaussian processes extending
fractional Brownian motion, e.g., multifractional Brownian motion (see [33],
[9]), and generalized multifractional Brownian motion (see [6], [5]).

The outline of the paper is as follows: In Section 2, the pseudoduality con-
dition introduced in [50] is reformulated in the context of fractal domains.
This condition is used to derive the isomorphic identification of the RKHS
of the generalized random field solution with the trace of a multifractional
Sobolev space on a fractal domain. Its characterization as the solution to a
multifractional psedodifferential equation on a fractal domain then follows
in Section 3. The spectral properties of the solution are given in Section
4. In Section 5, the Hölder continuity and regularity properties of the solu-
tion, in the second-order moment sense, and in the sample-path sense, for the
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Gaussian case, are derived. Some examples are considered in Section 6. Sec-
tion 7 provides a final synthesis and concluding remarks. Auxiliary definitions
and results on multifractional Sobolev spaces, multifractional pseudodifferen-
tial operators, and trace operators on fractals are provided in the Appendix.

2 Reproducing Kernel Hilbert Spaces of Variable
Order on Fractal Domains

The trace theorems on compact fractal domains formulated in [57] (see also
Appendix) lead to the identification of the multifractional Sobolev space
Hs(·)(M) as the trace of Hs(·)+ n−α

2 (Rn) on the fractal domain M, with
n−α

2 denoting the fractal deffect of the domain M, and s ∈ R representing
the weak-sense variable order of differentiation of the functions belonging
to Hs(·)(M). Our present objective, in this section, is to identify isomorphi-
cally the RKHS of the random solution to a multifractional pseudodifferential
equation on a compact fractal domain (a special case of d−set, with d = α;
see Appendix) with the trace space Hs(·)(M), for s ∈ R. This identification
allows to establish the continuous extension of the solution to R

n, in the
second-order moment sense, that is, its extension is defined as a second-order
random field with RKHS isomorphic to the multifractional Sobolev space
Hs(·)+ n−α

2 (Rn). In the Gaussian case, the extension operator can also be
applied to the sample paths for their characterization over R

n.

Let us consider for the base complete probability space (Ω,A, P ), the space
L2(Ω,A, P ) defined as the Hilbert space of real-valued zero-mean random
variables defined on (Ω,A, P ) with finite second-order moment and with the
inner product

< X,Y >L2(Ω)= E[XY ], X, Y ∈ L2(Ω,A, P ). (1)

Definition 1. (See [50]) Let β(·) be a real-valued function in B∞(Rn), and
let Xβ(·) be defined from H−β(·)(Rn) into L2(Ω,A, P ). We say that Xβ(·) is
a fractional generalized random field of variable order (FGRFVO) β(·) if it
is linear and continuous, in the mean-square sense, with respect to the norm
defined on H−β(·)(Rn).

We consider the Hilbert space H
(
Xβ(·)

)
, which is defined as the closed

span in the L2(Ω,A, P )−topology of the random components of Xβ(·). The
covariance function Bβ(·) of Xβ(·) defines a positive, symmetric and contin-
uous operator of variable order Rβ(·) : H−β(·)(Rn) −→ Hβ(·)(Rn) by the
identity

Bβ(·)(f, g) = E
[
Xβ(·)(f)Xβ(·)(g)

]
= Rβ(·)(f)(g)

= 〈
[
Rβ(·)(f)

]∗
, g〉H−β(·)(Rn), (2)
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for all f, g ∈ H−β(·)(Rn). We refer to Rβ(·) as the covariance operator of Xβ(·),
which generates the RKHS H(Xβ(·)) of Xβ(·), constituted by the functions of
Hβ(·)(Rn) defined from the elements of H(Xβ(·)) as follows:

φ(f) = E
[
XXβ(·)(f)

]
, ∀f ∈ H−β(·)(Rn), for a certain X ∈ H(Xβ(·)). (3)

The RKHS H(Xβ(·)) is isometric to the dual of the Hilbert space H(Xβ(·));
thus, each function in this space defines an element of the dual of H(Xβ(·)).

Definition 2. (See [50]) Let β(·) be as given in Definition 1. We say that
X̃β(·) : Hβ(·)(Rn) → L2 (Ω,A, P ) is a pseudodual generalized random field
of variable order for the FGRFVO Xβ(·) if the following conditions hold:

i) X̃β(·) is linear and continuous, in the mean-square sense, with respect to
the norm defined on Hβ(·)(Rn);

ii) the space H
(
X̃β(·)

)
coincides with the space H

(
Xβ(·)

)
, and

iii)for all φ ∈ Hβ(·)(Rn) and g ∈ H−β(·)(Rn), the inner product〈
Xβ(·) (g) , X̃β(·) (φ)

〉
H(Xβ(·))

is given by

〈
Xβ(·) (g) , X̃β(·) (φ)

〉
H(Xβ(·))

= X̃β(·) (φ)
[
Xβ(·) (g)

]
= [(I + R)g] (φ)

= [(I + R)∗φ] (g), (4)

where R ∈ S−∞
ρ,δ =

⋂
m∈R

Sm
ρ,δ, for certain δ and ρ with 0 ≤ δ < ρ ≤ 1.

Here, A∗ denotes the formal adjoint of the operator A.

The following Hilbert spaces are also considered:

H
(
X̃β(·)

)
= spL2(Ω,A,P )

{
X̃β(·)(φ) : φ ∈ Hβ(·)(Rn)

}
, (5)

and the associated RKHS H(X̃β(·)), isometric to the dual space of H(X̃β(·)),
constituted by the functions f ∈ H−β(·)(Rn) satisfying

f(φ) = E
[
Y X̃β(·)(φ)

]
, ∀φ ∈ Hβ(·)(Rn), for a certain Y ∈ H(X̃β(·)). (6)

The space of distributions H−β(·),M(Rn) of variable weak-sense order of dif-
ferentiation β(·) with compact support contained in M is now introduced as
the space of test functions needed for the definition of the trace on a fractal
domain M of a FGRFVO Xβ(·) defined on H−β(·)(Rn).

Definition 3. Let M be a compact fractal domain with local dimension given
by the singularity exponent α of μM, the fractal measure with support M (see
Appendix), and let Xβ(·) be a FGRFVO with variable mean-square regularity
order β(·). For β(·) = s(·) + n−α

2 , the restriction XM
s(·) of Xβ(·) to M is

defined as
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XM
s(·)(f) = Xβ(·)(f), ∀f ∈ H−β(·),M(Rn).

We refer to XM
s(·) as the trace on the compact fractal domain M of Xβ(·), in

the second-order moment sense.

The existence of a pseudodual generalized random field with variable weak-
sense second-order of differentiation, and with support contained in the frac-
tal domain M, allows the derivation of a covariance factorization and white-
noise multifractional filter representation on fractal domains.

Definition 4. For β(·) = s(·) + n−α
2 , we say that X̃M

s(·) : Hs(·)(M) −→
L2(Ω,A, P ), with support contained in the compact fractal set M, is the
pseudodual of XM

s(·) if it satisfies the following conditions:

i) X̃M
s(·) is continuous, in the mean-square sense, with respect to the norm

defined on Hs(·)(M);
ii) H

(
XM

s(·)
)

= H
(
X̃M

s(·)
)
, and

iii)< XM
s(·)(f), X̃M

s(·)(φ) >
H
(

XM
s(·)

)=
∫
M(I + R)(f)(z)φ(z)μM(dz), for φ ∈

Hs(·)(M) and f ∈ H−β(·),M(Rn), where μM is the fractal measure with
singularity exponent α defining the local dimension of the fractal compact
set M, and R is as given in Definition 2.

Note that the spacesH
(
XM

s(·)
)

andH
(
XM

s(·)
)
, as well as the spacesH

(
X̃M

s(·)
)

and H
(
X̃M

s(·)
)
, are defined as before, for a FGRFVO and its pseudodual,

considering the spaces H−β(·),M(Rn) and Hs(·)(M) instead of the spaces
H−β(·)(Rn) and Hβ(·)(Rn) = [H−β(·)(Rn)]∗, respectively.

The pseudoduality condition on fractal sets, introduced in Definition 4,
allows the definition of a bounded parametrix on M for the following opera-
tors:

JM : H
(
XM

s(·)
)
−→ H

(
XM

s(·)
)
⊆ Hs(·)(M), and (7)

J ′
M : H

(
X̃M

s(·)
)
−→ H

(
X̃M

s(·)
)
⊆ H−β(·),M(Rn), (8)

respectively defined as

X −→ JM[X ] = ϕX with ϕX(f) = EXXM
s(·)(f), f ∈ H−β(·),M(Rn), and

Y −→ J ′
M[Y ] = gY with gY (φ) = EY X̃M

s(·)(φ), φ ∈ Hs(·)(M).

Specifically, the pseudoduality condition means that

JM
(
X̃M

s(·)(φ)
)

= (I + R)∗(φ), ∀φ ∈ Hs(·)(M), and

J ′
M
(
XM

s(·)(f)
)

= (I + R)(f), ∀f ∈ H−β(·),M(Rn), (9)
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where, as before, ∗ stands for the formal adjoint. Furthermore, from the
definition of RKHS,

J−1
M RXM

s(·)
(f) = XM

s(·)(f), ∀f ∈ H−β(·),M(Rn), and

(J ′
M)−1RX̃M

s(·)
(φ) = X̃M

s(·)(φ), ∀φ ∈ Hs(·)(M). (10)

Equations (9) and (10) lead to the identities

J ′
MJ−1

M RXM
s(·)

(f) = (I + R)(f), ∀f ∈ H−β(·),M(Rn), and

JM(J ′
M)−1RX̃M

s(·)
(φ) = (I + R)∗(φ), ∀φ ∈ Hs(·)(M). (11)

From the pseudoduality condition, we also have

J−1
M (I + R)∗(φ) = [J ′

M]∗ (φ), ∀φ ∈ Hs(·)(M), and

JM [J ′
M]∗ = (I + R)∗. (12)

Similarly, we have
J ′
MJ∗

M = (I + R). (13)

From equations (11), (12) and (13), we obtain

RXM
s(·)

= JMJ∗
M, and

RX̃M
s(·)

= J ′
M[J ′

M]∗. (14)

The RKHS of XM
s(·) coincides, as a set of functions, with the space Hs(·)(M),

since by definition H
(
XM

s(·)
)
⊆ Hs(·)(M) ⊆ (I + R)∗(Hs(·)(M)), and from

the pseudoduality condition,

JM
(
X̃M

s(·)(φ)
)

= (I + R)∗(φ), ∀φ ∈ Hs(·)(M). (15)

Thus, (I+R)∗(Hs(·)(M)) ⊆ H
(
XM

s(·)
)
. The spaces H

(
XM

s(·)
)

and Hs(·)(M)
are also isomorphically related by the identity operator (see Proposition 1
below). Similarly, an isomorphic relationship can also be established between
H
(
X̃M

s(·)
)

and H−β(·),M(Rn) from the identity

J ′
M
(
XM

s(·)(f)
)

= (I + R)(f), ∀f ∈ H−β(·),M(Rn),

and the ellipticity of J∗
M is obtained from the mean-square continuity of X̃M

s(·).
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3 Multifractional White-Noise Filter Representation
on Fractal Domains

The FGRFVOs XM
s(·) and X̃M

s(·) admit a linear multifractional pseudodifferen-
tial representation in terms of generalized white noise and the multifractional
pseudodifferential operators J ′

M and JM, respectively, involved in the covari-
ance factorizations obtained in the previous section.

The space L2
μM(M) of square integrable functions with respect to the

fractal measure μM defines the RKHS of a white-noise process εμM on a
compact fractal domain M. The following relationships then hold between
the Hilbert spaces of random variables and the RKHSs associated with εμM ,

XM
s(·) and X̃M

s(·) :

H
(
XM

s(·)
)

≡
JM

H
(
XM

s(·)
)
�
i

Hs(·)(M) ≡
[〈Dx〉s(·)]

μM

L2
μM(M) ≡

J0
H(εμM), and

H
(
X̃M

s(·)
)

≡
J′
M

H
(
X̃M

s(·)
)
�̃
i

H−β(·),M(Rn) ≡
[〈Dx〉−β(·)]

μM

L2
μM(M) ≡

J0
H(εμM),

(16)

where

J0X(g) = E [XεμM(g)] , ∀g ∈ L2
μM(M) and X ∈ H (εμM) .

The following result provides the linear filters relating the FGRFVOs Xs(·)
and X̃s(·) with white noise.

Proposition 1. Under the pseudoduality condition given in Definition 4, the
following white-noise linear filter representations on the fractal domain M
hold:

XM
s(·)LMf =

m.s.
εμM ((I + R)f) , ∀f ∈ L2

μM(M), and (17)

X̃M
s(·)L̃Mg =

m.s.
εμM ((I + R)∗g) , ∀g ∈ L2

μM(M), (18)

where

LM = J ′
MJ−1

0 , and (19)

L̃M = JMJ−1
0 , (20)

with J0 representing the isometric isomorphism between the spaces H(εμM)
and H(εμM) = L2

μM(M).

Proof. Operators J ′
M and JM can be composed with the operator J−1

0 from
the identifications given in equation (16).
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From condition (iii) of Definition 4, for all f, g ∈ L2
μM(M), the following

identities hold:〈
XM

s(·)
(
[(I + R)]−1

J ′
MJ−1

0 f
)
, XM

s(·)
(
[(I + R)]−1

J ′
MJ−1

0 g
)〉

H(Xs(·))

=
〈
J−1

0 f, J−1
0 g

〉
H(εμM )

= 〈εμM(f), εμM(g)〉H(εμM) .

(21)

From equation (21),

XM
s(·)

(
[(I + R)]−1

J ′
MJ−1

0 f
)

=
m.s.

εμM(f), ∀f ∈ L2
μM(M).

That is,

XM
s(·)(g) =

m.s.
εμM

(
J0 [J ′

M]−1 (I + R)(g)
)
, ∀g ∈ H−β(·),M(Rn).

Hence,

XM
s(·)

(
J ′
MJ−1

0 f
)

=
m.s.

εμM ((I + R)f) , ∀f ∈ L2
μM(M).

Equation (18) can be obtained in a similar way from condition (iii) of
Definition 4.

From the above result, the factorization of the bicontinuous covariance oper-
ator RXM

s(·)
can also be rewritten as

RXM
s(·)

= L̃ML̃∗
M;

similarly,
RX̃M

s(·)
= LML∗

M.

4 Second-Order Spectral Properties

Examples of multifractional pseudodifferential models on compact fractal do-
mains can be constructed as restrictions to such domains of elliptic pseudodif-
ferential operators of variable order (see [23] for the definition and properties
of these operators on R

n), and of equivalent versions of such operators in the
class described in [50]. The compactness of the restrictions comes from the
compactness of the fractal domain. Their continuous spectra are then empty
and they have pure point spectra.

The covariance operators RXM
s(·)

and RX̃M
s(·)

generate closed bilinear forms
which are respectively equivalent to the ones defining the inner products in
the spaces H−β(·),M(Rn) and Hs(·)(M). Hence, their spectral properties are
equivalent to the spectral properties of the pseudodifferential operators of
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variable order generating the inner products in such spaces. Specifically, the
eigenvalues

{
λk

(
RXM

s(·)

)
: k ∈ N

}
of RXM

s(·)
then satisfy

k−2 s
α ≤ λk

(
RXM

s(·)

)
≤ k−2 s

α , k ∈ N,

and similarly, the eigenvalues of RX̃M
s(·)

satisfy

k2 s
α ≤ λk

(
RX̃M

s(·)

)
≤ k2 s

α , k ∈ N,

where
s = sup

x∈M
s(x) s = inf

x∈M
s(x).

In the case where s > α/2, with 0 < α < n, we have
∑
k∈N

∣∣∣λk

(
RXM

s(·)

)∣∣∣ ≤∑
k∈N

k−2s/α <∞, (22)

which means that RXM
s(·)

is in the trace class.

5 Hölder Continuity of the Solution to Multifractional
Equations on Fractals

In this section we consider the case where the functions of the RKHSH
(
XM

s(·)
)

are Hölder continuous. Specifically, we consider the case where

s = inf
x∈M

s(x) > α/2. (23)

In this case, the multifractional pseudodifferential white-noise filter (17) de-
fines a mean-square Hölder continuous ordinary solution with global Hölder
exponent s − α/2. The local Hölder exponent, in the second-order moment
sense, that is, the local Hölder exponent of the functions in the RKHS, is given
by the function s(·)− α/2, which can be computed from the multifractional
exponent defining the local behaviour of the variogram (see Proposition 2
below).

In the Gaussian case, the local exponent of mean quadratic variation of
the increments can be related to the sample-path Hölder continuity (see [1]).
Hence, Gaussian multifractional models on fractals can be introduced in the
sample-path sense within this framework.

Proposition 2. Assume that the pseudoduality condition and condition (23)
hold. Then, there exists a unique mean-square Hölder continuous ordinary
random field XM

s(·) satisfying

L∗
MXM

s(·)(x) =
m.s.

εμM(x), ∀x ∈M. (24)
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The local mean quadratic variation of its increments is defined from the func-
tion 2s(·)− α. That is,

E
[
XM

s(x+h)(x + h)−XM
s(x)(x)

]2
≤ C‖h‖2sh(x)−α, C > 0,

where
sh(x) = inf

y∈M∩Λh(x)
s(y),

with Λh(x) representing a neighborhood of radius |h| at the point x.

Proof. From the embedding theorems between Besov spaces on fractal do-
mains (see, for example, [57]), the RKHS H

(
XM

s(·)
)

of XM
s(·) is continuously

embedded into the space Cs−α/2(M) of Hölder continuous functions of order
s − α/2 restricted to M. Therefore, the functions in the RKHS are Hölder
continuous of order s − α/2 on M. Equivalently, the random field solution
XM

s(·) of equation (24) is Hölder continuous of order s − α/2, in the mean-
square sense. Hence, the weak-sense multifractional pseudodifferential repre-
sentation on fractals derived in Section 3 becomes ‘strong-sense’. Note that,
from equation (22), the ordinary continuous random field XM

s(·) is constructed
from white noise, in terms of the kernel factorizing its covariance function by
self-convolution. This is the kernel of the covariance operator RXM

s(·)
.

The local exponent of the mean quadratic local variation of the increments
of XM

s(·) coincides with the local Hölder exponent of its covariance function,
given by 2[s(·) − α/2], with s(·) − α/2 denoting, as before, the local Hölder
exponent of the functions in the RKHS H(XM

s(·)) of XM
s(·). That is,

E
[
XM

s(x+h)(x + h)−XM
s(x)(x)

]2
≤ C‖h‖2sh(x)−α,

for a certain positive constant C.

Remark 1. From Proposition 2, using the results of [1], for any ε > 0, the fol-
lowing inequality holds with probability one for the sample paths of a Gaus-
sian random field X with RKHS isomorphic to the trace space Hs(·)(M) :

sup
|x|<δ

|X(x0 + x)−X(x0)| ≤ Zδs(x0)−α/2−ε, δ −→ 0, ∀x0 ∈ R
n, (25)

where Z is an almost surely finite random variable.

Remark 2. The results derived in this section reveal the fact that the het-
erogeneous Hölder exponent of the random field solution to a multifractional
pseudodifferential equation is modified by the fractality order of the domain,
in the sense of increasing the heterogeneous local singularity of its sample
paths in the Gaussian case. Therefore, chaotic systems are affected by the
singularity of the physical law governing them, and by the local fractal dimen-
sion (local singularity of the support measure) of the domain of definition.
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6 Examples

To illustrate the results established in this paper, in this section, some ex-
amples of multifractional Gaussian random fields on fractals are constructed.
The corresponding multifractional pseudodifferential equation on a fractal is
derived from its covariance factorization.

Example 1.
∑

σ(·)∈CF ⊂B∞(Rn)

aMσ(·)(·)〈D·〉σ(·) · trMXs(·) =
m.s.

εμM , (26)

where εμM represents, as before, generalized white noise on L2
μM(M), aMσ(·)(·)

denotes a distribution with variable local singularity order −σ restricted to
the compact setM, s(·) = σ(·)− n−α

2 , and trM denotes the trace operator on
the fractal set M. Here, the multifractional operators involved are defined as
in equation (34), and CF denotes a finite subset of B∞(Rn). The functional
exponent σ(·) characterizing the local singularity order of the variogram of
the solution on R

n is modified by he local dimension α of the fractal domain
M where its restriction is defined.

Example 2.
(−Δ)γ(·)/2trMXγ(·) =

m.s.
εμM , (27)

where (−Δ)γ(·)/2 is the negative Laplacian of variable order γ(·)/2, with γ ∈
B∞(Rn). Here, the continuous solution of this equation is derived pointwise
when γ > α/2. In this case, the trace of the covariance operator is finite, and
the decay velocity of its eigenvalues depends on the singularity order γ(·) and
on the fractal local dimension α of the domain M.

Example 3.
〈D·〉s(·)(−Δ)γ(·)trMXs(·)+γ(·) =

m.s.
εμM , (28)

where the multifractional operators of variable order involved are as given
in Examples 1 and 2. Note that the multifractional exponent defining the
variable fractality order of Xs(·)+γ(·) is given in terms of 2(s(·)+γ(·)), and the
multifractional exponent defining the slow decay of the covariance function
of Xs(·)+γ(·) is given in terms of γ(·), both of them modified by the local
dimension α of the multifractal domain M. This model family is of special
interest in the context of heterogeneous anomalous diffusion processes on
disordered media.

Example 4.
Qq(·)(A)trMX−[q(·)−p(·)]s(·) = Pp(·)(A)εμM , (29)

where Q/P is an elliptic rational function with variable order q(·)/2− p(·)/2
of an elliptic self-adjoint pseudodifferential operator A of variable order s(·).
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This class of models extends the one introduced in [45] to the multifractional
context on fractal domains. Indeed, the trace on a fractal domain M of the
pseudodifferential operator A leads to the compactness of operator

Pp(·)(A)
Qq(·)(A)

,

and to the compactification of its continuous spectrum, which becomes a pure
point spectrum, constituted by the eigenvalues with asymptotic exponent
defined in terms of

[q(·)− p(·)]s(·) − n−α
2

α
.

7 Conclusion

In this paper, a class of multifractional random systems on fractals is in-
troduced, in the weak-sense, using the theory of generalized random fields
and their associated RKHSs. The characterization of the singular features
introduced by the fractal geometry of the domain, altering the exponent of
fractal heterogeneity of the random field solution originally defined on R

n, is
achieved through the application of trace theorems of Besov spaces on fractal
domains, and the pseudoduality condition introduced in [50]. The identifica-
tion of a new family of RKHSs allows to derive the local regularity properties
of the solution. In the Gaussian case, the regularity properties of the sample
paths of the solution are also derived.

Since the study is developed in the context of fractional Sobolev spaces of
variable order, the smoothness of the functions defining such orders does not
allow the introduction of multifractality or of a solution class with a nontrivial
singularity spectrum. This is one of the limitations of this framework. In
return, the explicit determination of the regularity properties of the solution,
which is non-stationary and displays heterogeneous fractality, is obtained.
Additionally, in the Gaussian case, it is proved that the fractal geometry of
the domain affects the local regularity of the sample paths of the solution,
increasing their erraticity.

This work confirms the conjecture that complex systems, like the ones
introduced in terms of multifractional pseudodifferential equations, become
highly singular when their restrictions to a fractal domain is considered, in-
creasing the local singularity of the support measure (defining the geometry
of the domain). This fact is reflected in both the spectral and sample-path
properties of the solution, in the Gaussian case.
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Appendix

The main functional tools applied in the development of this paper consist
of elements of the theory of fractional Sobolev spaces of variable order, and
fractal measures with support given by a compact d−set, 0 < d < n, as well
as the trace theorems of functional spaces on these sets. In this Appendix,
we collect all this material to facilitate the reading and understanding of this
paper. First, we introduce the main definitions and results from the theory
of fractional Sobolev spaces of variable order, and multifractional psedodif-
ferential operators.

Let δ and ρ be real numbers with 0 ≤ δ < ρ ≤ 1, and let σ be a real-valued
function in B∞(Rn), the space of all C∞−functions on R

n whose derivatives
of all orders are bounded. We say that a function p(x, ξ) ∈ B∞

(
R

n
x × R

n
ξ

)
belongs to Sσ

ρ,δ if and only if for any multi-indices α and β there exists some
positive constant Cα,β such that

|Dα
ξD

β
xp(x, ξ)| ≤ Cα,β〈ξ〉σ(x)−ρ|α|+δ|β|, (30)

where Dα
ξ and Dβ

x respectively denote the derivatives with respect to ξ and
x, and 〈ξ〉 = (1 + |ξ|2)1/2. The following semi-norm is considered for the
elements of Sσ

ρ,δ :

|p|(σ)
l = max|α+β|≤l sup(x,ξ)∈Rn×Rn

{
|Dα

ξD
β
xp(x, ξ)|〈ξ〉−σ(x)+ρ|α|−δ|β|

}
.

Definition 5. ([26], [27]) For u ∈ S(Rn), the set of rapidly decreasing
Schwartz functions, and p ∈ Sσ

ρ,δ, let P : S(Rn) −→ S(Rn) be defined as

Pu(x) = (2π)−n
∫

Rn

eixξp(x, ξ)û(ξ)dξ, (31)

where û(ξ) =
∫

Rn e
−ixξu(x)dx is the Fourier transform of u. We refer to

P = p(x, Dx) as a pseudodifferential operator of variable order with symbol
p ∈ Sσ

ρ,δ. The set of all pseudodifferential operators with symbol p of the class
Sσ

ρ,δ is denoted by Sσ
ρ,δ.

A pseudodifferential operator P ∈ Sσ
ρ,δ is elliptic if there exist c > 0 and

M > 0 such that
|p(x, ξ)| ≥ c〈ξ〉σ(x), |ξ| ≥M. (32)

Furthermore, Q ∈ S∞
ρ,δ =

⋃
m∈R

Sm
ρ,δ is said to be a left (resp. right)

parametrix of P if there exists RL ∈ S−∞
ρ,δ =

⋂
m∈R

Sm
ρ,δ (resp. RR ∈ S−∞

ρ,δ =⋂
m∈R

Sm
ρ,δ) such that

QP = I + RL (resp. PQ = I + RR),

where I denotes the identity operator. A pseudodifferential operator Q is a
parametrix of P if Q is simultaneously a left and right parametrix of P.
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Definition 6. Let σ be a real-valued function in B∞(Rn). The Sobolev space
of variable order σ on R

n is defined as

Hσ(·)(Rn) =

{
u ∈ H−∞ =

⋃
s∈R

Hs(Rn) : 〈D·〉σ(·)u ∈ L2(Rn)

}
, (33)

where
〈Dx〉σ(x)u = (2π)−n

∫
Rn

exp(ixξ)〈ξ〉σ(x)û(ξ)dξ, (34)

with 〈ξ〉 = (1 + |ξ|2)1/2, as before, and

Hs(Rn) =
{
u ∈ S′(Rn) : 〈Dx〉su ∈ L2(Rn)

}
.

In the following we write σ = inf
x∈Rn

σ (x) .

Proposition 3. ([27]) The above-introduced fractional Sobolev spaces of vari-
able order satisfy the following properties:
(i) If u ∈ Hσ(·)(Rn), then, for P ∈ Sσ

ρ,δ, Pu ∈ L2(Rn).
(ii) Let σ1 and σ2 be functions in B∞(Rn) with σ1(x) ≥ σ2(x) for each
x ∈ R

n. Then Hσ1(·)(Rn) ⊂ Hσ2(·)(Rn). In particular, Hσ(·)(Rn) ⊂ Hσ(Rn).
(iii) Hσ(·)(Rn) is a Hilbert space with the inner product

〈u, v〉Hσ(·)(Rn) =
∫

Rn

(
〈Dx〉σ(x)u

)
(x)

(
〈Dx〉σ(x)v

)
(x)dx

+
∫

Rn

(〈Dx〉σu) (x)(〈Dx〉σv) (x)dx. (35)

Moreover, S(Rn) is dense in Hσ(·)(Rn).
(iv) Let σ and τ be functions in B∞(Rn). Suppose that P ∈ Sσ

ρ,δ. Then,
there exist some constant C > 0 independent of P and some positive integer
l depending only on σ, τ, ρ, δ, and n such that

‖Pu‖Hτ(·)(Rn) ≤ C|p|(σ)
l ‖u‖Hσ(·)+τ(·)(Rn),

for u ∈ Hσ(·)+τ(·)(Rn), which provides the continuity of P from Hσ(·)+τ(·)(Rn)
into Hτ(·)(Rn).

Theorem 1. ([27]) Let P ∈ Sσ
ρ,δ be elliptic. Then

Hσ(·)(Rn) =
{
u ∈ H−∞(Rn) : Pu ∈ L2(Rn)

}
(36)

as a set. Moreover, the norm ‖u‖Hσ(·)(Rn) is equivalent to the norm

‖u‖Hσ(·),P (Rn) :=
(
‖Pu‖2L2(Rn) + ‖u‖2Hσ(Rn)

)1/2

. (37)

The following statement on embeddings and lifting properties for fractional
Sobolev spaces of variable order on Lp(Rn) holds (see [23]).
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Theorem 2. Let 1 < p < ∞ and j ∈ N, and let σ(x) = s + ψ(x), with
ψ ∈ S(Rn), satisfy 0 < m′ ≤ σ(x) ≤ m ≤ 2 for all x ∈ R

n. Then the
following assertions hold:
(i) The space

Hj,σ(·)
p (Rn) =

{
f ∈ S′(Rn) : 〈Dx〉jσ(x)f ∈ L2(Rn)

}

is a Banach space and C∞
0 (Rn) is dense in this space.

(ii) For m′j > n/p, the embedding of Hj,σ(·)
p (Rn) into C∞(Rn) is continuous.

The main elements and results of the theory of fractal compact d−sets and
trace theorems of Sobolev spaces on such sets are now introduced.

Definition 7. ([57], pp. 1-5) Let Γ be a set in R
n (n ∈ N). Then Γ is called

a d−set, with 0 ≤ d ≤ n, if there exists a Borel measure μΓ in R
n with the

following two properties:
(i) supp μΓ = Γ ;
(ii) there are two constants c1 > 0 and c2 > 0 such that, for all γ ∈ Γ and

all r with 0 < r < 1, c1rd ≤ μΓ (B(γ, r) ∩ Γ ) ≤ c2r
d, where B(γ, r) is the

closed ball in R
n centred at γ and with radius r.

In the development below we consider compact d−sets in the sense of the
above definition.

We first consider the classical definitions of fractional Sobolev spaces on
R

n and on a domain S of R
n. We denote by D (Rn) the space of infinitely

differentiable functions with compact support contained in R
n, and by S (Rn)

the subspace of C∞−functions with rapid decay at infinity. Their dual spaces
are respectively denoted by D′ (Rn) , the space of distributions on R

n, and
by S′ (Rn) , the space of tempered distributions. Similarly, D (S) , with S ⊆
R

n, represents the space of infinitely differentiable functions with compact
support contained in S, and D′ (S) the space of distributions on S.

Definition 8. For s ∈ R, Hs(Rn) is the space of tempered distributions u

such that
(1+ | ξ |2)s/2û(ξ) ∈ L2(Rn), ξ ∈ R

n.

In this space the following inner product is considered:

(u, v)s =
∫

Rn

(1+ | ξ |2)sû(ξ)v̂(ξ)dξ,

with associated norm || u ||s=
(∫

Rn(1+ | ξ |2)s | û(ξ) |2 dξ
)1/2

, whereˆstands
for the Fourier transform.

For s ∈ R, the Hilbert spaces Hs(Rn) and H−s(Rn) are dual.
Fractional Sobolev spaces on domains are introduced as factor spaces of the

above fractional Sobolev spaces on R
n when the domains under consideration

satisfy the following extension property:
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Definition 9. A domain S ⊂ R
n is said to satisfy an s−extension property

if there exists a bounded extension operator E : Hs(S) −→ Hs(Rn), s ≥ 0,
satisfying Ef = f on S.

Definition 10. ([56], p. 310) Let S ⊂ R
n be an arbitrary (bounded or un-

bounded) domain. Then Hs(S) is the restriction to S of Hs(Rn). That is,

Hs (S) = {f ∈ D′ (S) : ∃F ∈ Hs ( R
n) such that f = FS} ,

where FS denotes the restriction of F to S. With the quotient norm ‖f‖Hs(S)

= infF ;FS=f ‖F‖Hs( R
n) , H

s (S) is a Hilbert space.
For S a bounded domain, H

s
(S) represents the set of functions in Hs(Rn)

with support contained in S. That is,

H
s
(S) =

{
u ∈ Hs ( R

n) : supp u ⊆ S
}

= D(S)
‖·‖Hs(Rn)

.

Remark 3. Note that H
s
(S) ⊆ D(S)

‖·‖Hs(S) ([56], p. 318).

The definition of fractional Sobolev spaces on fractal sets via trace opera-
tors allows the connection between fractal geometry and functional regular-
ity properties. That is, the weak-sense regularity properties of functions in
these spaces depend on the Hausdorff dimension of their fractal domains and
on the fractional regularity order of the functions whose traces define them.
Since the existence of a Radon measure μΓ ∈ R

n with support equal to Γ is
always guaranteed for a compact d−set in the class introduced in Definition
1, the trace on Γ makes sense pointwise for every function in S(Rn) (see
[57], p. 138). The following definitions of tempered distributions with com-
pact fractal support and fractional Sobolev spaces on compact fractal sets
are then introduced.

Definition 11. The space of tempered distributions S′ Γ (Rn) is defined as

S′ Γ (Rn) = {f ∈ S′(Rn) : f(ϕ) = 0 if ϕ ∈ S(Rn) and trΓ (ϕ) = 0} .

This space is referred to as the space of tempered distributions with compact
fractal support Γ, since it defines the dual space of the factor space S(Γ )
constituted by the pointwise traces on Γ of functions in the space S(Rn).

Definition 12. ([57], pp. 192-193) Let Γ be a compact d−set in R
n, with

0 < d < n, and with associated fractal measure μΓ (see Definition 1). Then,
the Sobolev space Hs(Γ ) is defined as the trace on Γ of the fractional Sobolev
space Hs+ n−d

2 (Rn). That is,

Hs(Γ ) = trΓ

(
Hs+ n−d

2 (Rn)
)
, s > 0,
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equipped with the norm

‖ϕ‖Hs(Γ ) = inf ‖φ‖
Hs+ n−d

2 (Rn)
,

where the infimum is taken over all the functions φ ∈ Hs+ n−d
2 (Rn) such that

trΓ (φ) = ϕ.

The following orthogonal decomposition of Hs+ n−d
2 (Rn) is then obtained (see

[57], p. 193):

Hs+ n−d
2 (Rn) =

{
φ ∈ Hs+ n−d

2 (Rn) : trΓ (φ) = 0
}
⊕Hs(Γ ).

The spaces Hs(Γ ), s > 0, are densely embedded in L2(Γ ), which is inter-
preted as the set of tempered distributions f on R

n defined by

f(ϕ) =
∫

Γ

f(γ)trΓ (ϕ) (γ)μΓ (dγ), ϕ ∈ S(Rn), (38)

where trΓ (ϕ) is the pointwise trace of ϕ on Γ (see [57], pp. 135-141).

Definition 13. ([57], pp. 125, 147) Let Γ be a compact d−set in the sense
of Definition 1. The space Hs,Γ (Rn) is defined as the space of tempered dis-
tributions in Hs(Rn) with support contained in Γ. That is,

Hs,Γ (Rn) = {f ∈ Hs(Rn) : f(ϕ) = 0 if ϕ ∈ S(Rn) and trΓ (ϕ) = 0} , s ∈ R.

The distribution dimension of Γ, denoted by dimDΓ, is then defined as

dimDΓ = sup
{
d : H−n−d

2 , Γ (Rn) is nontrivial
}
,

and coincides with the Hausdorff dimension of Γ.
Note that for the trace operator considered in Definition 12, there exists a

(non-linear) bounded extension operator from Hs(Γ ) into Hs+ n−d
2 (Rn) (see

[57], pp. 159-168).
For a bounded linear operator T : A → B, with A and B being quasi-

Banach spaces, its entropy numbers {en(T )}n∈N are defined as

ek(T ) = inf

⎧⎨
⎩ε > 0 : T (UA) ⊂

2k−1⋃
j=1

(bj + εUB) for some b1, . . . , b2k−1 ∈ B

⎫⎬
⎭ ,

(39)
where UH stands for the unit ball in H. The following Carl’s inequality con-
nects the spectral properties of a compact operator T with the geometry
properties of such an operator, described in terms of its entropy numbers
(see [12], for the Banach space case, and [13], for the quasi-Banach space
case):
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|μk(T )| ≤ (2)1/2ek(T ), k ∈ N, (40)

where {μn(T )}n∈N
is the sequence of all non-zero eigenvalues of T, repeated

according to algebraic multiplicity and ordered so that

|μ1(T )| ≥ |μ2(T )| ≥ . . . −→ 0,

and {en(T )}n∈N represents, as before, the corresponding sequence of entropy
numbers.

