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par C. Baiocchi - Urriversit6 de Pavie et Laboratoire dlAnalise 

Numgrique du C.N.R. de Pavie. 

N.l.- Lt6tude du mouvement des liquides 3 travers des materiaux 

poreux conduit en general a des "problBmes 3 frontisre libre", 

Un cas typique peut gtre sch6matis6 sous la forme suivante: 

sur une base impermeable deux bassins d'eau, de niveaux dif- 

ferent~, s m t  en communication 3 travers une digue en matgriepu 

poreux. L'eau filtre du niveau le plus 6lev6 au niveau le 

moins 61evB; et on veut determiner la "partie mwill6e" de la 

digue, ainsi que les grandeurs physiques (telles que la pres- 

sion, la vitesse, le dgbit...) associEes au mouvement. 

On se bornera au cas plus simple (pour une description 

generale, ainsi que pour plus de details sur le plan physique, 

ou consultera par exemple Les textes 6 , 13 , 16 , 18 ) ;  prg 

cisgment on envisagera le cas correspondant 3 un fluxe sta- 

tionnaire, irrotationnel, incompressible; le matgrieau compo- 

sant la digue est suppos6 isotrope, homogene et ne donnant pa6 

lieu 3 des ph6nomenes de capillaritg. On. considerera come 

"ProblBme modSleV1 le cas oil la digue est 3 base horizontale 

et parois verticales planes et paralleles (la fig. 1 est 



FIGURE N. 1 
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une section orthogonale aux parois: est lwBpaisseur de la 

digcte, y, et y8 sont les hauteurs des deux bassins). 

Plus en gbnBral on designera par D une section verticale 

de la digue (cf. fig. 2; dans la fig. 1 on a D=]o,~[ x ]0,y [I 
1 

et on supposera que, dans la direction orthogonale 3 la figurg 

la digUe est infiniment 6tendu.e et a section constante (de fa 

Gon a Btudier un probleme bidimensionnel). 

On designera par 61 la "partie mwillbe" de D; par y=y(x) 

' d 
llBquation du "bord supgrieur" de 61 ; par p (x,y) , V(x,y) re- 
spectivement la pression et la vitesse de l'eau dans le point 

(x,y) de 61 (X axe horizontal, y axe vertical) ; par u(x,y) la 

"hauteur pibzomBtriquet* , 3 savoir : 

y &ant le poids spgcique du liquide. La loi de DARCY (cf. 

toujours les textes citgs plus haut) assure que u est un 

"potentiel de vitesse", 3 savoir que l1on a: 

__b N 

(1.2) V(x,y) = -k grad u 

N 

oil k = k, f Btant la viscositg du liquide et k Btant le 
li 

1 coefficient de permeabilitg ( ) . 
1 N 

( ) Sous les hypotheses faites k (et donc k) est constant; 

plus en general k est une fonction de (x,y) si la digue 

n'est pas homogene, et un tenseur symgtrique si la digue 

n'est pas isotrope. 
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L'incompressibilit6 du liquide et la loi de continuit6 

donnent alors 
rJ 

(1 - 3 )  div k grad u = 0 dans n 

(en particulier u est harmonique dans n si le matsrieau est 

homogene isotrope) . 
la relation (1.3) ow doit ajouter des conditions aux 

limites. D'abord, le long des parties de an qui sont des li- 

gnes de courant doit s'annuller la d6riv6e normale de u: 

sur AB ; 

(1.5) - au = 0 an sur FC ; 

ensuite, le long des parties de an3 contact avec l'athmosphs 

re on doit avoir p(x,y)=O donc (cf. (1.1)) u=y: 

(1 6) U(X,Y) = Y sur F y  ; 

(1.7) u(x1y) = Y s ur CpC ; 

finalement, le long des parois 3 contact avec les bassins, la 

pression est donnee par la pression de l'eau qui est en haut; 

(1 .I) donne: 

(1 - 8 )  U(X,Y) = Yl sur AF; 

(1.9) U(X,Y) = y2 sur BC. 

I1 s'agit d'un classique problsme 3 frontisre libre; sur 

un domaine inconnu o*doit rc53oudre le problsme aux limites 

(1.4), (1.5), (1.6), (1.7), ( 3 . 8 ) ,  (1.9) pour 1'Bquation (1.3) : 

a a donc des conditions surhaboundantes (cf. (1.5) et (1.6)) 



C .  Baiocchi 

sur la partie incomme ann 'D de la frontisre deG,. 

N.2.- Une des premisres mgthodes proposges dans la litgrature 

speecialisee pour la resolution du problsme (1.3), .... (1.9) 
est basge sur la theorie des fonctions de variable complexe 

et s'appuie sur la transformation: 

a u au (2.1) x+iy -+ p+iq ; p = - ,x, q = , y  

hr 

(transformation qui est conforme si le coefficient k dans 

(1.3) est constant; (p,q) est le "plan de llodographe") . Par 
exemple (pour plus de dstails et de gQnQralit8 cf. 16 , 18 ) 

dans le cas du Problsme modsle illustrg en fig. 1 le domaine 

n se transforme en un domaine R' du plan (p,q), dont le bort 

an' est parfaitement connu et, sauf pour ce qui concerne-la 

position sur an' des points A',B' transform& de A,B,R1 est 

ind6pendenk de a,yl,y2; cela fornit au problsme deux degres 

de liberte (en accord avec ce qui se passe sur le plan (x,y), 

Y1 Y2 oa l'on peut choisir comrne paramstres - , 7 , tout Qtant a 

invariant par homotgties). A partir de cette famille 3 deux 

paramstres de domains R' la transformation p+iq -+ x+iy inver- 

se de (2.1) fornit une famille de solutions R . Toutefois les 
paramstres que l'on peut se donner a priori sont ceux du plan 

y1 Y2 
de l'odographe (et non 7 , -=-I; m n e  sait pas dQmontrer la 

biunivocitg de la corr&spondence entre les paramstres physi- 



C .  Baiocchi 

ques et ceux de l'odographe; et d'ailleurs on aurait besoin 

de "beaucoup de r6gularit8l1 pour justifier les passages du 
cet'u; 

plan physique 3 de l'odographe et viceversa! 

2 Une mgthode plus rbcente ( ) est basee aur les consid6- 

rations suivantes (on ,se borne toujours, pour simplifier, 

au cas du Problbme modble) . A toute courbe "rbgulibre" y= yo (K) 
on associe le "sous-graphe " no=( (x,y) 10<x<a; O<y< cF,(x) I ;  

et sur no on rbsoud dans l'inconnue uo le problbme msl6 cor- 

respondant 3 (1.3) , (1.4) , (1.7) , (1.8) , (1.9) et une seule- 
m w t  entre (1.5) et (1.6) ; puis on modif ie y& de faqon b renu- - 
plire l'autre entre (1.5) et (1.6) ; et on itbre le procbd6. 

Par exemple si poqbvalwr uo on impose (1.51, on Posers 

x u x , yo x ) ; 1e probleme sera resolu (a savoir (1 .6) 

aussi sera vgrifige) si l'on a y1=y0; donc le problbme b 

frontisre libre correspond 3 trouver les points fixes de la 

transformation yo-b Lfl . Si, au contraire, on avait choisi 
(1.6) pour la dgtermination de uo, on cherchera 3 minimiser, 

par rapport 3 y o ,  une convenable norme de la trace sur 

y=(fo(x) de la d6rivge normale de uo; plus en ggn6ral on pouz 

rait minimiser, par rapport au (riplet R C,uo une 

2 
( ) que l'on peut d'ailleurs appliquer 3 la resolution nu- 

m6rique d'une vaste classe de problemes 3 frontisre libre; 

cf. 1111 pour une vue d'ensemble sur ces proc6d6s. 
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fonctionelle du type: 

I1 s'agit de proc6des qui peuvent Stre adapt& a la re 

solution numerique des problsmes envisages (4) et qui, de ce 

point de vue, ont donne des resultats satisfaisants; toutefo&s:, 

du point de vue theorique, on ne sait pas justifier ces procq- 

dgs (par exemple n& connait & existence ni unicite de' '' 

points fixes pour la transofrmation yo + 7 I ; on ne conilait 
pas 11unicit6 du point de minimum pour les fonctionnelles 

consid6r6es, et on nesait pas si le minimum vaut zero....). 

N.3.- Par moyen d'un convenable changement de fonction inc- 

j'ai donne en 1971 un theoreme dlexistence et unicite de la 

solution du Probleme modsle, en ramenant ce problsme 3 une 

inequation variationnelle (cf. 1 ) .  Popr decrire ce resultat 

3 
- ( ) Pour un traitement numgrique bas6 sur ces idees cf. 17  

4 
( ) Tout en rencontrant des difficultes de programation non 

indiff erentes : on doit reso,,dre une famille de problOmes mgl6s 

sur des domaines qui, 3 chaque &ape, varient en fonction de 
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il faut d'abord prgciser le problSme, en particulier pour ce 

qui concerne la r6gularit6 de la courbe y=y(x) et de la fon- 

ction u(x',y) (de fa~on 3 donner un sens prdcis aux relations 
4 5 (1.3)...(1.9)) . Pour fare Fa il est commode ( ) de faire usagd, 

outre que du potentiel de vitesse u, de la "fonction de courafit" 

v(x,y) li6e 3 u par: 

(3.1) - a u 6 a U=E- - = - =  dans a(); 
ax ay ' ay ax 

et de remplacer les condition de type Neumann sur u (cf. (1.41, 

(1.5)) par des conditions de constance sur v; v dtant dstermiade 

2 une constante additive prSs, ou traduira (1.5) par: 

(3.2) v=O sur F C ~  

7 et (1.4) en imposant l'existence d'une constante q ( ) telle 

que : 

Ceci Btant, on appellera solution faible du Problsme mo- 

w une quintuple { ~,Q,u,v,q) telle que: 

If : x ' .+? (x) est continue de [O ,a] dans 3 Y 2 ,  y l l  , 
(3'4) dBcroissante et telle que ~ ( 0 )  =Yl 

5 ( ) Mais non indispensable; dans (11 on a travail16 en termes 

de u, sans introduire v; la prgsentation donnee ici suit l'expg 

sB 121. 

6 ( ) A' savoir x+iy -+ u+iv est holomorphe dans a; l'existence 
A 

d'un telle v equivaut 3 (1.3) lorsque k est constant. 
7 

( ) 3 un coefficient dimensinnnel ~ r S s  le paramstre q fournit 
ie dgbit de la digue. 
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u,v satisfont (3.1) au sens de(d8 ( n ) ,  et (1.6), (1.7) : 

(1.8), (1.9), (3.2), (3.3) au sens dec0(3i) 

Remarque 3.1.- On va appeller faible une telle solution car, 

du point de vue physique, une solution sera acceptable seu- 

lement si elle satisfait d'autres relations, soit 

qualitatives, soit quantitatives; par exemple la 

pression doit Etre positive dans R donc (cf. ( 1 . 1 ) )  : 

(3.8) u(x,y)>y dansn; 

et d'ailleurs q,u,v devraient Stre "plus r6gulisresW; OR 

obtiendra des proprietBs de ce type comrne consgquence de 

la dgfinition de solution faible. 

Aemarque 3.2.- Pour ce qui concerne la val.eur de q on obtiendra 

la formule explicite: 

conwe sous le nom de "formule de DUPUIT" et usuellement obt6- 

nue comme formule approchee (et dgduite en supposant que la 

courbe y= (x) est une parabole). 

Un'idee naturelle pour Btudier le problsme consiste 3 

prolonger u,v 3 5 tout entier (5, fermeture de D, est Cora]% 

0 ,  ) en posant: 

8 ( ) Notations-usuelles: u,v sont des fonctions continues sur 
mP at O l ~ q  a k r l x 7 , = ~ s  distri-. 

. < 

sont de carre somrnable sur n. 
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u(x,y) pour (x,y)kF v (x, y) pour (x, y)e,n 
& 

( 3 .lo 1 a,$=b ; v(x,Y)= 
pour (x,y)e b\h pour (x , y 161 5\3i 

et 2 voir si G,? satisfont un "problsme bien pose" dans D; ga 

serait suffisant car, grdce au principe du maximum, on demon 

tre aisgment la validite de (3.8) et donc, connaissant z, oa 
obtiendrait Q en posant: 

Toutefois ce n'est pas le cas: aucun problsme au limites sur 

d 
GIG ne semble Etre bien pose; faut donc encore transformer le 

probl&me. 

Remarquons maintenant que l'on a: 

et que de (3.1 ) on deduit : 
A, N IY N 

(3.13) (-v) y=(~-u) (-v) x+ (y-u) ,= xn 

oh ( )y et ( ,)X designent les derivees partielles et x est 
R 

la fonction caracteristique de Q . La premisre de (3.13) as- 
sure quail a un sens de considerer des integrales curvilignes 

du type: 

(3.14) w (P) = 1: -t dx + (y-;)dy V P C ~  

et l'on aura: 
N 

(3.15) w = - v -  
X w Y = .-q 

donc, grace 3 (3.12) et 3 la deuxisme de (3.13) : 
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4 2  0 2  

( A = % + % )  
ax aY 

Remarquons tout de suite que le valeurs de w sur aD soqt 

connues: en effet on. a (cf. (3.101, (3.15), (1.7), (1.8), 

(1.9)): 

( w = O  dans z\ $1 (donc sur FE) 

N N 

=y-u=y-yl sur FA ; w =y-u=O sur EC 
Y 

( wy=Y-~=Y-Y2 sur cB 

u 
(3.19) wx=-V=-q sur AB; donc w =O sur AB; 

XX 

donc si l'on dgfinit g sur aD par la formule: 
2 

(Y-Y2) S U ~  CB; 9-0 sur FE u EC i g = 2 
(3.20) (Y-Y 

sur u; g lingaire our AB 
2 

Remarque 3.3.- De (3.20) on tire que la pente de g sur AB 
2 2 

est donnee par 9(B)-g(A) = Y2-Y1 ; donc de (3.19), (3.21), a 2 a 

0% tire la validit6 de (3.9) . 
La connaissance de w fournirait automatiquement 

IT,n,u,v,ql; en effet on a vu que q est donn6e par (3.9); 

d1apr6s (3.11), (3.35) on tire 

(3.22) n = I (x,y) I (x,y) t D; w (x,y)<oI 
Y 

et, encore de (3.15), on aura aussi: 
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finalement de (3.22) on dvaluera y par la formule: 

(3.24) cf(x) = max {y I (x,y) E 51 

La caractdrisation (3.22) de a n'est toute,fois pas en- 

core suffisante: en effet, si l'on cherche 3 combiner (3.17), 

(3.22) de fason 3 faire disparaftre l'inconnue a OR tombe 

sur 1'Bquation non lingaire: 

oO t + H(t) est le graphe maximal monotone associd 3 la fonc- 

tion de Heaveside; et le probleme (3.25), (3.21) n'est pas 

9 bien pos6 ( ) . 
En effet on peut faire mieux: de (3.18), (3.14) ond6- 

duit que l'on a identiquement: 

et alors, gr3ce 3 (3.8) , on aura: 
- 

(3.27) w(x,Y)30 dans D 

(3.28) a={ (x,y) I (x,y) e D; w(x,y) >01. 

Maintenant la combinaison de (3.17) , (3.28) donne: 

(3.29) Aw € H (w) 

et le probleme (3.291, (3.21) est bien pos6: il admet une et 

1 une seule solution dans H (D) (cf. par ex. le cours de M. 

MOREAU dans ce meme volume) donc (on a deja vu que 3 partire 

9 ( ) Par exemple il admet comme solution la solution w du pro 

bleme Aw=l; wlaD=g; ce qui donnerait (cf. (3.22)) R=D. 
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le problsme modele admet au plus une solution 
(3.30) 1 f aible 
Remarque 3.4.- On peut presenter le problsme (3.29), (3.21) 

sous forme de problsme de minimum en posant: 

I%+={zlz& H ' ( D ) ;  Z 1 aD'9> (g donn6e par (3.20) ) 

+ + ltl+tJ (3'31)1 J+(z) = j ,grad z 1 'dx dy + z dx dz (t = 
D I D  2 

et alors w est l'unique solution de: 

(3.32) w %+; J+(W)S J+(z) #zk$+ ; 

d'ailleurs (3.22) n'est pas la seule formulation variationnel- 

le que l'on peut tirer des reinseignements que l'on a sur w; 

par exemple si l'on pose: 

(3.33) %={zlz~%+; ~303; J(z)= 1 1  lgrad z12+z}dx dy 

grdce a (3.27) on a aussi: 
b 2 

(3.34) w 6 Ofi;; J(w)cJ(z) tf 26% 

ou bien ltin6quation variationnelle equivalente: 

(3.35) w t 6 ;  a(w, z-w)g~(z-w) tfztgG 

avec a(C,y)= jD grad E. grad u drdf et L(c)=-JD ~ d x  dy 

Du point de vue numerique c'est la prgsentation (3.34) 

qui semble Etre la meilleure; d'ailleurs o n a  interst a explo* 

ter beucoup de formulations car, voulant g8ngraliser la rngtho 

de des problemes plus compliquds, on devra choiskr suivant 
1 

le cas l'une ou l'autre voie. 

Pour ce qui concerne l'existence d'une solution faible 
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du problsme modsle on doit maintenant demontrer que, partant 

de l'unique solution w du problsme (3.35) (par exemple; ou 

gquivalentement de (3.34) ; ou de (3.32) ) les formules (3.28) , 

(3.24) , (3.23) , (3.9) 'fsnissent une solution. Je n'entrerai 

pas dans les dgtails (pour lesquels je renvoye 3 1 ) ,  en 

mbornant ici 3 souligner que les phases essentielles de la 

dgmonstration sont 

a) grace aux theorsmes de rggularite des solutions des inequg 

tions variationnelles (cf. 14 ) la solution w de (3.35) sati - 
sfait: 

(3.36) w e  w~"(D) pour tout p fini; 

en particulier on a (3.16) ; il defini par (3.28) est ouvert; 

et on a (3.37). 

b) gr3ce a (3.36) on peut appliquer le principe du maximum 3 

Wxf wy et demontrer qu'il s'agit de fonctions non positives; 

d'ici on tire que il est born6 superieurement par une fonction 

if qui satisfait (3.4) . 
Une fois obtenu le theoreme d'existence et unicite des 

solutions faibles, se pose le probleme de la regularitg; tog 

jours sans entrer dans les details jeme bornerai 3 remarquer 

que, en adaptant un discours de Caccioppoli '(cf . 1 15 1 ) on 
peut demontrer la relation: 
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: x + Y(x1 est analytique sur ]~,a[ ('O) 

et que, pour ce qui concerne la regularit6 de u,v, de (3.36) 

et (3.23) ou a u,ve wltP(a) pour tout p fini; il s'agit d'une 

regularit6 optimale car- on peut demontrer (cf. toujours 11 I ) 

que les relations u,ve W' '"(a) sout fausses. 

N.4.- On termine cet expose par quelques considerations 3 ca- 

ractsre numerique et par une vue d'ensemble sur les generali- 

sation de la methode. 

Pour ce qui concerne la resolution numerique des inequa- 

tions variationnelles on connaft des nombreux procedes 3 la 

fois mathematiquement rigoureux et pra-uement efficaces (cf. 

par ex. 1121). Dans 1101 on a etudie l1in6quation variationnea 

le (3.35) par discretisation en differences finies, et resol- 

vant le probleme discret par la methode de S.O.R. et projection; 

la comparaison avec les methodes "traditionnelles" indiquees 

au N.2 a montre un gain sensible 3 la fois du point de vue 

simplicite de programmation et du point de vue rapidit6 d'ex6- 

(I0) Pour un traitement systematique du problsme de la rcgula- 

rite de la "ligne de detachement" pour les solutions d'inequg 

tions avec obqtacle an,consultera la csnference de 

D. KINDERLE~TRER sur ce meme cours CIME. 
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I cution (cf. toujours 110/):11 est toutefois 2 remarquer que 

la m6thode est "correcte" mathgmatiquement dans le sens l'on 

obtient une suite {wh} de solutions approch6es qui converge, 

dans une topologie conv6nabler vers la solution w de (3.35); 

mais si l'on prend, comme "approximation" de 0 , l'ensemble 

de positivit6 fib de wh (analoguement.2 (3.28)) la convergence 

de wh 2~ n'assure pas, Si priori, la convergence de Qh a Q. 

Cette difficult6 a Bt6 surmontge en 151 oB l'on a montr6, qua 

l'on a: 

(4.1) Q = int6rieur de lim inf ah . 
h+ O+ 

Passons maintenant 3 quelques g6n6ralisations. Le cas 

de digues a permgabilit6 variable (a savoir dans lequel le 
h 

coefficient k figurant dans (1.3) n'est pas constant) pose 

de nombreuses difficult&. Dans 131 , 141 on a trait6 le cas 
-.. 

03 k(x,y) est constant par morceaux par rapport Ei une des 

variables et constant par rapport 2 l'autre (''1 ; dans 171 

o n  traite le cas de k(x,y) de la forme kl (x) .k2(y) mais sous 

des hypotheses restrictives sur la rggularit6 de kl,k2. 

Le cas 03 l'on a plusieurs liquides immisaibles de den- 

sites diff6rentes peut aussi Stre trait6 par la meme mgthode; 

dans 13 1 , 14 1 on 6tudie le problBme de la d6bouch6e 3 la 

11  ( ) Ce qui correspond Zi digues en plusieures couches, hori- 

zontales ou verticales, de mat6rieaux diff6rents. 
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rner d'une lame phrBatique (on a donc, outre que l'usuelle sur- 

face libre, une surface de sBparation entre la terre mouillde 

-par l'eau douce et la terre mouillde par l'eau de mer); (3.25): 

est remplacde par une ingquation 3 "double obstacle", les 

deux frontieres libres Btant obtenues come frontisres des 

zones de contact avec les deux obstacles. 

Dans ( 3 1 , ( 4 1 on a aussi 6tudid le cas oCl la parois 3 

contact avec le premier bassin est impermdable le long du 

morceau [cry 1y avec O<c<y . Dans ce cas la valeur de q n'estl 
1 

plus um& fonction explicite des donndes (a savoir a n ' a  

plus une formule du type (3.9)) et la condition aux limites 

sur w pour ce qui concerne le morceau {(O,y) Ic<y<yl), au liei: 

d'stre de type ddrivde tangentielle (cf. (3.18)) est de type 

dgrivde normale. Sur la partie restante de aD, supposant con-. 

nue la valeur de q, on peut Gvaluer les valeurs g (x,y) de 
q 

la trace de w; on peut alors construire, pour tout qt. &?, 

un convexe j~' du type (3.31 ) et la solution w du probleme 
9 q 

de minimum correspondant (analogue a (3.32)); les indquation$ 

assocides resolvent des problsmes aux limites de type mGl6 

(au lieu que de Dirichlet) pour lesquels, en gdndral, la valF- 

dit6 de (3.36) est fausse; dans 14 Ion a montrd l'existence 

et unicitd de une valeur qlP de q en correspondence 3 laquelr 

le la solution w satisfait (3.36); ce qui a permis encore 
q* 
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de conclure avec un theoreme de existence et unici'tB. Un algg 

rithme numerique (a caractsre physique-euristique) entroduit 

4 
dans 131 pour l'approximation de q , B Bt5 complstement justh 

fi6 dans 151.  

Pour ce qui concerne la possibilits de adapter la methode 

B des digues de g6om6trie plus compliqu6e on peut remarquer 

que, si la. parois adkacente au bassin de droite n'est pas 
L 

verticale, devient fausse l'une des relations fondamentales 

de la mgthode, a savoir la validit6 de (3.27) , (3.28) ; donc 

on va supposer que la parois de droite est verticale (I2). 

Sous ces restrictions les relations obtenues au N.3 re- 

stant encore valables jusqu'a (3.18) inclue; toutefois (3.3 81 

(et l'analogue de (3.19) qui donne wx=-q sur AB) fournissene 

pour w, au lieu que des donn6es de Dirichlet, des donn6es du 

type "d6rivBe oblique". L'Btude th6pique des inequations cord 

respondentes, dans le cas g6n6ra1, n'd pas encore Bt6 aborde; 

dans 3 , 4 on s'est born6 aux cas particuliers correspondeqts 

3: base horizontale et parois inclin6e; ou base inclinee et 

12 ( ) Des essai.num6riques faits avec parois de droite incli- 

nee suggsrent que la methode devrait marcher aussi dans ce 

cas, quitte 2 introduire des solutions "a plusieures parame- 

tres"; par exemple, outre 3 la valeur du debit q, l'abscisse 

sdupoint + m a -  si  f?apamis vexticale; CF.~POUII. 
plus de details, 1 5 1 ) . 
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parois verticale (I3). I1 s'agit encore dfBtudier une farnille' 

d1in8quations (I4) dependante du parametre q, la bonne valeur 

du parametre &ant 3 individuer par moyen d'une "condition de 

r6gularitb" de type (3.36) . Dans 14 1 on est arrive jusqufau 

theorerne d'unicitg; le th8orSme d'existence a BtB donne dans 

18 1 par une methode "num8riquef', en passant 3 la limite sur 

des "solutions approchees" . 
D'autres problemes analogues, tels que le probleme mods- 

le en presence de evaporation et le probleme de l'eau qui 

filtre a travers les parois permeables d'un canal, ont 6t6 

recernment Btudi6s par la methode ici proposge (cf. respecti- 

vement d 9  et 40 ) . ' 
Je voudrais f inalment conclure en rappillant que la m6 - 

thode decrite dans le N.3 pour transformer un problsme 3 fron 

tiere libre dans une inequation variationnelle (ou 6ventuelle 

I 
ment dans une famille, a un ou plusieurs paramstres, dingqua- 

tions) semble avoir un domaine d'applicabilite plus ample que 

13 
( ) Plus recernment, dans 191 , o n  est arrive 2 traiter le 
cas oil le parois et la base sont toutes les d e w  inclin6es; 

il sfagit d'un problsme de I'dErivGe oblique qui saute", donc 

de type non variationnel. 

14 ( ) Qui traduisent un probleme de derivee oblique, donc la 

forme a ( 5 , ~ )  qui. intervient dans (3.35) nlest plus syrnetrii 

que et le probleme n'est plus equivalent a un probleme de mi- 

xblUnL 
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Celui relatif aux mouvements de filtration; elle a en effet 

qui sourgissent dans l'btude de problemes de fluxe de fluides 

compressibles autour d'un obstacle (sans ou avec sillage) et, 

dans un contexte un peu different (probleme dt6volution au 

lieu que stationnair) 2i 116tude d'un probleme de type Stgfan: 

mais pour ces problsmes je renvoye au cours de M. DWAUT dans 

ce meme volume. 
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INTEGRALES CONVEXES DUALES 

Par 
CHARLES CASTAING 

(Univ. de Montpell ier)  

I n t r o d u c t i o n .  Dans l a  premiere  p a r t i e  de c e  p a p i e r  on demontre  deux 

thCoremes de  d u a l i t 6  d e s  i n t 6 g r a l e s  convexes;  Dans l a  deuxieme p a r t i e ,  

on donne deux thCoremes de f e rme tu re  d i r e c t e m e n t  l i e s  au  probleme de  

r z f l e  d ' u n  convexe Btudi6  p a r  Moreau ( [7]., prop. 8.1 ) .  

En c e  q u i  concerne  l ' e t u d e  sys t ema t ique  d e s . . i n t G g r a l e s  

convexes e t  l e u r s  a p p l i c a t i o n s ,  on r e n v o i e  aux t r a v a u x  de R o c k a f e l l a r  .. 

( [a] , [91 , [ l o ]  , [ l l ]  ) , Cas ta ing  ( [31.) e t  V a l a d i e r  ( 614.1 . 

I - ThCoremes de  d u a l i t 6  des  i n t C g r a l e s  convexes  

Notat ions .  S o i e n t  T un e space  loca lemen t  compact p o l o n a i s  muni d ' une  

mesure de Radon p o s i t i v e  p ,  E un e s p a c e  de Banach r e f l e x i f ,  E' son 

d u a l  f o r t .  Une a p p l i c a t i o n  v de T dans  un e space  t o p o l o g i q u e  e s t  d i t e  

F-mesurable s i  e l l e  e s t  Lusin  p-mesurable [ [ I ] . ) .  S i  f  e s t  une fonc- 

t i o n  convexe semi-cont inue i n f e r i e u r e m e n t  s u r  E tt v a l e u r s  dans  

1-W, +a] non p a r t o u t  C t a l e  L +a , s a  d u a l e  g e s t  d e f i n i e  p a r  

g ( x ' )  = sup [ < x l ,  x> - fix)]- ( x '  r E l )  
x e E  

S i  K e s t  un convexe ferm6 non v i d e  de E, on des igne  p a r  6(.,  K) 
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l a  fonc t ion  i n d i c a t r i c e  de K : 

0  s i  X E K  

6 K )  = 
s i  x  6 K 

e t  par  8* (., K )  l a  fonc t ion  d 'appui  de K : 

6* ( X I ,  K )  = SUP { < x ' ,  X> I x E K) 

I1 e s t  Bvident que 6 e t  8% son t  duales  l ' u n e  de l ' a u t r e .  

Voici un r e s u l t a t  de mesurab i l i td  qui  i n t e r v i e n t  directement  

dans l a  demonstrat ion d e s  thdorbmes de d u a l i t d  que nous avons en vue. 

Propos i t ion  . Soien t  f  une fonc t ion  convexe semi-continue infCrieu-. 

rement s u r  E L v a l e u r s  dans 1 4 ,  $031. non p a r t o u t  dga le  a , v  

une a p p l i c a t i o n  p-mesurable de T dans E '  e t  a une fonc t ion  - - 
r B e l l e  p-mesurable s u r  T t e l l e  que - 

a ( t )  > i n f  { f ( x )  - < v ( t ) ,  x> I x  E E) , V t  E T 

Alors ,  il e x i s t e  une a p p l i c a t i o n  p-mesurable, u ,  de T dans E - - - 
t e l l e  que 

Demonstration. On s e  rambne a u s s i t 8 t  au c a s  oO T e s t  compact. 

Alors  r(t)  e s t  convexe fermd non v ide ,  tft E T. I 1  e x i s t e  p a r  
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ailleurs une partition de T en une suite de compacts (Tn) et,un 

p-negligeable N telle que les restrictions de v et a B chacun 

des Tn soient continues. Par suite la restriction de la multi-appli- 

cation I- B chacun des Kn estde graphe sCquentiellement ferme dans 

Kn x E, (ED ddeignant l'espace vectoriel E muni de la topologie 

affaiblie u(E, E' ) ). D'apres un resultat de ( [2] ,  Cor 4 du theor. 11, 

il existe une application p-mesurable, un, de K dans E telle que 
n 

un( t) E r(t) , Q t E Kn . Alors, l'application, u, obtenue en recollant 
les un : 

si t e K n  

'u(t) = 
p arbitraire si t E N 

vCrifie les conditions de llCnoncd. 

Thdoreme 1.1. On suppose T compact mCtrisable. Soient f une - - 
fonction convexe semi-continue infdrieurement sur E B valeurs dans 

]-a, -I., non partout Cgale B +a g sa duale. On pose 

Alo+s - If et Ig sont duales l'une de l'autre, c'est dire, 

1 w 
V u  E L If(u) = SUP {<u, v> - I (v) 1 .  v E L (T, p ) )  

E ' g E' 

w 
v v  E L 1 ~ 6 v )  = sup {<u, v> - If(u) I u E L' (T, p ) )  

E') E 
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Demonstration. I1 s u f f i t  de v e r i f i e r  l a  formule 

m 
' . I f ( u )  = sup {<u, v> - Ig  ( v )  1 .  v E L  (T,  p ) )  

E' 
m 

Quelque s o i e n t  u  E L; e t  v  E LEl , on a  

m 
I f ( u )  2 su@ {cu, v> - I g ( v )  I V E L  1 

E' 
w 

=-inf { I ~ ( v )  - <u, v> 1 .  v  E L , I  = ( I ~ J *  ( u )  
E  

1 
S o i e n t  u  un element de L  (T, p )  e t  r un nombre r e e l  t e l s  que 

E 

r < If ( u ) .  S o i t  a une fonc t ion  r e e l l e  i n t e g r a b l e  t e l l e  que 

< f ( u ( t ) )  , V t  E T 

a ( t )  p ( d t )  > r 

Alors  on a  

- a ( t )  > i n f  { g ( x ' )  - < X I ,  u ( t ) >  I .  x '  6 E ' )  

pour t o u t  t E T, Posons 

rlt) = E * ~  1 .  g ( ~ * )  - <X I ,  u ( t ) . >  s - a ( t ) )  

D1apr&s l a  p r o p o s i t i o n  precedente appliqude B l ' e s p a c e  Els muni de 

l a  topolog ie  a ( E f ,  E ), il e x i s t e  une a p p l i c a t i o n  p-mesurable, v, de 

T  dans El t e l l e  que v ( t )  E r(tP presque p a r t o u t .  I1 e x i s t e  a l o f s  

une s u i t e  ~ r o i s s a n t e  d'ensembles compacts ( K n )  e t  un neg l igeab le  
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N tel que la restriction de v a chacun des K, soit born6e et telle 

w 
que v(t) E r( t) pour t E T\N . Soit ? E L , telle que Ig(?) C + r, 

E' 

Posons 

0 
Alors les vn appartiennent t~ L de sorte que les <u v,> son% 

E' 

integrables. Pour tout n, on a 

peut Stre rendue arbitrairement petite des que n est suffisamment 

grand et comme on a 

1 a(t) p(dt) = a(t) p(dt) k r 
n+m Kn T 

On en d6duit que, pour n suffisamment grand, 

ce qui implique (Ig)* (u) > r . Comme r est un nombre arbitraire 
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Remarque. Ce thtioreme reste valable si l'on remplace le couple 

1 0 0  
(L L ) p w ~ .  un couple (L, M) d'espaces d6composables au sens de 

E ' E '  

Rockafellar. 

Nous allons donner maintenant une variante du thgoreme 1.1., variante 

qui s'applique directement au probleme de rsfle d!un convexe d6velopp6 

tres r6cemment par Moreau ([5]., [ e l ,  [71-) dans une s6rie d'expostis 

du SCminaire d1Analyse Convexe Montpellier 1971-72-73 . 
Dans tout le reste de cette partie, I est l'intervalle LO, 11. muni 

de la mesure de Lebesgue dt . Une multi-application r de I B valeurs 

dans les convexes fermds non vides de E est dite B variation continue 

s'il existe une fonction rdelle continue r dtifinie sur I telle que 

OCI h ddsigne la distance de Hausdorff des ensembles fermds non vides 

Thtioreme 1.2. Soient r une multi-application $i variation continue 

de I B valeurs dans les convexes fermgs non vides de E, g ( t, x' et - 
f(t, X )  les fonctions d'appui et indicatrice de l'ensemble rlt) : 
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1 
Alors, Sr est un convexe fermd' non vide de L (I) et les fonctions - E 

OD 1 
convexes Ig et If definies sur L (I) 5 L (I) respectivement : 

E '  E 

If(u) = f f(t, u(t)) d t ,  U E  L' (I) 
I E 

sont B valeurs dans ]-OD, +a]., non partout 6gales a +a et duales l'une 

de l'autre. 

D&monstration. Le principe de demonstration est le mSme que dans la 

demonstration du theoreme 1.1. 

Les points essentiels B'verifier sont : 

a) la non vacuitC de SF 

b) la mesurabilite des fonctions t H g(t, v(t) et . -,, ( , ( 

t.- f(t, u(t)). 

a) Sr est non vide car r est B variation continue, donc semi- 

continue inferdeurement pour la topologie forte de E. Par 

suite r admet une section continue dlapres un resultat de 

Michael ( [ 4 ] ,  thCor.3.2) 

b) la mesurabilite des fonctions t W f(t, u(t)) est automati- 

quement assureecar est de graphe ferm6 dans I x ED et, 
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celle des fonctions t H g(t, v(t)) est assuree grsce au 

lemme suivant : 

, 
Lemme. Soit cp une fonction reelle definie sur I X E, telle que pour - - 
tout reel h ,  l'ensemble 

Ah = ((t,x) E I X E, I y(t,x) > h )  

soit reunion denombrable de compacts, G t  A une multiapplication de 

I a valeurs dans les fermes non vides de E, . Si le graphe G(A) de - 
A est sequentiellement ferme dans I x E, , alwfs la fonction 

p : t H sup {v(t,x) I x E A(t)) (t E I) 

est unlversellement mesurable sur I. 

Soit h un nombre reel. On a 

1% E I 1 .  p(t) > h )  = projI [G(A) n A ~ ] .  

Comme Ah est reunion denombrable dC,-cappacfS de I x E, , G(A) n AX 

est aussi reunion denombrable de~compaets de Inx Eg , donc 

wojI [G(A) 'CI  A ~ ] .  est reunion denombrable de compacts de I, donc 

universellement mesurable. 

Corollaire. Si v est une application mesurable de I dans E '  , alors - 
la fonction 

t 1-4 g(t, v(t)) = sup {<v(t), x> I x E A(t)) 

est mesurable sur I. 
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En e f f e t ,  on s e  ram6ne immddiatement au c a s  oh v e s t  

cont inue,  de s o r t e  que l a  fonc t ion  ( t ,  x )  W < v ( t ) ,  x> v e r i f i e  l e s  

condi t ion  d ' a p p l i c a t i o n s  du lemme precedent :  

I1 - Theoremes de fermeture 

Theoreme 2.1. So ien t  T un espace compact mCtrisable  muni d'une - 
mesure de Radon p o s i t i v e  p ,  E un espace de Banach r e f l e x i f ,  f une - 
fonc t ion  convexe semi-continue in fe r ieurement  s u r  E v a l e u r s  dans 

]-a, +co]. non p a r t o u t  Cgale B a, a f ( x )  l e  sous  d i f f e r e n t  i e l  de f 

w 
au po in t  x. S o i e n t  ( u n )  ( r e s p .  v n )  une S u i t e  dans L (T, p )  

E 
.I. 

( resp .  L (T ,  p ) ) t e l l e  que : 
E' 

( i )  (up  ) e s t  uniformement bornee e t  converge :uniformgment v e r s  

'V 
w 

u E L (T,  p )  
E 

( i i i )  vn( t )  c a f  ( u n (  t ) )  p-presque p a r t o u t  

Alors  on a 

?( t )  E a f ( % (  t )  1 p-presque p a r t o u t  

DCmonstration. D1apr&s l a  condi t ion  ( i i i ) ,  on a pour presque t o u t  t, 

Les condi t ions  ( i )  e t  ( i i )  impliquent  
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D'apres  l e  thBoreme 1.1. , l e s  fonc t ions  convexes 

I f ( u )  = r f ( ~ ( t ) )  ~ ( d t )  
T 

I g ( v )  = f g ( v ( t ) )  p ( d t )  
T 

m 1 
s o n t  semi-continue in fe r ieurement  s u r  L (T,  p )  e t  L ,(T, P )  Pour 

E E 

t o u t e  topologie localement convexe compatible avec l a  d u a l i t d  mise s u r  

ces  espaces.  Par s u i t e ,  on a 

( 2  l i m  i n f  ( I f  ( u n )  + Ig  ( v n ) )  2 I f  (%)  + Ig  ( 7 )  
n - g r n  

c a r  d ' aprks  ( i  ) ,  ( u n )  converge uniformBment v e r s  %, donc converge 

.-., 
v e r s  u pour l a  topolog ie  f o r t e  de LI (T,  p )  e t  d f a p r 8 s  ( i i ) ,  ( v n )  

E 
1 m 

converge pour a ( L  L ) v e r s  7 . Tenant compte de (1 e t  ( 2 ) ,  
E" E 

on o b t i e n t  finalement : 

puisque If  e t  I g  s o n t  h a l e s  l ' une  de l ' a u t r e .  

O r ,  ( 3 )  Bquivaut 

-" 
v E 21, (z)  <=> %( t )  E a f  (z( t )  F-presque par tou t :  

Theoreme 2.2. Les hypotheses e t  n o t a t i o n s  Btant  c e l l e s  du thBorkme' 1 .2,  

s o i t  D l e  dornaine de d e f i n i t i o n  de g ( t ,  x '  ) ,  B' l a  boule u n i t e  de - 
E', ( v n )  une s u i t e  d ' a p p l i c a t i o n  mesurables de I va leurs  dans 

m 1 
~ ' f ) @ )  convergeant v e r s  ? pdur a ( L  L ) ,  ( u n )  une s u i t e  d ' a p p l i c a -  - E" E 
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tions continues de I d z  E convergeant uniformcment vers une 

section continue de r, (8,) une suite d'applicationfmesurable5 - 
% I dans I. On suppose : 

(i) lim en(t) = t ,  V ~ E  I 
" -+a 

(ii vn(t) +af(e,(t), un(~n(t)) 3 0  , V t e  I .  

Alors on a 

'?( t) + af( t, a( t) ) 3 0 presque partout. 

DBmonstration. Pour tout t et tout n, on a, d1apr8s (i.i) 

La condition (i) implique 

( 1 )  Iim f I  <un (en(t)), vn(t)> at = r <at), Z(t)> dt 
n-+ I 

Comme les vn prennent leurs valeurs dans (-~)n B', on a 

lim .f [g(en(t), - vn(t)) - g(t, - vn(t))l.dt = o 
n+a I 

Comme la fonction convexe 
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m 03 1 
est semi-continue inferieurement sur L pour u ( L  L ) d1apr8s le 

E' E" E 

Y 

( 3 )  lim inf I ( vnl 2 Lg(-v) 
n -jrn 

g - 

tenant compte de la condition (ii) et des relations (11, ( 2 )  et (31, 

on obtient 

presque partout 

presque partout. 
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PREMIERE CONFERENCE 

GENERALITES - ELASTICITE AVEC FROTTEMENT 
par G. Duvaut (Univ., Paris, XII) 

1) Gknkralitks. 

Les m6thodes variationnelles ont ktk appliqukes en mkcanique 

depuis quelques annkes 2 des problsmes divers : 

i2; Elasticit6 classique (P. Germain rl] ), unilatkrale (probldme de 

Signorhi) (G. Fichera [I], J.L. Lions et G. Stampacchia [I], 

Boucher [I] ) ,  avec frottement (G. Duvaut et J.L. Lions [I] [2]), puis 

gknkralisation 2 la viscoklasticitk (G. Duvaut rl] , Boucher [I] ) . 

ii) Plasticit6 avec la loi de Hencky (H. Lanchon [l] [2]), avec la loi 

de Prandtl-Reuss (B. Nayrolles [l] [2J, J. Moreau [l] [2] 1, Qlastovisco- 

~lasticitk (G. Duvaut et J.L. Lions [q , G. Duvaut [2] ) , matkriaux 2 

blocage ( W. Prager [lj , F. Lknk [I] ) . 
iii) Parois semi-permkables (en thermique, mkcanique des fluides en 

milieux poreux, physique des solutions) (G. Duvaut et J.L. Lions [2], 

H. Brkzis [I] 1. 

iv) Thkorie des plaques 1inkaii.skes (G. Duvaut et J.L. Lions [2]) ou 

en forte flexion (G. Duvaut et J.L. Lions [3]. 

V) Ecoulements des fluides de Bingham. 

vi) Electromagnktisme (thkorie du claquage d'antenne) et magnktohy- 

draudynamique (G. Duvaut et J. L. Lions [4] ) 

vii) Ecoulement 2 frontisre libre 2 travers une digue poreuse 
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(C. Baiocchi [I] 1. 

viii) Ecoulement d'un fluide parfait avec ou sans sillage (H. Brkzis 

et G. ~tam~acchia [I], H. Brkzis et G. Duvaut [l] ).  

ix) Probldmes de Stkfan : phknomdne de fusion ou cristallisation 

( G .  Duvaut [3] 1. 

2) Un probldme d'klasticitk avec frottement. 

2.1. Enonck mkcanique du probldme. Soit une rkgion Q formke de R~ de 

frontidre rkgulisre r composke de 3 parties r r2, r avec 
3 

(1) mes r > 0. 1 

La partie rl est supposke fixke, r est soumise 2 une densitk surfa- 
2 

cique de forces donnke, r3 est le sidge de forces de frottement. Le 

matgriau qui, avant dkformation, occupe la rkgion Q est klastique 

lin6aire. Les kquations et conditions aux limites sont les suivantes, 

oil (u,u) sont les champs de dkplacements et contraintes recherchks : 

dans Cl (1) 

( 3 )  aij = aijkh~kh(u) 

(4) u = o  sur r 1 
(5) 

'ij"j = Fi 
sur r 2 (Fi donnk) 

(6 uN = FN sur r 3 (FN < 0 donnk) 

(1) On applique la convention de sommation sur les indices rkpktks, 
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( 7 )  [ l u T 1  I g (g > 0 donnk) 

Les quantitks f.scmt les composantes d'une densit6 volumique de 

forces donn6es sur 52 . Les coefficients a ijkh sont les coefficients 
d'klasticit6 du mat6riau et satisfont aux relations suivantes 

= a pijkh ' aijkh khij 

De plus et (u u ) sont les composantes normales et tangen- NY T 

tielles de {a. . n  .} et u. 
1 3  3 

Remarque 1. 

Si r3 = 0. on a un probldme d'klasticitk sans frottement. La 

m6thode dkcrite ici en donne la solution. 

2.2. Formulation variationnelle. 

Soit (u,o) une solution du probldme (2) - ( 7 ) .  On suppose (uyo) 

assez rkgulikre pour que les calculs suivants aient un sens. Soit 

v un champ de vecteurs sur 52 tels que v = 0. Multiplions (2) par 
Irl 

vi - ui et int6grons sur 52 ; il vient aprks integration par parties 

Le dernier terme de l'kgalitk (9) se d6compose en 
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Compte tenu de ( 4 )  et de v = 0 on a 
Irl 

Les conditions de frottement (7) donnent l'inkgalitk 

Introduisons les notations 

~'6galitk (9) devient alors, en tenant compte de (3) et (111, 

Lf inkgalitk (15) avec la propri6tk (4 )  constitue la propri6t6 varia- 

tionnelle satisfaite par un champ de d6placement r6gulier solution du 

probldme mkcanique posk par (2) - (7). Cette propri6t6 va nous per- 

mettre de poser un probldme mathgmatique pr6cis qui, nous lfespkrons 

et le vgrifierons ensuite, va rksoudre en un certain sens le probldme 

m6canique initial. 

2.3. Cadre variationnel. 

Nous introduisons l'espace V 
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1 3  
qui est un espace de Hilbert pour 'la structure engendrke par (H (Q)) , 

1 l'espace H (a) ktant l'espace de Sobolev des (classes de) fonctions 

de carrks sommables sur 52 et dont les dkrivkes (au sens des distribu- 

tions sur a) sont des fonctions de carrks sommables sur 52. Les thko- 

I rdmes de trace sur H (a) (J.L. Lions et E. Magenes [I] ) montrent que 

1 3  V est un sous-espace ferm6 de (H (Q 1) . 
L'introduction de V et les hypothdses suivantes sur les donnkes 

permettent de reposer le probldme en termes prkcis. On cherche u tel 

que 

a(u,v-u) + j(v) - j(u) 2 L(v-u), vv 6 V. (I8) '( 
Mais le probldme (18) est kquivalent (J.L. Lions [l] au probldme 

(1911 Trouver u C V tel que 

2.4. Existence d'une solution unique de (18) ou 119). 

~ o u s  avons les rksultats suivants : 

1 3  & e ~ e - _ l .  (Inkgalit6 de Korn). Sur (H (52)) une nome Qquivalente 2 la 

norme classique est 
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Q&nn_strat_io~ : Nous renvoyons le lecteur 5 G. Duvaut et J.L. Lions [2] 

(Thdorhme 3.1) ou aux r6fErences de cet ouvrage. 

Lemme ------- 2. Sur V avec lfhypothsse (1) la quantit6 [a(~,v)]l'~ est une 

1 3  norme dquivalente 5 la norme induite par (H ( a ) )  . 
Qemon_sfnogfigg : Nous renvoyons le lecteur 2 G. Duvaut et J. L. Lions [2] 

(Thdorsme 3.3 ) . 
On peut alors montrer le 

Thgorhme . 
Sous les hypothhses (I), (8), ( 17) il existe u unique solution 

Q&mn_sfcmgt_ign. 

* i) Unicitd : Supposons que u et u soient solutions de (18). 

* Choisissons v = u (resp. v = u) dans lfin6galit6 (18) relative 2 u 

* 
(resp. u ) et ajoutons membre 5 membre les in6galit6s obtenues ; il 

vient 

(21) 
* - a(u-u', u-u 2 o 

dfo6 u = u* d'aprss le lemme 2. 

ii) Existence : La fonctionnelle v + I(v) est convexe s. c. i. sur 

V faible. En effet v + L(v) est une forme lin6aire continue sur V 

faible. L'application v + j(v) est convexe et v -+ v est compacte 
I rl 

2 de V dans L (r ), donc lfapplication v -+ j(v) est continue sur V 1 

faible. Par ailleurs a(v,v) est une forme quadratique positive sur V 

donc est convexe s. 'c. i. sur V faible (~Qrification par un calcul 
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616mentaire). 

De plus I ( V )  -+ + si I IYf 1 -+ -. En effet d'aprds le lemme 2 

06 C est une constante. 

I1 en r6sulte (cf J.L. Lions Ll] ) qu'il existe u solution de (19). 

2.5. Retour au probldme m6cm i-que. 

La solution u est caract6riske par (18). Choisissons dans cette 

in6galit6 v = u t ( o = $ 1  , (i € 3 (*) . ce qui est 
loisible car alors v 6 V.. I1 vient 

et donc, en posant u.. = aijkhckh(u) 
13 

au sens des distributions ,dam Q . 
I1 en r6sulte que 

a '  - (25) ax j  uij (3 ~ ~ ( i - 2 )  

ce qui permet de d6finir u..n comme 616ment de H -1/2(~)(**) 
11 jIr par , 

a i r . .  
(26)  <uijnj, + > I,+ Y dx. Y Y G  n112(rj 

(*I On d6signe par (0) l'ensemble des fonctions w - diffsrentiables 
a support compact dans Q. 

(**I ~-"~(r) est le dual de H1/?(r). cf J.L. Lions et E. Mag&& [I] 
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oa Y est un relkvement linkaire continu de J, de ~" ~ ( r )  dans H1(R) 
1 (Th6orbme de trace dans H (n) . cf J. L. Lions et E .Magkn?s [I]). Le 

premier membre de (26) est alors une forme linkaire continue sur 

H'/~(I'). On vkrifie qufelle est indkpendante du relsvement : en effet 

le deuxibme mdmbre de (26) est nu1 pour Y 9 (R 1, donc pour 
1 Y E H0(,) I cause de la densit6 de dans H;(Q). On notera 

d6sormais le crochet du ler membre de (26) comme une intkgrale sur r, 

soit 

<UijrIj,$> = 0 .n.$dr . I r il I 

Multipliant alors (24) par vi - ui, 06 v = iu.1 6 V, et utilisant 

(26) on obtient 

et en comparant avec (18) 

Choisissant alors v e V, v - lr3 - Ulr3 on obtient 

ce qui implique 

au sens de ill2( r2). (*I 

( + I  Les kl6ments de H-~/~(I'~) sont les restrictions I I' 2 des 6lkments 

de H-ll2(r) ce qui'a un sens car H-'l2(r) est un espace de distribu- 
tions. 
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On montre de manisre analogue que 

(30) F = o  N N s u r  r 
3  

-1/2 
a u s e n s d e H  ( r 3 ) .  

I1 subs i s t e  a l o r s  de (281, 

(31) I [ o T ( v T - ~ T ) + g ( ~ v T ~ - ~ ~ T ~ ) l d ~ ~ ~ ,  V V C V  
3 

L'espace V k t an t  vec to r i e l  on peut  remplacer v  par  Xv dans (311, 

X > 0. Fa isant  a l o r s  tendre X ve r s  + w e t  vers  z6ro on o b t i e n t  

On d6duit  de (32) que 

I1 en r 6 s u l t e  que l f a p p l i c a t i o n  l i n 6 a i r e  v  + oTvTdl. de ( d ' 2 ( 1 3 ) ) 2  T  
r3 

1 2  
dans R esf l i n k a i r e  continue de (L ( r  1) dans R. I1 s f e n  s u i t  que 

3 

(35) u e T 

e t  que 

I1 en r 6 s u l t e  a l o r s  que 

(37) oTuT + gIuTI 2 0  

s u r  r3 . 

pp. s u r  r 3  

ce  qui  implique 
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l a * l  < g UT = O 

loTl = g ' 4 3 k ) O  t e l  que uT = - k aT. 

e t  donc (7) e s t  s a t i s f a i t  par  l a  so lu t ion  u. 
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DEUXIEME ET TROISIEME CONFERENCES 

PROBLEME DYNAMIQUE EN ELASTO-VISCOPLASTICITE 

ET PLASTICITE PARFAITE AVEC CONDITIONS 

DE FROTTEMEN'I A LA FRONTIERE 

1) Position du probldme. 

On dksigne par Q un ouvert bornk de fR3 de frontikre r rkgulidre, 

Q ktant situk localement d'un mtme cbtk de r .  On suppose que Q reprk- 

sente la rkgion occupke par un corps plastique dans son ktat non 

dkformk. Nous nous intkressons ici aux dkformations subies par ce 

corps lorsqu'il est maintenu par des forces de frottement sur une 

partie rl, de mesure strictement positive, de l', et soumis de plus 

2 une densitk variable Cf.(t,x)} de forces volumiques. (1) 

Nous dksignons par u = (u. 1 ,  o =[o . . I  , i, j prenant les valeurs 
1 I 

1, 2, 3 les champs de dkplacements et contraintes dans Q. Le matQriau 

est supposk obkir 2 une loi klasto-viscoplastique dans le premier 

temps, puis klasto-plastique (loi de Prandtl-Reuss). La loi de frot- 

tement retenue est la loi de Coulomb, mais dans une premidre Qtape, 

nous utiliserons une loi rkgulariske par rapport h cette dernidrei 

Au n02 nous donnerons les kquations et conditions du problsme. 

(1) 
On pourra trouver une ktude des problkmes de plasticitk sans frot- 

tement dans G. Duvaut et J. L. Lions [I] . 
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Au n03 les diverses formulations variationnelles seront ktablies. 

Le n04 est destink 2 l'knonck des rksultats sous forme de trois 

thkor~m~d'existence et unicitk des solutions des problsmes. Les 

d6monstrations dktaillkes des thkorsmes seront donnkes dans un 

article de 1'A. 2 paraitre au Journal de Mkcanique. 

2 )  Mise en kquations. 

Avec les notations introduites pr6ckdemment nous avons : 

(1) u~.' = u + fi dans (1) 
1 ij,j 

06 la densit6 du matkriau a kt6 prise &gale 2 l'unitk, ce qui ne 

restreint pas la g6nkralitk. Nous introduisons un ensemble convexe 

fern6 K.de l'espace vectoriel des tenseurs des contraintes, l'in- 

tkrieur de K correspondant au comportement klastique, et nous dksi- 

gnons par PK l'opkrateur de projection orthogonale sur cet ensemble 

convexe K. Une loi de comportement klasto-viscoplastique s'knonce 

alors : 

oc B(u) = 0 - PK(U), et 02 le scalaire positf lJ joue le r6le d'une 

(1) On utilise les notations suivantes : XI = 2 at ' x =ax 
,j axj 

et la convention de sommation sur les indices rkpktks, ainsi : 

i! 
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Les coe'fficients Aijkh sont des coefficients d'klasticitk satisfai- 

sants 2 : 

06 Co est une constante strictement positive. 

De plus, on a posk classiquement : 

Les conditions aux limites s'kcrivent : 

( 3 )  a..n = 0 sur r - = T 
11 j 2 

+ 
02 n = {nl, n2, n 1 est la normale extkrieure unitaire 2 r .  

3 

Dksignons par aN et aT les composantes normales et tangentielles du 

vecteur aijnj en un point de r .  Nous imposons 

(4) a N = F N  sur rl 

06 FN est un scalaire donnk nkgatif indkpendant de t. La loi de 

frottement de Coulomb conduit alors 2 : 

i l a T l  5 g 

(5 l a T l  < g - > U ' = o  
T 

IaTI  = g ---\ 3 k 2 0  telque U' T = -kaT , 

03 g est un scalaire donnk positif indkpendant de t. 

(1) Les rksultats de ce travail peuvent Gtre gknkralisks au cas 

d'une loi avec potentiel viscoplastique (G. Mandel [I] 1. 
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Enfin on impose les conditions initiales : 

(6) u(0,x) = u1(o,x) = u(0,x) = 0. 

Nous allons immgdiatement faire quelques 

Remarques : 

i) L'inconnue u(t,x) n'intervenant que dans (6) nous poserons comme 

inconnue 2 la place de u 

de sorte que gra'ce 2 (6) 

( 8 )  

ii) Pour les besoins des dgmonstrations la loi de frottement de 

Coulomb devra dans un premier temps dtre remplacge par la loi de 

frottement rBgularis6e 

oG E est un paramstre positif. On retrouve, 2 partir de ( 9 )  formel- 

lement, la loi de Coulomb lorsque E + 0. 

iii) Lorsque u + 0 dans la loi klasto-viscoplastique ( 2 )  on trouve 

la loi de Prandtl-Reuss (P. Germain [I] 1, 

03 axK(u) dksigne le sous-gradient de la fonction indicatrice x du K 

convexe K (Moreau [I?, Roccafellar L ] 1. 
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iv) Physiquement le probldme pose est celui de la dkformation dtune 

piBce retenue sur la surface r par une machoire et soumise par 
1 

ailleurs 2 des forces volumiques f(t,x) variables. I1 est clai~ que 

ce probldme nta de sens que si, en l'absence des forces f(t,x), il 

existe un kquilibre possible, c'est-2-dire, un tenseur des contrain- 

tes convenable soit : 

[ 3un champ de tenseur des contraintes T tel que : 

I oij,j = 0 , B(ro) = 0  dans Sl 

I T n = O  sur oij j r2 

T~~ = FN , X(ro) = 0 sur r l  . 

Nous retiendrons l'hypothsse (11) dans toute la suite de ce travail. 

3) Formulations variationnelles. 

On introduit les espaces : 

H = (~~($2))~ 9 V = (~l(Sl))~ , 

munies des structures hilbertiennes respectives 

munis des structures hilbertiennes respectives 

(16) tfr, ~ € 8  

(17 dx + (T,u) , VT, o &%!. 

Enfin nous posons : 
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(18) Cad = {T 1 T € 5  , T .n = 0 sur r2, rN = FN sur rl}, 
i3 j 

ce qui a un sens. De plus, on vkrifie immkdiatement que Cad est un 

sous-espace affine fermk de 5 .  
Nous allons maintenant obtenir les formulations variationnelles des 

divers problemes envi'sagks suivant que le matkriau est klasto- 

viscoplastique ou obkit 2 la loi de Prandtl-Reuss et que le frot-3x1- 

tement obkit 2 la loi de Coulomb ou 2 la loi de frottement rkgula- 

risge (9). 

a) Loi klasto-viscoplastique - Frottement rkgularisk. 

Supposons que (v,a) satisfasse aux kquations et conditions 

(20) vf = aij ,j + fi dans , Vt &10,t[ 

(21) v(o)x) = o(o)x) = 0 dans a 

ainsi qu'aux lois (21, o6u' est remplac6 par v, et ( 9 ) .  

Soit alors T E  Cad. 

Multiplions (2) par T.. - a et intkgrons sur Q ; il vient apres 
13 ij 

quelques transformations : 

Utilisant (9) et posant : 
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il vient, 

dt E Cad . 
Par ailleurs, si w E V, on obtient 2 partir de (2'0)~ 

(v1,w) - JQuijyjwidx = (f,w), VW e v. 

En rgsumk, si {v,u) est une solution du probldme (19)(20)(21)(2)(9) 

on a : - 

(25) {v,a) E V x Cad , \dt E]O,T[ 

I 

+ . a3 ,jmoij , j  )dx = 0 , q z  Cad 

Vt E ~o,T[: 

(27) (v',w) - o .w.dx = (f,w), t/w E V , dt € 10,~r I ij,i 1 
(28) V(O,X) = U(O,X) = 0, V x e n .  

On dira que (25)-(28) constitue la formulation variationnelle du 

Inversement, on peut montrer (G. Duvaut [I] ) que si le couple (v,o} 

satisfait (25)-(281, il satisfait aussi (19)(20)(21)(2)(9) au moins en 

un certain sens. 

b) Loi Elasto-viscoplastique. Loi de frottement de Coulomb. 

Supposons que {v,o) satisfasse (19)-(21)(2)(5), oh n'a kt6 rem- 

place par v. Soit alors T ( Cad, 1 rTl 5 g sur r Multiplions (2) 
1' 

per r.. - aij eU intggrons sur a. I1 vient : 
13 
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(29) &(U1,T-0) + (P(U),T-U) + /avi(Tij,j = 
lJ 

= ~ ~ ( ~ ~ - u ~ ) d l .  . 
1 

On vkrifie alors facilement, grdce 2 la loi de Coulomb, que le der- 

nier terme est positif ou nul. I1 en.r6sulte que : 

Si (v,aI est une solution de (19)-(21)(2)(5) on a : - 

(30) (v,u} V x Cad, loT/ 5 g sur r 
1 '  

(31) ~ ~ u l , ~ - u ~ + ~ ~ ~ ~ ~ ~ , ~ - u ~ + ~ v i ~ ~ i j , j - u i j , j ~ d x ~ O  l~ 
R 

YT Cad, lrTl ( g sur r 
1 '  

ces proprikt6s ktant satisfaites quel que soit t 6 ]o,T[ . 
Ceci constitue la formulation variationnelle du problbme (19)-(21) 

Inversement on peut montrer que si (v,o} satisfait (30)-(331, il 

satisfait aussi (19)-(21)(2)(5) en un certain sens. 

c) Loi de Prandtl-Reuss. Loi de frottement de Coulomb. 

Supposons que le couple (v,u) satisfasse (19)-(21)(5)(10). Les 

6quations (10) sont 6quivalentes 2 : 

(35) Aijkhulkh(~ij-u. .I > E ~ ~ ( v ) ( T ~ ~ - ~ ~ ~ ) ,  ~ T E K .  
11 - 

ce qui va nous permettre d'obtenir une formulation variationnelle. 

Introduisons 2 cet effet l'ensemble convexe : 
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(36) X=(T I r 6 . E a d , { ~ ~ ~ } t K  p . p . d a n s R , l ~ ~ l ~ g s u r 1 . ~ ) .  

Choisissons alors T C K dans (35) et intggrons sur R. I1 vient : 

en utilisant la loi de'coulomb. 

On peut alors knoncer, 

si {v,u) est une solution de (19)-(21)(2)(5) on a : - 

ces propriktks ayant lieu pt € ] o,T[* 

Inversement on peut montrer (38)-(41) impliquent (19)-(21)(2)(5) en 

un certain sens. 

4) Rgsultats. 

Dans le cas d'un matkriau klasto-viscoplastique avec la loi de 

frottement r6gulariske, on obtient le : 

Sous les hypothsses donnkes au no 1 sur 

(42) f, fT 6 L=(O,T ; HI, F~ E ~-~'~(r~) (1) 

2 
(1) Lfhypoth&se FN e L ( r  ) serait en fait suffisante pour les appli- 1 

cations. 
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il existe une unique solution {v o 1 de (25)-(28) dans la classe 
Ell Ell 

fonctionnelle 
2r 'I, 

(43) hEll ,aEll I r L~(O,T ; H x HI n L~(O,T ; v x V) 

(44) (v;,, ,of I t L-(O,T ; H x 8 ) .  
Ell 

Dans le cas d'un matkriau klasto-visdoplastique avec la loi de frot- 

tement de Coulomb, on obtient le : 

Thgorsme 2 

Sous les hypothsses du thkorsme 1, il existe une unique solution 

(vllull) de (30)-(33) dans la classe fonctionnelle 

De plus cette solution (v o ) est limite de ( v  o 1, lorsque E tend 
lJ ?J Ell Ell 

2r (1) vers zBro, dans l'espace Lrn(O,T ; H x H) faible ktoile . 
Dans le cas dlun matkriau obeissant 2 la loi de Prandtl-Reuss 

(Blastique parfaitement plastique) et la loi de frottement de 

Coulomb, on obtient le : 

(1) Sur le dual X' d'un espace de Banach X non rkflexif, on appelle 

topologie faible ktoile celle liBe 2 la dualit6 entre X' et X, soit, 

si f n €  XI, f C X' on dira que : 

fn -+ f , quand n + .o , dans X' faible ktoile 

fn(xY + f(x) , quand n -+ , v x  E X. 
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Thkordme 3 

Sous les hypothdses du th6orSme 1, il existe une unique solu- 

tion (v,a} de (38)-(41) dans la classe, - 

(47) (V,UI G L~(O,T ; H x ?I) A L~(O,T ; v x 5 )  
'I, 

(48) Evl.u') E L~(O,T ; H x H). 

De plus cette solution {v,a) est limite de (v ,u 1 ,  lorsque tend 
U U 

'b 

vers z6r0, dans llespace L~(O,T ; H x H) faible ktoile. 

5 )  D6monstration du thkordme 1. 

* *  
5.1. Unicitk. Supposons qulon ait deux solutions (v,o) et (v ,a ) 

(1) du probldme klasto-visco-plastique avec frottement rkgularis6 . 
Choisissons dans (26) et (27) kcrites pour la solution (v,ol 

* * * * 
(resp v ,a ), T =.aX et w = v - v (resp r = 0 et w = v = v ) et 

ajoutons membre 2 membre. I1 vient en tenant compte de la monotonie 

des applications r -t B(T) et r -t X (TI 

02 l1on a posk &(TI = &T,T). 11 rksulte de (49) et des conditions 

* 
initiales que o = a* et v = v 

5.2. Existence. 

Nous introduisons les notations 

et un scalaire rl positif. 

(1) Dans ce paragraphe nous n6gligeons. pour all6ger 116criture, les 

indices E,U. 
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Si on remplace les kquations (26) et (27) par les kquations rkgulari- 

skes elliptiquement 

on obtient un systsme d'kquations paraboliques monotones qui posssde 

(J.L. Lions [I] ) une. unique solution {v a ) dans la classe 
17) 17 

'L - 'L 
06 V' (resp V') est le dual de V (resp V) quand on identifie H 

'b 
(resp H) 2 son dual. 

La mkthode de dkmonstration consiste 2 obtenir des estimations sur 

{vn,an) de manisre 2 pouvoir passer 3 la limite lorsque 17 tend vers 

zkro dans (51)(52). 

Estimations I. 

Choisissons T = T introduit par (11) dans (51) et w = 0 dans 

(52) et ajoutons membre 2 membre. On obtient, en nkgligeant d'kcrire 

Les opgrateurs 6 et A ktant monotone, on a, grzce 2 (ll), 

(~(a) ,.ro-a) = (B(U)-B(T~),T~-~) 2 0 
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En intkgrant sur (0,t) il vient alors 

d'oii il rksulte que 

% 

{ V ~ , O ~ )  6 born6 de L=(O,T ; H x H) 

(55 2 
n1'2{v11.011] € borne de L (0,T ; V x %'), 

ces majorations ktant indkpendantes de E ,  u et 0. 

Estimations 11. 

Faisant t = 0 dans (51) (52) on obtient 

&(UA(O)~T) = 0 t f - r  t Cad , 
5 [ 

(v'(o),w) = (f(0),~), 
11 

d w  e v ,  
N 

ce qui entraine que ol(o) et v' (01 sont bornks dans H et H respec- 
11 11 

tivement . 
Soit alors un scalaire h > 0 destink 2 tendre vers zkro. Ecrivons 

(51)(52) pour l'instant (resp t + h) avec {w,~) = {v(tth), o(t+h)), 

(resp {w,~) = {v(t),o(t))) et ajoutons membre 2 membre les &galit& 

obtenues 

< (f(t+h)-f(t), v(t+h)-v(t)). - 
On divise cette ,inkgdlitk par h2, puis fait tendre h vers zero. On 

obtient alors que, 
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'b 

5 { v t a t  6 born6 de L~(O,T ; H x H) 

2 'b 

1'2iv' 0') born6 de L (0,T ; V x V) , 
11 q Y r l  

ces estimations Qtant indkpendantes de E, p, 0. 

Quel que soit w E V nous avons 

I 
I1 en rksulte, compte tenu des estimations I et 11 que l'application 

est bornke dans L~(O,T ; V'). 

Introduisons alors 

'b 'b 

(60) vo = IT I T E V, T = o sur rl)  N 

/ 'b 'b 

et l'klkment A(a) de Vo, dual de Vo quand on identifie H et son 

dual, par 

'b 

Soit alors v E Vo ; choisissons T = a t v , ce qui est loisible. 
11 

Alors 

Compte tenu des estimations I et I1 il en r6sulte que 

Passage 2 la limite. 

I1 rksulte des estimations prkckdentes que l'on peut extraire 

de vV, on une sous-suite, encore not6e v a telle que 
11) 11 
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v  v l + v  , v 1  dans L - ( 0 , ~  ; H) f a i b l e  Q t o i l e  
n '  n 

% 

u n y  0; + a ,  a 1  dans L ~ ( O , T  ; H) f a i b l e  Q t o i l e  
% 

A(un) + x dans L 2 ( 0 , T ; V ~ ) f a i b l e  

5 ( u n )  + 5 dans L'(O,T ; V1) f a i b l e .  

