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Preface

The 6th International Symposium on Bioinformatics Research and Applications
(ISBRA 2010) was held during May 23–26, 2010 at the University of Connecticut,
Storrs, Connecticut. The symposium provided a forum for the exchange of new
results and ideas among researchers, developers, and practitioners working on
all aspects of bioinformatics, computational biology, and their applications.

The program of the symposium included 20 contributed papers selected by
the Program Committee from 57 submissions received in response to the call for
papers. The symposium also included poster presentations and featured invited
keynote talks by six distinguished speakers: Catalin Barbacioru from Life Tech-
nologies spoke on tracing the early cell divisions of mouse embryos by single cell
RNA-seq, Piotr Berman from Pennsylvania State University spoke on successes
and failures of elegant algorithms in computational biology, Mark Gerstein from
Yale University spoke on human genome annotation, Ivan Ovcharenko from the
National Center for Biotechnology Information spoke on the structure of proxi-
mal and distant regulatory elements in the human genome, Laxmi Parida from
the IBM T.J. Watson Research Center spoke on combinatorics in recombina-
tional population genomics, and Mona Singh from Princeton University spoke
on predicting and analyzing cellular networks.

We would like to thank the Program Committee members and external re-
viewers for volunteering their time to review and discuss symposium papers. We
would like to extend special thanks to the Steering and General Chairs of the
symposium for their leadership, and to the Finance, Publicity, Local Organiza-
tion, and Posters Chairs for the hard work in making ISBRA 2010 a successful
event. Last but not least we would like to thank all authors for presenting their
research work at the symposium.

May 2010 Mark Borodovsky
J. Peter Gogarten
Teresa Przytycka

Sanguthevar Rajasekaran
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Tracing the Early Cell Divisions of Mouse
Embryos by Single Cell RNA-Seq

(Invited Keynote Talk)

Catalin Barbacioru

Genetic Systems, Life Technologies
850 Lincoln Centre Dr, Foster City, CA 94404, USA

catalin.barbacioru@lifetech.com

The identity and function of a cell is determined by its entire RNA component,
which is called the transcriptome of a cell. The transcriptome is the functional
readout of the genome and epigenome. In an organism, essentially every cell has
the same genome, while every cell type and potentially each individual cell has
a unique transcriptome. Ideally, the transcriptome analysis should capture the
exact quantity of all full length RNAs of all classes at single-base resolution in
the smallest functional unit of an organism, an individual cell.

RNA-Seq has been recently employed to characterize the transcriptome of
several human, mouse and fly tissues and cells. These studies indicate that RNA-
Seq is a highly specific and sensitive technique that can discover low expressed
genes, down to a single RNA copy per cell. With the development of single-cell
application we were able to sequence 52 single mouse blastomeres at different
development stages, representing oocyte cells, 2-cell, 4-cell, 8-cell stages, inner
cell mass, trophectoderm and embryonic stem cells.

While the expression profiles between blastomeres within the same 2-cell em-
bryo are similar to each other but not identical, there are more than one thou-
sand genes up/down regulated between blastomeres at 4-cell and 8-cell embryo
stages, which correspond to the second wave of zygotic genome activation. These
changes are rarely reproducible between embryos, suggesting that cells at these
early developmental stages, in their search for final lineage diversification, can be
randomly initiated from the newly expressed genes in each cell stage. Changes in
gene expression are complemented with structural changes. Significant changes
in 3UTR coverage are observed between different cell embryo stages, a shortening
of the 3UTR being noticed in oocyte and in latter developmental stages. Addi-
tionally, we observed significant differences in abundance of repetitive elements
between different cell types, including some associations with the shortening of
the 3’UTR.

We created an automated alignment pipeline that produces expression pro-
filing of annotated features, alternative splicing detection and polyadenylation
sites identification. Alignment tools were combined with statistical approaches
taking into account sequence dependent variations and allowed us to perform
various comparisons within and between cell types.

M. Borodovsky et al. (Eds.): ISBRA 2010, LNBI 6053, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Successes and Failures of Elegant Algorithms in
Computational Biology

(Invited Keynote Talk)

Piotr Berman

Department of Computer Science and Engineering
Penn State

University Park, PA 16802
berman@cse.psu.edu

Problems that originated in biology gave rise to many very nice computational
problems, and they motivated a large body of research, and many very elegant
results. But are these results useful in biology?

The record is mixed, and we will review both successes and failures.
Our examples will include applications of set cover and tiling problems and

problems related to biological networks. In some cases, new algorithms provided
biologists with efficient solutions to their problems, in other, not so much, as the
complex nature of the motivating problems was lost in the translation into the
language of algorithmic problems.

M. Borodovsky et al. (Eds.): ISBRA 2010, LNBI 6053, p. 2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Modeling without Borders: Creating and
Annotating VCell Models Using the Web

Michael L. Blinov, Oliver Ruebenacker, James C. Schaff, and Ion I. Moraru

Center for Cell Analysis and Modeling
University of Connecticut Health Center

Farmington, CT 06030, USA
{blinov,oruebenacker,schaff,moraru}@exchange.uchc.edu

http:vcell.org/sybil

Abstract. Biological research is becoming increasingly complex and
data-rich, with multiple public databases providing a variety of resources:
hundreds of thousands of substances and interactions, hundreds of ready
to use models, controlled terms for locations and reaction types, links to
reference materials (data and/or publications), etc. Mathematical mod-
eling can be used to integrate this complex data and create quantita-
tive, testable predictions based on the current state of knowledge of a
biological process. Data retrieval, visualization, flexible querying, and
model annotation for future reuse, are some of the important require-
ments for modeling-based research in the modern age. Here we describe
an approach that we implement within the popular Virtual Cell (VCell)
modeling and simulation framework in order to help connect the mod-
eling community with the web of machine-processable systems biology
knowledge. A new software application, called SyBiL (Systems Biology
Linker), has been designed and developed for simultaneous querying of
multiple systems biology knowledge bases and data sources, such as web
repositories, databases, and user files, and converting the extracted and
refined data into model elements. Integration of SyBiL as a component
of VCell makes these capabilities easily available to a wide modeling
community.

Keywords: Biological databases, mathematical modeling, VCell, data
conversion.

1 Introduction

Mathematical modeling is increasingly necessarry to investigate the function of
molecular pathways and networks, and a growing number of resources that fa-
cilitate computational approaches are becoming available. On the one hand, a
large collection of public databases can help researchers gather existing knowl-
edge about molecular interactions: databases such as Reactome [1], the Bio-
Cyc collection of Pathway/Genome databases [2], Pathway Interaction Database
(PID) [3], BioModels repository of computable models [4], Integrating Network
Objects with Hierarchies (INOH) database [5], Kyoto Encyclopedia of Genes and

M. Borodovsky et al. (Eds.): ISBRA 2010, LNBI 6053, pp. 3–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



4 M.L. Blinov et al.

Genomes [6] store information about thousands of molecular species and their
interactions. On the other hand, a lot of software tools can help researchers to
create and simulate mathematical models of such interactions: a few examples of
the more widely used platforms are VCell [7], [8], Copasi [9], CellDesigner [10].
However, formats that are typically used to store molecular pathway information
(e.g. Biological Pathway Exchange standard, BioPAX, [11]) are database-centric
and formats used by modeling software (e.g. Systems Biology Markup Language,
SBML, [12]) are simulation-centric, with significant semantic and structural dif-
ferences. This makes exchange of information between databases and modeling
tools problematic. There are several tools that provide conversion from BioPAX
to SBML. Each of them has distinct advantages for particular uses. BiNoM
[13] is a plugin for Cytoscape [14], a powerful tool for analysis of data repre-
sented as graphs with rich data representation and visualization (primary graph
layouts and scaling) capabilities. Paxtools library [15] is the primary tool for
working with BioPAX format and provides excellent capabilities for analysis of
BioPAX data. Some pathway databases (e.g. Reactome, INOH) now provide
output in the form of SBML file. However, none of these tools is truly modeling-
oriented.

In this manuscript we describe a framework, called Systems Biology Linker,
SyBiL [16], [17], that is designed to assist a modeler in using data from multiple
online sources. The unique strength of the proposed framework is a model-oriented
approach, which can handle issues that can not be tackled either by current tools
such as Cytoscape and PaxTools, or by straightforward export/format conversion
from databases. A few examples are the capabilities to query a variety of resources
from a modeling point of view, such as:

– What database entities can be used as species?
– Should a subset or superset of database entities be used as species in the

model?
– Should variants of a given protein (e.g. different phosphoforms, different

conformational states) be made into distinct species?
– Should multiple ligands be converted into a single or multiple species?
– Can we keep track of all such assumptions, so that when future changes are

made (like dividing a single species corresponding to all ligands into several
species), this can be easily done?

In Section 2 below we analyze the multiple problems faced by researchers when
attempting to create mathematical models based on the knowledge from path-
way databases. In Section 3 we describe the approach to integrate data sources
into a modeling process. In Section 4 we describe a framework for querying
multiple resources to use in model building. In Section 5 we discuss how this
framework will be incorporated into the Virtual Cell (VCell) modeling and sim-
ulation platform in order to provide an expert system guiding users in building
and annotating computational models. Finally, in section 6 we talk about future
plans and problems that we are facing implementing our approach.
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2 Challenges for Building Quantitative Models of
Molecular Interaction Networks

2.1 Accessing Multiple Systems Biology Resources

Progress in systems biology crucially depends on the capacity to share machine-
processable knowledge (knowledge data), which is the product of costly curation.
The benefits of knowledge data manifest in many ways, from more powerful
querying to new approaches in data analysis to building and annotating models.
This has spawned a diverse multitude of knowledge bases on the web offering free
knowledge data about substances, interactions, pathways, models, anatomical
features and literature references.

Sharing knowledge data depends on standardized formats which typically re-
sult from sustained community efforts around specific interests such as BioPAX
for pathways and SBML for models. While the domains of these still evolving
standards overlap (e.g. both BioPAX and SBML represent substances and their
interactions), conversion usually results in loss of information.

Access protocols differ naturally between knowledge bases. While download-
ing a data set in a popular format may be a similar experience across knowledge
bases, the interface of the query and selection capabilities differs widely. Knowl-
edge data from various sources has been aggregated by Pathway Commons [18]
and Bio2RDF [19], but such aggregation necessarily lags behind the original.
Also, both projects change the original modifiers and require considerable tech-
nical skills to be used efficiently, which prevent most users from using them.
Moreover, neither makes use of SBML models.

More problematically, when delivery and end use of data are divorced, the
mode of retrieval may be poorly adjusted to the requirements of the use. In the
worst case, a user will need three different tools for retrieval, evaluation and final
use of the data. If however, a single tool is responsible for retrieval and final use,
it can help the user decide what data is needed and where it can be obtained,
and it can filter retrieved data.

If the entire online knowledge data was stored in a single base, in a single for-
mat and with a single access protocol, a simple query could yield all available data.
In reality, we have different knowledge bases, formats and protocols to serve dif-
ferent priorities, and the best combination of base, format and protocol depends
on the given interest. Some interests are best served by a specific combination of
source, format and protocol: for example, to find a model, we can query BioMod-
els database and obtain it in SBML, or to find a pathway, we can query Pathway
Commons and obtain it in BioPAX, or to find a protein, we can enter its name in
UniProt database [20] and get a listing.

Other interests are best served by querying multiple sources, which requires
integrating multiple formats and protocols. For example, if the interest is to
find substances with which EGFR interacts, candidates are found in BioModels,
Pathway Commons and UniProt. Interfaces differ and results are available in
SBML, BioPAX and site-specific format respectively. Moreover, the interest does
not require entire models or pathways, but only fractions thereof. Checking out
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multiple sources separately and submitting a query to each, using the necessary
formats and protocols, is an enormous task, especially since sources, formats and
protocols evolve over time.

At the same time, efficient queries exploit the fact that resources are exten-
sively interlinked. For example, to investigate EGFR, a user typically would
start with the name EGFR, locate a UniProt identifier (for the desired organ-
ism) and then use the identifier to find models and pathways. This can be easily
automated. What is needed therefore is a tool that accepts, for example, a pro-
tein name and an organism, and generates a list of possible reaction partners.
This involves looking up identifiers, submitting queries simultaneously to multi-
ple sources, supporting multiple formats and multiple protocols, and gathering
the results into a single list. It requires an integration of multiple formats and
multiple protocols.

2.2 Model-Driven Use of Pathway Data Requires Human Decision
Making

In a mathematical model, whether two compounds constitute the same or dif-
ferent substances usually depends on whether they behave differently or not in
that particular model scenario. Knowledge present in databases, however, aims
to make statements about entities independent of any particular scenario. Due
to these differences, many elements do not map one-to-one between models and
pathway data.

– A species in a model can be a subset of a database entity. For example,
Epidermal Growth Factor receptor protein is typically a single entity in a
database, but some mathematical models have species that correspond to
multiple phosphoforms of it [21].

– A species in a model can represent two or more database entities. For exam-
ple, multiple isoforms of a protein represented by distinct database entities
can be lumped into a single species [21].

As we see, sometimes the question of whether a species will be converted to
one or more physical entities, and vice versa, is not trivial. In [16] we discuss
how this question can be answered automatically by extensive analysis of ex-
tensions and annotations in the source file or import from other sources. While
most common cases can be automated, we pointed out that a few cases remain
where user intervention might be necessary [22], such as determining the topol-
ogy of locations, substituting a substance with another one that is equivalent in
a particular model, or introducing certain assumptions into a model.

2.3 Recording Modeling Assumptions

As we have seen above, a conversion between database information and mod-
els requires certain human decisions. These decisions have to be stored in some
format, so it can be reused in future data manipulations (reverse conversions,
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merging with other data, etc.). We need a systematic approach for storing and
reusing these relationships and thus making conversions between knowledge and
model reproducible and reversible. We introduced a bridging ontology, SBPAX
(Systems Biology Pathway Exchange), described in [22] and summarized in sec-
tion 3. The SBPAX bridging ontology allows the conversion between multiple
formats (modeling and database) to be performed as two consecutive one-to-
one mappings, with an intermediate refinement step that is performed on, and
recorded in, the SBPAX data.

2.4 Merging Models

Even the well-annotated models stored in BioModels repository that are com-
pliant with MIRIAM (Minimum information requested in the annotation of bio-
chemical models) standard present challenges [23], [24]. For example, currently
there is no standard way in SBML to distinguish between different states of the
same molecules. Thus, all phosphoforms of the same receptor will be annotated
with the same reference identifier (GO term from Gene Ontology [25], UniProt
key, etc.). This means that there still will be often the case that it is impossi-
ble to automatically tell whether species X of model A and species Y of model
B, which have the same reference identifier, are indeed identical and should be
mapped into the same species in a merged model. Linking each species to the
(multiple) sources of knowledge and recording assumptions on how these sources
were used can greatly facilitate automatic merging of models.

2.5 Using Models to Appreciate the Complexity of Underlying
Biology

Each model is usually based on a selection of a small part of a larger network of
interactions. However, this point is often missing when a model is presented [26].
Linking each model element to biological knowledge will provide an opportunity
to create model-based knowledge bases. In such a case, when logging in to a
public model, for example, clicking on a component of interest brings up a battery
of potential modifications, interactions, and activities, and the likelihoods and
potential consequences of each under a variety of typical sets of conditions, or
specific conditions set by the user.

3 Infrastructure for Data-Driven Modeling

3.1 SBPAX Bridging Ontology

To support the integration of datasets related to molecular networks and path-
ways from different sources in different formats, we need to accomplish three
tasks: converting data from one format to another, gluing corresponding data
sets in different formats, and merging multiple datasets into one. The core of the
underlying technology we developed to accomplish these tasks is an RDF/OWL-
based ontology called SBPAX, short for Systems Biology Pathway Exchange [22].
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It is designed to integrate multiple formats and based on a Web Ontology Lan-
guage OWL [27]. Advantage of using OWL include: (1) other ontology-based
formats can be seamlessly integrated by providing relationships between their
classes and properties and those of SBPAX; (2) other structured formats not
based on OWL can be mapped one-to-one to OWL and linked after the map-
ping. This includes XML, relational databases or even comma-separated values.

SBPAX is designed to be able to express any molecular reaction network that
can be expressed in SBML, BioPAX and formats similar to these. To accomplish
this, SBPAX covers substances, processes and interactions, locations and stoi-
chiometric coefficients, and hierarchies existing among these. In the case of an
RDF/OWL-based format like BioPAX, data can be directly linked to SBPAX
data. With other formats like SBML, data can be mirrored one-to-one to RDF/
OWL-data in SBPAX that can be linked with other SBPAX terms. SBPAX
data created by import from multiple sources can be exported to SBML, and
every basic SBML term (e.g. species, reaction, species type or compartment) will
contain, as annotation, the URI of its equivalent SBPAX object, which will be
linked by relationships to all related terms in the imported files.

To give a simple example, a substance in SBPAX is defined as any group of
molecules or other compounds. SBPAX provides properties to define a substance
as a superset or subset of another substance, or as the union or intersection
of two other substances (useful for substances defined by constraints, e.g. on
their phosphorylation state). This way, we can create a substance hierarchy and
identify substances that can cover more or less than one database entity.

3.2 Prototype of a Data-Driven Modeling Interface: Systems
Biology Linker (SyBiL)

We have prototyped Systems Biology Linker (SyBiL) modeling framework [16],
[17]. The initial version is geared towards work with two common standards
BioPAX and SBML. It is designed to obtain, store and merge data in BioPAX
format, and to facilitate generating of kinetic models expressed in SBML
(http://vcell.org/sybil). The tool is providing a modeling access to complete
range of BioPAX data, which is not essential for simulations, but valuable for un-
derstanding and reusing the models (such as organisms, different names, linking
species to a variety of databases, etc.). It takes an advantage of easy visualization
of BioPAX, where different BioPAX object classes (proteins, small molecules,
complexes etc.) are represented by nodes differing in shape or color, and each
object is linked to biological information from public databases. The SyBiL con-
verts BioPAX data into a computable kinetic model in SBML. Remarkably,
the model is first generated in SBPAX format and stores all the modeling de-
cisions regarding conversion of BioPAX data into SBML. After conversion to
SBML BioPAX data is used to provide each SBML species and interaction with
a unique identifier.

To facilitate the organization of the data and to make selections, SyBiL pro-
vides a graphical interface that can handle any OWL data. OWL (Web Ontology
Language) is designed for use by applications that need to process the content
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of information instead of just presenting information to humans. OWL provides
a framework for controlled vocabulary along with a formal semantics. Specific
support is provided for the BioPAX ontology. Ontologies provide a great deal of
flexibility in data representation, analysis and visualization, by organizing data
in a way that allow intelligent selections, for example allowing the user to se-
lect which resources are visible and which are hidden, similar to the Cytoscape
visualization framework. Furthermore, arbitrary sets of objects can be visually
collapsed and expanded. The user can decide which kinds of property relation-
ships are represented by graph edges. As the framework is based on the existing
VCell software, it displays a graph consisting of interactions among BioPAX
physical entities in the VCell style as a bipartite graph in its fully flattened form
(with nodes for both physical entities and interactions). For each class of physical
entities and interactions the framework provides a separate symbol. Each physi-
cal interaction is connected by an edge with the physical entities participating in
it. Components of complexes can be shown. All other objects are hidden, until
they are properties of an object which becomes selected.

4 Specific Querying of Multiple Resources for Model
Building

We are developing SyBiL into a framework that will allow the modeler to get simul-
taneous access to most systems biology knowledge bases from within a modeling-
oriented interface. By obtaining references through simple text queries or more
advanced queries, and then getting related data from references, the user will get
information sufficient to create and annotate model elements in one step.

Previously, SyBiL was able to create models from locally stored BioPAX files
[16], [17], [22]. Recently, we added a new capability for generating models from
data retrieved from Pathway Commons and UniProt web resources.

The interface forwards a keyword query to Pathway Commons. After enter-
ing a search string (EGFR) and clicking the search button, the matches are
displayed as a tree (Fig. 1). Each match contains brief information (name, syn-
onyms, excerpts, and organism) as well as a list of cross references and a list
of pathways that include the matched entity. Since Pathway Commons returns
multiple UniProt cross references for human EGFR without distinction, SyBiL
then sends these cross references to UniProt, which lists P00533 as the one in
use and the other ids as obsolete.

After a pathway is selected, it can be retrieved in the BioPAX format from Path-
way Common by clicking on the “Get pathway” button. The entities contained in
the pathway are presented as a list (Fig. 2), grouped into processes and various
kinds of substances (DNA, RNA, proteins, metabolites and complexes). For ex-
ample, selecting the protein EGFR HUMAN imports from this pathway human
EGFR as well as the complexes which it is part of and the interactions in this path-
way in which EGFR or any of its complexes participate. The reaction network can
be converted into a VCell model and then further edited and simulated.
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Fig. 1. Querying Pathway Commons for EGFR brings up all available information
about entities that contain this term, presented as a tree. Under each protein entry
there is a lot of extra oinformation, including a list of pathways that use this protein.

We plan to expand retrieval to data in other formats and from other resources,
such as Bio2RDF, Uniprot Database, BioModels database, etc (Fig. 3) A user
intending to use knowledge data to create, extend or annotate a mathematical
model will be able to use the proposed interface as an entry point for selection
of entities (e.g. substances and interactions) and their relationships to build his
or her model.

The simplest starting point would be to enter a search term (such as a name of
a protein) or a qualified identifier (e.g. UniProt P00533) to get knowledge data
that can be used to create or annotate a species, as well as information about
pathways, interactions and reaction partners for a name of interest. This infor-
mation will be translated into an SBML model for use in any SBML-compliant
software, or can be used by VCell software for modeling. A user will be able to
send queries that rely on knowledge data, such as looking for components of a
given complex, or participants in a given interaction, or find all entities at a given
location, etc. A more advanced example of querying knowledge data is: given two
substances, find the shortest chain (a list of substances such that each substance
is a reaction partner for the substance next on the list) and connect them, under
certain constraints. To eliminate trivial solutions, some constraint is needed. A
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Fig. 2. Selecting a certain pathway brings up the number of entities that are used in
this pathway. These entities itself can be selected to be imported into a modeling tool.

sensible constraint could be that every substance in a chain needs to be: (1)
not ATP or (2) not a metabolite or (3) a protein. A reaction network will be
built by aggregating related substances and interactions from multiple queries,
where a substance or interaction obtained in one query can be the starting point
for another query. The resulting network can be visualized with multiple levels
of resolution. After the user selects substances and interactions and configures
modeling assumptions, a mathematical model can be created and annotated
automatically.

More specifically, the results of the generic query are presented as a raw
SBPAX file (Fig. 4). It may include a variety of similar substances, such as
EGFR, phosphorylated EGFR, EGFR phosphorylated at Y1174, EGFR un-
phosphorylated at Y1174, etc. For each substance, a modeler is provided with
three basic pieces of information required to make a decision: location, chemical
identity, and list of interactions. The user can set global options that deter-
mine which substances may be part of different subsets. This may depend on
the system under consideration, but a typical setup would be that proteins, but
not metabolites, can have different subsets. For example, this would mean that
every interaction that involves ATP refers to the same substance, but different
interactions may refer to different subsets of EGFR. After this global setup, the
next step would be to go through the proteins and determine, for example, that
EGF has no subsets, but EGFR has. BioPAX data usually contains information
about the relevant post-translational modifications (as sequence features), which
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Fig. 3. Schematic description of SyBiL-VCell architecture. Arrows show the flow of
knowledge from the knowledge bases (cylinders) to components of SyBiL and VCell
and the formats used (ovals). Pathway Commons collects data from nine pathway bases
available in BioPAX. Reactome’s data in BioPAX is available from Pathway Commons,
but can also be retrieved directly client. Bio2RDF collects knowledge data from a wide
variety of sources, some shown here. The knowledge data collected by Bio2RDF is RDF
which mirrors data that is either RDF or converted to RDF. Bio2RDF maps name
spaces to internal name spaces which reveal the source of the data and can be trivially
mapped back. SyBiL uses Jena to handle RDF and conversions from all above formats
to SBPAX, by methods shown as hexagons. SyBiL in VCell allows conversions between
SBPAX and VCML, and VCell handles conversions between VCML and SBML.

can be used to identify subsets of EGFR, which can be arranged into hierarchies
in SBPAX. For example, EGFR phosphorylated at Y1174 is declared o be a
subset of phosphorylated EGFR and subset of EGFR. After identifying these
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Fig. 4. Conversion of data into a model is performed as a refining step in SBPAX. Infor-
mation about substances and processes extracted from databases (such as in BioPAX
format) is presented as raw SBPAX which is converted into a model with user input.
For example, if raw SBPAX describes an interaction of EGFR phosphorylation (multi-
ple modifications of EGFR are involved) the way typically found in databases, we can
not use database substance EGFR. Instead, we have to declare subset substances for
unphosphorylated and phosphorylated EGFR respectively. The topology of the loca-
tions is usually not in the database, so it has to be added as well. Finally, a species (e.g.
“EGFR in cytosol”) is defined by a substance (“EGFR”) and a location (“cytosol”).
Refined SBPAX contains this inferred information.
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subsets the final step would be to determine, which of these subsets participate
in which interaction. After participating substances are determined, a user will
be provided with an option to assign locations (if they are unavailable) and set
topology of locations, such as set surroundedBy and hasDimension properties.
Finally, the user will be provided with the list of processes. Some of the pro-
cesses may be flagged, for example if previously the user identified reactant and
product as the same species. The user will have an option to modify certain
processes, which may lead to changes in substance assignment, etc.

After the selection of model elements, the next step is converting the SBPAX
data into a fully annotated mathematical model, such as SBML. The SBML lan-
guage specification has recently introduced features that facilitate and standard-
ize the inclusion of additional information that is not required for the numerical
interpretation of the model, but which can help describe the model and relate
model and model elements to each other, both within the same file or between
files from different sources.

5 VCell-Based Expert System for Building and
Annotating Computational Models of Molecular
Interaction Networks

The Virtual Cell (VCell; http://vcell.org/; [7], [8]) is a computational frame-
work that is easily accessible to cell biologists and that permits construction
of models, application of numerical solvers to perform simulations, and analy-
sis of simulation results. Due to continuous enhancements in capabilities and to
many unique features, it has achieved a fast growing user base. As of Febru-
ary, 2009, more then 2,000 worldwide VCell users had actually run simulations.
These users are currently collectively storing over 29,000 models and the re-
sults of more than 160,000 simulations in the VCell database system, of which
more than 600 models and more than 2,300 simulation results were made public
by their owners to be available to the overall scientific community. Users can
formulate complex models of cellular processes with a simple biology-oriented
graphical user interface. VCell will automatically (i) generate the appropriate
mathematical encoding for running a simulation, and (ii) generate and compile
the appropriate computer code.

SyBiL was developed with VCell in mind. An expert system that enables and
guides users to create, extend and annotate computational models from variety
of web resources would be extremely useful for VCell framework. A typical com-
putational model consists of compartments populated by substances interacting
with each other. The expert system would support starting new models, as well
as adding elements and annotations to existing models. The goal of the expert
is to respond to any situation by presenting the user with a list of options that
is short, but allows proceeding efficiently in any direction the user may desire.

Practically any situation can be boiled down to this scenario: the user needs
to choose one specimen from a universe of particulars (e.g. a substance, an
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interaction, an anatomical feature, an organism). The expert system activates
a set of candidates and ranks them according to a variety of indicators of how
likely it is the one the user intends and also places them into categories. Picking a
candidate completes the selection process. If no single candidate can be selected,
the expert may present a category of candidates, and picking a category leads
to a new list of candidates.

Working in a context, an expert system will be able to make sophisticated
guesses, for example when adding a new protein to a model containing human
proteins, the new protein is probably human, too. Complex queries become pos-
sible, such as how do IGF1 and IL6 interact with each other?, which can only
be answered by a complex series of queries.

6 Conclusions and Further Directions

We are developing the Systems Biology Linker (SyBiL) application and Virtual
Cell (VCell) plugin as a tool that automatically retrieves public information
while guiding the user through the process of modeling: for example, starting by
choosing human as an organism and EGFR as a name, it will locate the UniProt
identifier for human epidermal growth factor receptor, create a corresponding
species element in a VCell model, and add standards-compliant annotations to
identify human, human EGFR, related publications etc. It will offer many sug-
gestions on how to proceed: what reactions are known to involve this protein,
what are its possible subcellular locations, what are its most common binding
partners, what reaction chains (signaling pathways) may lead to some desired ef-
fect (e.g. MAP kinase cascade activation), etc. All user decisions will be recorded,
and at each point the user will be able to add extra information, with annotations
being automatically updated. This will also ensure that modeling assumptions
can easily retrieved in the future for model adjustments, and greatly facilitate
model reuse in different contexts and/or by different researchers.

The primary challenge of this project is to keep up with an evolving web.
Formats are being replaced by newer versions, and sources may change their
interface or may go in and out of existence. To meet this challenge, we rely as
much as possible on technology that is generic rather than specific to particular
versions. For example, we use a generic RDF/OWL tool (Jena, [28]) to process
BioPAX, and we base queries on a generic protocol. We also rely as much as
possible on configuration rather than hard-coding. In particular, processing of
BioPAX is based on a bridging ontology SBPAX, which makes the code itself
independent of many details of BioPAX. Support for a new version of BioPAX
is primarily added by extending SBPAX, and little or no change is necessary for
the main application code.
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Abstract. Using the Matt structure alignment program, we take a tour of protein
space, producing a hierarchical clustering scheme that divides protein structural
domains into clusters based on geometric dissimilarity. While it was known that
purely structural, geometric, distance-based metrics of structural similarity, such
as Dali/FSSP, could largely replicate hand-curated schemes such as SCOP at the
family level, it was an open question as to whether any such scheme could ap-
proximate SCOP at the more distant superfamily and fold levels. We partially
answer this question in the affirmative, by designing a clustering scheme based
on Matt that approximately matches SCOP at the superfamily level. Implications
for the debate over the organization of protein fold space are discussed.

1 Introduction

The accepted gold-standard hierarchical classification systems for protein structural do-
mains, SCOP [21,2] and CATH [22,23,11], have long relied on manual classification
methods to organize the hierarchy and place new protein structures within their frame-
work. Even now, where both SCOP and CATH have switched to hybrid manual/semi-
automated methods [11], the automatic methods are still attempting to fit new protein
domain folds into an initial classification schema that was derived manually. New mod-
ifications to the clustering structure continue to be made by expert biologists based
on sequence, evolutionary, and functional information, not solely based on geometric
similarity of the placement of atoms in the protein backbone.

On the other hand, pairwise protein structural alignment programs superimpose pro-
tein domains to minimize a distance metric based solely on geometric criteria [8]. When
such a scheme is coupled with one of many possible methods that create hierarchical
clusters based on pairwise distance metrics [29], the result is a fully automatic, unsu-
pervised partitioning of protein structural domains into hierarchical classification sys-
tems. Such “bottom up” protein structure classifications, as they are called in Valas et
al. [33], have been previously designed based on VAST [19,10], Dali [16,17,15] and
others [36], and have both practical and theoretical appeal. Practically, removing a hu-
man expert speeds the assignment of new protein structures to clusters. Theoretically, a
mathematical characterization of protein similarity and dissimilarity, if it proves biolog-
ically useful or meaningful, is objective, uniformly applied, and gives a human-expert-
independent map of the known protein universe.
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Unfortunately, it has been found in multiple previous papers that SCOP and CATH
hierarchical classifications of protein structure both differ substantially from each other
[12,9,7] and also from the classification schema that result from automatic bottom-up
unsupervised clusterings of protein space [8,12,30,7,28], even when protein chains are
broken up into the more modular unit of “protein domain,” as is now done by SCOP,
CATH, and most automated schemes [17,33]. Previous papers have characterized those
protein domain clusters on which SCOP and CATH agree [12,9,7]. Previous automatic
methods seem to be able to be made to match the closest-homology family level of the
SCOP hierarchy, but were found to diverge considerably at the more distantly homolo-
gous superfamily and at the fold levels of the SCOP hierarchy [8,12,30,18,28,32], with
similar divergence from CATH [12,13,7] This is unfortunate, because, for example,
the superfamily level of the SCOP hierarchy clusters proteins that share similar folds
and are believed to have evolved from a common ancestor [21], allowing important in-
ferences to be made about function [28,33]. Thus the superfamily level of the SCOP
hierarchy has strong biological utility (we focus on SCOP rather than CATH for the
remainder of this paper; similar statements can be made about CATH): if a fully auto-
mated “bottom-up” distance-based clustering methods cannot approximately replicate
it, it is not clearly meaningful or useful.

This ties into a spirited debate among the computational proteins community, about
the central question of whether “protein fold space” is discrete or continuous [26]. A
continuous view comes from the theory that modern protein evolved by aggregating
fragments of ancient proteins [26,13,33,27]. A discrete view comes from evolutionary
process constrained by thermodynamic stability of the structure [27]. In particular, if
most mutations move the confirmation of a stable folded chain away from an “island”
of thermodynamic structural stability, then stabilizing selection will promote fold con-
servation, and movements between folds will be uncommon [6]. If geometric distance
and evolutionary relation approximately coincide, then an automatic method that ap-
proximately matches SCOP at the superfamily level is conceivable.

In this paper, we present a bottom-up automatic hierarchical classification scheme for
protein structural domains based on the multiple structure alignment program Matt [20].
Matt, which stands for “multiple alignment with translations and twists” was specifi-
cally developed by our group to geometrically align more distantly homologous protein
domains. It accomplishes this by allowing flexibility in the form of small, geometrically
impossible bends and breaks in a protein structure, in order to distort it into alignment
with another protein structure. Matt was shown to perform particularly well compared
to competing multiple and pairwise structure alignment programs on proteins whose
homology was similar to the SCOP superfamily level [20,25,3]. Surprisingly, we find
that our automatic classification scheme based on a pairwise distance metric derived
from Matt, coupled with a straightforward neighbor-joining algorithm to construct the
hierarchical clusters [31] matches SCOP better than previous automatic methods, at the
superfamily, and even, to some extent, at the fold level. In comparison, the same hi-
erarchical clustering method using a pairwise distance metric based on DaliLite [15],
a recent implementation of the Dali structural alignment program, replicates previous
findings and cannot mimic SCOP on the superfamily level of the SCOP hierarchy. We
thus conclude that perhaps protein domain space is naturally discrete (at least through
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the superfamily level), and that perhaps the manually curated SCOP hierarchy has geo-
metric coherence at the superfamily level (and in some parts of the fold hierarchy, see
Discussion) so these clusters are intrinsic properties of the geometry of fold space, not
just human-generated categories.

A practical implication of our results may be that automatic methods with a Matt-
based distance metric may ultimately help speed the assignment of new protein struc-
tural domains to the appropriate place in the SCOP hierarchy. We note, however, that
in fact determining where to place a new structure into an existing hierarchy is a much
simpler problem (analogous to “supervised learning”) than creating an entire cluster
hierarchy from an automatic pairwise distance metric from scratch (analogous to “un-
supervised learning”), and fairly successful methods already exist to correctly place a
new structure into the existing SCOP hierarchy [9,4,5]. Thus the primary interest in
this result may be that if a Matt distance metric can “recover” SCOP superfamilies to a
great extent, this validates both automatic and hand-curated methods of classification,
and the entire concept of “superfamily” at the same time. Namely, at this level of struc-
tural similarity, it appears we may not often have to choose between evolutionary and
geometric criteria for structural domain similarity.

Finally, we remark that this work, like most recent work that compares different hi-
erarchical classification systems, already presumes the “structural domain” as the basic
structural unit (as do SCOP and CATH), where many protein structures contain mul-
tiple structural domains [17]. The problem of partitioning a protein into its structural
domains is far from trivial [34,14] but there has been much recent progress in compu-
tational methods that split a protein structure automatically into domains and find the
domain boundaries [14,24]. In any case, that is not the focus of our current paper, and
we assume the protein has already been correctly split into domains as a preprocessing
step.

2 Methods

2.1 Representative Proteins

From the 110,776 protein domains of known structure from ASTRAL version 1.75,
we construct a set of representative protein domains filtered to 80% identity (accord-
ing to BLASTP [1]) and a minimum sequence length of 40 residues. This provides a
reasonable first pass for identifying groups of similar protein domains, and allows us to
shrink the search space significantly. The set of clusters was constructed by running a
greedy agglomerative minimum-linkage clustering algorithm based on this threshold of
80% sequence identity. This produced 10,418 groups of proteins that shared significant
sequence identity.

From each cluster, we identified a representative. First, we preferred non-engineered,
non-mutation proteins having an X-ray crystallography resolution of ≤ 5.0 Angstroms.
Next, treating each cluster as a (potentially, but not necessarily complete) graph whose
nodes are the constituent proteins and whose edge weights are the sequence identity val-
ues from the BLASTP alignments with at least 80% identity, we consider the weighted
degree (sum of edge weights) of each protein, and we favor the proteins with greatest
weighted degree. We break ties first by the date the structure was determined (preferring
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more recent structures), then by the quality of the solved structure. The remaining ties
typically come from sequences with ≥ 99% identity, and we break them arbitrarily. The
resulting set has 10,418 representative protein domains.

2.2 Distance Metrics

For these 10,418 representatives, we performed an all-pairs structural alignment using
both DaliLite [15], the structural aligner used in the FSSP classification scheme [17]
and Matt. In each case, a distance (or dissimilarity) metric is derived for each pair.
For DaliLite, the Z-score proved to be a good metric, so we used it without further
modification.

For Matt, we used a new distance metric that is a modification of the p-value metric
computed in [20]. Let c be the length of the aligned core shared between the two proteins
(in residues), r be the RMSD (root mean square deviation) of the alignment, l1 and l2
be the lengths of the two protein domains being aligned (in residues), and k1, k2, and
k3 be the constants from the Matt p-value. We compute the distance between two Matt-
aligned proteins as follows:

d =
1

k1 × (r − k2 × c2
l1+l2

2

+ k3)

This metric differs from the formula that Matt uses to compute a p-value only in that it
squares the core-length term to better weight longer aligned cores (c2 instead of c). We
found this improved performance.

2.3 Distance Threshold

Based on each of the Dali Z-score and Matt distance metrics, we next learned the dis-
tance cutoffs that most closely mimicked the family, superfamily, and fold levels of the
SCOP hierarchy as follows:

1. Initialize a training set T and a set of already-chosen pairs A
2. 10,000 times, do:

(a) Choose proteins p and q such that p �= q and p and q are in the same SCOP
grouping, and the pair p, q �∈ A

(b) Choose proteins r and s such that r �= s and r and s are in different SCOP
groupings, and the pair r, s �∈ A

(c) Add p, q and r, s to A
(d) Determine the DaliLite or Matt distance between p and q. Call this dp,q

(e) Add dp,q to the training set T with label true
(f) Determine the DaliLite or Matt distance between r and s. Call this dr,s

(g) Add dr,s to the training set T with label false
3. Compute true positive rate Rtp, true negative rate Rtn, positive rate Rp, and nega-

tive rate Rn for T based on the class labels true and false
4. Determine the value of dp,q that results in maximizing the accuracy Rtp+Rtn

Rp+Rn

In other words, we set dp,q to be the value corresponding to the point on the Re-
ceiver Operating Characteristic (ROC) curve that intersects the tangent iso-performance
line [35], or maximizing the sum Rtp + Rtn. The area under the ROC curve measure
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(AUC) is a summary statistic that captures how well the pairwise distance metric can
discriminate between structures that share or do not share SCOP cluster membership.

We note that setting the pairwise distance cutoffs (determining the value of dp,q in
step 4) is the only “supervision” our algorithm uses in constructing its clustering (see
discussion below). Once the pairwise distance cutoff is set, no further information from
SCOP is utilized to produce the clustering.

2.4 Clustering and Tree-Cutting

Based on this distance function, we computed values for all pairwise alignments based
on the Matt or DaliLite output, and represented this as a distance matrix. We ran the
ClearCut program [31] in strict neighbor-joining mode (-N option) to produce a dendro-
gram based on these Matt or DaliLite distance values. We then recursively descended
this tree to produce family, superfamily, and class-level groupings as follows. For a
given subtree, if all leaves (protein domains) in that subtree are within a threshold t of
one another (where t is the family, superfamily, or fold threshold), then those leaves are
all merged into a new grouping of that level. Otherwise, we recursively descend into the
two subtrees of that subtree’s root until we reach a subtree all of whose leaves fall within
a given threshold (family, superfamily, or fold; based on Matt distance or DaliLite Z-
score as appropriate) of one another. Thus, we are performing a total-linkage clustering,
but using the topology of the dendrogram to determine which protein domains get left
out of a given cluster.

We remark that Sam, et al. [29] did an extensive study of clustering and tree-cutting
methods, and looked at their effect on performance for several distance metrics. They
tested 3 “SCOP-dependent” and 7 “SCOP-independent” tree-cutting strategies. How-
ever, their “SCOP-independent” strategies all required as input the target number of
SCOP clusters to produce at each level. In contrast, our method discovers the number
of clusters as an organic function of the protein domain space; it is thus of independent
interest that we nearly replicate the number of SCOP clusters at each level (see Table 2).

2.5 Jaccard Similarity Metric

The Jaccard index, or Jaccard similarity coefficient, of two sets A and B is defined as
J(A, B) = |A∩B|

|A∪B| . Based on the Jaccard index of a cluster (e.g. family or superfamily
or fold) produced by our algorithm (a Matt family or DaliLite family) and a SCOP
grouping of the same level, and looking at the identity of protein domains in the two
groupings, we can compare how alike they are. We can thus easily find the most similar
SCOP family to each Matt family, S → M and vice versa, M → S. This directional
mapping is neither one-to-one nor onto, but each cluster on the ‘source side will be
mapped to some most-similar cluster on the ‘sink side. The resulting directed graph
allows us to explore the distribution of Jaccard indices as well as the distribution of
degrees of each cluster. A perfect matching would correspond to every Jaccard index
being 1.0, and every cluster having degree 1. Clearly, we do not expect to achieve a
perfect matching but this metric allows us to compare the quality of clustering, relative
to SCOP, of our algorithm using the Matt distance metric and the DaliLite Z-score
distance metric.
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Each direction of the metric is produced as follows, using as an example the com-
parison of Matt families to SCOP families. Consider the set of Matt families and SCOP
families as a bipartite graph, with the Matt families on one side of the bipartition and
the SCOP families on the other. Initially, the graph has no edges. For each Matt family,
find the most similar (by Jaccard index) SCOP family. A weighted, directed edge is
drawn from each Matt family to its most similar SCOP family; the edge weight is equal
to the Jaccard index, which ranges from 0 to 1. This is performed until each Matt fam-
ily has been matched to a SCOP family. This process is repeated in the other direction,
matching each SCOP family to its most similar Matt family, and the same thing is done
for Matt and DaliLite at the superfamily and fold levels of the SCOP hierarchy.

Recall that in this analysis, as is standard [12], we are considering only the protein
domains that were identified as cluster representatives within each group of protein
domains that share 80% sequence identity.

3 Results

3.1 Pairwise Distance Comparisons

Table 1 shows the AUC at the SCOP family, superfamily, and fold level, for the Matt and
DaliLite distance metrics. Note that at the family and fold levels, these values are very
close (DaliLite outperforms Matt by a small margin), but at the superfamily level, Matt
significantly outperforms DaliLite, achieving 0.842 ROC Area vs. DaliLite’s 0.615.
Matt was developed to better align structures at the superfamily level of homology, but
the size of the gap in ROC AUC is still surprising.

Table 1. ROC Area for pairwise performance vs. SCOP. While DaliLite slightly outperforms
Matt at family and fold levels, Matt significantly outperforms DaliLite at the superfamily level.

Matt DaliLite

Families 0.922 0.958
Superfamilies 0.842 0.615
Folds 0.840 0.871

3.2 Clustering Performance

While the pairwise performance of Matt compared to DaliLite is impressive, pairwise
similarity does not necessarily translate into better clustering performance. Thus it is
Matt’s clustering performance we explore next. First we give the simplest possible com-
parison; raw numbers of clusters produced by Matt and DaliLite compared to SCOP at
the three levels. Recall that unlike the clustering algorithm explored by [29], the number
of clusters produced by our dendrogram and tree-cutting method is a direct consequence
of the pairwise distance metric threshold, and is not artificially set to match SCOP (see
section 2.4). Table 2 shows that the Matt clustering produces approximately the same
number of clusters as SCOP at all three levels. While DaliLite also produces approxi-
mately the same number of clusters at the family level, at the superfamily and fold levels
it produces many more clusters than SCOP. We explore exactly how both methods split
and merge SCOP clusters in more detail next.
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Table 2. Number of clusters at each level for each method. Matt more closely matches the
number of families, superfamilies, and folds in SCOP than DaliLite does. DaliLite clustering
results in too few families, but too many superfamilies and folds with respect to SCOP.

SCOP Matt DaliLite

Families 3471 3498 3081
Superfamilies 1656 1716 2455
Folds 981 891 2277

Table 3. Descriptive statistics for the family, superfamily, and fold levels of classification. μ
Degree is the average number of clusters from the first scheme that map to a single cluster in
the second, and σ Degree gives the standard deviation. Similarly, we give min, μ, and σ of the
Jaccard similarity.

Family Max Deg. μ Deg. σ Deg. Min Sim. μ Sim. σ Sim.

Matt →SCOP 30 3.63 5.470 0.005 0.611 0.373
DaliLite → SCOP 45 3.902 6.919 0.001 0.598 0.380
SCOP → Matt 15 1.873 2.160 0.127 0.712 0.336
SCOP → DaliLite 12 1.983 1.823 0.001 0.655 0.347

Superfamily Max Deg. μ Deg. σ Deg. Min Sim. μ Sim. σ Sim.

Matt → SCOP 28 3.633 5.094 0.003 0.587 0.389
DaliLite → SCOP 153 16.61 36.54 0.001 0.428 0.406
SCOP → Matt 15 1.704 1.913 0.020 0.714 0.326
SCOP → DaliLite 10 1.470 1.229 0.001 0.713 0.324

Fold Max Deg. μ Deg. σ Deg. Min Sim. μ Sim. σ Sim.

Matt → SCOP 18 3.719 4.258 0.004 0.467 0.354
DaliLite → SCOP 149 26.57 40.87 0.001 0.321 0.389
SCOP → Matt 6 1.958 1.122 0.022 0.512 0.326
SCOP → DaliLite 3 1.117 0.353 0.001 0.758 0.299

The Jaccard index serves as a good indicator of how well Matt and DaliLite match
SCOP. As the raw numbers of clusters in table 2 suggest, DaliLite often shatters SCOP
superfamilies into multiple clusters. Interestingly, DaliLite also shatters SCOP folds
into many more shards on average than Matt. How can this be given the very similar
pairwise classification performance at the fold level? We defer this question until the
discussion section. We note that even at the family level, Matt performs slightly better
than DaliLite at both the average degree and average Jaccard similarity metrics. The
average number of Matt or DaliLite families that match to a single SCOP family is be-
tween 3.5 and 4; however, notice that a large majority of Matt or DaliLite families map
to a single SCOP family and the average is pulled up by a few outliers (see histograms in
figure 2). Average degree values at the superfamily and fold levels stay nearly constant
for Matt, whereas DaliLite’s average degree values rise to 16.61 for the superfamily
level and 26.57 at the fold level. In the other direction, considering how many Matt or



Touring Protein Space with Matt 25

DaliLite clusters span multiple SCOP clusters, at the family level the average degree
for Matt and DaliLite are nearly identical (between 1.8 and 2). At the superfamily and
fold levels, we would expect DaliLite to outperform Matt by virtue of the fact that it
creates many smaller clusters (see table 2), and DaliLite does, but by a fairly small mar-
gin (1.4 to 1.7 at the superfamily level and 1.1 to 2 at the fold level). The distributions
are displayed in more detail in the histograms in figures 1, 2, and 3.
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4 Discussion

We have shown that using more modern structure alignment programs, an automatic
clustering method that approximates SCOP at a superfamily level may be feasible. Of
course, any mapping between clusters based on geometric equivalence, and clusters
seeking to capture evolutionary and geometric equivalence using information beyond
geometry will be imperfect — yet the Matt clusters at the superfamily level seem suffi-
ciently interesting that differences between Matt and SCOP could be illuminating.
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As noted earlier, DaliLite tends to shatter SCOP folds into many more shards than
Matt. How can this be given the very similar pairwise classification performance at this
level? One possibility is that the Matt-based distance metric is more stable in regions
far beyond the specific thresholds we learned, and that this leads to the topology of
the resulting dendrogram (before cutting) more faithfully representing the relationships
between more and less closely related folds. In other words, DaliLite’s Z-scores may
result in more ’spoilers’ that break up clusters (due to our total-linkage requirement)
than Matt’s distance metric.

An interesting question is what Matt clustering results mean for protein fold space at
the “fold” level of structural homology. Here, while the Matt clustering clearly seems
more informative than that produced by DaliLite, performance is still uneven. There
seem to be some SCOP folds where the Matt split appears meaningful, and others
where it is more arbitrary. For example, a notoriously difficult SCOP fold for multi-
ple automatic methods is the enormous β/α TIM barrel fold. SCOP places 33 separate
superfamilies into this one fold, but both of our clustering approaches seem to split this
into multiple folds. For example, DaliLite splits the TIM barrel SCOP fold into 106 sep-
arate folds. Matt splits the TIM barrel SCOP fold into ‘only’ 17 separate folds, which is
better than 106, but inspection of the boundaries between these Matt fold classes shows
more continuity of shape, and the cuts appear to be somewhat arbitrary.

Thus, while touring protein space with Matt seems to lend support to a more discrete
view of protein space through the superfamily level, further study of individual clusters
may be warranted to determine the breakpoint distance at which continuity takes over.
Perhaps the degree of similarity of different individual SCOP folds can be characterized,
similarly to what Suhrer, et al. [32] did at the family level.
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Abstract. The problem of computing the minimum number of recom-
bination events for general pedigrees with two sites for all members is
investigated. We show that this NP-hard problem can be parametrically
reduced to the Bipartization by Edge Removal problem and therefore
can be solved by an O(2k · n2) exact algorithm, where n is the number
of members and k is the number of recombination events.
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1 Introduction

Human genomes contain two copies of each chromosome. Research shows that
single chromosomes, called haplotypes, are useful to study complex genetic dis-
eases [5]. While genomic data, called genotypes, are abundant and easy to collect,
haplotypes are rare and much more difficult to obtain by a biochemical method.
Therefore, a computational method to infer haplotypes from genotype data,
called haplotyping, is necessary. Genotypes can be obtained from a population
group where relationships between members are unknown or from a multigen-
erational family pedigree with known relationships between members. We only
consider pedigree data in this paper.

In the absence of recombination events, haplotypes of members in a pedigree
follow the Mendelian law of inheritance, where the two haplotypes of a child are
transferred from its parents, one haplotype from its father and the other from its
mother. Various haplotyping algorithms exist for non-recombinant pedigree data
[1] [2] [15] [17], especially a linear algorithm for non-recombinant tree pedigrees [1]
and a near-linear algorithm for non-recombinant general pedigrees [2]. Haplotype
inference is complicated by recombination events and the complex structures of
the data themselves. Recombination happens when complementary parts of both
of a parent’s haplotypes can be inherited as a single combined haplotype of a child
(Figure 1). Structures of the pedigree data can be complex with loops, where there
are multiple inheritance paths between some family members.

The haplotyping problem has been studied extensively in the last few years,
both for pedigree and population data. If recombinations are allowed, the prob-
lem of inferring haplotypes for pedigrees with the minimum number of recombi-
nations is NP-hard [8]. In fact, inferring haplotypes for pedigrees with minimum
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Fig. 1. Non-recombination vs. recombination. Recombination happens between sites 1
and 2 of parent u and the child c receives a combined haplotype from parent u. Here
haplotypes of members are displayed in columns.

number of recombinations is NP-hard even for general pedigrees with only two
sites or tree pedigrees with multiple sites [10]. For reconstructing haplotype con-
figurations for pedigree data, Qian and Beckmann [12] proposed a rule-based
algorithm with a time complexity O(2dn2m3), where d is the largest number of
children in a family, n is the number of members and m is the number of sites.
The main principle of their algorithm is that the best haplotype configuration
for pedigree data is the one that minimizes the number of recombination events
(the Minimum-Recombinant Haplotype Configuration (MRHC) problem). In [7]
[8] Li and Jiang proposed an O(dmn) block-extension algorithm for the MRHC
problem using a greedy heuristic to resolve adjacent sites. However, as discussed
in [9], this algorithm did not always find the haplotypes that minimized the num-
ber of recombinations, and worked under some restrictions. In order to improve
the performance and handle missing data, an integer linear programming (ILP)
formulation [9] was proposed, in which a branch-and-bound algorithm was used
to narrow the search space.

We study the minimum haplotype configuration for general pedigrees, where
each member in a pedigree has only two sites; even this restricted problem is NP-
hard [8]. We assume that there are no data missing and no data errors from the
input genomic data. We prove that our problem can be reduced to the problem
of finding the line index of a signed graph [16]. We further show that finding the
line index of a signed graph can also be reduced to the Bipartization by Edge
Removal problem. Our problem can therefore be solved by a fixed-parameter
algorithm with a running time of O(2k ·n2), where n is the number of members
and k is the number of recombination events.

2 Concepts

A member is an individual. A set of members is called a family if it includes
only two parents and their children; it is a parent-offspring trio (hereafter a trio)
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if only two parents and one child are considered. A set of families connected
through known family relationships is a pedigree. A parent is an internal parent
if it is a child of another family; it is an external parent otherwise.

In diploid organisms, a cell contains two copies of each chromosome. The de-
scription data of the two copies are called a genotype while those of a single copy
are called a haplotype. A specific location in a chromosome is called a site and
its state is called an allele. There are two main types of sites, microsatellites
and single nucleotide polymorphisms. A microsatellite site has several different
states while a single nucleotide polymorphism (SNP) site has exactly two pos-
sible states, denoted by 0 and 1. Only SNPs are considered in this paper, as in
other works on haplotype inference.

If the states at a specific site in two haplotypes are the same, then this site is
a homozygous site (0-0 or 1-1); if they differ, it is heterozygous (0-1 or 1-0). Two
haplotypes combine together to form one genotype. Each member u has two
haplotypes, denoted by h1u and h2u, which are vectors of 0 and 1’s of length
m, where m is the number of sites. The genotype of u, gu, is a vector of 0’s, 1’s
and 2’s of length m, where gu[i] = 0 means h1u[i] = 0 = h2u[i], gu[i] = 1 means
h1u[i] = 1 = h2u[i], and where gu[i] = 2 means {h1u[i], h2u[i]} = {0, 1}. We say
h1u and h2u are consistent with gu. The complement haplotype of a haplotype
h at a heterozygous site is denoted by h̄, where h̄ = 1 − h so, 0̄ = 1 and 1̄ = 0.

The problem in this paper is to find the haplotypes h1u and h2u for all mem-
bers u that minimize the number of recombination events, given their genotypes
gu. A set of haplotypes found for all members is called a haplotype configuration.
When gu[i] = 0 or 1, then h1u[i] and h2u[i] are known, but if gu[i] = 2, we may
not yet know the value of h1u[i] and h2u[i], in which case we give them the value
“?”, and say that the site is unresolved. Our problem is defined as follows.

2-site-MRHCopt: Given the genotypes of a general pedigree P containing n
members, where each member has only two sites, find a haplotype configuration
that minimizes the number of recombination events.

This optimization problem, called 2-site-MRHCopt, was proven NP-hard [10].
We investigate the corresponding decision version of 2-site-MRHCopt.

2-site-MRHCk: Given a positive integer k and the genotypes of a general pedi-
gree P containing n members, where each member has only two sites, is there a
haplotype configuration with at most k recombination events explaining P?

There is a correspondence between an optimization version and a decision version
of the MRHC problem. We can get a result for the optimization version of the
problem by trying parameter k with 0 and increasing its value step by step to
solve the decision version until the problem answer is Yes. On the other hand,
we can immediately get a result for the decision version of the problem from a
result of the optimization version.

3 Methods

We construct a pedigree graph to represent the 2-site-MRHCk problem.
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3.1 Label Members

Given a member u and its two sites i and j, if sites i and j are both heterozygous
or both homozygous, the member is labeled. If only one site is homozygous and
the other site is heterozygous, the member is unlabeled.

If i and j are both homozygous with the same value (gu[i] = gu[j] = 0 or
gu[i] = gu[j] = 1), u is labeled green. If i and j are both homozygous with
different values (gu[i] = 0 and gu[j] = 1, or gu[i] = 1 and gu[j] = 0), u is labeled
red. If i and j are both heterozygous, gu[i] = gu[j] = 2, u is labeled grey. A
member is resolved if it is labeled red or green. A member is unresolved if it is
labeled grey. A grey member u will later be resolved green if h1u[i] = h1u[j] = 0
or h1u[i] = h1u[j] = 1. It is resolved red otherwise. The resolution of a grey
member depends on its adjacent members.

3.2 Insert Positive Edges

If u is a parent of v and both u and v are labeled, we insert a positive edge,
epos(u, v), between u and v. A positive edge epos(u, v) means the label of u
and the label of v should be the same once resolved, unless a recombination
occurs in u. The reason for this is that if there is no recombination in u, then
v receives one full haplotype from u and another full haplotype from another
parent based on the Mendelian law of inheritance. Therefore, the label of u and
the label of v should be the same if there is no recombination; otherwise, there
is a recombination event in u.

3.3 Insert Negative Edges

We also consider a trio with two parents, u and v, and a child c. If both parents
are labeled but the child is not labeled, we insert a negative edge, eneg(u, v),
between u and v. A negative edge eneg(u, v) means u and v should be resolved
with different labels, unless there is a recombination event in one parent of c.

u

a. Inserting positive edges
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Fig. 2. Inserting positive and negative edges. Here genotypes of members are displayed.
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This phenomenon can be explained as follows. If there is no recombination
and u and v have the same resolved label, i.e., both red or both green, then
sites i and j of c must be both homozygous or both heterozygous based on the
Mendelian law of inheritance. Because only one site of c is homozygous and the
other site is heterozygous, one recombination occurs if u and v have the same
label when resolved, but no recombination occurs if they are resolved differently.

Figure 2 shows positive and negative edges inserted between members in the
pedigree.

3.4 Process Unlabeled Members

So far, we have processed labeled members. Now we process an unlabeled member
u that has one homozygous site and one heterozygous site.

If u is a child in its previous generation, a negative edge is inserted between
two parents of u as discussed in Subsection 3.3. If u is a parent of a child c,
there is no way to detect whether there is a recombination event in u caused by
haplotype shuffling or not. This fact can be explained as follows. Without loss
of generality, suppose gu[i] = 0 and gu[j] = 2, the haplotype pair of u inferred
would be h1u = 01 and h2u = 00. The possible mixed haplotypes transferred
to c from u are still either {01} or {00}. In both cases, we can explain u as
a member with no recombination event by pointing the haplotype of c that is
received from u to the appropriate haplotype of u.

Because we use unlabeled child members to insert negative edges only and
there is no way detect haplotype shuffling in unlabeled parental members, we
only consider members that are labeled from now on. Once labeled members are
resolved, we can resolve unlabeled members accordingly.

3.5 Pedigree Graph

Pedigree P can be considered to be an undirected graph G = (V, E). Each vertex
v ∈ V is a member with three possible labels, red, green, and grey. Each edge
e(u, v) ∈ E is either a positive edge, e ∈ Epos, or a negative edge; e ∈ Eneg ,
(E = Epos ∪ Eneg). Graph G, set up this way, is a signed graph [16]. Let N(u)
be the set of adjacent vertices of u. Let w(e) be the weight of edge e. If e is a
positive edge, w(e) = +1 . If e is a negative edge, w(e) = −1.

Observation 1. There are at most n vertices and O(n) edges in the pedigree
graph.

There are n members in the pedigree. A vertex is created for each member, except
for unlabeled members with one site homozygous and one site heterozygous.
Thus there are at most n vertices in the pedigree graph.

Except for external parents, a member has two positive edges linking it to
two parents. Therefore, the number of edges in the graph is linear in the number
of child members. If a member is an unlabeled member, the two positive edges
linking two parents and the child are replaced by a negative edge between the
two parents. Thus the number of edges in the pedigree graph is O(n).



34 D.D. Doan and P.A. Evans

The 2-site-MRHCk problem can now be solved by determining if we can label
every grey vertex in G either red or green such that if we partition the set of
vertices V into (Vred, Vgreen) and let E∗ be the set of edges between Vred and
Vgreen then ∑

e∈E∗∩Epos

w(e) +
∑

e∈Eneg\E∗
| w(e) |≤ k (1)

Given a pedigree graph, any two adjacent members linked by a positive edge
should be in the same partition, and any two adjacent members linked by a
negative edge should be in different partitions. Any edge whose constraint is not
satisfied represents a recombination event between the two adjacent members,
or, in the case of a negative edge having endpoints in the same partition, between
one parent and the child. Equation 1 thus counts the number of recombination
events in the whole pedigree and ensures that it is at most k.

This problem can be reduced to the problem of finding the line index of a
signed graph [16].

3.6 Signed Graph

A graph G = (V, E) is a signed graph if it has both positive and negative edges
(E = Epos ∪ Eneg) [16], where w(epos) = 1 and w(eneg) = −1. Let (V1, V2) be a
partition of V , and E∗ be the set of edges between V1 and V2. The line index of
the cut (V1, V2) is defined as:

l(V1, V2) =
∑

e∈E∗∩Epos

w(e) +
∑

e∈Eneg\E∗
|w(e)| (2)

The line index of graph G is defined as:

l(G) = min
V1⊆V

l(V1, V2) (3)

The corresponding decision version of finding the line index of graph G is defined
as follows.

LineIndexk: Given a signed graph G and a positive integer k, is there a line
index of G at most k?

Clearly, the 2-site-MRHCk problem can be reduced to the LineIndexk problem.
We will show that the LineIndexk problem can be reduced to the Bipartization by
Edge Removal problem, a classic NP-complete problem that is fixed-parameter
tractable.