Approximation numbers constitute another important tool in the char-
acterization of spectral properties of fractal pseudodifferential operators. In
general, for a bounded operator T defined between quasi-Banach spaces A
and B, its sequence of approximation numbers {an(T )}n∈N

is defined as fol-
lows:

ak(T ) = inf {‖T − L‖ : L ∈ L(A,B), rank L < k} , k ∈ N,

where rank L is the dimension of the range of L, and L(A,B) denotes the
space of bounded operators from A to B. In the particular case where T is
a compact self-adjoint operator on a Hilbert space H, the following equality
holds:

|μk(T )| = ak(T ), k ∈ N. (41)

This equality, considered in the case where H = L2(Γ ), is very useful in
the characterization of spectral properties of fractal pseudodifferential op-
erators and fractional differential operators defined on compact fractal sets
(see Chapters IV and V of [57]). In our framework, Equation (41) is used
in the characterization of the spectral properties of the covariance operator
of the fractal dual, or, equivalently, of the operator generating the bilinear
form which defines the inner product in the RKHS of the trace generalized
random field.

The spectral properties of compact embeddings between fractional Besov
spaces on fractals are characterized in terms of the corresponding sequences of
entropy numbers ([57], pp. 162-170). We consider here two particular cases of
such embeddings which are applied in the derivation of the results presented
in this paper.

Theorem 3. Let Γ be a compact d−set in R
n, with 0 < d < n. For 0 ≤ s2 <

s1 <∞,

(i) the embedding id : Hs1(Γ ) −→ Hs2(Γ ) is compact and there exists a
positive constant c such that for the related entropy numbers the following
inequality holds:

ek (id : Hs1(Γ ) −→ Hs2(Γ )) ≤ ck−
s1−s2

d , k ∈ N;

(ii) if s1 − s2 − d/2 > 0, then, the embedding id : Hs1(Γ ) −→ Cs2(Γ ) is
compact and there exists a positive constant c̃ such that for the related entropy
numbers the following inequality holds:
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ek (id : Hs1(Γ ) −→ Cs2(Γ )) ≤ c̃k−
s1−s2

d , k ∈ N,

where Cs2(Γ ) = Bs2∞,∞(Γ ) represents the Hölder-Zigmund space of fractional
order s2 on Γ.

From part (ii) of the above theorem, examples of distributions that define
measures with compact fractal support Γ (in the sense established in [53])
can be constructed considering the spaces H−α,Γ (Rn), with α > n/2. We
refer to such distributions as distributions with finite order α−n/2 = s−d/2
and compact fractal support Γ.
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Summary. This paper studies the transient behavior of the maximum level
length for general block structured continuous-time Markov chains (CTMC).
The approach is presented for the bidimensional case, however, it still holds
for multi-dimensional chains. The results can also be easily modified to cover
the discrete-time case. This work complements the busy period analysis by
Neuts [12] and the asymptotic approach by Serfozo [14]. Some illustrative
examples (SIR epidemic model, retrial queue) including numerical imple-
mentations are presented.
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1 Introduction

This paper deals with structured Markov chains (see the recent book by
Li [10] and the references therein) which are useful for representing a great
variety of stochastic models arising from epidemics and population process,
manufacturing, queueing, reliability, etc. An important issue is the study
of the maximum level length because this descriptor provides an excellent
measure of the system congestion.

Extreme values of stochastic processes can be investigated following dif-
ferent approaches. Serfozo [14] studies the asymptotic behavior of maximum
values of birth and death processes over large intervals whereas Neuts [12]
concentrates on the distribution of extreme values during a busy period (i.e.,
the elapsed time between two successive visits to a given initial state). Both
methods have been widely used in the literature. Our contribution in this pa-
per is to investigate the transient behavior of the maximal level of the struc-
tured chain visited during [0, t]. As far as the author knows, this paper is the
first attempt to deal with the transient version of the maximum level length

∗ The author would like to dedicate this paper to the memory of Professor Marisa
Menéndez.
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of a general structured CTMC. To reach our goal, we only need to combine
some classical existing techniques (extended Markov chain, Laplace trans-
forms, numerical inversion) but the proposed approach has a straightforward
novel use in applications. Our study includes two methods to compute the
distribution of the highest level reached before time t and discussion on the
related computational issues. In a recent paper, Artalejo et al. [4] presented
an algorithm for computing the maximum number of infected individuals in
transient regime for the SIS (susceptible → infected → susceptible) stochas-
tic epidemic model. As partially related work, we also mention the paper by
Artalejo and Chakravarthy [2] where an algorithmic analysis of the maximum
level length during a busy period is performed.

The organization of the paper is as follows. In Section 2, our transient
analysis is presented for the bidimensional case. In Section 3, the approach
is illustrated by applications to the stochastic SIR epidemic model and the
M/M/c retrial queue. Finally, a few comments on possible generalizations
and concluding remarks are given in Section 4.

2 Transient Behavior Analysis in the Bidimensional
Case

We consider a regular CTMC Z = {(X(t), Y (t)); t ≥ 0} with state space
given by S = {(i, j); i ≥ 0, 0 ≤ j ≤ Li}. In the state (i, j), the first coordinate
i is called the level of the state. The number of states in each level, l(i) =
Li + 1, is assumed to be finite.

The infinitesimal generator of the CTMC, Q = [q(i,j)(i′,j′)], is of the form

Q =

⎛
⎜⎝

Q00 Q01 Q02 · · ·
Q10 Q11 Q12 · · ·

...
...

...
. . .

⎞
⎟⎠ ,

with block components Qii′ describing the infinitesimal motion between levels
i and i′.

In the above description, the level process X(t) is assumed to have an
unbounded state space, but obviously this not excludes the finite case, as the
example in Subsection 3.1 shows. On the other hand, the number of phases
per level may vary, and the generator Q has a general block matrix structure,
so that any CTMC can be written in this form provided that l(i) is finite.

2.1 The Extended Chain Method

In this subsection, we follow a natural approach by adding a third component
to the state description.

Define an extended chain Ẑ = {(X(t), Y (t),M(t)); t ≥ 0} where M(t)
is the maximum level length visited by the chain Z during [0, t]. Now the
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state space is Ŝ = {(i, j, k); 0 ≤ i ≤ k, 0 ≤ j ≤ Li}. The generator Q̂ =
[q̂(i,j,k)(i′,j′,k′)] is related to the original generator Q through the following
relationships:

q̂(i,j,k)(i′,j′,k) = q(i,j)(i′,j′), 0 ≤ i′ ≤ k, 0 ≤ j′ ≤ Li′ ,

q̂(i,j,k)(k′,j′,k′) = q(i,j)(k′,j′), k < k′, 0 ≤ j′ ≤ Lk′ ,

q̂(i,j,k)(i′,j′,k′) = 0, otherwise.

The consideration of the extended chain Ẑ is the key for the computational
analysis of the transient version of the maximum level length.

For each t ≥ 0, denote the transient probabilities

pijk(t) = P{X(t) = i, Y (t) = j, M(t) = k},

for (i, j, k) ∈ Ŝ, and the initial probabilities pijk(0) = δ(i,j,k)(i0,j0,k0), where
δab stands for the Kronecker’s function defined by

δab =
{

1, if a = b,

0, otherwise.

Let p∗ijk(s) be the Laplace transform of the probability pijk(t); that is, p∗ijk(s)
=
∫∞
0 e−stpijk(t)dt, for Re(s) ≥ 0.

We notice that the primes notation in the definition of Q̂ is used to indicate
the state after transitions, while later in Theorem 1 the primes are used to
indicate the state before transitions. The motivation to adopt this notation
is to assign the no-prime notation to the state playing the main role in the
corresponding expression under consideration. In this sense, it is natural to
describe a generator in terms of its rows, while each forward Kolmogorov
equation in Theorem 1 is associated with a final state (i, j, k).

The next result provides the system of equations governing the dynamics
of the Laplace transforms.

Theorem 1. For each k ≥ k0 , the Laplace transforms p∗ijk(s) satisfy the
following system:

sp∗ijk(s)− δ(i,j,k)(i0,j0,k0) =
k∑

i′=0

Li′∑
j′=0

q(i′,j′)(i,j)p
∗
i′j′k(s)

+δik

k−1∑
k′=k0

k′∑
i′=0

Li′∑
j′=0

q(i′,j′)(i,j)p
∗
i′j′k′(s),

for 0 ≤ max{i, k0} ≤ k and 0 ≤ j ≤ Li.

Proof. The forward Kolmogorov equations governing the infinitesimal dy-
namics of process Ẑ are given by
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d

dt
pijk(t) =

k∑
i′=0

Li′∑
j′=0

q(i′,j′)(i,j)pi′j′k(t)

+δik

k−1∑
k′=k0

k′∑
i′=0

Li′∑
j′=0

q(i′,j′)(i,j)pi′j′k′(t),

for 0 ≤ max{i, k0} ≤ k and 0 ≤ j ≤ Li.

Taking Laplace transforms and using
∫ ∞

0

e−st d

dt
pijk(t)dt = sp∗ijk(s)− δ(i,j,k)(i0,j0,k0),

yields the Laplace transform equations given in the statement. �

From the scalar formulation given in the theorem, it is clear the fact that,
for each fixed k ≥ k0, the computation of p∗ijk(s), for 0 ≤ max{i, k0} ≤ k and
0 ≤ j ≤ Li, involves the unknowns corresponding to the previous indices k′ ∈
{0, ..., k− 1}. An alternative matrix form formulation is given in Corollary 1.
The matrix formulation provides a compact expression and helps to construct
numerical codes.

First, we introduce some notation. The following vectors comprise the
Laplace transforms partitioned according to the levels:

p∗
ik(s) =

(
p∗i0k(s), ..., p∗iLik(s)

)
, 0 ≤ max{i, k0} ≤ k,

p∗
k(s) = (p∗

0k(s), ...,p∗
kk(s)) , k ≥ k0.

Let a0
k denote a row vector of dimension l(k) =

∑k
i=0 l(i) with 1 in the

(i0, j0)th position and 0 elsewhere. The vector 0r denotes a row vector of
zeroes of dimension r. The identity matrix of dimension r is denoted by Ir.

Corollary 1. For each k ≥ k0, the Laplace vector p∗
k(s) verifies the block

structured system

p∗
k(s)

(
Qk − sIl(k)

)
= vk, k ≥ k0,

where Qk is the submatrix of Q corresponding to the states in levels i =
0, ..., k, and

vk = −a0
kδkk0 − (1− δkk0)bk, k ≥ k0,

bk =
(
0l(0), ...,0l(k−1), ck

)
, k ≥ k0,

where ck is a row vector of dimension l(k) and the jth component is equal to∑k−1
k′=k0

∑k′

i′=0

∑Li′
j′=0 q(i′,j′)(k,j)p

∗
i′j′k′ (s), for 0 ≤ j ≤ Lk.

Once the Laplace transforms have been computed, the transient probabilities
pijk(t) can be obtained by numerical inversion. We propose to carry out
the numerical inversion by using Fourier series methods (see Cohen [7]). In
particular, the maximum level length distribution p..k(t) = P{M(t) = k},
for k ≥ k0, follows by inverting numerically the sum

∑k
i=0

∑Li

j=0 p
∗
ijk(s).
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2.2 The Absorbing Macro-state Method

In the introduction, the computation of the maximal level visited in a busy
period [12], [2] was mentioned as a related problem. Although the transient
analysis (i.e., the subject matter of this paper) is typically a more involved
problem, it might seem natural to explore whether or not the approach used
when the study is based on a busy period can be successfully extended to the
transient framework. This consideration gives the initial motivation for the
absorbing macro-state method investigated in this subsection.

Let us assume that the busy period is defined as the elapsed time between
two successive visits to a certain state 0∗ of the level 0. For a given initial state
(i0, j0), we note that P{M(t) < k}, for k > i0, corresponds to the probability
of the event that the CTMC Z hits the state 0∗ before hitting level k. Hence,
the computation of the distribution of the maximal level reached during a
busy period reduces to finding the probability of absorption by 0∗ in an
auxiliary finite state chain with two absorbing states, say, 0∗ and k∗, where
k∗ represents a macro-state comprising all states of level k or above. A minor
variant of the above idea can be translated to the transient context.

Theorem 2. The distribution function of M(t), for t ≥ 0, is given by

P{M(t) ≤ k} = a0
k exp{Qkt}el(k), k ≥ k0,

where er denotes a column vector of dimension r with all entries equal to 1.

Proof. Instead of considering two absorbing states (i.e., 0∗ and k∗), we now
deal with the auxiliary chain Z̃k with the absorbing macro-state k∗. Then, it
is clear that P{M(t) ≥ k0} = 1 and

P{M(t) ≥ k} = P{X̃(t) = k∗}, k > k0, t ≥ 0,

that is; the probability P{M(t) ≥ k} in the original chain amounts to the
probability P{X̃(t) = k∗} in the auxiliary chain. The infinitesimal generator
Q̃k associated with Z̃k follows easily from Qk (see formula (3.2) in [2]).

We recall that the distribution of the time until absorption in a finite
Markov chain is said a phase-type (PH) distribution, and it reduces to a
matrix exponential [10]. Thus, we have

P{M(t) ≥ k} = 1− a0
k−1 exp{Qk−1t}el(k−1), k > k0,

which amounts to the desired expression for the distribution function. �

At a first glance the use of the absorbing macro-state method avoids the
numerical inversion of the Laplace transforms, which is replaced by the com-
putation of a matrix exponential. However, finding accurate methods to com-
pute the matrix exponential is a non-trivial matter which is still an open
problem in numerical analysis. Following [11], we remark that “the exponen-
tial of a matrix can be computed in many ways. In practice, consideration of
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computational stability and efficiency indicates that some of the methods are
preferable to others, but that none are completely satisfactory”. Kulkarni [9]
presents four methods for dealing with the transient behavior of a CTMC.
One of them is based on the Laplace transform method, but it essentially
implies to come back to the first method described in Subsection 2.1. In fact,
the Laplace transform of P{M(t) ≤ k} is given by

M∗
k (s) = a0

k

(
sIl(k) −Qk

)−1

el(k), k ≥ k0.

In principle, a detailed comparison among different methods of numerical
computation is not our aim in this paper. Here, we simply mention that
both methods rely on the Qk matrix, so if a well-posed structure of Qk (e.g.
existence of zero blocks) might be exploited in the extended chain method,
then it also might be exploited in the absorbing macro-state method, and
vice versa. Limitations with respect to the dimensionality of the models could
affect to the two methods.

However, we can mention a distinguished feature giving support to the use
of the extended chain method. The point is that the numerical inversion of
the Laplace transforms leads to the probabilities pijk(t) of the whole tridi-
mensional vector (X(t), Y (t),M(t)), while the absorbing macro-state method
only gives the marginal distribution of M(t). Due to this fact, our implemen-
tation of the numerical examples in the next section is based on the extended
chain method.

3 Illustrative Examples

3.1 The Stochastic SIR Epidemic Model

The maximum size of an epidemic is the largest number of infective individ-
uals ever present during its course. Recently, Artalejo et al. [4], [3] pointed
out that the maximum population size is an interesting descriptor worthy of
some extra attention in biological applications. We next deal with the SIR

(susceptible → infected → removed) stochastic epidemic model [1]. For this
model, Neuts and Li [13] propose an algorithm for computing the maximum
size distribution reached before the absorption. Here, the study is extended by
applying the approach developed in Subsection 2.1 for the transient analysis.

Let (X(t), Y (t)) be the bidimensional CTMC describing the epidemic. At
time t, the population consists of X(t) = i infectives and Y (t) = j susceptible.
The initial condition is (X(0), Y (0)) = (m,n). The population state changes
either if a susceptible individual is infected, which occurs at rate λij , or if
an infective is removed at rate μi. The state space of the SIR epidemic
model is S = {(i, j); 0 ≤ i ≤ m + n, 0 ≤ j ≤ min{n,m + n− i}} with
l(i) = min{n,m+ n− i}+ 1. We notice that states (0, j), for 0 ≤ j ≤ n, are
absorbing states. As a result, the set of transient states S \{(0, j); 0 ≤ j ≤ n}
is a reducible set. This fact influences the calculation of the quasi-stationary
distribution [15], [6].
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For 1 ≤ i ≤ m, Qi,i−1 is a square block of dimension n+ 1. If m+ 1 ≤ i ≤
m + n, then Qi,i−1 has dimension l(i)× l(i) + 1. In both cases, its elements
are given by

q(i,j)(i−1,j′) =
{
μi, if 0 ≤ j ≤ min{n,m + n− i}, j′ = j,

0, otherwise.

The blocks Qii, for 1 ≤ i ≤ m+n, are square matrices of dimension l(i) with
elements

q(i,j)(i,j′) =
{
−((1 − δ0j)λij + μi), if 0 ≤ j ≤ min{n,m + n− i}, j′ = j,

0, otherwise.

On the other hand, Qi,i+1 for 1 ≤ i ≤ m− 1, is a square block of dimension
n + 1, whereas Qi,i+1 for m ≤ i ≤ m + n − 1, has dimension l(i) × l(i)− 1.
The elements are as follows

q(i,j)(i+1,j′) =
{
λij , if 1 ≤ j ≤ min{n,m+ n− i}, j′ = j − 1,
0, otherwise.

Finally, the blocks Q0i′ , for 0 ≤ i′ ≤ m + n, Qii′ , for 1 ≤ i ≤ m + n− 1 and
i′ /∈ {i− 1, i, i+ 1}, and Qm+n,i′ , for i′ /∈ {m+ n− 1,m+ n}, are defined as
null blocks of the appropriate dimension. This completes the description of
the structured generator.

The transient analysis for the SIR epidemic model is illustrated in Figures
1-3. We assume that λij = iαjβ, for 0 < α ≤ 1, and μi = iη. Following Neuts
and Li [13], we notice that the parameter α can be interpreted as the degree
of interaction between infectives and susceptibles.

In Figure 1, we take β = η = 1.0 and the initial condition (m,n) = (15, 15).
Then, we plot the probability of having none infectives at time t, P{X(t) =
0}, as a function of the interaction parameter α. In agreement with the fact
that (0, j), for 0 ≤ j ≤ n, are absorbing states, we observe that P{X(t) = 0}
tends to 1, as t→∞.

Fig. 1. P{X(t) = 0} versus α
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The expected number of infectives at time t, E[X(t)], is plotted in Figure 2
against η. The rest of parameters are α = 0.95, β = 3.0 and (m,n) = (15, 15).
Curves associated with η = 0.2 and η = 1.0 show an initial increment result-
ing in a peak close to the time origin. In contrast, in the case η = 2.0, the
curve decreases from the initial value m = 15 to 0.

Fig. 2. E[X(t)] versus η

The numerical inversion of the equations given in Theorem 1 allows us to
compute the distribution function P{M(t) ≤ k}, for k0 ≤ k ≤ m+ n, at any
given time t. In Figure 3, we take α = β = η = 1.0, k0 = m and t = 5.0.
Three curves corresponding to different choices of the initial pair (m,n) are
plotted. In the three cases, we assume that m + n = 30.

Fig. 3. P{M(5) ≤ k} versus (m, n)
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3.2 The M/M/c Retrial Queue

Retrial queues have been widely used to model telephone systems and other
telecommunication and computer networks. We next describe the main retrial
queue of M/M/c-type (see, for example, Artalejo and Gómez-Corral [5]).
Primary customers arrive according to a Poisson process with rate λ. Service
is rendered by c identical servers with service times exponentially distributed
with rate ν. The system does not have a waiting space. Customers who find
at least one server free upon arrival immediately occupy a position and leave
the system after service. In contrast, any arriving customer finding all servers
busy will enter into a retrial orbit. From there, the retrial customers will
compete for service. The inter-retrial times are assumed to be exponentially
distributed with rate μ. Moreover, we assume that the process of primary
arrivals, services and retrial times are mutually independent.

At any time t, the state of the process is represented by the bidimensional
process (X(t), Y (t)), where X(t) denotes the number of customers in orbit
and Y (t) is the number of busy servers. The state space of the resulting
CTMC is S = {(i, j); i ≥ 0, 0 ≤ j ≤ c}. Thus, all the matrices Qii′are
square blocks of dimension l(i) = c + 1. They are given by

q(i,j)(i−1,j′) =
{
iμ, if 0 ≤ j ≤ c− 1, j′ = j + 1,
0, otherwise,

q(i,j)(i,j′) =

⎧⎪⎪⎨
⎪⎪⎩

λ, if 0 ≤ j ≤ c− 1, j′ = j + 1,
jν, if 1 ≤ j ≤ c, j′ = j − 1,
−(λ + jν + (1− δjc)iμ), if 0 ≤ j ≤ c, j′ = j,

0, otherwise,

q(i,j)(i+1,j′) =
{
λ, if j = j′ = c,

0, otherwise.

The rest of matrices Qii′ , for i ≥ 0 and i′ /∈ {i − 1, i, i + 1}, are blocks of
zeroes.

In the next numerical illustration, we take ν = μ = 1.0, c = 5 and the
initial state (i0, j0, k0) = (0, 0, 0). First, we set k = 0. Then, the numerical
inversion of the vector p∗0(s) (see Theorem 1) leads to the probability of
having no customers in orbit before time t. The probability P{M(t) = 0} is
plotted in Figure 4 for various choices of the traffic intensity ρ = λ/cν.

At this point, it should be pointed out that the analysis of the maximum
level length can be carried out independently of whether or not a stationary
distribution exist. In fact, the lowest curve in the figure correspond to the
non stable case ρ = 1.2 (i.e., ρ is greater than 1.0).

The numerical inversion of p∗k(s) can be iterated for k ≥ 1. In this way,
we may calculate the probability mass function of the maximal number of
customers in orbit during [0, t]. In Table 1, we consider the case ρ = 0.9, ν =
1.0, c = 5 and (i0, j0, k0) = (0, 0, 0). Each entry in the table contains the 99th
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Fig. 4. P{M(t) = 0} versus ρ

Table 1. k99 versus ρ and μ

μ = 0.1 μ = 1.0 μ = 10.0 μ = 100.0

ρ = 0.3 3 3 3 3
ρ = 0.6 13 11 10 10
ρ = 0.9 30 26 24 15
ρ = 1.2 51 47 45 45

percentile, denoted by k99, of the probability mass function P{M(15) = k},
for k ≥ 0. In agreement with the intuitive expectations, the system congestion
measured through the percentile k99, increases with ρ but it decreases with
increasing values of the retrial rate μ.

4 Concluding Remarks

In this paper, we have investigated the transient distribution of the max-
imum level length in general block structured bidimensional CTMC. Two
methods of computation have been presented in Section 2. The transform
approach combined with the numerical inversion lead to a reasonable route
of evaluation. Unlike the study of the stationary system state, the analysis
of the transient maximum level length can be done under very general non
restrictive conditions. The SIR epidemic model studied in Subsection 3.1
shows a situation where the underlying Markov chain is finite and reducible
whereas the Markov chain of the M/M/c retrial queue in Subsection 3.2 is
infinite and irreducible.

The analysis can be extended in several directions. For example, the
methodology can be used to study the maximum level length in many other
stochastic models including more complicated retrial queues [5] and biologi-
cal models subject to killing or catastrophes [3], [8]. The transient behavior
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of the minimum level length visited by the process in [0, t] is the dual prob-
lem to the maximum level length considered in this paper. For the sake of
easiness, we have focused only on the bidimensional case. However, it is clear
that the result in Theorem 1 can be extended to the multidimensional case.
The key is just to employ the lexicographical order where the first component
(i.e., the level of the process) is reserved for the characteristic which maxi-
mum level length is under study. Finally, we notice that the approach can be
easily updated to the discrete-time case. Similar arguments to those given in
Subsection 2.1 lead to the following recursive equations for the probabilities
p
(n)
ijk = P{Xn = i, Yn = j, Mn = k}, for n ≥ 1, 0 ≤ max{i, k0} ≤ k and

0 ≤ j ≤ Li:

p
(1)
ijk = δkk0P(i0,j0)(i,j) + (1 − δkk0)δikP(i0,j0)(i,j),

p
(n)
ijk =

k∑
i′=0

Li′∑
j′=0

p
(n−1)
i′j′k P(i′,j′)(i,j)

+δik

k−1∑
k′=k0

k′∑
i′=0

Li′∑
j′=0

p
(n−1)
i′j′k′ P(i′,j′)(i,j),

where (Xn, Yn,Mn) denotes the discrete-time version of (X(t), Y (t),M(t)).
In particular,Mn represents the maximum level length visited by the discrete-
time Markov chain during the first n time epochs. Obviously, P = [P(i,j)(i′ ,j′)]
is the one step transition probability matrix of the original chain Z =
{(Xn, Yn); n ≥ 0}. After an appropriate recursive computation, we easily
find the desired probabilities P{Mn = k} =

∑k
i=0

∑Li

j=0 p
(n)
ijk , for k ≥ k0.
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Summary. We consider a general definition of record-like observations and
present a methodology based on martingales to describe the asymptotic be-
havior of the corresponding counting process. Our definition includes not
only the well-known records and near-records, from continuous or discrete
distributions. It also contains, as particular cases of interest, weak records
and geometric records. We provide concrete examples and discuss possible
extensions and alternative approaches. We also propose some problems for
future work.

1 Introduction

Our starting point is a remarkable fact, apparently discovered by Rényi [29],
about the indicators of record observations. Suppose Xn, n ≥ 1, is a sequence
of independent and identically distributed (iid) random variables (rv), with
common continuous distribution function (df) F . Define the record indicators
as I1 = 1 and In = 1{Xn>Mn−1}, for n ≥ 2, where Mn = max{X1, . . . Xn},
n ≥ 1. Then the In are independent random variables, with expectations
E[In] = 1/n, n ≥ 1. This simple structure of record indicators is perfect for
obtaining asymptotic results, such as the law of large numbers (LLN) or the
central limit theorem (CLT), for the counting process of records, defined as
Nn =

∑n
k=1 Ik, n ≥ 1. This process is of central importance in record theory,

because of its relationship with the so-called record times. See [1, 20, 26] for
the theory and statistical applications of records.

If the continuity of F is dropped both the independence of indicators
and their distribution freeness is lost. The complexity of the dependence
structure of record indicators, when F has (infinitely many) discontinuities,
∗ To Marisa. We thank the editors for giving us the opportunity to participate in

this tribute to Marisa Manéndez.
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has not been satisfactorily assessed. However, it turns out that martingale
tools are successful when dealing with the LLN and the CLT for Nn, for
discrete distributions F (purely atomic) concentrated on the nonnegative
integers, see [8, 9].

On the other hand, a variety of definitions of record-like objects have been
introduced, some of them motivated by potential applications in insurance
or in stress-testing in material science ([4, 16, 22]). One significant example
in this category are near-records, which were first defined in [4]. Given a
parameter a > 0, an observation is considered to be a near-record if it is
not a record but it is distance less than a of Mn−1, the current maximum.
More precisely, the indicator of Xn being a near-record is given by In =
1{Xn∈(Mn−1−a,Mn−1)}, n ≥ 2. One may hope that, when F is continuous, near-
record indicators have a simple structure, such as that of record indicators,
but this is not the case. Again, the dependence of the indicators is not well
understood but martingale tools succeed in extracting a LLN or a CLT for
the corresponding counting process Nn, in a wide range of cases ([14, 15]).

The above examples show that the value of Nn is obtained by sequentially
testing, on each observation, a condition that only depends on the current
maximum. More specifically, Xn is declared to be a record or a near-record
if it belongs to a random interval whose randomness only depends on Mn−1.
As we are interested in the analysis of (upper) records and (upper) record-
like objects, from now on we assume that the df F of the observations is
concentrated on [0,∞) and has infinite right-endpoint. We introduce a general
definition for record-like observations as follows.

Definition 1. Let (an, bn), n ≥ 1, be a sequence of random intervals of real
numbers such that an = a(Mn) and bn = b(Mn), with a, b : [0,∞) →
[−∞,∞] nondecreasing functions such that a(x) < b(x), for all x ≥ 0,
and limx→∞ a(x) = limx→∞ b(x) = ∞. The observation Xn is defined to
be record-like if Xn ∈ (an−1, bn−1), n ≥ 1, with (a0, b0) = R for convenience.

This definition includes as particular cases, among others, usual records a(x)
= x, b(x) = ∞; weak records for integer valued distributions a(x) = x −
1/2, b(x) = ∞; near-records a(x) = x − a, b(x) = x; δ-records, [10, 16],
a(x) = x + δ, b(x) = ∞; geometric records, [7, 17], a(x) = kx, b(x) = ∞,
and ties for the maximum in integer-valued distributions, [13], a(x) = x −
1/2, b(x) = x + 1/2.

Our first objective in this paper is to present, in a unified way, a martingale
analysis of the counting process of record-like observations, focusing on the
LLN and CLT. We give two general results and then survey in some detail
several particular cases. The analysis is based on the application of classical
convergence theorems to two martingales, which are constructed by centering
Nn using either a predictable or a nonpredictable process. Another objective
of the paper is to show extensions and propose problems for future work.

The plan of the paper is the following. In Section 2 we introduce the two
fundamental martingales and show how they can be used to obtain LLN and



Martingale Asymptotics for Record-Like Observations 393

CLT for the counting process of record-like observations. In Section 3 we
apply the results of Section 2 to several record-like statistics such as records
from discrete observations, near-records and geometric records. In Section
4 we present some extensions and open problems, including the use of our
techniques to analyze the sum of record-like observations, the characterization
of distributions using martingales related to record-like observations and a
different approach to the CLT, for the number of record-like observations,
based on point processes theory.

Parts of this paper (especially Section 3) can be seen as a survey of our
results on the matter. There are also new results: in particular, Propositions 1,
2, 3 of Section 2 are new (although they have been proved in some particular
cases) and Propositions 4, 5 of Section 4 are also new.

2 Martingales

Consider the natural filtration F = {Fn, n ≥ 0}, related to the sequence
Xn, n ≥ 1, that is, Fn = σ(X1, . . . , Xn) is the σ-algebra generated by the
first n observations, n ≥ 1, and F0 is the trivial σ-algebra. Assuming that
the Xn are iid, with common df F , and letting In = 1{Xn∈(an−1,bn−1)} be
the indicators of record-like observations, as defined in Definition 1, it is
clear that E[In | Fn−1] =

∫
(an−1,bn−1)

dF (t) = φ(Mn−1), for n ≥ 1, where

φ is given by φ(x) = F (a(x)) − F
−

(b(x)), with F−(x) = limt→x− F (t) and
F (x) = 1− F (x).

An immediate consequence is the following.

Proposition 1. The process

Nn −
n∑

k=1

φ(Mk−1), n ≥ 1, (1)

is a square-integrable F-martingale.

The martingale in (1) can be used to derive a LLN for Nn. This is due to a
well known law of large numbers, [21, 25], which states that, for any filtration
G = {Gn, n ≥ 0} and any sequence of 0-1 variables Jn, n ≥ 1, adapted to G,
the series

∑∞
k=1 Jk and

∑∞
k=1 E[Jk|Gk−1] converge or diverge simultaneously

almost surely (a.s.). And, when both diverge, the following holds, as n→∞:
∑n

k=1 Jk∑n
k=1 E[Jk|Gk−1]

→ 1 a.s.

This result implies for record-like observations, that the asymptotic behavior
of Nn and that of

∑n
k=1 φ(Mk−1) are tightly related.

Proposition 2. Let Nn, φ and Mk be as defined above. Then limn→∞Nn =
∞ if and only if

∑∞
k=1 φ(Mk−1) = ∞, a.s. Furthermore, under divergence,
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Nn∑n
k=1 φ(Mk−1)

→ 1 a.s. (2)

As a consequence of (2), the LLN for Nn can now be reduced to the study
of partial sums of φ(Mk−1), but the task looks difficult because the φ(Mk−1)
are highly dependent random variables. However, in many cases of inter-
est, as we will see later, the function φ is decreasing and hence φ(Mk) =
min{φ(X1), . . . , φ(Xk)}. So,

∑n
k=1 φ(Mk−1) is in fact a sum of partial min-

ima of nonnegative, iid random variables φ(Xi). Such process was studied
in detail by several authors but was not linked to record-like observations.
In particular, the weak and strong LLN, as stated by Deheuvels in [6], are
of central interest for us. For a version of Deheuvels’ results, adapted to our
applications, see Theorem A1 in [8] or Theorem 2 in [9].

The arguments above stress the role of martingale (1) in the derivation of
the LLN for Nn. Martingale (1) is also well suited for other limit theorems,
such as the CLT, because of its bounded increments and the simple expres-
sion of its conditional variances. However, in those cases where the CLT for
Nn can be obtained from (1), the result is not satisfactory because it has a
random centering process, which cannot be replaced by a deterministic se-
quence in a simple way. This motivates the search for a new martingale, with
nonpredictable compensator, hoping that this feature would lead to a CLT
with deterministic centering sequence. We have the following:

Proposition 3. The process

Nn −
[∫

[0,Mn]

dF (a(t))

F
−

(t)
−
∫

[0,Mn)

dF (b(t))

F
−

(t)

]
, n ≥ 1, (3)

is an F-martingale.

Proof. Let I1
n = 1{Xn>a(Mn−1)} and I2

n = 1{Xn≥b(Mn−1)}. Then Nn =
∑n

k=1 I
1
k

−
∑n

k=1 I
2
k . Let us prove that

n∑
k=1

I1
k −

∫
[0,Mn]

dF (a(t))

F
−

(t)
(4)

is a martingale. It can be easily checked that
∫
[0,Mn]

dF (a(t))

F
−

(t)
is integrable. For

the martingale property notice that the increment of (4) is given by

I1
k −

∫
(Mk−1,Mk]

dF (a(t))

F
−

(t)

and that E[I1
k | Fk−1] = P [Xk > a(Mk−1)] = F (a(Mk−1)). On the other

hand,
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E

[∫
(Mk−1,Mk]

dF (a(t))

F
−

(t)
| Fk−1

]
=
∫

(Mk−1,∞)

(∫
(Mk−1,x]

dF (a(t))

F
−

(t)

)
dF (x)

=
∫

(Mk−1,∞)

(∫
[t,∞)

dF (x)

)
dF (a(t))

F
−

(t)
=
∫

(Mk−1,∞)

dF (a(t)) = F (a(Mk−1)).

The proof of
∑n

k=1 I
2
k −

∫
[0,Mn)

dF (b(t))

F
−

(t)
being a martingale is analogous. �

Particular instances of (3) can be analyzed using one of the classical versions
of the martingale CLT, from which one finally obtains a CLT for Nn, with
non-random centering sequence. It is also remarkable that, in some examples,
the study of the conditional variance process and the Lyapunov condition for
the CLT can be reduced to the analysis of sums of minima. This reveals
another aspect of the relationship between record-like observations and sums
of partial minima.

To keep this paper self-contained, we provide the specific version of the
martingale CLT, used in the applications below. See [21].

Theorem 1. Let Gk, k ≥ 0, be a filtration and ξk, k ≥ 1, a square-integrable
and adapted sequence of random variables, such that E[ξk | Gk−1] = 0, for
k ≥ 1. If there exists a non-random, positive and increasing sequence bn, n ≥
1, with bn →∞, such that
(i) b−2

n

∑n
k=1 E[ξ2

k | Gk−1]→ 1 in probability and
(ii) b−2

n

∑n
k=1 E[ξ2

k1{|ξk|>εbn} | Gk−1]→ 0, ∀ε > 0, in probability .
Then b−1

n

∑n
k=1 ξk → N(0, 1).

If the ξi are cubic-integrable, condition (ii) can be replaced by the Lyapunov-
type condition
(iii) b−3

n

∑n
k=1 E[ξ3

k | Gk−1]→ 0 in probability.

3 Applications

Here we present the LLN and the CLT for particular instances of record-
like observations, based on martingales (1) and (3). This section is mainly
a survey of results in [8, 9, 14, 15, 17]. Sketches of proofs are given in some
cases.

3.1 Records from Discrete Distributions1

As mentioned in the Introduction, the discontinuities of the underlying df F
induce dependencies among record indicators In and their structure is not
easily described anymore. For simplicity we consider discrete df concentrated
on Z+ (the set of nonnegative integers). Extension to discrete df with gen-
eral sets of atoms (that do not accumulate) is straightforward. The theory

1 Technical details and proofs of results in this subsection can be found in [8, 9].
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of records from discrete distributions has attracted relatively little attention.
Two important pioneering papers are [30], where the process of record values
for general df is described, and [32], containing a variety of limiting results.
Later, researchers from computer science considered records from the geo-
metric distribution, because of their relationship with certain data structures
([3, 28]).