Nous pouvons a l o r s ,  en u t i l i s a n t  l e s  m6thodes exposges dans 

J.L. Lions [I] , p a s s e r  h l a  l i m i t e  dans 

pour  o b t e n i r  

I 
Choisissons a l o r s  . 

dans l a  2e Qquat ion (65) .  I1 v i e n t  

c e  q u i  prouve que u  & ~ ~ ( ~ 2 1 .  M u l t i p l i a n t  a l o r s  (67)  par  
i j  , j  

1 w .  H ( a ) ,  e t  i n t k g r a n t  p a r  p a r t i e s  s u r  R ( c e  q u i  e s t  l i c i t e l  il 

v i e n t  

d l06  p a r  cornparaison avec (65) 

(aN-FN)wNdl. t aTwTdl. - <E,w> + a  n.w.dl. = 0 Yr C Y I rl r2 i j  3 1 
1 1 
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ce qui implique facilement que 

aN = FN sur rl , o .n. = 0 sur r 
i3 3 2 

(69) 
< E  ,u, = oTwTdlq V w  Ev. 

rl r. 
I 

I1 reste 2 montrer que x = A(o), ce qui s'obient par un raisonnement 

2 %  de monotonie. Quel que spit r E L (V) nous avons 

d'o6, en utilisant (64) am6nagge, 

Prenant la limite infkrieure des deux membres, utilisant la semi- 

continuitk infgrieure de &(an) + 1 vnl et (651, il vient 

(7'2) 1' (X - A(r),a ' -  r)dt 2 0. 
0 

2 "  Choisissant alors T = o + Xp 06 X > 0, p E L (V), il vient aprss 

division par X et passage 2 la limite X + 0, 

ce qui implique 

ce qui achsve la dkmonstration du thkorkme 1. 

6) Dgmonstration du thkorsme 2. 

6.1. Unicitg. Elle se dgmontre comme pour le thkorkme 1. 

6.2. Existence. Nous dksignons par (v o 1 la solution obtenue 
E' E 

au thkorsme 1 et dkfinie par 



In t roduisons  l a  forme l i n 6 a i r e  A ( a  ) s u r  V p a r  
1 E 

I 

I1 r k s u l t e  a l o r s  des  e s t i m a t i o n s  du no 5 que 

1 2 'I, 

(77)  A l ( u E ) t . b o r n k d e L ( O , T ; V o ) .  

De p l u s  
'I, 

{ v E Y  ~ € 1  6 born6 de Lm(O,T ; H x H) 

'I, 

7 8  I { v  born6 de Lm(0,T ; H x H) 
'I, 

B(uE) t: born6 de Lm(O,T ; H )  

EL born6 de Lm(O,T ; H) ( d f a p r S s  ( 7 6 ) )  
'Ei j ,  j 

'I, 

E ~ ~ ( v ~ )  G born6 de L ~ ( O , T  ; H ) ,  ( d f a p r 2 s  ( 7 5 ) )  

I1 r 6 s u l t e  des e s t i m a t i o n s  (77)  e t  (78) que l f o n  peu t  e x t r a i r e  de 

v  €, uE une sous s u i t e ,  encore not6e v E ,  oE, t e l l e  que 

'Ir 

v ,  u + {v,u} dans L ~ ( O , T  ; V x V) f a i b l e  k t o i l e  
'Ir 

( v A , u ~ }  + ( v '  , u ' )  dans Lm(O,T , H x H) f a i b l e  k t o i l e  

f3(crE) -+ c1 dans Lm(O,T ; $1 f a i b l e  k t o i l e  

2  
0 dans L  ( 0 , T ;  Vo) f o r t .  

'I, 

Formons a l o r s ,  Y T  6 L2(0,T ; Yo), 

) - A1(-r), uE - T> d t , O  

e t  f a i s o n s  tendre  E v e r s  zkro en u t i l i s a n t  (79)  ; il v i e n t  



G. Duvaut 

dtoG l'on dgduit que A (a) = 0, d'oc 
1 

(80) l o T \  5 g sur rl- 

'b 

Choisissons alors r t ~ ~ ( 0 , T  ; V), ~ ( f )  6 d a d ,  5 g Our : 

en tenant compte de 

A T - u  0 

l'kgalitk ( 7 5 )  donne 

1 
(81) d(a;,r-uE) + ; (f3(uE),r-uE) + 1 vEi(rij yj-uEij,j)dx 2 0 

n 
et en intkgrant sur (0,T) et utilisant (76) 

Utilisant la semi-continuitk infkrieure de &oE(T) et I v,(T) I 2 

on peut passer 2 la limite infkrieure des deux membres pour obtenir, 

On peut passer 5 la limite dans (76) pour obtenir 

(84)  v1 - u = f.. ij,j 1 

On en dkduit alors pour (83) que 
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Utilisant alors la monotonie de lfop6rateur 6, il s'ensuit que 

ce qui, par application d'un theorsme de Lebesgue, fournit 

Par ailleurs il est clair, compte tenu des estimations (781, que 

a..n = 0 s u r r 2  , uN = FN sur 
11 j . 

I1 reste donc seulement 2 montrer que c1 = B(a). On utilise pour 

cela la monotonie de l'op6rateur B en procgdant comme il a Qt6 fait 

dans le no 5 pour montrer que x = A(o). Ceci achsve la demonstration 

du thkorsme 2. 

7) Ddmonstration du thgorame 3. 

Elle utilise exactement les mzmes techniques que celle du 

thdor2me 2 et les estimations obtenues aux no 5 et 6 qui ktaient 

inddpendantes de u .  
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QUATRIEME CONFERENCE 

PLAQUE EN FORTE FLEXION 

SOUMISE A DES CONDITIONS UNILATERALES 

1) Introduction. 

Nous nous proposons lf6tude de la dkformation d'une plaque en 

forte flexion soumise h des conditions h la frontidre unilatkrales. 

La thkorie non lin6aire des plaques en forte flexion qui conduit 

aux kquations dites de Von Karman est ktablie dans le livre de 

Landau et Lifschitz [a auquel le lecteur pourra se reporter. Une 
6tude g6n6rale de ces types de probldmes a 6t6 faite par G. Duvaut 

et J.L. Lions [ g  avec certains types de conditions aux limites. 
D'autres types de conditions aux limites conduisent 3 des probldmes 

unilat6raux non linkaires du type semi-coercifs (cf J.L. Lions et 

G. Stampacchia [g ) et ont 6t6 rksolus par M. Potier [ g  . Lorsqu'on 
applique 3 la frontidre de la plaque des forces situkes dans le plan 

de cette dernisre on peut observer des phknomdnes de flambement de 

la plaque et sur le plan math6matique on est conduit h des probldmes 

de bifurcation (cf Do [I]). 

Ici nous nous proposons de donner une introduction h ces types de 

probldmes en donnant les 6quations gknkrales, la formule de Green 

adaptke et la formulation variationnelle et les rksultats d'existence 

et d'unicitk (limit6e h des sollicitations assez faibles) dans le cas 



G. Duvaut 

d'un probldme particulier simple. Pour les dkmonstrations nous ren- 

verrons a l'article plus complet de G. Duvaut et J.L. Lions [I] citg 

prkckdemment. 

2 )  Probldme physique et kquations. 

Nous considkrons une plaque mince qui dans son ktat non d6form6 

est assimilk 3 sa trace fi sur un plan Oxlx2. La rkgion fi est supposke 

ouverte et bornke dans Oxlx2. Sa frontidre an est supposke rkgulikre 

et constituke de deux parties r et r2 avec 

(1) mes r > 0 . 1 

La plaque est encastrke le long de TI. Le long de r2 une butke rigid6 

interdit les dkplacements vers les x3 nkgatifs (le repsre Ox x x 
1 2 3  

est orthonormk direct). Nous dksignons par (u ,u 5 1  le vecteur dk- 
1 2  

placement des points de la plaque et par (a 1  le tenseur sym6trique 
aB 

des contraintes planes, a et B prenant les valeurs 1 et 2. De plus 

la plaque est soumise 2 une densitk de forces surfaciques f(x) por- 

tkes par Ox 3' 

Les kquations d'kqulibre et de comportement des plaques en thkorie 

non linkaire s'kcrivent, 

06 h est l'kpaisseur de la plaque, D le module de rigiditk 2 la 
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flexion, a des coefficients d161asticitk satisfaisants 3 
a0yd 

Les conditions aux limites du probldme sont 

(7) 5 = X = O  sur rl an 

oc n = (nlYn2) est la normale ext6rieare unitaire a aS2, 

( 8  u1 = u2 = 0 sur rl 

(9) = o sur r2 

( 10 6 2 0 ,  F 2 0 ,  E . F = O  sur r2 

o~ F reprksente la densit6 lingique de forces ext6rieures port6es 

par Ox3 et appliquges le long de r2. Nous serons amen6s dans un 

premier temps 3 remplacer la condition (10) par une condition r6gu- 

le coefficient positif E 6tant donn6. La condition (11) exprime que 

la but6e qui limite les dgplacements 5 < 0 est 6lastique au lieu 
Ir2 

d'gtre rigide. Le cas rigide sera obtenu par passage 3 la limite 

3) Formulation variationnelle. 

A partir des 6quations (2) (3) (4 )  on Qtablit (cf G. Duvaut 

et J.L. Lions [I] )la formule de Green suivante , 
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F(g )zdr - M(c) - dr + fzdx I, I a - 
06 z = z(x ,x ) est une fonction r6guliSre sur Q, 5 (c,z) la forme 

1 2  

bilin6aire 

06 v est le coefficient de Poisson du matgriau ; F(E) et M(E) repr6- 

sent.nt les densit6s lin6iques de forces et de moments sur an. Ce 

sont des expressions lin6aires par rapport 2 5 dont l'expression 

n'est pas ngcessaire ici. 

Introduisons les espaces 

Les espaces Z et V sont de HIlbert quand on les munit des produits 

2 1 scalaires respectifs de H (a) et de (H (Q) 12. On montre (cf G. Duvaut 

J.L. Lions [I]) que a(E,z) est coercive sur Z et que la forme bili- 

ngaire A( E(U) .E(V) ) donnee par 

(15) &h.k) = aijkhhijkkh . E(V) = { E .  .(v)l , 
a 1 3  

est coecive sur V, grdce 3 l'hypothdse (1). 

Si {C,u) est une solution rsgulisre du probldme (2)-(10) (resp 

(2)-(9)(11) nous aurons 
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(16) ( 5 , u 1 E Z x V ,  2 O 

(18) &(E(u) t M(E), E(v)) = 0 Y V € V  

06 on a posk 

(19) M(z,E) = (aZ 1 , M(z) = M(z,z), axa ax 8 

(respectivement 

(19) (C,u) E Z x V 

Les proprikt6s (16)(17)(18) (resp (19)(20)(21)) constituent les 

formulations variationnelles des problemes envisagks. On montre 

qu'inversement les solutions de (16)(17 ) (  18 ) (resp (19)( 20 )(21) ) 

sont solutions, au moins en un sens affaibli des problbmes envisag6s. 

4) Rksultats. 

On d6montre (cf G. Duvaut et J.L. Lions [I] les thkorbmes 

suivants : 

Thkorbme 1. Sous les hypotheses (1)(6) et 

(22 f E L~(Q) 

fZ existe au moins une solution u 5 satisfaisant (19)-(21). 
E' E 

Thkorbme 2. Sous les hypothsses (1)(6)(22) il existe au moins une 
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solution u, 5 satisfaisant (16)-(18). De plus il existe une sous 

suite de u 5 qui converge vers u, 5 dans V x Z faible. 
E 9  E 

Thkordme 3. Si f est de la forme 

(23) f = rl f 
0 

il existe une constante positive n telle que si 2 17 la solution 

u, 5 est unique. Si alors on pose 

(25) lim u = 0 ,  lim5 - 
7, - 50 dans V x Z 

w n 
w o  

oG C0 est l'unique solution du probldme de plaque linkaire 

Les rksultats analogues s'obtiennent avec la solution rkgulariske 
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CINQUIEME ET SIXIEME CONFERENCES 

RESOLUTION D'UN PROBLEME DE STEFAN 

(~usion_d_lun-b_loc-d_e-a1~ce~i-_O~) 

1 )  ProblSme Physique : On considere un bloc de glace 10' occupant la 

region ouverte de f13 de frontiere r r6guliSre. On supppose 

r composee de trois parties rl, r2, r3 sans points communs et 

dont la reunion compose r . On suppose de plus que F et r n'ont 
I 3 

pas de frontisre commune et que rl est de mesure strictement 

positive. 

On cherche l'dvolution de ce bloc de glace lorsque sa frontiEre 
l 

est le sisge d'un flux de chaleur, les parties r2 et r Stant 
3 

respectivement de flux de chaleur nu1 et de temperature 0'. On 

n6glige la variation de volume due 1 la fusion et on suppose que 

l'eau fourhie reste en place. On designe par ,x(t) la surface de 

fusion d'dquation t = L(x), inconnue 1 priori (x = (xl,x2,x3)). 

On ddsigne par k la chaleur latente de la glace. 

2) Mise en dquations : On cherche un champ de temperature 6(x, t) , 

x E 5 , t E [O,T ] , T > o , satisfaisant , 

( 1 )  - - ae A, = 0 
at dans t > L(x) 

(2 )  e(x,t) = o dans t 6 L(x) 
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1 
(3) grad 0 gard R = -k ( ) pour t = L(x) 

(4) - 3 0  - = 
an b(e-el), (b > o donn6) sur 

(5) 
ae - = 
an O 

sur r2 

( 6 )  e = o  sur r3 

( 7 )  ~(x,o) = o pour x E n . 

3) Formulation variationnelle 

Suivant C. Baiocchi [I] on introduit : 

t 
u(x,t) = 8(x,r) dr si t > R(x) 

IR(X) 

u(x,t) = o si t ,< R(x) . 
On pose : 

2 1 H = L (a), V = {vlv E H (R), v = o sur 
r33 

K = {vlv E V , v % O  dans a) 

a(u.v)=J gradu gradvdx, L(v) = - k  v d x  
n Ja 

u v  = u v dx , V u, v E V. 
a 

1 ( ) Soit la normale 1 $(t) difigga vers la rlgion oii 0 = 0. On Scrit 
que la flux de chaleur - grad8.n 1 travers la surface x(t) est la 
chaleur ngcessaire 1 la fusiof du volume Vn de glace oii Vn est la 
vitesse normale, mesurge sur n, de d6placement de $(t). D'oii : 

+ 
-grade n = k v n ,  d'o3 (3) . 



C, Duvaut 

La fonction u(x,t) satisfait 5 : 

(11) u(t)~K 9 'dt E [o,T] 

(12) u = o , grad u = o pour t = L(x) , 

(13) u = o pour t < L(x) , 

(14) % - A U  = -k pour t > L(x) , 
at 

au b(u - elf) (15) - - =  sur rl , ax 

(16) 2 = 0 sur r2 . 
an 

On d6duit de (1 1) - (16) que u satisfait : 

u(t) E K , V t  E [o,T] p.p. , 

7 )  { cut ~m)+a(u,v-u)+b (u-0, t) (v-u)dl 3 L(v-u) , Y v -F K , 

U(X,O) = 0 . (I) IF1 

Variante : 

Si on rernplace la condition (4) par : 

(qbis) e = e  1 Sur ' 

les autres conditions 6tant inchang6es, on est conduit, pour u 

d6fini par (8) , 5 la formulation variationnelle suivante : 

on introduit Kl (t) par : 

(18) Kl(t) = ~ulv E V , = 8 , t ,  v>,o dans 621 

On a alors : 
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4)  Enonc6 des r 6 s u l t a t s  

Pour tout  b > o , donn6, il e x i s t e - u n  unique ub , solu t ion  de (17) 

dans la cl#isse , 

(20) Ub y . L'(O,T ; V) n L*(O,T ; H) . 
PropriBt6 1 

La so lu t ion  ub e s t  t e l l e  que, )J o ,< b 2 ‘ <  bl 

(21) 0 ,< ub ( I5 . t )  ,< ubl ( x ~ t )  ,< @ t  
2 

on @) (x) e s t  l a  fonction d6 f in i e  par : 

(22) A @  = o d a n s Q ,  @ = e l  sur  r l ,  @ = o s u r  r 3 ' 

La so lu t ion  ub e s t  t e l l e  que, t E [o,T[ , 

02 @ e s t  dBfinie par (22). 

ThBorSme 2  

I1 e x i s t e  u  unique so lu t ion  de (19) dans l a  c l a s se  



2 
u' E L (0,T ; H). 

2 
De plus ub tend vers u dans L (0,T ; H) fort et dans 

2 
L (0,T ; V) faible lorsque b tend vers + . De plus, 
ui tend vers u' dans LDI[fi x (o,T)~] faible Etoile. 

5) Dgmonstration du thEorlme 1 

L'unicitE est Evidente. Pour l'existence onprocsde par pEnali- 

sation, estimation 1 priori et passage 1 la limite. 

i) PEnalisation : Soit E > o et soit B(v) dEfini par : 

On introduit alors uE(x, t) solution (cf. [2]) de 

ii) Egtiwgions 5 eligyi_l : Choisissant v = uE(t) dans : 

(23) on obtient (') (page suivante) 

d'oii il rEsulte que : 

iii) Estimations 1 priori I1 : Soit t E [o,TC et h > o tel que 

t + h E [o,T~ . 
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Dans lldgalitB (23) Bcrite B l'instant t (resp. (t+h)) choisissons 

v = u(t+h) - u(t) (respectivement v = u(t) - u(t+h)) et ajoutons 

membre B membre les Sgalitds obtenues ; il vient, en posant : 

Divisant (26) par -h\t int6grant sur (0,t) , on obtient : 
2 t  

- -  1 + f a(:) dt + b dr dt < Blbl:Ir (: dl)dt + 
0 2 

Mais uE(t) 6tant d6rivable en t , on a, lorsque h -+ o , 

Appliquant (23) pour t = o on a : 

IUL(O> I 6 Cste 

d'o3 il rcsulte immddiatement que : 

Revanlut B (23) on obtient : 

(28) 1 2 -B(u,) E born6de L (0,T; V') (*#) . 
E 

* 
( On a p o s ~  (u,v) = u v dx , lul = (u,u) 'I2 , a(v) = a(v,v). 

a 
(**) L'espace V' est lo dual de Y quand on identifie H 2 

son dual. 
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iv) Passage 1 la l m t e  : I1 rgsulte des estimations (24) (27) (28) 

qulil.existe une sous suite, encore notge u , telle que : 
E 

2 u + u dans L (0,T ; V) faible , 

u' -+ u' dins L~(O,T ; H) faible &toile 

2 u' + u' dans L (0,T ; V) faible 

B(uE) + o dans L'(O,T ; V') fort . 
2 

Soit alors v E L (0,T ; K). Rempla~ons dans (25) la fonction 

test par v(t) - uE(t) ; il vient, compte tenu de ce que B(v)=o 

et de la monotonie de 6 , 

oii on a pos6 : 

Intggrant sur (0,T) et prenant la limiie infgrieure des deux 

membres, on trouve 1 la fin : 

(30) ($, v-u) + al (u,v-u) > L(v-u) + 8 t b (v-U) dr 
1 l r ,  

On vgrifie immgdiatement que u(o) est limite dans H faible de 

uE(o). I1 en rgsulte, compte tenu de B(uE) + o dans 

2 L (0,T ; V') fort qui entrafne u(t) E K , et de (30) que 

u est solution de (17) . 
Remarque 1 

Si on analyse la d6monstration du th6orSme 1 ,  on constate que 
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l e s  conclusions (20)ont pu Stre  obtenues grzce au f a i t  que l a  forme 

l ingaire  du second membre de (17), s o i t  : 

t e l l e  que : 
2 

(31) [ ~ ] ( t )  E L (0,T ; V') 

2 L1(0) E H , L; ( t )  E L (0,T ; V'). 

Les conclusions du th6orSme 1 sont donc valables sous l e s  hypothSses 

g6nErales (31) sur l e  second membre. 

6) Dgmonstration de l a  propri6t6 1 

i )  Montrons que u(x,t)  \< @) t . 
Nous posons : 

w(x,t) = (u(x,t)  - gl t ) +  

e t  nous choisissons : 

v = ~ ( t )  + w(x,t) 

dans (17), ce qui e s t  lo i s ib le  car o 4 w(x,t) ,< u(x , t ) .  

I1 vient  a lors  : 

(ul ( t )  ,w)+ a (u ( t )  ,w)+ b I (u-ol t )  OW dx = -lc 

d'oii : 

(32) (w' ( t )  , w(t)) 6 0 

car : 
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du f a i t  que o C @) < e l  dlaprSs l e  pr inc ipe  du maximum ce qui  

I1 en rEsul te  a l o r s  de (32) que w(t) = 0 e t  par'consgquent : 

u(x , t )  ,< @ t , p.p. dans Q (0,T). 

i i )  Montrons que bl 4 b2 entra'ine 
Ubl Ub2 . 

Pour s impl i f ie r  l l & c r i t u r e  nous posons : 

u. = u i = l  e t  2 .  
b i  ' 

Dans l l i n & g a l i t &  (17 )  r e l a t i v e  1 ul ( respect .  u2) nous 

- 
choisissons v = U, - (u2 - u I ) -  (respect .  v = u2 + (u2-u1) ) . 
Ajoutant memtb r e  B membre l e s  deux inggalit8.s obtenues, il v i e n t  : 

(33) (w',w) + a(w,w) + w[b, (ul-el t)-b2(u2-el t)] d r  < 0 I 1 

(33) 
~ a n s v l '  in tggra le  s u r  T I  ne por te  en f a i t  que sur  l'ensemble des 

poin ts  de r l  03 u > u2 . Mais a lo r s ,  tenant  compte de i )  , 
1 

ce qui  en t rz ine ,  compte tenu de o < bl < b2 , 

(35) w[bl (ul - e l  t )  - b2(u2 - ep] 5 o . 
Intggrant  a l o r s  (33) su r  (O,T), on en d6duit  que : 



donc : 

7) Ddmonstration de la propridtd 2 

i) Ddmonstration de u'(t) >, 0 . 
Soient t E [o,T[ , et h > o tel que t + h E [o,T] . 
Nous posons : 

Dans lrindgalitd (17) relative I l'instant t (resp. t+h) 

nous choisissons v = u(t) - w(t) (resp. v = u(t+h) + w(t)) 

et ajoutons membre 2 membre les deux inBgalitSs obtenues. I1 

vient : 

1 
En intsgrant (37) sur (0,T) on a : 

d'oii il rdsulte que : 

w(t) ' 0 
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et par cons6quent : 

u' (x,t) >/ 0 v(x,t) E a (O,T) p.P- 

ii) D6monstr~ion de u'(t) 6 @ 

Nous introduisohs ul (x, t) par : 

et nous savons que : 

(41 ) 0 \< UI (x, t) 4 @ t 9 u; (x,t) Q @ . 
11 r6sulte de la propri6tg 1 et de (17) que u(x,t) satisfait : 

A 

I ~(t) E K(t) (V(V E K, V Q @ t) , 

(42) (u' (t),v-u(t)+a(u(t) ,v-u(t)+b (u(t)-elt) (v-u(t))dr>,-k J - 
VV E ~(t) , 

\U(O). = 0 . 
Par le changement de fonction inconnue (40) et les propri6t6s (41) 

et (42) on voit que ul (x, t) satisfait : - 

t ' 
ul (t) E K(t) 

(43) (u; (t),v,-ul (t))+a(ul (t)-@t,vl-ul (t))+b 1 ul (t)(vl-ul (t))dr 3 

/ I. 1 
3 In(k+@) (vl-uI (e9)dx , v vl E i(t) , 

ul<O) = 0. 

Notre problhe est alors de montrer que ul(t) >, 0. Soit un instant 
1 

t E [o,T[ et un nombre positif h tel que t+h E [o,T]. Posons : 

(44) w(x?t) = [ul (x,t+h) - ul(x,t))- 

et choisissons dans 11in6galit6 (46) relative 1 l'instant t+h 



(resp. t) 11616ment 
V 1  par : 

(resp. par : 

v = u(t) - w(t) 
1 

ces choix Btant lioiter. Si nous ajoutons membre 1 membre les 

deux inBgalitEs obtenues, nous avons : 

(44) (w' ,w) + a(~) + b I w2 dr + h a (@, w) 5 0. 

Mais, compte tenu de la definition de @ , il vient a(@,w))O, 

d'oG il r6sulte que : 

(w' , w) < 0 

et en intBgrant sur (Opt), 

lw(t)12 8 lW(0)12 = 0 9 

ce qui Etablit la propriBt6 souhaitee. 

8) Demonstration du thLseCIda 2 

8.1 - Unicitl : Elle est immBdiater En effet si u(x,t) et 

u*(x,t) sont deux solutions de (19), on choisit v = u* 

(resp. v = U) dans 11inLgalit6 (19) relative 21 u (resp. 

relative P u * )  et on ajoute membre membre les inegalites 

obtenues, ce qui donne classiquement, en posant w = u - u* , 

(w',  w) + a(w, W) < 0 

d'oa par intagration sur (Opt), w(t) = 0, c'est-a-dire 



u(t) = u* (t) . 
8.2 - Existence : Nous allons montrer que la solution u,, de (17) 

tend vers un element u solution de (19) lorsque b tend 

vers +- . Pour cela nous utilisons les propriLt6s 1 et 2 

Ltablies prLcEdemment et des estimations 1 priori sur u,, . 
i) Estimations 1 priori 

Nous choisissons, dans I'inEgalitE (17), v = @t, oii 

@ a Lt6 d6fini par (40). I1 vient : 

puis : 

Integrant (48) sur (O,t), on obtient : 

oii C est une constante independante de b. Come b est 

-destine 3 tendre vers +- , on peut supposer b > 1. Une 

1 
norme Lquivalente 1 la norme de v dans H (Q) est donnee 

par : 

puisque rl est de mesure strictement positive. 
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I1 s'en suit que (49) donne : 

oii Cj est une constante independante de b. 

On d6duit de (50) que : 

Nous savons de plus d'aprPs la propri6t6 2 que : 

(53) ui E born6 de Lm(a x (0,T)) 

et d'aprPs la propri6tE 1 que : 

I (54) ub(x,t) est une fonction croissante en h ,  majoree par 8 t( ) 
1 

ii) Passage Z la limite 

I1 r6sulte des estimations precedentes que, lorsque b tend 

vers +-, au moins pour une sous-suite : 

(55) ub tend vers u dans L-(O,T ; H) faihle 6toile 

2 (56) ub tendvers u dans L(0,T;V) faible 

(57) ui tend vers u' dans L-(0 x 0,T) faible &toile 

(58) ub(x,t) tend vers u(x, t) dans ponatuellement en 

(x,t) E a x (0,~). 

- -- - 

1 
( ) D'aprPs le lemme 2, elle est &me major6e par a t .  
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De plus (54) implique que : 

et donc : 

(60) ub tend vers u dans L-(O,T ; H) fort. 

I1 rBsulte Bgalement des estimations que : 

(61 
2 2 

ub tendvers u dans L (0,T; L (TI)) fort 

et d'aprPs (52) nous avons donc : 

On voit alors immgdiatement que : 

(63) u(t) E Kl (t) 

Choisissons alors v E Kl (t) dans (17) , 

(s, v - u6) + a(ub, V-us) + b (ub-el t) (9, t-ub)dT 3 -k (v-ub)dx. 

L'intiSgrale sur 

I 
r, Btant nBgative, on a aussi , 

1, 
(64) (ui,v-ub)+ a(%,v-ub) >,-k (v-ub)dx, d v  E Kl(t) . 1, 

On peut alors dgduire (19) de (64) come il est indiquB dans 

C21 . 
Remarque 1 

On peut obtenir l'existence dans le thBorSme 2 sans utiliser 

la proprier6 2 par un changement de fonction inconnue et utilisation 

d'un rBsultat de H. BrEzis [3]. 

Introduisons : 
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Compte tenu de la proprii5t6 1 la fonction u2 doit satisfaire 

On voit alors facilement que (65) posssde une solution unique [3] 

dans la classe : 

u2 E L~(O.T ; Y) , 2 u; E L  (0,T ; H) . 
1 Remarque 2 ( ) 

On peut Bgalement obtenir l'existence dans le th&orSme 2 par 

un proc&d6 de pgndisation partielle. Introduisons 1 cet effet 

l'op6rateur de p6nhlisation 8 de H danc H defini par : 

et l'espace affine : 

vI(t) - Iv I V  E v , v =.B I t sur rl 1 . 
Le scalaire E dtant positif, destinB B tendre vers zero, soit* 

uE(x,t) la solution de lr6quation 

1 
( ) Cette remarque a St& sugg6r6e 1 1'A. par J.L. LIONS. 



uE(t) E Vl(t) , d t  E L0,T.I P.P. 

1 
(u: ,Y-uE) + a(uE ,v-uE) + ;(@(uE) ,-I-uE)= -L blvcvl (t) . 

Choisissant v = @t dans 1'LgalitL (66) on obtient aisgment les 

1 majorations ( ) 

2 
(67) up 

E born6 de Lm(O,T ; H) C1 L (0,T ; V) 

Choisissant ensuite v = u (t) , t E [o,T[ dans 1'LgalitL (66) 

relative I l'instant t+h , h > o , t+h E [o,T] , et v = u (t+h) 
E 

dans l'LgalitL (66) relative I l'instant t. Ajoutant membre 1 membre 

les deux LgalitLs et utilisant la monotonie de 6 on obtient que : 

2 (68) u; E bor&de L~(o,T;H)~L(o,T;v) 

car u:(o) est born6 dans H . 
Les estimations (67) et (68) permettent alors de passer I la 

limite E i o et d'obtenir l'existence dans le thdorsme 2. 

Remarque 3 

Nous n'avons pas utilisL les raisonnements indiqugs aux 

remarques I et 2 pour d6montrer l'existence dans le th6oriime 2 car 

nous avons prLfLrL nous servir des propri6tCs 1 et 2 qui mettent 

en 6vidence certains caractPres physiques de la solution. Le 

thLorPme 2 montre de plus que la solution de (19) est limi.te de 

( I )  On utilise le fait que @(at) = o et que B est monotone. 
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solution de (17) lorsque le coefficient b de transmission de la 

paroi tend vers +- , ce qui traduit 6galement un fait concret. 

Remarque 4 

Biea que nous ne l'ayons pas 6nonc6 come theorgme, il est 

6vident d'aprss la d6monstration du th6orSme 2 que la solution u 

de (19) satisfait aux propri6t6s 1 et 2 6nonc6es pour u 
b ' 

9) Conclusion 

Les raisonnements que nous avons mis en oeuvre dans le cas de 

la glace peuvent naturellement s'adapter P d'autres ph6nomSnes de 

fusion et compli5mentairement 5 des phsnomsnes de cristallisation. 

La caractsristique de chacun des cas est qu'initialement la temp6- 

rature du milieu continu 1 transformer doit Otre uniform6ment soit 

B sa temp6rature de fusion, soit 1 sa temp6ratctre de cristallisation. 

Les conditions aux limites annexes peuvent Stre diverses suivant les 

aonditions physiques exterieures. 
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REMARKS ABOUT THE FREE BOUNDARIES OCCURRING IN 

VARIATIONAL INEQUALITIES 

David Kinderlehrer 

1. This discussion concerns two variational inequalities 

with interior constraints or obstacles. Each of these prob- 

lems has given rise to questions about the smoothness of so- 

lutions and the nature of the free boundary determined by 

coincidence with the obstacle. The present theme is to show 

how smoothness of the solution implies smoothness of the free 

boundary provided that certain geometric conditions, which 

Vary from problem to problem, are satisfied. The emphasis, 

therefore, is on formulation and illustration rather than 

demonstration. Our applications are to a linear problem which 

arises in the study of stationary fluid flow through a porous 

medium and to a nonlinear problem related to minimizing a 

functional in a set of functions constrained to lie above a 

concave obstacle. 

Notations 

f2 open connected set in R" with smooth boundary an 
- 

g smooth in f2 
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- 
$ smooth i n  Q and $ 5 g on an ( t h e  o b s t a c l e )  

We may assume f o r  t h e  time being t h a t  g = 0 s i n c e  

our i n t e r e s t  i s  r e s t r i c t e d  t o  i n t e r i o r  p r o p e r t i e s .  

1 t m  K = K  = C V E H  ( n )  : v , $  i n  n and v = g  o n a n 1  
Q 

f c1 (n) 

s a t i s f y  n - 
> v 1512 f o r  5 E R and X E  a i j  Si S j  - 

2 n 
Problem 2 Let a ( p )  = (a l  (p) , . . . , a  (p)  ) E C (R  ) s a t i s f y :  

n 

f o r  each C .compact i n  R", t h e r e  e x i s t s  a v = v ((21 > 0 

such - t h a t  
' ( a ( p ) - a ( q ) ) ( p - q )  ,VIP-q12 f o r   PI^ E C 

The . sb lu t ions  t o  problems 1 and 2 determine a coin- 

c idence s e t  

whose boundary 3 1 ,  c a l l e d  t h e  curve of  s e p a r a t i o n ,  i s  t h e  

f r e g  boundary we wish t o  study.  T o  r e c a p i t u l a t e ,  we s h a l l  
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achieve  t h i s  by e x p l o i t i n g  t h e  smoothness o f  u. 

We begin  w i t h  some ve ry  b r i e f  i n fo rma l  remarkscabout 

t h e  r e g u l a r i t y  o f  t h e  s o l u t i o n s  t o  Problems 1 and 2. The 

f i r s t  r e s u l t s  i n  t h i s  d i r e c t i o n  f o r  Problem 1 a r e  due t o  H .  

Lewy and G.Stampacchia C141 who showed t h a t  

u E H2, ' (n)  when LJ, E ~ ' ( n ) ,  f = g = 0, n < p < 

LJ, = - D .  ( a i j  Di J , )  
3 

About t h e  same t i m e ,  Brez,$s and. Stampacchia C5 I cons idered  

t h i s  problem f o r  more g e n e r a l  f and g and o p e r a t o r s  L. 

I t  i s  p o s s i b l e  t o  cons ide r  t h e  s o l u t i o n  u a s  t h e  minimum 

of s u p e r s o l u t i o n s  t o  t h e  e q u a t i o n  Lw = - D .  ( a  Di w )  which 
I i j  

l i e  above J, i n  R .  This  approach has  been s t u d i e d  by H. 

Lewy'and G.Stampacchia CIS1 and r e c e n t l y  by U.Mosco and G.M. 

T r o i a n i e l l o  C201. 

The smoothness of  t h e  s o l u t i o n  t o  Problem 2 has  been 

a s s o c i a t e d  t o  i ts  e x i s t e n c e .  Again, H.Lewy and GStampacchia 

[ I61  were a b l e  t o  prove t h a t ,  f o r  u s a t i s f y i n g  (1.21, 

u E ~ ~ " ( $ 2 )  when J, E c2(;), f = g = 0 ,  a l l  pcC1,m). 

For t h e  s p e c i , a l  ca se  of  minimum a r e a ,  w e  r e f e r  t o  M.Giaquinta 

and L.Pepe C91. I n  gene ra l ,  e x i s t e n c e  of  s o l u t i o n s  t o  

Problem 2 depends on t h e  r e l a t i o n s h i p  among an, a ( p ) ,  and f .  
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S.Mazzone has considered t h i s  ques t ion  both from the  p o i n t  of 

view of t h e  coerc iveness  of a ( p )  and t h e  geometrical  r e l a -  

t i o n s h i p  among a n ,  a ( p ) ,  f ,  C18l;C191. C.Gerhardt has a l s o  

t r e a t e d  t h i s  problem C 7 1. 

I t  i s  c l e a r ,  by consider ing one dimensional examples, 

t h a t  t h e  s o l u t i o n  u  t o  (1.1 ) o r  (1.2) need no t  be i n  c2 (n) . 
I t  was thought by some, inc lud ing  the  au thor ,  t h a t  H 2,P 

smoothness was t h e  b e s t  genera l ly  p o s s i b l e  even though f o r  

important  two dimensional examples ( C  103, C I  I  I )  , t h e  second 

d e r i v a t i v e s  were bounded. However, J .Frehse  C61 r e c e n t l y  

showed t h a t  u  E H ~ ' ~  ( n )  f o r  a  - 
i j  - 'ij* 

By a  d i f f e r e n t  

method, t h i s  conclusion was obtained f o r  genera l  Problems 

1  and 2 by H.Brezis and t h e  author C41. Independently, C. 

Gerhardt  C81 has  obta ined t h i s  r e s u l t .  

The smoothness of t h e  curve of separa t ion  3 1  has  

been r e l a t e d  t o  geometric condi t ions .  We suppose hencefor th  

t h a t  n  = 2 .  Lewy and Stampacchia C141 observed t h a t  i f  n 

canvex, g ( r e a l )  a n a l y t i c  and concave, and a i j  = 6 i j ,  

t hen  8 1  i s  an a n d y t i ~  Jordan curve. Recently it has been 

shown t h a t  t h i s  conclusion is v a l i d  under t h e  assumptions 

above about n and $ i f  
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The proof o f  t h i s  r e s u l t  C121 mot iva t e s  t h e  p r e s e n t  work. 

Ques t ions  r e l a t e d  t o  l i n e a r  a n a l y t i c  e q u a t i o n s  which s h a r e  

some o f  t h e  c h a r a c t e r i s t i c s  o f  t h e  p r e s e n t  work a r e  d i s c u s s e d  

by H.Lewy C171. 

2. To show t h a t  a g iven  cu rve  is  smooth, we s h a l l  show 

it has  a smooth r e p r e s e n t a t i o n  a s  t h e  boundary v a l u e s  of  a 

conformal mapping. We fo rmula t e  a problem i n  complex v a r i a -  

b l e s .  Let  w b e  a s imply connected  domain i n  t h e  z=xl+ix 
2 

p lane ,  which f o r  our  purposes  w e  may a s  w e l l  assume t o  be a 

c l o s e d  Jordan  domain, and r c a w  be an (open) Jordan  a r c .  

Denote by G t h e  upper s e m i d i s c  { 1 t 1 < 1 ,  I m t  > 0) i n  t h e  

t = t + i t 2  p l ane .  We c o n s i d e r  t h e  conditLons below: 
1 

w admits  a conformal mapping 

4 : G + w w i th  t h e  p r o p e r t i e s  
(2.1) 

and ( r H " ~ ( G )  f o r  some q r 2 - 
4 is I : I mapping o f  -1 < t < 1 onto r 

2 Le t  F E C (U)  , f o r  a neighborhood U of or w (( U ,  

sa t i s fy  
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(2 .2 )  
a F - ( z o )  # 0 f o r  a  z  E r . a I  

F i n a l l y ,  l e t  f  c HI ' - ( w )  s a t i s f y  

a f  - ( z )  = u ( 2 )  a .  s. i n  w where  a z 
( 2 . 3 )  

( ~ ( 2 )  / 2 p o l z - z  I < 1 for z E w and some p > 0 . 
0 

Theorem 1 Suppose t h a t  Q ,  F, f  s a t i s f y  (2.1 ) , (2.2) , (2 .3)  

r e s p e c t i v e l y  and t h a t  $ ( t o )  = z . Suppose t h a t  
0 

f = F  on r 

Then f o r  n  = 1 or 2 ,  t h e r e  ex i s t s  a c # 0 such  t h a t  

Moreover ,  c and c depend c o n t i n u e w . 1 ~  on 1 

C o r o l l a r y  2.1 With t h e  h v p o t h e s e s  and n o t a t i o n s  o f  Theorem 

f (2 ) - f  ( z o )  - 
C (2 .5)  l i m  = F ( z ~ ) + F ~ ( z ~ )  ; I Z w I 

Z 
Z+Z z- Z 

0 0 

where  c is  d e f i n e d  i n  (2 .4 ) .  
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I t  is  of  i n t e r e s t  t o  know cond i t ions  f o r  which n  = 1. 

Coro l l a ry  2.2 With t h e  hypotheses  and n o t a t i o n s  of  Theorem 

1 ,  suppose t h a t  

(2.6) U-w c o n t a i n s  a  s e c t o r  o f  p o s i t i v e  ang le  wi th  v e r t e x  

o r  
Z o  - 

Then (2.4)  ho lds  f o r  n  = 1. - 
W e  remark t h a t  t h e  v a l i d i t y  o f  (2.4)  f o r  each  

to E (-1 1 ) w i t h  t h e  modulus o f  c and c independent  of  
1  

1,X - 
to i m p l i e s  t h a t  +I E C (G n BR) f o r  each  R < 1,  

BR = { [ t i  < R l .  Th i s  i s  a  known f a c t  i n  t h e  t h e o r y  of  func- 

t i o n s  and fo l lows  by e s t i m a t i n g  Cauchy's I n t e g r a l  o f  t h e  

a n a l y t i c  f u n c t i o n  

9  ( t l - 9  (to) 
- c  . t-t 

0 

3. A t  t h i s  p o i n t  we s h a l l  s tudy  t h e  curve o f  s e p a r a t i o n  

f o r  some p a r t i c u l a r  examples. The proof o f  Theorem 1 w i l l  be 

g iven  i n  55.  Rather  t han  c o n s i d e r i n g  t h e  most g e n e r a l  condi- 

t i o n ~ ~  l e t  us  d i s c u s s  t h e  f r e e  boundary which a r i s e s  as t h e  
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water  l e v e l  i n  the  s t a t i o n a r y  flow between two resevo i r s  

separa ted  by a dam of  non-homogenous porous medium. For de- 

t a i l s  about t h e  h i s t o r y  and formulation of t h i s  problem we 

r e f e r  t o  the  l e c t u r e s  of C.Baiocchi i n  t h i s  volume. The 

p a r t i c u l a r  formulation he re  follows V.Benci C21. To agree  

wi th  t h e  l i t e r a t u r e ,  we in t roduce d i f f e r e n t  no ta t ions .  

Let  R be t h e  i n t e r i o r  of a r e c t a n g l e  i n  t h e  

z = x +ix2 plane  and suppose t h a t  a ,h ,g  a r e  assigned 
1 

snmeth.,..functions i n  s a t i s f y i n g  

a ( z )  , a > 0 i n  R f o r  some 
0 

> 0 

h ( z ) $ ~  \ i n  Z 

g ( z )  2 0 on aR 

Although a,h,  and g a r e  p a r t i c u l a r  func t ions ,  t h e i r  form 

does n o t  concern us  he re  s ince  w e  s h a l l  assume t h e  conclu- 

s i o n s  of  CIl,C21. Denote by 

K = { V  E H '  (n) : v 0 i n  R and v = g on aR} 

suppose t h a t  

W e  know t h a t  w E H 2 ' ~ ( ~ )  by ~ 4 1 .  Let l o c  
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I =  {z E R : W(Z) = 0) and 

n = (Z E R :w(z) > 0) = R-I 

According to Cll,C21 the free boundary 

is a simple curve connecting two points on opposite parallel 

sides of the rectangle aR. Indeed, assuming that the sides 

of aR form angles of n/4 with the x, , x2 axes, we may 

assert 

(3.3) r :  x 2 = g ( x l )  , lgl(xl)I ( M  are. , 

for an appropriate tange of 
X1 

Theorem 2 Let r = 31 n R be the curve of separation of the 

solution w to (3.2).  hen I. C' - curve. 

Proof We shall verify the conditions (2.1 ) , (2.2) , (2.3) in - 
a neighborhood of any zo E r .  Let z r 0 E r and p > 0 

0 

such that B (0) (= R. First we verify (2.2) and (2.3). Observe 
P 

that 

(since the C' function w attains there its minimum).Re- 
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writing (3.4) we see that 

Let v be a solution to the equation 

3 
Sinc$ -h/a is smooth, v is in C (B-). Define 

P 

F (z) = - (D,.v-i D v) 
2 

Then 

Let z E 'r B . Since D. w(z0) = 0 and D.w is 
Q 3 3 - 

fipschitz in B , we see that 
P 

]~.w(z) - ~ . n ( z ~ )  I ( Const. 12-2 I 4: E B, , zo E r n B .  
3 3 0 P P 

Hence 

1% (z)1 - < c o ~ s ~ . ~ z - z  o I for z B z r r o ~ ,  
P' 0 P 

aF 
a l = -h(zo)/2a(zo) $ 0 by Furthermere, - (zo) = - - 

2 

(3.1) 
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Hence, (2.2) and (2 .3)  a r e  v a l i d  f o r  each p o i n t  z .c r n B_ , 
0 P 

with  c o n s t a n t s  independent  o f  z  , and f ,  F de f ined  by 
0 

(3 .5 ) .  

To v e r i f y  t h e  c o n d i t i o n  (2.1 ) , w e  employ a quas i -  

conformal r e f l e c t i o n .  Suppose t h a t  

Then 

maps 8 fi B o n t o  a  p o r t i o n  o f  I and J (z )  = z f o r  z E r . 
9 

Furthermore . 

Now l e t  z  = O ( t )  be  a  conformal mapping o f  G = { l t l < l ,  

Im t > 01 o n t o  n n B = w and set 
P 

a * a * 
Then ,F O = p at 4 where 
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< 1  

I t  follows by t h e  "observat ion of Boyarski i" ,  c f .  C31 f o r  

example, t h a t  

(* E Iil " (G n BR) f o r  a  q  > 2 and each R < I .  

- 1  Replacing t by R . t we may assume t h a t  t h e  above holds  

* 
f o r  R = 1 .  I n  p a r t i c u l a r ,  t h e  r e s t r i c t i o n  of $ t o  G ,  

1 namely $ , i s  i n  ti " (G) . 

Theorem 1  may be appl ied  a t  each p o i n t  z E B ,,n r 
0 

from. which it follows t h a t  

2 
t~ o c"'(G n BR) f o r  h = 1- - and each R < I .  

9  

I t  a l s o  follows t h a t  t h e  integer n  = 1  s i n c e  r s a t i s f i e s  an 

e x t e r i o r  segment cond i t ion  f o r  each z o r . ( c f .  (2 .6 )  ) . 
0 

4 .  I n  t h i s  paragraph we s t a t e  an a p p l i c a t i o n  of Theorem 

1 t o  Problem 2.  For t h i s  we assume t h a t  
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n i s  a s t r i c t l y  convex domain i n  R 
2 

3 - 
$ s t r i c t l y  concave, i n  C ( a )  

(4.1)  
$I < 0 on a n ,  and max $ > 0 

R 

f = O  

I n  t h i s  c a s e  it i s  known t h a t  3 1  i s  a Jordan  Curve. 

Theorem 3 Under t h e  hypotheses of  ( 4 . 1 ) ,  t h e  cu rve  o f  seE- 

a r a t i o n  a1 a s s o c i a t e d  t o  t h e  s o l u t i o n  u of (1 .2 )has  a 

HGlder cont inuous  tangent .  

W e  r e f e r  t o  C131. 

5 .  W e  remark on t h e  proof of  Theorem 1.  I t  fo l lows t h e  

argument o,f Theorem 1 C131. One n o t e s  t h a t  it i s  n o t  neces-  

s a r y  t o  know t h a t  

If / f  I 5 const.1 z-z I 2 z 0 

used i n  C 1 31 b u t  on ly  t h a t  

< cons t .  lz-z I l f z l  - 0 

t h a t  i s ,  our (2.3)  . 



D. Kinderlehrer 

References 

C11 C.Baiocchi, Su un problema di frontiera libera connesso 
a questioni di idraulica, Ann di Mat. P. ed Appl. XCII 
(1 922) 107-1 27. 

C21 V.Benci , on the filtration problem though a porous medium 
(to appear) 

[3] L..Bers, FI.John, M.Schechter, Partial Differential Equa 
tions Interscience, N.Y. 1962. 

141 H.Bre_zis and D.Kinderlehrer, The Smoothness to solutions 
non linear variational inequalities, to appear in Indiana 
Journal of March. 

C51 H.B=&~~ and G.Stampacchia, Sur la rGgularit6 de la solu- 
tion d'inequations elliptiques, Bull. Soc. blath. France 
96 (1968) 153-180. 

C61 J.Frehse, On regularity of the solution of a second order 
variational inequality, Boll. UYL (IV) (1972) , 31 2-315. 

C71 C.Gerhardt, Hypersurfaces of prescribed mean curvature over 
obstacles rlath. Zeit . 

[ 8 I , Regularity of solutions of non linear variational 
inequali,ties, Arch. Rat. Mech. and Anal. 

C91 M.Giaquinta and L.Pepe, Esistenza e regolarita per il pro 
.blema dell'area minima con ostacoli in n variabili Ann. Sc. 
N. S. di Pisa 25 (1971),481-506. 

[I01 D.Kinderlehrer, The coincidence set of solution to certain 
variational inequalities, Arch. Rat. mech. and Anal., 40, 
(1971) 231-250. 

[I1 1 , The regularity of the solution to a certain 
variational inequality, Proc. Symp. P. and Appl. Math. 23 
AMS Providence, R.I. 

C121 , How a minimal surface'leaves an obstacle, 
Acta Math. (130) 1973. 

[I31 , Some questions related to the coincidence 
set in variational inequalities, Symp. Math. (to appear). 

C 14 I H.Lewy and G. Stampacchia, on' the regularity of the solution 
to a variational inequality, C.P.A.M. 22(1969) 153-188. 



D. Kinderlehrer 

C151 ,On t h e  smoothness of  superharmonics which 
s o l v e  a  minimum problem,) .  d8Analyse  Math. 23 (1  970 )  227-236.  

C161 , On t h e  e x i s t e n c e  and smoothness 
s o l u t i o n  of  some noncoercive v a r i a t i o n a l  i n e q u a l i t i e s ,  Arch. 
Rat.  Mech. and Anal. 41 ( 1 9 7 1 )  241-253.  

1 1 7 1  H. Lewy, On t h e  n a t u r e  of  t h e  boundary s e p a r a t i n g  two domains 
wi th  d i f f e r e n t  regimes ( t o  appea r )  

C181 S .  Mazzone, Ex i s t ence  and r e g u l a r i t y  of  t h e  s o l u t i o n  of  c e r t a i n  
n m  l i n e a r  v a r i a t i o n a l  i n e q u a l i t i e s  w i th  an o b s t a c l e  Arch. Rat.  
Mech. and Anal. 

[ I 9 1  , Un problema d i  d i sequaz ion i  v a r i a z i o n a l i  p e r  
s u p e r f i c i e  d i  c u r v a t u r a  media a s segna ta ,  Bo l l .  UML VII ( 1973 )  
318-329.  

C201 U. Mosco and G.M.Troianel10, On t h e  smoothness o f  s o l u t i o n s  
o f  t h e  u n i l a t e r a l  D i r i c h l e t  problem, Bo l l .  UML. 



CENTRO INTERNAZIONALE MATEMATICO ESTIVO 

( C .  I. M. E.  ) 

TORSION ELASTOPLASTIQUE D'ARBRES CYLINDR1QUES:PROBLEMES 

OUVERTS 

C o r s o  t e n u t o  a B r e s s a n o n e  d a l  1 7  a 1  2 6  g i u g n o  1 9 7 3  



TORSION ELASTOPLASTIQUE D'ARBRES CYLINDRIQUES 

PROBLEMES OWERTS 

H. Lanchon. References I101 1111 

1. INTRODUCTION: (Les nota t ions  adoptees sont l e s  memes 

que c e l l e s  de G. Duvaut dans ses  conferences 1.2.3). 

vg-prgbl$gg-gu,ligite-g~~gci~-est: t rouver (a,u) t e l s  

1.1 Problkme concret 

.La barre  cylindrique occupe l e  domaine 

de R ~ ;  des couples oppos6s sont exerc6s 

a 
i j  , j  

= 0 dans a 

a i jn j  = 0 s u r  an2  
a33 = 0 ,  u1 -- u2 = 0 sur  as?, 

, 

! . - 

sur  s e s  deux bases ano e t  aQh. 
.Les forces volumiques sont  suppos6es nu l l e s .  

,/--- '.. . Aucun e f f o r t  n ' e s t  exerc6 s u r  l a  surface  

t 
P 

F = o s u r  anL 

I 

a t6 r i au  e s t  suppos6 "p&astgp&astique,  

~ar fa i tement -~ last i9ue I :~  

! 
1 

I 

! 
, 

1 
I 

l a t e r a l e ;  (dans l e  cas d'une sec t ion  multi- 

connexe, c e t t e  condit ion e s t  encore v ra ie  

s u r  l a  f r o n t i b r e  l a t e r a l e  des cavi t6s) :  
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a33 = 0 ;  u1 = - a ( t ) h x 2 ;  u2 = a ( t ) h x l  s u r  anh 

I 

(Une r o t a t i o n  g loba l e  e s t  imposee B l a  base supe r i eu re .  

a ( t )  e s t  l ' a n g l e  de t o r s i o n .  Par  l a  s u i t e ,  on supposera 

h  = 1. )  

De p l u s ,  a  e t  u  do iven t  & t r e  r e l i e s  pa r  l a  l o i  de 

comportement. Nous envisagerons  i c i  l e s  deux l o i s  su ivan t e s :  

1 1 a v e c :  . T ( o )  = T  a i j a i j  - - ( o . . ) ~  - g2 :  c r i t s r e  de Yon Mises 6 11 

T ( a >  r 0  dans n ( c r i t 8 r e  de p l a s t i c i t 6 )  

(A) Loi de Henchy o u (A)' Loi de P rand t l -  

(g cons t an t e  > 0)  

E ~ ~ ( u )  = Aijkhakh + X i j  

(bon modsle mathgmatique) 

1 E ~ ~ ( u )  = - Z ( ~ i , j  + u i) : deformation l i n 6 a r i s 6 e  
j ,  

Reuss 

ii (u) = Ai kh6kh + I - .  
11 

(beaucoup p l u s  r6a l i s te  

t enseur  d 1 6 l a s t i c i t 6  de l a  l o i  de Hooke. 

A .  (XI ( T ~ ~  - ail (x)) L 0  dans Q Y T  C 
11 

. Xi, e s t  l a  deformation p l a s t i q u e .  
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. i = , et la convention de sommation sur les 
indices r6petBs est adoptee 

Nous sommes intBress6~ par: 

. l'existence et l'unicit6 de la solution (o,u) ; 

. la determination pour chaque valeur de a(t) des regions 

Blastiques et plastiques; 

t a b  = {X/X 6 n, T~u(x)J < 01, 

(en effet dans 4, lij = 0) 

9, = {X/X n, ~[~(xII = 01 

Le problkme (A) avec Hencky conduit 3 un problzme qtgtiqup. 

Le problsme (A)' avec Prandtl-Reuss conduit 3 un problsme 

quasistatique d'evolution. 

1.2 Methode et plan de l'expose 

aj Formulation et resultats pour un problbme general 

avec Hencky : Pb (B) . 
b, RBsolution de (A) come cas particulier de (B). 

CJ Formulation et rBsultats pour un problkme g6nBral 

avec Prandt 1 -Reuss : Pb (C) . 
dj  Etude de (A) ' comme cas particulier de (C) . 

Identit6 des solutions de (A) et (A)' lorsque b(t) , 0. 
ej GBn6ralisation aux cas des sections multiconnexes. 

Problkmes ouverts. 
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L'exposg est fait en vue de: 

. Souligner les rgsultats mathgmatiques importants. 

. Montrer comment l'on peut tirer partie d'une solution 
abstraite pour obtenir des rgsultats concrets. 

Prgsenter les problkmes ouverts. 

(Par manque de temps, les points cj, dj et ej ne seront 

Bvoqu6s que trks brikvement.) 

2. PROBLEME GENERAL AVEC LA LO1 DE HENCKY 

2.1 Description du problkme [B) 

. Q: domaine 

. inconnues: 

arbitraire 

f dans n 

F sur anF 
u sur anu 
(a ,u) tels 

(1) aij =aji dans SZ 
Bquilibre 

(2) aij, + fi = 0 dans 
(3) a..n 5 Fi 

11 j 
sur anF 

conditions aux limites 
(4 )  ui = ui sur anu 

( 5 )  T(a) 0 dans Q. 

(6) Eij (u) ' Aijkhakh + Aij Loi de comportement 

(7) A. .(Tij - Uij) C 0 
13 

V T C C  de Hencky 
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avec : 

(8) : R9 -+ R convexe et continue (critsre 3e plasticitg) 

(9) Aijkh : born6 , symdtrique et coercif dans 52 (tenseur 

dfdlasticit6. Cf. G. Duvaut, zGrne confdrence) . 

2.2 Principe de Haar Karman et formulation variatiomelle 

Enonce du principe: si le problkme (B) a une solution 

(crop0), alors o0 minimise la fonctionnelle 

sur l'ensemble des champs de contraintes permis, c'est 

3 dire, vdrifiant (I), (2) , ( 3 ) ,  ( 5 ) .  

(I1 suffit d16crire la difference J(o) - J(ao) et de faire 

une integration par partie en tenant compte de (1) .. . (9) 
pour montrer ce principe.) 

. Le choix des espaces fonctionnels et les hypoth8ses 
sur les donnees Btant faits pour donner une signification 

(1) ... (lo), on suppose: 

et l'on pose: 
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a', solution Bventuelle de (B) doit donc Ctre solution du 

ProblBme (B1l: minimisation de J(a) sur X . 

2.3 Rgsultats et conclusions pour le probldme (B) 

)L est un convexe ferme' de [L' (Q)] 

-& (0.r) = $n Aijkhoijrkh dx est une forme bilin6aire. 
sym6trique et coercive. 

d r  est une forme lin6aire continue sur X 

D'oh le resultat classique (cf. ref. 2): 

Th?o~$gg-_Z1_: si K # @ (ensemble vide) alors 3 a0 a X 

unique tel que : 

(12) ~(0') s J(o) v a c et, a0 est caracterise par 

(13) (a0 ,a-aO) a 

Conrlunions 
Nous avons un rgsultat d1unicit6 pour le champ de con- 

traintes solution de (B). 

L1existence d'une solution (aO,uO) de (B) ne sera 

acquise que si # @ et,dans ce cas, seulement si l'on sait 

associer ?I a0 un champ de dCplacements u0 6 H 1 ( 0 )  verifiant 

( 4 ) ,  par la loi de comportement ( 6 ) ,  (7). 
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3. RESOLUTION DU PROBLHME (A) CObIblE CAS PARTICULIER DE (B) 

3.1 Appl ica t ion  de 2 . Formulation e t  r 6 s o l u t i o n  
a l u n  nouveau problbme (All 

a i j n j  = o p.p. s u r  anL9  a33 = o p.p. s u r  ano 

e t  anl) 

avec 

o D = U -  t r a c e  u 
3 " 

donc 0 C + K  # 0 + 3 une s o l u t i o n  unique o0 pour (B1). 

I 
E " Q E Q ~ ~ ~ ~ Q B - ~ ~ & :  a0 e s t  t e l  que 

0 0 0 
(1) a i j  = 0 p.p. s u r  Q except6 u13 = a31 

0 - 0 e t  - "32; 

0 
(2) a i j , 3  = 0 p.p. s u r  8 . 
Idges de l a  dgmonstration: On i n t r o d u i t  un 3 qui  

v g r i f i e  l a  p ropos i t i on .de  l a  manikre su ivante :  

- - 
ui j  = 0 sauf  a ' = o (p = 1 , 2 ) ,  d 6 f i n i  comme d i s t -  P3 3P9 

r i b u t i o n  s u r  C p a r  
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(C 6tant la section droite du cylindre). 

Alors a 6 X et J (o) 6 J (a0) -, a0 = 5 ce qui d6montre la pro- 

position. 

IZZxiiqyg: a0 est solution du problsme: 

I os2 = aI3; 0,1 I - a23 p.p. sur C. 

I De plus 1 grad0 1 s 0. 

Dgmonstration: oij r L2 (a), uij = 0 p.p. sur n et a33 = 0 , j 
p.p. sur an, et anl impliquent 

3 $ ( s  H1(C) tel que @,2 = a13 et = - 
'2 3 

a. -n. = 0 sur an 
13 J 

L+ grad @ A n = 0 sur aC,soit @ = k (constmk) 

sur aC (dans le cas dfune section multiconnexe on aura 

pareillement @ = ki sur chaque contour aZi de cavit6). 

Posons f3 = $ - k, alors 13 E HA(C). (0 = ki - k = Ci sur aCi 

dans le cas multiconnexe). 
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(14) 1 1 1  8 11 1  ' = 4 lgradO 1 'dx 6tant une norme sur 

H~(C), et le fait que Igrad012 = at3 + ai3,entrainent 

l'unicitc? du 0 associ6 de cette manisre P chaque a 

Enf in : 3 (a) c 0 irnplique 1 grade 1 < g. 

Consequences du lemme 3.1: 3 une bijection entreXT et 

et,pour deux 616ments correspondants: 

(16) J(o) = Ja(0) = Igrade 1 'dx - 4ya[Odx; 
C 

E 
"=2(l+v) 

Les problzmes (B1) et (B1)' sont donc equivalents au prgblgme 

/All: minimiser Ja(0) sur K. 

&peee-_S,z: 3 fa unique dans H~(P) tel que: 

(17) 2yaf( dx = <(,fa> V ( 6 Hi(1) 

oa < , > est le produit scalah associ6 a III.III 
(ceci ntest rien dtautre que le theorkme de repr$sen- 

tation de Riesz). 

Alors : 
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.Une expression 6quivalente du problsme (A1) peut etre donn6e: 

Trouver 8, K tel que: 

Th5o~5rlle-2,l: E x i ~ t e n c e - e t - y n i c i t ~ - ~ o u 1 : - I A ~ I ~  

0 ,  K unique qui minimise J,(+) sur K et, 8, est 

caractdrisd par: 

(19) <8, - @, 0, - f,"O V + G  K 
- 

(K est un convexe ferm6 de H~(c) et Ba n'est autre que la 

projection de fa sur K). 

K est llensemble des fonctions Lipschitziennes,de 

module g,de H~(c). Ces fonctions sont donc uniformement 

continues sur T et,nulles au sens fort sur aZ.  

* K  est compact pour la norme de la convergence uniforme; 

ceci est une cons6quence du th6or8me d1Ascoli: 
- 

X = ~'est un compact de R2. 

Y = U @(T) est un compact de R. 
@&K 

K est un ensemble d'applicatiols e'quicontinues de X dans 
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En consdquence li est uniformement compact dans ~ ( x , Y ) ,  

(ensemble des applications continues de X dans Y) or il est 
- 

facile de montrer que K = K. 

Enfin, si et $2 6 K alors s~p(+~,$~) et. inf (+l,+2)e K 

Les rdsultats de H. Br6zis et G. Stampacchia, 

cf. rdf. [43 ,  nous permettent de conclure: 

l Y 1  e,e c (TI, 

I 

(ensemble des fonctions continues 3 derivdes Lipschitziennes) 

dans les deux cas suivants: si C est convexe et aC Lipschitz- 

ienne ou,si X est non-convexe mais avec une frontisre plus 

r6gulisre. 

Nous pouvons alors ddfinir proprement les parties 

6lastique et plastique de la section C. 

(20) Ea = (X/X 6 C, I gradBa(x) 1 < g? , ouvert de C 

(21) Pa = (x/x 6 C, I gradBa(x) 1 = g ?  . 

fa Propgpj_tjgn-gz2: Soit y = -, alors: 
Pa 

1) Y est la solution du probl&me de Dirichlet: 

I(22) ~y + z = o sur et y = o sur 3~ 
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2, y E w2'P(z) c"(c> n c','(x), Y 2 r p 6 m . 

3)  y > 0 sur C 

4 1  lgradyl est born6 sur C et ne peut atteindre son 

maximum que sur aC. ' 

D6monstration: par definition <(,y> = 2 1  (dx v 4 s H;(L); 
C 

et ceci est la formulation variationnelle du problsme de 

Dirichlet mentionn6 en 11. 

2 )  est obtenu par les th6orSmes classiques de rbgularit& 

3)  et 4) sont des cons6quences directes du principe 

du maximum, en effet: Ay = - 2  < 0 montre que y est super- 

harmonique et donc ne peut atteindre son minimum que sur la 

frontibre; ce minimum est 0 donc y > 0 dans C. De mCme 

sur C; Igrady12 est donc subharmonique et ne peut atteindre 

son maximum, qui est fini puisque y 6 C1"(Z), que sur aC. 

Posons M = sup 1 gradyl et a. = % 
- !JM 
C 

PEOPOZ!~!~?!-I:I: pour 0 r a 6 ao, ea = fa ce qui implique 

que toute la section reste 6lastique. 
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En effet, ci 6 ao+ lgrad fa( 6 g+ fa CE K +  Ba = fa; par 

ailleurs: (grad fal < g dans C (cf. proposition 3.2, partie 

4), donc Ea = C. Les proprigt4s de fa d4rivent d'ailleurs 

directement de celles de y et montrent que fa est bien la 

solution classique du problkme 4lastique. 

3.2.5 Comportement de 0 -ppuy-go-<-g,-<-+-?~ ---------- ------------- 
s o i u t i o n - 5 l a s t o ~ i 8 s t i g u e  

Prgpc_~i;iog-_3,4: Pour cio < a < + w ,  Pa f @ ;( Cela 

signifie qu'il y a une r6gion plastique)et,par ailleurs: 

I Ae, + Zpa = 0 sur Ea et eci€ c~(E~) 

Dgmonstration: Posons 

i = {x/x C t.q. 1 grad B,(x) 1 6 g - if 
g n 

et, 3 tout $J a 3 (C ) associons: 
g n 

J, ta - iiIi sur C avec k = sup 1 grad $J (x) 1 
E.. .- P 

lea sur c - 
g n 

Alors K ahsi que 42 = 20, - ql; ces deux 616ments 
peuvent donc etre choisis comme fonctions tests dans (19) ce 

qui entraine: 
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Par passage 3 la limite lorsque n + a, nous obtenons: 

D'o5 la conclusion de la proposition. 

I 
F''gp"fih~~-3~5: quand a + alors: 

1) 8, converge uniformement vers 8,e K 

2 )  8, est l'enveloppe sup6rieure des fonctions de K. 

3) 8=(x) = gG(x,aX) oh 6(x,aC) d6signe la distance 

de x B ax. 

4, Igrad8,l = g. p.p. sur X; toute la section est 

donc plastique. 

Dlpgngr~atigg: (19) peut &tre 6crit: 

Lorsque a -+ 0 ,  8, d6crit un sous ensemble infinie de K. K 

Btant uniformement compact, 3 une sous suite e qui con- 
a; 

verge uniform6ment vers 8 , ~  K. On peut donc passer la 

limite dans 1'inEquation pr6cEdente compte tenu du fait que 
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I,' unicite vient du fait que s'il existe 2 solutions: 

( bL1) f eL2) a l m s  e, = s~~(e,'),e!~)) c K et satisfait 

d'oh la contradiction. 

(Les points 2, 3, 4 ne presentent pas de difficult&.) 

3.2.7 Comportement general de 8,-eg_fggc~jgn-dp-g ---------- --------- ----------- 

Pygpg~igigg-J,$: si a < a', alors 0, < eat sur un 

sous ensemble de mesure non nulle de C. En particulier 

l Ba > 0 partout sur C,fa > 0. 

Demonstration: (i) ea(x) c 0,' (x); en effet 

soit Go = {X/X c C, ea(x) > eat(x)) 

et C1 =, {X/X e C ,  Oa(x) 6 13,' (x) 1 

En appliquant(l9) aux deux fonctions test suivantes : 

= inf{O,,eal) et 92 = s~p{8,,8,~), nous obtenons 

ce qui implique Co = 9. 



H. Landhon 

(ii) si 8,(x) = Bal(x) partout sur C, alors ea = 8,; 

supposons en effet 8, = 8,' # 8,, alors Ea = E,' # 4 et 

88, = bea' = - 2pa = - 2pa1 sur E,, ce qui est impossible 

puisque a = a'. 

(iii) Pour a fini, Ba # 8, ; en effet si Oa = 8, alors 

Soit alors 

(k sur rk = Ix/x s C, 8,(x) 2 kl 

( 8, ailleurs 

avec k E. ) 0, M,[, M, = sup 8,(x) ; 4 E K et 11in6quation 

X C C  

implique M, - k r & V k e ] 0, MoC ce qui est faux. 

3.3 Apparition et propagation des zones plastiques 

3.3.1 Nouvelles definitions des regions 6lastiqg1- ................................... ----------- 
e t - ~ l a q t i g u c  

H. Br6zis et M. Sibony (5) ont obtenu le resultat 

de comparaison suivant: si 

(24)  K t  = I + / $  c H;(C) ,  141 & em p.p. sur C) alors 

K C K t  et les deux problzmes: 
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(P) 8, 6 K; <€la - $,8, - fa> < 0 V 4 e K  

(P:) 8,' t K t ;  <8,' - 4, 6,' - fa> C 0 b' 4cK' 

ant meme solution: 8, = 8,'. 

De la on peut montrer que 

Cette nouvelle d6finition de E, et Pa est essentielle pour 

6tablir les propri6t6s concretes suivantes qui sont intuitive5 

et facile 3 d6montrer. 

Si M € Pa et, si Q E a C  est tel que 

IMQI = 6 ( M , a C )  

alors MQ c Pa. 

En particulier toute possibilit6 

Q dliles plastiques est exclue. 

3.3.3 Partition de C  en zones d'influence 

Soit r ,  l'ensemble des points de C  qui sont 6qui- 

distants de au moins deux points de a C .  r peut Ctre facile- 

ment determine pour chaque cas de section. 