4 Fixed-Parameter Algorithm

A NP-hard problem cannot be solved by a polynomial time algorithm unless
P=NP. However, if we can restrict some parameters of the problem to small
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values, the running time of an algorithm for the problem can potentially be
greatly reduced [3,11]. In this case, the problem is a parameterized problem and
an algorithm that can solve the parameterized problem efficiently is a fixed-
parameter algorithm. Formal definitions of parameterized problem and fixed-
parameter algorithm [11] are as follows.

Definition 1. A parameterized problem is a language L ⊆ Σ∗ x Σ∗, where Σ is
a finite alphabet. The second component is called the parameter of the problem.

Practically, the parameter is a nonnegative integer or a set of nonnegative inte-
gers and therefore L ⊆ Σ∗ x N. For (x, k) ∈ L, the size of the input is n = |(x, k)|,
and the parameter is k.

Definition 2. A parameterized problem L is a fixed-parameter tractable if it
can be determined in f(k) · nO(1) time whether or not (x, k) ∈ L, where f is a
computable function only depending on k. The corresponding class of problems
is called FPT.

A comprehensive survey of FPT problems can be found in [3] and [11].

4.1 Transforming to Bipartization by Edge Removal Problem

We review an important property of a signed graph given by [16].

Theorem 1. Let G be a signed graph. If we replace each edge with weight w(e) >
0 by two consecutive edges with weight -w(e) to get a graph G′ then l(G) = l(G′).

Proof. Suppose (V1, V2) is a cut of G such that l(V1, V2) = l(G). We replace
each positive edge e(u, v) by two consecutive negative edges e(u, y) and e(y, v),
where w(e(u, y)) = w(e(y, v)) = −w(e(u, v)) and y is a new vertex adjacent
only to u and v. If u and v belong to the same partition we put y in a different
partition from the partition of u and v. If u and v belong to different partitions,
we arbitrarily put y in the same partition of either the partition of u or v. In
all of the cases above we find the corresponding cut of G′, (V ′

1 , V ′
2) such that

l(V ′
1 , V ′

2) = l(V1, V2). Therefore l(G′) ≤ l(G).
Conversely, if l(V ′

1 , V ′
2) = l(G′) and y is a new vertex, then at least one

edge incident to y is in the cut. We can find a corresponding cut of G, (V1, V2)
such that l(V1, V2)=l(V ′

1 , V ′
2). Therefore l(G′) ≥ l(G). Taken together, we get

l(G′) = l(G).

Based on this property, the pedigree graph is transformed into a new graph
by replacing every positive edge by two consecutive negative edges and adding
new intermediate vertices. We obtain a new weighted graph G′ with all nega-
tive weighted edges. The graph G′ still has only O(n) vertices and O(n) edges.
Equation 1 becomes ∑

e∈Eneg\E∗
|w(e)| ≤ k (4)
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This equation is to ensure that the total number of edges within V1 and edges
within V2 is at most k. These edges once removed will make the graph bipartite.

We further transform our negative graph into a new graph with all positive
edges by multiplying the weight of every edge by -1. Our problem becomes the
Bipartization by Edge Removal problem [13,14]. The k-Bipartization by Edge
Removal problem is defined as follows.

Definition 3. Given a graph G=(V,E) and a positive integer k, is there a set
C ⊆ E with |C| ≤ k whose removal produces a bipartite graph?

Bipartization by Edge Removal is a classical NP-hard problem and is in FPT
[13,14]. Its parametric dual is Max-Cut [6].

4.2 FPT Algorithm for Bipartization by Edge Removal

One efficient technique to tackle an FPT problem is iterative compression. It is
first proposed by [13] in a breakthrough paper and has been shown to very useful
for solving different minimization problems. The idea is that, given a solution of
size (k+1), we find a fixed-parameter algorithm that either constructs a solution
of size k if one exists or outputs No if no solution exists. We iteratively compress
the problem by reducing the size of its solutions step by step. Assuming the
running time of the FPT algorithm is O(f(k) · nO(1)), the overall running time
will be O(n · f(k) · nO(1)).

Iterative compression technique is used by Guo et al. [4] to solve the Biparti-
zation by Edge Removal problem with a running time of O(2k · m2), where k is
the number of edges to be deleted to make the graph bipartite.

Theorem 2. The 2-site-MRHCk problem is solvable in O(2k · n2) time.

Proof. Setting up the pedigree graph takes O(|V |) time. Transforming the pedi-
gree graph into a graph with all negative edges takes O(|E|) time and transform-
ing the negative graph into a graph with all positive edges takes O(|E|) time.
The Bipartization by Edge Removal problem can be solved in O(2k · m2). Our
graph is sparse with the number of edges linear in the number of vertices, so the
overall running time of our algorithm is O(2k · n2).

5 Conclusion

We have shown that the MRHC problem for general pedigrees with two sites
can be reduced to the line index of a signed graph, and the line index of a
signed graph can, in turn, be reduced to the Bipartization by Edge Removal
problem. Therefore we can solve the MRHC problem for general pedigrees with
two sites with an O(2k ·n2) fixed-parameter algorithm. Future work will extend
the current method to deal with genetic data with more than two sites.
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Abstract. The gene networks underlying closure of the optic fissure
during vertebrate eye development are poorly understood. We used a
novel clustering method based on Laplacian Eigenmaps, a nonlinear di-
mension reduction method, to analyze microarray data from laser cap-
ture microdissected (LCM) cells at the site and developmental stages
(days 10.5 to 12.5) of optic fissure closure. Our new method provided
greater biological specificity than classical clustering algorithms in terms
of identifying more biological processes and functions related to eye de-
velopment as defined by Gene Ontology at lower false discovery rates.
This new methodology builds on the advantages of LCM to isolate pure
phenotypic populations within complex tissues and allows improved abil-
ity to identify critical gene products expressed at lower copy number. The
combination of LCM of embryonic organs, gene expression microarrays,
and extracting spatial and temporal co-variations appear to be a power-
ful approach to understanding the gene regulatory networks that specify
mammalian organogenesis.

Keywords: laser capture microdissection, microarray, organogenesis,
gene regulatory network, clustering.

1 Introduction

Common variations in genetic and epigenetic patterns among humans are asso-
ciated with variations in risk for developing all common chronic diseases, a few
of which have been identified from genome-wide polymorphism screens [13,20].
The functional biological robustness or its failure in disease is most likely not
just reflected in a few dominant components, but in many complex interac-
tions within gene regulatory networks. Due to the overwhelming complexity, the
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deeper understanding of such networks remains a major challenge in modern
systems biology that aims to discover and iteratively refine mechanistic models
of biological processes. Biological knowledge is typically encoded in the structure
and parameterization of these models. The Gene Ontology project [1,7] can help
to incorporate the known biological details of gene functions into such analy-
sis. The challenge is to reasonably approximate attributes in such models using
experimental data that is complex, noisy, and often incomplete.

For the purpose of acquiring biologically rich data sets, laser capture microdis-
section (LCM) has proven a powerful tool to isolate pure cell populations from
complex heterogeneous tissue specimens [4,8,18]. In combination with microar-
ray technologies, that allow the simultaneous measurement of expression levels
for thousands of genes, LCM enables identifying critical gene products even if
expressed at low copy numbers.

Our work aims to facilitate efforts in systems biology by organizing data in
ways that can potentially suppress noise and better reveal latent, biologically
meaningful structure. Coloboma is a not uncommon congenital defect of human
ocular development resulting in large retinal holes which often significantly affect
vision. The present paper focuses on refinements in the analysis of a temporal
series of microarray data obtained from microdissected sites of retinal fissure clo-
sure in normal mouse embryos. This data was previously analyzed [5] to identify
a putative repressive transcription factor, nlz2 (zinc finger protein 503), which,
when its expression was blocked in zebrafish embryos, led to incomplete optic
fissure closure, a coloboma model. By developing and applying a novel cluster-
ing scheme, we have identified a 50 per cent larger gene cluster (in comparison
to PCA and previous hierarchical cluster analyses [5]), whose spatio-temporal
gene expressions correlate with nlz2. According to GoMiner, a computational
high-throughput tool for biological interpretation of genomic, transcriptomic,
and proteomic data, that identifies the biological processes, functions and com-
ponents of gene clusters [21,22], this larger cluster still shows gene enrichment
for its specific functions in the context of Gene Ontology.

Next, using GoMiner, we sought to identify those gene clusters whose co-
expressions correlate with processes in eye development. We apply a novel clus-
tering scheme that builds on the intertwining of Laplacian Eigenmaps, a
geometrical data transformation, with k-means, a standard clustering method.
To validate the findings, we also use two standard clustering schemes, basic
k-means and principal component analysis combined with k-means. All three
methods identify gene clusters enriched for functional GoMiner categories re-
lated to eye development, but our proposed novel scheme leads to lower false
discovery rates. In this sense, our new clustering method appears to provide
greater biological specificity and sensitivity.

Starting from experimental work based on LCM and microarray technologies
in organogenesis, we obtained a list of candidate genes that could be significant
in normal development of optic fissure closure and could be useful in guiding
analysis of genetic variations in humans with coloboma.
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2 Materials and Methods

The Affymetrix MOE 430 2.0 microarray datasets analyzed to develop and test
our new method were for eight samples LCM microdissected from serial cryosec-
tions of the retina at the site of final optic fissure closure in the mouse embryos
at specific embryonic stages 10.5D through 12.5D previously reported in [5]. The
8-timepoints span the time just before and just after final fusion (optic fissure
closure) and were expected to reveal sets of genes critical for the completion
of optic fissure closure in normal development. This previous report further in-
vestigated a specific putative repressive transcription factor, nlz2 or zinc finger
protein 503, that was discovered to be highly expressed before during fissure
closure and then downregulated. Gene knockdown experiments in zebra fish of
nlz2 resulted in incomplete optic fissure closure (coloboma). Our current analy-
sis explored possible associated gene regulation patterns. Within the 8 different
time-point microarrays were 8316 genes consistently identified as expressed and
with greater than 2-fold variation in gene expression levels. For our clustering
analysis, we chose the subset of 3416 genes whose expression levels varied be-
tween 4-fold and 26-fold over the 2 days of embryonic development.

For analysis purposes, each gene of the microarray is considered as a vector of
its expression levels. This perspective yields a collection of D = 8 dimensional
vectors. Our proposed analysis relies on Laplacian Eigenmaps, cf. Section 2.2,
a geometrical data transformation that provides a new representation of gene
expressions still covering essential geometrical behaviors. We intertwine this
new data representation with k-means, cf. Section 2.3, a widely used clustering
scheme. GoMiner, cf. Section 2.4, is then used to identify genes within clusters
that are associated with particular biological processes or function. Let us list
the steps of our proposed scheme:

1. Expression Vectors: Each gene’s expression over the 8 time points builds
a vector. They constitute a collection {x1, . . . , xn} of 8-dimensional vectors.

2. Laplacian Eigenmaps: Choose the number m of gene neighbors and a
target dimension d, then apply Laplacian Eigenmaps to obtain a new data
representation {y1, . . . , yn} of d-dimensional vectors.

3. k-means: Run k-means on {y1, . . . , yn} to obtain the final clustering.
4. GoMiner: Feed the clusters into GoMiner to evaluate their biological

relevance.

In the following, we present the components of the above scheme in more detail.
For comparison we also applied PCA and k-means and therefore briefly discuss
these conventional methods too.

2.1 Principal Component Analysis

PCA [14] is a statistical tool that linearly transforms the data into an orthog-
onal coordinate system whose axes correspond to the principal components in
the data, i.e., the first principal component accounts for as much variance in the
data as possible and, successively, further components capture the remaining
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variance. Through an eigenanalysis, the principal components are determined as
eigenvectors of the dataset’s covariance matrix and the corresponding eigenvalues
refer to the variance that is captured within each eigenvector. After subtract-
ing the mean of the dataset, PCA is performed on vectors {x1, . . . , xn} by first
diagonalizing the covariance matrix cov(X) = E(XX	), where X = (x1 · · ·xn)
is the zero mean data matrix. The eigenvectors p1, . . . , pD - the principal com-
ponents ordered according to the magnitude of their eigenvalues - provide the
transformed data Y = W	X , where W = (p1 . . . pD). We obtain the collection of
d-dimensional vectors {y1, . . . , yn} whose first entries represents the abundance
of the primary principal. The second entries are each datapoint’s projection along
the second eigenvector and so forth.

2.2 Laplacian Eigenmaps

Laplacian Eigenmaps (LE) [2,3] is a geometric tool that transforms data into a
new representation in a nonlinear fashion. Given points {x1, . . . , xn} ⊂ RD, we
assume that they are steered by d latent variables, and aim to find a new data
representation {y1, . . . , yn} ⊂ Rd. We briefly recall the three step procedure of
Laplacian Eigenmaps.

Step 1: Adjacency graph, m-nearest neighbors. We build a graph G,
whose nodes i and j are connected if xi is among the m-nearest neighbors of xj

or vice versa. The distance between data points is measured by the Euclidean
metric. The graph G represents the connectivity of the data vectors.

Step 2: Heat kernel as weights. Next, we weight the edges of the graph and
focus on the diffusion weight matrix W given by

Wi,j =

{
e−

‖xi−xj‖2

σ , i and j are connected,

0, otherwise.

The number of neighbors m controls the sparsity of W .

Step 3: Solving an eigenvalue problem. We denote a potential new data
representation by y = (y1, . . . , yn)	, where each row is considered as a vector in
Rd, and we then consider the following minimization problem

min
y�Dy=E

1
2

∑
i,j

‖yi − yj‖2Wi,j = min
y�Dy=E

trace(y	Ly), (1)

where L = D−W and D is the diagonal matrix Di,i =
∑

j Wi,j . The minimizer
of (1) is given by the d minimal eigenvalue solutions of Lx = λDx under the
constraint y	Dy = E, i.e., the minimizer y’s columns are the d eigenvectors
with respect to the smallest eigenvalues. If the graph is connected, then 1 =
(1, . . . , 1)	 is the only eigenvector with eigenvalue 0, and we exclude it. Instead
of (1), we try to find the minimizer of

min
y�Dy=E,

y�D1=0

trace(y	Ly). (2)
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By applying the change of variables z = D1/2y, this yields

min
z�z=E,

z�1=0

trace(z	Lz), (3)

where L = D−1/2LD−1/2. The minimizer z is given by the d eigenvectors with
smallest nonzero eigenvalue, and we obtain the d-dimensional representation
{y1, . . . , yn} from y = D−1/2z.

2.3 Standard Cluster Analysis

For hierarchical clustering, we refer to [9], and we have also applied a shape
similarity-based clustering as introduced in [10]. k-means is a method of cluster
analysis which aims to partition n observations into k clusters {c1, . . . , ck}, where
k has to be chosen a-priori [12], i.e., one aims at minimizing

arg min
c1,...,ck

( k∑
j=1

∑
yi∈cj

‖yi − Ecj‖2),
where Ecj is the mean of cluster cj . The basic k-means algorithm requires the
target number of clusters to be specified as a parameter.

The k-means algorithm begins with a data set, a target number of clusters k,
and a set of s1, . . . , sk initial cluster centroids. It then iteratively assigns points
to clusters by centroid proximity, and then adjusts centroids to reflect changes in
cluster membership. The algorithm terminates either after a specified number of
iterations, or once the cluster centroids/membership no longer change. Although
optimal results cannot be guaranteed, the algorithm is quite fast, and many runs
can be efficiently computed, with the best clustering taken as an overall result.

2.4 GoMiner

GoMiner provides a quantitative and statistical analysis-tool for biological in-
terpretation of genomic, transcriptomic, and proteomic data, commonly derived
from gene expression microarray experiments. It classifies genes into biologically
coherent categories and then uses the Gene Ontology project to identify the
biological processes, functions and components of genes within these categories
[21,22]. A one-sided Fisher’s p-value is used to determine the significance and
biological enrichment levels within a category.

2.5 Clustering with Genesis

Clustered image maps (CIMs) were first introduced in [19] and were produced
here with the Genesis program [17]. We selected the Euclidean distance met-
ric and average linkage for hierarchal clustering. To facilitate visualization, we
implemented a recently-added feature of GoMiner that removes large generic
categories from all CIMs.
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2.6 Silhouette Coefficient

The silhouette coefficient is a measure for the coherence of clusters. If we take a
clustering C to be a mapping from a data set X = {x1, . . . , xn} to the integers
1, 2, . . . , k (where k is the total number of clusters), we can define the silhouette
coefficient sil(x) for each point x in X to be

sil(x) =
B(x) − A(x)

max(A(x), B(x))
,

where A(x) is the average distance between x and other points in its cluster, and
B(x) is the minimum distance between x and the nearest neighboring cluster,
cf. [11]. The silhouette coefficient sil(i) for a cluster i is the average of the
coefficients for its constituent points. We similarly define the silhouette coefficient
sil for an entire clustering to the average silhouette coefficient over all data set
points. A clustering with a silhouette coefficient closer to 1 will contain more
cohesive and well-separated clusters.

For our experiments, we used the squared Euclidean distance for the compu-
tations indicated above, as well as for the data clustering algorithms.

Supplementary material is available under:
http:// discover.nci. nih. gov/ RetDev/supplementaryMaterials.html

[6].

3 Results

We aim to increase our understanding of the gene network underlying the closure
of the optic fissure during vertebrate eye development. Microarray data from
LCM isolated cells in a mouse model of coloboma as described in Section 2 were
analyzed by using standard cluster analysis and a novel gene clustering scheme.
We derive a coherent clustering and make use of GoMiner to identify those
genes identified in public databases as being associated with eye development
or function as a measure of the quality of the other members in the cluster.
The newly identified genes are then potentially higher quality candidates for
association with retinal development at these stages and, in particular, closure
of the optic fissure.

For k-means, we set the target number of clusters to be 24, based on previ-
ous work with the current data set [5] that yielded biologically meaningful (but
smaller and fewer) cluster results. The maximal silhouette coefficient sil spec-
ifies the best k-means clustering over 100 repeated runs, starting in each case
from different randomly selected initial centroids. The maximum was stable over
different 100 run sets, suggesting that an at least near optimal clustering was
being obtained. Since the parameter space is too big for an exhaustive search
in Laplacian Eigenmaps, we fixed σ = 1/8 and assessed remaining parameters
over m = 5, . . . , 10, 12, 15, 20, 25, 50, 100 and d = 1, . . . , 10, 12, 16. The idea is
that parameter combinations that yield better cluster structure in the mapped

http://discover.nci.nih.gov/RetDev/supplementaryMaterials.html
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data {y1, . . . , yn} might be better tuned to resolve possible intrinsic structure in
the original data {x1 . . . , xn}. Silhouette coefficients suggest m = 10 and d = 2
additionally providing excellent GoMiner gene identifications.

Enlarged cluster containing nlz2: We have identified a 50 per cent larger
gene cluster than with hierarchical clustering in [5] whose spatio-temporal gene
expressions significantly correlate with nlz2, a gene which when previously in-
hibited in zebrafish induced coloboma. The latter cluster was associated with
210 Affymetrix probes corresponding to 169 genes, nlz2 was among them. See
Figure 1 for gene expression profiles and its set of enriched functional cate-
gories. GoMiner assigned the functional category of ‘gene silencing’, indicating
the repressive influence of nlz2 and co-varying genes. Previous biological stud-
ies have shown nlz2 gene product to repress gene transcription of a number of
genes regulated hindbrain development possibly as part of a transcription fac-
tor complex consistent with its H2N2 zinc finger domain and its binding site
for histone deacetylase. Consistent with this hypothesis, we also identified an
additional cluster that varied inversely with the primary ‘nlz2 cluster’ gene si-
lencing, suggestive of the previously documented role of nlz2 in suppression of
gene transcription, cf. Figure 3.

Fig. 1. Cluster containing nlz2: (left) cluster profile, i.e., gene expression levels vs. 8
time points, black circles indicate nlz2, (right) enriched functional categories

One complementary cluster: We found a large cluster whose shape is distinct
from nlz2 by applying the similarity-based shape clustering in [10]. GoMiner as-
signed a number of significantly associated functions to this large cluster includ-
ing retina morphogenesis (vertebrate eye), generation of neurons, cellular
morphogenesis during differentiation, photoreceptor differentiation, cell motil-
ity, neuron differentiation, cell projection organization, and biogenesis. The
highlighted functions are specifically associated with CHX10, a gene in this clus-
ter that has previously been identified in retinal development, see, for instance,
[15,16].
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Collection of enriched clusters: We also applied k-means on the original
data set and on PCA and LE reduced data. The selected ‘best’ k-means re-
sult applied directly to the original data had an overall silhouette coefficient of
0.38. To evaluate PCA+k-means, for each possible number of retained principal
components, the mapped data were clustered, and overall silhouette scores were
obtained. The best results refer to the mapping based on just the first principal
component, with the best overall silhouette score being 0.698. The silhouette
scores in the mapped data were always substantially higher than those obtained
following clustering of the original data, in keeping with the idea that Laplacian
Eigenmaps can potentially enhance cluster structure, see Table 1 for more de-
tails. We found that PCA+k-means, basic k-means, and LE+k-means yielded

Table 1. Silhouette coefficients and number of genes for each cluster/clustering method

k-means PCA+k-means LE+k-means
cluster sil # genes sil # genes sil # genes

1 0.0200 65 0.7329 126 0.6535 103
2 0.3067 146 0.6221 60 0.7049 125
3 0.4078 180 0.7002 168 0.6862 174
4 0.4068 234 0.6840 198 0.6848 154
5 0.3401 255 0.7423 157 0.7831 97
6 0.2960 252 0.7033 130 0.7949 389
7 0.3442 90 0.6795 126 0.7369 120
8 0.6509 9 0.6800 65 0.6953 270
9 0.3900 254 0.6393 190 0.7800 91
10 0.2162 34 0.7130 187 0.7046 79
11 0.3056 112 0.6517 182 0.7606 141
12 0.3531 165 0.7162 155 0.7487 122
13 0.4636 182 0.6925 117 0.9889 3
14 0.4267 167 0.7422 205 0.7118 125
15 0.6529 114 0.6968 184 0.5997 85
16 0.1593 86 0.5266 9 0.7214 236
17 0.5488 13 0.6792 84 0.6839 83
18 0.4323 253 0.6956 211 0.7380 135
19 0.1749 20 0.7151 118 0.6466 72
20 0.3076 133 0.6926 170 0.7243 121
21 0.4314 174 0.7041 115 0.7461 199
22 0.4394 130 0.7342 116 0.7442 275
23 0.4538 210 0.7252 192 0.6849 115
24 0.4366 138 0.6792 151 0.8534 102

several significantly enriched gene clusters (out of a total of 24) associated with
developmental processes. Cluster 22 of the Laplacian Eigenmaps-based approach
revealed a cluster significantly enriched (with a false discovery rate (FDR) of less
than 0.05) for genes specifically implicated in eye development - which was the
focus of the experimental work underlying the data set considered in this study.
These functional categories (in GoMiner terminology) were

(i) GO:0042462 eye photoreceptor cell development,
(ii) GO:0001754 eye photoreceptor cell differentiation,
(iii) GO:0042461 photoreceptor cell development.

When slightly relaxing the FDR up to < 0.15, this cluster 22 shows gene enrich-
ment for further eye specific developmental functions:

(iv) GO:0048592 eye morphogenesis,
(v) GO:0001654 eye development,
(vi) GO:0046530 photoreceptor cell differentiation,
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(a) FDR< 0.05 (b) FDR< 0.15, increase in functional
associations

Fig. 2. CIM thumbnails for LE+k-means cluster 22 related to eye development,
go to http://discover.nci.nih.gov/RetDev/supplementaryMaterials.html [6] for
full-size CIMs

see also Figure 2. These categories are neither hit by k-means nor PCA+k-means
clustering when restricting the FDR to < 0.05. By relaxing the FDR, however,
both k-means and PCA+k-means clustering show gene enrichment for eye spe-
cific functions. This verifies that the eye specific functions in LE+k-means cluster
22 are real and have not been picked up by chance. To support the latter claim,
we have compared the enriched categories in the LE+k-means cluster 22 with
the clusters of the other two clustering methods with relaxed FDR. It turns out
that specific eye development functions are present in all three clustering meth-
ods, but our proposed Laplacian-based scheme leads to lower false discovery
rates and hence appears to provide greater biological specificity and sensitiv-
ity, see the supplementary material (http://discover.nci.nih.gov/RetDev/
supplementaryMaterials.html) [6]. CIMs in these supplements indicate which
clusters across the three methods share common GoMiner categories. It enables
us to identify categories that are more specific to one method than to the oth-
ers. Based on Table 1 the fraction of genes, that are associated to biological
functions, are computable for each cluster, method, and false discovery rate.

Note on LE+k-means: We noted that relatively unusual expression patterns
were often mapped to distinct, outlying clusters by the Laplacian Eigenmaps ap-
proach. For example, the three expression patterns indicated in Figure 3 formed
a distinct cluster under the Laplacian Eigenmaps data representation. They

http://discover.nci.nih.gov/RetDev/supplementaryMaterials.html
http://discover.nci.nih.gov/RetDev/supplementaryMaterials.html
http://discover.nci.nih.gov/RetDev/supplementaryMaterials.html


Analysis of Temporal-spatial Co-variation 47

Fig. 3. Outliers that LE+k-means captures into a separate cluster, the associated
Affymetrix probes are 1427262 at, 1427263 at, 1436936 s at

were not as well separated in the original and PCA-mapped data, and were
consequently misplaced in inappropriate clusters. This could be a technical ex-
planation for more biological specificity of the proposed clustering scheme based
on Laplacian Eigenmaps.

4 Discussion

Obtaining a clearer understanding of the gene regulatory network underlying
optic fissure closure during eye development will be a long process involving
genetic analysis of humans with coloboma and studies of eye development in
animal models. Our present analysis and results were focused on expanding a
list of candidate genes that could be critical for normal fissure closure and in
coloboma patients may contain mutations. Compared with conventional clus-
tering algorithms that we tested, our new method was able to identify larger
clusters associated either with the nlz2 gene expression or with a distinctly com-
plementary pattern enriched with associations to eye development gene ontolo-
gies. It also uniquely identified the ‘nlz2-repressed’ pattern as a distinct cluster,
cf. Figure 3. The large temporally covarying gene cluster in Figure 1 was identi-
fied by GoMiner as being significantly associated with gene silencing, suggestive
of a gene regulatory network that represses alternative fates until optic fissure
closure is successfully completed (day 11.5 in the mouse). The pattern of genes in
Figure 3 could represent such genes that are transiently repressed only when the
nlz2 cluster is high. Using temporal pattern-based similarity clustering [10] al-
lowed identification of other distinct clusters (i.e., not containing nlz2) with other
GoMiner identified significant associations with specific developmental functions
in databases.

Clearly, our new mathematical approach to identify new components of gene
regulatory networks controlling development is preliminary and biologically
untested. Including additional databases of the associations among transcrip-
tion factors and the genes whose expression they modulate would be valuable.
Applying LCM, gene expression microarrays, and improvements in our analysis
methods to mammalian organogenesis could be part of an iterative process to
more completely identify additional elements in gene regulatory networks.
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5 Conclusion

Microarray data are commonly used for global searches for gene expression
changes that might be associated with a perturbation of a cell state or in pathol-
ogy. In organ development, temporal and spatial patterns accessible through
microdissection are associated with reproducible changes in gene expression of
even larger numbers of genes. More efficient analysis of microarray data from
such microdissected samples could provide improved understanding of cell fate
and organogenesis as well as elaboration of gene expression covariance networks.
Our analysis scheme based on Laplacian Eigenmaps appear to offer advantages
over standard clustering algorithms in the sense of greater biological specificity
and sensitivity.
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A central problem for 21st century science is annotating the human genome and
making this annotation useful for the interpretation of personal genomes. My
talk will focus on annotating the 99% of the genome that does not code for
canonical genes, concentrating on intergenic features such as structural variants
(SVs), pseudogenes (protein fossils), binding sites, and novel transcribed RNAs
(ncRNAs). In particular, I will describe how we identify regulatory sites and vari-
able blocks (SVs) based on processing next-generation sequencing experiments. I
will further explain how we cluster together groups of sites to create larger anno-
tations. Next, I will discuss a comprehensive pseudogene identification pipeline,
which has enabled us to identify >10K pseudogenes in the genome and analyze
their distribution with respect to age, protein family, and chromosomal location.
Throughout, I will try to introduce some of the computational algorithms and
approaches that are required for genome annotation. Much of this work has been
carried out in the framework of the ENCODE, modENCODE, and 1000 genomes
projects.
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Abstract. The multi-state perfect phylogeny problem is a classic prob-
lem in computational biology. When no perfect phylogeny exists, it is of
interest to find a set of characters to remove in order to obtain a per-
fect phylogeny in the remaining data. This is known as the character
removal problem. We show how to use chordal graphs and triangula-
tions to solve the character removal problem for an arbitrary number of
states, which was previously unsolved. We outline a preprocessing tech-
nique that speeds up the computation of the minimal separators of a
graph. Minimal separators are used in our solution to the missing data
character removal problem and to the solution of the perfect phylogeny
problem with missing data discussed in [10].

1 Introduction

An instance of the k-state perfect phylogeny problem (PP) is given by a matrix
M ∈ {1, 2, . . . , k}n×m, where each row corresponds to a taxon , each column a
character , and the entry mij is the state that taxon i takes on character j. We
wish to decide if a perfect phylogeny exists. A perfect phylogeny for M is a tree
T where every node v is labeled by a vector l(v) ∈ {1, 2, . . . , k}m and for each
character j and state r, the subgraph of T induced by nodes v where lj(v) = r
is connected. See also [9,10]. When M has missing entries, the perfect phylogeny
problem with missing data (MD) asks whether we can impute values so that
the resulting data has a perfect phylogeny. In many cases, it is impossible to
construct a perfect phylogeny, and in such cases, we are interested in removing
the minimum number of characters to find a new matrix that has a PP solution.
This is called the character removal problem (CR). When M has missing data,
finding the minimum number of characters to remove so that the remaining data
has a MD solution is the missing data character removal problem (MDCR).

It is well known [16,8] that for binary data (k = 2), the CR problem reduces
to the node-cover problem. An approach to MDCR for binary data is found in
[11] and approaches to MDCR for k = 3 and CR for k ≤ 5 states is found in [10].
Chordal graph theory was used in [10] to construct an algorithm to solve MD
using minimal separators. In this paper we outline a preprocessing tool used to

M. Borodovsky et al. (Eds.): ISBRA 2010, LNBI 6053, pp. 52–60, 2010.
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Fig. 1. An instance M of PP with perfect phylogeny T and PIG G(M)

calculate minimal separators faster, and show how to use chordal graph theory to
solve MDCR. Section 3 provides a solution to MDCR using chordal graph theory.
In Sect. 4 we outline the necessary theory for our preprocessing technique and
Sect. 5 shows the empirical results in our preprocessing computations.

2 Preliminaries

We use G = (V, E) to denote a graph with vertex set V and edge set E, along
with n and m to refer to the number of vertices and edges of G, respectively.
When necessary, we use V (G) and E(G) to denote the vertex and edge set of G,
respectively. Two vertices u and v are adjacent if uv is an edge. A collection of
vertices U is a clique if every pair of vertices in U are adjacent. The neighborhood
N(v) of a vertex v consists of all vertices adjacent to v. A vertex v is simplicial
when its neighborhood is a clique. The induced subgraph G(U) where U ⊆ V is
obtained by retaining edges in E where both incident vertices lie in U . When H
is an induced subgraph of G, we write H ⊆ G. When removing vertices X ⊆ V
from G, we denote the resulting induced subgraph G(V −X) as G−X . Given an
instance M of perfect phylogeny, the partition intersection graph (PIG) G(M)
has character-state pairs which appear in M as its vertex set, and two vertices
are adjacent iff the corresponding character-state pairs appear simultaneously in
one of M ’s rows. Character-state pairs in G(M) are denoted (αi, r) for character
αi and state r. See Fig. 1.

A graph G is chordal if every cycle of length four or more has a chord ,
a pair of vertices that are adjacent in G but not consecutive in the cycle. A
triangulation of G is a chordal supergraph H of G, and we refer to the edge
set F = E(H) − E(G) as a chordal fill for G. Given a chordal fill F we use
GF to denote the triangulation of G obtained by adding the edges from F .
Triangulations (or chordal fills) are minimal if no proper subgraph (subset) is a
triangulation (chordal fill). For G(M), we say that a chordal fill F is legal iff for
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each edge (αi, r)(αj , s) ∈ F we have i �= j. A triangulation H of G(M) is legal
iff F = E(H) − E(G(M)) is a legal chordal fill.

Theorem 1. [5,16] M has an MD solution iff G(M) has a legal chordal fill.

Thus, MD reduces to trying to find legal chordal fills for G(M), so we restrict
our attention to G(M) and chordal graph theory. Note that in the context of
Thm. 1, it suffices to consider minimal chordal fills. Characterizations of chordal
graphs and minimal chordal fills are of interest.

Let G be a graph and T a tree. Suppose the nodes x of T are labeled with bags
B(x) where B(x) ⊆ V (G). When each bag is a maximal clique of G and each
induced subgraph Tv = {x ∈ V (T ) | v ∈ B(x)} is connected for every v ∈ V (G),
then T is called a clique tree for G. Clique trees characterize chordal graphs.

Theorem 2. [2] A graph G is chordal iff it has a clique tree T .

Next, suppose that T is a tree and T1, . . . , Tk is a collection of subtrees of T .
Then the subtree intersection graph is the graph with vertex set Ti and edges
between two subtrees when they share at least one node in common.

Theorem 3. [2] A graph G is chordal iff it is isomorphic to the subtree inter-
section graph for some tree T with subtrees T1, . . . , Tk.

For S ⊆ V , we say that S is a uv−separator if vertices u, v /∈ S are not connected
in G − S. If no proper subset of S is a uv−separator then S is a minimal
uv−separator , and S is a minimal separator if it is a minimal uv−separator for
any u and v. This give us our last characterization of chordal graphs.

Theorem 4. [7] A graph G is chordal iff every minimal separator is a clique.

A connected component C of G − S is full when N(C) = S.

Lemma 1. [14] S ⊆ V is a minimal separator iff it has two or more full
components.

Given two minimal separators S and T , we say that S crosses T if S is a
uv−separator for some u, v ∈ T , writing S#T . This relationship is symmet-
ric [14]. We denote the minimal separators of G by ΔG. Minimal separators can
construct all minimal triangulations in the following way.

Theorem 5. [14] Every maximal set of pairwise non-crossing minimal separa-
tors yields a minimal triangulation by adding edges so that each minimal sepa-
rator is a clique, and every minimal triangulation is found in this way.

Minimal separators were used to construct an integer linear program (ILP) in
[10] to solve MD. The following lemma will be of use to us.

Lemma 2. [4] Let x be a vertex of G and S ∈ ΔG−x. Then either S or S ∪{x}
is a minimal separator of G.

For further details, see [6] for an introduction to graph theory, [2] for an intro-
duction to chordal graph theory, and [12] for a survey on minimal triangulations.
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3 Character Removal

In this section, we use chordal graph theory to construct an ILP which solves
MDCR for an arbitrary number of states.

3.1 Triangulations and Legal Characters

Let MI be the matrix obtained from M by allowing only columns of M that
are indexed via I ⊆ {1, . . . , m}. Next we characterize when MI has a perfect
phylogeny in order to solve MDCR.

Given an illegal chordal fill F of G(M), we will construct a set I so that MI

has a perfect phylogeny. Note that G(MI) is an induced subgraph of G(M). Let
I be the set of columns j from M where no fill edges e from F are of the form
e = (αj , r)(αj , s). We call I the legal characters of G(M)F .

Lemma 3. Let G(M)F be a minimal triangulation of the partition intersection
graph with legal characters I. Then F (I) = {(αi, r)(αj , s) ∈ F | i, j ∈ I and i �=
j} is a legal chordal fill for G(MI).

Proof. G(MI)F (I) is an induced subgraph of G(M)F , so any cycle in G(MI)F (I)
is a cycle in G(M)F . Since G(M)F is chordal, F (I) is a legal chordal fill. ��
Lemma 4. Suppose that G(MI) has a legal triangulation G(MI)F with clique
tree T and legal characters I. Then there is a minimal triangulation H of G(M)
with legal characters J where I ⊆ J .

Proof. Let T be a clique tree for G(MI)F with bags B(x). Let B′(x) = B(x) ∪
{(αi, r)(αi, s) | i /∈ I and r �= s}. Let H be the unique graph with vertices
V (G(M)) that is isomorphic to the subtree intersection graph of T and the
subtrees T ′

(αi,r) = {x ∈ V (T ) | (αi, r) ∈ B′(x)}. Thus H is a chordal supergraph
of G(M) with legal characters I, and every minimal triangulation H ′ where
G(M) ⊆ H ′ ⊆ H has at least I as its legal characters. ��
Combining Lemmas 3 and 4 with Thm. 1 shows that all submatrices with MD
solutions may be found from illegal triangulations. See Fig. 2.

Theorem 6. MI has a perfect phylogeny iff some minimal (possibly illegal) tri-
angulation G(M)F has legal characters J where I ⊆ J .

3.2 An ILP for MDCR

Here, we describe an ILP to solve MDCR. From Theorem 6, the solution to
MDCR is the largest submatrix MI where I is a legal character set of some
minimal triangulation of G(M). We use the minimal separators of G(M) to
analyze every minimal triangulation via Thm. 5.

Our formulation has variables xi ∈ {0, 1} for every minimal separator Si ∈ Δ
to denote if we add fill edges to turn Si into a clique. We also have variables
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Fig. 2. An instance M of PP with no perfect phylogeny. Here M ′ = M{2,3,4}. G(M)
has a chordless cycle of length four that alternates between characters 1 and 2, so
no perfect phylogeny for M exists. Fill edges are dashed; the illegal triangulation of
G(M) induces a legal triangulation of G(M ′). T is a perfect phylogeny for M ′ and is
an optimal solution to MDCR.

yj ∈ {0, 1} for each column of M , which will represent the legal characters of a
minimal triangulation. Then we wish to maximize

n∑
j=1

yj . (1)

To ensure that no pair of crossing minimal separators Si#Sj are chosen, we add
the constraint xi +xj ≤ 1. Each minimal separator also requires the maximality
constraint

xi +
∑

j s.t. Sj#Si

xj ≥ 1 . (2)

This constraint makes sure that feasible solutions either pick Si or some minimal
separator that crosses it. Lastly, for every column j with two character-state pairs
in Si we use the constraint xi ≤ (1−yj) so that the legal characters are properly
calculated.

In both our solution to MDCR and the solution to MD in [10], a critical
step is to calculate the minimal separators of G(M). Our formulation can be
easily extended to the weighted case by modifying the objective function. In
theory, there are worst case O(2|V |) minimal separators which are calculated in
O(|V |3|ΔG|) time [1]. This motivates our preprocessing technique in the next
section which is used to find the minimal separators of G(M) faster.
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4 Preprocessing G(M)

Here, we study the minimal separators of a graph after removing simplicial ver-
tices. We will see that doing so removes only clique minimal separators, resulting
in a subgraph that we can use to find any minimal fill for G.

Theorem 7. Suppose that X and Y are vertices from a graph G that are ob-
tained by greedily removing simplicial vertices, and that G−X and G− Y have
no simplicial vertices. Then X = Y .

When X is as in Thm. 7, we call S(G) = G − X the separator core of G.

Lemma 5. Let x be a simplicial vertex. Then for each S ∈ ΔG either S ∈ ΔG−x

or S is a clique with two full components, and one of them is {x}.
Proof. Simplicial vertices are never in any minimal separator, so there is some
connected component C ∈ CG(S) where x ∈ C. Removing x from G will only
affect C, so that all other connected components of S remain intact. If G − S
has two full components which are not C, then we must have S ∈ ΔG−x. Thus
it suffices to consider when C is one of two full components. Suppose C �= {x}.
C − {x} is still full as x is simplicial, since every neighbor y ∈ N(x) is adjacent
to each vertex in N(x) ∩ N(C) so S ∈ ΔG−x. Lastly, assume C = {x}. Since C
is full, S = N(C) = N(x) is a clique since x is simplicial. Further, CG−x(S) has
only one full component and is no longer a minimal separator, completing the
proof. ��
That is, trimming away simplicial vertices only destroys clique minimal sepa-
rators. Moreover, minimal separators are never created by removing simplicial
vertices, as we see next.

Lemma 6. Let S ∈ ΔG−x with x simplicial. Then S ∈ ΔG.

Proof. By Lemma 2, either S or S ∪ {x} is a minimal separator of G. But
simplicial vertices are never in any minimal separator so we must have S ∈ ΔG.

��
Thus we have that ΔG−x ⊆ ΔG, and by Lemma 5 if S ∈ ΔG − ΔG−x it is a
clique. No clique minimal separator can cross another minimal separator. Along
with Theorem 5, this yields the following lemma.

Lemma 7. Let Φ ⊆ ΔG be a maximal pairwise noncrossing set of nonclique
minimal separators of G. Then GΦ is a minimal chordal fill, and every minimal
chordal fill can be obtained in this way.

By Lem. 5 and Thm. 4 we only destroy clique minimal separators when trim-
ming simplicial vertices. Combining this with Lem. 7, it suffices to consider the
separator core when computing minimal fills.

Theorem 8. Let Φ ⊆ ΔS(G) be a maximal pairwise noncrossing set of minimal
separators of the separator core of G. Then GΦ is a minimal triangulation, and
every minimal triangulation of G is obtained in this way.



58 R. Gysel and D. Gusfield

Table 1. 80 × 80 Instances of PP

p r v e Δ K C1 C2 SC
1 SC

2 Tot1 Tot2 S1 S2

10 Maxstates

0.0 0.0 0.32 0.25 0.33 0.00 2.19 2.21 1.46 0.77 3.65 3.09 12.57 11.18
0.05 0.0 0.40 0.33 0.41 0.00 2.05 2.08 2.37 1.38 4.42 3.59 13.58 11.64
0.1 0.0 0.47 0.41 0.46 0.00 1.90 1.92 3.16 2.20 5.06 4.04 14.07 12.39
0.15 0.0 0.57 0.52 0.58 0.00 1.75 1.77 5.53 3.50 7.28 5.26 16.15 13.34
0.2 0.0 0.63 0.60 0.66 0.02 1.62 1.62 11.17 5.80 12.79 7.47 21.45 14.79

0.0 0.05 0.34 0.27 0.42 0.00 2.15 2.12 3.00 0.94 5.15 3.09 16.04 10.75
0.05 0.05 0.40 0.33 0.49 0.00 2.01 2.00 4.40 1.21 6.42 3.26 17.87 10.91
0.1 0.05 0.50 0.44 0.63 0.02 1.88 1.85 7.25 2.37 9.13 4.24 21.02 12.38
0.15 0.05 0.59 0.55 0.73 0.06 1.75 1.69 12.15 4.38 13.90 6.06 25.65 13.38
0.2 0.05 0.65 0.62 0.85 0.08 1.68 1.62 17.66 6.63 19.34 8.45 30.74 16.14

0.0 0.75 0.36 0.29 0.44 0.00 2.15 2.15 2.80 1.45 4.95 3.68 15.52 12.71
0.05 0.75 0.41 0.35 0.49 0.00 2.01 1.99 3.93 2.27 5.95 4.27 16.87 13.32
0.1 0.75 0.50 0.44 0.58 0.00 1.88 1.85 6.58 3.12 8.46 5.01 19.82 14.06
0.15 0.75 0.58 0.54 0.63 0.02 1.74 1.71 10.44 4.88 12.19 6.56 23.31 15.16
0.2 0.75 0.65 0.63 0.70 0.04 1.63 1.57 16.47 8.91 18.10 10.67 29.18 20.26

20 Maxstates

0.0 0.0 0.33 0.26 0.52 0.04 2.92 2.80 10.25 2.62 13.16 5.29 35.76 21.67
0.05 0.0 0.43 0.36 0.61 0.06 2.72 2.61 14.51 4.13 17.24 6.87 38.10 21.98
0.1 0.0 0.53 0.48 0.67 0.10 2.56 2.49 23.17 8.91 25.73 11.35 45.86 27.69
0.15 0.0 0.60 0.56 0.67 0.16 2.47 2.25 31.62 12.83 34.09 15.35 50.82 31.07
0.2 0.0 0.64 0.62 0.68 0.20 2.35 2.15 42.09 23.42 44.44 25.65 60.45 45.28

0.0 0.05 0.35 0.29 0.59 0.12 2.97 2.88 19.93 6.15 22.89 9.41 51.00 29.23
0.05 0.05 0.44 0.38 0.59 0.16 2.84 2.64 28.19 9.66 31.04 12.46 56.75 33.78
0.1 0.05 0.53 0.48 0.63 0.14 2.56 2.45 35.59 18.09 38.15 20.66 60.89 44.55
0.15 0.05 0.59 0.56 0.57 0.26 2.51 2.34 50.03 27.04 52.54 29.55 69.54 54.48
0.2 0.05 0.62 0.61 0.70 0.38 2.28 2.20 57.96 37.34 60.24 39.46 77.92 76.12

0.0 0.75 0.35 0.29 0.61 0.20 3.15 2.95 29.24 4.02 32.39 6.87 65.48 24.16
0.05 0.75 0.43 0.38 0.62 0.22 2.98 2.78 37.10 6.57 40.08 9.71 65.09 26.53
0.1 0.75 0.53 0.49 0.60 0.28 2.69 2.54 45.48 14.18 48.17 16.49 68.28 34.30
0.15 0.75 0.59 0.57 0.47 0.36 2.57 2.41 58.78 20.58 61.35 22.91 74.15 44.90
0.2 0.75 0.64 0.62 0.51 0.36 2.41 2.24 62.14 30.29 64.55 32.59 75.50 54.83

Proof. When Φ ⊆ ΔG, we use F (Φ) to denote the fill edges required to make
each S ∈ Φ a clique.

Suppose Φ is as above. Then if S ∈ ΔG − Φ it is either a clique or crosses
some T ∈ Φ. Letting ΔC denote the clique minimal separators of G, Φ ∪ ΔC

is chordal by Thm. 5 and F (Φ) = F (Φ ∪ ΔC). Conversely, let Φ be as in Thm.
5 and Φ′ ⊆ Φ the minimal separators of Φ which are not complete in G. Then
F (Φ) = F (Φ′) and Φ′ ⊆ ΔS(G), completing the proof. ��
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Thus we can use ΔS(G) to compute minimal triangulations of G. Our imple-
mentation utilizes the deficiency set D(v) of a vertex v, where D(v) = {uw |
u, w ∈ N(v) and uw /∈ E}, along with its inverse D−1(e) = {v | e ∈ D(v)}. We
keep track of each inverse deficiency set along with the size of each deficiency
set. When a vertex has an empty deficiency set it is simplicial and removed. For
each edge e incident to a simplicial vertex, we use D−1(e) to efficiently update
the size of the deficiency sets and repeat this process until no simplicial vertices
remain.

5 Empirical Results

Our preliminary MDCR tests were performed on 4 state (DNA) data, with
matrix sizes 80 by 245, 41 by 1043, and 50 by 176. In each instance, computation
completed and a solution to MDCR was found.

Next we present preliminary empirical results for the separator core as a pre-
computing tool to calculate minimal separators for partition intersection graphs.
Tests were run in emulated Ubuntu 8.04 (via VMWare Player) with a 2.4 ghz
dual core processor that was allocated 2 gigabytes of RAM.

Table 1 corresponds to a square matrix with dimensions as specified. Each row
shows the results of 50 runs. Data for each run was generated by the coalescent
based program ms [13]. This approach mirrors the approach for generating data
in [10]. p is the average number of missing entries, r is a coalescent parameter
used by ms, v (e) is the number of core vertices (edges) divided by the number of
vertices (edges) in the original graph, Δ is the number of minimal separators of
the core graph divided by the number of minimal separators of the original graph
(when this computation finished), K is the percent of processes which were killed
by the OS. The next four pairs of columns contain averages and medians, where
Ci denotes core computation time, SC

i denotes minimal separator computation
time for the core, Toti denotes total core and minimal separator computation
time, and Si denotes minimal separator computation time for the original graph.

We see consistent reductions in the amount of vertices, edges, and minimal
separators reduced. In moderate sized instances, we see that the time is reduced
to roughly a third to a half of the original time. More tables may be found at
http://wwwcsif.cs.ucdavis.edu/~gyselr/CR_Core_ISBRA10

6 Conclusions

We used triangulations of the partition intersection graph to formulate an ILP
solution to MDCR. Chordal graphs and minimal triangulations have many char-
acterizations [2,12] that may lead to other ILP formulations that take advantage
of Thm. 6.

We also outlined a useful preprocessing tool for the calculation of minimal sep-
arators. Intuitively, our approach seems useful for partition intersection graphs
as they are a collection of overlaying cliques and seem to have small separator
cores. A naive implementation of our algorithm takes O(n3) time, and it would
be of interest to find a better algorithm.

http://wwwcsif.cs.ucdavis.edu/~gyselr/CR_Core_ISBRA10
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Abstract. A popular model for gene regulatory networks is the Boolean
network model. In this paper, we propose an algorithm to perform an
analysis of gene regulatory interactions using the Boolean network model
and time-series data. Actually, the Boolean network is restricted in the
sense that only a subset of all possible Boolean functions are considered.
We explore some mathematical properties of the restricted Boolean net-
works in order to avoid the full search approach. We applied the proposed
algorithm in a case study of the budding yeast cell cycle network using
an artificial dataset. The results show that some interactions can be
fully or, at least, partially determined under the Boolean model conside-
red. We have shown that this analysis can be used as the first step for
gene relationships detection with a high flexibility to include biological
knowledge. What we envisage with our method is a model that points
out which connections should be checked in the wet lab and consequently
facilitate some biological experiments.

1 Introduction

Some of the goals of Systems Biology is to study the various cellular mechanisms
and components. In many cases, these mechanisms are complex, where some of
the interactions between the proteins are still unknown. To represent these inter-
actions it is common to use gene regulatory networks (GRN). There are several
models of GRN, from discrete to continuous models. The simplest discrete model
was introduced by Kauffman [1] and its known as Boolean network model. Later,
this model was modified to express uncertainty giving rise to the probabilistic
Boolean network model [2,3]. Friedman introduced Bayesian networks [4] as a
probabilistic tool for the identification of regulatory data and showed that they
can reproduce certain known regulatory relationships. Among the continuous
models we can cite the ordinary differential equations model which was sug-
gested several decades ago [5]. For a more detailed review about models of gene
regulatory networks see [6].

Models of gene regulatory networks help us to study biological phenomena
(e.g. cell cycle) and diseases (e.g. cancer). Therefore, unreaveling such networks,
or at least some of its connections, is an important problem to address. The
ability to uncover the mechanisms of GRN has been possible due to develop-
ments in high-throughput technologies, allowing scientists to perform analysis

M. Borodovsky et al. (Eds.): ISBRA 2010, LNBI 6053, pp. 61–76, 2010.
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on the DNA and RNA levels. The most common type of data generated by these
technologies are gene expression data (microarray).

The biological systems are notoriously complex. Determining how the pieces
of this puzzle come together to create living systems is a hard challenge known as
reverse engineering, which is the process of elucidating the structure of a system
by reasoning backwards from observations of its behavior [7]. GRN in many
cases cannot be unraveled precisely, however, because of measurement noise and
the limited number of data sets compared with the number of genes that are
involved.

The most common approach to reverse engineering GRN is to use gene expres-
sion data. Some algorithms use additional information from heterogeneous data
sources, e.g. genome sequence and protein-DNA interaction data, to assist the in-
ference process. Hecker et al. [8] presents a good review about GRN inference and
data integration.

Usually, an inference algorithm aims to construct one single network which
is believed to be the real network. The issue is that the inverse problem is
ill-posed, meaning that several networks could explain (or generate) the data
set given as the input for the algorithm. The problem becomes more compli-
cated if we take into account the noise that may be present in the data and
the small amount of samples. For this reason, our approach aims to analyze the
network in a statistical manner. Our algorithm creates several networks that
could explain the data. By analyzing the similarities among these networks, we
will propose a confidence measure of the regulatory relationship between the
genes.

In this paper, we present an algorithm based on Boolean networks and time-
series gene expression. Actually, the Boolean networks are called restricted in
the sense that not all Boolean functions are allowed in the model. Restricting
the network reduces the search space, which can be significant given that the
inverse problem is very complex. The time-series data allow us to observe part of
the dynamics of the system. These observations are used to infer the regulatory
relationships between the genes.

A challenge always presented in any gene regulatory model is its usefulness. It
would be interesting if a model could help biological experiments in understand-
ing gene interactions. The model here presented is capable of inferring some of
these connections from time-series data of gene expressions, and this inference
process is helped by all a priori knowledge available. What we envisage with
our method is a model that points out which connections should be determined
in the wet lab that would constrain as many other connections as possible and
consequently could facilitate some biological experiments.

The paper is organized as follows. In the next section we present the restricted
Boolean network model. The algorithm for the statistical analysis is presented
in Sect. 3. A budding yeast cell-cycle model from which the artificial data are
obtained is described in Sect. 4. In Sect. 5 and 6 we show and discuss our results
and we conclude the work in Sect. 7.
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2 Restricted Boolean Network Model

A Boolean network (BN) is defined by a set X = {x1, x2, . . . , xn} of n Boolean
variables and a set F = {f1, f2, . . . , fn} of n Boolean functions. In the case of
GRN the variables are called genes. Obviously, each gene xi, i = 1, . . . , n, can
assume only two possible values: 0 (OFF) or 1 (ON). The value of the gene xi

at time t + 1 is determined by genes xj1(i), xj2(i), . . . , xjki
(i) at time t through a

Boolean function fi : {0, 1}ki → {0, 1}. Given that, there are ki genes assigned to
gene xi, and the mapping jk : {1, . . . , n} → {1, . . . , n}, k = 1, . . . , ki determines
the “wiring” of xi [9]. This way,

xi(t + 1) = fi(xj1(i)(t), xj2(i)(t), . . . , xjki
(i)(t)) . (1)

We assume that all genes are updated synchronously by the functions in F
assigned to them and this process is repeated. The artificial synchrony simpli-
fies computation while preserving the qualitative, generic properties of global
network dynamics [11,10]. A state of the network at time t is a binary vec-
tor s(t) = (x1(t), . . . , xn(t)). Therefore, the number of states is 2n, labeled by
s0, s1, . . . , s2n−1. The dynamics of the network is represented by the transition
between states. This model is deterministic given that there is a single Boolean
function to regulate each gene. Because of the finite number of states and the
deterministic behavior, some of the states may be visited cyclically. These states
form what is known by the attractor of the BN. The states outside the attractor
are called transient states. The transient states together with the corresponding
attractor states forms the basin of attraction of that attractor.

In the case of restricted Boolean networks, the regulatory relationships is
represented by a matrix An×n using the following convention: aij = 1 for a
positive regulation from gene xj to gene xi; aij = −1 for a negative regulation
from xj to xi; For the remaining cases aij = 0. The Boolean function fi is defined
according to the matrix A and the values of the genes xj , j = 1, . . . , n, at time
t:

xi(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if
∑

j

aijxj(t) > 0

0, if
∑

j

aijxj(t) < 0

xi(t), if
∑

j

aijxj(t) = 0 .

(2)

We call the summation
∑

j aijxj(t) the input of xi at time t. Besides the re-
gulatory relationships of the matrix A, each gene can have a self-degradation
behavior. A gene xi with self-degradation is set to 0 whenever its input is null.
Observe that not all Boolean functions can be represented using (2) and that
is why the Boolean network is called “restricted”. In Sect. 4, we will present
a budding yeast cell-cycle model proposed by Li et al. [14] which is based on
restricted Boolean networks. This model will be used to perform the statistical
analysis algorithm.
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Fig. 1. Small example containing four genes

Example: Let us show a small example of a restricted Boolean network contain-
ing only four genes. Fig. 1 shows the regulatory relationship between the four
genes. An arrow is a positive regulation; a line with a bar at the end is a negative
regulation; the dotted loop on x2 indicates that this gene has a self-degradation
behavior.

Given the regulatory relationships in Fig. 1, the corresponding regulation
matrix is presented below:

A =

⎛
⎜⎜⎝

x1 x2 x3 x4

x1 0 0 0 −1
x2 0 0 0 0
x3 1 −1 0 0
x4 0 0 1 0

⎞
⎟⎟⎠ . (3)

Applying the Boolean function given by (2) for every possible state, we can
construct a state transition diagram, shown in Fig. 2. As we can see, there are
three attractors: 0000, 0001 and 0011; the remaining states are transient states.
The attractor 0011 has the largest basin of attraction (we consider the number
of states as the size of the basin of attraction).

3 Gene Interaction Analysis Algorithm

The algorithm was designed under the assumption that the gene expression
data were generated by a biological system which can be modeled as a restricted
Boolean network. Let S = {S(1), S(2), . . . , S(m)} be a set of m time-series gene
expression profiles, where S(i) ∈ {0, 1}n for i = 1, . . . , m. The algorithm aims to
analyze networks that produce the sequence

S(1) → S(2) → · · · → S(m) . (4)

When the network produces the time-series data we say that the network is
consistent with the data. Naturally, there may exist several consistent networks
for a single sequence. That is, the inverse problem is a “one-to-many” or ill-posed
problem, and this is very difficult to handle.

One näıve way to solve this ill-posed problem is to find all possible networks
by a full search algorithm. In fact, Lau et al. [12] proposed a “smart” full search
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Fig. 2. State transition diagram of the restricted Boolean network shown in Fig. 1

algorithm to enumerate all possible networks. Here, in this paper, we explore
some mathematical properties of the restricted Boolean networks in order to
avoid this full search approach.

The algorithm uses an encoding to represent the interaction between a pair
of genes. Table 1 shows the code and its respective subset of possible interac-
tions where −1, 0 and 1 stand for inhibition, no relationship and activation,
respectively. At the beginning of the process, the relationships between genes
are unknown and they are represented by a matrix An×n filled with the code
5. This means that any edge (activation or repression) or none can occur (the
regulatory relationship is undetermined). As the process runs, the entries of the
matrix can change to −2, 2 or 3 (partially determined relation). In addition, if
an entry of the matrix is completely determined we can set its value to −1, 0 or
1. At the end of the process the entries of A can hold undetermined, partially
determined or determined values. The undetermined and partially determined
entries can lead to several matrices that represent a consistent network.

3.1 The Three Steps of the Algorithm

The algorithm aims to uncover the hidden relationships between the genes
through the information provided by the time-series sequence, which can be
seen as a state transition sequence of the corresponding BN. The algorithm con-
sists in three main steps applied cyclically. Next, we will explain the concepts
used in each step.

Step one. The first step of the algorithm analyzes the sample in triplets, S(t−1),
S(t) and S(t + 1). An important point to notice here is that if two consecutive
states S(t − 1) and S(t) differ only in one single gene xk, then any gene xi

that had its value changed from S(t) to S(t + 1) is directly regulated by xk.
To illustrate this situation, consider the time-series data (Table 2) extracted
from the example given in Sect. 2. Looking at the time points S(1) and S(2) we
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Table 1. Encoding table used in the algorithm

Code Subset
−1 {−1}

0 {0}
1 {1}

−2 {−1, 0}
2 {0, 1}
3 {−1, 1}
5 {−1, 0, 1}

observe that only x2 had its value changed (from 1 to 0). Now, looking at S(2)
and S(3) we can see that x3 was turned to 1. Following the restricted Boolean
network model, this change was caused, necessarily, by the gene x2. In fact, x2
inhibits x3 at time t = 1 and it is self degraded at time t = 2, allowing x1 to
activate x3 at time t = 3. Using this approach, we state the following proposition
(Proposition 1).

Table 2. Time-series data taken from Fig. 2

t x1(t) x2(t) x3(t) x4(t)
1 1 1 0 0
2 1 0 0 0
3 1 0 1 0
4 1 0 1 1
5 0 0 1 1

Proposition 1. Let S(t − 1), S(t) and S(t + 1) be three consecutive states ac-
cording to the restricted Boolean network model. If S(t− 1) and S(t) differ by a
single gene xk, then for each gene xi such that xi(t) �= xi(t + 1) we have that xk

regulates xi directly, that is, aik �= 0.

Proof. Suppose that S(t− 1) and S(t) differ by a single gene xk, and that there
is at least one gene xi such that xi(t) �= xi(t + 1). As xi(t) �= xi(t + 1), the
summations

∑
j aijxj(t− 1) and

∑
j aijxj(t) have different signs. Given that xk

is the only gene possessing different values in S(t − 1) and S(t), this difference
signal must have been caused by xk. Therefore, aik �= 0.

The type of the regulatory relationship (activation or inhibition) uncovered using
Proposition 1 depends on the values of xk and xi. Table 3 lists all possible
combinations of values for xk (time t − 1 and t) and xi (time t and t + 1). We
call these relationships as required, since they must be present in the network in
order to maintain the consistency with the time-series data.

The approach used in Proposition 1 can be extended when S(t− 1) and S(t)
differ in more than one gene. For example, let us say that two genes, xk1 and
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Table 3. All possible combinations of values for xk and xi

xk(t − 1) xk(t) xi(t) xi(t + 1) type
0 1 0 1 activation
0 1 1 0 inhibition
1 0 0 1 inhibition
1 0 1 0 activation

xk2 , are the genes differently expressed from S(t− 1) to S(t). If xi had its value
changed from S(t) to S(t+1) there are some regulation hypotheses that we must
take into account. Analyzing xk1 and xk2 individually, we can use the Table 3
to generate two hypotheses and, these two hypotheses must be combined to
generate a third hypothesis. For instance, we can infer that xk1 activates xi and
xk2 inhibits xi, not in the same network. Given that, a third network would
consider both hypotheses simultaneously. This way, the number of hypotheses
grows in a combinatorial manner.

Step Two. The second step of the algorithm takes into account two consecutive
states, S(t) and S(t+1). There is one important observation here: only the active
genes at time t can possibly regulate genes at time t+1. This fact becomes clear
when we look at (2). The active genes can give us an insight of which genes are
regulating other gene, although the type of the regulatory relationship can not
be determined. However, the input given by the summation in (2) can help us to
determine the regulatory relationships. For example, if we observe that a gene
xi changes its value from 0 (at time t) to 1 (at time t + 1), we can deduce that
the input for gene xi is positive at time t and only the active genes at time t are
responsible for this positive input. Following this logic, the algorithm generates
all possible combinations of regulatory relationships using the active genes such
that the input of gene xi at time t is coherent to the values of xi at time t + 1.