Recall that we assume F (x) < 1, for all x ≥ 0. This is necessary to
avoid trivialities because, if F has a terminal atom, the total number of
records in the whole sequence is a.s. finite. It is interesting to observe that
the normalizing sequence in the LLN for Nn depends on the hazard rates (also
known as failure rates) rk, k ≥ 0, which are defined as rk = P [X = k]/P [X ≥
k], where X is a generic rv with df F . Another important ingredient is the
quantile function defined as m(t) = min{k ∈ Z+;F (k) < 1/t}.

The following theorem is quite general but has restrictions when F is light-
tailed (see case (ii) below). It states essentially that Nn obeys a strong LLN
with normalizing sequence ηn =

∑m(n)
k=0 rk, n ≥ 1.

Theorem 2. (i) If lim rk = 0, then Nn / logn → 1 a.s. and if lim rk = r,
then

Nn

logn
→ r

− log(1− r)
a.s.

(ii) If 0 < lim sup rk < 1, then Nn/ηn → 1 a.s. and
(iii) If lim rk = 1 and if either the rk, k ≥ 0, is an increasing sequence or
there exists a constant C > 0 such that F (k) > e−ekC

, for sufficiently large
k, then Nn/m(n)→ 1 a.s.

Proof. We use Proposition 2. In this case φ(x) = F (x) is non-increasing. So,
φ(Mk) = min{φ(X1), . . . , φ(Xk)}, with the random variables Yi := φ(Xi) =
F (Xi) taking the values F (k) with respective probabilities pk := P [X =
k], k ≥ 0. The asymptotic behavior of

∑n
k=1 min{Y1, . . . , Yk} is analyzed using

Deheuvels’ theorem and the result follows from (2). See [8]. �

We show some examples of strong LLN. The Zeta or discrete Pareto dis-
tribution is defined by pk = Cdk

−d, for k ≥ 1, where d > 1 is a parameter
and Cd a positive constant. In this case rk = (d − 1)k−1 + o(k−1) → 0
and so, Nn/ logn → 1. The geometric distribution has pk = (1 − p)kp, for
k ≥ 0, with p ∈ (0, 1). In this case rk = p, for all k ≥ 0, hence Nn/ logn →
−p/ log(1 − p). Finally, consider the Poisson distribution, with parameter
λ > 0, where pk = e−λλk/k!. It can be shown that rk = 1 − λk−1 + o(k−1)
and m(n) ∼ logn/ log logn, hence Nn log logn/ logn→ 1.

The CLT is derived from martingale (3), which takes the form

Nn −
Mn∑
k=0

rk (5)

and is shown to be square integrable.
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Theorem 3. Let yk = F (k) =
∑

i>k pi, zk =
∑

i>k riyi and b2n =
∑m(n)

k=0

zkrk/yk, k, n ∈ Z+.

(i) If
∑∞

k=0(1− rk) =∞ and lim sup rk − lim inf rk < 1 then

b−1
n (Nn − ηn)→ N(0, 1).

(ii) If
∑∞

k=0(1− rk) <∞ then Nn −m(n) is tight.

Proof. Letting ξk denote the increments of (5), we find that E[ξ2
k | Fk−1] =∑

i>Mk−1
pi(1 − ri), which is a decreasing function of Mk−1. Then (i) of

Theorem 1 is a LLN for sums of minima . The checking of condition (ii) in
Theorem 1 is more involved. See [9]. �

An interesting first conclusion is that Nn is not asymptotically Normal if∑∞
k=0(1 − rk) < ∞; this contrasts with the continuous case where Nn has

always an asymptotically Normal distribution.
The companion CLT for the LLN in the examples above are as follows.

For the Zeta distribution, (Nn − logn)/
√

log n → N(0, 1); for the geometric
distribution, (logn)−1/2(Nn+p logn/ log(1−p))→ N(0,−p(1−p)/ log(1−p))
and, for the Poisson distribution, (Nn −m(n) + λ log(m(n)))/

√
log logn →

N(0, λ).
Theorems 2 and 3 show that the limiting behavior of Nn in discrete distri-

butions may differ significantly from that in the continuous case, especially
for light-tailed distributions. This is a warning for practitioners expecting to
see order of logn records in a sample of size n, from a continuous distribu-
tion, because the instrumental precision is finite and so the observations are
necessarily discrete. For instance, if F (x) decreases as e−x2

, when x → ∞,
the discretized version of the distribution would have Nn ∼

√
logn records

instead of logn.

3.2 Near Records2

Near-records are another relevant example of record-like observation, that
fits in the context of Definition 1 and, as the name suggests, they fall short
of being records. Given a parameter a > 0, Xn is said to be near-record if
Xn ∈ (Mn−1 − a,Mn−1). In the notation of Definition 1, we choose a(x) =
x − a and b(x) = x. Near-records, which have interesting properties and
applicability in statistics, were introduced by [4] and have been studied by
several authors [14, 15, 23, 27]. In what follows we present the results of the
asymptotic analysis of the counting process Nn of near-records, additionally
assuming that F is absolutely continuous, with continuous density f and
hazard function λ(x) = f(x)/F (x). Observe that φ of Proposition 2 is given
by φ(x) = F (x− a)−F (x) but this function is not decreasing in general and
so, we cannot invoke Deheuvels’ theorem. This problem is fixed by assuming
2 Technical details and proofs of results in this subsection can be found in [14, 15].
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also that f is ultimately decreasing because this implies φ ultimately decreas-
ing and this is sufficient for the asymptotic analysis. Since most important
densities have this property, the assumption is not too restrictive.

Let ηn =
∫m(n)

a
(F (x−a)−F (x))λ(x)/F (x)dx, n ≥ 1. For the strong LLN

we have the following.

Theorem 4. If
∫∞
0 λ2(x)dx < ∞ then N∞ < ∞ a.s. If

∫∞
0 λ2(x)dx = ∞

and any of the following conditions hold:
(i) C1 ≤ λ(x) ≤ C2, for all x ≥ 0 and some positive constants C1, C2;
(ii) λ is decreasing;
(iii) λ is differentiable, tends to ∞ as x → ∞ and has |λ′(x)| < x−r, for
some r > 1/2 and all x large enough.

Then Nn/ηn → 1 a.s.

Proof. As for records, we apply Proposition 2 (see [14]). �

A first result derived from our analysis is that the number of near-record
in the whole sequence may be finite. This result tells that heavy-tailed dis-
tributions, with square-integrable hazard function, will almost surely stop
showing near-records in any iid sequence of observations. The reason for this
behavior is that large values appear so easily in such distributions that near-
records have only a dim chance of existing. It is also interesting to mention
that, from the structure of the near-record-values process, one can derive
the distribution of N∞, which is geometric when F (x) = 1/x, x > 1 (see
[18]). Condition (i) or (iii) in Theorem 4 can be relaxed to λ or λ′ bounded
above but then we can only prove weak convergence. Let us see in detail
the normalizing sequence ηn, for some distributions. For a heavy-tailed ex-
ample, let F with λ(x) = 1/

√
x, Theorem 4(ii) can be applied and we have

ηn ∼ 2a log logn. For the exponential distribution with parameter μ we have
λ(x) = μ and Theorem 4(i) applies, with ηn = (eaμ − 1) logn. Finally, take
the normal distribution N(0, 1), which has λ(x) ∼ x, as x→∞. In this case
Theorem 4 does not apply and only a weak LLN for Nn is obtained, with
ηn = a−1e−a2/2eam(n)m(n).

A CLT is obtained under hypotheses close to those of the weak LLN.

Theorem 5. If
∫∞
0

λ2(x)dx =∞ and any of the following conditions hold:
(i) λ(x) ≤ C, for all x ≥ 0 and some positive constant C;
(ii) λ is differentiable, limx→∞ λ(x) = ∞ and limx→∞ λ′(x) = α, for some
α ≥ 0.

Then there exist sequences an, bn such that (Nn − an)/bn → N(0, 1).

Proof. The CLT of Theorem 1 is applied to the martingale (3), which sim-
plifies to Nn −

∫Mn

0
f(x−a)−f(x)

F (x)
dx. See [15]. �

We exhibit the normalizing sequences for the distributions considered af-
ter Theorem 4. If λ(x) = 1/

√
x, an = 2a log logn and b2n = an. For the

exponential distribution, an = (eaμ − 1) logn and b2n = (2eaμ − 1)an and,
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for the normal, we have an = a−1e−a2/2eam(n)(m(n) − a − a−1) and b2n =
a−1e−a2

e2am(n)m(n).

3.3 Geometric Records3

Suppose one is interested in record breaking observations that beat all previ-
ous observations by a factor k > 1. These objects are called geometric records
and were introduced in [7]. Geometric records are also amenable to asymp-
totic analysis, taking a(x) = kx and b(x) = ∞ in Definition 1 and, again,
martingale tools allow to exhibit precise rates for the counting process Nn.

The definition of geometric record is quite stringent and we can expect
to observe, in general, very few of them. In fact, using our martingale-based
analysis, we can show that a necessary condition for Nn →∞ is that λ(x) →
0, as x→∞. Results for the LLN are presented below. We previously define
r(x) = F (kx)/F (x), for x > 0, and ηn =

∫m(n)

0
λ(x)r(x)dx, n ≥ 1.

Theorem 6. (i) If infx>0 r(x) > 0 then ηn = O(log n) and Nn/ηn → 1, a.s.
Moreover, if r(x) → ρ, as x→∞, then Nn/ logn→ ρ, a.s.
(ii) infx>0 r(x) = 0 then, if ηn is bounded, Nn is also bounded, a.s. Otherwise,
if ηn →∞ and r(x) decreases to 0, as x→∞, then Nn/ηn → 1, a.s.

Proof. Follows from Proposition 2 since φ(x) = F (kx) is decreasing. See [17].�

Let us consider, for example, F (x) = 1/x, x ≥ 1. Then, λ(x) = 1/x, r(x) =
1/k and

∫∞
0

λ(x)r(x)dx = ∞. Hence, Theorem 6(i) can be applied to obtain
Nn/ logn → k−1 (a.s). For the exponential distribution we have, according
to Theorem 6(ii), that Nn is bounded a.s. The same conclusion is obtained for
all distributions with tails thinner than the exponential, such as the normal.
Speeds other than logn are possible in the LLN. For example, taking F (x) =
e− log x log log x, for x > e, and k = e, we obtain ηn = (log logn)2/2 but, if
k > e, Nn is bounded a.s.

The CLT is derived from Theorem 1 applied to the general martingale (3),
which can be simplified to Nn − k

∫Mn

0 λ(kx)r(x)dx, (see [17]).

Theorem 7. If limx→∞ r(x) = ρ ≥ 0 and any of the following conditions
hold:
(i) ρ > 0;
(ii) ρ = 0, λ, r are decreasing functions and lim ηn = ∞.

Then (Nn − an)/bn → N(0, 1), with an = k
∫m(n)

0
λ(kx)r(x)dx, and b2n =

(1 + 2ρ log ρ)ηn, n ≥ 1 (with 0 log 0 = 0).

4 Extensions

In this Section we analyze some extensions of our results and techniques and
propose some problems for future research.
3 Technical details and proofs of results in this subsection can be found in [17].
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4.1 Sums of Record-Like-Values

In some applications it is of interest to consider sums of values of record-like
observations instead of simply counting them. The martingale approach is
also useful here to obtain limit theorems. Let ϕ be a positive payoff function
and consider the total payoff process

Sn =
n∑

k=1

ϕ(Xk)1{Xk∈(a(Mk−1),b(Mk−1))}, (6)

corresponding to record-like observations up to Xn. Note that Nn = Sn if
ϕ(x) = 1. An interesting particular case, first studied in [2], is the cumulative
process of record-values, which is obtained by setting a(x) = x, b(x) = +∞
and ϕ(x) = x. Notice that (6) differs from the process studied in [2] because
the sum in (6) is up to the n-th observation while in [2], it is up to the n-th
record time. Another interesting example is a(x) = x−a, b(x) = x, ϕ(x) = x,
yielding the sum of near-record-values among the first n observations. With
this choice of a(x), b(x) and ϕ(x), Sn can be interpreted in actuarial sciences
as the sum of claims at a distance less than a of being a record. See [4] for
properties and applications of sums of near-record values.

The structure of (6) suggests that a martingale analysis, analogous to that
of Nn, can be carried out. The task is to find the right martingales for the LLN
or the CLT. We will develop only the CLT under the following assumptions:
F has density f and E[ϕ2(X1)] < ∞. We also restrict the class of possible
record-like observations (see Definition 1) by assuming a(x) differentiable,
with a(x) ≤ x, x ≥ 0, and b =∞. We have the following

Proposition 4. Let g(t) = ϕ(a(t))f(a(t))a′(t), t ≥ 0. The process

Zn = Sn −
∫ Mn

0

g(t)
F (t)

dt, n ≥ 1, (7)

is an F-martingale. Moreover, if

lim
x→∞F (x)

(∫ x

0

g(t)
F (t)

dt

)2

= 0 and
∫ ∞

0

g(x)
(F (x))1/2

dx <∞, (8)

the martingale is square integrable and, denoting ξk = Zk − Zk−1,

E
[
ξ2
k | Fk−1

]
=
∫ ∞

a(Mk−1)

ϕ2(t)f(t)dt + 2
∫ ∞

Mk−1

∫ t

a(t)

ϕ(x)f(x)dx
g(t)
F (t)

dt, (9)

Proof. Notice first that the integrability of ϕ(X1) implies the integrability of
(7). We now check E[ξk | Fk−1] = 0, k ≥ 1. On the one hand

E
[
ϕ(Xk)1{Xk>a(Mk−1)} | Fk−1

]
=
∫ ∞

a(Mk−1)

ϕ(t)f(t)dt.
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Also, using the change of variable u = a(t),

E

[∫ Mk

Mk−1

g(t)
F (t)

dt

∣∣∣∣ Fk−1

]
=
∫ ∞

Mk−1

(∫ x

Mk−1

g(t)
F (t)

dt

)
f(x)dx

=
∫ ∞

Mk−1

g(t)dt =
∫ ∞

a(Mk−1)

ϕ(u)f(u)du.

The square integrability of the martingale follows from (8) and the integra-
bility of ϕ2(X1). To compute E

[
ξ2
k | Fk−1

]
note that

ξ2
k =ϕ2(Xk)1{Xk>a(Mk−1)} − 2ϕ(Xk)1{Xk>a(Mk−1)}

∫ Mk

Mk−1

g(t)
F (t)

dt

+

(∫ Mk

Mk−1

g(t)
F (t)

dt

)2

.

Now E
[
ϕ2(Xk)1{Xk>a(Mk−1)} | Fk−1

]
=
∫∞

a(Mk−1) ϕ
2(t)f(t)dt. As a(t) ≤ t,

ϕ(Xk)1{Xk>a(Mk−1)}

∫ Mk

Mk−1

g(t)
F (t)

dt = ϕ(Xk)
∫ Mk

Mk−1

g(t)
F (t)

dt,

E

[
ϕ(Xk)

∫ Mk

Mk−1

g(t)
F (t)

dt

∣∣∣∣ Fk−1

]
=
∫ ∞

Mk−1

ϕ(x)

(∫ x

Mk−1

g(t)
F (t)

dt

)
f(x)dx

=
∫ ∞

Mk−1

(∫ ∞

t

ϕ(x)f(x)dx
)

g(t)
F (t)

dt.

On the other hand, using integration by parts formula, we obtain

E

⎡
⎣
(∫ Mk

Mk−1

g(t)
F (t)

dt

)2 ∣∣∣∣ Fk−1

⎤
⎦ =

∫ ∞

Mk−1

(∫ x

Mk−1

g(t)
F (t)

dt

)2

f(x)dx

= 2
∫ ∞

Mk−1

(∫ x

Mk−1

g(t)
F (t)

dt

)
g(x)dx = 2

∫ ∞

Mk−1

(∫ ∞

a(t)

ϕ(y)f(y)dy

)
g(t)
F (t)

dt,

and the result is proved. �

From the proposition above, we see that E
[
ξ2
k | Fk−1

]
is a decreasing function

of Mk−1, and therefore,
∑n

k=1 E
[
ξ2
k | Fk−1

]
is a sum of minima of iid random

variables Yk, defined by

Yk =
∫ ∞

a(Xk)

ϕ2(t)f(t)dt + 2
∫ ∞

Xk

(∫ t

a(t)

ϕ(x)f(x)dx

)
g(t)
F (t)

dt.

Note also that, when a(t) = t, expression (9) reduces to
∫∞

Mk−1
ϕ2(t)f(t)dt.
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Thus, results about sums of minima can be used to find the normalizing
sequence of the CLT for Sn. Following the approach in [10], a Lyapunov con-
dition must be verified; it is expectable that the conditional third moment of
ξk can be written in terms of a sum of minima. Last, a change in the centering
sequence from

∫Mn

0
g(t)/F (t)dt to a deterministic sequence is required.

There remains the task of completing the program outlined above to obtain
the asymptotic normality for Sn. It would also be interesting to find martin-
gales similar to (7), for other choices of a and b and prove a CLT. In particular,
for the sum of near-record-values, where a(x) = x− a, b(x) = x, ϕ(x) = x.

4.2 Characteristic Martingales

The rather complicated expression of martingale (3) makes it hard to believe
that it sprang as result of intuitive considerations. In fact, (3) is a refined
version of an initial martingale, discovered when looking for an alternative to
(1). For the counting process of records Nn, we found that Nn − cNn, where
c is a positive constant, is an F-martingale if F is either the exponential or
the geometric distribution. In [11] we characterize all distributions F such
that Nn − cMn is a martingale, showing that, in the continuous and the
discrete case, the exponential and geometric distributions are, up to a simple
transformation, the only distributions with that property.

We may consider an extension of the above result to other record-like
statistics. For instance, let Nn be the number of observations greater than
the previous maximum minus a constant a > 0; that is a(t) = t−a, b(t) = +∞
(these observations are called δ-records in [10, 16], with δ = −a, and include
the case of weak records for integer-valued random variables, taking a = 1/2).

In the following proposition we define a process, related to Nn−cMn, which
turns out to be a martingale for the exponential and geometric distributions.

Proposition 5. Let Nn be the number of record-like observations with a(t) =
t− a, b(t) = +∞. Then

Nn − c(Mn ∨ a), n ≥ 1, (10)

is a martingale if and only if

F (t− a) = c

∫ ∞

t

F (u)du, for all t ≥ a (11)

in the support of F and c = 1/
∫∞
a F (u)du. In particular, (10) is a martingale

when F is the exponential distribution or the geometric distribution (in the
latter case a is supposed to be a positive integer number).

Proof. The proof follows the lines of Lemma 2.1 in [11]. The increment
of (10) is given by 1{Xn>Mn−1−a} − c((Mn ∨ a) − (Mn−1 ∨ a)). Clearly
E
[
1{Xn>Mn−1−a} | Fn−1

]
= F (Mn−1 − a). On the other hand, the value of
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E [(Mn ∨ a)− (Mn−1 ∨ a) | Fn−1] depends on whether Mn−1 < a or Mn−1 ≥
a. In the first case

E [(Mn ∨ a)− (Mn−1 ∨ a) | Fn−1] = E [(Xn ∨ a)− a | Fn−1]

=
∫ ∞

0

P [Xn > t + a]dt =
∫ ∞

a

F (u)du.

In the second case, we have

E [(Mn ∨ a) − (Mn−1 ∨ a) | Fn−1] =

∫ ∞

0

P [Xn − Mn−1 > t]dt =

∫ ∞

Mn−1

F (u)du.

Since F (t − a) = 1 for t < a, the first part of the proposition is proved.

For the exponential distribution, it is immediate that F (x) = e−λx satisfies
equation (11). In the case of the geometric distribution (starting at 1), with
survival function F (x) = (1 − p)�x�, we have

∫∞
a

F (x)dx = (1 − p)a/p, so
c = p/(1− p)a; then, letting t = a+ i, with i = 0, 1, 2, . . .,

c

∫ ∞

a+i

F (x)dx = c

∞∑
k=a+i

(1− p)k = c(1− p)a+i/p = (1− p)i = F (i). �

The natural continuation is to find all distributions such that (10) is a mar-
tingale, with a and b defined in Proposition 5. It would also be interesting to
study the characteristic martingale problem for other choices of a and b.

4.3 Limits without Martingales

We have shown how useful martingales are in obtaining asymptotic results for
the counting process of record-like observations. One may wonder whether
it is possible to analyze Nn =

∑n
k=1 1{Xk∈(a(Mk−1),b(Mk−1))} directly, as a

sum of Bernoulli random variables, applying results on laws of large numbers
and central limit theorem for dependent 0-1 variables, thus circumventing the
use of martingales and sums of minima. This approach seems to be difficult,
since the dependence of the indicators is not well understood, except for the
particular case of records from continuous distributions. However, in some
cases, another approach can be used. It consists of studying the sequence
of record-like values, finding the asymptotic behavior of this sequence and
obtaining the results for Nn via a random change of time. We now show
how to apply this procedure to prove a CLT for the number of records in a
sequence of iid random variables with general distribution F .

Let ξ be the point process of record values on [0,∞); that is, ξ(x) is the car-
dinal of the set {t ∈ [0, x] : t is a record value of the sequence Xn, n ≥ 1}. As-
suming that the atoms of F do not accumulate, ξ is a point process on [0,∞),
with independent increments, which admits the representation ξ = ξc + ξd,
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where ξc and ξd are the independent continuous and discrete components of
ξ. The continuous component is non-homogeneous Poisson and the discrete
component is a Bernoulli process. It can be proved, under some conditions
on the tail of F , that ξ(xn) satisfies a CLT, where xn, n ≥ 1, is any sequence
of real numbers increasing to ∞. Then we use the identity Nn = ξ(Mn) to
translate this result into a CLT for Nn. We call the replacement of xn by Mn

a random change of time and, of course, it is not clear if the new process will
obey the CLT. A result of [24] can be applied to justify the replacement and
obtain the CLT for ξ(Mn). In [19], we characterize the distributions F such
that Nn is asymptotically normal. This result improves our previous CLT for
discrete distributions, in [9], and solves a conjecture posed in [3].

It would be interesting to use this approach in the study of other record-
like statistics. However, in doing this, several difficulties arise. The first is that
we need a good description of the point process ξ of the record-like values
under consideration. This is known in some examples other than records. For
instance, the case of weak records, which satisfy the condition Xn ≥ Mn−1,
was described in [31]. In this situation, ξ is an independent increment process,
with ξ(x) =

∑
j≥1 Zj1{aj≤x}, where the Zj are independent with geometric

distribution of parameter 1− rj . Another situation where ξ is well described
is the case of near-records, as defined in Subsection 3.2. In this case it can
be shown that ξ is a cluster Poisson process where the center process is non-
homogeneous Poisson and each center x casts a geometric number of points
in (x− a, x), whose locations have density f(x)/(F (x− a)−F (x)) (see [18]).
Finally, geometric records, considered in Subsection 3.3, can be translated,
via a logarithmic transformation of the observations, into δ-records, which
are record-like observations satisfying Xn > Mn−1 +a. In this situation ξ is a
type II counter process, with a nonhomogeneous Poisson input process (See
[5, 17]). Once the corresponding process ξ has been successfully described, a
CLT for ξ(xn) must be found. This is not very difficult if ξ has independent
increments (as in the case of weak records) but it is likely to be harder if
the increments of ξ are dependent, as is the case of near-records or geomet-
ric records. Another problem with this approach is that the identity relating
Nn, ξ and Mn for records (Nn = ξ(Mn)) does not hold for other record-
like statistics. For instance Nn 	= ξ(Mn) for weak records, since ξ(Mn) may
count weak records which occur after time n. It is expectable, however, that
the difference ξ(Mn) − Nn is negligible when compared with Nn. The for-
mula does not hold for near records either, although again the differences
may be small. Last, the result of [24], used in [19], requires ξ to be written
as a sum of independent random variables. This representation is available
for records and weak records, but not for other record-like statistics, such as
near-records or geometric records. A more general CLT with random change
of time is needed in those cases.

Overall, we believe that this procedure, without martingales, is adequate
for records or weak records, but may be difficult to apply for other cases of
record-like statistics.
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16. Gouet, R., López, F.J., Sanz, G.: On δ-record observations: asymptotic rates
for the counting process and elements of maximum likelihood estimation (2010)
(submitted)
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29. Rényi, A.: Théorie des éléments saillants d’une suite d’observations. Ann. Fac.

Sci. Univ. Clermont-Ferrand 8, 7–13 (1962)
30. Shorrock, R.W.: On record values and record times. J. Appl. Probab. 9, 316–326

(1972)
31. Stepanov, A.V.: Limit theorems for weak records. Theor. Prob. Appl. 37,

570–574 (1992)
32. Vervaat, W.: Limit theorems for records from discrete distributions. Stoch.

Proc. Appl. 1, 317–334 (1973)



p-Symmetric Measures: Definition, Properties

and Perspectives∗

Pedro Miranda1 and Susana Mart́ınez2

1 Complutense University of Madrid, Spain
pmiranda@mat.ucm.es

2 I.E.S.O. Arturo Plaza, Spain
susanamartinezsuarez@hotmail.com

Summary. In this paper we give a review of the main properties of p-
symmetric measures. This subfamily of fuzzy measures has an appealing
representation and can be defined with a reduced number of coefficients.
Moreover, the corresponding Choquet integral is related to internal-external
coverings and its expression has an intuitive meaning. Next, the polytope of
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symmetric measures. We finish with the conclusions and highlighting several
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1 Motivation and Basic Concepts

Consider a referential set of n elements X = {x1, . . . , xn}. Subsets of X are
denoted A,B and so on, and also A1, A2, . . . The set of subsets of X is denoted
by P(X).

A fuzzy measure [26] (or capacity [4] or non-additive measure [7])
over X , is a set function μ : P(X)→ [0, 1] satisfying

• μ(∅) = 0, μ(X) = 1,
• μ(A) ≤ μ(B) for all A,B ∈ P(X) such that A ⊆ B.

As it can be seen from the above definition, fuzzy measures are a generaliza-
tion of probability distributions on X, where we have removed additivity and
we have imposed monotonicity instead. Note on the other hand that n − 1
values suffice to define a probability measure, while 2n − 2 coefficients are

∗ This paper has been done to pay homage to Prof. Marisa Menéndez. As soon as
we met her, she offered us her support, her valuable advices and her friendship.
These are the kind of things that make the difference between a friend and a
colleague. Dear friend, we will never forget all you have done for us; we miss you
very much.
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needed for fuzzy measures. As it will become apparent below, this exponen-
tial complexity is the Achilles heel of the Theory of Fuzzy Measures.

Next step in the Theory of Fuzzy Measures is to define an extension of the
concept of expected value that can be applied to any fuzzy measure. This is
done through the so-called Choquet integral [4].

Consider a non-negative function f : X → R
+. The Choquet integral

for finite referentials is defined by

Cμ(f) :=
n∑

i=1

(f(x(i))− f(x(i−1)))μ(Bi),

where parenthesis mean a permutation such that 0 = f(x(0)) ≤ f(x(1)) ≤
. . . ≤ f(x(n)) and Bi = {x(i), . . . , x(n)}. Another equivalent expression is

Cμ(f) :=
n∑

i=1

f(x(i))(μ(Bi)− μ(Bi+1)) (1)

with Bn+1 = ∅.
For general functions, not necessarily non-negative, there are two possible

extensions of Choquet integral [7]: the asymmetric Choquet integral, usually
known as Choquet integral, and the symmetric Choquet integral, also known
as Šipoš integral.

In general, Choquet integral is complex to compute, this complexity inher-
ited from the complexity of fuzzy measures. However, there are two special
cases in which Choquet integral can be computed very quickly. One of them
is the case of additive measures (i.e. probabilities); in this case, Choquet in-
tegral reduces to a weighed mean (indeed a expected value). The other one
appears when μ is symmetric, i.e. the values of μ do not depend on the subset
but on its cardinality; from a mathematical point of view, a fuzzy measure
μ is symmetric if μ(A) = μ(B) if |A| = |B|. When μ is symmetric, it can be
seen [18] that Choquet integral coincides with an OWA operator [27] and Eq.
(1) reduces to

Cμ(f) =
n∑

i=1

(μn−i − μn−i−1)f(x(i)), (2)

where μi denotes the value of the fuzzy measure for any subset whose cardi-
nality is i.

Fuzzy measures, together with Choquet integral, have been applied in
many different situations in which probabilities are too restrictive. For ex-
ample, fuzzy measures have become a powerful tool in Decision Theory (see
e.g. [12], [23] and [2]), where the Choquet Expected Utility model generalizes
the Expected Utility one; this model offers a simple theoretical foundation
for explaining phenomena that cannot be accounted for in the framework of
Expected Utility Theory, as the well-known Ellsberg’s and Allais’ paradoxes
(see [2] for a survey about this topic). Other fields related to non-additive
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measures are Combinatorics, Pseudo-Boolean functions, Welfare Theory and
many others (see [11] for a review of theoretical and practical applications
of fuzzy measures). Moreover, they are included in the field of Aggregation
Operators, that constitutes a major research topic nowadays [10].

As we have seen, despite of the many advantages of fuzzy measures, their
practical use has to face with the hurdle of an increment in the complexity.
In order to reduce this complexity, several subfamilies have been defined. The
basic idea is to include some additional constraints in the definition, so that
the complexity reduces while the modeling capability of the subfamily is kept
as rich as possible. Among all these subfamilies, surely the most famous is
the subfamily of k-additive measures, introduced by Grabisch in [9] and that
is defined below. Previously, we introduce the Möbius transform of a fuzzy
measure [22].

Let μ be a fuzzy measure on X . The Möbius transform (or inverse)1

of μ is a set function on X defined by

m(A) :=
∑
B⊆A

(−1)|A\B|μ(B), ∀A ⊆ X.

The Möbius transform given, the original fuzzy measure can be recovered via
the Zeta transform [3]:

μ(A) =
∑
B⊆A

m(B).

Therefore, the Möbius transform is an alternative representation of fuzzy
measures. The value m(A) represents the strength of the subset A in any
coalition in which it appears. It is also known as dividends in Game Theory
[13]. Choquet integral in terms of m is given by (see [3])

Cμ(f) =
∑

T⊂X

m(T )

[ ∧
xi∈T

f(xi)

]
, f ∈ [0, 1]n. (3)

For additive measures, it can be seen that the Möbius transform vanishes
for subsets that are not singletons. This inspires the concept of k-additive
measures.

A fuzzy measure μ is said to be k-additive if its Möbius transform vanishes
for any A ⊆ X such that |A| > k and there exists at least one subset A with
exactly k elements such that m(A) 	= 0.

In this sense, a probability measure is just a 1-additive measure. Thus,
k-additive measures generalize probability measures and they fill the gap
between probability measures and general fuzzy measures. As the Möbius
transform is an alternative representation of a fuzzy measure, for a k-additive
measure the number of coefficients is reduced to

1 The Möbius transform also applies if μ is just a set function satisfying μ(∅) = 0.
This is the case in Game Theory.
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k∑
i=1

(
n

i

)
− 1,

as one coefficient is completely determined by

1 = μ(X) =
∑

B⊆X

m(B).

Similarly, the complexity of a Choquet integral with respect to k-additive
measure reduces a great deal, as it can be seen from Eq. (3).

The goal of p-symmetric measures is to provide a concept, similar to k-
additive measures, bridging the gap between symmetric fuzzy measures and
general fuzzy measures. The rest of the paper is organized as follows: In next
section we introduce p-symmetric measures; Section 3 shows some properties
of p-symmetric measures and their corresponding Choquet integral. Section
4 studies the polytope of p-symmetric measures. Section 5 outlines some
situations where p-symmetry could be an interesting tool.

2 p-Symmetric Measures

Let us consider an OWA operator (Eq. 2). If we look at the definition, we
can see that only the order in the scores is important, i.e. we are interested
in the scores, but we do not care about which criterium each score has been
obtained. Mathematically, this means that the fuzzy measure defining the
OWA operator only depends on the cardinality of the subsets, and not in the
elements of the subset themselves.

Thus, all criteria have the same importance or, in other words, we have a
“subset of indifference” (X itself). Then, it makes sense to define 2-symmetric
measures as those measures for which we have two subsets of indifference, 3-
symmetric measures as those with three subsets of indifference, and so on.
Let us now translate this idea.

Definition 1. [17] Given two elements xi, xj of the universal set X, we say
that xi and xj are indifferent elements if and only if

∀A ⊆ X\{xi, xj}, μ(A ∪ xi) = μ(A ∪ xj).

This definition translates the idea that we do not care about which element,
xi or xj is in the coalition; that is, we are indifferent between xi and xj . This
concept can be generalized for subsets of more than two elements, as shown
in the following definition:

Definition 2. [17] Given a subset A of X, we say that A is a subset of
indifference if and only if

∀B1, B2 ⊆ A, |B1| = |B2|, ∀C ⊆ X\A, μ(B1 ∪ C) = μ(B2 ∪ C).
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Definition 3. [17] Given a fuzzy measure μ, we say that μ is a p-symmetric
measure if and only if the coarsest partition of the universal set in subsets
of indifference is {A1, . . . , Ap}, Ai 	= ∅, ∀i ∈ {1, . . . , p}.

The existence and unicity of this partition has been proved in [16]. We will de-
note by FM(A1, . . . , Ap) the set of fuzzy measures for which Ai, i = 1, . . . , p,
is a subset of indifference (but not necessarily being p-symmetric! Indeed, any
symmetric measure belongs to FM(A1, . . . , Ap)).

3 Basic Properties

In this section we study some basic properties of p-symmetric measures. De-
tailed proofs can be found in [17].

Let us start with the representation of p-symmetric measures. As all ele-
ments in a subset of indifference have the same behavior, when dealing with
a fuzzy measure in FM(A1, . . . , Ap), we only need to know the number of
elements of each Ai that belong to a given subset C of the universal set X .
Therefore, the following result holds:

Lemma 1. If {A1, . . . , Ap} is a partition of X, then in order to define a
fuzzy measure in FM(A1, . . . , Ap), any C ⊆ X can be identified with a p-
dimensional vector (c1, . . . , cp) with ci := |C ∩Ai|.

In other words, we can write μ(C) ≡ μ(|A1 ∩C|, . . . , |Ap ∩C|), and the same
applies for the Möbius transform. As a consequence:

Proposition 1. Let μ be a p-symmetric measure with respect to the parti-
tion {A1, . . . , Ap}. Then, the number of values that are needed in order to
determine μ is [

(|A1|+ 1)× · · · × (|Ap|+ 1)
]
− 2.

For example, if we are dealing with the 2-symmetric measure with subsets
of indifference A1, A2, we obtain that the number of coefficients needed is
(|A1|+ 1)× (|A2|+ 1). These coefficients can be represented in a (|A1|+ 1)×
(|A2|+ 1) matrix:

⎛
⎜⎜⎜⎜⎜⎝

μ(0, 0) μ(0, 1) . . . μ(0, |A2| − 1) μ(0, |A2|)
μ(1, 0) μ(1, 1) . . . μ(1, |A2| − 1) μ(1, |A2|)

...
...

. . .
...

...
μ(|A1| − 1, 0) μ(|A1| − 1, 1) . . . μ(|A1| − 1, |A2| − 1) μ(|A1| − 1, |A2|)
μ(|A1|, 0) μ(|A1|, 1) . . . μ(|A1| − 1, |A2| − 1) μ(|A1|, |A2|)

⎞
⎟⎟⎟⎟⎟⎠

Let us now turn to Choquet integral. As an application of Eq. (3) and Propo-
sition 1, the following holds:
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Proposition 2. Let μ be a p-symmetric measure with respect to the partition
{A1, . . . , Ap}. Given a function f : X → R

+, the Choquet integral is given by

n∑
i=1

f(x(i))
∑

ck≤bi−1
k ,∀k

m(c1, . . . , cj + 1, . . . , cp)
p∏

k=1

(
bi−1
k

ck

)

with x(i) ∈ Aj , and where (bi−1
1 , . . . , bi−1

p ) ≡ B(i−1) = {x(1), . . . , x(i−1)}.

As a subset C ≡ (|C ∩A1|, . . . , |C ∩Ap|), we can find all possible families
of coefficients for Choquet integral finding all possible paths from (0, . . . , 0)
to (|A1|, . . . , |Ap|). For example, if we are dealing with the 2-symmetric case,
this result can be depicted in Figure 1.

(0,0)

(0,1)

(0,2) (1,2) (2,2)

(2,3) (3,3)

Fig. 1. Possible path from (0,0) to (3,3) when |A1| = 3 and |A2| = 3

Moreover, the Choquet integral can be decomposed in a sum of p Choquet
integrals plus a correction term.