Nous pouvons prouver que Pa ne peut traverser r ;  en 
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/ 
effet la deride de 8, subit une discontinuit6 B la traversee 

de I et ne peut donc etre egal B 0, qui appartient B ~ " ' ( f )  

Ainsi les diffgrents arcs de r partagent la section C en 
differentes parties, chacune dlelles Btant exclusivement 

influenc6e par une partie determinee de aC. Nous dirons donc 

que Tic E est la zone dlinfluence de aTi c 3Q si M L ri, 

il existe un unique Q E. aC tel que 6(M,aC) = IMQI, et si 

Q 6 aci (cf. figures ci dessous). 

En conclusion: 

La plasticit6 commence 3 apparartre lorsque a = a. en un ou 

plusieurs points de aZ, elle se propage de proche en proche 

a partir de la et chaque composante connexe reste enfermee 
dans une zone dlinfluence. Pour a fini, il reste donc 

toujours un voisinage dlastique autour de r .  
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3.4 Determination du champ de deplacements solution 
ae (A) 

Signalons simplement que pour chaque valeur de a on est 

capable d'associer a0 soit: 

un champ de dgplacements u0 par la loi de comportement 

(6) ,  (7), cf. [lo), et ceci grPce 3 un resultat de H. Brdzis 

C9]. Nous obtenons l'unicit6 3 une translation globale 

prSs,parall3le a Ox3, ce qui est physiquement tout 3 fait 

normal. 
J 

Pour cette determination, la regularit6 de 0, ainsi que 

toutes les propridt6s 6nonc6es en 3.2 et 3.3 sont indispen- 

sables or la plupart de ces propri6t6s sont obtenues grPce 

au the'orsrne de comparaison de H. Br6zis et M. Sibony LSJ. 

Finalement le problsme (A) est compl8tement r4solu. 

4. PROBLEME GENERAL AVEC "PRANDTL-REUSS" ET APPLICATION 
AU PROBLEME (A') 

. On trouvera dans G. Duvaut, J.L. Lions C73 la formul- 

ation et les resultats pour un problEme au limite g6nbral du 

type (B), mais cette fois avec la loi de comportement de 

Prandtl-Reuss. Les rBsultats sont du m&me styleque ceux 

obtenus en 2 mais a0 est ici solution d'unc ingquation qui 
/ 
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contient 3 la fois o et = g,et qui ne correspond pas 3 

la minimisation d'une fonctionnelle. 

Pour l'application au problgme ( A ' )  nous proc6dons 
0 c o m e  en 3.1 pour montrer que o0 I la forme simple: oij = 0 

0 0 sauf a13 et a23 et ne ddpend que de xl et x2. Les deux 

diffgrences mentionn6es ci dessus apportent tout de meme 

une difficult6 suppl6mentaire car nous devons remplacer 

l'argument J(z) < ~(a') par: 

ce qui est plus delicat mais conduit I la m&me conclusion. 

r Le problEme ( A i )  se formule alors cornme suit: Trouver 

,, (27) Oa(t) e K tel que <6,(t) - fact), Oa(t) - $> c 0 

Ce problsme est rdsolu par la th6orie des opdrateurs max- 

imaux monotones et des semi groupes non lindaires de con- 

traction L9J. 

. Si i(t) 2 0 ,  les solutions de (19) et (27) sont les 

memes, ce qui signifie que la loi de Hencky et celle de 

Prandtl-Reuss donnent meme r6sultat. Ceci est obtenu grPce 

3 un nouveau thdorkme de comparaison de H. Brezis [6] qui 

s'appuie encore sur II. Brgzis, M. Sibony 153. 
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5.  GENERALISATION AU CAS DES SECTIONS MULTICONNEXES: 
PROBLEMES OUVERTS. 

5 .1  Nota t ions  e t  nouvel le  formula t ion  

On d6signe t ou jou r s  pa r  C l a  s e c t i o n  du 

c y l i n d r e  mais p a r  C *  l a  p a r t i e  mu l t i -  

connexe e f f ec t i vemen t  occup6e pa r  l e  

mat6riau.  

Soien t  C1, C 2 ,  ... C l e s  s e c t i o n s  des 
9  

az z az, q  c a v i t e s .  

D6signons encore pa r  Co l ' e x t 6 r i e u r  de x. 
Les r g s u l t a t s  de 3.1 s o n t  v a l a b l e s  i c i  mais,  comme 

nous l ' avons  d 6 j 3  signal;, l ' a b s e n c e  d ' e f f o r t s  s u r  l a  

f r o n t i s r e  l a t e r a l e  s e  t r a d u i t  pa r  8; = 0  s u r  a C o  = 32 e t  

8; = Ci ( cons t an t e )  s u r  a C i  (nous a f f e c t o n s  une B t o i l e  3 

a u t  c e  q u i  correspond 3 l a  s e c t i o n  multiconnexe C*). 

En pro longeant ,par  Ci,8; s u r  chaque C i  ( e t  des ignant  

encore p a r  13; l a  f onc t i on  a i n s i  prolong6e) nous cont inuons 

a t r a v a i l l e r  s u r  l a  s e c t i o n  C t o u t e  e n t i 2 r e  e t  obtenons 8; 

cornme s o l u t i o n  unique du problsme (A;): Trouver 

(28) 0 ; ~  K*; <8; - 8, 8; - fa> 6 0  +' @ c K *  06 

(30) E = { $ / $  E H ~ ( c ) ,  $ = cons t an t e  s u r  chaque 

C i ,  i = 1, .'.. ql 
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5.2 Resu l t a t s  e t  problCmes ouve r t s  (R;) e t  ( R g  

l K* a l e s  mgmes p rop r i6 t6s  que K ( c f .  paragraphe 3.2.1).  

.Nous n ' av ions  pas jusqu 'a  ce s  d e r n i e r s  temps de r e s u l t a t  de 

r e g u l a r i t 6  pour 8;; c e  r 6 s u l t a t  6 t a n t  simplement esp6r6 

comme s u i t :  

( I 1  semble cependant que pendant c e t t e  s e s s i o n  de 

Bressanone, C. Gerhardt a i t  obtenu ce  r 6 s u l t a t  avec peut  

B t r e  quelques r e s t r i c t i o n s  s u r  l a  forme des Ci) 

.f;, p r o j e c t i o n  de f a  s u r  E e s t  l a  s o l u t i o n  Blas t ique  du 

problsme. 

*NOUS i n t rodu i sons  comme en 2.2.3, 

e t  montrons que pour a 6 a: t o u t e  l a  s e c t i o n  Z *  r e s t e  

eLorsque a + m, nous montrons que 8*(x) tend ve r s :  a 
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oh 6*(x,aX) e s t  en quelque s o r t e  "une d i s t ance  au bord" 

g6ngra l i see  d 6 f i n i e  cornme s u i t :  

di 6 t a n t  l e  p lu s  c o u r t  chemin 

e n t r e  a C i  e t  a C o  s i  l ' o n  con- 

v i e n t  que l a  t r a v e r s e e  de 

chaque C i  donne une con t r ib -  

u t i o n  n u l l e .  Dans l lexemple 

de l a  f i g u r e  c i  c o n t r e ,  nous 

avons 

. Nous nous heurtons a l o r s  3 un second probleme ouver t :  

I y  a  t ' i l  i d e n t i t 6  e n t r e  0; et,e;' s o l u t i o n  de: 

(Ce r e s u l t a t  s e r a i t  116qu iva l en t  de c e l u i  de H. BrBzis, 

MF Sibony.) 
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En llabsence de ces r6sultats (11;) et (RZ) nous avons 

proc6d6 par analogie avec le cas simplement connexe,pour 

formuler un certain nombre de conjectures relatives 3 

llapparition et au d6veloppement de la plasticit6 dans 

I*. L'analyse numgrique de certains cas de figures non 

n6cessairement trivial a montr6 que ces conjectures 6taient 

tout 2 fait v6rifi6es [llj; ceci est screment un encourage- 

ment pour la dgmonstration rigoureuse de (R;) et (R;). 

L'obtention de (R;) et (RZ) permettrait en outre de 

montrer l'existence dlun champs de d6placements associ6 

a 0; et de comparer les rEsultats donn6s par Hencky avec 

ceux obtenus par Frandtl-Reuss. 

Signalons enfin que llanalyse num6rique avec le convexe 

K*' est plus ais6e: les temps de calcul sont beaucoup plus 

courts et les r6sultats plus pr6cis. 
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DUALITE EN CALCUL DES VARIATIONS 
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Soit P un problsme de calcul des variations : 

(P) Minimiser L(Xu) + ~(w,u(w) ,Au(w) )dm i, 
09 A est un op6rateur diffkr~ntiel linkaire (gradient, laplacien, . . . . ) 
et X un opkrateur de trace (ex : Xu=restriction de u 2 a,) oi5 L 

est une intkgrande normale convexe et oii 1, est une fonctionnelle con- 

vexe. Nous associons 2 P le problsme dual 

(P*) Minimiser &*(up) + ( t*(w,~p(w) ,p(w))dw 

* 09 L* et L (w ,.,.) sont les fonctions duales de !L et ~(w,. ,.) 

09 M est l'opkrateur diff6rentiel adjoint de -A (divergence, lapla- 

cien, ... ) et 03. p. est l'opkrateur de trace pour lequel on a la for- 

mule de Green<u,Mp > + < Au,p > + < Xu, pp > = 0. Nous ktudions la 

dualitk entre P et P* (infl = - infp*, conditiions dtextr6malitk 
- 

liant des solutions u et p de P et P* respectivement existen- 

d 
ce de 5). En particularisant R = ] O,T[ et A = on retrouve 

les problsmes de Bolza convexes 6tudiks par Bockafellar. D'autrepart 

en particularisant 1, et L on retrouve la dualit6 pour les op6ra- 

teurs a m  dkrivkes partielles dkveloppke par R. Temam. 
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II~TRODUCTION 
.I 

1. Dans une skrie d'articles R.T. Rockafellar a ktudik la dualitk pour 

les probldmes de Bolza convexes, c-8-d pour les problbes du type : 

(P) Minimiser [ L(x (01, x(T)) + ~(t,x(t) ,k(t))dt] Pour x A l: 
02 A est l'ensemble des fonctions absolument continues, % une fonc- 

tion convexe s .c. i. et L une int6grande normale convexe (1 et L 

sont 8 valeurs dans ] - - , + - ] ) . 
D'autre part R. Temam a dkveloppk la dualitk pour des probldmes de 

cacul des variations, notament le probldme de Plateau 
I 

et de nombreux autres exemples faisant intervenir des op6rateurs a m  

dkrivkes partielles (gradient, laplacien, . . . ) . 
Nous allons donner une formulation commune de ces probldmes, et ainsi 

ktudier la dualit6 pour des probldmes de calcul des variations faisant 

intervenir 2 la fois les intkgrandes normales convexes et les opkra- 

teurs linkaires aux dkriv6es partielles. 

On va retrouver dans le cas gknkral des dkveloppements usuels en 

* 
dualitk : construction d'un probldme dual P* tel que infP= - inf P 

et tel que les conditions d'extrkmalitk fournissent un systdme decon- 

ditions n6cessaire et suffisant d'optimalitk. Le r6sdtat le plusmar- 

quant est, suivant l'idke de T. Rockafellar (1,2) dkj2 reprise par 

R. Temam (1,2), que l'existence d'une solution optimal du probldme 

dual est lide 2 la stabilit6 du problsme primal vis 2 vis decertaines 
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perturbations. Ce qui permet de ramener un probl?me d'existence 2 une 

. ,Pour obtenir un resultat d'existence sur P on 6change les rb- 
* 

les de P et P (ce qui est g6nErallement possible). 

* 
2. La dualit6 entre P et P repose dans sa formulation mSme sur la 

formule de Gre'en. Dans la d6monstration celle-ci intervient sous la 

forme d'une propri6t6 analogue au lemme d'Ner-Lagranga, lemme que 

l'on peut dans l'esprit de la dualit6 6crire ainsi : 

sup ~ I X  (0) - ~(0) +IX(T) - BIY(T) +r z(t)Y(t) + x(t)f(t)~dt) 

YE c~(o,T) 

est fini alors x(0) = a,  x(T) = 6 et z(t) = x(0) + x(r)dt. r 
Cette analogie n'est pas fortuite puisque les relations d'extr6- 

malit6 obtewes par dualit6 coincident pour des Lagrangiens r6guliers 

avec les kquations dfEuler. 

3. Nous renvoyons pour une bibliographic complste et un historique de 

la dualit6 en calcul des variations aux articles de Rockafellar cit6s 

et au lime de I. Ekeland et R. Temam ou on trouvera aussi de nom- 

breux exemples d'applications a des problhes classiques. 

* * 
NOTATIONS 

On d6signe par. $2 un ouvert born6 r6gulier de R" , r ( =  an) son 
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6 i 

bord. Pour. i E M et 1 < 6 < on note L.(Q,R ) l'espace des 

i 
fonctions 8-somables de fl dans R ; Di(fl) = Di(fl,R1) l'espace des 

fonctions cm de fl dans ni 3 support compact ; Di(E) et Di(l) 

i 
lea espaces cW(h,Ri) et C (r,R ) respectivement; D:(Q) lea 

distributions dans $2 b valeurs dans xi. 

1. Espaces fonctionnels, opgrateurs, formule de Green 

Nous donnons d'abord (A) le formalisme qui recouvre les trois 

exemples principaux (B)  . - 

4 On d6signe par UT un espace fonctionnel tel que - 
Dm($ C UI. C L~(Q,R~) 05 a E [I, + m ]  (en gBn6ral U[ sera un es- 

pace de Sobolev; UT = ~'(fl), UI = ~~'~(fl), ... ). 

On dgsigne par A un opgrateur diffgrentiel lingaire dEfini pour 

$ = ( $  ,,..., $,I E Dm(;) par 

k 
A$ = z a a 

a . . .  $j avec ap E ~ ~ 6 % .  
j = l ,  I p l  < N  P3J ax1 

n 

B 
On suppose que pour u E UT , Au appartient b \ 03 B est 

don& dans [ 1, + m [ . 
On d&signe par A un op6rateur lindaire de Uf dans un espace 

de Banach E tel que lbn ait D (r) C E C D' (I') (injections continues). 
g Q 

On suppose que A vgrifie 

x(Dm(fl)) = o et A(D~(E)) = D  (r). 
g 

Soit M l'ajoint de -A au sens des distributions. 
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On dksigne par Po l'espace 

03 a' et B' sont les exposants conjuguks de a et 8 

(l/a1 + l/a = 1; l/Br + 1/B = 1). On suppose que sur P est dkfini 
0 

un op6rateur linkaire p : Po DD' (l') tel que la "formule de 
b g 

Green" suivante : 

( Q p A u + i u M p + < A u , p p > = O ~  

est vErifike pour (u,p) E D (E) x Po et pour (u,p) E Ut x P avec m 

P = Ip E po ; pp E El (dual de E)) . 

B Exemples = 

excmple 1. Prenons pour Ut l'espace de Sobolev H1(S2), pour A 1'0pk- 

1 
rateur gradient et pour A l'opkrateur de restriction 1 l'. Si uEH(n), 

2 on a u E  L (a), AuE L2(S2,XIn) et AuE ~"~(r). (On a donc a=B=2, 

m=l, k=n, E=H'/~(~)). 

L'adjoint de -A est l'opkrateur M = divergence. L'espace P 
0 

est donc l'espace 

V = {p E L2(Q,Z!") , div p E L2(f2)). 

-+ -+ 
Pour p E Po on peut dkfinir le "flux sortant" p.v. (03 v est 

la normale extsrieure a r. 11 vient : P = {p E Po, 

-1 /2 
ppE E' = H (I')) = Po = V. 

On a donc P = P dans cet exemple. 

Enfin, la formule de Green s'kcrit ici 
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(oa Ur = XU est la trace de u sur r) et elle est v6rifiEe pour 

(u,p) E HI(*) x V (cf. Temam (3) ou Lions-Magenes (1 1). 

exemple 1' : On peut &hanger les rdles de a et P dans l'exemple 

pr6c6dent (ce qui n'est pas toujours possible). Prenons pour Ut l'es- 

pace V de l'exemple 1, pour A 1'opErateur divergence et pour X 

lfop6rateur Xu = u.v (= flux sortant). I1 vient alors M = gradient et : 

Po = Ip E L~(*); grad p E L~(O,R")I = H~(Q). 

1-1 est l'op6rateur de restriction, P = Po = H~(s~) et la formule de 

Green est la msme que dans l'exemple 1. 

exemple 2. Prenons pour Ut l'espace Am des fonctions absolument 

continues de [ O,T] dans Rm (donc il =] O,T[ et r = Io,T)), pour 

d A l'op6rateur de d6rivation , et pour X l'op6rateur 

Xu = (u(O), u(T)) 3 valeurs dans Rm x xm. On v6rifie alors que 

M - d  que po = UT, que 1-1 est lqop6rateur d6fini par : 

up = p(0), -,p(~)), que P = P et que la formule de Green se r6duit 

a la formule d'int6gration par parties pour les fonctions absolument 

continues (avec k = dx/dt) : 

exemple 3 Prenons pour UT l'espace 



J. M. Lasry 

Ut = {u E H1(~), Au E ~ ~ ( 5 1 ) )  

3 

pour A l'operateur A (laplacien) . Sur Ut on peut d6fihir 110p6ra- 

teur de. trace X par 

au 112 
XU(U~~, E H (r) x ~-lI~(r) 

(donc a = B = 2, m = k = I ,  E = H1I2(r) x H'12(r), g = 2) 

L10p6rateur M adjoint de - A e'st - A et : 

Sur Po on peut definir 110p6rateur de trace p par (cf. Lions 

Magenss ( 1 ) ) 

Up = (E , - plr) E ~-~'~(r) x i112(r) 

D1oa, par definition (puisque E' = H-l12(r) x F1112(r)) 

p= {p E p0 ; .%E (r) et plr E H'/~(~)I 

On montre que P=Ut et que l1on a la formule de Green 

pour (u,p) E Ut x P (cf. Lions Magenks (l))(et pour (U,~)ED(~) xpo) 

2.Fonctionnelles. Cnonces des problkmes 

A) On d6signe par L : n x R m x R k  -+ ] - -  , + - I  m e  fonction bo- 

rdlienne telle que, pour presque tout w E a, la fonction L(u,. , .) 
est convexe s .c .i. propre (c-8-d L(U, . , . ) # + ). Autrement dit L 

est une int6~rande normale convexe au sens de Rockafellar(3). 

On designe par L* : a x Rm x Rk+ ] - m  , + m  ] la fonction d6- 

finie par 
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k L*(o,c,d) = Sup {ac + bd - L(w,a,b) ;(a,b) E Rm x R 1 

Crest encore une intdgrande normale convexe et L** = L (cf. idem) 

Notation : u & v sont des fonctionsmesurables de Q 

xm - et Rk respectivement , on notera L(u,v) la fonction mesurable 

* * 
w -+ L(w,u(w), v(w)) & L (u,v) la fonction mesurable w+L(yu(w)pb)) . 
Par exemple on dcrira L(u,v) ~(w,u(w),v(w))dw . I 
B) On se donne une fonctionnelle I, : E + ] - - , + m ] con+exe s .c .i. 

propre (c-8-d I, $ + m) et sa duale I,* : El -+ ] - m , + m ] ddfinie par 

* a (Y) = sup {<x,y > - R(x); x~ EI 

Dans la pratique E sera souvent un espace fonctionnel (cf. exemple 1 : 

E =  H1/*(I')) et I, sera de la forme 

pour o E ~"~(r). 
* 

Si E est un espace de Sobolev on trouvera le calcul de L dans 

Brezis (1 ) . 

C) Hy-pothsse de finitude (Ho). On suppose qu'il existe u E IK 

po E IP tels que les quantitgs suivantes sont finies : 

L(Iu0). I L ( U ~ ¶  Auo)l ,I*(LIPo),{Q IL(MP~.P~)I I, 
Cette hypothsse implique en particulier que pour presque tout 

w E R et tout (a,b) E Rm x R~ on a 

L(w,a,b) . a.Mpo(w) + b. po(w) - L*(~YMP~(~),P~(~~)) 
* 
L (w,a,b) . a. uO(w) + b. AuO(w) - L(w,u,,(w), AuO(w))- 
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On d6duit de la premisre in6galit6 que si (u,v) E L: x $, on a 

~(o,u.(w), v(w)) > A(w) avec A E L (Q), 

donc que l'intkgrale L(u,v) est bien d6finie 2 valeur dans ] - -  ,+- 1. Q 
De m h e  on d6duit de la deuxisme inbgalit6 que pour ( D , ~ )  E ('x L;' 

I, * 
ltint6grale L (q,~) ' est bien d6finie 2 valeur dans ] - m , + - ] . 

D. Les consid6rations pr6c6dentes permettent de dkfinir les problsmes 

suivsnts : 

n (P) Minimiser [ 11(Xu) + L(w) ,u(w) ,Au(w) )dm 1 
u E  UC h 

* (P*) Minimiser [ % (up) + LY(o,~p~w),p(w))dw] . 

exemple 1 (suite) Dans ce cas les problsmes st6crivent (compte tenu 

du choix de UC ,A,. . voir ci-dessus 1 .B) 

(P2) Minimiser U * 
p + ~*(w.divp(u) ,p(w))14 

p E L2(Q,Rn) ,divp E L2 

exemple 2 (suite) I1 vient 

(P2) Minimiser [ %(u(0) ,u(T)) + ~ ( t  ,u(t) ,fi(t) )dt] 
u ' Am 

* * 
r 

T 
(P,) Minimiser [ E (~(01, - p(T)) +i (t,b(t),p(t))dtl 

P E Am 

avec A = {x E L~(o,T;R~) ; jc E L~(O,T;R~)) 
m 

Ce sont les problhes de Bolza convexes ktudi6s par Rockafellar (1,2). 
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exemple 3 I1 vient avec B = (u E H~(o), Au E L2(n)} 

(p3) Minimiser [ ~ ( u  lr,%) + L(Y,U(W). AU(Y))~YI 
u E  B 

P inimiser [ ( 2  , p ) + I*(., -Ap(u),p(u))dw] 
P E ~  h 

Posons pour u E UT et p E P 

J(P) = L*(PP) + L*(MP;P) 
n 

A) Pour tout (u,~) E UI x P on a 

Donc ~ ( u )  + ~ ( p )  3 0 d'aprss la formule de Green. D'o3 : 

inf P + inf P* = inf I(u) + inf J(p) 0 
u E  UI PE p 

D'aprss l'hypothsse Ho on a l(uo) < + et J(P~) < + . Donc : 
- < - inf P* < inf P < + m. 

B) Conditions dVextr6malit6 

L'tgalit6 I(u) + J(p) = 0 a lieu si et seulement si 

( l(hu) + l*(up) = <  uu, up> 

La deuxisme condition du systsme S est Squivalent 2 
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L(U,U:U~ JU(U)) + L*(w,MP(~) ,P(u)) =u(w) .MP(U) +AU(W) .P(w) 

pour presque tout w E . (puisque f > g et If = Ig im- 
pliquent f = g presque partout) 

* 
Botons at(Xu) (resp. 31 (up) ) le sous gradient de 1 (respa*) 

au point Au (resp. up) . 
Notons aurAu L(w,u(w), Au(w)) le sous gradient de la fonc- 

tion (a,b) + L(o,a,b) au point (do), Au(w)). 

Notons a L*(U,M~(W) ,p(w), le sous gradient de la fonc- 
MP~P 
* 

tion (a,b) + L (w,a,b) au point (Mp(w) ,p(w)). 

Le systsme (S) gquivalent b chacun des quatre systhes (kqui- 

valents) S1 ,3, S1 ,4, S2,3, S2,4 fonnks 5 partir de deux des quatre 

conditions suivantes 

* 
(1)  XUE at p 

( 3 )  (u(w), AU(W)) E aMp L*(~,MP(~),P(~)) 
rP 

pour presque tout w E Sl 

(4) (MP(w), P(w)) E aUrAU L(u,u(w), AU(W)) 

pour presque tout w E 

Supposons que (w,a,b) -+ L(W ,arb) est diffkrentiable par rapport 

& (a,b) ; notons - a a aL les dkrivkes partielles par rapport aL et - a b 

5 la deuxisme et la troisisme variable. Alors la conditions ( 4 )  s'kcrit 
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En 6liminant p on trouve l'dquation 'hfEuler" du probldme (P) : 

Par exemple dans l'exemple 2 cette 6quation sr6crit 

A - s  (t,r(t), f(t)) = (t,x(t), i(t)) at a;, 

C'est 1'6quation d'Euler du problsme (PI) (cf. $ 1 .B et $ 2.D). 

4. Th6orsme - 
D'aprss les paragraphes 3.A et 3.B ci-dessus on voit que pour 

un couple (u,p) E UI: x P les propri6t6s sont 6quivalentes : 

i) le couple (u,p)v6rifie le systsme S (i = 1,2; J = 3,4) 
i ,j 

ii) le couple (G,p)v6rifie I(;) + J(;) = 0 

* - - 
iii) on a inf P + inf P = 0 et u et p sont des solutions 

optimales de P et P* respectivement. 

Nous allons voire que 1'6galitk inf P + inf P* = 0 et l'existence 

* 
d'une solution optimale de P sont li6es 5 la stabilit6 de P vis 3 

vis de certaines perturbations. 

A. Fonction de stabilitd 

0 Pour (v,w) E 5 x E on pose 

y(v,w) = inf [L(w + Au) + h L(w,u(w), v(w) + Au(w))dul 
uE UL 

En particulier y(0,O) = inf P : on dit que y est la fonction de 

stabilit6 de P(par rapport aux perturbations (v ,w) ) . 
Montrons d'abord'a l'aide de Ho et de la formule de Green que 
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y(v,w) 7 - . I1 vient 

L(W + Au) + ( L(U.V + Au) 
a * > w + Au, Upo > - (PP~) + Iu.Mp0 + (V + Au).P~ -i L*(mO,Po) 

* 
v.P~-L(P.P,)- 

/ 
~loii : y(v.w) 2 < w,pp0 > + \Q v.po + c (avec c E R) 

D'autre part on vkrifie (en utilisant la convexit6 de .t et de . 
L(d,. , . ) et la lin6aritk de X et de A )  que y est une fonction con- 

vexe . - 

B) Enonc6 

ThBorSme : On fait lthypothbse ( H~ ) gue pour tout u E L: il existe 

v E f tel que L(u,v) E L~(Q). Alors : 

* 
1 )  on inf P = - inf P si et seulement si y est .s.c.i. en 

(o,o). Dans ce cas le Drobl&?le P* a une solution optimale si et seu- 

lement si y est sous diffsrentiable en (0.0). 

2) % y est majorke dans un voisina~e fort de (0,O) dans 
* f x E, inf P = - inf P & P* a une solution optimale. 

* 
3) % inf P = - inf P , il est gquivalent de dire que (u,:) E UL x P 

- - 
vErifie l'un des systbmes S1,3~ s1,4, S2,3s S2,4 OU que u et P @ 

des solutions optimales de P & P* respectivement. 

Dkmonstration Le point 3 ne fait que reprendre les considkrations 

du paragraphe 3. 

Le point 2 rksulte du point 1. En effet, si la fonc- 
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tion convexe y est major6e dans un voisinage (fort) de (0,O) elle est 

continue (0,O) (pour la topologie forte) et sous-diffgrentiable. 

* 
Reste le point l? On calcule y et on trouve pour 

(p,r) E <'X E' : 

i) Si M p E  L:' et si vp = r : 

* * * * 
ii) y (p,r) = R (up) + L (~p,p) sinon y (p,r) = + -. 

* * ** 
I1 en r6sulte que inf P = inf y*. Come inf y = - y (0) d'une 

* 
part, et come y(O@) = inf P d'autre part, 1'6galit6 inf P +  inf P = 0 

** 
a lieu si et seulement si y(O) = y (O), c'est 2 dire si et seulement 

si y est s.c.i. en (0,O) (pour la topologie forte ou pour la to- 

pologie faible) . 
* * 

Enfin come inf P E R, il est 6quivalent de dire que y atteind 

son minimum ou que P* a m e  solution optimale. Si y est s.c.i. en 

* 
(0,0), il est gquivalent de dire que y atteind son minimum ou que y 

est sous-diffgrentiable en (0~0). On remarque qu'on a ler6sultatplus 

prkcis : 

(p,r)E ay(0,O) * [pE 1 P ,  r = up , p est m e  solution optimale de P*I 

* 
~e th6orSme est dgmontrg modulo le calcul de y qui est la partie 

difficile de la dgmonstration (on trouvera ce calcul, dans le cas de 

l'exemple 1, dans Berliocchi et Lasry (2). Le calcul dans le cas g6- 

nkral est 2 peu prss le mgme). 

Remarque 1. Pour obtenir des rgsultats d'existence de solutions opti- 

males pour le problsme P, on gtudie la stabilitg de P*. Plus prgci- 
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s6ment on cherche a appliquer le thborsme aprss avoir 6changk les rcles 
* ** 

de P et P : on utilise L = L, a" = a, 6'' = B , . . . Cependant on ne 
peut pas toujours &hanger U et 1 P ;  c'est tout de msme possible dans 

les exemples envisag6s ici . 
Remarque 2. Le point 2 du thkorsme est le plus utile carc'estle plus 

facile a appliquer. 

5. Exemples (suite et fin) 

exemple 1. Dans le cadre de l'exemple 1 (cf. § 1 et 2) on trouve no- 

tamment les probldmes variationnels classiques de Neumann et de Diri- 

chlet (on trouvera d'autres exemples dans ~keland-Temam( 1 ) ) . 
On prend 

L(w,x,y, ,.. . ,y ) = a (w)x2 + xz(w) + E a. .(o)y.y 
1~ 1 j 

avec E ai &C.>a ( 5 : +  ...+ 5:), Y S E R ~ ,  h E Q ;  ai . E  L~(Q); 
,j 1 J 9 J 

ao(w) > a  ; ai = a  . z E  L~(Q). 
,j j,i7 

Les a sont donc les coefficients d'un op6rateur fortement ellip- i j 

tique dans Q. 

On calcule lfint6grande duale. I1 vient : 

03 les (b. . (w) ) sont les 6lhents de la matrice inverse de la matri- 
1 J 

ce (a. .(w)) 
1J 

Soient E, et E2 les fonctionnels convexes sur ~ " ~ ( r )  : 



On v6rifie sans difficult6 que le point 2 du th6orsrne stapplique 

aux problsmes P (~eumann) et P (Dirichlet) suivants : 
1 9 1  192 

(P ) Minimiser au 
l y l  U E  HI(,) i , ~  ? 'ij 5 ax j 

On obtient les problsmes duaux suivants 

1 
Minimiser i fn 1 ( z  - div pI2 + 

0 
i bij pi pj 

pour p~ L~(Q,E~), div p~ ~ ' ( n )  

(si i = 1, p.v = 0; si i = 2, pas de condition sur p.v. 

Les relations dtextrEmalit6 sV6crivent par exemple pour p 2 

a u 
p. (w) = 2 a. .(w)-(w) 

IJ ax. 

div p(w) = 2 aO(u) + Z(W) 

p.v = 0 

ce qui donne en gliminant p le systdme elliptique usuel. 

exemple 2 (suite, cf. 8 1 et § 2). 

On trouvera de nombreux exemples de probldmes de Bolza convexes 

dans T. Rockafellar (1 et 2). 
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exemule 3. Nous allons voir dans un cas particulier comment appliquer 

le formalisme g6niral. 

Soit z E L2(R) donnk. Consid&-ons le problzme 

/pour y E  H1(R), y  = Ay dans R, y 2 O  sur r. 

On introduit le Lagrangien L : R x R'+] - , + 1 

On pose UI = IU E H~'~(Q); ~ y  E L~(R)I. 

Sur UI est dgfini un opgrateur linkaire continu de trace 

au 
A : Ut+H1(I') x L2(I') par I u =  (uIryK) (cf. Lions-Magenes (1)). On 

pose A = A : Ut + L2(n). Le probldme P s'gcrit alors (l'kquation 

y  = Ay est "dans" L). 

(P) Minimiser II(Xu) + L(w,u(w), Au(~))dw Pour u I, 
Montrons que le point 2 du thkordme s'applique. 

Soit y : L2(S2) x H1(I') x L2(r) + 1 -  m , + rn ] la fonction de stabi- 

lit6. La d6finition ( $  4 .A)  donne ici 
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Soit y la solution du systdme 
v ,w 

y - A y = w  dans Q , y + v = O  sur r. 

On montre (cf. Lions Magends (1 ) )  que (v,w) -+ yvYw est -.continue de 

L~(Q) x H' (r) dans U. En reportant y dans la dkfinition de y on 
v ,w 

trouve : 

y(u,v,w) G a + b(luI2 + llvA + Ilwl12) (avec a,b E R )  
H 

Le probldme dual a donc une solution optimale. En calculant 

Minimiser i (r P' + I(?)2 + (p - Ap)zl 
52 

p E LZ(O), ~p E L~(Q), < 0 
av . 

Enfin une condition n6cessaire et suffisante pour que (u,p) soit 

un couple de solution de P et P* respectivement est que 

i) y = Ay 

ii) I ( p - ~ p )  = y + z  2 

iii) y > O  sur T,:CO sur l. 

i!L iv) p = 2 

On montre sans difficult& l'existence d'une solution optimale de 

* 
P par les mgthodes usuelles (on peut aussi 6tudier la stabilit6 de P ,  

ce qui n'est pas non plus difficile). On peut aussi montrer 1 ' exis- 

tence d'un 6tat adjoint p vgrifiant les conditions i,ii,iii,iv, 

par les mgthodes plus classiques (que la dualitg) de Lions (1 ) .  
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1 l NTRODUCT l ON 

1. a ORIENTATION 

Three intermingled themes run i n  a l l  t h e  following : v a r i a t i o n a l  

s ta tements ,  t h e  d u a l i t y  i n  paired l i n e a r  spaces, the  convexity of s e t s  o r  

funct ions.  These a r e  p rec i se ly  t h r e e  leading themes of Optimization 

Theory, a s  it has been developed f o r  severa l  decades ; i n  f a c t  the study 

of opt imizat ion problems s t a r t e d  many progresses of modern convexity 

theory ,  i n  which d u a l i t y  p lays  a n  e s s e n t i a l  par t .  

I n  Mechanics these  t h r e e  themes have been present  f o r  more than 

two cen tur ies .  There i s  no need t o  r e c a l l  t h e  importance of v a r i a t i o n a l  

i d e a s  i n  t h e  development of Analyt ical  Dynamics. Observe, however, t h a t  

these  ideas  o f t e n  served a s  a mere scaffolding,  t o  be removed before the 

end of t h e  construct ion.  Lagrange equations a rose  from the v a r i a t i o n a l  

p r o p e r t i e s  of a mechanical system subject  t o  f r i c t i o n l e s s  c o n s t r a i n t s  

and conservat ive fo rces  only ; but a c t u a l l y  Analyt ical  Dynamics has a 

much wider scope, so  t h a t  some modern t r e a t i s e s  on the subject  may deve- 

l o p  i t  i n  t h e  framework of D i f f e r e n t i a l  Geometry, without reference t o  

any properly v a r i a t i o n a l  f a c t .  Var ia t iona l  ca lcu lus  acted here  i n  sug- 

ges t ing  some mathematical s t r u c t u r e  which eventual ly supplanted i t .  I n  

another  domain a s imi la r  evo lu t ion  took place q u i t e  recen t ly  when the  
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variational approach of partial differential equations gave rise to the 

theory of Variational Inequalities which have not much to do with extre- 

mum problems. 

The ciassical Calculus of Variations,developed in the context 

of differentiability, automatically involves the duality of linear spa- 

ces', possibly without formalizing it. In Statics, for instance, it is 

usual to characterize the equilibrium configurations of a "frictionless" 

system with finite freedom, by equalling to zero the partial derivatives 

of the potential energy. This induces to consider these partial deriva- 

tives as the "components1' of mechanical actions or "forces", in a genral 

sense ; in fact this constitutes the correct way to formulate calculation 

rules about forces, which are preserved under the change of variables ; 

for example if some evolution of the system takes place, one obtains a 

simple,expression for the work or the power of forces. This benefit in 

calculation (and also the possible connection with Thermodynamics) pro- 

moted the use of energy methods in many domains ; however these methods 

may have been a hindrance when they happened to prevent scientists from 

considering phenomena which could not be described by means of potential 

functions. Here again one improves by forgetting the variational stimulus 

and considering respectively displacements and forces as the elements of 

two linear spaces placed in duality by the bilinear form "work". Such 
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was a l r e a d y  t h e  unde r ly ing  i d e a  of t h e  t r a d i t i o n a l  method of v i r t u a l  

work. - 
About convex i ty ,  on t h e  o t h e r  hand, i t  must be  noted  t h a t  

Mechanics was probably t h e  f i r s t  p h y s i c a l  domain t o  make use  of t h i s  con- 

c e p t  ; t h i s  was i n  fo rmula t ing  t h e  e q u i l i b r i u m  c o n d i t i o n  of a  heavy s o l i d  

body l y i n g  on a  h o r i z o n t a l  p l a n e  : t h e  v e r t i c a l  l i n e  drawn from t h e  c e n t r e  

of mass must meet t h e  convex h u l l  of t h e  p o i n t s  o f  suppor t .  T h i s  i s  ty -  

p i c a l l y a r e s u l t  concerning u n i l a t e r a l  c o n s t r a i n t s .  I n  f a c t  t h e  s tudy  o f  

dynamical problems f o r  sys tems of f i n i t e  o r  i n f i n i t e  freedom wi th  u n i l a -  

t e r a l  c o n s t r a i n t s  (e .g .  t h e  i n c e p t i o n  of c a v i t a t i o n  i n  a  p e r f e c t  incom- 

p r e s s i b l e  f l u i d  ; s e e  MOREAU 171,  [PI, [ 9 ] )  i n i t i a l l y  mot ivated  t h e  

p a r t  t a k e n  by t h e  a u t h o r  i n  t h e  development of convex i ty  theory .  I t  must 

be  s t r e s s e d  t h a t  convex i ty  i s  invo lved  i n  t h e  t h e o r y  of u n i l a t e r a l  cons- 

t r a i n t s  i n  a n  e s s e n t i a l  way ; i t  i s  no t  used a s  a  convenience  assumpt ion 

made t o  f a c i l i t a t e  mathemat ica l  t r e a t m e n t ,  a s  i t  o f t e n  happens,  f o r  i n s -  

t a n c e ,  i n  Opt imizat ion .  

These l z c t u r e s  do  n o t  d e a l  w i th  dynamics,  but on ly  wi th  equi-  

l i b r i u m  o r  q u a s i - s t a t i c  e v o l u t i o n ,  i . e .  e v o l u t i o n  p r ~ b l e m s  where i n e r t i a  

i s  n e g l i g i b l e .  The motion of a  system i s  s t u d i e d  when r e s i s t a n c e  pheno- 

msna, such a s  f r i c t i o n  o r  t h e  r e s i s t a n c e  of a  p l a s t i c  system t o  y i e l d i n g ,  

a r e  t aken  i n t o  account .  Here a g a i n  co?vexity i s  involved from t h e  s t a g e  
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of formulating the resistance law itself. Many mechanists feel that the 

occurrence of convexity in this connection is essential, probably with 

some thermodynamical significance. 

Classical Coulomb's law of friction enters into our general 

scheme of resistance laws admitting a (convex) pseudo-potential. It will 

be objected that this law gives only a rather rough approximation of the 

friction phenomena ; experimentally, when the sliding velocity increases 

frop zero the friction coefficient begins with decreasing, while the 

existence of a superpotential would only allow it to increase. The au- 

thor's position in this matter is the following. 

Traditional physics almost always starts from linear laws as 

first approximations to which improvements have possibly to be added by 

taking terms of "higher order'' into account. The common habit of assu- 

ming differentiabity in formulations is connected with the same tendency, 

as the meaning of differentials is precisely to describe some "tangent1' 

linear mappings. On the contrary Coulomb's law of friction is radically 

nonlinear and nondifferentiable ; nevertheless there is no doubt that 

this law agrees with the fundamental features of the friction phenomenon 

and as such it is always used in practice as the first approximation, 

possibly subject to further imprwements. For instance the augmented 

friction when the sliding velocity is small or vanishes is frequently 
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explained as a sort of welding which takes place between the bodies in 

contact, and has to be broken when sliding occurs. 

Let us suggest that, in plasticity as well as in friction, our 

pseudo-potential formalism describes the primary phenomenon exactly as 

in other domains of physics the primary phenomena admit linear formula- 

tions. This causes no conceptual difficulty ; on the other hand, the 

considerable amount of work which has been devoted in recent decades to 

optimization techniques makes now available the computational methods 

permitting to deal numerically with "subdifferential calculus" and con- 

vex analysis. 

1. b SUMMARY OF CHAFTER 2 

The preparatory Chapter 2 presents the elements of the duality 

theory of convex functions and the subdifferentials of such functions. 

The articulation of the concepts is sufficiently detailed but the proofs 

of the main statements are not given. Except otherwise indicated the 

reader may find them in MOREAU [lo], a multigraph report. Some are also 

given in the recent book of P. J. LNJRENT [l], which devotes a chapter 

to this subject. Of course, the book of R.T. RCCKAFELLAR [2], yet res- 

tricted to finite dimensional spaces, supply much of the fundamental 

informations. 
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The s e t t i n g  i s  t h a t  of a  p a i r  of r e a l  l i n e a r  spaces,  say (X,Y), 

placed i n  d u a l i t y  by a  b i l i n e a r  form denoted a s  <.,.>. This  d u a l i t y  i s  

spposed separat ing,  i . e .  t h e  two l i n e a r  forms defined on X by 

w < x , y >  and X-<x ,yf>  a r e  i d e n t i c a l  only i f  the  elements y and 

y '  of Y a r e  equal ,  and the symmetric assumption i s  made whith exchan- 

ging the  r o l e s  of the  two spaces. Therefore,  i f  one of t h e  two spaces 

has a  f i n i t e  dimension, the  dimension of the o ther  i s  t h e  same ; i n  t h i s  

case ,  every l i n e a r  form defined on one of the  two spaces can be represen- 

t e d  i n  t h e  preceding way and i s  continuous with regard t o  t h e  n a t u r a l  to- 

pology of f i n i t e  dimensional l i n e a r  spaces. The s i t u a t i o n  i s  more compli- 

ca ted  f o r  i n f i n i t e  dimensional spaces. Recal l  i n  t h a t  case t h a t  each of 

t h e  two spaces, say X f o r  instance,  may be endowed with various l o c a l l y  

convex topologies  which a r e  compatible with t h e  d u a l i t y  (X,Y) i n  t h e  

sense t h a t  r e l a t i v e l y  t o  any of them, the continuous l i n e a r  forms a r e  

exact ly the func t ions  x-<x,y> with a r b i t r a r y  y i n  Y.  By the  sepa- 

r a t i o n  assumption made above, these topologies  a r e  Hausdorff ; it i s  a  

c l a s s i c a l  f a c t  t h a t  among them the  weak t o p o l o a  q (X,Y) i s  the  coar- 

s e s t  and the Mackey topology z (X,Y i s  the f i n e s t .  Observe t h a t ,  by 

usual separa t ion  arguments, the closed c o w e x  s e t s  a r e  t h e  same r e l a t i -  

vely t o  a l l  these  topologies , thus i n  the  following we s h a l l  sometimes 

r e f e r  t o  closed convex s e t s  without specifying the topology. Same remnrk 
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f o r  t h e  lower semi-continuous convex functions. 

1. c SUMMARY ,QF CHHAPTER 3 

Chapter 3 takes  up Mechanics by the  study of mate r ia l  systems 

whose s e t  of possible  conf igura t ions ,  denoted by U ,  i s  endowed with a 

l i n e a r  space s t ruc ture .  Such is  i n  p a r t i c u l a r  t h e  c a s e ,  due t o  the use 

of l i n e a r  approximation, i n  many p r a c t i c a l  s i t u a t i o n s  where i t  i s  suppo- 

sed t h a t  the  considered system presents  only " i n f i n i t e l y  small deviation;' 

from some reference s t a t e  which c o n s t i t u t e s  t h e  ze ro  of the l i n e a r  space 

. By t h e  b i l i n e a r  form "work" t h e  l i n e a r  space U i s  placed i n  dua- 

l i t y  with another l i n e a r  space a whose elements represen t ,  i n  a general  

sense,  f o r c e s  appl ied t o  t h e  system. An example i n  9 3. a shows why t h i s  

d u a l i t y  may be supposed separat ing.  

I n  t h i s  framework a s t a t i c a l  law i s  a r e l a t i o n ,  a r i s i n g  from 

t h e  study of some of t h e  physical  processes i n  which t h e  system i s  in- 

volved, formulated between t h e  possible  configurat ion,  say u E U ,  of 

t h e  system and some, say f E , among t h e  f o r c e s  it experiences i f  i t  

happens t o  come through t h i s  configurat ion.  Such a r e l a t i o n  may depend 

on time. The concept of a s t a t i c a l  law which admits a p o t e n t i a l  func t ion  

i s  reca l led .  

A t  t h i s  s tage  it i s  s t ressed  t h a t  t h e  word c o n s t r a i n t  
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possesses i n  Mechanics a  s t r i c t e r  sense than i t  rece ives ,  f o r  ins tance ,  

i n  Optimization (observe t h a t  the  French mechanical term i s  "l ia ison",  

while "cOntraintet '  has  o ther  meanings). Describing a  mechanical cons- 

t r a i n t  requ i res  fundamentally more information than defining some s e t  

of permitted conf igura t ions  ; some prec i s ions  must be given about the 

confining process ,  i n  the formulation of which t h e  force of c o n s t r a i n t  

o r  reac t ion  i s  involved. Paragraphs 3. c  and 3. d  emphasize, i n  the 

l i n e a r  framework of t h i s  Chapter, t h a t  f r i c t i o n l e s s  c o n s t r a i n t s ,  b i l a -  

t e r a l  o r  u n i l a t e r a l ,  a r e  s t a t i c a l  laws. Prec i se ly  they come i n t o  the  

general  c l a s s  of t h e  s t a t i c a l  laws which possess  a  superpoten t ia l ,  i .e .  

the  r e l a t i o n s  between u  and f  which can be wr i t t en  under t h e  form 

- f  E a $ (u ) ,  where #I denotes a  convex numerical funct ion,possibly 

taking i n  some p a r t  of the space U t h e  value + m . The c l a s s i c a l  laws 

possessing a  p o t e n t i a l  funct ion a l s o  belong t o  t h i s  c l a s s ,  a s  f a r  a s  t h e  

p o t e n t i a l  funct ion i s  convex. 

If a l l  t h e  mechanical a c t i o n s  experienced by the  system (possi- 

bly excepting f o r c e s  which vanish i n  any exp-cted equi l ibr ium) a r e  re-  

presented by t h e  conjunct ion of s t a t i c a l  laws admit t ing time-independent 

superpo ten t ia l s ,  t h e  equi l ibr ium confi ,<urat ions t r i v i a l l y  possess some 

extremum proper t ies  i n  the  space U . Paragraph 3. f  supposes t h a t  a l l  

these  mechanical a c t i o n s  have been grouped i n  order  t o  be summarized a s  
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the conjunction of two statical laws admitting the respective super- 

potentials and +2 ; then u E U is an equilibrium configuration 

if and only if there exists fl E such that - fl E a (u) and 

fl E a 4, (u). The determination of f priorto that of u is classically 
1 

called a statical approach to the equilibrium problem ; the duality theo- 

ry of convex functions immediately yields some extremum formulation for 

* * 
this problem. This involves the respective dual function and +2 

of and +2 , generalizing the so-called complementary energy of 

linear elastostatics. Similar correspondances between extremum problems 

formulated in two paired linear spaces are a familiar feature in convex 

optimization, as well Fs familiar the connection of such a pair of pro- 

blems with a saddle-point property concerning some f ~inction called a 

Lagrangian. In fact, Paragraph 3. g gives a simultaneous characteriza- 

tion of u and fl as a saddle-point in the product space U x F  . As 
all the preceding pattern may usually be applied to each definite mecha- 

nical system in several different ways, it is able to generate a great 

number of extremal or saddle-point characterization of equilibrium. The 

foregoing concepts were first published as a short Note (MOREAU [ll]) 

in wriich proofs were not given. 

/ Paragraph 3. h illustrates the formalism by some examples of 

one-dimensional systems. Paragraphs 3. i and 3. j emphasize the 



J. J. Moreau 

appl ica t ion  t o  a l a t t i c e  of b a r s  ; t h i s  introduces two p a i r s  of f i n i t e  

dimensidnal l i n e a r  spaces (X,Y and (E,S), a l i n e a r  mapping D from 

* 
X i n t o  E and t h e  a d j o i n t  mapping D from S i n t o  Y : t h i s  i s  a 

very common a lgebra ic  p a t t e r n  i n  e l a s t o s t a t i c s .  Various ways of  exploi- 

t i n g  i t  are '  presented ; i n  p a r t i c u l a r  t h e  l a s t  one i s  meant t o  prepare 

f o r  the  evolut ion problem of e l a s t o p l a s t i c s ,  t o  be t r e a t e d  i n  Chapter 6. 

More d e t a i l s  about continuous media and t h e  func t ion  spaces involved i n  

t h e i r  study a r e  given by B. Nayroles i n  h i s  l ec tures .  

1. d SUMMARY OF CHAmR 4 

T h i s  Chapter,  devoted t o  r e s i s t a n c e  laws does not requ i re  a 

l i n e a r  space s t r u c t u r e  f o r  the s e t  of the poss ib le  configurat ions.  In  

f a c t  i t  is  a constant  f e a t u r e  i n  Mechanics t o  a s s o c i a t e  with each con- 

f i g u r a t i o n  of a system a r e a l  l i n e a r  space ')r ; t h e  elements of y cons- 

t i t u t e ,  i n  some sense,  the values t h a t  may take the ve loc i ty  of t h e  sys- 

tem i f  it comesthrough the considered configurat ion.  A second l i n e a r  

space r i s  a l s o  assoc ia ted  lrith each configurat ion ; t h e  elements of 

form, i n  a general ized sense, t h e  poss ib le  values of fo rces  which may 

be appl ied t o  t h e  system a t  an i n s t a n t  it happens t o  have t h e  considered 

configuration. The spaces ?" and a corresponding t o  a given configu- 

r a t i o n  a r e  placed i n  d u a l i t y  by a b i l i n e a r  form : < v , f >  denotes t h e  
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power of t h e  fo rce  f  E i f  t h e  system possesses the  ve loc i ty  v  E Y. 

I n  t h e  s p e c i a l  case of Chapter 3, i t  t u r n s  out t h a t  may be i d e n t i f i e d  

with U and t h e  same a is  assoc ia ted  with every configurat ion.  

We c a l l  i n  general  res i s tance  law a  r e l a t i o n  formulated between 

t h e  possible  ve loc i ty  v  E and a  fo rce  say f  E F , a r i s i n g  from some 

of t h e  physical  processes i n  which t h e  system i s  involved. This  i s  pro- 

p e r l y  a  res i s tance  phenomenon i f  t h e  r e l a t i o n  i s  d i s s i p a t i v e ,  i . e .  i f  i t  

impl ies  <v,f> < O. 

Here again,  t h e  case  where i t  e x i s t s  a  func t ion  4 defined on 

Y , c a l l e d  t h e  pseudo-potential of t h e  r e s i s t a n c e  law, such t h a t  t h e  

r e l a t i o n  takes the  form - f  E a $I (v)  deserves spec ia l  a t t en t ion .  I f ,  

i n  P a r t i c u l a r  0 E 8 $ (01, the r e l a t i o n  i s  sure  t o  be d i s s i p a t i v e  ; t h e  

pseudo-potential i s  c a l l e d  i n  t h i s  s p e c i a l  c a s e  a  r e s i s t a n c e  func t ion  

and one may suppose w i t h o u t l o s s  of g e n e r a l i t y ,  t h a t  $ (0)  = 0. An e le -  

mentary example i s  t h a t  of v i s c o s i t y  laws : then 4 i s  a quadrat ic  form, 

t r a d i t i o n a l l y  c a l l e d  t h e  Rayleigh function. 

The main appl ica t ion  of these  ideas  concerns dry f r i c t i o n  and 

p l a s t i c i t y  ; t h i s  corresponds t o  a funct ion $ which is  sub l inear ,  i . e .  

convex and pos i t ive ly  homogeneous. Equivalent ly,  i s  the  Support func- 

t i o n  of a  c losed convex subset  of F , denoted by -C , containing t h e  

o r i g i n .  An e s s e n t i a l  f a c t  i n  such a  case i q  t h a t  the  considered 
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r e s i s t a n c e  law, namely - f E 8 r#~ ( v ) ,  n e i t h e r  def ines  f a s  a s ingle-  

valued func t ion  of v nor v a s  a single-valued func t ion  of f ; t o  

v = 0 ,  i n  p a r t i c u l a r ,  correspond a s  poss ib le  values f o r  f a l l  the  po in t s  

of C . This  i s  a f a m i l i a r  f e a t u r e  of t h e  Coulomb law f o r  dry 

f r i c t i o n  o r  of t h e  Prandt l  - Reuss law f o r  per fec t  p l a s t i -  

c i t y .  I n  t h e i r  conventional formulation they may, a t  f i r s t  s i g h t ,  look 

l i k e  a pdecing toge ther  of heterogeneous empir ical  da ta  ; t h e  p resen t  

formulation on t h e  con t ra ty  revea l s  t h e  s t rong  mathematical consistency 

of each of these  laws. The r e s t  of t h e s e  l e c t u r e s  i s  meant t o  d i sp lay  

t h e  e f f ic iency  of such an approach. The reader  w i l l  see,  on t h e  o ther  

hand, i n  P. GERMAW [l] how our pseudo-potential formalism may take 

place i n  the more f a m i l i a r  s e t t i n g  of a textbook on Continuum Mechanics. 

For what concerns Coulomb's law of dry f r i c t i o n  it w i l l  be 

objected t h a t ,  i n  most p r a c t i c a l  problems, the  normal component of t h e  

contact  fo rce ,  which e n t e r s  here i n  t h e  expression of 6 a s  a cons tan t ,  

i s  unknown. Our p o s i t i o n  i s  t o  consider  t h i s  quant i ty  a s  one of t h e  s ta-  

t e  var iab les  of t h e  system. 

Paragraph 4. d comes back t o  p e r f e c t  c o n s t r a i n t s  a s  they were 

introduced by Chapter 3. I n  t h e  presen t  kinematical context ,  these  cons- 

t r a i n t s  a r e  manifested a s  r e l a t i o n s  between t h e  ve loc i ty  of t h e  system 

and some force  a c t i n g  on it, namely t h e  r e a c t i o n  of t h e  cons t ra in t .  These 

r e l a t i o n s t o o  can be represented by means of pseudo-potentials and t h e  



J. J. Moreau  

same is true for the nonholonomic perfect constraints of traditional 

Mechanics (actually an extreme case of friction) : we propose to refer 

to such relations as velocity constraints. 

Friction or plasticity.laws, as well as viscosity laws, exhibit 

a very usual property : the corresponding dissipated power - <v,f> can 

be expressed as a single-valued function of the velocity, classically 

called the dissipation function. There is a priori no reason for this 

function to be related to the pseudo-potential if it exists ; paragraph 

4. f characterizes the resistance laws for which such a relation holds. 

The chapter ends with remarks about viscoplasticity : adding 

some viscosity to a resistance law of the plasticity or friction type 

descri.bed above, amounts to replace the indicator function 
$rC 

of the 
C 

set C (the function taking the value 0 on this set and +, outside) 

by a penalty function of the same set. 

1. e SUMMARY OF CHMTER 5 

This is a purely mathematical part. The application of the 

foregoing mechanical formalism to evolution problems requires, in parti- 

cular, some investigations about the motion of a set. 

By means of Hausdorff distance, the classical concept of the 

variation of a function defined on a real interval is adapted to moving 
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sets in a metric space ; the absolute continuity of such sets is similar- 

ly introduced. 

As convex subsets of a normed space may be described in terms 

of their support functions, a special approach of moving sets is develo- 

ped for this case. In the same setting of normed spaces and convex mo- 

ving sets, Paragraph 5. c establishes an intersection theorem which 

formulatessufficient conditions for the intersection of two absolutely 

continuous convex moving sets to be itself absolutely continuous. 

The rest of the Chapter is restricted to Hilbert spaces. 

Paragraph 5.  b considers among other topics the distance from a moving 

point t H  z(t) to a moving convex set t* C(t) ; if both are absolu- 

tely continuous the distance is an absolutely continuous numerical func- 

tion and some inequality involving derivatives is established, as a pre- 

paration for the following. 

Paragraph 5 .  c introduces the sweeping process associated 

with a moving convex set in the Hilbert space H. This gives a fundamen- 

tal example of an evolution problem under unilateral constrairit ; from 

the mathematical standpoint this process features also as a constituent 

of several more complicated situations ; in particular it will bemet 

again in the treatment of the elastoplastic problem of Chapter 6. The 

author has already devoted several studies to this problem, mainly 



J. J. Moreau 

pub l i shed  a s  mul t igraph seminar  r e p o r t s  ( c f .  MOREAU [ 171 , [ 181 , [20] , 

[21] 1. The method used i n  5 5. g  t o  e s t a b l i s h  a n  e x i s t e n c e  theorem con- 

sists i n  a  r e g u l a r i z a t i o n  t echn ique ,  e q u i v a l e n t  i n  t h e  p resen t  c o n t e x t  

t o  r e p r e s e n t i n g  t h e  g iven  moving convex s e t  by p e n a l t y  func t ions .  

The Chapter  ends  wi th  an  a lgo r i thm of  t ime d i s c r e t i z a t i o n  f o r  

t h e . s o l u t i o n  of t h e  sweeping problem ; t h e  convergence of t h i s  a lgo r i thm 

i s  proved by u s i n g  aga in  r e g u l a r i z a t i o n ,  bu t  w i th  a  time-dependent 

"penal ty  c o e f f i c i e n t " .  

1. f  SUMMARY OF CHAPTER 6 

T h i s  f i n a l  Chapter  shows how a l l  t h e  fo rego ing  o p e r a t e s  when 

a p p l i e d  t o  t h e  q u a s i - s t a t i c  e v o l u t i o n  problem f o r  e l a s t o p l a s t i c  systems. 

T h i s  i n v o l v e s  a  l i n e a r  space  U a s  c o n f i g u r a t i o n  space  and ,  accord ing  

t o  t h e  conven t iona l  concep t ion  of  e l a s t o p l a s t i c i t y ,  t h e  system i s  t r e a t e d  

a s  formed by two components : t h e  "v i s ib l e"  o r  "exposed" component, deno- 

t e d  by x  E U , and t h e  "hidden" o r  "p la s t i c "  component denoted by 

p  E L1 . The e l a s t i c  r e s t o r i n g  f o r c e  depends only  on t h e  d i f f e r e n c e  x-p. 

The component x undergoes p e r f e c t  c o n s t r a i n t s  and l o a d s ,  both  depen- 

d i n g  on t ime i n  a  g iven way. The component p  undergoes a  r e s i s t a n c e  

r e l a t e d  t o  i t s  "ve loc i ty"  6 by a  law of the  type  s t u d i e d  i n  6 4. 

T h i s  i s  only  p e r f e c t  p l a s t i c i t y ,  but  a  very  s imple  example sugges t s  t h a t  
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s t r a i n  hardening t o o  could  be taken i n t o  account  by a s i m i l a r  p a t t e r n ,  

provided a s u f f i c i e n t l y  l a r g e  space  would be a f f e c t e d  t o  t h e  "hidden" o r  

I t .  
~ n t e r n a l "  v a r i a b l e  p ; t h i s  po in t  of  view i s  adopted by s e v e r a l  

au thor s .  

Great  s i m p l i f i c a t i o n  i s  brought  by a n o t a t i o n  t r i c k  by which 

t h e  c o n f i g u r a t i o n  space  U and t h e  f o r c e  space  9 a r e  i d e n t i f i e d  wi th  

a s i n g l e  H i l b e r t  space  H ; t h e  norm i n  H i s  r e l a t e d  t o  t h e  e l a s t i c  

energy.  

An e x i s t e n c e  theorem i s  proved by r e d u c t i o n  t o  t h e  sweeping 

p r o c e s s  of Chapter  5 ; thereby a t i m e - d i s c r e t i z a t i o n  a lgo r i thm i s  
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2 DUAL1 TY ANC SUBDl FFERENTI ALS OF  CdNVEX FdNCTIO;4S 

2. a POLAR FUNCTIONS 

Let X , Y be a pair of real linear spaces placed in separating 

duality by the bilinear form <.,.>. Let f be a function defined, for 

- 
instance, on X, with values in R = [ -  =, + m] .  Consider the affine 

function defined on X by 

with y fixed in Y, called the slope of this affine function, and p 

fixed in R ; such is the general form of the affine functions which are 

continuous for some, then for any, locally convex topology on X compa- 

tible with the duality. 

An usual question is that of determining wether this affine 

function is a minorant of f ; a trivial necessary and sufficient con- 

dition for that is 

(2.2) p 3 SUP [<x,y> - f(x) I . 
X E X  

* 
Attention is drawn thereby to the function f defined on Y by 

f* (y) = sup [(x,y> - f(x)] 
X E X  

called the polar function of f. 

* 
In particular the equality f (y) = + m ,  for some y E Y, 

means that f possesses no affine minorant having y as slope ; such is 
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t h e  case ,  f o r  ins tance ,  whichever is  y ,  i f  f  t akes  somewhere i n  X 

t h e  value - . 
EX$dAE!I%. Let A be a  subset of X ; t ake  a s  f  t h e  i n d i c a t o r  func t ion  

JrA of A, i .e .  

Its po la r  func t ion  

Jr; ( Y )  = SUP r<x,y> - JrA(x)1 = SUP <x,y> 
x E X x E A  

i s  c l a s s i c a l l y  known under the ( r a t h e r  improper) name of t h e  a u u ~ o r t  

funct ion of A. Take y d i f f e r e n t  from zero  i n  Y and p E R ; t h e  af- 

f i n e  funct ion (2.1) i s  a  minorant of Jr i f f  the  closed h a l f  space 
A 

[ x E X : < x ,  y, - p < 01 contains  A. I n  v i e r  of condit ion (2.2 ) t h i s  

* 
i s  possible  only if @A (y )  < + - ; i n  such a  case  taking e x a c t l y  

* 
p = JrA(y) y i e l d s  a  half-space which i s  minimal, with regard t o  inclu-  

s ion ,  among t h e  half-spaces containing A ; but t h a t  does not mean t h i s  

half-space i s  necessary a  "supporting half-space". : i t s  boundary h y p e r  

plane need 'not  meet A, even when A i s  c losed  and convex. 

2. b  PAIRS OF DUAL FUNCTIONS 

For t h e  cons t ruc t ion  of t h e  supremum i n  (2.3) one may equiva- 

l e n t l y  consider  only t h e  values of x  such t h a t  f ( x )  ( + m . Therefore,  
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whichever i s  f ,  t h e  f u n c t i o n ,  f* belongs t o  t h e  s e t ,  denoted by 

r (Y,X), of the  func t ions  on Y which a r e  t h e  pointwise suprema of col-  

l e c t i o n s  of a f f i n e  func t ions  l i k e  y I+ <x,y> - a, x E X ,  c E R . Using 

Hahn-Banach's theorem, one proves t h a t ,  besides t h e  cons tan t  - ( i t  

i s  t h e  supremum of an empty c o l l e c t i o n ) ,  t h e  s e t  T (Y,X) c o n s i s t s  

e x a c t l y  of the  func t ions  on Y ,  with values i n  1- m ,  + -1, which a r e  

convex and 1.s.c. f o r  some l o c a l l y  convex topology on Y compatible 

with t h e  d u a l i t y  (Y,X), then 1.s.c. f o r  a l l  such topologies.' 

The spaces X and Y play here syrmnetric r o l e s  i t h e r e  i s  no 

* 
inconvenience i n  denoting i n  t h e  same way by t h e  s t a r  the  funct ion 

defined on X a s  t h e  po la r  of a  given func t ion 'on  Y. Then t h e  bPpolar 

of  f  i s  defined o n  X by 

f** ( X I  = SUP [<x,Y, - f* ( Y ) ]  . 
Y E Y  

The cons t ruc t ion  of t h i s  supremum may be equiva len t ly  be r e s t r i c t e d  t o  , 
*. * * 

t h e  va lues  o'f y  such t h a t  f  ( y )  i s  f i n i t e  ; t h a t  means f  is  t h e  

supremum of t h e  a f f i n e  func t ions  l i k e  (2.11, with P ver i fy ing  e q u a l i t y  

** 
i n  (2.2) ; they a r e  t h e  maximal a f f i n e  minorant of f ,  s o  t h a t  f  may 

a l s o  be  defined a s  t h e  pointwise supremum of a l l  t h e  a f f i n e  func t ion  of 

t h e  form (2.1) which minorize f .  Th is  supremum i s  equiva len t ly  charac- 

t e r i z e d  a s  t h e  g r e a t e s t  element of r (X,Y) minorizing f  o r  T- h u l l  
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For ins tance ,  i f  A i s  a subset  of X, t h e  r - h u l l  of t h e  

i n d i c a t o r  func t ion  *A is  the  i n d i c a t o r  func t ion  of the  closed convex 

The preceding implies t h a t  i f  i t  is a p r i o r i  supposed t h a t  

f E r (X,Y) g E I? (Y,X) one has  t h e  equivalence 

* * 
f = g  ( = ) f  = g .  

Then f ' e n d  e; at?? s a i d  mutually po la r  o r  conjugate  o r  dual  funct ions.  In  

t h i s  way the s t a r  * induce4 a one-tstone correspondance between I' (X,Y) 

and P (Y,X) ; a s  t h e  constant  + , correspond6 t o  t h e  cons tan t  - m ,  

t h e  correspondance i s  a l s o  one-to-one between t h e  elements of F (X,Y) 

and r (Y,X) o t h e r  than these  s ingula r  cons tan ts  : these elements a r e  

c a l l e d  t h e  proper c losed  convex func t ions  on X and Y ;  t h e . s e t s o f  them 

w i l l  be denoted by Po (X,Y) and To (Y,X) respect ively.  

From the  d e f i n i t i o n  of p o l a r i t y  i t  immediately fol lows 

c a l l e d  Fencl iel ts  inequal i ty .  

RIMARK ON TERMINOLOGY. Most of the  words introduced by t h e  preceding 

d e f i n i t i o n s  a r e  t h e  English t r a n s c r i p t i o n s  of Piranch terms c u r r e n t l y  used 

by French speaking people a f t e r  the  a u t h o r ' s  multigraph r e p o r t  of 1966 

(MOREAU [ 101 1. T h i s  involves but s l i g h t  discrepancies  from t h e  book of 

R.T. ROCKAFELIAR [2]  : following t h e  1949 i n i t i a t i n g  paper of 
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W. FENCHEL [ I], Rockafel lar  p r e f e r s  t h e  locu t ions  "con jugate func t ionc  " 

t o  "dual functionsH. I t  may be inconvenient t o  c a l l  a l s o  conjugate of f ,  

a s  he  does, t h e  func t ion  f* assoc ia ted  by (2.3)  with some f which 

does not  necessar i ly  belong t o  l' ( X , Y ) . d  t h i s  s o  c a l l e d  "conjugacy" i s  

no more a symmetric correspondance, t h e  author  chose i n  the  1966 r e p o r t ,  

t o  use i n  t h i s  connotat ion t h e  term pola r  funct ion.  Unfortunately, i n  t h e  

meantime, Rockafel lar  app l ied  t h e  word polar t o  another  kind of corres-  

pondance (c f .Sec ;  15 of h i s  book) concerning nonnegative closed convex 

f u n c t i o n s  vanishing a t  t h e  o r i g i n ,  which genera l izes  some c l a s s i c a l  con- 

jugacy of - func t ions  ( s e e  5 2. h below) ; but  t h e r e  does not seem 

t o  be much r i s k  of confusion. 

2. c IMAGES OF PROPERTIES OR RELATIONS 

Many proper t ies  o r  r e l a t i o n s  concerning func t ions  defined,  f o r  

ins tance ,  on X ,  imply some proper t ies  o r  r e l a t i o n s  concerning the  po la r  

of them. Here we r e s t r i c t  ourse lves  t o  a few of t h e s e  "images by po la r i -  

ty'' considering exc lus ive ly  func t ions  f ,  f l ,  f 2 ,  . . . which bzlong t o  

r (X,Y) and denoting by g, gl,  g2, . . . t h e i r  p o l a r  ( i . e .  d u a l )  func- 

t ions .  

Easy c a l c u l a t i d n  y i e l d s  : 

lo Homothety. I f  d E R i s  a non zero cons tan t ,  t h e  i d e n t i t y  
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V X 6 X : fl(x) = f2(d X) 

is equivalent to 

1 
V y E Y : gl(y) = g2(; Y) . 

2' Multiplication by a positive constant. If h is a strictly positive 

constant, the identity 

V x E X : fl(x) = A f2(x) 

is equivalent to 

1 
V y E Y  : gl(y) = Ag2(Ty) ; 

the right member is sometimes written as a :'right product by A'' : 

notation gl = g2 A . 
In particular a function g belonging to I' (Y,X) is the 

support function of a subset of X (or equivalently the support function 

of the closed convex hull of this subset) if and only if its dual f is 

an indicator, i.e. this dual takes only the values 0 and +, . That 
means f remains unchanged under the multiplication by any A > 0 ; in 

view of the preceding, this is equivalent to g being positively homo- 

geneous (i,e. sublinear, due to the assumed convexity of g). A more 

special situation is that of a function g belonging to r (Y,X) which 

at the same time is an indicator function and is sublinear : this hap 

pens if and only if f possesses the same properties ; in such a case 

f and g are respectively the indicator functions of two mutually polar 



(closed, convex) cones, P and Q, i.e. 