To exemplify, consider the data in Table 2 where t = 3. At this time, there are
two active genes, x1 and x3. These genes are the only ones that can contribute
to the sign of the input for each gene. If we look at the gene x4 we observe that
its value turned from 0 to 1. According to (2), the input must be positive in
this case, that is,

∑4
j=1 a4jxj(3) > 0. Given that, we must have a41 + a43 > 0.

Therefore, neither a41 or a43 can take the value −1, only 1 or 0 (not both). The
same logic can be applied to all genes and then, the information extracted using
this approach can support the inference procedure.

Step Three. The third step analyzes any two pairs of consecutive states in the
time-series data. Let t1 and t2 be two time points in the time-series data:

S(1) → · · · → S(t1) → S(t1 + 1) → · · · → S(t2) → S(t2 + 1) → · · · → S(m) .
(5)

Now, let us suppose that S(t1) and S(t2) are very similar. Hence, the difference
between S(t1 + 1) and S(t2 + 1) must be caused by the differentially expressed
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genes of their predecessors. For instance, let us suppose that S(t1) and S(t2)
differ in one single gene:

S(t1) =

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ , S(t2) =

⎛
⎜⎜⎝

1
0
1
1

⎞
⎟⎟⎠ . (6)

And the succession occurs as stated:⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ , . . . ,

⎛
⎜⎜⎝

1
0
1
1

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ . (7)

Therefore, the huge difference between S(t1 + 1) and S(t2 + 1) in this case must
be caused by the change on x4. In this step, the algorithm checks how each gene
changed in the two pairs of consecutive states.

In our example, let us concentrate on gene x1. It was inhibited in the first pair
and had no change in the second pair. Let I be the total input originated in the
genes with similar expression in S(t1) and S(t2), M be the input generated by
x4 in S(t1), and M̄ be the input generated by x4 in S(t2). Therefore, to explain
the changes of x1 in the two pairs, we must have:{

I + M < 0 and
I + M̄ ≥ 0 .

(8)

If aij represents the influence of gene xj over xi, we can calculate I, M and M̄
as follows:

I =
(
a11 a12 a13

) ·
⎛
⎝1

0
1

⎞
⎠ = a11 + a13 , (9)

M = a14 · 0 = 0 and (10)

M̄ = a14 · 1 = a14 . (11)

Henceforth,{
I + M < 0
I + M̄ ≥ 0

=⇒
{

a11 + a13 + 0 < 0
a11 + a13 + a14 ≥ 0

=⇒
{
a14 > 0 . (12)

This result implies that the entry a14 of the matrix must have the code 1.
If S(t1) and S(t2) differ in more than one gene, we can still generate hypotheses

of regulation. In fact, this step tries to construct a system of inequalities with
the inputs of each gene for every combination of two consecutive pairs.
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3.2 Analysis of Gene Interactions

The three steps of the algorithm are performed cyclically until no additional
information can be included in the matrix A. At this point, the entries of A are
filled with the regulatory hypotheses generated by the algorithm. Some of the
entries represent the undetermined or partially determined relationships between
genes.

We can think of A as a root of a tree where the leaves are the matrices that
can be generated from the root by determining a value for each partially de-
termined/undetermined entry. Perhaps, this value determination can be guided
by biological knowledge. In Fig. 3 we show an example using four genes as pre-
sented in Sect. 2. There are two partially determined entries in the root (marked
with bold face numbers) that can be determined one at a time, generating four
possible matrices in the second level of the tree. After determining an entry, the
three steps of the algorithm are performed again as previously and the overall
process is repeated until a completed determined matrix (a leaf of the tree) is
obtained. Some of the leaves are consistent matrices, that is, they represent a
network consistent with the data.

⎛
⎜⎜⎝

0 0 0 −2
0 0 0 0
3 −1 0 0
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 −1
0 0 0 0
3 −1 0 0
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 −1
0 0 0 0

−1 −1 0 0
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 −1
0 0 0 0
1 −1 0 0
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
3 −1 0 0
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

−1 −1 0 0
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 −1 0 0
0 0 1 0

⎞
⎟⎟⎠

Fig. 3. The root of the tree and the possible matrices generated from the root

In order to analyze the gene interactions, since there may be a combinatorial
explosion in generating the matrices, we randomly generate some of them (a
sampling process) and consider the consistent ones to perform the analysis. In
the worst case, this algorithm has exponential running time. However, it does not
generates all the 3n2

possible matrices. In the next section, we present a Boolean
model of the budding yeast cell cycle that was used to generate artificial data
to apply the algorithm and, in Sect. 5, we show the results.

4 Budding Yeast Cell Cycle Model

The cell-cycle process consists of four phases: G1 (in which the cell grows and,
under appropriate conditions, commits to division), S (in which the DNA is
synthesized and chromosomes replicated), G2 (a“gap” between S and M), and
M (in which chromosomes are separated and the cell is divided in two). After
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the M phase, the cell returns to the G1 phase, waiting for appropriate conditions
for another round of division. We call this G1 phase as stationary G1. There are
≈ 800 genes involved in the cell-cycle process of the budding yeast [13]. However,
the number of key regulators that are responsible for the control and regulation
of this complex process is much smaller [14].

The budding yeast cell-cycle model proposed by Li et al. [14] is based on a
network of eleven regulators, as shown in Fig. 4. The meaning of the edges are
the same as in Fig. 1. The eleven genes x1, . . . , x11 are Cln3, MBF, SBF, Cln1,
Cdh1, Swi5, Cdc20, Clb5, Sic1, Clb1, and Mcm1, respectively. The “cell-size”
node was introduced just to indicate a checkpoint to start the cell-cycle process.

Fig. 4. The cell cycle network of the budding yeast

Considering the restricted Boolean network model presented in Sect. 2, Li et al.
[14] studied the dynamics of the network. They found that there are seven at-
tractors, shown in Table 4. In this table, each row represents an attractor where
the first column indicates the size of the basin of attraction. There is one big
basin composed by 1,764 or ≈ 86% of states. According to Li et al. [14], the
corresponding attractor is the biological G1 stationary state.

Biologically, the cell-cycle sequence starts when the cell commits to division by
activating Cln3. To simulate the cell cycle, they started the process by “exciting”
the G1 stationary state with the cell size signal, that is, inducing the gene Cln3
to an active state. Applying (2) to simulate the process it was observed that
the system goes back to the G1 stationary state. The temporal evolution of the
states, presented in Table 5, follows the cell-cycle sequence, going from excited
G1 state (Start) to the S phase, the G2 phase, the M phase, and finally to the
stationary G1 state. This is the biological trajectory or pathway of the cell-cycle
network.
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Table 4. The seven attractors of the cell-cycle network

Basin size Cln3 MBF SBF Cln1 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb1 Mcm1
1,764 0 0 0 0 1 0 0 0 1 0 0
151 0 0 1 1 0 0 0 0 0 0 0
109 0 1 0 0 1 0 0 0 1 0 0
9 0 0 0 0 0 0 0 0 1 0 0
7 0 1 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0

Table 5. Temporal evolution of states for the cell-cycle network

Time Cln3 MBF SBF Cln1 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb1 Mcm1 Phase
1 1 0 0 0 1 0 0 0 1 0 0 Start
2 0 1 1 0 1 0 0 0 1 0 0 G1
3 0 1 1 1 1 0 0 0 1 0 0 G1
4 0 1 1 1 0 0 0 0 0 0 0 G1
5 0 1 1 1 0 0 0 1 0 0 0 S
6 0 1 1 1 0 0 0 1 0 1 1 G2
7 0 0 0 1 0 0 1 1 0 1 1 M
8 0 0 0 0 0 1 1 0 0 1 1 M
9 0 0 0 0 0 1 1 0 1 1 1 M
10 0 0 0 0 0 1 1 0 1 0 1 M
11 0 0 0 0 1 1 1 0 1 0 0 M
12 0 0 0 0 1 1 0 0 1 0 0 G1
13 0 0 0 0 1 0 0 0 1 0 0 Stationary G1

The states presented in Table 5 are used as the time-series data to perform
the statistical analysis. The results are shown in the next section.

5 Results

The application of the algorithm presented in Sect. 3 creates a collection of con-
sistent networks totally inferred from the time-series data of the yeast cell cycle.
If we calculate the frequency of the connections, we are capable of assigning
probabilities to each gene relationship. In Fig. 5 and 6 we show the frequency
of different types of inward connections to each gene from all other genes. Evi-
dently, the determined connections will appear with frequency 100% in all the
networks; while the partially determined connections will have, at least, one gene
relationship (activation, no connection or inhibition) with frequency 0%.

From the frequencies shown in Fig. 5 and 6, we can see that the algorithm
was capable of identifying 11 determined connections and 13 partially determined
connections. The results are shown in Fig. 7. Note that, in this figure, the arrows
do not indicate activation necessarily.

6 Discussion

By looking at Fig. 5 and 6, it is interesting to note that, in some cases, the
statistics of the networks were capable of almost excluding one possibility of
relationship - as shown in Swi5 → Cln3, SBF → Clb5, MBF → Mcm1, and
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Fig. 5. Frequency of the relationships in the consistent networks. The statistics of inward
connections to each gene from all other genes were created by the consecutively applica-
tion of the three steps of the described algorithm and by a random determination of one
connection. The determined connections exhibits only one color (black, white or gray),
and the partially determined connections exhibit two colors. 100 networks were used for
the statistical analysis. The results for the remaining genes are shown in Fig. 6.

others - transforming some connections from undetermined into partially deter-
mined connections. These results show that the cell cycle pathway constrains
some connections, therefore restricting the whole network [12].

We can attribute this phenomenon to the high dependency that the deter-
mination of a network connection has on other connections. The three steps of
the presented algorithm perform a search over the space of possibilities of the
influence of a set of genes over a single gene. If one of these influences is a priori
determined (or known), this result can bias other connections. For example, let
us suppose that genes A and B have to produce a positive output over a gene
C, according to some restriction imposed by the time-series data. If we already
know that gene A has no relationship to gene C, gene B must have a positive
relationship to gene C.

Therefore, this high dependency on the determination of a connection over
the network makes the use of Fig. 5 and 6 very restricted. If we simply use a
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Fig. 6. Results for the genes Swi5, Cdc20, Clb5, Sic1, Clb1 and Mcm1

relationship with a high weight to be our “best guess” on the connection between
two genes, this choice can constrain other relationships, leading the system to a
more or less determined state, or even creating a network that is not consistent
with the data.

We can say that Fig. 5 and 6 represent a good approximation of a “greedy”
heuristic for finding one network. It can be done in the following way. Firstly,
calculate the frequency of the connections of a set of consistent networks. Sec-
ondly, choose the most determined connection to be fixed with the relationship
that has the greater weight. Thirdly, recalculate the set of networks and return
to step one.

Another fact to be pointed out is the importance of the inferred partially
determined connections. Although these connections can not be directly used to
construct a network like the determined connections, it can guide some biolo-
gical experiments, since a partially deterministic connection states that at least
one type of relationship between two genes is not possible. We could use the
frequencies generated in Fig. 5 and 6 to attribute a strength of connection to the
relationship of a partially determined connection, e.g., the interference of Clb1
on SBF can be stated as 80% (or a probability of 0.8) of being an inhibition.
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Fig. 7. The determined (bold arrows) and partially determined connections (light solid
arrows) inferred by the consecutive application of the three steps of the algorithm

A closer look into the statistics raises also an interesting question: the network
chosen by the nature would not be easily detectable? Or even better: would not
the collected data be enough to constrain Fig. 5 and 6 into nature’s choice? We
could answer this question by pointing out a piece of information that makes a
huge difference between our model and nature’s choice: the chemical interactions
between proteins. Evidently, some of the connections considered on many steps
of the algorithm here presented can not exist due to chemical incompatibilities.
In some sense, nature has more information to constrain its network than we do.

7 Conclusion and Future Research

This paper proposes an algorithm to perform analyses for discovering gene reg-
ulatory interactions from time-series data under the Boolean network model. In
fact, the inference of gene regulatory networks is a one-to-many inverse problem
in the sense that there may exist several networks consistent with the dataset.
In order to analyze the gene interactions, we have generated several networks
and considered only the consistent ones. We have applied our methodology to
an artificial dataset that had been generated by a Boolean network that models
the budding yeast cell cycle [14]. By this application, we have shown that this
analysis of gene interactions could be a first step for gene relationships detection
with a high flexibility to include biological knowledge.

A challenge always presented in any gene regulatory model is its usefulness.
It would be very interesting if a model could help biological experiments in
understanding gene interactions. The model here presented is capable of inferring
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some of these connections from time-series data of gene expressions, and this
inference process is helped by all a priori knowledge available.

Hence, an interesting feature to be added to our method would be the ability
to indicate which connection should be verified in the wet lab to help determine
others. As stated in the last section, the network connections are very dependent
of each other, and the determination of one connection could constrain the whole
network. What we envisage with our method is a model that points out which
connections should be determined in the wet lab that in turn would constrain
as many other connections as possible and consequently could facilitate some
biological experiments. We are investigating the possibility to put our algorithm
in the context of a constraint solving problem (CSP) [15]. There are CSP solver
techniques that may help us to analyze the gene interactions as we did in this
paper.

However, there are other characteristics to be sought that could constrain
the network towards nature’s choice. One feature not explored in this paper
is the dynamical aspects of the network. There are indications, as stated by
Kauffman [10], that nature would prefer networks with a small quantity of at-
tractors - the gene pattern expression that leads the system to itself- and large
basins of attraction - the set of gene pattern expressions that leads the system
to one attractor. The network constructed by Li et al. [14] has these characteris-
tics. Therefore, a connection statistics calculated only from networks with a few
number of attractors - or other dynamical characteristic - could create a well
established result.

Concluding, we think that the model here presented is a remarkable first step
of the construction of a system to infer gene interactions. Our intention now is
to test this procedure with another artificial data and, perhaps, biological data
also; and to implement some topics presented in this section. We understand that
any inference procedure can not have success if it does not contain biological and
computational expertise, therefore the future steps of this research have to be
centered on the difficulties of a wet lab, or its limitations.
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Abstract. The study of non-sequential alignments, with different connectivity of 
the aligned fragments in the proteins being compared can offer a more complete 
picture of the structural, evolutionary and functional relationship between two 
proteins, than what is possible purely with sequential alignments. The design of 
techniques for non-sequential protein structure alignment therefore, constitutes 
an important direction of research. This paper introduces a novel method for 
non-sequential protein structure alignment involving three principle technical 
facets: (1) determination of the seed alignments not just by matching features 
from a single residue or considering well defined regions in the structure such as 
α–helices and β-strands, but through rich and robust descriptors that can capture 
the structural similarities of the local 3D environment around arbitrary residues 
of interest. (2) Scoring alignments using both geometric criterion (RMSD) as 
well as the biochemical characteristics of the residues. (3) An iterative chaining 
process which alternates between refinement and non-sequential extension stages 
to build a final alignment. The efficacy of the approach is demonstrated using the 
RIPC reference set which includes 40 structural pairs that are problematic to 
align. The performance of the method was found to be comparable or better than 
established techniques across the experiments.  

1   Introduction 

Given two structures, the problem of determining their structural similarity involves 
determining the correspondence of homologous residues between them such that each 
pair of aligned residues fulfils equivalent functional and structural roles. The ability to 
reason about structure, in a comparative setting, is important in providing a 
mechanistic understanding of the structure-property relationships that constitute the 
process of “life”. Given that structure-level conservation is often much higher than 
sequence-level conservation, techniques for structure similarity can also provide clues 
to the unknown molecular function of a protein based on its structural similarity to 
one or more proteins of known function(s). Finally, structure similarity lies at the core 
of classifying protein structures and has been used in a variety of classification 
schemes such as SCOP, CATH and FSSP to name a few.  
                                                           
* Corresponding author. Research funded by NSF grant IIS-0644418. 
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The problem of structure matching or alignment has been widely studied during the 
past three decades leading to an increasingly deeper understanding of the challenges. 
For closely related proteins, different methods generally output consistent alignments. 
However recent studies have revealed significant inconsistencies between alignment 
methods for distantly related proteins [1]. Such inconsistencies arise when two related 
proteins display considerable structural variability resulting from the evolutionary 
accumulation of mutations [2]. Determining non-sequential alignments, with different 
connectivity of the aligned fragments in the proteins being compared, constitute an 
intriguing problem in this context. One such example is a circularly permutated 
protein where the evolutionary divergence from an ancestor has resulted in a change 
in domain ordering. In such cases, an accurate alignment of a circularly permutated 
regions, region swaps and β-hairpin flips requires that a matching/alignment 
technique align individual residues or fragments while disregarding their natural 
sequence and order. A commonly encountered example is that of the Rossmann 
structure motif, which comprises of four α–helices and four β–strands and can be 
found with different SSE connectivity. It should be noted that proteins requiring non-
sequential alignments comprise a non-trivial proportion of known protein structures 
(estimated to be between 17.4% and 35.2% of all alignments [3]). In proposing a 
solution to the non-sequential alignment problem, the method proposed in this paper 
seeks to focus on the following two important sub-problems:  

• Design of algorithms for determining the initial (seed) alignments, based on 
which, the ultimate alignment is obtained. The goal is to determine the seed 
alignments, not just by matching features from a single residue or considering 
well-defined regions in the structure such as α–helices and β-strands, but through 
rich and robust descriptors that can capture the structural similarities of the local 
3D environment around arbitrary residues of interest.  

• Determination of the alignments, not just based on geometric criteria (such as 
RMSD), but also by involving biochemical characteristics of the residues.   

To motivate the importance of the first sub-problem, a brief review of different non-
sequential alignment techniques is necessary. These methods can be broadly classified 
into two groups based on how the initial (seed) correspondences between 
substructures of the two proteins are detected: residue-based seed matching (RSM) 
methods and secondary structure element-based (SSE) methods. Examples of RSM 
methods include STSA [4], and our method. In such methods, the initial 
correspondences are obtained by modelling and matching substructures in terms of 
their geometric properties (though in our method, we employ both geometric and 
biochemical characteristics). In SCALI [5], correspondence is established when the 
fragments being matched contain greater than five residues, do not have any 
gaps/insertions, do not have residues with backbone angles differing by greater than 
90o, and are not part of longer fragments considered earlier. In contrast to RSM 
methods, SSE-based methods ameliorate the complexity of finding initial 
correspondences by focussing on similar secondary structure elements (α-helices and 
β-strands). In GANGSTA [6], pair contacts and relative orientations between SSE are 
maximized using a genetic algorithm. Next, residue pair contacts between the best 
SSE-alignment are optimized. In SSM [7], correspondences are obtained by graph 
matching based on SSEs. In addition to sequential alignment, the method allows 
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complete non-sequential alignment, where the connectivity is neglected, and a “soft” 
alignment, where the general order of SSEs is retained with the provision that any 
number of intervening unmatched/missing SSEs are allowed. Finally, TOPOFIT [3] 
constitutes a technique which does not clearly fall in either of the aforementioned two 
groups. In TOPOFIT, Delaunay triangulation of the points representing the proteins is 
used to construct tetrahedrons which are subsequently matched in terms of shape, 
volume, and backbone topology to find the seed correspondences. In summary, 
methods that use SSEs to find seed correspondences, ultimately treat the protein 
structure at a coarser level of granularity, than what is possible at the residue or 
atomic level. While this allows ameliorating the match complexity, it is possible to 
miss seed correspondences that do not fall in regions corresponding to well-defined 
SSEs. In contrast, such a risk is inherently lower in RSM methods which treat the 
structure at a finer granularity. However, this does require solving a more complex 
correspondence problem.  

2   Proposed Method 

We approach the problem of non-sequential structure alignment, in context of the two 
aforementioned sub-problems, as a three-step process: 

(1) Determining the initial correspondence (seed determination): The initial 
correspondence provides a (possibly coarse) match between similar substructures 
in the two molecules and can be thought of as the first approximation of the 
alignment. To determine the initial match we propose a novel rotation invariant 
and geometrically rich local structure descriptor, which we call the residue 
context. The residue context is a quantized description of the distribution of atoms 
or residues in 3D space with respect to a given point on the protein structure. In 
this work, the residue context is determined at each Cα atom on the protein 
backbone. Thus, solving the initial correspondence problem reduces to finding for 
each Cα atom on one structure, the corresponding Cα atom on the other structure 
that has the most similar residue context. We formulate the problem of 
determining the similarity of two residue contexts in terms of the transportation 
problem, which is a special case of linear programming. This allows us to use the 
Earth Mover’s Distance (EMD) [12] to efficiently address this question. A 
fundamental advantage of our matching formulation is that it naturally overcomes 
representation variations that occur due to quantization.  

(2) AFP Generation using Structural and Bio-Chemical information: In this step, 
regions are identified using a geometric-fit criteria and analyzed based on the 
biochemical agreement of the aligned residues, to obtain aligned fragment pairs 
(AFP). Inspection through this “double lens” of geometric and physicochemical 
properties raises the likelihood of only procuring desirable AFPs, which serve as 
interchangeable building blocks for the construction of the final alignment. 

(3) AFP Chaining and Refinement: In the final step, the AFPs undergo stages of 
assembly and restructuring as determined by a composite alignment score, to 
obtain longer and more accurate alignments. The chaining and refinement stages 
are iterative such that hard correspondences are not assigned until the alignment 
score does not improve further. The final alignment can be non-sequential or 
sequential and is driven solely by the structures being compared.  
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2.1   Definition of Residue Context 

In the first step of the proposed method, similar substructures in the two molecules are 
determined by capturing the structural similarities of the local 3D environment around 
arbitrary residues of interest through their residue contexts. The design of this  
descriptor is motivated by research in computer vision on shape recognition [9]. The 
underlying insight utilizes results from stereopsis indicating that determining 
correspondences between shapes is easier with rich local descriptors (such as the one 
proposed in [9] as well as residue context) as opposed to features that are dependent 
on single shape primitives. Our research extends to 3D molecular structures, the basic 
idea of shape-context descriptors introduced in [9], namely that given a point on a 
shape, the distribution of other shape points around this point constitutes a compact, 
yet highly discriminative descriptor of the local shape geometry.  

The notion of residue context, as proposed by us can be described as follows: given 
the protein backbone defined through the 3D coordinates of its constituent Cα-atoms, 
and a reference Cα-atom, consider the set of n-1 vectors originating from the reference 
Cα atom to all the other Cα-atoms of the backbone. These vectors describe the 
configuration of the entire backbone shape relative to the reference atom and can be 
thought of as to constitute its local shape context in 3D space. It may be noted that the 
set of n-1 vectors constitutes a rich description, since, as n (the number of Cα-atoms) 
increases, the representation of the backbone shape becomes exact. The distribution of 
the vectors centered at a reference Cα-atom can be succinctly represented using a 3D 
spherical histogram centered at the reference atom. Further, each of the vectors can be 
defined by three parameters in a spherical coordinate system: the radial distance 
r
r

corresponding to the distance between the reference Cα-atom and another Cα-atom, 
the azimuthal (longitude) angle θ in the x-y plane from the x-axis with 0 2θ π≤ ≤  and 
the polar (latitude) angle φ from the z-axis with 0 φ π≤ ≤ . Following [9], we require the 

3D spherical histogram centered on the reference Cα-atom to have the following two 
properties:  

• The descriptor needs to be more sensitive to nearby residues than residues that 
are farther away. This property corresponds to the importance of proximity in 
defining intermolecular interactions. To ensure this property, the magnitude of r 
is logarithmically discretized and the longitude angle is uniformly discretized in 
the range [0, 2π]. 

• Bins equidistant from the center should cover the same surface area. This 
property ensures that the representation is isotropic in space. To support it, the 
latitude angle ]2/,2/[ ππφ −∈ , is discretized non-uniformly, such that each iφ  
satisfies the relationship in Eq. (1), where the righthand side denotes the ith 
fraction of the surface area of the upper hemisphere: 
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From Eq. (1), the required discretization of the latitude angle is iφ = arcsin(i/N).  

Given a reference Cα-atom and a spherical histogram centered on it, the residue 
context of this Cα-atom is constituted by the distribution, within the bins of the 



 Residue Contexts: Non-sequential Protein Structure Alignment 81 

histogram, of the other n-1 Cα-atoms of the protein backbone, that fall within the 
radius r. Specifically, for a reference atom jCα , the histogram Hj of the relative 

coordinates of the remaining n-1 atoms is given as: 
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In Eq.(2), Cαj is the reference atom, Cαi indexes the set of neighboring atoms located 
within the radius r of the reference atom, and |.| denotes the number of the 
neighboring reference Cα-atoms that fall within the kth-bin of the histogram. An 
example, illustrating this concept is shown in Figure 1. Finally, given a molecule M, 
consisting of m alpha-Carbon atoms Cαi, i=1,…,m, its residue context-based 
description, denoted as R(M), consists of the set of m histograms Hi, with each 
centered on one of the alpha-Carbon atoms of M: R(M) = {H1, H2,…, Hm}. 

One important practical issue in defining residue contexts is that of the context scale 
(size), which is specified by the choice of the context radius r. A large r, which 
considers a more global environment around each residue, can be useful for simple 
alignments consisting of two proteins with high sequence and structural similarities. 
Conversely, a smaller r may be necessary for making difficult non-sequential 
alignments and aligning two proteins of low sequence and structural similarities. In such 
cases, a large residue context may be counter-productive since it would incorporate 
variances due to extensive insertions, deletions, repetitions, and conformational 
variability. In subsection 2.4 we further address the issue of automatic scale selection 
for alignment. 

 

Fig. 1. 3D backbone representations of 1AYJ (a,c) and its homolog 1MR4 (e) where positions of 
Cα-atoms are shown as red or blue dots. 3D vectors originating from reference residue j=9 and 
j=2 of 1AYJ to all other Cα-atoms are shown in (b) and (d),respectively. The corresponding 
“front” (180° <θ< 360°) and “back” (0° <θ< 180°) views of the residue contexts at these 
positions are shown in figures (g-h), and figures (i-j). One may note that the residue contexts are 
clearly distinct for these positions. In (f) the 3D vectors originating from reference residue j=2 of 
1MR4 are shown. Since 1MR4 is a homolog of 1AYJ, we expect residue contexts at similarly 
located Cα-atoms in 1AYJ and 1MR4 to be similar. The “front” and “back” views of the residue 
contexts at j=2 of 1MR4 are shown in figures (k) and (l). The reader may note the similarity of 
the residue contexts (at reference residue j=2) for 1AYJ and 1MR4 and be comparing the “front” 
and “back” views from figures (i) and (j) with the corresponding views in figures (k) and (l). In 
all the figures, darker bins are more heavily populated. 
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2.3   Efficient Matching of Residue Contexts 

The problem of comparing residue contexts can directly be interpreted as that of 
matching two histograms. Several measures have been proposed to address this 
problem and they can be broadly classified into two categories. Most fall into the first 
category of bin-by-bin dissimilarity measures. This includes χ2 statistics (used in [9] 
to compare 2D shape contexts), histogram intersection, Lp distances, Kullback-Leibler 
divergence, Jeffry divergence, and Jensen-Shannon divergence. A fundamental 
assumption underlying these techniques is that the domain of the histograms can be 
aligned. However, in practice, this assumption can be violated due to noise, sub-
optimal quantization (binning), different number of bins, or the inherent nature of the 
data. The second category of measures is called cross-bin measures. Cross-bin 
measures utilize the ground distance between representative features in different bins 
to compare both aligned and non-aligned bins. The earth-mover’s distance (EMD) [8] 
is an example of such a measure and is used by us.  

Given two residue contexts, defined in terms of their respective histograms P and 
Q, one of them can be interpreted as a mass distribution spread on the underlying 
space and the other as a collection of holes in that same space. If a unit of work 
corresponds to transporting a unit of mass by a unit of ground distance, then the 
matching problem can be defined as determining the least amount of work required to 
fill the holes. This precisely corresponds to the EMD between the two distributions. 
Following [12], we formalize our problem as follows: Let the first histogram be 
represented by a set of tuples P = {<p1, wp1>, <p2, wp2>,…,<pm, wpm>}, where the ith 
bin is represented by the tuple <pi, wi> with pi denoting an appropriately chosen bin 
representative (such as its mean, centroid, or medoid) and wpi the weight of the ith bin, 
given by the fraction of residues from the context that fall into this bin. Similarly, let 
Q = {<q1, wq1>, <q2, wq2>, …,<qm, wqm>} be the tuple set representing the second 
histogram and dij denote the ground distance between bins pi and qj (we use the 
Euclidean distance as the ground distance). Matching the residue contexts by 
computing the EMD requires solving the following minimization problem, where fij 
denotes the flow between pi and qj: 
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The minimization is subject to the constraints (4) – (7) below, where the constraint (4) 
ensures that the mass is moved in only one direction, constraint (5) and (6) ensure that 
the mass sent by bins in P and the mass received by bins in Q is limited to their 
weights, and constraint (7) requires that the maximum possible amount of mass is 
moved.  

 
 
 
 
 
Given the optimal flows fij obtained from solving the transportation problem as 
described above, the EMD between the two residue contexts is defined as:  
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In Eq. (8), the numerator denotes the resulting work and the denominator describes 
the total flow. 

2.4   Determining the Scale of the Residue Context 

The size of the environment around each residue of a protein chain is determined by 
the radius r which is logarithmically discretized. For arbitrary alignments it is not 
possible to determine, a priori, the value of r for the optimal context size. We use a 
data driven procedure where the optimal value of the radius is defined as the one 
which best captures the similarity between two sub-chains across all possible values 
of the radius. This is done by computing n cost matrices Cn, which correspondingly 
store the costs associated with residue matches using contexts of varying radii rn. The 
optimal cost matrix corresponds to the most similar contexts given by the lowest 
matching costs (Eq. 9) across the radii.  
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In Eq. (9), an and bnare the respective number of residues from protein chain A and B 
with context radii rn. Next, the entries in the optimal cost matrix are normalized to lie 
in the interval [low, high], with low set to -100 and high set to 100 using Eq. (10). 
Matching two histograms whose bins are identically populated yields a score of 100. 
An example illustrating the intuition underlying the notion of residue context-based 
description and matching is described in Fig. 1.  

2.5   AFP Generation and Scoring 

Given two structures to be aligned as input, we define an aligned fragment pair (AFP) 
as a correspondence of residues between fragments from each structure. Our definition 
of an AFP differs from the original definition given by Shindyalov and Bourne [10] in 
that we allow single-residue gaps in either fragments’ sequence to accommodate for 
single-residue insertions/deletions encountered in aligning structures displaying low 
sequence similarity. Larger gaps are naturally accommodated by the mechanics of our 
AFP chaining algorithm described later. Given the entire set of residues {p} from 
molecule A and {q} from molecule B, for the identification of AFPs, we first locate all 
triplets of residue pairs τij = {(pi-1,qj-1),(pi,qj),(pi+1,qj+1)} which occur continuously 
along a diagonal of the similarity matrix M such that Mi-1,j-1, Mi,j, and Mi+1,j+1 all exceed 
an AFP initiation threshold value t. The set of residues {q} is transformed such that the 
three pairs of residues defined by τ are optimally superimposed and thedistances 
between the residues of {p} and {q} are stored in a matrix Dij. Next, each triplet is 
extended in both the N-terminal and C-terminal directions based on the following two 
conditions, as long as the EMD score Mi+1,j+1 stays below an extension threshold eand 
the aligned distance of the extended correspondence does not exceed the aligned 
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distance of the C-terminal correspondence (prior to extension) by 3Å. The two 
conditions are: cond1: Mi+2,j+1 ≥ Mi+1,j+1 && Mi+3,j+2 ≥ Mi+2,j+2 && Di+2,j+1 < Di+1,j+1; 
cond2: Mi+1,j+2 ≥ Mi+1,j+1 && Mi+2,j+3 ≥ Mi+2,j+2 && Di+1,j+2 < Di+1,j+1. If only cond1 
holds, the correspondence (pi+2,qj+1) is added to the AFP. Similarly, if only cond2 
holds, (pi+1,qj+2) is added. Finally, if both conditions hold, then the correspondence 
with the lowest RMSD is added. The resulting set of AFPs F = {f} is filtered to ensure 
that an AFP contains a minimum of 4 residue correspondences. Further, AFPs that are 
completely contained within a larger AFP are discarded. Note that although each f ∈ F 
is unique in its entirety, AFPs are allowed to extend freely with partial overlap to avoid 
introducing bias based on the initial triplet locations. At this point, any two or more 
overlapping AFPs represent a collection of residue pair correspondences whose final 
alignment path has not yet been determined. This uncertainty is resolved during the 
subsequent AFP chaining step in section 2.6. 

The AFPs are next ranked using an AFP alignment score AS (Eq. 11) which is the 
weighted sum of two component scores; the structural score SS is defined simply as 
the sum of the similarity scores along the length l of the AFP (Eq. (12)).  
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The second component of the alignment score is the biochemical score BS. The 
biochemical score captures the likelihood of the evolutionary occurrence of each pair-
wise amino acid substitution as suggested by the residue correspondences defined by 
the AFP. Its use is motivated by the assumption that among structurally and 
functionally conserved proteins, the frequency of amino acid substitutions at a given 
site is correlated with the physicochemical similarities between exchanged amino 
acids. Thus by rewarding biochemical agreement between aligned residues, we seek 
to select a pool of AFPs that contain conserved functional alignments between two 
proteins. To compute the biochemical score BS, the Blosum62 matrix is used to 
estimate the likelihood of occurrence of each possible pair-wise amino acid 
substitution. Depending on the likelihood of substitution, each pair of aligned residues 
in an AFP earns a predefined numerical score towards the total biochemical score for 
the AFP as follows: the Blosum62 matrix values are first normalized over the interval 
[low, high] with low set to -100 and high set to 100. The normalized Blosum62 matrix 
Bij is computed using the following equation and values less than zero are reset to 
zero: 

)(
minmax
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lowhigh

Blosum
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opt
ij

ij −
−

+−
+=  (13)

In Eq. (13), max and min denote the highest and lowest values found in the Blosum62 
matrix. In our current investigations, the SS and BS components are given equal 
weight, that is, wSS = wBS =1. However, these weights can be changed, if needed, to 
emphasize either of the components.  

2.6   Chaining and Refinement Using Structural and Biochemical Scores 

Given two molecules A and B, the chaining process starts with the seed alignments 
captured by the AFPs. A crucial challenge in extending the seed alignments, is that of 
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avoiding spurious alignments. Specifically, during protein alignment numerous short 
AFPs of length 4~6 residues can be encountered which can be superimposed at low 
RMSD values. However, such alignments are often misleading. For example, two β-
strands of length 4~6 or two segments consisting of 1~2 turns of an α-helix are often 
structurally similar in any two protein. Thus, a strategy that simply minimizes RMSD 
can lead to incorrect alignments. We therefore chain the AFPs by using the alignment 
score AS defined earlier. It may be noted that this score consists of the EMD score 
(capturing topological local shape similarity) and the biochemical scores (reflecting 
biochemical similarity). The initial chain is constructed as follows: we begin with the 
set of k AFPs denoted as {fk}. This set is sorted by the AS score and the highest 
scoring AFP is denoted as f1. The initial alignment is cinit=f1. Next, an optimal (in the 
least square sense) Euclidean transformation T is calculated to align the subset of 
residues {q} from molecule B with the corresponding residues {p} from molecule A, 
where the correspondences are given by cinit. This optimal transformation T is applied 
to molecule B to give B* and the RMSD between subset {p} and transformed subset 
{q*} from B* is stored as the chain RMSD. Further, a chain alignment score CS is 
determined as follows: 

RMSD

ww
CS BSSS +

=  (14)

Subsequently, the remaining APFs in {fk} are treated as follows. Any AFPs that 
overlap with the residues contained in the current chain are discarded. Thus each 
residue pi contained in the chain must have a unique corresponding residue qj and vice 
versa. A non-overlapping AFP is added to the chain only if its addition increases the 
alignment score CS. After all AFPs have been considered, the resulting chain is stored 
in the set of chains C. The initial chaining process is repeated, substituting the next 
highest scoring AFP denoted as f2 for the initial seed alignment, and iterated for each 
of the top 50 AFPs. The highest scoring chain from C is passed to the refinement step. 

For the refinement of a chain, we first reduce {fk} to only include AFPs which 
overlap the immediate vicinity of a residue correspondence stored in the chain. Given a 
correspondence (pi,qj), its immediate vicinity is defined on an i x j alignment matrix  as 
the area enclosed by: (pi-δ,qj-δ),(pi-δ,qj+δ),(pi+δ,qj-δ), and (pi+δ,qj+δ). In all our experiments, 
δ is set to 3. As in the initial chaining step, each AFP in the reduced set is considered 
and included only if CS increases after its addition while giving priority to the new 
correspondences in case of overlap. Thus any redundant residue and its corresponding 
partner are removed from the current chain before the new correspondence given by 
the AFP is added. The chaining and refinement steps are iterated using the refined 
chain as input for each chaining step. The process is stopped when the chain alignment 
score CS converges or changes between successive iterations become smaller than a 
predefined threshold. Before the final alignment is output, the N and C-terminal 
correspondences of chained AFPs are briefly extended as described in section 2.5. 

3   Experimental Investigations and Results 

The RIPC set comprises 40 structural pairs that are problematic to align [1]. Each pair 
in this set is characterized by repetitions, extensive insertions and deletions, circular 
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permutations, and/or conformational variability. Human-curated reference alignments 
based on conservation of sequence and function are provided for 23 out of 40 protein 
pairs. Agreement to the reference alignments is measured for each pair by the fraction 
of correctly aligned residues, fCAR, numerically defined as: 

 fCAR= # of correctly aligned residues / # of reference pairs .      (15) 

We compared our performance against 3 non-sequential alignment methods 
(GANGSTA, TOPOFIT, STSA), and 4 sequential alignment methods (DALI [11], CE 
[8], MATT [12], FATCAT [13]) (Fig. 2). MATT and FATCAT are also flexible 
aligners that allow twists and translations to the protein backbone to accommodate for 
conformational variability.  

 

Fig. 2. Comparison of various methods’ performances on the RIPC reference set.  Box and 
whisker plot properties are as follows: bottom whisker – min sample, lower box boundary – 1st 
quartile, bolded line – median, upper box boundary – 3rd quartile, top whisker – max sample. 
The statistical median for each method was calculated from 23 samples (alignments) where the 
fCAR for each alignment served as a measure of agreement with the RIPC reference. 

Among the methods tested, Residue Context showed the highest agreement with 
the reference set (median = 96%) and Matt was second highest (median = 71%). 
Residue Context was the only method which correctly aligned at least one reference 
pair for each of the 23 alignments. The lowest fCAR obtained using our method was for 
the alignment of an E6AP-UbcH7 complex (d1d5fa_) to a HECT domain E3 ligase 
(d1nd7a_) for which 4 of 6 reference pairs were missed. The alignment requires 
accounting for considerable conformational variability to correctly align all reference 
pairs. DALI and FATCAT managed to correctly align all 6 reference pairs. The 
alignment of an L-2-haloacid dehalogenase (d1qq5a_) and E. Coli CheY (d3chy__) 
confounded most methods. This alignment involves a circular permutation, and also 
extensive insertions are present in d1qq5a_ with respect to d3chy__. We found that 
non-sequential methods as well as sequential methods produced inconsistent 
alignments. Only Residue Context was able to align all 3 reference residues correctly. 
On the other hand, Topofit and STSA missed all 3 reference residues (Table 1). When 
only considering non-sequential alignments, Residue Context had the highest median 
and mean among 4 methods at 94% and 89%, respectively. Topofit had the 2nd highest 
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median, but also displayed the greatest inconsistency between alignments as 
evidenced by the disparity between its Q3 (94%) and Q1 (25%) values. Residue 
Context was the most consistent (Q3 = 100%; Q1 = 81%) method across the dataset. 

Table 1. Statistical comparison of performances of three non-sequential methods on non-
sequentially related pairs from the RIPC set.The mean, median, 1st quartile (Q1), and 3rd 
quartile (Q3) were calculated using fCAR values from 10 non-sequential alignments of the RIPC 
set. The highest scores (including ties) for each alignment and statistical category are bolded. 

 Residue Context STSA 
Aligned Pair Length RMSD Aligned Total fCAR Length RMSD Aligned Total fCAR 

d1nkl__-d1qdma1 73 2.61 54 72 0.75 74 2.26 72 72 1.00 
d1nls__-d2bqpa_ 221 1.44 6 6 1.00 212 1.50 2 6 0.33 
d1qasa2-d1rsy__ 113 1.87 72 75 0.96 111 1.94 67 75 0.89 
d1b5ta_-d1k87a2 227 3.80 5 8 0.63 188 2.84 5 8 0.63 
d1jwyb_-d1puja_ 148 3.34 11 12 0.92 116 2.34 9 12 0.75 
d1jwyb_-d1u0la2 124 3.69 11 11 1.00 99 2.68 8 11 0.73 

d1nw5a_-d2adma_ 166 3.96 13 13 1.00 120 2.57 11 13 0.85 
d1gsa_1-d2hgsa1 83 3.29 4 5 0.80 229 2.59 2 5 0.40 
d1qq5a_-d3chy__ 107 3.48 3 3 1.00 92 2.73 0 3 0.00 
d1kiaa_-d1nw5a_ 162 3.83 10 12 0.83 90 3.37 0 12 0.00 

 Mean Q1 median Q3  mean Q1 median Q3  
 0.89 0.81 0.94 1.00  0.56 0.35 0.68 0.82  
 GANGSTA Topofit 

Aligned Pair Length RMSD Aligned Total fCAR Length RMSD Aligned Total fCAR 

d1nkl__-d1qdma1 74 2.41 72 72 1.00 56 1.65 28 72 0.39 
d1nls__-d2bqpa_ 222 3.23 4 6 0.67 212 1.01 6 6 1.00 
d1qasa2-d1rsy__ 115 2.95 44 75 0.59 105 1.16 71 75 0.95 
d1b5ta_-d1k87a2 181 3.34 5 8 0.63 134 1.85 1 8 0.13 
d1jwyb_-d1puja_ 137 2.83 9 12 1.75 108 1.65 11 12 0.92 
d1jwyb_-d1u0la2 111 2.60 11 11 1.00 99 1.58 11 11 1.00 

d1nw5a_-d2adma_ 146 2.98 13 13 1.00 93 1.61 11 13 0.85 
d1gsa_1-d2hgsa1 75 2.38 2 5 0.40 66 1.44 1 5 0.20 
d1qq5a_-d3chy__ 101 3.36 2 3 0.67 63 1.65 0 3 0.00 
d1kiaa_-d1nw5a_ 150 2.94 8 12 0.67 132 1.73 11 12 0.92 

 Mean Q1 median Q3  mean Q1 median Q3  
 0.74 0.64 0.67 0.94  0.64 0.25 0.89 0.94  

In the next experiment we compared the performances of three non-sequential 
methods on the alignment of structures involving the Rossmann fold (data from [3]). 
GANGSTA generally produced the longest alignments while Residue Context 
produced alignments of comparable lengths at significantly lower RMSDs (Table 2). 
Topofit generated significantly shorter alignments at lower RMSDs. Examples of 3D 
structural representations of alignments generated by Residue Context are shown in 
Figure 3. 

 

Fig. 3. 3D structural representations of 3 non-sequential alignments involving the Rossmann 
fold. (a-c) obtained using the Residue Context method  
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Table 2. Comparison of three methods on alignments involving the Rossmann fold 

 Residue Context GANGSTA Topofit 
Structures Length RMSD Length/RMSD Length RMSD Length/RMSD Length RMSD Length/RMSD 

2uagA1_1f0kA 83 2.63 31.6 85 3.52 24.1 41 1.34 30.6 
2uagA1_1geeA 85 2.93 29.0 89 3.28 27.1 60 1.56 38.5 
2uagA1_1dih_1 83 2.46 33.7 82 3.07 26.7 63 1.60 39.4 

4   Conclusions 

This paper considers the problem of non-sequential protein structure alignment. We 
have presented a novel approach that involves determining initial (seed) 
correspondences using a rich descriptor that can capture structural similarities of the 
local 3D environment around arbitrary residues of interest. Based on these seed 
correspondences the alignments are constructed using geometric and biochemical 
characteristics of the involved residues. Experiments indicate that, in terms of 
alignment quality, the proposed method either exceeds or is comparable with leading 
methods at the state of the art.  
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Abstract. Identifying essential proteins is important for understanding
the minimal requirements for cellular survival and development. Fast
growth in the amount of available protein-protein interactions has pro-
duced unprecedented opportunities for detecting protein essentiality on
network level. A series of centrality measures have been proposed to dis-
cover essential proteins based on network topology. However, most of
them treat all interactions equally and are sensitive to false positives. In
this paper, six standard centrality measures are redefined to be used in
weighted network. A new method for weighing protein-protein interac-
tions is proposed based on the combination of logistic regression-based
model and function similarity. The experimental results on yeast net-
work show that the weighting method can improve the performance of
centrality measures considerably. More essential proteins are discovered
by the weighted centrality measures than by the original centrality mea-
sures used in unweighted network. Even about 20% improvements are
obtained from closeness centrality and subgraph centrality.

Keywords: essential protein, protein interaction network, centrality.

1 Introduction

In the post-genome era, the developments of high-throughput methods, such
as yeast-two-hybrid and mass spectrometry, have produced vast amounts of
protein-protein interaction data, which make it possible for us to study genes
and proteins in network level [1]. The corresponding protein interaction net-
works provide useful insights into cellular effects and functional associations
between proteins[2]. Recently, much attention has been paid to the study of
the properties of protein interaction networks, including the global properties
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such as“scale-freeness” [3] and “small-world behavior” [4], modularity [5,6] and
disassortativity [7].

The analysis of protein interaction networks is to discover the interrelation-
ship between the topological properties and the biological characteristics. An
intriguing question is whether the essentiality of a protein can be explained by
its placement in the network. A protein is said to be essential for an organism
if a knock-out results in lethality or infertility, i.e., the organism cannot survive
without it[8,9]. It has been observed in several species, such as Saccharomyces
cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster [10,11,12], that
proteins with high degree (or hubs) in the network are more likely to be es-
sential than those selected by chance [13]. From the topological perspective,
the removal of such high-degree nodes makes the network collapse into isolated
clusters. From a biological view, a few highly connected proteins generally guar-
antee the functional integrity of the network. This phenomenon is commonly
referred to as the centrality-lethality rule, which was first observed by Jeong
and colleagues[13]. The centrality-lethality rule demonstrates a high correla-
tion between a node’s topological prominence in a protein interaction network
and its essentiality. Since then, much attention has been given to the study of
high-degree nodes or hubs in protein interaction networks [11,14,15,16,17,18,19].
Most of the authors confirmed the correlation between degree centrality and pro-
tein essentiality [11,14,18,19] and some authors examined the reasons for such a
correlation[16,17].

Several other topological properties of nodes, such as betweenness centrality
[20,21], closeness centrality[22], subgraph centrality[23], eigenvector centrality[24],
and information centrality[25], have also been proposed for the discovery of essen-
tial proteins, besides the degree centrality. The use of centrality measures based on
network topology has become an important means in the study of essential pro-
teins, which is fundamental in many application [26]. For example, the essential
genes in pathogenic organisms can be taken as the potential targets for new an-
tibiotics [27] and the identification of essential genes and non-essential genes is
valuable for rational drug design[28].

The current centrality measures treat all edges in the network equally. How-
ever, some protein-protein interactions are more important than others in reality
[16]. Specially, the protein interaction data generated by high-throughput tech-
nologies include high false positives[29,30]. Intuitively, the false positives and the
real physical interactions can not be treated equally. In this paper, we propose
a new method for evaluating the confidence of each interaction and redefined
six standard centrality measures in weighted network. The experimental results
show that our consideration is particularly meaningful in the discovery of es-
sential proteins. More essential proteins are detected by the weighted centrality
measures than by the original centrality measures used in unweighted network.

2 Centrality Measures and Evaluation

A protein interaction network is represented as an undirected graph G(V, E)
with proteins as nodes and interactions as edges. Recently, much attention has
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been given for the relationship between the centrality of a protein within an
interaction network and its essentiality for the organism’s survival. There are
several commonly used centrality measures for predicting a protein’s essentiality,
such as degree centrality (DC)[13], betweenness centrality (BC)[20,21], closeness
centrality (CC)[22], subgraph centrality(SC)[23], eigenvector centrality(EC)[24],
and information centrality(IC)[25]. These different centrality measures have been
described in recent reviews [19,31,32].

Though previous authors have tested these centrality measures in protein
interaction networks, they did not take the universal false positives into consid-
eration. However, the protein-protein interaction data obtained from large scale,
high-throughput experiments generally contain false positives [29,30]. To evalu-
ate how the false positives affect the discovery of essential proteins, we reassessed
systematically the six centrality measures (DC, BC, CC, SC, EC, and IC) by
using three data sets with different confidence levels. The three test data sets
were from von Mering et al. 2002 [29]. To describe simply, we name the three
test data Y2k (2455 interactions), Y11k (11000 interactions), and Y45k (45000
interactions), respectively, according to the number of edges included in them.
Y2k, which consists of the first 2455 reliable interactions, is a subset of Y11k,
and Y11k is a subset of Y45k. A list of essential genes was obtained from the
MIPS database[33]. For each centrality measure, we use it to rank all proteins
in the network according to their centrality values and select a certain num-
ber of the top proteins. Similar to most experiments[19], we also select the top
15%, 20%, and 25% proteins as essential candidates. The precision, scored as
TP/(TP+FP), is used to validate the essential proteins discovery, where TP,
true positives, are true essential proteins that are in the discovery and FP , false
positives, are non-essential proteins that are in the prediction. The precision of
the six centrality measures for uncovering essential proteins in the three test
data is shown in Fig.1.
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Fig. 1. The precision for essential proteins discovery in three protein interaction net-
works with different confidence levels. (a)Top 15% proteins are selected, (b)Top 20%
proteins are selected, (c)Top 25% proteins are selected.

From Fig.1 we can see that Lower precision is obtained for all centrality mea-
sures (DC, BC, CC, SC, EC, and IC) when being used in network of less confi-
dence level to predict the same proportion proteins. As shown in Fig.1 (a), from
the high reliable network Y2k to the middle reliable network Y11k, there are
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more than 10% decrements. When the unreliable network Y45k is used, all these
centrality measures perform on even much less precision. The similar downward
trends of precisions for DC, BC, CC, SC, EC, and IC can also be seen in Fig.1
(b) and (c) when the top 20% and 25% proteins are selected. As one can seen in
Fig.1, the precision of essential proteins prediction based on network topology
depends heavily on the reliability of the network. Therefore, the confidence of the
protein-protein interactions should be taken into account when predicting the
essential proteins based on network topology. In the following section, we will
redefine the six standard centrality measures in weighted protein interaction
networks.

3 Definition of Centrality Measures in Weighted Protein
Interaction Network

3.1 Definition of Weighted Centrality Measures

A weighted protein interaction network can be represented as a weighted undi-
rected graph G = (V, E). Each edge (i, j) ∈ E is assigned with a weight wi,j ,
which represents the probability of this interaction between node i and node
j being a true positive. To describe simply, the centrality measures (DC[13],
BC[20,21], CC[22], SC[23], EC[24], and IC[25]) of a weighted graph G are ac-
cordingly marked as DCW , BCW , CCW , SCW , ECW , and ICW .

Definition 1. The weighted degree centrality DCW (i) of a node i is the sum of
weights of the edges connecting node i and its neighbors.

DCW (i) =
∑
j∈Ni

wi,j (1)

where Ni is the set of neighbors of node i.

Definition 2. The weighted betweenness centrality BCW (i) of a node i is equal
to the average fraction of shortest paths that pass through the node i.

BCW (i) =
∑

s

∑
t

σst(i)
σst

, s �= t �= i (2)

where σst denotes the total number of shortest paths between s and t and σst(i)
denotes the number of shortest paths from s to t that pass through the node i.

The main difference between BCW (i) and BC(i) is the calculation of shortest
path. In a unweighted graph G, a shortest path between two nodes is a path that
has the minimum constituent edges. However, the shorted path may be misdi-
rected with the false positives in protein interaction networks. For example, of
all the three paths between node i and node j showed in Fig.2, the path {i,v1,j}
will be the choice for the shortest path without regard to the edges’ reliability.
As a matter of fact, however, the path {i,v4,v5,v6,j} is a real pathway from
node i to node j. Therefore, we use ci,j = 1/wi,j to describe the cost of edge
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Fig. 2. The shortest path from node i to node j is {i,v4,v5,v6,j} with the lowest cost
of 4.7

connecting node i to node j. The cost of a path is the sum of all the costs of
its constituent edges. For example, in Fig.2, the cost of path {i,v1,j} is 8.0, the
cost of path {i,v2,v3,j} is 6.4, the cost of path {i,v4,v5,v6,j} is 4.7. Obviously,
the path {i,v4,v5,v6,j} is more likely to be a real pathway with the lowest cost.
Therefore, the shortest path between a given pair of nodes is the path that has
the lowest cost. In this paper, we mark the cost of a shortest path p from node
i to node j as cp(i, j) for simple and clear description.

Definition 3. The weighted closeness centrality CCW (i) of a node i in a weighted
graph G can be defined as:

CCW (i) =
1∑

j 
=i cp(i, j)
(3)

CCW (i) is a global metric which describes how the given node i connects to
other nodes.

Definition 4. The weighted subgraph centrality SCW (i) of a node i in a
weighted graph G can be defined as:

SCW (i) =
∞∑

l=0

μl(i)
l!

(4)

where μl(i) denotes the number of closed walks of length l which starts and ends
at node i.

Definition 5. The weighted eigenvector centrality ECW (i) of a node i in a
weighted graph G is defined as the ith component of the principal eigenvector
of A, where A is an edge weight matrix. Let λ be an eigenvalue and e be the
eigenvector. Then for an equation λe = Ae, we can obtain ECW (i) = e1(i),
where e1 corresponds to the largest eigenvalue of A.

Definition 6. The weighted information centrality ICW (i) of a node i in a
weighted graph G is defined as:

ICW (i) = [
1
n

∑
j

1
Iij

]−1 (5)
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where n is the number of nodes in graph G and Iij = (rii + rjj − rij)−1. Let
D be a diagonal matrix of the weighted degree of each node and J be a matrix
with all its elements equal to one. Then, we get R = (rij) = [D −A + J ]−1. For
computational purposes, Iii is defined as infinite. Thus, 1

Iii
= 0.

3.2 Construct Weighted Protein Interaction Network

To construct weighted protein interaction network, we assign confidence score
to each interaction by combining two aspects: (1) observing its experimental
evidences; (2) evaluating its function similarity.

For aspect (1), we use the logistic regression-based model employed in [34,35]
to examine the reliability of an interaction. For each interaction, its reliability
score is determined by its experimental evidences and the number of observations
in each experimental type. The experiments are classed into four categories: co-
immunoprecipitation screens, yeast two-hybrid assays, large scale experiments
and small scale experiments. The reliability score of an interaction between node
i and node j is marked as LO(i, j) for it is computed based on logistic regression.

For aspect (2), we calculate the function similarity of two connected proteins
based on GO (Gene Ontology) semantic similarity. There have been several
methods for computing the similarity between GO terms [36,37,38]. Here, we
select the widely used method proposed by Lin[37], in which the similarity of
two GO terms c1 and c2 is defined as:

sim(c1, c2) =
2 maxc∈CT (c1,c2)(log p(c))

log p(c1) + log p(c2)
(6)

where p(c) denotes the probability of encountering term c in the target species
and CT (c1, c2) denotes the sets of common ancestors of term c1 and term c2.

Let Fi and Fj denote the sets of function annotations for protein i and protein
j, respectively. Then, the function similarity SF (i, j) of protein i and protein j
can be defined as:

SF (i, j) = maxc1∈Fi,c2∈Fj (sim(c1, c2)) (7)

To satisfy that the confidence score of each interaction should be between 0 and
1, the following normalization operation is performed.

S∗
F (i, j) =

SF (i, j) − Min SF

Max SF − Min SF
(8)

where Max SF and Min SF denote the maximum value and minimum value of
all the interactions’ function similarity scores, respectively.

By considering both the reliability measurement and the function similarity,
we define the confidence score Cscore(i, j) of an interaction connecting protein i
and protein j as formula (9):

Cscore(i, j) =
LO(i, j) + S∗

F (i, j)
2

(9)
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4 Results

To evaluate whether our method for evaluating the confidences of protein-protein
interactions works and to investigate whether the definitions of centrality mea-
sures in weighted protein interaction network outperform that in unweighted
network, we implement them to predict the essentiality of proteins from Sac-
charomyces cerevisiae for its well characterized by knockout experiments and
widely used in previous works[19]. The protein-protein interactions of Saccha-
romyces cerevisiae are downloaded from DIP database[39]. The interaction map
is considered as a network in which proteins are represented as nodes and inter-
actions connecting two proteins are represented as edges. There are 4746 proteins
and 15166 interactions in total without self-interactions and repeated interac-
tions. For the functional annotation of the proteins, we use functions classified as
molecular function by GO[40]. The lethal proteins are obtained from MIPS[33].

Proteins are ranked according to their values of centrality measures and a
certain top percentage of proteins are selected as candidates for essential pro-
teins. Then we determine how many of them are essential. For evaluation, we
compare the results of centrality measures in weighted network against those in
unweighted network. The comparison results are shown in Fig.3.

In Fig.3 we illustrate the number of essential proteins identified by DCW ,
BCW , CCW , SCW , ECW and ICW as well as by DC, BC, CC, SC, EC and
IC with the top 10%, 15%, 20% and 25% of proteins in the protein interac-
tion network. From Fig.3 we can see that all the weighted centrality measures
perform significantly better than the unweighted centrality measures in the se-
lection of essential proteins in the yeast protein interaction network. Especially,
the improvements of SCW and CCW are remarkable for that about 20% extra
essential proteins are detected by SCW and CCW than by SC and CC. The
results also indicate that all the centrality measures based on topological char-
acters are sensitive to the interactions’ confidence, which in turn illustrate that
effective weighting methods are important.

Take the simplest method DC for example, low-connectivity proteins nega-
tived by it may be essential. On the contrary, non-essential proteins with high
interactions may be false predicted. In Fig.4, we give three examples of essen-
tial proteins: YDR356W, YNL216W, and YBR060C with 8 interactions. Their
weighted degrees are all larger than 4.5. By contrast, the three examples shown
in Fig.5 which have more than 20 interactions are validated to be not essential.
Their weighted degrees are smaller than 4.0. Of course, we can not say that
DCW can identify all the essential proteins negatived by DC and filtered all
the non-essential proteins false predicted by DC. However, more essential pro-
teins are discovered by DCW than by DC. This phenomenon is more obvious
for SCW and SC, CCW and CC, BCW and BC as they are all based on the
calculation of path length. And, false positives affect heavily on the calculation
of path length as we have discussed previously.

To evaluate all the centrality measures more generally, we cite the jackknifing
methodology developed by Holman et al.[41]. As shown in Fig.6, proteins are or-
dered by highest to lowest values of centrality measures and the cumulative count
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Fig. 3. Comparison of the number of essential proteins that selected from unweighted
network and that selected from weighted network by ranking proteins according to
their values of centrality measures

           (a)                               (b)                              (c)

Fig. 4. Examples of low-connectivity essential proteins

of essential proteins is plotted. The area under the curve (AUC) for the weighted
centrality measures and that for the unweighted methods are compared. In ad-
dition, an ideal ranking is plotted with all essential proteins artificially placed at
the beginning of the list. Moreover, 10 random assortments are also plotted for
comparison. As can be seen in Fig.6, of all the weighted centrality measures the
sorted curves appear to be better than their corresponded unweighted curves.
More over, all the sorted curves of centrality measures appear well differentiated
from the randomized sorting, which indicates that the discovery of essential pro-
teins based on topological characters are statistical significance.

The above analysis demonstrates that the weighted centrality measures are ef-
fective in predicting protein essentiality even false positives existed in the protein
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Fig. 5. Examples of high-connectivity non-essential proteins
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Fig. 6. Essential proteins discovery is validated by a jackknife methodology. The X-axis
represents the ranked proteins in the yeast protein interaction network, ranked from left
to right as highest to lowest values of centrality measures. The Y-axis is the cumulative
count of essential proteins with respect to the ranked proteins moving left to right. Line
A is the ideal ranking. Line B is the sorting by weighted centrality measures. Line C
is the ranking by unweighted centrality measures. Line D are 10 random assortments.

interaction network. Then, one question is whether the weighted centrality mea-
sures are also valid in high confidence protein-protein interactions. We get the
top 5283 high reliability interactions from DIP[39] as Core dataset. There are
2373 proteins in total, of which 666 proteins are essential. In Table 1, a compar-
ison of the precision of the weighted centrality measures: DCW , BCW , CCW ,
SCW , ECW and ICW , and that of the unweighted ones: DC, BC, CC, SC, EC
and IC is shown both in the original protein interaction network (All PPIs) and
the cleaned network (Core PPIs). The comparison result shows that the weighted
centrality measures perform well both in the high positive protein interaction
network and the high confidence network.
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Table 1. The precision of essential protein discovery on original protein interaction
network (All PPIs) and the cleaned network (Core PPIs)

DCW DC BCW BC CCW CC SCW SC ECW EC ICW IC

All
PPIs

Top 10% 0.46 0.44 0.39 0.36 0.46 0.36 0.53 0.44 0.47 0.44 0.47 0.44

Top 15% 0.45 0.42 0.37 0.34 0.42 0.35 0.48 0.39 0.42 0.39 0.45 0.42

Top 20% 0.42 0.39 0.34 0.32 0.39 0.32 0.44 0.37 0.39 0.37 0.41 0.39

Top 25% 0.40 0.37 0.34 0.30 0.37 0.30 0.41 0.33 0.37 0.34 0.39 0.36

Core
PPIs

Top 10% 0.50 0.50 0.44 0.42 0.42 0.39 0.55 0.52 0.53 0.42 0.47 0.47

Top 15% 0.49 0.47 0.41 0.40 0.40 0.37 0.50 0.47 0.47 0.39 0.45 0.45

Top 20% 0.47 0.47 0.41 0.39 0.41 0.36 0.48 0.43 0.44 0.37 0.44 0.41

Top 25% 0.44 0.43 0.39 0.37 0.40 0.36 0.46 0.41 0.43 0.36 0.42 0.38

5 Conclusions and Future Work

By assessing the performance of six standard centrality measures for the discov-
ery of essential proteins in different confidence-level networks, we find that the
centrality measures based on network topology are very sensitive to false posi-
tives. Thus, we introduce a new weighing method for evaluating the confidence
of protein-protein interactions. The experimental evidences are considered by
using the logistic regression-based model. And function similarity between pro-
teins are also considered in our method. Based on the new weighting method,
we construct a weighted protein interaction network and redefine the six stan-
dard centrality measures in weighted network. The experimental results show
that: (1)the weighting method can improve the performance of centrality mea-
sures considerably; (2)the weighted centrality measures are significantly to be
better than the original centrality measures used in unweighted network, Even
about 20% improvements are obtained from closeness centrality and subgraph
centrality; (3)the weighted centrality measures perform well both in the high pos-
itive networks and high confidence networks; (4)the prediction based on network
topology is significantly better than random selection.