Proposition 3. Let μ be a p-symmetric measure with respect to the partition
{A1, . . . , Ap}, and suppose μ(Ai) > 0, ∀i. Then, the Choquet integral is given
by

p∑
i=1

μ(Ai)Cμi(f) +
∑

B �⊆Aj ,∀j

m(B)
∧

xi∈B

f(xi),

where μi is defined by its Möbius transform

mi(C) =

{
m(C)
μ(Ai)

ifC ⊆ Ai

0 otherwise



p-Symmetric Measures 413

The last summand in this proposition represents the part of the Choquet
integral that cannot be assigned to any subset in the partition. Note that
the integrals in the first part are just OWA’s, as μi is a symmetric measure
restricted to Ai, so that they can be computed very quickly. This result is
related to the internal-external coverings of Murofushi et al. [19], [20].

4 p-Symmetric Measures as Order Polytopes

It can be easily seen that FM(A1, . . . , Ap) is a convex polytope for a fixed
partition {A1, . . . , Ap}. In this section we show that FM(A1, . . . , Ap) belongs
to a special class of polytopes, the so-called order polytopes, and derive some
properties from this result.

Let us recall the basic notions about order polytopes. Consider a finite
poset (P, ) (or P for short) of p elements. We will denote the subsets of P
by capital letters A,B, . . . and also A1, A2, . . . ; elements of P are denoted
a, b, and so on. If A is a subset of P, it inherits a structure of poset from the
restriction of  to A. In this case, we say that A is a subposet of P . If two
elements a, b of P satisfy a  b or b  a, we say that they are comparable.
A subposet (A, ) is a chain if for any a, b ∈ A, either a  b or b  a. A
subposet (A, ) is an antichain if for any a, b ∈ A, neither a  b nor b  a.

Given a poset (P, ), we define the dual poset (P , ′) as another poset
with the same underlying set and satisfying

a  b in P ⇔ b  ′ a in P .

If (P, ) is isomorphic to (P , ′), we say that P is autodual.
A subset I of P is an ideal or downset if for any a ∈ I and any b ∈ P such

that b  a, it follows that b ∈ I. Notice that with this definition the empty
set is an ideal. The dual notion of an ideal is a filter or upset, i.e., a set that
contains all upper bounds of its elements. Remark that for a given antichain
in P , we can build an ideal whose minimal elements are the elements in the
antichain. Reciprocally, we can identify any ideal with the antichain of its
minimal elements. Thus, the number of ideals and the number of antichains
is the same.

Let us now turn to order polytopes. Given a poset (P, ), it is possible to
associate to P , in a natural way, a polytope O(P ) in R

p, called the order
polytope of P (cf. [25]). The polytope O(P ) is formed by the p-uples f of
real numbers indexed by the elements of P satisfying

• 0 ≤ f(a) ≤ 1 for every a in P,

• f(a) ≤ f(b) whenever a  b in P .

Thus, the polytope O(P ) consists in (the p-uples of images of) the order-
preserving functions from P to [0, 1]. It is a well-known fact [25] that O(P ) is
a 0/1-polytope, i.e. its extreme points are all in {0, 1}p. In fact, it is easy to
see that the extreme points of O(P ) are exactly (the characteristic functions
of) the filters of P .
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The set FM(A1, . . . , Ap) can be seen as the order polytope of the poset
(P (A1, . . . , Ap), ), where

P (A1, . . . , Ap)

:= {(i1, . . . , ip) : ij ∈ {0, . . . , |Aj |}, i, j ∈ Z}\{(0, . . . , 0), (|A1|, . . . , |Ap|)},

and  is given by (c1, . . . , cp)  (b1, . . . , bp)⇔ ci ≤ bi, i = 1, . . . , p.
Next Figure shows the poset for FM(A1, A2) when |A1| = 2, |A2| = 1.

Fig. 2. Hasse diagram of the poset for FM(A1, A2) when |A1| = 2, |A2| = 1

The importance of this result will become apparent below, where we show
some properties of FM(A1, . . . , Ap) as an order polytope; all of them are
given in terms of the subjacent poset, thus simplifying a great deal the cor-
responding proofs.

As a first consequence, the vertices of FM(A1, . . . , Ap) are included in the
set of {0, 1}-valued measures, thus recovering the results obtained in [15]. We
can also give the values of the number of vertices of FM(A1, . . . , Ap) for small
values of p (the general case is a long standing open problem in Combina-
torics [1]). We only have to note that these numbers are, in fact, two less (we
have to exclude the antichains {(|A1|, . . . , |Ap|)} and {(0, . . . , 0)}) than the
numbers of antichains in the product of chains of sizes |A1|+ 1, . . . , |Ap|+ 1.
Then, from the results in [1, 24] we can deduce the following result.

Theorem 1

• The number of vertices of 1-symmetric measures on a referential set of n
elements is n.

• The number of vertices in FM(A,B) is given by
(
a+ b

a

)
− 2

where a = |A|+ 1 and b = |B|+ 1.
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• The number of vertices in FM(A,B,C) is
(
Πa−1

j=0

(
c+b+j

b

)
(
b+j

b

)
)
− 2

where a = |A|+ 1, b = |B|+ 1 and c = |C|+ 1.
• The number of vertices of FM(A,B,C,D) with |B| = |C| = |D| = 1 is

48
(
a+ 8

8

)
− 96

(
a+ 7

7

)
+ 63

(
a + 6

6

)
− 15

(
a+ 5

5

)
+
(
a + 4

4

)
− 2

where a = |A|+ 1.

It must be noticed that the number of vertices of p-symmetric measures is
very reduced if we compare it with the number of vertices of general fuzzy
measures, as it can be seen in next table

Table 1. General measures vs. p-symmetric measures. Number of vertices.

|X| General measures symmetry 2-symmetry 3-symmetry

3 18 3 8 18
4 166 4 18 48
5 7,579 5 33 173
6 7,828,352 6 68 978

For this table, we are considering for the 2-symmetric and 3-symmetric
cases, the choice of subsets of indifference leading to a maximal number of
vertices.

As the set of fuzzy measures and the set FM(A1, . . . , Ap) are polytopes,
they can be given in terms of their vertices. The reduction in the number of
the vertices shown in Table 1 is one of the main advantages of p-symmetric
measures and simplifies ulterior studies.

Let us now treat the problem of adjacency. As proved in [14, 21], the
problem of determining non-adjacency of vertices of a polytope is, in some
cases, NP-complete (see [8] for a definition of NP-complete problems and
related notions). However, in [5], the following has been proved for order
polytopes.

Lemma 2. A necessary condition for F1 and F2 to be adjacent vertices in
O(P ) is that either F1 ⊂ F2 or F2 ⊂ F1.

Theorem 2. If F1 and F2 are filters of P and F1 ⊂ F2, then F1 and F2 are
adjacent vertices in O(P ) if and only if F2 \F1 is a connected subposet of P .

This result is important not only because it characterizes adjacency, but
because it also allows to derive the following corollary.
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Corollary 1. Checking whether two filters F1 and F2 are adjacent can be
done in quadratic time in the number of elements of P .

In particular, the adjacency structure of FM(A1, . . . , Ap) can be checked in
quadratic time. Figure 3 (which has been drawn with the help of the Pigale
computer program2) depicts the adjacency structure forFM(A1, A2, A3) when
|A1| = |A2| = |A3| = 1, i.e. the adjacency structure of general fuzzy measures
when |X | = 3. In this figure, filters are noted by their corresponding antichains.

Fig. 3. Adjacency structure of FM(A1, A2, A3) when |A1| = |A2| = |A3| = 1

More results related to the adjacency structure of FM(A1, . . . , Ap) can be
found in [5].

Let us now deal with the problem of obtaining the group of isometries on
FM(A1, . . . , Ap).

Suppose f : P → P is a bijection such that there exist two disjoint filters
F, F ′ (we allow one of them to be empty) such that P = F ∪ F ′ and

1. f(F ) and f(F ′) are filters in P .
2. If i, j ∈ F, then i  j if and only if f(i)  f(j).
3. If i, j ∈ F ′, then i  j if and only if f(j)  f(i).

2 PIGALE: Public Implementation of a Graph Algorithm Library and Editor, H.
de Fraysseix and P. Ossona de Mendez. http://pigale.sourceforge.net/
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That is, f is isotone on F and antitone on F ′. For a given f in these conditions,
we define hf,F,F ′ : O(P ) → O(P ) by

hf,F,F ′(a1, . . . , ap) := (b1, . . . , bp),

where

bf(i) :=
{
ai if i ∈ F

1− ai if i ∈ F ′ .

It has been proved in [6] that hf,F,F ′ is an isometry on O(P ), called isometry
induced by f and the filters F, F ′. Now, the following can be shown:

Theorem 3. [6] Let h : O(P ) → O(P ) be an isometry; then, there exists a
bijection f : P → P and two filters F, F ′ determining a partition on P and
satisfying conditions 1-3 such that h = hf,F,F ′ .

Let us now consider the isometries satisfying F = P ; we will denote this set
of isometries by H0. From Theorem 3, H0 is given by the mappings f such
that hf,P,∅ is an isometry. Note also that H0 is never empty, as the identity
map determines an isometry in H0. Moreover, it is easy to check that H0 is
a subgroup of the group of isometries. Indeed, the group H0 is isomorphic to
the group of order automorphisms of P (isomorphisms preserving the order
structure of P ). For the particular case of connected posets, the following
result can be stated.

Proposition 4. [6] If P is connected, then:

1. H0 is a normal subgroup of the set of isometries on O(P ).
2. If P is autodual, then H0 is a subgroup of index 2.
3. If P is not autodual, then H0 covers the whole set of isometries on O(P ).

For the case of FM(A1, . . . , Ap), the corresponding poset is connected and
autodual. Then, we can apply the previous results to completely characterize
the set of isometries on FM(A1, . . . , Ap).

Lemma 3. [6] If a poset P is a product of p chains of sizes a1, . . . , ap ex-
cept the top and bottom elements, then the group of automorphisms of P is
generated by the functions fj,k given by:

fj,k(c1, . . . , cj , . . . , ck, . . . , cp) = (c1, . . . , ck, . . . , cj , . . . , cp),

where j, k are such that aj = ak. We call this mapping the transposition
between the chains j and k.

Define g : P (A1, . . . , Ap)→ P (A1, . . . , Ap) by

g((c1, . . . , cp)) = (|A1| − c1, . . . , |Ap| − cp).

Then, g is an order-reversing isomorphism between P (A1, . . . , Ap) and its
dual poset. We will call such mapping g the dual application.

Theorem 4. [6] The group of isometries on FM(A1, . . . , Ap) is generated
by the isometries induced by transpositions between subsets of indifference of
the same cardinality, and by the isometry induced by the dual application.
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5 Conclusions and Perspectives

In this paper we have introduced the definition and some properties of p-
symmetric measures. The main point of this subfamily is that it provides a
gradation between symmetric measures and general fuzzy measures; there-
fore, we can choose the degree of symmetry in terms of the concrete problem
and the desired complexity. Moreover, they share almost the same properties
as general fuzzy measures; this is a property that others subfamilies do not
fulfill, as for example k-additive measures. The reason relies in the fact that
general fuzzy measures and p-symmetric measures can be both treated as
order polytopes; this allows the study in terms of the corresponding poset,
thus reducing the complexity and giving a deeper insight in the structure of
the subfamily.

There are many circumstances under which p-symmetry could be an inter-
esting tool. As we have seen, p-symmetric measures allow a reduction in the
complexity of computing Choquet integral. When we have many criteria, we
could think of using a p-symmetric measure near the real measure, so that
we reduce the complexity while obtaining similar Choquet values.

Another example comes from Multicriteria Decision Making. In many real
problems of Multicriteria Decision Making there are many criteria; in this
case, it is usual to decompose the problem in several sub-problems by intro-
ducing a hierarchy of criteria. In this case, we could think in decompose the
problem in several sub-problems based on symmetry or 2-symmetry. Thus,
the problem of identifying the fuzzy measure for each sub-problem is easy to
solve and the overall complexity reduces.
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Summary. A robust procedure, which produces the maximum likelihood es-
timator when the data are in conformity with the parametric model, and gen-
erates the outlier deleted maximum likelihood estimator under the presence
of extreme outliers, has obvious intuitive appeal to the practising scientist.
None of the currently available robust estimators achieves this automatically.
Here we propose a density-based divergence belonging to the family of dis-
parities ([7]) where the corresponding weighted likelihood estimator ([10],
[11]) exhibits this desirable behavior for proper choices of tuning parameters.
Some properties of the corresponding estimation procedure are discussed and
illustrated through examples.

Keywords: Hellinger distance, outlier deleted maximum likelihood estima-
tor, residual adjustment function, weighted likelihood estimation.

1 Introduction

The maximum likelihood estimator is the cornerstone of classical parametric
inference. However, it is notoriously non-robust to deviations, even very small
ones, from the parametric conditions in many common models. In much of
the robustness literature, the main focus has been to modify the methods
based on maximum likelihood in order to make them more stable under
model misspecifications. While the robustness issue requires careful atten-
tion, the universal appeal of the classical parametric methods such as the
maximum likelihood estimation is something we would hate to lose. In real
data situations with extreme outliers, many data analysts still naively apply
standard techniques routinely after simply deleting the outlying observations
– an approach which is theoretically unsatisfactory for obvious reasons. How-
ever, a robust method which automatically (rather than through subjective
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deletion) generates the outlier deleted maximum likelihood estimator under
extreme outliers and exactly matches the ordinary maximum likelihood es-
timator when the data are generally concordant with the model will have
immediate intuitive appeal to the practitioner. None of the currently avail-
able robust methods manage that in practise.

Using a density-based minimum divergence approach, [5] showed that the
conflicting issues of efficiency and robustness can be reconciled using the min-
imum Hellinger distance estimator. [15], [13] and [7], among others, pursued
this line of research. The latter work extended the scope of application to a
general class of density based divergences called disparities. The correspond-
ing minimum disparity estimators are all first order efficient while several of
them have remarkable robustness properties. [12] provides a general descrip-
tion of many of these methods.

It may be noted that the class of disparities is a reformulation of the class
of φ-divergences (see, eg., [6] and [2]). However [5] appears to be the first
who seriously dealt with the robustness issue based on such divergences and
Lindsay’s ([7]) work stands out in that he identified the geometrical properties
needed by the divergence to inherit strong robustness properties.

In this paper we have followed the set up and approach of [7] and considered
minimization procedures based on the robustified likelihood disparity and the
corresponding weighted likelihood version; this family is a modification of the
likelihood disparity ([7]). The proposed estimators remove the non-robustness
of the maximum likelihood estimator in a very natural way. Under proper
choice of tuning parameters the procedure has the remarkable property that
the corresponding weighted likelihood estimators ([10], [11]) are exactly equal
to the maximum likelihood estimator when the data generally follow the
model, while being exactly equal to the outlier deleted maximum likelihood
estimator when the data contain some extreme outliers. This is the novelty of
this method – it is not just another minimum disparity estimation technique
generating robust and efficient estimators simultaneously.

Throughout the paper, we will (a) denote the true distribution by G and
the model family by FΘ = {Fθ, θ ∈ Θ ⊆ R

p}, (b) assume that FΘ and G are
both contained in G, the class of all distributions having probability density
functions with respect to (w.r.t.) a dominating measure, and (c) write lower
case letters to represent the probability density functions and upper case
letters for the corresponding distribution functions (e.g., write g, fθ for the
densities of G and Fθ).

2 Disparities and Weighted Likelihood

For ease of presentation we first consider the discrete case. Let X1, X2, . . . , Xn

represent a random sample from a discrete distribution Fθ having a countable
support. Let dn(x) denote the proportion of Xj ’s in the sample having the
value x. [7] defined the Pearson residual δ(x) at a value x by δ(x) = (dn(x)−
fθ(x))/fθ(x). An x-value is called an outlier if δ(x) is a relatively large positive
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number. Let C(·) be a real–valued, thrice differentiable convex function on
[−1,∞) with C(0) = 0. Then the disparity ρC between dn and fθ is defined
as

ρC(dn, fθ) =
∑

x

C
(
δ(x)

)
fθ(x). (1)

The minimizer of (1) with respect to θ, provided one exists, is called the
minimum disparity estimator of θ corresponding to the disparity ρC .

Letting ∇ denote the gradient with respect to θ, the estimating equation,
under differentiability of the model, takes the form

−∇ρC =
∑

x

A(δ(x))∇fθ(x) = 0, (2)

where
A(δ) ≡ (δ + 1)C′(δ)− C(δ), (3)

where C′(δ) represents the derivative of C(δ) with respect to its argument.
The corresponding derivative of A(δ) will be denoted by A′(δ). Without
changing the estimating properties of the disparity ρC , C(δ) can be redefined
so that its A(δ) function satisfies A(0) = 0 and A′(0) = 1. This standard-
ized function A(δ) is called the residual adjustment function of the disparity.
The maximum likelihood estimator of θ minimizes the likelihood disparity
LD(dn, fθ) with CLD(δ) = (δ + 1) log(δ + 1)− δ and the residual adjustment
function has the form ALD(δ) = δ; here log represents the natural logarithm.

Let uθ(x) = ∇ log fθ(x) denote the maximum likelihood score function. A
little algebra shows that equation (2) can be written as

∑
x:dn(x) �=0

A(δ(x)) + 1
δ(x) + 1

dn(x)uθ(x) +
∑

x:dn(x)=0

[A(−1) + 1]∇fθ(x) = 0.

For divergences with A(−1) = −1, the above equation becomes

∑
dn(x) �=0

w(x)dn(x)uθ(x) =
1
n

n∑
i=1

w(Xi)uθ(Xi) = 0. (4)

where
w(x) = w(δ(x)) ≡ (A(δ(x)) + 1)/(δ(x) + 1). (5)

The last equation in (4) can be viewed as a weighted likelihood score equa-
tion; it equates a weighted sum of the likelihood scores to zero. The solution
to this equation will be referred to as the weighted likelihood estimator.
If w(x) = 1 identically in x, equation (4) reduces to the maximum likeli-
hood score equation. For fixed weights w, a closed form solution of equation
(4) is usually available. Hence, (4) can be solved via a fixed point iteration
algorithm similar to iteratively reweighted least squares. One can directly
construct weighted likelihood estimating equations as in (4) starting from
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the residual adjustment function of any appropriate disparity; however, the
method will correspond exactly to the minimization of a disparity only if
A(−1) = −1 for the corresponding function. Notice that in case of the like-
lihood disparity A(−1) = −1, and the weights are all identically equal to
1.

Large outliers are manifested through large positive values of δ. However,
the negative side of the δ axis is not a robustness concern, and one convenient
modification is to put w(x) = w(δ(x)) = 1 for δ(x) < 0. This does not
affect the robustness or efficiency properties of the corresponding estimator,
but removes the intuitively confusing possibilities of having negative weights
or weights greater than 1. This may be viewed as applying the weighted
likelihood methodology to the combined disparity obtained by combining the
likelihood disparity on the inlier side to the disparity in question on the outlier
side (see [9]). This branch of weighted likelihood estimation was developed
by Markatou et al. ([10], [11]), and more details about these methods can
be found in their papers. [1] have also developed efficient testing procedures
based on the weighted likelihood idea.

In the above weighted likelihood scheme, our objectives therefore are that
(i) the observations generally following the model should get weights exactly
equal to 1 (as in the case of the likelihood disparity), and (ii) the outlying data
points (with relatively large positive values of δ) should be smoothly down-
weighted, with the degree of downweighting increasing as the observations
become more and more aberrant; wildly discrepant observations should get
weights practically equal to zero. With these objectives in mind we present
the following proposal. We modify the residual adjustment function of the
likelihood disparity with numbers c and c∗ satisfying −1 ≤ c∗ < 0 < c <∞,
so that

Ac∗,c(δ) =

⎧⎨
⎩
c∗ for − 1 ≤ δ ≤ c∗

δ for c∗ < δ < c

c for δ ≥ c.

(6)

By solving the differential equation (3) for the above residual adjustment
function one gets the defining equation of the disparity to be

Cc∗,c(δ) =

⎧⎨
⎩

(δ + 1) log(c∗ + 1)− c∗ for − 1 ≤ δ ≤ c∗

(δ + 1) log(δ + 1)− δ for c∗ < δ < c

(δ + 1) log(c+ 1)− c for δ ≥ c.

(7)

Clearly, Cc∗,c(δ) is convex on (c∗, c) and linear on [−1, c∗] and [c,∞) with
the slopes at δ = c∗ and δ = c well defined. Hence Cc∗,c(δ) is convex on the
entire interval [−1,∞). We will refer to the disparity generated by Cc∗,c as
the robustified likelihood disparity (with tuning parameters c∗ and c). The
minimizer of the robustified likelihood disparity RLDc∗,c(dn, fθ) over θ ∈
Θ is the robustified maximum likelihood estimator. Similarly the robustified
weighted likelihood estimators is the solution of the estimating equation (4)
where the weight function uses the form of the residual adjustment function
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as given in (6). However in the latter case we restrict c∗ to equal −1, so as
to stick to the convention that w(x) = 1 for δ(x) < 0.

Now consider the case of a continuous distribution G, modeled by a contin-
uous family of distributions Fθ. Let X1, . . . , Xn be a random sample from G.
In extending the minimum disparity ideas to the estimation of θ we are faced
with the additional complication that the data are discrete but the model is
continuous. In this case we let

ĝn(x) =
1
n

n∑
i=1

k (x,Xi, hn) =
∫

k(x, y, hn)dGn(y) (8)

denote a nonparametric density estimator where k(·, y, hn) is a smooth kernel
function with bandwidth hn and Gn is the empirical distribution function.
Then, we can estimate θ by minimizing the disparity

ρC(ĝn, fθ) =
∫

C(δ(x))fθ(x)dx, δ(x) = (ĝn(x) − fθ(x))/fθ(x), (9)

between ĝn and fθ. Under differentiability of the model the estimating equa-
tion now has the form

−∇ρC =
∫

x

A(δ(x))∇fθ(x)dx = 0.

The solution of this equation, when one uses the form of the residual ad-
justment function as in equation (6), represents the robustified maximum
likelihood estimator in this case.

When one tries to determine a weighted likelihood estimating equation as
in the discrete case, one ends up with the equation

∫
w(x)uθ(x)dĜn(x) = 0, (10)

where w(x) = (A(δ(x))+1)/(δ(x)+1) and Ĝn(x) is the cumulative distribu-
tion function corresponding to ĝn. While this may also be solved by a fixed
point iteration method, this will still require numerical solutions of integrals
at every stage (multiple integrals if the data are multivariate). However, in
analogy with the discrete case, if one considers the unsmoothed version of the
above equation by removing the smoothing from Ĝn, one gets the following
form ∫

w(x)uθ(x)dGn(x) = 0, or
1
n

n∑
i=1

w(Xi)uθ(Xi) = 0, (11)

which is a sum over the data points, and not an integral over the entire sample
space. The weights w(x) have interpretations similar to those given for the
discrete models. The solutions of these estimating equations will represent
the robustified weighted likelihood estimators for this case. However, one
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additional modification we consider in this case is the smoothing of the model
in the construction of the weights. Thus we compute

ĝn(x) =
∫

k(x, y, hn)dGn(y), and f∗
θ (x) =

∫
k(x, y, hn)dFθ(y). (12)

Then one computes δ(x) as δ(x) = (ĝn(x)−f∗
θ (x))/ĝn(x), and the weights are

computed as before. This approach of smoothing the model in the context of
minimum disparity estimation has been discussed in [3].

Henceforth we will refer to the estimator obtained by minimizing the RLD
as the robustified maximum likelihood estimator (RMLE), and that obtained
by solving the weighted likelihood equations as robustified weighted likelihood
estimator (RWLE), with subscripts c∗ and c if necessary. Unless otherwise
mentioned, c∗ will be assumed to be equal to −1 for the RWLE.

3 Asymptotic Efficiency

Asymptotic results of [3] cover general disparities in the continuous case when
the model densities are smoothed. But in this case the asymptotic efficiencies
are dependent on the availability and the use of model specific kernels. In
the present paper we primarily focus on the minimum disparity approach
which minimizes (9) as in [5]. For the weighted likelihood case, however, we
consider the smoothed model version as would follow from the Basu and
Lindsay approach, since in this case model specific kernel choices are not
critical for asymptotic efficiency. In addition it allows one to use a fixed
bandwidth, which does not need to go to zero as the function of the sample
size, and the experimenter is spared the difficulty of having to negotiate the
complicated bandwidth selection problem.

Unlike the Basu and Lindsay approach, however, there is no general theory
in the continuous case for the minimum disparity estimators which minimize
(9) as in the Beran approach, and here we specifically deal with the case
of the RLD. Let us define the RLD estimation functional Tc∗,c : G → Θ

satisfying
RLDc∗,c(g, fTc∗,c(G)) = min

θ∈Θ
RLDc∗,c(g, fθ), (13)

provided such a minimum exists. For an appropriate kernel density estimator
ĝn, the RMLEc∗,c of θ is Tc∗,c(Ĝn). We will write θ̂c∗,c for Tc∗,c(Ĝn). The
existence, consistency, and asymptotic normality of θ̂c∗,c follow with slight
modifications of the proofs of [4]. Here we simply state the main result:

Theorem 1. Let uθ(x) = ∇ log fθ(x) be the p-dimensional likelihood score
function. The Fisher information matrix is defined as I(θ) ≡

∫
uθu

T
θ fθ. Con-

sider any fixed c∗, c satisfying −1 < c∗ < 0 < c < ∞. Suppose the true dis-
tribution G = Fθ0 ∈ FΘ. Then, under the vector-parameter generalizations of
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the conditions given in [4], the asymptotic distribution of n1/2(θ̂c∗,c − θ0) is
N(0, I−1(θ0)) where I(θ) is the information matrix for fθ.

Actually, the proof of Theorem 1 establishes more than just the asymp-
totic optimality of the estimators concerned. It also shows that θ̂c∗,c and
the MLE θ̂ML are asymptotically equivalent, both being equal to

θ0 + I(θ0)
−1
n−1

n∑
i=1

uθ0(Xi) + op(n−1/2).

Thus when the model is correct, the two estimators may be expected to
behave very similarly for large values of n.

4 Robustness

It is easy to verify that the robustified maximum likelihood estimator and
the robustified weighted likelihood estimator both have influence functions
identical to the influence function of the maximum likelihood estimator at
the model. While this implies that the the influence function is not useful
in characterizing the robustness of these estimators, they do indicate their
asymptotic efficiency. Several authors including [5] and [7] have discussed
the inadequacy of the influence function in describing the robustness of such
estimators. When dealing with the minimum Hellinger distance estimator,
Beran described its robustness through the boundedness of the “α influence
function”, while Lindsay considered the second order term in the expansion
of the bias (influence function is linked to the first order term). The works
of these authors (as well as those of several others) have demonstrated that
the minimum disparity estimators have strong robustness properties which
are not captured by the influence function analysis.

The robustness of the robustified maximum likelihood estimator and robus-
tified weighted likelihood estimator can be partly understood by the markedly
dampened response it provides to outlying observations. Large outliers are
characterised by large positive values of the Pearson residual δ(x); as δ(x)
becomes larger than c, the estimating equation of the robustified maximum
likelihood estimator will begin to downweight such observations. Similarly in
the weighted likelihood scenario, the weights in (5) are going to be strictly
smaller than 1 when δ(x) > c, and will tend to zero as the value of δ increases,
so that for an extreme outlier the estimating equation (4) is expected to be-
have as if the observation is simply deleted from the data set.

The breakdown point of a statistical functional is roughly the smallest
percentage of contaminated values in the data that may result in an arbi-
trarily extreme value of the estimate. Here we establish the breakdown point
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of the minimum robustified likelihood disparity functional Tc∗,c(·) under the
following setup. In order to have a clear focus, we consider θ to be a scalar
for the rest of the discussion in this section. For ε ∈ (0, 1), consider the
contamination model, Hε,m = (1 − ε)G + εKm, m ≥ 1, where G is the true
distribution, {Km} is a sequence of contaminating distributions, and hε,m,
g and km are the corresponding densities w.r.t. the dominating measure Q.
For a given sequence {Km}, we will say that breakdown in Tc∗,c occurs for ε
level of contamination if

lim
m→∞ |Tc∗,c(Hε,m)| = ∞. (14)

We are interested in the smallest ε for which there exists a sequence {Km}
such that (14) holds. From a practical point of view, we will restrict ε to be
in (0, 1/2] in the following discussion.

For our analysis we make the following assumptions, which put a structure
on the model and on the contamination sequence and enable us to determine
the disparities under extreme forms of contaminations.

Assumptions: The true density g, the model density {fθ}, and the contam-
ination density {km} satisfy the following:

A1.
∫

min{g, km} → 0 as m → ∞, that is the contamination distribution
becomes asymptotically singular to the true distribution.

A2.
∫

min{fθ, km} → 0 as m → ∞ uniformly for |θ| ≤ M , for any fixed
M > 0. That is, the contamination distribution becomes asymptotically sin-
gular to specified models.

A3.
∫

min{g, fθm} → 0 as m → ∞, if |θm| → ∞ as m → ∞. That is,
for large values of the parameter θ, model distributions become asymptotically
singular to the true distribution.

Contamination sequences satisfying assumptions A1 and A2 will be called
outlier sequences. Intuitively, these outlier sequences represent the worst pos-
sible type of contamination, and hence it seems natural to study the break-
down properties of the functional under such sequences. Assumption A3
formalizes the expected behavior of the model.

Theorem 2. Consider any fixed c∗, c satisfying −1 ≤ c∗ < 0 < c < ∞.
Given a contamination level ε, let θ∗ε be the minimizer of RLD((1− ε)g, fθ),
which will be assumed to exist. Let b(ε) = Cc∗,c(ε − 1) + (1 − ε) log(c + 1),
and γ(ε) = RLD((1 − ε)g, fθ∗

ε
) + ε log(c + 1) and ε∗ = inf{ε : b(ε) ≤ γ(ε)}.

Then, breakdown does not occur as long as ε < ε∗. In particular, when the
true distribution G is in the model, breakdown does not occur if ε < 1/2.

Proof. Let Tc∗,c(Hε,m) = θε,m. Given 0 < ε < 1/2, suppose breakdown
occurs, i.e., there exists {Km} such that |θε,m| → ∞ as m → ∞. Then,
RLD(hε,m, fθε,m) −RLD(εkm, fθε,m) is equal to:
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∫
hε,n≤(c∗+1)fθε,m

[hε,m log(c∗ + 1)− c∗fθε,m ]

−
∫

εkm≤(c∗+1)fθε,m
[εkm log(c∗ + 1)− c∗fθε,m ]

+
∫
(c∗+1)fθε,m <hε,m<(c+1)fθε,m

[hε,m log hε,m

fθε,m
− (hε,m − fθε,m)]

−
∫
(c∗+1)fθε,m <εkm<(c+1)fθε,m

[εkm log εkm

fθε,m
− (εkm − fθε,m)]

+
∫

hε,m≥(c+1)fθε,m
[hε,m log(c+ 1)− cfθε,m ]

−
∫

εkm≥(c+1)fθε,m
[εkm log(c + 1)− cfθε,m ].

(15)

Define the set Bm = {x : g(x) > fθε,m(x)}. Then the probabilities of Bm∩{x :
hε,m ≤ (c∗ + 1)fθε,m} w.r.t. G, Km and Fθε,m converge to zero, and those of
Bm ∩ {x : εkm ≤ (c∗ + 1)fθε,m} w.r.t. Km and Fθε,m also converge to zero as
m → ∞. By assumption A3, the probability of Bc

m converges to zero w.r.t.
G as m→∞. Note that IBc

m
(x)(hε,m(x)− εkm(x)) converges to zero almost

surely as m → ∞. Thus, the difference between first two integrals in (15)
converges to zero. Similarly, by considering the sets Bm∩{x : (c∗ +1)fθε,m <

hε,m < (c + 1)fθε,m} and Bm ∩ {x : (c∗ + 1)fθε,m < εkm < (c + 1)fθε,m}, we
see the difference between the third and fourth integrals of (15) converges to
zero as m→∞. Now, write the last two integrals in (15) as

∫
{hε,m≥(c+1)fθε,m ;εkm<(c+1)fθε,m}

{
hε,m log(c+ 1)− cfθε,m

}

+
∫

εkm≥(c+1)fθε,m

(1 − ε)g log(c + 1).

Again, the probability of the set Bc
m ∩ {x : hε,m ≥ (c + 1)fθε,m , εkm <

(c + 1)fθε,m} w.r.t. G, Km and Fθε,m converges to zero as m → ∞ from
our assumptions, and the probability of the set Bm ∩ {x : hε,m ≥ (c +
1)fθε,m , εkm < (c+1)fθε,m} w.r.t. Km and Fθε,m converges to zero. Then the
difference between last two integrals in (15) converges to (1 − ε) log(c + 1).
Thus, under the existence of an outlier sequence which causes breakdown,

lim inf
m→∞ RLD(hε,m, fθε,m) = lim inf

m→∞ RLD(εkm, fθε,m)+ (1− ε) log(c+1). (16)

Notice that from Jensen’s inequality, the right hand side of (16) is bounded
below by

b(ε) = Cc∗,c(ε− 1) + (1− ε) log(c + 1). (17)

We will get a contradiction to our assumption of the existence of this outlier
sequence {Km} for which breakdown occurs at contamination level ε if we
can show that there exists a bounded value θ of the parameter such that
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lim sup
m→∞

RLD(hε,m, fθ) < b(ε) (18)

since in this case the sequence {θε,m} cannot minimize RLD(hε,m, fθ) for
every m. Given a level ε of contamination, and an outlier sequence {Km}, let
θ be any bounded value of the parameter. Using assumption A2, and similar
arguments as before, we obtain

lim sup
m→∞

RLD(hε,m, fθ) = lim sup
m→∞

RLD((1− ε)g, fθ) + ε log(c + 1)

= RLD((1− ε)g, fθ) + ε log(c + 1). (19)

Since RLD((1− ε)g, fθ) is minimized by θ = θ∗ε among all fixed and bounded
values of θ,

lim sup
m→∞

RLD(hε,m, fθ) = RLD((1− ε)g, fθ) + ε log(c + 1) (20)

≥ RLD((1− ε)g, fθ∗
ε
) + ε log(c+ 1) = γ(ε).

Thus an outlier sequence {Km} cannot cause breakdown for values of ε sat-
isfying γ(ε) < b(ε). Hence breakdown does not occur for {Km} as long as
ε < ε∗, where ε∗ = inf{ε : b(ε) ≤ γ(ε)}.

Now consider the case G = Fθ0 . Then, RLD((1 − ε)g, fθ0) = RLD((1 −
ε)fθ0 , fθ0) = Cc∗,c(−ε), which is also the lower bound (over θ) of RLD((1 −
ε)g, fθ) by Jensen’s inequality. Hence whenG = Fθ0 , θ∗ε = θ0 and lim supm→∞
RLD(hε,m, fθ∗

ε
) = Cc∗,c(−ε) + ε log(c+ 1) = a(ε), say, and there is no break-

down for ε level contamination if a(ε) < b(ε). Note that a(ε) and b(ε) are
strictly increasing and decreasing, respectively, in ε, with a(1/2) = b(1/2).
Thus, when G is in the model there is no breakdown for ε < 1/2. �

Remark 1. The proof does more than simply establishing the breakdown
point. When breakdown does not occur under a given outlier sequence,
RLD(hε,m, fθ) is minimized in the limit by θ∗ε among all bounded values
of θ, and hence θ∗ε is the minimum disparity estimator of θ in the limit. At
the model, in particular, θ∗ε = θ0 so that a contamination proportion ε < 1/2
does not have any limiting impact at all.

5 Examples and Simulations

5.1 Examples

Example 1. (Drosophila Data) We consider a part of an experimental data
analyzed by [13]. The data are in the form of frequencies of daughter flies
(drosophila) carrying a recessive lethal mutation on the X-chromosome, where
the male parents have been exposed to a certain dose of a chemical. Approxi-
mately 100 daughter flies were sampled for each male. This particular experi-
ment resulted in (xi, fi) = (0, 23), (1, 7), (2, 3), (91, 1), where xi is the number
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of daughters carrying the recessive lethal mutation and fi is the number of
male parents having xi such daughters. Notice that the last pair is highly
discordant with the rest of the observations. We have fitted a Poisson(θ)
model to these data and estimate θ using robustified maximum likelihood
estimation and robustified weighted likelihood estimation for various values
of c and c∗. While all the robust estimators perform very well in discounting
the large outlier, the robustified weighted likelihood estimators (which are
the same as the corresponding robustified maximum likelihood estimators
with c∗ = −1) are exactly equal to the outlier deleted maximum likelihood
estimator for all c between 1 and 50. Note that the MHDE (0.364), which
also effectively ignores the large outlier, does not exactly equal the outlier
deleted MLE.

