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(C.I.M.E.)

L4
PROBL]}_‘MES A FRONTIERE LIBRE LIES A QUESTIONS D'HYDRAULIQUE

CLAUDIO BAIOCCHI

Corso tenuto a Bressanone dal 17 al 26 giugno 1973



PROBLEMES A' FRONTIERE LIBRE LIES A' QUESTIONS D'HYDRAULIAUE.

par C. Baiocchi - Umiversité de Pavie et Laboratoire d'Analise

Numérique du C.N.R. de Pavie.

N.1.- L'étude du mouvement des liquides 3 travers des matériaux

~

poreux conduit en général & des "problémes & frontiére libre".
Un cas typique peut &tre schématisé sous la forme suivante:

sur une base imperméable deux bassims d'eau, de niveaux dif-

~

férents, sont en communication & travers une digmwe en matériepu
poreux. L'eau filtre du niveau le plus élevé au niveau le

moins é&levé; et on veut déterminer la "partie mouillée" de la
digue, ainsi que les grandeu;s physiques (telles que la pres-

sion, la vitesse, le débit...) associées au mouvement.

On se bornera au cas plus simplé (pour une description
générale, ainsi que pour plus de détails sur le plan physique,
ou consultera par exemple les textes 6 , 13 , 167, 18 ); pré
cisément on envisagera le cas correspondant & un fluxe sta-
tionnaire, irrotationnel, incompressible; le matérieau compo-
sant la digue est supposé isotrope, homogéne et ne donnant pab
lieu & des phénoménes de capillarité. On considérera comme

"Probléme modé&le" le cas ol la digue est 3 base horizontale

et 3 parois verticales planes et paralléles (la fig. 1 est
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une section orthogonale aux parois: a est 1l'épaisseur de la

digue, y, et Yy, sont les hauteurs des deux bassins).
Plus en général on désignera par D une section verticale
de la digue (cf. fig. 2; dans la fig. 1 on a D=]0,a[ x ]O,y [)
1

et on supposera que, dans la direction orthogonale 3 la figure

la digue est infiniment &tendue et a section constante (de fa
gon & &tudier un probléme bidimensionnel).
On désignera par 9 la “partié mowillée" de D; par y=f(x)

. —
1'&quation du "bord supérieur" de @ ; par p(x,y), V(x,y) re-

spectivement la pression et la vitesse de ‘l'eau dans le point
(x,y) de 2 (x axe horizontal, y axe vertical); par u(x,y) la
"hauteur piézométrique", & savoir:

1.1) ulx,y) =y + R

Y étant le poids spécifique du liquide. La loi de DARCY (cf.
toujours les textes cité&s plus haut) assure qué u est un
"potentiel de vitesse", 3 savoir que l'on a:

) —_— ~
(1.2) V(x,y) = -k grad u

L4

pﬂ k = % k, flétant la viscosité du liquide et k é&tant le
coefficient de perméabilité ().

1 ~
(') Sous les hypothéses faites k (et donc k) est constant;
plus en général k est une fonction de (x,y) si la digue

n'est pas homogéne, et un tenseur symétrique si la digue

n'est pas isotrope.
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L'incompressibilité du liquide et la loi de continuité

'

donnent alors
~

(1.3) div k grad u =0 dans @
(en particulier u est harmonique dans @ si le matérieau est

homogéne isotrope).

A la relation (1.3) op doit ajouter des conditions aux
limites. D'abord, le long des parties de 30 qui sont des 1li-

gnes de courant doit s'annuller la dérivée normale de u:

u _ .
(1.4) an - 0 sur AB ;
ou _ .
(1.5) T 0 sur FC ;

ensuite, le long des parties de 323 contact avec l'athmosphé-

re on doit avoir p(x,y)=0 donc (cf. (1.1)) u=y:
(1.6) u(x,y) =y sur Fcf ;
(1.7) u(x,y) =y sur CTC ;

finalement, le long des parois & contact avéc les bassins, 1la
pression est donnée par la pression de l'eau qui est en haut;

(1.1) donne:

(1.8) u(x,y) Y, sur AF;

(1.9) u(x,y) Y, sur BC.
Il s'agit d'un classique probléme & frontiére libre; sur
un domaine inconnu 2 ow doit résoudre le probléme aux limites

(1.4), (1.5), (1.6), (1.7), (1.8), (1.9) pour 1'équation (1.3):

on a donc des conditions surhaboundantes (cf. (1.5) et (1.6))
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sur la partie incomme 324 D de la frontiére de$¢.
N.2.- Une des premiéres méthodes proposées dans la litératur=
speécialisée pour la resolution du probléme (1.3),....(1.9)

est basée sur la théorie des fonctions de variable complexe

et s'appuie sur la transformation:
(2.1)  x+iy - p+iq ; P=-T". q = au
Y
A
(transformation qui est conforme si le coefficient k dans
(1.3) est constant; (p,q) est le "plan de l'odographe"). Par

exemple (pour plus de détails et de généralité cf. 16 , 18 )

dans le cas du Probléme modéle illustré en fig. 1 le domaine

Q2 se transforme en un domaine Q' du plan (p,q), dont le borc

3Q' est parfaitement connu et, sauf pour ce qui concerne.la
position sur 3Q' des points A',B' transformés de A,B,Q' est
indépendent de ary, 1y, cela fornit au probléme deux dé&grés

de liberté (en accord avec ce qui se passe sur le plan (x,y),

Y
ol l'on peut choisir comme paramétres Z% P —§ , tout é&tant

invariant par homotéties). A partir de cette famille 3 deux
paramétres de domains Q' la transformation p+iq » x+iy inver-

se de (2.1) fornit une famille de solutions @ . Toutefois les

paramétres que l'on peut se donner 3 priori sont ceux du plan

y y
de l'odographe (et non —i ' —é); @hrmasait pas démontrer la

biunivocité de la corréspondence entre les paramétres physi-
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ques et ceux de l'odographe; et d'ailleurs on aurait bésoin

de "beaucoup de régularité" pour justifier les passages du

cé. e»u.' B
plan physique & de 1l'odographe et viceversal!

Une méthode plus récente (2) est basée mur les considé-

rations suivantes (on se borne toujours, pour simplifier,
au cas du Probladme mod&le). A toute courbe "réguliére" y=9€(x)

on associe le "sous-graphe " Qo={(x,y)[0<x<a; O<y< qb(x)};
et sur o, on résoud dans 1l'inconnue ug le probléme mélé cor-

respondant & (1.3), (1.4), (1.7), (1.8), (1.9) et une smule-

memt entre (1.5) et (1.6); puis on modifie Y, de fdgon i rem-
plire 1l'autre entre (1.5) et (1.6); et on itdre le procédé.
Par exemple si pougévalh&r u, on imposé (1.5), on posera
ﬂZ(X)=“o(x'?B(x))7 le probléme sera résolu (3 savoir (1.6)
aussi sera vérifiée) si l'on a 715«3; donc le probléme &
frontiére libre correspond 3 trouver les points fixes de la

transformation {o—* ?1 . Si, au contraire, on avait choisi

(1.6) pour la détermination de u,, on cherchera a minimiser,
par rapport & %’0, une convenable norme de la trace sur

y=%g(x) de la dérivée normale de u,i plus en général on pour

rait minimiser, par rapport au friplet 2 o'?g’uo une

(2) que l'on peut d'ailleurs appliquer & la resolution nu-
mérique d'une vaste classe de problémés 4 frontiére libre;

cf. |11] pour une vue d'ensemble sur ces procé&dés.
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fonctionelle du type:

‘ ~ 2
s Y,
2k d dx d u (o -y. 0 -
3 | gra uo[ Y+t [ 0(0ry) Y1|@i( /y)dy

Y, ) (a)_ B
- JO ]uo(o,y)-yzl@(a,y)dy_ j% Luo(a,y)—y‘]@li(a,y)dy
Y

fa . . su 3
_ Jo Luo(x,nfo(x))-tfo(x)] av: (x,4_ (x))ax 7).

o

Il s'agit de procédés qui peuvént étre adaptés 3 la re

solution numérique des problémes énvisagés (4) et qui, de ce
point de vue, ont donné des résultats satisfaisants; toutefoijs,

du point de vue théorique, om ne sait pas justifier ces procég-

dés (par exemple on ne connait me existence ni unicité de’

points fixes pour la transofrmation %% > C( ; on ne conaait
1 .

pas l'unicité du point de minimum pour les fonctionnelles

considérées, et on nesait pas si le minimum vaut zéro....).