The proposed weighing method can also be used in other fields, such as iden-
tification of protein complexes and functional modules. As future work, it would
be interesting to apply this weighing method to other studies. Moreover, analysis
of the relation among different centrality measures and exploitation of an en-
semble approach for integrating these different types of prediction methodologies
are also our future work.
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Abstract. Enabled by rapid advances in sequencing technology, metage-
nomic studies aim to characterize entire communities of microbes bypass-
ing the need for culturing individual bacterial members. One major goal of
such studies is to identify specific functional adaptations of microbial com-
munities to their habitats. Here we describe a powerful analytical method
(MetaPath) that can identify differentially abundant pathways in metage-
nomic data-sets, relying on a combination of metagenomic sequence data
and prior metabolic pathway knowledge. We show that MetaPath outper-
forms other common approaches when evaluated on simulated datasets.
We also demonstrate the power of our methods in analyzing two, publicly
available, metagenomic datasets: a comparison of the gut microbiome of
obese and lean twins; and a comparison of the gut microbiome of infant
and adult subjects. We demonstrate that the subpathways identified by
our method provide valuable insights into the biological activities of the
microbiome.

Keywords: Metagenomics; Metabolic Pathway.

1 Introduction

Metagenomics is a new scientific field that involves the analysis of organismal
DNA sequences obtained directly from an environmental sample, enabling stud-
ies of microorganisms that are not easily cultured in a laboratory [1]. Metage-
nomic studies, pioneered in the early 2000s [2], have recently increased in number
and scope due to the emergence of next generation sequencing technologies. Due
to the difficulty of assembling entire organisms from a metagenomic data-set,
most analyses take a gene-centric view, treating the community as an aggre-
gate and ignoring the exact assignment of genes to individual organisms. In
fact, it can be argued that the environment is better characterized by its gene
complement than by its taxonomic composition, given that similar biological
functions can be performed by microbes of distinct taxonomic origins [3]. The
functional profile for a sample can be recovered by mapping sequences to gene
families [4], subsystems [5] or metabolic pathways [6]. The relative abundance of

M. Borodovsky et al. (Eds.): ISBRA 2010, LNBI 6053, pp. 101–112, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



102 B. Liu and M. Pop

each functional category can be estimated by counting how many sequences are
assigned to each category, and this information is the basis for detailed compar-
isons of the functional potential of different functions. In a typical comparative
metagenomics experiment, sequences are generated from a collection of samples
belonging to two groups, for example, obese or lean twins [3], and healthy infants
or adults [7]. An important biological problem is to find differentially abundant
functional signatures (e.g., genes or metabolic pathways) that are selected for by
their local environments. Traditional analysis compares the relative abundances
of the categories one-at-a-time between different phenotypes, and computes the
significance using one of several statistical approaches [8,9,10]. When comparing
communities at the gene family level, many functional categories are commonly
found to be differentially abundant, even after correcting for multiple hypothesis
testing [3,7]. The interpretation of these data can be daunting. An alternative
approach focuses on functional subsystems and metabolic pathway comparisons
[11], the number of which is much smaller than gene families. Results at these
levels are easier to interpret and can provide a stronger evidence of distinct
functional capacities than at the level of individual gene families. Such analyses,
however, can be unnecessarily coarse. For example, the use of KEGG pathways
as a basis for analysis is complicated by the following issues: (1) the definitions
of pathways in KEGG are coercive, and the interactions between these pathways
are ignored; (2) the genes in a pathway may not be fully covered by the identified
genes in a metagenomic sample; (3) significant differences in the abundance of
certain genes may be masked once the abundance of all genes in a pathway is
aggregated.

To address these problems, we introduce a general method (MetaPath) for
searching the global metabolic pathway to find differentially abundant finer-
level subpathways. For the purposes of this paper we define a subpathway to be
a connected set of genes that is statistically enriched or depleted in one group of
samples. Underlying our approach is a statistical scoring system that captures
the differential abundance for a given subpathway, combined with a search al-
gorithm, based on a maximum weighted subgraph heuristic, for indentifying the
highest scoring subpathways. Unlike previous approaches, MetaPath explicitly
searches significant subpathways in the global metabolic pathway (rather than
the KEGG-defined pathways), enabling us to detect subpathways spanning pre-
defined containers. In addition, we developed rigorous statistical methods that
take into account the topology of the network when testing the significance of the
subpathways. Using simulated data-sets, we demonstrate that Metapath outper-
forms previously described approaches for comparing biological networks based
on abundance data. We show that our findings are more robust to noisy data than
the results of single gene comparisons, and that MetaPath can find finer-level
subpathways than can be found by comparing predefined KEGG pathways. We
also discuss the biological significance of the results derived from the application
of MetaPath to actual metagenomic data-sets, demonstrating that the output
from MetaPath is easy to interpret and provides valuable biological insights. The
software is freely available at http://cbcb.umd.edu/~boliu/metapath/

http://cbcb.umd.edu/~boliu/metapath/
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2 Methods and Datasets

2.1 Datasets

We test our methods on two previously published metagenomic datasets, which
were downloaded from the NCBI Trace Archive or Short Read Archive databases:
(1) Gut Microbiomes from Obese and Lean Twins [3]; (2) Metagenomes from
Adult- and Infant-Type Gut Microbiomes [7]. Each dataset is divided into two
populations of distinct phenotypes. The metabolic pathway data were down-
loaded from the KEGG pathways database [6]. The metabolic information is
represented as a graph where nodes are metabolic substrates, and edges are
molecular reactions (Fig. 1). The edges could be unidirectional or bidirectional
depending on whether the corresponding reaction is reversible. Multiple reactions
related to a same biological process are aggregated by KEGG into a pathway. In
addition, we refer to the graph comprising all reactions in KEGG as the global
metabolic pathway. Metagenomic sequences are annotated through BLASTX
searches against KEGG genes database. The abundance of each molecular reac-
tion is estimated as the number of metagenomic sequences mapped to it. Note
that more accurate abundance estimates can be obtained by taking into ac-
count the length of individual genes [12] and we plan to explore the use of such
estimates (and the associated statistics) in future versions of our software.
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Sequences
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Fig. 1. Schematic diagram of our methods. Sequences from each sample are annotated
against KEGG database and mapped to reactions in pathways leading to an abundance
matrix where the rows are different reactions and columns are samples. Then p values
are computed for all reactions using Metastats [9], converted into Z values, then greedy
search is performed on the edge-weighted graph to find maximum weighted subpath-
ways. Finally, we estimate the null distribution of the subpathway score by randomly
permuting the sample labels, and compute the corresponding p values.
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2.2 Scoring Metabolic Subpathways

To score the biological activity of a particular subpathway, we first use Metas-
tats [9] to calculate the significance of differential abundance for each reaction
between two groups. Under the null hypothesis, the relative abundances are ran-
dom and have the same distribution across phenotypes, thus the p values follow
a uniform distribution from 0 to 1. Based on this assumption, p values can be
converted to Z scores [13]. Because Metastats performs a two-tailed test for each
reaction, the two-tailed p values can be converted back to the original Z values
using the following equation:

Zi =
{

CDF−1
sn (1 − pi/2)×−1 , if mean(G1) < mean(G2)

CDF−1
sn (1 − pi/2) , if mean(G1) > mean(G2) (1)

CDF−1
sn is the inverse cumulative density function of standard normal distribu-

tion; G1 and G2 represent populations 1 and 2. Using this formula, if a reaction
is more abundant in population G1, then its Z score will be positive and vice
versa. We are specifically interested in finding a pathway whose reactions are ei-
ther enriched or depleted as a whole, as apposed to previous approaches [13][14]
that identify active or perturbed subnetworks, which may contain a mixture of
enriched and depleted components. We define the aggregate score for a particu-
lar subpathway to be the sum of the Z scores over all reactions contained within
it: Z = 1√

k

∑
1,k Zi.

We attempt to find pathways that maximize the cumulative Z -score defined
above. Unfortunately, this problem is NP-hard, equivalent to finding a maximum-
weight subgraph [13]. Several approaches to solving this problem have been pre-
viously proposed: [13] used simulated annealing, but this heuristic is slow; [14]
used integer linear programming that can find provably optimal subpathways
quickly, but it requires the commercial software CPLEX which is not available
to the general public (re-coding this algorithm using other freely available ILP
solvers is beyond the scope of this paper. Here we rely on a greedy heuristic that
is fast, and, while not guaranteed to find maximally scoring pathways, performs
well in practice. We restrict our search to pathways of a fixed size k, in order
to enable the computation of the statistical significance of pathways. This re-
striction enables us to more accurately compute the null distribution of pathway
scores that is highly dependent on the size. The algorithm we use:

Input: A metabolic pathway graph G=(V, E), where V and E are reactions;
a set of weight values Z associated with each edge in graph G; a number k
which determines the size of subpathway.
Output: A subpathway Gmax of G and its score Wmax.
Initialize Wmax to 0;
for all edge ei in E do

Initialize Gtem by including ej ;
for i = 1 to k do

Pick ej which has the highest weight for all edges adjacent to Gtem;
end for
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Include ej to Gtem;
Calculate the score Wtem of Gtem;
if Wtem > Wmax then

Wmax = Wtem;
Gmax = Gtem;

end if
end for
Output Gmax and its score Wmax

This algorithm tries to find a connected subpathway with k edges, which can
have any arbitrary structure. However, it is believed that in metabolic pathway,
chains are especially more biologically meaningful and interesting, because they
attempt to capture the structure of a series of reactions that are successively
connected. To allow this idea, we modify line 5 of the above algorithm to Pick
an edge ej which has the highest weight of the edges that are adjacent to and
have the same direction with ej−1. Both searching algorithms are implemented
in our program. In addition, we also compute the top m high-scoring pathways
by iteratively removing the edges in the graph associated with pathways already
considered by our algorithm.

2.3 Computing the Significance of Subpathways

The null score distribution for a specific subpathway can be estimated by permut-
ing the sample labels for the reactions and computing the scores of the permuted
subpathways. The significance p value is estimated as the number of random per-
mutations that produce higher scores than subpathways in the original dataset.
The p-value computed through this approach (termed p1 throughout the rest of
the paper), however, ignores the topology of the underlying network, potentially
leading to incorrect conclusions. For example, assume every edge is connected
with all other edges in the global metabolic pathway. The best subpathway of
size k is simply composed of the top k significant edges. This means whenever
there are significant reactions, which may simply come from noise, they will form
a significant subpathway. To address this problem, we compute another p value
(termed p2), relying on a topological definition of the null distribution of sub-
pathway scores. Specifically, instead of treating each pathway as a bag of genes,
we estimate the distribution of scores for actual pathways identified within the
underlying metabolic network. As before, this null-distribution depends on the
length k of a pathway. The p2 value is calculated as follows for a subpathway
of size k: (i) Permute the reaction scores (row labels of the abundance matrix)
of the global metabolic pathway (Fig. 1). (ii) Perform greedy search to find the
maximum weighted subpathway of size k. (iii) Repeat step 1 and step 2 for
1000 times, and generate 1000 scores (null distribution). (iv) The p2 value is the
proportion that we see scores higher than Z. The algorithm described above is
parameterized by the size k of pathways of interest. MetaPath runs this algo-
rithm for values of k within a user-defined range (default 2-10). Redundancy in
the pathways reported by this algorithm is eliminated by post-processing the
results and eliminating any pathway that is fully contained in a longer pathway.
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(a) n=5, p=0.05 (b) n=5, p=0.01

(c) n=10, p=0.05 (d) n=10, p=0.01

Fig. 2. Comparison of statistical methods of discovering significant reactions in sim-
ulated datasets. Four methods are evaluated: discovering active subnetworks using
simulated annealing (Anneal) and greedy search (Greedy) [13], discovering significant
individual reactions using Metastats [9], finding differentially abundant KEGG-defined
pathways (KEGGPath), and MetaPath. Four datasets are created by varying the num-
ber of significant reactions n and their significance value p.

3 Results and Discussions

3.1 Performance Evaluation Using Simulated Datasets

In order to validate our methods, we have designed a simulated metagenomic
study and compared the results with three previous approaches: (i) identify-
ing active subnetworks using simulated annealing and greedy search [13]; (ii)
discovering significant individual reactions using Metastats [9]; and (iii) finding
differentially abundant KEGG defined pathways, an approach widely used in
metagenomic functional comparison[3,7,10]. We choose these tools because they
are addressing similar biological problems. However they do not exactly solve
the problem in this paper, which is finding differentially abundant pathways.
Here the goal of this simulated study is to show that our problem can not be
solved by directly applying methods previously developed in a related context.
We designed a simulated metagenomic study in which five subjects are created
for each of the two groups with distinct phenotypes. To generate the artificial
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reaction abundance matrix (where rows represent reactions and columns repre-
sent subjects), for each reaction a normal distribution is created, whose mean
is randomly chosen from real metagenomic datasets (obese and lean twins in
our study). The variance is calculated by setting the relative standard deviation
(standard deviation divided by the mean) to 0.2. If we define a reaction to be
equally abundant between two populations, then a random abundance value is
generated from the same normal distribution for each subject. Otherwise, if a
reaction is defined to be significantly enriched in one population, then another
normal distribution is created for this reaction by increasing the mean such that
the p value of the t-test for the two distributions is less than a predefined value
(0.05 and 0.01 were used in our study). In this study, we have chosen a se-
ries of reactions (length 5 or 10) to be enriched in one population. The goal is
to compare different methods in recovering these significant reactions based on
the simulated abundance matrix. Biologically, the enriched pathways indicate
functional enrichment of certain biological processes in a microbial community.

The receiver operating characteristic (ROC) curve is plotted for each method
(Fig. 2). Fig. 2 shows that MetaPath outperforms all other methods dramati-
cally showing the advantage in finding small significant subpathways. The most
commonly used approach – comparing KEGG defined pathways – performs the
worst in our simulation study (Fig. 2).

3.2 Obese and Lean Twins

We used MetaPath to compare the functional potential of the gut microbiome
of lean and obese subjects relying on data from [3]. This metagenomic dataset
comprises 6 samples from obese subjects and 6 samples from lean objects. The
sequences are annotated and mapped to KEGG reactions using BLASTX (E
value < 10-5, bitscore > 50, and %identity > 50), resulting in total 1832 unique
reactions within the 12 metagenomic samples. First, we computed p values and
q values using Metastats to find differentially abundant reactions. Using a p
value cutoff of 0.05, 92.7±9.1 (meanstandard deviation) reactions are significant
including 37.1±6.6 and 55.6±3.1 enriched reactions in obese and lean groups,
respectively, based on 10 runs of Metastats. The high variance of the number of
significant genes can be primarily explained by two reasons: (1) some reactions
are slightly below or above significance (0.05), thus p values computed through
bootstrapping will jump between being considered significant and nonsignificant;
(2) large variances of the abundance values within individuals in a same pheno-
typic group. The q values for all reactions are 1 (except R01676 where q=0.73),
which can be explained by the flat distribution of the p values (very few true
significant genes), from which the q values are estimated. This is one limitation
of relying on the false discovery rate, which requires the estimation of the pro-
portion of features that are truly null [15], approach that does not perform well
when only few features are truly significant.

We, then, used MetaPath to search for significant subpathways whose sizes
are between 2 and 10, and have found 10 differentially abundant subpathways
(Fig. 3) (0.05 cutoff for both p1 and p2). All these reactions are enriched in obese
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subjects. No subpathway was found to be enriched in lean subjects. These 10
significant subpathways contain 50 unique reactions, 24 of which are significant.
It is worth pointing out that the number of significant reactions varies between
different runs of statistical permutations (using Metastats) as shown above, but
the significant pathways identified by Metapath stay the same 3. This observa-
tion confirms that the results from MetaPath are more robust in the presence of
noise in the data than the gene-by-gene approach. Five subpathways (Fig. 3a-3e)
are completely contained in the Fatty Acid Biosynthesis pathway, which consists
of catabolic processes that can generate energy and primary metabolites from
fatty acids. Our findings are consistent with previous observations in biochemi-
cal analysis and microbiota transplantation experiments in germ-free mice [16],
where the concentrations of short-chain fatty acids in the caeca of obese mice
are higher than lean mice, suggesting that the gut microbiome in obese subjects
has an increased capacity for dietary energy harvest.

Another interesting significant pathway consists of 10 reactions (Fig. 3f), of
which 8 belong to Cysteine and Methionine Metabolism and 2 belong to Sulfur
Metabolism. Many reactions in this subpathway are connected by the molecule
L-Homocysteine. In addition, three other subpathways (Fig. 3g-3i) we discovered

Fig. 3. Comparison of statistical methods of discovering significant reactions in sim-
ulated datasets. Four methods are evaluated: discovering active subnetworks using
simulated annealing (Anneal) and greedy search (Greedy) [13], discovering significant
individual reactions using Metastats [9], finding differentially abundant KEGG-defined
pathways (KEGGPath), and MetaPath. Four datasets are created by varying the num-
ber of significant reactions n and their significance value p.
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further confirm its potential involvement in obesity, because all these three path-
ways contain L-homocysteine as metabolite. It is well-known that a high level
of blood serum homocysteine is a risk factor for cardiovascular disease [17],
and obesity an increasingly prevalent metabolic disorder is closely associated
with heart disease [18]. Significant correlations between plasma homocysteine
concentrations and obesity have been previously reported [17,19,20,21,22]. The
finding of increased potential for homocystein biosynthesis within the obese gut
microbiome provides an interesting hypothesis for future studies: that the gut
microbiome may either have a direct role in the elevation of homocysteine levels
in plasma, or may indirectly affect the hepatic biosynthesis of this amino-acid
in the human body.

3.3 Infant and Adult Individuals

A second data-set comprises gut microbiome samples from 4 infants and 9 adults
individuals which were sequenced by [7]. The sequences were annotated and
mapped to the reactions of KEGG pathway using BLASTX (E value < 10-8,
hit length coverage ≥ 50% of a query sequence), resulting in total 1781 unique
reactions. Based on 10 runs of Metastats, 383.7±1.56 reactions are significant
using p value cutoff of 0.05 and 167.2±2.7 reactions are significant using a q
value cutoff of 0.05.

Fig. 4. 10 statistically significant subpathways are found in the infant and adult in-
dividuals dataset. 6 subpathways are enriched in the infant subjects (a-f), and 4 sub-
pathways are enriched in the adult subjects (g-j). p1 and p2 significance values are
shown above each pathway. p value for each reaction is shown with the KEGG reaction
number.
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Applying MetaPath to search for significant subpathways, we have found 6 sub-
pathways (Fig. 4a-4f) enriched in infant subjects and 4 subpathways (Fig. 4g-4j)
enriched in adult subjects. These 10 significant subpathways contain 55 unique
reactions, including 38 significant reactions and 17 reactions not found signifi-
cant by Metastats. Three subpathways (Fig. 4a,c,d) enriched in infant subjects
involve the metabolite L-homocysteine, which is consistent with previous obser-
vation that breastfed babies have an higher plasma homocysteine level possibly
caused by suboptimal availability of folate in breast milk [23]. The concentration
of folate is negatively correlated with that of homocysteine, as folate is a neces-
sary coenzyme for reactions that metabolize homocysteine. In addition, babies
normally have high protein diet, which may also cause the concentration of ho-
mocysteine to increase. A second pathway in Fig. 4e involves substrates citrate
and succinate, and is closely related with oxidative tricarboxylic acid (TCA)
cycle. TCA cycle is part of carbohydrate metabolism and can convert carbohy-
drates into usable energy in aerobic organisms. Because the adult gut ecosystem
is dominated by strict anaerobes, it is reasonable to find this subpathway en-
riched in infant individuals where the gut microbiota also includes aerobes. This
finding is consistent with results obtained by comparing COG functional cate-
gories [7]. We also find a subpathway Fig. 4f belonging to atrazine metabolism
to be enriched in infant subjects. Atrazine is one of the most widely used her-
bicides, and it contaminates water and soil throughout the world. Our finding
possibly indicates a side-effect of this contamination.

The pathway in Fig. 4i (enriched in adult subjects) is part of the lipopolysac-
charide biosynthesis. Lipopolysaccharides are a building block of the outer mem-
brane of Gram-negative bacteria. The enrichment of pathway Fig. 4i in adult
subject may be a result of the fact that Gram-negative bacteria are also en-
riched in adults. Specifically, Bacteroides, a genus of Gram-negative bacteria,
are a major constituent of adult gut microbiome, but not highly prevalent in
infants. Fig. 4h and Fig. 4j (enriched in adult) are pathways related with pyrim-
idine metabolism. The metabolites RNA, cytidine and uridine, which are con-
tained in pyrimidine metabolism, are normally obtained from high RNA food
such as organ meats, broccoli, and brewers yeast, which are not available to un-
weaned infants, as they are not present in high abundance in milk. The pathway
in Fig. 4g (enriched in adult) is part of fructose and mannose metabolism a path-
way related to carbohydrate metabolism. This is also consistent with COG-based
analyses indicating that many mono- or disaccharides metabolism genes are en-
riched in adults [7], explained by the fact that colonic microbiota in adults uses
indigestible polysaccharides as resources for energy production and biosynthesis
of cellular components.

4 Conclusions

We have introduced a statistical method for finding significant metabolic sub-
pathways from metagenomic datasets. Compared with previous methods, results
from MetaPath are more robust against noise in the data, and have significantly
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higher sensitivity and specificity (when tested on simulated datasets). When ap-
plied to two publicly available metagenomic data-sets the output of MetaPath
is consistent with previous observations and also provides several new insights
into the metabolic activity of the gut microbiome. While showing promising re-
sults, our methods have several limitations that we plan to address in the near
future. First, and foremost, we restrict ourselves to pathways of a fixed length
– a restriction necessary for accurately computing the null distribution of path-
way scores. This can severely affect our ability to discover long pathways whose
abundance differs only slightly, but significantly, between samples. Second, we
currently estimate gene abundances by simply counting the number of sequenc-
ing reads that map to a certain gene. Such an approach ignores differences in the
length of genes, potentially leading to incorrect conclusions. We plan to address
this issue by incorporating a recently-published [12] method that can accurately
correct for gene-length effects.
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Abstract. Phylogenetic trees are tree structures that depict relation-
ships between organisms. Popular analysis techniques often produce large
collections of candidate trees, which are expensive to store. We intro-
duce TreeZip, a novel algorithm to compress phylogenetic trees based
on their shared evolutionary relationships. We evaluate TreeZip’s perfor-
mance on fourteen tree collections ranging from 2, 505 trees on 328 taxa
to 150, 000 trees on 525 taxa corresponding to 0.6 MB to 434 MB in
storage. Our results show that TreeZip is very effective, typically com-
pressing a tree file to less than 2% of its original size. When coupled with
standard compression methods such as 7zip, TreeZip can compress a file
to less than 1% of its original size. Our results strongly suggest that
TreeZip is very effective at compressing phylogenetic trees, which allows
for easier exchange of data with colleagues around the world.

1 Introduction

Phylogenetics is concerned with reconstructing the evolutionary history (or fam-
ily tree) for a set of organisms. An understanding of evolutionary mechanisms
and relationships is at the heart of modern pharmaceutical research for drug
discovery. It is also helping researchers understand (and defend against) rapidly
mutating viruses such as HIV, and is the basis of genetically enhanced organisms.
Typically, the evolutionary history for these organisms (or taxa) is depicted as
a binary tree, where the taxa are the leaves of the tree and the edges represent
the evolutionary relationships between the taxa (see Figure 1). To reconstruct
a phylogenetic tree, the most popular techniques (such as MrBayes [5]) often
return tens to hundreds of thousands of trees that represent equally-plausible
hypotheses for how the taxa evolved from a common ancestor. We develop a new
compression algorithm called TreeZip that reduces the requirements over stan-
dard compression algorithms for storing large collections of evolutionary trees.
Furthermore, our TreeZip algorithm allows large phylogenetic tree collections to
be shared easily with colleagues around the world.

The set of all edges (or bipartitions) from an evolutionary tree uniquely de-
fines that tree. However, a tree’s non-trivial bipartitions (or internal edges) are
of most interest. To simplify our discussion, we use the term bipartitions to refer
to a tree’s set of non-trivial bipartitions. In Figure 1, each tree’s bipartitions
are represented by vertical lines. A bipartition represents a split on an internal
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Fig. 1. A collection of six evolutionary trees on six taxa labeled A to F . For each tree,
its set of bipartitions are listed.

T0 = (((A,B),C),(D,(E,F)));
T1 = (((A,B),D),(C,(E,F)));
T2 = (((A,B),E),(D,(C,F)));
T3 = (((A,B),C),((E,F),D));
T4 = (((A,B),C),(F,(E,D)));
T5 = (((A,B),C),(E,(F,D)));

(a) Newick strings

T0 = (D,((A,B),C),(E,F));
T1 = (C,(D,(B,A)),(E,F));
T2 = (D,((B,A),E),(F,C));
T3 = (D,(C,(B,A)),(E,F));
T4 = (F,((A,B),C),(E,D));
T5 = (E,((B,A),C),(D,F));

(b) equivalent Newick strings

Fig. 2. Newick representations for the phylogenetic trees shown in Figure 1. Two dif-
ferent, but equivalent, Newick representations are given for each tree.

edge of the evolutionary tree that separates the taxa into two groups. A set of
bipartitions uniquely defines an evolutionary tree. For example, tree T0’s bipar-
titions are AB|CDEF , ABC|DEF , and ABCD|EF where the symbol ‘|’ acts
as a separator. Trees T0 and T3 are identical trees since they contain the same
set of bipartitions. For a binary tree, the number of bipartitions is n − 3, where
n is the number of taxa.

The Newick format [4] is the most widely used format to store a phylogenetic
tree in a file. In this format, the topology of the evolutionary tree is represented
using a notation based on balanced parentheses. Consider tree T0 in Figure 1. A
Newick representation of the topology of this tree is (((A,B),C),(D,(E,F)));,
where ‘;’ symbolizes the end of the Newick string. Matching pairs of parentheses
symbolize internal nodes in the evolutionary tree. The Newick representation of
a tree is not unique. For example, another valid Newick string for tree T0 is
(D,((A,B),C),(E,F));. Figure 2(a) shows the Newick tree file for the trees
in Figure 1, where the Newick representation is based on the lexicographical
ordering of the taxa names. Given that trees can have multiple, valid Newick
strings, Figure 2(b) shows a different Newick file, where the taxa names are
ordered randomly for each tree. For a given tree Ti on n taxa, there are O(2n−1)
possible Newick strings to represent it.

Our contributions. In this paper, we introduce TreeZip, a new lossless algo-
rithm for compressing large collections of phylogenetic trees. TreeZip requires
O(nt) running time for both its compression and decompression phases, where
n is the number of taxa and t is the number of trees in the collection of interest.
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Given that many of the bipartitions in a collection of phylogenetic trees are
shared, the novelty of our TreeZip approach is storing such relationships only
once in the compressed representation. TreeZip compresses a Newick file based
on the semantic representation (i.e., tree bipartitions). General-purpose data
compression techniques (e.g., gzip, bzip, and 7zip) do not know what the
data (Newick file) represents beyond the ASCII string representations. Hence,
there is great potential for obtaining good compression by utilizing the semantic
information in a Newick file describing large collections of evolutionary trees.

TreeZip leverages two phylogenetic tree algorithms, HashCS (constructs con-
sensus trees) [11] and HashRF (computes a topological t×t distance matrix) [10],
which use a hash table to organize the bipartitions from a collection of trees effi-
ciently. We demonstrate the performance of our TreeZip algorithm in comparison
to standard compression approaches (i.e., gzip, bzip, and 7zip) on 14 differ-
ent large-scale tree collections. Our largest (smallest) tree collection consists of
150,000 (2,505) trees requiring 434 MB (0.6 MB) of storage space. Overall, our
results show that the compressed TreeZip (.trz) file occupies from 0.2% to 2%
of its original size, which outperforms gzip and bzip compression algorithms.
When TreeZip is coupled with a standard compression algorithm, even greater
compression is attained. For the datasets studied here, the best compression oc-
curs when TreeZip compression is followed by 7zip. Hence, TreeZip is a great
alternative for biologists who want to recycle the trees generated from their
experiments.

Related work. To the best of our knowledge, the Texas Analysis of Symbolic
Phylogenetic Information (TASPI) [2] [3] is the only described approached for
compressing evolutionary trees. It is written in the ACL2 formal logic language,
but we were unable to find an available implementation of the TASPI algorithm
for direct comparison to our approach on all of our tree collections. However,
we were able to obtain the collection of trees that TASPI used to evaluate their
approach [2]. Section 3.1 compares the compression ratios of TreeZip to TASPI
on those set of trees, but without a TASPI implementation, we were unable to
compare running times.

Our TreeZip algorithm compliments and extends the work done with TASPI
in several ways. While compression storage results are given, the main focus of
TASPI is building a single consensus (or summary) tree from a compressed repre-
sentation of the collection of trees. While TreeZip can build consensus trees (not
shown here), our main focus is on compressing large collections of evolutionary
trees efficiently. Since a Newick string does not give a unique representation for
a phylogenetic tree (there are O(2n−1) possible Newick strings), the designers of
TASPI note that their algorithm is affected by the ordering of the taxa in the
Newick string. TreeZip, on the other hand, has been designed to not be impacted
by different Newick strings representing the same tree. Finally, TASPI does not
explicitly state if it has a decompression routine in order to rebuild the original
Newick tree file containing the t trees. TreeZip has such a routine.
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2 Our TreeZip Algorithm

Our TreeZip algorithm compresses and decompresses phylogenetic trees based
on their shared evolutionary relationships. Under compression, the input to the
algorithm is a Newick file and the output is a TreeZip (or a .trz) file. The input
to TreeZip’s decompression phase is a .trz file and the output is a Newick file.

2.1 Compression: Converting the Newick File to a .trz File

Building a hash table from the Newick file. In the Newick input file, each string i,
which represents tree Ti, is read and stored in a tree data structure. During
the depth-first traversal of input tree Ti, each of its bipartitions is fed through
two universal hash functions, h1 and h2 [1]. Both of these functions require as
input a n-bit bitstring representation of each bipartition in tree Ti, where n
represents the number of taxa. In the n-bit bitstring, the first bit is labeled by
the first taxon name, the second bit is represented by the second taxon, etc. We
can represent all of the taxa on one side of the tree with the bit ‘0’ and the
remaining taxa on the side of the tree with the bit ‘1’. In our example, taxa
on the same side of a bipartition as taxon A receive a ‘0’. In Figure 1 tree T1’s
bipartitions are AB|CDEF, ABD|CEF, and ABCD|EF which can be described
by the bitstrings 001111, 001011, and 000011, respectively.

The hash function h1 is used to generate the location (index) for storing a
bipartition in the hash table. h2 is responsible for creating a unique and short
bipartition identifier (BID) for the bipartition so that the entire n-bit bitstring
does not have to be analyzed in order to insert bipartitions into the hash table.
Our two universal hash functions are defined as follows: h1 (B) =

∑
biai mod m1

and h2 (B) =
∑

biai mod m2, where A = (a1, ..., an) is a list of random integers
in (0, ..., m1-1) and B = (b1, ..., bn) is a bipartition represented as an n-bit bit-
string. m1 represents the number of entries (or locations) in the hash table. m2
represents the largest bipartition ID (BID) given to a bipartition. bi represents
the ith bit of the n-bit bitstring representation of the bipartition B.

Figure 3(a) shows how the bipartitions from Figure 1 are stored in our hash
table. Each entry in the hash table consists of BID, a bitstring representation
of the bipartition, and a list of trees that contain that bipartition. Using these
universal hash functions, the probability that any two distinct bipartitions Bi

and Bj collide (i.e., h1(Bi) = h1(Bj)) is 1
m1

. In Figure 3, H [1] and H [8] show two
different bipartitions colliding to the same location in the hash table. Bipartitions
ABCF |DE and ABCE|DF both reside in H [1] and ABCD|EF and ABD|CEF
reside in H [8]. However, these colliding bipartitions are differentiated by their
h2 hash value. In location H [1], h2 values 56 and 81 differentiate bipartitions
ABCF |DE and ABCE|DF , respectively.

The probability of a double collision (h1(Bi) = h1(Bj) and h2(Bi) = h2(Bj))
is O(1

c ), where c can be an arbitrarily large number [1]. Double collisions often
result in an incorrect result for the underlying application. In our experience with
using these hash functions in our phylogenetic applications (HashCS, HashRF,
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(a) Hash table

1. TAXA A:B:C:D:E:F
2. NTREES 6
3. NBIPARTITIONS 8
4. L2K4 -:0:
5. L3K2A +:1:E
6. L3BAB +:1:F
7. L3K3 -:2:K2
8. L2BL2B +:1:C
9. L4K2 +:3:ABC

10. L2BAK2 +:1:B
11. L2K2AB +:1:C

(b) TreeZip (.trz) file

Fig. 3. TreeZip compressed file, which was obtained from our hash table data structure,
for the phylogenetic trees shown in Figure 1. The symbol represents a visible space
that is in the TreeZip file.

and TreeZip), we have not encountered double collision even when using small
c values. For t trees on n taxa, O(nt) time is required to construct the hash table.

Converting the hash table to .trz format. Once all of the bipartitions are orga-
nized in the hash table, we can begin the process of writing the .trz compressed
file, which is binary. Figure 3(b) shows a compressed version of the hash table
in Figure 3(a). The first three lines of the .trz file represent the taxa names,
the number of trees in the file, and the number of unique bipartitions denoted
by lines 1–3 in the .trz file in Figure 3(b). The remaining lines in the .trz file
are related to the bipartitions contained in the t evolutionary trees. Each of the
remaining lines is composed of two parts (n-bit bitstring and list of tree ids)
separated by a single space.

We run-length encode our bitstrings. Run-length encoding is a form of data
compression in which runs of data (i.e, sequences in which the same data value
occurs in many consecutive data elements) are stored as a single data value and
count, rather than as the original run. For the bitstring 001111 in Figure 3, we
would have a run-length encoding of 0:2 1:4, where each x : y element represents
the data value (x) and the number of repetitions (y). Since bitstrings can either
contain runs of 1s or 0s, we introduce two new symbols. 1: is encoded as K,
while 0: encoded as L. (We use characters A through J for compressing our list
of tree ids described shortly.) Hence, we encode the bitstring 001111 as L2K4.
In our experiments, we considered taking every group of 7 bits in our bitstring
and translating it to an ASCII character. However, we were able to get better
compression by using run-length encoding, which showed significant benefits on
our biological tree collections consisting of thousands of taxa.

The set of unique bipartitions comprise the remaining portion of the .trz
file. Let T represent the set of evolutionary trees of interest, where |T | = t.
For a bipartition B, Bin represents the set of the trees in T that share that
bipartition. Bout is the set of trees that do not share bipartition B. Since these
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sets are complements, their union comprises the set T . To minimize the amount
of information present in our .trz output, we print out the contents of the
smaller of these two sets. If |Bin| ≤ |Bout|, then we output Bin. Otherwise, Bout

is outputted. In our .trz file, we denote Bin and Bout lines with the ’+’and ’-’
symbol, respectively.

Even with use of the smaller of the Bin or Bout sets, the list of tree ids can
get very large. This is due to the fact that as t grows large, the number of bytes
necessary to store a single id also grows. Since the trees are inserted into the
hash table in their order of appearance in the Newick file, our lists of tree ids
will be in increasing order. As a result, we store the differences between adjacent
elements in our tree id list. These differences are then run-length encoded. To
eliminate the need for spaces between the run-length encoded differences, the
first digit of every element is encoded as a character, with 0 . . . 9 represented by
A . . . J. Consider bipartition ABCD|EF (bitstring 000011), which is in H [8] in
Figure 3. The Bin set will be used for this bipartition, and its run-length encoded
differences will be 0 1 2, which will be encoded as ABC on line 9 in the .trz file.

Finally, one of the guiding factors for our TreeZip format is not only effec-
tive compression, but also readability. We did try several different compression
schemes for our TreeZip approach, but the compression algorithm described here
gave the best compression along with the best decompression times (not shown).

2.2 Decompression: Converting the .trz File to a Newick File

Two major steps of the decompression in TreeZip are decoding the contents in
the .trz file and rebuilding the collection of t trees. Decoding reconstructs the
original hash table information which consists of bitstrings and the tree ids that
contain them. When the .trz file is decoded, each line of the file is processed
sequentially. First, the taxa information is fed into TreeZip. Next, the number
of trees is read. Each bipartition is then read sequentially.

To assist in bipartition collection, we maintain two data structures. The first,
which we will refer to as V , is a vector of the bipartitions contained in all of
the t trees. The second, M , is a t × k matrix, where k = n − 3 is the maximum
possible number of bipartitions for a phylogenetic tree. The length of the matrix
M corresponds to the number of trees specified in the .trz file. Each row i
in matrix M corresponds to the bipartitions required to rebuild tree Ti. For
example, in figure 3, the bipartition 000011 is shared among all the trees. It is
therefore added to vector V . On the other hand, the bipartitions on lines 5 and
6 are contained in only trees 4 and 5 respectively, and therefore will be added to
M [4] and M [5]. The bipartition on line 9 will be added to M [0], M [1], and M [3]
since ABC decodes to the tree ids T0, T1, and T3. Line 7 in our .trz file warrants
special attention. Since this line belongs to the set Bout, we know upon decoding
that this bipartition does not belong to trees 1 and 2. Therefore, the bipartition
is added to rows M [0], M [3], M [4], and M [5].

The decoded bitstrings are the basic units for building trees. Once the bit-
strings and the associated tree ids are decoded, we can build the original trees
one by one. In order to build tree x, the tree building function receives as input
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the vector V containing bipartitions shared among all of the trees and matrix
row M [x] which contains the bipartitions encoded as bitstrings for tree x. Since
vector V contains the bitstrings common to all the trees, it is always passed to
the tree building function.

Each of the t trees is built starting from tree T0 and ending with tree Tt−1,
whose bipartitions are stored in M [0] and M [t−1], respectively. The trees are re-
constructed in the same order that they were in the original Newick file. However,
given O(2n−1) possible Newick strings for a tree Ti, the Newick representation
that TreeZip outputs for tree Ti will probably differ from the Newick string in
the original file. However, this is not a problem semantically since the different
strings represent the same tree.

In order to build tree Ti, the bitstrings in matrix M [i] and vector V are merged
into a single array of bitstrings. Initially, tree Ti is represented as a star tree on
n taxa. Bipartitions from M [i] are added to refine tree Ti based on the number
of 1’s in its bitstring representation. (The number of 0’s could have been used
as well.) The more 1’s in the bitstring representation, the more taxa that are
grouped together by this bipartition. A star tree is an bitstring representation
consisting of all 1’s. For each of Ti’s bitstrings, we count the number of 1’s
it contains. Bipartitions are then sorted in increasing order of their bitstrings,
which means that bipartitions that group together the most taxa appear first.
The bipartition that groups together the fewest taxa appears last in the sorted
list of ’1’ bit counts. For each bipartition, a new internal node in tree Ti is
created. Hence, the bipartition is scanned to put the taxa into two groups—taxa
with ’0’ bits compose one group and those with ’1’ bits compose the other group.
The taxa indicated by the ‘1’ bits become children of the new internal node. The
above process repeats until all bipartitions are added to tree Ti.

3 Experimental Results

Our implementation of TreeZip used in the following experiments can be found
at http://treezip.googlecode.com. Experiments were conducted on a 2.5Ghz
Intel Core 2 quad-core machine with 4GB of RAM running Ubuntu Linux 8.10.
We ran our experiments on fourteen sets of trees which are described in Table 1.
We use the compression ratio measure to evaluate the performance of TreeZip in
comparison to general-purpose compression algorithms. The compression ratio C

is calculated as C = |compressed file|
|original file| . This result is multiplied by 100 to achieve a

percentage. A lower compression ratio denotes better compression of the original
file.

3.1 Performance on the TASPI Tree Collection

In Figure 4, we compare the compression ratio achieved by TreeZip and TASPI
on the 9 tree collections used in Collection 3 of [2], which is denoted by datasets 6
through 14 in Table 1. We also show the compression ratio of standard compres-
sion approaches (gzip, bzip, and 7zip) achieved on this set of trees, along with

http://treezip.googlecode.com


120 S.J. Matthews, S.J. Sul, and T.L. Williams

Table 1. Characteristics of our biological tree files. The mammals, freshwater,
angiosperms, fish, and insects datasets were given to us by biologists. The remain-
ing tree collections are the same ones used by Boyer et al. to evaluate their TASPI
approach.

Datasets Description Taxa Trees File size (MB) Bipartitions

1 mammals Mammalian trees [6] 16 8,000 0.6 13
2 freshwater Organisms from fresh-

water, marine, and oil
habitats [7]

150 20,000 16.0 1,168

3 angiosperms Flowering plants [9] 567 33,306 105.0 2,444
4 fish Fish trees (unpub-

lished collection from
M. Glasner’s lab at
Texas A&M)

264 90,000 127.0 12,115

5 insects Insect trees [8] 525 150,000 434.0 574
6 aster328 328 2,505 5.3 788
7 eern476 476 2,505 7.7 3,019
8 john921 921 2,505 16.0 15,448
9 lipsc439 439 2,505 7.1 903
10 mari2594 Tree Collection 3 from

Boyer et al. [2]
2,594 2,505 47.0 8,628

11 ocho854 854 2,505 15.0 3,232
12 rbcl500 500 2,505 8.2 (8.1 in [2]) 1,579
13 three567 567 2,505 9.3 1,588
14 will2000 2,000 2,505 36.0 13,257

the ratio of TreeZip coupled with each of these standard approaches. Since an im-
plementation of TASPI is not available publicly, the compression ratio numbers
for TASPI were calculated directly from [2]. Since TASPI coupled its approach
with the bzip algorithm, we highlight the compression ratio achieved by TASPI
and TASPI+bzip (blue), as well as TreeZip and TreeZip+bzip (red). TASPI
did not couple its approach with either 7zip or gzip.

TreeZip achieves a better (lower) compression ratio than TASPI across all
the listed datasets. For example, on the lipsc439 dataset, TreeZip achieves a
compression ratio of 1.592%, while TASPI achieves a compression ratio of 5.57%.
This corresponds to a file size of 116 kilobytes and 406 kilobytes respectively. On
the mari2594 dataset, TreeZip achieves a compression ratio of 2.34%, compared
to TASPI’s 7.02%. This corresponds to compressed file sizes of 1.1 MB and
3.3 MB respectively.

When coupled with bzip, TASPI achieves a slightly better compression ra-
tio than TreeZip+bzip on most of the datasets. However, these differences are
often negligible. For example, on the three567 dataset, TreeZip+bzip has a
compression ratio of 0.63% compared to TASPI+bzip’s 0.47%. This corre-
sponds to 60 and 45 kilobytes respectively, a difference of 15 kilobytes. On the
lipsc439 dataset, TreeZip+bzip achieves a compression ratio of 0.55%, com-
pared to TASPI+bzip’s 0.48%. This corresponds to compressed files of 40 and
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Fig. 4. Compression ratios for various algorithms on Newick string representations of
evolutionary trees. TASPI and TASPI+bz2 numbers come from [2].

34.8 kilobytes in size, respectively. On the largest dataset of this set, mari2594,
TreeZip+bzip outperforms TASPI, achieving a compression ratio of 0.81% com-
pared to TASPI+bzip’s 1.07%. This corresponds to file sizes of and 392 and
515 kilobytes, respectively, a difference of 123 kilobytes.

3.2 Performance on Tree Sets Provided by Biologists

Figure 5(a) shows the performance of TreeZip on the large tree collections
(Datasets 1 through 5 in Table 1) given to us by biologists. By itself, TreeZip
achieves similar storage to the standard compression algorithms on our biolog-
ical tree sets. Since all of the trees in the mammals dataset are identical, all
approaches achieve the same compression ratio and storage size of 4 kilobytes.
For our fish dataset, 7zip outperformed TreeZip and the other standard com-
pression approaches, achieving a ratio of 0.46%. TreeZip, on the other hand, had
a compression ratio of 1.02%. This corresponds to a size of 596 kilobytes com-
pared to TreeZip’s 1.3 megabytes. Coupling TreeZip with standard compression
techniques results in improved performance. Returning back to our fish dataset,
TreeZip+7zip achieves a compression ratio of 0.261%, which corresponds to 340
kilobytes. This is most evident for our insects dataset, where TreeZip+7zip
achieves a compression ratio of 0.008%, or roughly 36 kilobytes. On this same
dataset, 7zip has a compression ratio of 0.14% resulting in a compressed file of
636 kilobytes. Our results suggest that the greater the level of bipartition shar-
ing and the number of trees, the better TreeZip will perform, especially when
coupled with the 7zip approach.

One critical advantage of TreeZip is that it collapses the topologies of the
phylogenetic trees into a set of common bipartitions, ensuring that each biparti-
tion appears at most once in the compressed form. Both standard compression
techniques and TASPI compress trees at the string level. If the Newick string for
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Fig. 5. Compression ratios of two different Newick files representing the same set of
evolutionary trees
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Fig. 6. Compression and decompression times for the algorithms under study

a particular tree is rearranged denoting a different, but equivalent, Newick string
representation of the same tree, text-based compression approaches will have dif-
ficulty identifying shared bipartitions among the t trees. Figure 5(b) shows the
impact of using different, but equivalent Newick representations (see Figure 2) in
our biological tree collections. While TreeZip’s performance remains the same,
the compression ratio and storage requirements for the standard compression
methods explode. For example, for the fish dataset, 7zip’s compression ratio
increases from 0.46% to 10.24%. This corresponds to an increase from 596 kilo-
bytes to 13 megabytes. TASPI’s storage requirements would also increase under
different, but equivalent, Newick strings. In contrast, TreeZip and TreeZip+7zip
still requires only 1.3 megabytes and 340 kilobytes of storage, respectively.

While TreeZip competes against standard compression algorithms in terms of
storage size, it does so at the cost of running time (see Figure 6). While TreeZip’s
compression speed is about twice as slow as bzip and 7zip (gzip runs extremely
fast requiring less than 10 seconds on our datasets), its decompression speed is
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very slow. All of the methods require less than a second to decompress, while
TreeZip can take anywhere from a second to 3, 000 seconds. Obviously, this is a
place that needs optimization. However, if the user is merely interested in com-
pressing tree files as part of an archive with very little chance for decompression,
then TreeZip is a desirable alternative to standard compression techniques. Fur-
thermore, if there is no predefined ordering of the taxa in the Newick file, then
using TreeZip will result in a very small file compared to the alternatives given
the robustness of the TreeZip approach.

4 Conclusions and Future Work

Phylogenetic heuristics often produces tens to hundreds of thousands of equally-
plausible trees, which are usually stored in a Newick-formatted text file. Due to
the number of trees, the size of the input file is easily over hundreds of megabytes
making it difficult to store, maintain, and exchange the tree files. In this paper,
we introduce our TreeZip algorithm, a novel approach that leverages the seman-
tic information among trees to compress the tree files. The advantage of TreeZip
over current methods is its ability to uniquely identify shared bipartitions and
store this information in a compressed TreeZip (.trz) file, which consumes con-
siderably less storage space than the original Newick file.

Our TreeZip algorithm outperforms standard compression methods by achiev-
ing a better compression ratio. For example, our results show that our .trz file
occupies from 0.2% to 2% of the original Newick file, which outperforms gzip
and bzip algorithms. When TreeZip is coupled with standard compression algo-
rithms, it is the best compression technique for phylogenetic trees. Thus, TreeZip
can work on two levels. It can work at the .trz file level, where the file can be
used as input for other phylogenetic tree algorithms. The benefit of the .trz file
is that it is readable and can be queried more easily (without decompression)
than the Newick file regarding the evolutionary relationships contained in the
collection of t trees. Coupling TreeZip with text compression algorithms such
as 7zip produces the best storage savings. In addition, a phylogenetic tree can
be represented using several different (yet equivalent) Newick string representa-
tions. This proves disastrous for standard compression methods, which perform
poorly in the absence of any available redundancy at the Newick string level.
TreeZip, on the other hand, performs well on such datasets.

Overall, TreeZip’s efficient method for compressing trees allows large phyloge-
netic tree collections to be easily exchanged with others, an essential component
for successful scientific collaborations. Without compression, sharing data can
become quite tedious, especially across long distances. As biologists obtain more
data and use phylogenetic heuristics to build large-scale evolutionary trees, the
size of their tree collections will continue to grow in size. Thus, compression al-
gorithms such as TreeZip will become critical tools for helping biologists manage
their rapidly expanding phylogenetic tree collections.

In the future, we will optimize TreeZip for speed since the focus in this work
was the quality of the compression achieved. Due to the inherent flexibility of
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the compressed format, we plan to add in functionality to incorporate new,
additional trees into an existing compressed collection.
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Clustering of multiple transcription factor binding sites (TFBSs) for the same
transcription factor (TF) is a common feature of cis-regulatory modules in inver-
tebrate animals, but the occurrence of such homotypic clusters of TFBSs (HCTs)
in the human genome has remained largely unknown. To explore whether HCTs
are also common in human and other vertebrates, we used known binding mo-
tifs for vertebrate TFs and a hidden Markov model-based approach to detect
HCTs in the human, mouse, chicken, and fugu genomes, and examined their
association with cis-regulatory modules. We found that evolutionarily conserved
HCTs occupy nearly 2% of the human genome, with experimental evidence for
individual TFs supporting their binding to predicted HCTs. More than half of
promoters of human genes contain HCTs, with a distribution around the tran-
scription start site in agreement with the experimental data from the ENCODE
project. In addition, almost half of 487 experimentally validated developmental
enhancers contain them as well - a number more than 25-fold larger than ex-
pected by chance. We also found evidence of negative selection acting on TFBSs
within HCTs, as the conservation of TFBSs is stronger than the conservation of
sequences separating them. The important role of HCTs as components of de-
velopmental enhancers is additionally supported by a strong correlation between
HCTs and the binding of the enhancer-associated co-activator protein p300. Ex-
perimental validation of HCT-containing elements in both zebrafish and mouse
suggest that HCTs could be used to predict both the presence of enhancers and
their tissue specificity, and are thus a feature that can be effectively used in deci-
phering the gene regulatory code. In conclusion, our results indicate that HCTs
are a pervasive feature of human cis-regulatory modules and suggest that they
play an important role in gene regulation in the human and other vertebrate
genomes.
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The work that I will discuss is motivated by the need for understanding, and pro-
cessing, the manifestations of recombination events in chromosome sequences.
In this talk, we focus on two related problems. First, we explore the very gen-
eral problem of reconstructability of pedigree history. How plausible is it to
unravel the history of a complete unit (chromosome) of inheritance? The second
problem deals with reconstructing the recombinational history of a collection of
chromosomes.

For the first problem, we use a random graphs framework to study pedigree
history in an ideal (Wright Fisher) population [Par09]. This framework correlates
the underlying mathematical objects in pedigree graph, mtDNA or NRY Chr
tree, ARG (Ancestral Recombinations Graph), HUD etc. used in literature, into
a single unified random graph framework. It also gives a natural definition, based
solely on the topology, of an ARG, one of the most interesting as well as useful
mathematical object in this area [GM97]. The random graphs framework gives
an alternative parametrization of the ARG that does not use the recombination
rate ρ and instead uses a parameter M based on the (estimate of) the number of
non-mixing segments in the extant units [GSN+02]. These non-mixing segments
may also be viewed as identity by descent (IBD) segments. This framework also
gives a purely topological definition of GMRCA, analogous to MRCA on trees
(which has a purely topological description i.e., it is a root, graph-theoretically
speaking, of a tree). An interesting fallout of this study is a randomized algorithm
leading to a combinatorial construction of the ARG. I will describe a purely
combinatorial construction of the ARG based on the coalescent approach [PJ10].
An important departure from the earlier models [Hud90, HSW05] is the use of the
integer parameter M instead of the recombination rate parameter ρ. The appeal
of the classical coalescence theory is many. From a simulation perspective, it is
the elegant elicitation of population dynamics, without any explicit biology. In
coalescence-based simulation, mutations and other genetic events are decorated
on the random combinatorial (tree) structure. Recombination rate(s), however
is a parameter based on the biology of the organisms in the population. In an
effort to isolate detailed biology from the population dynamics, this approach
constructs a random combinatorial (DAG) structure and then decorates it with
the biological events.

M. Borodovsky et al. (Eds.): ISBRA 2010, LNBI 6053, pp. 126–127, 2010.
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The second problem addresses the following question. As large databases be-
come available, is it possible to reconstruct the pedigree history in the data
[PMC+08, PJM+09]. And, what stories, if any, these recombinational landscapes
tell us [MJC+09]. We exploit the coherence that is observed in the human hap-
lotypes as patterns and present a network model of patterns to reconstruct the
ARG. I will conclude with a discussion on our ongoing work in the Genographic
Project on the study of human population diversity based on evidence of past
recombinations (termed recotypes) as genetic markers. The inferred recombina-
tions indicate strong agreement with past in vitro and in silico recombination
rate estimates. The correlation between traditional allele frequency based dis-
tances and recombinational distances bring further credence to the study of
population structure using recotypes. Also, we make the surprising observation
that recotypes are more representative of the underlying population structure
than the haplotypes they are derived from.
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[MJC+09] Melé, M., Javed, A., Calafell, F., Parida, L., Bertranpetit, J.: Genographic
Consortium. Recombination-based genomics: a genetic variation analysis
in human populations (2009) (under submission)

[Par09] Parida, L.: Ancestral Recombinations Graph: A Reconstructability Per-
spective using Random-Graphs Framework (2009) (under submission)

[PJ10] Parida, L., Javed, A.: Coalescence with Recombinations: Combinatorial
Construction of ARGs (2010) (under submission)
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Abstract. Many of the steps in phylogenetic reconstruction can be con-
founded by “rogue” taxa, taxa that cannot be placed with assurance
anywhere within the tree—whose location within the tree, in fact, varies
with almost any choice of algorithm or parameters. Phylogenetic consen-
sus methods, in particular, are known to suffer from this problem. In this
paper we provide a novel framework in which to define and identify rogue
taxa. In this framework, we formulate a bicriterion optimization problem
that models the net increase in useful information present in the consen-
sus tree when certain taxa are removed from the input data. We also
provide an effective greedy heuristic to identify a subset of rogue taxa
and use it in a series of experiments, using both pathological examples
described in the literature and a collection of large biological datasets.
As the presence of rogue taxa in a set of bootstrap replicates can lead to
deceivingly poor support values, we propose a procedure to recompute
support values in light of the rogue taxa identified by our algorithm; ap-
plying this procedure to our biological datasets caused a large number of
edges to change from “unsupported” to “supported” status, indicating
that many existing phylogenies should be recomputed and reevaluated
to reduce any inaccuracies introduced by rogue taxa.

1 Introduction

Phylogenetic consensus methods are used for combining a set of trees defined
on the same set of leaves into a single tree that summarizes the information
found in the set. By their very nature, these methods discard information, typ-
ically structural elements not prevalent in the set. However, the most popular
consensus methods (strict and majority rule) are susceptible to so-called rogue
taxa [20]. That is, while the tree set may agree very strongly on the structure
relating a large subset of the leaves, the remaining few leaves (the rogue taxa)
can effectively prevent this underlying structure from appearing in the strict
or majority consensus tree. In other words, these methods end up discarding
structural elements that are, in fact, prevalent in the set.

Much work has been done on the problem of summarizing a set of trees and on
the issue of rogue taxa in particular. The pioneering work of Wilkinson [20,21,22]
addresses the problem by returning sets of trees, some of which are missing
leaves, with the aim of conveying the prevalent structural elements in at least one
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of the returned trees. While theoretically satisfying, this approach suffers from
computational complexity problems and, more importantly, from difficulties in
interpretation.

A problem closely related to both consensus and rogue taxa is the Maximum
Agreement Subtree (MAST). A MAST on a set of input trees is the subtree of
largest leaf-set cardinality common to all input trees. While the general problem
of finding the MAST of three or more trees is NP-hard [1], it can be solved
efficiently when at least one of the input trees has bounded degree [7]. Another
agreement subtree optimization problem Maximum Information Subtree (MIST)
was proposed by Bryant[3] to overcome a key deficiency of MAST, namely that
the maximization of leaf-set cardinality can entirely obscure important internal
structure revealed by a smaller, suboptimal for MAST, leaf subset. Bryant’s al-
gorithm for solving MIST, whose complexity mirrors that of MAST algorithms,
actually affords the practitioner an option to weight the importance placed on
leaf-set cardinality versus internal structure in the solution. As such, the opti-
mization function for MIST has a striking resemblance to the MISC optimiza-
tion problem we propose below. Unfortunately, all agreement subtree approaches
tend to be too conservative for our purpose; most notably, there exist instances
where the strict consensus tree (without dropping any leaves) has more internal
edges than any MAST or MIST[13].

Cranston and Rannala recently presented a Markov Chain Monte Carlo
(MCMC) method for identifying a version of rogue taxa in the context of Bayesian
phylogenetic reconstruction [6]. Their approach identifies subsets of leaves for
which the posterior distribution strongly supports the structure of the induced
subtree—leaves left out can be viewed as rogue taxa, albeit in the narrow con-
text of a sampling of trees in a Bayesian search, rather than in the general con-
text of a consensus of trees. All of the approaches mentioned thus far fall into
the category of “leaf-dropping methods,” in the terminology of Redelings [16].
In contrast, Redelings presents, again in the context of Bayesian phylogenetics, a
method that returns a “multi-connected tree,” which includes all leaves, but does
not summarize the information through a single tree and thus again raises issues of
interpretation—an issue plaguing all approaches producing non-trees [2,5,10,11].

In this paper we contribute another leaf-dropping method, one based on a rig-
orous definition of the tradeoff involved between dropping leaves and uncovering
additional consensus structure. Most existing measures and methods discard
leaves in order to uncover any underlying structure; in contrast, our approach
sets up a bicriterion problem, in which leaves should be discarded only if the
gain in uncovered internal edges outweighs the loss incurred by discarding the
leaves. We are not the first researchers to define some notion of relative infor-
mation content for consensus trees [19], but our definition is the first to both
explicitly take into account the loss incurred by dropping taxa, and generalize
outside the setting of agreement subtrees. We provide an effective greedy heuris-
tic to compute a good (if not necessarily optimal) set of rogue taxa and apply it
to both pathological examples from the literature and a collection of large bio-
logical datasets that we used in a prior study of bootstrapping. As the presence
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of rogue taxa in a set of bootstrap replicates can lead to deceivingly poor sup-
port values, we propose a procedure to recompute support values in light of the
rogue taxa identified by our algorithm; applying this procedure to our biological
datasets caused a large number of edges to change from “unsupported” to “sup-
ported” status, indicating that many existing phylogenies should be recomputed
and reevaluated to reduce any inaccuracies introduced by rogue taxa.

The rest of the paper is organized as follows. In Section 2 we define concepts
and terminology. In Section 3 we define our measure of relative information
content, formalize the bicriterion optimization problem for consensus and rogue
taxa, and present some theoretical results that underlie our approach. In Sec-
tion 4 we present an efficient greedy heuristic for our bicriterion problem. In
Section 5 we present the results of our experiments.

2 Preliminaries

We use standard set and graph terminology and notation; in particular, ∪ refers
to union, ∩ to intersection, \ to set difference, and Δ to symmetric difference—
i.e., SΔT = (S ∪ T ) \ (S ∩ T ).

A phylogenetic tree represents the evolutionary relationships among a collec-
tion of living organisms. Homologous molecular sequences (one for each organ-
ism) are placed at the tips of the tree—hereafter called the leaves ; the internal
structure of the tree—its edges (sometimes also called branches)—represents
the evolutionary relationships. The removal of an edge disconnects the tree and
partitions the set of leaves into two subsets; thus each edge corresponds to a
bipartition of the set of leaves. Every tree includes the same trivial bipartitions,
which separate one leaf from all others; the other bipartitions are called nontriv-
ial and correspond to an internal edge of a tree, that is, an edge not incident on
a leaf. We can thus view a phylogenetic tree as a leaf-labeled tree T = (L, B),
where L is the set of leaves and B is its set of nontrivial bipartitions. To describe
a bipartition, we list the two sets of leaves, separated by a | symbol. To ensure an
equivalence between nontrivial bipartitions and internal edges, we require that
every internal node in a phylogeny have degree at least 3. The number |B| of
nontrivial bipartitions in a phylogeny is at most |L|−3; when the two are equal,
we say that the (binary) tree is fully resolved ; otherwise, there must exist an
internal node of degree at least 4 and any such node is known as a polytomy.

The consensus problem is given by a set T of m trees defined on a common
set L of n taxa (leaves). The bipartition profile of T is the pair

P = (BT , ν : BT → 2T )

where BT is the set of all nontrivial bipartitions found across all m trees in the
set and ν is a function mapping bipartitions to the trees in which they appear.

We denote the removal of leaves from trees through the restriction operator—
which also uses the | symbol. For example, T |L′ refers to restricting each tree in
the set T to the leaf subset L′ ⊆ L, which corresponds to removing each leaf in
L \ L′ from each tree, as well as removing any nodes of degree 2 created in the
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process. Individual trees, tree sets, and tree profiles can appear on the left-hand
side of the restriction operator.