Table 1. The robustified maximum likelihood estimates (RMLEs) and robus-
tified weighted likelihood estimates (RWLEs) under the Poisson model for the
Drosophila Data, with the maximum likelihood estimate (MLE) and the outlier
deleted maximum likelihood estimate (OD − MLE), obtained after the subjective
deletion of the large outlier 91, presented for comparison

RMLE RWLE

c∗ −0.5 −0.8 −0.9 −1.0 c∗ = −1.0

c = 0.2 0.3292 0.3217 0.3194 0.3172 0.3172
c = 1.0 0.4054 0.3983 0.3961 0.3939 0.3939
c = 50.0 0.4054 0.3983 0.3961 0.3939 0.3939

MLE - - - 3.0588 -

OD − MLE - - - 0.3939 -

Example 2. (Short’s data) We consider Short’s data ([14], Dataset 2) for
the determination of the parallax of the sun, the angle subtended by the
earth’s radius, as if viewed and measured from the surface of the sun. For
our estimation, we have used the kernel density defined in (8), with the nor-
mal kernel, and bandwidth hn = 0.75186σ̂n−1/5, where σ̂ = median(|Xi −
median(Xi)|)/0.674. Table 2 gives the values of our robust estimates of μ and
σ2 for various values of c∗ and c under the normal model, as well as the max-
imum likelihood estimate for all the observations and that after deleting the
outlying value at 5.76. All the robust estimators exhibit very strong outlier
resistance. The robustified weighted likelihood estimates coincide with the
outlier deleted maximum likelihood estimate for c = 5 and 10; however by
the time c = 50 the tuning parameter is too liberal and treats the outlier as
a regular observation, and the estimate settles on the maximum likelihood
estimate for all observations.

Figure 1 shows the fit of the kernel density estimate and normal densities
using the maximum likelihood estimate and the robustified weighted likeli-
hood estimate for c = 10, exhibiting the robust fit of the latter curve.
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Fig. 1. Density estimates for Short’s determination of the parallax of the sun

Table 2. Fits of a N(μ, σ2) model to Short’s data using the robustified maximum
likelihood estimates (RMLEs) and the robustified weighted likelihood estimates
with the normal kernel. The maximum likelihood estimate for the full data (MLE)
and the same without the outlier (OD−MLE) are also presented for comparison.

RMLE RWLE

c∗ −0.5 −0.8 −0.9 −1.0 c∗ = −1.0

c = 0.2 (8.437, 0.068) (8.437, 0.068) (8.437, 0.068) (8.437, 0.068) (8.433, 0.055)
c = 1.0 (8.386, 0.111) (8.365, 0.116) (8.363, 0.116) (8.363, 0.116) (8.363, 0.093)
c = 2.0 (8.459, 0.053) (8.385, 0.111) (8.366, 0.117) (8.366, 0.117) (8.363, 0.093)
c = 5.0 (8.570, 0.357) (8.552, 0.339) (8.551, 0.340) (8.600, 0.289) (8.541, 0.305)
c = 10.0 (8.570, 0.357) (8.552, 0.337) (8.553, 0.334) (8.542, 0.331) (8.541, 0.305)
c = 50.0 (8.570, 0.357) (8.552, 0.337) (8.553, 0.334) (8.542, 0.331) (8.378, 0.715)

MLE - - - (8.378, 0.715) -

OD − MLE - - - (8.541, 0.305) -

5.2 Simulation Results

In Table 3 we present a small simulation example to give more insight into
the behavior of the proposed weighted likelihood estimators. The simulation
is done with sample sizes of 20, 50 and 100, and uses 1000 replications for
each experiment. We have used the Poisson model, and calculated the ro-
bustified weighted likelihood estimates of the mean parameter θ. Data are
generated both from the Poisson(5) distribution and the 0.9Poisson(5) +
0.1Poisson(12) mixture. The empirical means of each of these estimators are
presented in Table 3, as are the empirical mean square errors. When the data
come from the Poisson mixture, the empirical mean square error is com-
puted against 5, the mean of the larger component. The results illustrate the
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role of the tuning parameter c in controlling the tradeoff between robustness
and efficiency and also show that our robust methods corresponding to, say
c = 1.0, are competitive with or better than the minimum Hellinger distance
estimator (MHDE) in terms of performance in this case. Similar results are
obtained in simulation with the N(μ, σ2) model, which are not presented here
for brevity.

Table 3. Empirical means of the robustified weighted likelihood estimates
(RWLEs), the maximum likelihood estimates (MLEs) and the minimum Hellinger
distance estimates (MHDEs) for sample sizes 20, 50 and 100 under the Poisson
model with empirical mean square errors of the estimates given in parentheses

Poisson(5)

Sample RWLE
Size c = 0.2 c = 1.0 c = 10.0 c = 50.0 MLE MHDE

n = 20 4.7766 4.8913 4.9962 5.0052 5.0080 4.8544
(0.4266) (0.3137) (0.2514) (0.2472) (0.2465) (0.3012)

n = 50 4.8714 4.9464 4.9994 5.0044 5.0059 4.9092
(0.1464) (0.1099) (0.0958) (0.0954) (0.0955) (0.1147)

n = 100 4.9096 4.9660 4.9951 4.9977 4.9986 4.9338
(0.0703) (0.0518) (0.0481) (0.0482) (0.0482) (0.0553)

0.9 Poisson(5)+ 0.1 Poisson(12)

n = 20 4.9856 5.1100 5.3620 5.5129 5.7288 5.1507
(0.5504) (0.4732) (0.5825) (0.7648) (1.0325) (0.4784)

n = 50 5.0750 5.1847 5.4084 5.5431 5.7157 5.2563
(0.1877) (0.1860) (0.3365) (0.4933) (0.7192) (0.2331)

n = 100 5.1314 5.2225 5.4413 5.5654 5.7101 5.3338
(0.1087) (0.1280) (0.2878) (0.4228) (0.6075) (0.1991)

6 Concluding Remarks

In this paper we have considered an inference technique based on a naturally-
robust version of the maximum likelihood procedure. Recently, there has
been quite a bit of activity in the area of density-based minimum divergence
methods. Admittedly, there can be many choices of the function C(·) defined
in (1) [or alternativelyA(·) defined in (3)] that can generate reasonably robust
yet efficient methods. Generally, it is difficult to single out some of these
functions to be particularly more desirable than others although estimators
such as the MHDE have received special attention in the literature. So the
natural question in connection with the proposed methods is: ‘What makes
them stand out?’ The proposed functions Cc∗,c and Ac∗,c are special as they
provide a natural modification of the likelihood disparity; and unless the value
of c is very small, the MLE and RWLE are exactly equal under the model
with high probability. On the other hand when the data contain extreme
outliers, the RWLEs are practically equivalent to the outlier deleted MLE
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for moderate values of c, although larger choices of c will eventually force
the estimators to coincide with the MLE for the full data. This is what we
have, in fact, observed in many examples, including several that we have
not presented here. The RMLE also shows a similar behavior although it
generally does not equal the MLE exactly except in discrete models. As the
second derivative of the Ac∗,c(δ) function equals zero at δ = 0, the estimators
are automatically second order efficient in the sense described by [7] and
[3]. The proposed estimators are naturally inlier robust as well (see, eg. [8],
unlike the MHDE, although we have not done a detailed inlier analysis in
this paper. The simulation results and real-life examples clearly show the
desirable properties of the new inference methods.
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Summary. Many classical multivariate tests, such as the one-sample
Hotelling’s T 2-test, are based in considering a multivariate normal distri-
bution as underlying model because, in this situation, we can use the usual
F(a,b)-distribution to compute p-values and critical values. In this contributed
paper we obtain good analytic approximations for these elements in a close to
normal situation which allow us to analyze the robustness of this test against
small departures from normality.

1 Introduction

Many parametric tests were obtained assuming a normal distribution as un-
derlying model. This assumption can be avoided, in some cases, when we
deal with univariate problems. Nevertheless, in a multivariate context, this
dependence on the multivariate normal distribution is even stronger.

In Garćıa-Pérez [5] a method for obtaining good analytic approximations
to the elements of a test was proposed, method that has been successfully
applied, with univariate observations, to χ2-tests in Garćıa-Pérez [6], to t-
tests in Garćıa-Pérez [7] and to F -tests in Garćıa-Pérez [8].

In this paper we extend this methodology to multivariate observations, ob-
taining good analytic approximations for the p-value and the critical value of
the Hotelling’s T 2-test, when the underlying model is close but different from
the multivariate normal distribution. In particular, we consider a mixture of
two multivariate normal populations.

The exact density (but not the tail probability) of Hotelling’s T 2-statistic,
under a mixture of two multivariate normal, was been previously studied by
Srivastava and Awan [17] and Gupta and Kabe [9] but the elements involved
there are very hard to interpret and the density very unpleasant to apply
(really they have to use numerical integration to analyze the robustness of
Hotelling’s T 2-test). On the contrary, the (very accurate) analytic approx-
imations for the tail probability and the critical value that we obtain here
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allow a direct interpretation of the elements involved, are easier to apply, and
its robustness nicer to interpret. Moreover, the approximations obtained can
be applied to other multivariate models not necessarily a mixture of normals.

The idea of the method we expose, consists in considering the elements
for which we obtain the approximations (the p-value and the critical value)
as functionals of the model distribution. Then, to use the first two terms of
their von Mises expansion that depends on (an obvious generalization of) the
Tail Area Influence Function. This is finally approximated in two different
ways: with a saddlepoint approximation and with an expansion provided by
Fujikoshi [4].

The von Mises approximations are showed in Section 2 and the approxi-
mations for the TAIF are obtained in Section 3.

The approximations so established are applied for multivariate normal
mixtures in Section 4 and some examples are included there.

The range of validity of the approximations obtained in the paper is settled
in Section 5 with the Breakdown Condition.

Finally, the robustness of the one-sample Hotelling’s T 2-test is analyzed
in Section 6, concluding that, for small deviations of the multivariate nor-
mal model, this test has Robustness of Validity with symmetric or nearly
symmetric underlying models but that this is lost with asymmetric distribu-
tions. Moreover, in this last situation, the lack of robustness gets worse as
the dimension m of the observable random vector increases (maybe another
dimensionality curse), because for the t-test (m = 1) we have Robustness of
Validity also in this situation (Garćıa-Pérez [7]).

These conclusions are in accordance with the obtained, only performing
simulations, by Everitt [2], Nachtsheim and Johnson [13] or Rencher ([15],
pp. 97).

1.1 Preliminaries

Let X be the space where takes values the observable random vector X, con-
tained in (usually equal to) R

m and T a functional defined on a convex set F
of distribution functions on X , taking values in R

p (i.e., m is the dimension
of the observable random vector and p the dimension of the parameter space;
here, it will be p = 1 although we shall consider, mainly, two different func-
tionals, the p-value and the critical value). All over the paper δx will denote
the probability measure which puts mass 1 at the point x ∈ X .

If there exists the Influence Function of the functional T at G ∈ F ,
IF (x;T,G), the first-order von Mises expansion of T evaluated at the distri-
bution F ∈ F is (see Withers [19], Garćıa-Pérez [5])

T (F ) = T (G) +
∫
X
IF (x;T,G) dF (x) + Rem (1)
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where

Rem =
1
2

∫
X

∫
X
T (2)(x,y;T,GF ) d[F (x) −G(x)] d[F (y) −G(y)] (2)

=
1
2

∫
X

∫
X

∂

∂ε
IF (x;T,Gε,y

F )
∣∣∣∣
ε=0

d[F (x)−G(x)] d[F (y) −G(y)]

+
1
2

∫
X
IF (y;T,GF ) d[F (y) −G(y)]

and where GF = (1− t)F + tG for some t ∈ [0, 1], and G
ε,y
F = (1−ε)GF +εδy.

If F is close to G, the remainder term Rem will be close to zero. If we
restrict our attention to ε-contamination models, F = (1 − ε)G + εH (for
instance, multivariate normal mixtures) we can bound the remainder term (2)
by O(ε2). Others authors, such as Hampel et al. ([10], chap. 3) or Ronchetti
[16] consider ε-contamination models F = (1 − ε/

√
n)G + ε/

√
nH ; in these

cases, the remainder term can be bounded by O(ε2/n) and the error can be
then, controlled with the sample size n (> m+ 1 to be S nonsingular).

2 Multivariate Tests with an F(a,b)-Distribution

Let us consider now multivariate tests in which the test statistic Tn follows an
F(a,b)-distribution under the null hypothesis, when the observations follow a
multivariate normal distribution, Xi ∼ Φμ,Σ ≡ N(μ,Σ). (“Xi ∼ F” stands
for “Xi is distributed as F”.)

Our aim is to obtain an analytic approximation for the p-value and the
critical value of this kind of tests when the model distribution is not the
multivariate normal but another one close to this.

If T is the functional p-value of a test based on the test statistic Tn,
i.e., pF

n = PXi∼F {Tn > t}, or the functional critical value kF
n , and G is the

multivariate normal distribution, the VOM approximations given by equation
(1) are,

pF
n � pΦ

n +
∫
X

•
pΦ

n (x) dF (x) (3)

kF
n � kΦ

n +
∫
X

•
kΦ

n (x) dF (x) (4)

that will be more accurate as distribution F is closer to Φ ≡ Φμ,Σ .

Influence functions
•
pΦ

n and
•
kΦ

n are related with (an obvious multivariate
generalization of) the Tail Area Influence Function defined by Field and
Ronchetti [3] in the univariate context. Here, if x ∈ X ⊂ R

m , we define
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TAIF(x; t;Tn, H) =
∂

∂ε
PHε,x{Tn > t}

∣∣∣∣
ε=0

where Hε,x = (1− ε)H + ε δx . In fact,

•
pΦ

n (x) = TAIF(x; t;Tn, Φ) and
•
kΦ

n (x) =
TAIF(x; kΦ

n ;Tn, Φ)
f(a,b)(kΦ

n )

where f(a,b) is the density function of an F(a,b)-distribution with (a, b) degrees
of freedom, i.e., of Tn when Xi ∼ Φμ,Σ .

3 Approximations for the TAIF

To obtain VOM approximations (3) and (4) we need to compute the TAIF at
the normal model; however, in most of the cases, this must be approximated
before to be included there. In the paper we shall use two approximations of
it. The first one is based on a saddlepoint approximation and the second one,
on a specific approximation for the Hotelling’s T 2-statistic. This statistic is
defined, as usual, by

T 2 = n(x− μ)′S−1(x− μ)

if the Xi’s have mean vector μ and covariance matrix Σ, and where x =
n−1

∑n
i=1 Xi and S = (n− 1)−1

∑n
i=1(Xi − x)(Xi − x)′, for which we know

that Tn = (n−m)T 2/[m(n− 1)] ∼ F(m,n−m) if Xi ∼ Φμ,Σ .

3.1 SAD Approximation for the TAIF

The first approximation that we shall obtain is based on the saddlepoint ap-
proximation for the tail probability given by the Lugannani and Rice formula
(see Lugannani and Rice [12] or, better, Daniels [1]). Tn can be expressed as
a ratio of sums of squares of independent variables (Rao [14], pp. 541) as

Tn =
(n−m)T 2

m(n− 1)
=

(n−m)
m(n− 1)

(n− 1)
n(x− μ)′Σ−1(x− μ)

(x−μ)′Σ−1(x−μ)
(x−μ)′[(n−1)S]−1(x−μ)

that, under a Φ ≡ Φμ,Σ model follows an F(m,n−m)-distribution. Under this
distribution we have that

PΦ{Tn > t} = PΦ{Y1 − t Y2 > 0}

where Y1 ∼ γ(m
2 ,

m
2 ) distribution and Y2 ∼ γ(n−m

2 , n−m
2 ). Hence, using Lu-

gannani and Rice formula for a sample of size one of the random variable
W = Y1 − t Y2 with cumulant generating function

K(v) = m logMγ(v/m) + (n−m) logMγ(−tv/(n−m)) (5)
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where

Mγ(v) =
∫ ∞

−∞
ev z2

dΦs(z) =
∫ ∞

−∞
...

∫ ∞

−∞
ev (uc−μc)

2/σ2
c dΦμ,Σ(u1, ..., um)

(6)
being μc and σc the marginal mean and standard deviation of the cth com-
ponent of the multivariate normal distribution, we have that

pΦ
n = PΦ{Tn > t} = P{W > 0} = 1− Φs(w) + φs(w)

{
1
r
− 1

w
+ O(1)

}
(7)

where Φs and φs are the cumulative distribution and density functions of
the univariate standard normal distribution, w = sign(z0)

√
−2K(z0), r =

z0
√
K ′′(z0) and z0 the saddlepoint solution of K ′(z0) = 0.

In this way we express the functional tail probability under a normal model,
PΦ{Tn > t} = pΦ

n explicitly depending on this normal model Φμ,Σ . Now,
changing this by the contaminated model Φε,x = (1 − ε)Φμ,Σ + ε δx and
differentiating the resultant functional with respect to ε at ε = 0 we obtain
(see Garćıa-Pérez [8] for details),

T̂AIF1

(
x; t;Tn, Φμ,Σ

)
� C1

⎧⎨
⎩

•
K C2 −

•
z0

z0
−

•
K ′′

2K ′′

⎫⎬
⎭

where C1 and C2 are the constants

C1 =
eK

√
2πz0

√
K ′′ , C2 =

[
1− z0

√
K ′′

(−2K)3/2

]
.

In (6) we select the cth component that makes the pivotal multivariate normal
closest to the distribution F (see examples below).

Now, making the same computations than in Garćıa-Pérez [8] we obtain
the following approximations because in a Hotelling’s T 2-test is Tn = (n −
m)T 2/[m (n− 1)] ∼ F(m,n−m) if Xi ∼ Φμ,Σ , and the first degree of freedom
does not depend on the sample size,

pF
n � pΦ

n + A1

∫
X

{(
A2 m − 3 t + 1

4 (t − 1)

)
t−1/2 e

t−1
2t

(xc−μc)2

σ2
c

+
3t − 1

2(t − 1)
t−3/2 (xc − μc)

2

σ2
c

e
t−1
2t

(xc−μc)2

σ2
c − 1

4
t−5/2 (xc − μc)

4

σ4
c

e
t−1
2t

(xc−μc)2

σ2
c

− t

t − 1

(xc − μc)
2

σ2
c

+
t

t − 1
− A2 m

}
dF (x1, ..., xm) (8)
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where

A1 = e−m(t−1)/2 tm/2

√
π
√
m (t− 1)

, A2 = 1− t− 1
m
√

2 (t− 1− log t)3/2
.

For the critical value we obtain

kF
n � t +

A1

f(m,n−m)(t)

∫
X

{(
A2 m − 3 t + 1

4 (t − 1)

)
t−1/2 e

t−1
2t

(xc−μc)2

σ2
c

+
3t − 1

2(t − 1)
t−3/2 (xc − μc)

2

σ2
c

e
t−1
2t

(xc−μc)2

σ2
c − 1

4
t−5/2 (xc − μc)

4

σ4
c

e
t−1
2t

(xc−μc)2

σ2
c

− t

t − 1

(xc − μc)
2

σ2
c

+
t

t − 1
− A2 m

}
dF (x1, ..., xm) (9)

where, in this approximation (9), t = F(m,n−m);α is the (1−α)-quantile of an
F(m,n−m)-distribution and f(m,n−m) the density function of this distribution.

Let us observe that if F ∼ Φμ,Σ it is
∫
X T̂AIF1

(
x; t;Tn, Φμ,Σ

)
dΦμ,Σ (x1, ..., xn) = 0 , and so, pF

n = pΦ
n and kF

n = F(m,n−m);α. Hence,
(8) and (9) are linear generalizations of the usual values used under a normal
model.

3.2 Fujikoshi Approximation for the TAIF

Instead of using a general saddlepoint approximation to the tail probability
as the starting point for obtaining the approximation of the TAIF, in this
section we propose to use an existing good analytic approximation for the
tail probability of the Hotelling’s T 2-statistic at the normal model, as the
starting point in the obtaining of the approximation to the TAIF. Namely,
the approximation given in Fujikoshi ([4], pp. 189-190),

pΦ
n = PΦ{Tn > t} = PΦ{T 2 > y} = 1−Hm(y)− 1

n
[β0 Hm(y) + β1 Hm+2(y)

+ β2 Hm+4(y) + β3 Hm+6(y)] + o(n−1)(10)

where y = m(n − 1)t/(n −m) and Hp the cumulative distribution function
of a χ2

p-distribution.
Because we are considering this tail probability at the normal distribution

and this is an elliptical distribution Em(μ,Σ, ψ) where the characteristic
generator is ψ(u) = exp(−u/2), the coefficients βi that appear in (10) are
(see Iwashita [11])
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β0 = − 1
4m[m + (m + 2)k] , β1 = − 1

2m[1− (m + 2)k]

β2 = 1
4m(m + 2)(1 − k) , β3 = 0

where k is the kurtosis parameter defined by k = ψ′′(0)/(ψ′(0))2 − 1.
Let us observe that the dependence on (i.e., the influence of) the underlying

distribution (normal in our case) lies only in the βi coefficients, not on the
Hp, which are common to all F models. Hence,

PΦ{Tn > t} � 1−Hm(y)− 1
n

[β0 Hm(y) + β1 Hm+2(y) + β2 Hm+4(y)] .

Now, changing Φμ,Σ by the contaminated model Φε,x = (1−ε)Φμ,Σ+ε δx
and differentiating with respect to ε at ε = 0, we obtain (the approximation
of) the TAIF at the normal model,

T̂AIF2(x; t;Tn, Φμ,Σ ) � − 1
n

[ •
β0 Hm(y)+

•
β1 Hm+2(y)+

•
β2 Hm+4(y)

]

=
m (m + 2)

4n
•
k [Hm(y)− 2Hm+2(y) + Hm+4(y)]

because
•
β0=

•
β2= −m(m + 2)

•
k /4 and

•
β1= m(m + 2)

•
k /2 .

Contaminating also functional k we obtain kε = ψ′′(0)ε/(ψ′(0)ε)2−1 and

•
k=

•
ψ′′(0) [ψ′(0)]2 − 2ψ′(0)

•
ψ′(0) ψ′′(0)

[ψ′(0)]4
= 4

[ •
ψ′′(0) +

•
ψ′(0)

]

because ψ′(0) = −1/2 and ψ′′(0) = 1/4 .
Finally, after some computations, we obtain

•
ψ′(0)=

1
2

[
1−

(
xc − μc

σc

)2
]

•
ψ′′(0)=

1
12

[(
xc − μc

σc

)4

− 3

]

where μc and σc are the marginal mean and standard deviation of the cth
component of the multivariate normal distribution, that make the pivotal
multivariate normal closest to the distribution F (see examples below). Hence,

T̂AIF2

(
x; t;Tn, Φμ,Σ

)
� m (m + 2)

4n

[
1− 2

(
xc − μc

σc

)2

+
1
3

(
xc − μc

σc

)4
]

· [Hm(y)− 2Hm+2(y) + Hm+4(y)]
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and so,

pF
n � pΦ

n +
m (m + 2)

4n
[Hm(y)− 2Hm+2(y) + Hm+4(y)]

·
[
1 +

∫
X

{
1
3

(xc − μc)4

σ4
c

− 2
(xc − μc)2

σ2
c

}
dF (x1, ..., xm)

]
. (11)

And for the critical value,

kF
n � t +

m (m + 2)
4n f(m,n−m)(t)

[Hm(y)− 2Hm+2(y) + Hm+4(y)]

·
[
1 +

∫
X

{
1
3

(xc − μc)4

σ4
c

− 2
(xc − μc)2

σ2
c

}
dF (x1, ..., xm)

]
(12)

where, in approximation (12), t = F(m,n−m);α is the (1 − α)-quantile of an
F(m,n−m)-distribution and f(m,n−m) the density function of this distribution.

Let us observe again that if F ∼ Φμ,Σ it is
∫
X T̂AIF2

(
x; t;Tn, Φμ,Σ

)
dΦμ,Σ (x1, ..., xn) = 0 , and so, pF

n = pΦ
n and kF

n = F(m,n−m);α obtaining
again linear extensions of the usual normal values.

4 Hotelling’s T 2-Test with a Multivariate Normal
Mixture Population

From here, we shall consider only p-values, as model F a Location/Scale
Contaminated Normal (LSCN) distribution

F = (1− λ)Φμ1,Σ1
+ λΦμ2,Σ2

and, as pivotal distribution, the multivariate normal Φμ1,Σ1
. Because the

integral of the TAIF with respect the pivotal distribution is zero, using a
left-superscript on the marginal mean and variance to distinguish between
the two normals of the mixture, we have that approximations (8) and (11)
are now: The SAD approximation,

pF
n � pΦ

n + λA1

∫
X

{(
A2 m−

3 t+ 1
4 (t− 1)

)
t−1/2 e

t−1
2t

(xc−1μc)2
1σ2

c

+
3t− 1

2(t− 1)
t−3/2 (xc − 1μc)2

1σ2
c

e
t−1
2t

(xc−1μc)2
1σ2

c

− 1
4
t−5/2 (xc − 1μc)4

1σ4
c

e
t−1
2t

(xc−1μc)2
1σ2

c

− t

t− 1
(xc − 1μc)2

1σ2
c

+
t

t− 1
−A2 m

}
dΦμ2,Σ2

(x1, ..., xm) (13)
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and the Fujikoshi approximation

pF
n � pΦ

n +
m (m + 2)

4n
[Hm(y) − 2Hm+2(y) + Hm+4(y)]

λ

[
1 +

∫
X

{
1

3

(xc − 1μc)
4

1σ4
c

− 2
(xc − 1μc)

2

1σ2
c

}
dΦμ2,Σ2

(x1, ..., xm)

]
(14)

Approximations (13) and (14) can easily be computed because
∫
X
e

t−1
2t

(xc−1μc)2
1σ2

c dΦμ2,Σ2
(x1, ..., xm)

=
A3

1σc

√
t√

t 1σ2
c − 2σ2

c (t− 1)
∫
X

(xc − 1μc)2
1σ2

c

e
t−1
2t

(xc−1μc)2
1σ2

c dΦμ2,Σ2
(x1, ..., xm)

=
A3

√
t

1σc

√
t 1σ2

c − 2σ2
c (t− 1)

[σ2 + (μ− 1μc)2]

∫
X

(xc − 1μc)4
1σ4

c

e
t−1
2t

(xc−1μc)2
1σ2

c dΦμ2,Σ2
(x1, ..., xm)

=
A3 σ

1σ4
c

2σc

[
μ4 + 4(μ− 1μc)μ3 + 6(μ− 1μc)2 σ2 + (μ− 1μc)4

]
∫
X

(xc − 1μc)2
1σ2

c

dΦμ2,Σ2
(x1, ..., xm) =

1
1σ2

c

[2σ2
c + (2μc − 1μc)2]

∫
X

(xc − 1μc)4
1σ4

c

dΦμ2,Σ2
(x1, ..., xm) =

1
1σ4

c

[
2μ4c + 4(2μc − 1μc) 2μ3c + 6(2μc − 1μc)2 2σ2

c + (2μc − 1μc)4
]

where

A3 = exp
{

(t− 1)(1μc − 2μc)2

2(t 1σ2
c − 2σ2

c (t− 1)

}
, μ =

2μc
1σ2

c t− 1μc
2σ2

c (t− 1)
t 1σ2

c − 2σ2
c (t− 1)

,

σ =
√
t 1σc

2σc√
t 1σ2

c − 2σ2
c (t− 1)

, μ3 =
∫ ∞

−∞
(x− μ)3 dΦμ,σ(x) ,

μ4 =
∫ ∞

−∞
(x− μ)4 dΦμ,σ(x) , 2μ3c =

∫ ∞

−∞
(x− 2μc)3 dΦ2μc,2σc

(x) ,

2μ4c =
∫ ∞

−∞
(x− 2μc)4 dΦ2μc,2σc

(x).
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4.1 Scale Contaminated Normal (SCN) population

If the underlying model is F = (1−λ)Φμ,Σ+λΦμ , bΣ then, it is 2μc = 1μc

and 2σc =
√
b 1σc in expressions (13) and (14). The approximations appear

in the next example.

Example 1. If the pivotal distribution is the standard multivariate normal
distribution, N(0, I), it is 1μc = 2μc = 0 and 2σc =

√
b 1σc =

√
b and

the approximations will finally be: the SAD approximation, if t > 1 and
b < t/(t− 1),

pF
n � pΦ

n + λA1

{(
A2 m−

3 t+ 1
4 (t− 1)

)
[t− b(t− 1)]−1/2 +

3t− 1
2(t− 1)

b

·[t− b(t− 1)]−3/2 − 3
4
b2 [t− b(t− 1)]−5/2 +

t

t− 1
(1 − b)−A2 m

}

and the Fujikoshi approximation,

pF
n � pΦ

n +
m (m + 2)

4n
[Hm(y)− 2Hm+2(y) + Hm+4(y)] λ (1 − b)2.

Let us observe that if b = 1 or λ = 0, i.e., if we have a standard multivariate
normal distribution instead of a scale contaminated normal distribution, the
second term in the previous approximations is zero and we have the usual
p-value.

In this example, the selection of the cth component that makes the pivotal
distribution closest to the underlying model F , is irrelevant because all the
components have the same mean and the same variance but, if this would
not be the case, we should choose the cth component such that |1 − σ2

c | =
mini=1,...,m{|1− σ2

i |}.
To give somenumerical values of theprevious approximations,we show inTa-

ble 1 the “exact” values (really obtained with the package R and a simulation of
80.000 samples), of the p-value of a test based on aHotelling’sT 2-statisticwhere
m = 4 and n = 49, considering here, the SCN, 0.95N(0, I)+0.05N(0, 1.2 · I) ,
instead of the usual multivariate standard normal distribution.

Table 1. Exact, VOM+SAD and VOM+Fujikoshi approximate p-values under a
SCN model

t “exact” VOM+SAD approx. VOM+Fujikoshi approx.

2 0.1108 0.1102 0.1107
2.5 0.0557 0.0560 0.0557
3 0.0276 0.0282 0.0281

3.5 0.0141 0.0141 0.0143
4 0.0073 0.0069 0.0073

4.5 0.0036 0.0032 0.0038
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From this table we see that both approximations are quite good. In the
previous situation, i.e., under a 0.95N(0, I) + 0.05N(0, 1.2 · I) model, the
test statistic Tn does not follow now an F(4,45)-distribution. Really, using the
previous formulas, the (approximate) actual level of the classical 0.05 F(4,45)-
test is 0.0503 with a SAD approximation and 0.049987 with the Fujikoshi
approximation, under this model, showing signs of stability in the level with
SCN models.

4.2 Location Contaminated Normal (LCN) Population

In this situation, the model distribution F for which we want to approximate
the p-value is F = (1 − λ)Φμ1,Σ + λΦμ2,Σ . Hence, we have to make
2σc = 1σc in expressions (13) and (14). The approximations obtained appear
in the next example.

Example 2. If the pivotal distribution is the standard multivariate normal
distribution, N(0, I), it is 1μc = 0 , 2μc = θ and 2σc = 1σc = 1 . The approx-
imations will be then: The SAD approximation, if t > 1,

pF
n � pΦ

n + λA1

{(
e(t−1)θ2/2 − 1

)(
A2 m +

tθ2

t− 1

)
− θ4 t2

4
e(t−1)θ2/2

}

and the Fujikoshi approximation,

pF
n � pΦ

n +
m (m + 2)

4n
[Hm(y)− 2Hm+2(y) + Hm+4(y)] λ

θ4

3
.

Let us observe that if θ = 0 or λ = 0, i.e., if we have a standard multivariate
normal distribution instead of a location contaminated normal distribution,
the second term in all the previous approximations is zero and we have the
usual p-value. In this example, we should choose the cth component if |θc| =
mini=1,...,m{|θi|}.

In Table 2 we show the “exact” values (obtained with the package R
and a simulation of 80.000 samples), of the p-value of a test based on a
Hotelling’s T 2-statistic where m = 4 and n = 49, considering here, the LCN,
0.95N(0, I) + 0.05N(θ, I) , where θ′ = (θ, ..., θ) = (1, ...., 1) instead of the
usual multivariate standard normal distribution.

From this table we see again that both approximations are quite good. If
we used it to obtain, in the same setting, the (approximate) actual level of
the 0.05 F(4,45)-test based on Tn = (49− 4)T 2/(4 · 48) under a 0.95N(0, I)+
0.05N(1, I) model, for which Tn does not follow now an F(4,45)-distribution,
we should obtain that the (approximate) actual level is 0.0511, using the
SAD approximation, and 0.049987, using the Fujikoshi approximation, show-
ing again robustness of validity also with location contaminated multivariate
normal models.
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Table 2. Exact, VOM+SAD and VOM+Fujikoshi approximate p-values under a
LCN model

t “exact” VOM+SAD approx. VOM+Fujikoshi approx.

2 0.1186 0.1072 0.1106
2.5 0.0599 0.0568 0.0556
3 0.0310 0.0287 0.0280

3.5 0.0157 0.0141 0.0142
4 0.0080 0.0068 0.0073

4.5 0.0037 0.0032 0.0038

5 Breakdown Condition

As far as we move away from the pivotal distribution (the multivariate normal
in the paper), the approximations are getting worse until they “break down”.
Indeed, this is the concept of breakdown point: the limit up to the VOM ap-
proximations (and so, the VOM+SAD and VOM+Fujikoshi approximations)
are valid because they are based on an Influence Function. Nevertheless, this
concept must be suited to the context, as Staudte and Sheather ([18], pp. 41)
say. We consider the Breakdown Condition

Fig. 1. α versus PF {Tn > kF
n } for λ = 0.01 , 0.05 , 0.1 , 0.2
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PF {Tn > kF
n } ≈ α (15)

where the tail probability and the critical value in this equation are computed
with the previous approximations.

Let us observe that this kF
n is the actual (approximate) critical value,

not the nominal one obtained with the nominal level. Hence, the Breakdown
Condition is valid not only for robust tests but for any kind of test.

Moreover, we remark that the proposed approximations are local in nature
because they are based on an Influence Function. Then, their use will be
limited to a reduced neighborhood around the pivotal distribution. Hence,
the Breakdown Condition depends on the class of distributions considered;
i.e., the limit distribution for which the condition breaks down, depends on
the problem at issue.

Let us consider, for instance, VOM+SAD approximations and the LCN
model considered in Example 4.2, (1− λ)N(0, I) + λN(θ, I).

If we use graphics to analyze where condition (15) breaks down, we can ob-
serve in Figure 1 different representations of this condition: α versus PF {Tn >

kF
n }, for λ = 0.01, λ = 0.05, λ = 0.1, λ = 0.2, and θ′ = (θ, ..., θ) = (1, ...., 1).

We can deduce from this picture that the Breakdown Condition is satisfied
very well. Nevertheless, if we now move the location parameter to θ = 1.4,
we should observe that condition (15) should break down when we pass from
λ = 0.01 to λ = 0.05. Then, for a range of contamination 0 ≤ λ ≤ 0.2,
the location parameter θ can vary between −1 ≤ θ ≤ 1 (negative values of
θ have the same effect because this parameter appears to the square in the
approximations of Example 4.2).

Hence, for LCN models, the VOM+SAD approximations can be used for
models F in the class {F = (1 − λ)N(0, I) + λN(θ, I) 0 ≤ λ ≤ 0.2 , −1 ≤
θ ≤ 1}.

Of course we can increase (decrease) the value of λ and decrease (increase)
θ if we want to restructure the class of distributions in which the VOM+SAD
approximations work well.

In the same way, for SCN models, the VOM+SAD approximations can be
used for models F in the class {F = (1− λ)N(0, I) + λN(0, b · I) 0 ≤ λ ≤
0.2 , 0 < b ≤ 1.3}.

Similarly, for SCN models, the VOM+Fujikoshi approximations can be
used for models F in the class {F = (1− λ)N(0, I) + λN(0, b · I) 0 ≤ λ <

0.4 , 0 < b ≤ 4}.
And finally, for LCN models, the VOM+Fujikoshi approximations can be

used for models F in the class {F = (1 − λ)N(0, I) + λN(θ, I) 0 ≤ λ <

0.4 , −2.5 ≤ θ ≤ 2.5}. Hence, the Fujikoshi approximations are wider than
the SAD ones.

6 Robustness of Hotelling’s T 2-Test

In an α-test based on the test statistic Tn(X1, ..., Xn) (that rejects H0 for
large values), α is the nominal level of the test and PXi∼F {Tn > cα} the
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actual level of the test under the model F , if cα is the critical value of the
test under a multivariate normal model Φ.

We can say that the test has a complete robustness of validity under a
distribution F , with respect to the normal, if ∀α, PXi∼F {Tn > cα} = α.

Wecandisplay this robustness of validity, plotting, for differentα′s, the nom-
inal level versus the actual level of the test; i.e., plotting the pairs of points
(α, P{Tn > cα}). We call the resultant diagram, “Robustness of Validity Plot”.