N.3.- Par moyen d'un convénable changement de fonction incowmse

j'ai donné en 1971 un théoréme d'existence et unicité de la

solution du Probléme modéle, en raménant ce probléme & une
inéquation variationnelle (cf. 1 ). Pour décrire ce résultat

__(3) Pour un traitement numérique basé sur ces idées cf. 17 .
(4) Tout en rencontrant des difficultés de programmation non
indifférentes: on doit reso.dre une famille de problé&mes mélés
sur des domaines qui, 3 chaque étape, varient en fonction de

1'étape précédente.
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il faut d'abord préciser le probléme, en particulier pour ce
qui concerne la régularité de la courbe y=7(x) et de la fon-

ction u(x,y) (de facon & donner un sens précis aux relations

. :
(1.3)...(1.9)). Pour fare ca il est commode (5) de faire usage,
outre que du potentiel de vitesse u, de la "fonction de courant"
v(x,y) liée i u par:

du A Ju oV

- gV . g = = LY 6.
(3.1) % = oy 5y x dans Q(7);

et de remplacer les condition de type Neumann sur u (cf. (1.4),
(1.5)) par des conditions de constance sur v; v étant déterminée

d une constante additive prés, ou traduira (1.5) par:
(3.2) v=0 sur FCY

et (1.4) en imposant l'existence d'une constante g (7) telle

que:

(3.3) v=q sur AB

Ceci étant, on appellera solution faible du Probléme mo-

déle une quintuple { Y,Q,u,v,q} telle que:
{: x »4(x) est continue de [O,a] dans ]yz,ylj,

(3.4) décroissante et telle que ¥NO)=yl.

(5) Mais non indispensable; dans |1| on a travaillé en termes
de u, sans introduire v; la présentation donnée ici suit 1'expo
sé |2]|.

(6) A' savoir x+iy » u+iv est holomorphe dans Q; l'existence
d'un telle v équivawt 3 (1.3) 1orsque'§ est constant.

(7) 34 un coefficient dimensionnel vrés le paramétre g fournit
le débit de la digue.
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(3.5) Q0 = {(x,y)[ O<x<a; O<y< T(x)}
13.6) uwvec®@nu @ &) qgel?
" u,v satisfont (3.1) au sens deg'(n), et (1.6), (1.7),
(3.7)

(1.8), (1.9), (3.2), (3.3) au sens de C°(Q)

Remarque 3.1.- On va appeller faible une telle solution car,
du point de vue physique, une solution sera acceptable seu-

lement si elle satisfait d'autres relations, soit

qualitatives, soit quantitatives; par exemple la

(1.1)):

pression doit &tre positive dans @ donc (cf.

(3.8) u(x,y)>y dans Q;

et d'ailleurs gru,v devraient &tre "plus réguliéres"; on
obtiendra des propriétés de ce type comme conségquence de
la définition de solution faible.

Remarque 3.2.- Pour ce qui concerne la valeur de g on obtiendra
la formule explicite:

2_.,2

2a

(3.9) q =

comue sous le nom de "formule de DUPUIT" et usuellement obté -

nue comme formule approchée (et déduite en supposant que la
courbe y= (x) est une parabole).

Un'idée naturelle pour étudier le probléme consiste &

prolonger u,v a D tout entier (5} fermeture de D, est [O,ajx

ED,xJ ) en posant:

(8) Notations_usuelles:
la fermeture @ de Q et

u,v sont des fonctions continues sur
dont les dérivées distributionnelles.

sont de carré sommable

sur Q.
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u(x,y) pour (x,y)eQ (v (x,y) pour (x,y)éﬁ
(340) Aby- VXY= _
y pour (x,y)é€ D\{ 0 pour (x,y)s D\Q

et 3 voir si u,v satisfont un "probléme bien posé&" dans D; ca

serait suffisant car, grdce au principe du maximum, on démon

tre aisément la validité de (3.8) et donc, connaissant u, on
obtiendrait Q@ en posant:

(3.11) o= {(x,y) | (x,y)e D ; u(x,y)>y}.

Toutefois ce n'est pas le cas: aucun probléme au limites sur

il :
u,v ne semble &tre bien posé; faut donc encore transformer le

probléme.

Remarquons maintenant qué l'on a:
(3.12) 4Ly € cCdn (D
et que de (3.1) on déduit:

(3.13) (-v)y=(y-u)x; (—v)x+(y—u)y= Xgq
ol ( )y.et ( ;)x désignent les dérivées partielles et y est
Q

la fonction caractéristique de @ . La prémiére de (3.13) as-

sure qu'il a un sens de considérer des intégrales curvilignes

du type:
P/‘r A —
(3.14) w(P) = -v dx + (y-u)dy VPED
) F
et 1l'on aura:
(3.15) W, =V wy = y—uj

donc, grace a (3.12) et a la deuxiéme de (3.13) :

(3.16) w €c' (D) Nu? (D)
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(3.17) Aw=)(Q (A=-8—;2~+-5-§~z)

Remarquons tout de suite que le valeurs de w sur 3D sornt

connues: en effet on a (cf. (3.10), (3.15), (1.7), (1.8),

(1.9)):

w =20 dans ‘D—'\ Q (donc sur FE)

~

(3.18) wy=y—?;=y-yl sur FA wy=y—G¥O sur EC

=y-U=y- sur CB
wy Y Y Yz

et d'aprés (3.15), (3.3):

~
(3.19) yx——v——q sur AB; donc wxx—O sur AB;

donc si 1l'on définit g sur 3D par la formule:

2
( -
g=0 sur FEUV EC ; g = —ZEXEL sur CB;
(3.20) (y=v1) 2
g= At A 1 sur AF; g linéaire sur AB
2

on aura nécessairement

(3.21) w|3D =g

Remarque 3.3.- De (3.20) on tire que la pénte de g sur AB

2_.2
est donnée par g(B);g(A) = ygaYL ; donc de (3.19), (3.21),

on tire la validité de (3.9).

La connaissance de w fournirait automatiquement
{7,Q,u,v,q}; en effet on a vu que g est donnée par (3.9);

d'aprés (3.11), (3.15) on tire
(3.22) @ = {(x,y) | (x,y) €D; w(x,y)<0}
et, encore de (3.15), on aura aussi:

(3.23) u=y-w A H

y,ﬂ ! Q
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finalement de (3.22) on évaluera «f par la formule:
(3.24) f(x) = max {y |(x,y) € @} Og<xga

La caractérisation (3.22) de 9 n'est toute_fois pas en-

core suffisante: en effet, si 1l'on cherche & combiner (3.17)

(3.22) de fagon 3 faire disparaitre l'inconnue Q on tombe
sur l'équation non linéaire:

(3.25) Aw & H(—wy)

ol t - H(t) est le graphe maximal monotone associé & la fonc-
tion de Heaveside; et le probléme (3.25), (3.21) n'est pas

bien posé (9).

En effet on peut faire mieux: de (3.18), (3.14) on dé-

duit que 1l'on a identiquement:

Y - —
(3.26) wix,y) = I lfﬁ(x,t)-tjdt ¥ (x,y) €D
Yy
et alors, grace a (3.8), on aura:

(3.27) w(x,y)=0 dans D

(3.28) e={(x,y) | (x,y) €D; w(x,y)>0}.

Maintenant la combinaison de (3.17), (3.28) donne:

(3.29) Aw &€ H (W)
et le probléme (3.29), (3.21) est bien posé: il admet une et
une seule solution dans HJ(D) (cf. par ex. le cours de M.