Q = Iy E Y : V x E P , <x,y>< 01 

and symmetrically 

P = ~ x E  X ' :  V y E  Q , <X,Y><O) . 
3 O  Translation. If a E X and n E R, the identity 

V x E X  : f (x) = f (x-a)+a 1 2 

is equivalent to 

V Y E Y  : gl(y) = g(y)+<a,y>-a . 
40 Product spaces. Let (X Y 1, i = 1, 2, ... , n, be n pairs of real i' i 

linear spaces placed in duality by n bilinear forms respectively deno- 

ted by If x =  (x x2, ..., xn) denotes the generic element 

of the linear space 

X = X x X x ... 1 2  'n 

and Y = ( Y ~ ,  y2, ...' yn) the generic element of the linear space 

Y = Y x Y x ... x Yn 1 2  

the bilinear form 

(x,y> = cxl'~l,l + (x2'~2>2 + . . . + <x~'Y,>~ 

places X and Y in duality. For each i, denote by fi, gi a pair of 

functions defined respectively on Xi and Yi and mutually polar with 

regard to the bilinear form <.,.>i. It is easy to see that the functions 

f and g defined on X and Y respectively by 
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f(x) = fl(xl) + f2(x2) + ... + fn(xn) 

P(Y) = gl(yl) + g2(y2) + . .. + gn(yn) 

are mutually polar with regard to (. , . >. 

The following result is less trivial (see proofs in MOREAU 

[3] or [ 101 ) : 

5' Continuity. The setting is again that of single pair of lEnear spaces 

f inite and 
(X,Y). The function f E T,(X,Y) is continuous at the origin for some 

A 

locally convex topology on X compatible with the duality (then for the 

Mackey topology z (X,Y) which is the finest of themj if and only if the 

dual function g E T,(Y,X) is inf-compact, i.e. for any k E R the 

('level set" or "slice" y E Y : g(y) < kl is compact for some (local- 

ly convex) topology on Y compatible with the duality (then for the 

weak topology c (Y,X) which is the coarsest of them). Note that, due to 

the convexity of g, a sufficient condition for that is the existence of 

some k > inf g such that this compactness holds. 

Using translation (cf. 3' above) one concludes that the conti- 

nuity of f at some point x E X is equivalent to the compactness of 

the "oblique slices of g with slope xot', i;e. the sets 

)y E Y : g(y) -<xo, y><k] . 

2. d INF - CONVOLUTION AND THE IMAGE OF ADDITION 

Let us denote by + the commutative and associative operation - 
extending classical addition to any pair of elaments of R = [-coy + -1 
by putting (- m) 1 (+ ra) = + m (symmetrically the operations i extends 
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c l a s s i c a l  add i t ion  by the  convention (- ,) t (+ ,) = - , ). 

Let f l ,  f 2  be func t ions  defined on t h e  l i n e a r  space X with 

- 
va lues  i n  R ; t h e  func t ion  f def ined on X by 

(2.4) f ( x )  = i n f  [ f  ( u )  ; f (X - u)]  = i n f  [ f l ( x  - v )  ; f2(v,)] 
U E X  

1 2 
V E X  

i s  c a l l e d  t h e  inf imal  convolute, o r  s h o r t l y  inf-convolute, of f l  and 

f 2  ; i t  i s  denoted by 
f l  V f 2  ( o r  a l s o  f 1 0  f 2 ,  a s  i n  ROCKAFELLAR [2] ,  

when t h e r e  i s  no r i s k  of confusion with the  suprema1 convolute f l A  f a ,  

which would be symmetrically defined by using "sup1' and t) .  This  opera- 

t i o n  i s  commutative and a s s o c i a t i v e  ; if f l  adn f 2  a r e  convex, s e  

f l  V f 2 ,  e t c . .  . 

Example 1. I f  f 2  is  t h e  i n d i c a t o r  func t ion  of a s ing le ton  l a ] ,  then 

f l  V f2  i s  a t r a n s l a t e  of f l ,  namely t h e  func t ion  

x * f l f x - a )  . 
Example 2. I f  A i s  a subse t  of X and (1.1) a norm on t h i s  l i n e a r  

space, then (#A V 11.11 ) (XI is  t h e  d i s tance  from t h e  point  x t o  t h e  

s e t  A. - 
Example 3. I f  A and B a r e  two subse t s  of X ,  t h e  inf-convolute 

V gB i s  t h e  i n d i c a t o r  func t ion  of the  s e t  

A + B  = ~ X E X  : 3 a ~ ~  , 3 b ~ ~  , x = a + b j .  

Coming back t o  t h e  s e t t i n g  of the  p a i r  of spaces (X,Y) i n  dua- 

l i t y ,  t h e  computation of po la r  func t ions  y i e l d s  e a s i ? y  



J. J. Moreau 

Suppose now that fl and f2 belong to l' (X,Y) and that 

gl and g2 are their polar (i.e. dual) functions ; taking the polars 

of both members of the preceding. equality leads to 

Addition f is a composition law in F (Y ,X) ; (2.5) describes the com- 

position law in l' (X,Y) which is the image of it by the one-to-one 

mapping *; this composition law is the l' - hull of inf-convolution (cf. 
# 2. b abwe) ; we denote it by 1 ; it may be called r -convolution. 

Of practical importance are the cases where fl V f2 happens 

to belong to I? (X,Y) so that the double star may be omitted in (2.5). 

Let us just formulate here the two most usual of them. 

It is sell asmmed that f and f2 belong to r (X,Y ). 

lo Suppose that the set, denoted by cont fl, of the points where fl 

is finite and continuous, for some topology compatible with the duality, 

and the set 

dom f2 = I X  E X : f2(x) ( + m ]  

are such that 

cont f l +  dom f2 = X . 
Then fl V f2 is either the constant - m or is finite and continuous 

everywhere in X for the considered topology ; therefore 



fl v f2 E r (x,Y), hence fl V f2 = fl 1 f2 . 
2O Suppose that there exists a point yo in Y at which both func- 

tions gl and g2 are finite, one of them continuous at this point (for 

some topology compatible with the duality) ; then fl V f2 E r (X,Y) ; 

furthermore this %nf-~onvolution is exact, i.e., whichever is x, the 

infimum in (2.8) is a minimum. Note that the hypothesis is equivalent to 

the following : both functions xt+ fl(x) - <x, yo> and 

x I+ f2(x) - <x, yo> are bounded from below and one of them is inf- 

compact for the weak topology U (X,Y) (cf. 6 2 c) . 

2. e SUBGRADIENTS AND SUBDIFFERENTIALS 

- 
Let f denote a function defined on X, with values in R ; an 

element y of Y is called a subgradient of f at the point x E X if 

y is the slope of an affine minorant of f e g  at the point x, i.e. 

taking at this point the same value as f. This requires that the value 

f(x) is finite and that the expected minorant has the form 

Using condition (2.2) for an affine function to minorize f, one obtains 

the following representation for the set, denoted by 8 f(x), of the sub- 

gradients of f at the Point x 

i, f(x),= [y E Y : f*(Y) -(x,y><-f(x)j . 
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This set is called the subdifferential of f at the point x. The con- 

vexity and the lower semiebntinuity of f* imply that af(x) is a con- 

vex, possibly empty, subset of Y, closed for the topologies compatible 

with the duality (Y,X). If af(x) is not empty the function f is said 

to be subdifferentiable at the point x. 

Trivially the function f possesses a finite minimum attained 

at the point x if only if af(x) contains the zero of Y. 
A 

Recall that the function f is said weakly differentiable, or 

G;teaux-differentiable, at the point x, relatively to the duality (X,Y 1, 

if there exists y E Y (necessarily unique) such that for any u E X I  

the function tl+ f(x + t u) of the real variable t possesses for 

t = 0 a derivative equal to <u,y> ; the element y is called the w& 

gradient, or G;teaux-gradient, of the function f at the point x, rela- 

tively to the duality (X,Y). If in addition the function f is convex, 

one easily finds that the subgradient af(x) consists of the single 

element y. When X is a normed space, Y its topological dual, all this 

a fortiori holds if f is ~rgchet-differentiable at the peint x. 

Subdifferentiability finds its clearest setting when a pair of 

dual, i.e. mutually polar functions f E To (X,Y) and g E To (Y,X) is 

considered. Then, for x in X and y in Y the three following pro- 

perties are equivalent : 
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(2.6) Y E a f ( x )  

(2 .7)  . x E ag(y)  

(2.8) f ( x )  + g(y)  - <X,Y, = 0 ; 

observe t h a t ,  by ~ e n c h e l ' s  i n e q u a l i t y ,  the = s ign  above may equivalen- 

t l y  be replaced by < . I f  t h e s e  p r o p e r t i e s  hold,  the p o i n t s  x and y 

a r e  da id  conjugate  r e l a t i v e  t o  t h e  p a i r  of mutually p o l a r  func t ions  ( f , g ) .  

EXAMPIE. Take a s  f the i n d i c a t o r  func t ion  #C of a nonempty closed convex 

subse t  of X. Then the  r e l a t i o n  y E 8 # C ( ~ )  i s  t r i v i a l l y  equivalent  t o  

t h e  fol lowing : t h e  point x belongs t o  C and t h e  set 

i u  E X : < U  - X ,  yb < 01 c o n t a i n s  C. I f  y d i f f e r s  from t h e  ze ro  of 

Y t h i s  set i s  a c losed half-space whose boundary i s  a support ing h y ~ e r -  

plane of t h e  s e t  C a t  t h e  po in t  x ; then one c l a s s i c a l l y  says t h a t  

Y E Y i s  an  outward normal vec to r  a t  t h e  point x of t h e  convex s e t  

C C X. Let us  agree t o  t ake  t h i s  locu t ion  i n  a weak sense,  by consider ing 

a l s o  t h e  ze ro  of Y a s  a normal vec to r  a t  the p o i n t  x i f  it belongs t o  

a #,(x) ; t h u s  t h e  s e t  8, JrC(x) w i l l  be c a l l e d  t h e  outward normal cone 

a t  t h e  po in t  x. T h i s  cone i s  empty if x $? C ; i f  x E C i t  con ta ins  a t  

l e a s t  t h e  ze ro  of Y and reduces t o  t h i s  s i n g l e  element,  i n  p a r t i c u l a r ,  

when x i s  an  i n t e r n a l  po in t  of C ( i . e .  every s t r a i g h t  l i n e  drawn t o  

x i n t e r s e c t s  C along a segment t o  which x i s  i n t e r i o r ) .  I n  terms of 
6 

t h e  support  func t ion  #* of C, condi t ion  ( 2 . 8 )  y i e l d s  t h a t  if x 
C 
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belongs t o  C one has  

a q C ( x )  = [ Y  E Y : qf(Y) = <x,y> I 

= [ Y  € Y : * i c y )  < ( X , Y >  ] . 
REMARK. For a p a i r  of spaces (X,Y) with f i n i t e  dimension and convex 

func t ions  f ,  g which a r e  d i f f e r e n t i a b l e ,  r e l a t i o n s  (2.61, (2.7),  (2.8) 

show t h a t  t h e  correspondance between f and g reduces t o  t h e  c l a s s i c a l  

Legendre transform. 

Let us  come back t o  t h e  case  of a n  a r b i t r a r y  f and possibly 

i n f i n i t e  dimensional spaces. By a s s o c i a t i n g  with every x E X the  subset  

af.(x) of Y one def ines  a multimapping ( a l s o  c a l l e d  a mult i funct ion,  o r  

a multivalued mapping, o r  a set-valued mapping) fmm X i n t o  Y. Indepen- 

d e n t l y  of t h e  fo rmal iza t ion  of subgradients  and t h e  "subdi f fe ren t ia l  c a l -  

cu&usl' (MOREAU [2] ; s imi la r  ideas  were a l s o  present  i n  Rockafel lar ' s  

Thes i s ,  Harvard, 1963) t h i s  multimapping was considered i n  G . J .  M I N T Y  

[l] a s  t h e  leading example of monotone, possibly multivalued, operator .  

I n  f a c t  whichever a r e  x and x '  i n  X ,  whichever ar: y i n  a f ( x )  

and y '  i n  a f ( x ' ) ,  i f  any, one f i n d s  e a s i l y  

< x  - x ' ,  y - y f >  2 0 

which i s ,  by d e f i n i t i o n ,  the  monotony property of the multimapping 8 f .  
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2. f  ADDITION RULE 

The main c a l c u l a t i o n  r u l e  f o r  s u b d i f f e r e n t i a l s  concerns a= 

t z .  I f  f l  and f 2  a r e  two numerical funct ions,  def ined f o r  ins tance  

on X ,  t h e  inclusion 

i s  t r i v i a l .  I f  t h i s  inc lus ion  holds a s  an e q u a l i t y  of s e t s  the func t ions  

fl and f 2  a r e  sa id  t o  possess  t h e  a d d i t i v i t y  of t h e  s u b d i f f e r e n t i a l s  

a t  t h e  point  x  . 
Let us  ind ica te  two usua l  s u f f i c i e n t  condi t ions  f o r  t h a t  : 

lo I f  both funct ions f l  and f 2  a r e  convex, one of them weakly d i f f e -  

r e n t i a b l e  a t  t h e  point x, inc lus ion  (2.9) ho lds  a s  an equa l i ty  of se t s .  

2O I f  both func t ions  f l  and f 2  a r e  convex and i f  the re  e x i s t s  a  

po in t  x  i n  X a t  which one of them is  continuous, with both values 
0 

f  (X and f2(xo)  f i n i t e ,  inc lus ion  (2.9) holds a s  a n  equa l i ty  of s e t s  
1 0  

f o r  every x iq X. Continui ty must be understood here i n  t h e  sense of 

some ( l o c a l l y  convex) topology compatible with t h e  d u a l i t y  (X,Y) : thus  

t h e  l e s s  s t r i n g e n t  hypothesis  is  obtained by t a k i n g  t h e  f i n e s t  of them, 

i .e.  t h e  Mackey topology z (X,Y ). 

EXAMPIE. Make f l  = f ,  a  func t ion  defined on X ,  with va lues  i n  

1- -, + -1 and f = (lC, t h e  i n d i c a t o r  func t ion  of  a  non empty subset 
2  

C of X. The problem of minimizing t h e  r e s t r i c t i o n  of f  to C is 
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clearly equivalent to that of minimizing, wer the whole of X, the func- 

tion f + gC ; a minimizing point x is characterized by 

a condition which is implied by 

When the additivity of the subdifferentials holds, conditions (2.10) and 

(2.11 are equivalent. 

Such is the case for instance, by 1' above, if the set C i> 

convex, and the function f convex, everywhere weakly differentiable : 

then (2.111, written as 

(2.12) - - grad f(x) E a #C(~) 

is a necessary and sufficient condition for x to be a solution of our 

"constrained minimization problem". Make in particular X = Y = H, a 

separated pre-Hilbert space with the inner product (.I. ) Playing the 

role of the bilinear form <.,.>. Let a be an arbitrary element of H ; 

define the function f by 

1 1 
f (x) = (x-a I x-a) = - 11x-a11~ . 

2 

Elementary calculation Droves that this function is convex and weakly 

differentiable relatively to the duality (H,H), with 

grad f(x) = x - a . 
Then (2.12) yields a necessary and sufficient condition for x t* 
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t h e  n e a r e s t  point  t o  a & C! 

(2.13) a - x E 8 SC!x) ; 

such a n  x i s  denoted by projC(a)  o r  * p r o j  ( a ,  C), i f  it exi;sts. Uni- 

queness of t h i s  po in t s  r e s u l t s  from f being s t r i c t l y  convex ; r e c a l l  

on t h e  o t h e r  hand t h a t  i f  H is  complete, i.e. i f  it i s  a H i l b e r t  smc?, 

t h e  ex i s tence  of projC a i s  secured f o r  any a E H. 

2. g IMAGES BY LINEAR MAPPINGS 

Let (FjG) be another  p a i r  of l i n e a z  spaces ,  placed i n  separa- 

t i n g  d u a l i t y  by a b i l i n e a i  form denoted by &.,.>>. Let A be a l i n e a r  

mapping irdm F I ~ t o  X,  weakly continuous ( i .e .  cont inuous from F 

endowed with any t ~ p n l o g y  compatible with the  d u a l i t y  (?;GI, t o  X en- 

dowed w i t h  the  weak topology cr ( x , ~ ) ) .  Weak c o n t i n u i t y  impl ies  the  exis-  

t ence  of the  a d j o i n t  ( o r  t r anspose)  of A ,  i .e .  t h e  l i n e a r  mapping A* 

from Y i n t o  G such t h a t  

* 
V U C F  , V y F Y  : ( A u , y \  = <Cur A Y,, . 
Let f E T (X,Y) ; c l e a r l y  the  func t ion  

f o A  : u H f ( A u )  

belongs t o  r (F,G) ; one proves ( s e e  ROCKAFELLAR [3]  ) t h a t  i ts  dua l  

func t ion  ( f  u A)* i s  t h e  I? - h u l l  of the func t ion  def ined on G by 

(2.14) v + + i n f i J ( y )  : ~ * y  = v j  . 



J. J. Moreau 

If in addition there exists a point in the range of A at - 
which f is finite and continuous (for some topology compatible with the - 
duality (x,Y)) E n  (f o A)* equals the function (2.14) itself. Under 

the same assumption, for everp u E F, the subdifferential a(f o A) (u) 

is the image of af (A u) C Y under the mapping A* ; this may be expres- 

sed by writing 

* 
(2.15) acf O A )  = A o a f  O A  . 

2. h CONJUGATE GAUGE FUNmIONS AND QUASI - HOMOGENEOUS CONVEX 

FUNCTIONS 

The setting is again that of a single pair of spaces (X,Y). 

Let A be a closed convex subset of X containing the origin ; denote 

by B the polar set of A, i.e. 

B = Iy E Y : V x €  A , (x,~,< I]. 

Then A is, symmetrically, the polar set of B. It is easily seen that 

the gnuge function of A, namely the function a defined on X by 

1 a(x) = inf { A  E 10, + -[ : ~x €A 1 , 
is the support fdnction of B ; symmetrically the gauge function b of 

B is the support function of A. We shall refer to this situation by 

saying that (a, b) is a pair of conjugate gauge functions. 

For sake of simplicity &et us restrict ourselves here to the 
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case where both functions take only finite values ; this means that A 

is absorbent in X (i.e. the origin is an internal point) and that it is 

bounded relatively to the topologies compatible with the duality ; equi- 

valently B possesses the same properties in Y. Such is the case, for 

instance if X is a given normed space, Y its dual endowed with the 

usual norm : the respective norms form a pair of conjugate gauge func- 

tions and the corresponding mutually polar sets are the closed unit balls 

of the two spaces. 

One finds 

and the symmetrical relation (this can be extended to possibly infinite 

valued conjugate gauge functions, under some notational precautions). 

Consider on the other hand a mapping 4 from [0, + CO[ into 

[0, + r] possessing the following properties : 4 is convex, non de- 

creasing, lower semi continuous and 4 (0) = 0 (actually 4 is conti- 

nuous on the interior of dom = 15 E [0, + -[ : 4 ( c )  ( + O D ]  ). Clas- 

sically, with such a function is associated itsYoung conjugate y defi- 

ned on [0, + ar[ by 

y ( 8 )  = SUP (5 7 - 4 (5)) 

which possesses the same properties ; 4 is, in turn, the Young conju- 

gate of ' y . 
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Examples : 

lo 1 P $(El =:E 1 q 
I Y (77) =y77 

where p and q denote two constants in 11, + m[ , such that 

where A E [0, + ,[ is a constant. 

Exclude the singular case where one of the two functions $ 

and y is the constant zero. Then one proves that the functions 

f = $ o a  , g =  y o b  res~ectively definedon X and Y, i s  

f(x) = $(a(x)) , g(y) = y(b(y)) 

are a.pair of dual functions in the sense of the preceding paragraphs. 

Each of these functions is said quasi-homogeneous (or gauge- 

like in ROCKAFELLAR [2 ]  ) ; in fact in the special case where 

1 $( 5 )  = - cP, the function f is positively homogenous with degree p. 
P 

The functions defined in this way, for instance on X, may be characteri- 

zed as follows : they are the elements of r (X,v) such that the va- 

rious sets {x E X : f (x) < k] (the "slices" of f 1, for k F R 

are homothetic to A (they are empty for k C 0). 

Concerning the determination of the subdifferentials of these 

functions, let us only indicate : Two points x E X a s  y E Y are 
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con juga te  r e l a t i v e l y  t o  ( f  , g )  i f  and only i f  

6 ( a ( x ) )  + y ( b ( y ) )  = a ( x )  b ( y )  = 4 x , y >  . 
The f i r s t  e q u a l i t y  may be i n t e r p r e t e d  by saying t h a t  t h e  r e a l  numbers 

a (XI and b ( y )  a r e  con juga te  p o i n t s  wi th  regard  t o  the  p a i r  of 

Young conjugate  func t ions  (r$,y) ; i f  x and y a r e  d i f f e r e n t  from t h e  

r e s p e c t i v e  o r i g i n s  of X and Y, t h e  second one expresses  a proper ty  

of t h e  "rays" ( i . e .  one-dimensional cones) they genera te  i n  X and Y ; 

such r a y s  may be s a i d  con juga te  r e l a t i v e  t o  t h e  p a i r  of conjugate  gauge 

f u n c t i o n s  a and b. 
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3 SUPEHPC)TEI\~TI ALS AIiD PERFECT CONSTKA I NTS 

3. a CONFIGURATIONS AND FORCES 

In this Chapter is considered a mechanical system 6 whose set 

of possible configurations,denoted by U , is endowed with a linear space 

structure. Such is traditionnally the case, due to the use of linear ap- 

proximation, if the system presents only "small deviations" from a cer- 

tain reference configuration which constitutes the zero of U . 
The bdlinear form w& places the linear space ?.& in duality 

with a linear space F whose elements constitutes, in a general sense, 

the possible values of forces experienced by the system. Precisely<u,f> 

denotes the work of the force f E % for the displacement u E of the 

system. For sake of clarity, weshall in some cases comply with the habit 

of denoting a displacement by such a symbol as 6 u ; this symbol is 

meant to recall that the considered displacement equals the difference 

between two elements of ?.f representing some configurations ; actually, 

in the present framework, due to the existence of the privileged confi- 

guration "zero", configurations as well as displacements are elements of 

u, thus have the same algebraic nature. 
After replacing, if necessary, the considered spaces by some 

quotients, it may be supposed that this duality is separating. 
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EXAMPLE. Take a s  6 a p e r f e c t l y  r i g i d  body performing only " i n f i n i t e l y  

small" motions i n  the  neighborhood of the  reference configurat ion.  From 

t h i s  reference s t a t e ,  each possible  conf igura t ion  of the body may be des- 

c r ibed  by the  corresponding f i e l d  of displacement vec tors ,  say 

+ 
u : X H  u(x) .  Due t o  t h e  r i g i d i t y  of the  body and t o  the f a c t  t h a t  d i s -  

placements a r e ,  by apvroximation, t r e a t e d  a s  i n f i n i t e l y  small t h i s  f i e l d  

possesses  the  property of equipro. ject ivi tx  ; t h e  t o t a l i t y  of equiprojec- 

t i v e  vec tor  f i e l d s  i s  wel l  known t o  form a l i n e a r  space of dimension 6 : 

such i s  U i n  t h e  present  case.  For sake of b rev i ty  l e t  us accept only 

a s  a c t i n g  on $ f i n i t e  f a m i l i e s  of fo rces  i n  t h e  sense of elementary 

Mechanics. Such a family may be described a s  a vec tor  f i e l d  4 : X* J(x)  

t ak ing  the  value zero everywhere except on a f i n i t e  s e t  of po in t s  and i t s  

work f o r  a displacement f i e l d  u E U i s  c l a s s i c a l l y  defined a s  t h e  f i n i -  

t e  sum w = 2 :(XI. J(x) .  For a f ixed I$ t h e  mapping u u  w i s  c l e a r l y  

a l i n e a r  form on the  space U ; on the o ther  hand, the s e t  $ of the 

poss ib le  I$' s i s  n a t u r a l l y  endowed with a l i n e a r  space s t r u c t u r e  which 

makes t h a t ,  f o r  a f ixed  u, t h e  work w i s  a l i n e a r  form of  4. But the 

space c l e a r l y  has an i n f i n i t e  dimension, s o  t h a t  t h i s  b i l i n e a r  form 

cannot place U and @ i n  separa t ing  dua l i ty .  The c l a s s i c a l  procedure 

c o n s i s t s  i n  t r e a t i n g  a s  equ iva len t  two f a m i l i e s  of fo rces ,  say I$ and 

I$', such t h a t  

V u E 24 : C :(XI. $(XI = C ;(X). $ ' ( X I .  
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The corresponding equivalence classes are called torsors. In other words, 

if Go denotes the linear subspace of @ formed by the families of for- 

ces which yield a zero work for any u E U , torsors are the elements of 

the quotient space O / Oo, with dimension 6. Such is a in the present 

case ; the duality between U and is then separating. 

PRODUCT SPACES. Suppose the mechanical system CP consists in the con- 

junction of n possibly interacting systems dl, &2, . . . , dn whose res- 
pective configuration spaces are the linear spaces 2(1, U2, . . . , un . 
Then the configuration space of & is the product space U x u  x ... 

1 2  

. . x u n  , naturally endowed with a linear space structure. Denote by a .  

the force space corresponding to the system doi , a linear space placed 

in separating duality with Ui by the bilinear form <.  ,.>i . A force f 

exerted on the total system @ is a n-tuple (f19 f2, . . . , fn) , 
fi E T i  ; this is the generic element of the product space 

3 = 7  x 7 x . . x 3 . The work of f for a displacement 

u = (u u2, . . . , un) of 2( is by definition the sum 

<u,f> = C <ui, fi>i 
i 

in which we recognize the natural bilinear form placing the product spa- 

ces U an 7 in separating duality (cf. 5 2. c). 

This construction of U and a as the products of the respec- 

tive spaces corresponding to subsystems of fl is a customary procedure 

in computation. It prepares also for the application of our general 
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p a t t e r n  t o  continuous media, a s  developed i n  B. Nayroles 's  l e c t u r e s  : 

then  U and a  a r e  some l i n e a r  spaces of measurable func t ions ,  with 

regard  t o  a  c e r t a i n  non-negative measure. The sum which above d e f i n e s  

t h e  work i s  replaced by an  i n t e g r a l .  

3. b  STATICAL LAWS 

A s t a t i c a l  law i s  a  r e l a t i o n ,  denote it by R ,  between t h e  

conf igura t ion  u  E U t h a t  t h e  system dJ may occupy and some, say 

f 6 a ,  among t h e  f o r c e s  it may experience when i t  comes through t h i s  

conf igura t iun .  Such a  r e l a t i o n  a r i s e s  from the s tudy of some of t h e  phy- 

s i c a l  processes  i n  which t h 2  system i s  involved. 

Instead of r e l a t i o n s  a s  2,  one may aquimikntly speak of multi-  

m a p p i n ~ s  from one of the  two spaces i n t o  t h e  o t h e r  ; f o r  i n s t a n c e , b e v e r y  

u  i n  21 corresponds t h e  (poss ib ly  empty) s e t ,  denote i t  by R(u), o f  

t h e  elements f  of wh.,n a r e  r e l a t e d  t o  u  by R . 

I n  p a r t i c u l a r  it may happen t h a t  t h e  s e t  R(u) c o n s i s t s ,  f o r  

e - - h  u ,  of a  s i n g l e  element ; then +he s t a t i c a l  law i s  descr ibed a s  a  

s ingle-valued mapping u- f  from u i n t o  a .  I f ,  i n  add i t ion ,  t h e r e  

e x i s t s  a  numerical f u n c t i o n  W : U + R  such t h a t  t h i s  mapping is expres- 

sed by 

f = - grad W(u) 

(weak grad ien t  o r  " ~ i t e a u x  d i f f e r e n t i a l "  r e l a t i v e  t o  t h e  d u a l i t y  def ined 
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above) it is  c l a s s i c a l l y  s a i d  t h a t  t h e  considered s t a t i c a l  law admits W 

a s  p o t e n t i a l .  

The s i r  p l e s t  s t a t i c a l  law imposes t h e  value f o  E a of a  cer- 

t a i n  fo rce  a c t i n g  on t h e  system, independently of the  c o n f i g u r a t i o ~ t  u. 

Such 6 cons tan t  mapping from U i n t o  a ev iden t ly  admits the p o t e n t i a l  

W expressed by 

W(u) = -<a, fo> . 
EQUILIBRIUM. Suppose t h a t  a l l  the  phys ica l  processes  i n  which t h e  system 

@ t a k e s  p a r t  imply fo rces ,  a c t i n g  on i t ,  which e i t h e r  vanish i n  any ex- 

pected equ i l ib r ium o r  a r e  n  f o r c e s  f l ,  f 2 ,  . . . , f n  r e s p e c t i v e l y  r e l a -  

t e d  t o  t h e  conf igura t ion  u by n s t a t i c a l  lawindependent  of t i m e ,  

denoted by F! R 2 ,  . . . , R n  . Then t h e  equ i l ib r ium problem c o n s i s t s  i n  

determining t h e  va lues  of u i n  U possesslng t h e  fol lowing property : 

t h e r e  e x i s t  f l ,  f a ,  . . . , f+ i n  5 respec t ive ly  r e l a t e d  t o  u  by t h e  

r e l a t i o n s  'Y2, . . . , Rn and such t h a t  f  + f 2  + . . . + f n  = 0. 1 

According t o  t h e  ' 'pr inciple  of v i r t u a l  work" and due t o  t h e  way i n  which 

F has  been cons t ruc ted  a s  a  q u o t i e n t  space placed i n  separa t ing  dua ' i ty  

with a, these  va lues  of u  correspond i n  f a c t  t o  the  equ i l ib r ium c?n- 

f i g u r a t i o n s  o f @ ,  i . e .  the  conf igura t ions  i n  ihich immobility i s  a  mo- 

t i o n  compatible with our  physical  information about t h i s  system. 

Equivalent ly ,  i f  R1, La,  . . . , Rn denote the multimappings 

corresponding a s  above t o  t h e  n s t a t i c a l  laws, the  equ i l?br i tv - . I  
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conf igura t ions  a r e  charac te r ized  by 

0 f R (u)  + R2(u) + ... + R,(u) . 
1 

Let us  s t r e s s  a t  l a s t  t h a t  t h e  concept of s t a t i c a l  law, a s  we 

j u s t  def ined i t ,  i s  not r e s t r i c t e d  t o  the  study of equi l ibr ium problems. 

I n  evo lu t ion  problems a l s o ,  s t a t i c a l  laws w i l l  be considered, possibly 

depending on time. 

3. C FRICTIONLESS BILATERAL CONSTRAINTS 

The descr ip t ion  of a cons t ra in t  i n  Mechanics requ i res  fonda- 

mental ly  more information than merely defining a s e t  of permitted confi-  

gurat ions.This  descr ip t ion  always includes some i n d i c a t i o n  concerning 

t h e  f o r c e s  of c o n s t r a i n t  o r  reac t ions  experienced by the system and i m -  

p l i e d  by t h e  mater ial  process  which r e s t r i c t s  i t s  freedom. Let us  empha- 

s i z e  t h a t  per fec t ,  i .e .  frictionless,con~traints a r e  a spec ia l  type of 

s t a t i c a l  law. 

Consider f o r  ins tance  the  s i t u a t i o n  described i n  t h e  language 

of elementary Mechanics a s  follows : a c e r t a i n  p a r t i c l e  s of t h e  system 

@ i s  maintained b i i a t e r a l l y ,  without f r iCt ion ,on  a given regula r  mate- 

r i a l  sur face  S. Let 

(3.1)  h (2)  = 0 

+ 
be t h e  equat ion of S, where x denotes t h e  gener ic  element of a three-  

dimensional frame of re fe rence  E3, t r ea ted  a s  a three-dimensional 
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linear space, and h a smooth numerical function defined on E3, with 

+ 
nonzero gradient. Let po denote the position of the particle s in 

E3 when the system fl presents the configuration corresponding to the 

zero of U . For the configuration corresponding to some element u of 

+ U ,  this position is p and, due to our framework of small deviations 

+ + 
and linearization, the mapping : u- p - po is treated as linear 

from U into E3 ; in all the following, this linear mapping is suppo- 

sed continuous with regard to some locally convex topology compatible 

with the duality (U, ), thus continuous for all such topologies. S'imi- 

larly, the linearization procedure replaces the function h by its 

+ 
first order expansion in the neighborhood of p so that the condition 

+ 
p E S takes the form 

-+ + -t 
h(go) + (p - po) . grad h(co) = 0 

(scalar product and gradient are understood here in the sense of the 

three-dimensional Euclidien space E ) i.e. 
3 

4 + 
(3.2) h(go) + ?(u) . grad h(p 1 = 0 . 

0 

-r 
Here arises the need of an addi'tional hypothesks concerning e 

for the continuous linear form UH ?(u). grad h(co) not to be identi- 

---t * 
cally zero ; as the vector grad h(po) has been supposed different from 

zero, the sufficient assumption we shall make in all the following is : 

+ 
the linear mapping e from U info the three-dimensional space of the 

"physical" vectors is surjective. One may express this by saying that the 



J. J. Moreau 

particle s of the system is regular regarding the use of a as the 

configuration space of the system. Then the values of u satisfying 

(3.2) constitute a closed hyperplane 

(3.3) 6: = U + a  , 

where a represents some known element of U and U denotes the linear 

subspace with codimension 1 

u = lu E U : f?(u). g= h(Fo) = 01 . 

For the particle s to be maintained in S it must experience 

+ 
in addition to other possible actions, the.force of constraint R, or 

reaction, arising from this material surface. In the language of the pair 

of spaces (U,a) the representation of this force consists, by defi- 

nition, in the element r E Possessing the following property : for 

any 6 u E , to which corresponds in the "physic~l" space E3 the 

+ 
displacement 6 = e(6 u) of the particle s, the work of R equals 

(6 u, r> , i.e. 

(3.4) 4611, r> = f(6 u). . 
Let us make use now of the hypothesis that the constraint is 

+ 
frictionless. By definition this means R is normal to the surface S 

+ 
at the point p ; equivalently R yields a zero work for any displace- 

+ 
ment vector 6 p which is tangent to S at this point. Due to the li- 

nearization procedure which replaces the equation of S by (3.2), this 

amounts to 
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(3.5) V S u E U  : 46 u, r> = 0 . 
I n  o ther  words r belongs t o  V,  t h e  subspace of a orthogonal t o  U. 

I t  w i l l  be supposed t h a t  conversely any value of r ,  i ;e .  of 

-P 
R ,  s a t i s f y i n g  t h i s  condit ion can be produced bv t h e  device enforc inv  t h e  

constra'nt.  Phys ica l ly ,  t h i s  means f i r s t  t h e  c o n s t r a i n t  i s  b i l a t e r a l  : 

t h e  p a r t i c l e  s should more exac t ly  be v i sua l ized  a s  guided without 

f r i c t i o n  between two p a r a l l e l  sur faces  i n f i n i t e l y  c l o s e  * t o  each o ther  ; 

secondly these s u r f a c e s  a r e  s t rong  enough t o  e x e r t  a r b i t r a r i l y  l a r g e  

normal react ions.  We propose t o  summarize these  f a c t s  by saying t h a t  the  

considered perfect ,  c o n s t r a i n t  i s  f a  (c f .  MOREAU [14], vol.  2 ,  5 9. 2 )  

Except otherwise s t a t e d ,  firmness w i l l  always be i m p l i c i t e l y  assumed i n  

t h e  following. 

I n  s h o r t , a l l  our information about the c o n s t r a i n t  i s  contained 

i n  the two condi t ions  u  E 6: , r E V ; equiva len t ly  i t  may be s a i d  t h a t  

t h e  p a i r  ( u , r )  belongs t o  the  subse t  6: x V of a x 8  and t h i s  indeed 

c o n s t i t u t e s  a  s t a t i c a l  law i n  t h e  sense defined by 5 3. b, i .e .  a  r e l a t i o n  

between t h e  poss ib le  configurat ion u  of t h e  system and some of t h e  

f o r c e s  it undergoes. 

This  r e l a t i o n  i s  s u b d i f f e r e n t i a l .  

I n  f a c t  cons ider  t h e  i n d i c a t o r  func t ion  @6: 
of t h e  a f f i n e  ma- 

n i f o l d  described by (3.3)  ; the  s u b d i f f e r e n t i a l  of t h i s  c losed convex 

func t ion  is  e a s i l y  found t o  be 
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V i f  u € ,  
a g,(u) = 1, i f u , P  . 

Therefore t h e  r e l a t i o n  ( u , r )  E P x V i s  equiva len t  t o  

which i s  another  way of conveying the  whole of our information about t h e  

considered cons t ra in t .  The minus s ign  i n  the  l e f t  member is immaterial 

a s  t h e  r i g h t  member is a l i n e a r  space : t h i s  i s  only f o r  sake of consis-  

tency with f u r t h e r  developments. 

More genera l ly ,  t h e  system 4 may be submitted a t  t h e  same 

t ime t o  severa l  c o n s t r a i n t s  of t h e  preceding s o r t ,  r espec t ive ly  defined 

by n closed hyperplanes 5. = Ui + ai , i = 1, 2 ,  ..., n. The s e t  of 

t h e  permit ted conf igura t ions  is  then n 5.  ; i f  t h i s  i n t e r s e c t i o n  i s  not 
i 

empty l e t  us  use again t h e  no ta t ion  5 = U + a t o  represent  it, where 

U i s  now t h e  i n t e r s e c t i o n  of t h e  closed l i n e a r  subspaces Ui,  each with 

codimension 1. A s  t h e  r e a c t i o n  ri implied by t h e  i - t h  c o n s t r a i n t  be- 

longs t o  Vi,  t he  one-dimensional subspace orthogonal t o  Ui i n  % ,  t h e  

sum r of t h e  n r e a c t i o n s  belongs t o  V ,  t h e  subspace orthogonal t o  U 

Conversely, any element of V possesses a t  l e a s t  one decompostion i n t o  

a sum F r i, ri E Vi ( t h i s  i s  merely the  c l a s s i c a l  theorem of Lagrange 
i 

m u l t i p l i e r s  : t h e  d u a l i t y  between and being separa t ing ,  t h e  bi-  

orthogonhl of a f i n i t e l y  generated subspace equa ls  t h i s  subspace i t s e l f ) .  

Therefore,  each of t h e  n p e r f e c t  c o n s t r a i n t s  being assumed f i rm,  t h e  
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j o i n t  e f f e c t  of them i s  f u l l y  represented by t h e  same w r i t i n g  a s  (3.6) 

and t h i s  i s  a l s o  t r i v i a l l y  t r u e  i n  t h e  case  6: i s  empty. 

Thereby w e  a r e  induced t o  cons ider ,  i n  general ,  s t a t i c a l  laws 

expressed under t h e  form (3.61, where 6: represen ts  a c losed  a f f i n e  

manifold whose codimension i s  not necessar i ly  f i n i t e  : w e  s h a l l  r e f e r  t o  

such s t a t i c a l  laws a s  ( f i rm)  p e r f e c t  a f f i n e  cons t ra in t s .  

Note a t  l a s t  t h a t ,  when s tudying evolut ion problems, a per fec t  

c o n s t r a i n t  descr ibed a s  above may be moving : i .e .  t h e  a f f i n e  manifold - 
6: may depend on time i n  a given way. J u s t  keep i n  mind a t  such event  

t h a t  t h e  so-called displacements, l a b e l l e d  i n  t h e  preceding by t h e  symbol 

6 ,  merely express  t h e  comparison between poss ib le  conf igura t ions  a t  a 

d e f i n i t e  i n s t a n t  ; t r a d i t i o n n a l l y  they a r e  q u a l i f i e d  a s  v i r t u a l  i n  con- 

t r a s t  with the  real displacements which occur a s  a consequence of the  

a c t u a l  motion. In  most p r a c t i c a l  cases  t h e  subspace U which d e f i n e s  t h e  

dimension and t h e  d i r e c t i o n  of 6: i s  independent of time ; only t h e  

element a of U i s  moving ; we s h a l l  meet such a s i t u a t i o n  i n  Chap- 

t e r  6. 

3. d PERFECT UNILATERAL CONSTRAINTS 

With the same no ta t ions  a s  i n  the preceding, suppose now t h a t  

t h e  p a r t i c l e  s of the  sys tem@, i n s t e a d  of being b i l a t e r a l l y  main- 

t a ined  i n  the  sur face  S ,  i s  only confined by some impenetrable block 
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whose S constitutes the boundary. Suppose the function h chosen in 

+ 
such a way that the region of E3 permitted thereby to the position p 

of s is defined by the inequality 

h(G) > 0 . 
Then, using the same linearization procedure as before, the set of the 

permitted values of u is characterized by the inequality 

(3.7) h(G0) + t(u). g a  h(po) 0 

whidh defines in U a closed half-space 9 with the affine manifold 2 

as boundary. 

Here again, the description cf the mechanical situation requi- 

., 
res some information about the force of constraint R that the block 

must exert on s to prevent penetration ; this information will rather 

be formulated by means of the element r E which represents the force 

according to (3.4). 

First, this reaction vanishes when s does liot touch the block, 

i.e. when (3.7) holds as a strict inequality ; in other words one has the 

implication 

(3.8) u E i n t 9  9 r = O  . 
When, on the contrary, s lies in contact with the boundarp S, 

+ 
we still make the no-friction hypothesis, i.e. R is normal to S. In 

addition the unilaterality of the contact imposes that the yeetor ii is 

directed toward the permitted region i.e. dipected in concordance with - 
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t h e  vector  grad h(p) .  I n  terms of work t h i s  is expressed a s  fol lows : 

+ + 4. + 
any 6 p such t h a t  6 P . gra3  h ( p )  > 0 y i e l d s  6 p . 8 >  0. Now, 

+ 
r e c a l l i n g  t h e  r e g u l a r i t y  assumption made about t h e  mapping e-, t ake  a s  

-+ 
6 p t h e  displacement of s i n  E3 assoc ia ted  a s  before with t h e  ele-  

ment 6 u 6f U by 6 $ = (6 u). The contac t  between s and t h e  

block means t h a t  (3.7) holds a s  an equa l i ty .  Besides, due t o  t h e  l i n e a r i -  

d 
za t ion  procedure, grad h(p)  i s  t r e a t e d  a s  independent of  p. Then 

6 . h > 0 holds i f  and only i f  P ( 6  u). ga h(<) > , 0  ; 4 

p u t t i n g  u' = u + 6 u t h e  l a t t e r  is  equivalent  t o  . u '  E 0 s o  t h a t ' f i -  

nally, i n  view of (3.41, a l l  our information about 3 comes t o  be equivai 

l e n t  t o  t h e  fol lowing 

(3.9) 

This  a c t o a l l y  implies a l s o  (3.8) ; i n  f a c t ,  i f  u E i n t  9 t h e  

d i f fe rence  u'- u , f o r  u' E 9 can be a non zero  element o f  U with 

a r b i t r a r y  d i r e c t i o n ;  hence r = 0 f o r  t h e  d u a l i t y  i s  separat ing.  

I n  conclusion t h e  geometric condi t ion  u E 0 of t h e  c o n s t r a i n t  

i s  expressed j o i n t l y  with (3.9) by w r i t i n g  

(3.10) - r E a #9(u) . 
Here a s  i n  $ 3. c l e t  us  make conversely the  f i rmness assump- 

t i o n  : t h e  block i s  supp&ed s t rong  enough t o  e x e r t  any value of  3 

agreeing with t h e  preceding requirements ; i n  o ther  words any va lue  of r 

s a t i s f y i n g  (3.9) i s  possible .  Then r e l a t i o n  (3.10) conveys a l l  our  
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information about t h e  considered cons t ra in t .  

More genera l ly  suppose the  system 8 subjected t o  n  cons- 

t r a i n t s  of t h e  preceding s o r t ,  corresponding t o  half-spaces YJi , 

i = 1, 2 ,  ..., n. Then t h e  s e t  of the  permit ted configurat ions i s  t h e  

closed convex s e t  c = n 9.. AS each of t h e  reac t ions  ri s a t i s f i e s  a  
i 

r e l a t i o n  of the  form (3.101, t h e i r  sum r s a t i s f i e s  

- r € a @ ,  ( ~ ) + a # ,  ( u ) +  ...+ a # , ( u )  . 
1 2 n  

The r i g h t  member i s  t r i v i a l l y  contained i n  a @ C ( ~ )  ; a c t u a l l y  t h i s  sum 

of s e t s  equals  exac t ly  a #C(u)  because of the  "un i la te ra l "  counte rpar t  

of t h e  m u l t i p l i e r s  theorem ( a s  t h e  d u a l i t y  (U, 8 ) 1s separa t ing ,  a  

f i n i t e l y  generated convex cone i n  B is  c losed ,  thus  equal t o  i t s  bi- 

p o l a r ) .  I n  conclusion t h e  conjunct ion of our  n  u n i l a t e r a l  c o n s t r a i n t s  

i s  equivalent  t o  t h e  fol lowing s t a t i c a l  law 

(3.11) - r F 8 tLc(u) . 

Hence we a r e  induced t o  consider  more general ly  t h e  s t a t i c a l  

laws defined i n  the  same way by taking a s  C a r b i t r a r y  closed convex 

s u b s e t s  of U : w e  c a l l  these  laws (f i rm) p e r f e c t  convex cons t ra in t s .  

Evidently t h e  b i l a t e r a l  cbab t ra in t  s tud ied  ,in $3. e  are a  

-sgeCial case' of t h i d  : . t ake  as C a  closed a f f i n e  manifold. 

3. e  SUPERPOTENTIALS 

We s h a l l  say t h a t  a  s t a t i c a l  law admits a  funct ion 
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d F ro(U,a ) as superpotential if this law consists in the following 

relation between the configuration u and some force f 

In particular, if a statical law admits some numerical function 

W as potential, W ,  is also a superpotential if and only if this func- , 

tion is convex. For instance the constant law f = f (independent of d 

admits as superpotential the linear form u- - (u, fo>. 

Another fundamental example is that of a perfect convex cons- 

traint, as presented in the preceding paragraph : (3.11) means that the 

function (1. is a superpotential for such a statical law ; by taking as 
C 

C a closed affine manifold, this includes, according to 5 3. c, the tra- 

ditional bilateral contraints. 

Suppose the system subjected at the same time to a finite fami- 

ly of statical laws admitting the respective superpotentials $ ,, d,, .. 
. . , dn , Then the sum of f = f + f + .. . 1 2  

+ fn of the corresponding 

forces is related to u by 

- f E a  dl (u) + a  +2 (u) + ... + a  $n (u) . 
This relation implies 

(3.12) - f E a + $2 + .. . + 4 ~ ~ )  (u) 

but is equivalent to it only if some conditions ensuring the additivity 

of subdifferentials are fulfilled ; according to 5 Z.f, the usual case 

where such additivity holds is described as follows : lo some of the - 
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functions $i are weakly differentiable everywhere in ; 2' there 

exists a point u E U at which the others, but possibly one, are finite 

and continuous for some topology compatible with the duality (Q, 8 )  ; 

3' the last one is finite at uo . 
EQUILIBRIUM. Suppoae first that all the mechanical actions to which the 

system is subjected (except possibly those which vanish in any expected 

equilibrium) are sunmarized under the form of a single statical law ad- 

mitting a superpotential $ independent of time. Then, as explained in 

5 3. b, the equilibrium configurations are characterized by 

O E ~ + ( U )  ; 

this is a necessary and sufficient condition for u to be one of the 

points of SA, where the numerical function $ attains its infimum 

(cf. 5 2. e). Such values of u form a closed convex subset of ?I,, pos- 

sibly empty. 

Suppose more generally that the considered mechanical actions 

are described by the conjunction of n statical laws admitting as above 

the respective superpotentials +i, independent of time. A necessary and 

sufficient condition for u to be an equilibrium configuration is now 

0 E 8 (u) + 8 +2 (u) + ... + 8 4n (u) . 
This implies 0 E i) + (u), with 4 equal to the sum of the functions 

+i ; therefore this sum attains its fnfimum at the point u. But the 

converse may not be true, unless the additivity of subdifferentials 
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holds. ~ c t u a l l y  such a  rese rve  does no t  seem t o  be of g r e a t  p r d i c a l  

importance and B. Nayroles sugges l s in  h i s  l e c t u r e s  a  l o g i c a l  a t t i t u d e  

which would overcome t h e  d i f f i c u l t y .  

EXAMPLE. Make n = 2 and suppose t h a t  $ = gC , t h e  s u p e r p o t e n t i a l  of 
1 

a p e r f e c t  convex c o n s t r a i n t .  Then equ i l ib r ium is  c h a r a c t e r i z d  by 

o E a #c (u )  + s $2 ( u )  . 
T h i s  imp1j .e~ t h a t  u  i s  a  point  i n  C where t h e  r e s t r i c t i o n  of t h e  

func t ion  t o  t h i s  set a t t a i n s  i ts infimum ; i n  the  vocabulary of 

mathematical programming, u  is  one of t h e  solut ionsof  a  "constrained" 

minimization problem. But the  converse may not be t r u e ,  u n l e s s  t h e  addi- 

t i v i t y  of s u b d i f f e r e n t i a l s  holds  ; p a r t i c u l a r i z i n g  the s i t u a t i o n  descr i -  

bed above, one f i n d s  t h a t  any of t h e  t h r e e  fol lowing condi t ions  ensures  

t h i s  a d d i t i v i t y  : 

lo The func t ion  4 i s  weakly d i f f e r e n t i a b l e  everywhere i n  %, i .e .  i t  
2 

i s  a  p o t e n t i a l  i n  t h e  c l a s s i c a l  sense. 

2' There e x i s t s  a  po in t  i n  t h e  i n t e r i o r  of C where the func t ion  $ 
2 

t a k e s  a  f i n i t e  value. 

3 O  There e x i s t s  a  po in t  i n  %, a t  which t h e  func t ion  g2 i s  f i n i t e  and 

continuous and which belongs t o  C. 

Reca l l  t h a t  " in te r io r"  o r  "continuous" may here  be understood 

i n  the  sense of any l o c a l l y  convex topology compatible with the  d u a l i t y  

(U, 9; )  : the  weakest assumption i s  t h u s  obtained by choosing the  f i n e s t  
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of t h e s e  topologies ,  i . e .  t h e  Mackey topology ~(7.6, 8 ) ; t h i s  remark i s  

of course without ob jec t  i n  f i n i t e  dimensional cases .  

3. f DUAL MINIMUM PROPERTIES 

This  paragraph i s  devoted t o  t h e  equi l ibr ium problem, i n  t h e  

c a s e  where a l l  t h e  mechanical a c t i o n s  exerted on t h e  system C f  (except 

poss ib ly  those which vanish a t  any expected equi l ib r ium)  a r e  expressed 

a s  t h e  conjunction of two s t a t i c a l  laws r e s p e c t i v e l y  admit t ing t h e  super- 

p o t e n t i a l s  and $2, independent of time. Of course,  each of these 

two superpoten t ia l s  may i n  i t s  t u r n  describe t h e  conjunct ion of several  

laws ; i n  p r a c t i c a l  s i t u a t i o n s  t h e r e  a r e  usual ly var ious  p o s s i b i l i t i e s  of 

c l a s s i f y i n g  the  mechanical a c t i o n s  i n t o  such two groups, so t h a t  the  

s tatements  oresented below can generate a g r e ~ t  number of d i f f e r e n t  va- 

r i a t i o n a l  p roper t i es .  I t  may be imagined t h a t  and $2 correspond 

t o  two d i f f e r e n t  s o r t s  of mechanical a c t i o n  : f o r  ins tance  i s  t h e  

superpoten t ia l  of a p e r f e c t  c o n s t r a i n t ,  while $2 represen ts  "act ive 

forces". 

An element u of % i s  an equi l ibr ium configurat ion i f  and 

only i f  t h e r e  e x i s t  f l  E - 8 ( u )  and f 2  E - 8  $2 ( u )  such t h a t  

f + f = 0. The determinat ion of such 
1 2  f l  ( o r  equ iva len t ly  f ) p r i o r  

2 

t o  t h a t  of u, i s  sometimes c a l l e d  a s t a t i c a l  approach of the  equi l ibr ium 

problem (we should pre fe r  t o  c a l l  i t  s then ic ,  an a d j e c t i v e  meaning 



J. J. Moreau 

" r e l a t i v e  t o  fo rces" ) .  P r iv i leg ing  l e t  us  agree t o  c a l l  an e q u i l i -  

brium f o r c e  any value of 
f l  

a ssoc ia ted  i n  t h i s  way with some e q u i l i -  

brium configurat ion.  

PROPOSITION 1. Lte yl and y2 be the  respec t ive  po la r  ( i .e .  dua l )  

func t ions  of a* $2, r e l a t i v e  t o  t h e  d u a l i t y  (u, 8 ) ; denote by 

Ayl t h e  func t ion  f u  yl(- f )  ( i t  i s  t h e  polar  func t ion  of 

$, : u- $, (- u) ) .  Then any equi l ibr ium f o r c e  minimizes t h e  func t ion  

A y1 + y2 over F ; conversely, Lf f i s  a minimizing point  of t h i s  sum 

A and i f  yl and y2 possess t h e  a d d i t i v i t y  of s u b d i f f e r e n t i a l s  a t  t h i s  

p a t ,  f l  i s  an equi l ibr ium force.  

I n  f a c t  i f  f l  € B corresponds t o  some u E 16 such t h a t  

- f l  E d 41 ( u )  and f l  E 8 $2 ( u )  one has equivalent ly u € a y2 ( f l )  

A and u E 8 yl (- f l )  ; t h e  l a t t e r  is t h e  same a s  - u E 8 yl  ( f l )  ; 

the re fore  

A o e a Y, (I,) + a 7, ( i l l  c 8 dl + yZ) ( f l )  . 
Conversely, the  assumption t h a t  f l  i s  a minimta$ng point  of 

A 
y1 + y2 means t h a t  t h e  ze ro  of %& belongs t o  a y + y 2 ) ( f l )  ; i f  t h i s  C 1 

A s e t  equa ls  a yl ( f l )  + A y2 ( f l ) ,  one has 

o E a y2 ( f l )  - a  y1(-fl) - 

which p r e c i s e l y  expresses  the ex i s tence  of some u assoc ia ted  with f 
1 

i n  t h e  preceding way. 

A s  f a r  a s  we can see t h i s  Proposi t ion conta ins  a s  s p e c i a l  cases, 
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a l l  t h e  extremal p roper t i es  of " s t a t i c a l "  type i n  e l a s t o s t a t i c s .  Observe 

i n  t h i s  connection t h a t  i f  +2, f o r  instance,  i s  the  superpotent ial  of 

t h e  per fec t  b i l a t e r a l  c o n s t r a i n t  defined by the  a f f i n e  manifold 

S, = U + a (c f .  6 3. e b  i ts dua l  funct ion i s  defined by 

y2 ( f )  = (I'V ( f )  + ( a , f >  . 
A Thus minimizing y A + y2 over 3 i s  the  same a s  minimizing yl + ( a , .  > 

over  V ,  t h e  l i n e a r  subspace of 3 .orthogonal t o  U. 

On t h e  o ther  hand, i n  the  usual  s i t u a t i o n s  of l i n e a r  e las to -  

s t a t i c s ,  one may take a s  the  p o t e n t i a l  of e l a s t i c  fo rces ,  which i s  

a nonnegative quadrat ic  form on U.  ~ k l c u l a t i n ~  i t s  dua l  yl 
(equal t o  

Q1, s ince  quadrat ic  forms a r e  even func t ions)  y i e l d s  a nonnegative qua- 

d r a t i c  form defined on some l i n e a r  subspace of 3 and + e outside of 

t h i s  subspace ; a s p e c i a l  property of t h e  quadra t ic  case is  t h a t ,  i f  u 

and - f a r e  conjugate p o i n t s  with regard t o  1, Y1, One has 

1 
( u )  = y ( f )  = - - < u , f >  . 

1 2 

Thus, yl may be i n t e r p r e t e d  a s  "the expression of t h e  e l a s t i c  energy i n  

terms of t h e  e l a s t i c  force" and sometimes c a l l e d  t h e  complementar~ 

energy. This  does not hold anymore i n  non l i n e a r  e l a s t i c i t y  ; howeve* i n  

t h e  very usual  case where t h e  e l a s t i c  p o t e n t i a l  i s  a quasi- 

homogeneous convex funct ion,  t h e r e  i s  s t i l l  a r e l a t i o n  between +1 ( u )  

A and yl ( f ) ,  i f  f  i s  t h e  e l a s t i c  fo rce  corresponding t o  u. 
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3. g SADDLE - POINT PROPERTY 

The notations are the same as in the preceding paragraph. De- 

termining the equilibrium configurations of cf as minimizing points of 

+ $2 
(cf. 6 3. e) and determining the equilibrium forces as minimi- 

A zing points of y + y2 may be considered as dual extremum problems. 

This is a familiar feature of convex programing and it is habitual to 

relate such a pair of vroblems to a saddle-point property for a function 

called Lagrangian. 

PROPOSITION. Define the concave-convex function L on the product spa- 

c e u x B  2 - 
A 

L(u,~ ) = ( u,f> + y1 (f - $2 (u) . . 

with the convention + as - as = + (or equivalently the convention 

+ - m = - w). A point u E is an equilibrium configuration of pf , - 0 

with fl E B as corresponding equilibrium foace, if and only if the - 

element (u0, fl) Of %,x B is a saddle point of L with finite va- 

lue, & L(uo, f ) is finite and for any u E u a n d  any f E B , 1 

In fact, suppose first that u is an equil-ibrium configura- 
0 

A tion with fl as equil-ibrium force, i.e. - uo E 8 yl (fl) and 

fl f 8 $2 (uo) ; the former of these conditions means 

and the latter 
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(3.15) V u F %& : (u - uo, fl> + +2(~d< +2(~3 . 

Adding the finite number - $2(~o) to both members of (3.14) yields the 

A second of inequalities (3.13) ; adding the finite number y (f ) to both 
1 1  

members of (3.15) yields the first one. The value L(uo, fl) is clearly 

finite. 

A 
Conversely, supposing L(uo, fl) finite implies that yl(fl) 

and $2(~o) are finite ; then the preceding calculation may be effected 

backward to deduce (3.14) and (3.15) from (3.13). 

REMAFtK. Exchanging the roles of +I and +2 would yield a quite dif- 

ferent function L. Since, in practical situations, there are usually se- 

veral ways of classifying mechanical action into two groups corresponding 

to +1 and +,-, since, on the other hand the (el(,, T ) pattern may usual 

ly be applied in several ways (see $ 3. j below), the preceding proposi- 

tion generates a pretty great number of saddle point characterisations 

of the equilibrium in elastostatics. ., 

3. h ONE - DIMENSIONAL EXAMPLES 

We consider in this paragraph a system @f whose configuration 

can be specified by a single numerical variable : it is for instance a 

rectilinear bar or a string, as far as we are only interested in the 

distance between its extremities. Denote by Xo + e this distance ; in 
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other words, e denotes the elongation of the bar by comp~rison with some 

reference state in which the length was 6. AS we are only concerned 
with static or quasi-static situations, the state of stress of the bar is 

sufficiently described by the tension s. Classically, for the applica- 

tion of the principle of virtual worktq systems comprising the considered 

bar, the expression of the work of the internal actions must be - s 6 e. 

Thus the pattern of the preceding paragraph applbby taking for the li- 

near space ?./, a copy of the real line R, with e as generic element, 

and for the linear space B another copy of R, with s as generic 

element ; these two one-dimensional linear spaces are placed in separa- 

ting duality by the bilinear form <. , . > 

(3.16 ) (e,s> = - e s  . 
This unpleasant minus sign merely comes from our Complying with the com- 

mon habit in solid mechanics of measuring the state of stress by a posi- 

tive number when it is properly a tension, by a negative number when it 

is a proper pressure. It has nothing to do with the fact that the consi- 

dered "actions" are internal : in our formalism,stress is a "force" like 

any other mechanical action. 

This framework permits the formulation of usual behavioral laws 

of the rectilinear system. 

lo Regular elasticity. Suppose that the behavioral law of the bar 
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d e f i n e s  t h e  tension s a s  a  continuous s t r i c t l y  increas ing  func t ion  of 

t h e  el.ongation e ,  namely s = j ( e )  o r  equivalent ly s  = 0 ' ( e ) ,  where 

9  denotes  a  pr imit ive of j ; observe t h a t  9  i s  then a  convex f u n c t i o n  

Let eo be some d e f i n i t e  value of e  and s = B ' ( e  1. The a f f i n e  func- 
0 0 

t i o n  

e  I+ ( e  - eo)  so+ 9  (eo) 

i s  tangent t o  0 a t  t h e  po in t  eo ; now, with regard t o  the  d u a l i t y  de- 

f i n e d  by (3.16), t h e  slope of t h i s  a f f i n e  func t ion  i s  - s  I n  o ther  
0' 

words t h e  r e l a t i o n  s = 9 ' ( e )  may be w r i t t e n  a s  

- s =  g r a d B ( e )  . 
T h i s  means t h a t  0 i s  a  p o t e n t i a l  f o r  t h e  considered s t a t i c a l  law (and 

a l s o ,  a s  usual ,  t h e  expression of the  p o t e n t i a l  energy) ; due t o  t h e  con- 

v e x i t y  of 9  it i s  a l s o  a  superpotent ial .  A s  we have supposed the  func- 

t i o n  8 '  = j continuous and s t r i c t l y  increas ing ,  it possesses a n  inverse  

func t ion  j-l, defined on t h e  range of j ; t h i s  range i s  an i n t e r v a l  I ,  

poss ib ly  unbounded o r  not c losed.  The c h a r a c t e r i z a t i o n  of e  and - s 

a s  conjugate  points  

X 
9 ( e )  + 9  (- S )  = <- S, e> 

* 
permits  the  c a l c u l a t i o n  of 0  by t h e  formula 

- 1 
e X ( -  S )  = s j ( s )  - e c j - l ( s ) ]  

v a l i d  f o r  any s  i n  I .  The func t ion  9  takes  t h e  value + ss outs ide  
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of the closure of -I. 

2' Elastic string. We agreed that 4 + e represented the distance bet- 

ween the extremities of the considered one-dimensional system. If 6 
denotes exactly the length at rest of an elastic string, the correspon- 

ding statidlaw has the form s = j(e) where the function j takes now 

the value zero for e < 0 . A primitive of j is a superpotential ; its 

dual function O* with regard to the bilinear form (3.16) takes the va- 

* 
lue + , on lo,+ -[ ; the values of 0 (- s) for s belonging to the 

range of j are constructed as above if j' is continuous and strictly 

inareasing on [0, + ,[ . 
3O Inelastic string. This may be considered as a boundary case of the 

preceding. Supposirng that is the proper length of the string and 

that the breaking load is infinite, one finds the following superpoten- 

tial for the relation between e and s 

This is the indicator function of the closed convex subset C = 1- m ,  01 

o f u ,  so that the present law comes to be a perfect convex constraint. 

.. 
As C is actually a convex cone (see 6 2. c) the dual function 8- is 

the indicator function of the polar cone, i. e. the subset 1- -, 01 of 

7 (it is the set of the possible values of - s). 
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The reader will study other examples such as a cylindrical he- 

lix spring, enclosed in a guide tube to prevent buckling ; the length of 

this spring cannot be less than the length it has when all the spires 

come into contact. The corresponding behavioral law is equivalent to the 

conjunction of a law of elasticity and of a perfect convex constraint. 

This gives a very elementary model of an elastic solid with limited com- 

pressibility, a type of material which was studied in generality by 

W. PRAGER [l] ; the behavior of such a material can be formulated as a 

statical law admitting a superpotential. 

3. i AN EXAMPIE OF COMPOUND SYSTEM 

Take as @' a lattice of bars (a truss) whose extremities are 

articulated with one another through spherical joints. The joints are 

represented by n points Al, A2, . . . , An the nodes of the lattice. To 

make the description simpler suppose that between each pair of nodes, 

say Ai and A with i < j to avoid repetition, there exists one of 
j 

the bars denoted by 1 
Bij, thus - n (n-1) bars in all. The behavior of 2 

each bar is treated as one-dimensional ; denote by s the tension of 
i j 

the bar B and by e its elongation with respect to the "zero" 
ij i 3 

state. 

Any configuration of the system @ is fully determined by the 
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corresponding positions of the n nodes Ai relative to some three- 

dimensional Cartesian frame ; these respective positions may be descri- 

+ 
bed by the n three-dimensional displacement vectors x by which they i 

differ from the positions corresponding to the "zero" configuration of 

the system. Thereby we are induced to consider as the configuration spa- 

ce of @ the 3 n-dimensional linear space X whose generic element x 

+ + 
consists in the n-tuple (tl, x2, . . . , x ). n 

Here again we restrict ourselves to linearized geometry, by 

treating the displacements as infinitely small with regard to the 

+ 
lengths of all the bars. Denote by a (with i ( j) the unit vector 

i j 

of the oriented line A.A (taken, to fix the ideas, in the zero confi- 
1 j 

guration ; but this precision is imnaterial since the bars present only 

infinitesimal rotations). The el-ongation of the bar B is related to 
i j 

u by 

(three-dimensional scalar product). 

+ + + 
An external action is a n-tuple of forces (yl, y2, ..., yn) 

respectively exerted on the n nodes ; this n-tuple of three- 

dimensional vectors, denoted by y, constitutes the generic element of 

a 3 n-dimensional linear space Y. The bilinear form "work", placing the 

spaces X and Y in separated duality will be noted (( . , . >> to 
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a b i l i n e a r  form which p l a c e s  t h e  two l i n e a r  spaces  E and S i n  sepa- 

r a t i n g  d u a l i t y  : keep i n  mind t h a t  i t  d i f f e r s  by the  Dresence of t h e  

minus s i g n  from t h e  n a t u r a l  " s c a l a r  aroduct"  between two spaces  whose 

1 
elements  a r e  such - n(n-1)- tuples  of r e a l  numbers. 

2 

A t  t h e  p r e s e n t  s t a g e ,  where p l a s t i c i t y  i s  no t  t aken  i n t o  

account ,  t h e  behav io ra l  laws of  t h e  b a r s  a r e  r e l a t i o n s  between e and 
i j 

s fo rmula ted  i n  t h e  same ways a s  i n s  3. h .Th i s  i n t r o d u c e s ,  f o r  each 
i j  

( i , j ) ,  i < j, a s u p e r p o t e n t i a l  8 .  which i s  a c l o s e d  convex f u n c t i o n s  
13 

on R and t h e  corresponding s t a t i c a l  laws t a k e s  t h e  form 

By t h e  remarks made i n  $ 2. c about  t h e  product of l i n e a r  spaces ,  t h e  

f u n c t i o n  e d e f i n e d  on E by 

pe rmi t s  t o  summarize the  I n ( n - 1 )  r e l a t i o n s  (3.20) by w r i t i n g  
2 

(3 .21)  - s f ? @  ( e l  . 

3. j VARIOUS TREAMFNTS OF THE EQUILIBRIUM PROBLEM 

Let  u s  pursue  t h e  s tudy of  t h e  system desc r ibed  above. Conti-  

nuously d i s t r i b u t e d  e x t e r n a l  a c t i o n s ,  such a s  g r a v i t y ,  a r e  not  t aken  i n t o  

account ,  s o  t h a t  t h e  equ i l ib r ium c o n d i t i o n  of t h e  system c o n s i s t s  i n  t h e  



J. J .  Moreau 

vanishing of the total force experienced by each of the n nodes, i.e. 

for each value of i = 1, 2, ..., n the following three-dimensional 

vector equation 

(3.22 ) 

On tpe other hand, equalities (3.17) define a linear mapping 

from X into E which will be denoted by D. By definition the ad- 

it 
joint D of D is the linear mapping from S into Y defined by 

Referring to the definitions of <. , . > and << . , . >>, then identifying 

the terms of each member yields that the element D* s of Y consists 

of the n-tuple of'three-dimensional vectors (D* sIi 

Therefore the equilibrium condition (3.22) takes the form 

which of course is equivalent to the principle of virtual work, namely 

(3.24) V x E X : (< x,y>> + (D X,S> = 0 . 
lo The method of big spaces. 

We give this name to the method which consists in using the 

pair (x,e), denoted by u as the element which specifies the configu- 

ration of our system. Then, with the notations of 6 3, a the configu- 

ration space is U = X x E ; the corresponding B is the space Y x S, 
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whose generic element is the pair (y,s) denoted by f. These spaces are 

placed in separating duality by the expression of the total work 

(<x,y>> + (e,s>, to be denoted by (u,f>. 

Clearly the whole of the space (26 is not permitted to u, sin& 

the pair (x,e) must belong to the following linear subspace of 

i.e. the graph of D. Let us show that this restriction of freedom may be 

treated as a perfect constraint. 