Obviously, because for all α, it is PXi∼Φ{Tn > cα} = α , a completely
robust test will be represented, in this figure, on the diagonal line. As far as
we move away from this line, the test will be less robust and points over and
under this line will indicate over and under actual levels of the test.

With the previous VOM+Fujikoshi approximations of the p-values now
it is possible to compute and represent these lines very easily, obtaining so
a quick idea of the robustness of validity of a test, especially if we want to
compare several overprinted tests.

As we saw in the previous Section, the VOM+Fujikoshi approximations
are valid just in a small neighborhood of the target distribution and so, we
can study the robustness in this neighborhood.

If we consider several LCN (1 − λ)N(0, I) + λN(θ, I) models, moving
(θ, λ), the “Robustness of Validity Plot” of Hotelling’s test appears in Figure
2. From this we obtain the same conclusion that Everitt [2], Nachtsheim
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Fig. 2. Nominal levels versus Actual levels with a LCN model for different values
of (θ, λ)
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Fig. 3. Nominal levels versus Actual levels with the LCN model (θ = 2.5, λ = 0.4)
for different m’s

and Johnson [13] or Rencher ([15], pp. 96-97) obtained with simulations: the
one-sample Hotelling’s T 2-test is somewhat robust to departures from the
assumptions of multivariate normality if the underlying model is symmetric or
nearly symmetric, but that this is lost if the underlying model is asymmetric.

Studying now what happens as we increase the dimension m of the observ-
able random vector X, first with a symmetric or nearly symmetric underlying
model (a LCN with θ = 2 and λ = 0.2), we observe that the actual levels are
acceptably close to the nominal ones.

Nevertheless, if we consider an asymmetric underlying model (a LCN with
θ = 2.5 and λ = 0.4), the lack of Robustness of Validity increases as m

increases as is showed in Figure 3. This is in accordance with Rencher ([15],
pp. 97) but here, we obtain this conclusion using analytic expressions and
not with simulations.
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Summary. In real-life situations experimental data can arise which do not
derive from exact measurements or observations, but they correspond to
ranges, judgements, perceptions or ratings often involving imprecision and
subjectivity. These data are usually formalized with (and treated as) grouped
or categorical/qualitative data for which the statistical analysis techniques
to be applied are rather limited.

However, many of these data could be alternatively and suitably identified
with either interval- or fuzzy number-valued data. This approach offers in fact
mathematical languages/scales allowing us to express many imprecise data
related either to ranges/fluctuations or to judgements/perceptions/ratings,
and to capture the underlying imprecision, subjectivity and variability. Be-
sides capturing the information surrounding the imprecision, subjectivity and
variability (which is frequently ignored in dealing with grouped or categorical
data), the use of the rich interval and fuzzy scales enables to state distances
between data with a meaning similar to that for numerical ones. Moreover,
it will possible to develop statistical methods based on these distances and
exploiting the added information.

This paper aims to review the key ideas in this approach as well as some
of the existing techniques for the statistical analysis.

Keywords: fuzzy data, interval data, metrics between imprecise data, ran-
dom fuzzy set, random interval.

1 Introduction

Most of the traditional statistical data analysis assume precise experimen-
tal data are available, though in reality many random experiments cannot
provide us with exact data.
∗ This paper has been written as a tribute to our beloved friend Marisa Menéndez.

She touched us with her friendship and warm hospitality, and we have had the
opportunity to share with her many wonderful personal meetings and fruitful
scientific discussions. She has been always ready to help us in many respects,
and we will always feel indebted to her. Thank you, Marisa, for your affection
and care; you will always occupy a very special place in our hearts.



454 N. Corral, M.Á. Gil, and P. Gil

Sometimes, imprecision is due to the available information not being
enough to quantify exactly the values a real-valued random variable takes on.
In this way, existing numerical data can be known either only to lie within
bounded intervals or only up to some categories. For instance: the informa-
tion supplied by most of the National Statistical Offices concerning annual
income usually appears grouped in intervals or income ranges; in reporting
somebody on the price of a given item one can say it is rather cheap.
In other words, we refer to a type of imprecision/uncertainty affecting the
knowledge about variable values, although values are actually numerical.

In other cases, the imprecision is due to the fact that the considered
variables are associated with judgements, perceptions or ratings which are
intrinsically imprecisely-valued and involve subjectivity. In these cases, ex-
isting data are non-numerical and this is a consequence of the nature of the
variable instead of a consequence of the knowledge on it. For instance: the
random variable salary range for a specific job at different companies is itself
interval-valued; rating the quality of life or the degree of agreement with a
given policy, etc. lead to random attributes which could be labeled as ordi-
nal categorical ones, and often appropriately formalized by means of fuzzy
number-valued variables.

When available information correspond to imprecise data, they are often
treated as either grouped or categorical ones, and the statistical analysis
techniques to be applied are rather limited. Many of these procedures are
based on the frequencies of different variable values and maybe their rank
in case of ordinal ones, but the values themselves are usually ignored. The
approach to be recalled in this paper suggests the use of either random inter-
vals or random fuzzy numbers as possible ways to model many of the random
mechanisms supplying these imprecise data. The approach is supposed to be
ultimately addressed to draw statistical conclusions on the distributions of
these imprecisely-valued random elements, irrespectively of the situation data
come from involving or not an underlying real-valued random variable.

If imprecise data can be properly described in terms of either intervals or
fuzzy numbers, a valuable and wide statistical methodology can be developed
on the basis of some versatile and intuitive metrics between these data. In
this way, many statistics can be defined by considering such distances, these
statistics exploiting relevant information which could not be exploited in case
of using categorical data, so that the accuracy of the derived conclusions will
be improved.

On the other hand, the suggested approach can be carried out in two
different ways, namely, by prefixing a list of intervals or categories (which
are usually assumed to be mutually exclusive and exhaustive) so that each
imprecise data is one-to-one converted into a value in such a list, or by en-
abling a full freedom in describing data. Whenever it is possible to apply
the last way, it allows us to capture both the subjectivity involved in the
judgements/perceptions/ratings and the variability in describing them much
more accurately than by using prefixed lists. Thus, individuals to which one
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could assign the label high quality, if a short list of labels concerning their
quality is pre-established, would be probably associated with different fuzzy
numbers (depending on both the individual the rating refers to and the per-
son rating the quality) if the person rating the quality is free to describe
imprecise data.

In this paper we first present the preliminary concepts and results concern-
ing the modeling of imprecise data by means of intervals and fuzzy numbers,
the arithmetic and distances between them, the formalization of the random
mechanisms supplying these data and some associated summary measures of
the distribution of these random elements. Later we will briefly present some
existing methods to estimate and test hypotheses about the distribution of
these random elements.

2 Preliminaries

The statistical analysis of imprecise data requires an adequate probabilistic
setting so that statistical developments, and especially inferential ones, can be
well-formalized. Furthermore, it would be convenient this setting enables that
most of the concepts and ideas in usual statistical techniques with numerical
data can be preserved.

The space of interval values for data to be considered in the approach is
the class

Kc(R) =
{
[a, b] : a ≤ b

}
.

The basic arithmetical operations to develop statistics with interval data are
the sum and the product by a real number, which are usually defined as the
image of the involved intervals through the corresponding operation in R.
Thus, given intervals K,K ′ ∈ Kc(R) and a scalar γ ∈ R, the sum of K and
K ′ is defined as the interval in Kc(R)

K + K ′ = Minkowski sum of K and K ′ =
{
x + y : x ∈ K, y ∈ K ′},

and the product of K by γ is defined as the interval in Kc(R) such that

γ ·K =
{
γ · x : x ∈ K

}
.

(Kc(R),+, ·) has not a linear (but a semilinear-conical) structure, since K +
(−1) ·K 	= [0, 0] = neutral element of the Minkoswski sum in Kc(R), but in
case K reduces to a singleton.

The space of fuzzy numbers for data to be considered in the approach is
the class

Fc(R) =
{
Ũ : R → [0, 1] : Ũα ∈ Fc(R) for all α ∈ (0, 1]

}
where Ũα = {x ∈ R : Ũ(x) ≥ α}. A fuzzy number Ũ ∈ Fc(R) models
an ill-defined property on (or subset of) R, so that for each real number x

the value Ũ(x) can be interpreted as the ‘degree of compatibility’ of x with
the property ‘defining’ Ũ (or ‘degree of truth’ of the assertion “x is Ũ”, or
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‘degree of membership’ of x to Ũ). Of course, Kc(R) ⊂ Fc(R) since indicator
functions of intervals are examples of fuzzy numbers.

The basic arithmetical operations to develop statistics with fuzzy data are
usually assumed to be based on Zadeh’s (also called the maximum-minimum)
extension principle (Zadeh [28]) or, equivalently and based on the results by
Nguyen [22], as the level-wise extension of the usual interval arithmetic. That
is, given two fuzzy numbers Ũ , Ṽ ∈ Fc(R) and a scalar γ ∈ R, the sum of
Ũ and Ṽ is defined as the fuzzy number Ũ + Ṽ ∈ Fc(R) such that for each
α ∈ (0, 1]:

(Ũ + Ṽ )α = Ũα + Ṽα,

and the product of Ũ by γ as the fuzzy number γ · Ũ ∈ Fc(R) such that for
each α ∈ (0, 1]:

(γ · Ũ)α = γ · Ũα =
{
γ · y : y ∈ Ũα

}
.

(Fc(R),+, ·), has not a linear (but a semilinear-conical) structure.

‘Location’ and ‘imprecision/shape’ are two key features in characterizing both
interval and fuzzy values. In fact, interval and fuzzy values can be represented
by means of their so-called t-vector and support function, respectively, which
will serve us to reformulate the spaces Kc(R) and Fc(R) along with the cor-
responding arithmetics within certain Hilbert spaces.

On one hand, any interval K ∈ Kc(R) can be characterized by the so-
called t-vector (or mid/spread characterization) of K, tK = (midK, spr,K),
where midK = mid-point/center of K and sprK = spread/radius of K.
This characterization enables to embed Kc(R) into R

2 through the t-vector
function

t : Kc(R)→ R
2 s.t. t(K) = tK

(see Blanco [4]).
The t-vector function preserves the semilinearity of Kc(R) since

t(K + K ′) = t(K) + t(K ′), t(λ ·K)) = λ · t(K),

for all K,K ′ ∈ Kc(R) and λ ≥ 0.
This function allows us to induce a family of L2 metrics on Kc(R) from a

family of L2 distances on R
2 like the one given for x,y ∈ R

2 (with x = (x1, x2)
and y = (y1, y2)) by

dθ(x,y) = ‖x− y‖θ =
√
〈x− y,x− y〉θ =

√
(x1 − y1)2 + θ · (x2 − y2)2,

with θ > 0.
This induction can be carried out so that the t-vector enables to embed

isometrically the space Kc(R) onto the cone R×[0,+∞) of R
2. In this respect,

and based on the ideas in Gil et al. [6] and Blanco [4], and more generally
Trutschnig et al. [27] and González-Rodŕıguez et al. [8], the following family
of metrics can be introduced:

Theorem 1. Given θ ∈ (0,+∞), the mapping dθ : Kc(R)×Kc(R)→ [0,+∞)
such that for any K,K ′ ∈ Kc(R)
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dθ(K,K ′) = dθ(tK , tK′) =
√(

midK −midK ′)2 + θ ·
(
sprK − sprK ′)2

satisfies that

• dθ is an L2-type metric on Kc(R) (enabling to weight through the choice
of θ the influence of the distance between the location -in terms of the
centers- of interval data in contrast to the distance between the imprecision
-in terms of the spreads-).

• (Kc(R), dθ) is a separable metric space.
• The t-vector function t : Kc(R) → R

2 states an isometrical embedding of
Kc(R) (with the interval arithmetic and dθ) onto a closed convex cone of
R

2, R× [0,+∞) (with the vectorial arithmetic and the distance dθ).

On the other hand, any fuzzy number Ũ ∈ Fc(R) can be characterized by
the so-called (Minkowski) support function of Ũ (see Puri and Ralescu [24])
extends level-wise the notion of the support function of a set and is given by
the mapping sŨ : {−1, 1} × (0, 1]→ R defined so that

sŨ (−1, α) = − inf Ũα, sŨ (1, α) = sup Ũα

for all α ∈ (0, 1]. This characterization enables to embed F2
c (R) =

{
Ũ ∈

Fc(R) : sŨ ∈ H1

}
, with H1 = space of the L2-type real-valued functions on

{−1, 1} × (0, 1] w.r.t. the corresponding uniform probability measures, into
H1 through the support function

s : F2
c (R) → H1 s.t. s(Ũ) = sŨ .

The support function preserves the semilinearity of F2
c (R) since

s(Ũ + Ṽ ) = s(Ũ) + s(Ṽ ), s(γ · Ũ)) = γ · s(Ũ),

for all Ũ , Ṽ ∈ F2
c (R) and γ ≥ 0.

This function allows us to induce a family of L2 metrics on F2
c (R) from a

family of L2 distances on H1 like the one given for f, g ∈ H1 by

Dϕ
θ (f, g) = ‖f − g‖ϕ

θ =
√
〈f − g, f − g〉ϕθ

=

√∫
(0,1]

(
[mid f(1, α)−mid g(1, α)]2 + θ [spr f(1, α)− spr g(1, α)]2

)
dϕ(α),

where
mid f(−1, α) = −mid f(1, α) =

f(−1, α)− f(1, α)
2

,

spr f(−1, α) = spr f(1, α) =
f(−1, α) + f(1, α)

2
,
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with θ > 0 and ϕ being a weighting measure which is formalized by means
of an absolutely continuous probability measure on the measurable space(
(0, 1],B(0,1]

)
with the mass function being positive in (0, 1).

This induction can be carried out so that the support function enables to
embed isometrically the space F2

c (R) onto a cone in H1. In this respect, and
based on the ideas in Montenegro [18] and more generally Trutschnig et al.
[27] and González-Rodŕıguez et al. [8], the following family of metrics can be
introduced:

Theorem 2. Given θ ∈ (0,+∞) and an absolutely continuous probability
measure ϕ on

(
(0, 1],B(0,1]

)
with the mass function being positive in (0, 1),

the mapping D
ϕ
θ : F2

c (R)×F2
c (R)→ [0,+∞) such that for any Ũ , Ṽ ∈ F2

c (R)

D
ϕ
θ (Ũ , Ṽ ) = Dϕ

θ (sŨ , sṼ ) =

√∫
(0,1]

[
dθ(Ũα, Ṽα)

]2
dϕ(α)

=

√∫
(0,1]

([
mid Ũα −mid Ṽα

]2
+ θ

[
spr Ũα − spr Ṽα

]2)
dϕ(α)

satisfies that

• D
ϕ
θ is an L2-type metric on F2

c (R) (enabling to weight through the choice
of θ and ϕ the influence of the distance between the location in contrast to
the distance between the shape, as well as the relevance of different levels
α, respectively).

•
(
F2

c (R), Dϕ
θ

)
is a separable metric space.

• The support function s : F2
c (R) → H1 states an isometrical embedding of

F2
c (R) (with the fuzzy arithmetic and D

ϕ
θ ) onto a closed convex cone of

H1 (with the functional arithmetic and the distance Dϕ
θ ).

The embeddings in Theorems 1 and 2 can be used to induce the notions of
Kc(R)- and F2

c (R)-valued random elements and associated relevant parame-
ters of its distribution from the concepts of random elements and associated
relevant parameters.

In dealing with interval and fuzzy data for statistical purposes (especially
for inferential ones), there is a need for modeling the random mechanisms
producing these data within a probabilistic setting. In this way, by considering
the isometrical embedding in Theorem 1, the notion of a random interval can
be immediately induced from that of random element as follows:

Definition 1. Given a probability space (Ω,A, P ), a mapping X : Ω →
Kc(R) is said to be a random interval (RI for short) if tX : Ω → R is
a two-dimensional random vector, that is, a Borel measurable mapping w.r.t.
A and the Borel σ-field generated by the topology induced by dθ on R

2.
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Equivalently, RIs can be formalized in any of the following ways:

• X is a compact convex random set, that is, it is a Borel measurable map-
ping w.r.t. A and the Borel σ-field generated by the topology induced by
the Hausdorff metric on Kc(R).

• X is a Borel measurable mapping w.r.t. A and the Borel σ-field generated
by the topology induced by the metric dθ on Kc(R).

• X is a random interval, that is, the real-valued functions inf X : Ω →
R, supX : Ω → R are real-valued random variables.

• X is a random interval, that is, the real-valued functions midX : Ω →
R, sprX : Ω → [0,+∞) are real-valued random variables.

Analogously, by considering the isometrical embedding in Theorem 2, the
notion of a random fuzzy number (or random fuzzy set) can be immediately
induced from that of random element as follows:

Definition 2. Given a probability space (Ω,A, P ), a mapping X : Ω →
F2

c (R) is said to be a random fuzzy number (or, more generally, a ran-
dom fuzzy set) (RFN for short) if sX : Ω → H1 is an H1-valued random
element, that is, a Borel measurable mapping w.r.t. A and the Borel σ-field
generated by the topology induced by the metric Dϕ

θ on H1.
Equivalently, RFNs can be formalized in any of the following ways:

• X is a fuzzy random variable as intended by Puri and Ralescu [25], that
is, for all α ∈ (0, 1] the interval-valued mapping Xα : Ω → Kc(R) is a
random interval.

• X is a Borel measurable mapping w.r.t. A and the Borel σ-field generated
by the topology induced by the metric D

ϕ
θ on F2

c (R).

The Borel measurability of RIs and RFNs guarantee that one can properly
refer in this setting to concepts like the distribution induced by either an RI
or an RFN, the stochastic independence of either RIs or RFNs, and so on,
which are crucial for inferential developments.

In analyzing interval and fuzzy data from an RI and an RFN, respectively,
two relevant summary measures/parameters are to be considered, namely,
the mean value and the Fréchet variance, both induced from the expectation
and Fréchet’s variance of a random element. Thus,

Definition 3. Let (Ω,A, P ) be a probability space.
If X : Ω → Kc(R) is an associated RI such that tX ∈ L1(Ω,A, P ), the

mean value of RI X (in Aumann’s sense [3]) is the interval E[X ] ∈ Kc(R)
such that tE[X] = E(tX), i.e., E[X ] = Aumann integral of X w.r.t. P ,
which in this one-dimensional case is such that midE[X ] = E(midX) and
sprE[X ] = E(sprX), that is, E[X ] = [E(inf X), E(supX)].

If X : Ω → F2
c (R) is an associated RFN such that sX ∈ L1(Ω,A, P ),

the mean value of RFN X (in Puri and Ralescu’s sense [25]) is the fuzzy
number Ẽ(X ) ∈ F2

c (R) such that sẼ(X ) = E(sX ), i.e., for all α ∈ (0, 1] we

have that
(
Ẽ(X )

)
α

= E[Xα].
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The mean values of RIs and RFNs in Aumann’s and Puri-Ralescu’s senses, re-
spectively, preserve the main properties of the mean value of a random variable
(see, for instance, Blanco [4] and González-Rodŕıguez et al. [8]). Thus,

Proposition 1. The mean values of RIs and RFNs as stated in Definition 3
satisfy the following properties:

• They are coherent with the usual interval and fuzzy arithmetics. If X is
an RI associated with (Ω,A, P ) such that tX ∈ L1(Ω,A, P ), and X is
‘discrete’ (i.e., X(Ω) = {K1,K2, . . .}, and Ωi = X−1(Ki) with {Ωi}i

being a countable partition of Ω), then

E[X ] = P (Ω1) ·K1 + P (Ω2) ·K2 + . . . .

If X is an RFN associated with (Ω,A, P ) such that sX ∈ L1(Ω,A, P ),
and X is ‘discrete’ (i.e., X (Ω) = {x̃1, x̃2, . . .}, and Ωi = X−1(x̃i) with
{Ωi}i being a countable partition of Ω), then

Ẽ(X ) = P (Ω1) · x̃1 + P (Ω2) · x̃2 + . . .

• They are the Fréchet expectations in the metric spaces (Kc(R), dθ) and(
F2

c (R), Dϕ
θ

)
. If X is an RI such that tX ∈ L1(Ω,A, P ) and dθ(X,E[X ]) ∈

L2(Ω,A, P ), then

E[X ] = argmin
K

E
((
dθ(X,K)

)2)
,

the minimum being considered on the class of intervals K ∈ Kc(R) for
which E

((
dθ(X,K)

)2) exists. If X is an RFN such that sX ∈ L1(Ω,A, P )

and D
ϕ
θ (X , E(X )) ∈ L2(Ω,A, P ), then

Ẽ(X ) = argmin
Ũ

E
((
D

ϕ
θ (X , Ũ)

)2)
,

the minimum being considered on the class of fuzzy numbers Ũ ∈ F2
c (R)

for which E
((
D

ϕ
θ (X , Ũ)

)2) exists.
• They are equivariant by linear operations and transformations. If γ, ν ∈ R,

K ∈ Kc(R), and X and Y are two RIs such that tX , tY ∈ L1(Ω,A, P ),
then

E[γ ·X + ν · Y + K] = γ · E[X ] + ν · E[Y ] + K.

If γ, ν ∈ R, Ũ ∈ F2
c (R), and X and Y are two RFNs such that sX , sY

∈ L1(Ω,A, P ), then

Ẽ[γ · X + ν · Y + Ũ ] = γ · Ẽ(X ) + ν · Ẽ(Y) + Ũ .

The mean values of RIs and RFNs in Aumann’s and Puri-Ralescu’s senses,
respectively, are also supported by Strong Laws of Large Numbers (cf., Art-
stein and Vitale [2], Puri and Ralescu [23] or Molchanov [17] for RIs, and
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Colubi et al. [5], Molchanov [16], Terán [26], etc. for RFNs). The mean value
is the almost sure limit (w.r.t. different metrics) of the ‘sample fuzzy mean’.
The result for the metrics dθ and D

ϕ
θ could be alternatively derived on the

basis of the above mentioned embeddings from that for Hilbert space-valued
random elements (see, for instance, Ledoux and Talagrand [12]).

Based on the second conclusion in Proposition 1, the variance of RIs and
RFNs could be appropriately formalized by considering Fréchet’s approach.
This approach looks at the variance as a measure of the ‘error’ in approximat-
ing/estimating the values of the random element through the corresponding
mean value, this error being quantified in terms of a squared metric. Thus
(see, for instance, Lubiano et al. [14]),

Definition 4. Let (Ω,A, P ) be a probability space.
If X : Ω → Kc(R) is an associated RI such that ‖tX‖θ ∈ L2(Ω,A, P ),

the θ-Fréchet variance of X is the real number σ2
X(θ) (or simply σ2

X) such
that σ2

X = Var(tX) = E
(
[‖tX − E (tX)‖θ]

2
)

in (Kc(R), dθ), i.e.,

σ2
X = E

((
dθ(X,E[X ])

)2)
.

If X : Ω → F2
c (R) is an associated RFN such that ‖sX‖ϕ

θ ∈ L2(Ω,A, P ),
the (θ, ϕ)-Fréchet variance of X is the real number σ2

X (θ, ϕ) (or simply
σ2
X ) such that σ2

X = Var(sX ) = E
(
[‖sX − E (sX )‖ϕ

θ ]2
)

in
(
F2

c (R), Dϕ
θ

)
, i.e.,

σ2
X = E

((
D

ϕ
θ (X , Ẽ(X ))

)2) = Var(midX ) + θVar(sprX )

the Var being intended w.r.t. P × ϕ.

The (θ, ϕ)-Fréchet variance of RIs and RFNs preserves de valuable properties
for this concept, such as

Proposition 2. The Fréchet variance of RIs and RFNs as stated in Defini-
tion 4 satisfy the following properties:

• σ2
X≥0 with σ2

X=0 if, and only if, there exists K ∈ Kc(R) s.t. X=K̃ a.s.[P ].
σ2
X ≥0 with σ2

X =0 if, and only if, there exists Ũ ∈ F2
c (R) s.t.X = Ũ a.s.[P ].

• If γ ∈ R, K ∈ Kc(R) and X,Y are two independent RIs associated with
probability space (Ω,A, P ) s.t. ‖tX‖θ, ‖tY ‖θ ∈ L2(Ω,A, P ), then

σ2
γ·X+K = γ2 · σ2

X , σ2
X+Y = σ2

X + σ2
Y .

If γ ∈ R, Ũ ∈ F2
c (Rp) and X ,Y are two independent RFNs associated

with (Ω,A, P ) and such that ‖sX‖ϕ
θ , ‖sY‖

ϕ
θ ∈ L2(Ω,A, P ), then

σ2
γ·X+Ũ

= γ2 · σ2
X , σ2

X+Y = σ2
X + σ2

Y .
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3 Statistical Analysis of Imprecise Data

In this section we will briefly review some ideas in a recent statistical method-
ology which has been developed to analyze interval and fuzzy data from an
inferential perspective. This methodology is based on the metrics recalled in
Section 2.

It should be emphasized both, the lack of realistic and operational ‘para-
metric’ families of probability distribution models for RIs and RFNs and
the lack of Central Limit Theorems for these special random elements which
could directly applicable for inferential purposes. However, a crucial role is
played in this framework by the existence of Central Limit Theorems for
Hilbert space-valued random elements (see, for instance, Laha and Rohatgi
[11]), and bootstrapped versions (see Giné and Zinn [7]). Alternatively, and
because of the embeddings of the spaces of values these random elements
take on, some methods from Multivariate or Functional Data Analysis could
be particularized to deal with RIs and RFNs, respectively; anyway, (see,
González-Rodŕıguez et al. [8]) care should be taken to guarantee that in
applying Hilbert space-valued results we are always moving within the cor-
responding cones.

The aim of the statistical methods we are reviewing is to draw conclusions
about the distribution of either RIs or RFNs over populations, on the basis
of the information supplied by samples of observations from the random
elements. In this respect, some inferential procedures with RIs and RFNSs
have been developed, like

• Inferential statistics about the population mean values of RIs and RFNs;
• Inferential statistics about the population Fréchet variances or other sum-

mary measures of the distribution of RIs and RFNs;
• Other statistical developments involving RIs or RFNs, like the interval or

fuzzy arithmetics-based linear regression problem, and so on.

Since RIs are special instances of RFNs we will constrain along the following
ideas and results to the fuzzy number-valued case. Many of the developed
studies using this methodology is based on the metrics recalled in Section 2
concern the mean values of the involved RIs or RFNs. Among these studies
we can outline those referred to ‘point’/‘interval’ (imprecise) estimation of
the mean value and testing ‘two-sided’ hypotheses about mean values.

Regarding testing about the means of RFNs, two-sided tests have been
established. More concretely, by assuming as available sample information:

1. One-sample case: a realization from a simple random sample (X1, . . . ,Xn)
from the RFN X ;

2. Two-sample case: realizations from two simple random samples (X1, . . . ,

Xn1) and (Y1, . . . ,Yn2) from X and Y, respectively (independent/linked
samples);
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k. k-sample case: realizations from k simple random samples (X11 . . . ,X1n1),
. . . , (Xk1, . . . ,Xknk

) from X1 . . . Xk, respectively (independent/linked
samples).

the following corresponding ‘two-sided’ null hypotheses (equalities of fuzzy
numbers) have been tested:

1. H0 : Ẽ(X ) = Ũ ∈ F2
c (R)

2. H0 : Ẽ(X ) = Ẽ(Y)
k. H0 : Ẽ(X1) = . . . = Ẽ(Xk)

these hypotheses being equivalent, respectively, to the following ones (ex-
pressed as equalities of real numbers):

1. H0 : Dϕ
θ

(
Ẽ(X ), Ũ

)
= 0

2. H0 : Dϕ
θ

(
Ẽ(X ), Ẽ(Y)

)
= 0

k. H0 :
k∑

i=1

[
D

ϕ
θ

(
Ẽ(Xi), Ẽ

(1
k
· [X1 + . . .+ Xk]

))]2

= 0.

The aim of these tests would be that of concluding (at a given significance
level) whether or not H0 should be rejected on the basis of the available sam-
ple of observations. It should be noted that to preserve the usual statistical
notation, and because there will not be confusion, α will denote in the sequel
the nominal significance level.

In connection with the two-sided tests about the mean of an RFN (one-
sample case), studies have been developed including:

• An exact test for ‘normal’ RFNs (in accordance with Puri and Ralescu’s
view of normality for an RFN, i.e, X = Ṽ + N (0, 1) for a certain Ṽ ∈
F2

c (R)) (cf. Montenegro et al. [20]);
• Asymptotic tests for RFNs;
• Bootstrap test for general RFNs.

Although the exact test leads to and easy-to-apply method, the assumption
of X being normal in Puri and Ralescu’s sense [24] is quite restrictive and
unrealistic. Moreover, the asymptotic general method based on the Central
Limit Theorem for Banach space-valued random elements by Araujo and
Giné [1] (cf. Körner [10]) is easy-to-apply when X takes on a finite number of
different values (cf. Montenegro et al. [20]), but the asymptotic distribution
of the statistic can involve unknown parameters or elements out of the cone,
and large sample sizes would be required.

Empirical preliminary studies based on simulations have indicated that es-
timating some terms in the asymptotic distribution often entails a substantial
loss of precision w.r.t. the nominal significance level. Motivated by this as-
sertion, we have considered the use of Dϕ

θ and the generalized bootstrapped
Central Limit Theorem by Giné and Zinn [7] which allows us to consider
bootstrap techniques in this context, and to conclude that



464 N. Corral, M.Á. Gil, and P. Gil

Theorem 3. Let X : Ω → Fc(Rp) be an RFN associated with (Ω,A, P ) such
that

- ‖sX‖ϕ
θ ∈ L2(Ω,A, P ),

- (X1, . . . ,Xn) is a simple random sample from X ,
- (X ∗

1 , . . . ,X ∗
n) is a bootstrap simple randomsample sample from (X1 , . . . ,Xn).

To test H0 : Ẽ(X ) = Ũ ∈ F2
c (Rp) at the nominal significance level α ∈

[0, 1], H0 should be rejected whenever

Tn =

[
D

ϕ
θ

(
X n, Ũ

)]2

Ŝ2
n

> zα,

where zα = 100(1− α) fractile of the bootstrap distribution of

T ∗
n =

[
D

ϕ
θ

(
X ∗

n,Xn

)]2/
Ŝ∗ 2

n

with

X ∗
n =

n∑
i=1

X ∗
i /n, Ŝ∗ 2

n =
n∑

i=1

[
D

ϕ
θ

(
X ∗

i ,X ∗
n

)]2
/(n− 1),

(for which the distribution can be approximated by Monte Carlo method).
The probability of rejecting the null hypothesis under alternative assump-

tions converges to 1 as n → ∞ (i.e., both the asymptotic and the bootstrap
tests are consistent).

Comparative simulation studies have shown that for small/medium samples,
the bootstrap method performs and behaves usually much better than the
asymptotic one, whereas for large sample sizes (over 300), the improvement
is not that remarkable, but the bootstrap approach still provides the best
approximation to the nominal significance level.

For the two-sample case , some studies have been also developed for
both independent (cf. Montenegro et al. [19]) and dependent samples (cf.
González-Rodŕıguez et al. [9]) leading to conclusions similar to those for the
one-sample case.

Two-sided tests about the means of k RFNs (i.e., the k-sample case or
ANOVA for independent or dependent samples) have been also established.
In this way we have obtained (see González-Rodŕıguez et al. [8]) that for the
independent case

Theorem 4. Let X1, . . . ,Xk be independent RFNs for which the existence of
the associated fuzzy means, Fréchet variances and the covariance functions
of their support functions is assumed. Consider k independent realizations,
each of them of size ni from a simple random sample (Xi1, . . . ,Xini) from Xi

(i = 1, . . . , k), and let (X ∗
i1, . . . ,X ∗

ini
) denote the bootstrap sample randomly

chosen from {Xi1, . . . ,Xini} (i = 1, . . . , k).



Interval and Fuzzy Approaches to Statistics with Imprecise Data 465

To test H0 : Ẽ(X1) = . . . = Ẽ(Xk) at the nominal significance level α ∈
[0, 1], H0 should be rejected whenever

T κ
n =

k∑
i=1

ni

[
D

ϕ
θ

(
Xi·,X··

)]2
> z∗α,

where z∗α = 100(1− α) fractile of the distribution of

T κ∗
n =

k∑
i=1

ni

[
D

ϕ
θ

(
X ∗

i· + X··,Xi· + X ∗··
)]2

(for which the distribution can be approximated by Monte Carlo method),
where

Xi· =
1
ni

[Xi1 + . . .+ Xini ] , X ∗
i· =

1
ni

[
X ∗

i1 + . . .+ X ∗
ini

]
,

X·· =
1

n1 + . . .+ nk
[X11 + . . .+ X1n1 + . . . + Xk1 + . . . + Xknk

]

X ∗·· =
1

n1 + . . .+ nk

[
X ∗

11 + . . .+ X ∗
1n1

+ . . . + X ∗
k1 + . . .+ X ∗

knk

]
.

The probability of rejecting H0 under alternative assumptions converges to 1
as n = n1 + . . .+ nk →∞ (i.e., the test is consistent).

Example 1. To illustrate the procedure above described, consider the problem
of rating the quality of trees in a reforestation carried out in Huerna Valley
(Asturias-León, Spain). The study has been developed by researchers in the
Institute of Natural Resources and Land Management of the University of
Oviedo (INDUROT) and full dataset is full property of the Institute, so only
a few data have been shown.

Instead of considering usual Lickert’s 1-5 or 1-7 codings for rating the
quality of trees, field researchers have been informed about the possibility
of using fuzzy numbers (for instance, fuzzy trapezoidal ones with general
support [0, 100] where 0 = lowest quality, 100 = highest quality) and the
meaning for their assessment. The available sample information for n1 = 133
birches (Betula celtiberica), n2 = 109 sessile oaks (Quercus petraea), and
n3 = 37 rowans (Sorbus aucuparia) is gathered in the following table (only
one datum per species has been shown due to confidentiality). Let X1, X2 and
X3 denote the quality for the birches, sessile oaks and rowans, respectively.

Betula celtiberica Quercus petraea Sorbus aucuparia
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Fig. 1. Mean values of quality ratings; solid line for the birches, doted line for the
sessile oaks, and dashed line for the rowans

To test the null hypothesis H0 : Ẽ(X1) = Ẽ(X2) = Ẽ(X3) on the basis
of the available fuzzy data, we should consider different sample means (see
Figure 1) and apply the above-described bootstrap ANOVA test.

The application of the above-described bootstrap approach (with θ = 1/3,
ϕ = Lebesgue measure on (0, 1], and 10, 000 replications) leads to a bootstrap
p-value equal to .000, which means that at almost any significance level the
mean quality is significantly different for the three species.

For the dependent case a variation in the statistics has been carried out
leading to a slightly different test (see Montenegro et al. [21]).

4 Concluding Remarks

RIs and RFNs are well-formalized notions within the probabilistic setting
and such that using them to model imprecise data enables to preserve all the
key concepts and ideas in Statistical Reasoning. Based on some tools from
Interval and Fuzzy Set Computations an integral methodology to develop
statistical inferences on the population mean values an other ‘parameters’ is
being carried out. This methodology shows convenient properties (like strong
consistency and others). It has been mostly generalized to higher dimension,
that is, to random compact convex sets and random fuzzy sets (e.g., González-
Rodŕıguez et al. [8]).

An R-package called SAFD (Statistical Analysis of Fuzzy Data) have been
recently designed by Lubiano and Trutschnig (see, for instance, [15]) to per-
form computations with RFNs.

A lot of theoretical developments on the statistical analysis of interval and
fuzzy data remain to be performed. Regarding the empirical studies, only
preliminary though rather promising studies have been carried out (e.g., to
consider a sensitivity analysis w.r.t. the choice of the metric for the first type
of studies).

A wide list of related literature on the topic in this paper can be found at the
websitehttp://bellman.ciencias.uniovi.es/SMIRE/Publications.html.
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Summary. In the nervous system, neurons convey information by means of
electric pulses called action potentials or spikes. The information is encoded
in sequences of these pulses, called spike trains. In neurophysiological exper-
iments, spike trains are recorded and analyzed statistically. Time intervals
between action potentials is the key feature of spike trains.

One of the statistical techniques available for studying spike trains is the
autocorrelation. In the neuroscientific literature the term autocorrelation is
used to denote frequency histograms of time intervals between every pair of
the spikes generated by a single neuron for a period of time. The autocor-
relation function is very useful for characterizing spike trains. The shape of
the autocorrelation indicates the nature of the dependence among time inter-
vals between consecutive spikes for a specified time window. In this work we
propose two statistics to test the hypothesis of independence between time
intervals. The bootstrap method is used to calibrate the null distribution
of these tests. The tests are applied to real spike trains recorded from the
primary visual cortex of anesthetized cats, both during spontaneous activity
and after electric stimulation-induced activity.