We focus on consensus methods based on bipartition frequency—see the ex-
cellent survey of Bryant [4] for a comprehensive treatment of consensus methods.
Given a threshold parameter m

2 < t < m, the t-consensus tree is composed of
all of the bipartitions that occur in more than t trees. The majority rule con-
sensus [12] is obtained by setting t to m

2 , while the strict consensus is obtained
by setting t to m − 1. We denote t-consensus methods by Ct. Thus Cm−1(T )
corresponds to taking the strict consensus tree of the set T .

3 Relative Information Content, Consensus, Rogue Taxa

3.1 The Measure and the Problem

The general problem we study can be phrased as follows: given a set T of trees
on a common leaf set L and given a frequency-based consensus method Ct, we
want to find a leaf subset L′ that optimizes the relative information content of
the consensus returned by Ct on the set of subtrees induced by L′. The crucial
notion here is that of relative information content. Formally, if Ct(T |L′) yields
T ′ = (L′, B′), then the relative information content is

I(T ′, L, Ct) =
|L′| + |B′|

|L| + (|L| − 3)
(1)

This measure is the ratio of the total number of bipartitions (trivial and non-
trivial) in the consensus tree derived on the reduced leaf set to the total number
of bipartitions in an ideal, fully resolved tree on the original leaf set. By taking
trivial bipartitions into account, we automatically penalize a method for remov-
ing many leaves, since the number of trivial bipartitions is simply the number
of leaves. By adding the number of nontrivial bipartitions, we reward a method
for preserving more internal edges, since the denominator is fixed to the number
of such edges in an ideal tree. Note that the use of the word ’information’ in our
definition does not imply information-theoretic foundations.

We can now formulate our main problem, which we call MISC, for Maximum-
Information Subtree Consensus.

Problem. Given a set T of trees defined on a common leaf set L and a frequency-
based consensus method Ct, find a leaf subset L′ that maximizes the relative
information content I(Ct(T |L′), L, Ct).

Note that the MAST solution typically maximizes the |B′| term at the ex-
pense of the |L′| term—it has no direct penalty for dropping leaves; in contrast,
consensus methods typically maximize |L′| (in the case of majority and strict
consensus, by forcing L′ = L) at the expense of |B′|. MISC, on the other hand,
combines the two aspects into a single formulation.
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3.2 How Bipartitions Change under Leaf Deletion

We begin by studying the effect that dropping leaves has on a bipartition profile.
For any bipartition in the original profile, there are three cases. We illustrate
these cases through a simple example, with an original leaf set of a, b, c, d, e, f
and with leaves b and e dropped.

1. merge: If two bipartitions differ solely in (a subset of) the leaves being
dropped, then those bipartitions get merged in the new profile. For example
ac|bdef and abc|def merge into ac|df and the ν set for the merged bipartition
consists of the union of the two original bipartitions.

2. disappear: If dropping the leaves creates a bipartition with an empty side or
makes the bipartition trivial, then the bipartition disappears. For example,
both acdf |be and acd|bef disappear.

3. no change: Otherwise, a bipartition remains unchanged.

An important observation is that, for all L′′ ⊆ L′ ⊆ L, every nontrivial bipar-
tition in P|L′′ and in Ct(T |L′′) arises as a result of a “no change” of a single
bipartition or a “merge” of two or more bipartitions in P|L′. Unfortunately this
observation does not suggest an efficient algorithm.

3.3 Finding Subsets of Leaves to Drop

Given two bipartitions b1 and b2 of L, we can easily identify all leaf subsets L′ of
minimum cardinality such that dropping L′ from L merges b1 and b2. If we have
b1 = A|B and b2 = C|D, then the dropset L′ is the smaller of the two following
sets (or either set in case they have the same size):

(AΔC) ∪ (BΔD) or (AΔD) ∪ (BΔC) (2)

This concept is exploited in Algorithm 1.
Observe that, in the terminology of [17], the dropset of b1 and b2 is the largest

partial X-split such that b1 and b2 both extend it.

Algorithm 1. Find minimum cardinality leaf-dropset that renders b1 = b2

Input: two bipartitions on the same leaf set
Output: the dropset (or dropsets if there are two)
1: function bipartition-pair-dropset(b1 = A|B, b2 = C|D)
2: S0 ← AΔC ∪ BΔD
3: S1 ← AΔD ∪ BΔC
4: if |S0| < |S1| then
5: return [S0]
6: else if |S1| < |S0 then
7: return [S1]
8: else
9: return [S0,S1]

10: end if
11: end function
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Theorem 1. Algorithm 1 computes the minimum cardinality dropset for any
pair of bipartitions of L.

Proof. That the dropset causes the two partitions to merge is evident. We estab-
lish that the dropset has minimum cardinality by contradiction. Consider that
there exists a smaller dropset merging the two bipartitions. Then there is at least
one leaf � in the dropset returned by our algorithm that is not in the smaller
dropset. This leaf must be on the same side of the partition in both b1 and b2,
since otherwise our dropset would not merge the two. But our algorithm uses
the symmetric difference of these two sides in computing the dropset, so it could
not have chosen �, a contradiction. �
Theorem 2. The cardinalities of the dropsets returned by Algorithm 1 define a
metric on the space of bipartitions of L.

Proof. Three properties characterize a metric: it must be positive definite and
symmetric, and it must obey the triangle inequality. The first two properties are
trivial in this case. Suppose we have bipartitions b1, b2, and b3; we want to show
that the cardinality of the dropset of b1 and b3 cannot exceed the sum of the
cardinalities of the dropsets of b1 and b2 and of b2 and b3. Note that removing
both of these dropsets from both b1 and b3 merges the two bipartitions, thereby
establishing an upper bound on the distance between these two bipartitions in
our space; but the distance is the size of the dropset of b1 and b3, so that the
triangle inequality holds. �

4 The Algorithm

We describe the algorithm at a conceptual level, leaving a more formal speci-
fication to inset text. First, we build the bipartition profile for the given tree
set. Next, we compute the dropset for each pair of bipartitions in the profile
such that neither bipartition in the pair appears in the consensus tree, but the
pair would appear if merged. For each unique dropset we accumulate the list
of bipartition pairs yielding that dropset. These last two parts are formalized
in Algorithm 2. We then compute the impact of each dropset as the number
of bipartition pairs giving rise to that dropset minus the size of the dropset
itself. This score corresponds roughly to the difference between the number of
edges that will be created and the number of leaves that will be lost should that
dropset be used. The dropset of largest impact is then used, the profile updated,
the impacts updated, and the process repeated until there does not remain any
dropset with a nonnegative impact. This greedy overall framework is formalized
in Algorithm 3.

The impact measure ignores disappearing edges and dropsets that are subsets
of another—the latter because a superset with deceivingly poor score is likely to
get chosen in a subsequent round. The overall algorithm is a greedy heuristic,
but does well in practice and on hard instances, as we demonstrate in the next
two sections.
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There remains the issue, as with all leaf-dropping methods, of what to do
with the dropped leaves. The staying power of consensus methods argues for
producing a single tree and our method does that. For the rogue taxa, we provide
an intriguing strategy that is applicable in some settings in Section 5.3.

5 Experimental Results

We have implemented our approach as a standalone Python-based prototype.
Our current implementation is suitable for datasets of up to a thousand trees on a
thousand leaves. Scaling up to 10,000 trees on 10,000 leaves is simply a matter of
reimplementing our approach as part of RAxML [18] so as to leverage the efficient
bipartition manipulation routines therein. In the following, we present results on
artificial datasets constructed to cause difficulties to various consensus methods,
followed by results on biological datasets that we used in previous work on
bootstrapping. We then discuss implications of our results on the interpretation
of phylogenetic reconstruction. We conclude by a smaller study on biological
datasets using a slight modification of our algorithm to maximize the number of
nontrivial bipartitions in the result.

5.1 Difficult Instances

Our algorithm is particularly well suited to the so-called “pathological” instances
used in the literature to critique the strict or majority consensus. A classic
example is an instance where the trees share a common subtree of n−k leaves, but
where the remaining k leaves destroy resolution in the consensus. The example
we present here is rather simple and space limits prevent us from giving more
examples. We refer interested readers to [13] for expanded treatment of this
issue.

Algorithm 2. Find potential dropsets by examining all pairs in a profile
Input: A bipartition profile P = (L, BT , ν : BT → 2T )
Input: A frequency-only consensus method Ct with threshold t
Output: An object mapping dropsets to lists of bipartition pairs
1: function potential-profile-dropsets(P , Ct)
2: Γ ← {b | b ∈ BT and |ν(b)| ≤ t}
3: for all pairs of bipartitions b1,b2 in Γ do
4: if |ν(b1) ∪ ν(b2)| > t then
5: L ← bipartition-pair-dropset(b1, b2)
6: for d ∈ L do
7: δ[d] ← δ[d] ∪ {(b1, b2)}
8: end for
9: end if

10: end for
11: return δ
12: end function
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Algorithm 3. Our top level iterative heuristic for finding dropsets
Input: A tree set T
Input: A frequency-only consensus method C with threshold t
Output: A set of leaves to drop, composed of the union of dropsets
1: function select-and-remove-dropsets(T )
2: d∗ ← dgreedy ← ∅
3: repeat
4: P ← build-bipartition-profile(T |(L − d∗))
5: δ ← potential-profile-dropsets(P , Ct)
6: maximpact = 0
7: dgreedy = ∅
8: for all d ∈ δ’s domain do
9: if |d| − |δ[d]| ≥ maximpact then

10: dgreedy = d
11: maximpact = |d| − |δ[d]|
12: end if
13: end for
14: d∗ = d∗ ∪ dgreedy

15: until dgreedy = ∅
16: return d∗

17: end function

Our example uses the strict consensus. An instance consists of just three
trees, defined on the 28-leaf set {a, b, . . . , x, R, S, T, U}. The common backbone
consists of the 24 taxa {a, b, . . . , x}, as illustrated in Figure 1(e)). The rogue taxa
form the set {R, S, T, U}; they vary in position on the backbone as indicated in
Figures 1(a), 1(b), and 1(c). The strict consensus tree of the three trees is shown
in Fig. 1(d): it is just a star, with no nontrivial bipartition (no internal tree edge)
and its relative information content is I(T , L, Cm−1) = 28+0

28+25 = 28
53 ≈ 0.53. Our

algorithm correctly identifies the rogue set, however, so that its strict consensus
tree on the remaining set of leaves is the backbone, with an relative information
content of I(T |{a, . . . , x}, L, Cm−1) = 24+21

28+25 = 45
53 ≈ 0.85.

5.2 Results on Biological Data

We applied our method to the datasets we used in an earlier study of bootstrap-
ping methods [14] and available at http://lcbb.epfl.ch/BS.tar.bz2. There
are 10 datasets of single-gene and multi-gene DNA sequences, with anywhere
from 125 to 994 taxa. For each dataset we generated 1,000 bootstrap replicates
and applied our algorithm to the resulting trees using both Cm

2
and Cm−1. Our

algorithm found rather diverse dropset sizes across the 10 datasets. The results
are depicted in Figure 2, where a quartet of histogram bars are shown for each
dataset with a nonempty dropset. The first histogram bar (a negative quantity)
denotes how many leaves were dropped, while the second bar (a positive quan-
tity) denotes how many nontrivial bipartitions were uncovered. The third bar is
the sum of the first two, simply depicting the net (non-normalized) contribution
to relative information content. The final bar is discussed in Section 5.3.

http://lcbb.epfl.ch/BS.tar.bz2
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Fig. 1. A simple, yet starkly contrasting, example (top) for which the strict consensus
returns a star tree, but for which our algorithm correctly identifies the rogue taxa and
produces a fully resolved tree (bottom)

5.3 Biological Interpretation

Maximum likelihood phylogenetic analyses are typically conducted in two steps.
First the reconstruction proper is performed, yielding a “best tree.” Then a
number of bootstrap replicate trees are generated, say 500 of them; for each
bipartition b in the best tree, its support value is calculated as a normalized
count of the number of replicates in which b appears. Researchers tend to consider
edges with support lower than 75% as unreliable [8].

If rogue taxa are at work in the replicate set, the support values for certain bi-
partitions can be deceivingly depressed. To remedy this problem, we propose that
Algorithm 3 be applied to the replicate set in order to identify rogue taxa. If a
dropset of nonzero size is found, this dropset is then removed from each tree in
the replicate set. Finally, the support value is calculated as a normalized count of
the replicates in which b′ appears such that, if we have b = A|B, then, without
loss of generality, we have b′ = A′ ⊆ A|B′ ⊆ B. In this way, support values in
the “best tree” are less susceptible to the deceiving influence of rogue taxa. This
approach offers one possible solution to the data display problem of leaf-dropping
methods. We still return a single tree on the original leaf set (the “best tree” as
reconstructed by an ML method), but support values for individual bipartitions
more accurately reflect the underlying replicate data. In our datasets, recomput-
ing support values as suggested above yields very intriguing and promising results.
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Fig. 2. The performance of Algorithm 3 in terms of how much “hidden” consensus is
uncovered in biological data sets. The top plot is for majority consensus, the bottom
for strict consensus. The tree sets each consist of 1,000 bootstrap replicates generated
by the RAxML 7.2.5 Rapid Bootstrap Algorithm.

All but two of the identified dropsets succeeded in pushing at least one previously
hidden edge in the “best tree” over the 75% threshold. The number of edges un-
covered by this application of our technique is displayed in the fourth histogram
bar in Figures 2(a) and 2(b). In the dataset with 404 taxa, 20 edges were uncovered
in this manner, pointing to a need for reevaluation of the phylogeny.
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5.4 Increasing Resolution

Our algorithm can easily be modified to maximize nontrivial bipartitions, that
is, to remove taxa so as to increase resolution. With such a setting, our algo-
rithm loosely matches the goal of Cranston and Rannala [6], so we analyzed
the same dataset with our technique to compare our results to theirs. The data
set consists of 85 species of Canformia Carnivora [9]. We obtained the sequence
data from TreeBASE (http://www.treebase.org, Study Accession # S1532)
and reconstructed a tree using RAxML-7.2.5 [18] under the GTRCAT approx-
imation. Additionally, RAxML was used to generate 350 bootstrap replicates
(the number chosen by RAxML’s bootstopping algorithm). Analyzing these 350
trees with our modified Algorithm 3 and using majority consensus generated
fully resolved trees with 50 to 55 taxa, a value consistent with the size of the
agreement subtrees observed by Cranston and Rannala [6].

6 Conclusions and Future Work

We have presented a novel framework to define rogue taxa so as to maximize the
relative information present in a consensus tree computed after removing these
rogue taxa. This framework defines a bicriterion problem, MISC, that is the first
to balance explicitly loss of taxa with gain in resolution in a setting other than
agreement subtrees. We have also provided an effective greedy heuristic to find
a good set of such rogue taxa. This algorithm was tested on both pathological
cases from the literature and a variety of biological data. The changes in the
consensus tree can be parlayed into more accurate bootstrap scores, which in
turn can lead to the reevaluation of phylogenetic trees, as we showed on our
biological datasets.

Further work includes a characterization of the computational complexity of
the MISC problem, as well as improved algorithms for it, including approxima-
tion algorithms with known performance guarantees. Generalizing our approach
to support consensus methods other than frequency-based methods is another
algorithmic problem worth investigating. Finally, there is certainly room to ex-
tend and apply our techniques in different domains, most notably in Bayesian
phylogenetics (as suggested in Section 5.4) and for the subtree mergers used in
the Disk-Covering Methods (as suggested in [15]). On the bioinformatics side,
our preliminary findings indicate that existing phylogenies can be significantly
refined by applying our approach to the recomputation of bootstrap support.
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Abstract. Real PPI networks commonly have large size. Functional modules in 
them are usually overlapping and hierarchical. So it is significant to identify 
both overlapping and hierarchical modules with low time complexity. However 
previous methods can not do it. A new agglomerative algorithm, MOMA, is 
proposed in the paper to resolve this problem. MOMA classifies subgraphs into 
clusters and vertices. Clusters can overlap each other. MOMA identifies 
overlapping and hierarchical functional modules by merging overlapping 
subgraphs. Its time complexity is O(N2). We apply MOMA, G-N algorithm and 
Cfinder on the yeast core PPI network. Comparing with G-N algorithm, 
MOMA can identify overlapping modules. Comparing with Cfinder, MOMA 
can identify hierarchical modules. Distributions of the lowest P-value show that 
the module set identified by MOMA has the stronger biological significance 
than those identified by the other two algorithms. 

Keywords: overlapping functional module, hierarchical module structure, 
agglomerative algorithm. 

1   Introduction 

Large protein-protein interaction (PPI) databases such as DIP [1], MIPS [2] and SGD 
[3] have emerged with the development of high-throughput methods. Accumulating 
evidence suggests that these PPI networks are composed of interacting modules which 
perform certain biological functions [4-7]. Identifying functional modules in these PPI 
networks is important to understand the cellular organization and functional 
mechanisms. Many methods have been proposed to identify functional modules of 
PPI networks [8-17]. These methods can be roughly classified into two categories. 

The first kind of method produces a partition and each vertex belongs to one and 
only one functional module. Typical algorithms of this method are G-N and G-N 
modified algorithm [8,9], MoNet [6] and FAG-EC [10,11]. G-N algorithm defines 
edge betweenness and separates a graph into subgraphs by iteratively removing the 
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edge with the highest betweenness value. Luo proposed MoNet algorithm based  
on weak modules defined by Radicchi and G-N algorithm [6,12]. Li defined a new 
local variable, edge clustering coefficient, to replace edge betweenness and proposed 
FAG-EC algorithm based on G-N algorithm and edge clustering coefficient. As edge 
clustering coefficient is a local variables, FAG-EC has a low time complexity and can 
deal with large PPI networks.  

The other kind of method identifies functional modules as dense subgraphs. 
Typical algorithms of this method are CPM/Cfinder [13,14], MCODE [15], DPClus 
[16]. CPM proposed a clique percolation method (CPM) to mine adjacent k-cliques 
chains. Cfinder is a famous network analysis tool based on CPM. Both MCODE and 
DPClus first choose seed vertices by local neighborhood density and then expands 
seed vertices to density clusters by recursively adding the qualifying neighbor 
vertices.  

Both methods have disadvantages. The functional modules in PPI network are 
usually overlapping and hierarchical [1-3,13]. The first kind methods can’t identify 
the overlapping modules as they make every vertex belongs to one and only one 
functional module. The second kind method can’t identify the hierarchical functional 
module as they are not agglomerate algorithms.  

In recent years, some authors propose the third kind of method to identify 
overlapping and hierarchical functional modules. EAGLE is the typical algorithms of 
this method [17]. EAGLE can identify overlapping and hierarchical functional 
modules by recursively merging overlapping maximal cliques. However EAGLE has 
a high time complexity and can’t fit in large PPI network as identifying all maximal 
cliques is a NP-hard problem. 

In this paper, a new agglomerative algorithm, MOMA (Mining Overlapping 
Modules by Agglomerating), is proposed to identify overlapping and hierarchical 
functional modules in PPI networks. MOMA classifies subgraphs into cluster 
subgraphs and vertex subgraphs. Cluster subgraphs are clusters and can overlap each 
other. MOMA identifies functional modules by recursively merging the pair of 
subgraphs with the maximum clustering coefficient. It can identify hierarchical 
modules as it is an agglomerate algorithm. It can identify overlapping modules as 
cluster subgraphs overlap each other. In addition, its time complexity is O(N2) and can 
be used in large PPI network, where N is the number of vertices in the network.  

As presented above, G-N algorithm is the most famous algorithm of the first kind 
method as other algorithms based on it. CPM is the typical algorithm of the second 
kind method and Cfinder is one of the most popular tools based on CPM. So we 
compare MOMA with G-N algorithm and Cfinder on the yeast core PPI network from 
the DIP database. MOMA can identify overlapping and hierarchical functional 
modules but the other two algorithms can not do it. The lowest P-value of a module 
reflects the biological significance of the module. A module has strong biological 
significance if its lowest P-value is small. We compare distributions of the lowest P-
values of the three algorithms and find that MOMA identifies the most percentage of 
modules with the lowest P-value<<10-10. It means in the three algorithms, the module 
set identified by MOMA has the most strong biological significance.  
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2   Method 

2.1   Cluster Subgraph 

MOMA identifies functional modules by recursively merging subgraphs. The subgraph 
including only one vertex is named as vertex subgraph, otherwise it is named as cluster 
subgraph. The cluster subgraph is initialized based on a vertex pair <v1, v2>. It is 
composed of v1, v2 and their common adjacency vertices if <v1, v2> has an edge or the 
number of their common adjacency vertices is more than or equal to 2. For example, in 
Fig 1.A, as <2, 3> has two common adjacency vertices 1 and 4, the cluster subgraph 1 
is composed of vertices {2, 3, 1, 4} based on it though there is no edge of it. As <6, 7> 
has an edge, the cluster subgraph 2 is composed of vertices {6, 7, 8} based on it though 
there is only one common adjacency vertex of it. However vertices {2, 5, 6} can not 
compose of a cluster subgraph based on <2, 6> because it has no edge and has only one 
common adjacency vertex 5. Some vertices do not belong to any cluster subgraph, for 
example, vertex 5. They are vertex subgraphs. Obviously a cluster subgraph includes at 
least a triangle or a quadrangle. A vertex subgraph can only make edges with other 
vertices, otherwise it is included in a cluster subgraph.  

Obviously, cluster subgraphs can overlap each other. For example, in Fig 1.B,  
the cluster subgraph 3 is composed of vertices {9, 10, 12, 13} based on <12, 13>. The 
cluster subgraph 4 is composed of vertices {10, 14, 11, 13} based on <10, 14>. The 
edge between <10, 13> is the overlapping edge of them. We discard the cluster 
subgraph composed of vertices { 10, 13, 14} based on <10,13> as its vertices all from 
larger cluster subgraph.  
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Fig. 1. Cluster subgraph. A: initialization cluster subgraph. B: overlap of cluster subgraphs.  

2.2   Definition of Clustering Coefficient and Module 

Every agglomerative algorithm defines a parameter to evaluate the probability of two 
subgraphs in one module and merges subgraphs according to it. For example, G-N 
algorithm defines edge betweenness. FAG-EC algorithm defines edge clustering 
coefficient. As cluster subgraphs overlap each other, MOMA defines a new 
parameter, clustering coefficient (CC) of two subgraphs, to evaluate this probability. 
To get lower time complexity, CC had better be a local variable.  

Many evidences show that PPI network is a small world network [18-20]. The CC 
of two vertex subgraphs is equal to 0 as there is no triangle or quadrangle between 
them. Two cluster subgraphs would have more possibility in one module when there 
are more overlapping vertices of them and more interaction edges between them. A 
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vertex subgraph and a cluster subgraph would have more possibility in one module 
when the vertex connects more vertices in the cluster. Based on these, we define 
clustering coefficient of two subgraphs as follows: 

02,1 =vvCC  (1) 

|||)|||(2,1 unionbetweenovercc EEECC +=  (2) 

|||| 1111,1 cctovcv VVCC =  (3) 

where c1 and c2 are cluster subgraphs, v1 and v2 are vertex subgraphs, |Eover| is the 
number of edges from overlapping vertices to vertices in c1 or c2, |Ebetween| is the 
number of edges connecting c1 and c2 and whose vertices are not overlapping 
vertices, |Eunion| is the number of edges of union of c1 and c2, |Vv1 to c1| is the number of 
vertices in c1 and connecting to v1, |Vc1| is the number of vertices in c1.  

Several module definitions have been proposed in literatures [6,10,12]. Radicchi 
defined the in-degree (kin) of a vertex in an undirected subgraph as the number of 
edges which connect it to other vertices in the same subgraph and the out-degree (kout) 
of a vertex as the number of edges which connect it to other vertices in the rest of the 
graph [12]. In the paper, we define the modularity M of a subgraph C in a given graph 
G as follows: 

∑∑=
∈∈ Ci
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Ci

in

C
CikCikM ),(),(  (4) 

where kin(i,C) and kout(i,C) are the in-degree and out-degree of the vertex i in the 
subgraph C. Radicchi defined weak module as the subgraph that the sum of in-degree 
values of its all vertices is larger than the sum of out-degree values of its all vertices 
[12]. In the paper, we also consider a subgraph is a module when it is a weak module. 
So a subgraph C is a module when MC≥1. 

2.3   Algorithm MOMA 

In the section, a new agglomerative algorithm, MOMA, is proposed. It is described as 
follows:  

1. Initialization cluster subgraphs. In the stage, MOMA first generates Amatrix = 
G*G, where G is the adjacency matrix of the PPI network. Amatrix[i,j] is the 
number of common adjacency vertices of the vertex pair <i,j>. Select the vertex 
pair <i,j > whose Amatrix[i,j] is maximum and more than 0. <i,j> and their 
common adjacency vertices compose a cluster subgraph if Amatrix[i,j]>=2 or <i,j> 
has an edge. The cluster subgraph is added into cluster subgraphs set, Cvset, if it 
has a vertex not belonging to any cluster subgraph in Cvset. The time complexity 
of calculation Amatrix is O(N2), where N is the number of vertices in G. As each 
cluster subgraph has at least one vertex not belonging to the other cluster 
subgraphs, Cvset has N cluster subgraphs at most and the time complexity of 
generation Cvset is O(N2). So the whole time complexity of the stage is O(N2).  

2. Every vertex not belonging to Cvset is a vertex subgraph. All vertex subgraphs 
and Cvset compose of subgraphs set Svset. As each subgraph in Svset has at least 
one vertex not belonging to the other subgraphs, Svset has N subgraphs at most. 
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3. Calculation Clustering coefficients. In the stage, MOMA generates Cmatrix by 
calculating the clustering coefficient of each subgraph pair in Svset according to 
the formula (1) , (2) and (3). As Svset has N subgraphs at most, there are N(N-1)/2 
subgraph pairs at most. So MOMA calculates the clustering coefficient N(N-1)/2 
times at most and the time complexity of the stage is O(N2). 

4. Generation Functional module. In the stage, MOMA generates the functional 
module set, Mvset, by recursively merging the two subgraphs with the maximum 
CC value and are not all modules. After a merging, MOMA recalculates the MC 
value of the new subgraph and all CC values between it and the other subgraphs 
connecting with it. Obviously two subgraphs have very little probability in one 
module when the CC value between them is very small. So MOMA defines a 
parameter cmin and ends merging when CC values of all subgraph pairs are less 
than cmin. As Svset has N subgraphs at most, MOMA merges subgraphs N times 
at most and a subgraph connects to N-1 subgraphs at most. So MOMA calculates 
N(N-1) times at most and the time complexity of the stage is O(N2).  

5. Post processing. To every module m1 in Mvset, we can get the module m2 which 
has the maximum coverage rate to m1. The coverage rate Cr is defined as formula 
(5). In the stage, MOMA merges all <m1, m2> whose Cr values are more than 
parameter max_cr. Then MOMA deletes all modules with size<3. As Mvset has N 
modules at most, the time complexity of generation all <m1, m2> is O(N2). 

|)||,min(||| 21212,1 mmmmmm VVVVCr ∩=  (5) 

where |Vm1| is the number of vertices in m1, |Vm1∩Vm2| is the number of overlapping 
vertices of m1 and m2. As presented above, the time complexity of MOMA is O(N2). 

3   Experiments and Results 

We download the yeast core PPI network from the DIP database (version ScereCR 
20090106) [1]. Its maximal connected subgraph includes 2092 proteins and 4142 
interactions. We implement MOMA, Cfinder and G-N algorithm on it and compare 
their performance in the section. 

3.1   Evaluation of MOMA 

P-value is a statistical evaluation criterion which reflects the probability of the co-
occurrence of proteins with a given GO annotation in a certain module by chance 
based on hypergeometric distribution [16,18,21]. P-value is defined as follows: 
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where |V| is the total number of proteins in the network, |M| is the number of proteins 
in an identified module, |F| is the number of proteins in a real functional module, and 
k is the number of common proteins in the real functional module and the identified 
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module. Low P-value indicates the identified module corresponds to the real 
functional module closely because the network has a lower probability to produce the 
module by chance [22]. So the lowest P-value of a module reflects the biological 
significance of the module. The smaller the lowest P-value a module has, the stronger 
biological significance the module has. 

In the paper we simplify a real functional module as all proteins participating in a 
certain biological process. As a biological process is composed of several sub-
processes, the structure of real functional modules is hierarchical. The biological 
process is collected from GO annotations [3,23]. We calculate P-values on GO 
biological process terms by using the SGD GO Term Finder [3]. 

Functional modules overlap each other in real biological systems [13]. So we 
define the overlap rate (Or) of a module set, Mset, as follows: 

||||
iMsetiM i

MMOr ∪∑= ∈  
(7) 

where |Mi | is the number of proteins in Mi, |∪Mi | is the total number of proteins  
in Mset. 

MOMA has two parameters cmin and max_cr. Tab 1 shows the effect of cmin on 
MOMA when max_cr=0.6. Fig 2.A shows distributions of the lowest P-value on GO 
biological process terms by different cmin values when max_cr=0.6. As shown in 
Table 1, with cmin decreasing, the number of modules decreases rapidly, the average 
module size increases rapidly, and the overlap rate decreases slowly because more 
subgraph pairs can not be merged as their CC values less than cmin. As shown in Fig 
2.A, with cmin decreasing, the percentage of modules with the lowest P-value<10-10 
increases and the percentage of modules with the lowest P-value>10-5 decreases. The 
change is very slowly when cmin≤0.25 and becomes rapidly from 0.25. So the 
biological significance of the module set is decreasing with cmin increasing. It 
decreases slowly when cmin≤0.25 and rapidly when cmin>0.25. 

Table 1. The effect of cmin on MOMA when max_cr=0.6 

Cmin 0.35 0.3 0.25 0.2 0.15 0.1 

The number of modules 194 176 155 148 144 139 
Average module size  7.35 8.15 9.35 9.98 10.7 11.79 
Overlap rate 1.31 1.24 1.20 1.19 1.20 1.19 

 
The lowest P-value and the size of a module are conflicting. It means a smaller 

module has stronger biological significance than a lager module when the two 
modules have the same lowest P-value. So the average module size should be 
considered when using the distribution of the lowest P-value to evaluate the biological 
significance of a module set. However many algorithms neglect it. As presented 
above, they are all decreasing with cmin increasing. As the average module size 
decreases rapidly and the biological significance decreases slowly when cmin≤0.25, 
we consider MOMA has the best result when cmin = 0.25.  
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Fig. 2. Distributions of the lowest P-value on GO biological process terms by different cmin 
and max_cr values  

Table 2 shows the effect of max_cr on MOMA when cmin =0.25. Fig 2.B shows 
distributions of the lowest P-value by different max_cr values when cmin=0.25. As 
shown in Table 2, with max_cr decreasing, the number of modules decreases, the 
average module size increases, and the overlap rate decreases because more module 
paris are merged as their Cr values more than max_cr. However comparing with cmin, 
max_cr has much less effort on the result. As shown in Fig 2.B, the distribution also 
changes little with max_cr changing, especially when max_cr<=0.6. This is because 
there are few similar modules identified by MOMA and most of them have Cr>0.6. 

Table 2. The effect of max_cr on MOMA when cmin=0.25 

max_cr 1 0.9 0.8 0.7 0.6 0.5 

The number of modules 182 180 164 160 155 152 
Average module size  9.04 9.04 9.26 9.31 9.35 9.48 
Overlap rate 1.36 1.34 1.25 1.23 1.20 1.19 

3.2   Comparison with G-N Algorithm and Cfinder 

We compare MOMA, G-N algorithm and Cfinder in Table 3 and Fig 3. MOMA has 
two parameters cmin and max_cr. As analysis in section 3.1, max_cr has little effect 
on the result, especially when max_cr<=0.6. So here we set max_cr as a constant of 
0.6 and adjust cmin value. MOMA has the best result when cmin=0.25. When 
cmin=0.35, average module sizes of the three algorithms are close. As the module’s 
size effect on its lowest P-value, both MOMA module sets are chose to be compared 
with the G-N module set and the Cfinder module set. As shown in Table 3, G-N 
algorithm has the overlap rate equal to 1 and the other algorithms have the overlap 
rates more than 1. It means that both Cfinder and MOMA can identify overlapping 
modules but G-N algorithm can’t do it.  

Table 3. The comparison of modules identified by MOMA, G-N algorithm and Cfinder 

 G-N 
Cfinder 
(k=3) 

Cfinder 
(k=4) 

MOMA 
(cmin=0.35)  

MOMA 
(cmin=0.25)  

The number of modules 269 154 68 194 155 
Average module size 7.28 7.08 7.09 7.35 9.35 
Overlap rate 1.00 1.15 1.12 1.31 1.20 
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Fig 3.A shows distributions of the lowest P-values by MOMA, G-N algorithm and 
Cfinder. As shown in Fig 3.A, in four module sets, MOMA(cmin=0.25), MOMA 
(cmin=0.35), Cfinder(k=3) and G-N, MOMA(cmin=0.25) has the most percentage of 
modules with the lowest P-value<10-10 and the least percentage of modules with the 
lowest P-value>10-5. It means MOMA(cmin=0.25) has the strongest biological signi-
ficance in the four module sets. MOMA(cmin=0.35) has more percentage of modules 
with the lowest P-value<10-10 and less percentage of modules with the lowest P-
value>10-5 than Cfinder(k=3) and G-N. It means MOMA module set also has stronger 
biological significance than G-N module set and Cfinder(k=3) module set when they 
have same average module size. So when k=3, MOMA has the best result in the three 
algorithms. 
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Fig. 3. Distributions of the lowest P-value on GO biological process terms by different 
algorithms. A: Distributions of the lowest P-value by MOMA, G-N algorithm and Cfinder. B: 
Distributions of the lowest P-value by Cfinder(k=4) and MOMA_k4. 

As shown in Fig 3.A, Cfinder(k=4) identifies the least percentage of modules with 
the lowest P-value>10-5. However it not means that Cfinder(k=4) has the best result as 
its number of modules are too small. Table 3 shows that Cfinder(k=4) only identifies 
68 modules. It is much less than the other algorithms. All 68 modules can be found in 
the both MOMA module sets. Their corresponding modules in the MOMA module set 
compose of the module set MOMA_k4. Table 4 shows that in both MOMA_k4, all 68 
modules have at least 75% coverage with their corresponding modules and more than 
85% modules of them are completely included in their corresponding modules.  

Table 4. Comparison MOMA with Cfinder (k=4) 

Modules with Cr>=0.75 Modules with Cr=1  
numbers percentage numbers percentage 

MOMA_k4 (cmin=0.25) 68 100% 61 89.7% 
MOMA_k4 (cmin=0.35) 68 100% 58 85.3% 

Fig 3.B shows the distributions of the lowest P-values by MOMA_k4 and 
Cfinder(k=4). It shows that the Cfinder(k=4) module set has the least percentage of 
modules with the lowest P-value<10-10 and the most percentage of modules with  
the lowest P-value>10-5. It means both MOMA_k4 have stronger biological 
significance than Cfinder(k=4) module set. So both MOMA module sets are better 
than Cfinder(k=4) module set as every Cfinder(k=4) module is found in them with 
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Cr>=0.75 and the biological significance of its corresponding modules in both 
MOMA module sets are commonly stronger than that of itself.  

With k value increasing, the number of modules identified by Cfinder is decreasing 
rapidly. We can get similar result that MOMA has better result than Cfinder(k>4) by 
the similar analysis presented above. Here we elide it. Conclusion from above, 
MOMA has the best result in the three algorithms.  

Fig 4 and Table 5 give modules identified by the three algorithms to illustrate 
advantages of MOMA. The seven modules in Fig 4 participate in the same biological 
process F1. White vertices are proteins not participating in F1. MOMA module_2 and 
MOMA module_120 are shown in left Fig 4. They overlap each other. Proteins with 
F1 in MOMA module_2 are colored yellow and those in MOMA module_120 are 
colored red. Yellow vertex with red bold ring is the overlapping protein of the two 
modules.  

 

Fig. 4. Compare with modules identified by the three algorithms. Yellow vertices are proteins 
with F1 and in MOMA module_2. Red vertices are proteins with F1 and in MOMA 
module_120. Yellow vertex with red bold ring is the overlapping protein of MOMA module_2 
and module_120. Vertices with black bold ring are peripheral proteins not identified by 
Cfinder. White vertices are proteins not participating in F1. 

G-N algorithm doesn’t allow overlap. MOMA module_2 and MOMA module_120 
are divided in three G-N modules which are shown in middle Fig 4. We can see that 
MOMA module_2 is divided in G-N module_4 and G-N module_29. MOMA 
module_120 is divided in G-N module_29 and G-N module_254. This division makes 
G-N modules smaller and more dispersive than their corresponding MOMA modules. 
So a MOMA module may include several G-N modules with the same biological 
process, thus its lowest P-value smaller and its biological significance stronger than 
its corresponding G-N modules. MOMA module_2 has much less white proteins than 
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G-N module_4. As MOMA modules delete more proteins not belonging to functional 
modules, their lowest P-values are smaller and their biological significances are 
stronger than their corresponding G-N modules.  

Table 5. A Comparison of modules in Fig 4 

Module |Mi∩F1| |Mi| |F1| P_value 
Module_2 30 35 103 5.59E-49 MOMA 
Module_120 5 5 103 2.95E-08 
Module_4 16 33 103 7.13E-19 
Module_29 12 13 103 1.05E-19 G-N 
Module_254 3 3 103 1.20E-04 
Module_1 28 124 103 7.09E-23 Cfinder 

(k=3) Module_128 3 3 103 7.45E-05 

|Mi |: protein number of module Mi.  |Mi∩F1 |: number of proteins with F1 and in module Mi. 

F1: RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 

 
Most proteins in MOMA module_2 are in Cfinder(k=3) module_1. Four clusters 

compose Cfinder(k=3) module_1 and the 28 proteins with F1 are all in the top cluster. 
Cfinder(k=3) identifies module by mining adjacent triangle chains. It results the 
biggest module, Cfinder(k=3) module_1, commonly composed by several adjoining 
clusters. As MOMA can isolate these clusters, the lowest P-value of MOMA 
module_2 is much smaller and its biological significance is much stronger than that of 
Cfinder(k=3) module_1.Cfinder(k=3) module_128 is the core of MOMA 
module_120. The two red vertices with black bold ring in MOMA module_120 are 
peripheral proteins. They also participate in biological process F1 and have important 
biological significance. However the two peripheral proteins can not be identified by 
Cfinder (k=3). As MOMA modules neglect less peripheral proteins, their lowest P-
values are smaller and their biological significances are stronger than their 
corresponding G-N modules. 

4   Conclusion 

Real PPI networks commonly have large size and functional modules in them are 
usually overlapping and hierarchical. So it is significant to identify both overlapping 
and hierarchical modules with low time complexity. However previous methods can 
not do it. In this paper, a new agglomerate algorithm, MOMA, is proposed to solve 
the problem. MOMA classifies subgraphs into cluster and vertex and defines the  
clustering coefficient of a subgraph pair. MOMA can identify hierarchical module 
structure by recursively merging the subgraph pair with the maximum clustering 
coefficient. It can identify overlapping modules as cluster can overlap each other. It 
has a polynomial time complexity of O(N2) and can be used in large PPI networks. 
We apply MOMA, G-N algorithm and Cfinder on the yeast core PPI network. 
Distributions of the lowest P-value show that the module set identi-fied by MOMA 
has the most strong biological significance in the three algorithms 
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MOMA has disadvantages that it can not select the optimum parameter automatically 
and can not be used in weighted PPI networks. So we will improve MOMA in the next 
work. 
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Abstract. We address the problem of aligning the 3D structures of
two proteins. Our pairwise comparisons are based on a new optimization
model that is succinctly expressed in terms of linear transformations and
highlights the problem’s intrinsic geometry. The optimization problem is
approximately solved with a new polynomial time algorithm. The worst-
case analysis of the algorithm shows that the solution is bounded by a
constant depending on the data of the problem.

1 Introduction and Background

Proteins play a key role in nearly all biochemical processes of a living organism.
The three dimensional structure of a protein molecule largely determines its
biological function, and inferences can be made about one protein’s function by
aligning it to others whose biological function is already established [21]. Hence,
protein structure alignment is an important problem in biology.

A protein is a long chain assembled from twenty different types of amino
acids called residues. Protein chains fold into unique, tightly packed, globular
structures called folds. Typically, a protein’s fold is specified by a list of the three
dimensional coordinates of each atom in the protein. A distance matrix specifying
all the distances between pairs of atoms in the protein completely determines
the fold up to reflections in a coordinate invariant way [12]. A distance matrix is
often converted into a contact matrix, or map, whose entries equal one for pairs
of atoms within a certain cut-off distance from one another and zero otherwise.

The objective in protein alignment is to determine a one-to-one correspon-
dence between a subset of the atoms or residues in two different protein struc-
tures. The subset chosen should optimize some biologically relevant similarity
measure, although there is currently no consensus on what this measure of sim-
ilarity should be [21]. In fact, the structure alignment problem itself may not be
well-posed in all cases [10].

Existing protein alignment algorithms largely fall into two categories: (i)
algorithms that directly use the three dimensional Cartesian coordinates of the
atoms and (ii) algorithms that use internal coordinates (e.g. contact matrices) as
a basis for comparisons [21]. Unlike sequence alignment, exact polynomial-time
structure alignment algorithms do not exist. Kolodny and Linial [18] claim it
is possible to obtain an approximate polynomial-time algorithm if one exploits
three-dimensional Euclidean geometry. Their claim seems to favor alignment
algorithms from category (i). However, three dimensional Euclidean geometry

M. Borodovsky et al. (Eds.): ISBRA 2010, LNBI 6053, pp. 152–165, 2010.
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based alignments may introduce undesirable rigidity in the alignment prob-
lem [20]. Contact matrix based alignments may be more biologically relevant
since they increase flexibility.

The contact map overlap (CMO) protein alignment problem is the problem
of determining a one-to-one correspondence between subsets of residues in two
proteins that maximizes the overlap of their contact matrices [1,2,6,8,19,22,25].
The CMO problem can be shown to be equivalent to other, well-studied opti-
mization problems, like the maximum subgraph problem [1,2], and is known to
be NP-complete [11].

Integer programming formulations of the CMO problem have been solved with
branch-and-bound techniques and several associated relaxations [2,6,8,19,25].
The problem was originally formulated in [19] as a binary, quadratic problem.
Relaxations of this formulation are studied in [2] and [8], and an exact algorithm
is developed in [25]. A fast CMO algorithm that exploits a special structure of the
maximum clique problem is described in [22], and a technique that leverages the
special properties of self-avoiding walks in two and three-dimensional Euclidean
space is developed in [1].

Our approach to protein structure alignment is different. First, we do not
use discrete contact maps but instead smooth the contact information and re-
formulate the problem in n-dimensional Euclidean space, see Figure 1. Second,
our geometric reformulation bounds our optimization problem by constructing
a solution to the underlying combinatorial problem. Third, integer program-
ming formulations attempt to align proteins using local contact information. We
instead take a global perspective by first decomposing the contact maps and
identify a smaller collection of characteristic subspaces on which to make align-
ments. Our method competes favorably with the results in [2] in terms of time
and quality, and our algorithm should scale well with problem size.

2 Notation and Problem Statement

Let X be the n × 3 coordinate matrix whose ith row is the coordinates of the
ith atom, and let M be the n × n distance matrix whose (i, j) element is the
distance between atom i and atom j, i.e.

Mi,j = ‖Xi,: − Xj,:‖,
where Xi,: and Xj,: are the i-th and j-th columns of X . The matrices X and M
are known to be in a one-to-one relationship up to reflection [12]. We let

[C(ρ, κ)]ij = max{min{−ρ(Mi,j − κ), 1}, 0},
which is a smooth contact matrix, see Figure 2 for a graph of the piecewise linear
function. The parameter κ is the distance cutoff parameter and ρ is the mag-
nitude of the slope of the sigmoid. Importantly, if ρ = 1/κ, then [C(ρ, κ)]i,j is
arbitrarily small for i �= j as κ decreases to zero. Hence, we can ensure C(ρ, κ) is
diagonally dominant and subsequently positive definite. We make this assump-
tion throughout.
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(a) (b)

(c) (d)

Fig. 1. Representations of the fold of the protein crambin (1crn). (a) 3D representation
(b) 8A contact map (c) smoothed positive-definite contact map (d) intrinsic contact
vectors projected to R3.

Let C′(ρ, κ) = C′ and C′′(ρ, κ) = C′′ be contact matrices for two different
proteins for which we assume, at least for now, that the number of residues is the
same. Although this assumption is atypical, this allows us to succinctly study the
fundamentals of our alignment problem, and importantly, it highlights the com-
binatorial difficulty that we overcome. We adapt our study to the more realistic
case of the two proteins having a different number of residues in Section 4.

The assumption that both ρ and κ are selected so that both C′ and C′′ are
positive definite means that there are unitary matrices U and W so that

C′ = UD′UT and C′′ = WD′′WT ,

where D′ and D′′ are the diagonal matrices comprised of the positive eigenvalues
for C′ and C′′. Since the eigenspaces and eigenvalues characterize the contact
matrices, it makes sense to align them. The essence of our comparison technique
rests on the fact that the orthonormality of U and W ensures that we can
find a rotation matrix Θ that perfectly aligns U with W , i.e. we can guarantee
ΘW = U . However, we have a different rotation for each of the 2n orientations
of the eigenvectors. For example, if we replace the first column of U with its
negative, then we have a different rotation. Deciding an optimal rotation means
addressing the possibility of searching through all 2n possible orientations.
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Fig. 2. The graph of max{min{−ρ(Mi,j − κ), 1}, 0} for ρ = 1/6 and κ = 8. The
horizontal axis is Mi,j Angstroms.

Three collections of linear operators define our search space, and we let

– P be the collection of all permutation matrices,
– R be the collection of all rotation matrices, and
– I be the collection of all axial reflections, i.e. I is the set of diagonal matrices

I± for which each diagonal element is either 1 or −1.

The alignment problem we propose is

min
{‖C′ − ΘC′′Ω‖p

p : ΘW = UI±, I± ∈ I, Θ ∈ R, Ω ∈ P} . (1)

The matrix I± orients the eigenvectors of C′, for which the unique rotation
Θ = UI±WT aligns the eigenvectors of C′′ with those of C′. The permutation
matrix Ω pairs the contact vectors to minimize the deviation as measured by the
matrix p-norm. We mention that the extreme case in which ρ → ∞ places the
problem in graph theoretical terms since both C′ and C′′ are adjacency matrices
for a graph (V, E), with V being the set of respective residues {r1, r2, . . . , rn}
and E = {(ri, rj) : Dij < κ}. We do not generally consider this case and instead
assume throughout that 1 ≤ p ≤ 2 so that the sub-multiplicative property holds.

The problem can be re-written since the constraint Θ = UI±WT gives

C′ − ΘC′′Ω = UD′UT − UI±WT WD′′WT Ω = U(D′UT − I±D′′WT Ω).

Using the sub-multiplicative property, we can re-state the problem as

min
{‖D′UT − I±D′′WT Ω‖p

p : I± ∈ I, Ω ∈ P} . (2)

Moreover, for the 2-norm we have

‖D′UT − I±D′′WT Ω‖2
2

= tr
((

D′UT − I±D′′WT Ω)T (D′UT − I±D′′WT Ω
))

= tr
(
(U(D′)2UT − 2UD′I±D′′WT Ω − ΩT W (D′)2WT Ω

)
,

where tr(·) is the trace of the matrix. Both U(D′)2UT and ΩT W (D′′)2WT Ω are
constants under the trace calculation, which means that a 2-norm reformulation
is

max
{
tr
(
UD′I±D′′WT Ω

)
: I± ∈ I, Ω ∈ P} . (3)
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The 2-norm formulation along with the positive definite assumption provides
an intrinsic geometric description of the similarity measure we optimize. Let
R′ =

√
D′UT , where the square root is elementwise. We refer to the columns of

R′ as the intrinsic contact vectors of a protein, and each of these corresponds to
a residue. Recall that C′

i,j is the contact between residue i and residue j. Since
C′ = (R′)T R′, we have that C′

i,j = (R′)T
:,iR

′
:,j . Moreover, since the diagonal

elements of C′ are equal to one (every residue is in contact with itself), we have
that the intrinsic contact vectors are unit vectors since C′

ii = (R′)T
:,iR

′
:,i = 1.

Therefore, the contact between two residues of a protein is the cosine of the angle
between their corresponding intrinsic contact vectors. Allowing R′′ =

√
D′′WT ,

we see that
D′UT =

√
D′R′ and D′′WT =

√
D′′R′′,

and hence, the objective function in (3) is

tr
(
R′√D′I±

√
D′′R′′Ω

)
.

This shows that the 2-norm objective is a scaled sum of the cosines of the
angles between the paired intrinsic contact vectors from the two proteins. Since
the maximum value of the cosine is 1 if the angle is zero, we have the geometric
description that the 2-norm objective is minimizing the angles between the paired
intrinsic contact vectors.

3 Algorithmic Motivation

The optimization problem in (2) is a mixed integer optimization problem (MIP),
for which a number of exact algorithms are known. However, the binary search
tree underlying the MIP formulation has 2n leaves, each of which corresponds
to a unique I± in I. For any one of these an optimal permutation matrix Ω
can be calculated by solving a traditional assignment problem on the bipartite
graph (N ′, N ′′, E), where N ′ is the collection of column vectors in D′UT , N ′′ is
the collection of column vectors in I±D′′WT , E = N ′ × N ′′, and each edge is
weighted with the p-norm difference of the defining vectors. While the assignment
problem is polynomial, the fact that we might have to solve 2n of these problems
is cause for concern since n is typically around a 100. To test the ability of stock
solvers we formed the MIP in AMPL and tried to solve a 10 residue problem
with MINLP (posted at NEOS, http://www-neos.mcs.anl.gov/). The solution
was known to be I± = Ω = I. However, MINLP reported a different optimal
solution with an objective value about 10 times that of the known optimum. As
a counterpart, CPLEX correctly identified the solution by solving the standard
MIP relaxation. Unfortunately, similar success for larger, and more difficult,
problems was not observed with CPLEX. This demonstrates the need for quick,
high-quality heuristics to align large proteins, and we present a new, polynomial-
time search strategy based on a geometric bound.

http://www-neos.mcs.anl.gov/
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A small example highlights that the assignment problem is bounded for each
I±. The following are from 3 atoms of a beta sheet in two different proteins,

D′UT =

⎡
⎣0.0066 −0.0128 0.0066

0.0953 −0.0002 −0.0950
1.6278 1.6793 1.6281

⎤
⎦

and

D′′WT =

⎡
⎣0.0036 −0.0070 0.0036

0.0104 −0.0002 −0.0103
1.6223 1.6819 1.6225

⎤
⎦ .

We construct I± by minimizing the maximum magnitude of each row of D′UT −
I±D′′WT Ω. For example, if the first diagonal element of I± is 1, then the
maximum magnitude element of the first row of D′UT − I±D′′WT Ω is

0.0194 = max{0.0066,−0.0128, 0.0066, 0.0036,−0.0070, 0.0036}
−min{0.0066,−0.0128, 0.0066, 0.0036,−0.0070, 0.0036}.

If the first diagonal element of I± is instead −1, the maximum magnitude ele-
ment of the first row of D′UT − I±D′′WT Ω is

0.0198 = max{0.0066,−0.0128, 0.0066,−0.0036, 0.0070,−0.0036}
−min{0.0066,−0.0128, 0.0066,−0.0036, 0.0070,−0.0036}.

Since the first is lower, we let the first diagonal element of I± be 1. For the
second diagonal element we find that the maximum possible magnitude differ-
ence in the second row is 0.2071 if we choose either 1 or −1, which leaves this
element undecided. For the third diagonal element we have a maximum possible
magnitude difference of 0.0596 for 1 and 3.3612 for −1, and we select the 1 over
the −1. This leaves two choices for the diagonal elements of I±, either (1, 1, 1)
or (1,−1, 1).

This construction of I± guarantees the magnitude of the difference between
each matrix coefficient of D′UT − I±D′′WT Ω is at most the corresponding row
value independent of Ω. So, for either of our two choices of I± we have for any
permutation matrix Ω that

∣∣D′UT − I±D′′WT Ω
∣∣ ≤

⎡
⎣0.0194 0.0194 0.0194

0.2071 0.2071 0.2071
0.0056 0.0056 0.0056

⎤
⎦ ,

where the absolute value of the matrix is componentwise. This bounds the op-
timal value of (2) by 3‖(0.0194, 0.2071, 0.0056)T‖p

p, which for p = 2 is 0.1299.
This problem’s unique optimal solution has both I± and Ω being the identity,
with the optimal value being 0.0001. So the technique identifies the optimal I±.
Importantly, the technique also identifies the two I± matrices with the lowest
objective values, which are listed in Table 1 for all I± and Ω possibilities. The
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Table 1. The first column lists the diagonal elements of I±, so the diagonal of I±

for the second row is (1, 1,−1). The first row shows the permutation used to order
the columns of the identity to form Ω. So, Ω for the second column has the 2nd and
third columns of the identity swapped. For ease of presentation the values are rounded
to four decimal places, which leaves two values at 0.0001. However, the top, left most
value is lower with increased accuracy.

I± \ Ω (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,2,1) (3,1,2)
(1, 1, 1) 0.0001 0.0263 0.0266 0.0592 0.0790 0.0591
(1, 1, -1) 32.4270 32.4210 32.4210 32.4210 32.4270 32.4210
(1, -1, 1) 0.0790 0.0594 0.0591 0.0264 0.0001 0.0264
(-1, 1, 1) 0.0006 0.0258 0.0265 0.0594 0.0790 0.0594
(1, -1, -1) 32.4270 32.4210 32.4210 32.4210 32.4270 32.4210
(-1, 1, -1) 32.4270 32.4210 32.4210 32.4210 32.4270 32.4210
(-1, -1, 1) 0.0790 0.0595 0.0593 0.0260 0.0006 0.0260
(-1, -1, -1) 32.4270 32.4210 32.4210 32.4210 32.4270 32.4210

calculation identifying the third diagonal element of I± hints that there is pos-
sibly a relatively large assignment if −1 is selected. Table 1 shows that the best
assignment if the third diagonal is −1 is O(104) above the assignments in which
the third diagonal is 1.

From a geometric perspective the construction of I± orients, or signs, the
axial components of the column vectors of D′′WT so that they collapse into the
smallest “box” that also contains the column vectors of D′UT . This box bounds
the worst possible assignment. Formally, for ηi ∈ {1,−1} we let

δmin
i (ηi) = min

j
({λ′

iUj,i} ∪ {ηiλ
′′
i Wj,i})

and
δmax
i (ηi) = max

j
({λ′

iUj,i} ∪ {ηiλ
′′
i Wj,i}) .

Then setting Δi(ηi) =
(
δmax
i (ηi) − δmin

i (ηi)
)
, we have

max
Ω∈P

{‖D′UT − I±D′′WT Ω‖p
p : I±i,i = η̄i ∀i

} ≤ n
∑

i

min{Δi(1), Δi(−1)},

where η̄i satisfies Δi(η̄i) = min{Δi(1), Δi(−1)}. Since the particular I± used
here is only one of the 2n elements of I, we have the following

Theorem 1. The optimal value of the alignment problem in (1) is no worse
than n

∑
i min{Δi(1), Δi(−1)}.

Since calculating all Δis is O(n2), Theorem 1 gives a polynomial upper bound
on the problem. Our experimental results show that this bound is not generally
indicative of the optimal value of (1), especially if the proteins align well. This
is not surprising since the bound is a worst case estimate of the geometry of the
problem, and in the case that the proteins align well, the geometric bound is
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expected to be a poor estimate of the alignment problem. Indeed, if the proteins
align perfectly, then the optimal value is zero while the geometric bound is∑n

i=1 λ′
i, provided that U is the identity. However, there is significant value in

calculating the bound since it identifies meaningful orientations. For example,
suppose that Δi(1) << Δi(−1). This suggests a preference to sign the i-th
eigenvector with a 1 since if we instead select −1, the column vectors of I±D′′WT

deviate from the column vectors of D′UT . Since our goal is to minimize deviation,
we select 1.

4 Adaptations for Real Numerical Studies

The previous section presents a method of calculating I± so that the assignment
problem is bounded geometrically, and in this section we develop a polynomial
time solution procedure based on this calculation. We first adapt our model to
the more realistic case in which

– the number of residues differs between the two proteins, and
– residues from like secondary structures are aligned.

We assume for convenience that the protein with the fewer number of residues
corresponds to C′. In this case we pad C′ with rows and columns of zeros to
the right and to the bottom so that its dimensions agree with C′′. Unlike the
simplified case studied earlier, part of the alignment problem is to select the
eigenvectors of the larger protein that best align with the smaller protein. Let
there be n1 residues in the smaller protein and n2 in the larger. The required
selection is accomplished by a linear operator of the form

Γ =

⎡
⎣ Γ ′

· · ·
0

⎤
⎦ ,

in which Γ ′ is a n1 × n2 binary matrix whose row sums are 1. This alters (2) to
become

min
{‖D′UT − I±ΓD′′WT Ω‖p

p : I± ∈ I, Ω ∈ P , Γ ∈ G} , (4)

where G is the collection of all possible Γ matrices. To account for secondary
structure alignment we enforce additional restrictions on Ω. Structural motifs,
such as β-sheets and α-helices, are identified by the DSSP algorithm from [15],
and part of the alignment problem is to encourage the alignment of residues
between like structures in the two proteins. Ensuring such alignments can be
accomplished by altering Ω. In particular, we can assume that Ωi,j = 0 if the
secondary structure of residue i in the first protein disagrees with the secondary
structure of residue j in the second protein. Since the number of residues in like
secondary structures typically varies between the two proteins, we can no longer
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ensure that that each row and column of Ω contains a single 1, and instead, we
can only ensure∑

i

Ωi,j ≤ 1 for all j,
∑

j

Ωi,j ≤ 1 for all i, and
∑
i,J

Ωi,j ≤ S. (5)

The maximum value of S that the summation in the last condition can achieve
is the total number of residues that are in a common secondary structure. For
example, if the first protein has 8 residues in an α-helix and 3 residues in a β-
sheet, whereas the second protein has 5 residues in an α-helix and 4 in a β-sheet,
then the maximum value of S that can be achieved is min{8, 5}+min{3, 4} = 8.
Since

∑
i,j Ωi,j is the number of paired residues, we generally want this to be

large. If we let P ′ be the altered set of Ω matrices, the updated alignment
problem is

min
{‖D′UT − I±ΓD′′WT Ω‖p

p : I± ∈ I, Ω ∈ P ′, Γ ∈ G} , (6)

which can be re-written in terms of the contact matrices as

min
{‖C′ − ΘWΓWT C′′Ω‖p

p : ΘW = UI±, I± ∈ I, Ω ∈ P ′, Γ ∈ G} .

The only interpretive differences between this and (1) are that WΓWT projects
C′′ onto a smaller dimension so that it can be aligned with C′ and that P ′

is altered from P . As discussed momentarily, both Γ and Ω can be calculated
efficiently, which means the combinatorial difficulty remains with calculating I±.
Our algorithmic structure circumvents the combinatorial issue of the problem
by calculating the Δi’s as follows,

1. Calculate Γ with an assignment problem.
2. Use ΓD′′ instead of D′′ to calculate Δi and let

I±i,i =

⎧⎨
⎩

1, Δi(1) < Δi(−1)
−1, Δi(1) > Δi(−1)

0, Δi(1) = Δi(−1).

3. Calculate Ω with either an assignment problem or dynamic programming.

The fact that I±i,i can be zero means that I± is acting as an additional projection,
i.e. the product I±Γ is selecting a collection of eigenvectors as well as signing
those that are selected. From the previous example we see that the additional
projection identifies the coordinates for which the calculation of Δi indicates an
orientation of the eigenvector. So the combined effect of I±Γ is to judiciously
orient and select the eigenspaces on which to pair the residues.

A traditional assignment problem can be used to calculate one or both of Γ
and/or Ω. If we let ξi,j be the “cost” of assigning entity i to entity j, the classical
assignment problem for a square ξ matrix is

min

⎧⎨
⎩
∑
i,j

ξi,jωi,j :
∑

j

ωi,j = 1 ∀i,
∑

i

ωi,j = 1 ∀j, ωi,j ∈ {0, 1}
⎫⎬
⎭ . (7)
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To compute Γ we let ξi,j = |λ′
i −λ′′

j |, which encourages eigenvectors with similar
eigenvalues to be paired. Since the proteins are of different sizes, we replace∑

j ωi,j = 1 with
∑

j ωi,j ≤ 1. As with the square case, solving the problem
is well known to be polynomial. We used the Hungarian algorithm in [5] to
calculate Γ . To calculate Ω we let

ξi,j = ‖[D′UT ]:,i − [I±ΓD′′WT ]:,j‖p
p.

We further replace
∑

i ωi,j = 1 with
∑

i ωi,j ≤ 1 and add
∑

i,j ωi,j = S, where S
the maximum value in (5). This problem was modeled in AMPL and solved with
CPLEX due to the changed constraints. Assignment problems were similarly
used in [24].

The residue pairings from our initial numerical effort were disappointing in
their biological measures. The problem was in the use of the assignment problem
to calculate Ω, which was inadequate in its flexibility to handle gaps in the
residue pairing. Gaps are controlled by S in the assignment problem. We used
the equality

∑
i,j ωi,j = S, with S being the largest possible value, to guarantee

a match between as many residues as possible. However, this assumption is
not biologically sound. As an alternative, we compared the assignment method
with a dynamic programming (DP) approach that pairs the residues. The DP
algorithm is a standard global sequence alignment procedure [13] that allows, but
penalizes, gaps in the alignment. This permits S to deviate from its maximum
value. Secondary structure mismatches are also allowed but penalized. We refer
readers to [13] for a description of the procedure.