MOREAU dans ce meme volume) donc (onr a dé&j3a vu que 3 partire

(9) Par exemple il admet comme solution la solution w du pro

bléme Aw=1; wlaD=g; ce qui donnerait (cf. (3.22)) Q=D.
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de w on évaluait {¢,2,u,v,q}):

;le probléme modéle admet au plus une solution
(3.30)

faible

Remarque 3.4.- On peut présenter le probléme (3.29), (3.21)

sous forme de probléme de minimum en posant:

g} (g donnée par (3.20))
2t ax az (t¥= lE%iEx

T+ 1
J@ ={z|zéH (D); z =
(3.31)S 3D

Z J+(z) = % J |grad z{2dx dy + f
D D

et alors w est l'unique solution dé:

(3.32) we $6r; st we a2 vze ot

d'ailleurs (3.22) n'est pas la seule formulation variationnel-
le que l'on peut tirer des reinseignements que l'on a sur w;
par exemple si l'on pose:

(3.33) Fo={z|zet"; z20}; J(z2)= JD{% |grad z|®+z}dx dy

grdce & (3.27) on a aussi:
(3.34) wé%; J(w)gJ(2) Vze%

ou bien l'inégquation variationnelle équivalente:

(3.35) wéfé; a(w, z-w) >L(z-w) v‘zé%

avec a(g,y)= JD grad &. grad uc{xd% et L(5)=—J gdx dy

D

Du point de vue numérique c'est la présentation (3.34)
qui semble étre la meilleure; d'ailleurs on a intérét a explo$
ter beucoup de formulations car, voulant généraliser la métho
de a des problémes plus compliqués, on devra choisiﬁlsuivant

le cas}l'une ou l'autre voie.

Pour ce qui concerne l'existence d'une solution faible
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du probléme modéle on doit maintenant démontrer que, partant

de 1l'unique solution w du probléme (3.35) (par exemple; ou
&quivalentement de (3.34); ou de (3.32)) les formules (3.28),
(3.24), (3.23), (3.9)‘f$%nissent une solution. Je n'entrerai

pas dans les détails (pour lesquels Jje rénvoye a 1), en

Mm@ bornant ici 3 souligner que les phases essentielles de la
démonstration sont
a) grice aux théor&mes de régularité des solutions des inéqua

tions variationnelles (cf. 14 ) la solution w de (3.35) sati-

sfait:
2
(3.36) weéw 'P(p) pour tout p fini;

en particulier on a (3.16); o défini par (3.28) est ouvert;

et on a (3.17).

b) grdce & (3.36) on peut appliquer le principe du maximum a

W r wy et démontrer qu'il s'agit de fonctions non positives;

d'ici on tire que @ est borné supérieurement par une fonction
Lf qui satisfait (3.4).
Une fois obtenu le théoréme d'existence et unicité des

solutions faibles, se pose le probléme de la régularité; tou

jours sans entrer dans les détails jeme bornerai i remarquer

que, en adaptant un discours de Caccioppoli (cf. [15]) on

péut démontrer la relation:
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¢ix > ¢(x) est analytique sur ]O,a[ (10

et que, pour ce qui concerne la régularité de u,v, de (3.36)

et (3.23) ou a u,veg Wl’p(Q) pour tout p fini; il s'agit d'une
régularité optimale car-on peut démontrer (cf. toujours |[1])

que les relations u,v€ W!'’'®(2) sout fausses.

N.4.- On termine cet exposé par quelques considérations & ca-
ract@re numérique et par une vue d'ensemble sur les générali-

sation de la méthode.

Pour ce qui concerne la ré&solution numérique des inéqua-
tions variationnelles on connait des nombreux procédés a la
fois mathématiquement rigoureux et pratquement efficaces (cf.

par ex. |12|). Dans |10| on a &tudié 1'inéquation variationnel

le (3.35) par discrétisation en différences finiés, et resol-
vant le probléme discret par la méthode de S.0.R. et projection;

la comparaison avec les méthodes "traditionnelles" indiquées

au N.2 a montré un gain sensible 3 la fois du point de vue

simplicité de programmation et du point de vue rapidité d'exé-

(10) Pour un traitement systématique du probléme de la regula-

rité de la "ligne de d&tachement" pour les solutions d'inéqua

tions avec cbstacle op, consultera la cehférence de

D. KINDERLEHARER sur ce meme cours CIME.
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) s . ,
cution (cf. toujours |10]|). Il est toutefoi§ & remarquer que
la méthode est "correcte" mathématiquement dans le sens 1l'on

obtient une suite {wh} de solutions approchées qui converge,

dans une topologie convénable, vers la solution w de (335);
mais si l'on prend, comme "approximation” de 9 , l'ensemble
de positivité N de Wy (analoguement & (3.28)) la convergence

de Wi 4 w n'assure pas, a4 priori, la convergence de 2 a q.
Cette difficulté a &té surmontée en |5| ol l'on a montré& que
l'on a:

(4.1) Q@ = intérieur de lim inf Q-

h-» ot

Passons maintenant & quelques généralisations. Le cas
de digues & perméabilité variable (3 savoir dans lequel le

coefficient ; figurant dans (1.3) n'est pas constant) pose
de nombreuses difficultéds. Dans |3]|,|4]| on a traité le cas
oﬁ‘z(x,y) est constant par morceaux par rapport & une des

variables et constant par rapport 3 l'autre (1y; dans 17|

As
on traite le cas de k(x,y) de la forme kl(x).kz(y) mais sous

des hypothéses restrictives sur la régularité de kl’kz’

Le cas oll 1'on a plusieurs liquides immiseibles de den-

sités différentes peut aussi &tre traité par la meme méthode;

dans |3]|,]|4| on &tudie le probl2me de la débouchée i la

(11) Ce qui correspond a digues en plusieures couches, hori-

zontales ou verticales, de matérieaux différents.
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mer d'une lame phréatique (on a donc, outre que l'usuelle sur-

face libre, une surface de séparation entre la terre mouillée

_par l'eau douce et la terre mouillée par l'eau de mer); (3.25).
est remplacée par une inéquation & "double obstacle", les

deux frontiéres libres é&tant obtenues comme frontiéres des

zones de contact avec les deux obstacles.
Dans |3]|,|4] on a aussi étudié le cas od la parois a
contact avec le premier bassin est imperméable le long du

morceau Lc,yly avec O<c<y . Dans ce cas la valeur de g n'est
1

plus une fonction explicite des données (& savoir om n'a
plus une formule du type (3.9)) et la condition aux limites

sur w pour ce qui concerne le morceau {(O,y)|c<y<y1}, au lien

d'étre de type dérivée tangentielle (cf. (3.18)) est de type
dérivée normale. Sur la partie restante de 3D, supposant con-

nue la valeur de g, on peut évaluer les valeurs gq(x,y) de

la trace de w; on peut alors construire, pour tout qé:ﬁ?,

+
un convexe m;q du type (3.31) et la solution wq du probléme

de minimum correspondant (analogue & (3.32)); les inéquations
associées resolvent des problémes aux limites de type mélé
(au liéu que de Dirichlet) pour lesquels, en général, la vali-
dité de (3.36) est fausse; dans |4 |on a montré 1l'existence
et unicité de une valeur q.* de g en correspondence 3 laquelr

le la solution wq‘ satisfait (3.36); ce qui a permis encore
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de conclure avec un théoréme de existence et unicité. Un algg
rithme numérique (3 caractére physique-euristique) entroduit

dans |3]| pour l'approximation de q*, 4 &té complétement justi

fié dans |5

.

Pour ce qui concerne la possibilité de adapter la méthode

d des digues de géométrie plus compliquée on peut remarquer

que, si la parois a%},acente au bassin de droite n'est pas
verticale, devient fausse 1l'une des relations fondamentales
de la méthode, 3 savoir la validité de (3.27), (3.28); donc

on va supposer que la parois de droite est verticale (12).