In fact the equilibrium condition of the system is not the 

vanishing of the element f = (y,s) but merely equality (3.23). Putting 

we observe that V is precisely the subspace of X orthogonal to U : 

this is the same as the equivalence between (3.23) and (3.24). Condition 

(3.23) is equivalent to asserting the existence of some r in V such 

that f + r vanishes. Interpreting r as the reaction associated with 

the considered constraint agrees with our general definition of a per- 

fect affine constraint. 

Actually this conception may be related to a physical realiza- 

tion of the constraint : considering X x E as the configuration space 

amounts to regarding our system as the conjunction of the following sub- 

systems : the nodes Ai, whose respective configurations are described 
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+ 
by t h e  three-dimensional v e c t o r s  x and the b a r s  Bij, whose respec t ive  

i 

s t a t e s  a r e  described by t h e  elongat ions e .  The c o n s t r a i n t  whose geome- 
lj. 

t r i c  e f f e c t  i s  expressed by (3.17) merely c o n s i s t s  i n  connecting t h e  b a r s  

with t h e  nodes. However, our main motivation i n  developing the  present  

example i s  t o  prepare f o r  t h e  case  of continuous media, (c f .  B. Nayro- 

l e s ' s  l e c t u r e s )  ; i n  t h i s  case  x i s  replaced by a f i e l d  of displace- 

ment v e c t o r s  defined on a reg ion  of R~ and e i s  replaced by a f i e l d  

of s t r a i n  t ensors  ; then e = D x i s  the condi t ion  of geometric compa- 

t i b i l i t y  between displacements and s t r a i n s  ; t h i s  r e s t r i c t i o n  of freedom 

may be formally considered a s  a p e r f e c t  c o n s t r a i n t  i n  the  same way a s  

above but i t  does not seem wise t o  t r y  and v i s u a l i z e  R mechanical r e a l i -  

z a t i o n  f o r  it. 

Suppose t h a t  t h e  s t a t i c a l  laws concerning t h e  e x t e r n a l  a c t i o n s  

experienced by t h e  system (poss ib ly  including c o n s t r a i n t s  a c t i n g  on t h e  

nodes) can  be g loba l ly  described i n  the  framework of t h e  spaces (X,Y) 

by a superpoten t ia l  E To (X,Y) ; i n  o ther  words t h e  e x t e r n a l  fo rce  

y f Y i s  r e l a t e d  t o  t h e  "external" conf igura t ion  x E x by 

(3.25) - y ~ a z ( z )  , 

where t h e  s u b d i f f e r e n t i a l  i s  understood i n  t h e  sense of t h e  d u a l i t y  

(X,Y). Suppose on the o t h e r  hand t h a t  the  i n t e r n a l  s t a t i c a l  laws a r e  ex- 

pressed by (3.21). By the  r u l e s  formulated i n  6 2. c about product 



J. J: Moreau 

spaces,  (3.21) and (3.25) a r e  equ iva len t ly  summarized a s  

- f ~ a $  cu) 

i n  t h e  sense of t h e  d u a l i t y  between t h e  b i g  spaces with u = ( x , e ) ,  

f = ( y , s ) ,  and the  superpo tep t ia l  $ def ined  by 

b 4 ( u )  = g ( X I  + e ( e )  . 
The equi l ibr ium of t h e  system may then be s tud ied  by t h e  me- 

thods of $$ 3. e, f ,  g. 

2' The e l imina t ion  of (E ,S 

As t h e  conf igura t ion  of t h e  system i s  f u l l y  s p e c i f i e d  when 

x E X i s  given, one may p r e f e r  t o  consider  only X a s  t h e  conf igura t ion  

space, and Y as t h e  f o r c e  space. Then every mechanical a c t i o n  experien- 

ced by t h e  system must be described i n  terms of elements of Y : p r e c i s e l y  

it i s  represented by t h e  element y of Y such t h a t  f o r  every d i sp la -  

cement 6 x of t h e  system, t h e  work of t h e  considered a c t i o n  i s  

<<F x, y>>. I n  t h i s  way an i n t e r n a l  S t r e s s  s E S i s  represen ted  by t h e  

element y of Y such t h a t  

V F  x E X  : ((8 x, ys>> = ( D 6  x,  s> , 

i. e. 

* 
(3.26) y , = D s  . 
Thus the  s t a t i c a l  law (3.21) i s  t r a n s c r i b e d  i n  terms of t h e  p a i r  of spa- 

c e s  (X,Y) a s  fo l lows  
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* 
(3.27) - Y, E D ( a  e (D XI) . 
'If, in particular, there exists a point in the range of D at which 13 

is finite and continuous (for some topology compatible with the duality 

(E,S)), the calculation rule (2.15) holds,so that (3.27) amounts to 

(3.28 - ys E D (0 o D) (x) 

in the sense of the duality (X,Y) ; this constitutes a statical law ad- 

mitting the function 00 D as superpotential. In this way the techniques 

of the foregoing paragraphs may be applied with regard to the pair of 

spaces (X,Y 1. 

3' The elimination of (X,Y) 

The mapping D : X + E is not injective ; this means that the 

element e = D x does not convey enough information to specify complete- 

ly the configuration of the system. However one may wish to determine the 

equilibrium values of e or s prior to that of x or y and in some 

instances one may be interested in these elements only (in order to dis- 

cuss strength, for example). 

In the principle, the elimination is similar to that of the 

preceding case. Suppose that all the external laws to which the system 

is jointly submitted are summarized under the form 

(3.29) x E P(y) 

where P denotes a given multimapping from Y into X. Similarly suppose 
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t h a t  a l l  t h e  i n t e r n a l  laws a r e  summarized a s  

(3.30) s = R ( e )  

where R denotes  a  given multimapping from E i n t o  S. A system of va- 

l u e s  of x, y ,  e ,  s def ines  an equ i l ib r ium s t a t e  i f  and only i f  it sa- 

t i s f i e s  e  = D x  and (3.23), (3.29), ( 3 ~ 3 0 ) .  Thus, a s  f a r  a s  e  and 

s only a r e  concerned, t h e  equi l ibr ium condi t ion  ( i .e .  a  necessary and 

s u f f i c i e n t  c o n d i t i o n  f o r  the  ex i s tence  of a t  l e a s t  one p a i r  (x ,y)  as- 

soc ia ted  wi th  (e ,  s )  i n  such a  way t h a t  t h e  preceding equ i l ib r ium condi- 

t i o n s  hold)  c o n s i s t s  i n  t h e  conjunct ion of (3.30) with 

(3.31) e E D (P (- D* s ) )  . 
I n  the p r i n c i p l e ,  (3.31) may a s  w e l l  be w r i t t e n  under t h e  form 

(3.32) - s E Q ( e )  . 
Now a s  f a r  a s  t h e  i n t e r e s t i n g  unknown i s  e, t h e  conjunct ion of i3.30) 

with (3.32) i s  equ iva len t ly  formulated a s  fol lows : t h e r e  e x i s t  sl a& 

s2 12 S such t h a t  

s1 E R ( e l  

sZ E Q ( e l  

S 1 + S 2  = 0 . 
Formally w e  a r e  reduced t o  the  usual  p a t t e r n  of the equ i l ib r ium of a 

system submitted t o  two s t a t i c a l  laws. From t h i s  s tandpoint  t h e  r e l a t i o n  

s E ~ ( e )  should be considered a s  t h e  " i n t e r n a l  imagev' of t h e  e x t e r n a l  
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s t a t i c a l  law (3.29). 

The reader i s  i n v i t e d  t o  apply t h i s  procedure t o  an e x t e r n a l  

law of  t h e  form - y E a 5: (x) ,  equivalent ly w r i t t e n  a s  x E a 5:* (-y 1. 

Here aga in  t h e  c a l c u l a t i o n  r u l e  (2.15), under some cont inu i ty  assumption, 

w i l l  y i e l d  an image i n  (E,S) which admits a superpotential.: A s  a f i r s t  

example, t ake  a s  e x t e r n a l  s t a t i c a l  law a given load y E Y* app l ied  t o  
0 

t h e  system ; t h i s  may be w r i t t e n  under t h e  form (3.29) with 

Another primary example i s  t h a t  of a p e r f e c t  a f f i n e  c o n s t r a i n t  formulated 

r e l a t i v e l y  t o  t h e  p a i r  (X,Y). 

But i t  w i l l  be more i n  t h e  s p i r i t  of t h i s  Chapter t o  opera te  

with t h e  p a i r  (E,S) i n  t h e  fol lowing way : 

Since we choose t o  dea l  only with informations formulated i n  

t h e  framework of t h e  pa i red  spaces (E,S) ,  we accept  only t o  speak of 

t h e  s t a t e  of t h e  system i n  terms of e ; on t h e  o t h e r  hand, a mechanical 

a c t i o n  experienced by t h e  system w i l l  be taken i n t o  account only i f  it 

can be represented by an element 5 E S , i n  such a way t h a t  t h e  work of 

t h i s  a c t i o n  f o r  every displacement of the system has t h e  expression 

C6 e ,  a>. Therefore, i f  i n  p a r t i c u l a r  the  considered a c t i o n  19 a n  ex te r -  

n a l  f o r c e  y E Y t r e a t e d  a s  given, the corresponding d must be Such 
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t h a t  

(3.33) V 6 x E  X : <<6 x ,  y>> = (D6 x ,  a> 

Such a a does not necessar i ly  e x i s t  ; an evident condi t ion  f o r i t s  

* 
existence i s  t h a t  y belongs t o .  D S, t h e  image of S under the l i n e a r  

* 6 * 
mapping D . The l i n e a r  subspace D S of Y i s  the  orthogonal,  i n  t h e  

sense of t h e  d u a l i t y  (X,Y), of t h e  subspace Ker D of X. Actually t h e  

imposs ib i l i ty  of represent ing i n  t h e  (E,S) framework a load y which 

* 
would not belong t o  D S does not  make any hindrance. I n  f a c t  suppose, 

f o r  sake of s i m p l i c i t y ,  t h a t  t h i s  load i s  t h e  only e x t e r n a l  a c t i o n  exer- 

t e d  on the  system ; c l e a r l y  by (3.23) o r  by (3.241, y E D* s is  a n 2  

cessary condi t ion  f o r  t h e  ex i s tence  of a n  equi l ibr ium ; t h i s  i s  a fami- 

l i a r  f a c t  : only a family of e x t e r n a l  f o r c e s  with ze ro  r e s u l t a n t  and zero 

moment i s  compatible with equilibrium. 

Another fundamental remark about t h e  use of t h e  (E,S) p a t t e r n  

i s  t h a t  a l l  t h e  va lues  of e a r e  not  permit ted,  s ince necessar i ly  e 

belongs t o  t h e  subspace D X ( t h e  subspace of E c o n s i s t i n g  of t h e  

" s t a t e s  of strainl 'which a r e  "geometrically compatible1'). On the  o ther  

hand, i f  s E S denotes the sum of a l l  the  elements of S represen t ing  

t h e  mechanical act ionsexerted on t h e  system, t h e  equi l ibr ium condi t ion  i s  

not s = 0 ,  but t h e  p r inc ip le  of v i r t u a l  work,namely - 
V 6  x E X  : (D6 x, s> = 0 



J. J. Moreau 

which means t h a t  s belongs t o  t h e  subspace of S orthogonal t o  D X 

* 
( a c t u a l l y  t h e  kerne l  of D ). 

I n  conclusion t h e  equi l ibr ium problem i n  (E,S) must be t rea -  

t e d  by considering the  condi t ion  e  E D X a s  a p e r f e c t  cons t ra in t .  

The reader  w i l l  check t h a t  given e x t e r n a l  loads and e x t e r n a l  

p e r f e c t  a f f i n e  c o n s t r a i n t s  a r e  t ranscribed i n  t h e  (E,S) language by 

given f o r c e s  and p e r f e c t  a f  f i n e  cons t ra in t s .  

I t  is  from t h i s  s tandpoint  t h a t  t h e  e l a s t o p l a s t i c  evolut ion 

problem w i l l  be s tudied i n  Chapter 6. 
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4 LAWS OF RESISTANCE 

4. a VELOCITIES AND FORCES 

A h a b i t u a l  procedure, when studying a mechanical system, i s  t o  

assoc ia te  with each possible  conf igura t ion  of t h i s  system a l i n e a r  space 

- l e t  us  denote it by p- whose elements c o n s t i t u t e ,  i n  a general  sense, 

t h e  possible  va lues  of the  ve loc i ty  of the  system i f  it happens t o  pass 

through the  considered configurat ion.  Roughly speaking, may be i n t e r -  

preted a s  t h e  tangent  space a t  t h e  corresponding point of t h e  configura- 

t i o n  manifold but t h i s  need not be made more prec i se  here. This  space i s  

of i n f i n i t e  dimension i f  the system has an i n f i n i t e  degree of freedom. 

I n  t h e  spec ia l  framework of Chapter 3, where t h e  c o n f i ~ u r a t i o n  

manifold i s  t r e a t e d  a s  a l i n e a r  space ?,I!,, a motion of t h e  system i s  des- 

cr ibed by a mapping t I+ u ( t )  from some i n t e r v a l  of time i n t o  k.  The 

ve loc i ty  i s  n a t u r a l l y  defined i n  t h i s  case  a s  the  d e r i v a t i v e  u ( t )  ( t a -  

ken i n  the  sense of some topology on u)  i f  i t  e x i s t s  ; then Y) = U ,  t h e  

same f o r  a l l  t h e  configurat ions.  

Let us  come back t o  the  general  se t t ing .  With each configura- 

t i o n  i s  a l s o  assoc ia ted  a l i n e a r  space -denote it  by a -  whose elements 

represent  i n  a more o r  l e s s  a b s t r a c t  way, t h e  mechanical ac t ions  which 

may be exer ted  on the  system when i t  happens t o  come through t h e  consi- 
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dered configuration : see the construction of the space of torsors in 

6 3. a. By extension, the elements of 8 are called forces. An essential 

feature in the practice of Mechanics is that several forces are usually 

applied to the system at the same time. This produces a fondamental dis- 

symmetry between the roles played by ?.& and 8. 

To any pair v E Y), f E 8 corresponds the power of the force 

f if the system possesses the velocity v, a real number denoted by 

<v,f> ; this defines a bilinear form'which places and B in duality. 

In the linear framework of Chapter 3 where = U, there is 

no inconsistency in considering the single space 8 as the force space 

associated with any configuration and in using the same bracket as above 

to denote by (6 u,f> the work of f E 8 corresponding tothedisplace- 

ment 6 u E U. In fact, suppose this displacement results from a motion 

t t+ u(t) with velocity ; (derivative understood in the sense of some 

topology compatible with the duality ( 'LL, 8 )) taking place during a time 

interval [tl, tall while f is constant in 8. The general definition 

of work as the integral of power yields 

4. b PSEUDO - POTENTIALS 

Let us agree to call a resistance l.aw a relation,-denote it by 
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9, formulated between the possible velocity v E of the considered 

system in the considered configuration and one, say f E 8 ,  of the for 

ces it experiences at the same instant. Such a law arises from the study 

of some of the physical processes in which the system takes part. 

It will be said that the law 9 is dissipative if the follo- 

wing implication holds 

(4.1) v R f  =$<v,f><0 , 

which makes it a resistance law in the usual sense. 

It will be said that R admits a function $ E To()'? F )  as 

pseudo-potential if the relation R is equivalent to 

(4.2) - f € a $ ( v )  . 
Recall that any subdifferential relation is monotone ; then a 

law R of the form (4.2) ensures the implication : 

( 4 . 3 )  v .P f , v' fR f' 3<v-v' , f-f'><0 . 
Make in addition the frequently verified hypothesis that zero 

is among the valves that the relation 9 permits to f when v is 

zero, i.e. 

(4.4) O E ~ $ ( O ,  . 
hen (4.1) ensues from (4.3) : the corresponding resistance law is dissi- 

pative. Observe that (4.4) implies that C$ (0) is finite and constitutes 

',e minimal value of C$ ; since adding a finite constant to 4 does not 
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affect the subdifferential, there is no loss of generality in supposing 

here 

(4.5) $ ( O )  = 0  ; 

then the function $ takes only nonnegative values. 

In the following, we shall refer to the situation characterized 

(4 .21 ,  (4 .41 ,  ( 4 . 5 )  by saying that the pseudo-potential $ is the 

resistance function of the considered law. 

Recall that, a priori, the pair of linear spaces (VJ, is 

relative to a definite configuration of the system, so that the foregoing 

concerns only this configuration. However in the usual linear case of 

Chapter 3, by making = ?.k and considering the single force space , 

it will be possible to formulate resistance laws independently of confi- 

gurations. 

REMARK. The example developed in5 3. i, 3. j makes understand also 

that the pattern of the present Chapter may usually be applied to a de- 

finite mechanical situation in several different.ways. 

A similar example is t! of a continuous medium, occupying in 

the considered configuration a region R of the physical space. A first 

possibility is to interpret as v the vector field defined on R by 

the velocities of the various particles forming the medium : then the 

linear space yd will consist of vector fields satisfying some assumptions 
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of i n t e g r a b i l i t y ,  d e r i v a b i l i t y ,  e tc . . .  But i n  some t h e o r i e s  it w i l l  be 

more convenient t o  consider  v a s  t h e  s t r a i n  r a t e  t ensor  f i e l d  of t h e  

medium. Or e l s e ,  a s  i n  9 3. j, one may t a k e  f o r  a ''big space" whose 

generic  element i s  t h e  couple of a v e l o c i t y  vector  f i e l d  and of  a t ensor  

f i e l d  presumeb t o  be t h e  s t r a i n  r a t e  f i e l d  ; then t h e  geometric compati- 

b i l i t y  between v e l o c i t y  f i e l d  and s t r a i n  r a t e  f i e l d  w i l l  be seen a s  a 

cons t ra in t .  To t h e s e  various s tandpoin t s  correspond n a t u r a l  choices f o r  

t h e  elements f forming t h e  space B : r a t e s  of d i s t r i b u t e d  forces ,  

s t r e s s  t ensor  f i e l d s ,  e t c . . .  

The same p a t t e r n  w i l l  a l s o  be appl ied t o  formulate l& laws : 

a point  of t h e  continuous medium being spec i f ied ,  one cons iders  a s  

t h e  l i n e a r  space of dimension 6 whose elements a r e  the  poss ib le  values 

of t h e  l o c a l  s t r a i n  r a t e  tensor  d of t h e  medium ; t h e  assoc ia ted  is  

t h e  l i n e a r  space formed by the  poss ib le  va lues  of the  l o c a l  s t r e s s  ten- 

sor  a ; t h e  b i l i n e a r  form which p laces  t h e s e  two spaces i n  d u a l i t y  i s  

t h e  c l a s s i c a l  expression of t h e  dens i ty  of i n t e r n a l  power. A l o c a l  law, 

i.e. a r e l a t i o n  between the  s t r a i n  r a t e  t ensor  and the  s t r e s s  t ensor  a t  

t h e  considered po in t  of t h e  medium, w i l l  be formulated by means of a 

l o c a l  pseudo-potential,  which is  a numerical funct ion defined on v. This 

being done f o r  each point  of the medium, i t  generates  a behavioral  law 

of t h e  medium a s  a whole, i .e.  a r e l a t i o n  between elements of two 
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function spaces whose generic elements are the strain rate tensor field 

and the stress tensor field. Under suitable integrability assumptions, 

these two function spaces are placed in separating duality by the bili- 

near form defined as the integral of the density of internal power. This 

permits the description of the considered behavioral law by means of a 

superpotential which is an integral convex functional. The reader will 

refer to B. Nayroles's lecture for more details about this mechanical 

situation and to C. Castaing's lecture for more details about the func- 

tional analytic aspect. The basic mathematical material may be found in 

R. T. ROCKAFELLAR [ 11 , [ 31 , [ 41 . 

4. C VISCOUS RESISTANCE 

As a first example consider a relation 9 of the form 

(4.6) - f  = L v  

where L denotes a linear mapping from into 8 .  In all the phenomena 

classified as viscosity effects it is always admitted that L is self- 

adjoint (or "symmetric") with regard to the duality &. ,.>, i.e., for any 

v and v' in : 

cv, L v', = <v', L v> . 

From this, one easily deduces that L v is the weak gradient 

at the point v of the quadratic form $I defined on by 
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1 4 (v) = (v, L v> 

This quaaratic form is usually called the Rayleigh function of the consi- 

dered viscosity law. 

Making the additional assumption that the viscosity law ie 

dissipative yields that this quadratic form is nonnegative, thus convex. 
- 

And at any point v the weak gradient L v constitutes the whole of the 

subdif ferential 8 4 (v). This means that in the present case, the rela- 

tion (4.6) may equivalently be written as 

-fEi)+(v). 

Thus + is pseudo-potential and, more precisely, resistance function of 

the considered law. 

The power of the force f associated with v in this way is 

<v,f> = - Cv, L v> = - 2 + (v) ; 

the negative of it is frequently called the dissipated power correspon- 

ding to v ; hence the name of dissipation function which is given in 

the present case to the quadratic form v I+ 2 4 (v). 

REMARK. Gyroscopic forces give an example of a law of the form (4.6) 

with a linear mapping L which is not self-adjoint ; on the contrary 

(v, L v'> = -<v', L v> . 

Such a law admits no pseudo-potential unless L is the zero mapping ; 

the dissipated power is essentially zero, so that (4.1) is satisfied : 
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this law may be said dissipative. 

4. d VEIDCITY CONSTRAINT 

Take back the framework of 5 3. e, i.e. the example of the 

firm perfect constraint whose geometric condition is u € 2, with 

2 = U + a, a possibly moving affine manifold. The linear subspace U is 

supposed independent of time thus also V which is the subspace of 

orthogonal to U. This geometric condition may equivalently by written, 

for every t, 

V w E V  : L u - a , w >  = 0 . 
Supposing that the known function t I+ a possesses a weak derivative a, 

this yields, by choosing w independent of t, that the velocity v = ; 

satisfies 

V w E V  : <;-Li,w> = 0 

i.e. 

(4.7) V € U + & .  

Recall on the other hand that, by the definition of a firm perfect cons- 

traint, the reaction r € % exerted on the system by the enforcing de- 

vice may be an arbitrary element of V. Exactly like in 5 3. b, this 

fact may be expressed jointly with (4 .7 )  by writing : 



J. J. Moreau 

where P denotes the affine manifold U + a . 

This constitutes a resistance law admitting the function # 
6: 

as pseudo-potential. Let us call it a velocity constraint. 

It is no place to explain how, in the general setting of a 

configuration-depgnding pair of spaces(r,a) 1 the usual differen- 

tiability assumptions let any firm perfect bilateral smooth constraint 

be expressed under the form (4.8). This form includes more generally the 

relations between reaction and velocity classically known as n x  

holonomic: perfect constraints ; the standard example of it consists in 

the perfect rolling without sliding of solid bodies, actually an extreme 

case of friction. 

4. e FRICTION AND PLASTICITY 

Suppose given a weakly closed non empty convex subset C of 

F .  Let us formulate a relation 9 between v and f by the principle 

of maximal dissipation namely : the values of f E g which this relation 

associates with a given v E are the elements of C which minimize 

the power, i.e. minimize the function (v,.>. In other words v f 

means 
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which is immediately found equivalent to 

v f' €9;: -<v, ff-f> +$rc (f)<*, (f') 

which in turn is equivalent to 

(cf. 4 2. e and also to 

* 
Denote by I$ the function v -  #C (- v), i.e. 

$(v) = sup 4-v, f>= sup <v, g> ; 
f E C  g E -C 

it is the support function of the set. -12. 

Then (4.10) is transcribed as 

this means that the considered resistance law admits $ as pseudo- 

potential (or resistance function in the usual case where C contains 

the origin of ; such is the condition for the present law to be d= 

siwtive 1. 

Relation (4.11) may equivalently be written as 

in other words the values of f that the considered relation associates 
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with a  given v a r e  those elements of  C f o r  which t h e  d i s s i p a t e d  

power - C v ,  f, equa ls  exact ly 4 (v ) .  

The reader  w i l l  check t h a t  a l l  t h e  preceding p a t t e r n  app l ies  

t o  Coulomb's law of f r i c t i o n  between two s o l i d  bodies dl and % , 
when t h e  pressure  N, i .e .  t h e  normal component of the  reac t ion ,  i s  t rea-  

t e d  a s  known. Take a s  v t h e  s l i d i n g  v e l o c i t r  of d2 with respec t  t o .  

C/; ; then i s  t h e  l i n e a r  space of dimension 2 c o n s i s t i n g  of the  vec- 

t o r s  whose d i r e c t i o n  is  contained i n  t h e  common tangent plane t o  t h e  two 

bodies a t  t h e  point  of contact  ( t h i s  space i s  not exac t ly  t h e  v e l o c i t y  

space f o r  t h e  considered system a s  a  whole, but it is  v i s i b l y  isomorphic 

t o  a  subspace of  i t ) .  Take a s  f  t h e  t angent ia l  component of t h e  reac- 

t i o n  t h a t  v2 undergoes from 4 s o  t h a t  7 may be considered' a s  t h e  

same space a s  t h e  b i l i n e a r  form (. , .> reducing then t o  t h e  conven- 

t i o n a l  Euc l id ian  s c a l a r  product. The customary Coulomb law of i so t ro-  

p ic  f r i c t i o n  c o n s i s t s  i n  taking a s  C the  cl.osed d i sk  centered a t  t h e  

o r i g i n ,  with r a d i u s  equal  t o  the  product of N by the  f r i c t i o n  coef f i -  

c i e n t .  But a n i s o t r o p i c  f r i c t i o n  may be described a s  well, by using convex 

s e t s  of d i f f e r e n t  shape. See MOREAU [12] about t h e  a p p l i c a t i o n  of t h i s  

t o  d i scuss  t h e  s l i d i n g  of a  veh ic le  wheel when brake i s  appl ied  : i f  the  

i n e r t i a  of t h e  wheel i s  neglected, t h e  r e s u l t i n g  e f f e c t  comes t o  be equi- 

va len t  t o  some an iso t rop ic  f y i c t i o n  which would take place d i r e c t l y  
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between the vehicle  and t h e  ground. 

However, the  main domain of app l ica t ion  of t h e  preceding i s  

p l a s t i c i t y .  In  i t s  l o c a l  form the  c l a s s i c a l  law of per fec t  p l a s t i c i t y  

( i .e .  without s t r a i n  hardening) i s  formulated a s  a  r e l a t i o n  between t h e  

l o c a l  valuesof the  s t r e s s  t ensor  o- and of t h e  p a a s t i c  s t r a i n  r a t e  E . 
P 

Giving t h e  y i e l d  locus d e f i n e s  a  closed convex s e t  C i n  t h e  six- 

dimensional space of t h e  v a r i a b l e  b ; among var ious  equivalent  formu- 

l a t i o n s ,  t h e  considered law may be s t a t e d  a s  a  p r i n c i p l e  of maximal d i s -  

s i p a t i o n  which was P r e c i s e l y  t h e  s t a r t i n g  po in t  of t h i s  paragraph. From 

t h e  l o c a l  law one ob ta ins  t h e  global  one by t h e  func t iona l  a n a l y t i c  pro- 

cedure described a t  t h e  end of § 4. b. 

I n  the  study of p l a s t i c i t y  a s  well a s  i n  t h a t  of f r i c t i o n ,  

a n  e s s e n t i a l  f e a t u r e  i s  t h e  occurence of a  r e l a t i o n  between the ve loc i -  

t y  v  and t h e  fo rce  f which cannot be "solved" t o  def ine  one of these  

two elements a s  a  func t ion  of the  o ther  : t o  t h e  value zero of v  cor-  

respond f o r  f  a l l  t h e  po in t s  of C and t o  a  value of f  corresponds 

as va lues  of v  a l l  t h e  elements of t h e  cone - a ( f ) .  This  causes 
C 

much t r o u b l e  i n  t r a d i t i o n a l  t reatments  ; our purpose i n  Chapter 6 ,  w i l l  

be t o  show t h a t  such formulat ions a s  (4 .0 ) ,  (4.10) o r  (4.11) permit a  

very e f f i c i e n t  handling i n  t h i s  s i t u a t i o n .  
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4. f DISSIPATION FUNCTION 

The relation 9 between v and f may equivalently be written 

under the form 

f E R ( v )  

where R denotes a multimapping from into a . Given v in , 

there is a priori no reason for all the values of f in the set R (v) 

to yield the same value for the dissipated power -<v, f>. However this 

precisely happens in many practical instances : in such cases, the dissi- 

pated power appears as a single-valued numerical function of the variable 

v, defined on dom R = lv E : R (v) f $ 1. Let us denote by D this 

function, usually called the dissipation function of the considered law. 

In the case of viscous resistance presented in 5 4. c, the set 

R (v) reduces to a single element for each v in ; hence the exis- 

tence of a dissipation function is trivial. In fact we found 

D (v) = 2 4 (v) . 

In the case of friction or plasticity presented in 5 4. e, 

(4.12) proves the existence of a dissipation function expressed now, for 

every v in dom 8 4 , as 

D (v) = 4 (v) 

Both preceding examples exhibit a close connection between the 

superpotential, or resistance function, 4 and the dissipation 
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function D. Actually in both cases, the resistance function 4 happens 

to be positively homogeneous, with degree m ; this implies 

- CV, f> = m 4 (v), which may be considered as a generalization of 

Euler's identity to "subdifferential calculus". Many practical resistance 

functions possess such a homogeneity (e.g. usual laws of creep). More 

generally : 

PROPOSITION. Let 4 be a resistance function (i& 4 is the mudo- 

potential of a resistance law, w z  0 E a 4 (0) a x  4 (0) = 0 )  ; 

suppose a 4 (v) f 6 whichever is v i_n v. For the existence of a 
function h : R + R  ensuring the implication 

- f E a 4 cv) -=> - cv, f> = h(4 (v)) 

(in other words, for the function l2 o to be dissipation function) 2 

is necessary and sufficient that 4 has the quasi-homogeneous form 

4 = a o j , z e  j is an everywhere subdifferentiable gauge function 

on and a a convex differentiable mapping from [0, + e[ into - 
itself, with a (0) = 0. - 

A sketched proof is given in MOREAU [13], and for more de- 

tails [ 1 6 ] .  It may be remarked that the function h is then strictly 

increasing. The dissipation function D = h o 4 is not convex in gene- 

ral, but only quasi-convex i,e. its "slices1' Iv € 'y3 : D (v) < for 

p E R , are (closed) convex sets ; all these sets are homothetic of 
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J = fv € : j(v)< 11, the set whose j is the gauge. 

By the facts indicated in 6 2. h , the dual function of 

* 
$ = a o j is also a quasi-homogeneous function, namely $ = o k , 

where p is the Young conjugate of a and k the gauge function of 

the polar set K of J. 

In the case of plasticity or friction the function a is 

identity , so that P is the indicator function of the subset [0,1] 

of [0, + ,,,[ and K =-C. 

4. g SUPERPOSITION OF RESISTANCE LAWS 

It is usual to take into account at the same time several 

resistance laws in the same pair ( p ,  a of linear spaces. Let and 

$2 
the respective pseudo-potentiak of two such resistance 1aws.For every 

v in p, the set of the possible values of the sum of the two for- 

ces is b dl (v) + :, $2 (v). This is contained in a ($ + + ) (v). and, 1 2  

in particular, if the functions and +2 possess the additivity of 

the subdifferentials, the conjunction of the two resistance laws amounts 

exactly to the single following one 

(4.13) - f E a + 4,) (v) . 
* 

Suppose for instance 4 (v) = $h (- v), i. e. the resigtance 1 C 
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dendte the resistance function of some viscosity law (cf. 5 4. c : it 
+ 

is a nonnegative 1.s.c. quadratic form on the spacev ) ; choose a strict- 

ly positive constant A and take more generally 

1 
$2(v) = A q(v) = q(A v) , * 

so that A may be interpreted as a viscosity coefficient. As a dondition 

ensuring the additivity of subdifferentials make, for instance, the fol- 

lowing assumption (cf. 2. f) : the function is continuous at the 

origin, at least for the Mackey topology z (2/; a) ;by$ 2. c, 5 O ,  this 

means the convex set C is compact for the weak topology d (8 ,r). Then 

the resulting viscoplastic law may be expressed under the form (4.13). 

Now the assumptions made imply, by 5 2. d, that the polar 
* * 

function of + $2 is the infimal convolute V (Pz. AS already 

* 
mentioned in Chapter 3, the dual q of the quadratic form q consists 

in a positive definite quadratic form, defined on some subspace of 8 , 

and extended with the value + outside of this subspace. By '$ 2 .c , 

1 * 
2', the dual Of m2 is ~q . On the other hand, the dual & of 

is the indicator function of the set - C. Thus using the equivalence 

between (2.6) and (2.7) (5 2. e) the viscoplastic resistance law (4.13) 

amotints to 

1 * 
V E ~  crl-,vrq) (-f) , 

while the corresponding purely plastic resistance law would be written as 
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By d e f i n i t i o n ,  f o r  every j E F , 

1 * 1 * 8 -q l ( y )  = in f  [#-C(z) + 9 (Y-2) 1 
(*-c A + z E Y  

1 * = i n f  - q (y-z) 
z E-C A 

and, due t o  the assumed ,.compactness o f  C, t h e  infimum i s  a minimum. 

Clear ly  t h i s  expression takes  t h e  value 0 f o r  y  E -C and it takes 

1 * 
s t r i c t l y  p o s i t i v e  values otherwise ; it may be sa id  t h a t  (l-C V - q  A 

1 
is  a penal ty func t ion  f o r  t h e  s e t  - C and t h e  penalty c o e f f i c i e n t  - 

A 

i s  the  r e c i p r o c a l  of the  v i s c o s i t y  c o e f f i c i e n t  (o ther  remarks about pe- 

n a l t y  func t ions  w i l l  be given, f o r  t h e  s p e c i a l  case of H i l b e r t  space, 

Due t o  quadra t ic  forms being even funct ions,  one may equiva- 

l e n t l y  speak of t h e  s e t  C ins tead  of  - C ; i n  shor t  adding some vis-  

c o s i t y  e f f e c t s  t o  a  p l a s t i c i t y  law i s  equivalent  t o  rep lac ing  t h e  ind i -  

c a t o r  func t ion  of t h e  " r i g i d i t y  s e t "  C, by a  penalty func t ion  o f  t h i s  

s e t  ; t h e  smaller  i s  t h e  v i s c o s i t y  c o e f f i c i e n t ,  the l a r g e r  i s  the penalty - 
coef f ic ien t .  



5.  dOVIilG SETS 

5. a HAUSDORFF DISTANCE AND VARIATION 

Let t*+ A(t) denote a multimapping or multifunction (i.e. a 

set-valued mapwing) from the compact inteqal [o,T] into a metric space 

(E,d). As in the following the real variable t will be interpreted as 

the Oime, we may refer to A as a moving set in E. 

A natural way of formulating regu.1arity assumptions about such 

a multimapping consists in using the Hausdorff distance between subsets 

of the metric space E. 

If A and B are two subsets of E, we call the excess of A 

over B the expression 

(5.1) e(A,B) = sup d(a,~) = sup inf d(a,b) 
a€ A aEA M B  

The considered sets may be empty ; let us agree that "sup" add "inf" abo- 
1 

ve are understood in the sense of the ordered set f = [o, + m ]  : the 

supremum of an empty collection of elements of this ordered set is 0 

and the infimum is + m . Expression (5.1) defines a non symmetric e- ; 

it satisfies the triangle inequality. Clearly e(A,B) = 0 if and only 

if A is contained in the closure of B. 

The Hausdorff (improper) distance of A and B is then defi- 

ned as the symmetric expression 

~(A,B) = max {~(A,B), ~(B,A)] 
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with value in E+ . This is zero if and only if A and B have the sa- 

me closure. 

By means of Hausdorff distance, the classical concept of v- 

t&n may be a~plied to moving sets. Let [s,t] be a compact subinterval 

of [o,T] ; for any finite subdivision of this interval, namely 

The supremum of V(S) for S ranging over all the finite subdivisions 

of [s,t] is called the variation of A on this interval ; notation 

var (A ; s,t). From h satisfying the triangle inequality one easily 

deduces that 

(5.2) s < t < u +var(A ; s,u) = var(A ; s,t) + var(A ; t,u) . 
In particular if var(A ; 0,T) ( + 00 , the variation is also finite on 

any subinterval of [o,T] ; in this case, introducing the non decreasing 

function v from [o,T] into R 

(5.3) v(t) = var(A ; 0,t) 

yields 

(5.4) 

The numerical function v is Lipschitz with patio A if and 

only if the multimapping A satisfies itself the Lipschitz condition, 

with ratio A, i.e., for any s and t in [o,T] , 

h(A(s), ~(t)) < h 1 t-sl 
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The numerical function v is absolutely continuous on [o,T] 

if and only if the multimapping A possesses itself the absolute conti- 

nuity, as formulated by means of Hausdorff distance, i.e. : for any 

E > 0, there exists 7  > 0 such that the implication 

2  IT,- ail ( o a 2  h(A(di), A(ti))<~ 
i i 

holds for any finite family Id ,z [ of non overlapping subintervals of 
i i 

[o,T]. In this case the numerical function v is almost everywhere dif- 

ferentiable ; the derivative, denoted by ; , is a nonnegative element 

1 
of L (0,T ; R) which may be called the speed function of the moving 

set A. Clearly - 
t 

(5.5) s <  t 3 h(A(s), ~(t)) < dz . 
s 

Let us restrict ourselves now to the case where, for any t, 

the set A(t) is closed ; then the non decreasing function v is cons- 

tant aver some subinterval of [o,T] if and only if the multimapping A 

is also constant over this subinterval. This implies the existence of a 

multimapping & from [o,v(T)] into E yielding the factorization 

A(t) = (v(t)) . 
Evidently, for 6 < ~  in [o,v(T)], one has 

var(fi ; s,z) = z - c 

so that c?Q: is Lipschitz with ratio 1. 

5 .  b THE CASE OF CONVEX SETS IN A NORMED SPACE 

Let E denote a real normed linear space and F its 
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topo log ica l  dua l  endowed with the usua l  norm. This  c o n s t i t u t e s  a dual  

p a i r  a s  considered i n  Chapter 2 (keep i n  mind t h a t  the  norm topology on 

E i s  c p p a t i b l e  with the d u a l i t y ,  bu t  not  the  norm topology on F un- 

l e s s  E is  a r e f l e x i v e  Banach space) .  

Let .? and C' be'two non empty convex subse t s  of E ; a s  we 

b 

a r e  t o  d e a l  with d i s t a n c e s ,  i t  is  immaterial t o  suppose t h e s e  sets clo-  

sed o r  not. Let y and y '  be t h e  respec t ive  support func t ions  of C 

and C '  which a r e  posi t i t re ly  homogeneous elements of F (F ,E) ,  vanishing 
0 

a t  t h e  o r i g i n  of F. 

Denoting by B t h e  c losed  u n i t  b a l l  of F , one f i n d s  

(5.6) e(C,C') = sup (y (y)  - y f ( y ) )  
YCB 

(with t h e  convent ion m - or = - or). 

T h i s  i s  e a s i l y  proved by observing t h a t ,  f o r  p E R ,  t h e  ine- 

q u a l i t y  p > e(C,Cf)  means t h a t ,  i f  p ( p )  denotes  t h e  c l o s e d  b a l l  cen- 

- 
t e r e d  a t  the  o r i g i n  with rad ius  p , t h e  set C' + (p ) c o n t a i n s  C ; 

express  then t h i s  inc lus ion  i n  terms of support  funct ions.  Another way 

of proof.would s t a r t  from t h e  fol lowing formula g iv ing  t h e  d i s t a n c e  of 

a point  a of E t o  t h e  set C' 

(5 .7)  d ( a , c l )  = sup [<a,y> - y ' ( y ) ]  . 
Y€B 

I n  f a c t  (cf.  5 2 . )  

Since the  func t ion  1 .  I i s  everywhere f i n i t e  and continuous, s i n c e  t h e r e  
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exists at least one point where 

#C, 
takes a finite value (namely the 

value zero) and since both functions are convex, the inf-convolute 

p l '  V 1 . is convex, everywhere finite and continuous (cf. 4 2 ) 

thus it equals its bipolar, i.e. 

(pl'C, V ( . I  )(a) = sup [(a,y> - y'(y) - gg(y)] 
YE F 

= sup [<a,y> - y.'(y)] . 
YEB 

which is equality (5.7). 

Equality (5.6) implies that the Hausdorff distance between the 

non empty convex sets C and C' is finite only if dom y and dom y' 

(i.e. the sets of the points of F where y and y' take finite va- 

lues) consist in the same set denoted by D and then 

( 5 . 8 )  h(C,C') = sup ly(y) - y'(y)l . 
JIEm D 

Note that D is a conic convex subset of F ; its polar cone in E is 

the recession cone of C and C'. Recall that D equals the whole of 

F if and only if C and C' are boundea. 

The expression ( 5 . 8 )  of the Hausdorff distance yields the 

following : 

Let t H  C(t) be a multimapping from [o,T] into the normed 

space E, with non empty convex values ; denote by y H y(t,y) the sup- 

port function of C(t). This multimapping is absolutely continuous (resp. 

Lipschitz with ratio A )  if and only if the set D = dom y(t,.) is in- 

dependant of t, with the existence of a finite non decreasing numerical 
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func t ion  p : [ o ~ T I  + R , abso lu te ly  continuous (resp. L ipsch i tz  with 

r a t i o  A), such t h a t  f o r  any y E D and any s u b i n t e r v a l  [s ,  t] of 

[o,T] one h a s  

I y ( t , y )  - y ( s , y ) )  < lyl  ( p ( t )  - p ( s ) )  

(1 . I d eno tes  h e r e  the  norm i n  F). 

Equivalent ly  t h e r e  e x i s t s  , a nonnegative element of 

1 
L (0,T ; R )  such t h a t  f o r  any y i n  D, t h e  numerical func t ion  

t I+ y ( t , y )  i s  abso lu te ly  cont inuous and i ts d e r i v a t i v e  y s a t i s f i e s  f o r  

almost every t 

(5.9) I + ( ~ , Y ) I  < Iyl P ( t )  

(resp. t h e  same inequa l i ty  with 6 = A). I f  such is  the  c a s e  one may 

take  a s  6 t h e  speed func t ion  of t h e  moving s e t  C. 

Charac te r iz ing  t h e  r e g u l a r i t y  of t h e  motion of a  (c losed)  con- 

vex set t e  C ( t )  by means of i ts  support  func t ion  y ( t , . )  i s  q u i t e  a  

n a t u r a l  procedure. I n  f a c t  an  e s s e n t i a l  f e a t u r e  i n  l o c a l l y  convex topolo- 

g i c a l  l i n e a r  spaces  i s  t h a t  a  c losed  convex set equals  t h e  i n t e r s e c t i o n  

of a l l  t h e  c losed  half-spaces con ta in ing  i t ,  o r  equ iva len t ly  the  i n t e r -  

s e c t i o n  of t h e  minimal ones among t h e s e  half-spaces, i. e. t h e  half-spaces 

which have i n  t h e  p resen t  c a s e  the  form l x  E E : ( x , ~ >  < ~ ( t , ~ ) !  , with 

lyl = 1. Fixing here  y  y i e l d s  a  moving h a l f  space whose boundary hyper- 

plane keeps a  cons tan t  d i r e c t i o n  ; t h e  d e r i v a t i v e  + ( t ,  Y )  may be 

i n t e r p r e t e d  a s  the  speed of t h i s  moving hyperplane , o r  a s  

t h e  speed of t h e  moving half-space i t s e l f .  Then ( 5 . 9 )  expresses  a uniform 
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majoration of the speeds for the minimal half-spaces of all directions. 

Example. Take as C(t) a convex set mwing by translation, i.e. 

C(t) = Co + w(t) 

where Co denotes a fixed convex set and w a fonction defined on 

[o,T~ with values in E. Then, if y is the support function of 
0 Co 

y(t,y) = y0(y) + <w(t),y> . 
One concludes that the multimapping is absolutely continuous if (and 

only if, in the case where Co is bounded) the function t H w(t) is 

absolutely continuous. When E is a reflexive Banach space, the absolute 

continuity of w is known to imply for almost every t the existence of 

the strong derivative \; (cf. KOMURA [I]) and this yields for the speed 

v of C the majoration 

(5.10) ;< 
(equality when Co is bounded). 

5. c INTERSECTION OF TWO MOVING CONVEX SETS 

The practical use of the preceding concepts requires some cri- 

teria of absolute continuity for multimappings. The object of this para- 

graph is to establish the following one (already published in MOREAU 

[221 or, for more details, [ 191 ) : 

PROPOSTTION. Let t b At a s  t Bt denote two multimappings from the 

compact interval [o,T] into the normed space E, with convex values. 
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Suppose that for any t E [o,T] the set At has a nonempty intersection 

with the interior of Bt and that the diameter of At Bt is finite. 

Then if the two multimappings are absolutely continuous (resp. Lipschitz) 

such is also the multimapping t I+ At n Bt. 

W$ shall decompose the proof into several lemmas which may be 

of use by themselves. 

IEMMA 1. Let B1, B2 denote two convex subsets of the normed space E 

and A1, A2 two arbitrary subsets of E ; then (e denoting the "excess" 

as in 5 5. a) - 
(5.11) e ( A 1 , E \ B 1 ) < e ( A 2 , E \ B Z ) + e ( A l , A 2 ) + e ( B 1 , B 2 ) .  

Let.us prwe first that for any a F E 

(5.12 d(a,E\B1) < d(a,E\B2) + e(B 1 2  ,B ) . 
m e  makes calculation easier by performing a translation reducing to the 

case where a is the origin of E. Let gl, g2 be the support functions 

of B1 and B2 , defined on the dual F of E. Let p be an arbitrary 

positive number satisfying the inequality P < d(O,E\ B1), which means 

that the open ball with center 0 and radius p is contained in B - 1 '  

in terns of support functions this inclusion is equivalent to p < gl(y) 
for any y belonging to C , the unit sphere of F. Now (5.6) implies 

V y E C : gl(y) < g2(y) + e(Bl,BZ) ; 

therefore P - e(B ,B ) < %(y) ; inequality (5.12) (trivial if 1 2  

e(B ,B ) = + follows. From it one obtains (5.11) by taking suprema 
1 2  
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f o r  a  ranging over A1, t hen  us ing  the f a c t  t h a t  t h e  $car t  e  s a t i s f i e s  

t h e  t r i a n g l e  inequa l i ty .  

LEMMA 2. Let A and B denote two convex s u b s e t s  of the normed space 

E ; suppose t h a t  B  c o n t a i n s  an  open b a l l  with r a d i u s  p > 0, with cen- 

ter a  belonging t o  A. Then 

(5.13) 'd X E E : d(x ,  A f? B )  < ( 1  +Ix-a/)(d(x,A) + d ( x , B ) ) .  
P 

P-f : Denote i n d i f f e r e n t l y  by 1 . I  t he  norm i n  E o r  t h e  dual norm 

i n  F  ; let f  and g  be the  support func t ions  of A and B. Similar-  

l y  t o  (5 .7 )  we have 

d ( x , ~ )  = sup ~ < x , u >  - f ( u )  : U f F , 1 ul < 1! 
and t h e  corresponding express ion  f o r  d(x,B). Define a  p o s i t i v e l y  homo- 

geneous func t ion  $ on F x F by 

For  a n  a r b i t r a r i l y  chosen cons tan t  k  > 0 t h i s  y i e l d s  

(5.14) k(d(x,A) + d(x,B))  = sup i$(u,v)  : 1 ul < k  , Ivl < k] . 
The hypotheses i n  t h e  Lema t o  be proved imply, by elementary 

- 
arguments, t h a t  t h e  c l o s u r e  An B of An B e q u a l s  t h e  i n t e r s e c t i o n  

of t h e  c l o s u r e s  and of A and B. Then, t h e  support func t ion  of 

A n B i s  t h e  dual  func t ion  of r / r -  + $- , i.e. t h e  r -hu l l  of f  V g  ; 
A B 

by t h e  f a c t s  summarized i n  5 2. d ,  t h i s  r -hu l l  i s  t h e  func t ion  f  V g  

i t s e l f ,  i.e. 

(f  V g )  (w) = i n f  f f ( u )  + g(v)  : u  + v =  w] . 
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Using a g a i n ' t h e  expression (5 .7 )  f o r  t h e  d i s t a n c e  from a po in t  t o  a con- 

vex s e t ,  t h i s  y i e l d s  

(5.15) d (x ,  A n B )  = SUP ~ < x , w >  - ( f  v g ) (w)  : l w )  < l j  

= sup I$(u,v)  : J u  + vl < 11 . 
Let u s  make c a l c u l a t i o n  e a s i e r  by supposing t h a t  a t r a n s l a t i o n  

has  been performed i n  E such t h a t  a = 0 ; then the  hypotheses made 

about A and B a r e  expressed by f 0 and g >  p ( . I  , hence 

I u + v l  < l  3 $ ( u , v ) <  1x1 - p  Ivl . 
As $(0,0) = 0 and i n  view of (5.15) t h i s  implies  

~ ( x , A  n B )  < SUP ! ~ ( u , v )  : I V I  < , 1.1 < l + + ~ .  
P 

A f t e r  p u t t i n g  k = 1 + i n  (5.141, t h e  comparison of the  s e t s  over 
P 

which t h e  suprema a r e  taken y i e l d s  (5.13). 

REMARK. I n  t h e  c a s e  where E is  a H i l b e r t  space one may use trigonome- 

t r y  t o  e s t a b l i s h  a s l ight ly  b e t t e r  i n e q u a l i t y  ; see  MOREAU [19] . 
LEMMA 3. Let A and B denote two convex subsets  of E ; take a 

and p g 10, + -[ such t h a t  a < p < e(A, E B). T x n ,  f o r  any x - 
i n  E such t h a t  d(x,A) + d(x,B) < a , one has - 

+ diam (A f' B) 
~ ( x , A  n B )  <-f' ( ~ ( x , A )  + ~ ( x , B ) )  . 

P - a  

This  r e s u l t s  from (5.13) and from the  inequa l i ty  

I X  - a1 < diam (A f' B) + d(x,A f' B) . 
Bringing toge ther  these  lemmas one ob ta ins  e a s i l y  : 

LEMMA 4. Let T denote a topo log ica l  space ; l e t  t I+ A and t I+ Bt - t - 
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be  two multimappings from T i n t o  t h e  normed space  E ,  w i th  convex va- 

les. Let s E T such t h a t  

diam ( A ~  n B ~ )  ( + 0 , 

l i m  e(At, A ) =  0 ( resp .  l i m  e(As, At) = 0 )  , 
t - s  t - s 

l i m  e(Bt,  B ) = 0 ( resp .  l i m  e(B B ) = 0 )  . 
t -9 s t -+ s 

s' t 

l i m  e(Atn Bt, A n  B = 0 ( resp .  l i m ,  e(Asn B,, A t n B t )  = 0 )  
s S 

t + s  t - s 
and t h e  two numerical f u n c t i o n s  t I+ diam (At I3 Bt) and t h e(At ,E\Bt)  

a r e  upper  semicontinuous ( r e sp .  lower semicont inuous)  a t  t h e  p o i n t  s. 

Let u s  now complete  t h e  proof of  t h e  P r o p o s i t i o n  : 

The hypotheses  imply t h a t  t h e  two multimappings t I+ At 

and t b  Bt a r e  con t inuous  i n  t h e  sense  of Hausdorff d i s t a n c e .  The f i -  

n i t e  numerical  func t ion  t b diam ( A t n  Bt) i s  con t inuous  by Lemma 4 

on t h e  compact i n t e r v a l  [ o , T ~  , t h u s  major ized by some c o n s t a n t  R ( + m. 

By t h e  same lemma t h e  numerical  f u n c t i o n  t w  e(At,  E \ B  ) i s  con t inuous  
t 

u n  [o,T] , wi th  s t r i c t l y  p o s i t i v e  va lues  s i n c e  At n i n t  Bt f 6 , t h u s  

minor ized ,by some c o n s t a n t  p > 0. Choose a F ; t h e  f u n c t i o n s  

tct v a r  ( A  ; 0 , t )  and t I-+ v a r  (B ; 0 , t )  be ing  f i n i t e  and con t inuous ,  

t h e r e  e x i s t s  F \ 0 such t h a t  f o r  c and z i n  [ O , T ~ ,  t h e  c o n d i t i o n  

Ic - z l  ( 6 ensures  t h a t  h(Ae, AT) and h(Be, Bz) a r e  l e s s  than  5 
2 '  

Then Lemma 3 impl i e s  
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h(lcn B ~ ,  ATn B=) <* (h(~~, A ~ )  + n ( ~ ~ ,  B~-)) 

which yields the expected majorations. 

5. d DISTANCE AND PENALTY FUNCTION IN A HILBERT SPACE 

Let H be a real Hilbert space ; denote by (. 1. ) the scalar 

product in id and by 1 .  I the norm. By means of this scalar product, H 

may be identified by its dual ; in other words (. I . ) is a bilinear form 

on H x H which places d in duality with itself and the norm-topology 

is compatible with this duality. 

Easy computation yields that the function 

1 2  
Q : xl-t-1x1 2 

which clearly belongs to l' (H,H) equals its own dual (actually it can 

be Paoved that Q is the only fonction equal to its dual). 

Let C be a non empty closed convex subset of H ; denote by 

q the numerical function defined on H by 

1 2 
q(x) = 5 [dcx,~)] = (QC V Q) (x). 

Elementarily this function is convex, everywhere finite, continuous, 

FrBchet-differentiable with gradient 

(5.16) grad q(x) = x - projC x , 

where projC x denotes the nearest point to x in C. (All this is a 

speatal case of a theory in which the indicator function QC is repla- 

ced by an arbitrary .element of To(H,S) ; see MOREAU [6]. 
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1 Choose a s t r i c t l y  p o s i t i v e  constant  A ; then x I+- q(x)  de- 
h 

f i n e s  what is  commonly c a l l e d  a penalty func t ion  of t h e  s e t  C ,  i . e .  a 

f i n i t e  punction which t a k e s  t h e  value 0 when x E C and rapidly 

growing p o s i t i v e  values when t h e  d i s tance  from x t o  C increases.  So 

t o  speak, t h e  smaller i s  t h e  constant  A , the  g r e a t e r  is  the  penalty f o r  

x of  l y i n g  a t  a d i s tance  from C. The penalty func t ion  may be considered 

as a n  approximation of #C i n  a sense which concerns a l s o  the  subdiffe-  

r e n t i a l s  a s  follows : Denote by A t h e  multimapping x I+ a (I (x )  from 
C 

H i n t o  i t s e l f ,  which c o n s t i t u t e s  a spec ia l  case  of  maximal monotone 

operator .  I n  general ,  f o r  a chosen A > 0 , t h e  s i n g l e  valued, everywhere 

def ined  mapping 

(5.17) 
I - ( I  + A ~ 1 - l  

5 = .  A. 9 

where I denotes i d e n t i t y ,  i s  c l a s s i c a l l y  c a l l e d  4 Yosida approximation, 

1 o r  Yosida regu la r iza t ion ,  of  A ; it is  Lipschi tz  with r a t i o  7 .  Here 

AA 
may e a s i l y  be e x p l i c i t e d  ; by d e f i n i t i o n  t h e  e q u a l i t y  

y = ( I  + A A ) - ~ ( x )  means x E (I + A A)(y) o r  equ iva len t ly  x-y E a # ( y )  

f o r  a g ( y )  is a cone s o  t h a t  the f a c t o r  h may be omitted. This  is  

wel l  known t o  charac te r ize  y a s  equal t o  projC x ; hence (5.17) be- 

comes 

(5.18) 
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5. e MOVING CONVEX SET IN A HILBERT SPACE 

With the same notations as in the preceding paragraph, suppose 

t I+ C(t) is an absolutely continuous multimapping from [o,T] into H, 

with non empty closed convex values ; put 

1 2 
q(t,x) = 2 [d(x, ~(t))] . 

Let t #+ z(t) be an absolutely continuous mapping from [o,T] 

into H. 

Classically the continuity of t t+ C(t) in the sense of 

Hausdorff distance and the continuity of t u  z(t) imply the continuity 

of the mapping 

The proof of it is based on some majoration of the square of the displa- 

cement of the projection which implies nothing about the absolute conti- 

nuity of this map~ing ; however : 

LEMMA 1. If t I+ C(t) a& t - z(t) are absolutely continuous, 

[o,T] so is the numerical function k : t F, d(z(t), C(t)). 

In fact, with the notation e of 5 5. a, one has 

d(z,~) = e(jzj, C) 

so that, using the triangle inequality concerning the &cart e , one ob- 

tains finally, for arbitrary c and z in [o,T] , 
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It just remains to apply the definition of absolute continuity. 

This lemma implies that the function k possesses for almost 

every t a derivative denoted by &(t) ; thus the function 

1 2 
t I+ (k(t)) = q(t, ~(t)) 

possesses, for the same values of t, a derivative equal to k(t) i(t.1. 

The absolute continuity of the multimapping C means that its 

variation function v : t I+ var (C ; Opt) is absolutely continuous, 

thus possesses a derivative ;(t) for almost every t. Similarly the 

absolute continuity of the vector function t H  z(t) implies the exis- 

tence of its strong derivative i(t) for almost every t (by virtue of 

H being a reflexive Banach space ; see KOMURA [ 11 ). 

Let us prove now the following, which will be of use in next 

paragraph : 

LEMMA 2. For any t g [o,T] such that the derivatives Act), ;(t), 

i(t) exist, one has 

(5.20) Ik(t) i(t) - (i(t)l grad q(t, z(t))l < k(t) ;(t) . 
In fact for such a value of t the hypotheses imply the exis- 

tence of 

,im q(s, zC.5)) - q(t, z(t)) = k(t) ,&t) . 
s - + t  s - t  

Now 

(5.21) 
q(s,z(s)) - q(t,z(t)) - q(s,z(s)) - q(s,z(t)) + 

s - t  s - t  

s(s,z(t)) - q(t,z(t)J . 
s - t  
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As the numerical function X H  q(s,x) is convex on H, its 

gradient at some point is also a subgradient ; this yields 

The mapping s I+ proj (x,'C(s)) is continuous, the mapping 

b 

x H proj (x, C(S)) is nonexpanding, thus the mapping 

(S,X)H grad q(s,x) = x - proj (x, C(s)) 

from [o,T] x H into H is continuous ; hence one obtains the existence 

lim q(s'z(s)) - q(s'z(t)) = (k(t) I grad q(t, z(t)) . 
s - t  

s-'t 

Therefore the last term in (5.21) possesses also a limit which may be 

interpreted as the derivative at the point t for the function 

(5 .22 )  
1 2 

s H q(s, z(t)) = - [d(z(t), ~(s)] . 2 

Writing the same inequality as in (5.191, but with constant z , yields 

Id(z(t), C(s)) - d(z(t), ~(t))l < h(C(s), C(t)) 

< Iv(s) - v(t)J 

so that the derivative of the function ( 5 . 2 2 )  has its absolute value ma- 

jorized by k(t) ;(t) ; this completes the proof of (5.20). 

5. f THE SWEEPING PROCESS 

Suppose given an absolutely continuous multimapping t I+ C(t) 

from [o,T] into the real Hilbert space H, with nonempty closed convex 
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values ; denote by x *  #(t,x) the indicator function of C(t). 

We put the problem of finding an absolutely continuous (single 

valued) mapping u : [o,T] + H agreeing with some initial condition 

~(0) = a , given in C(0) 

and whose derivative u satisfies for almost every t 1 2  [o,T] 

Interpreting u as a moving point in H , we call it a solu- 

tion of the sweeping process by the moving convex set C. The reason of 

this name lies in the following mechanical image of condition (5.24) : 

As a $r(t,x) is empty when x f C , this condition implies 

u(t) E C(t) for almost every t, thus for every t, by virtue of our 

continuity assumptions. Suppose, to make things clearer, that the moving 

convex set C possesses a nonempty interior. As long as the point u(t) 

lies in this interior, the subdifferential a $r(t,u(t)), i.e. the cone 

of normal outward vectors at the point u(t) of the convex set (cf. 

5 2. e) reduces to the single element 0 ; then (5.24) implies that the 

moving point u remains at rest. It is only when u is caught up with 

by the boundary of C that it may take a nonzero veloc.ity, so as to go 

on belonging to C, and by (5.24) this velocity possesses an inward n o r  

ma1 direction with regard to C. In other words, condition (5.24) governs 

the quasistatic evolution of a material point u subject to the follo- 

wing mechanical actions : 
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lo some resistance acting along the line of its velocity and 

opposite in direction ; 

2 O  the moving perfect constraint whose geometric condition is 

u E C(t) (cf. 5 3. d). 

Elementarily the initial value problem formulated above pos- 

sesses at most one solution. Such uniqueness property holds more generally 

with "evolution equations" of the form 

where A(t,. denotes, for each t E [o,T] , a monotone multimapping (or 

multivalued operator) from H into itself. In fact, monotonicity imme- 

diately implies that if ul, u2 , absolutely continuous, are solution of 

(5.25), the function 

t - lul(t) - U2(t)J 

is non increasing ; therefore these two solutions are equal if they agree 

with the same initial value. 

Equations such as (5.25) have already been studied, but mainly 

under hypotheses involving that the set 

dom ~(t,.) = [ x  E H : A(t,x) f $j 

is independant of t ; see references in BREZIS [l]. Here, on the con- 

trary, the problem becomes trivial if dom 8 #(t,.), namely C(t), is 

constant ; thus the simple equation (5.24) furnishes the occasion of 

focusing upon the difficulties which arise from the variation of the 
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domain. In the same line must beVquoted : 

lo H. BREZIS [2] who studied by a "double regularization'' technique 

the case 

with 4 E r (H,H) independent of t and under some hypotheses invol- 

b 

ving the projection mapping x h  proj (x, C(t)) ; they do no seem direct- 

ly comparable with our absolute continuity assumption. 

2' C. PERALRA [I], [2] who succeeded in generalizing to the case 

A = 8 4 , with + E To(H,H) depending on time in a suitable way, the 

author's regularization method (see MOREAU [ 171 ). 

Because of its insertion in this context we also choose a re- 

gularization technique, i.e. the use of penalty functions, to prove, in 

'next paragraph, an existence theorem. Another advantage of doing so re- 

fers to the application of equation (5.24) to elastoplastic mechanical 

systems. developed in Chapter 6 below : as explained in 5 4.g; when 

the considered convex is the rigidity set defining a law of plasticity, 

the replacement of its indicator function by some penalty function comes 

to take into account some additional viscosity. The reasoning used below 

could then be adapted to prove that the solution of an elasto-visco- 

plastic problem tends to the solution of the elastoplastic problem when 

viscosity tends to zero. From the physical standpoint this may be as 

important as the existence question itself. 
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The existence theorem obtained will supply the needs of Chap- 

ter 6. Actually a deeper insight into the sweeping process can be gained 

from a discretization method (published as multigraph in MOREAU [IS] ) 

which consists in proving first the convergence of the "catching up 

algorithmt' (cf. 5 5.  h below) ; this method permits weaker hypotheses, by 

replacing the concept of the variation of a multimapping by that of 

retraction : use instead of Hausdorff distance the "unilateral" Qcart e. 

On the other hand, a generalization of the arocess can be defined in this 

line for the case of a possibly discontinuous moving convex set C, pro- 

vided its variation (resp. retraction) is finite. 

On the application of the discretization method to equations 

of the form (5 .251 ,  with A(t,.) = Ao(.) - f(t) see J. NECAS [l] . 

5 .  g EXISTENCE THEOREM 

The study of equation (5 .24)  is made greatly easier by the 

following remark : the sweeping process associates the chain of the po- 

sitions of the moving point u to the chain of the positions of the 

moving se't C in a way which does not depend on the timing. More preci- 

sely, the change of variable in Lebesgue integral, along with the fact 

that the set a # is a cone, i.e. the multiplication by a nonnegative 

scalar sends it into itself, implies : let n denote a non decreasing 

absolutely coritinuous mapping from [o,T] onto an interval [o,T'~; 
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suppose C = C-'o n , i& 

(5.26) V t E [o,T] : C ( t )  = C ' ( T  ( t ) )  

where C' is  an abso lu te ly  continuous multimapping from [o,T'] into 

H , with nonempty c losed  convex values ;let u'  : [o,T'] + H be a solu- 

t i o n  of t h e  sweeping process  f u r  C '  ; then t h e  mapping u = u '  o IT 

a s o l u t i o n  of t h e  sweeping process f o r  C. 

A s  explained i n  5 5. a ,  taking f o r  n t h e  v a r i a t i o n  fonc t ion  

v of t h e  given multimapping C y i e l d s  a f a c t o r i z a t i o n  of the  form 

(5.26), with C '  L ipsch i tz  with r a t i o  1. T h i s  reduces t h e  e x i s t e n t i a l  

s tudy of t h e  sweeping problem t o  t h e  Lipsch i tz  case ,  i .e.  t h e  case  where 

t h e  speed funct ion of t h e  moving convex s e t  belong t o  L- (0,T ; R), o r  

even i s  merely a constant .  

Let us  now proceed t o  e s t a b l i s l i  : 

PROPOSITION. For any a &I C(0) t h e  sweeping problem, a s  formulated 

i n  t h e  preceding paragraph, possesses a (unique) solut ion.  

Let n be p o s i t i v e  in teger .  Denote by un : [o,T] + H t h e  

s o l u t i o n  of t h e  d i f f e r e n t i a l  equat ion 

(5.27) -; = n grad q ( t ,  u n ( t ) )  n 

f o r  t h e  i n i t i a l  condi t ion  

I n  f a c t  t h e  expression (5.16) of grad q implies ,  under t h e  hypotheses 

made concerning t I+ C ( t ) ,  t h a t  the  mapping ( t , x )  I+ n' grad q ( t , x )  i s  
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continuous.relatively to t and is Lipschitz with ratio n relatively 

to x ; hence classically the existence and the uniqueness of u which 
n 

is a continuously differentiable function from [o,T] into H. 

Observe that the construction of the ordinary differential 

equation (5.27) consists in replacing the right member A = a I+? of 

(5.24) by its Yosida regularization (5.181, with h = A ;  equivalently, 

the indicator function of C is replaced by the penalty ftinction n q : 

thus the moving point un(t) is allowed to not belong to C(t) but theq 

in view of the expression (5.14) of grad q , it must have a velocity 

directed toward its projection on ~ ( t )  ; the magnitude of this velocity 

is proportional to the distance from u (t) to C(t) and proportional 
n 

to the penal4y coefficient n . 
LEMMA 1. If the speed function ; of the moving set , C  belong& to 

L~ (0,T ; R ), the sequence of the derivatives ; is bounded in 
n 

Denote by h (t) the common value of 
n 

1 - Iin(t)l = lgrad q(t, un(t))l = d(un(t), C(t)) . n 

Inequality (5.20) ($ 5. e, Lemrna 2 )  yields, for almost every t , 

Ihn(t) in(t) - (Gn(t) I grad q(t, un(t)))l < hn(t) ;(t) 

hence, due to (5.271, 

(5.29) hn(t) <(t) + n (hn(t)12 < hn(t) ;(t). 

As a E C(O), one has h,(O) = 0, thus, by integration over [o,T] , 
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Denoting by 11.11 t h e  norm i n  L~ (0,T ; R )  a s  we l l  a s  the  norm i n  

L2 (0,T ; HI, t h i s  y i e l d s  

which proves t h e  lemma. 

b 

REMARK. More may be ob ta ined  from i n e q u a l i t y  (5.29). Suppose only t h e  

e b s o l u t e  con t inu i ty  of t- C ( t )  s o  t h a t  t h e  d e r i v a t i v e s  ; ( t )  and 

( t )  e x i s t  f o r  almost every t. For t h e  va lues  of t such t h a t  
n .  

h n ( t )  # 0  , inequa l i ty  (5.29) implies  

and t h i s  i s  a l s o  t r u e  when h  ( t )  = 0  ( then h  ( t )  = 0  s ince  ze ro  i s  n  n  

t h e  lhinimal value of h  1. The elementary t reatment  of t h i s  d i f f e r e n t i a l  
n  

' inequa l i ty ,  with t h e  i n i t i a l  cond i t ion  hn(0)  = 0 , y i e l d s  : 

(5.31) 

f o r  almost every t. 

I n  p a r t i c u l a r ,  i f  v  E L' (0,T ; R )  , with  1 < p  < + , , t h e  

same i n e q u a l i t y  a s  (5.30) ho lds  f o r  LP norms. 