5 Numerical Results

We tested our algorithm’s ability to identity the known families identified by
SCOP [3] among 33 protein structures taken from the Skolnick data set [2,6],
see Table 2. The protein structures in the Skolnick data set were obtained from
the Protein Data Bank [4] and parsed with BioPython [7]. The contact matrices
were constructed with the piecewise linear sigmoid function mentioned in Sec-
tion 2 with ρ = κ = 7. Other sigmoid functions were tested, but the piecewise
linear function worked well with these parameters. Both the assignment method
and the DP method were tested to calculate the permutation matrix Ω. The
RMSD scores of our residue pairings were consistently worse for the assignment
method, with an average improvement of 6.2% with DP in both the 1 and 2-
norm objectives. For this reason the results below are based on the DP method
for calculating Ω. Each gap in the residue alignment was penalized with a value
of 2, and pairing residues from different secondary structures was penalized with
a value of 3.5. These parameters can be altered to remove/limit either gaps or
mismatches. In our numerical work these values gave a mixture of gaps and
mismatches.

Our algorithm was run on a dual core 2.16 GHz T2600 Intel processor with
1GB of memory in Matlab under Linux. The algorithm took 555.76 seconds to
align 780 pairs of proteins with the 2-norm and 734.59 seconds with the 1-norm,
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(a) STRUCTAL (b) RMSD (c) DP Values

Fig. 3. Various scores for our alignments of the Skolnick data set with the 2-norm
version of our objective function. The 40 proteins compared are ordered as they are
listed in Table 2.

Table 2. The Skolnick Data Set

SCOP Fold SCOP Family Proteins
Flavodxin-like CheY-related 1b00, 1dbw, 1nat, 1ntr, 3chy

1qmp(A,B,C,D), 4tmy(A,B)
Cupredoxin-like Plastocyanin 1baw, 1byo(A,B), 1kdi, 1nin

azurin-like 1pla, 2b3i, 2pcy, 2plt
TIM beta/alpha-barrel Triosephosphate 1amk, 1aw2, 1b9b, 1btm, 1hti

isomerase (TIM) 1tmh, 1tre, 1tri, 1ydv, 3ypi, 8tim
Ferritin-like Ferritin 1b71, 1bcf, 1dps, 1fha, 1ier, 1rcd

Microbial ribonuclease Fungal ribonucleases 1rn1(A,B,C)

approximately 0.71 seconds and 0.94 seconds per alignment, respectively. An-
donov et al. [2] report a time of approximately 1.04 seconds per alignment for
their algorithm on a 2.4 GHz AMD Opteron processor with 4 GB of memory
programmed in C++. Computation of the eigensystem of each protein is not
included as this is a one time operation. For small proteins the cost of comput-
ing the eigensystem of the protein’s contact matrix is negligible, but the cost
grows quickly for larger proteins. The eigensystems for large proteins should be
computed and stored prior to comparison.

The graphs in Figure 3 depict the clustering ability of three different scores
of our alignments with the 2-norm objective function. The first two scoring
functions are widely used to assess protein alignments. STRUCTAL [23] has
been reported to be a good scoring function for protein alignment [17] and is
given by

STRUCTAL =
∑

i

20

1 +
(

di

2.24

)2 − 10ng.

The quantity di is the distance (after the structures have been superimposed)
between the ith paired residues/atoms. The quantity ng equals the total number
of gaps in the alignment. Figure 3(a) is a graph of our STRUCTAL scores. The
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second scoring function is the RMSD of the aligned residues [14,16], which is
shown in Figure 3(b). Figure 3(c) is the score from the DP construction of Ω.
Our algorithm correctly identifies the known 5 families in each case. RMSD most
clearly distinguishes the families, with our DP values doing nearly as well. The
STRUCTAL measure correctly identifies the families, although the delineations
are not as sharp (especially for the 4th group).

6 Conclusion

The eigensystem-based protein structure alignment algorithm described in this
article is a new and fast way to align protein structures. The geometry of aligning
the intrinsic contact vectors of two proteins provides additional insight into the
protein alignment problem. This geometric interpretation of the problem is not
available from the contact map overlap problem formulation which has a more
graph-theoretic flavor. By solving an assignment problem, we can quickly pair
the eigenvalues of the contact matrices of two proteins. Once an orientation
for the second protein’s eigenvectors is specified, the corresponding eigenvectors
are easily paired, providing a quick, permutation independent way to compare
two protein structures. The key challenge solved in this paper is a method for
quickly identifying a good orientation for the eigenvectors of the second protein.
The last step in the alignment is to solve a standard global sequence alignment
problem. Because this alignment is done only once, the algorithm is fast, at
least comparable in speed to the latest algorithms for the contact map overlap
problem, but with the potential to scale well for larger problems. Several variants
of the approach are possible, and in future work we hope to compare these
variants against many of the existing alignment algorithms.
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High-throughput experimental technologies, along with computational predic-
tions, have resulted in large-scale biological networks for numerous organisms.
Global analyses of biological networks provide new opportunities for revealing
protein functions and pathways, and for uncovering cellular organization prin-
ciples. In my talk, I will discuss a number of approaches we have developed
over the years for the complementary problems of predicting interactions and
analyzing interaction networks. First, I will describe a genomic approach for
uncovering high-confidence regulatory interactions, and show how it can be ef-
fectively combined with a framework for predicting regulatory interactions for
proteins with known structural domains but unknown binding specificity. Next,
I will describe algorithms for analyzing protein interaction networks in order to
uncover protein function and functional modules, and demonstrate the impor-
tance of considering the topological structure of interaction networks in order to
make high quality predictions. Finally, I will present a framework for explicitly
incorporating known attributes of individual proteins into the analysis of biolog-
ical networks, and utilize it to discover recurring network patterns underlying a
range of biological processes.
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Abstract. The random accumulation of variations in the human genome
over time implicitly encodes a history of how human populations have
arisen, dispersed, and intermixed since we emerged as a species. Re-
constructing that history is a challenging computational and statistical
problem but has important applications both to basic research and to the
discovery of genotype-phenotype correlations. In this study, we present
a novel approach to inferring human evolutionary history from genetic
variation data. Our approach uses the idea of consensus trees, a tech-
nique generally used to reconcile species trees from divergent gene trees,
adapting it to the problem of finding the robust relationships within a set
of intraspecies phylogenies derived from local regions of the genome. We
assess the quality of the method on two large-scale genetic variation data
sets: the HapMap Phase II and the Human Genome Diversity Project.
Qualitative comparison to a consensus model of the evolution of mod-
ern human population groups shows that our inferences closely match
our best current understanding of human evolutionary history. A further
comparison with results of a leading method for the simpler problem of
population substructure assignment verifies that our method provides
comparable accuracy in identifying meaningful population subgroups in
addition to inferring the relationships among them.

1 Introduction

The advent of high-throughput genotyping methods and their application in
large-scale genetic variation studies have made it possible to determine in un-
precedented detail how the modern diversity of the human species arose from our
common ancestors. In addition to its importance as a basic research problem,
this topic has great practical relevance to the discovery of genetic risk factors
of disease due to the confounding effect of unrecognized substructure on genetic
association tests [22]. Past work on human ancestry inference has essentially
treated it as two distinct problems: identifying meaningful population groups
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c© Springer-Verlag Berlin Heidelberg 2010
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and inferring evolutionary trees among them. Population groups may be as-
sumed in advance based on common conceptions of ethnic groupings, although
the field increasingly depends on computational analysis to make such infer-
ences automatically. Probably the most well known system for this problem is
STRUCTURE [16], which uses a Markov Chain Monte Carlo (MCMC) clustering
method to group sequences into subpopulations characterized by similar allele
frequencies across variation sites. A variety of other computational and statisti-
cal methods have been developed to perform population substructure inference
or similar analyses, including EIGENSOFT [15], Spectrum [19], and SABER
[21]. A separate literature has arisen on the inference of relationships between
populations, typically based on phylogenetic reconstruction of limited sets of
genetic markers — such as classic restriction fragment length polymorphisms
[14], mtDNA genotypes [9,2], short tandem repeats [9,23], and Y chromosome
polymorphism [5] — supplemented by extensive manual analysis informed by
population genetics theory. There has thus far been little cross-talk between the
two problems of inferring population substructure and inferring phylogenetics of
subgroups, despite the fact that both problems depend on similar data sources
and in principle can help inform the decisions of one another.

We propose a novel approach for reconstructing a species history that is in-
tended to unify these two inference problems. The method is conceptually based
on the idea of consensus trees [13], which represent inferences as to the robust
features of a family of trees. The approach takes advantage of the fact that the
availability of large-scale variation data sets, combined with new algorithms for
fast phylogeny inference on these data sets [20], has made it possible to infer
likely phylogenies on millions of small regions spanning the human genome. The
intuition behind our method is that each such phylogeny will represent a dis-
torted version of the global evolutionary history and population structure of the
species, with many trees supporting the major splits or subdivisions between
population groups while few support any particular splits independent of those
groups. By detecting precisely the robust features of these trees, we can assemble
a model of the true evolutionary history and population structure that can be
made resistant to overfitting and to noise in the SNP data or tree inferences.

In the remainder of this paper, we describe and evaluate our approach. We first
present in more detail our mathematical model of the consensus tree problem and
a set of algorithms for finding consensus trees from families of local phylogenies.
We next evaluate our method on the HapMap Phase II [7] and Human Genome
Diversity Project [8] datasets. Finally, we consider some of the implications of
the results and future prospects of the consensus tree approach for evolutionary
history and substructure inference.

2 Methods

2.1 Consensus Tree Model

We assume we are given a set of m taxa, S, representing the paired haplotypes
from each individual in a population sample. If we let T be the set of all possible
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labeled trees connecting the s ∈ S, where each node of any t ∈ T may be labeled
by any subset of zero or more s ∈ S without repetition, then our input will
consist of some set of n trees D = (T1, . . . , Tn) ⊆ T . Our desired output will also
be some labeled tree TM ∈ T , intended to represent a consensus of T1, . . . , Tn.

Our objective function for choosing TM is based on the task of finding a
consensus tree [13] from a set of phylogenies each describing inferred ancestry
of a small region of a genome. Our problem is, however, fairly different from
standard uses of consensus tree algorithms in that our phylogenies are derived
from many variant markers, each only minimally informative, within a single
species. Standard consensus tree approaches, such as majority consensus [11] or
Adam consensus [1], would not be expected to be effective in this situation as it is
likely there is no single subdivision of a population that is consistently preserved
across more than a small fraction of the local intraspecies trees and that many
similar but incompatible subdivisions are supported by different subsets of the
trees. We therefore require an alternative representation of the consensus tree
problem designed to be robust to large numbers of trees and high levels of noise
and uncertainty in data.

For this purpose, we chose a model of the problem based on the principle
of minimum description length (MDL)[4], a standard technique for avoiding
overfitting when making inferences from noisy data sets. An MDL method seeks
to minimize the amount of information needed to encode the model and to encode
the data set given knowledge of the model. Suppose we have some function
L : T → R that computes a description length, L(Ti), for any tree Ti. We will
assume the existence of another function, which for notational convenience we
will also call L, L : T × T → R, which computes a description length, L(Ti|Tj),
of a tree Ti given that we have reference to a model Tj . Then, given a set of
observed trees, D = {T1, T2, ..., Tn} for Ti ∈ T , our objective function is

L(TM , T1, . . . , Tn) = arg min
TM∈T

(
L(TM ) +

n∑
i=1

L(Ti|TM ) + f(TM )

)

The first term computes the description length of the model (consensus) tree
TM . The sum computes the cost of explaining the set of observed (input) trees
D. The function f(TM ) = |TM | log2 m defines an additional penalty on model
edges used to set a minimum confidence level on edge predictions.

We next need to specify how we compute the description length of a tree.
For this purpose, we use the fact that a phylogeny can be encoded as a set of
bipartitions (or splits) of the taxa with which it is labeled, each specifying the
set of taxa lying on either side of a single edge of the tree. We represent the ob-
served trees and candidate consensus trees as sets of bipartitions for the purpose
of calculating description lengths. Once we have identified a set of bipartitions
representing the desired consensus tree, we then apply a tree reconstruction al-
gorithm to convert those bipartitions into a tree. A bipartition b can in turn
be represented as a string of bits by arbitrarily assigning elements in one part
of the bipartition the label “0” and the other part the label “1”. Fig. 1a shows
an example of a hypothetical tree, its description as a set of bipartitions, and
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(a) (b) (c)

Fig. 1. (a) A maximum parsimony (MP) tree consisting of 11 labeled individuals or
haplotypes. (b) The set of bipartitions induced by edges (ea, eb, ec, ed) in the tree. (c)
0-1 bit sequence representation for each bipartition.

representations of the bipartitions as bit strings. Such a bit representation al-
lows us to compute the encoding length of a bipartition b as the entropy of its
corresponding bit string. If we define p0 to be the fraction of bits of b that are
zero and p1 as the fraction that are one, then:

L(b) = m (−p0 log2 p0 − p1 log2 p1)

Similarly, we can encode the representation of one bipartition b1 given another
b2 using the concept of conditional entropy. If we let p00 be the fraction of bits
for which both bipartitions have value “0,” p01 be the fraction for which the first
bipartition has value “0” and the second “1,” and so forth, then:

L(b1|b2) = m

⎡
⎣ ∑

s,t∈{0,1}
−pst log2 pst +

∑
u∈{0,1}

(p0u + p1u) log2(p0u + p1u)

⎤
⎦

where the first term is the joint entropy of b1 and b2 and the second term is the
entropy of b2.

We can use these definitions to specify the minimum encoding cost of a tree
L(Ti) or of one tree given another L(Ti|TM ). We first convert the tree into a set
of bipartitions b1, . . . , bk. We can then observe that each bipartition bi can be
encoded either as an entity to itself, with cost equal to its own entropy L(bi), or
by reference to some other bipartition bj with cost L(bi|bj). In addition, we must
add a cost for specifying whether each bi is explained by reference to another
bipartition and, if so, which one. The total minimum encoding costs, L(TM )
and L(Ti|TM ), can then computed by summing the minimum encoding cost for
each bipartition in the tree. Specifically, let bt,i and bs,M be elements from the
bipartition set Bi of Ti and BM of TM , respectively. We can then compute L(TM )
and L(Ti|TM ) by optimizing for the following objectives over possible reference
bipartitions, if any, for each bipartition in each tree:

L(TM ) = arg min
bs∈BM∪{∅}

|BM |∑
s=1

[L(bs,M |bs) + log2 (|BM | + 1)]

L(Ti|TM ) = argmin
bt∈BM∪Bi∪{∅}

|Bi|∑
t=1

[L(bt,i|bt) + log2 (|BM | + |Bi| + 1)]
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(a) (b) (c) (d)

Fig. 2. Illustration of the DMST construction for determining model description
length. (a) Hypothetical model tree TM (red) and observed tree Ti (blue). (b) Graph of
possible reference relationships for explaining Ti (blue nodes) by reference to TM (red
nodes). (c) A possible resolution of the graph of (b). (d) Graph of possible reference
relationships for explaining TM by itself.

2.2 Algorithms

Encoding Algorithm. We pose the problem of computing L(TM ) and L(Ti|TM )
as a weighted directed minimum spanning tree (DMST) problem, illustrated in
Fig. 2. We construct a graph G = (V, E) in which each node represents either
a bipartition or a single “empty” root node r explained below. Each directed
edge (bj , bi) represents a possible reference relationship by which bj explains bi.
If a bipartition bi is to be encoded from another bipartition bj , the weight of
the edge eji would be given by wji = L (bi|bj)+ log2 |V | where the term log2 |V |
represents the bits we need to specify the reference bipartition (including no
bipartition) from which bi might be chosen. This term introduces a penalty to
avoid overfitting. We add an additional edge directly from the empty node to
each node to be encoded whose weight is the cost of encoding the edge with
reference to no other edge, wempty,j = L(bj) + log2 |V |.

To compute L(TM ), the bipartitions BM of TM and the single root node
collectively specify the complete node set of the directed graph. One edge is
then created from every node BM ∪ {r} to every node of BM . To compute
L(Ti|TM ), the node set will include the bipartitions Bi of Ti, the bipartitions
BM of TM , and the root node r. The edge set will consist of two parts. Part
one consists of one edge from each node of Bi ∪ BM ∪ {r} to each node of Bi,
with weights corresponding to the cost of possible encodings of Bi. Part two
will consist of a zero-cost edge from r to each node in BM , representing the fact
that the presumed cost of the model tree has already been computed. Fig. 2
illustrates the construction for a hypothetical model tree TM and observed tree
Ti (Fig. 2(a)), showing the graph of possible reference relationships (Fig. 2(b)),
a possible solution corresponding to a specific explanation of Ti in terms of TM

(Fig. 2(c)), and the graph of possible reference relationships for TM by itself
(Fig. 2(d)).

For both constructions, the minimum encoding length is found by solving for
the DMST with the algorithm of Chiu and Liu [3] and summing the weights of
the edges. This cost is computed for a candidate model tree TM and for each
observed tree Ti to give the total cost [L(TM , T1, . . . , Tn)].
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Tree Search. While the preceding algorithm gives us a way to compute the
score of any possible consensus tree TM , we still require a means of finding a
high-quality (low-scoring) tree. The space of possible trees is too large to permit
exhaustive search and we are unaware of an efficient algorithm for finding a
global optimum of our objective function. We therefore employ a heuristic search
strategy based on simulated annealing. The algorithm relies on the intuition that
the bipartitions to be found in any high-quality consensus tree are likely to be
the same as or similar to bipartitions frequently observed in the input trees.
The algorithm runs for a total of t iterations and at each iteration i will either
insert a new bipartition chosen uniformly at random from the observed (non-
unique) bipartitions with probability 1 − i/t or delete an existing bipartition
chosen uniformly at random from the current TM with probability i/t to create
a candidate model tree T ′

M . If the algorithm chooses to insert a new bipartition b,
it then performs an additional expectation-maximization-like local optimization
to improve the fit. It repeatedly identifies the set B of bipartitions explained
by b and then locally improves b by iteratively flipping any bits that lower the
cost of explaining B, continuing until it converges on some locally optimal b.
This final bipartition is then added to TM to yield the new candidate tree T ′

M .
Once a new candidate tree T ′

M has been established, the algorithm tests the
difference in cost between TM and T ′

M . If T ′
M has reduced cost then the move is

accepted and T ′
M becomes the new starting tree. Otherwise, the method accepts

T ′
M with probability p = exp L(TM ,T1,...,Tn)−L(T ′

M ,T1,...,Tn)
T where T = 400/t is

the simulated annealing temperature parameter.

Tree Reconstruction. A final step in the algorithm is the reconstruction of
the consensus tree from its bipartitions. We first sort the model bipartitions
b1 ≺ b2... ≺ bk in decreasing order of numbers of splits they explain (i.e., the
number of out-edges from their corresponding nodes in the DMST). We then
initialize a tree T0 with a single node containing all haplotype sequences in S
and introduce the successive bipartitions in sorted order into this tree. For each
bi = 1 to k, we subdivide any node vj that contains elements with label 0 in bi

(b0
i ) and elements labeled as 1 in bi (b1

i ) into nodes vj1 and vj2 corresponding to
the subpopulations of vj in b0

i or b1
i . We also introduce a Steiner node sj for each

node vj to represent the ancestral population from which vj1 and vj2 diverged.
We then replace the prior tree Ti−1 with Ti = (Vi, Ei) where Vi = Vi−1 −{vj}+
{vj1, vj2, sj} and Ei = Ei−1 − {e = (t, vj)|e ∈ Ei−1, t ∈ parent(vj)} + {e =
(t, sj)|t ∈ parent(vj)}+ {(sj , vj1), (sj , vj2)}. After introducing all k bipartitions,
Tk is then the final consensus tree. The number of bipartitions wj explained by
each model bipartition bj provides a rough estimate of the number of mutations
that occurred after the population diverged, which can be interpreted as an
estimated elapsed time scaled by population size. We attribute this scaled time
equally to the two branches to assign branch lengths to the tree. Given a weight
wj for the j-th model bipartition, the branch length of e = (sj , vj1) and (sj , vj2)
would then be wj/2 and the branch length of e = (t, sj) for t = parent(vj) would
be wj−1/2 − wj/2.
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2.3 Validation Experiments

We evaulated our methods by applying them to samples from two SNP variation
datasets. We first used the phase II HapMap data set (phased, release 22) [7]
which consists of over 3.1 million SNP sites genotyped for 270 individuals from
four populations: 90 Utah residents with ancestry from Northern and Western
Europe (CEU); 90 individuals with African ancestry from Ibadan, Nigeria (YRI);
45 Han Chinese from Beijing, China (CHB); and 44 Japanese in Tokyo, Japan
(JPT). For the CEU and YRI groups, which consist of trio data (parents and
a child), we used only the 60 unrelated parents with genotypes as inferred by
the HapMap consortium. For each run, we randomly sampled 8,000 trees each
constructed from 5 consecutive SNPs uniformly at random from 45,092 trees
generated from chromosome 21, which represented an average of 28,080 unique
SNPs. For the purpose of comparison, we used 8,000 trees or the correspond-
ing 28,080 SNPs as inputs to our method and the comparative algorithms. We
next used phased data (version 1.3) from the Human Genome Diversity Project
(HGDP) [8], which genotyped 525,910 SNP sites in 597 individuals from 29
populations categorized into seven region of origin: Central South Asia (50 in-
dividuals), Africa (159 individuals), Oceania (33 individuals), Middle East (146
individuals), America (31 individuals), East Asia (90 individuals), and Europe
(88 individuals). For each test with the HGDP data, we sampled 10,000 trees
from a set of 39,654 trees uniformly at random from chromosome 1. The 10,000
trees on average consisted of 30,419 unique SNPs.

We are not aware of any comparable method to ours and therefore cannot
directly benchmark it against any competitor. We therefore assessed it by two
criteria. We first assessed the quality of the inferred population histories by ref-
erence to a expert-curated model of human evolution derived from a review by
Shriver and Kittles[18], which we treat as a “gold standard.” Shriver and Kittles
used a defined set of known human population groups rather than the coarser
grouping inferred by our method. To allow comparison with either of our in-
ferred trees, we therefore merged any subgroups that were joined in our tree but
distinct in the Shriver tree and deleted any subgroups corresponding to popu-
lations not represented in the samples from which our trees were inferred. (For
example, for the HapMap Phase II dataset, we removed Melanesian, Polynesian,
Middle Eastern, American, and Central South Asian subgroups from the tree, as
individuals from those populations were not typed in the Phase II HapMap). We
also ignored inferred admixture events in the Shriver and Kittles tree. We then
manually compared our tree to the resulting condensed version of the Shriver
and Kittles “gold standard” tree.

As a secondary validation, we also assessed the quality of our inferred pop-
ulation subgroups relative to those inferred by one of the leading substructure
algorithms, STRUCTURE (version 2.2) [16]. STRUCTURE requires that the
user specify a desired number of populations, for which we supplied the true
number for each data set (four for HapMap and seven for HGDP). For each run,
we performed 2,000 iterations of burn-ins and 10,000 iterations of the STRUC-
TURE MCMC sampling, assigning each individual to the population group of
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highest likelihood as determined by STRUCTURE. We did not make use of
STRUCTURE’s capacity to infer admixture or to use additional data on linkage
disequilibrium between sites. We assessed the quality of the results based on
variation of information [12], a method commonly used to assess accuracy of a
clustering method relative to a pre-defined “ground truth.” Variation of informa-
tion is defined as 2H(X, Y )−H(X)−H(Y ), where H(X, Y ) is the joint entropy
of the two labels (inferred clustering and ground truth) and H(X) and H(Y )
are their individual entropies. We also assessed robustness of the methods to
repeated subsamples. For each pair of individuals (i, j) across five independent
samples, we computed the number of samples aij in which those individuals were
grouped in the same cluster and the number bij in which they were grouped in
different clusters. Each method was assigned an overall inconsistency score of∑

i,j min{1 − 2bij

�(aij+bij)� , 1 − 2aij

�(aij+bij)�}/
(
n
2

)
. The measure will be zero if clus-

ters are perfectly consistent from run-to-run and approach one for completely
inconsistent clustering. We defined the ground truth for HapMap as the four
population groups. For the HGDP data, we treated the ground truth as the
seven regions of origin rather than the 29 populations, because many population
groups are genetically similar and cannot be distinguished with limited numbers
of SNPs.

3 Results

Fig. 3 shows the trees inferred by our method on the two data sets alongside their
corresponding condensed Shriver and Kittles “gold standard” trees. Fig. 3(a)
shows the inferred tree produced by our model. Based on the numbers of bi-
partitions explained by each method, the tree reconstruction infers there to
be an initial separation of the YRI (African) sub-population from the others
(CEU+JPT+CHB) followed by a subsequent separation of CEU (European)
from JPT+CHB (East Asian). When collapsed to the same three populations
(African, European, East Asian), the gold standard tree (Fig. 3(b)) shows an
identical structure. Furthermore, these results are consistent with many indepen-
dent lines of evidence for the out-of-Africa hypothesis of human origins [10,24,18].

For the HGDP dataset, the trees differ slightly from run to run, so we arbi-
trarily provide our first run, Fig. 3(c), as a representative. The tree infers the
most ancient divergence to be that between Africans and the rest of the pop-
ulation groups, followed by a separation of Oceanian from other non-Africans,
a separation of Asian+American from European+Middle Eastern (and a subset
of Central South Asian), and then a more recent split of American from Asian.
Finally, a small cluster of just two Middle Eastern individuals is inferred to have
separated recently from the rest of the Middle Eastern, European, and subset of
Central South Asian. The tree is nearly identical to the that derived from Shriver
and Kittles for the same population groups (Fig. 3(d)). The only notable dis-
tinctions are that gold standard tree has no equivalent to our purely Middle
Eastern node; that the gold standard does not distinguish between the diver-
gence times of Oceanian and other non-African populations from the African
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(a) (b)

(c) (d)

Fig. 3. Inferred consensus trees. Node labels show numbers of haplotypes belonging
to each known populations. Edge labels can be interpreted as estimates of scaled time
since each divergence. (a) Consensus tree obtained from HapMap dataset. (b) Trimmed
and condensed tree from [18]. (c) Consensus tree obtained from HGDP dataset. (d)
Trimmed and condensed tree from [18].

while ours predicts a divergence of Oceanian and European/Asian well after
the African/non-African split; and that the gold standard groups Central South
Asian with East Asians while ours splits Central South Asian groups between
European and East Asian subgroups (an interpretation supported by more recent
analyses [17]). Our results are also consistent with the simpler picture provided
by the HapMap data as well as with a general consensus in the field derived
from many independent phylogenetic analyses [25,10].

Fig. 4 shows the corresponding cluster assignments for our method and
STRUCTURE in order to provide a secondary assessment of our method’s util-
ity for the simpler sub-problem of subpopulation inference relative to STRUC-
TURE and the presumed ground truth. Each inferred cluster is assigned a dis-
tinct label, with colors chosen to maximize agreement with the true population
structure. For HapMap (Fig. 4(a)), our method consistently identified YRI and
CEU as distinct subpopulations but failed to separate CHB (Chinese) and JPT
(Japanese). STRUCTURE produced generally identical output except in one
run where it grouped a subset of the CHB and JPT populations in a separate
cluster. Tab. 1(a) quantifies these observations, suggesting marginally better per-
formance for the consensus tree method by both measures. Results were more
ambiguous for HGDP (Fig. 4(b)) with STRUCTURE showing generally greater
sensitivity but still worse consistency than our method. STRUCTURE usually at
least approximately finds six of the annotated seven population groups, having
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CEU YRI CHB JPT

Ground Truth

Consensus−Tree Approach

STRUCTURE
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Ground Truth

Consensus−Tree Approach

STRUCTURE

(b)

Fig. 4. Inferred population structures from the consensus tree method and STRUC-
TURE. From top to bottom: consensus-tree, STRUCTURE, and ground truth. (a):
Inferred population structures from a single trial of 8,000 trees from HapMap Phase II
dataset. (b): Inferred population structures from one trial of 10,000 trees.

Table 1. Variation of information (VI) and inconsistency score. Lower VI reflects
higher accuracy in identifying known population structure. Higher consistency reflects
greater reproducibility between independent samples.

(a) Hapmap

VI Consistency
STRUCTURE 0.5039 0.0226
Consensus Tree 0.4286 0.0000

(b) HGDP

VI Consistency
STRUCTURE 0.8949 0.1341
Consensus Tree 0.9265 0.0765

difficulty only in identifying Central South Asians as a distinct group, consistent
with a similar outcome from He et al. [6]. The consensus tree method reliably
finds five of the seven populations, usually conflating Middle Eastern and Euro-
pean in addition to failing to recognize Central South Asians. Tab. 1(b) quan-
tifies these observations, with the consensus tree method showing slightly worse
variation of information but better consistency than STRUCTURE. We note
that our methods also provide comparable runtimes to STRUCTURE despite
solving a more involved inference problem. Our methods required approximately
1.4 hours for the HapMap data and 30 hours for the HGDP data, compared to
approximately 2.5 hours and 48 hours for STRUCTURE.

4 Discussion

We have presented a novel method for simultaneously inferring population ances-
tries and identifying population subgroups. The method builds on the general
concept of a “consensus tree” summarizing the output of many independent
sources of information, using a novel MDL realization of the consensus tree con-
cept to allow it to make robust inferences across large numbers of measurements,
each individually minimally informative. It incidentally provides a de novo in-
ference of population subgroups comparable in quality to that provided by the
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leading STRUCTURE method. The method also provides edge length estimates
that can roughly be interpreted as estimates of time since divergence on the
crude assumption that effective population sizes are equal along all sibling tree
edges. The addition of an outgroup to determine likely ancestral states at internal
nodes of the tree should in principle allow us to drop that assumption and esti-
mate both divergence times and effective population sizes along the tree edges.
The MDL approach should also in principle automatically adapt to larger data
sets, producing more detailed inferences as the data to support them becomes
available. In future work, we hope to better test these assumptions, in part by
developing protocols for simulating sequence data generated from a human-like
population history, and to extend the method to inferences of ancestry in the
presence of admixture.
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Abstract. Essential cellular processes are controlled by functional inter-
actions of protein domains, which can be inferred from their evolutionary
histories. Methods to reconstruct these histories are challenged by the
complexity of reconstructing macroevolutionary events. In this work we
model these events using a novel network-like structure that represents
the evolution of domain combinations, called plexus. We describe an algo-
rithm to find a plexus that represents the evolution of a given collection
of domain histories as phylogenetic trees with the minimum number of
macroevolutionary events, and demonstrate its effectiveness in practice.

1 Introduction

Inferring the evolutionary history of domain compositions of proteins is a key
problem for the elucidation of protein function from large-scale genomic data. In
essence, a domain is an independent and evolutionary mobile sub-unit of a pro-
tein [1]. The recognition of such characteristics has led to breakthroughs in the
determination of protein function, e. g. for the oncogene BRCA1 [2]. The vast ma-
jority of proteins in the higher Eukaryotes consist of several domains [3]. About
200 of these domains combine frequently into a rich variety of multi-domain
proteins (MDPs) that are involved in essential cellular processes, including chro-
matin remodeling and signal transduction [4]. Recombination events of domains
lead to similarities between proteins that have more than one common ances-
tor, and which are therefore not strictly homologous. These proteins can pose a
major problem for phylogenetic inference in protein families [5].

Here, we describe a novel approach to reconstruct evolutionary MDP scenarios
for which standard phylogenetic inference methods may not be appropriate. We
formulate the MDP evolution problem, describe an effective heuristic to solve it
and show that its implementation performs well in practice.

1.1 Background

After the discovery of mobile domain combinations in the 1980s, it required
complete eukaryotic genome sequences for thorough investigations of the

M. Borodovsky et al. (Eds.): ISBRA 2010, LNBI 6053, pp. 179–190, 2010.
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phenomenon [1]. Genome wide studies of multi-domain proteins either utilize
the order of the domains or study the co-occurence, but typically ignore re-
lationships of the sequence fragments and do not attempt to map individual
macro-evolutionary events. Quantitative studies found the number of observed
neighbors for a domain to follow a power-law distribution [6].

Phylogeny-oriented work concentrated on analyzing evolutionary events that
establish multiple-domain compositions, and derive phylogenetic trees from do-
main combinations using parsimony-based criteria or clustering approaches [7,8].
[9] used a parsimony-based approach and simplified gene fusion, domain shuf-
fling and retrotransposition events into tractable merge and deletion operations.
[10] constructed a more elaborate model with 3 subclasses of fusion events for
multi-domain proteins to reconstruct domain trees.

Previous work mostly investigated general principles of protein evolution. In
contrast, methods for the reconstruction of MDP histories based on macro-
evolutionary events are still in their infancy, and studies of particular protein
families typically resorted to manual annotation [11,12].

[13] suggested an approach incorporating domain histories to reconstruct an-
cestral domain compositions from a given collection of domain trees and a given
species tree. Each domain-node of a domain tree is mapped to a node of the
species tree. The domains in a species node are partitioned to represent multi-
domain proteins in the parent species with the weighted minimum number of
merges and deletions in comparison to the child species. The method relies on
the following critical assumptions: the correctness of the domain trees, the cor-
rectness of a species tree, and the correct mapping of each domain-node into the
species tree, all of which may not be satisfiable in practice.

Suitably restricted networks to model macro-evolution events have been ex-
plored where trees are no longer sufficient and several interesting approaches were
used with success for phylogenetic displays and mapping of events, reviewed in
[14]. Our approach relates to [15], which is aimed at the reconstruction of phy-
logenies with recombination events. However, this and similar models are not
directly applicable to reconstruct the evolution of MDPs.

1.2 Contribution of This Work

Our formalization of the MDP evolution problem is: given a collection of phylo-
genetic trees of extant domains, find scenarios that minimize the change in MDP
composition. We describe an effective heuristic for this reconstruction problem
and show that its implementation performs well in practice for a selection of pro-
teins with frequently recombining domains. We do not rely on a given species
tree but present a novel graph-theoretic network, called plexus, that allows to
describe scenarios for the evolution of a collection of domain trees. We introduce
three different instances of this network (see Fig. 1). The expanded plexus cor-
responds to a biological scenario, the reconstructable to what is obtainable from
the phylogenetic reconstruction and the compact to a computationally feasible
model.
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expanded reconstructable compact

Fig. 1. Counterparts of plexūs for a set of MDPs and
their domain trees. Edges mark inheritance relations
between domains (dots) in MDPs (rectangles), dif-
ferent domain families are in different shades. The
expanded plexus consists of evolutionary events only
(see Fig.2). Its non-reconstructable edges are dashed
and disappear in the reconstructable counterpart.
Some of the resulting blocks may then contain only
nodes with out-degree 1 (dashed). Contracting their
out-edges results in the compact counterpart.

copy fusion repeat gain loss fission

Fig. 2. Basic events in MDP evo-
lution. Fission is modeled with el-
ementary events (see Fig. 3).

fission coordinated losses fusion

Fig. 3. Ambivalent explanations
of fission events for two gene
trees and three proteins

2 A Model for the Evolution of MDPs

To reconstruct MDP evolution, we require the composition of extant proteins
and the phylogenetic relationships between domains of the same family. We now
give an overview of the types of operations on MDPs and derive our model.

2.1 Evolutionary Events

We consider five macroevolutionary events (Fig. 2). Duplications and speciations
are undistiguished copy events, as we do not rely on a species tree. Fusion de-
scribes the union of two ancestral MDP compositions via loss of terminal and
initial segments or translocation. Losses originate from truncations due to pre-
mature stop codons or silencing of exons. Many perceived losses might be missing
annotations as domain prediction has a high false-negative rate [16]. A gain is
the introduction of the root of a domain tree and a repeat describes the addi-
tion of a domain (e. g. by tandem duplication). Fission of an MDP is a complex
process requiring the gain of both a start and a stop site in the right order. The
process has been hypothesized to involve reading frame shifts [17]. An alterna-
tive scenario for fission involves gene duplication with subsequent coordinated
domain losses [18]. A third variant explains the observations by a fusion process
(see Fig. 3). We model fission by a combination of other basic events and the
score of the optimal plexus topology happens to be invariant to the explicit series
of events.
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2.2 The Plexus

Generally, a plexus is a meshwork of branching and rejoining strands, e. g. a
network of blood vessels or neurons as in choroid plexus or solar plexus. It con-
notates that the strands have a direction as in blood flow or action potential
propagation. We use the term to describe the aggregation and segregation of
phylogenetic domain trees such that the nodes correspond to extant and recon-
structed ancestral MDPs. We assume domain trees to be rooted and fully binary
for this work.

An expanded plexus is constructed by linking the basic evolutionary events
(see Fig. 1, left side and Fig. 2). This results in a directed acyclic graph (DAG)
whose nodes are sets of domain tree nodes and whose edges are made up by the
edges of the domain trees; to avoid confusion, we call the plexus’ nodes blocks and
its edges arcs. As shown in Fig. 1, the trees in the plexus are not necessarily the
input trees but display them. Any subtree that contains no node in the plexus’
leaves will not be in a subgraph of the input trees. Also, any root that has only
one child will not be found in the reconstructed domain trees. The dashed lines
in Fig. 1 (left side) represent such non-reconstructable edges. There is an infinite
number of plexūs with identical compact counterparts, thus displaying the same
input domain trees. The only plexus we can actually reconstruct is the one we
obtain by deleting the non-reconstructable subtrees from the expanded plexus
by removing any nodes in non-leaf blocks that have a combined in- and out-
degree ≤ 1. On this reconstructable plexus, we can apply a scoring scheme that
approximates the number of MDP evolution events.

The reconstructable plexus is still not very handy as it has infinitely many
possible topologies. We can however restrict the topologies to a finite number
by requiring that each block must contain at least one node with out-degree
2, which makes the number of tree nodes an upper bound to the number of
blocks. By contracting out-arcs of blocks containing only nodes of out-degree 1,
we transform a reconstructable into a compact plexus. In Fig. 1 (middle), these
are the arcs made up by the dashed edges.

With the definition of the compact plexus, the problem is reduced to parti-
tioning domain tree nodes. It is infeasible to evaluate all potential partitions and
we have developed a heuristic to find the best scoring topology. In the following
section, we will give a more rigid formalization in order to derive the scoring
scheme and the heuristic.

3 Reconstruction of the Compact Plexus

3.1 Basic Definitions and Notation

Let G := (V, E) be a DAG. We denote the in-degree and the out-degree of a
node v ∈ G by deg−(v) and deg+(v) respectively. The edge contraction of an
edge (v, w) ∈ E is achieved by first identifying v with w, and then deleting the
resulting loop. For nodes u, w ∈ V and j ∈ Z+ ∪ {∞} we (i) write u ∼j w, if
u �= w and there is a path from u to w of at most j edges in G, and (ii) define
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u ∼−j w := w ∼j u. If u ∼k w and k > 1, then we call u a predecessor of w,
and w a successor of u. In the case k = 1, we use the terms direct predecessor
and direct successor accordingly. We say that u and w are connected if u ∼∞ w.
Let k, l ∈ Z∪{−∞,∞}, then we define the k-neighborhood of a set U ⊆ V to be
Nk(U) := {v ∈ V | ∃u ∈ U : v ∼k u}, and Nl,k(U) := Nk(Nl(U)). For instance,
given a directed path a → b → c, N1,1{a} = N1{b} = {c}.

3.2 Plexus and Evolutionary Events

Let G := (V, E) be a DAG. We call the graph P (G) := (V , E) a plexus over G if
the following conditions are satisfied: (i) P (G) is a DAG, (ii) V is a partition of
V such that no pair of nodes in any v ∈ V is connected in G, and (iii) (a, b) ∈ E
iff there is a pair of nodes a ∈ a and b ∈ b for which (a, b) ∈ E.

We refer to plexus vertices as blocks and edges between blocks as arcs. Plexus
notation is identical to graph notation, but is distinguished for clarity by
calligraphic script . Blocks represent the composition of an MDP and arcs describe
their inheritance relations. Cw(v) := {p|p ∈ v : ∃c ∈ w : (p, c) ∈ E(G)} is the set
of nodes in block v that have children in block w , and Pv(w) := {c|c ∈ w : ∃p ∈
v : (p, c) ∈ E(G)} the set of nodes in w with parents in v .

Let P := (V , E) be a plexus. We call P expanded if for each of its blocks
b ∈ V either (b, N1{b}) or (N−1{b}, b) is an MDP evolution event. For brevity,
a formal definition of MDP evolution events is omitted here but can be found
in [19]. P is called reconstructable if no non-terminal block contains any node for
which the sum of its in- and out-degree is less then 2 . A reconstructable plexus
R is called the reconstructable counterpart of an expanded plexus P iff it can be
obtained by subsequently deleting any non-terminal nodes that have an in- or
out-degree of 0 and their incident edges. Let e := (v , w) ∈ E be an arc such that
∀v ∈ Cw(v) : deg+(v) = 1 and ∀w ∈ Pv(w) : deg−(w) = 1. Let e be an arc such
that ∀e := (v, w) ∈ e : deg+(v) = 1, deg−(w) = 1. The operation of contracting
all e ∈ e and merging v with w is called arc contraction. A plexus C is said to
be contracted if it contains no contractible arcs, and contracted counterpart of a
plexus P if it is contracted and can be obtained by contracting arcs in P . This
is similar to the concept of minors in undirected graphs. A contracted plexus
C is called the compact counterpart of a plexus P , if there is a reconstructable
counterpart R of P such that C is a contracted counterpart of R.

3.3 Scoring Evolutionary Scenarios

To measure the quality of our reconstruction, we introduce a score on the com-
pact plexus that considers evolutionary events by a unified criterion. Only losses,
gains and fusions are events in which blocks connected by an arc contain nodes
that are not related to any node in the other block. In contrast to copy and
repeat, the direct successor blocks are intrinsically different from their prede-
cessors. The number of these domains is therefore a good measure to model
evolutionary changes.



184 J. Wiedenhoeft, R. Krause, and O. Eulenstein

Unfortunately, compactification imposes contraction to arcs in fusion, gain
and loss, and hence to exactly those events that we consider to be of evolutionary
importance. We can reconstruct them from the compact counterpart.

The number of losses accounting for a block v from all its ancestors is∑
p∈N−1{v}

(∣∣p∣∣− ∣∣Pp(v)
∣∣) which equals

∑
p∈N−1{v}

∣∣p∣∣−∑p∈N−1{v}
∣∣Pp(v)

∣∣ .
The number of gains is equal to the number of domain trees and constant for

all topologies, and therefore omitted. The remaining problem is to address the
contraction of fusion arcs, which can increase the in-degree of a block. We can
relate the number of fusion arcs in a plexus to its compact counterpart. Let PE

be an expanded plexus and PC its compact counterpart. Then the number of
fusion arcs in PE equals

∑
b∈V (PC) max

{
0, 2 · deg−(b) − 2

}
.

The order of fusions is lost during compactification but the number of domain
changes depends on that order. Consider a block with in-degree 3 and predecessor
blocks of size 1, 2 and 3. Combining 1 and 2 first creates an out-arc of size 3,
and then merging with the third block creates an out-arc of size 6. In contrast,
combining 2 and 3 first produces out-arcs of size 5 and 6, so the score would
have to be 2 edges higher. In other words, there are reconstructable plexūs
with different fusion sequences that have the same compact counterpart. As
the real sequence of fusions is unknown, we use the mean number of nodes at
the end of in-arcs, which defines the following fusion cost max{2·deg−(v)−2,0}

max{deg−(v) ,1} ·∑
p∈N−1{v}

∣∣Pp(v)
∣∣.

This formula also holds in cases in which an arc involves a tandem repeat.
Combining the above equations for losses, gains and fusions and summing up over
all blocks yields the plexus score S(P ) as the score of its compact counterpart
PC as

S(P ) =
∑

v∈V (PC)

∑
p∈N−1{v}

(∣∣p∣∣+ (1 − 2
deg−(v)

)
· ∣∣Pp(v)

∣∣) .

Note that max{. . .} in the fusion cost formula only serves to avoid negative costs
for root blocks. As the index set N−1{v} is empty in this problematic case, the
formula is simplified.

Given the scoring scheme above, we now define the following problem:

Problem 1 (plexus reconstruction)
Instance: A set T of fully binary domain trees and a partition L of their com-
bined leaf set such that each set block corresponds to a known MDP composition.
Find: a compact plexus P in which L is the leaf block set and which displays T
such that the plexus score S(P ) is minimal.

4 Heuristic

The definition of our reconstruction problem above applies to input trees free
of errors. It is unknown whether there is an analytical solution within accept-
able run-time complexity for undistorted input. A thorough evaluation would be
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worthwhile but is beyond the scope of this work. In real applications the input
trees typically contain numerous wrong splits. Trees built on domains use less
information than trees on full-length proteins simply because they are shorter.

Our method works in three steps, which correspond to the events we want to
minimize. In the initial block merging step, we merge non-leaf blocks according
to a compatibility criterion that asserts an out-degree ≤ 2 (d-compatibility), and
allows only for compositions that resemble those of the input (t-reconcilability).
The latter also tolerates compositions that are close to the observed with addi-
tional domains to account for false tree splits but mainly reduces the number
of fusions. In the second step (tree correction), we attempt to correct the place-
ment of tree nodes based on the preliminary topology of the plexus to minimize
the number of coordinated losses, i. e. two domains of the same family that each
have only one child, but in different direct successor blocks, as shown for the
solid domain in Fig. 4. In the final path detachment step, we separate sub-blocks
consisting of nodes that are placed too high in the plexus by previous steps,
which reduces unnecessary losses.

4.1 Block Merging

To reduce the number of fusion events we merge non-leaf blocks. To restrict the
merged blocks’ out-degree to ≤ 2, we use transitive reduction of arcs. An arc
(v , w) is a transitive arc (v , w) if w ∈ Nk{v} for any k > 1. The path of a
transitive arc (v , w) is given by (v , b1, . . . , bk, w). One can insert k nodes in each
edge e = (vv , vw) in (v , w), thus creating paths (vv , v1, . . . , vk, vw ). Placing each
vi into bi reduces the out-degree of v by 1. Consequently, blocks are reducible if
their out-degree can be reduced by transitive reduction of outgoing arcs. This
holds iff N1{b} ∩ N1,∞{b} �= ∅.

{2B, 3R, 2G}

{2B, 4R, 2G} {2B, 2R, 2G}

{2B, 3R, 2G}

{2B, 4R, 2G} {2B, 3R, 2G}

Fig. 4. Composition profiles. In the reconstruction of an ancestral block we show a
typical artifact from errors in the phylogenetic reconstruction that leads to additional
domains in the ancestral block, here the nodes of the tree with solid edges in the left
figure. Despite the left variant containing two copies of the solid domain family the
outdegree-profile for both variants is identical.

For any pair of blocks it is necessary to know whether there is a transitive
reduction to the merged block such that its out-degree does not exceed 2. Assume
that the blocks are irreducible, as we could always apply transitive reduction
before a merge.
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Theorem 1 (minimal out-degree). Let v and w be two irreducible blocks
such that v /∈ N∞{w} ∪ N−∞{w}. Let x be a block obtained by merging v and
w . Then the minimal out-degree deg�(x ) that can be obtained by a sequence of
transitive reductions to x is deg�(x ) :=

∣∣N1{v}∣∣+ ∣∣N1{w}∣∣+ ∣∣N1{v} ∩ N1{w}∣∣−∣∣N1{v} ∩ N∞{w}∣∣− ∣∣N∞{v} ∩ N1{w}∣∣.
A proof is omitted for brevity and can be found in [19]. We can find all pairs of
blocks that can be merged without violating neither out-degree d nor compact
plexus properties by the following criterion:

Definition 1 (d-compatibility). Two irreducible blocks v and w are called d-
compatible if deg�(v ∪w) ≤ d, i. e. one can obtain a block with an out-degree of
at most d by merging v and w and applying a sequence of transitive reductions to
the merged block. However, if either of them is a leaf, or v /∈ N∞{w}∪N−∞{w}
(blocks are related), then they are incompatible.

Definition 2 (reduction cost r). Let v be a block with an out-degree greater
than 0. The reduction cost of an outgoing arc pointing to block w ∈ N1{v} is the
smallest k > 0 for which w ∈ Nk (N1{v} \ {w}), or 0 if there is no such k, i. e.
the arc is not transitive and thus cannot be removed. The reduction cost r(v) of
a block is the sum of costs of all its outgoing arcs.

An a-priori set of candidates excluding all blocks that cannot be compatible with
the current block ensures a tractable solution space. Only the direct predecessors
of all successors of each block v need to be checked for compatibility.

2-compatibility alone leads to domain compositions that do not resemble re-
cent MDPs, leading to many losses as seen in Fig. 5(b). Many compatibilities
arise merely by chance or by false tree splits. We therefore ensure that blocks
resemble recent compositions by the following:

Definition 3 (composition profile). Let M = {d1, . . . , dk} be a set of nodes
in a block. M is partitioned into subsets {F1, . . . , Fm} of nodes that belong
to the same input tree, the set of families is denoted by representants p :=
{�F1�, . . . , �Fm�}. Let m(·) : �Fi� → N be the mapping m(�Fi�) = 2 · |{n|n ∈
Fi, deg+(n) = 0}| +∑d∈Fi

deg+(d) . Then (p, m) is called the composition pro-
file of M .

Definition 4 (t-reconcilability). A profile p1 is called t-reconcilable to a pro-
file p2 if ∀�Fi�1 ∈ p1 : ∃�Fi�2 ∈ p2 : �Fi�1 = �Fi�2, m(�Fi�1) ≤ m(�Fi�2) + t,
where t is a non-negative integer describing a chosen tolerance value.

Simply put, a value is assigned to each domain family that describes how often a
domain of this family occurs in a composition. Those without children are given
the same value as those with two children, those with just one child are weighted
half. A block in a compact plexus will either contain only nodes without children,
or no node without children. The reasoning behind this definition is illustrated
in Fig. 4: on the right the upper block resembles its left direct successor, whereas
on the left it contains one solid domain more than any of its direct successors.
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Both predecessor blocks have the same profile though, since both solid domains
have only one out-edge each. We might call this a coordinated loss of the solid
domain; this will either be caused by a tree root being placed in the block above,
but will often occur due to false tree splits. These might introduce disruptions to
the optimal topology. t-reconcilability aims to compensate this, while providing
a concept of similarity to recent compositions. One should choose t to be small
to avoid meaningless ancestral compositions and large loss counts, but t = 0
assumes that the topologies of all input trees are correct, which will rarely be
the case. t = 1 yielded the best results in our hands. Combining d-compatibility
and t-reconcilability provides us with a criterion for the merges to prefer and to
avoid:

 HAT C-terminal 
 SNF N-terminal 
 BROMO 
 HMG 
 BAH 
 AT hook 
 HSA 
 BRK 
 QLQ 

(a) S(P ) = 45 (b) S(P ) = 61

Fig. 5. Two compact plexūs of domains in histone acetyltransferase complexes. In (a)
we used 1-reconcilability, tree correction and path detachment, predicting a late fusion
event of the BROMO domain. In (b) only d-compatibility was used, resulting in a
single-source plexus with multiple losses and compositions that do not resemble extant
MDPs. Note that, among others, the BROMO domain fusion is placed much too high
(horizontal edge at top). Labeled high-resolution figures can be downloaded for detailed
analysis from http://genome.cs.iastate.edu/CBL/ISBRA10/thesis.zip

Definition 5 (d-t-distance). If two blocks v , w are d-compatible and the profile
of v ∪w is t-reconcilable to a profile of any input composition, their d-t-distance
c(v , w) is r(v ∪ w), otherwise it is ∞.
Initially, we alternate between transitive reduction of all blocks and merging the
two blocks with the shortest d-t-distance, until there is no pair whose distance
is < ∞. We avoid merging repeat blocks with copy blocks and thus violating
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compact plexus properties by inserting an additional block in the copy block’s
out-arc and merging it with the repeat block.

4.2 Tree Correction

The above procedure can introduce new blocks below old ones, thus pushing
some tree nodes higher during block merges, thus stretching subtrees and give
rise to additional losses. To compensate for this, we introduce tree correction:
two tree nodes can be merged if they are in the same block, have the same
parent node, and the out-degree of the merged node is ≤ 2 or can be reduced by
recursively merging child nodes respectively. Root nodes must not be merged. If
the common parent of two nodes being merged is a root node, it can be deleted
after the merge, as the merged node will be a new root.

4.3 Path Detachment

Let there be any arc path ((a, b), (b, c)). If all nodes in b that have parents in
a (i. e. Pa(b)) only have children in c (i. e. N1(Pa(b)) ⊆ c), then this induces
unnecessary domain losses, as the composition b is only supported by one direct
successor. One can therefore split the block b into Pa(b) and b \Pa(b), and apply
this procedure recursively to their direct successors, thus reducing the number
of loss events. After that, applying arc contraction ensures a compact plexus.

4.4 Time Complexity

The merge step dominates the running time. To decide which blocks to merge,
one has to calculate path distances between their direct successors. A plexus is a
DAG with all arcs having the same weight. Shortest paths are thus subgraphs of
a breadth-first search tree. One has to create such a tree |R | times with R being
the set of root blocks, so the time complexity of finding all pairs shortest paths
is in O{|R | · (|V | + |E|)}. Since any block has two out-arcs at most, this is in
O{|R | · |V |}. Finding the smallest d-compatibility by pairwise comparison takes
time in O{|V |2}. With L being the leaf set, |L| is the number of profiles one has to
check, so the time for finding the d-t-closest pair lies in O{|R | · |V |+ |L| · |V |2}. As
the number of blocks decreases with every merge, one has to perform this ≤ |V |
times at most, if all distances are recalculated in each step. The time complexity
of the merge step is O

{∑|V |
v=1

(|R | · v + |L| · v2
)} ⊆ O

{∑|V |
v=1 v3

}
⊆ O{|V |4}

Both tree correction and path detachment traverses subtrees of the plexus but
this is linear and depends on the number of blocks.

5 Application

We obtained identical results for the examples given in [13] (data not shown).
To test our heuristic on proteins assembling to histone acetelyase complexes
in H. sapiens, D. melanogaster, S. cerevisiae, S. pombe, and A. thaliana, we
selected the proteins containing the BROMO, the N-terminal SNF2 and the
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C-terminal conserved helicase domains of the histone acetyltransferases as iden-
tified in PFAM [20]. Domains were aligned with hmmalign of the HMMer package.
Maximum Likelihood trees were constructed using PhyML [21]. Notung 2.6 was
used to root the domain trees [22]. The input plexus had a score of 166, the
result obtained heuristically scored 45 (Fig. 5(a)).

6 Conclusion and Outlook

We have presented an approach to reconstruct ancestral multi-domain proteins
using plexūs. A suitable scoring scheme together with a heuristic allows finding
near-optimal solutions.

Improvements to d-compatibility could enhance the use of real data and ex-
tending it to weighted paths would allow the use of bootstrap-valued DAGs
instead of trees to deal with ambiguity in the phylogenetic signal. It could also
be modified to handle non-binary or unrooted trees. A compatibility constraint
based on domain order would be helpful in separating true losses from missing
annotations.

As seen in the heuristic, random compatibility is an important issue. We adress
it by t-reconcilability, path-detachment and tree correction, but the development
of a statistical model that assigns a p-value to a plexus topology would be worth-
while. Constraint optimization approaches might allow for considerable speedup
in the implementation and possibly even find an optimal solution.
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Abstract. Predicting new non-coding RNAs (ncRNAs) of a family can
be done by aligning the potential candidate with a member of the fam-
ily with known sequence and secondary structure. Existing tools either
only consider the sequence similarity or cannot handle local alignment
with gaps. In this paper, we consider the problem of finding the optimal
local structural alignment between a query RNA sequence (with known
secondary structure) and a target sequence (with unknown secondary
structure) with the affine gap penalty model. We provide the algorithm
to solve the problem. Based on a preliminary experiment, we show that
there are ncRNA families in which considering local structural alignment
with gap penalty model can identify real hits more effectively than using
global alignment or local alignment without gap penalty model.

Keywords: Local structural alignment, Affine gap, non-coding RNA.

1 Introduction

A non-coding RNA (ncRNA) is a RNA molecule that does not translate into
proteins. It has been shown to be involved in many biological processes [1,2,3,4].
The number of ncRNAs within the human genome was underestimated before,
but recently some databases reveal over 212,000 ncRNAs [5] and more than
1,300 ncRNA families [6]. Large discoveries of ncRNAs and their families show
the possibilities that ncRNAs may be as diverse as protein molecules [7]. Iden-
tifying ncRNAs is an important problem in biological study. However, it is time
consuming and there is no effective method to identify ncRNAs in a laboratory,
predicting ncRNAs based on known ncRNAs using comparative computational
approach is one of the promising directions to identify potential candidates for
further verification.

Most of the computational approaches are based on the observation that if
two different ncRNA molecules are in the same family (with similar biological
functions), they usually exhibit similar sequences as well as secondary structures.
One common approach [8,9,10] is as follows. We pick an ncRNA member of a
family with known sequence and secondary structure (referred as the query), scan
along a genomic sequence and for each possible region (referred as the target),
perform an alignment between the query and the target to obtain a similarity
measure to decide if the region is a potential ncRNA candidate for that family.

M. Borodovsky et al. (Eds.): ISBRA 2010, LNBI 6053, pp. 191–202, 2010.
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The similarity measure may only base on the sequence or both the sequence
and secondary structure (the latter case is referred as structural alignment).
Along this direction, there are some approaches [11,12,13,14] that make use
of secondary structure prediction tools to predict the secondary structure to
be formed by the target assuming that it is an ncRNA before performing the
alignment. The accuracy may, however, depend on the accuracy of the secondary
structure prediction tools.

Instead of using one member of a family, some other approaches [15] use a
set of ncRNAs from the same family to train a model (e.g. covariance model).
Then, using this model to scan a genomic sequence to identify potential re-
gions that are ncRNA candidates of that family. What information (sequence
similarity and/or secondary structure) to be captured from the known ncRNAs
depends on how we define the model. However, in some cases, we may not have
enough known members in a family to train a model. In this paper, we focus
on the problem that uses one known member as the query and align it with a
target sequence. We remark that there are also other computational methods
that identify ncRNAs without using known members in a family. For example,
some try to identify ncRNAs by considering the stability of secondary structures
formed by the substrings of a given genome [16]. This method may not be very
effective because a random sequence with high GC composition also allows an
energetically favorable secondary structure [17]. So, the comparative approach
we described in the above is still one of the most popular approaches.

The core idea behind all comparative approaches is to compute the similar-
ity between the query (known member(s)) and the target (each possible region in
the genomic sequence to be investigated). Some only consider sequence similarity
which may not work well for families in which members do not have high sequence
similarity (e.g. members of RF00017 in Rfam 9.1 [6] only have 39% sequence simi-
larity). For example, Gotohscan[8] considers semi-global alignment with affine gap
penalty according to the sequence similarity only. For those also consider the simi-
larity of secondary structure, they usually require the whole sequence of the query
to be aligned with the whole sequence of the target (referred as global alignment
in the community) [10]. However, similar to the protein sequence, the ncRNAs in
the same family may not have similar sequence or structure for the whole sequence
but only for the substrings of them (those supposed to be the functional parts), es-
pecially when they belong to species with long evolutionary distance apart. Fig. 1
shows one of these examples. It shows the multiple sequence alignment between
some members of the family RF01051 in Rfam 9.1 database. The two circled mem-
bers (i.e. AAUO01000012 and AAXYO1000014) are not quite similar if we con-
sider the global alignment. Also, for the subregions that they look similar (i.e. the
circled region), there exist large insertion/deletion (gaps). There are also evidences
that gaps may be common in ncRNA homologs [18]. Considering local structural
alignment with gap model seems to be more appropriate for predicting new mem-
bers for some ncRNA families. [9] consider some restricted cases of local alignment
according to the query structure. Another work that also consider local alignment
is [11], but they cannot handle gaps.
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Fig. 1. Multiple sequence alignment of some seed members of the family RF01051
from Rfam 9.1 database. The red and blue highlighted are the base-pair regions. All
sequences are aligned according to their structures. If the two circled sequences are
selected as query and target, the circled region is the conserved local region between
them, in which there exists long gap inside.

We consider the following problem. Given a query sequence together with
its secondary structure, we try to identify the substring in the given target
sequence (with unknown secondary structure) that can align to a substring in
the query sequence with the highest structural similarity score based on the affine
gap model (see Section 2 for formal definitions). We assume that the secondary
structures of the ncRNAs are regular, that is, they do not have pseudoknots (no
two base pairs crossing each other). This type of ncRNAs is found to be the
most abundant in existing databases. We consider all possible substrings of the
query sequence, even for those substrings that cover only one of the end points
of some base pairs in the structure.

Our result: We propose a local structural alignment algorithm with affine gap
model which assumes the secondary structure of the query is known while that
of the target sequence is unknown. The time complexity of our algorithm is
O(mn3) which is the same as the best algorithm for global alignment for this
problem where m, n are the lengths of the query and the target, respectively. We
evaluated our algorithm using real data from Rfam database. According to the
preliminary experiment, it shows that using local structural alignment algorithm
with affine gap model is more effective to distinguish real members from false
hits for those families in which members have variable sizes of hairpins, loops or
stems when compared to global alignment or local alignment without gap model.

2 Preliminaries

An ncRNA molecule can be regarded as a sequence of four characters {A, C, G,
U}, each character is referred as a base. Some of these bases may form pairs
(linked up by a hydrogen bond) with some restrictions such as each base can
only pair up with at most one other base and only complementary bases can
form a pair (e.g. (A, U), (C, G), (U ,G)). The set of base pairs formed by the
molecule is referred as its secondary structure.
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Formally speaking, let S = s1s2 . . . sm be a length-m ncRNA sequence where
si ∈ {A, C, G, U} for 1 ≤ i ≤ m and M be the secondary structure of S. M
is represented as a set of base pair positions. i.e. M = {(i, j)|1 ≤ i < j ≤
m, (si, sj) is a base pair}. If (si, sj) is base pair, then (si, sj) ∈ {(A, U), (C, G),
(G, C), (G, U), (U, A), (U, G)}. Let Mx,y ⊆ M be the set of base pairs within
the subsequence sxsx+1...sy, 1 ≤ x < y ≤ m, i.e., Mx,y = {(i, j) ∈ M |x ≤
i < j ≤ y}. Note that if (i, j) ∈ M and only i or j inside the region [x...y],
then (i, j) /∈ Mx,y. We assume that there is no two base pairs sharing the same
position, i.e., for any (i1, j1), (i2, j2) ∈ M , i1 �= j2, i2 �= j1, and i1 = i2 if and
only if j1 = j2.