Sous ces restrictions les relations obtenues au N.3 re-
stant encore valables jusqu'a (3.18) inclue; toutefois (3.18}

(et 1l'analogue de (3.19) qui donne W, =-q sur AB) fournissent

pour w, au lieu que des données de Dirichlet, des données du
type "dérivée obligue". L'étude thé%kque des inéquations cor—

respondentes, dans le cas général, n'a pas encore é&té abordé;

dans 3 , 4 on s'est borné aux cas particuliers correspondents

3d: base horizontale et parois inclinée; ou base inclinée et

(12) Des essaiy numériques faits avec parois de droite incli-

née suggérent que la méthode devrait marcher aussi dans ce
cas, quitte & introduire des solutions "a plusieures paramé-
tres"; par exemple, outre a la valeur du dé&bit g, 1'abscisse

s du point Cg (on a_s=a si fa parois est verticale: cf., pour
plus de details, |5]).
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parois verticale (13). Il s'agit encore d'étudier une famille
d'inéquations (14) dépendante du paramétre g, la bonne valeur

du paramétre é&tant & individuer par moyen d'une "condition de
régularité" de type (3.36). Dans |4| on est arrivé jusqu'au
fhéoréme d'unicité; le théordme d'existence a &té& donné dans

|8] par une méthode "numérique", en passant & la limite sur

des "solutions approchées".
D'autres problémes analogues, tels que le problémé modé-
le en présence de é&vaporation et le probléme de 1l'eau qui

filtre 34 travers les parois perméables d'un canal, ont é&té
récemment étudiés par la méthode ici proposée (cf. résPécti—

vement 49 et 40).

Je voudrais finalment conclure en rappéllant que la mé -
thode décrite dans le N.3 pour transformer un problémé a fron
tidére libre dans une inéquation variationnelle (ou éventuéllg

!
ment dans une famille, & un ou plusieurs paramétres, dinéqua-

tions) semble avoir un domaine d'applicabilité plus ample qué

P

('3) Plus récemment, dans |9] , on est arrivé & traiter le
cas ol le parois et la base sont toutes les deux inclinées;
il s'agit d'un probléme de "dérivée oblique qui saute", donc

de type non variationnel.

(14) Qui traduisent un probléme de dérivée obblique, donc la
forme a (g£,u) qui.intervient dans (3.35) n'est plus symétri?
que et le probléme n'est plus équivalent & un problémé de mi-

nimum.
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¢celui relatif aux mouvements de filtration; elle a en effet
été adaptée & la résolution de problémes & frontiére libre

qui sourgissent dans 1'étude de problémes de fluxe de fluides

compressibles autour d'un obstacle (sans ou avec sillage) et,

dans un contexte un peu différent (probléme d'évolution au

lieu que stationnair) a 1'étude d'un probléme de type Stéfanf
mais pour ces problémes je renvoye au cours de M. DUVAUT dans

ce meme volume.
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Introduction. Dans la premiére partie de ce papier on démontre deux

théorémes de dualité des intégrales convexes: Dans la deuxiéme partie,
on donne deux théorémes de fermeture directement liés au proﬁléme de
riafle d'un convexe étudié par Moreau (71, prop. 8.1i).

En ce qui concerne 1'étude systématique des. intégrales
convexes et leurs applications, on renvoie aux travaux de Rockafellar

([8], (9], [10], [11])), castaing ([3]) et Valadier ([1g) .

I - Théorémes de dualité des intégrales convexes
Notations. Soient T un espace localement compact polonais muni d'une

mesufe de Radon positive u, E un espace de Banach réflexif, E' son
dual fort. Une application v de T dans un espace topologique est dite
p-mesurable si elle est Lusin wu-mesurable ([1]). Si f est une fonc-—
tion convexe semi-continue inférieurement sur E & valeurs dans

]-o, +©]- non partout étale a +® , sa duale ¢ est définie par

g(x') = sup [ <x', x> - f(x)] (x' € E")
x € E

Si K est un convexe fermé non vide de E, on désigne par &(., K)
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la fonction indicatrice de K :

§(x, K) =

+0® si x é K

et par 8* (., K) 1la fonction d'appui de K

8* (x', K) = sup {<x', x> | ' x € K}
Il est évident que & et 8* sont duales l'une de 1'autre.

Voici un résultat de mesurabilité qui intervient directement
dans la démonstration des théorémes de dualité gque nous avons en vue.

Proposition . Soient f une fonction convexe semi-continue inférieu—

rement sur E & valeurs dans ]-®, +0]- non partout égale a +® , v

une application pu-mesurable de T dans E' et a wune fonction

réelle pu-mesurable sur T telle que
alt) > inf {f(x) - <v(t), x> | x e B} , VterT

Alors, il existe une application pu-mesurable, wu, de T dans E

.

telle que

flult)) - <v(t), ult)> £ alt) U—PeDe

Démonstration, On se raméne aussitdt au cas o T est compact.
Posons

Ft) ={x e E | flx) - <v(t), x> < alt)}, Vter

Alors [(t) est convexe fermé non vide, ¥t e T. I1 existe par
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ailleurs une partition de T en une suite de compacts (Tn) et.un
n-négligeable N telle que les restrictions de v et a & chacun
des T, soient continues. Par suite la restriction de la multi-appli-

cation [' & chacun des K, est de graphe séquentiellement fermé dans

K X E (E

n o > Jdésignant l'espace vectoriel E muni de la topologie

affaiblie o(E, E')). D'aprées un résultat de ([2], Cor 4 du théor. 1),

il existe une application pu-mesurable, u de Kn dans E telle que

n’
u_ (t) € I'(t) , v t € K. . Alors, 1l'application, u, obtenue en recollant
n n
les u,
un(t) si t € K,
‘ult) =
P arbitraire si t € N

vérifie les conditions de 1'énoncé.

Théoreéme 1,1, On suppose T compact métrisable, Soient f une

fonction convexe semi-continue inférieurement sur E & valeurs dans

]-®, +0], non partout égale a +® et ¢ sa duale. On pose
. 1
Ip (u) = fT flult)) wldt) , Yu e Lo (T, p)
o]
Ig tv) = [ elviv)pla) ,  ve Lo, (1w

Alor's Ip et Ig sont duales l'une de 1l'autre, c'est & dire,

1 @©
Yue LE’ Ip(u) = sup {<u, v> - Iglv) |- v e LE' (T, w}

@ 1
Vv e LopTghv) = sup {<u, v> - Iplu) | ue Lo (T, w)}
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Démonstration. Il suffit de vérifier la formule

©
Ig(u) = sup {<u, v> - Ig (v) f v € LE' (T, w}

o
Quelque soient u € Lé et Vv € LE' , on a

Ip(u) + Iglv) fT flult)) pldt) + fT glv(t)) wldy)
2 fT <ult), v(t)> pf{dt) = <u, v>
D'ol
[e 8]
Ip(u) 2 sup {<u, v> - Ié(V) |- v e LE' }
o] *
=-inf {Ig(v) - <u, v> ['veL } = (I (u)
E'
1
Soient u un élément de LE (T, w) et r un nombre réel tels que
r < Ip (u). Soit a une fonction réelle intégrable telle que
alt) < flult)) , Yter
J alt) plas) > r
T
Alors on a
-~ alt) > inf {g(x') - <x', ul(t)> |- x' € E'}
Pour tout t € T, posons
Fit) = {x' € E'g | g(x") - <x', u(t)> < - alt)}
D'aprés la proposition précédente appliquée & l'espace E'y muni de
la topologie o(E', E ), il existe une application u-mesurable, v, de
T dans E' telle que v(t) € ['(t) presque partout. Il existe alors
) et un négligeable

une suite cvroissante d'ensembles compacts (K,
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N tel que la restriction de v a chacun des Kn soit bornée et telle

[e0)
que v(t) € '(t) pour t e T\N . Soit ¥ e LE' , telle que Ié('w‘i) <+o

Posons

vit) si t e K,

valt) =
Vit) si ot e T\K,

oo
Alors les vVa appartiennent & LE' de sorte que les <u , vn> sont
intégrables, Pour tout n, on a

[ att) plat) < [ [<alt), v(t)> - glvit))] mldt)
Ky Ky

= <u, vo> - Iglvy) - [<ult), ¥(t)> - g(F(t) ]

™K,
wldt)
avec  <u, vp> - Iy (vy) = fT [<ult), v (£)> - g(v (t))] w(dt)
Or 1'intégrale
<ult), ¥(t)> - g(¥(t))] u(dt)
fT\Kn [ , ¢ I
peut €tre rendue arbitrairement petite dés que n est suffisamment

grand et comme on a

i [ a(t) w(dt) = [ al(t) p(dt) » r
n— ® Kn T

On en déduit que, pour n suffisamment grand,
<u, vn> - Ig (vn) > r
ce qui impligue (Ig)* (u) > r . Comme r est un nombre arbitraire

*
vérifiant Ig(u) >r, on a Ig(u) = (Ig) (u) .
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Remarque. Ce théoreme reste valable si 1'oﬁ remplace le couple
1 ®
(L, L ') por: un couple (L, M) d'espaces décomposables au sens de
E E
Rockafellar,

Nous allons donner maintenant une variante du théoreme 1.1,, variante

qui s'applique directement au probleme de r&fle d!un convexe développé
trés récemment par Moreau ([5], [8], [7]) dans une série d'exposés

du Séminaire d'Analyse Convexe Montpellier 1971-72-73 .