From such majorat ions,  t h e r e  a r e  many ways of e s t a b l i s h i n g  t h e  

convergence of t h e  sequence u  t o  a  func t ion  which is  a  so lu t ion  of t h e  
n  

sweeping process. I n  view of our  L~ framework, t h e  most e f f i c i e n t  

seems t o  make use of t h e  fol lowing elementary property of H i l b e r t  spaces ,  

due t o  M. CRANDALL and A. PAZY [l] : 
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Consider a r e a l  H i l b e r t  space with s c a l a r  product noted < . I  .> 

and norm noted 1 1 . 1 1  . kt ( r  ) be a sequence of p o s i t i v e  r e a l  numbers ; 
n 

let (2,) be a sequence of elements bf t h i s  Hi lber t  space such t h a t  

V n , V m :  < z n - z m  I m z n - r m z m > < O  

Then : 

I f  m i s  s t r i c t l y  i n c r e a s i n g  i n  n , llz 11 i s  decreas ing  and - n 

l i m  z e x i s t s .  
n -  

n + m  

If m i s  s t r i c t l y  decreasing,  11zA1 i s  inc reas ing  ; 

addi t ion  1)z,)1 i s  bounded, l i m  zn e x i s t s .  
n + ~  

From t h i s  we a r e  t o  Prove : 

LEMMA 2. J_f E L2 (0,T ; R) t h e  sequence i s  s t rong ly  convergent 
n 

i n  L' (O,T ; H). - 
I n  f a c t ,  let m and n be two p o s i t i v e  i n t e g e r s  ; f o r  any t 

i n  [o,T] , t h e  va lues  of the func t ions  urn, Gm, un, Gn s a t i s f y  

d 
(5.32) - d t  Ium - unI2 = 2(um - un I im - An) . 
benote by pm , pn t h e  respec t ive  p r o j e c t i o n s  of u m ( t )  and u n ( t )  on 

C ( t )  ; by (5.16) and (5.27) one has 

-I? = m(um - pm)  E a # c t ,  pm) m 

and the  same f o r  n ; due t o  the  monotonicity of a # , t h i s  y i e l d s  by 

easy c a l c u l a t i o n  

1 .  1 .  . 
( u r n  u I ; - ; ) < -(; urn - - u n  I urn - An) 

n m n  n 

Recal l  t h a t  um(0) = u ( 0 )  = a , i n t e g r a t e  ( 5 . 3 2 )  over [o,T] , denote 
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by (. I . > t h e  s c a l a r  p roduc t  o f  t h e  H i l b e r t  space  L2 (0,T ; H) and 

by (1.11 i t s  norm ; t h i s  i n e q u a i i t y  impl i e s  

1 2 1 1 
o < ~ ~ u ~ ( T )  - u,(T)I < - ( ; u m - - u  I urn - un> • 

1 
The sequence r = - i s  s t r i c t l y  d e c r e a s i n g  ; t h e  sequence 

n n 

IIuAI i s  bounded accord ing  t o  Lemma 1 ; apply CRANDALL and PAZY1s 

2 
r e s u l t  i n  L (0,T ; HI. 

Next : 

LEMMA 3. If ; E L2 .(OPT ; R) t h e  sequence o f  f u n c t i o n s  un converges  

uniformly on [o,T] to  a n  a b s o l u t e l y  con t inuous  f u n c t i o n  u whose d e r i -  

v a t i v e  is t h e  'L2 - l i m i t  o f  t h e  sequence . t h i s  f u n c t i o n  i s  s o l u t i o n  
n '  

o f  t h e  sweeping p rocess  f o r  t h e  i n i t i a l  c o n d i t i o n  u ( 0 )  = a; . 

Furthermore, f o r  a lmost  every t ,  

I n  f a c t ,  deno te  by 6 t h e  l i m i t  o f  ;n i n  L2 (0,T ; H) and 

d e f i n e  u : [o,T] + H by 

s o  t h a t  u is  a b s o l u t e l y  cont inuous wi th  a s t r o n g  d e r i v a t i v e  e q u a l  t o  u 
b 

a lmos t  everywhere. S t i l l  deno t ing  by 11.11 t h e  norm i n  L2 (0,T ; HI, t h e  
C-1 

shows t h a t  u i s  t h e  uniform l i m i t  o f  u 
n ' 

I t  remains . t o  prove t h a t  u and u v e r i f y  (5.24) almost 
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eveiywhere. Put  

p n ( t )  = p r o j  ( u n ( t ) ,  C ( t ) )  . 
Then, i n  view of (5.16) and (5.27) 

u n ( t )  - p n ( t )  = grad q ( t ,  u ( t ) )  = -1; ( t )  n n n 

(5.34) -An(t) E a c t ,  p n ( t ) )  

2 
and, i n  view4of (5.30), t h e  func t ions  Pn converge t o  u i n  L (0,T ; H). 

2 
The convergences i n  L (O,T ; H) imply t h e  ex i s tence  of H', 

an i n f i n i t e  subse t  of N ,  such t h a t  f o r  any t which d-not, belong t o  

a c e r t a i n  subse t  o of [o,T] with ze ro  measure, t h e  l i m i t  of p,, ( . t)  

i n  H, f o r  u tending t o  i n f i n i t y  i n  N ' ,  i s  u ( t )  and t h e  l i m i t  of 

; ( t )  i n  H i s  i ( t ) . A s t h e  graph of t h e  multimapping x * a  $ f ( t , x )  

i s  closed i n  H x H , (5.34) impl ies  t h a t  (5.16) holds f o r  any t $ o . 
On the  o ther  hand (5.33) fol lows from (5.31). 

From t h i s  lemma, t h e  proof of t h e  formulated Propos i t ion  i s  

completed, by performing an abso lu te ly  continuous change a v a r i a b l e  redu- 

c ing  t o  t h e  c a s e  ; E L- (0,T ; R ) ,  which a f o r t i o r i  implies  

; E L~ (0,T ; R). 

REMARK. Inequa l i ty  (5.33) i s  c l e a r l y  preserved by such a change of va- 

r i a b l e ,  so t h a t  i n  general  f o r  any s o l u t i o n  u of the  sweeping process 

1 i ( t ) l  < A t )  . 
By i n t e g r a t i o n ,  t h i s  y i e l d s  t h a t  t h e  length of t h e  path t r a v e l e d  by t h e  

moving point  u during an i n t e r v a l  of time [tl,t2] i s  majorized b z  
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var (C ; t t 1. This property becomes specially suggestive in the spe- 1' 2 

cia1 case where C moves by translation i.e. 

with w absolutely continuous. Then, in view of 5 5. b, example, 

The association of the function u , a solution of the sweeping process, 

with the given function w defining the translation imposed to C , may 

be visualized as a driving affected with plax ; (5.35) expresses that 

such a play makes the driven point travel a path which cannot be longer 

than the path traveled by the driving device. 

5. h DISCRETIZATION ALGORITHM 

A method of "time discretization" for the approximate solution 

of the preceding problem consists in choosing a subdivision of [o,T], 

namely 0 = to< tl ( ...  ( t = T and constructing a sequence 

Xor X1, ..., X of points of H such that xi constitutes an approxi- n 

mation of u(ti). Adopting (xi- as an approximation of 
t. - ti-l 

;(ti) induces to replace (5.24) by 

(5.36 xi-,- xi E (ti- ti-l) R #(tipxi) 

which is a recurrence condition of "implicit" type concerning the desired 

sequence (an "explicit" method would consist in interpreting the same 

quotient as an approximation of u(tiVl) ; but this yields an unworkable 
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recurrence condit ion) .  A s  R $ ( t . , x . )  i s  a  cone, t h e  s t r i c t l y  p o s i t i v e  
1 1  

f a c t o r  ti- t. i n  t h e  r i g h t  member of (5.36) may be omitted and t h i s  
1-1 

condit ion equiva len t ly  amounts t o  

(5.37) xi = p r o j  C ( t i ) )  . 
Thus, s t a r t i n g  with x = a , t h e  point  sequence (xi) i s  cons- 

t r u c t e d  by successive pro jec t ions  on t h e  sequence of closed convex s e t s  

C( t  1. I t  i s  a s  i f  t h e  moving point  u, ins tead  of being swept along with 
i 

the  moving s e t  C was l e f t  behind except t h a t ,  from time t o  time, it 

ca tches  up with t h i s  s e t  intantaneously,  by the  s h o r t e s t  way. We propose 

t o  c a l l  t h i s  t h e  catching up algorithm. 

The ques t ion  i s  wether t h e  s t e p  funct ion x : [o,T] -, H def i -  

ned from t h i s  sequence by 

(5.38) x ( t )  = x I f o r  t E ti] 9 

converges t o  t h e  s o l u t i o n  u of t h e  sweeping process, f o r  t h e  same in i -  

t i a l  value a ,  when f i n e r  and f i n e r  subdivis ions of [o,T] a r e  consi- 

dered. 

A d i r e c t  proof of the  convergence of t h i s  family of s t e p  func- 

t i o n s  may be given, y i e l d i n g  another  way t o  e s t a b l i s h  t h e  ex i s tence  of 

t h e  so lu t ion  u i t s e l f  (cf.  MOREAU [ 171, [18] 1. A s  t h i s  ex i s tence  has 

been obtained above by a  regu la r iza t ion ,  o r  penal ty,  technique we think 

. i t  i n t e r e s t i n g  and unusual t o  study a l s o  t h e  d i s c r e t i z a t i o n  algorithm by 

some extension of the  penalty method : the t r i c k  c o n s i s t s  i n  making t h e  
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pena l ty  c o e f f i c i e n t  vary with t (cf .  MOREAU [17] ). 

PROPOSITION. For any E > 0 t h e r e  e x i s t s  17 . 0 such t h a t  t h e  ma jo- 

r a t i o n  

SUP (ti' ti-l) < R 
i 

( resp .  t h e r e  e x i s t s  R' > 0 such t h a t  t h e  majorat ion 

sup war (C ; ti-l, t i )  < R ' 
i 

ensures  

V t E [o,T] : l u ( t )  - x ( t ) l  < E . 
Let p : [o,T] + R+ a nonnegative r u l e d  func t ion  ( a c t u a l l y  i t  

w i l l  sufficein t h e  fol lowing t o  take a s  p a s t e p  funct ion) .  The c l a s s i -  

c a l  theory of d i f f e r e n t i a l  equat ions ensures  t h e  ex i s tence  of 

u  : [o,T] + H, s o l u t i o n  of  
P 

-u ( t )  = p ( t )  grad q ( t ,  u  ( t ) )  
P P 

agree ing  with the  i n i t i a l  condi t ion  u (0)  = a. Denote by h t h e  abso- 
P P 

l u t e l y  continuous llumerical funct ion 

h ( t )  = d(u ( t ) ,  C ( t ) )  = lgrad q ( t ,  u  ( t ) ) l  . 
P P P 

The same ca lcu la t ion  a s  i n 5  5. g, proof of Lenma 1, y i e l d s  the  d i f fe ren-  

t i a l  inequa l i ty  

(5.39) + p  h <; , 
P P 

from which elementary techniques l eads  t o  : 

LEMMA 1. I f  t h e  speed func t ion  v of C i s  majorized by some cons tan t  

M 0 , t h e  funct ion,  h  is  majorized by t h e  cons tan t  M J(P ) , w h e r e  
P 
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J (p  ) denotes  t h e  supremum over  [o,T] of the  n u m e ~ i c a l  f u n c t i o n  k  

def ined on t h i s  i n t e r v a l  by t h e  d i f f e r e n t i a l  equat ion k + p k  = 1 WE 

t h e  i n i t i a l  c o n d i t i o n  k(0)  = 0. 

6 
Consider now another  func t ion  s i m i l a r  t o  p and t h e  corres-  

P 

ponding u  and hq . The same i n e q u a l i t y  a s  i n  5 5. b, proof of Lemma 
0- 

2,  y i e l d s ,  f o r  any t i n  [o,T] , 
t 

Iu ( t )  - uq(t) lZ ( - ( p a d  q ( s , u  ( s ) )  - grad q ( s , u i ( s ) ) l  
2  P 10 P 

p ( s )  grad q ( s , u  ( s ) )  - b ( s )  grad q (s ,uq(s ) ) )  d s .  
P 

The integrand i s  a  s c a l a r  product i n  H, majorized by 

2  
(h  + hq)(p h  + b  h  ) = p ha + b  h q +  ( p . + b )  h  h 

P P 0- P P 6 '  

Now from Lemma 1 and inequa l i ty  (5.39) one o b t a i n s  

2  
h  + p h  (M J ( p )  

P P P 

h  i + p h  h ( M J ( b )  
0- P G P  

anrJ two symmetrical inequalities. Adding them toge ther  and i n t e g r a t i n g  

g ives  t h e  proof o f  t h e  following : 

LEMMA 2. I f  t h e  func t ion  ; is  majorized by some c o n s t a n t  M > 0  o x  

&, f o r  every t ip [o,T] , 

(5.40) I u  ( t )  - uq(t)12 ( 4 t  2 ( J (p )  + J ( a ) )  . 
P 

I f ,  i n  p a r t i c u l a r ,  q is  a  cons tan t  m 

1 -rnT 1 
J(a )= ; ; ; ( l - e  )(; . 

By 3 5. g, t h e  s o l u t i o n  u  of t h e  sweeping process  i s  t h e  l i m i t  of the  

corresponding u when m ( f o r  i n s t a n c e  an  i n t e g e r )  t ends  t o  i n f i n i t y  ; 
d 
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t h u s  (5.40) implies  

For the  con t inua t ion  take a s  p t h e  s t e p  func t ion  assoc ia ted  

with t h e  subdivis ion 

a s  fo l lows  : denoting by mi t h e  middle point  of t h e  i n t e r v a l  

where A js a constant  independent of i. 

Denote by p t h e  supremum of t h e  t .  1+1 - ti ; studying t h e  

f u n c t i o n  k assoc ia ted  with p a s  i n  Lemma 1 y i e l d s  : 

LEMMA 3. I_f p i s  defined by (5.42) a s  A >  4 one has 

1 
Hint : t h e  funct ion K : t I+ max I-, k ( t ) ]  possesses  f o r  almost every - 

J;i- 
t. a d e r i v a t i v e  & t ) .  When t E ]ti, mi[ one has  

1 
k t )  < -1 i f  K(t)  .- 

6 
K(t )  = 0 1 

i f  K ( t ) = -  . 
6 

When t E [mi,  ti+l ] one h a s  

From these lemmas we can proceed t o  t h e  proof of t h e  Propositioq. 
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Observe f i r s t  t h a t  t h e  two a l t e r n a t i v e  statements of t h i s  Proposi t ion a r e  

equivalent  s i n c e  the  v a r i a t i o n  func t ion  v of C i s  continuous on [o,T] i 
thus  uniformly continuous. 

The statement concerning v a r i a t i o n s  i s  v i s i b l y  i n d i f f e r e n t  t o  

any (abso lu te ly  continuous) non decreasing change of v a r i a b l e  ; we take 

p r o f i t  of t h i s  f a c t  i n  supposing t h a t  a change of v a r i a b l e  has  been per- 

formed reducing t o  t h e  case where t h e  speed funct ion v of C i s  t h e  

constant  1 ( s e e  5 5. a ) .  

F i r s t  s tep.  Denote by R t h e  fol lowing a b s o l u t e . 1 ~  continuous non de- 

c reas ing  mapping from t h e  i n t e r v a l  [o,T] onto i t s e l f  (m denotes a s  
i 

before the  middle point  of [ti, ti+l] ) 

and put 

C(R(t))  = ~ ' ( t )  . 
I n  o t h e r  words, on each i n t e r v a l  of t h e  form [ti, mi] t h e  convex s e t  

C '  remains f i x e d ,  equal  t o  C( t i )  ; on t h e  next i n t e r v a l  [mi ,  ti+l] , 

it runs through t h e  same chain of conf igura t ions  a s  C on [ t i ,  ti+l], 

with a timing ad jus ted  i n  such a way t h a t  C' catches up with C a t  t h e  

i n s t a n t  t .  C a l l  u' t h e  s o l u t i o n  of the  sweeping process  f o r  t h e  
1+1' 

moving convex s e t  C '  and the  same i n i t i a l  value a a s  u ; i n  view of 

t h e  change of v a r i a b l e  one has 
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u ' ( t )  = u(?r(t))  . 
By v i r t u e  of (5.311, the function u i s  Lipschitz with r a t i o  1 ; thus, 

f o r  any t E [o,T], 

(5.43) l u ( t )  - u ' ( t ) l  < $ 

Second step. Put 

1 2 
q ' ( t , x )  = 5 (d(x ,C ' ( t ) )  . 

Defining p by (5.421, denote by u' the solut ion of 
P 

(5.44) - u ' ( t )  = pCt) grad q V ( t ,  u ' l t ) )  
P P 

agreeing with the i n i t i a l  condition u' (0) = a. The in tegra t ion  of t h i s  
P 

d i f f e r e n t i a l  equation may be expl ic i ted  : On each in t e rva l  of the form 

[mi ,  tit,] the function p vanishes, so t ha t  

(5.45) t E [mi, ti+1] * ~ ' ( t )  = ut(m . 
P P i 

For t ranging over an in t e rva l  of the form I t  mi[ , P takes the cons- 

t a n t  value A and the  function X H  q t ( t , x )  i s  independent of t ,  with 

grad q ' ( t , x )  = x - pro j  (x,  C( t i ) )  

so t h a t ,  on t h i s  i n t e rva l  

(5.46) ~ ' ( t )  = ,,'(ti) + [yi- u9( t i )1  [ I  - exp ~ ( t ~ -  t ) l  
P P P 

where 

Yi = p r o j  (u ' ( t i ) ,  C(t i))  . 
P 

Supposing A >  4, it r e su l t s  from (5.41) and from Lemma 3 

t h a t ,  f o r  any t E [o,T] 

2 1 
(5.47) l u 1 ( t )  - u ' ( t ) l  < 16 t (- +*) . 

P K 
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Note t h a t  (5.45) and (5.46) y i e l d  

1 
(5.48) = uf(mi) = u f ( t i )  + [yi- u f ( t i ) ] [ l - e x p  I 

P P 2 

Third s tep.  Let A tend t o  + -  ; a s  a l l  t h e  ti- t .  a r e  ( 0 , 1+1 

(5.48) shows t h a t ,  f o r  each i ( n , t h e  d i f fe rence  ~ p ' ( t ~ + ~ )  - yi tends 

t o  zero i n  H. A s  t h e  mapping p r o j  (. , ~ ( t .  ) )  used i n  t h e  d e f i n i t i o n  

of yi is  continuous, t h i s  proves by i t e r a t i o n  t h a t ,  f o r  each i ( n ,  

t h e  value ~ ; ( t ~ + ~ )  tends t o  ~ ( t ~ + ~ )  a s  defined by (5.38). Then (5 .46)  

shows t h a t  u f ( t )  tends t o  x ( t )  f o r  any t i n  ]ti ,  mi] and f i n a l l y  
P 

a l s o  f o r  any t i n  [q, ti+l] by v i r t u e  of (5.46). 

I n  view of (5.47) t h i s  pointwise convergence y i e l d s ,  f o r  any 

t E [o,TI , 

I x ( t )  - u f ( t ) l  < JPTpPTp 

which proves t h e  Proposi t ion,  by comparing with (5.43). 
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6 QUASI -STAT1 C EVOLUTl ON OF AN ELASTOPLASTI C SYSTEM 

6. a FORMULATION OF THE PROBLEM 

The framework i n  e l l  t h i s  Chapter i s  t h a t  of a configurat ion 

space U endowed with a l i n e a r  space s t r u c t u r e  ; thus  t h e  p r a c t i c a l  ap- 

p l i c a t i o n s  of t h e  fol lowing mainly concern systems whose displacements 

a r e  t r e a t e d  a s  " i n f i n i t e l y  small". 

According t o  t h e  usual  conception of e las top las t ic i ty ,every  

s t a t e  of t h e  system i s  represented by two components which both a r e  e l e -  

ments of 21 : 

The v i s i b l e  ( o r  "exposed") component, denoted by x ; it i s  

t h e  p a r t  of the  system which undergoes e x t e r n a l  fo rces ,  c a l l e d  1-, 

and may a l s o  be submitted t o  cons t ra in t s .  

The hidden ( o r  "plast ic")  component denoted by p. * 

S t r i c t l y  speaking, t h e  configurat ion space of the  system i s  

then t h e  product space U x u  . 
The d i f fe rence  x - p = e E 21 w i l l  be c a l l e d  the  e l a s t i c  

deviat ion.  

Let us  denote a s  before by .F t h e  l i n e a r  space of fo rces ,  

placed i n  separa t ing  d u a l i t y  with ; the f o r c e s  experienced by t h e  

component p a r e  : 
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lo The f o r c e  s E X of " e l a s t i c  r e s t o r i n g  toward x" r e l a t e d  t o  e  by 

(6.1) s = A ( e )  , 

where A denotes a  given s e l f a d j o i n t  nonnegative l i n e a r  mapping from 

U i n t o  X . 
2O The f o r c e  of " p l a s t i c  res i s tance"  f  E B r e l a t e d  t o  the  ve loc i ty  

( a t  any i n s t a n t  where t h i s  ve loc i ty  e x i s t s )  by the  r e s i s t a n c e  law studied 

i n  3 4. e .  

(6.2) P E a rjrC (- f )  , 

where C denotes  a  f ixed  nonempty closed convex subset of . 
The f o r c e s  experienced by the  component x a r e  

lo The r e a c t i o n  r E X of a  p e r f e c t  a f f i n e  cons t ra in t  (cf. 6 3. c )  ; 

t h i s  c o n s t r a i n t s  maintains x a t  every i n s t a n t  i n  an a f f i n e  manifold 
e 

which moves i n  a  given way, say 

(6.3) 5: = U + g ( t )  

where U denotes a  f ixed  closed l i n e a r  subspace of U and tH g ( t )  i s  

a  given func t ion  of time, with va lues  i n  U , which may be c a l l e d  the  

guiding ( o r  "driving1'). Such a  c o n s t r a i n t  c o n s t i t u t e s  t h e  s t a t i c a l  law 

(6.4) - r E  P +s ( X I .  

2' The 1 s  c ( t ) ,  a  given time-dependent element of . 
3' The f o r c e  - s of " e l a s t i c  r e s t o r i n g  toward Supposing i n  t h i s  

way t h a t  the  e l a s t i c  fo rce  ac t ing  on x i s  the negative of t h e  e l a s t i c  
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f o r c e  a c t i n g  on p merely means t h a t  the  t o t a l  power of the e l a s t i c  

f o r c e s  vanishes i n  any evolu t ion  which preserves the  e l a s t i c  dev ia t ion  

x - p ; i n  o ther  words t h e  e l a s t i c  energy depends on t h i s  deviat ion only. 

The problem is  t h a t  of' determining t h e  evo lu t ion  of x and p 

z U ,  under t h e  hypothesis t h a t  the motion i s  s u f f i c i e n t l y  slow f o r  

i n e r t i a  t o  be negl igible .  

Therefore, t h e  dynamical equat ions amount t o  express the  quasi-  

equi l ibr ium of x, namely 

(6.5) r + c - s  = 0 

and t h e  quasi-equilibrium of p ,  namely 

(6 .6 )  s + f  = 0 . 
To i l l u s t r a t e  t h e  preceding formulation by a p r a c t i c a l  example, 

t h e  reader  may take back t h e  s i t u a t i o n  of a l a t t i c e  of bars ,  presented i n  

1 $ 3. i, j . If t h e  behavior of each bar  i s  e l a s t o p l a s t i c ,  the  z n(n-1) - 

uple  of t h e i r  respect ive elongat ions,  namely t h e  element e E E , has t o  

be w r i t t e n  a s  a sum, say e '  + p ; here e '  denotes  t h e  " e l a s t i c  par t"  

of e ,  r e l a t e d  t o  t h e  t ens ion  s E S by a l i n e a r  e l a s t i c i t y  law such a s  

(6.1) ; p denotes t h e  " p l a s t i c  part' '  of e : i ts  "velocity" 6 i s  r e l a -  

t e d  t o  s by r e l a t i o n s  of t h e  form (6.21, (6.6).  A t  t h i s  s tage one may 

* 
avoid t h e  e x p l i c i t  cons idera t ion  of t h e  l i n e a r  mappings D and D by 

us ing  t h e  t h i r d  procedure of 5 3. j , namely t h e  e l imina t ion  of (X,Y) : 
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then t h e  sum e '  + p i s  i n t e r p r e t e d  a s  t h e  "vis ible"  conf igura t ion ,  t o  

be denoted here  by x ; f i n a l l y  w r i t e  simply e  ins tead  of e ' .  

The same p a t t e r n  a p p l b t o  an e l a s t o p l a s t i c  continuous medium, 

occWYhg a domain R of t h e  physical  space. Then elements e l  e ' ,  p, s 

a r e  some tensor  f i e l d s  defined on R ; t h e  spaces E and S a r e  some 

funct ion spaces. The corresponding q u a s i s t a t i c  evolut ion problem may be 

t r e a t e d  i n  t h e  l i n e  of t h e  fol lowing paragraphs, but wi th  some compli- 

c a t i o n s  which w i l l  not be inves t iga ted  i n  t h i s  l e c t u r e s  ; t h e  d i f f i c u l t y  

a r i s e s  from t h e  f a c t  t h a t ,  with regard t o  the  Hi lber t  norm defined by 

means of t h e  e l a s t i c  energy ( see  5 6. b )  t h e  convex C possesses  an 

empty i n t e r i o r .  Then the  theorem on t h e  abso lu te  coq t inu i ty  of in te r sec-  

t i o n s  (5 5. c )  p r i l l  be appl ied r e l a t i v e l y  t o  some  norm ; t h e  absolute  

con t inu i ty  of t h e  considered i n t e r s e c t i o n  w i l l  f i n a l l y  hold with regard 

t o  the Hi lber t  norm too,  a s  t h i s  l a t t e r  i s  majorized by the L--norm(mul- 
t ip l i ed  by a constant). 

Observe t h a t  t h e  continuous medium problem i s  s tud ied  by 

G. DUVAUT and J.L. LIONS, [I], Chap. 5 . Thei r  method. i s  t h a t  of va- 

nishing v i s c o s i t y ,  b a s i c a l l y  s imi la r  t o  t h e  r e g u l a r i z a t i o n  technique we 

used i n  $ 5. g ; but they must r e s t r i c t  themselves t o  t h e  s p e c i a l  case 

where t h e  "load", denoted here by c ,  i s  i d e n t i c a l l y  ze ro  ; thus  t h e  mo- 

t i o n  i s  only caused by t h e  "guiding1' g. Paragraph 6. c  below explains  

why t h i s  s p e c i a l  case  i s  more t r a c t a b l e  : i t  corresponds t o  a  s e t  
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(C-c-g) (3 V which moves by t r a n s l a t i o n ,  so t h a t  t h e  i n t e r s e c t i o n  theo- 

rem i s  not required f o r  proving i t s  absolute  c o n t i n u i t y  (c f .  5 5. b) .  

We s h a l l  not dea l  i n  t h e  present  l e c t u r e s  with systems governed 

by behavioral  laws of H e q ' s  type ; the  reader  w i l l  r e f e r  t o  H. Lanchonk 

l e c t u r e s  on t h i s  subject .  H e n M s  law i s  a l s o  s tud ied  i n  the  book of  

DUVAUT and LIONS, by methods involving t h e  d u a l i t y  of convex func- 

t i o n a l ~ .  

I n  order  t o  h e l p  t h e  reader  t o  v i s u a l i z e  t h e  formulated problem 

l e t  u s  f i n a l l y  present  a  very simple model i n  which t h e  dimension of U 

equa ls  2. The considered system c o n s i s t s  of two p a r t i c l e s  x and p 

moving i n  t h e  plane U . The p a r t i c l e  x i s  guided without f r i c t i o n  on 

t h e  mate r ia l  s t r a i g h t  l i n e  U + g ( t ) ,  a  l i n e  which remains p a r a l l e l  t o  

t h e  f i x e d  l i n e  U and moves i n  

a  given way. The p a r t i c l e  p w i l l  

be v i sua l ized  a s  a  p l o t ,  whose 

contac t  with t h e  plane 11 i s  

a f f e c t e d  by a  given f r i c t i o n .  The 

- u 
0 two p a r t i c l e s  a r e  connected by a  

spr ing  whose length i n  t h e  s t a t e  

of ze ro  tension i s  zero. I n  add i t ion ,  a  given f o r c e  c ( t )  i s  appl ied  t o  

x. One s tud ies  motions during which the  various f o r c e s  e q u i l i b r a t e  each 
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other  a t  any i n s t a n t  ; i n  p a r t i c u l a r  t h e  f r i c t i o n  r e s i s t a n c e  undergone 

by p must exac t ly  counterbalance the spr ing  tension. 

I n v e s t i g a t i n g  t h i s  elementary model r a i s e s  an important obser- 

va t ion  : though t h e  f r i c t i o n  between p and the  underlying plane has  t h e  

c h a r a c t e r i s t i c s  of per fec t  p l a s t i c i t r ,  t h e  behavior of the  cmponent  x 

e x h i b i t s  s t r a i n  hardening. I n  f a c t  suppose t h e  l i n e  U + g i s  f ixed ,  f o r  

instance with g i d e n t i c a l l y  zero ; suppose the  f r i c t i o n  of p i s  iso- 

t r o p i c ,  i .e.  i t  obeys elementary Coulomb's law. Clearly any motion during 

which t h e  spr ing  i s  s t ra ined  enough f o r  the  point  p t o  y- ( thbs  i m -  

poses a d e f i n i t e  value f o r  the  d i s t a n c e  between x and p )  necessar i ly  

b r ings  t h i s  po in t  c l o s e r  t o  t h e  l ine .  Therefore t h i s  evo lu t ion  leaves 

t h e  system i n  a s t a t e  f o r  which t h e  e l a s t i c  domain, i . e .  t h e  s e t  of the 

values of t h e  load c .which may be appl ied  without causing y ie ld ,  is  

l a r g e r  than before. 

Such an example suggests  t h a t  s t r a i n  hardening can be described, 

i n  p r a c t i c a l  s i t u a t i o n s ,  by including i n  the  d e f i n i t i o n  of t h e  hidden 

component p a s u f f i c i e n t  number of i n t e r n a l  s t a t e  v a r i a b l e s  and postu- 

l a t i n g  t h a t  t h e  behavior of such a p i s  governed by a law s i m i l a r  t o  

t h a t  of p e r f e c t  p l a s t i c i t y .  T h i s  has been developed, i n  our framework of 

convex pseudo-potentials,  by Q.S. NGWEN [l] (see a l s o ,  f o r  the  use of 

i n t e r n a l  s t a t e  variables  without convexity, J. KRATOCWIL and J. NECAS [ I]). 
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6. b THE HILBERT SPACE NOTATION 

Let us  r e s t r i c t  ourselves f o r  sake of s impl ic i ty  t o  t h e  usual  

c a s e  where t h e  se l f -ad jo in t  l i n e a r  mapping A : U + B  introduced by the  

e l a s t i c i t y  law (6.1) i s  one-to-one. Then one makes t h e  treatment of  t h e  
b 

problem much e a s i e r  by t h e  no ta t ion  t r i c k  which c o n s i s t s  i n  i n t e r p r e t i n g  

t h e  one-to-one mapping A a s  an i d e n t i f i c a t i o n  oS t h e  spaces U and 8 . 
Denote by H t h i s  s i n g l e  space ; t h e  symmetric b i l i n e a r  form defined on 

becomes an inner  product i n  H ,  which w i l l  be denoted a s  (u' 1 u). A s  t h e  
/ 

quadra t ic  form 

represen ts  the  e l a s t i c  energy, it is nonnegative, thus  pos i t ive  d e f i n i t e  

due t o  A being one-to-one. This  means t h a t  a pre-Hilbert norm ( . I i s  

def ined  on H by 

Let us  make t h e  assum#bion t h a t  H is complete r e l a t i v e l y  t o  

t h i s  norm, i .e .  it i s  a H i l b e r t  space. 

This  of course i s  automatical ly  s a t i s f i e d  i n  f i n i t e  dimensional 

)cases .  I n  the  case of continuous media a l so ,  one is  accustomed t o  formu- 

l a t e  t h e  problems i n  s u i t a b l e  func t ion  spaces f o r  t h i s  assumption t o  hold. 
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Observe that the inner product (.I.) in H and the identi- 

fication map A : U + B  are connected in such a way that subdifferential 

relations of the form - f E 8 $(u) may equivalently be understood in the 

sense of the duality (U, 5 ; (. ,.>), with u E U and f E 8 ,  or in the 

sense of the duality (H,H ; (. I . 1) with u and f elements of H. 

Let us write the formulation of the problem in these notations. 

Denote by V the subspace of H orthogonal to U ; observe that (6.1) 

becomes s = e ; eliminate r by (6.5) and f by (6.6) ; the preceding 

conditions take the equivalent form 

(6.7) X E U + g  

(6.8) s E V + c  

(6.9) x = p + s  

(6.10) P E a *, cs) . 
~ i v e n  the compact time interval [o,T], the problem is that of 

determining the three functions t* x , t- p , t~ s , with values in 

HI absolurely continuous on this interval (this makes the derivative 

exist for almost every t) satisfying conditions (6.7) to (6.10) for al- 

most every t, and some initial conditions 

(6.11) x(0) = xo , s(0) = so . 
Let us make now some assumptions about the data. 

ASSUMPTION 1. The given functions 'trr g fffd t* c are absolutely 
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continuous on [o,T] . I n  add i t ton ,  we v i s i b l y  Icnse no genera l i ty  i n  s u p  

posing t h a t  c takes i t s  va lues  i n  U and t h a t  g t akes  i t s  va lues  

ASSUhPTION 2 . The i n i t i a l  d a t a  xo and 'so s a t i s f y  t h e  condi t ions  

ev iden t ly  required by (6.7) and (6.81, and t h e  condi t ion  

t 6 . B )  s E C  
0 

requi red  by (6.10). I n  f a c t  f6,103 makes t h a t  for' Mmest eh$y t ,  t h e  

s e t  a Jr ( t )  i s  non empty, thus  s ( t )  E C, and t h e  l a t t e r  must a l s o  be 
C 

t r u e  f o r  every t i n  [o,T] , by cont inui ty.  

Observe a l s o  t h a t  (6.8) with (6.10) r e q u i r e s  t h e  moving a f f i n e  

manifold V + c t o  meet t h e  convex s e t  C f o r  almost every t ,  t h u s  f o r  

every t by the con t inu i ty  of c. This  may equiva len t ly  be w r i t t e n  a s  

(6.13) c E p r o j u C  . 
The mechanical meaning of t h i s  nebessary condi t ion  is  c l e a r  : a load c 

( r e c a l l  t h a t  we supposed c E U )  which does not  s a t i s f y  i t  cannot be 

counterbalanced by the f o r c e s  r E V ( the  r e a c t i o n  of the  a f f i n e  p e r f e c t  

c o n s t r a i n t )  and s E C. A s  t h e  law of  p l a s t i c  r e s i s t a n c e  (6.10) only per- 

m i t s  s € C,  t h i s  means t h a t  i f ,  s t a r t i n g  from a conf igura t ion  defined by 

some va lues  of x and p, t h e  system experiences a load c which does 

not v e r i f y  (6.13), i t s  evolu t ion  cannot be quas i - s ta t i c .  bf course,  t h e r e  
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a r e  i n  t h i s  s i t u a t i o n  o ther  necessary conditions,namely x-p 6 V + c ,  

a consequence of (6.8) and (6.9). 

For mathematical convenience, we s h a l l  suppose t h a t  t h e  s e t  C 

possesses a nonempty i n t e r i o r  ; then l e t  u s  agree t o  rep lace  (6.13) by 

the  s t ronger  fol lowing condition. 

ASSUMPTION 3. For any t i n  [o,T] t h e  a f f i n e  manifold V + c ( t )  

i n t e r s e c t s  t h e  i n t e r i o r  of C. 

Without discussing here t h e  physical  meaning of t h i s  assumption, 

l e t  us  c a l l  i t  t h e  "safe load hypothesis". 

I n  add i t ion ,  we s h a l l  avoid some technica l  job of  covering the 

i n t e r v a l  [o,T] and piecing toge ther  l o c a l  so lu t ions ,  by making a l s o  a 

l a s t  i n e s s e n t i a l  hypothesis : 

ASSUMPTION 4. The s e t  C i s  bounded. 

Then : 

LEMMA. Assumptions 3 and 4 and t h e  abso lu te  con t inu i ty  of t h e  func t ion  

t- c imply t h e  following : t h e r e  e x i s t s  a s t r i c t l y  p o s i t i v e  r e a l  cons- 

t a n t  p and an absolutely continuous mapping h : [o,T] -, H such t h a t ,  - 
f o r  every t E [o,T] , one has h ( t )  6 C A (V + c ( t ) )  and t h e  closed b a l l  

with cen te r  h ( t )  and rad ius  p i s  contained i n  C. 

Outlined proof : Using the  no ta t ion  e of 6 5. a ,  arguments s imi la r  t o  

t h a t  of 6 5. c prove t h a t  the numerical funct ion 
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t- e (V + ' c ( t )  , H\C)  

is  continuous on [o,T], with s t r i c t l y  posi t ive values, thus s t r i c t l y  m i -  

norized by some constant p > 0. The se t  

i s  closed and convex, with nonempty in ter ior .  For every t i n  [o,T], 

t h e  a f f i n e  manifold V + c ( t )  i n t e r sec t s  t he  i n t e r i o r  of C . The multi- 
P. 

mapping tw V + c ( t )  i s  absolutely continuous, implying by $ 5. c the 

absolute continuity of the  moving convex se t  t* C n (V + c ( t ) ) .  Take 
P 

a s  h a solut ion of t h e  sweeping process by t h i s  moving non empty closed 

convex s e t  (cf. 5 ti.*' f 1. 
1' 

6. c P E W  UNKNOWN FUNCTIONS 

Conditions (6.71, (6.81, (6.9) may be wr i t ten  a s  

x - g E U  

c - S E C  

( x - g ) + ( c - s )  = p + c - g  ; 

t h i s  mag equivalently be expressed by means of t h e  orthogonal pro jec tors  

r e l a t i v e  t o  the  complementary orthogonal subspaces U and V 

x - g = p r o 4  (P + c - g )  

c - s = p r o 4  (p + c - g)  

or ,  a s  we have supposed c E U and g E V , 
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p r o j U p  = x - c - g  

Let us  define two new unknowns y and z by 

(6.14) y = s - c - g  = - p r o j V p  

(6.15) z = x - c - g  o pro jUp  

which implies 

Due t o  Assumption 1, the functions tw  y and C H  z a r e  absolutely 

continuous i f  only i f  such a r e  t- s and t- p. 

Under t h i s  change of unknowns, conditions (6.7) t o  (6.10) equi- 

valently amount t o  

k - i E a #, (y+c+g) 

Z E U  , y E V  

to .  be s a t i s f i e d  f o r  almost every t i n  [o,T]. 

Let us  f i r s t  draw a consequence of (6.17 ). 

PROPOSITION. I f  conditions (6.17) a r e  ve r i f i ed  f o r  almost evere  t ,  the 

function t~ y s a t i s f i e s  fo r  these values of t 

46.18) - ; € a +  (c-C-g) n v ( y j  ; 

i n  other words t h i s  function is  a solut ion of the sweeping process by the 

non empty closed convex moving se t  t- (C-c(t) - g ( t ) )  n v . 
I n  f a c t  the second l i ne  of (6.17) implies - H E U , thus 
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- E a (I, (Y). Elementary c a l c u l a t i o n  concerning t r a n s l a t i o n  i n  the  

space H y i e l d s  

a #, ( Y + c + ~ )  = a *c-c-g ( Y )  

On t h e  o ther  hand 

*(c-C-~) n v = *c-c-g + *v 

t h u s  

a *c-c-g ( Y )  + a FV(y) C a *(C-c-g) n v ( ~ !  - 
Therefore (6.18) fol lows from t h e  f i r s t  l i n e  of (6.17). 

REMARK. AS y and Y e s s e n t i a l l y  belong t o  V, i t  i s  i n d i f f e r e n t  t o  

understand the  s u b d i f f e r e n t i a l  i n  (6.18) i n  t h e  sense of t h e  d u a l i t y  bet- 

ween H and i t s e l f  o r  i n  t h e  sense of t h e  d u a l i t y  between t h e  H i l b e r t  

subspaces V and i t s e l f .  

COROLLARY 1. If two Solu t ions  Of (6.17) agree  with t h e  same i n i t i a l  

condi t ion  y(0)  I Yo they coincide i n  what concerns t h e  func t ion  t~ y. 

AS explained i n  5 5. f ,  t h i s  uniqueness property fol lows from 

t h e  multimapping a *(c-c-g) n V being monotone. 

I n  view of t h e  d e f i n i t i o n  (6.14) of y  t h i s  Corollary i s  equi- 

v a l e n t  t o  

COROLLARY 2. 1f two so3utions of t h e  system of condi t ions  (6.7)  to - 
(6.10) agree  with t h e  same i n i t i a l  condit ion s ( 0 )  = so, these  two solu- 

t i o n s  coincide i n  what concerns t h e  funct ion t ~ +  s. 
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By t h e  way, ( 6 . 1 ~ )  impl ies  under Assumption 1 t h a t  the  func- 

t i o n  t* s r e l a t e d  t o  y by (6.14) v e r i f i e s ,  f o r  almost every t ,  

(6.19) - : E - k + a f l c n  ( v + ~ )  ( s )  , 

an evolut ion ''equationV' analogous t o  t h a t  of t h e  sweeping process. An 

algorithm of time d i s c r e t i z a t i o n  would a l s o  be ava i lab le  f o r  t h e  numeri- 

c a l  so lu t ion  of it. 

6. d EXISTENCE THEOREM 

Let u s  proceed t o  t h e  proof of : 

PROPOSITION. Under Assumptions 1, 3, 4, whichever i s  Yo % 

V fl < C  - c ( 0 )  - g(O)), whichever i s  z i .  U ,  the re  e x i s t s  a t  l e a s t  one 

p a i r  of Functions tw y and t- z,  abso lu te ly  continuous from [o,T] 

i n t o  H, s a t i s f y i n g  (6.17) f o r  almost every t and t h e  i n i t i a l  condit ions 

y t 0 )  = yo , z ( 0 )  = Zo . 
F i r s t  s tep.  Under the  hypotheses made t h e r e  e x i s t s  an abso lu te ly  cont i-  

nuous fonct ion,  l e t  us  already denote i t  by t- y , s a t i s f y i n g  (6.18) 

f o r  almost every t and the  i n i t i a l  condi t ion  y(0)  = yo. I n  f a c t  t h i s  

funct ion is  t h e  so lu t ion  of t h e  sweeping process, f o r  t h i s  i n i t i a l  condi- 

t i o n  ., by t h e  moving convex s e t  t I+ (C - c ( t )  - g( t ) )  fl V.  The ex is tence  

theorem o.f 5 5. g apply because t~ C - c ( t )  - g ( t )  i s  abso lu te ly  con- 

! 
t inuous ( see  5 5. b about a t r a n s l a t i n g  convex s e t ) ,  thus  the considered 
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i n t e r s e c t i o n  i s  a l s o  abso lu te ly  continuous, by v i r t u e  of Assumptions 3 

and 4 and t h e  i n t e r s e c t i o n  theorem of 5 5.  c. Defining y i n  t h i s  way, 

one has  y ( t )  E V f o r  every t ,  t h u s  8 (I. ( y )  = U. The a d d i t i v i t y  of v 

t h e  s u b d i f f e r e n t i a l s  holds  f o r  the  func t ions  $C-c-g and gV s i n c e ,  by 

Assumption 3, V + c + g i n t e r s e c t s  the  i n t e r i o r  of C ( r e c a l l  t h a t  

g E V) s o  t h a t  t h e r e  e x i s t s  a point  a t  which both funct ions a r e  f i n i t e  

and t h e  func t ion  $ i s  continuous ; t h e n  (6.18) implies  f o r  almost 
C-c-g 

every t he ex i s tence  of a t  l e a s t  one element of U ,  which w i l l  be a l -  

ready denoted a s  k ( t ) ,  such t h a t  

(6.20) k t )  - i ( t )  E a ( ~ . ~ - ~ - , ( ~ c t ) )  = a ( ~ . ~ ( y c t )  + c c t )  + g ( t ) ) .  

T h i s  i s  the  f i r s t  of condi t ions  (6.17). 

Second s t e ~ .  For a value of t such t h a t  (6.20) holds  the point  & - 

is a conjugate of t h e  po in t  y + c + g r e l a t i v e l y  t o  t h e  p a i r  of dua l  

func t ions  y ,  namely t h e  support func t ion  of C, and (I. (see 5 2. e ,  C 

Example). Th is  may be w r i t t e n  a s  

(6.21) y ( k - *  y ) - ( k - i j  y + c + g )  = ' O  

which implies  t h a t  f o r  almost every t ,  the  closed convex Set  

(6.22) @ ( t )  = { W  E H : y(w) - (wly+c+g) = 01 

= { W  E H : y(w) - (wly+c+g) < 01 

possesses  a nonempty i n t e r s e c t i o n  with the  a f f i n e  manifold U - y ( t ) .  A s  

y i s  a numerical func t ion  independent of t and a s  t++ Y+C+g i s  a 
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continuous mapping from [o,T] i n t o  H one observes t h a t  t ~ +  @ ( t  i s  

a measurable multimapping from [o,T] i n t o  H ( the  measurabi l i ty  theory 

of multimappings i s  due f o r  a par t  t o  C. CASTAING ; see  h i s  l e c t u r e s  ; 

see a l s o ,  f o r  a n  expos i t ion  of some b a s i c  f a c t s  i n  the  c a s e  of a separa- 

b l e  space, R.T. ROCKAFELLAR [4] 1. Such i s  a l s o  t h e  multimapping 

tr, U-$(t) ,as  t h e  func t ion  tw $ belongs t o  L ~ ( O , T  ; H) ; t h u s  the  

i n t e r s e c t i o n  of  t h e  two multimappings i s  measurable too. Since f o r  a l -  

most every t t h i s  i n t e r s e c t i o n  i s  nonempty, it possesses  a dense col-  

l e c t i o n  of measurable se lec tors .  Denote by t~-+ i ( t )  one of  these  se- 

l e c t o r s  ; a s  b ( t )  E U - $ ( t ) ,  by p u t t i n g  'z( t )  = i ( t )  + i ( t )  one has 

& t )  E U and (6.20) holdsf o r  almost every t. I f  we succeed i n  proving 

1 t h a t  i, thus  k ,  bel.ong t o  L (0,T ; HI, t h e  pr imit ive z of L ad- 

justed t o  the  i n i t i a l  value z(O) = zo, w i l l  c o n s t i t u t e  wi th  t h e  funct ion 

y determined above one of the  des i red  s o l u t i o n s  of (6.17). 

Third s tep.  A s  t- ; ( t )  i s  measurable it$st remains t o  prove t h a t  t h e  

numerical func t ion  t*+ l;(t 11 i s  majorized by an element of L ~ ( o , T ~  ). 

By the  lemma of 9 6 ,  b t h e r e  e x i s t s  a s t r i c t l y  p o s i t i v e  cons tan t  p and 

a continuous func t ion  h : [o,T] -, H such t h a t  f o r  every t one has 

h ( t )  E V + c ( t )  and t h e  b a l l  with c e n t e r  h ( t )  and r a d i u s  p is  con- 

ta ined i n  C. T h i s  inc lus ion  of convex s e t s  i s  equivalent t o  t h e  fo l lo -  

wing inequa l i ty  between t h e i r  support func t ions  
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(6.23) V W E  H : p I w ]  + (h(t)lw)<y ( w ) .  

The definition (6.22) of @ (t) may be transformed by writing 

(wl y+c+g) = (wl h) + (w+ily+c+g-h) - y+c+g-h) . 

Recall that + > E U , that c - h E V , that g E V , that $ E V , 

that c E U ; then 

y+c+g) = (ilh) - (?ly+g-h) . 
Therefore, in view of (6.231, E @ (t) implies 

1 '  1 M IPI < -(yl~+g-h)<~ 13 ly+g-hl <- 1i1 
P P 

where M denotes a majorant of the continuous functions t~ IY+g-hl 

over the compact interval [o,T]. As a solution of the sweeping process, 

the function tk+ y is absolutely continuous, thus the function t~ $ 

1 belongs to L ( 0 , ~  ; H) ; this completes the proof. 

By the definitions of y and z, it follows : 

COROLLARY. Under Assumptions 1, 2, 3, 4 the evolution problem for the 

considered elastoplastic system possesses at lsast one solution ; this - 
solution is unique in what concerns the function t e  s . 
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Au cours de ces  s i x  expos6s on va d6velopper 'ou seulement 

6voquer quatre  id6es p r inc ipa les  : 

l o )  l a  l;remi&-e e s t  que l a  s t r u c t u r e  alg6brique d'un probls- 

me de Mkcanique en cons t i tue  l a  na ture  profonde, indgpendamment des 

consid6rat ions d 'analyse fonc t ionne l le  proprement d i t e  : j e  c r o i s  qu'on 

a t tache  actuel lement  une importance excessive 2 ce l le -c i  au  detriment 

de not ions rnaisemblablement p lus  importantes. 

2O) l a  seconde e s t  que l e s  s t r u c t u r e s  de d u a l i t 6  sont  deve- 

nues l'arme l a  p lus  puissante  du M6canicien e t  que l a  mise en 6quations 

d'un probldme d e v r a i t  s t r e  tou jours  effectu6e 2 l ' a i d e  du pr inc ipe  des 

travaux v i r t u e l s .  ~ e l u i - c i ,  t r s s  v i e i l l e  connaissance des m6caniciens, 

conduit directement e t  sans d i f f i c u l t 6 s  2 des problsmes improprement 

qua l i f i6s  de "faibles" .  Dans l e  c a s  03 l 'on  suppose l e s  fonct ions r6- 

g u l i s r e s  ce l les -c i  s a t i s f e r o n t ,  c e r t e s ,  ce r ta ines  6quations a m  d6ri- 

v6es p a r t i e l l e s  e t  c e r t a i n e s  condit ions aux l i m i t e s ,  mais  nous n'avons 

aucune r a i s o n  d'accorder 2 ce l les -c i  une s i g n i f i c a t i o n  physique p lus  

grande qu'aux 6quations "var ia t ionne l les" ,  c ' e s t  3 d i r e  de d u a l i t 6 ,  

fournies  p a r  l e  pr incipe du t r a v a i l  v i r t u e l .  

3 O )  l a  t ro i s i sme id6e e s t  que nous t r a i t o n s  bien souvent des 

probl?mes acadgmiques : nous supposons e n e f f e t  connues l e s  donn6es n6- 

c e s s a i r e s  2 la formulation d'un problsme b ien  pos6. Les s i t u a t i o n s  pra- 

t i q u e s  sont  f o r t  d i f f g r e n t e s  e t  p r6sen ten t  l e  p lus  souvent un manque 

d'information considgrable en 6gard aux donn6es des probldmes th6ori-  

ques. Ainsi  en e s t - i l  du probldme d76volut ion 6 las top las t ique  05 dans 

l a  p ra t ique  on ne connait n i  l e s  condit ions i n i t i a l e s  n i  l e s  e f f o r t s  

exerc6s au  cours  du temps, mais seulement c e r t a i n s  encadrements des uns 

e t  des  a u t r e s .  On peut encore essayer  d 'ob ten i r  des r 6 s u l t a t s .  D'une fa- 

qon g6nbrale l e  d6faut d'information d e v r a i t  d t r e  systkmatiquement 6Cu- 

d i 6  par  l a  th6or ie .  



4') La quatrisme id6e e s t  q u ' i l  y  a  peut  d t r e  encore bien 

des "id6es r e p e s "  2 reconsiddrer  dans l a  conception du r c l e  de l a  Ma- 

t h d m t i q u e  dans l e s  t h k o r i e s  physiques. En p a r t i c u l i e r  on peut s e  de- 

mander si  l a  cohdrence d'une th6or ie  ndcess i te  vraiment 1"'existence 

des solut ions",  e t  si l a  r e l a t i o n  de pr6ordre h a b i t u e l l e  e n t r e  6qua- 

t i o n s  : 

"1'6quation A e s t  p lus  f o r t e  que 1'6quation B s i  t o u t e  solu- 

t i o n  de A e s t  solut ion de B" 

e s t  b ien  c e l l e  qui convient 2 l a  math6matique d'une thdor ie  physique. 

J ' i n c l i n e  2 penser  que non e t  pour des ra i sons  qui seront  

expos6es dans l e  c h a p i t r e  I11 : essent iel lement  parce que tou te  mesure 

exp6rimentale e s t  entach6e d ' e r reur ;  e t  a u s s i  parce Rue, l e s  s o l u t i o n s  

"exactes" 6 t a n t  inaccess ib les  au  c a l c u l ,  il me semble p lus  o b j e c t i f  de 

l e s  oubl ie r  au  p r o f i t  des  "solut ions approchdes", l 'approximation 6 t a n t  

2 d 6 f i n i r  en l i a i s o n  avec l ' imprkcis ion num6rique ou  exgr imenta le .  

Ce chapi t re  I11 souf f re  de p l u s i e u r s  d6fauts  : une r6dact ion 

qui  p o u r r a i t  d t r e  am6liorde, e t  qui s e r a  sans doute entisrement refon- 

due dans un a r t i c l e  u l t d r i e u r ;  l e  manque d'un r d s u l t a t  sur  l t61 imina t ion  

qui  m'a obl ig6,  temporairement, 2 Is p a l l i e r  2 l ' a i d e  de l a  p ropos i t ion  

9.  On pourra a u s s i  u t i l i s e r ,  p l u t z t  que l ' express ion  pesante : " s u i t e  

de so lu t ions  a rb i t ra i rement  approchdes" (abrdg6e par  s.s.a.b.), l 'ex-  * 
press ion  p lus  B6gsre e t  p lus  imag6e de "su i te  approximwte". 

Quelques exemples s e r a i e n t ,  en b u t r e ,  souhai tables .  J'ai ce- 

pendant voulu s a i s i r  l ' occas ion  du C.I.M.E. pour exprimer un c e r t a i n  

nombre de rdf lexions s u r  ce genre de probldme, essent iel lement  pour a t -  

t i r e r  l ' a t t e n t i o n  s u r  l e u r  importance. 

Dans l e  premier c h a p i t r e  ( 1  expos6) on expose l e  thsme algd- 

b r ique  couramment rencontrd en M6canique des So l ides .  Dans l e  second 

( 2  expos6s) on u t i l i s e  ce thsme pour 6 t u d i e r  l e s  d i v e r s  probl?mes varia-  

t i o n n e l s  qui  peuvent d t r e  formulds lorsque l e s  l o i s  d ' e f f o r t  sont  sous- 

d i f f d r e n t i e y l e s .  La l e c t u r e  en suppose une connaissance re la t ivemei t  bon- 
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ne de l a  t h k o r i e  des fonct ions convexes ( c f r .  l e c t u r e s  de J.J. MOREAU 

e t  de J. CASTAING. Dans l e  t ro i s i sme chapi t re  ( 2  expos6s) on e s s a i e  de 

c o n s t r u i r e  une a lgsbre  (au sens l a r g e  de ce terme) des l o i s  sous-dif- 

f k r e n t i e l l e s  e t  pour y parvenir  on i n t r o d u i t  l a  r e l a t i o n  de prgordre 

"approximative" dest inge 2 remplacer l a  r e l a t i o n  u s u e l l e  e n t r e  6qua- 

t i o n s .  

Tout b ien  considkrE on s 'apercevra aiskment que 1;s deux clCs 

de ce qui va nous i n t k r e s s e r  son t  

l o )  l ' 6 g a l i t C  Cventuelle d'une inf-convolution 2 une r-convo- 

l u t  ion 

2O) LICgali tk  Cventuelle du sous-d i f fkren t ie l  d'une s o m e  

l a  s o m e  des sous-d i f fgren t ie l s  

Remarque - Le sixisme expos6 o r a l  t r a i t a i t  de " l 'adaptat ion" des corps 

61astoplast iques,  ph6nomsne e s s e n t i e l  pu isqu ' i l  permet l e  c a l c u l  des 

s t r u c t u r e s  malgr6 l e  manque d ' information dont nous parZions pr6c6dem- 

ment. 

Cornme c e  s u j e t  f a i t  l ' o b j e t  d'une publicat ion dont j 'achsve 

l a  r6daction ~ v e e  un a u t r e  chercheur, il m'6tai t  bien 6videmment in- 

t e r d i t  d'y consacrer  i c i  un chap i t re  p a r t i c u l i e r .  Au demeurant ce lu i -c i  

a u r a i t  nui 2 l ' u n i t 6  du s u j e t  t r a i t 6 .  
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STRUCTURE ALGEBRIWE DES PROBEES DE r:ECPSJIQL!E MS SOLIDES 

k n s  ce chsp i t re  nous d6finissons l e  cadre a l g 6 b ~ i q u e  l e  p lus  

souvent rencontrE dans l e s  problznes pu isqu ' i l  correspond au cas  OG dd- 

placements e t  d6formations sont  supposCs t r s s  p e t i t s  e t  02 l a  g60m6trie 

du so l ide  e s t  donn6e. Notons que ce l le -c i  e s t  l ' inconnue de c e r t a i n s  pro- 

blzmes d'optimisation. 

Nous nous proposons d 'aboutir  3 ce cadre algibr ique non pas en 

l e  ddduisant des 6quations hab i tue l les  de l a  Micanique, mais en l e  cons- 

t r u i s a n t  au f u r  e t  3 mesure de l t6 tab l i s sement  de ce l les -c i ,  ce  qui s e r a  

beaucoup p lus  i n s t r u c t i f .  Afin dtal16ger  l t expos6  nous nous r 6 f i r e r o n s  2 

l 'exemple 8es plaques en f lexion.  Nous pr ions a u s s i  l e  l e c t e u r  de ne prd- 

t e r  3 ce qui s u i t  aucune ambition dogmatique, mais de l e  considdrer comme 

h rassemblement de quelques iddes simples q u ' i l  pourra admettre ou r e j e -  

t e r  selon ses  propres convict ions 6pistimologiques. 

Enfin nous employons souvent ' les  termes "d6~lacement", "ddfor- 

plation" ou "contrainte" en gu ise  de raccourcis  pour l e s  termes "champ de 

a6placement~",  de d6formation ou de contraintes .  

$ 1. .DEPLACEiFENTS ET EFFORTS 

~ons iddrons  une plaque plane dont nous voulons d tud ie r  ce q u ' i l  

est convenu d'appeler l e s  "diformations de f lexion";  nous rapportons l 'es-  

pace euc l id ien  2 un repsre  orthonorm6 
+ + +  

( ~ , x , ~ , z )  en s o r t e  que, dans son 6 t a t  de 

r6f6rence, l a  plaque occupe un domine 

compact du p lan  (xOy); $2 d6signe l ' i n -  

t 6 r i e u r  de n. On suppose que l e  &place- - 
ment MOM dsun point  M de l a  plaque e s t  

'2 un w c t e u r  ' 'ver t ical '*Ou(Mo)~,  u c t a n t  m e  

fonction r 6 e l l e  ddf in ie  sur  T. 
Le choix des fonctions u admissibles 

x 
n'a pas besoin d ' z t r e  pr6cis6 comp16temen$. 
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Disons seulement que nous faisons,  pour l e  moment, a b s t r a c t i o n  des condi- 

t i o n s  d'appui de l a  plaque e t  que nous nous dotlnons un espace de configu- 

r a t i o n  U ,  espace v e c t o r i e l  r 6 e l  de fonct ions r 6 e l l e s  dbfinies  

sur  5. Pour f i x e r  l e s  id6es nous pouvons prendre, ce  qui s e  &$Iera p u t -  

z t r e  maladroit,  U = c 2 ( T ) ,  & t i t r e  d'exemple seulement. 

Une f o i s  c h o i s i  l 'espace de configurat ion U, ou espkace des d b  

placements, on peut d 6 f i n i r  des e f f o r t s  exerc6s sur  l a  plaque. On peut 

considgrer, par  exemple, des e f f o r t s  d 6 f i n i s  par  des dens i t6s  surfaciques,  

l ingiques ou par  des forces concentr6es. Ainsi  une densi t6 surfacique 

d 6 f i n i t  un e f f o r t  $ dont l e  t r a v a i l  v i r t u e l  se ra  l a  forme l i n 6 a i r e  sur  U : 

La M6canique fond6e sur  l e  Principe du t r a v a i l  v i r t u e l  ne de- 

mande que l a  connaissance du t r a v a i l  v i r t u e l  << . ,$>> d6veloppE par un ef- 

f o r t  $; c r e s t  5 d i r e  que l a  not ion d ' e f f o r t  exerc6 sur  un systsme se  con- 

fond avec c e l l e  de fonct ionnel le  l i n 6 a i r e  sur un espace v e c t o r i e l  U qui 

e s t ,  dans l e  cas  g6n&ral ,  l 'espace v e c t o r i e l  tangent B une c e r t a i n e  vari6- 

t 6  de configurat ion (en  g6n6ral l ' e space  des v i t e s s e s ) ,  e t  qui ,  dans l'hy. 

p ~ t h 8 s e  des dgplacements infiniment p e t i t s ,  s e  confond avec e l l e .  

Ains i  donc l 'espace des e f f o r t g  envisageables e s t  l e  dual  alg6- 

brique U* de l ' e space  de configurat ion U. C'est un peu t r o p  grand pour 

Ctre aiskment manipulable, e t  on s e  r e s t r e i n t  B un sous-espace v e c t o r i e l  
* 

G d e U .  

On e s t  a l o r s  dans l a  s i t u a t i o n  suivante : deux espaces vecto- 

r i e l s  l ' u n  de configurat ion U ,  l ' a u t r e  des e f f o r t s  8 ,  mis en d u a l i t 6  par 

une forme b i l i n 6 a i r e  <<.,.>> qui e s t  l e  t r a v a i l  v i r t u e l ,  e t  coincide avec 

@ lorsque $ .5 G e s t  d6f in i  par  u& densi t6 surfacique de forces .  

Bien si& on peut a u s s i  envisager beaucoup d 'au t res  types d'ef- 

f o r t  : des couples r 6 p a r t i s  ou concentrgs, par  exemple, pourvu qu'on s o i t  

capable de d 6 f i n i r  l e u r  t r a v a i l  v i r t u e l .  
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D'une fagon a b s t r a i t e  nous appel lerons "bl6ment mgcanique" l e  

h r i p l e t  des deux espaces e t  de l a  forme b i l i n 6 a i r e  qui l e s  met en d u a l i t 6  : 

%= (U, <<.,.>>, Q )  

k t  nous supposerons tou jours  que c e t t e  d u a l i t 6  e s t  sgparante. 

Soient maintenact $1,. . . , $ des e f f o r t s  exerc6s s u r  l a  plaque : 

i l s  sont en gqui l ibre ,  p a r  d g f i n i t i o n ,  s i  l e u r  s o m e  e s t  n u l l e ' :  

puisque, l a  d u a l i t 6  s6parant  @, c e c i  6quivaut 2 d i r e  que l a  some de l e u r s  

t ravaux v i r t u e l s  e s t  nu l le .  

$ 2 LOIS D ' E F F r n  

Dans l e s  problkmes de M6canique l e s  e f f o r t s  sont quelquefois 

donn6s expl ici tement ,  Come l e s  ac t ions  de pesanteur ,  mais plus  souvent 

par  des l o i s .  Par exemple : 

lo) Loi de r g s i s t a n c e  6 las t ique  : on s e  donne une appl ica t ion  

l i n 6 a i r e  de U dans Q : 

2') Loi de l i a i s o n  a f f i n e  p a r f a i t e  : on s e  donne une var i6 t6  

affine uo + V de U e t  l ' o n  pose que 

u t u  + V  

e t  q u ' i l  y a  un e f f o r t  de l i a i s o n  associ6 pouvant prendre n'importe 

que l le  valeur  dans l ' o r thogona l  vO. 

3') Loi fonc t ionne l le  - Une t e l l e  l o i  f a i t  i n t e r v e n i r  l e  temps. 

par  exemple au "mouvementl' t + u ( t )  on f a i t  correspondre l ' e f f o r t  

02 r e s t  une fonction donn6e. J - m  
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Oublions pour l ' i n s t a n t  c e  dern ie r  exemple pour observer l e s  

deux premiers; l e s  g6n6ral isant  nous poserons l a  

D6fini t ion : on appe l le  l o i  d ' e f for t  sur  1'616ment mBcanique une multi- 

app l ica t ion  A de U dans 0 : 

b / U  E U + A(U)  C 0 

I A(u) Btant Bventuellement vide. 

Lorsque ~ ( u )  se  r g d u i t ,  pour t o u t  U, B un seu l  BlBment, A e s t  

une fonct ion ord ina i re ,  come dans l e  premier exemple. Le second, par  op- 

pos i t ion ,  f a i t  b ien / in te rven i r  m e  multi-application en posant : 

Nous a l l o n s  vo i r  en e f f e t  que c e t t e  dgf in i t ion  d'une l i a i s o n  p a r f a i t e  cor- 

respond bien 5 l 'usage des mBcaniciens. 

En e f f e t  un probldme usue l  de M6canique e s t  l e  suivant  : on s e  

donne n l o i s  d ' e f f o r t  Al , . . . ,  An, e t  on cherche 5 r6soudre 1' "Bquation 

d'6quilibre" : 

c ' e s t  5 d i r e  l e  systdme : 

S i  par  exemple A1 d 6 f i n i t  m e  l i a i s o n  a f f i n e  p a r f a i t e  1'6quation 

@'admet 6videment  de solut ion que dans l a  var i6 t6  a f f i n e  correspondan- 

t e .  

L V 6 c r i t u r e  @ conduit 2 d 6 f i n i r  l a  somme de d e w  l o i s  d ' e f f o r t  

come s o m e  de d e w  multi-applications : 
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Remar que 

Revenons maintenant 2 l'exemple 3O). 1.1 ne reldve Bvidemment pa$ 

de l a  d e f i n i t i o n  d'une l o i  d ' e f for t  sur  11616ment m6canique e .  M a i d  con- ,., - 
sidgrons un 616ment mecanique 8 = (u, {<. , .>), i) 

.. 
oG U e s t  un espace de fonct ions du temps 2 valeurs  dans U .. 

$ c s t  un espace de fonct ions du temps 2 valeurs  dans @ 

T dksignant l ' i n t e r v a l l e  de var ia t ion  du temps. Alors  u n e . l o i  fonction- .. 
n e l l e  sur  % pourra 8 t r e  dkf in ie  come une l o i  d ' e f f o r t  sur . 

Ainsi ,  moyennant l e  remplacement de l 'espace des configurat ions 

par  c e l u i  des mouvements e t  l e s  remplacements correspondants, nous pour- 

rons f a i r e  e n t r e r  l e s  l o i s  de comportement dans l e  cadre des l o i s  d'ef- 

f o r t  . 

Les dkplacements u E U qui sont des "d6placements" au  sens des 

t ransformations ggomktriques sont l e s  fonct ions a f f i n e s  du couple ( X , ~ ) = M  

Qnles nomme encore "d6placements so l id i f ian t s" .  11s cons t i tuen t  un sous- 

espace v e c t o r i e l  Us de U. Pour l e  mgcanicien il e s t  6quivalent de suppo- 

s e r  l a  plaque indkformable ou d'imposer l a  l i a i s o n  p a r f a i t e  : 

2 l a q u e l l e  on associe  done l ' e f f o r t  de l i a i s o n  bS, a r b i t r a i r e  dans U . O  
,. 

Supposons done que l a  plaque s o i t  soumise l a  l i a i s o n  dlind$- 

formabil i tk  prgcgdente, donc B l ' e f f o r t  de l i a i s o n  bS, e t  a u s s i  B d ' a u t r e s  

e f f o r t s  $, ,. . . , $n de s o m e  $. Le systsme composk de 
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$1 + ... + 9, + = 0 

$S € us0 

e s t  Bquivalent B 1'Bquation 

ConsidErons l 'espace quotient  Q / U ~ O  = g, e t  notons 4 l ' a p p l i -  

cat ion canonique de @ sur  % . L161Ement ti = 2 ($ i )  66 e s t  d i t  "tor- 

seur  associ6 B l ' e f f o r t  $". Comme & e s t  l i n g a i r e ,  l 'dquat ion d16quil ibre  

@ kquivaut & 

qui e s t  du type @. Cette  ressemblance conduit consid6rer l a  d u a l i t 6  

dgfinie e n t r e  Us e t  $ par  

05 $ e s t  un 61Bment a r b i t r a i r e  de&-'(t). a e s t  a l o r s  1'6quation 6'6- 

qu i l ib re  pour 1'"616ment mgcanique quotient"  (US, (.I.),$ ) ,  par  l eque l  

nous pouvons remplacer 1'61Ement mBcanique i n i t i a l .  

Nous reviendrons, d'une fagon plus systCmatique, s u r  c e t t e  no- 

t i o n  de quot ient  e t  en p a r t i c u l i e r  nous verrons c e  q u ' i l  advient  d'une l o i  

d ' e f for t  par  passage au quotient .  

S o i t  u c  U un champ de dkplacements quelconque pour l a  plaque. 

On s a i t  d i r e  s ' i l  e s t  ou non s o l i d i f i a n t  mais on ne s a i t  pas encore d6fi- 

h i r  2 quel le  dkformation il correspond. D'un point  de vue g loba l  nous pour- 

rons d i r e  que dewc champs u e t  u' deaU correspondent & l a  *me d6formation 

(le l a  plaque - s l i l s  d i f f s r e n t  d'un dgplacement s o l i d i f i a n t  ; a u t r e m e n t _ - ~ . t  l e  

point  de m e  g loba l  permet de d k f i n i r  un Btat de dkformation de l a  plaque 

Cornme un Blkment de l 'espace quotient  U/U . 
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Etant  donn6 un systkme mat6riel  quelconque l a  M6canique 616men- 

t a i r e  considkre d'habitude des e f f o r t s  "ext6rieurs"  ou " in t6r ieurs"  au  

syst2me. Ces dern ie rs  ont pour propri6t6 e s s e n t i e l l e  de ne pas t r a v a i l l e r  

dans l e s  ddplacements s o l i d i f i a n t s ,  c ' e s t - b d i r e  d ' 8 t r e  de to rseur  nu l ,  

e t  d'"ere donn6s par des l o i s  inddpendantes de ceux-ci. Pour m6nager l a  

s i g n i f i c a t i o n  usue l le  de l ' express ion  " e f f o r t s  in tgr ieurs" ,  nous emploie- 

rons  l ' a d j e c t i f  "interne" e t  nous poserons l a  

Ddfini t ion : Une l o i  d ' e f f o r t  A e s t  d i t e  i n t e r n e  2 1'616ment mdcanique 8 s i  

1') A e s t  2 va leurs  dans U ' ( t o r s e u r  n u l )  s 
2') A e s t  invar ian te  par  d6placement s o l i d i f i a n t  : 

Ceci s i g n i f i e  qu'une t e l l e  l o i  ne d6pend que de l a  dgformation. 