A regular structure is the structure in which there does not exist any two base
pairs crossing each other. The formal definition is as follows:

Definition 1. Mx,y is a regular structure if there does not exist two base pairs
(i, j), (k, l) ∈ Mx,y such that i < k < j < l or k < i < l < j.

Note that an empty set is also considered as a regular structure.

3 Problem Definition

3.1 Structural Alignment with Affine Gap Model

Let S[1...m] be a query sequence with known secondary structure M , and T [1...n]
be a target sequence with unknown secondary structure. S and T are both
sequences of {A,C,G,U}. A structural alignment between S and T is a pair of
sequences S′[1...r] and T ′[1...r] where r ≥ m, n, S′ is obtained from S and T ′ is
obtained from T with spaces inserted to make both of the same length. A space
cannot appear in the same position of S′ and T ′. A maximal consecutive set
of � spaces in either S′ or T ′ is referred as a gap of length �. The score of the
alignment (with affine gap penalty model), which determines the sequence and
structural similarity between S′ and T ′, is defined as score =

∑
1≤i≤r s.t.

S′[i],T ′[i] �=‘ ’

γ(S′[i], T ′[i]) +
∑

i,j s.t. η(i),η(j)∈M,

S′[i],S′[j],T ′[i],T ′[j] �=‘ ’

δ(S′[i], S′[j], T ′[i], T ′[j]) − (h(k) + s(l))

where η(i) is the corresponding position in S according to the position i in
S′; γ(u1, u2) and δ(u1, u2, v1, v2) where u1, u2, v1, v2 ∈ {A, C, G, U}, are scores
for character similarity and for base pair similarity respectively; k and l is the
number of gaps and the total length of all gaps; h and s is the gap starting and
extending penalty.

Definition 2. An optimal global structural alignment between S and T is to a
structural alignment of S and T such that the alignment score is maximum.

Let S[x...y] where 1 ≤ x, y ≤ m be a substring of S with secondary structure
Mx,y (where S[x...y] is an empty string with empty structure if x > y). Similarly,
let T [x′...y′] where 1 ≤ x′, y′ ≤ n be a substring of T (where T [x′...y′] is an empty
string if x′ > y′).
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Definition 3. An optimal local structural alignment between S and T is a global
structural alignment between two substings of S and T , S[x...y] and T [x′...y′]
where 1 ≤ x, y ≤ m and 1 ≤ x′, y′ ≤ n of S and T such that the alignment score
between them is maximum over all possible substrings.

Given S (with known secondary structure) and T (with unknown structure), we
want to compute an optimal local structural alignment with affine gap penalty
between S and T .

4 Experimental Results

The details of the algorithm for solving the problem will be given in Section 5.
In this section, we evaluate the resulting algorithm and show that considering
local structural alignment with affine gap model can improve the effectiveness
of locating ncRNAs for the families in which members may have variable size
of hairpins, loops or stems when compared to using global alignment [10], local
alignment without gap penalty model and Gotohscan [8]. Note that the differ-
ences in size of hairpins, loops or stems represent gaps in the corresponding
sequences.

To explicitly test the algorithm, we selected four ncRNA families: RF00386,
RF00643, RF00661 and RF01051, in which the members have variable sizes of
hairpins, loops or stems. We construct our testing cases based on real ncRNAs
as follows. For each family, we first select a seed member1 as the query sequence
Q. To demonstrate the effectiveness of the affine gap model, we select the longest
seed member as this query sequence. We then created a long random sequence
with even distribution of four characters {A, C, G, T } to simulate a long genome.
The length of this long random sequence is around ten times of the total length
of all the seed members of the family. Finally, we embedded all the seed members
of the family (except the one chosen as query) into this long random sequence
in arbitrary positions. This resulting sequence is our T .

For every region in T with length similar to that of the query sequence 2, we
compute the structural alignment score of the region and the query sequence.
We use the same scoring scheme as in [9] and set the gap starting penalty (h)
and gap extension penalty (s) to be 5 and 0.2, respectively. The details of the
families including the sequence selected as the query, the length of the sequence,
and the number of seed members in each family are given in Table 1.

We compare our algorithm with the global structural alignment [10], local
structural alignment without affine gap model and Gotohscan [8]. Gotohscan
was used to locate ncRNAs candidates on Trichoplax adhaerens by using single
real ncRNA as query. It was designed to check only sequence similarity with affine
gap model. Since the global structural alignment software is not available, we
implemented both global and local without affine gap algorithms. For Gotohscan,
1 In Rfam database, there is a set of reliable members which are regarded as seed

members. In our experiments, we only use seed members.
2 We set the length of each region equals the length of the query plus 20.
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Table 1. The details of the ncRNA families used in the experiments

Number of
Family Query Sequence ID Length seed members

RF00386 AF363455.1/1-122 122 160
RF00643 AASG02000279.1/67999-67862 138 46
RF00661 AC154049.1/4734-4855 122 40
RF01051 AAUO01000012.1/70652-70532 121 169

we downloaded the version 1.3 from the website. We assume that regions other
than the seed members of the family are false hits as they are likely not to be
members of the family. To compute the effectiveness of our method, we set the
threshold as the maximum score of the false hits. We assume that the method
finds a real hit if the score of the region is larger than this threshold. Thus a real
hit will be missed if the computed score is smaller than or equal to this threshold.
We also try different thresholds and the results are similar. Table 2 summarizes
the result when using different algorithms to locate the other ncRNA members
along the genome. The % of misses when using Gotohscan is 22.0%-88.9%; global
alignment is 10.1%-84.6%; local alignment without affine gap model is 5.7% -
69.2%; local alignment with affine gap model is 0.0% - 28.9%. The result shows
that the local structural alignment algorithm with affine gap model is more
effective than the other algorithms in these families.

Figure 2 shows the comparison on score distribution of real hits (i.e. real
members) and false hits for the family RF00661 between different algorithms. It
shows that the local structural alignment algorithm with affine gap penalty can
increase the difference between the scores of real hits and the scores of false hits
compared with the other methods, and so it has a higher distinguishing power
to identify the real ncRNA members along the long genome sequence.

Table 2. Summary of comparison on results between global alignment, local alignment
without gap penalty and local alignment with affine gap penalty

Number of Number of misses
Family members Gotoh- % Global % Local % Local with %

scan [8] [10] affine gap
RF00386 159 35 22.0% 16 10.1% 9 5.7% 0 0.0%
RF00643 45 40 88.9% 30 66.7% 13 28.9% 13 28.9%
RF00661 39 33 84.6% 33 84.6% 27 69.2% 10 25.6%
RF01051 168 121 72.0% 99 58.9% 83 49.4% 36 21.4%

Our program take around 15 seconds for performing local structural alignment
with affine gap model between query and target of around 150 bases long, and
around 30 seconds for 200 bases long. We tested the program on a machine with
2.4GHz dual-core CPU and 8G memory.
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Fig. 2. Comparison on score distribution of real hits and false hits for the family
RF00661 between (1) Gotohscan, (2) global structural alignment algorithm, (3) lo-
cal structural alignment algorithm without affine gap model, and (4) local structural
alignment algorithm with affine gap model

5 Method

We develop a dynamic programming algorithm to solve the problem. Before we
describe the method, we would like to define some variations of alignments which
will be used in our algorithm. Let S[1...m] be the query sequence with known
structure M and T [1...n] be the target sequence with unknown structure.

Definition 4. Optimal prefix-global structural alignment between S[1...m] and
T [1...n] is to find a prefix S[1...y] where 0 ≤ y ≤ m (i.e. S is an empty string
when y = 0) such that the score of the optimal global structural alignment between
the prefix S[1...y] and T [1...n] is maximum.

Definition 5. Optimal suffix-global structural alignment between S[1...m] and
T [1...n] is to find S[x...m] where 1 ≤ x ≤ m + 1 (i.e. S is an empty string when
x = m+1) such that the score of the optimal global structural alignment between
the suffix S[x...m] and T [1...n] is maximum.

Definition 6. Optimal semi-global structural alignment between S[1...m] and
T [1...n] is to find a substring S[x...y] where 1 ≤ x, y ≤ m such that the score of
the optimal global structural alignment between the substring S[x...y] and T [1...n]
is maximum.

Let the affine gap model be h + sL, where h is the gap opening penalty, s
represents a gap extension penalty, and L denotes the length of gap. Our method
consists of two steps. In the first step, we compute the optimal semi-global
structural alignment between S and all possible substrings of T . In the second
step, we obtain the optimal local structural alignment between S and T resulted
in the first step.
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Define A(p, q, e, f) be the score of the optimal semi-global structural alignment
between S[p...q] and T [e...f ]. The score of the optimal local structural alignment
between S and T can be obtained from the entry maxe≤f+1 A(1, m, e, f). We
first show how to compute A, then show how to use the structure of S to guide
the computation of A without considering all possible combinations of p, q.

When considering any substring S′ = S[x′...y′] of S[x...y], there are four
possible cases: (1) S′ is equal to S (i.e. x′ = x, y′ = y); (2) S′ is a proper prefix
in S (i.e. x′ = x, y′ < y); (3) S′ is a proper suffix in S (i.e. x′ > x, y′ = y); (4) S′

is a substring of S[x + 1...y − 1] (i.e. x′ > x, y′ < y); Therefore, we can consider
each case one by one when computing the value of A.

Define A1(p, q, e, f) be the score of the optimal global structural alignment be-
tween S[p...q] and T [e...f ]. Define A2(p, q, e, f) be the score of the optimal prefix-
global structural alignment between S[p...q−1] and T [e...f ]. Define A3(p, q, e, f)
be the score of the optimal suffix-global structural alignment between S[p+1...q]
and T [e...f ]. Define A4(p, q, e, f) be the score of the optimal semi-global struc-
tural alignment between S[p + 1...q − 1] and T [e...f ].

The value of A(p, q, e, f) can be computed recursively and it is the maximum
value of four cases: (1) when S′ = S[p, q] (i.e. A1(p, q, e, f)); (2) when S′ is a
proper prefix of S[p, q] (i.e. A2(p, q, e, f)); (3) when S′ is a proper suffix of S[p, q]
(i.e. A3(p, q, e, f); (4) when S′ is a substring of S[p + 1, q − 1] (i.e. A4(p, q, e, f);
Lemma 1 summarizes these cases.

Lemma 1

A(p, q, e, f) = maxA1(p, q, e, f), A2(p, q, e, f), A3(p, q, e, f), A4(p, q, e, f)

The following subsections describe how to compute A1, A2, A3, A4.

5.1 Calculation of A1

When considering the optimal global structural alignment (with affine gap model)
between S[p...q] and T [e...f ], there are nine possible cases: (1) S[p] is aligned with
T [e] and S[q] with T [f ]; (2) S[p] with T [e] and S[q] with space;(3) S[p] with T [e]
and T [f ]withspace; (4) S[p] with space and S[q] with T [f ]; (5) S[p] with space
and S[q] with space; (6) S[p] with space and T [f ] with space; (7) T [e] with
space and S[q] with T [f ]; (8) T [e] with space and S[q] with space; (9) T [e] with
space and T [f ] with space. Hence, we can consider each case one by one when
computing the value of A1.

Define A1x(p, q, e, f), where 1 ≤ x ≤ 9, be the score of the optimal global
structural alignment between S[p...q] and T [e...f ] where the above case x is
satisfied. (i.e. if x = 1, then S[p] is aligned with T [e] and S[q] with T [f ]).

The value of A1(p, q, e, f) can be computed recursively and it is the maximum
value of nine cases. Lemma 2 summarizes these cases.

Lemma 2

A1(p, q, e, f) = max

⎧⎪⎨
⎪⎩

A11(p, q, e, f), A12(p, q, e, f), A13(p, q, e, f),
A14(p, q, e, f), A15(p, q, e, f), A16(p, q, e, f),
A17(p, q, e, f), A18(p, q, e, f), A19(p, q, e, f),
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We will describe the calculation of A12. Similar skill can be applied for the others
(i.e. A11, A13, ... , A19).

Calculation of A12. A12(p, q, e, f) is the score of the optimal global structural
alignment between S[p...q] and T [e...f ], which aligns S[p] with T [e] and S[q]
with space. There are three situations and we need to consider them one by one.
Note that according to the affine gap model, the penalty of a first space in a gap
(i.e. which is h + s) is different from the penalty of the other space in a gap (i.e.
which is s). Situation I: when (p, q) is a base pair - aligning the base pair S[p]
with T [e] and S[q] with space. Considering the alignment between S[p+1...q−1]
and T [e + 1...f ], if S[q − 1] is aligned with space (i.e. case 2, case 5 and case 8),
then a penalty s should be considered. Otherwise (i.e. for the other six cases), a
penalty h+s should be considered. Situation II: when ∃q′ where p < q′ < q such
that (p, q′) is a base pair - we need to find k ∈ [e−1, f ] such that the sum of the
alignment score between S[p, q′] and T [e, k], and that between S[q′ + 1, q] and
T [k + 1, f ] is maximum. Since S[p] is aligned with T [e] and S[q] with space, the
alignment between S[p, q′] and T [e, k] should satisfy the case 1, case 2 and case
3 (i.e. S[p] is aligned with T [e]). Similarly, the alignment between S[q′+1, q] and
T [k + 1, f ] should satisfy the case 2, case 5 and case 8 (i.e. S[q] is aligned with
space). Situation III: when p does not form base pair with any base q′ ∈ [p, q] -
we align base S[p] with T[e]. Then the alignment between S[p + 1...q] and T [e+
1...f ] should satisfy the case 2, case 5 and case 8 (i.e. S[q] is aligned with space).
Lemma 3 summarizes these situations:

Lemma 3

A12(p, q, e, f) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

//if (p, q) inMp,q

maxα∈11,13,14,16,17,19
β∈12,15,18

{Aα[p + 1, q − 1, e + 1, f ]− h,

Aβ [p + 1, q − 1, e + 1, f ]} + γ(S[p], T [e])− s

//if ∃q′ where p < q′ < q such that (p, q′) is a base pair
max e≤k≤f

α∈{11,12,13}
β∈{12,15,18}

Aα[p, q′, e, k] + Aβ [q′ + 1, q, k + 1, f ]

//if �q′ such that (p, q′) ∈ Mp,q

maxβ∈{12,15,18} Aβ [p + 1, q, e + 1, f ] + γ(S[p], T [e])

5.2 Calculation of A2

When considering the optimal prefix-global structural alignment (with affine
gap model) between S[p...q] and T [e...f ], there are four possible cases: (1) S[p]
is aligned with T [e]; (2) S[p] with space; (3) T [f ] with space; and (4) an empty
string of S with T .

Define A2x(p, q, e, f), where 1 ≤ x ≤ 3, be the score of the optimal prefix-
global structural alignment between S[p...q] and T [e...f ] where the above case
x is satisfied. (i.e. if x = 1, then S[p] is aligned with T [e]). Note that we do
not need to define function for the case 4 because the corresponding score is



200 T.K.F. Wong et al.

−h− s(f − e +1). The value of A2(p, q, e, f) can be computed recursively and it
is the maximum value of four cases. Lemma 4 summarizes these cases.

Lemma 4

A2(p, q, e, f) = max{A21[p, q, e, f ], A22[p, q, e, f ], A23[p, q, e, f ],−h−s(f−e+1)}
We will describe the calculation of A22. Similar skill can be applied to calculate
A21 and A23.

Calculation of A22. The following lemma lists out the computation of A22.

Lemma 5

A22(p, q, e, f) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

//if (p, q) inMp,q

maxα∈21,23 Aα[p + 1, q − 1, e, f ]− (h + s)
maxα∈22 Aα[p + 1, q − 1, e, f ]− (s)
maxα∈11,12,13,17,18,19 Aα[p + 1, q − 1, e, f ]− (h + s)
maxα∈14,15,16 Aα[p + 1, q − 1, e, f ]− (s)
//if ∃q′ where p < q′ < q such that (p, q′) is a base pair
max e−1≤k≤f

α∈{14,15,16}
Aα[p, q′, e, k] + A2[q′ + 1, q, k + 1, f ]

A22[p, q′, e, f ]
//if �q′ such that (p, q′) ∈ Mp,q

maxα∈{21,23} Aα[p + 1, q, e, f ]− (h + s)
maxα∈{22} Aα[p + 1, q, e, f ]− s

A22(p, q, e, f) is the score of the optimal prefix-global structural alignment be-
tween S[p...q − 1] and T [e...f ], where S[p] is aligned with space. Similar to A12,
there are also the same three situations. Situation I: when (p, q) is a base pair -
aligning the base pair S[p] with space. Since a prefix of S[p...q−1] is considered,
there are two possibilities: a prefix of S[p + 1...q− 1] is aligned with T [e...f ] (i.e.
semi-global alignment), or the whole sequence S[p + 1...q − 1] is aligned with
T [e...f ] (i.e. global alignment). Situation II: when ∃q′ where p < q′ < q such
that (p, q′) is a base pair - we need to find k ∈ [e − 1, f ] such that the sum of
the alignment score between S[p, q′] and T [e, k], and that between S[q′ + 1, q]
and T [k +1, f ] is maximum. Since a prefix of S[p...q− 1] is considered, there are
two possibilities: (1) the whole sequence S[p, q′] is aligned with T [e, k] (i.e. global
alignment) and a prefix of S[q′+1, q] is aligned with T [k+1, f ] (i.e. semi-global);
(2) a prefix of S[p, q′] is aligned with T [e, k] (i.e. semi-global) only. Situation III:
when p does not form base pair with any base q′ ∈ [p, q] - we align base S[p]
with space. For each possibility of situation I & III, there are also two conditions:
if S[p + 1] is aligned with T [e] or T [e] is aligned with space, the penalty score
h+ s should be considered. Otherwise, if S[p+1] is aligned with space, then the
penalty score s should be considered. The lemma 5 summarizes these cases.

The calculations for A3 and A4 are similar. In the following subsection, we
will describe the time complexity of the algorithm.



Local Structural Alignment with Affine Gap Model 201

5.3 Time complexity

To fill the dynamic programming table, not all entries for all possible subrange
of S needs to be filled. According to the design of the dynamic programming,
there are three cases:

Case 1: If (p, q) ∈ Mp,q, then all the entries for S[p, q] of all tables (i.e. A, A1,
A2, A3, A4, A11, ..., etc.) can be computed from the entries for S[p − 1, q + 1].

Case 2: If ∃q′ < q s.t. (p, q′) ∈ Mp,q, then all the entries for S[p, q] of all tables
can be computed from the entries for S[p, q′] and S[q′ + 1, q].

Case 3: If �q′ s.t. (p, q′) ∈ Mp,q, then all the entries for S[p, q] of all tables can
be computed from the entries for S[p + 1, q].

Therefore, we define a function ζ(p, q) to determine for which set of subregions
in S, we need to fill the corresponding entires in all the tables.

ζ(p, q) =

⎧⎪⎨
⎪⎩
{(p + 1, q − 1)} if (p, q) ∈ Mp,q

{(p + 1, q′), (q′ + 1, q)} if ∃q′ < q s.t. (p, q′) ∈ Mp,q

{(p + 1, q)} if �q′ s.t. (p, q′) ∈ Mp,q

We only need to fill in the entries for all the tables provided (p, q) can be obtained
from (1, m) by applying ζ function repeatedly. Considering the ζ function, each
time the total size of the subregions outputted cannot be greater than the size of
the input region and each of the subregions outputted is smaller than the input
region. Therefore, in total there are only O(m) such (p, q) values. Also, there are
O(n2) values of different (e, f) values, and for each entry, it takes O(n) because
of the consideration of e − 1 ≤ k ≤ f in the case that ∃q′ < q s.t. (p, q′) ∈ Mp,q.
After finishing the calculation of values A(1, m, e, f) for all 1 ≤ e, f ≤ n, the final
answer (i.e. maxe≤f+1{A(1, m, e, f)}) can be computed in O(n2) time. Therefore
the total time complexity = O(mn3) + O(n2) = O(mn3).

Theorem 1. For any sequence S[1..m] with regular structure and any sequence
T [1...n] with unknown structure, the optimal local alignment score between S[1..m]
and T [1..n] can be computed in O(mn3).

6 Conclusions

In the paper, we provided the first algorithm to handle local structural alignment
with affine gap model of RNA with regular structure that compute the optimal
alignment. Our experiments show that the solution is effective for ncRNA fam-
ilies in which members may have varying sizes on hairpins, loops or stems (con-
tributing to large gaps) when compared to using only global alignment or local
alignment without gap model. And also we have not yet studied different types
of gap penalty model and the effect of setting different gap penalty parameters.
A more detailed evaluation on our approach and comparison of it with other
existing tools will be performed. Other interesting directions include speeding
up the algorithm and considering other more complicated structures (e.g. the
structures with pseudoknots).
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Abstract. Hybridization is a reticulate evolutionary process. An estab-
lished problem on hybridization is computing the minimum number of
hybridization events, called the hybridization number, needed in the evo-
lutionary history of two phylogenetic trees. This problem is known to be
NP-hard. In this paper, we present a new practical method to compute
the exact hybridization number. Our approach is based on an integer
linear programming formulation. Simulation results on biological and
simulated datasets show that our method (as implemented in program
SPRDist) is more efficient and robust than an existing method.

1 Introduction

Recently, reticulate evolutionary models have been actively studied in Phy-
logenetics. Several models have been proposed to address different reticulate
processes (e.g. hybridization, lateral gene transfer and recombination). The lit-
erature on various aspects of reticulate evolution is growing rapidly. Refer to
[12,11,18,15] for surveys of reticulate evolution. In this paper, we focus on hy-
bridization. Hybridization refers to hybrid speciation, where hybrid species with
mixed genetic composition from different species are created. Hybridization is
believed to occur in many species [18].

Imagine we have two phylogenetic trees (called gene trees), each for a gene of
a (same) set of species. Due to reticulate evolution, the two gene trees are related
but different. In this case, the evolutionary history of the two gene trees can not
be represented by a single tree, but rather should be modeled as a network. This
network is called “hybridization” network [5,18], which is closely related to the
phylogenetic network or reticulate network [12,11,18,15]. Hybridization network
for two gene trees is a directed acyclic graph, which is a compact representation
of the two trees in the sense that it “displays” the two trees in a compact way.
See Figure 1(a) for an example of hybridization networks.

Since there exist many feasible hybridization networks for two gene trees, a
common formulation is to find the one with the fewest hybridization events.
This is motivated by the belief that hybridization is relatively rare and thus
the number of hybridization events is likely to be small. We call the minimum
number of hybridization events in any hybridization network the hybridization

M. Borodovsky et al. (Eds.): ISBRA 2010, LNBI 6053, pp. 203–214, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) A hybridization network for T (left) and T ′ (middle)

(b) MAF (c) MAAF (d) GLP

Fig. 1. (a): A hybridization network with three hybridization events. (b): maximum
agreement forest of size three for T and T ′. (c): maximum acyclic agreement forest of
size four. (d): part of the leaf pair graph GLP (T, T ′).

number of the two gene trees. For a hybridization network of two gene trees, its
hybridization number is equal to the number of nodes with in-degree two in the
network. For example, the network in Figure 1(a) has three nodes with in-degree
two, and thus its hybridization number is three. One should note that although
hybridization number is only a quantity of the most parsimonious hybridization
network, algorithms for computing the hybridization number can allow easy
reconstruction of a parsimonious network itself as a by-product.

An established computational problem on hybridization networks, the hy-
bridization number problem, is: given two trees, compute the hybridization num-
ber of the two trees. It is known that the hybridization number problem is NP-
hard [8]. Nonetheless, computing the hybridization number of two trees has been
studied in several papers [2,1,5,14]. A fundamental result in [1] showed that the
hybridization number of two trees is equal to the size of the so-called Maximum
Acyclic Agreement Forest (or MAAF) for the two trees minus one. See Section
2 for the definition of the MAAF formulation. There is a program, called Hy-
bridNumber [5], that can compute the exact hybridization number for two trees
of moderate size or topologically similar. Program HybridNumber has worst-case
exponential running time but is practical for certain range of data. The initial
version of program HybridNumber was quite slow [5]. A later version of program
HybridNumber appears to be much faster and more scalable [13]. However, our
experience shows that program HybridNumber is still slow for larger data and
also unstable in some cases: it crashed for some trees we tested due to software
error. This greatly limits its application for larger biological data.

In this paper, we present a new method for computing the exact hybridiza-
tion number of two gene trees based on an integer linear programming (ILP)
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formulation. We also use a divide-and-conquer approach (developed in [5] and
also used by program HybridNumber) in order to reduce the size of the problem.
Our method is implemented in program SPRDist, which also outputs the cor-
responding maximum acyclic agreement forest and allows easy reconstruction
of the most parsimonious hybridization network. To demonstrate the perfor-
mance of our method, we provide simulation results on biological and simulated
datasets. Comparing with program HybridNumber, our program SPRDist is more
efficient for large trees, and also more robust.

2 Background

In this paper, we let a phylogenetic tree T be a binary rooted leaf-labeled tree.
The set of the leaf labels of T is denoted as L(T ), its set of branches as E(T ),
and its set of vertices as V (T ). Given a tree T , we can create a forest of trees
F (T ) = {T1, T2, . . . , Tk} from T by deleting a subset of E(T ). The forest F (T )
induces a partition of L(T ), and any two trees Ti and Tj are node disjoint.
Conversely, we say a list of trees Ti form a forest for T if (a) for any tree
Ti, L(Ti) ⊆ L(T ) and the union of L(Ti) is equal to L(T ); (b) for each Ti,
the (unique) minimal subtree connecting the nodes in L(Ti), denoted as S(Ti),
is identical to Ti when nodes with degree two of S(Ti) are contracted (called
cleanup); if this holds, we say Ti appears in T ; and (c) for any two trees Ti and
Tj, S(Ti) and S(Tj) are node disjoint. The size of a forest is the number of trees
in the forest.

Throughout this paper, we let two phylogenetic trees T and T ′ with the same
set of leaf labels be the input data. Without loss of generality, we assume leaves
are labeled with distinct integers from 1 to n, where n is the number of species.
For convenience, we assign a distinct integer to each (leaf or internal) node in T
and T ′, and thus we use the integer to refer to the node. When no confusion is
caused, we assign integer i to a leaf labeled with i in both T and T ′.

The concept of agreement forest has been used in many previous papers (e.g.
[10,16,4,6]) and is also crucial to the current work. An agreement forest F (T, T ′)
is a set of trees T1, T2, . . . , Tk that is a forest for both T and T ′. See Figure 1(b)
for an illustration of agreement forest. Intuitively, an agreement forest is derived
by cutting the same number of branches of T and T ′ which leads to the same set
of trees (after cleanup). Agreement forest always exists for any two phylogenetic
trees with the same set of leaves: a forest with n trees, each with a distinct leaf, is
an agreement forest. We are interested in the agreement forest with the smallest
number of trees (called maximum agreement forest or MAF). It is easy to see
that the agreement forest in Figure 1(b) is also a MAF.

A useful observation [10,7] is that the rooted subtree prune and regraft (rSPR)
distance between two trees is equal to the number of trees in a MAF minus one
[10,7]. Recently, we developed an integer linear programming formulation (ILP),
which can find the MAF of two trees and thus also compute the exact rSPR
distance for many data [20]. Note that the two trees should be preprocessed to
add a dummy leaf out of the root of each tree to ensure correctness, which we
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perform throughout this paper. We now briefly describe the ILP formulation
for the rSPR distance problem, since we will extend this formulation to the
hybridization number problem.

Original ILP formulation for the MAF problem. The objective of the
MAF problem is to find how to divide T and T ′ by cutting the fewest edges to
derive an agreement forest. We define a binary variable Ci for each edge ei in T
(with m edges), where Ci = 1 if edge ei is cut and 0 otherwise. We only place
branch cuts in T and use T ′ as a reference. The objective of the ILP formulation
is to minimize

∑m
i=1 Ci. We consider three leaves in both T and T ′. We call the

subtree connecting the three leaves in T the triple in T . Some triples do not agree
in T and T ′. For example, in Figure 1(a), the topology of triple of 1, 2 and 4 in T
is different from that in T ′. We call such triple “incompatible”, meaning that this
triple in T conveys different topological information from that in T ′. To ensure
the resulting forest to be an agreement forest, we require at least one edge of
each incompatible triple is cut. Moreover, for two leaves i and j, we say the edges
in T connecting i and j form a path between i and j. In Figure 1(a), the path
between leaf pair (1, 2) intersects that of leaf pair (3, 4) in T ′ of Figure 1(a), but
is disjoint in T . We call such two leaf pairs “incompatible”, since the two paths
for the two leaf pairs can not both be left uncut in an agreement forest. To ensure
the resulting forest is an agreement forest, we require at least one edge along the
two paths of two incompatible leaf pairs is cut. Both types of constraints can
be easily expressed in ILP. The correctness of the ILP formulation for the MAF
problem was established in [20]. See [20] for more details.

A useful observation on the hybridization number problem is made in [1],
which concerns the so-called maximum acyclic agreement forest (MAAF). Max-
imum acyclic agreement forest is a special kind of agreement forest with one
additional constraint, which concerns the topological order of the trees in the
agreement forest. For agreement forest F (T, T ′) = {T1, T2, . . . , Tk}, we say Ti

is ancestral to Tj if the root of Ti is ancestral to the root of Tj in either T or
T ′. Here, a node v is ancestral to a node v′ in T if v is on the (unique) path
from the root to v′ in T . Suppose we create a directed graph G(F (T, T ′)) whose
nodes are in one-to-one correspondence with {Ti} (and thus we use Ti to refer
both the node in the graph and the corresponding tree). To simplify notations,
we write G(F (T, T ′)) as G(F ). We create an edge from Ti to Tj if Ti in G(F )
is ancestral to Tj . An agreement forest F (T, T ′) = {T1, T2, . . . , Tk} is acyclic
if the graph G(F ) is acyclic. As an example, the forest in Figure 1(b) is not
acyclic, while the one in Figure 1(c) is. This is because in Figure 1(b), the tree
with leaves 1, 2 and 3 is ancestral to the tree with leaves 4, 5 and 6 in T ′, and
ancestral relationship is reversed in T . This leads to a cycle of two trees in G(F ).
There are no cycles for the forest in Figure 1(c). We say a forest is maximum
acyclic agreement forest (MAAF) if the forest is a MAF and acyclic. The forest
in Figure 1(c) is a MAAF. The following theorem is proved in [1].

Theorem 1. [1] The hybridization number of T and T ′ is equal to the size of
the MAAF for T and T ′ minus one.
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3 Computing the Hybridization Number with ILP

Now we present an ILP formulation for finding the maximum acyclic agreement
forest (MAAF) for T and T ′, which also allows the computation of the hybridiza-
tion number due to Theorem 1. This ILP formulation also finds the MAAF,
which can be used to reconstruct the most parsimonious hybridization network.
We also apply a divide and conquer approach to speed up the computation.

3.1 New ILP Formulation for the MAAF Problem

Our ILP formulation is an extension of the ILP formulation for the MAF prob-
lem, as described in Section 2. We uses binary variable Ci to indicate whether
edge ei in T is cut or not. As in [20], we create binary variable Mi,j for two
(leaf or internal) nodes i and j in T . Mi,j = 1 iff none of the edges along the
path between i and j is cut and 0 otherwise. Since a MAAF is also a MAF,
we create the same set of ILP constraints as in the MAF formulation to ensure
the resulting forest is an agreement forest. We now focus on how to ensure the
resulting agreement forest F (T, T ′) is acyclic in the ILP formulation.

Suppose the resulting forest F (T, T ′) is known. Then it is straightforward
to construct the corresponding graph G(F ) and test whether G(F ) is acyclic
or not. A major problem here is that G(F ) depends on the agreement forest
F (T, T ′), which is exactly what we want to find. Without knowing F (T, T ′),
we can not explicitly construct G(F ). One may consider enumerating all pos-
sible agreement forests and then impose ILP constraints to forbid cycles. But
enumerating agreement forests is impractical in most cases.

To get around this difficulty, our main idea is to consider leaf pairs in T . First
note that the number of leaf pairs is much smaller than the number of possible
agreement forests: there are O(n2) leaf pairs for n leaves. What is more important
is that the acyclicity of G(F ) can be enforced using leaf pairs selected from the
trees in F (T, T ′) as we will explain later. Note that we do not know which leaf
pairs i and j are in the same Ti without knowing F (T, T ′). We do know, however,
for each leaf pair of i and j, i and j are in the same tree of the forest iff Mi,j = 1.
We now introduce the key tool of our approach: the leaf pair graph.

Leaf pair graph. We denote the leaf pair of two distinct leaves i and j as
lp(i, j). We say lp(i, j) is connected if Mi,j = 1 (i.e. no branch is cut along
the path between i and j) in T and also in T ′. We say lp(i, j) is from tree
Ti ∈ F (T, T ′) if i, j ∈ L(Ti). Each connected leaf pair must be from some
Ti of the forest. For two leaves i and j, we denote MRCAT (i, j) (respectively
MRCAT ′(i, j)) as the most recent common ancestor of i and j in T (respectively
T ′). We say leaf pair lp(i, j) is ancestral to leaf pair lp(p, q) in T if MRCAT (i, j)
is ancestral to MRCAT (p, q). We now construct the leaf pair graph GLP (T, T ′)
(or simply GLP ), which is a directed graph. The nodes in GLP are in one-to-one
correspondence to the leaf pairs in T , and so we can use the leaf pairs to refer
to the nodes of GLP . For two leaf pairs lp(i, j) and lp(p, q) in GLP , we create an
edge from lp(i, j) to lp(p, q) if the following two conditions are both satisfied:
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a. the path between i and j is disjoint with that of p and q in both T and T ′,
b. lp(i, j) is ancestral to lp(p, q) in either T or T ′.

As an example, Figure 1(d) shows part of the leaf pair graph GLP for the
two trees in Figure 1(a). There is an edge from lp(1, 2) to lp(4, 5) because the
MRCA of leaves 1 and 2 is ancestral to the MRCA of leaves 4 and 5 in T ′. There
is a degenerate case not covered by leaf pairs: leaf singletons in F (T, T ′). But
leaf singletons will not be part of any cycles in G(F ) because they can not be
ancestral to any other trees: the root of a singleton tree is a leaf. Therefore, we
only need to consider trees with at least two leaves from now on.

The reason that we require the two paths of two leaf pairs sharing an edge
in GLP to be disjoint is that we will only use one realized leaf pair per tree in
the forest in our method. We say a leaf pair is realized in an agreement forest
F (T, T ′) if the two leaves are connected in F (T, T ′). For a given agreement forest,
some nodes (i.e. leaf pairs) of GLP may not be realized. In this case, we remove
from GLP all leaf pairs that are not realized in F (T, T ′) along with any edges
incident to these leaf pairs. We denote the reduced GLP as GLP (F ), which is
a sub-graph of GLP . That is, lp(i, j) appears in GLP (F ) if i and j belong to
the same tree in F (T, T ′). We now show GLP (F ) and G(F ) convey the same
information on whether the agreement forest is acyclic or not.

Suppose GLP (F ) contains a cycle, whose nodes are the (realized) leaf pairs.
We first note that a cycle in GLP (F ) can not contain only leaf pairs from a single
tree of F (T, T ′).

Lemma 1. Cycles in GLP (F ) contain leaf pairs from at least two trees in F (T, T ′).

Proof. For contradiction, suppose there exists a cycle in GLP (F ) where all leaf
pairs along the cycle are from a single tree in F (T, T ′). Among these leaf pairs,
we consider the leaf pair lp with the highest MRCA (i.e. closest to the root of
the tree). Clearly, there exists no edge in GLP that originates from some leaf
pair on the cycle and points to lp. This contradicts the assumption that lp is on
the cycle. �
Lemma 2. For an agreement forest F , G(F ) is acyclic iff GLP (F ) is acyclic.

Proof. We will show that if G(F ) contains a cycle, then GLP (F ) also contains
a cycle, and vice versa. First suppose there is a cycle in G(F ) and suppose the
cycle contains tree Ti1 , . . . , Tic . Then there exists one connected leaf pair from
each Tij such that their MRCAs are the same as the roots of the trees which
they belong to. These leaf pairs thus have the same ancestral relationship as Tij .
Since the leaf pairs belong to different trees, the leaf pairs are pairwise disjoint.
By the definition of GLP (F ), these leaf pairs form a cycle in GLP (F ).

Now suppose GLP (F ) contains a cycle C. Due to Lemma 1, this cycle contains
leaf pairs from at least two trees of F (T, T ′). Note that each leaf pair on C must
belong to some tree of F (T, T ′), but there can be multiple leaf pairs belong to
the same tree. We let T ′

1, T
′
2, . . . , T

′
c be the distinct trees, which is ordered along

C. Here c ≥ 2 due to Lemma 1. We now show T ′
1, T

′
2, . . . , T

′
c forms a cycle.
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Consider two leaf pairs lp(i, j) and lp(p, q) that are consecutive along C. More-
over, they are from two different trees T ′

i and T ′
i+1 respectively, and there is an

edge from lp(i, j) to lp(p, q) in GLP (F ). Then, in G(F ), there is an edge from T ′
i

to T ′
i+1. To see this, without loss of generality assume MRCAT (i, j) is ancestral

to MRCAT (p, q). Since T ′
i and T ′

i+1 are disjoint, the root of T ′
i+1 must be on

the path from MRCAT (i, j) to MRCAT (p, q) in T . Thus, there is a path from
the root of T ′

i to the root of T ′
i+1 in T , which leads to an edge from T ′

i to T ′
i+1.

Since each T ′
i has at least one leaf pair in C, there is an edge in G(F ) from each

T ′
i to T ′

i+1. Therefore, trees T ′
1, . . . , T

′
c form a cycle in G(F ). �

Lemma 2 implies that if GLP (F ) is acyclic, the resulting forest is acyclic. We will
create ILP constraints on the leaf pairs that ensure acyclicity for the resulting
GLP (F ). Note that the proof of Lemma 2 suggests that we only need one leaf
pair from a single tree of the forest.

If GLP is acyclic, then any agreement forest created by some branch cuts will
be acyclic. So we assume in the following that GLP contains cycles. Imagine
we enumerate all cycles in GLP . If a leaf pair on a cycle is not realized by the
resulting forest, the cycle will be absent from GLP (F ). To ensure an agreement
forest to be acyclic, we enforce for each cycle C, at least one node in C is not
realized (i.e. the corresponding leaf pair is not connected in F (T, T ′)). Unfortu-
nately, experimental study shows that GLP can contain many cycles. This makes
enumeration of cycles impractical. However, an empirical finding is that if we
remove the so-called infeasible twin-pairs (defined later) from GLP , then the
reduced GLP often contains a small number of cycles (and for many biological
datasets, GLP becomes acyclic).

Consider two leaf pairs lp(i, j) and lp(p, q), where there is an edge from
lp(i, j) to lp(p, q) and an edge from lp(p, q) to lp(i, j) in GLP . Here, lp(i, j)
and lp(p, q) form a cycle of two nodes in GLP . We call these two leaf pairs in
GLP infeasible twin-pairs. As an example, in Figure 1(d), lp(1, 2) and lp(4, 5)
form an infeasible twin-pair, and so do lp(1, 2) and lp(4, 6). The two leaf pairs
are called infeasible because to achieve an MAAF, at least one of the two leaf
pairs is not realized. We now create ILP constraints to ensure at least one leaf
pair of an infeasible twin-pair is not realized in GLP (F ). We then remove from
GLP the two edges between two leaf pairs forming an infeasible twin-pair. This
is valid since one of the two leaf pairs will not be realized and edges incident to
both leaf pairs will always be removed.

In general, after deleting the edges between the infeasible twin-pairs, the re-
duced GLP can still contain cycles. But our experience shows that for biological
data, the reduced GLP often contains a small number of cycles. This permits
us to simply enumerate all possible elementary cycles in the reduced GLP . A
cycle is called elementary if it does not contain a smaller cycle. To enumerate
elementary cycles in the directed graph GLP , we use the algorithm developed
by Tarjan [19], which appears to work well in our simulation study.

We now give the details on how our ILP formulation ensures the resulting
forest to be acyclic. Recall that we have a binary variable Mi,j for each pair of
leaves i and j, where Mi,j = 1 if i and j are connected in the forest. We first
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consider the infeasible twin-pairs in GLP . For an infeasible twin-pair with lp(i, j)
and lp(p, q), we impose an ILP constraint so that at least one of the leaf pairs is
not realized:

Mi,j + Mp,q ≤ 1

Second, we create one constraint for each enumerated elementary cycle C in the
reduced GLP . Suppose leaf pairs (i1, j1), . . . (ic, jc) are the nodes of C. Then we
need to ensure at least one of these nodes is not realized:

c∑
p=1

Mip,jp ≤ c − 1

These additional constraints are necessary and sufficient for the original MAF
ILP formulation to obtain a MAAF, which we omit the detailed proof due to the
space limit. To find the MAAF, we need to find which edges ei with Ci = 1 are
in the ILP solution. Empirical results show that our ILP formulation can often
be solved efficiently in practice for many data (see Section 4).

3.2 Speed Up Computation by Divide and Conquer

For larger trees, it is known that computing the hybridization number can be
made faster by preprocessing the input trees [5]. There are three preprocessing
rules known to reduce the size of input trees while preserving the optimality of
the solution. As implemented in program HybridNumber, these rules sometimes
greatly reduce the running time. So we also use these rules by preprocessing the
input trees before solving the ILP formulation.

The preprocessing applies to both T and T ′. The first rule is: when there
exists a common subtree T0 for T and T ′ with at least two leaves, we delete T0
from both T and T ′ and replace it with a single node v(T0). The reduced trees
have the same hybridization number as the original trees [5]. The second rule is
called Chain Reduction in [5], which is targeted to a special type of tree topology
called maximal chain. Our experience suggests often this rule can not be applied
to trees we tested. We refer the readers to [5] for more details.

The last rule, called cluster reduction in [5], is potentially more useful. Suppose
there exists subtree T1 of T , and also subtree T2 of T ′, such that T1 and T2 may
be topologically different but have the same set of leaves. Then we cut T1 from
T and T2 from T ′ so that T1 and T2 become two new phylogenetic trees. We
also add a new leaf, s, to T and T ′ at the same positions where T1 and T2 are
previously attached. As shown in [5], the hybridization number of the original
T and T ′ is equal to the summation of the hybridization number of the updated
T and T ′ and that of T1 and T2. This rule can be effective because it can divide
a larger problem into two smaller problems in a divide and conquer manner.
However, not all input trees can be reduced by this rule.

To apply these preprocessing rules, we search for pairs of subtrees T1 and T2
with identical leaves in T and T ′. Once the subtrees T1 and T2 are found, we cut
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T1 from T and T2 from T ′, and then use the ILP approach described in Section
3.1 to compute the hybridization number of T1 and T2. We continue to divide
the reduced T and T ′ until the two trees are small enough.

4 Results

We have implemented our method in an ILP based software tool called SPRDist.
Program SPRDist was originally designed to compute the rSPR distance for two
trees. We have updated program SPRDist to allow computation of the hybridiza-
tion number for two trees. The tool is written in C++ and uses the GNU GLPK
integer linear programming solver or the commercial CPLEX solver. Our expe-
rience shows CPLEX (a commercial ILP solver) is often faster and more robust
than GLPK. To test the effectiveness of our method, we compute the hybridiza-
tion number for a number of tree pairs from both simulated data and biological
datasets. The experiment was performed on a 3192 MHz Intel Xeon workstation.

4.1 Simulated Data

The simulated data is from Beiko and Hamilton [3]. The trees are generated as
follows: a random tree is first selected, and then a small number of random rSPR
operations are applied to obtain the second tree. We tested ten pairs of trees,
each with 100 leaves and the number of rSPR operations is equal to ten. In Table
1, we give results of these ten datasets. It can be seen that program SPRDist is
efficient in computing the hybridization number of these trees: the running time
is usually less than one minute. The CPLEX solver gives faster results for more
difficult cases. Also the preprocessing helps to reduce the running time. As a
comparison, program HybridNumber runs for very long time for most datasets:
for only one of the ten datasets, program HybridNumber finds the solution within
one hour.

4.2 Biological Data

To demonstrate that our method works for true biological data, we also test our
method on the following biological data: tree pairs for a Poaceae dataset. The
dataset is originally from the Grass Phylogeny Working Group [9]. The dataset
contains sequences for six loci: internal transcribed spacer of ribosomal DNA
(ITS); NADH dehydrogenase, subunit F (ndhF); phytochrome B (phyB); ribu-
lose 1,5-biphosphate carboxylase/oxygenase, large subunit (rbcL); RNA poly-
merase II, subunit β′′ (rpoC2); and granule bound starch synthase I (waxy). The
Poaceae dataset was previously analyzed by Heiko Schmidt [17], who generated
the inferred rooted binary trees for these loci. Bordewich, et al. [5] computed the
minimum hybridization number for each of the fifteen pair of trees. Previously,
we computed the exact rSPR distance for each pair of trees. To test how well our
method performs on these biological trees, we compute the exact hybridization
number for the same fifteen pairs of trees. See Table 2 for the results.
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Table 1. Computing exact hybridization number on simulated data from Beiko and
Hamilton (2006). For each pairs of trees, ten random rSPR operations are performed
when the datasets are applied. hS : the hybridization number computed by program
SPRDist. Each pair is computed with CPLEX and GLPK. We also compare the pro-
gram with or without divide-and-conquer preprocessing. The columns labeled as no
prep. are for the results without performing preprocessing. Time is measured in sec-
onds (s), hours (h) and days (d).

hS CPLEX no prep. GLPK no prep. HybridNumber
10 37 s 37 s 57 s 57 s 2 d 9 h
10 81 s 81 s 167 s 179 s 2 d 19 h
9 10 s 12 s 38 s 47 s 21 h 33 s
9 0 s 3 s 15 s 17 s 3205 s
10 15 s 16 s 66 s 82 s 2 d 6 h
9 0 s 5 s 1 s 26 s 2 d 20 h
10 13 s 13 s 53 s 58 s 2 d 7 h
10 18 s 24 s 318 s 379 s 2 d 8 h
10 16 s 376 s 72 s 146 s 2 d 5 h
10 3 s 10 s 29 s 77 s 2 d 9 h

Table 2. Performance of program SPRDist on fifteen pairs of trees for the Poaceae
data. For comparison, we also list those of program HybridNumber. hS: hybridization
number from program SPRDist. rSPR: rSPR distance. hHN : the minimum hybridiza-
tion number computed in [5]. We list the running time of program SPRDist using
either CPLEX and GLPK. We only give results for trees preprocessed with divide-
and-conquer preprocessing. Time is measured in seconds (s) and hours (h).

Data SPRDist HybridNumber
Pair 1 2 # taxa hS(rSPR) CPLEX GLPK hHN Time

1 ndhF phyB 40 14 (12) 5 s 65 s 14 3 s
2 ndhF rbcL 36 13 (10) 10 s 84 s 13 3 s
3 ndhF rpoC2 34 12 (11) 7 s 77 s 12 6 s
4 ndhF waxy 19 9 (7) 1 s 2 s 9 1 s
5 ndhF ITS 46 19 (19) 51 s 666 s 19 667 s
6 phyB rbcL 21 4 (4) 0 s 1 s 4 1 s
7 phyB rpoC2 21 7 (6) 3 s 2 s 7 1 s
8 phyB waxy 14 3 (3) 1 s 1 s 3 1 s
9 phyB ITS 30 8 (8) 1 s 2 s 8 1 s

10 rbcL rpoC2 26 13 (11) 14 s 134 s 13 16 s
11 rbcL waxy 12 7 (6) 1 s 1 s 7 1 s
12 rbcL ITS 29 14 (13) 80 s 1140 s 14 4 h 2716 s
13 rpoC2 waxy 10 1 (1) 0 s 0 s 1 1 s
14 rpoC2 ITS 31 15 (14) 115 s 1469 s 15 7 h 776 s
15 waxy ITS 15 8 (7) 1 s 9 s 8 2 s
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The experimental results in Table 2 indicate that our program SPRDist is
more efficient than program HybridNumber for more difficult datasets. In fact,
our program only takes seconds or minutes to compute the exact hybridization
number when CPLEX solver is used. The CPLEX solver usually leads to less
running time than the GLPK solver, especially for more difficult input data.
Even the GLPK solver can lead to faster running time than program Hybrid-
Number for more difficult cases (pairs 12 and 14). On the other hand, program
HybridNumber appears to perform better when the input trees allow significant
reduction through preprocessing; when preprocessing is less effective, it usually
performs poorly for larger trees. This can also be seen in Table 1. We also com-
pare the hybridization number with the rSPR distance. It appears that the two
values tend to be more different when the size of trees and the hybridization
number grow.

The simulation results show that our program SPRDist is more scalable than
program HybridNumber. Also, program SPRDist is more robust than program
HybridNumber. With our new method, computing the hybridization number be-
tween two large and topologically far apart trees is still challenging, but feasible.

Constructing the consistent history. In addition to computing the hy-
bridization number in this paper, our method also finds the corresponding maxi-
mum acyclic agreement forest. It is straightforward to apply the algorithm given
in [18] to construct a most parsimonious phylogenetic history from the forest.
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Abstract. Performing global alignment between protein-protein interaction
(PPI) networks of different organisms is important to infer knowledge about con-
servation across species. Known methods that perform this task operate symmet-
rically, that is to say, they do not assign a distinct role to the input PPI networks.
However, in most cases, the input networks are indeed distinguishable on the ba-
sis of how well the corresponding organism is biologically well-characterized.
For well-characterized organisms the associated PPI network supposedly encode
in a sound manner all the information about their proteins and associated interac-
tions, which is far from being the case for not well characterized ones. Here the
new idea is developed to devise a method for global alignment of PPI networks
that in fact exploit differences in the characterization of organisms at hand. We
assume that the PPI network (called Master) of the best characterized is used as
a fingerprint to guide the alignment process to the second input network (called
Slave), so that generated results preferably retain the structural characteristics of
the Master (and using the Slave) network. We tested our method showing that the
results it returns are biologically relevant.

1 Introduction

High-throughput technologies, including genome sequencing, expression profiling, cel-
lular localization and other methods for large-scale protein-protein interactions, have
provided a large amount of information for few well-characterized model organisms
such, as for instance, the yeast Saccharomyces cerevisiae [6, 11]. On the other hand,
for many organisms, the genome sequence has been determined, but coding sequences
have been functionally annotated on the sole basis of sequence similarity. Although it
is certainly true that similar protein sequence implies similar protein function, infer-
ring protein functions of not yet well characterized organisms by exploiting protein
sequence similarity to other organism proteins may be complicated by specie-specific
diversifications or when species are not closely related. Furthermore, it has been noted
that to fully understand cell activity, proteins cannot be analyzed independently from
the other proteins of the same organism, because they seldom act in isolation to perform
their tasks [18].

The protein-protein interactions of a given organism are usually modeled by a net-
work, called protein-protein interaction (PPI) network, highlighting the mutual interac-
tions between pairs of proteins. By comparing the PPI networks of different organisms
the complex mechanisms at the basis of evolutionary conservations can be uncovered
and the biological meaning of groups of interacting proteins belonging to not yet well
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characterized organisms can be thus inferred. As a result, a number of approaches have
been recently presented in the literature for local [13, 3] and global [15, 16, 7, 10, 12]
alignment of PPI networks.

In this context, the research presented here deals with global alignment of PPI net-
works. Global network alignment aims at finding a unique (possibly, the best) overall
alignment of the input networks, in such a way that all the nodes of the networks are
mapped. Unfortunately, exact algorithms for PPI network global alignment cannot be
afforded, inasmuch as the PPI network alignment problem can be reduced to subgraph
isomorphism checking, that is known to be NP-complete [5] and, therefore, heuristic
approached are to be adopted.

A common characteristics of known methods for global alignment handle their input
PPI networks symmetrically, that is to say, they do not take advantage of the (usu-
ally available) knowledge about how well the corresponding organisms are biologically
well-characterized. Indeed, while for well-characterized organisms, the associated PPI
networks supposedly encode in a sound manner all the information about their proteins
and associated interactions, this is far from being the case for not well characterized
ones. Therefore, it seems sensible to devise methods for global alignment that in fact
exploit differences in the characterization of the organisms at hand, which is precisely
the main idea underlying this paper. In particular, in our approach, the PPI network
(called Master) of the best characterized organism is used as a fingerprint to guide the
alignment process to the second input network (called Slave), so that generated results
preferably retain the structural characteristics of the Master network. This is obtained
by generating from the Master (and using the Slave) a finite automaton, called align-
ment model, which is then fed with a (linearization of) the Slave network for the purpose
of generating, via the Viterbi algorithm, matching subgraphs. In this way most of the
structural information of the Master is kept, while only the Slave information useful to
understand how much of the Master has been conserved in the Slave is exploited in the
alignment process. Such an asymmetric alignment may be relevant for example when
the Master network is refined with information taken from multiple literarure sources,
also taking into account the accuracy of each reported interaction (see [9] for the Sac-
caromices cerevisiae network). Indeed, the Master may contain in this case valuable
information for the search of known complexes modelling the cell machinery of other
less studied organisms.

While our technique is valuable in all those cases where the biological characteri-
zation of the input organisms is rather different, it can demonstrate itself useful also in
cases where the two input networks are in fact equally well characterized. Indeed, in
such cases, one of the input networks can be set as the Master, while the other is used as
the Slave, thus “constraining” the alignment process to be preferably bound to the first
network structural characteristics. The process can be then continued by exchanging the
roles of the two networks at hand.

In more detail, the technique presented here amounts to iteratively extracting similar
connected subgraphs from the input networks. The algorithm starts by searching for an
initial seed, that is, a best pair of proteins (p, q) (one from the first network and one
from the second) to be matched. To this end, information about both protein sequence
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similarity and networks topology are used1. Then, the seed is expanded to a pair of
matching subgraphs of the two input networks by exploring the nodes adjacent to p and
q. When a new pair of connected subgraphs is eventually discovered, the two subgraphs
are deleted from the input networks and the subgraph extraction procedure is started
again. The process is iterated until no further solutions can be generated. The set of all
the protein pairings resulting from the discovered subgraph matchings makes the global
alignment between the input networks.

In order to asses the effectiveness of the approach, several experiments have been
conducted over the PPI networks of Saccharomyces cerevisiae (yeast) and Drosophila
melanogaster (fly). Experimental results on the these two networks demonstrate that
our technique is able to find biologically significant subgraph pairings, some of which
are not generated by other global alignment methods.

The rest of the paper is organized as follows. In Section 2 some basics concepts are
illustrated. In Section 3 the procedure to match connected subgraphs is described, while
Section 4 illustrates the algorithm we propose to perform global alignment of two PPI
networks. In Section 5, the main results obtained by applying the technique to align the
yeast and fly networks are illustrated. Finally, in Section 6, brief conclusions are drawn.

2 Preliminaries

A PPI network can be modeled as an indirect graph N = 〈P, I〉, where P is a set of
nodes, each denoting a specific protein in the considered organism, and I is the set of
edges representing protein-protein interactions. Nodes can be labeled by protein names
or by database ids. Now, let us denote with a◦b the concatenation of elements (or pairs)
a and b. Analogously, for elements (or pairs) a1, a2, . . . , an, ◦1,nai denotes (a1◦(a2◦(. . .◦
(an−1 ◦ an)))), and, for an ordered set A, ◦ai∈Aai denotes (a1 ◦ (a2 ◦ (. . . ◦ (an−1 ◦ an))))
where A = 〈a1, a2, . . . , an〉. Furthermore, given a PPI network N = 〈P, I〉 and a node
p ∈ P, the adjacency set of p is the set ad j(p) = {q ∈ P|{p, q} ∈ I} of nodes adjacent to
p.

Next we introduce the technical machinery useful to our purposes. We begin by
modeling the Master network by defining its associated automata, called the alignment
model, which is defined below.

Definition 1. (Alignment model) Let NM = 〈PM , IM〉 and NS = 〈PS , IS 〉 be two PPI
networks that we call Master and Slave, resp., and let k be an integer such that k ≥ 1.
Furthermore, let D be a set of triplets 〈p, q, spq〉 and sth be a real value such that for
p ∈ PM and q ∈ PS , spq is the similarity value for p and q and sth is a threshold value.
Finally, let v and v′ be two values such that v < v′.

An alignment model M of order k for NM w.r.t. NS is a finite state automaton such
that:

– the states of the automaton include one state for each protein in PM ∪ PS and,
moreover, states β, τ, and a set of states εh defined as follows;

– β is the initial state and it is linked to itself by a transition with value v;

1 Other kinds of information about protein structure might be taken advantage of as well.
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– the state τ is linked to itself by a transition with value v;
– each node of PM corresponds to a state of level 0, presenting an input transition

from the node β with value v′, and an output transition towards the node τ with
value v;

– for each state of level i = 0, . . . , k − 2 corresponding to a node p ∈ PM , there is
a set of states of level i + 1 linked in input and in output to the state of level i by
transitions with value v′. Each state of level i+1 corresponds to a node p′ ∈ ad j(p);

– each state of level i = 0, . . . , k − 2 corresponding to a node p ∈ PM , is linked to a
state εi+1 by a transition with value v. The state εi+1, in its turn, is linked to itself
and to the node p by transitions with value v;

– states β and τ emit any symbol with emission value equal to 1;
– each state of level i corresponding to a node p ∈ PM emits symbols of the type

(q, i) (q ∈ PS ) whose emission value is equal to 1 if spq ≥ sth, while it is equal to 0
otherwise;

– each state εi emits symbols of the type (q, j) (q ∈ PS , j ≥ i) with emission value 1,
and all the other symbols with emission value 0.

Figure 1 shows the generic structure of an alignment model of order two.

Fig. 1. An alignment model of order two. Nodes represent the states of the automaton, edges
represent the transitions.

Note that each output sequence of an alignment model can be obtained by following
the different paths in the model. Each path has a specific value, and goes through at
most one state of level 0, even several times. Furthermore, the value v′ characterizes
input/output transitions to/from states corresponding to nodes in PM, while the value v
characterizes transitions corresponding to the other states.

Let π be a path of the alignment model and w(π) be its weight, that is, the sum of the
values of the transitions in π. Intuitively, we point out that paths scoring high weights
will correspond to good pairings between Master and Slave nodes, as will be more clear
below. Indeed, the weights give a measure of how much the Slave “matches” the Master
for the nodes involved in the corresponding paths.

As already pointed out in the Introduction, in order to perform the alignment process
using the alignment model, the Slave network has to be first linearized. The following
definitions are useful to this aim.



“Master-Slave” Biological Network Alignment 219

Definition 2. (k-tour) Let N = 〈P, I〉 be a PPI network, p ∈ P and k be an integer,
k ≥ 1. A k-tour for p, is defined as tourk(p) = 〈Tk(p, 0)〉 where, for a generic node a:

– Tk(a, k − 1) = (a, k − 1),
– Tk(a, i) = (a, i) ◦ (◦b∈ad j(a)(Tk(b, i + 1) ◦ (a, i))),∀i < k − 1.

Example 1. Consider the graph illustrated in Figure 2.

Fig. 2. A sample graph

For the node p5, we have the following k-tours (for k = 1, 2, 3):

– tour1(p5) = {(p5, 0)}
– tour2(p5) = {(p5, 0), (p4, 1), (p5, 0), (p7, 1), (p5, 0), (p1, 1),

(p5, 0)}
– tour3(p5) = {(p5, 0), (p4, 1), (p3, 2), (p4, 1), (p5, 2), (p4, 1),

(p5, 0),
(p7, 1), (p3, 2), (p7, 1), (p5, 2), (p7, 1), (p6, 2), (p7, 1), (p5, 0),
(p1, 1), (p3, 2), (p1, 1), (p5, 2), (p1, 1), (p2, 2), (p1, 1), (p5, 0)}

The following definition extends previous Definition 2 to leave out a specific group of
nodes from the adjacent sets under consideration.

Definition 3. (partial k-tour) Let N = 〈P, I〉 be a PPI network, p ∈ P, k be an integer,
k ≥ 1 and Q be a subset of P. A partial k-tour for p is defined as:

ctourk(p,Q) = 〈Tk(p, 0,Q)〉,
where, for a generic node a:

– Tk(a, k − 1,Q) = (a, k − 1),
– Tk(a, i,Q) = (a, i) ◦ (◦b∈ad j(a)−Q(Tk(b, i + 1,Q) ◦ (a, i))),∀i < k − 1.

Both a k-tour and a partial k-tour can be referred to a specific set of nodes Q′ ⊆ P. In
such a case, they are denoted by tourk(Q′) = {◦p∈ord(Q′)tourk(p)} and ctourk(Q′,Q) =
{◦p∈ord(Q′)ctourk(p,Q)}, respectively, where ord(Q′) is any given permutation of the el-
ements of Q′.2

2 Depending on the chosen permutation, different tours are generated, but this choice is imma-
terial for our purposes.
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3 Subgraph Extraction

This section describes the technique designed to match connected subgraphs. As al-
ready pointed out, it uses alignment models and k-tours defined in Section 2, along with
the Viterbi algorithm [4]. The Viterbi algorithm has been proposed in 1967 [17] as a
method of decoding convolutional codes, and it has been also exploited to solve the
problem of estimating the state sequence of a discrete-time finite-state Markov process
observed in memoryless noise [4]. In this work, we apply it to find the path scoring the
maximum weight on the alignment model, without referring to any probabilistic mean-
ing. In the following, we assume that, for each pair of proteins belonging to distinct
networks, a basic similarity value (e.g., protein sequence similarity [1]) is known and
stored in a suitable dictionary.

Let NM = 〈PM , IM〉 and NS = 〈PS , IS 〉 be the two input PPI networks, where NM is
the Master andNS is the Slave. Let D be a dictionary of basic similarities, that is, a set
of triplets 〈px, py, sb〉 such that px ∈ PM , py ∈ PS and sb is the basic similarity between
px and py. Finally, let k be an integer such that k ≥ 1. The procedure Connected-
subgraphs Extraction includes two main steps:

1. find the pair of nodes (p0, q0), such that p0 ∈ PM and q0 ∈ PS , to be set as best-pair,
that is, the seed pair of nodes making the starting solution S 0;

2. expand S 0 to obtain the solution S f corresponding to a pair of similar connected
subgraphs CL and CF of the two input networks.

Step 1 and Step 2 are performed by two algorithms, called Best-pair Finder and Ex-
pander, that are described in detail in the following sections.