Dans tout le reste de cette partie, I est l'intervalle [O, 1}° muni

de la mesure de Lebesgue dt . Une multi-application [ de I & valeurs

dans les convexes fermés non vides de E est dite a variation continue

s'il existe une fonction réelle continue r définie sur I telle que
Vier, Yrer , nlt), N7)) < |rit) - o(7)]

ol h désigne la distance de Hausdorff des ensembles fermés non vides

de E.
Théoreme 1.2. Soient [ une multi-application & variation continue
de I & valeurs dans les convexes fermés non vides de E, ¢g(t, x') et

f(t, x) 1les fonctions d'appui et indicatrice de l'ensemble ['(t) :

glt, x') = sup {<x', x> |- x e ["(¢)}

0 si x € I'(%)

f(t, x)

+® si ox ¢ ['(t)
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et soit
1
Sp = {u en (1) |"u(t) € T(t) p.p.}
. 1
Alors, SF est un convexe fermé non vide de LE (I) et les fonctions
® 1
convexes Ig et I, définies sur LE'(I) et LE(I) respectivement :
[v0)
Ig(v) =J ¢g(t, v(t)) dt , velL (I)
€ I g

Ie(u) = [ £t, ul(t)) dt , wue 1 (1)
£ I E

sont & valeurs dans ]-®, +®], non partout égales 3 +® et duales 1'une

de 1'autre.
Démonstration. Le principe de démonstration est le méme gque dans la
démonstration du théoreme 1.1,
Les points essentiels a vérifier sont
a) la non vacuité de Sp
b) 1la mesurabilité des fonctions t > g(t, v(t)) et . > ( , |
1t = f(t, ult)).
a) SF est non vide car [ est a variation continue, donc semi-
continue inférieurement pour la topologie forte de E. Par

suite [' admet une section continue d'aprés un résultat de
Michael ([4], théor.3.2)
b) 1la mesurabilité des fonctions t > f(t, u(t)) est automati-

quement assurédecar [ est de graphe fermé dans I x E, et,
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celle des fonctions t > g(t, v(t)) est assurée grice au

lemme suivant

13
Lemme. Soit ? une fonction réelle définie sur I X Ea telle que pour

tout réel A, l'ensemble

A = {(t,x) € I x By | 9(t,x) > A}

soit réunion dénombrable de compacts, soit A une multiapplication de

I & valeurs dans les fermés non vides de E, . Si le graphe G(A) de

A est séquentiellement fermé dans I X Es alors la fonction

ot — sup {Q(t,x) | x e Alt)} (t e I)

est‘universellement mesurable sur I,
Soit A un nombre réel., Omn a
{t e 1| plt) >} =projp [G(A)N al
Comme Ak est réunion dénombrable dércompacts de I % E, > G(A)f\AK
est aussi réunion dénombrable deccompacts de Inx E, > donc
proj 1 [G(A)?\Ax]~ est réunion dénombrable de compacts de I, donc
universellement mesurable.

Corollaire., Si v est une application mesurable de I dans E', alors

la fonction

t > g(t, v(t)) = sup {<vi(t), x> | x € Alt)}

est mesurable sur 1I.
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En effet, on se raméne immédiatement au cas o Vv est
continue, de sorte que la fonction (t, x) +—> <v(t), x> vérifie les

condition d'applications du lemme précédent:

II - Théoremes de fermeture

Théoreéme 2.1. Soient T un espace compact métrisable muni d'une

mesure de Radon positive u, E un espace de Banach réflexif, f une

fonction convexe semi-continue inférieurement sur E & valeurs dans

]-®, +®]- non partout égale & +®, 3f(x) 1le sous différentiel de f

®
au point x. Soient (u,) (resp. vn) une Suite dans LE (T, w)

1
(resp. LE' (T, m)) telle que
(1) (un) est uniformément bornée et converge .uniformément vers
©

T e LE (P, w)

1 © ~ 1
(11) (vp) converge pour U(LE', LE) vers V € LE’(T’ o)
(iii) vhlt) € of (u,(t)) u-presque partout

Alors on a
—————

F(t) € f(W(t)) pu-presque partout
Démonstration. D'aprés la condition (iii), on a pour presque tout t,
—_———

fluy (8)) + glvy (£)) = <up (), v(t)> =0

Les conditions (i) et (ii) impliquent
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(1) n [ o<u (), vp(t)> p(dt) = [ <§(t), Fit)> pldt)
no T T
D'apreés le théoréme 1.1. , les fonctions convexes

n

Ip(u) fT flult)) pldt)

"

I4v) ‘[T g(v(t)) puldt)
©

sont semi-continue inférieurement sur L (T, w) et LE'(T’ u) pour
E

toute topologie localement convexe compatible avec la dualité mise sur

ces espaces, Par suite, on a

. . ~ ~
(2) lim inf (Ig (uy) + Ig (vp)) 2 Ip () + Ig (v)
N oy @
car d'apres (i), (u,.) converge uniformément vers ﬁ, donc converge

n

1 s
vers U pour la topologie forte de L (T, p) et d'apres (ii), (v}
E

1 ®
converge pour U(LE', LE) vers V . Tenant compte de (1) et (2),
on obtient finalement
(3) Ip (W) + 14 (¥) = <¥, ¥> <0

puisque Ip et Ig sont duales l'une de 1l'autre.
Or, (3) équivaut a
Y e I (W) <=> ¥(t) € 9f (W(t)) u-presque partout!

Théoreme 2,2. Les hypothéses et notations étant celles du théoréme‘l.z,

soit D le domaine de définition de ¢g(t, x'), B' 1la boule unité de
E', (vp) une suite d'application mesurables de I & valeurs dans

~ ! ® l
B'ﬂfD) convergeant vers V pour U(LE', LE), (un) une suite d'applica-
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tions continues de I dans E convergeant uniformément vers une

section continue U de T, (6,) une suite d'applicationsmesurables

de I dans I. On suppose

(i) lim 6 (t) =t , Vit el
n—p®
(11) volt) + AF (,(8), uyl6 () IO

Alors on a

F(t) + 3f(t, Wit)) I o0

Démonstration. Pour tout t et tout n, on a,

u (6,(t)) € IO (¢))

presque partout.

(ii)

g0 (%), - v (t)) + <uy (B,(t)), vp(t)> =0
La condition (i) 1implique
(1) n{i?m [I <up (B,(%)), v (t)> dt = I <ql(t), ¥F(t)> dt
Comme les Vn prennent leurs valeurs dans @D)n B', on a
(6, (4),— v (t)) = g(t,— vy(t))] < [r (B, () = r(t)]
D'ol
(2) lim  |g(6,(t), — vp(t)) - g(t, — v (t))] =0
n—®
B'on
Lin [ [£l64(%), - vo(t)) - (b, - vp(¥))] dt =0
n—> ®

Comme la fonction convexe

[o0]
L (1 v o Igv) :,fT glt, vit)) dt
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® ©
est semi-continue inférieurement sur L pour o(L_ , L ) d'aprés le
E' E' E

théoréme 1.2 , on a

~
(3) lim inf Ig(—vn) 2 Ig(-v)
n —®
tenant compte de la condition (ii) et des relations (1), (2) et (3),

on obtient
02 <y, ¥ + xg(_% <=> (b)), F(t)> + glt, - F(t)) £ 0
presque partout
<=¥ =¥(t) € d¥f(t, T(t))

presque partout.
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PREMIERE CONFERENCE

GENERALITES - ELASTICITE AVEC FROTTEMENT
par G. Duvaut (Univ., Paris, XIII)

1) Généralités.