C e t t e  d6f in i t ion  cons t i tue  l a  t e n t a t i v e  de c a r a c t g r i s a t i o n  des e f f o r t s  in- 

t 6 r i e u r s  l a  p lus  pouss6e qu'on puisse e f f e c t u e r  sous l e  s e u l  point  de vue 

g loba l ;  e l l e  ne permet pas de rendre compte de l a  not ion de mat6riau e t  

de lei c o n s t i t u t i v e  : c e t t e  not ion e s t  essent iel lement  loca le .  C'est pour* 

quai il f a u t  in t rodui re  une d6f in i t ion  loca le  de l a  d6formation e t  des ef- 

f o r t s  i n t 6 r i e u r s .  

Nous avons donc 2 i d e n t i f i e r  t o u t  d'abord l 'espace quotient  

u/Us,  parfaitement a b s t r a i t ,  2 un espace v e c t o r i e l  de champs d6f in i s  s u r  

0. Consid6rons 110p6rateur  d i f f g r e n t i e l  

I1 associe  B t o u t  u  e U (on a  suppos6 p a r  exemple U = c 2 ( T ) )  un 

champ de tenseurs  symgtriques : 

grad grad u = 

Mc 2 t. grad grad U(M)  6 E3 (espace v e c t o r i e l  de dimension 3)  

a2u a2u - I 
O X d Y  I = , i , j  



B. N a y r o l e s  

0 u 6 US <- grad grad u = 0 

Une des reprgsentat ions poss ib les  du quotient  U/U e s t  donc s 
l 'espace v e c t o r i e l  des champs grad grad u. C'est gvidemment l a  plus  sim- 

p l e  e t  e l l e  e s t  u t i l i s g e  dans l a  thgor ie  des plaques minces; mais nous sa+ 

vons qu 'el le  peut  E t re  i n s u f f i s a n t e  pour l a  dgf in i t ion  des l o i s  const i tu-  

t i v e s ;  admettons-la pour l ' i n s t a n t .  E l l e  s i g n i f i e  que l e  t enseur  de cour- 

bure e s t  une information s u f f i s a n t e  pour l a  connaissance de l a  dgforma- 

t i o n  loca le  de l a  plaque. 

On admet a l o r s  que l ' e f f o r t  $ dgveloppg par l e  matgriau peut m 
E t re  dBfini 2 l ' a i d e  d'un champ de tenseurs  symgtriques s  par  : 

r 
< < u , $ ~ > >  = - (grad grad u)(M).s(M) do 

J 61 
02 l e  point  s i g n i f i e  l e  double produit  contract6 des t enseurs  : 

s e s t  appel6 un champ de cont ra in tes .  On note que $ 6 US0. 
m 

Ceci conduit 2 in t rodui re  un espace v e c t o r i e l  & e l  E de champs 

de tenseurs  symgtriques dgf in i s  sur  61 e t  t e l  que l ' opgra teur  de d6forma- 

t i o n  

D = grad grad 

s o i t  une appl ica t ion  de U dans E ( ~ a r  exemple E = ( ~ ~ ( 6 1 )  3,  

& i n t r o d u i r e  un a u t r e  v e c t o r i e l  S de champs de tenseurs  symgtri- 

ques dBfinis sur  61, t e l l e  que l a  forme b i l i n g a i r e  

r 
( e , s )  6 E x S H  < e , s > =  e(M).s(M) do J 61 

e x i s t e ,  q u i t t e  Bventuellement, ?i Bteindre l a  s i g n i i i c a t i o n  de l t i n t 6 g r a l e 4  

E e s t  l 'espace des champs de dgformation, D ( U ) C E  c e l u i  des 

champs de d6formations int6grableS. S e s t  l 'espace des champs de cont ra in l  
t e s .  
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- <e,s> e s t  l e  t r a v a i l  du champ de contraintes s dans l e  champ 

de d6formation e ;  l e  signe - correspond & l a  convention de signe qui con- 

s i s t e  & consid6rer comme posit ives l e s  contraintes de traction.  Dans l e  

cas de l a  pltque S eSt un champ de "tenseurs de flexion". 

~ ' ~ ~ E r a t e u r  d6formation D e s t  une application de U dans E : il * 
&et un transpos6 Dt,  application de S dans l e  dual algsbrique U de U ;  

par ddfinit ion 

On note que 

On supposera que S a Et6 choisi  en sor te  que 

autrement d i t  que tout  616ment g g US0 peut d t r e  reprEsent6 par au m i n s  
m 

un champ de contraintes s E. S, c 'es t  & dire ,  d'aprss @ : 

Supposons l a  plaque soumise & un e f f o r t  quelconque $ e t  ?i l ' e f -  

fo r t  $ repr6sentE par s : i l s  sont en Equilibre s i  
m 

c ' e s t  & dire,  compte-tenu de @, s i  

0 @ = Dts 

qui e s t  116quation d16quilibre. 

Notons que 

t ce qui montre que l e  noyau ker ( D  ) e s t  l'orthogonal de D ( u ) .  
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Le diagramme ci-dessous rdsume l a  s i tua t ion ,  parfaitement sy- 

rnetrique s i  @ e s t  remplacge par 

0 t 
D S = U O  

S 

ker D = U c U <<. , .>> 
S @ =us0 = D ~ ( s )  

T 

1. t 
I Dt 
1 

D(U) c E <.,.> S zi ker D~ = D ( u ) '  

Une l o i  d 'effort  C sur l'dldment mecanique (E, <.,.>, S)  e s t  

une l o i  cons t i tu t ive  s i  e l l e  e s t  ddfinie localement par une multi-applica- 

t i on  rM, dependant de M, de tg  dans lui-dme; par d6fini t ion : 

La l o i  consti tut ive C ddf in i t  sur  1'816ment mecanique 

(u ,  <<. ,.>>, S)  l a  l o i  d 'effort  interne A : 

Du point de vue global  seule l a  l o i  A e s t  observable. Pour a t -  

teindre C c ' e s t  a dire  pour e f fec tuer  des mesures susceptibles de fournir  

r il faudrai t  decouper l a  plaque en morceaux infiniment pe t i t s .  M 

§ 5, LIAISONS: D E P L A C ~  ET DEFOWTIONS IWQSES 

En g6nBral une t e l l e  plaque e s t  soumise 2 des conditions d'ap- 

pui qui empdchent tout  dLplacement d'ensemble. Nous supposerons que l a  

plaque e s t  fix6e par son bord; s o i t  

aa = ala u a2n u a3a 

une   art it ion de l a  f ront i s re  362. 
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- Sur l e  bord e s t  l i b r e  

- Sur a2n l e  bord e s t  simplement appuy6 ce qui correspond 2 

l fEquat ion de l i a i s o n  

oii u0 e s t  un 616ment donn6 de U 
-- - Sur a30 l e  bord e s t  e n w s t r 6 ,  ce  qui correspond a m  6quations 

de l i a i s o n  

Nous supposons donc que l e s  6quations de l i a i s o n  sont a f f i n e s  

e t  q u l i l  en e x i s t e  une s o l u t i o n  p a r t i c u l i s r e  u0 dans U. Alors l e s  solu- 

tions du systsme @ + @ cons t i tuen t  une var i6 tk  a f f i n e  u0 + V de U, 

= l e s t  2 d i r e  que ces  6quations se  r6sument B 

V e s t  l l e s p a c e  v e c t o r i e l  des dgplacements v i r t u e l s  compatibles 

l e s  l i a i sons .  Au niveau des d6formations @ entra4ne 

e t  si l e s  l i a i s o n s  i n t e r d i s e n t  t o u t  deplacement s o l i d i f i a n t ,  c ' e s t  2 d i r e  

si, come nous l e  supposerons toujours  d6sornais : 

v n us = { o ~  

a l o r s  @ e t  @ sont  Bquivalents. Duo e s t  une "d6formation impos6e1', 

u0 un "d6placement imposCtl. Notons cependant quton peut envisager a u s s i  

une dEformation imposee e0 qui ne s o i t  pas de l a  f o m e  Mu0, par  exemple 

une dEformation d 'o r ig ine  thermique. 
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S 6, EQUATIONS D'EQUILIBRE DE IA PLAQUE 

h.6cisons maintenant 110p6rateur  D~ lorsque l ' e f f o r t  $ qui ap- 

p a r a r t  dans 116quation d16quil ibre  : 

0 t D s = $  

e s t  d6f in i  par  une densi t6 surfacique de force p, une dens i t6  l in6ique de 

force f d6f in ie  s u r  an, e t  d'une dens i t6  l in6ique de couple e d6f in ie  s u r  

an , en s o r t e  que 

5 d6signe l ' a b s c i s s e  curv i l igne  de l a  f r o n t i s r e .  

~ o n s i d 6 r o n s  t o u t  d'abord un champ s G S, e t  d e w  f o i s  continc- 

ment d6rivable s u r  n. Nous pouvons 6 c r i r e  : 

grad  grad u.s = u d i v  d i v  s - div  ( u .  d i v  s ) + d i v  (grad u.s ) 

03 grad u.s e s t  l e  produit  contract6 du vecteur grad u par  l e  ten- 

seur  s 

Dans ces  conditions nous pouvons Bcrire 

<Du,s> = a (grad grad  u) . s  I 
= u d iv  d i v  s + (grad u.s - u d i v  s ) .n  I an 

n d6signant l e  vecteur  u n i t a i r e  normal ex t6r ieur  2 l a  f r o n t i s r e .  Notons 

t l e  vecteur  u n i t a i r e  tangent 2 ce l le -c i  en s o r t e  que s u r  l a  f r o n t i z r e  

Alors r 
au , u d iv  a i v  s + ] t . s . o  + I a U  n.s.n - a,udiv s n  , a n  57 I 
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On peut  transformer l e  second membre en in t6gran t  par  p a r t i e s  : 

- t.s.n = - a J an 'F u - (t.m.n) 
J a n  

e t  i n t r o d u i r e  l e  rayon de courbure alg6brique p de l a  f r o n t i s r e  : 

ce qui donne finalement 

En i d e n t i f i a n t  17 e t  18 on t rouve donc 

(19.1) d i v  d i v  s = p 

d i v  s., + (n.s.n - t . s . t )  + t. . n = f 
P at 

qui son t  l e s  6quations d16qui l ib re ,  6quivalentes $ @ , d'un champ de 

cont ra in tes  r6gul ie r  s e t  d'un e f f o r t  T d 6 f i n i  par  p, f  e t  c. 

Si f (nu1 sur  a l n )  e t  c (nu1 sur  a l n  LI a2n) d6f in i ssen t  l ' e f -  

f o r t  de l i a i s o n  tand is  que p d 6 f i n i t  l t e f f o r t  donn6, a l o r s  on peut 6 c r i r e  

l e s  6quations d16qui l ib re  du champ de c o n t r a i n t e s  s e t  de l ' e f f o r t  donn6, 

compte tenu des l i a i s o n s  : 

d i v  d i v  s = p s u r  61 

1 as 
d i v  s.n + - (n.s.n - t . s . t )  + t . - ac  . n = O  

P 
s u r  a l n  
- -- 

S U T ~ I R  a2il- 

L16cri ture  des condit ions aux l i m i t e s  a longtemps pos6 des pro- 

blsmes & mgcaniciens, e t  sur tou t  pour l e  bord l i b r e  a l R .  L'emploi des 

mgthodes de t r a v a i l  v i r t u e l  r6soud ais6ment c e t t e  d i f f i c u l t 6 .  

S i  s n ' es t  pas un champ r6gul ie r  l t 6 q u a t i o n  (19.1) conserve un 
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sens en consid6rant l a  d i s t r i b u t i o n  d i v  d i v  s .  Par contre l e s  equations 

sw l a  f r o n t i s r e  n'ont plus  de s i g n i f i c a t i o n  en gdn6ral : l a  "trace" de s  

sur  all peut f o r t  bien n ' g t r e  pas d6finie .  C1est  11 que r6side un des a- 

vantages majeurs de l a  Mecanique du t r a v a i l  v i r t u e l  pour l aque l le  llSqua- 

t i o n  0 a  un sens pr6cis. '  

C 'est  pourquoi l e  m6canicien envisagera toujours  des probldmes 

pos6s par l a  m6thode du t r a v a i l  v i r t u e l ,  qui donne une formulation varia-  

t ionne l le  d i rec te .  Au cont ra i re  1 ' 6 c r i t u r e  d16quations d i f f e r e n t i e l l e s  

d&t Gtre 6vi t6e l e  plus  souvent poss ib le ,  du moins dans une premiere ap- 

proche dlun probldme de M6canique des Sol ides.  

5 7. S1.IUATJQN.DE REFERENCE POUR UI4 PROBB'E DE FECANIQUE DES SOLIDES 

Les l i a i s o n s  que nous avons imposees B l a  plaque son t  parfai-  

t e s  : l ' e f f o r t  de l i a i s o n  d6f in i  par  f  e t  par  c  d6veloppe un t r a v a i l  v i r -  

t u e l  nu1 dans un deplacement v i r t u e l  compatible avec l e s  l i a i s o n s ;  autre-  

ment d i t  c e t  e f f o r t  de l i a i s o n  appar t ien t  2 VO. On Ijeut remplacer 0 par 19 

quotient F = @/VO e t  11616ment m6canique % par  11616ment quot ient  

avec une d e f i n i t i o n  6vidente de <<.,.>>. C1est l a  mgme d6marche qu'au pa- 

ragraphe 3. Notons A l a  r e s t r i c t i o n  & V de l lopErateur  D. Si $ d6signe 
t 

l ' a p p l i c a t i o n  canonique de @ sur  F : A = $ o  D ~ ,  e t  l 'on retrouve un 

sch6ma analogue 2  c e l u i  du paragraphe 5 : 

I A 
e0 + A ( V ) C  E <.,.> 

T A t  
S 2 ker  ( A  ) = (A(V) l o  

t On a  A S = F parce que V ne con t ien t  aucun deplacement s o l i d i f i ~  

an t .  On posera I '  = A(V) t J = ker  (A ).  
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~ u ~ ~ o s d n s  donn6 un e f f o r t  f  d F, e t  connue une so lu t ion  p a r t i -  

c u l i s r e  so de 1'6quation d f 6 q u i l i b r e  

a l o r s  on peut s e  con ten te r  d f 6 t u d i e r  11616ment m6canique : 

l o )  2 l a  l i a i s o n  p a r f a i t e  e  = e0 + I t ,  l ' e f f o r t  de l i a i s o n  as- 

soc i6  &ant un 616ment quelconque T de J. 

3O) 2 une l o i  c o n s t i t u t i v e  C 

On a a l o r s  b r6soudre l e  syst&ne 

e  € e0 + I '  (6quation de l i a i s o n )  

s e s O + J  (Cquation d V 6 q u i l i b r e )  

s E C(e) ( l o i  c o n s t i t u t i v e )  

Par a i l l e u r s  on peut  considgrer V come un espace de paramgtra- 

ge de 1' e t  F come une repr6sentat ion du quot ien t  S/J. Autrement d i t  

11616ment (v ,  <<. , .>>, F) apparaTt come kl6ment m6canique quotient  de 

lf616merit ( E ,  <.,.>, s ) .  



B. Nayro les  

PROBLEI'IES D'EQUILIBRE POUR DES LOIS CONSTITUTIVES 

DE TYPE SOUS-DIFFERENTIEL 

E 1, HYPOTHESES GEYERALES - EXBI'LES 

S o i t  ( U ,  <<.,.>>, 8 )  un 616ment m6canique. On d i t  qu'une l o i  

B'effor t  

2st sous-d i f fgren t ie l l e ,  s ' i l  e x i s t e  m e  appl ica t ion  f de U dans E=[-m,+-) 
t e l l e  que 

Nous supposerons toujours  que f e s t  un glkment de r ( U )  ; autre- 

merit d i t ,  pour l e s  topologies  localement convexes compatibles avec l a  dua- 

l i t 6  e n t r e  U e t  8  : 

- f e s t  l ' enwloppe  sup6rieure de s e s  minorantes a f f i n e s  continues 

gu, ce qui e s t  kquivalent :  

- f ne prend pas l a  valeur  --, e t  f e s t  convexe e t  semi-continue in- 

fgrieurement ( c f r .  J.J. MOREAU, (l), e t  son expos6 sur  l e s  fonct ions con- 

vexes B c e t t e  kcole d '8t6) .  

On a a l o r s  1'6quivalence des quatre l ignes  suivantes  regroupkes 

b n s  m e  mzme accolade : 
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* 03 f ddsigne l a  fonction conjuguse de f.(2.3) exprime que (u,  - l p )  e s t  un 

couple de points  conjugu6s par rapport au couple de fonctions conjugu6es 

(ou d u d e s )  ( f  ,f*). 

Celles-ci s a t i s fon t  11in6gali t6 suivante, 2 l a  base des th6orb- 

mes d'extremum classiques : 

d'o3 rEsulte d 'a i l leurs  1'6quivalence de (2.3) e t  (2.4). 

Venons-en maintenant 2 quelques exemples usuels . 
1.1 Effort  lpO donne i V u  6 U : ~ ( u )  = !$'I 

* f = <<.,- lpO>> f = $  
I-lpOl 

03 $ dgsigne, comme d'habitude l a  fonction indica t r ice  d'un ensemble B : 
B 

1.2 Liaison uni la t6ra le  convexe pa r f a i t e  - On se donne un con- 

vexe ferm6 r de U (information cin6matique), dans lequel  on impose $ l a  

configuration u de. r e s t e r .  La ggn6ralisation na ture l le  de l ia i son  unila- 

t 6 r a l e  sans frottement e s t  a lo r s  donn6e l a  l o i  d 'e f for t  sous-diff6- 

r e n t i e l l e  suivante ( c f r .  J.J. MOREAU (2 ) )  : 

qui exprime que l ' e f f o r t  e s t  nu1 s i  u e s t  in tgr ieur  3 C ,  dir ig6 suivant 

une normale rentrante s i  u e s t  sur  l a  frontizre.  

Comme cas pa r t i cu l i e r s  : 

c = u O + V  a l o r s  Jl*c = << uO,.>> + JI . e t  ~ ( u )  : voII# 
v 
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1.3 Lois de type r i g i d e  p las t ique  - C'est  l e  cas  dual du pr6- 

ckdent; s o i t  r un convexe ferm6 de l 'espace 8 .  On prend. :  

Selon que U e s t  un espace de configurat ion ou de v i t e s s e s  on ob t ien t  l a  

p l a s t i c i t k  de HENCKY ou de PRANDTL-REUSS. Dans l e  second cas  $* e s t  l a  r 
fonction "puissance de d i ss ipa t ion  plast ique",  e t  dans l e  premier 1' Wenet- 

g i e  dissip8e1'. 

1.4 Lois d i f f k r e n t i e l l e s  - f  e s t  une fonct ion faiblement diff6-  

ren t iab le .  Alors  : 

C'est  en p a r t i c u l i e r  l e  c a s  de 1 ' 6 l a s t i c i t C  oil l 'on suppose prk- 

cis6men-t l ' ex i s tence  de l a  fonction "knergie p o t e n t i e l l e  f" t e l l e  que 

$ = - grad f  

La p lupar t  des " l o i s  de r6sis tancet '  sont a u s s i  de type sous-dif- 

f k r e n t i e l  ( c f r .  J.J. MOREAU (3)) .  

1.5 Lois cons t i tu t ives  - Revenons 2 c e t t e  notion de l o i  const i -  

t u t i v e ;  on considbre 1'klEment mscanique (E,  <.,.>, S)  oii E e s t  l 'espace 

des d6formations, S c e l u i  des cnn t ra in tes ,  <e,-s> l e  t r a v a i l  v i r t u e l .  Une 

lei c o n s t i t u t i v e  de type sous-diffkrent iel  s ' k c r i r a  d ~ n c  sous l a  forme 

* 
oil f  e t  f  sont  conjugukes par  rapport  L l a  forme b i l i n 6 a i r e  <. , .>. 

La r e l a t i o n  e n t r e  l a  forme globale  (4 )  de l a  l o i  e t  s a  forme lo- 

c a l e  se ra  dtudike p l u s  l o i n  au paragraphe 3. 
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A l a  f i n  du chapitr.e I nous avons vu que l a  s i t u a t i o n  de r6f6- 

rence 6 t a i t  l a  suivante : 1'616ment m6canique (E, <. , .>, S) e s t  soumis 

l o )  2 l a  l i a i s o n  p a r f a i t e  d16quation e 6 eO+I,  2 l aque l le  k s t  
associ6 l a  con t ra in te  inconnue de l i a i s o n  - T O  J = 1'. 

2') 2 une c o n t r a i n t e  donn6e -so. 

3') 2 une l o i  c o n s t i t u t i v e  que nous supposons i c i  de l a  forme 4 , 

On cherche 2 6 q u i l i b r e r  ces  t r o i s  l o i s  de con t ra in tes ,  d V a i l l e u r $  

t o u t e s  de type sous-d i f fgren t ie l  s i  I e s t  ferm6 pour l e s  topologies  cornpar 

t i b l e s  avec l a  dua l i t6 ,  c e  que nous supposerons. 

Notons ,f 1 e t  t2 l e s  fonct ionnel les  : 

( e , s )  E x S r f ( e , s )  = f (e+eO)  + f*(s+sO)-  re+eo,s+so) 

( 5 )  e ( E -+ 8 ( e )  = f  (e+eO) - <e+eO, so> 

s s -+ t 2 ( s )  = f*(s+so) - <eO,s> 

1 e s t  d i t e  " inerg ie  de d6f ormat ion", -I2 "Energie compl6men- 

taird'. Le probldme d 'gqui l ib re  s ' 6 c r i t  : 

Problsme I : Trouver (E ,T) € I x J t e l  que (c ,T) = 0 t 
h i s  f e s t  p o s i t i v e  d'aprSs($ Par cons6quent e l l e  e s t  minimum 

si  ( E  , T I  e s t  solut ion.  D'autre p a r t  l a  r e s t r i c t i o n  de 2 I x J e s t  l a  k 
s o m e  des r e s t r i c t i o n s  de f 1  I e t  de f 2  2 J ,  puisque < F , T >  = 0 .  

Par s u i t e  tou te  solut ion du problsme I e s t  so lu t ion  du 
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Probldme I1 - Minimiser l a  r e s t r i c t i o n  de I I x J d 
e t  ce probldme e s t  Bquivalent I l a  reunion des d e n  probldmes p a r t i e l s  

suivants  : 

Problsme I11 - Minimiser l a  r e s t r i c t i o n  de. f l  1 I ( i . e .  min. .Il + $I) 

P r o b l k  I V  - Minimiser l a  r e s t r i c t i o n  de f 2  I J ( i . e .  min. f 2  + $JJ) 

Nous a l l o n s  6 tud ie r  116quivalence Bventuelle de ces d ivers  pro- 

b l d ~ s .  ~ o t o n s  que f 1 e t  f 2 appa?tiennent.respectivement I T ~ ( E )  e t  I 
r (S) . Plus  encore : 

Proposi t ion 1 - f 1 e t  f 2 sont un couple de fonct ions con jugdes .  

En e f f e t ,  en u t i l i s a n t  l e s  rdg les  de c a l c u l  c lass iques  : 

Si nous consid6rons maintenant f + $,, que minimise 1; p r o b l k  

me 111, s a  fonct ion duale e s t ,  par dgf in i t ion  

e t  l1on  s a i t  que c e t t e  "r-convolution" e s t  l a  r-rBgularis&e de l ' inf-con- 

volution ( c f r .  J.J. MOREAU (1) ch. 9 )  

Nous a l l o n s  reven i r  s u r  l e s  cas  classiques d16ga l i t6  e n t r e  l a  r 
e t  l l inf-convolut ion;  supposons qu 'e l l e  a i t  l i e u ;  a l o r s  : 

Proposi t ion 2 - Les t r o i s  a s s e r t i o n s  suivantes  sont  Bquivdentes  
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En e f f e t  on a 

inf  ( & i  + % ) ( e l  = inf ( f l ( e )  + $,(-el) = ( f l  v o,)(O) 

eEE ecE 

e t  d ' au t re  par t  

DfoC en u t i l i s a n t  a u s s i  l e s  r g s u l t a t s  analogues s u r  f 2  + OJ : 

ce qui dkmontre La proposi t ion.  

C f e s t  un r k s u l t a t  trss puissant  qui permet de considgrer comme 

pratiquement i n u t i l e  t o u t  r k s u l t a t  d fex is tence ,  pu isqu ' i l  affirme l ' e x i s -  

tence,  beaucoup plus in tgressan te ,  de "solut ions arbi t rairement  appro- 

ch&s" c f e s t  ?i d i r e  de couples ( c  ,T) rendant arbi t rairement  p e t i t e .  ? 
Rappelons maintenant, dans une msme proposi t ion,  deux cas  

c lass iques  d f k g a l i t 6  de l f inf-convolut ion e t  de l a  r-convolution (c f r .  

J.J. MOWAU (I) ch. 9 ) .  

* * 
Pmposition 3 - Soient ( f , f  ), (g,g ) d e w  couples de fonct ions duales. 

l o )  S i  l fensemble cont. ( f )  des points  03 f e s t  f i n i e  

e t  continue e t  lfensemble dom. (g)  des points  oii g e s t  f i -  

n i e  s a t i s f o n t  

dom. ( g )  + cont. ($1 + E 

2O) S 1 i l  e x i s t e  un point  a de E 05 f e s t  f i n i e  e t  con- 

t inue  e t  oii g e s t  f i n i e ,  a l o r s  

f* v g* = f* n g 
* 
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e t  c e t t e  inf-convolution e s t  exacte c 'est  d i re  que l ' i n f l  

e s t  un min. : 

On peut 6videmment inverser l e s  r s l e s  jou6s par E e t  S, f e t  f*f 

g e t  g*. Le second cas fournit ,  outre l t 6 g a l i t 6  cherchge, un r E s d t a t  

dl existence suppl6mentaire. Appliquons c e t t e  proposition sux couples "de 

fonctions duales ( / 1, f 2  1, ($,, $ ,). Supposons par exemple que l a  cm- 

d i t ion  1') s o i t  sa i s f a i t e ;  a lo r s  

0 edom .+ cont 1 L 
puisqu'en g6n6ral cont. ($I) e s t  vide (sinon I = E). Alors : 

I 

3 TCI T 6 cont. ( 

de sor te  que nous sommes aussi  dans l e  second cas. Pour l ' appl ica t ion  de Pa 

3 l a  recherche des cas de va l id i t 6  des hypothsses de la pro- 

posi t ion 2, il s u f f i t  donc de sVint6resser  au second cas. 

S i  celui-ci  a l i e u  nous avons : 

de sor te  que, outre l e  r6sul ta t  dtEquivalence fourni par l a  propositian 2 

nous avons ce lu i  de l 'existence d'au moins.sne solu~ry?'@oui- le prob-ZV. 
En regroupant l e s  r6sul ta t s  qui pr6cSdent : 

Th6orBrne 1 - S ' i l  ex is te  un point d e d  oil f(eo+.)  e s t  f i n i e  e t  continue 
* 

. '(resp. un point de J 06 f (so+.) e s t  f i n i e  e t  continue), 

a lo r s  : . 
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e t  en p a r t i c u l i e r  l e s  probldmes I e t  I1 sont bquivalents. 

De p lus  l e  probldme I V  ( resp.  111) admet au  moins une so- 

lu t ion .  

~ ' u n i c i t 6  des so lu t ions  se ra  assurbe dds que seront  s t r i c tement  

convexes l e a  fonc t ionne l les  tl e t  p2. 
Les probldmes I11 e t  I V ,  e t  l e  thbordme d'bquivalence I corres-  

pondent aux "principes var ia t ionne ls"  l e s  p lus  fr6quemment rencbntrbs. On 

voit q u * i l s  dbrivent  t o u s  de l a  msme s t r u c t u r e  mathbmatique. 

S 3, FO~IATION DES PROJlEPES DE POINT-SELLE 

Nous avons d i t  que l e s  probldmes I11 e t  I V  6 t a i e n t  duaux l ' u n  

de l ' a u t r e  : c e l a  s i g n i f i e  q u ' i l s  sont l e s  probldmes d'extremum assoc ibs  

2 un probldme de po in t - se l le .  Rappelons rapidement de .quai il s ' a g i t  : 

Soient (E,  <. ,.>, S ) ,  ( X ,  (.I.), Y) deux couples d'espaces vec- 

t o r i e l s  en d u a l i t 6  e t  L un Lagrangien : 

fonct ion s e l l e  du couple ( e , y ) ,  c ' e s t  L d i r e  

f e t ~  L(e, . )  e s t  concave 

~ Y E Y  L ( . , ~ )  e s t  convexe 

On considdre l e  probldme suiv&t : 

Probldme P.S. Trouver ( e l , y l ) ,  point-sel le  de L, c ' e s t  d i r e  so lu t ion  p e  

I l a  double inbquation 

On a V ( e , y )  t E x y : ~ ( e , y )  6 sup ~ ( e , z )  

zey 

d'oa y & Y i n f  L ( ~ , Y )  6 i n f  sup ~ ( e , z )  

e S  &ztY 



(9) sup i n f  ~ ( e , y )  6 i n f  sup ~ ( e , y )  
ybY e @  e@ Y ~ Y  

Supposons maintenant q u ' i l  e x i s t e  un poin t - se l le ;  a l o r s  

in f  sup L ( ~ , Y )  Cmax L(e,,y) = ~ ( e ,  ,y,) = b i n  L(e,y, ) ,g sup i n f  ~ ( e , y )  
etE ~ C Y  Y ~ Y  eeE Y ~ Y  eeE 

de s o r t e  que, p a r  conparaison avec [ 9 ) ,  on ob t ien t  

(lo ) L(e, ,Y, 1 = min sup L(e,y) = nAx i n f  ~ ( e , y )  
e@ yey Y t Y  eeE 

Thkordme - S i  l e  probldme de po in t - se l le  admet ( e l  , y l )  pour so lu t ion  a lor9  

on a  l f 6 g a l i t 6  (10) e t  e l  e t  y l  sont respectivement s o h -  

t i o n s  des probldmes P (pr imal)  e t  D (dual) suivants  : 

Probldme P : Trouver e l  6 E t e l  que 

sup ~ ( e ~ , y )  = min sup L(e,y)  

YbY e@ Y t Y  

Problsme D : Trouver y 1 6 Y t e l  que 

inf  L(e ,y l )  = max i n f  ~ ( e , y )  I YB yey WE 

Ut i l i sons  maintenant l e s  t ransformations de Fenchel p a r t i e l l e s  : 
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Par s u i t e  l e  probldme primal consis te  b minimiser O(e,0) e t  l e  

problbme dual b maximiser - x(0.y). On d h o n t r e  ais6ment l a  : 

Proposi t ion 4 - S i  L appar t ien t  b r (E x Y) l e s  fonct ions O e t  x sont con. 
0 

jugu6es pour l a  dua l i t6  : 

(E x X , . + . , S x Y) 

e t  l e s  so lu t ions  du problsme de po in t - se l le  sont  c e l l e s  de 

l 'dquat ion de conjugaison : 

Rewnons maintenant aux problsmes var ia t ionne ls  6tudi6s pr6cg- 

demment, e t  prenons 

Le probldme I11 e s t  de minimiser O1(e,O) : c ' e s t  donc l e  pro- ' 

bldme primal  associ6 au probldme de point-sel le  pour l e  lagrangien 

(13) ~ i ( e , y )  = $ I ( e )  - j 2 ( y )  + <e,y> 

La duale de 01 e s t  

e t  come J e s t  un espace v e c t o r i e l  

de s o r t e  que l e  problbme dua l  e s t  l e  problkme I V .  Par a i l l e u r s  l e  probld- 

me de po in t - se l le  pour L e s t  6quivalent b c e l u i  de r6soudre l 'dquat ion 

de conjugaison 
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On peut choisir  aussi ,  pour l e  probldme 111, l k  "fonction de 

perturbation" 

d'o3 l e  lagrangien L2 e t  l a  fonction duale ~2 

ce qui conduit encore au probldme I V  comme probldme dual, mais un pro- 

bldme de point-selle diff6rent mais l u i  aussi  6quivalent au  probldme I. 

D'oii l e  

ThkorSme I1 - Le probldme I es t  6quivalent & chacun des deux ~robldmes de 

point-selle : 

Trouver (e l  ,s l  ) solution de 

(e , s )  E x  S ~ l ( e l , s )  6 Ll (e l , s l )  6 Li(e ,s i )  

Trouver ( e l  , s l )  solution de 

1 03 Ll e t  L2 s a t  d6f'inis aux l ignes (13) e t  (14). 

Le probldme de point-selle associ6 B L1 pr6sente l'avantage 

d ' t t r e  en pratique sans contrainte puisqu ' i l  peut s t r e  rem'lac6 par l e  

problkme de point-selle pour l e  Lagrangien : 
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La fonc .~ ionne l le  de REISSNER 

Dans ce qui pr6cSde nous avons suppos6 connue une so lu t ion  

p a r t i c u l i s r e  so de 1'6quation d16quil ibre  

oii $ e s t  donnee dans F ( c f r .  chap. I ,  $7). En prat ique il n ' e s t  pas 

tou jours  commode de t rouver  une t e l l e  so lu t ion  p a r t i c u l i d r e .  On peut  

rem6dier 2 c e t  inconvgnient en considerant t o u t  d'abord l e  probldme 

primal  111' suivant ,  gvidemment dquivalent au probldme I11 : 

Problsme 111' - Minimiser sur  V l a  fonct ionnel le  

On remarque : 

j v 1 ( v )  = ~ ( A Y  + e O )  - d A V , Y >  

de s o r t e  que, so 6 tan t  en Equil ibre  avec @ 

e t  so nlappara?t plus .  Introduisons l a  fonct ion de perturbat ion : 

Elle conduit au  Lagrangien 

e t  3 l a  fonct ion duale 

X(p , s )  = +g(s )  - <e",s> + $ (0) (P  f F )  
I + - A ~ ~  I 

( v l ,  s l )  e s t  un point  s e l l e  de L s i  e t  seulement s i  
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c ' e s t  b d i r e  

c ' e s t  b d i r e  que (Avl, s l - so)  e s t  so lu t ion  du probldme I. Le probldme 

de point  s e l l e  pour L e s t  done gquivalent au  probldme I. On note q u ' i l  

donne directement l e s  quant i t6s  l e s  p lus  in tgressan tes  2 savoi r  l e  

champ des con t ra in tes  e t  c e l u i  des dgplacements. L e s t  l a  "fonction- 

n e l l e  de REISNNER". 
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Ei 4, INTEGRANDES CONM(ES ET LOIS CaJSTllUTIMS 

S o i t  fl un domaine de R ~ ;  E e t  S sont  des espaces de champs me- 
n surables  d 6 f i n i s  sur  f l ,  Q valeurs  dans R , e t  sont mis en d u s l i t k  p a r  

qulon suppose dgf in ie  s u r  E x S. efM).s(M) dksigne l e  produit  s c a l a i r e  
n 

dans R 

NOUS consid6rons l e  c a s  oii l a  l o i  c o n s t i t u t i v e r e s t  donnke loca- 

lement par  une l o i  sous-d i f fdren t ie l l e  : en t o u t  po in t  M de fl on s e  donne 

un couple de fonctions duales f(M,.) e t  g ( ~ , . )  t e l l e s  que l a  l o i  const i -  

t u t i v e  s e  d6f in i sse  par  

On d 6 f i n i t  a l o r s ,  formellement pour l l i n s t a n t ,  l e s  fonctionnel- 

l e s  

c e  qu i  pose l e  problsme de mesurabi l i tg  pour l e s  intggrandes. Supposons 

que F e t  G ex is ten t  : e l l e s  sont a l o r s  convexes. Par  in tkgra t ion  terme B 

terme (15) entrarne 

Inversement (16) entraene que (15) e s t  v6r i f i6e  presque par tou t  

s u r  fl puisque 
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D l 0 5  l a  

proposition 5 - S i  pour t o u t  couple ( e , s )  & E x S l e s  fonct ions 

M -t f ( M , ~ ( M ) )  M -+ g(M, s(M)) 
S e q P  d u s l r s  
a l o r s  (16) e s t  gquivalente B 

(15 l)  
f(M,e(M)) + g(M,s(M)) - e(M).s(M) = 0 p.p. sur  h 

I1 r e s t e  encore une question en suspens : l e s  fonct ions F e t  G 

sont-el les  duales l ' une  de l ' a u t r e  ? Par in tggra t ion  terme b terme de (17j 

on a : 

e t  en p a r t i c u l i e r ,  par  exemple 

~ ( , e )  9 sup (<  e , s  > - ~ ( s ) )  
s S 

de s o r t e  que F e t  G sont des fonct ions convexes "sur-duales". 

La thgor ie  des intggrandes convexes donne des condit ions suf f i -  

santes  d lex is tence  de F e t  G,  e t  des condit ions s u f f i s a n t e s  pour q u l e l l e s  

soient  duales. Le l e c t e u r  pourra s e  repor te r  b R.T. ROCKAFELLAR ( ( I ) ,  (21, 

(3 ) )  e t  aux expos& de C. CASTAING s u r  c e t t e  question. Contentons-nous 

ici de c i t e r  deux r E s u l t a t s  dlusage courant en Mgcanique, e t  t i r d s  de (I). 

proposi t ion 6 - (Existence de F e t  de G )  Les ronct ionnel les  F e t  G sont 

bien dgf in ies  dzs que l ' une  des fonct ions f ou g posszde 

l e s  t r o i s  propri6tgs  suivantes  : 

2O) d M.b O {a . ~ ~ / f ( M , a )  < +m) e s t  d V i n t 6 r i e u r  non 
vide 

30) v a  R" M + f (M,a) e s t  mesurable 



B. N a y r o l e s  

D6fini t ion - Soit  X un espace de champs mesurables ddf in i s  sur  $2. On d i t  

que X e s t  ddcomposable s ' i l  possbde l e s  deuxpropr i6 tds  

suivantes  : 

1') X con t ien t  t o u t e s  l e s  fonct ions mesurables bornkes 

n u l l e s  hors  d'une p a r t i e  de mesure f i n i e  de $2. 

2') Quels  que soient  x C X e t  A une p a r t i e  de mesure 

f i n i e  de $2, p a r t i e  dont on note  xA l a  fonct ion carac t6r i s -  

t ique ,  l e  champ , x  xA appar t ien t  1 X. 

Thdorbme I11 - (Dualitd de F e t  de G) : S i  E e t  S sont dkcomposables, s i  

f e t  g s a t i s f o n t  l e s  hypotheses de l a  proposi t ion 6 ,  e t  

s l i l  e x i s t e  a u  moins un couple ( e , s )  Q E x S t e l  que 

F ( e )  < +m ~ ( s )  < +m 

I a l o r s  F e t  G sont  d u d e s .  

15 5. UN WLE D'ELASTICITE NON LINAIRE CtTF'ORTANT POUR CAS LIMITES LE 
COrPORTENT RIGIE-PLASTIQUE ET LE M4TERIAU A BLOCAGE 

Appliquons l e s  r d s u l t a t s  prdcddents & un exemple type, d ' a i l l e u a s  

largement prdsentd par  J.J. MOREAU dans (3), ou par  B. NAYROLES dans (1) 

e t  (2). 

On considbre une l o i  c o n s t i t u t i v e  du type dtudi6 a u  paragraphe 

prdcddent, l e s  fonct ions f e t  g Mant  cependant un peu p a r t i c u l i e r e s .  

Tout d'abord on d d f i n i t  en t o u t  point  M de $2 une s o r t e  d'inten- 

s i t 6  de deformation & l ' a i d e  d'une jauge 

fonct ion convexe, positivement homogsne de degr6 1, e t  que nous supposons 

de p l u s  f i n i e  e t  pos i t ive ,  n u l l e  & l ' o r i g i n e  seulement. Autrement d i t  l e  

convexe dont j(M,.) e s t  l a  jauge, a savoir  

A(M) = Ia 6 Rn / j(M,a) ,< 1 )  
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e s t  born6 e t  son i n t k r i e u r  con t ien t  0. ~ a ~ ~ e i o n s  que, inversement : 

Une f o i s  d6f in ie  l t i n t e n s i t 6  de d6formation on pose que l a  den- 

s i t 6  d"'6nergi~ Blastique" e s t  l a  fonct ion 

p e s t  une constante ,  pour l ' i n s t a n t  p (r )I, +w( ce qui corres- 

pond 5 un comportement 6 las t ique  au  sens propre du terme. 

5.1 Calcul de g(~,.) 

Le c a l c u l  de l a  fonction duale de f(M, .) (qu i  e s t  continue puis- 

que f i n i e  par tou t  sur  Rn) e s t  c lass ique ;  on peut se  r e p o r t e r  2 J.J. MOREAU 

((11,  ch. 14,  e t  ( 3 ) )  e t  2 R.T. ROCKAFELM (4 ) .  On considsre lfensemble 

po la i re  de A(M) : 

dont l a  jauge k(M, .) e s t  d i t e  jauge conjugu6e de j ( M , . ) .  B(M) e s t  l u i  aus. 

s i  born6 e t  posssde 0 comme point  i n t 6 r i e u r .  On va montrer t o u t  d'abord 

que 

k(l.l,b) = sup a'b a.b 

O r  l a  fonct ion 

b -+ sup a.b 
a.b>O 

j (M,a)=l 

e s t  positivernent homogsne e t  s t r i c tement  p o s i t i v e  hors de l ' o r i g i n e .  I1 

s i ~ f f i t  donc d ' s t a b l i r  que : 
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sup a.b 4 1 <-> k ( ~ , b )  c 1 
a.b>O 
j (M,a)=l 

Ceci  Mant  acquis  calculons 

vaut 0 s i  b = 0. S i  b n ' e s t  pas nu1 a l o r s  on a : 

1 
sup (a*b - - ( j  (M,a)jP) = sup sup ( X a '  .b - xP) 
a f 0  P j (M,al ) = l  X > O  P 

= sup (a ' .blq ' ( k ( ~ , b ) ) ~  > o 
j ( m , a t f ~ = l  = ia 

e t  par  s u i t e  on a ,  pour t o u t  b : 

!20) g(M,b) = 9 ( k ( ~ , b ) ) ~  

- 
1 -1. I e t  A( . I  cons t i tuen t  l'exemple l e  p lus  classique de P 9 

"duales de Young". 

5.2 In t6gra t ion  - S i  pdur t o u t  a t Rn l a  fonct ion f ( . , a )  e s t  

msurab le  l e s  hypothsses de l a  proposi t ion 6 sont  6videment  s a t i s f a i t e s  

p i q u e  dom f ( ~ , . )  = Rn. Les fonct ionnel les  F e t  G sont  donc dgf in ies  s u r  

n'importe quels espaces E e t  S de champs mesurables. 
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D'autre p a r t  ~ ( 0 )  = 0 = ~ ( 0 )  

de sor te  que F e t  G . sont  sommables pour t o u t  couple d'espaces d6composa- 

b l e s  E e t  S. Cependant un choix optimal des espaces E e t  S peut E t re  en- 

visag6 : 

proposi t ion 7 - Soient E' e t  S' l e s  ensembles de champs mesurables d6fi- 

n i s  par  

e  a? E <=> ~ ( e )  < +m s € S <=> ~ ( s )  < +m 

I E' e t  S' sont des cbnes convexes e t  

La convexit6 de F e t  de G e t  l e u r  quasi-homogEn6it6 e n t r a h e n t  

que E' e t  S t  sont des clones convexes, e t  d ' au t re  par t  

achsve l a  dgmonstration. 

S i  l ' on  peut E t a b l i r  que <e , s>  ne prend pas l a  valeur  -m s u r  

E ' x  S' l e  choix optimal e s t  donc : 

D'a i l l eurs ,  dans l a  p lupar t  des cas usuels  E' e t  S' seront  des 

espaces v e c t o r i e l s ,  pa r  exemple lorsque,  pour t o u t  M, j(M,.) e s t  une nor.. 

me s u r  R" ( i . e .  A(EI )  e s t  6qu i l ib r6) .  

Le cas l e  plus  simple e s t  c e l u i  02 il e x i s t e  deux constantes  

s t r ic tement  a e t  B t e l l e s  que 

auquel cas  l e  choix optimal'pr6c6dent donne 

E = E '  = ( ~ ~ ( $ 2 ) ) ~  s = s f  = ( ~ ~ ( n ) ) "  
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espaces qui ont l e  mkrite dl^etre bien connus ..., e t  surtout d jd t re  des 

Banach r6f lexi fs  ce qui assure l 'existence des solut ions pour l e s  pro- 

bldmes pr6c6dents lorsque I e t  J sont fermks. 

Dans l e  cas des-plaques, par exemple, n = 3. Lfop6rateur de d6- 

formation e s t  D = grad grad, ce qui conduit B prendre pour U un sous-es- 

pace du Sobolev H ~ ' ~ ( Q ) ,  e t  pour espace des charges son dual topologique. 

S i ,  par exemple l a  plaque e s t  encastr6e sur son contour on prendra 

e t  l e s  problbmes poses pr6cddemment admettront-me solution unique pour 

toute  charge $ 6  ~ ' ? ' ~ ( f l ) ,  e t  seulement pour des charges appartenant 2 

cet  espace. 

5.3 Cas l imi tes  (p=l ,  p= +-) 

Les consid6rations de l'alinka$sont maintenant fo r t  classiques, 

e t  l e s  r6 su l t a t s  d'existence e t  d'unicit6 sont f ac i l e s  B obtenir lorsque 

p e )I, +-( e t  lorsqu'on dispose des inggal?t6s [21). Sans ces dernisres 

on peyt encore esp6rer construire des espaces fonctiannels adgquats, e t  

obtenir  l'inf-compacit6 f a i b l e  des fonctionnelles f l  e t  LZ, "nc ~ ' e r i d  

tence des solutions pour l e s  probldmes posks : ce sera surtout une a f f a i rd  

de technique math6matique. 

~ o u s  a l lons  plut^ot nous occuper du cas ( p  = l , q  = +), qei .est,  

%sun 6change prds des r^oles jou6s par E e t  S, l e  mdme que celui  (p  = +-, 
q = 1 ) .  Le premier repr6sente un comportement rigide-plastique, l e  second 

rn comportement m i l a t 6 r a l  du type "mat6riau 2 blocage". 

Nous al lons f i xe r  l e  choix des applicat ions 

e t  supposer que (21) a l i e u ,  pour simplif ier .  Enfin, pour p t )I, + -( 
nous preeons come pr6c6dement 

1 f (M,a) = - (j ( ~ , a )  jP 
P P 
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Nous avons dvidemment 

l i m  f (M,a) = j(M,a) 
1 

e t  d'autre pa r t  l a  h a l e  de j ( W , .  ) e s t  l a  fonction indica t r ice  du convexe 

B(M) : 

O r  prdcisdment on wit imddiatement que, pour tout  b de R' 

Pour p= l  on trouve donc l e  comportement r ig ide  plast ique come 

l imi te  du ,comportement dlastique. 

S i  pour tout  a Q  RP l a  fonction j ( .  ,a)  e s t  mesurable a lo r s  l e s  

fonctionnelles 

sont ddfinies pour tout  champ mesurable e ou s ,  en vertu de l a  proposition 

6. 
D'autre par t  l a  double inkgal i t6  (21) entrarne 1'6quivalence 

pour tout  champ mesurable e. Comme de p lus  j(M,.) e s t  l a  fonctinn d'appui 

de B(M) l e s  inggalit6.s (21) s 'dcrivent auss i  bien 

ori % ( O , r )  ddsigne l a  b o d e  de centre 0 e t  de rayon r dans Rn. Par su i t e  

on a l e s  dquivalences : 

G ( S )  < +m <- p9. S W ~ L  &rRI#) u G C s )  = O  
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e t  l e s  implicat ions 

C'est a d i r e  que l'ensemble convexe des champs mesurables 

n 
3st contenu dans (Lm(n)) , e t  l1on  a ,  dans c e t  espace 

&(O,o) G C c q(0.B) 

Ceci conduit done au choix optimum 

qui ne sont pas r g f l e x i f s ,  comme il e s t  bien connu. 

On s a i t  ( c f r .  NAYROLES (I), DWAUT e t  LIONS (1) )  que l e s  probls- 
m 

nes variat ionnels  admettent des  so lu t ions  en cont ra in te  dans ( L  ( R ) )  mais 

que l e s  so lu t ions  En 186formation ne sont  assurges que dans l 'espace bien 

ma1 connu ( ~ " ( n ) l )  . 
Ceci n l e s t  pas g6nant ca r  on peut ob ten i r  avec l e  s e u l  choix de 

(23) suffisamment de renseignements pour que l ' e x i s t e n c e  des solut ions de- 

vienne pratiquement sans i n t 6 r t t  m6canique. C'est  c e  que nous a l l o n s  v o i r  

paintenant .  

Tout d'abord E e t  S sont d6composables, F ( 0 )  = 0 = ~ ( 0 1 ,  de sgr- 

t e  que F e t  G sont duales. D'autre p a r t  F e s t  continue* sur  E = ( L ~  (0 ) )  . 

puisque f i n i e  par tou t  e t  major6e par sur  l a  boule de cen t re  0 e t  de 

payon 1. n n 
S i  done on se  donne e 0  (L1(n)) e t  so C (L-(Q)) l e  problsme 

Z peut ne pas admettre de s o l u t i o n  dans l e  produit  de ces  espaces mais, 

d faprSs  l e  t:ikor?me 1 nous avons : 

C 
pour  l a  topologie de la norne, i c i  conpatilile avec l a  : lual i t6  
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c 'est  2 d i r e  que l e  probldme I admet des solut ions arbitrairement appro- 

ch&es, ou que l e  

poblsme 11 : Trouwr ( e , s ) t  I J 

admet des solut ions pour tout  E strictement pos i t i f .  

Compte-tenu de l l imposs ib i l i t& qu ' i l  y a ,  d'une pa r t  de calculer  

l a  solution exacte, d'autre par t  de f a i r e  aucune mesure de prgcision inf i -  

nie,  ce r e su l t a t  remplace avantageusement tout  thgorsrne dlexistence pour 1~ 

probl?me 1, puisqu' i l  apporte, en plus,  une pr6somption d1access ib i l i t6  

numsrique des solut ions approch&es . 
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~ C A N I W S  l3,LES LOIS D'DFORT SWS-DIFFE'ENTIEUS 

nous avons ddj2 parl6,  t r k s  bribvement, d'une op6ration sur l e s  

l o i s  d l e f fo r t ,  l 'addit ion,  e t  d'une op6ration sur un kl6ment mgcanique, 

qui e s t  l e  passage au quotient. Noucs al lons maintenant d6finir  l e s  op6ra- 

t i ons  dlusage courant e t  s ignaler  dans que1l.e~ circonstances e l l e s  inter-  

viennent. CV6ta i t  l ' ob j e t  d'une note ancienne (13. NAYROLES (3)) ; i c i  nous 

nous occuperons plus particulikrement dps l o i s  sous-diffgrentielles; ce 

sera  l e  second aspect de ce  chapitre. 

Les op6rations que nous effectuerons sur des l o i s  sous-diff6- 

r eac i e l l e s  donneront, sous des hypothbses assez g6n6ralement vsrif iges,  

des l o i s  sous-diffgrentielles. Dans l e  cas contraire une rdgularisation 

de ces 026rations permettra, en LZehors de toute hy-pothbse, d'obtenir l e  

meme r6sul ta t .  Cette rggda r i sa t ion ,  qui consti tue un changement de l a  

rnathematique u t i l i s6e  habituellement en M6canique des Solides, es t -e l le  

jus t i f i6e  sur l e  plan de l a  Physique ? Ce sera l e  premier aspect de ce 

chapitre. En bref l a  r6gularisat ion en question se  pr6sente 8 deux occa- 

sions : 

1') Soient (V, <. , .> , W) un Q6ment mGcanique, f une fonctiol; 
* 

convexe sur V, 3 valeurs dans )-m, +-) , f sa polaire.  On considkre l a  

lei d'effort d6finie par 1'6quation 

Peut-on l a  remplacer, sans dommage pour l a  Physique, par 1'6- 

quation 
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2') Soient -w 6 af l  (v )  

deux l o i s  d 'e f for t  sur 11616ment mgcanique pr6c6dent. ~eu t -on  remplacer 

leur  some 

par [4) -w 6 a(f l  + f 2 ) ( v )  

sans dommwe pour l a  Physique lorsqu'aucun c r i t s r e  connu d1addit ivi t6 d e ~  

sous-diffdrentiels n 'est  s a t i s f a i t  ? 

Jem'efforcerai  de convaincre l e  lec teur  que l a  rkponse peut 

Etre posi t ive.  Dans un cas come dans l ' au t re  ce t t e  "rdgular'isation" con- 

duft 2 un "affaiblissement" du probldme posk ini t ialement,  en ce, sens que 

toute solut ion de (1) ou de ( 3 )  e s t  respectivement solut ion de (2)  ou de 

(4). On considdre g6n6ralement qu'un t e l  affaiblissement dlun probldme 

e s t  j u s t i f i 6  s ' i l  f a c i l i t e  l a  recherche des solutions e t  s i  l 'on dispose, 

a-posteriori ,  de thdorsmes permettant d'affirmer que l e s  solut ions fa ib les  

a in s i  trouvdes sont aussi  des solut ions for tes .  C'est en gEn6ral l e  but 

des th6ordmes de rkgulari tk des solutions. 

Ce n ' e s t  pas ce genre de j u s t i f i ca t i on  que jlespdre apporter 

@ i s  plutBt l a  suivante : l 'kquation (1) n la  pas plus de s igni f ica t ion  

physique que 1'6quation (2), e t  de &me (3) n 'es t  pas fondamentalement 

plus j u s t i f i de  que (4) ,,,En sor te  que l a  subs t i tu t ibn  de (2) 2 (1) e t  de 

(3) (4) n'apparait pas comme un changement du probldme m6canique. La se- 

conde ju s t i f i ca t i on  e s t  dlordre prat ique puisque ce t te  subs t i tu t ion  permet 

de construire une algdbre des l o i s  sous-diffgrentielles, inddpendante des 

ponditions d16quiualence s t r i c t e  des dquations (1) e t  (2) e t  (3) e t  (4); 
k t  que l a  thdorie devient singulisrement plus simple. 

5 1, LOIS MlHEM4TIQLIEFENT OU PHYSIQUEFENT EQUIVALENTES 

1.1 Inadkquation de l a  math6matique u t i l i ske  en Mdcanique clas- 

.siaue - Le processus de mise en oeuvze d l w  theorie e s t  en 



n k r a l  l e  suivant  : un modble mathkmatique ayant k t6  c o n s t r u i t  l e  physi- 

c ien  en demande l e s  donnkes b lPexp6rience;  pu is  il pose un c e r t a i n  nom- 

bre  de problkmes dont l e s  so lu t ions  seront  fournies  par  un t r a v a i l  m a t h b  

=t ique comprenant classiquement deux p a r t i e s ;  une de mathkmatique pure 

qui  e s t  la recherche de thkorbmes s u r  l ' ex i s tence  e t  d l a u t r e s  proprikt6s  

des 6ventuel les  so lu t ions ;  une a u t r e  d'analyse numkrique e t  qui fourn i t  

des r 6 s u l t a t s  approch6s. Enfin ces  r 6 s d t a t s  sont confrontks & 11exp6rien- 

ce. 

O r  dans ce processus l ' impr6cis ion i n t e r v i e n t  in6vit'ablement i3 

l a  f o i s  dans l e s  mesures expkrimentales e t  d m s  l e  c a l c u l  num6rique, tan- 

d i s  que l e  t r a v a i l  de mathkmatique pure en e s t  exempt. Le r 6 s u l t a t  en e s t  

que la math6matique d'une t h k o r i e  physique donne, l e  p l u s  souvent, une 

descr ip t ion  beaucoup t r o p  f i n e  des ph6nomSnes par  rapport  & ce que l 'ex-  

p6rience e t  l e  c a l c u l  peuvent a t t e i n d r e .  Par exemple l a  notion de "champ 

de dkplacements" d6f in i  en chaque po in t  n'a qu'une s i g n i f i c a t i o n  physique 

i n d i r e c t e ;  aucune mesure ne peut  donner l a  valeur  du champ en un poin t  mais 

f o u r n i t  une valeur  qui  peut 6 t r e  in te rprk tke ,  par  exemple, come une valeur  

moyenne ou comme une borne supkrieure du champ s u r  un domaine w dont l a  

p e t i t e s s e  dkpend de l a  f i n e s s e  du capteur. In t rodui re  un champ de dkpla- 

cement continu s i g n i f i e  seulement que si l ' on  augmente indkfiniment l a  

p rkc i s ion  de l a  mesure l a  s u i t e  des r k s u l t a t s  exp6rimentaux converge vers  

une c e r t a i n e  valeur qui e s t  c e l l e  du champ de dkplacements en un point  

prkcis .  Cela s i g n i f i e  a u s s i  que l e  c a l c u l  numkrique de c e t t e  valeur  peut 

s t r e  e n t r e p r i s  sans qu'une p e t i t e  e r r e u r  sur  l a  p o s i t i o n  du point  en t ra fne  

une e r r e u r  importante sur  l a  valeur  c a l c d d e .  Mais l a  con t inu i tk  joue un 

r81e e s s e n t i e l  en ce q u ' e l l e  permet 2 l a  valeur l o c a l e  d ' t t r e  l a  l i m i t e  

dlune va leur  moyenne, ou d'une borne supkrieure, c ' e s t  & d i r e  l a  l i m i t e  

d'un r k s u l t a t  de mesure quand l a  prgcis ion c r o f t  indkfiniment. A 11invers6 

si lion se  donne l 'kquat ion de l i a i s o n  sur  l a  f r o n t i b r e  

l a  question de savoir  s i  l a  p a r t i e  a,n de f r o n t i b r e  concernke e s t  fermke 

ou non e s t  sans s i g n i f i c a t i o n  physique car  aucune mesure n i  aucun c a l c u l  

n t a  l a  prCcision i n f i n i e  qui permettrait .  de d i s t inguer  310 de ses  po in t s  
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adherents : l a  description mathkmatique e s t  i c i  t r o p  f ine.  

En r.Bsum6 l a  mathgmatique employee en Mkcanique classique des 

milieux continus fournit  un schema dlune pr6cision in f in i e  a l o r s  que l'ex- 

p6rience ou llapproche numgrique, s i  f i ne s  soient-el les,  n'ont qu'un "pou- 

voir  s6parateurt1 l i m i t & ,  de sor te  que certaines d is t inc t ions  l eu r  Echap- 

peront t ouj ours. J ' emploie ce terme de "pouvoir s6parateurW par analogie 

avec ce lu i  dlun instrument d'optique. 

Certaines d i f f i cu l t6 s  de l a  thgorie,  je  pense tout  part iculidre-  

ment aux probldmes de t races ,  sont l i 6 e s  1 ce t t e  t rop  grande f inesse du- 

sch6ma math6matique e t  devraient d i s p a r c t r e  si l a  math6matique u t i l i s 6 e  

stsit plus adapt6e B l a  Physique des probldmes; ce sont des  "d i f f icu l t6s  

parasi test t .  

I1 n l e s t  pas f a c i l e  (la M6canique s t a t i s t i que  e_n donne peut s t r e  

un exemple . . .) de cr6er une math6matique qui  tienne compte de l1impr6ci- 

sion expsrimentale e t  num6rique puisque cec i  demanderait de connaetre une 

f o i s  pour toutes  de quelle nature seront  ces impr6cisions. J e  n l a i  pas l a  

pr6tention de l e  f a i r e  i c i  e t  mon but e s sen t i e l  e s t  d ' a t t i r e r  l l a t t e n t i o n  

du lec teur  sur  l a  n6cessitd de rechercher dans ce t t e  direct ion e t  de con- 

sid6rer  11impr6cision, e t  dlune fason gQ6rale l e  d6faut dtinformation, 

cornme un aspect e s sen t i e l  de toute la Physique, aspect totalement ignor6 

par l a  M6canique classique. J e  me contenterai  donc de deux suggestions 

$ui sont seulement propos6es B l 'assentiment du lec teur ,  en attendant dle^- 

t r e  remplac6es par quelque chose de plus 6labor6 e t  de mieux fonds. 

1.2 Principe d1adh6rence 

NOUS a l lons  supposer que l a  l imi ta t ion  duljpouvoir s6parateurW 

de 11exp6rience ou du ca lcul  numkrique peut S t re  t radui te  en termes topo- 

logiques. Come, de toute fason, il s 'ag i t  de confronterr les r6sultat.s 

num6riques e t  l e s  r6 su l t a t s  exp6rimentaux, c 'es t ,  s l i l s  son* comparables, 

l e  pouvoir s6parateur l e  plus fa ib le  qui d6f in i t  lfimpr6cision. Notre hy- 

pothsse, f o r t  c r i t iquable ,  e s t  l a  suivante : 

pypothsse : I1 ex i s t e ,  pour 1'616ment m6canique (v, <.,.>, W )  un couple 

I ({,, 6 de topologies compatibles avee l a  dua l i t s ,  p 0 s s 6 ~  
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dant l a  p ropr i6 t6  suivante : 

que l le  que s o i t  l a  mesure effectude (de pr6cis ion f i -  

n i e  a r b i t r a i r e )  il e x i s t e  un voisinage V x W de l l o r i g i n e  

t e l  que deux couples (v l  ,wl) e t  (v2,wp) s a t i s f a i s a n t  

ne peuvent s t r e  dis t ingu6s par c e t t e  mesure. 

Par raccourci nous d i rons  que { I{w e s t  p lus  f i n e  que l e  pouvoir s6- 

p a r a t a r  de 11exp6rience. 

Dans l a  formulation de c e t  6nonc6 nous n'avons par16 que du 

pouvoir s6parateur de 11exp6rience, pas de c e l u i  du c a l c u l  numgrique, e t  

pour deux rafsons : l a  premiSre e s t  que 116nonc6 e s t  d6jh suffisamment 

lourd e t  q u l i l  ne s e r v i r a i t  L r i e n  de l e  compliquer par l e s  consid6rat ions 

analogues 6videntes s u r  11impr6cision num6rique. Ensui te  l e  "pouiroir s6- 

parateurn du c a l c u l  e s t  l e  p lus  souvent sup6rieur h c e l u i  de llexp&ience; 

L1hypoth&e e s t  essent iel lement  d i scu tab le  s u r  ce point  q u e s  v 
e t  6w sont compatibles avec l a  d u a l i t 6  . . . Le r e s t e  e s t  beaucoup p lus  

na ture l .  

Une consgquence de c e t t e  hypothzse e s t  l a  suivante : 

Pr inc ipe  d1adh6rence - D e n  l o i s  d l e f f o r t s  sont  "physiquement Equivalen- 

t e s "  s i  l e u r s  graphes ont  mSme adhdrence pour l a  topologie 

produit  lv l( w. 

En e f f e t ,  dlaprSs llhypoth&e prgcsdente, aucune expdrience ne 

pourra mettre ces  dsux l o i s  en contradict ion.  

Consid6rons par  exemple l a  r e l a t i o n  de l i a i s o n  pour une plaque 

simplement appuy6e s u r  une p a r t i e  a l n  de l a  f r o n t i s r e  : 

e t  c'hoisissons V = H~ ( a )  pour espace des d6placements, W = He- pour e s p w e  n 
desr e f f o r t s .  La r e l a t i o n  de l i a i s o n  d 6 f i n i t  dans v un sous-espace vecto- 

r i e l  V1 e t  l a  l o i  d ' e f f o r t  e s t  $V,  ( v )  + qVP ( -W)  + <v,w> = 0 
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Sans nous pr6occuper de savoi r  S i  a l Q  e s t  une p a r t i e  ferm6e de 

an (ce qui. e s t  e s s e n t i e l  dans l a  th6or ie  c l a s s i q u e ) ,  nous pourrons 6cri-  

r e  que c e t t e  l o i  d ' e f f o r t  e s t  physiquement kquivalente B 

On Bvite a i n s i  l e s  d i f f i c u l t 6 s  l i 6 e s  b l a  con t inu i t6  de 110p6rateur  t r a c e ,  

On peut a u s s i  Bviter  c e l l e s  qui  sont  l i 6 e s  b son exis tence en posant 

vl = { v  ec"(E) / v = o sur  a ln )  

e t  en prenant 11adh6rence V1 O0 de < dans q q u i  peut raisonnablement af-  

firmer que c e t t e  fapon de proc6der s o i t  moins physique que l a  r i s e  en 

6quation c lass ique  ? 

1.3 Solut ions approchees 

~s seconde de mes suggestions e s t  de n'accorder b l ' ex i s tence  

d'une so lu t ion  thEorique aucune s i g n i f i c a t i o n  physique dss  q u ' e l l e  ne peut 

t t r e  exactement calcul6e. A quelques exceptions p rss ,  pa r  exemple si  l ' i n -  

connue e s t  un nombre e n t i e r ,  on ne s a i t  ca lcu le r  que des so lu t ions  appro- 

ch6es. Ce qu i  s e r a  confront6 ?i l fexpBrience 6tant  une so lu t ion  approch6e 

il e s t  beaucoup moins important d 1 6 t a b l i r  l ' ex i s tence  d'une so lu t ion  

"exacte" que de repondre aux quest ions suivantes  : 

l o )  Peut-on donner une ddf i n i t i o n  math6matlque, physiquement 

acceptable ,  des  so lu t ions  approchkes ? 

2 O )  Celles-ci ayant 6 t6  d6f in ies  peut-on montrer l ' ex i s tence  de 

so lu t ions  a rb i t ra i re l lgn t  approchBes e t  cons t ru i re  un algorithme p e m t -  

t a n t  l e u r  c a l c u l  ? 

Le choix de l a  r6ponse au l o )  comporte une responsab i l i t6  phy- 

sique consid6rable;  une rkponse p o s i t i v e  2 l a  seconde cons t i tue  l e  s e u l  

th6orbme d 'exis tence in t6ressan t  pour l a  th6or ie  physique, meme s i  l a  tech- 

nique math6matique permet quelquefois de l ' o b t e n i r  par  l f i n t e r m 6 d i a i r e  

d'un thgorsme d'existence de so lu t ions  exactes .  Pr6cis6ment l 'habi tude est, 

de dgf in i r  une so lu t ion  approch6e come un point  d'un voisinage,  pour une 
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c e r t a i n e  topologie,  dlune so lu t ion  exacte. Pour f i x e r  l e s  idkes c o n s i d b  

rons 116quation 

03 t e s t  une fonct ion e valeurn dans R e t  d6f in ie  s u r  un espace v e c t o r i e l  

barn6 X. Supposons, pour s i m p l i f i e r  encore, que c e t t e  &quation a b t t e  l l u -  

nique so lu t ion  x . On peut d k f i n i r  d'au moins d e w  fasons d i f f6ren tes  une 

s o l u t i o n  x.approch6e 1 t .  p r b ,  5 d6signant un r 6 e l  s t r i c tement  p o s i t i f  * 

ou p a r  (7) 

e t  c e s  d e w  d6finition.s d-eM l e s ~ r n ~ r n e s ~ s u ~ t e ~  de i$. g. &k. si, par exemple: 

ce qui  e s t  un cas  t r i v i a l .  Mais s i  # e s t  sevlement continue a l o r s  

t a n d i s  que nous avons l ' impl ica t ion  inverse s i  l a  seconde des i n k g a l i t 6 s  

(8) a lieu.,  k s  d 6 f i n i t i o n s  (6) e t  (7) ne sont pas  Cquivalentes e t  c r e s t  

au physicien de d i r e  quel sens  il f a u t  donner 5 l lapproximation des solu- 

t i o n s .  