3.1 Best-Pair Finder

Given the two networks NM and NS , the integer k and the dictionary D of basic simi-
larity in input, Best-pair Finder returns in output the best-pair (p0, q0) as follows.

An alignment model M of order k forNM w.r.t.NS is generated, and a k-tour TF for
the set of nodes in NS is considered as the output sequence of M. Here, high weights
of the paths on M correspond to good pairings between Master and Slave nodes. In fact,
the value w(π) of a path π gives a measure of how much the Master node corresponding
to the state of level 0 in the path “matches” with the emitted symbol, that corresponds to
a Slave node. The notion of “good matching” we adopt is referred to the basic similarity
associated with both p0 and q0, and their correspondent adjacent nodes.

To obtain the best match between a node p0 of the Master and a node q0 of the Slave,
the path π scoring the maximum weight has to be chosen, and the Viterbi algorithm
[4, 8] is exploited to this aim.

Example 2. Consider the two networks shown in Figure 3 (a), where the lef-most one
is the Master and the right-most one is the Slave. We set k = 2 and in Figure 3 (b) the
pairs of proteins whose basic similarity is greater than the input threshold are shown.
Figure 4 illustrates the alignment model M of order k for the Master w.r.t. the Slave (we
adopted a compact view in which the transition values v and v′ are omitted and the ε
states are represented by circles adjacent to the corresponding nodes).
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(a)

p1 q1

p2 q4

p3 q3

p4 q1

(b)

Fig. 3. (a) Master and Slave networks (b) Proteins pairs scoring basic similarities greater than the
threshold

Fig. 4. The alignment model of order 2 for the Master w.r.t. to the Slave

Consider the following 2-tour as one of the possible output sequences of M:

TF = {tour2(q1), tour2(q3), tour2(q2), tour2(q4)} =
{(q1, 0), (q3, 1), (q1, 0), (q4, 1), (q1, 0), (q2, 1), (q1, 0),

(q3, 0), (q1, 1), (q3, 0), (q4, 1), (q3, 0), (q2, 1), (q3, 0),

(q2, 0), (q1, 1), (q2, 0), (q3, 1), (q2, 0),

(q4, 0), (q3, 1), (q4, 0), (q1, 1), (q4, 0)}.

When the Viterbi algorithm is applied, the following path on M is returned:

π = β, p4, p3, p4, p2, p4, ε, p4, τ, . . . , τ.

The path π associates the first symbol of TF , that is, the node q1 of the Slave, to the
Master node corresponding to the state of level 0 in π, that is, p4. Therefore, the returned
best-pair is (p4, q1).

However, to better understand why this is the returned solution, let us consider the
following five alternative paths on M:

π1 = β, p1, ε, p1, p2, p1, ε, p1, τ, . . . , τ,

π2 = β, . . . , β, p3, p4, p3, p2, p3, ε, p3, τ, . . . , τ,
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π3 = β, . . . , β,

π4 = β, . . . , β, p2, p3, p2, p1, p2, τ,

π5 = β, . . . , β, p2, p3, p2, p4, p2, τ.

Following the same reasoning as before, the path π1 leads to the pairing of nodes p1

and q1. Note that π1 passes through three v′ transitions, whereas π passes through five v′
transitions. Since q1 has associated a sufficiently high basic similarity with both p1 and
p4, pairing p4 and q1 produces a better matching than pairing p1 and q1. Note that such
a better matching depends on both the topology and the node similarities characterizing
the two networks.

Both the paths π4 and π5 produce the pairing (p2, q4), while the path π2 pairs p3 and
q3. Note that, like π, the paths π2, π4 and π5 also pass through five v′ transitions. Thus,
each one of the pairs (p4, q1), (p3, q3) and (p2, q4) would produce a good matching.

Finally, we note that path π3 is a special one. In fact, it does not contain any state
of level 0, and does not pass through any state characterized by v′ transitions. Thus, it
would be returned by the Viterbi algorithm only if there is no pair of proteins sharing
basic similarities greater than the threshold.

3.2 Expander

Once that the best-pair of proteins composing the starting solution S 0 = {(p0, q0)} is
computed by Best-pair Finder, S 0 has to be expanded until no more proteins belonging
to connected sub-graphs we are generating can be paired.

The Expander takes in input two networks NM and NS , an integer k, the current
solution S 0 and the basic similarity dictionary D, and returns in output the solution S f

corresponding to matching two connected subgraphs in the input networks.
To expand S 0, the Expander algorithm first analyzes the adjacent sets ad j(p0) and

ad j(q0) to find a suitable pair (p1, q1), such that p1 ∈ ad j(p0) and q1 ∈ ad j(q0), to
be added to S 0. This process leads to the generation of a new partial solution S 1 =

{(p0, q0), (p1, q1)}. The algorithm works analogously to expand S 1 until the final solu-
tion S f is generated.

At the generic step i, the pair (pi, qi) is computed according to the following proce-
dure. Let S i−1 = {(p0, q0), (p1, q1), (p2, q2), . . . , (pi−1, qi−1)} be the solution at the step
i − 1. A partial k-tour TFp for the set of nodes in NS on the set Q = {q0, q1, . . . , qi−1}
is generated, as well as a special alignment model Mp for NM . This model is obtained
accordingly to the following variant of Definition 1:

– Nodes in the set P = {p0, p1, p2, . . . , pi−1} can not be associated to states of level
greater than 0, and only nodes in P are states of level 0. Furthermore, states of level
0 are not linked to any state ε, nor to the state τ;

– each state of level 0 emits symbols of the type (p, q), such that p ∈ P and q ∈ Q
with value 1, and any other symbol with value 0;

– there is a transition with value v from each node of level 1 to the node τ;
– there are no transitions from nodes of level 1 to nodes of level 0;



“Master-Slave” Biological Network Alignment 223

We call partial alignment model the alignment model Mp generated as described above.
Differently from the alignment model of Definition 1, Mp allows to select pairs of pro-
teins belonging to the adjacent sets of already chosen proteins, obtaining the correspon-
dence between connected subgraphs as a final solution.

The partial tour TFp is used as the output sequence of Mp, and the Viterbi Algorithm
is applied again to find the path π scoring maximum weight. Then, the pair (pi, qi)
corresponding to π is added to S i−1, generating this way the new solution S i.

Note that, in the partial alignment model, only nodes of level 1 concur to generate
the solution, while nodes of level 0 guarantee that, if the subgraphs generated at the
previous step are connected, the new ones will be connected as well, and sharing the
same spanning tree.

Example 3. Consider again the two networks in Figure 3. As discussed in Example 2,
Best-pair Finder returns the solution S 0 = {(p4, q1)}. Consider the following partial
2-tour for the set Q = {q1}:

T ′Fp
= {(q1, 0), (q3, 1), (q1, 0), (q4, 1), (q1, 0), (q2, 1), (q1, 0)}.

Figure 5 (a) shows the partial model M′p built w.r.t. the set P = {p4}.

(a) (b)
(c)

Fig. 5. (a) The partial alignment model M′p (b) The partial alignment model M′′p (c) The partial
alignment model M′′′p

When Expander is called, the path π′ = β, p4, p3, τ, . . . , τ is returned by the Viterbi
algorithm and the solution S 1 = {(p4, q1), (p3, q3)} is generated at the first iteration.
Then, the partial tour T ′′Fp

= {(q1, 0), (q1, 0), (q4, 1), (q1, 0), (q2, 1), (q1, 0)} and the par-
tial model M′′p displayed in Figure 5 (b) are produced, leading to the solution S 2 =

{(p4, q1), (p3, q3), (p2, q4)}.
At the third iteration, the partial tour T ′′′Fp

= {(q1, 0), (q2, 1), (q1, 0), (q3, 0), (q2, 1),
(q3, 0), (q4, 0)} and the partial model M′′′p shown in Figure 5 (c) are generated. In this
case, the Viterbi algorithm returns the path π′′′ = {β, β, β, β, β, β, p2}.

Since π′′′ does not contain any state of level 1, this means that no further node can
be added to the final solution, that is then S 2. The constructed match between the two
connected subgraphs is shown in Figure 6.

4 Global Alignment

To perform a global alignment between two networks NM = 〈PM , IM〉 and NS =

〈PS , IS 〉, the procedure Connected-subgraphs Extraction, illustrated in Section 3, is
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Fig. 6. The matching between the two paired connected subgraphs

called iteratively on the two input networks, at each iteration discarding from the anal-
ysis protein nodes belonging to the current solution. The process stops when no fur-
ther correspondence between pairs of subgraphs is returned. Discarding nodes means
eliminating them and all the associated edges from the input networks. This way, a
one-to-one correspondence between pairs of nodes in the two networks is constructed.

Figure 7 illustrates a snapshot of the algorithm Global Alignment. In detail, the two
networksNM andNS and an integer k are provided in input, and the output solutionS is
set equal to the empty-set at the beginning. Then, the procedure Connected-subgraphs
Extraction is called onNM ,NS and k, and the solution S i it returns is added to S. At this
point, nodes included in S i and all the associated edges are eliminated from the two net-
works, and Connected-subgraphs Extraction is called again until it does not return any
further solution. The final S returned in output will consist in a set of correspondences
between pairs of (non-overlapping) connected subgraphs of NM and NS .

5 Experimental Results

We tested our technique on the two PPI networks of Saccharomyces cerevisiae (yeast)
and Drosophila melanogaster (fly). We exploited interaction data collected from
BIOGRID [2] and DIP [14]. In particular, the resulting yeast network has 5, 443 nodes
and 31, 898 interactions, while the fly network has 7, 404 nodes and 25, 830 interactions.
The size of the two interaction datasets highlights that the yeast is better characterized
than the fly, since a smaller number of fly interactions has been discovered although D.
melanogaster has a larger number of proteins than S. cerevisiae. This is also confirmed
by the larger amount of documentation available for the yeast.

We run BLAST [1] to compute the basic similarity dictionary D containing the se-
quence similarity of pairs of proteins in the two networks. In particular, we exploited
the BLAST bit-score to measure protein sequence similarity.

We performed two different series of experiments, in both cases comparing our re-
sults with those returned by one of the most successful tools for global alignment,
that is, IsoRank [12]. IsoRank is based on the eigenvalue concept similar to that of
the Google PageRanking. It works in two stages: first associate a score with each pos-
sible match between nodes of the two networks, and then construct the mapping for
the global network alignment by extracting mutually-consistent matches according to a
bipartite graph weighted matching performed on the two entire networks.

In the first series of tests, we set the yeast network as the Master and the fly network
as the Slave. Then, analyzed things the other way around. In both cases we fixed k = 2,



“Master-Slave” Biological Network Alignment 225

Global Alignment
Input:
- a basic protein similarity dictionary D
- two PPI networks NM = 〈PM , IM〉 and NS = 〈PS , IS 〉
- an integer k
Output: a set S = {S 1, S 2, . . . , S p}, where each S i is a set of node

pairs representing the correspondence between two
connected subgraphs of NM and NS

1: set S = ∅
2: repeat
3: call Connected-subgraphs Extraction on NM , NS , k and D

obtaining S i = {(p′1, q
′
1), . . . , (p′m, q

′
m)}

4: set S = S ∪ {S i}
5: set PM = PM − P′M , where P′M = {p′1, p′2, . . . , p′m}
6: set IM = IM − I′M , where I′M is the set of edges associated with

nodes in P′M
7: set PS = PS − P′S , where P′S = {q′1, q′2, . . . , q′m}
8: set IS = IS − I′S , where I′S is the set of edges associated with

nodes in P′S
until S i � ∅

Fig. 7. Global Alignment

and exploited a threshold value of 40.00 on the sequence similarity in order to discard
those pairings corresponding to low biological meaning.

5.1 The Yeast as the Master and the Fly as the Slave

When the yeast PPI network has been set as the Master, our system returned a global
alignment involving 945 protein pairings, with BLAST similarity bit-scores in the range
[45.0, 820.5]. This confirms that the two organisms are not too much related from the
evolutionary point of view.

On the same PPI networks, IsoRank returned a global alignment involving 5, 499 pro-
tein pairings. The fact that the alignment returned by our approach involves a smaller
set of pairings is due to the threshold value that we forced on the sequence similarity.
In fact, relaxing that constraint the number of returned protein pairs becomes larger.
Although when, as in the discussed case, the global alignment returned by our system
involves a smaller set of pairings than IsoRank, our system returned pairings (in this
case, 764 pairings) that IsoRank did not. On the other hand, all those pairings returned
by IsoRank but not by our system have sequence similarity lower then the threshold
value. Theese results point out that aligning the two networks from a different point of
view, where the approximation plays different roles on the two sides and only what of
the Master is conserved in the Slave is searched for, leads to different and still biologi-
cally meaningful results.

Table 1 illustrates the top 20 pairings, if results are ordered by protein sequence simi-
larity. In particular, both SWISSPROT ids and protein names, when they were available,
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Table 1. The top 20 pairings for yeast as Master and fly as Slave

Yeast id Yeast name Fly id Fly name Similarity
Q00711 sdh1 Q94523 scs 820.50
P39533 aconitase Q9VIE8 aconitase 798.50
P22202 ssa4 O97125 hsp68 798.00
P39007 stt3 Q9XZ53 stt3 741.50
P36022 dynein hc Q9U3Y5 dynein hc 717.00
P41810 sec26 P45437 coatomer subunits beta 692.50
P00830 atp2 Q05825 atp2 690.00
P23337 gsy1 Q9VFC8 gsy 639.50
P15274 Q76NQ9 617.50
P53319 P41572 pgd 610.50
P38697 Q07152 599.00
P38972 ade6 P35421 ade2 597.00
Q05931 ssq1 P29845 hsp70 573.00
P32770 arp1 Q9W1G0 tal 570.00
P16862 pfk2 P52034 pkf 570.00
P19882 hsp60 Q9VMN5 hsp60 556.00
P00890 Q9W401 kdn 537.00
P32563 vph1 Q9XZ10 vha 534.50
Q08822 yor356w Q7JWF1 531.50
P32863 rad54 O76460 okra 528.00

are shown, together with the sequence similarity between the pair of associated proteins.
The only three of these pairings found also by IsoRank are outlined in Italic.

The yeast proteins shown in Table 1 are correctly paired by our system with the fly
homolog when available or with a very similar counterpart. The proteins aligned include
enzymes involved in carbohydrate metabolism (P16862 / P52034; P00890 / Q9W401;
P23337 / Q9VFC8), mitochondrial enzymes involved in various metabolic pathways
(Q00711 / Q94523; P00890 / Q9W401; Q08822 / Q7JWF1), glycosyl trasferase
(P39007 /Q9XZ53) and other enzymes, but also chaperonin proteins (P22202 /O97125;
Q05931 / P29845; P19882 / Q9VMN5) and proteins involved in endocytosis (P36022
/ Q9U3Y5; P41810 / P45437) are part of the graph.

Fig. 8. One of the associated pair of connected subgraphs
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Table 2. The top 20 pairings for fly as Master and yeast as Slave

Fly ID Fly name Yeast Id Yeast name Similarity
P41572 pgd P53319 610.50

Q76NQ9 P15274 617.50
P91660 cg8799 P39109 ycf1 628.50
P52029 cg8251 P12709 628.50

Q9VFC8 gsy P23337 gsy1 639.50
A8Y5B7 kl3 P36022 dynein 643.50
Q9VUF8 shd P10964 rpa1 660.00
Q05825 cg11154 P00830 690.00
Q9VKJ6 atpase P39986 atpase1 707.50
Q9XZ53 stt3 P39007 stt3 741.50
A8JNX2 spock P13586 pmr1 748.00
P29844 hsp3 P16474 kar2 757.50
Q8IP94 aats-thr P04801 aats-thr 786.00
Q9VIE8 cg9244 P39533 798.50
Q8IQQ0 cg11661 P20967 846.50
O96553 c1-thf P07245 920.00
Q0E993 aats-val P07806 aats-val 984.00
P48591 rnrl rnr3 1029.00
P25167 rpiii128 P22276 rpc2 1253.00

Q9VVA4 cg9674 Q12680 1940.00

Figure 8 displays one of the pairs of connected subgraphs associated during the align-
ment process. In particular, some of the considered proteins are probably involved in
protein import into peroxisome matrix and fatty acid beta-oxidation.

5.2 The Fly as the Master and the Yeast as the Slave

When the fly has been exploited as the Master and the yeast as the Slave, the system
returned a global alignment involving 707 pairings. Also in this case, there are 589
pairings that IsoRank did not returned.

This series of experiments allowed us to make some interesting considerations. In
fact, when the focus is turned on the fly network, and most of its structural information
are kept, the resulting alignment is smaller than in the previous case. This is possibly
due in part to the fact that the yeast is better characterized than the fly, thus, it presents
a larger number of interactions. When the yeast is the Slave, most of its structural in-
formation gets lost, and thus some of the associations found in the previous case are no
longer recognized.

A second key to explain the results is the following. When a PPI network is exploited
as the Master, this makes the search process to follow a precise direction, that is, search-
ing for those regions of the Master which have been conserved in the Slave. Our analysis
shows that, according to the available interaction data, there are more yeast regions that
have been conserved in the fly than vice versa, which is reasonable observing that the
fly is a more complex organism than the yeast.
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Another aspect to consider is that, also in this verse, the system is able to return
significative associations. Table 2 illustrates the top 20 pairings w.r.t. protein sequence
similarity, where only nine pairings (highlighted in Italic) have been returned also by
IsoRank. Note that six pairings, pointed out in bold, have been found also in the case
yeast-Master and fly-Slave. Looking at Table 2 it is possible to observe that our system
correctly pairs most conserved proteins that include, as in the previous example, mainly
metabolic enzymes (P41572 / P53319; Q76NQ9 /P15274; P52029 / P12709; CG9244
/ P39533; Q8IQQ0 / P20967), glycosyl trasferase (P39007 / Q9XZ53), aminoacil-
tRNA- synthetase (Q8IP94 / P04801; Q0E993 / P07806) that are crucial enzymes
for protein synthesis, and RNA polymerase subunits (P25167 / P22276). Yeast dynein
heavy chain, that in Table 1 was paired with the fly homolog, here is paired with the
fly male fertility factor kl3. Nevertheless, this unknown fly factor is probably a dynein
subunit because of its molecular features and its inferred GO annotations.

The two global alignments obtained for the two different settings of the Master and
the Slave share 181 pairings.

6 Conclusions

We proposed a method for global alignment of PPI networks, based on a “Master-Slave”
approach. In particular, one of the two input networks is set as the “Master”, and the
other one as the “Slave”. The difference between Master and Slave is that most of the
Master structural information, suitably encoded by a finite state automaton, are kept
and exploited during the alignment process, while the Slave is linearized in order to be
considered as a possible output of the automaton. The goal of the approach is that of
using the Master as a guide for the global alignment to be performed, in order to search
for those regions of the Master that are conserved in the Slave. Experimental results on
the two networks of Saccharomyces cerevisiae and Drosophila melanogaster showed
that our technique is able to find significant pairings, and confirmed that exchanging the
Master with the Slave the alignment process takes different directions.

The method is general enough to be applied to other types of networks. Furthermore,
the approach can be extended to handle multiple network alignment by iteratively align-
ing pairs of networks and taking, at any iteration, the set of already aligned networks,
encoded as a suitable finite state automaton, as the Master. We argue that, when more
reliable and accurate interaction data will be available, our approach can effectively
support the discovery and prediction of unknown protein functions for the less charac-
terized organisms, providing a new direction of investigation that is orthogonal to those
of the other techniques.
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Abstract. The binding events of DNA-binding proteins can be exten-
sively characterized by high density ChIP-chip tiling array data. The
binding sites and binding occupancy patterns are all very useful to un-
derstand the DNA-protein interaction. We propose a statistical proce-
dure which focuses on identifying the interaction signal regions and the
patterns of interaction using peakedness and skewness tests. Its utility to
annotate the binding signals by analyzing the Tbp1 and Rpb1 ChIP-chip
datasets in fission yeast is demonstrated.

Keywords: ChIP-chip, Tiling Array, Transcription factor, Kurtosis,
Skewness.

1 Introduction

With the chip technology rapidly advanced, tiling arrays have quickly become
one of the most powerful tools in genome-wide investigations. High density tiling
arrays [1] can be used to address many biological problems such as transcrip-
tome mapping, protein-DNA interaction mapping (ChIP-chip) and array CGH
among others [2]. ChIP-chip [3],the focus of the paper, is a technique that com-
bines chromatin immunoprecipitation (ChIP) with microarray technology (chip).
It allows the identification of binding sites of DNA-binding proteins in a very
efficient and scalable way [4]. High density ChIP-chip tiling arrays not only help
us map the binding locations of a protein in the genome, but also allow us to fully
understand the binding events of the protein by clearly displaying the binding
occupancy patterns.

Several methods have been proposed to analyze the ChIP-chip data; for ex-
ample, Joint Binding De-convolution (JBD) [5] uses a probabilistic graphical
model to improve spatial resolution of identification of the transcription factor
binding sites. However it requires the DNA fragment length distribution which
may not always be available. It may not be so useful for high density tiling array
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since the resolution is already considerably high. MPeak [6,7] fits a mixture of
triangular basis to model the binding or interaction data. It ignores the com-
plexity of binding event and only roughly characterized the basic patterns for
single and direct binding events. The more complex binding patterns from high
density ChIP-chip may not be well modeled using mixture of a triangular basis.

We propose a new statistical procedure to analyze high density ChIP-chip
tiling array data to characterize protein-DNA interaction. First, we identify the
enriched signal regions or protein binding occupancies using moving window bi-
nomial analysis and split the signal regions with multiple peaks into individual
peak regions. The signal regions are classified into two categories using peaked-
ness test and process them separately. The peak regions are processed to get the
peak positions signifying binding locations, and using skewness test to improve
the peak assignment to genes. The flat binding occupancies are processed to
summarize their overall strength.

In this article, we applied our procedure to analyze the data of fission yeast
(Schizosaccharomyces pombe) from custom designed NimbleGen genome tiling
arrays of ∼ 380k probes. We studied one general transcription factor Tbp1
(TATA box binding protein) together with the RNA polymerase II large subunit
Rpb1, which is used to indicate transcriptionally active genes, of S.pombe. We
found that DNA-binding proteins show distinct patterns in the proportion of
sharp and flat bindings. Tbp1 shows more sharp binding patterns indicating its
location specific binding, and Rpb1 presents a large fraction of flat signal regions
indicating variability of its binding.

2 Method

2.1 Data Preprocessing

The tiling array has very high resolution and probes cover the whole genome,
and ChIP procedure selects only protein binding sites which are a small part of
the genome. Therefore, only a very small proportion of probes in tiling array has
the binding signal and majority probes’signals will be close to the background.
Hence we median centered the log transformed data for further analysis.

Two different smoothing methods, multiple round moving average and me-
dian smoothing, are employed to reduce the noise in data preprocessing. Multiple
round moving average smoothing method will retain the signal shape and the
peak signal (local maximum) loci. This method has already been used in the
ChIP-chip peak finder [8]. We use moving average method to identify the peak
loci and compute kurtosis and skewness of signal regions. The drawback of mov-
ing average is that it may destroy the boundaries of the signal regions, so we
apply moving median smoothing method to characterize signal regions.

2.2 Moving Window Binomial Analysis

For any location i, let xi (i = 1, . . . , n) denote the median centered log data
and we first define the base threshold as cMAD, c fold MAD (median absolute
deviation), of xi (i = 1, . . . , n), and
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Fig. 1. The proposed statistical procedure for ChIP-chip data analysis

p =
#{xi|xi ≥ cMAD}

n

is the probability that a single probe pass the base threshold. Then the region
{xi}i+w

i−w is the binomial sequence with signal probability p for each xi, where w
is the predefined half window size. pw(xi) is defined as the probability that xi

is classified as signal by considering the region {xi}i+w
i−w as the signal region, and

can be computed in the following equation,

pw(xi) =
2w+1∑
i=C

(
2w + 1

i

)
pi(1 − p)2w+1−i

where C is the number of probes above the base threshold in region {xi}i+w
i−w.

We define a region {xi}e
s as a signal region if⎧⎨
⎩

pw(xi) < α, (s ≤ i ≤ e)
e − s ≥ 4
xs ≥ cMAD, xe ≥ cMAD

where α is the p-value cutoff of the binomial test.

2.3 Region Splitting for Multi-peak Region

Each signal region from moving window binomial analysis may contain multi-
ple peaks (local maxima), and this will make the binding regions pattern more
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complex. Therefore, the regions with multiple peaks are split at the troughs of
the signal region’s profile. For doing this, we first assign each probe one of the
γxi = {+,−, 0} to indicate whether the binding signal are significantly increased,
decreased or not significantly changed,

γxi =

⎧⎨
⎩

+ if xi+1 − xi > +d
− if xi+1 − xi < −d
0 otherwise.

where d = MAD(δi), δi = |xi − xi+1| for i = 1, 2, . . . , n − 1. After removing
all probes with ”0”, the region is split between the opposite signs such as from
”-” to ”+”. After splitting, the signal regions which have less than 4 probes are
removed.

Peak position of a signal region with one significant peak is determined after
the moving average smoothing of the profile. The position of probe with the
maximal value in this region is defined as the position of the peak.

2.4 Peakedness and Skewness Test for Signal Region

The signal regions {xi}e
s are tested for peakedness using kurtosis based on the

formula

K =

∑e
j=s(j − u)4pj

[
∑e

j=s(j − u)2pj]2

where u =
∑e

j=s jpj and pj = xj∑
e
i=s xi

(j = s, s + 1, . . . , e).The region is desig-
nated as having flat-shaped when its K < 2. Thus, peaked regions are separated
from flat regions.

For single peak regions, we used skewness score to test whether the peaks
are left-skewed or right-skewed which indicates the binding orientation. This is
very useful for transcription factor binding assignment to a single gene if there
is a binding region in a bidirectional intergenic region (intergenic regions from
divergent pair of genes). The skewness score is based on the formula

G =

∑e
j=s(j − u)3pj

[
∑e

j=s(j − u)2pj]3/2

where the u and pj have same definition as kurtosis.

3 Results

3.1 Probe Design for Tiling Array in Fission Yeast

We used customized NimbleGen Tiling array which has ∼ 380k 50mer probes.
They cover both strands of entire S. pombe genome based on the genome se-
quence from Wellcome Trust Sanger Institute (ftp://ftp.sanger.ac.uk/pub/
yeast/pombe/). In each strand, there is a 16bp interval between two consecu-
tive probes. The probes on the reverse strand are placed so that they cover
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the gaps between consecutive probes of the pairing forward strand. Therefore,
the probes have 17bp overlap with each other without considering the strand-
specificity. The probes with more than 4 hits in the genome were removed in the
analysis, ∼ 2% of probes have been removed.

3.2 Transcription Factor Binding Regions and Binding Patterns

We analyzed ChIP-chip experiments of general transcription factors Tbp1 to-
gether with the RNA polymerase II large subunit Rpb1 which indicates tran-
scriptionally active genes. Tbp1 is a core subunit of the eukaryotic transcription
factor TFIID, binding specifically to the TATA box. It contributes to load and
release of RNA polymerase II at the transcription start sites (TSS). Furthermore,
Tbp1 is also a necessary component of RNA polymerase I and RNA polymerase
III. Therefore, Tbp1 is a good choice for binding pattern study. There are two
replicates for each ChIP-chip experiment.

Fig. 2. The signal regions summary for 4 ChIP-chip datasets

The signal regions for each array were identified with the stringent criteria
of cMAD= 2MAD at p-value less than 0.001(α = 0.001). The number of signal
regions is ∼ 2000(∼ 1500 before split) for each replicate of Tbp1, and for Rpb1 it
is ∼ 800(∼ 500 before split). We applied Dice coefficient to measure the similarity
of signal regions between first and second repeats.

S =
2|A ∩ B|
|A| + |B|

where |A| and |B| is the total length of all signal regions of the first and sec-
ond repeats, |A∩B| is the length of their overlapping regions. The coefficient for
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Tbp1 is 0.921 which indicates that our result of Tbp1 signal regions are highly
reproducible. The coefficient for Rpb1 is 0.743 which is still considerably high.

The summary of the peakedness test is shown in Figure 2. Majority of the
Tbp1 signal regions are sharp peaks and Rpb1 signal regions are mostly flat.
It is consistent with our knowledge about the protein characters of Tbp1 and
Rbp1. Since the purpose of performing a ChIP-chip experiment is to trans-
form transcription factor binding sites into IP-enriched DNA, the specificity of
protein-DNA binding finally determines the peaks of IP-enrichment. Therefore,
due to the specific binding affinity to TSS position, Tbp1 were observed binding
to DNA with many sharp peaks. However, Rpb1 mostly presents flat occupan-
cies in coding regions that is because of the function of Rpb1 which controls
transcription elongation and synthesize messenger RNAs.

Intergenic [0,200] >200 Intragenic Rpb1

1.
5

2.
0

2.
5

3.
0

3.
5

K
ur
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si

s

Tbp1 binding Rpb1 binding

Fig. 3. The kurtosis score for Tbp1 binding in intergenic, [0,200] intragenic and > 200bp
intragenic regions, and kurtosis score for Rpb1 binding

In order to investigate the kurtosis score distribution in different genomic
regions, we examined kurtosis score in intergenic and intragenic regions. Due to
tiling array probe and DNA fragment length, we separated intragenic regions into
two groups, the coding regions less than and more than 200bp from translation
start site. As shown in Figure 3, the signal regions in [0,200] of coding regions
and intergenic regions have similar high kurtosis score. This indicate that the
Tbp1 biding to specific biding sites in these two regions and involve transcription
initiation. However, the Tbp1 signal regions falling into coding regions away by
more than 200bp from start site mostly have low kurtosis. The low kurtosis
regions in coding regions are probably involve transcription elongation, and the
peak loci in these regions are general weak and unstable, may not refer the
exact binding sites. The Rpb1 binding regions mostly fall into coding regions
and present the flat patterns.
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Fig. 4. Tbp1 binding affinity for VH(very high), H(high), M(Median), L(Low) Rpb1
level groups

3.3 Tbp1 Binding Affinity Positively Correlates with the Gene
Transcription Level

After having identified all signal regions from ChIP-chip data, the next step is
mapping the regions to the genes. To our knowledge, there is no perfect method
to accurately map binding sites to the genes. To do so, we have limited our
investigation to the peaks only from the unidirectional intergenic (IGU) regions
which are easy to assign, i.e. assigned to the downstream genes, to reduce the
risk of assignment errors. Furthermore, we filtered out peaks not within the
upstream 1kb of any gene as it may be out of the promoter regions for S.pombe.
The upstream peaks of any RNA genes have also been removed since Tbp1 is
also associated with RNA polymerase I and RNA polymerase III. There are
379 peaks in unidirectional intergenic regions (IGU peaks) left after filtering.
Then we investigated the Tbp1 binding affinity for those peaks. The Rpb1 level
of each Tbp1 binding gene is the median level of Rpb1 occupancies within the
ORF, which measures the level of the transcriptional activity. From Figure 4,
we observed positive correlation between Tbp1 binding affinity and transcription
levels of the protein-coding genes. It implies that the highly transcribed genes
tend to be initiated by high Tbp1 binding affinity at their promoters.

3.4 Skewness of Tbp1 Binding Regions Helps Identifying Tbp1
Regulated Genes

The skewness scores of Tbp1 binding regions also positively correlate with Rpb1
occupancy levels. We investigated the skewness for 379 peaks in unidirectional
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Fig. 5. (A)The skewness score of Tbp1 binding in IGU (unidirectional intergenic) re-
gions for VH(very high), H(high), M(Median), L(Low) Rpb1 level groups. Red boxes
are the IGU+ regions and green boxes are IGU- regions. (B)The Rpb1 score for Right-
skewed,Symmetric, Left-skewed groups in IGB (bidirectional intergenic) regions. Red
boxes are genes in forward strand and green boxes are genes in reverse strand. (C)The
illustration of the IGU in forward strand (IGU+) and reverse strand (IGU-) and IGB re-
gions. Red boxes are genes in forward strand and green boxes are genes in reverse strand.

intergenic regions (IGU peaks). Interestingly, the patterns of Tbp1 binding
skewed towards the direction of immediate downstream gene transcribed. in
another words, Tbp1 signal region extend a tail into the ORF of its target gene.
As shown in Figure 5(A), transcribed genes on the forward strand tend to dis-
play positive skewness with Tbp1 binding regions in their promoters, and the
transcribed genes on the reverse strand preferentially show negative skewness.
Most interesting observation is that the absolute skewness declines with the
decreasing Rpb1 level of the downstream genes indicating that Tbp1 binding
pattern is enough to predict whether the downstream genes are transcribed in
that condition. Our explanation is that Tbp1 can be pulled into transcribing re-
gions by RNA polymerase complex during the transition between transcription
initiation and elongation, and the amount of pull on Tbp1 would correlate with
the transcription rate of the downstream genes.

To further test our observations and demonstrate the utility of the skewness of
binding regions, we checked the correlation between skewness of Tbp1 binding in
the bi-directional promoters and Rpb1 levels of the flanking genes. The assignment
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Fig. 6. Examples of Tbp1 binding patterns and Rpb1 occupancies with two repeats in
IGU+, IGU- and IGB regions

of binding sites in the bidirectional promoters is always a problem: some studies as-
sign them to both genes while the others assign them to the nearest gene. Here, we
found skewness scoremayhelp us to get a better assignment i.e. to identify the gene
activated by Tbp1. In order to be conservative, we removedbidirectional intergenic
regionswith one of the flanking genes is an RNA gene and alsodiscarded those gene
pairs having more than one tbp1 binding peaks. Finally there are 387 gene pairs
used in the analysis. As shown in Figure 5(B), when the skewness scores are sig-
nificantly positive (greater than 0.15) then the transcription level of the genes on
the forward strands is clearly higher compared to the corresponding paired gene
on the reverse strand, vice versa.

When the binding pattern seems symmetric (between -0.15 and 0.15), there
are no significant difference for transcription level between genes on the forward
strand and the reverse strand. In addition, as the Figure 5 shown, the presence
of symmetric pattern is associated with the Rpb1 level less than 0.5 i.e. there
is almost zero transcription events for such low level transcriptions are rarely
detectable with our Rpb1 data under 2MAD cutoff. Therefore, the skewness of
peaks could be helpful in assigning Tbp1 binding to annotate features, particu-
larly for the binding sites located in IGB (bidirectional intergenic) regions. Some
examples of Tbp1 binding patterns and Rpb1 occupancies with two repeats in
IGU+, IGU- and IGB regions are shown in Figure 6.

4 Discussion

We developed a statistical procedure to characterize binding events of DNA-
interacting proteins especially transcription factors from high density ChIP-chip



Deciphering Transcription Factor Binding Patterns 239

tiling array data. The signal regions are detected using moving window binomial
analysis and the binding events are characterized by two shape parameters,
Kurtosis and Skewness.

We applied our method to ChIP-chip experiments of TATA box binding pro-
tein (Tbp1) and Rpb1 in S.pombe. We found that Tbp1 tend to have more sharp
peaks than Rpb1 that indicates our methods can efficiently distinguish mostly
localized DNA-protein bindings and the scattered DNA-protein interactions. We
should notice Tbp1 also has flat bindings, that maybe due to the interaction of
Tbp1 with RNA polymerase complex are maintained after the event of tran-
scription initiation since other studies have reported there is no stall of RNA
polymerase II at the promoter regions in yeast [9]. It is also possible that Tbp1
or other components of TFIID behavior functionally during transcription elon-
gation. It needs more lab experiments to discover.

The two shape parameters of the signal regions, kurtosis and skewness, can
characterize the binding patterns. We used kurtosis to classify the regions into
peak and flat regions. The peak regions mostly fall into the promoters and the
flat regions are mostly very large and cover the coding regions. We have demon-
strated that the binding pattern of the peak regions in promoter regions are
skewed to the downstream genes if they are transcribed, and hence the skewness
can help us to predict whether the downstream gene is transcribed and to assign
the binding sites to genes in the bidirectional intergenic regions.

Our method is applicable not only to ChIP-chip data, but also to other datasets
with similar goal. For example, ChIP-seq and ChIP-chip measure same signals
but with different techniques. The binding patterns for ChIP-seq data should be
similar to ChIP-chip data, so the peakedness and skewness tests can be used for
further analysis. Our method can be extended to other tiling array data if the
patterns of the signal regions are important to the corresponding studies.
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Abstract. This paper employs Fisher’s model of adaptation to under-
stand the expected fitness effect of fixing a mutation in a natural pop-
ulation. Fisher’s model in one dimension admits a closed form solution
for this expected fitness effect. A combination of different parameters,
including the distribution of mutation lengths, population sizes, and the
initial state that the population is in, are examined to see how they affect
the expected fitness effect of state transitions. The results show that the
expected fitness change due to the fixation of a mutation is always posi-
tive, regardless of the distributional shapes of mutation lengths, effective
population sizes, and the initial state that the population is in. The fur-
ther away the initial state of a population is from the optimal state, the
slower the population returns to the optimal state. Effective population
size (except when very small) has little effect on the expected fitness
change due to mutation fixation. The always positive expected fitness
change suggests that small populations may not necessarily be doomed
due to the runaway process of fixation of deleterious mutations.

Keywords: Fisher’s model, effective population size, compensatory mu-
tation, generalized Riemann zeta function, incomplete gamma function.

1 Introduction

The statistician R. Fisher [2] proposed a geometrical model to understand the
nature of adaptation. The basic idea of his model can be illustrated using a
simple one-dimensional system. Imagine that a trait has the optimal state at
the origin, the population’s current state can be represented by point A on
the real coordinate line, and the distance between point A and the origin O
represents the fitness of the population at state A. Mutations can occur with
both magnitude and direction, which will drive the population either further
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away from the population optimum point O, or towards the optimum point O.
One can therefore model the dynamics of mutations by tracking the movement
of the population states owing to the fixation of mutations.

A BC OC’

Fig. 1. Fisher’s model of adaptation in one dimension

The attractiveness of Fisher’s model lies in the fact that it nicely incorpo-
rates the nonindependent nature of multiple mutations. For example, in the
one-dimensional system, suppose that the population starts at state A, that is,
all the individuals in the population carry the allele A. A mutation of a cer-
tain type will take the population to state B, where all the individuals in the
population carry the mutated type B. Similarly, from state A a mutation of
a different type will take the population to state C, where all the individu-
als carry the mutant type C. Compared with the original state A, both mu-
tations are deleterious and move the population to states (B or C) that have
lower fitness than the original state A. However, if both mutants appear and
get fixed together, the population will have a fitness gain at state C′ from
the original state A. Therefore, both mutations are deleterious and reduce the
population fitness when fixed individually. However, the joint fixation of the
two leads to a fitness gain instead—the two deleterious mutations are compen-
satory. Therefore, Fisher’s model has built-in nonindependence, and elegantly
models the nonindependent feature of mutations. Fisher’s model of adaptation
has been applied to study compensatory mutations by, e.g., Poon and Otto [5],
who studied the effect of compensatory mutations with respect to the num-
ber of character dimensions. They concluded that the effects of compensatory
mutations become more pronounced when the number of character dimensions
increases.

This paper examines the expected fitness cost of transition from one popula-
tion state to another, using Fisher’s model in one dimension, where closed form
analytic solutions exist. It has been shown that the n-dimensional Fisher model
can be reduced to two dimensions (polar coordinates), for which the marginal dis-
tributions are one-dimensional [2], and [4]. Thus the one-dimensional results here
apply to the marginal distributions for the general case (n dimensions reduced to
two), and are of some interest. Assuming a gamma probability distribution for
the mutation magnitude, the present work derives analytically the mean fitness
cost of a transition, and studies the effect of a variety of parameters, including
the population size and different initial states, on the next state transition. The
biological implications of the findings are discussed.
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2 Mathematical Derivations

This section focuses on deriving the expected fitness effect of mutations moving
the population from one state to another. Because the comparison is between
the current population state and the next state, the fitness effect is thus the
comparison of these two states. Assume that the distance away from the op-
timum point (origin on real line) corresponds to the fitness w of the state via
the equations w(A) = e−|z| and w(B) = e−|z′|, where z and z′ are signed real
numbers, representing the coordinate positions of population states A and B.
The selection coefficient of the mutation from A to B is

s =
W (B)
W (A)

− 1 =
e−|z′| − e−|z|

e−|z| = e|z|−|z′| − 1. ≈ 1 −
∣∣∣∣z′z
∣∣∣∣ (1)

for |z| ≈ |z′| and |z| ≈ 1. The first assumption, |z| ≈ |z′|, corresponds to |s| ≈ 0,
a common assumption in the literature (that |s| is large with vanishingly small
probability). The second assumption, |z| ≈ 1 for the current population state,
corresponds to scaling the distance measure z. It turns out that for s = 1−

∣∣∣ z′
z

∣∣∣
closed form expressions can be derived and that is done below.

Due to the uncertainty about the distribution of mutations, assume that mu-
tation magnitude from one state to another (i.e., |z′ − z|) is gamma distributed,
which incorporates a variety of distribution shapes (with different parameters)
and thus models a rich collection of mutation scenarios. Specifically, let the
probability density function of mutation to z′ from z be

f(z′) =
|z′ − z|α−1βαe−β|z′−z|

Γ (α)
, (2)

where α and β are the shape and location parameters in the gamma distribution.
The fixation probability u(s) of the mutation state has been given by Crow and
Kimura [1] as

u(s) =
1 − e−2Nes/N

1 − e−4Nes
, (3)

where Ne is the effective population size, and N is the population size. For
simplicity, the analysis here takes Ne = N .

Assuming that the magnitude of mutations has a gamma distribution, and
the fitness effect of a new mutation depends on the current state of the popula-
tion mutation, then the gamma probability density function times the fixation
probability of the mutation times the fitness change s (for diploid populations,
2s is used), integrated over all new states z′, yields the expected (relative) fitness
effect of a state transition from z:

W (z) =
∫ ∞

−∞
sf(z′)u(s)dz′ = W1(z) − W2(z), (4)

where α > 0, β > 0, Ne > 0, and

W1(z) =
∫ ∞

−∞
f(z′)u(s)dz′, W2(z) =

∫ ∞

−∞

∣∣∣∣z′z
∣∣∣∣ f(z′)u(s)dz′.
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These integrals W1 and W2 will be expressed in terms of the gamma function
Γ (α)=

∫∞
0 xα−1e−xdx, the incomplete gamma function γ(α, y) =

∫∞
y

xα−1e−xdx,
the generalized incomplete gamma function γ̂(α, x, y) = γ(α, x) − γ(α, y), and
the generalized Riemann zeta function Z(s, a) =

∑∞
k=0

1
(k+a)s .

Because of the absolute values, doing the integrals analytically requires con-
sidering different cases. First, consider the case when z > 0. Write W1(z) =
D1 + D2 + D3, where

D1 =
∫ 0

−∞

(z − z′)α−1βαe−β(z−z′)

Γ (α)
1 − e−2(1+ z′

z )

1 − e−4Ne(1+ z′
z )

dz′, (5)

D2 =
∫ z

0

(z − z′)α−1βαe−β(z−z′)

Γ (α)
1 − e−2(1− z′

z )

1 − e−4Ne(1− z′
z )

dz′, (6)

D3 =
∫ ∞

z

(z′ − z)α−1βαe−β(z′−z)

Γ (α)
1 − e−2(1− z′

z )

1 − e−4Ne(1− z′
z )

dz′. (7)

Second, consider the case when z < 0, and write W1(z) = D4 + D5 + D6, where

D4 =
∫ ∞

0

(z′ − z)α−1βαe−β(z′−z)

Γ (α)
1 − e−2(1+ z′

z )

1 − e−4Ne(1+ z′
z )

dz′, (8)

D5 =
∫ z

−∞

(z − z′)α−1βαe−β(z−z′)

Γ (α)
1 − e−2(1− z′

z )

1 − e−4Ne(1− z′
z )

dz′, (9)

D6 =
∫ 0

z

(z′ − z)α−1βαe−β(z′−z)

Γ (α)
1 − e−2(1− z′

z )

1 − e−4Ne(1− z′
z )

dz′. (10)

A closed form expression for each of D1, D2, . . ., D6 will be derived in turn. One
would like to write

D1 =
∫ 0

−∞

(z − z′)α−1βαe−β(z−z′)

Γ (α)
1 − e−2(1+ z′

z )

1 − e−4Ne(1+ z′
z )

dz′

=
βα

Γ (α)

⎡
⎢⎢⎢⎣
∫ 0

−∞

(z − z′)α−1e−β(z−z′)

1 − e−4Ne(1+ z′
z )

dz′︸ ︷︷ ︸
A0

−
∫ 0

−∞

(z − z′)e−β(z−z′)e−2(1+ z′
z )

1 − e−4Ne(1+ z′
z )

dz′︸ ︷︷ ︸
B0

⎤
⎥⎥⎥⎦ ,

however, this is mathematically invalid since the integrals A0 and B0 do not
exist; for instance, A0 contains the improper integral∫ −z

−z−ε

1
z + z′

dz′ = −∞

for small ε > 0. (Near z′ = −z, the numerator of A0 is integrable and positive,
and the denominator expands to 4Ne

z (z +z′)+o(z +z′).) The technical difficulty
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is that while the fixation probability u(s) is analytic for all s, it can be split
apart as

u(s) =
1 − e−2s

1 − e−4Nes
=

1
1 − e−4Nes

− e−2s

1 − e−4Nes

only for s �= 0. Thus D1 must be written as

D1 =
∫ 0

−∞
=
∫ −z−ε

−∞
+
∫ −z+ε

−z−ε

+
∫ 0

−z+ε

for some 0 < ε � 1. u(s) can be split apart in the first and last integrals, but not
the middle one, which approaches 0 as ε → 0. Thus, D1 must be decomposed as

D1 =
βα

Γ (α)

[
A0,1 + B0,1 +

∫ −z+ε

−z−ε

+ A0,2 + B0,2

]
,

where the small integral
∫ −z+ε

−z−ε is either dropped or approximated numerically,
and the remaining terms are given exactly by

A0,1 =
∫ −z−ε

−∞

(z − z′)α−1e−β(z−z′)e4Ne(1+ z′
z )

e4Ne(1+ z′
z ) − 1

dz′

= −
∫ −z−ε

−∞

(z − z′)α−1e−βz+βz′+4Ne+4Ne
z′
z

1 − e4Ne(1+ z′
z )

dz′

= −zα−1
∫ −z−ε

−∞
(1 − z′

z
)α−1e−βz+βz′+4Ne+4Ne

z′
z

∞∑
t=0

e4Net(1+ z′
z ) dz′

= −zα−1
∞∑

t=0

∫ −z−ε

−∞

(
1 − z′

z

)α−1

e−βz+βz′+4Ne+4Ne
z′
z +4Net+4Net z′

z dz′

= −
∞∑

t=0

e8Ne+8Netzα−1
∫ −z−ε

−∞

(
1 − z′

z

)α−1

e−(4Ne+4Net+βz)(1− z′
z )dz′

= −
∞∑

t=0

zαe8Ne+8Net

∫ ∞

2+ε/z

sα−1e−(4Ne+4Net+βz)sds (with s = 1 − z′
z )

= −
∞∑

t=0

zαe8Ne+8Netγ(α, (2 + ε/z)(4Ne + 4Net + βz))
(4Ne + 4Net + βz)α

(11)

(with x = (4Ne + 4Net + βz)s),

A similar derivation produces

A0,2 =
� βz

4Ne
�∑

t=0

zαe−8Netγ̂(α, βz − 4Net, (2 − ε/z)(βz − 4Net))
(βz − 4Net)α

+
∞∑

t=� βz
4Ne

�+1

zαe−8Net
∞∑

k=0

((2 − ε/z)k+α − 1)(4Net − βz)k

k!(k + α)
, (12)
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B0,1 = −
∞∑

t=0

zαe8Ne+8Net−4γ(α, (2 + ε/z)(4Ne + 4Net − 2 + βz))
(4Ne + 4Net − 2 + βz)α

, (13)

and

B0,2 =
� βz+2

4Ne
�∑

t=0

zαe−4−8Netγ̂(α, βz − 2 − 4Net, 2(βz − 2 − 4Net))
(βz − 2 − 4Net)α

+
∞∑

t=� βz+2
4Ne

�+1

zαe−4−8Net
∞∑

k=0

((2 − ε/z)k+α − 1)(2 + 4Net − βz)k

k!(k + α)
. (14)

D2, D3, D4, D5, D6 can be derived in a similar manner, and for brevity, will
not be presented here. This completes the calculation of W1(z) for all z �= 0 (it
is assumed that the current population state is not at its optimum z = 0).

Given W1(z), W2(z) =
∫∞
−∞

∣∣∣ z′
z

∣∣∣ f(z′)u(s)dz′ is straightforward to compute.
As before, similar to W1(z), write W2(z) = D′

1 +D′
2 +D′

3 for z > 0 and W2(z) =
D′

4 + D′
5 + D′

6 for z < 0, where

D′
1 =

∫ 0

−∞

−z′
z (z − z′)α−1βαe−β(z−z′)

Γ (α)
1 − e−2(1+ z′

z )

1 − e−4Ne(1+ z′
z )

dz′,

D′
2 =

∫ z

0

z′
z (z − z′)α−1βαe−β(z−z′)

Γ (α)
1 − e−2(1− z′

z )

1 − e−4Ne(1− z′
z )

dz′,

D′
3 =

∫ ∞

z

z′
z (z′ − z)α−1βαe−β(z′−z)

Γ (α)
1 − e−2(1− z′

z )

1 − e−4Ne(1− z′
z )

dz′,

D′
4 =

∫ ∞

0

−z′
z (z′ − z)α−1βαe−β(z′−z)

Γ (α)
1 − e−2(1+ z′

z )

1 − e−4Ne(1+ z′
z )

dz′,

D′
5 =

∫ z

−∞

z′
z (z − z′)α−1βαe−β(z−z′)

Γ (α)
1 − e−2(1− z′

z )

1 − e−4Ne(1− z′
z )

dz′,

D′
6 =

∫ 0

z

z′
z (z′ − z)α−1βαe−β(z′−z)

Γ (α)
1 − e−2(1− z′

z )

1 − e−4Ne(1− z′
z )

dz′. (15)

Then D′
1 can be rewritten as

D′
1 =

1
z

[∫ 0

−∞

(z − z′)(z − z′)α−1βαe−β(z−z′)

Γ (α)
1 − e−2(1+ z′

z )

1 − e−4Ne(1+ z′
z )

dz′

−
∫ 0

−∞

z(z − z′)α−1βαe−β(z−z′)

Γ (α)
1 − e−2(1+ z′

z )

1 − e−4Ne(1+ z′
z )

dz′

]

=
1
z
D1,α − D1. (16)
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Notice that the integral D1,α has the same integrand as D1 except for an extra
factor of |z′ − z|. The effect of this is to replace every occurrence of α by α + 1
in the final integral formula for D1,α, except for the factor βα

/
Γ (α), which

remains unchanged. This same pattern holds for all the D′
i, precisely,

D′
1 =

1
z
D1,α − D1,

D′
2 = −1

z
D2,α + D2,

D′
3 =

1
z
D3,α + D3,

D′
4 = −1

z
D4,α − D4,

D′
5 = −1

z
D5,α + D5,

D′
6 =

1
z
D6,α + D6,

where the final integral formula for Di,α differs from that for Di as just described
for D1,α and D1.

Finally, for z > 0,

W (z) = W1(z) − W2(z)

= 2D1 − 1
z
D1,α +

1
z
D2,α − 1

z
D3,α, (17)

and for z < 0,

W (z) = W1(z) − W2(z)

= 2D4 +
1
z
D4,α +

1
z
D5,α − 1

z
D6,α. (18)

3 Results and Discussion

3.1 The Effect of the Distribution of Mutation Lengths

The distribution of mutation lengths in nature is unknown. However, because the
gamma distribution can represent a variety of distribution shapes, employing it
for the analysis covers many plausible approximations for the true distribution.
In order to examine the effect of different distributions for mutation lengths,
W (z) is computed for different shapes to examine the effect of distributional
shapes on the expected fitness changes. The simplest form is exponential, which
has been used previously to approximate the distribution of the fitness effect
of deleterious mutations (e.g., [7]) and rare beneficial mutations [4]. Consider
first the exponential distribution, where α = 1, and β ranges within (0, 10].
Shown in Figure 2, for exponential distributions with different decay rates β > 0,
the expected fitness effect of the fixation of a new mutation is always positive,



248 L. Zhang and L.T. Watson

suggesting that while mutations can take the population either to a state with
lower fitness than the current one or a state with higher fitness, the mean fitness
change will be a gain rather than a loss. In particular, for small β near zero,
the expected fitness gain from the current state z = 4 increases with β, peaks
around β = 0.286 (the expected fitness effect reaches the maximum of 0.277)
and then decreases as β increases; past the peak, the larger β is, the smaller the
effect of the fixation of a new mutation on the fitness change of the population.
This observation is easy to understand because a large β value means that most
of the mutations have a very small mutation length from the current state of
the population, therefore, the fixation of the new mutation is expected to have
a small effect on the population fitness change. For very small β ≈ 0, both large
and small mutation lengths occur with high probability, and since small mutation
lengths tend to be beneficial and large mutation lengths tend to be deleterious,
the effect of deleterious mutations nearly balances out the effect of beneficial
mutations (W (z) ≈ 0). Increasing β gives the smaller beneficial mutation lengths
an edge, so W (z) increases rapidly, until it peaks at the crossover point in the
gain/loss ratio for small length mutations. This crossover occurs at the switch
between prevalence of long length mutations (small β) and prevalence of short
length mutations (large β).

2 4 6 8 10
Β

0.2

0.4

0.6

0.8

W���

Fig. 2. The effect of the distributional shapes of mutation lengths on the expected
fitness change of a new mutation with z = 4 and Ne = 1000 for all the curves, but with
different α: α = 0.8 (black), α = 1 (dotdashed), α = 2 (dashed), and α = 4 (dotted)

Figure 2 also shows the effect of the distribution of mutation lengths for
different αs. For small β ≈ 0, the expected fitness gain due to fixation of a new
mutation tends to be lower for larger α, while for β � 1, tends to be higher
for larger α. With the current parameter settings, for example, when β = 2,
the expected fitness gain is much larger for large α than for small α. In general,
larger αs tend to have a wider range of β within which the expected fitness gains
are large owing to the fixation of a new mutation than smaller αs. Moreover, for
all different values of α and β, fixing one, there is always a maximum expected
fitness gain with respect to the other, which can be obtained by setting the
partial derivatives ∂W

∂α or ∂W
∂β to zero and solving for α or β.
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Previous studies have shown that large coefficients of variation in the fitness
effect of both deleterious and beneficial mutations enable small populations to
persist [8] and [9]. This effect is explored here by varying the coefficient of varia-
tion of mutation lengths to see what effect it has on the expected fitness change
of a population. Since the coefficient of variation of a gamma distribution (with
shape parameter α, scale parameter β, mean α/β, variance α/β2) is equal to
1/

√
α, consider the relationship between W (z) and α for different initial states

(i.e., different z) with the same scale factor β, shown in Figure 3. Interestingly,
for a specific initial state (e.g., z = 4), the expected fitness gain increases with
α, reaches a maximum, and then approaches zero asymptotically as α → ∞.
This shows that under the Fisher geometric adaptation model, the expected fit-
ness gain is not a simple linear (or even monotone) function of the coefficient
of variation of mutation lengths; since α → 0 implies the coefficient of variation
1/

√
α → ∞, a larger coefficient of variation for mutation lengths does not neces-

sarily lead to higher expected fitness gains. Given the definition of fitness effect
s = |z|−|z′|

|z| , there might appear to be a strong correlation between the coefficient
of variation of s and that of the mutation length |z′− z|, but the above observa-
tion indicates otherwise. Biologically, it is tempting to think that the coefficient
of variation for mutation lengths should be positively correlated with the coef-
ficient of variation for fitness effect, but one can imagine the counter-effect can
also happen.

2 4 6 8 10
Α

0.5
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1.5

2.0

W���

Fig. 3. The effect of the distributional shapes of mutation lengths on the expected
fitness change of a new mutation with β = 1 and Ne = 100 for all the curves, but with
different initial states: z = 1 (black), z = 4 (dotdashed), z = 8 (dashed), and z = 10
(dotted)

3.2 The Effect of the Initial State

Consider next the effect on W (z) of changing the initial state z. Figure 4 shows
that the starting state does affect the expected relative fitness change due to
the fixation of a mutation. For the same distribution of mutation lengths, the
expected fitness gain for mutation fixation increases with the distance from the
“optimal” state (the origin), and approaches a constant asymptotically as |z| →
∞. The asymptotic value of W (z) decreases with increasing β. It was discovered,
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though not shown in Figure 4, that when β ≤ 1, the expected fitness gain
W (z) → ∞ as z → ∞. This can be seen mathematically by noting that the
maximum of the integrand in (4) occurs at z′ = 0, where the exponential term
e|z| overwhelms the exponential term e−β|z|, causing the integrand (and integral)
to increase without limit as z → ∞. This has no biological interpretation, since
distributions with β < 1 correspond to large mutation lengths |z′ − z| occurring
with probability � 0, which is generally not true biologically.

1 2 3 4 5 6 7
z

0.5

1.0

1.5

2.0

2.5

W���

Fig. 4. The effect of the initial state on the expected fitness change of a new mutation
with α = 2 and Ne = 100 for all the curves, but with different β: β = 2 (black), β = 3
(dotdashed), β = 4 (dashed), and β = 6 (dotted)

3.3 The Effect of Effective Population Sizes

Population size and especially the effective population size is an important pa-
rameter in various evolutionary models, and plays an important role in deter-
mining the evolutionary trajectory of small populations and in determining the
evolutionary fates of newly arising mutations. The effective population sizes of
various species in nature can be difficult to measure. The mathematical deriva-
tions earlier were simplified by assuming that Ne = N . However, existing studies
show, in several species surveyed, the effective population size (Ne) is usually
much less than the census population size (N), with an estimated fraction of
Ne = 0.1N . The derivation for Ne �= N of the analytic expression for W (z)
follows along the lines of the derivation for Ne = N and is omitted here.

Consider the effect of Ne on the expected fitness change from one population
state to another. From (3), it is clear that changing the effective population size
Ne should have little effect on the expected fitness change due to the fixation of
a new mutation, since unless Ne is really small, u(s) ≈ 1 − e−2sNe/N . Changing
the ratio Ne

N has only a small effect on the final results for Ne

N > 1 (Figure 5).
Therefore, it appears that under Fisher’s model, the expected fitness change due
to the fixation of a new mutation in a population does not depend much on
the effective population size. Though mathematically explicable, it is neverthe-
less biologically surprising since the effective population size of a population is
thought to be important in determining the fate of the population. One way to
understand this is to realize that the expected fitness change can be different
from one observed outcome in nature.
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3.4 The Always Positive Expected Fitness Change

Since populations do go to extinction, one might expect W (z) to be negative
for some distribution parameters α > 0, β > 0 and initial state z. A rigorous
proof that W (z) > 0 for all α > 0, β > 0, and z �= 0 appears to be difficult, but
there is overwhelming computational evidence that this is so. There are several
possible explanations for this. One explanation is purely technical. Observe that
the fixation probability u(s) is strictly increasing with u(−∞) = 0, u(0) =
1/(2N), and u(∞) = 1. Furthermore, u(s) is hugely skewed in favor of beneficial
mutations (fitness effect s > 0). For example, with Ne = 100, N = 1000,

u(−0.1) = 10−19, u(0.1) = 0.020, u(−0.5) = 10−88, u(0.5) = 0.095.

Thus, in this case, the integrand in (4) is essentially zero for s = (|z|− |z′|)/|z| <
−0.1, which is most of the interval −∞ < z′ < ∞, positive for s > 0, and
negative and nonnegligible only for −0.1 < s < 0. Because of the shape of u(s),
the positive integral

∫ 1
0 (·)ds is larger in magnitude than the negative integral∫ 0

−0.1(·)ds, giving W (z) > 0.
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Fig. 5. The effect of the ratio Ne
N

on the expected fitness change of a new mutation with
β = 1, z = 3, and Ne = 1000 for all the curves, but with different α: α = 0.5 (black),
α = 1 (dotdashed), α = 2 (long-dashed), α = 5 (dotted), and α = 10 (short-dashed).
Notice the nonmonotone behavior of W (z) with respect to α for a fixed Ne

N
.

Another explanation recalls the definition of W (z) as the expected fitness effect
of a mutation from the initial population state z. Thus while the expected fitness
effect is positive, deleterious mutations can occur and fix in the population,
driving the population to extinction with positive probability—this is just not
the expected (or average) outcome.

Another explanation is that the model here is not correct. Fitness effects may
not be so simply related to mutation distances. The particular definition of fit-
ness effect s used here may be invalid (W (A) = e−|z|). The choice of the function
representing the relationship between mutation lengths and fitness effect can in-
fluence the outcome of the model. A previous study used W (A) = e−σ|z|2 (σ is
the common nonnegative intensity of selection on all traits) to define the re-
lationship [6]. These two functions are a simplification of nature, where fitness
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effect of mutation and mutation lengths can have a multitude of different rela-
tionships. Additionally, the fixation probability u(s) used here may be incorrect
or invalid for the particular definition of s used here. The assumed gamma dis-
tribution of mutation lengths |z′ − z| may not correspond to nature. While each
component of the model here is an accepted model from the literature, a model
is only as good as its weakest submodel or assumption.

Nevertheless, under Fisher’s geometric adaptation model, the expected fitness
change due to the fixation of a mutation is positive, suggesting that fixation
of mutations over the long term is expected to lead to fitness gains for the
population, regardless of the effective population size of the population. Thus,
small populations may not necessarily be doomed due to the runaway process of
fixation of deleterious mutations. It has been shown that incorporating the effect
of sexual selection [7] or reverse mutations [3] into theoretical models can greatly
reduce the risk of small population extinction. Also, increasing the number of
dimensions that contribute to the fitness effect (pleiotropy) of mutations reduces
the risk of a small population going to extinction [5]. Therefore, future work
should put more emphasis on somehow measuring the fitness effect of a mutation
empirically and understanding how the fitness effect of a mutation is determined
by the interaction of different genetic components of a population in order to
better model the risk of population extinction.
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