Les méthodes variationnelles ont été appliquées en mécanique

depuis quelques années 3 des problémes divers :
i), Elasticité classique (P. Germain l:l]), unilatérale (probléme de
Signorini) (G. Fichera [1], J.L. Lions et G. Stampacchia [1],

Boucher [1]), avec frottement (G. Duvaut et J.L. Lions [1] [2]), puis

généralisation 3 la viscoélasticité (G. Duvaut [1], Boucher [1]).

ii) Plasticité avec la loi de Hencky (H. Lanchon [1] [2] ), avec la loi
de Prandtl-Reuss (B, Nayrolles [1] [2], J. Moreau [1] [2]), élastovisco-

plasticité (G. Duvaut et J.L. Lions [2], G. Duvaut [2]), matériaux a
blocage (W. Prager [_l] , F. Léné [l]).

iii) Parois semi-perméables (en thermique, mécanique des fluides en
milieux poreux, physique des solutions) (G. Duvaut et J.L. Lions [2] ,
H. Brézis [l]).

iv) Théorie des plaques linéarisées (G. Duvaut et J.L. Lions [2]) ou

en forte flexion (G. Duvaut et J.L. Lions [3]
v) Ecoulements des fluides de Bingham.

vi) Electromagnétisme (théorie du claquage d'antenne) et magnétohy-

draudynamique (G. Duvaut et J.L. Lions [4])

vii) Ecoulement a frontiére libre ad travers une digue poreuse
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(C. Baiocchi [1]).

viii) Ecoulement d'un fluide parfait avec ou sans sillage (H. Brézis

et G. Stémpacchia [1] , H. Brézis et G. Duvaut [1] ).

ix) Problémes de Stéfan : phénoméne de fusion ou cristallisation

(G. Duvaut [3]).

Un probléme d'élasticité avec frottement.

2.1. Enoncé mécanique du probléme. Soit une région R formée de RS de

frontiére réguliére I' composée de 3 parties I‘15 I'2, I‘3 avec

(1) mes I‘l > 0.

est supposée fixée, I', est soumise 3 une densité surfa-

La partie T 9

1

cique de forces donnée, I', est le siége de forces de frottement. Le

3
matériau qui, avant déformation, occupe la région Q est élastique

linéaire. Les équations et conditions aux limites sont les suivantes,

ol {u,0} sont les champs de déplacements et contraintes recherchés

(2) 2 4. tf. =0 dans Q (1
X, i3 i
J
(3) 035 = aijkhekh(u)
(%) u=0 sur T,
(5) oij“j = Fi sur 1"2 (Fi donné)
(6) oy ° FN sur l"3 (FN < 0 donné)

(1) On applique la convention de sommation sur les indices répétés,

soit 3
X.y. = z x:¥; .
i=1
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(7) IOT, <g (g > 0 donné)
||oT] < g = u, =0
? loT| =g = 3k >0, tel que uy = - ko

Les quantités fisomm les composantes d'une densité volumique de
forces données sur @ . Les coefficients a:.ijh sont les coefficients

d'élasticité du matériau et satisfont aux relations suivantes

(8 [3ai5kn 7 2i5kn * %knij

R TI v = .
ikt iiMkn 2 WigHige @7 0 VMgy Ty

De plus (oN,cT) et (uN,uT) sont les composantes normales et tangen-

tielles de {o0..n.} et u.
{ 13”3}

Remarque 1.

Si r, = @ on a un probléme d'élasticité sans frottement. La

méthode décrite ici en donne la solution.

2.2, Formulation variationnelle.

Soit (u,0) une solution du probléme (2) - (7). On suppose (u,o)
assez régulidre pour que les calculs suivants aient un sens. Soit

v un champ de vecteurs sur Q tels que VIF = 0. Multiplions (2) par
1

vy T oug et intégrons sur @ ; il vient aprés intégration par parties

(9) fﬂcijeij(v—u)dx = Jgfi(vi—ui)dx + Jrcijnj(vi-ui)dr .
Le dernier terme de 1'égalité (9) se décompose en

(10) Jroijnj(vi—ui)dx = jr cijnj(vi—ui)dx + IF Fi(vi—ui)dr +
2

+ st Fn(vN—uN)dF + JraoT(VT-uT)dF .
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T

Compte tenu de (4) et de vI = 0ona
1

J cijnj(vi—ui)dr =0 .
I‘l

Les conditions de frottement (7) donnent 1'inégalité

(11) Jr cT(vT—uT)dF 3_Ir (~g|VT| + gluTl)dF

Introduisons les notations

(12) a(g,v) = Jgaijkhekh(u) eij(v)dx
(13) L(v) =-J9fividx + Jr Fov.dr + [r Fvydl
3
(1) j(v) = f g]vT[dF .
r3

L'égalité (9) devient alors, en tenant compte de (3) et (11),
(15) a(u,v-u) + j(v) - j(u) > L(v-u), Vv, vlr = 0.

L'inégalité (15) avec la propriété (4) constitue la propriéfé varia-
tionnelle satisfaite par un champ de déplacement régulier solution du
probléme mécanique posé par (2) - (7). Cette propriété va nous per-

mettre de poser un probléme mathématique précis qui, nous 1'espérons

et le vérifierons ensuite, va résoudre en un certain sens le probléme
P s

mécanique initial.

2.3. Cadre variationnel.

Nous introduisons 1l'espace V

(16) v=iv | v e @tan®, v|p =0
1
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qui est un espace de Hilbert pour la structure engendrée par (Hl(Q))a,
1'espace Hl(Q) étant l'espace de Sobolev des (classes de) fonctions

de carrés sommables sur et dont les dérivées (au sens des distribu-
tions sur Q) sont des fonctions de carrés sommables sur . Les théo-

rémes de trace sur HI(Q) (J.L. Lions et E. Magenes [1] ) montrent que

V est un sous-espace fermé de (Hl(Q))s.
L'introduction de V et les hypoth&ses suivantes sur les données

2 2 2
(17) fi € L°(Q), F, €L (1"2), FN €L (1"3)

oo
3 5p € L (@), g >g2>g, >0, g, g constantes,
permettent de reposer le probléme en termes précis. On cherche u tel

que

(18) uev

a(u,v-u) + j(v) - j(u) > L(v-u), Vv e V.
Mais le probléme (18) est équivalent (J.L. Lions [1]) au probléme
(19) Trouver u € V tel que

I(v) > I(u), ¥vev

ol I(v) = % a(v,v) + j(v) - L(v).

2.4, Existence d'une solution unique de (18) ou (19).

Nous avons les résultats suivants :

norme classique est
1/2

Y
20 ||v]] = [V|L2(m)3 L leij(v)lLQ(Q)]
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Démonstration : Nous renvoyons le lecteur 3 G. Duvaut et J.L. Lions Bﬂ

(Théoréme 3.1) ou aux références de cet ouvrage.

norme équivalente 3 la norme induite par (Hl(Q))S.

Démonstration : Nous renvoyons le lecteur & G. Duvaut et J.L. Lions[2]

(Théoréme 3.3).

On peut alors montrer le
Théoréme.

Sous les hypothéses (1), (8), (17) il existe u unique solution
de (18) ou (19).

Démonstration.

i) Unicité : Supposons que u et u* soient solutions de (18).

Choisissons v = u* (resp. v = u) dans 1'inégalité (18) relative 3 u

(resp. u¥) et ajoutons membre d membre les inégalités obtenues ; il

vient
(21) - a(u-u¥, u-u®) >0
d'ot ws=ut d'aprés le lemme 2.

ii) Existence : La fonctionnelle v + I(v) est convexe s. c. i. sur

V faible. En effet v + L(v) est une forme linéaire continue sur V

faible., L'application v + j(v) est convexe et v » v est compacte

1

de V dans LQ(Fl), donc l'application v » j(v) est continue sur V

faible. Par ailleurs a(v,v) est une forme quadratique positive sur V

donc est convexe s. c. i. sur V faible (vérification par un calcul
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élémentaire).

De plus I(v) > + = si |[|w| + «. En effet d'aprds le lemme 2

on a
(22) Iv) > |92 - ¢|]v]]

ol C est une constante.

I1 en résulte (cf J.L. Lions Lﬂ ) qu'il existe u solution de (19).