S o i t  d'une fason g6n6rale une p a r t i e  A de X : il e x i s t e  une in- 

f i n i t 6  d16quations dont A e s t  l 'ensemble des so lu t ions ,  e t  qui sont  donc 

&h6patiquement kquivalentes ; si l a  r6solut ion ne peut  st r e  qu1approch6e 

il importe que l e  physicien a i t  d6f in i  l a  na ture  de c e t t e  approximation 

pour que l e  problsme physique proposd s o i t  correctement pos6. C1est exac- 

tement l e  c o n t r a i r e  qui se  p rodui t  habituellement puisque l e s  mathgumti- 

c iens  s ' a t t aquent  aux "Bquations de l a  Physique", sans que l e s  c r i t k r e s  

f1aPpr.oximation l e s  acconpagnent; a l o r s  i l s  ne peuvent t r a v a i l l e r  que s u r  

l e ~  s o l u t i c n s  exactes dans une premikre ktape; que proposer, dans une se- 

conde gtzpe,  des s u i t e s  de so lu t ions  approch6es en un sens que l e  physi- 

2ien pourra  ou non accepter.  
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S i  au cont ra i re  on se donne a u  depart  tou te  6quation'avec son 

c r i t s r e  d'approximation l e  t r a v a i l  propos6 au  math6maticien e s t  totalement, 

diff6rent .  En p a r t i c u l i e r  l a  notion d18quivalence de deux gquations, p lus  

gQ6ralement c e l l e  d'kquation cons6quence d'une a u t r e  peut S t r e  remplac6e 

par une not ion d1kquivalence physique, ou de cons6quence physique qui de- 

vra S t r e  exprim6e math6matiquement. C 'est  ce  qui va s t r e  f a i t  maintenant; 

l a  construct ion que j e  propose n'est-vraisemblablement pas l a  meilleure et  

sa  mise au point  l a i s s e  beaucoup b d i s i r e r .  Mais c e t t e  kcole'd'6td cons- 

t i t u a i t  une trss b e l l e  occasion d16voquer c e t t e  question, b mon a v i s  es- 

s e n t i e l l e  pour un progrSs r 6 e l  de l a  M6canique; j e  n ' a i  donc pas s u  rks i s -  

ter 2 I f e n v i e  de prksenter ,  mEme prkmatur6ment, mes quelques iddes s u r  l e  

s u j e t .  

1.4 Equivalence approximative 

On considsre un espace v e c t o r i e l  topologique X (on no te ra  6 s a  

t p o l o g i e )  e t  l 'ensemble x des 6quations (ou systsmes d'kquations) dont 

l'inconnue e s t  un point  de X. Soient E l  e t  E2 d e n  616ments de x e t  A1 e t  

A2 l e u r s  ensembles r e s p e c t i f s  de so lu t ions .  On d 6 f i n i t  habituellement s u r  

,y l a  r e l a t i o n  de pr6ordre p a r t i e l  

d6f 
El  + E2 C-> Al c A2 

qui sf6nonce ou bien "E2 e s t  cons6quence de E l f '  ou bien "E2 e s t  p lus  f a i -  

b l e  que ElV'. Lorsque 

on d i t  que l e s  Gquations E l  e t  Eg sont Equivalentes; e t  cetEe r e l a t i o n .  

d'gquivalence e s t  systgmatiquement employ6e l o r s q u ' i l  s ' a g i t  d '6tudier  l eg  

so lu t ions  "exactes" c ' e s t  b d i r e  l e s  ensembles A1 e t  A 2 .  

Lorsque l ' i n t 6 r G t  s e  por te  non s u r  l e s  so lu t ions  exactes  mais 

sw l e s  s u i t e s  de so lu t ions  approchges ces  r e l a t i o n s  de prkordre e t  d16qui- 

valence deviennent sans i n t g r c t .  

3n va maintenant considgrer l'ensemble x des gquations s u r  X 

qui sont donn6es avec l a  dgf in i t ion  de l e u r s  "su i tes  de so lu t ions  a rb i -  

trairement appmchkx", q w l l a u s  & x k c m +  rn &&g& s.s.a.b.. ~nu r  h- 
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p l i f i e r  l 'exposb on identifiers deux blgments de ; possbdant l e s  m&es 

5.s.a.b. ( c f r  ~emarque .1) .  Une ?remiSre idge e s t  de d b f i n i r  E come p lus  

f a i b l e  que E s i  toute  s.5.a.b. de E e s t  5.s.a.b. de E . En f a i t  nous 

Clargirons c e t t e  dbf in i t ion  en u t i l i s a n t  l a  topologie de X avec, come 

motivation, l l u t i l i s a t i o n  d'une topologie plus  f i n e  que l e  pouvoir sCpa- 

r a t e u r  de 11exp6rience. 

Dbfini t ion 1 - Soient g1 e t  c2; nous d i r o ~ l s  que e s t  "approxirnativement 

p lus  f o r t e  que EZ1', e t  nous noterons 

E l  ++ E2 

s i  pour t o u t  voisinage v d e  l ' o r i g i n e  dans X e t  2 tou te  
I 

s.s.a.b. (x i1)  de E l  il e x i s t e  au moins une 5.s.a.b. (x i2)  - 
de E2 s a t i s f a i s a n t  

On d i t  que El e s t  "approximativement 6quivalente" 

E2 e t  on no te  El  +I+ E2 si 
- dbf - 

El +p E2 <- ( E ~ +  E2 e t  E2 -I+ E l )  

." 
Proposi t ion 1 - La r e l a t i o n  + e s t  une r e l a t i o n  de prgordre p a r t i e l  s u r  X. 

En e f f e t  ++ e s t  t r a n s i t i v e  puisque, pour t o u t  (Vi l  e x i s t e  

\II e t  vo is inage l  de l l o r i g i n e ,  t e l s  que If; +'tr,cx 
a l o r s  

e t  d l a u t r e  p a r t  l a  r e l a t i o n  t, e s t  r6 f lex ive  

!f i e ?  E + + E  

Remarque 1 - La d e f i n i t i o n  de donn6e prkc6demment e s t  plus  i n t u i t i v e  qye 

mathsmatique; on peut l a  p r6c i se r  en consid6rant ? espace des s u i t e s  dl ;b  

l6ments de X : a l o r s  peut s 1  i d e n t i f i e r  2 l lensemble Q des p a r t i e s  $ de 
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XN. Ainsi l? peut S t r e  d6f in ie  par l'ensemble $ de ses  s.s.a.b..  

Sur I!espace vec tor ie l  9 on'peut  c h o i s i r  l a  topologie T pour leg-  

quels l e s  voisinages de l ' o r i g i n e  sont l e s  ensembles de l a  forme ItN oi lV 

e s t  un s - v o i s i n a g e  de l ' o r i g i n e  s u r  X ,  c ' e s t  B d i r e  

f N =  { ( x i l a  P / V i  

Alors  l a  def in i t ion  1 6quivaut 5 

N 
02 T2 e s t  l 'adherence de $2 dans X pour l a  topologie T.  La r e l a t i o n  d'"6- 

,pivalence approximative" correspondante e s t  a l o r s  

c ' e s t  B d i r e  que nous retrouvons, aprss  un long dgtour, l e  p r inc ipe  d'a- 

dh6renc e . 
Remarque 2 - On a u r a i t  pu compliquer l a  d6f in i t ion  1 en considgrant non - 
p a s  u n e  topologie d ' e s p a c e  v e c t o r i e l  s u r  X, m a i s  une  s t r u c t u r e  u n i f o r m e  

lquelconque e t  e n  p a r t i c u l i e r  l a  topologie d i sc re te ;  en p r e n a n t  p o u r  s. S. a .  a .  

d e  t o u t e  equat ion l e s  s u i t e s  d e  po in t s  qui  en son t  solut ion on  a u r a f t  a l o r s  la 

r e l a t i o n  d ' o r d r e  u s u e l l e  c o m m e  c a s  p a r t i c u l i e r  d e  l a  r e l a t i o n  d ' o r d r e  ' l ap-  

proximative". C'est  peut S t r e  une s a t i s f a c t i o n  pour l ' e s p r i t . .  . 
On considsre encore des "syst?mes d'8quations" dont l e s  so lu t ions  

g a t ,  pa r  dgf in i t ion ,  solut ions de chacune des 6quations. On va cons t ru i re  - 
l a  notion correspondante pour l e s  glgments de E : 

.. .., - 
Defini t ion 2 - Soient  El e t  E2 appartenant 5 X, $1 e t  $2 l e u r s  ensembles ... .. 

de s.s.a.b. respec t i f s .  On appe l le ra  systsme El I E2 1'6lkment 

de X dont l'ensemble des s.s.a.b. e s t  ?l 2. I - 
Cette  operat ion depend malheureusement de l a  topologie cho is ie  

sur  X, mais, a i n s i  dgf in ie ,  e l l e  permet d 'ob ten i r  l a  proposi t ion 2. En ef- 

f e t  : 



B. Nayroles 

Proposi t ion 2 - La relation + @st compatible avec l a  l o i  L, 
1 Autrement B i t  

1.5 Su i tes  converg;entes e t  quasi-solutions 

11 e s t  u t i l e  de consid6rer  l e s  s u i t e s  convergentes; par a i l l e u r 9  

l a  not ion d 1 m i c i t 6  de so lu t ion ,  fondamentale dans l a  math6matique employde 

usuellement, d o i t  Gtre remplac6e par  m e  notion de convergence des s.s.a.t . ,  

que nous Qtudierons plus  l o i n .  En outre  l ' in t roduc t ion  de l a  notion de 

"quasi-solution" permettra d ' u t i l i s e r  l e s  o u t i l s  mathgmatiques t r a d i t i o n -  

ne l s .  

D6fini t ion 3 - Nous dirons que % e s t  d6finie  num6riquement s ' i l  e x i s t e  

une appl ica t ion  de X dans (0, +m) t e l l e  que l e s  s.s.a.b; a 
de E soient  par  d6f in i t ion  l e s  s u i t e s  ( x . )  t e l l e s  que I - 

Proposi t ion 3 

I 

Ce s e r a  l e  c a s  pour l e s  l o i s  d ' e f f o r t  sous-d i f fgren t ie l l es .  

- S o i t  6 m e  topologie d'espace v e c t o r i e l  mgtrisable sur  X ;  

on considsre d6f in ie  numgriquement par  , e t  E '  approxi- - k 
mativement p lus  f o r t e  que E. Alors ?i t o u t e  s u i t e  ( resp.  de 

cauchy) ( x P i )  s.s.a.b. de E' correspond au moins m e  s u i t e  

(resp.  de Cauchy) ( x i )  s.s.a.b. de 2 e t  t e l l e  que 

I l i m  (x .  - x'  . ) = 0 
i+- 

Consid6ron.s en e f f e t  m e  base de voisinageo de 0 avec 
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k  Pour tout k il ex i s t e  une s.s.6eb. (yi ) de t e l l e  que 

f i k  
yi - x t i  e (Vk 

.., 
e t  connne E e s t  dbf in ie 'ndr iquement  il ex i s t e  une application de N dans JN 

t e l l e  gue 

Considkrons a lo r s  l 'applicat ion N. de IN dansJN dSfinie par 

(lo) j E  N +  N(j) = max Ik 6 N  / ~ ( k )  4 j )  

I e t  N ont l e s  propriktks suivantes, inrmkdiates 

69 . I e s t  croissante 

De 1 C  on dkduit que 

de sor te  que N(j) tend vers l ' i n f i n i  avec j. 

On considsre' a lo r s  l a  su i t e  

En vertu de ( 9 )  e t  (12 ) on a : 

- 
e t  comme ~ ( j )  tend vers l ' i n f i n i  avec j (x . )  e s t  une s.s.a.b. de E. I ~ J  

~ ' a u t r e - p a r t  on a 
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e t  come ~ ( j )  tend vers  l ' i n f i n i  avec j ,  l i m  ( x j  - x' j )  = 0 ,  ce qui dE- 
,i+- 

dkmontre l a  proposi t ion pour ( X I .  ) s.s.a.b. de 5 .  
S i  de p lus  (x '  i )  e s t  une s u i t e  de Cauchy il e s t  imm6diat de mon-. 

t r e r  que l a  s u i t e  (xi)  a i n s i  cons t ru i te  en e s t  une au t re .  En e f f e t  s o i ' t r  
- 

un voisinage a r b i t r a i r e  de l ' o r i g i n e  : il e x i s t e  t r o i s  voisinages de l ' o -  

r i g i n e ,  'I& , %, V3 t e l s  que 

e t  p a r  hypothkse, ou d'aprks ce qui prkckde 

La not ion de quasi-solution va nous permettre ,  dans nombre de 
ct 

cas  usuels ,  de ramener 1 '6tude des s.s.a#. convergentes 2 c e l l e  des solu- 

t i o n s ,  au  sens usuel,  d'une kquation. 

Dkfini t ion 4 - S o i t  E num6riquement d6f in ie  par  . On appel le  quasi-solu- 

t i o n  de 6 t o u t  xb X t e l  que : 
k 

v$, voisinage de o dr > o J x 6 x +V fix) 6 E 

Le rapport  e n t r e  l e s  quasi-solutions de ?i e t  s e s  s.s.a.b. 

convergentes e s t  p rkc i s6  par  l e s  t r o i s  proposi t ions suivantes ,  de dkmons- 

{ t ra t ion  i m 6 d i a t e  : 

propos i t ion  4 - Soi t  (xi)  une s.s.8.b. de 6 convergeant vers  : x e s t  

I quasi-solution de 2. 
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Proposition 5 - Si Xest m6trisable toute quasi-solution est li- 

1. mite d'une s.s.a.~. 

Proposition 6 - Si &est m6trisable et si est continue, les trois as- b. I sertions suivantes sont Bquivalentes 

- . x est solution de t(*) = 0 - - . x est quasi-solution de E 

- . x est limite dlune suite de s.s.a.b. de 

Essayons d'imaginer ce qui @ut tenir lieu, dans la mathkmati- 

que "approximative" que nous proposons, des habituels thkorsmes d'exis- * 
tence et d'unicitk. On peut rechercher, pour E, des rksultats du type sui- 

vant : 

Existence - Selon les besoins on recherchera un rgsultat plus ou moins 
fort : 

. 11 existe une s.s.a.b., c'est 1 dire que l'ensemble @ associk 

5 E n'est pas vide 

. I1 existe une s.s.a.b. de Cauchy, ce qui revient B l'existenca 
d'une quasi-solution si X est un Banach. 

UnicitE - l'une des '8.s.a.b. est une suite de Cauchy, et quelles que 

soient deux 8.s.a.b. (xi) et (xVi) lim (xi - xli) = 0 

11 faut faire une remarque B ce sujet : soit &et &' ' deux to- 
pologies dle.v.t. sur X, & ktant 1 base d8nombrable et plus fine que $ ', 
elle &me plus fine que le pouvoir s6parateur de l'expBrience. On pourra 

souvent transformer des systsmes d16quations en utilisant 1'kquivalence 

approximative pour $ ' et obtenir une Bquation 

lat les s.s.a.b. seront dgfinies par 

Si l'on ne s1int6resse alors qu'aux s.s .a.b. convergentes pour 

8 , si l e s t  continue w u r  i, il suffit, d'aprf s la .proposition 6 de 
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jw* 
considkrer l e s  so lu t ions  de v .  Les knoncks propos6s pour t e n i r  l i e u  de 

th6orsmes d'existence e t  d 'un ic i tk  se  ramsnent a l o r s  2 ceux-ci. 

§ 2, APPKlXIM9TION ET REGULARISATION DES LQIS SOUS-DIFEENTIELLES 

Soi t  (v, <. ,.> W) un Qldment m6canique s u r  l e q u e l  e s t  donn6e l a  

l o i  d ' e f f o r t  

On pose 

e t  l ' o n  s e  propose de j u s t i f i e r ,  d'un point  de vue physique, l a  d k f i n i t i o q  

des so lu t ions  approch6es 2 E p r s s  de (1) par  

d'o3 s u i t  naturellement l a  dkf in i t ion  des s.s.a.b. p a r  

(14') f i m  i- f(vi,wi) = 0 

Eliminons t o u t  de s u i t e  l e  cas  05 l 'une  des fonct ions e s t  une 

i n d i c a t r i c e  : (14) 6quivaut a l m s  2 . Nous ne pouvons kvidemment pas- (11 
s e r  t o u s  l e s  a u t r e s  cas  en revue e t  nous ktudierons l e  p lus  dk l ica t  : ce- 

'k 
l u i  05 f e t  f sont d 6 f i n i e s  par  des in tggra les .  J e  pense q u ' i l  s u f f i t  

d ' a i l l e u r s  d 'ktudier  l e  c a s  de 1 ' 6 l a s t i c i t 6  l i n k a i r e ,  t o u t  3 f a i t  exem- 

p l a i r d ,  pour se  donner un semblant de conviction. C'est donc, en f a i t ,  

1 '6bment  micanique (E, <.,.>, S) des chap i t res  prCc6dents qui e s t  en cau- 

se ,  a i n s i  que l a  thkor ie  des intggrandes convexes. 

Consid6rons t o u t  d'abord 1'61kment mkcanique (g p, . , sp ) de di- 

mension f i n i e  p;  g e s t  l ' e space  euc l id ien  de dimension p mis en d u a l i t 6  
P 

avec lui-mihe par  l e  produit  s c a l a i r e  usuel.  La l o i  de con t ra in te  e s t  

(15) s = k e  

02 k e s t  une appl ica t ion  l i n k a i r e  sy&trique d k f i n i e  pos i t ive  de % sur  
P 
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lui-msme. On conside're a l o r s  l e s  fonct ions duales 

1 f ( e )  = - e . k e  f * ( ~ )  =-L k-l 
2 

S'S 

e t  1 1 i d e n t i t 6  

de s o r t e  que (15) 6quivaut 2 

f ( e )  + f * ( s )  - e.s = o 

b1in6galit  6  

Bquivaut, compte-tenu de (16) e t  m d6signant l a  p lus  p e t i t e  valeur  propre 

c e  qui cons t i tue  une d e f i n i t i o n  physiquement acceptable des so lu t ions  apA 

proch6es E p r z s  de (15). 
on considbre maintenant (E, <.,.>, S) oil E e t  S sont  des  espaceg 

de champs d 6 f i n i s  s u r  un ouvert fl de R", 2 valeurs  dans E On suppose en 
P' 

ou t re  que l a  fonct ion 

p t  l e s  espaces fonct ionnels  E e t  S s a t i s f o n t  l e s  hypothbses de ROCKAFELLCL? 

pn s o r t e  que l e s  fonc t ionne l les  

bxisteni. Alors 1' i d g a l i t 6  
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entraEne que sur  tou te  p a r t i e  w mesurable de n 

c ' e s t  % d i r e  que sur  t o u t  e n s e m b l e 4  de mesure f i n i e  

O r  t o u t e  mesure de deformation ou de cont ra in tes  ne peut s e  f a i -  

r e  que sur  un ensemble non r6dui t  B un point ;  s i  c e t t e  mesure ne peut don- 

ner ,  come c ' e s t  probable, qil'une valeur  moyenne s u r  un domaine U, a l o r s  

b a r  E suffisamment p e t i t ,  e l l e  ne pourra  d i s t inguer  l e s  so lu t ions  61) de' 

c e l l e s  G 4 )  qui  donne donc une d e f i n i t i o n  physiquement acceptable de l 'ap-  

proximation. Par a i l l e u r s  l a  not ion msme de mil ieu contin,y e s t  macroscopi- 

que c ' e s t  & d i r e  que l a  deformation e t  l a  con t ra in te  n'ont de sens que 

sous un symbole d ' i n t i g r a t i o n ,  c ' e s t  & d i r e  par  l e u r  vnleur moyenne. 

Revenons maintenant B lw6qua t ion  @) posee au  debut de c e  para- 

graphe. J 'admettrai ,  jusqu ' l  preuve du c o n t r a i r e ,  que (14) d 6 f i n i t  de fa- 

son physiquement acceptable  s e s  so lu t ions  approch6es 2 E p r s s ,  e t  (14') 

s e s  s u i t e s  de so lu t ions  a rb i t ra i rement  approch6es. Nous pouvons a l o r s  dB- 

montrer l a  

Propos i t ion  7 - On considsre l ' equa t ion  (1) dans l a q u e l l e  f e s t  une fonc- 

t i o n  convexe sur  V ,  f* s a  po la i re .  E l l e  e s t  approximative- 

ment Bquivalente B 

pour l a q u e l l e  l e s  s.s.a.b. sont  d6f in ies  par  

e t  c e c i  pour t o u t e  topologie f v  x $ produit  d ' m e  topolo 

g j e  dv localement conveie e t  compatible avec l a  d u a l i t 6  

sur  V par  une topologie quelconque sur  W. 

Eliminons d'abord l e  cas  t r i v i a l  oa f n'admet pas de minorantes 
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** * 
aff ines  continues : a lo r s  f vaut -m partout ,  f vaut + l ' i n f i n i  partout  

e t  n i  (1) n i  ( 2 1  nladmettent de s .s.a.b. : e l l e s  sont donc approximative- 

rnent Bquivalentes e t  dmes  Bquivalentes au sens usuel. Si t e l  n 'es t  pas ** 
I e c a s  a lo r s  f e s t  aussi  l a  r 6 g u l a r i s b  s.c.i. de f p o u r g v .  Come pour 

t a t  w C  W l a  fonction l in6ai re  <.,w> e s t  continue pour 6 V, f**-;. ,w> e s t  

l a  rdgularisee s.c.i.  de f -<.,w>, c ' es t  d i r e  

(19 ) 
** 

V v  6 v f (VI-  <v,w> = sup in f  ( f ( v ' )  - <vl,w>) 

' 'g v1 €?r7 
oP 6:dsigne un queleonque voisinage de v pour 

Des inBgalit6s 

* 
0 , f**(V) + f*(-w) + <v,w> 5 f ( v )  + f (-w) + <v,w> 

rl. a- 
on d6duit que toute  s.s.a;ld. de (1) e s t  s.s.a.9. de ( 2 )  ; donc 

Inversement s o i t  4un fv voisinage de l l o r ig ine  e t  (v. , w . )  
1 1  

( l9)  

La su i t e  (v l  w . )  a i n s i  construi te  s a t i s f a i t  donc i' 1 . 

V i e  N v t i  t vi + t e t  f ( v V i )  + f*(-wi) .+ < v ~ ~ , w . > C ~  ** (vi)  
1. 

1 + + CV. ,w. > + 7 
1 1  1  

e t  donc', puisque (v.,w.) e s t  s.s.a.b. de 2 
1 1  

* 
l i m  ( f ( v t i )  + f (-wi) + <vti,wi>) = 0 
i- 
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ce qui d6montre la proposit ion 

Notation - Soit  A une l o i  sous -diffErentiel le  (resp. l ' inverse d'une l o i  

I sous-di f f 6rent i e l l e  ) : 

A = -  af  (resp. A- = ag(-.)) 

05 f(resp.  g )  e s t  convexe sur V (resp. W) - On appellera 

l o i  rkgularis6e de A la l o i  

= - af** (resp. i- = ag**(-.)) 

5 3, ADDITION E S  LOIS SOUS-DIRWNTIELLES 

On a dEfini l ' addi t ion  de deux l o i s  d 'e f for t  A1 e t  A2 sur 

(V, .,. , W) Par 

Lorsque A1 e t  A2 sont sous-diffgrentiel les : 

l eu r  some s 'kcr i t  

gquation plus f o r t e  que 

(4) -W 6 a ( f l  + f 2 ) ( v )  

La proposition suivante ( c f r .  J.J. MOREPIU (1) ch. 10)  donne une condition 

suffisante d16quiwlence 

Proposition 8 - Si  f l  e t  f 2  sont convexes e t  s ' i l  ex i s t e  un point 06 l e s  

deux fonctions sont f i n i e s ,  l 'une d 'entre e l l e s  y 6 tant  con- 

t inue  (pour une topologie compatible avec l a  dualit61 a lo r s  

pour tout  v de V 
afl (v )  +' af2(v)  = a(f ,  + f Z  ) ( v )  
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Ce r6su l t a t  t r s s  g6n6ral s'applique 5 de nombreux cas m6cani- 

ques, mais ne couvre pas tous l e s  besoins. Par exemple s i  f l  e t  f2 sont 

d e n  indica t r ices  de sous-espaces vec tor ie ls  de V, disons V1 e t  V2 : 

e t  en g6n6ral l a  somme V1° + V20 n l e s t  pas ferm6e. Oubliant l laspec t  sth6- 

nique des l i a i sons  l e s  mdcaniciens ont toujours t r a i t 6  l a  somme de ces 

deux l i a i sons  pa r f a i t e s  comme l a  l i a i son  pa r f a i t e  : 

par applicat ion du principe du t r a v a i l  v i r tue l .  

Notre but e s t  de montrer qu'on peut toujours remplacer 1'6qua- 

t i on  (3) par  116quation (4). Nous verrons mSme que ce t t e  dernisre e s t  en 

g6n6ral approximativement p lus  fo r t e  que l a  premisre pour un choix natu- 

re1  des s.s.a.b. de (3), a lo r s  qule l le  e s t  plus fa ib le  au sens math6mati- 

que usuel. 

La d i f f i cu l t6  e s t  de d6f ip i r  l e s  s.s.a.b. de (3); en e f f e t  d i re  

que (v,w) e s t  solut ion de (3 )  s ign i f i e  qu ' i l  ex i s t e  un t r i p l e t  (v,w,wl ) sd- 

lu t ion  du systSme (3.1), ou encore qu ' i l  ex i s t e  un quadruplet (v,w,wl,w2) 

solution du systsme (3.2). Ecrivons ces deux systsmes en posant 

b * 
pour k = 1,2 ,(v,w) = fk (v )  + fk  (-w) + <v,w> 

On peu t  d6f in i r  l e s  s.s.a.b. de 116quation w = wl + w2 pour une 

topologie 6 sur W par 
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On peut a lo r s  u t i l i s e r  l a  d6fini t ion 2 des s.s.a.b. d'un systzmd 

pour d6f in i r  ce l l e s  de 1'6quation (3) e t  ceci nous donne a e u  dgfini t ions 

aSpr ior i  diff6rentes 

Deux d6fini t ions des 's.s.a.b. de 3 

c)n dira  que (v. ,w.)  e s t  s.s.a.b. de (3) au sens 1 s ' i l  ex is te  
1 1  

une su i t e  ( w ~ , ~ )  t e l l e  que ( v ~ , w ~ , w ~ , ~ )  so i t  s.s.a.b. de (3.1). 

On dira que (vi,wi) e s t  s.s.a.b. de (3) au  sens 2 s ' i l  ex is te  

une su i t e  ( W ~ , ~ , W ~ , ~ )  t e l l e  que (vi,wi,wl,i,w2,i? s o i t  s.s.a.b. de (3.2). 

On aura i t  Evidemment pu introduire encore d'autres systsmes 6quib 

valents aux pr6c6dents. Nous l imi tant  2 ceux-ci nous 6tablissons l a  propo- 

s i t i o n  suivante, passablement rassurante. 

Proposition g - Les deux d6fini t ions pr6cEdentes sont gquivalentes pourtout 

I couple ( gV, $,I de topologies d'espace vectoriel .  

Soit en e f f e t  ( V ~ , W ~ , W ~ , ~ )  une s.s.a.b. de (3.1). Pour tout  voi- 

sinage a X W de l 'o r ig ine  il exis te  done des su i t e s  ( I. l ) , ( ~ 2 ) ,  
1 

(Vi2), ( Nlsi1 ), (WlSi2), e t  un voisinage 6quil ibre de 0 dans W t e l s  

que : 

Nous a l lons  montrer que l a  su i t e  ( V ~ , W ~ , W ~ , ~ , W ~ , ~ ) ,  03 w2,i e s t  

d6fini  par 

est,s.s.a.b. de (3.2). Posons 
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Alors 

Enfin 

lim (wi - Wl,i - w ~ , ~  ) = lim 0 = 0 

de sorte que (V~,W~,W~,~,W~,~) est s.s.a.b. de (3.2). 

Inversement soit ( Vi w. ,W~,~,W~,~) m e  s.s.a.b. de (3.2). Alors 

quel que soit ? T x  il exist. id, voisinage Lquilibrg de 0 dms X, et 

des suites (vil), (vi2 1, ( w ~ , ~  .'Iy (W .'), (wi3), (w 31, (w. .3) tels que 
2,1 1,l 2,l 

Posons 

Nous avons 
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D1autre pa r t  

En posant donc 

- 
pour i < i wl ,i2 = w l,i 

. . - 
pour 1 3 1 w 2 , ~  2 

l,i 1,i 

On a ,  dlaprbs (23) 

d i  i 1 , i 2 6 w l , i  + +W1 +uf + 'kh cWlsi + w  
e t  d'aprbs l a  seconde l igne  de (21) 

l i m  f, (vil ,wl, il = 0 = l i m  (vi2 ,ill, i2 

1 1  

I 
de so r t e  que (v.,w. ,wlSi) e s t  s.s.a.b. de (3.11, ce q u l i l  f a l l a i t  d6mon- 

t r e r  . 
Proposition 10 - Soient f l  e t  f2 dans ro(V). Alors (4) e s t  approximative- 

ment plus fo r t e  que (3)  pour toute t o p o l o g i e g V  d ' e spce  

vectoriel  sur V e t  pour toute topologie compatible avec 

l a  dualit6. De plus si (vi,w. w 
k, 

. , w ~ , ~ )  s a t i s fk i t  : 
- 
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I a l o r s  (vi,wi) a d h k e n t e  B l lensemble des s.s.a.b. de . 14) 
En e f f e t  l a  proposi t ion 7 nous apprend que, pour l e s  topologies  

de 1' 6nonc 6 (4) e s t  approximativement 6quivalente B 

et, par  d6f i n i t i o n  

I1 s u f f i t  de comparer (25) ?i (3). S o i t  (v. ,w. ) une s.s.a.b. de 
1 1  

(25). En v e r t u  de (26) il e x i s t e  m e  s u i t e  ( W ~ , ~ , W ~ , ~ )  t e l l e  que, pour 

t o u t  i : 

Come kl e t  f 2  sont p o s i t i v e s  on en d6duit que l a  s u i t e  

(vi ,Wi ,Wl, i ,W2, i s a t i s f a i t  Q4); e l l e  e s t  donc a f o r t i o r i  s.s.a.b. de 

(3.2) e t  (v.,wi) e s t  s.s.a.b. de 3 . Par s u i t e  

Montrons maintenant l a  seconde p a r t i e  de l a  proposi t ion.  On a ,  

W W F ) ,  . n b  w e  q,wl,i,w2,i : 
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avec 

Par  s u i t e  s i  (v .  ,w. w 
1 1, 1, isW2,i  ) s a t i s f a i t  (24 ) l a  s u i t e  

(Vi,~l,i+w2,i) e s t  s.s.a.b. de (25); come 

pour tout)(rvoisinage de 0 dansW il e x i s t e  une valeur  io t e l l e  que 

i p i  => w . - w  1 1 , i - ~ 2 , i  r*r  

Prenant a l o r s  

- 
w. = w. pour i < i  
1 1  

- 
w . = w  +W 
1 l,i 2 , i c  wi +W pour i ) i o  

l a  s u i t e  (v. ,w.) a i n s i  obtenue e s t  bien s.s.a.b. de (25). 
1 1  

Ut i l i sons  m i n t e n a n t  l e s  proposi t ions 2 e t  7; il v ien t  l a  : 

Proposi t ion 11 - S i  f l  e t  f 2  sont des fonct ions convexes, ?i valeurs  dans 

)-m, +-), pour t o u t e s  topologies gy,% compatibles avec 

l a  dua l i t6  116quation 

e s t  approximativement plus  f o r t e  que 116quation 

Ceci nous permet de remplacer l a  seconde par  l a  premisre en en- 

courant deux r isques : 

l o )  d'agrandir l'ensemble des so lu t ions ,  ce  qui nous i n d i f f s r e  

dans l a  mesure oii ce l les -c i  ne sont n i  physiquement observahles n i  num6ri- 
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quement ca lcu lab les  . 
2O) de r e s t r e i n d r e  l'ensemble des s.s.a.b. 

Notation - Soient  A1 = - a f l  , A2 = - af2 deux l o i s  sous-dif f i r e n t i e l -  

l e s ;  on appe l le ra  s o m e  rkgular is6e de ces  l o i s  l a  l o i  sous- 

d i  f f 'erent iel le  

On a ,  d'apre's ce  qui pr6cdde , .  

Proposition 1 2  - L1addition r6gular is6e e s t  commutative e t  assoc ia t ive .  

~n e f f e t  e l l e  se  ramdne B l ' a d d i t i o n  des r r6gular iskes de f l ,  

Application au  probldme gdn6ral 

Revenons au probldme g6n6ral pos6 a u  chap i t re  11. Sur l'616ment 

mkcanique (v,<. , . > ,w) on s e  donne t r o i s  l o i s  d ' e f f o r t  sous-diff6ren&lles ,  

A1 , A2, A 3 ,  a savoi r  

l o )  E f f o r t  donn6 w0 : = - a f l  avec f l  = <. ,-w > 

2') Liaison a f f i n e  p a r f a i t e  : A2 = -af2 avec f 2  = $ 
vO+I 

3') Loi c o n s t i t u t i v e  : A3 = - af 3 

On suppose que f 2  e t  f 3  appart iennent  ro(V). Le probldme d'6- 

qu i l ib re  s 1 6 c r i t  : 

6quation approximativement p lus  f a i b l e  

Celle-ci admet tou jours  des 6.s.a.b. ~ u i s q u e  * 
i n f  ( ( f l  + f 2  + f 3 ) ( v ) )  + (fl + f.2 + fg)  (0 )  = 0 
v6v 
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Toute s u i t e  (v. ,w. = 0) t e l l e  que 
1 1  

e s t  s.s.a.b. de 2 P  e t  il l u i  correspond deux s u i t e s  ( w ~ , ~ )  ( w ~ , ~ )  t e l l e s  

que 

pour t o u t e  topologie s u r  W compatible avec l a  dua l i t6 .  

Ceci n 'a joute  r i e n  5 l a  connaissance pra t ique  de l 'dquat ion (20); 
mais nous avons seulement voulu montrer que (2q posssde au tan t  de s i g n i f i -  

c a t i o n  physique que (27') e t  que l e  problsme a i n s i  pos6 e s t  s a t i s f a i s a n t .  

s y. m GAUCHE IE EliX LOIS D'EFFORT 

C'est  110p6ration sym6trique de l ' a d d i t i o n ,  obtenue en inversant  

l e s  r 8 l e s  de V e t  de W. Nous l a  not,erons par  l e  sm.bole de l a  r - c o n v o l u t i o ~ .  



Par d 6 f i n i t  ion 

au second membre l e  signe + dgsigne l ' a d d i t i o n  des mult iappl icat ions.  

Lorsque A1 % a f l  A2 =oaf2 avec f l  e t  f 2  dans ro(V) 

on a l a  r e l a t i o n  

P +I-- -a ( f l  v f 2 )  

c e  qui  j u s t i f i e  l a  notat ion.  

Un premier exemple e s t  l a  l o i  d161as top las t ic i t6 'de  Hencky : 

03 A1 e s t  une l o i  d161as t ic i t6  l i n 6 a i r e  e t  Ap une l o i  du r igide-plast ique 

p a r f a i t .  

Un second exemple e s t  : 

d'emploi courant ,  come on vient  de l e  voir .  

D'une fapon g6n6rale l a  somme de deux l o i s  d ' e f f o r t  correspond 

& c e  que l e s  rh6olog is tes  e t  l e s  6 l e c t r i c i e n s  nomment l e  "montage en paral- 

Idle" ,  t a n d i s  que l a  somme gauche correspond au  "montage en s6rief ' .  

53, QUOTIENT DROIT ET QUOTIENT GAUCHE 

Les deux op6rations de quot ient  sont l e s  plus  in tgressan tes  de 

c e t t e  a lgbbre e t ,b ien  qu 'e l l es  so ien t  d'usage courant depuis l e  d6but de 

l a  M6canique, l e u r  formalisat ion n ' e s t  que t r d s  rgcente ( c f r .  J.J. MOREAU 

( 4 )  e t  NAYROLES (3) 1. E l l e s  correspondent; comme t o u t  passage d'un ensem- 

b l e  b un ensemble quot ien t ,  b une p e r t e  d'information : l e s  informations 

a i n s i  'perdues 6 tan t  jug6es ou bien parfaitement i n u t i l e s ,  ou bien t r o p  

lourdes b prendre en compte. C'est d ' a i l l e u r s  une a t t i t u d e  courante, quoi- 

que souvent inconsciente ,  des physiciens de res t re indre  l ' information sur  



un ~h6nombne 5 un p e t i t  nombre de variables ,  f a u t e  de pouvoir &me savoir  

q e l l e  s e r a i t  l ' information t o t a l e .  

Comen~ons  par d g f i n i r  l e s  deux quotients  : i l s  sont symgtriques 

l l u n  de l ' a u t r e  p a r  6change des r 6 l e s  de V e t  de W. Nous nous contenterons 

done d16tudier ,  dans c e t  a l i n g a ,  quelques propri6t6s  du quotient  d r o i t  

q u l i l  s u f f i r a  de t ransposer  pour ob ten i r  c e l l e s  du quotient  gauche. Dans 

l e  paragraphe suivant  nous en verrons quelques app l ica t ions .  

D6fini t ion 5 - Soient % = (v ,  <. , .>, W) un Blgment, mgcanique, U un sous- 

espace v e c t o r i e l  ferm6 de V (resp..  . . ), a l l a p p l i c a t i o n  

canonique de W s u r  son quotient O = W/UO (resp..  .. ). On ap- 

p e l l e  616ment quot ient  d r o i t  ( resp.  gauche) d e 6  par  U0 

1'616ment mgcanique 

r= (u,  <<.,.>>, 9) 

I oii l a  forme b i l i n s a i r e  <<.,.>> e s t  d6f in ie  par  : 

Les (resp..  .) son t ,  pour abr6ger l e  t e x t e ,  l a i s s 6 s  2 l a  di l igen-  

ce du l e c t e u r .  On note que l a  forme b i l i n 6 a i r e  e s t  bien d6f in ie  puisque, 

u appartenant a U, <u,w> ne ddpend que de u e t  de 4.  
Le quotient  d r o i t  i n t e r v i e n t  s i  l ' on  admet que l e  dgplacement u 

r e s t e  dans e t  s i  l 'on considbre comme gquivalents  deux e f f o r t s  qui d6- 

veloppent l e  &me t r a v a i l  v i r t u e l  dans t o u t  dgplacement v i r t u e l  u e  U. C 'est  

exactement ce qui s e  produit  lorsque 1'616ment mgcanique & e s t  soumis 3 Z 

d e n  l o i s  d ' e f f o r t  

l 'une de l i a i s o n  : (v) + $J~* (-wa) = 0 

l ' a u t r e  (Qventuellement une somme ) w & ~ ( v )  
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Le systbme (21)) e s t  6videmment dquivalent b 

Consid6rons maintenant llimmersion de L) dans V$ c ' e s t  l ' app l i -  

ca t ion  transposke d e a  , par  d 6 f i n i t i o n  de l a  forme b i l i n 6 a i r e  <<.#.>>; 

notons..la done 3 T. Alors [s) kquivaut b 

Dkfini t ion 6 - S o i t  A une l o i  d l e f f o r t  s u r  $. On appel le  l o i  quot ient  de 

I A l a  l o i  & o A o a qui  e s t  une l o i  d l e f f o r t  s u r s .  

h.oposition 1 2  - Le quotient  d r o i t  e s t  d i s t r i b u t i f  par  rapport  2 l1addi-  

t i o n  : I 3 O ( A ~ + A ~ ) O ~ ~ = ~ O A ~ O ~ ~ + ~ O ~ ~ O ~ ~  

La d6monstration ;st immkdiate . Venons-en maintenant 3 1' ktude 

des l o i s  quot ien t s  de l o i s  sous-d i f fkren t ie l l es .  

Proposi t ion 1 3  - Soient f une fonct ion dkf in ie  s u r  V, b va leurs  dans )-my 

+a) ,  e t  & s a  r e s t r i c t i o n  2 u . La p o l a i r e  de ce l le -c i ,  pour 

l a  d u a l i t 6  e n t r e  U e t  vaut 

En e f f e t  nous avons 

J w ~ & - ' ( c )  ;,'(a) = sup (<u,w> - (i + i U ) ( ~ ) )  
wv 
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Proposi t ion 1 4  - Sous l e s  hypothsses de l a  proposi t ion 1 3  l a  l o i  

I e s t  l a  l o i  quot ient  de l a  l o i  sous-d i f fgren t ie l l e  

En p a r t i c u l i e r  si f e s t  convexe, f i n i e  e t  continue en un 

point  de U : 

La notion d16quivalence approximative nous a permis de rempla- 

c e r  dans t o u t  l e s  c a s  af + 3% par  a ( f  + JIU) .  NOUS r6gular iserons done c e  

quot ient  e n  remplasant 3 o - af o 9 par l a  l o i  p lus  f o r t e  - aFU. 

9 6 ,  DEUX UTILISATIONS . - PR4TIWS W WOTIENT D N I T  

5.1 Approximations cinSmatiques 

La m6canique des milieux continus s 1 i n t 6 r e s s e  t o u t  dlabord au 

m i l i e u  t r idimensionnel ;  pu is ,  cornme il e s t  en pra t ique  bien d i f f i c i l e  de 

r6soudre nmgriquement l e s  6quations obtenues, on essaye de t e n i r  compte, 

lorsque l loccas ion  s1en rencontre ,  des f a i b l e s ' v a l e u r s  de ce r ta ines  don- 

n6es pour ob ten i r  une th6or ie  s implif i6e,  par  exemple c e l l e  des plaques. 

Une m6thode u t i l i s 6 e  bien souvent, e t  qui  peut s lapp l iquer  Q 
de trss nombreux cas  math6matiques e s t  l a  suivante. On p a r t  de 116quation 

(ou du systsme) 

ou E e s t  l e  p e t i t  paramstre, p u i s  on f a i t  un d6veloppement l i m i t e  par rap- 

p o r t  $ E : 
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e t  on conside're, selon l a  qua l i t6  de llapproximation d6sir6e,  l e s  6qua- 

t i o n s  

ce qui donne des " thbories  l i n d a r i s b e s  au  premier ordre,  au  second ordre 

etc...". Ce t te  mbthode a 6 t6  p a r t i c u i b r e m e n t  pr6conisd.e p a r  J.M. SOURUU, 

mais e l l e  e s t  d'usage constant ,  e t  vraisemblablement tre's ancien. 

 ennui e s t  que l e s  r b s u l t a t s  th6oriques obtenus s u r  l e  proble'me 

i n i t i a l  peuvent d e w n i r  inappl icab les  aux problsmes l i n 6 a r i s 6 s Y  cer ta ines  

des propri6t6s  de 6 t a n t  perdues au  cours  de l a  l i n g a r i s a t i o n .  f 
La R6sistance des b t b r i a u x  a c e c i  de p a r t i c u l i e r  que l e s  approxi- 

mations u t i l i s 6 e s  conservent l a  s t r u c t u r e  alg6brique examin6e au chap i t re  I. 

Ces approximations peuvent d t r e  de t r o i s  types : cin6matique ( thbor ie  de 

Kirschoff pour l e s  plaques e t  l e s  coques, klbments f i n i s  "d6placements e t c . )  

sth6nique ( th6or ie  de Reissner pour l e s  plaques e t  l e s  coques, BlCments fi- 

n i s  "forces") ou mixte ( th6or ie  des poutres  en f lexion,  616ments f i n i s  

mixtes) . 
Les approximations de type cin6matique cons i s ten t  Q supposer ( Q  

une approximation prds )  que l e  d6~1acement v r e s t e  dans un sous-espace vec- 

t o r i e l  U de V : pour ne pas perdre l a  s t r u c t u r e  alg6brique l e  m6canicien 

posera c e t t e  hypothsse, non pas en termes d'approximation, mais comme l ' i n -  

t roduct ion d'une l o i  de l i a i s o n  p a r f a i t e .  Alors il t r a v a i l l e r a  s u r  1'616- 

ment m6canique quot ien t  ( u , <<.,.>>, g ) .  S i  l e s  e f f o r t s  d6rivent d'un 

p o t e n t i e l  f il minimisera donc non pas f mais s a  r e s t r i c t i o n  b u. 
On pourra consu l te r  VALID (l), FREUNEVAL ( ( l ) ,  ( 2 ) ,  ( 3 ) )  b pro- 

pos de l ' a p p l i c a t i o n  de l a  technique de l i n k a r i s a t i o n  prdckdente aux ap- 

proximations cingmatiques dans l e s  coques. Dans SOUCHET (1) on trouvera 

un expos6 c l a i r  de l a  thgorie  de REISSNER pour l e s  plaques, a i n s i  &idem- 

merit que dans REISSNER lui-meme ( ( I ) ,  (2 )  ) r 
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5.2 ~roblbme de Saint-Venant (MAISONNEUVE (1)  ) 

I c i  c ' e s t  l a  p e r t e  d'information qui e s t  elle-&me reoherchke e t  

va nous conduire 2 u t ~  quotient  d r o i t .  On considbre une mil ieu continu 

tridimensionnel qui occupe l e  domaine 

$2 dont a$2 d d s i m e  l a  f ron t ik re .  I1 e s t  - 
soumis 5 divers  e f f o r t s ,  dont c e r t a i n s  

sont a e s  e f f o r t s  ex tkr ieurs  appliquks 

s u r  une p a r t i e  al$2 de l a  f r o n t i s r e .  

Awe SAINT-VENANT e t  MAISONNEUVE, 

on souhaite, pour des raisons qui n'ont 

pas l i e u  d l $ t r e  i c i  prdciskes, ne s ' in-  

t d r e s s e r  qu'au t o r s e u r  des e f f o r t s  ap- 

~ l i q u 6 s .  ( s u i t e  page 72) 

S J I  WE UIILISATION PRATIQLE DU QUOTIENT GAUCM : LA SOUS-STWJCKJRATION 

Le quotient  gauche i n t e r v i e n t  dans l e s  approximations de type 

sthkniques de l a  mcme fason que l e  quot ient  d r o i t  dans l e s  approximations 

c inkmt iques  : il n l y  a donc pas l i e u  de ddvelopper ce point .  Une a u t r e  oc- 

casion d ' u t i l i s e r  l e  quot ient  gauche e s t  l a  sous-structurat ion.  

Le c a l c u l  des grandes s t ruc tures ,  c ' e s t  2 d i r e  dkpendant dlun 

grand nombre de parambtres de l i b e r t k ,  ne peut S t r e  e n t r e p r i s  d'un s e u l  

coup s i  l ' o rd ina teur  u t i l i s k  ne posssde pas une mkmoire de t a i l l e  suff isan-  

t e .  Pour c a l c u l e r  ces  s t r u c t u r e s  on l e s  dkcoupe en sous-structures que l 1 o n  

ca lcu le  skparkment, puis  qu'on assemble ensui te .  L ' in tdrc t  de l 'opkrat ion 

e s t  de rdduire  l e  nombre de parambtres de l i b e r t k  dont ddpend une sous- 

s t r u c t u r e  au  nombre de parambtres nkcessaires  L l ' d c r i t u r e  des condit ions 

de l i a i s o n  avec l e s  au t res  sous-structures. 

- S o i t  par  exemple S1 une sous-structure reprksentke par  1'6lkment 

m$anique (Vl, <. ,.>, Wl), e t  const i tude par  un s o l i d e  continu. Supposons la* 
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r e l i 6 e  au r e s t e  S2 de l a  s t r u c t u r e  en un 

s e u l  po in t  P : 1'6quation de l i a i s o n  

as q(2) 6galera l e  dgplacement a = v l  (P) de S1 

au d6placement v ~ ( P )  de S2. 

S1 e s t  soumise 2 des e f f o r t s  wl,..., 

wn e t  L l 1 e f f o r t  -ws exer t6  par  S2 s u r  

S1 en P; ws e s t  i c i  une f o r c e  concen- 

t r 6 e  en P. 

Pour l e  c a l c u l  de l a  s t r u c t u r e  compldte nous aurons 3 disposer  

du renseignement suivant  : quel e s t  l ' e f f o r t  w qui correspond au d6place- 

merit a du po in t  P de S1, compte tenu des e f f o r t s  wl,..., w ? n 
On note que dans ce problbme d e w  champs de d6placement v e t  v' 

de V s.cnt 6quivalents  s ' i l s  prennent l a  Gme valeur  en P. Parallblement 

l ' e f f o r t  de l i a i s o n  w appart ient  3 un sous-espace v e c t o r i e l  @ ( i c i  de di- 

r n s i o n  3) de W, e t  que 0' e s t  pr6cisdment l'ensemble des v e  V qui s'annu- 

l e n t  en P. Autrement d i t  l e  renseignement demand6 porte  s u r  1'616ment quo- 

t i e n t  gauche 

Soient  A l a  somme des l o i s  d ' e f f o r t  donnant l e s  wl,..., w , n 
a 

l ' app l ica t ion  canonique de V1 sur  u . Donnons-nous Lw e t  supposons l e  en 

gqui l ibre  avec A : 

e s t  l 'gquat ion qui donne v de fonct ion de w . E l l e  s ' g c r i t  a u s s i  

qui e n t r a k e  

(33). 8 (v)  6 aO A - ~  ( w ~ )  = % A - ~  8 ( w ~ )  

ce qui donne l e s  a =a ( v )  chercbgs en fonct ion de us. 8 e s t  encore l ' i m -  

nersion de @ dans W1. 
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Inversement 

entraTne qu ' i l  ex is te  v solution de (32 J e t  appartenant b a-'(a)., 

S i  donc on ne desire u t i l i s e r  que l e s  informations sur 1'ElEment 

qmtient on devra remplacer l a  l o i  A par sa l o i  quotient, inverse inf6rieure 

d e  % o  A-l o a T. 

On note que l a  transformation d'une l o i  d 'e f for t  par quotient 

giuche e s t  d is t r ibut ive  par rapport 2 l 'addit ion gauche (notEeg)  mais pas 

par rapport B l 'addition. Dms ce qui preckde il fant  donc que A so i t  l a  

sonnne de toutes l e s  l o i s  d 'e f for t  exerc6s sur l a  sous-structure e t  qui ne 

sont pas des l o i s  normales b QO'; on peut en e f l e t  vd r i f i a r  aisdneAlt qu* s i  

A1 e s t  normale b QO (cres.b b d i re  m e  l o i  d 'effort  donnant une force appli- 

qu6e L P en fonction du ddplacement de ce point)  e t  s i  A2 e s t  une l o i  d'ef- 

f o r t  quelconque sur (V , .,. , W ) alors  - 
( d o  (Al + A ~ ) - O ~ ~ )  = ( s o * ,  o v)-+ ( a o A 2  o a T )  
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Additurn - ( s u i t e  e t  f i n  du § 6, ch. I V ,  oubl i&s 2 l a  s u i t e  d'une erreur  - 
de mise en page). 

S o i t  (t: = (v, <.,.>, W) 1'616ment mQanique cons t i tu6  par  l e  

so l ide  envisag6. L'ensemble U des champs qui s o l i d i f i e n t  a l a  est un sous- 

espace v e c t o r i e l  de V ,  que nous supposerons ferm6. U0 e s t  l lensemble des 

e f f o r t s  aPpliqu6s 5 % e t  qui ne t r a v a i l l e n t  pas  dans l e s  ddplacements qui 

s o l i d i f i e n t  3 1 0  : W/IO = @ peut  donc d t r e  consid6r6 come l 'espace des 

to rseurs  des e f f o r t s  appliqu6s 5 ala. 

S i  l ' o n  s e  donne 

l o )  l a  s o m e  w l  de tous  l e s  e f f o r t s  appliqu6s au  s o l i d e  excep- 

t 6 s  c e w  qui s 'exercent  sur a152. 

2O) l e  to rseur  $ des e f f o r t s  exercds sur  a l Q  

1 ' 6 ~ u i l i b r e  du so l ide  s 1 6 c r i t  

W l  + w2 = 0 

w2 2 - l ( 0  

Supposons que w l  s o i t  donn6 p a r  l a  l o i  sous-d i f fdren t ie l l e  

l e  systsme pr6cddent dquivaut 5 

dont l a  donnde e s t  $, l e s  inconnues v e t  w2.  I1 n ' e s t  pas  ddterminb : pour 

l e  d6terminer on va c h o i s i r ,  avec Maisonneuve, 1'616ment d e 2  'I($) qui m i -  
* 

nimise l ' dnerg ie  compl6mentaire f , c ' e s t  5 d i r e  remplacer l e  systsme prd- 

&dent par 
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S o i t  (T,F2) une so lu t ion  de ce systsme. On a 

c l e s t  2 d i r e ,  en supposant que l e s  sous-d i f fgren t ie l s  s ' a jou ten t  

3 uCV u c a?(<) 

de s o r t e  que (u,;2 ) e s t  so lu t ion  du sasteme (34). S i  f* e s t  faiblement 

d i f f6 ren t iab le  on en dgduit  que C: 7/ de s o r t e  que r6soudre l e  systsme 
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ON COMPLEMENTARY VARIATIONAL 

INEQUALITIES 

W. Velte 

I. In t roduct ion 

P a i r s  of complementary v a r i a t i o n a l  p r i n c i p l e s  a r e  well  

known i n  var ious  f i e l d s  of app l i ca t ions . In  e l a s t i c i t y ,  f o r  

example, the  equi l ibr ium s t a t e  of an e l a s t i c  medium can be 

character ized by t h e  p r i n c i p l e  of minimal p o t e n t i a l  energy 
a s  well  a s  by Cas t ig l i ano ' s  p r i n c i p l e  of complementarXenergy. 

I n  e l e c t r o s t a t i c s ,  t h e  e l e c t r o s t a t i c  f i e l d  can be character ized 

by D i r i c h l e t ' s  p r i n c i p l e  a s  wel l  a s  by t h e  complementary 
p r i n c i p l e  of Thamon I .  The method of T r e f f t z  [8] (see  a l s o  

Michlin [ 5 ]  ) is a  counterpart  of t h e  method of R i tz  and 

uses  a  complementary v a r i a t i o n a l  p r i n c i p l e  f o r  t h e  under- 

l y i n g  se l f -ad jo in t  e l l i p t i c  boundary value problem. 

A sys temat ica l  approach t o  complementary v a r i a t i o n a l  

p r i n c i p l e s  beginning with Fr iedr ichs  [3]  (see a l s o  Courant 

and Hi lber t  [I] ) was developed by severa l  authors ,  consider- 

ing a l s o  i n e q u a l i t i e s  a s  c o n s t r a i n t s .  Bibliographies a r e  found 

i n  Robinson [6 ]  and Sewell [7]  . 
I n  t h e  fo l lowing,  we give a  simple approach t o  p a i r s  

of complementary v a r i a t i o n a l  p r i n c i p l e s  and complementary 

v a r i a t i o n a l  i n e q u a l i t i e s  f o r  a  c e r t a i n  c l a s s  of non-linear 

e l l i p t i c  boundary value problems. It is r e l a t e d  t o  problems 

considered by Fichera  [2]  and t o  t h e  c l a s s  of problems 

s tudied by Lions and Stampacchia [4 ]  . The c l a s s i c a l  examp- 
l e s  c i t e d  below ( involving no i n e q u a l i t i e s  a s  c o n s t r a i n t s )  

a r e  covered a s  s p e c i a l  cases.  
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2. The v a r i a t i o n a l  problem 

Let E  denote a  l i n e a r  space. I n  our examples ( sec t ion  5)  
E w i l l  be a  r e a l  ' ~ i l b e r t  space. But i n  order  t o  formulate 
p a i r s  of complementary extremal problems and complementary 
v a r i a t i o n a l  i n e q u a l i t i e s  it is  s u f f i c i e n t  t o  have t h e  follow- 
ing  s i t u a t i o n :  

Let  E be a  r e a l  Banach space (o r ,  more genera l ,  a  l i n e a r ,  
l o c a l l y  convex space) , E' the  dual  of E and < , > the  
p a i r i n g  between E and E '  . Let be given a  symmetric b i l i n e a r  
form a (  , ): EXE + R , non-negative on E  and p o s i t i v  on 
some l i n e a r  subspace VcE:  

I n  our examples a (  , ) w i l l  be a  b i l i n e a r  form corre-  
sponding t o  a  l i n e a r  e l l i p t i c  d i f f e r e n t i a l  opera tor ,  and V 

w i l l  be a  l i n e a r  subspace of funct ions  which s a t i s f y  c e r t a i n  
l i n e a r ,  homogeneous boundary condit ions.  The l i n e a r  v a r i e t y  

with given element uo then corresponds t o  t h e  s e t  of funct ions  
which s a t i s f y  c e r t a i n  inhomogene'ous boundary condi t ions .  

We a r e  i n t e r e s t e d  i n  problems, f o r  which besides of the  
(homogeneous o r  inhomogeneous) boundary condi t ions  the re  a r e  
c o n s t r a i n t s  given i n  t h e  form u  E K1 , where K1 c E  is a  
convex s e t .  Then the  s e t  K of admissible func t ions  i s  given 

by 
( 5 )  K = M n K 1  

C lea r ly ,  K is a  convex s e t ,  too.  
F i r s t l y ,  we s h e l l  consider f o r  given f e E '  the  follow- 

ing  v a r i a t i o n a l  problem: 
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Problem 1. Find t h e  so lu t ion  u of t h e  extremal problem 

(6) ~ ( u )  = a(u ,u )  - 2<f  ,u>  + min , u - E  K 

r e spec t ive ly  of the  equivalent  v a r i a t i o n a l  inequa l i ty  . 

We a r e  not  concerned here with t h e  problem of t h e  
exis tence  of a  so lu t ion .  Existence holds under a d d i t i o n a l  

assumptions (see  f o r  example Lions and Stampacchia [4] ). 
The so lu t ion  is, however, unique by assumption ( 3 )  . 

Secondly, consider a funct ion F( ): E + R which 
is  bounded from below and convex. Suppose t h a t  F( ) has f o r  
any u  E E a  d e r i v a t i v e  f ( u )  E E' i n  the  sense of Gateaux. 
Then 

Problem 2. Find t h e  so lu t ion  of the  extremal problem 

(9) ~ ( u )  = a(u ,u)  + 2F(u) + min , u  E K 

respec t ive ly  of t h e  equivalent  v a r i a t i o n a l  inequa l i ty  

Again, we a r e  not concerned here with s u f f i c i e n t  con- 
d i t i o n s  f o r  t h e  exis tence  of a  so lu t ion .  For s u f f i c i e n t  
condit ions see  [4] ,  f o r  example. We simply suppose, t h a t  a  
so lu t ion  e x i s t s .  Uniqueness follows from ( 3 )  and (8) . 
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3 .  Error  est imate i n  enerRs norm 

Since Problem I is  only a  s p e c i a l  case of Problem 2 
with F(u) = - < f , u >  we can t r e a t  both problems i n  the  
form (9) . 

Let 5 denote t h e  so lu t ion  of (9) resp .  of (10) . I n  - 
general ,  it w i l l  be 'not poss ible  t o  give the  so lu t ion  u  
by e x p l i c i t  terms. Then, i f  u  E K is any numerical approxi- 
mation t o  5 , the  quest ion a r i s e s  how t o  obta in  an e r r o r  
es t imate .  

I n  the  theory of v a r i a t i o n a l  methods f o r  quadrat ic  
extremal problems without i n e q u a l i t i e s  a s  c o n s t r a i n t s  t h e  
r o l e  of e r r o r  es t imates  i n  energy norm is  well  known (see ,  
f o r  example, "Michlin [ 5 ]  ) . Therefore, it seems qu i t e  natu- 
r a l  t o  look f o r  an e r r o r  es t imate  i n  energy norm i n  the  case 
of v a r i a t i o n a l  i n e q u a l i t i e s ,  too  . 

The energy norm is  given by 

This is, by assumption ( 2 )  and ( 3 )  , a  norm i n  V and a  ha l f -  
norm i n  E. 

Proposi t ion 1. Let u E K denote the  s o l u t i o n  of (9) resp .  
of (10) and l e t  u  E K be any numerical approximation t o  c. 
Then 

(12) lu -512  5 J ( u )  - J ( 5 )  

Proof. The so lu t ion  5 c K s a t i s f i e s  t h e  v a r i a t i o n a l  in-  
e q u a l i t y  (10) f o r  a l l  v 6 K . Hence, with v = u , 

l u - i i i 2  .Z lu-ii12 + 2a( i i ,u-5)  + 2 < f ( C ) , u - ~ >  . 
Using (8) and rearranging the  terms on t h e  r i g h t  hand s i d e ,  
one ob ta ins  immediately 

' l u -u12  5 lu-<12 + 2 a ( u , u - u )  + 2F(u) - 2 ~ ( 5 )  

= J(U) - J(U) . 
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Corollary 1. Let d be a lower bound for ~ ( 3 ,  d ,p ~(3) , 
then from (12) 

Naturally, the question arises how to obtain a lower 
bound d which is sufficiently close to J(c). In the next 
section a systematical approach to a lower bound will be 
given in terms of complementary extremal problems involving 
complementary variational inequalities. 

4. ' Complementary variational problems 

Since by assumtion the bilinear form a( , ) is non- 
negative, one has a(u- v,u- v) 2 0 or 

(14) a(u,u) -a(v,v) + 2a(v,u) U,V c E , 
and (8) may be written in the form 

(15) F(u) 2 F(,vv) + <f (v,u- v> U,V 6 E . 
Consider the functional J(u) = a(u,u) + 2F(u) . From (14) 
and (15) one has for any u E K and any v E E 

J(u) - a(v,v) + 2a(v,u) + 2F(v) + 2<f(v),u-v> 
= J(v) + 2 ( a(v,u - v) + <f (v),u - v> 

Hence, 
1 .  

(16) J(u) 2 J(v) 

provided, that the inequality 

holds. Since we wish to obtain a lower bound for J(u) for 
any u c K , we require the inequafiity to hold for any u E K. 

Therefore', we introduce the set Kc of all elements 
v E E satisfying the coinpLemegt_arg varigt&ona& LngqgaLiQ 

(18) a(v,u- v) + <f(v),u - v> p O V U E  K .  



W. Velte 

Remark. In the case of Problem 1 the set Kc consists of 
all elements satisfying the variational inequality 

Note the similarity between the variational inequality (10) 
and the complementary variational inequality (18). The roles 
of u and v are interchanged. The solutions v of (18), however, 
are not restricted to be in K and are in. general not unique. 

Proposition 2. Let u E K denote the solution of the varia- 
tional problem (9) and v any element in Kc . Then 

- 2 (20) Iv-ui 5 J(3) L J(v) . 
Proof. For any two elements u E K , v t Kc the inequality - - 
(18) holds. Hence, with u = u , 

= J(E) - J(v) . 
Theorem 1. Suppose the variational problem 

J(u) = a(u,u) + F(u) + min , U E K  
- 

has a solution u E K . Then 
(21 { u ]  = K n K C  

and 

(22) min J(u) = J(5) = max J(v) 
u e  K v e Kc 

Further, for any two elements u E K , v E Kc one has 

Proof. En element w t E is solution of (10) if and only if - 
w E K n Kc . But (10) has only one solution. Hence (21) . 
For any pair u E K , v E E satisfying (17) one has from 
(16) J(u) = J(v) . since u e K I\ Kc one has J(u) 2 J(u) 
for any u E K , and J(u) p J(v) for any v e Kc . Hence (22). 
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Inequal i ty  (23) follows from 

4(? - ii12 = l (u - i i )  + (v- i i )12 5 lu-ii12 + *  [ v - i i l  2  

together  with (12) and (20) . 
One can modify Theorem 1 i n  d i f f e r e n t  ways, i f  t h e  func- 

t i o n a l  J (  ): E + R is  considered a s  r e s t r i c t i o n  of an 
o ther  funct ional .  I n  t h e  following we consider only one ex- 
tension.  

Let @( , ): EkE + R denote t h e  func t iona l  given by 

Clearly,  J ( u )  = @{u,u) f o r  any u  E E . We now use (14) and 

(15), w r i t t e n  i n  t h e  form 

a (u ,u )  2 -a(v,v) + 2a(v,u) 
and 

p ( u )  2 P(w) + <f(w),u-  v> . 
For any u  E K and any v,w E E follows 

Hence, 

(25) J(u) 1 $(v,w) 

provided, t h a t  t h e  inequa l i ty  

(26)  a(v ,u -  v )  + <f(w),u-  w> 2 O 
N 

holds. This t ime, we introduce t h e  s e t  Kc of a l l  p a i r s  
(v ,  w) E E XE s a t i s f y i n g  the  v a r i a t i o n a l  inequa l i ty  

(27) a ( v , u - v ) + < f ( w ) , u - w >  2 o W U E K .  

Proposit ion 3. Let u e K denote t h e  so lu t ion  of t h e  var ia-  
t i o n a l  problem (9) and the  p a i r  v,w ahy so lu t ion  of t h e  
v a r i a t i o n a l  inequa l i ty  ( 2 7 ) .  Then 

(28) lv - ii12 -= J(U) - @(v,w_) 
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Proof. From (27) with u = u  - 
- 2  - 

Iv -u l  5 l v - i l l 2  + 2 a ( v , u - v )  + 2<f (w) , i i -k>  

5 lu12 - lv12 + 2~(:) - 2F(w) 

= J(;) - $(v,w)  

Theorem 2. Suppose t h e  va r ia t iona l  problem 

J (u)  = a(u,u)  + 2 ~ ( u ) '  + min , u c K  

has a  so lu t ion  u E K . Then 

min J ( u )  = J(E) = max , @(v,w) . 
UE K ( v , w ) E K ~  

Minimum and maximum a r e  a t t a i n e d  f o r  u  = v  = w = ii . For any 
u  e K and any p a i r  (v,w) e ftc 

Proof. The theorem follows immediately from (12) and (28) . 
Corollary 2. Choose u E K . Then 

J(W) 2 J(U) 2 W , W )  

f o r  any v  e E s a t i s f y i n g  the  v a r i a t i o n a l  inequa l i ty  

(29) a ( v , u - v ) + < f ( w ) , u - w >  2 0 Y u e K .  

Remark. I n  general  it w i l l  be e a s i e r  t o  f i n d  so lu t ions  v  
of inequa l i ty  (29) with given w E K r a t h e r  than so lu t ions  

of inequa l i ty  (18). Therefore, i n  comparision with Theorem 7 ,  
Theorem 2  and Corollary 2  a re  e a s i e r  t o  apply. 
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5 .  Applications 

N (i A o n s i d e r  a  bounded region c R with po in t s  x =, (xl;. . . ,xN) 
and smooth boundary r cons i s t ing  of two p a r t s  rl and r2 . 
Consider 

( j ,  N )  with s u f f i c i e n t l y  regu la r  c o e f f i c i e n t s .  Let 
E = H (R) , i . e .  the  completion of C1(fi) with respec t  t o  
t h e  norm 

( U , V ) ~  and llullo denoting inner  product and norm i n  L 2 ( n )  . 
Further ,  l e t  

1 v = { U  c H / U = O  on r., I 

Suppose 

Then, f o r  given f E ~ ~ ( n ) ,  t h e  extremal problem 

J(u) = a(u ,u )  - 2( f  , u ) ~  -+ min , u c  K 

has a  unique s o l u t i o n  ii . From u  e K and v a r i a t i o n a l  in- 
equa l i ty  (7) we have (see [4], p.510) 

' 

L(u) = f  i n  au au , and u = = O  on r2 , 
a t  l e a s t  i n  t h e  sense of weak s o l u t i o n s  and t r a c e s .  n  denotes 
the  conormal wi th  respec t  t o  L(u) . 

1 ( i i )  The s e t  Kc c o n s i s t s  of a l l  elements v  E H s a t i s -  
fy ing the  complementary var ia t ional r  inequa l i ty  
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The inequality is satisfied if 
av L(v) = f  in fl , ~ 2 0  on r2 , i r v & d ~ E O .  

Example 2. 

(i) Consider the following boundary value problem for the 
stationary temperature distribution (absolute temperature) 
in a bounded region n C R ~  with smooth boundary r consisting 
of three parts r,, , r2 and r3 : 

(a>O , p-0 ) , i.e. given constant temperature on rl , no 
heat flow across r2 and energy loss by radiation on r3 
according the law of Stefan- Boltzmann. The absolute tempe- 
rature is always non negative. 

Let E = HI (fi) as in Example 1 , and let 
v = { u  r HI U = O  on rl \ 
K = { U C  HI U = W O ~  rl , U ~ O  on r2"r- ] 

a(u,v) = (gradugradvdx 

Assume ri 
2 

a(u,u> r c Ilulll y U E v  (c>o). 
Then the extremal problem 

J(u-) = a(u,u) + 2 r3jG(u)dr min , U E K  
with 

for u 2 0 

( 0  for U ~ O  
- 

has a unique solution u t K . (Note, that the functions 
in HI have boundary values in L2( r ) . ) - The corresponding 
variational inequality is given by 
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where 4 f o r  u 1 0  
g(u)  = G'(u) = 

f o r  u < O  . 
From u E K and the  v a r i a t i o n a l  inequa l i ty  one has Au = 0 

i n  _CT . Hence, by the  maximum p r i n c i p l e  f o r  harmonic func- 
t i o n s ,  u (x )  > 0 i n  fl . Therefore from t h e  v a r i a t i o n a l  
inequa l i ty  

A U  - 0  i n  , - =  du 
aU o on r2 , aii + pu4 = o on rrf; . an 

( i i )  The s e t  Kc cons i s t s  of a l l  funct ions  v  e H' s a t i s -  

fy ing 
a ( v , u - v ) +  S g ( v ) ( u - v ) d t  2 O Y U C K .  

r3 

The inequa l i ty  is  s a t i s f i e d  i f  
av av A V = O  i n  _CL , ~ 2 0  on r2 , ;i;; +g(v) - r  0  on r3 , 

( i i i )  The s e t .  $ cons i s t s  of a l l  p a i r s  (v,w) e H'X H' 

s a t i s f y i n g  t h e  inequa l i ty  

a ( v , u - v ) +  S g ( w ) ( u - w ) d r  2 0 Y U C K .  
r3 

The inequa l i ty  is s a t i s f i e d  i f  

a v  av 
A v = 0  i n  -0, ~ 2 0  0" r 2 ,  a ; ; + g C w ) = O  on r 3 ,  
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