1 Introduction

Neurons are, together with glial cells, the basic structural and functional units
of the nervous system. One of the most important characteristics of neuronal
cells is their ability to propagate big quantities of information, at fairly fast
speeds throughout neural networks. The information is conveyed along the
nervous system in the form of electrical signals called action potentials (AP)
or spikes traveling through cable-like cellular extensions called axons.

Neurons are highly specific cells whose structure and physiology make
possible the generation and transmission of AP. Roughly speaking, when the
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input signals that continuously arrive to the initial segment of the axon reach
a certain threshold, an abrupt change in the cells electrical membrane po-
tential takes place, giving rise to an AP. Those electrical pulses travel along
the membrane of the axon, and their trains are used as a binary code for the
transfer of information between cells. Since AP are sharp potential changes,
they are relatively easy to record. Researchers do so by placing electrodes
close to, or inside, the neurons. In mammals APs have an approximate am-
plitude of 100mV and a duration of 1ms. The shape of the spikes remains
practically unchanged while they travel through the axon, so the information
they carry must be coded not in each AP but in a sequence of them.

A sequence of APs is called a spike train. Spike trains are very important
because a great part of the information transmitted by neurons is coded in
them. Spike trains are the object of study of the present work.

The global brain activity, i.e., the level of arousal and attentiveness, is
modulated by the so called activating ascending pathways, constituted by
neuronal nuclei situated in the brainstem (bs) and the basal forebrain (bf ).
This modulation is responsible of the main changes of activity that take place
during the sleep-wake cycle. During the slow sleep state, neural activity is
highly synchronized, which is reflected in the electroencephalogram (EEG)
by waves of more amplitude and less frequency than in the wake state. The
anesthetized state is very similar to and mimics the slow sleep state that
occurs under physiological conditions, characterized by low frequency oscilla-
tory activity. The arousal state, i.e., the transition from sleep to awake, can
be induced by stimulating either the bs or the bf. In this work, simultaneous
neuronal recordings made in the primary visual cortex of anesthetized cats
were used to study the effects induced by the electrical stimulation of both
pathways. Discussion on spike trains and modeling of neural systems can be
found in [2] and a complete description of the state of the art on statistical
analysis tools for multiple spike train data can be found in [1].

The following sections of the paper are organized as follows. Section 2
describes the experimental data. Two correlation measures for spike trains
are introduced in Section 3. Section 4 deals with the statistics proposed to test
independence between interspike intervals and include the results obtained
using these methods. Finally, Section 5 contains the main conclusions.

2 Experimental Data

The experiments which yielded the data were performed in anesthetized cats.
An eight-point multielectrode was introduced in the primary visual cortex
in order to make simultaneous extracellular recordings of several neurons.
Concurrently, an EEG was made and two other electrodes were introduced
for electrical stimulation at bs and bf. The stimuli were electric pulses of 2 s
of duration (trains of 0.05 s micro-pulses at a frequency of 50Hz delivered for
2 s) which were applied differentially in the areas under study according to
the following protocol. First, a group of neurons was identified and isolated
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using the multielectrode, and their spontaneous activity was recorded for 2
minutes. Then, electrical stimulation was delivered either to bs or bf (the
sequence of stimulation of those areas was randomized) for two seconds and,
after another period of time (8min), enough for the neurons to return to their
spontaneous activity, the other region (bs or bf ) was stimulated following the
same procedure. Finally, the recording continued for another amount of time
that allowed the neurons to return to spontaneous activity again.

Each of the eight electrodes of the multielectrode devicemay lay close enough
to no, one or more than one neurons. Hence, under favorable experimental con-
ditions, it is possible to record more than eight neurons simultaneously. In this
work we deal with the simultaneous recording of seven neurons. We used three
different recordings (called trials) for each stimulus and each neuron.

In our context, one trial is the recording of one neuron during the sponta-
neous activity followed by the application of the stimulus (either bs or bf ) and
a final time period for recovery.Each trial had a duration of around 600 seconds
and stimuli were applied approximately after 120 seconds of the beginning of
the recording, but not all of them occurred at the same instant. Original data
are presented as time instants that indicate spike events (with a millisecond
precision). The neurons are denoted N1, N3a, N3b, N4a, N4b, N5 and N7.

Since the aim of the neurophysiologicalworkwas to characterize the differen-
tial effects of the stimuli on neuronal activity, the recording of each trial was sep-
arated in three periods: before stimulation (called pre), immediately after the
stimulus (called post) and the final period of recovery (called final). It is worth
mentioning that the spontaneous neuronal activity recovers gradually and not
suddenly, but these three intervals will be considered as a first approach. In the
current experimental preparation, the spontaneous activity (measured as firing
rate) of the studied neurons is fairly low, as can be seen in Figure 1.
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Fig. 1. Raster plots of 50 s recordings of one trial for each neuron. The short vertical
lines represent the moments when the spikes occurred. The dotted lines represent
the moments when the bs stimulus begins and ends.



474 A. González-Montoro et al.

3 Correlation Measures in Spike Trains

From a statistical viewpoint spike trains can be described as the sequence of
AP generated by a point process, {Ti}, where Ti is the instant when the i-th
AP occurred. In particular, if we have a T seconds duration neural activity
recording and (n+ 1) AP have occurred, we have a spike train {Ti}n+1

i=1 with
0 ≤ T1 ≤ T2 ≤ . . . ≤ Tn+1 ≤ T . We can also define the inter spike inter-
vals (ISI), {Si}n

i=1, as the elapsed times between consecutive spikes, where
Si = Ti+1 − Ti, i = 1, 2, . . . , n.

One useful feature to characterize neuronal activity is the correlation in
spike trains. In the next subsections, two different methods to measure auto-
correlation in spike trains are introduced.

3.1 Autocorrelation

Given the ISI of an observed spike train, S1, . . . , Sn, we can estimate the
serial autocovariance function as

γ̂(h) =
1
n

n−h∑
i=1

(Si+h − S̄)(Si − S̄), 0 ≤ h < n

where S̄ = 1
n

∑n
i=1 Si is the sample mean. Then, the serial autocorrelation

function is estimated by

ρ̂(h) =
γ̂(h)
γ̂(0)

, 0 ≤ h < n .

Fig. 2. Serial autocorrelograms for two trials of neuron N1 activity in each period.
The dashed horizontal lines are the significance limits
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In Figure 2 the autocorrelograms for two trials of neuron N1 can be observed.
In this example, the structure of the autocorrelograms of the two trials are
dissimilar. In the first one, there is serial autocorrelation of order up to nine
for the pre period and there is no autocorrelation in the post period while in
the second trial there is only correlation up to lower orders in pre and final
and there exists a moderate autocorrelation in the post stage.

In general, autocorrelograms vary form trial to trial and there is no fixed
structure for the autocorrelation of each neuron. Even though, it can be seen
that the serial autocorrelation is low (most of the times not significant) in the
post part of the recordings and that there exists autocorrelation of high orders
in pre and final. A particular case is the one of neuron N5, which has a very
low correlation of order one during spontaneous activity and absolutely no
correlation during the effect of the stimulus. On the other hand, in the auto-
correlograms for neuron N4a a very well defined alternation pattern between
negative and positive coefficients can be observed. The autocorrelograms for
neurons N4a and N5 can be seen in Figure 3.

For almost every neuron, the serial autocorrelation drops in the post pe-
riod. This autocorrelation decrease is presumably due to the disruption of the
spontaneous slow oscillatory activity induced by the electrical stimulation.

In [4] different pattern types of firing rates are discussed, such as, among
others, cyclic rates or periods of local growth (or decrease). This patterns
lead to different autocorrelogram shapes. Some of these patterns are shown
by simulation studies and, for others, references are presented. One particular

Fig. 3. Serial autocorrelograms for one trial of the bs stimulus of neurons N4a and
N5 activity in each period. The dashed horizontal lines are the significance limits.
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example of what is discussed in [4] is the pattern exhibited by neuron N4a:
the alternation between negative and positive autocorrelation coefficients may
proceed from an alternation between small and large ISIs.

3.2 Higher Order Interspike Autocorrelation

One may take into account, not only the elapsed times between consecutive
firings but also the elapsed times between any two spikes. In fact this is the
correlation measure mostly used in neuroscience.

The idea consists in breaking the total time of recording, T , in Q =
[

T
q

]
+1

intervals of length q. Let Ai be the i-th interval, Ai = [(i− 1)q, iq). Here it is
convenient to note that, if only one spike is intended to fall in each interval,
q must be sufficiently small, 1ms for example. This is caused, for instance,
by the refractory period that a neuron needs to recover before firing again.
Let us define the new series {Vi}Q

i=1:

Vi =
n+1∑
j=1

I(Tj ∈ Ai) (1)

where I(A) is the indicator function of the set A. We can estimate its auto-
covariance function by

γ̂V (h) =
1
Q

Q−h∑
i=1

(Vi+h − V̄ )(Vi − V̄ ), V̄ =
1
Q

Q∑
i=1

Vi .

Now, if h << Q the following approximations, Q − h ≈ Q and
∑Q−h

i=1 Vi+h

≈
∑Q

i=1 Vi ≈
∑Q−h

i=1 Vi can be used to obtain, after some algebra,

γ̂V (h) ≈ 1
Q

Q−h∑
i=1

Vi+hVi − V̄ 2 . (2)

Since V̄ does not depend on h, we can concentrate in γ̂∗
V (h) = γ̂V (h) + V̄ 2

= 1
Q

∑Q−h
i=1 Vi+hVi without modifying the shape of the function γ̂V (h).

Now,

Vi+hVi =
n+1∑
j=1

n+1∑
l=1

I(Tj ∈ Ai, Tl ∈ Ai+h)

and then, γ̂∗
V (h), as a function of h, is the histogram of these frequencies,

though divided by Q.
Observe that in the case of a small enough q (q=1 ms for example), Vi+hVi =

0, except when Vi+h = Vi = 1, in which case the product is 1. This is why,
for each h:
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γ̂∗
V (h) =

1
Q

Q−h∑
i=1

I((Vi+h, Vi) : (Vi+h, Vi) = (1, 1)) ,

which is easy to think in terms of time: Vi+h = Vi = 1 means that there are
two spikes that are separated by a distance of, at least h−1 and at most h+1.
From this follows that Qγ̂∗

V (h) counts the number of spike pairs (although
some might be missing) that are separated by a distance between h− 1 and
h + 1. This is the main idea to define the autocorrelation as it follows.

Higher order interspike autocorrelation, as it is used in neuroscience, is
very similar to γ̂∗

V (h) but it is built in an alternative way. Actually, it is
defined as the histogram of relative frequencies (or absolute sometimes) of
the elapsed time between any two spikes of a train that do not surpass a
certain wmax chosen by the researcher. This wmax is usually much smaller
than T , which allows us to compare with the serial covariance function of
{Vi}Q

i=1, since the approximations in (2) are valid.
Given a spike train {Ti}n+1

i=1 , let the set of distances between any two
spikes be {Dm}M

m=1 = {Ti − Tj/i, j ∈ {1, . . . , n + 1}, i 	= j}, such that
−wmax ≤ Dm ≤ wmax. Moreover, we need to choose b, where 2b is the width
of the histograms intervals. In this context, we define the higher order inter-
spike autocorrelation (HOISA) of a spike train at the distance d, by:

ĝ(d) =
1
M

M∑
m=1

I(d− b ≤ Dm ≤ d+ b) .

Here b plays a similar role to q in (2) and, in fact, this histogram is very similar
to that obtained from the serial autocovariance of the series {Vi}Q

i=1. Some
differences might arise from discretization and normalization. Interestingly,
for γ̂∗

V (h) the discretization is done before calculating the distances, while in
the definition of ĝ(d) the discretization is carried out when constructing the
histogram. On the other hand, to obtain γ̂∗

V (h) the absolute frequencies are
divided by Q while for ĝ(d) the denominator is M . Then the results should
be almost proportional. In Figure 4 we can observe the degree of similarity of
these histograms for three lengths of q and b, q = b = 0.01, 0.1 and 1 s for the
activity in the pre period of one trial of neuron N1. The functions γ̂∗

V (h) and
ĝ(d) have been multiplied by Q and M respectively, so that the similarities
are better shown up. The histograms are practically the same though there
are some differences for the three sizes. These differences grow with the size
of q and b and when q = b = 1 these are noticeable.

Note that, in fact, the HOISA is just an estimate of the probability density
of time between any two spikes. To get a smoother estimate, a nonparametric
kernel estimator is proposed:

g̃(d) =
1

Mh

M∑
m=1

K

(
d−Dm

h

)
=

1
M

M∑
m=1

Kh(d−Dm) ,
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Fig. 4. Comparison between Qγ∗
V (h) (top panel) and Mĝ(d) (bottom panel) for

three bin sizes, q = b = 0.01, 0.1, 1

where K is a kernel function and h > 0 a smoothing parameter (see [3], [5],
[7] and [8] for details). We have used the gaussian kernel function and the
Sheather and Jones “plug in” method for bandwidth selection (see [6]).

Figure 5 shows the autocorrelation for the pre and post periods for two
trials, one for each stimulus, of neuron N1 activity. We have used a wmax of
10 s. In the pre period Figure 5 shows that, given that there is a spike in time
t, there is a high probability density for another spike to occur within the
next few seconds (less than 2 s). Also, differences between pre and post can
be observed and also between the different trials in the post period.

Next, Figure 6 shows the estimates for a trial of each stimulus and for the
three stages of the record of four different neurons. As we had observed before
for neuron N1, in pre there is a high probability of two spikes occurring very
close in time and there also exist some other probability peaks.

Many of the plots in Figure 6 exhibit secondary peaks. It is interesting
to analyze what these secondary peaks mean. As indicated above, under
sleep states or, as in this case, anesthesia, most cortical neurons display an
oscillatory activity. Some rhythms have been characterized neurophysiolog-
ically in cats, as the slow rhythm (< 1 Hz), the delta rhythm (1–5Hz) and
the spindle oscillation (7–14Hz). These rhythms are designated as slow sleep
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Fig. 5. Kernel estimates of the higher order interspike autocorrelation for one trial
of stimulus bs (solid line) and one trial of stimulus bf (dashed line) of neuron N1
in the pre (left panel) and post (right panel) periods
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oscillations. On the other hand, neuronal spike responses are grouped into
what are called bursts. These features are sequences of action potentials ful-
filling certain characteristics, including: a) consecutive spikes within a burst
are not separated one from another in more than certain distance, and b)
between one burst and another there is, at least, a certain distance. The
distances in this definition may change for different areas of the cortex. If
there is an oscillation, for example a delta oscillation of 2 Hz, what happens
is that after a neuron generates a burst, it is quite likely that the next burst
will occur after about 500ms. In anesthetized cats it is common to record
oscillations of about 0.1Hz (belonging to the so termed slow rhythm). Thus,
a slow oscillatory activity of 0.1Hz could be the cause of the peaks at 10 s.
If larger values of wmax were chosen, peaks at around 20 and 30 s could be
observed in the HOISA.

Regarding the HOISA functions in the post stage. The differences between
the autocorrelation functions are mainly found in their dispersion. For this
period of the recorded trials, most of the histograms are unimodal, but there
are some trials in which conspicuous secondary peaks can be observed; these
are supposed to reflect stimulation-induced oscillations. In the post period it
makes sense to compare the estimates obtained for each of the two stimuli. In
several neurons, autocorrelations for the stimulus bs present more dispersion
than those for the stimulus bf.

The estimates of the autocorrelation function for the final stage of the
study are very similar to the corresponding ones of the pre condition. The
main peak of the probability density remains at zero. There are also other
peaks as in pre. In the post period, distances between spikes were mainly
small but when the effect of the stimulus is over, the distances return to the
behavior they had before the stimulus was applied.

These correlation measures, counting the distances along the entire train,
do not take into account the possible lack of stationarity on trains and there-
fore assume that the correlation is stationary. Often, this stationarity is not
easy to justify. When neurons are under the effect of a stimulus, they can
adapt to it over time, or they can lose stationarity because the stimulus
vary in time and the neuronal response varies with it. To check the lack of
stationarity and see how the autocorrelation changes over time, the HOISA
functions can be computed using sliding windows. Thus, autocorrelation is
calculated at each instant using information of a neighborhood of each point.
The problem with this approach is that it takes a lot of data for the esti-
mates to be accurate. From the neurobiological perspective it is interesting
to calculate these functions in the post period, to reveal the autocorrelation
dynamics after the stimulus is applied. However, with the amount of data we
had for this analysis no accurate estimates could be computed. Instead, in
Figure 7 we see an example of how this functions behave in the pre stage,
where they could, or not, be stationary.
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Fig. 7. HOISA functions in the pre part of the first trial of neuron N1. A sliding
window of 48 s has been used centered at times: 24 s, 48 s, 72 s and 96 s.

4 Testing Independence for Interspike Intervals

In this section we will study the existence of dependence among the elapsed
times between consecutive spikes. So, we will test the null hypothesis H0 : the
ISIs are independent, versus the alternative H1 : they are not independent.

Two different tests will be proposed. If the ISIs are dependent, this situa-
tion will influence the shape of the HOISA. These functions will be used to
build the first test. The estimated autocorrelation function for the original
train will be compared with another one obtained from independent spike
trains. On the other hand, the Kolmogorov-Smirnov goodness-of-fit test will
be used to compare the distribution of the elapsed times between consecutive
spikes in the original train with the distribution of the times of independent
trains.

To obtain the sample of independent ISIs, a random shuffle is performed in
the original ISIs. A new sample {S∗

i }n
i=1 is obtained from {Si}n

i=1, destroying
all the possible serial dependence but preserving any other possible features.
With this new sample a new spike train is built: T ∗

1 = 0 y T ∗
i =

∑n
j=1 S

∗
j ,

whose times between consecutive spikes are independent. The differences be-
tween the HOISA function of this independent train and the one of the orig-
inal train will show how far from independence the train under study is. In
[4] this methodologies for independence tests are discussed.

The first hypothesis test is carried out as follows. The HOISA function of a
registered spike train will be compared with the one obtained from a shuffled
train. More specifically, N shuffled trains are used, their HOISA functions are
computed and averaged to avoid falling in a case that is not representative.
This average HOISA function is denoted ḡ(t). The test statistic is defined as
the L1 distance:

THOISA =
∫
|g̃(x)− ḡ(x)|dx .

H0 will be rejected for large values of THOISA.
For the second test, the empirical distributions of the Dm for both popu-

lations, the original, F̃ , and the shuffled one, which we call F̄ , are needed. To
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estimate the second one, as before, several shuffled trains are used, say N .
From each shuffled train, the set of distances between spikes is constructed,
and F̄ is defined as the empirical distribution of the sample of all these N

sets put together. Then, the Kolmogorov-Smirnov test statistic is used:

TKS = sup
x
|F̃ (x) − F̄ (x)| .

To calibrate the distributions of the test statistics a bootstrap method is
proposed. The steps for the first test are the following:

1. Sample from {si = ti+1 − ti}n
i=1 to obtain a resample {s∗i }n

i=1 of dis-
tances between consecutive spikes and build a bootstrap train: t∗1 = 0,
and t∗i =

∑i−1
j=1 s

∗
j , for i = 2, . . . , n+ 1.

2. Calculate g̃∗(t) for this bootstrap train.
3. Resample N times from s∗ to obtain: s∗∗(i), i = 1, . . . , N as before.
Build t∗∗(i) as in Step 1 and calculate g̃∗∗(i) for each train t∗∗(i). Then
define ḡ∗ = 1

N

∑N
i=1 g̃

∗∗(i).
4. Obtain T ∗

HOISA =
∫
|g̃∗ − ḡ∗|.

5. Repeat Steps 1-4 B times to get T ∗
HOISA,1, . . . , T

∗
HOISA,B and use them

to estimate the desired quantiles of the THOISA distribution or the p-value
for T obs

HOISA.

For the Kolmogorov-Smirnov test the procedure is very similar:

1. Build the independent spike train t∗ as before.
2. Calculate the distances between consecutive spikes for the bootstrap
train: {d∗m}M

m=1.
3. Resample N times from t∗, to build N trains {t∗∗(j), j = 1, . . . , N} and
for each train build the set of distances: {d∗∗(j)m }Mj

m=1.
4. Calculate T ∗

KS as the Kolmogorov-Smirnov statistic for the samples
{d∗m}M

m=1 y (d∗∗(1)1 , . . . , d
∗∗(1)
M1

, d
∗∗(2)
1 , . . . , d

∗∗(2)
M2

. . . , d
∗∗(N)
1 , . . . , d

∗∗(N)
MN

).
5. Repeat Steps 1-4 B times to obtain T ∗

KS,1, . . . , T
∗
KS,B and use them to

estimate the desired quantiles of the TKS distribution or the p-value for
T obs

KS .

In general, differences can be observedbetween the HOISA function of the orig-
inal train and the one obtained with the resamples. Roughly speaking, the den-
sity of the resampleddata ismore uniformly distributed and then the main peak
is lower than in the case of the real data. It is also very common the absence of
secondary peaks in the HOISA functions of the resampled trains.

In Table 1 the results of the tests for four neurons, N1, N3a, N3b and N4b
and three different recordings (one in the pre part and two in the post part,
one for each stimulus) can be observed. The p-values obtained with each test
were calculated using the bootstrap method described above. A total number
of 500 bootstrap resamples and N = 80 shuffles were used for each bootstrap
train in the pre part and N = 100 in the post part. Also, a Ljung-Box (TLB)
test was implemented to compare the results.
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Table 1. p-values for the independence tests THOISA, TKS and TLB, constructed
using the distances between two spikes

neuron N1 N3a N3b N4b

period pre post pre post pre post pre post

stimulus bs bf bs bf bs bf bs bf

THOISA 0.000 0.080 0.204 0.006 0.004 0.126 0.000 0.006 0.308 0.000 0.254 0.574
TKS 0.002 0.036 0.668 0.266 0.002 0.456 0.002 0.004 0.634 0.001 0.148 0.514
TLB 0.000 0.205 0.012 0.000 0.000 0.018 0.000 0.000 0.980 0.002 0.320 0.911

These results show that, in the pre period, the distances between consecu-
tive spikes are not independent (but one case: N3a KS test). This fact is not
true in most of the cases for the post period. The null hypothesis is rejected
in the post part for the bs stimulus in neurons N3a and N3b (and for bs in
N1 using the KS test and in bf in N1 and N3a using the Ljung-Box test) but
it is not rejected for the bf stimulus, showing a difference between stimuli.

Figure 8 shows the HOISA functions of three original trains, both pre
and post (bs stimulus) periods, and the average HOISA function for the
independent case, averaged over 100 shuffles of the original train. In Figure 8
it is easy to recognize the cases where independence is rejected (neurons N1,
N3b and the pre period of neuron N4b) and the one in which it is not (post
of neuron N4b).
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Fig. 8. Comparison of the HOISA function for the original trains (solid line) and
the average HOISA function for independent trains (dashed line). First trial of
neurons N1, N3b and N4b (bs stimulus).
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5 Conclusions

Two correlation measures for spike trains have been introduced. First of all,
the serial autocovariance has been discussed. On the other hand, the higher
order interspike autocorrelation (HOISA) was presented. This autocorrela-
tion measure is commonly used in neuroscience. The spontaneous activity of
neurons is characterized by the existence of dependence among spikes. In this
work, a test for independence based on the HOISA function was proposed.
As this function is constructed in the basis of a histogram, another statistic,
based on the empiric distribution function, was discussed. The distribution
of these statistics under the null hypothesis was calibrated with a bootstrap
procedure. Finally, a Ljung-Box statistic was also used for comparison. This
last statistic has the inconvenience of being based on the serial autocorrela-
tion which, varies very much from one trial to another. In general, it can be
observed that dependence exists in the pre part, reflecting the highly syn-
chronized neuronal oscillatory activity. This dependence is present for some
neurons after the bs stimulus while it does not appear after the bf stimulus
for most of the neurons. In some cases, the TKS and TLB statistics present
values that are not consistent with the ones obtained with the other tests.
This does not happen with the THOISA statistic, what makes it more robust.
Our results indicate that the HOISA-based test for independence is a useful
method for the characterization and analysis of the dynamics of the neuronal
oscillatory activity.
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Summary. When analyzing trends in cancer rates, it is common to rely on
the so-called Annual Percent Change (APC). For dealing with such a measure
of trend, directly age-adjusted rates are usually considered. Classical methods
such as pooled t-tests are often applied for comparing APCs of two groups
of individuals in a simple way under independence assumption. In practice,
it is quite common to find groups of interest for which the independence
assumption fails because their regions or periods of time overlap. No one
of the papers that deal this problem consider the case where more than two
APCs are compared. In this work we propose a Wald-type test-statistic which
is not difficult to compute once we provide the estimators of two or more
APCs to be compared. These estimators are the minimum power divergence
estimators that cover as special case those obtained by maximum likelihood.

1 Introduction

According to the World Health Statistics 2009, published by WHO, the dif-
ferent types of cancer jointly cardiovascular diseases constituted the main
causes of death during year 2004, specially in upper-middle and high income
countries. It is well known that as income level increases, the percentage of
non-communicable deaths (NCDs) increases, in other words, as people live
longer, the risk of NCD grows. In such a study it is shown that in high-
income countries during year 2004, 77% of all the deaths were NCDs. Car-
diovascular diseases and cancers, as main part of NCDs, provided values of
∗ This work is related to the stay of Nirian Mart́ın in Harvard University (Septem-

ber 2008 - August 2009), supported by the Real Colegio Complutense. She met
Marisa just the first day after arriving in Spain, September 1. In the last conver-
sation Marisa told Nirian that both will meet soon again. Due to her optimistic
character it was impossible to imagine they both could not meet again. This
paper has been written in memory to Marisa.
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age-standardized mortality rates equal to 408 per 100,000 and 164 per 100,000
respectively. In order to implement prevention and control plans against these
diseases, it is very important for health authorities to analyze whether the
mortality (incidence) rates related to such diseases have increased or de-
creased in a set of successive years and in what degree, that is the trends
in mortality (incidence) are taken into account. The National Surveillance,
Epidemiology and End Results (SEER [2]) Program of the National Cancer
Institute (NCI) constitutes nowadays one of the most prestigious epidemio-
logical surveillance program in the world that allows the scientific community
to do research on cancer data based on the US population, actually the SEER
provides a database and statistical software, SEER*Stat. The new techniques
that are needed to cover different problems related to the age-adjusted can-
cer rates are being continuously implemented by the SEER and particularly
the Annual Percent Change (APC) for studying trends of cancer rates is
considered.

Statistically, the trend in cancer rates is an average rate of change per
year in a given period of time framework when constant change along the
time has been assumed. Let ri be the expected mean of the cancer rate
associated with the i-th time point in a sequence of ordered I time points
{ti}I

i=1, for example each time point could be a year (ti = i, i = 1, ..., I).
The cancer rates can be referred to either cancer incidence rates or cancer
mortality rates which demonstrate the risk of developing cancer or dying
from cancer respectively. The annual percent change (APC) is a measure
that allows us to compare trends in age-adjusted rates that are taken year
by year. Regarding the age-adjusted rates, if we apply directly standardized
rates, the expected mean of the cancer rate associated with the rate of the
k-th region (k = 1, ...,K) at the time-point tki (i = 1, ..., Ik), or the i-th year
(tki = i), is given by rki =

∑J
j=1ωjrkji, where J is the number of age-groups,

{ωj}J
j=1 is the age-distribution of the Standard Population (

∑J
j=1ωj = 1,

ωj > 1, j = 1, ..., J) and {rkji}J
j=1 is the set of rates associated with the k-th

region at the time-point i in each of the age-groups (j = 1, ..., J). The SEER
Program applies directly standardized rates on the US population of year
2000 with J = 19 age-groups [0, 1), [1, 5), [5, 10), [10, 15), ..., [80, 85), [85, ∗).
The APC associated with the rates {rkji}J

j=1 of the k-th region is defined as
the percentage

APCk = 100(θk − 1), (1)

where θk = rk2/rk1 = ... = rkIk
/rk,Ik−1 (constant change assumption along

the whole period of time in region k).
Let nkji the population at risk in the k-th region, j-th age-group, at the

time-point tki and dkji the number of deaths (or incidences) in the k-th
region, j-th age-group, at the time-point tki. The r.v.s that generate dkji,
Dkji, are considered to be mutually independent with Poisson distribution
Dkji ∼ P(mkji), where mkji ≡ E[Dkji] = nkjirkji.
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The Age-stratified Poisson Regression model, introduced by Li et al. [6], is
useful for modelizing {rkji}J

j=1 under constant change assumption. For mkji

(or for rkji) it is considered to hold

log
mkji

nkji
= β0kj + β1ktki or log rkji = β0kj + β1ktki. (2)

The parameter of the model is βk ≡ (β0k1, ..., β0kJ , β1k)T and its parameter
space Θk ≡ R

J+1. Note that

θk = exp(β1k), (3)

with β1k being the parameter we would like to estimate in the practice. The
same model in matrix notation is given by

log
(
Diag−1(nk)mk(βk)

)
=Xkβk or mk(βk) = Diag(nk) exp(Xkβk),

(4)
where mk(βk) ≡ (mk11(βk), ...,mkJIk

(βk))T , Diag(nk) is a diagonal matrix
of individuals at risk nk ≡ (nk11, ..., nkJIk

)T and

Xk =

⎛
⎜⎝

1Ik
tk

. . .
...

1Ik
tk

⎞
⎟⎠

JIk×(J+1)

= (IJ ⊗ 1Ik
,1J ⊗ tk),

with tk ≡ (tk1, ..., tkIk
)T , is a full rank Mk × (J + 1) design matrix, with

Mk ≡ JIk.
If we focus on model (4), for making statistical inference with sample

Dk ≡ (Dk11, ..., DkJIk
)T there is no problem. However, if we take jointly

k = 1, ...,K regions, D = (D1, ...,DK)T is not a simple random sample,
because it is possible to find individual at risk at the same time in different
regions. In order to overcome this difficulty in Mart́ın and Li [3] it were
made some assumptions with regard to the overlapping region associated
exclusively to a couple of regions k and h 	= k, which is applied in the case
where both regions have the same APC: if D(h)

kji ∼ P(m(h)
kji) is the number of

deaths (incidences) in the overlapping part “in space” between regions k and
h, then for n(h)

kji > 0 (population at risk) it holds

m
(h)
kji =

n
(h)
kji

nkji
mkji. (5)

In addition, in the complementary part with respect to the overlapping part
“in space” between regions k and h, it holds D

′(h)
kji ∼ P(m′(h)

kji ), which is

independent with respect to D
(h)
kji , and m

′(h)
kji = (n′(h)

kji /nkji)mkji.
In this paper the most important characteristics for the minimum power

divergence estimators of the Age-stratified Poisson Regression model, when
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overlapping group of individuals are taking into account, are revised in Sec-
tion 2. As main part of the paper Wald-type test-statistics for testing the
equality of APCs of K regions with possible overlapping group of individuals
are presented in Section 3. A numerical result is shown in Section 4.

2 Minimum Power Divergence Estimators for the
Age-Stratified Poisson Regression Model with a
Possible Overlapping Group of Individuals

Based on the likelihood function of a Poisson sample associated exclusively
to the k-th region, Dk, and using a single index for vectors rather than
triple index, the kernel of the log-likelihood function is given by �βk

(Dk) =∑Mk

s=1Ds logms(βk) −
∑Mk

s=1ms(βk), and thus the MLE of βk is β̂k =
arg maxβk∈Θk

�βk
(Dk). Focussed on a multinomial contingency table it is

intuitively understandable that a good estimator of the probabilities of the
cells should be such that the discrepancy with respect to the empirical dis-
tribution or relative frequencies is small enough. The oldest discrepancy or
distance measure we know is the Kullback divergence measure, actually the
estimator which is built from the Kullback divergence measure is the MLE.
By considering the unknown parameters of a Poisson contingency table, the
expected values, rather than probabilities and the observed frequencies rather
than relative frequencies, we are going to show how is it possible to carry out
statistical inference for Poisson models through power divergence measures.
According to the Kullback divergence measure, the discrepancy or distance
between the Poisson sample Dk and its vector of means mk(βk) is given by

dKull(Dk,mk(βk)) =
Mk∑
s=1

(
Ds log

Ds

ms(βk)
−Ds + ms(βk)

)
. (6)

Observe that dKull(Dk,mk(βk)) = −�βk
(Dk) + C(k), where C(k) does not

depend on parameter βk. Based on such a relationship we can define the MLE
of βk as the minimum Kullback divergence estimator β̂k = arg minβk∈Θk

dKull(Dk,mk(βk)), and the MLE of mk(βk) functionally as mk(β̂k), due to
the invariance property of the MLEs. The power divergence measures are a
family of measures defined as

dλ(Dk,mk(βk)) =
1

λ(1 + λ)

Mk∑
s=1

(
Dλ+1

s

mλ
s (βk)

−Ds(1 + λ) + λms(βk)
)
, (7)

such that from each possible value for subscript λ ∈ R − {0,−1} a differ-
ent way to quantify the discrepancy between Dk and mk(βk) arises. In case
of λ ∈ {0,−1}, it is defined dλ(Dk,mk(βk)) = lim�→λ d�(Dk,mk(βk)), and
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in this manner the Kullback divergence appears as special case of power
divergence measures when λ = 0, d0(Dk,mk(βk)) = dKull(Dk,mk(βk))
and on the other hand case λ = −1 is obtained by changing the order of
the arguments for the Kullback divergence measure, d−1(Dk,mk(βk)) =
dKull(mk(βk),Dk). The estimator of βk obtained on the basis of (7) is the
so-called minimum power divergence estimator (MPDE) and it is defined for
each value of λ ∈ R as

β̂k,λ = arg min
βk∈Θk

dλ(Dk,mk(βk)), (8)

and the MPDE of mk(βk) functionally as mk(β̂k,λ) due to the invariance
property of the MPDEs. For more details about such a estimator see Pardo
and Mart́ın [5].

In order to obtain the MPDE of (1), ÂPCk,λ = 100(exp(β̂1k,λ) − 1), we
need to compute the estimator of the parameter of interest by following the
next result. In Mart́ın and Li [3] it was established the next result.

Proposition 1. The MPDE of β1k, β̂1k,λ, is the solution of the nonlinear
equation

f(β̂1k,λ) =
Ik∑

i=1

tkiΥki = 0,

with

Υki =
J∑

j=1

mkji(β̂λ) (ϕkji − 1) ,

mkji(β̂λ) = nkji exp(β̂0kj,λ) exp(β̂1ki,λtki) and ϕkji =

(
Dkji

mkji(β̂λ)

)λ+1

,

exp(β̂0kj,λ) =

(
Ik∑

s=1

pkjsψ
λ+1
kjs

) 1
λ+1

, j = 1, ..., J,

pkjs =
nkjs exp(β̂1k,λtks)∑Ik

h=1nkjh exp(β̂1k,λtkh)
and ψkjs =

Dkjs

nkjs exp(β̂1k,λtks)
.

For the asymptotic distributions some assumptions have to be made:
a) m∗

kji(β
0
k) = mkji(β0

k)/Nk remains constant as Nk ≡
∑Mk

s=1ms(βk) in-
creases, that is mkji(β0

k) increases at the same rate as Nk.
b) N∗

k ≡ Nk

N (k = 1, ...,K) is constant as N ≡ N1 + ... + NK increases, that
is N increases at the same rate as Nk.