2.5. Retour au probléme mécurigue.

La solution u est caractérisée par (18). Choisissons dans cette
inégalité v = u + ¢ ol ¢ = {¢i}, ¢i € 35(9) 0 ,» ce qui est
loisible car alors v & V. Il vient

(23) (u)e (¢)dx = Infi¢idx , ¥ 9, € éﬁ(n),

fgaijkhekh
et donc, en posant 045 ° aijkhekh(U)

9 -
o (24) Z-)_xjoij +fi-0

au sens des distributions dans Q .
I1 en résulte que
9 ’ 2
— o.. €
(25) 35 clJ LE(Q)

1720y (%)

ce qui permet de définir oijnjl comme &lément de H ar ,
T

0. .
(26) <0..m., ¢ > = j o.. Y ¢ 1 1/2
i3y Q ij Frsl dx + o TS v dx, YveHn/<(r)

(%)  On désigne par & (2) 1'ensemble des fonctions = - différentiables

d support compact dans Q.

(%em) H_1/2(F) est le dual de Hl/g(r). cf J.L. Lions et E. Magénés Eﬂ
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ol ¥ est un relévement linéaire continu de y de Hl/Q(F) dans Hl(Q)
(Théoréme de trace dans Hl(Q). cf J.L. Lions et E.Magénés DJ) Le
premier membre de (26) est alors une forme linéaire continue sur

Hl/Q(P). On vérifie qu'elle est indépendante du relévement : en effet

le deuxiéme mémbre de (26) est nul pour VY € D (), donc pour
Yy € Hi(n) 3 cause de la densité de D (@) dans Hi(Q). On notera
désormais le crochet du ler membre de (26) comme une intégrale sur T,
soit

< O.ana > = | o,.n.ydl' ,

i3> ¥ [r 1513

Multipliant alors (24) par Vit U, ol v = {ui} e V, et utilisant
(26) on obtient
(27) Jgoijeij(v—u)dx = Igf(v—u)dx + jr cijnj(vi-ui)dr

et en comparant avec (18)

f
Fi(vi—ui)dF + J FN(UN—uN)dF
2 1-‘3

J

0sana(Ve~u)dr + j(v) - j(u) 3_[
IP ij'3tioi r

Choisissant alors v € V, VI

= u on obtient
r, |1"3

(28) Jr cijnj(vi—ui)dr = Jr Fi(vi—ui)dr ,

2 2
ce qui implique
(29 oij“j = Fi sur F2
au sens de H_l/Q( TQ). ()

1

(+) Les éléments de H /2(F2) sont les restrictions a F2 des éléments
de H*l/2

tions.

(T) ce qui’a un sens car H—l/Q(F) est un espace de distribu-
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On montre de maniére analogue que
(30) FN = Iy sur F3
au sens de H_l/Q(Fa).
I1 subsiste alors de (28),
(31) L‘ [GT(VT‘UT) + g(|vT| - |uT|)]dP > 0, Vvev

3

L'espace V étant vectoriel on peut remplacer v par Av dans (31),
A > 0. Faisant alors tendre A vers + ® et vers zéro on obtient

(32) [ (op vyt glvgldar >0 Vvev
r .
3
(33) J (op up + gluTl)dP = 0.
T
3
On déduit de (32) que

(34) )Jr opvpdl 5_Ir g]ledF .

Il en résulte que l'application linéaire Vo > f oTdeF de (H1/2(I‘3))2
T
3

dans R est linéaire continue de (Ll(I‘s))2 dans R. Il s'en suit que

® 3
(35) op € (L (Fa))
et que
(36) log| < g sur T, .

I1 en résulte alors que

(37) opuy + glug| 20

et d'aprés (33)

(38) orlp * quTI =0 pp. sur I‘3

ce qui implique
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Io l < g =0
(39) ! T
|0T|=g =% 3k > 0 tel que up = = ko

et donc (7) est satisfait par la solution u.
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DEUXIEME ET TROISIEME CONFERENCES

PROBLEME DYNAMIQUE EN ELASTO-VISCOPLASTICITE

ET PLASTICITE PARFAITE AVEC CONDITIONS

DE FROTTEMENT A LA FRONTIERE

1) Position du probléme.

£s P 3 N 2 . s

On désigne par Q un ouvert borné de R~ de frontiére I' réguliére,
Q étant situé localement d'un méme c6té de T'. On suppose que Q repré-
sente la région occupée par un corps plastique dans son état non
déformé. Nous nous intéressons ici aux déformations subies par ce
corps lorsqu'il est maintenu par des forces de frottement sur une
partie Fl, de mesure strictement positive, de T', et soumis de plus
N .z . . 1
a une densité variable {fi(t,x)} de forces volumlques.( )

Nous désignons par u = {ui}, o :{Oij}’ i, j prenant les valeurs

1, 2, 3 les champs de déplacements et contraintes dans . Le matériau

est supposé obéir 3 une loi élasto-viscoplastique dans le premier
temps, puis élasto-plastique (loi de Prandtl-Reuss). La loi de frot-

tement retenue est la loi de Coulomb, mais dans une premiére &tape,

~

nous utiliserons une loi régularisée par rapport 3 cette derniére.

Au n°2 nous donnerons les équations et conditions du probléme.

(1)

On pourra trouver une étude des problémes de plasticité sans frot-

tement dans G. Duvaut et J.L. Lions [ﬂ.
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Au n°3 les diverses formulations variationnelles seront établies.

~

Le n°4 est destiné 3 1'énoncé des résultats sous forme de trois

théorémesd'existence et unicité des solutions des problémes. Les
démonstrations détaillées des théorémes seront données dans un

article de 1'A. 3 paraltre au Journal de Mécanique.

Mise en équations.

Avec les notations introduites précédemment nous avons

(1) ut! = o,. . + £, dans & )
i i3, i
ol la densité du matériau a été prise égale 3 1'unité, ce qui ne

restreint pas la généralité. Nous introduisons un ensemble convexe

fermé K de l'espace vectoriel des tenseurs des contraintes, l'in-

térieur de K correspondant au comportement élastique, et nous dési-
gnons par PK 1'opérateur de projection orthogonale sur cet ensemble

convexe K. Une loi de comportement élasto-viscoplastique s'énonce

alors :

') = o! AL
; eij(u ) Aijkh wp t i3
(2)
A, =i B,.(0)
ij T 2w i

ol B(0) = o - PK(U), et ol le scalaire positf M joue le rSle d'une

(1) On utilise les notations suivantes : X' = «— , X ., = —

et la convention de sommation sur les indices répétés, ainsi

3

cQ0se o = Taee o o
17,] 13,37
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(1)

viscosité .
Les coefficients Aijkh sont des coefficients d'élasticité satisfai-

sants 3 :

Aiskn T A5ikn T Axnig

AinTisTkn 2 CoTigTig 00 Uiy T Ty
ot Co est une constante strictement positive.

De plus, on a posé classiquement :
1 avi V.
eij(v) =3 (-———ij + _laxi) .

Les conditions aux limites s'écrivent :

(3) 3405 =0 sur T - Fl = P2

\')'_ Z_s PR N
oun = {nl, n2, na} est la normale extérieure unitaire a TI'.

Désignons par oy et O les composantes normales et tangentielles du

vecteur oijnj en un point de I'. Nous imposons

(4) o, = F sur T

ot Fy est un scalaire donné négatif indépendant de t. La loi de

frottement de Coulomb conduit alors 3 :

logl <&
(%) IUTl < g - U,i. =0
IUTI =g —3 dk >0 tel que ul = -ko ,

ol g est un scalaire donné positif indépendant de t.

(1) Les résultats de ce travail peuvent &tre généralisés au cas

d'une loi avec potentiel viscoplastique (G. Mandel Dl).
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Enfin on impose les conditions initiales
(6) u(0,x) = u'(0,x) = o(0,x) = 0.