For details about the asymptotic distribution of parameters see Mart́ın
and Li [3].
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3 Wald-Type Test-Statistics for the Age-Stratified
Poisson Regression Model with a Possible
Overlapping Group of Individuals

The Z-test provided in Li et al. [6],

Zλ(r; s) =
β̂1r,λ − β̂1s,λ√

V̂ar(β̂1r,λ − β̂1s,λ)
(9)

with λ = 0, for testing H0(r; s) : APCr = APCs (or H0(r; s) : β1r − β1s = 0)
based on the age-adjusted Poisson Regression model is useful only if we want
to compare the APCs of two specific regions r and s. This test-statistic is not
valid only for MLEs (λ = 0) but also for MPDEs, actually all the MPDEs
of β have the same asymptotic distribution. The asymptotic distribution of
Z(r; s) is standard normal underH0(r; s). Based directly on (9), in Mart́ın and
Li [3] K − 1 test hypotheses separately were performed, H0(1; k) : APC1 =
APCk, k = 2, ...,K. For the moment there is no paper concerned in making
comparisons between more than two regions at the same time, H0 : APC1 =
APC2 = ... = APCK . In order to do that we reformulate the hypotheses

H0(1; 2, ...,K) : θ = (θ1, ..., θK−1)
T = 0, (10)

against H1(1; 2, ...,K) : ∃b ∈ {1, ...,K − 1} : θb 	= 0, where θb ≡ β11 − β1b+1,
b = 1, ...,K − 1. The following test-statistic is applied

Wλ(1; 2, ...,K) = θ̂
T

λ V̂ar
−1

(θ̂λ)θ̂λ, (11)

θ̂λ = (θ̂1,λ, ..., θ̂K−1,λ)T , where θ̂b,λ ≡ β̂11,λ − β̂1b+1,λ, b = 1, ...,K − 1. In
particular, when there are no individuals at risk shared by regions to be
compared, its expression is given by

Wλ(1; 2, ...,K) =
K−1∑
b=1

θ̂2
b,λ

σ̂2
1,b+1,λ

− 1∑K
k=1

1
σ̂2
1k,λ

K−1∑
b=1

K−1∑
b′=1

θ̂2
b,λθ̂

2
b′,λ

σ̂2
1,b+1,λσ̂

2
1,b′+1,λ

. (12)

Note that in practice when K = 2 test-statistic (12) is equivalent to (9) with
V̂ar(β̂1r,λ − β̂1s,λ) = σ̂2

1r,λ + σ̂2
1s,λ and r = 1, s = 2, because Wλ(1; 2) =

Z2
λ(1; 2).
Our aim in this paper is to find the asymptotic distribution of θ̂λ first

and the distribution of (11) later. When comparing regions b and b′, we
must consider a new reference point for time index i, denoted by Ībb′ , such
that tbĪbb′ represents the time point within {tbi}Ib

i=1 where the time series
associated with region b′ is about to start, i.e. we have {tb′i}Ib′

i=1 such that
tb′1 = tbĪbb′ + 1. Taking into account Mart́ın and Li [3] it is easy to prove the
next result.
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Theorem 1. Under the hypothesis that θb = 0 or β11 = β1b+1, b = 1, ...,K−
1, the asymptotic distribution of θ̂λ is central Normal with

Var(θ̂b,λ) = σ2
11 + σ2

1b+1 − 2σ2
11σ

2
1b+1ξ1,b+1,

Cov(θ̂b,λ, θ̂b′,λ)=σ2
11 + σ2

1b+1σ
2
1b′+1ξb+1,b′+1−σ2

11σ
2
1b+1ξ1b+1−σ2

11σ
2
1b′+1ξ1b′+1,

where σ2
1k is equal to

σ2
1k =

(
J∑

j=1

Ik∑
i=1

mkji(β0)(tki − t̃kj(β0
k))2

)−1

, (13)

with t̃kj(β0
k) =

(∑Ik

i=1 mkji(β0
k)tki

)/∑Ik

i=1mkji(β0
k) and

ξbb′ =
J∑

j=1

Ib−Ībb′∑
i=1

n
(b)
b′ji

nb′ji
mb′ji(β0)(tb′i − t̃bj(β0))(tb′i − t̃b′j(β0)). (14)

Proof. It follows by the bilinear property of covariance and taking into ac-
count the asymptotic distribution of β̂λ that was established in Mart́ın and
Li [3]: The asymptotic distribution of β̂λ is central Normal with Var(β̂1k,λ) =
σ2

1k and Cov(β̂1b,λ, β̂1b′,λ) = σ2
1bσ

2
1b′ξbb′ . �

We need to obtain the MPDEs of σ2
1k and ξbb′ , σ̂2

1k,λ and ξ̂bb′,λ respectively.
A way to proceed is based on replacing β0 by the most efficient MPDE. For
example, for σ̂2

1k,λ we shall use

β̂
0

λ ≡
{
β̂

0

1,λ, if N1 ≥ Nk

β̂
0

k,λ, if N1 < Nk

.

Theorem 2. The asymptotic distribution of Wλ(1; 2, ...,K) is χ2
K−1 under

(10).

Proof. Let LT = (1K−1,−IK−1) with 1K−1 being a (K − 1)-dimensional
vector of 1’s and IK−1 is the (K − 1)-dimensional identity matrix. Taking
into account that β̂λ = LT θ̂λ and based on (14) and Corollary 2.1 in Dik
and de Gunst [1] it is concluded that Wλ(1; 2, ...,K) is χ2

g under (10), where
g = rank(L) = K − 1. �

To determine whether N is large, it can be used the rule of thumb of the
average of events per cell η ≡ N/(KJI). Data sets with η < 5 are considered
to be small, but the length of the whole period of time I is also an important
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factor to take into account. Because for λ = 0, N̂k,0 =
∑J

j=1

∑Ik

i=1Dkji,
it is also held N̂0 =

∑K
k=1N̂k,0 =

∑K
k=1

∑J
j=1

∑Ik

i=1Dkji. Hence in practice
η̂ ≡

∑K
k=1

∑J
j=1

∑Ik

i=1Dkji/(KJI) is useful to estimate whether N is large.

4 Real Data Example

We have considered thyroid cancer mortality in three regions, Western (W) US
population (compounded by Arizona, New Mexico and Texas), South West-
ern (SW) US population (compounded by Arizona, California and Nevada)
and West Coast (WC) US population (companied by California, Oregon and
Washington). Note that Arizona is shared by W and SW, and California by
SW and WC. Different periods of time, 1969-1983, 1977-1991 and 1990-1999
are taken for W, SW and WC respectively. The third one differs from the rest
in the sense that it considers a shorter period of time for its study. In Mart́ın
and Li [3] it was analyzed the performance of the minimum chi-square estima-
tor (MCSE), that is the minimum power divergence estimator obtained with
λ = 1, and it was concluded that it behaves more accurately than the MLEs
(λ = 0) for small data sets. We have chosen thyroid cancer because it is a rare
cancer, and both estimators have been computed in order to analyze the data.
The rates are expressed per 100, 000 individuals at risk. Taking into account
exp(β0k) =

∑J
j=1ωj exp(β0kj), in Figure 1 the fitted models are plotted and

from them it seems at first sight that there is a decreasing trend for Thyroid
cancer in WC and SW, and null or decreasing trend in W.

1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

0.4

0.5

0.6

0.7

t

r
  MCSE

  MLE

WC SC W

Fig. 1. Fitted models to data
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The specific values for estimates and test-statistics Wλ(1; 2, 3), for λ = 0, 1,
are summarized in Table 1.

Table 1. Thyroid cancer mortality trends comparison among WC, SW and W
during 1969-1983, 1977-1991 and 1990-1999 respectively: Maximum Likelihood Es-
timators and Minimum Chi-Square Estimators

Region k λ β̂0k,λ β̂1k,λ ÂPCk,λ

WC 1 0 −0.3680 −0.0267 −2.639
1 1 −0.3241 −0.0268 −2.646

SW 2 0 −0.5404 −0.0107 −1.064
2 1 −0.4943 −0.0106 −1.053

W 3 0 −0.7939 0.0003 0.031
3 1 −0.7084 −0.0012 −0.117

WC vs. SW: Z12,0 = −1.85; Z12,1 = −1.92
SW vs. W: Z23,0 = −0.85; Z23,1 = −0.75

W0(1; 2, 3) = 6.02; W1(1; 2, 3) = 6.01

Apart from the Wald-type test-statistic, we have included test-statistics
Z12,λ, Z23,λ (λ = 0, 1) for couples of regions. For their computation are
essential the values of three matrices:

(ξ̂bb′,0)b,b′∈{1,2,3} =

⎛
⎝ ∗ −8684.09 0
−8684.09 ∗ −827.56

0 −827.56 ∗

⎞
⎠ ,

(
Cov(β̂1b,0, β̂1b′,0)

)
b,b′∈{1,2,3}

=

⎛
⎝ 2.92354× 10−5 −0.77292× 10−5 0
−0.77292× 10−5 3.04440× 10−5 −0.32915× 10−5

0 −0.32915× 10−5 13.06460× 10−5

⎞
⎠ ,

Var(θ̂0) =
(

7.51380× 10−5 3.68340× 10−5

3.68340× 10−5 15.98815× 10−5

)
.

(ξ̂bb′,1)b,b′∈{1,2,3} =

⎛
⎝ ∗ −9125.47 0
−9125.47 ∗ −866.18

0 −866.18 ∗

⎞
⎠ ,

(
Cov(β̂1b,1, β̂1b′,1)

)
b,b′∈{1,2,3}

=

⎛
⎝ 2.78598× 10−5 −0.73429× 10−5 0
−0.73429× 10−5 2.88823× 10−5 −0.31074× 10−5

0 −0.31074× 10−5 12.42113× 10−5

⎞
⎠ ,

Var(θ̂1) =
(

7.14279× 10−5 3.50927× 10−5

3.50927× 10−5 15.20711× 10−5

)
.
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Because p-value(Z12,0) = 0.064, p-value(Z12,1) = 0.054, p-value(Z23,0) =
0.39, p-value(Z23,1) = 0.45, p-value(W0(1; 2, 3)) = 0.049, p-value(W1(1; 2, 3))
= 0.049, the hypothesis of equal APCs is rejected with 0.05 significance level
for the three regions when using the Wald-type test, while cannot be rejected
using Z -test-statistics for couples of regions.
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Summary. We consider a simple mathematical model of distribution of mor-
phogens (signaling molecules responsible for the differentiation of cells and
the creation of tissue patterns) similar to the model proposed by Lander, Nie
and Wan in 2002. The model consists of a system of two equations: a PDE of
parabolic type modeling the distribution of free morphogens with a dynamic
boundary condition and an ODE describing the evolution of bound receptors.
Three biological processes are taken into account: diffusion, degradation and
reversible binding. We study the existence and uniqueness of solutions.

1 Introduction

Morphogenesis is the biological process whereby the cells of the embryo dif-
ferentiate into specialized cells to create tissues. Morphogenesis is one of
the most important process of developmental biology and responsible of the
creation of shapes and organs. The process consists of the production and
distribution of signaling molecules called Morphogens. Morphogens are syn-
thesized at signaling localized sites and spread into the body. We consider
the transport of morphogens from the localized points of synthesis to the
cells surface by diffusion. Recently several reports suggest the important roll
of transcytosis in the transport trough the cells. In transcytosis, vesicles are
employed to intake the morphogen on one side of the cell, draw them across
the cell, and eject them on the other side. Once the morphogens arrive to
the surface of the cell, they bind the receptors situated in the surface and
a process of internalization of the complex morphogen-receptors occurs. The
response of the cell consists of the activation of particular genes which then
determine the pattern of cell differentiation.

The transport of morphogens and other crucial issues, as how morphogens
coordinate growth inside the cell, are not well understood and different theo-
ries have been proposed in the last decades to describe them.

∗ This paper is dedicated to the memory of Professor Maŕıa Luisa Menéndez with
deep gratitude and affection.
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Morphogenesis has been studied from the early 20th century. The first
mathematical model was proposed by Turing in the 1950s (see [19]) where a
reaction-diffusion system of differential equations modelized the process.

Lander, Nie and Wan [9] studied numerically several mathematical mod-
els and focused on the Drosophila wing disc. They obtain (by using recent
experimental data) that diffusive mechanisms of morphogen transport may
produce gradients of morphogens and show that those mechanisms are much
more plausible than the non-diffusive ones. They propose several mathemat-
ical models, one of them, the diffusion-reversible binding model with degra-
dation is the model which has been analyzed in the following sections. One
of the main novelties of that model arises in the peculiar dynamic boundary
condition at x = 0 (see formula (4)).

Lander, Nie, Vargas and Wan [8] and Lander, Nie and Wan [10] pro-
posed several models of differential equations. The models consider a PDE of
parabolic type to describe the evolution of morphogens and a set of ODE′s
to model the receptor and the bound-receptor. They study the steady states
and the linear stability of them under the action of a source in a region of
the domain.

Merkin and Sleeman [14] have studied the system proposed by Lander, Nie
and Wan [9] with degradation and without it. They provide an analysis of
the models under the assumption of constant concentration of morphogens
at the boundary x = 0 and gradient of morphogens equals to zero at infinity.
The authors prove that the case where the bound morphogen complex is not
degraded, the free morphogen profile is essentially linear and spreads as a
square root law.

Recently Merkin, Needham and Sleeman [13] have considered a mathe-
matical model with diffusion and have included a chemosensitivity term to
describe morphogen concentration. They have presented results on the exis-
tence and uniqueness of classical solutions and self-similarity. Their numerical
simulations have showed periodic pulse solutions.

Lou, Nie and Wan [12] consider a model with two species of morphogens.
The system consists of three PDE′s of parabolic type and one ODE. They
study the steady states and numerical simulation for the evolution problem.

In Tello [18] a similar system is studied in the whole domain for a particular
boundary conditions given by a system of ODE′s at x = 0. The existence and
uniqueness of solutions is proved by using a Banach fixed point argument. In
[18] the asymptotic behavior of the boundary conditions is studied and used
to prove the behavior of the solution (u, v) which satisfies

lim
t→∞ u(x, t) = φ(x), lim

t→∞ v(x, t) = ξ(x)

in Lp(Ω) for 1 ≤ p <∞ where (φ, ξ) is a steady state of the problem.
The mathematical model proposed by Lander, Nie and Wan [10] is consid-

ered in Muñoz and Tello [15] under structural simplifications which reduce
a system of 5 equations to a model of 3. The resulting mathematical model
does not consider the effects of the processes in the interior of the cell and
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it is similar to the model described by Lander, Nie, Vargas and Wan [8]. In
[15] the steady states of the problem are considered before the existence and
uniqueness of solutions. The numerical simulations of the problem show a
rich behavior depending of the range of the parameters.

Another system of equations modeling morphogenesis has been proposed
in Bollenbach, Kruse, Pantazis, González-Gaitán and F. Julicher [1] where
a chemotaxis term is introduced in the system. The problem is reduced to
a system of two equations, one of parabolic type coupled to an ODE. A
rigorous mathematical analysis is applied to study a system in Stinner, Tello
and Winkler [16] for a range of parameters. In [16] global existence of solutions
and uniform bounds in L∞(Ω) are given by using an iterative argument. A
regularization method is considered to study the problem, where diffusion is
included for the non-diffusive equation. Uniform bounds are obtained and the
approximated solution converges to the solution of the limit problem when
the diffusion coefficient goes to 0.

In this work we consider the case of diffusive transport of morphogens. We
first describe the mathematical model proposed by Lander, Nie and Wan [9]
where a dynamic boundary condition governs the production of morphogens
at x = 0. In the third section we study the steady states and the boundary
conditions. Existence and uniquenes of solutions are studied in the last two
sections by using a Schauder fixed point argument.

2 The Mathematical Model

Different models of distribution of morphogens have been introduced by sev-
eral authors in the last decade. A simple mathematical model is presented
in Lander, Nie and Wan [9] in an unbounded domain (0,∞). We study the
mathematical model in a one dimensional bounded domain. Lander et al
[9] consider the evolution of Decapentaplegic (Dpp) one of the morphogens
present in Drosophila larvae wing disc. We denote by L the morphogen Dpp
(the lingand), by R the receptor per unit of extracellular space, by LR the
complex ligand-receptor and their respective concentrations by [L], [R] and
[LR]. The following formula express the processes of formation of the complex

L + R

kon

�
koff

LR,

where kon and koff are the binding and dissociation rate constants. We as-
sume that the number of receptors (free and bound) is constant on time, i.e.

[R] = Rtot − [LR], (1)

where Rtot is the total receptor concentration per unit of extracellular space.
Assumption [1] reduces the number of equations and simplifies the problem.
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We consider linear diffusion of [L] with diffusion constant d. Then, [L] satisfies
the equation:

∂

∂t
[L]− d

∂2

∂x2
[L] = −kon (Rtot − [LR]) [L] + koff [LR].

We consider degradation of the complex [LR]. Let kdeg be the degradation
rate constant, then [LR] satisfies the equation:

∂

∂t
[LR] = konRtot[L]− kon[L][LR]− koff [LR]− kdeg[LR].

Let u and v be the normalized concentrations of morphogen and complex
morphogen-receptor, then after normalization of the equations we arrive to
the system

∂u

∂t
− ∂2

∂x2
u = −u(1− v) + v, (2)

∂v

∂t
= λ [u(1− v)− v]− μv. (3)

The system (2), (3) is proposed by Lander, Nie and Wan [9] in the domain
x ∈ (0,∞), t ∈ (0,∞) with the boundary conditions

∂u

∂t
= ν − u(1− v) + v, at x = 0, t > 0, (4)

lim
x→∞u(x, t) = 0, t > 0, (5)

and initial data:
u(x, 0) = v(x, 0) = 0, x ≥ 0. (6)

The existence of solutions to the system (2)-(6) has been study in Tello [18]
by using Banach fixed point Theorem. In the following sections we study the
system in the domain x ∈ (0, 1), t ∈ (0,∞). The problem we study is the
following

∂u

∂t
− ∂2

∂x2
u = −u(1− v) + v, x ∈ (0, 1), t > 0 (7)

∂v

∂t
= λ [u(1− v)− v]− μv, t > 0, (8)

∂u

∂t
= g(u, v), at x = 0, u(1, t) = 0, t > 0, (9)

u(x, 0) = v(x, 0) = 0, x ∈ (0, 1). (10)
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The parameters λ and μ are positives and g satisfies

g ∈ C1(R2
+), (11)

there exists k0 > 0 such that

g(k0, v) < −β < 0, for any v ∈ [0, 1]. (12)

g(0, v) > 0 for any v ∈ [0, 1]. (13)

Through the following sections we use the notation:

I := (0, 1); IT := I × (0, T ).

3 Boundary Conditions and Steady States

We consider the system of ordinary differential equations

∂u

∂t
= g(u, v), t > 0, (14)

∂v

∂t
= λ [u(1 − v)− v]− μv, t > 0, (15)

with the initial data
u)0) = v(0) = 0. (16)

Lemma 1. u and v satisfy

u ≥ 0; 0 ≤ v ≤ 1.

Proof. We denote by f : R
2
+ → R the function defined by

f(u, v) := λ [u(1− v)− v]− μv.

Then the problem is given by

∂u

∂t
= g(u, v), t > 0,

∂v

∂t
= f(u, v), t > 0,

u(0) = v(0) = 0.

Since f ∈ C1(R2) and g ∈ C1(R2), we have the existence of a unique solution
in (0, T ) for T ≤ ∞ as far as the solution remains bounded and non-negative.
The positivity of u and v is a consequence of

du

dt

∣∣∣∣
u=0

> 0 for v ∈ [0, 1]
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and
dv

dt

∣∣∣∣
v=0

≥ 0 for u ≥ 0.

Since f(u, 1) < 0 and v(0) ≤ 1 we have

v ≤ 1, (17)

which ends the proof. �

Lemma 2. u and v are uniformly bounded.

Proof. We consider u and v the solution to (14) – (16). By previous lemma
we have that v ∈ [0, 1] and therefore v is bounded. Since u ≥ 0 and ut < 0
for u = k0 and any v ∈ [0, 1] we conclude the proof. �

Proposition 1. There exists a unique solution (u, v) ∈ [C1(0,∞)]2 to (14)-
(16).

Proof. Since g and f are C1(R2
+), there exists T > 0 and a unique solution

(u, v) ∈ [C1(0, T )]2 to (14)-(16) as far as the solution remains bounded and
non-negative. Lemma 1 and Lemma 2 imply T = ∞. Regularity of solutions
is a consequence of the regularity of f and g. �

3.1 Steady States

In this subsection we consider the steady states of the problem given by the
solutions of the system:

− ∂2

∂x2
u = −u(1− v) + v, x ∈ (0, 1), (18)

λ [u(1− v)− v]− μv = 0, x = 0 (19)

with the boundary conditions:

0 = g(u, v), at x = 0, u(1) = 0. (20)

Thanks to (19) we have

v =
λu

μ + λ + λu

and therefore

− ∂2

∂x2
u +

μu

λu + λ + μ
= 0, for x ∈ (0, 1). (21)

Lemma 3. Under assumptions (11)-(13) there exists at least a solution α ∈
(0, k0) such that

g

(
α,

λα

μ+ λ + λα

)
= 0.
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Proof. Since λk0
μ+λ+λk0

∈ (0, 1) we have

g

(
k0,

λk0

μ+ λ + λk0

)
< 0 and g(0, 0) > 0.

Continuity of g and Bolzano′s Theorem end the proof. �

Previous lemma ensures that there exists at least an stationary state at the
boundary, that we denote by α. Then, the boundary conditions of the problem
are given by

u(0) = α, u(1) = 0. (22)

The problem (21), (22) has been studied in several works, for readers conve-
nience we include the following result concerning the steady states.

Lemma 4. For every λ and μ satisfying (11) and for any α ∈ (0, k0) there
exists a unique solution φα ∈ C1(I) to (21) and (22). Moreover the solution
is a positive and monotone decreasing function.

The proof of the Lemma 4 can be found in Lander, Nie, Vargas and Wang [8]
where a monotonicity argument is used. In [15] a different method to prove
the existence of solutions is considered.

Lander, Nie, Vargas and Wang [8] have considered the problem with a
source term and nonlinear mixed boundary conditions. The problem with
nonlinear boundary condition is more complicated and a monotone method
is used to prove the existence of solutions. Uniqueness is also treated in
[8]. In [8], the existence and uniqueness of solutions is obtained by using a
monotonicity method of Amman and Sattinger based on upper and lower
solutions. The monotonicity of solutions is also studied in [12] and [8].

It is also possible to obtain a parametric series expansion in powers of a
new parameter defined by ν/λ .

4 Existence of Solutions

We consider the problem (7)-(8) with the boundary conditions

u(0, t) = u(t), u(1, t) = 0, (23)

v(0, t) = v(t), v(1, t) = 0, (24)

and the initial data
u(x, 0) = v(x, 0) = 0. (25)

We first introduce some preliminary results concerning a priori estimates of
the solution.
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Lemma 5. 0 ≤ u and 0 ≤ v ≤ 1.

Proof. We consider (v − 1) which satisfies

(v − 1)t + (λ + μ+ λu)(v − 1) = −(λ + μ), t > 0.

By integration, we obtain

v(x, t) = 1−
∫ t

0 (λ + μ)exp
{∫ τ

t (λ + μ + λu(x, s))ds
}
dτ−

exp
{
−
∫ t

0 (λ + μ + λu(x, s))dτ
} (26)

which implies
v ≤ 1. (27)

We introduce the functions ψε, ψ, Ψε and Ψ : R → R defined by

ψε(s) :=

⎧⎨
⎩
−1, s ≤ −ε
1
ε s, −ε < s < 0
0, s ≥ 0,

ψ(s) :=
{
−1, s < 0
0, s ≥ 0, (28)

Ψε(s) :=

⎧⎨
⎩
−s− ε

2 , s ≤ −ε
1
2εs

2, −ε < s < 0
0, s ≥ 0,

Ψ(s) :=
{
−s, s ≤ 0
0, s ≥ 0. (29)

Notice that Ψ ′
ε = ψε and

lim
ε→0

ψε = ψ; lim
ε→0

Ψε = Ψ,

sψ(s) = Ψ(s) for s ∈ R. We multiply (7) by ψε(u), integrate over I to obtain:

d

dt

∫
I

Ψε(u)dx +
∫

I

ψ′
ε|ux|2dx =

∫
I

(−(u(1− v)ψε(u) + vψε(u)) dx, (30)

for t > 0. Since ψ′
ε ≥ 0, we have

d

dt

∫
I

Ψε(u)dx ≤
∫

I

(−u(1− v)ψε(u) + vψε(u)) dx. (31)

Notice that

lim
ε→0

−u(1− v)ψε(u) = −u(1− v)ψ(u) = −(1− v)Ψ(u) a.e.

lim
ε→0

vψε(u) ≤ vψ(u) ≤ Ψ(v)

and take limits as ε→ 0 in (31) to obtain

d

dt

∫
I

Ψ(u)dx ≤ −
∫

I

(1− v)Ψ(u)dx +
∫

I

Ψ(v)dx, t > 0. (32)



On the Existence of Solutions of a Mathematical Model of Morphogens 503

In the same way we multiply (8) by ψε(v) and integrate over I

d

dt

∫
I

Ψε(v)dx =
∫

I

(λ(u(1− v)ψε(v)− μvψε(v)) dx. (33)

We take limits as ε→ 0 and it results:

d

dt

∫
I

Ψ(v)dx = λ

∫
I

u(1− v)ψ(v)dx − μ

∫
I

Ψ(v)dx. (34)

We apply the inequalities

(1 − v)ψ(v) ≤ 0,

u(1− v)ψ(v) ≤ −Ψ(u)(1− v)ψ(v) ≤ (1 − v)Ψ(u),

to (34) and it becomes

d

dt

∫
I

Ψ(v)dx ≤ λ

∫
I

(1− v)Ψ(u)dx − μ

∫
I

Ψ(v)dx. (35)

We multiply equation (32) by λ and add to equation (35) to get

d

dt

(
λ

∫
I

Ψ(u)dx +
∫

I

Ψ(v)dx
)
≤ (λ− μ)

∫
I

Ψ(v)dx, t > 0. (36)

We apply Growall′s lemma to (36) to end the proof. �

Lemma 6. u ≤ φ and v ≤ ξ.

Proof. Let (φ, ξ) the steady state of the problem. Then, u − φ and v − ξ

satisfies:

(u−φ)t−(u−φ)xx = −(u−φ)(1−v)+(v−ξ)(1+φ), x ∈ (0, 1), t > 0 (37)

and

(v − ξ)t = λ(u − φ)(1 − v)− (v − ξ)(λ + μ + λφ), t > 0. (38)

We introduce the functions θε, θ, Θε and Θ : R → R defined by

θε(s) :=

⎧⎨
⎩

0, s ≤ 0,
1
ε s, 0 < s < ε,

1, s ≥ ε,

θ(s) :=
{

0, s < 0,
1, s ≥ 0, (39)

Θε(s) :=

⎧⎨
⎩

0, s ≤ 0,
1
2εs

2, 0 < s < ε,

s− 1
2ε s ≥ ε,

Θ(s) :=
{

0, s ≤ 0,
s, s ≥ 0. (40)



504 J.I. Tello

Notice that Θ′
ε = θε, sθ(s) = Θ(s) for s ∈ R and

lim
ε→0

θε = θ, lim
ε→0

Θε = Θ.

We multiply equation (37) by θε(u−φ), integrate over I and take limits when
ε −→ 0 to get:

d

dt

∫
I

Θ(u − φ)dx ≤
∫

I

−Θ(u− φ)(1 − v)dx+

∫
I(v − ξ)(1 + φ)θ(u − φ)dx, for t > 0.

(41)

Notice that

(v − ξ)(1 + φ)θ(u − φ) ≤ (v − ξ)(1 + φ)θ(u − φ)θ(v − ξ) =

(1 + φ)θ(u − φ)Θ(v − ξ) ≤ (1 + φ)Θ(v − ξ),

we obtain, from (41)

d

dt

∫
I

Θ(u − φ)dx ≤ −
∫

I

Θ(u − φ)(1 − v)dx +
∫

I

Θ(v − ξ)(1 + φ)dx. (42)

In the same way we multiply (37) by λ−1θε(v − ξ). We integrate over I and
take limits when ε→∞ to get

λ−1 d

dt

∫
I

Θ(v − ξ)dx =

∫
I

(u − φ)(1 − v)θ(v − ξ)dx−
∫

I

Θ(v − ξ)
(
1 +

μ

λ
+ φ

)
dx

(43)

Since

(u− φ)(1 − v)θ(v − ξ) ≤ (u− φ)(1 − v)θ(v − ξ)θ(u − φ) ≤ Θ(u− φ)(1 − v)

(43) becomes

λ−1 d

dt

∫
I

Θ(v − ξ)dx ≤

∫
I

Θ(u − φ)(1 − v)dx −
∫

I

Θ(v − ξ)(1 +
μ

λ
+ φ)dx.

(44)

By (42) and (44) it results

d

dt

(∫
I

Θ(u − φ)dx + λ−1

∫
I

Θ(v − θ)dx
)
≤ −μ

λ

∫
I

Θ(v − ξ)dx ≤ 0. (45)

Then, Gronwall′s lemma implies∫
I

Θ(u − φ)dx =
∫

I

Θ(v − ξ)dx = 0,

which ends the proof. �
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Theorem 1. There exists at least one solution to the problem (7)-(11).

Proof. We consider the new unknown z := u − uσ(x), for σ(x) ∈ C∞(I)
monotone decreasing function satisfying σ(x) = 1 in (0, 1

4 ) and σ(x) = 0 for
1
2 < x < 1, then z satisfies

∂z

∂t
− ∂2z

∂x2
+ (1− v)z = −utσ − uσxx − uσ(1− v) + v, x ∈ I, t > 0. (46)

where v is the solution of the equation

∂v

∂t
= λ [(z + uσ)(1 − v) + v]− μv, t > 0,

with the boundary conditions

z(0, t) = 0, (47)

and initial data
z(x, 0) = v(x, 0) = 0. (48)

By (26) v is given by

v(x, t) = 1−
∫ t

0 (λ + μ)exp
{∫ τ

t (λ + μ + λz(s) + λu(s)σ(x))ds
}
dτ−

exp
{
−
∫ t

0 (λ + μ+ λz(x, s) + λu(s)σ(x))dτ
}
.

(49)

We denote by f(t, v) the right side part of (46), then the problem (46)-(48)
became: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂z

∂t
− ∂2

∂x2
z + (1− v)z = f(t, v), t > 0, x ∈ I

z(x, 0) = 0, x ∈ I,

z(0, t) = 0, t > 0.

(50)

We use a fixed point argument to prove the existence of solutions of (50). Let
A be the subset of continuous functions defined by

A := {z ∈ L2(0, T : H1
0 (I)); 0 ≤ z + uσ(x) ≤ φ, z(0, t) = 0}

and
J(ẑ) := z

where z is the solution to (50) for v defined by

1−
∫ t

0
(λ + μ)exp

{∫ τ

t
(λ + μ+ λẑ(x, s) + λu(s)σ(x))ds

}
dτ−

exp
{
−
∫ t

0
(λ + μ+ λẑ(x, s) + λu(s)σ(x))dτ

}
.

(51)
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Notice that, since ẑ ∈ L2(0, T : H1
0 (I)) ∩ L∞([0, T ]× I) and σ ∈ C∞(Ω), we

have that
v, vt ∈ L∞([0, T ]× I). (52)

In order to apply Schauder fixed point theorem, we consider the following:

i. There exists a unique solution z to (50) and z, zt, zx and zxx ∈ Lp(0, T :
Lp(I)) for 1 ≤ p <∞.

ii. 0 ≤ z + uσ ≤ φ:
We consider the function z + uσ − φ which satisfies the equation

(z+uσ−φ)t− (z+uσ−φ)xx +(z+uσ−φ)(1−v) = (v− ξ)(1+φ), (53)

and
(v − ξ)t = λ(z + uσ − φ)(1 − v)− (v − ξ)(λ + μ + λφ). (54)

Consider the functions (39)-(40) and proceed as in Lemmas 5 and 6 to
obtain

0 ≤ z + uσ ≤ φ. (55)

iii. J : A→ L2(0, T : H1
0 (I)) is well defined:

We multiply equation (50) by z and integrate by parts to obtain

1
2

∫
I
z2dx

∣∣
t=T

+
∫ T

0

∫
I
|zx|2dx =

∫ T

0

∫
I
z(f(x, t) + (1 − v)uσ − utσz)dxdt.

(56)

Since v and f are bounded and 0 ≤ z + uσ ≤ φ ≤ α we have that

1
2

∫
I

z2dx

∣∣∣∣
t=T

+
∫ T

0

∫
I

|zx|2dx ≤ k0T (57)

which implies z ∈ L2(0, T : H1
0 (I)). Uniqueness of solution has been

discuss in (i).

iv. J is a continuous function:
it is a consequence of the continuity of v and f as functions of z.

v. J(A) ⊂ A:
by (ii) and (iii) we deduce (v).

vi. z ∈ L2(0, T : H1
0 (I)):

see (iii) formula (57).

vii.z ∈ L2(0, T : H2(I) ∩H1
0 (I)) and zt ∈ L2(0, T : L2(I)).

Since f(x, t) + (1− v)uσ− utσz ∈ L∞((0, T )× I) we have the result. See
for instance Brezis [2].
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viii.J(A) is a precompact subset of L2(0, T : H1
0 (I)):

We define the space

W = {z; z ∈ L2(0, T : H2(I) ∩H1
0 (I)), zt =

dz

dt
∈ L2(0, T : L2(I))},

with the norm

‖v‖W = ‖v‖L2(0,T :H2(I)) + ‖v′‖L2(0,T :L2(I)).

Since
-. H2(I) ∩H1

0 (I) ↪→ H1
0 (I) is a compact embedding.

-. H1
0 (I) ⊂ L2(I).

We obtain that W ↪→ L2(0, T : H1
0 (I)) is a compact embedding (see Lions

[11], Theorem 5.1). Hence we have that J(A) is a precompact subset of
A.

Thanks to (iv), (v) and (viii) we apply Schauder′s fixed point theorem to J

to obtain the existence of at least a solution to (7)-(11). �

4.1 Uniqueness of Solutions

Proposition 2. There exists at most one solution to (7)-(11).

Proof. By the contrary we assume there exists two different solutions (u1, v1)
and (u2, v2) to the system (7)-(11). We consider U = u1−u2 and V = v1−v2,
then (U, V ) satisfies

∂U
∂t −

∂2

∂x2U = −U(1− v1) + V (1− u2), x ∈ I, t > 0,

∂V
∂t = λ [U(1− v1)− V (1− u2)]− μV, x ∈ I, t > 0.

(58)

U(0, t) = U(1, t) = 0. (59)

and initial data:
U(x, 0) = V (x, 0) = 0, x ∈ I. (60)

Multiply the system (58) by (U, V ) and integrate over I to obtain:

d

dt

1
2

∫
I

U2dx+
∫

I

∣∣∣∣ ∂∂xU
∣∣∣∣
2

dx = −
∫

I

U2(1− v1)dx+
∫

I

UV (1− u2)dx, (61)

and
d

dt

1
2

∫
I

V 2dx = λ

∫
I

V U(1− v1)dx−
∫

I

V 2(λ + μ− λu2)dx. (62)

Since |v1| ≤ β and |u2| ≤ α, we have that:

−
∫

I

U2(1 − v1)dx +
∫

I

UV (1 − u2)dx ≤ c1

∫
I

U2dx + c2

∫
I

V 2dx; (63)
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and

λ

∫
I

V U(1− v1)dx−
∫

I

V 2(λ+ μ− λu2)dx ≤ c3

∫
I

U2dx+ c4

∫
I

V 2dx, (64)

for
c1 := β − 1 + |1−α|

2 ; c2 := |1−α|
2 ;

c3 := λ
2 |1− β|; c4 := λ

(
α + |1−β|

2 − 1
)
− μ.

Hence, by (61) – (64), we obtain

d

dt

1
2

∫
I

(
U2 + V 2

)
dx +

∫
I

∣∣∣∣ ddxU
∣∣∣∣
2

dx ≤ c5

∫
I

(
U2 + V 2

)
dx; (65)

for c5 := max{c1 + c3, c2 + c4}. We apply Growall′s lemma to (65) and the
proof ends. �

Remark 1. The asymptotic behavior of the solution for

g(u, v) = ν − u(1− v) + v

and ν > 0 is similar to case studied in [18] where the solution goes to the
steady state as t goes to ∞. In that case, u(t, 0) = u(t) is a monotone in-
creasing function and

lim
t→∞ u(t) = α > 0.

The solution u goes to φα as t goes to ∞, where φα is the solution to the
stationary problem

− ∂2

∂x2
u +

μu

λu + λ + μ
= 0, in x ∈ (0, 1),

with the boundary condition

u(0) = α, u(1) = 0.
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7. Krzyzanowski, P., Laurençot, P., Wrzosek, D.: Well-posedness and conver-
gence to the steady state for a model of morphogen transport. SIAM J. Math.
Anal. 40, 1725–1749 (2009)

8. Lander, A.D., Nie, Q., Vargas, B., Wan, F.Y.N.: Aggregation of a distributed
source in morphogen gradient formation. Stud. Appl. Math. 114, 343–374
(2005)

9. Lander, A.D., Nie, Q., Wan, F.Y.M.: Do morphogen gradients arise by diffu-
sion? Dev. Cell 2, 785–796 (2002)

10. Lander, A.D., Nie, Q., Wan, F.Y.M.: Internalization and end flux in morphogen
gradient formation. J. Comp. Appl. Math. 190, 232–251 (2006)
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Dı́az, Jesús Ildefonso 57
del Mar Rueda, Maŕıa 341
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Ruiz-Medina, Maŕıa Dolores 357

Sánchez-Borrego, Ismael 341
Salicrú, Miquel 39
Sanz, Gerardo 391
Sarkar, Sahadeb 423
Stich, Michael 57

Tello, J. Ignacio 495
Tello, Lourdes 239

Vegas, José Manuel 57
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