Nous allons immédiatement faire quelques

Remarques :

i) L'inconnue u(t,x) n'intervenant que dans (6) nous poserons comme
inconnue d la place de u
(7) v = u'

de sorte que grdce a (6)
t
(8) u(t,x) = J v(t',x)dt' .

o

ii) Pour les besoins des démonstrations la loi de frottement de

Coulomb devra dans un premier temps étre remplacée par la loi de

frottement régularisée

vy = - % A(0)
(9) (o) =0 si IUTI <g
Ao) = (1 - —5—) op si oyl > g,

logl

ol € est un paramétre positif. On retrouve, a partir de (9) formel-

lement, la loi de Coulomb lorsque € - O.

ii) Lorsque u - O dans la loi élasto-viscoplastique (2) on trouve

la loi de Prandtl-Reuss (P. Germain [1]),

€550V = AyiinOkn * Ay
(10)

Aij € {axK(c)}ij

ol BxK(c) désigne le sous-gradient de la fonction indicatrice Xk du

convexe K (Moreau [1], Roccafellar [ ]).
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iv) Physiquement le probléme posé est celui de la déformation d'une
piéce retenue sur la surface Fl par une machoire et soumise par

ailleurs a des forces volumiques f(t,x) variables. Il est clair que

ce probléme n'a de sens que si, en l'absence des forces f(t,x), il
existe un équilibre possible, c'est-a-dire, un tenseur des contrain-

tes convenable soit

f Jun champ de tenseur des contraintes T tel que
Toij,j =0, B(TO) = 0 dans €
a1 T T ..n. =0 sur T, ,
oijj 2
= A = .
ToN FN . (To) 0 sur Tl

\

Nous retiendrons 1'hypothése (11) dans toute la suite de ce travail.

Formulations variationnelles.

On introduit les espaces :
m= i@n® v = mtaen®,

munies des structures hilbertiennes respectives

(12) (v,w) = ngiwidx , WYv,weH,
(13) ((v,w)) = (v,w) + Jgeij(v)eij(w)dx , Yv, w €V,
2
(1) M= (r | = {Tij}. Tii % T30 Ty € L) }
- 2
(15) Vzir] ek, Ty €L

munis des structures hilbertiennes respectives

(16) (1,0) = fQTijcijdx Yt, o€ it

(7) ((1,0)) = dx + (1,0) , W1, oeb.

Tes 0.
[9 ij,] ik,k

Enfin nous posons
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z = .n. = =
(18) ad = {1 l T eV , Ti]n] 0 sur FQ, " FN sur Fl},,

ce qui a un sens. De plus, on vérifie immédiatement que Zad est un
. Z v
sous-espace affine fermé de V.

Nous allons maintenant obtenir les fermulations variationnelles des

divers problémes envi'sagés suivant que le matériau est élasto-
viscoplastique ou obéit 3 la loi de Prandtl-Reuss et que le frot=-u:
tement obéit 3 la loi de Coulomb ou & la loi de frottement régula-

risée (9).

Loi élasto-viscoplastique - Frottement régularisé.

Supposons que {v,0} satisfasse aux équations et conditions

N
(19) vevV,oevVnszad, Vtelo, [, T>0
1 -
(20) vi = cij,j + fi dans @ , VYt &]O,t[
(21) v(o)x) = o(o)x) = 0 dans €

ainsi qu'aux lois (2), olu' est remplacé par v, et (9).

Soit alors T € rad.

Multiplions (2) par Ty5 T oij et intégrons sur Q ; il vient aprés

quelques transformations :

(22) J{(c',r-o) + % (B(o),1-0) + J v,(t.. Jdx =

1474 .—Oi. .
Q J»] REN]

= JP VT(TT - GT)dT .
1
ol on a pvsé :

(23) Alr,0) = fg Af 5n%knT53% -

Utilisant (9) et posant :

(2u) (A(o),T), = J A(o) 1,.dT
r, T
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il vient,

Ao, tr0) + L (B(0),1-0) + X (A(0),10). + J v.(t ydx = 0,
H € Iy g

. L=C.. .
1 13,7 13,]
Yt € zad .

Par ailleurs, si w € V, on obtient a partir de (20),

(v',w) - J dx = (f,w), Yw ev.

O'i. .wi
q 133

En résumé, si {v,o} est une solution du probléme (19)(20)(21)(2)(9)

on a
(25) {v,o} €V x zad , ¥t € ]o,T[
(26) A t-0) + L (B(0),1-0) + £ (A(0),1-0). +
H € Fl
+ fﬂvi(Tij,j_oij,j)dx =0, ¥t €zad
vt e Jo,T[
(27) (v',w) - Igoij,jwidx = (f,w), WYw ev, ¥t € Jo,r[

(28) v(0,x) = 0(0,x) = 0, Vxeq .

On dira que (25)-(28) constitue la formulation variationnelle du

probléme posé.

Inversement, on peut montrer (G. Duvaut [1]) que si le couple {v,o}
satisfait (25)~(28), il satisfait aussi (19)(20)(21)(2)(9) au moins en

un certain sens.

Loi élasto-viscoplastique. Loi de frottement de Coulomb.

Supposons que {v,0} satisfasse (19)-(21)(2)(5), ol n'a été rem-

placé par v. Soit alors T € Iad, [TTI < g sur Fl. Multiplions (2)

par t.. - 0,. et intégrons sur Q. Il vient :
ij ij
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(29) U{(o',r—o) + % (B(o),1-0) + f Vi(T. - )dx =

j5.5 04k s
Q 33 ENEN]
= Jr VT(TT—GT)dF
1
On vérifie alors facilement, grdce & la loi de Coulomb, que le der-

nier terme est positif ou nul. Il en résulte que :

S8i {v,0} est une solution de (19)-(21)(2)(5) on a :

(30) {v,0} € V x zad, [cTI <g swrT ,
31) Aor,1-0) + L (B(0),1-0) + f vo(T.. .=0.. )dx > 0
U Q 1 13,]) 13],] -
Yt € zad, ITTl < g sur Fl >
(32) (v',w) —Igoij’jwidx = (f,w) , Ywev
(33) v(o) = g(o0) =0 .

ces propriétés étant satisfaites quel que soit t & ]O,T[ .

Ceci constitue la formulation variationnelle du probléme (19)-(21)

(2)(5).

Inversement on peut montrer que si {v,o0} satisfait (30)-(33), il

satisfait aussi (19)-(21)(2)(5) en un certain sens.

Loi de Prandtl-Reuss, Loi de frottement de Coulomb.

Supposons que le couple {v,0} satisfasse (19)-(21)(5)(10). Les

équations (10) sont équivalentes 3 :
(34) o €K
. ! =0, . . T N € X .
(35) Al]kho kh(Ti] 013) z_elj(v)(rlj 613)’ ¥t €K
ce qui va nous permettre d'obtenir une formulation variationnelle.

Introduisons 3 cet effet l'ensemble convexe :
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< g sur Fl}.

(36) H: (« | 1€ zad , {Tij} € X p.p. dans @, ITTI

Choisissons alors T € K dans (35) et intégrons sur Q. Il vient

37) A ,t-0) > - fnvi(Tij,j- %j,j)dx + fr vT(rT~oT)d

1
> - f v.(t.. .-0.. .)dx,
- Ql 13,1 13,]

en utilisant la loi de’Coulomb.
On peut alors énoncer,

si {v,0} est une solution de (19)-(21)(2)(5) on a :

38) (v, €vx¥ | vreo,a[

(39) J{(c',r—o) + [Qvi(rij’j—oij’j)dx > 0, Vre :}C
(40) (v',w) - chij,jwidx = (f,w), Yw ev
(41) v(o) = o(o) = 0,

ces propriétés ayant lieu Wt € ]O,T[~

Inversement on peut montrer (38)-(41) impliquent (19)-(21)(2)(5) en

un certain sens.

4) Résultats.
Dans le cas d'un matériau élasto-viscoplastique avec la loi de

frottement régularisée, on obtient le :
Théoréme 1

Sous les hypothéses données au n® 1 sur Q/l'hypothése (11) et

(42) £, £'€ L7(0,T 5 H), F € H—l/Q(I‘l) w

(1) L'hypothése F, € L2(Fl) serait en fait suffisante pour les appli-

N

cations.
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il existe une unique solution {VEMUEU} de (25)-(28) dans la classe

fonctionnelle
) ~ 2 n
(43) {"su’“eu} €L (0,T 3 Hx H) nL°(0,T 3 Vx V)
o
() vl ol } € 170,15 Hx ).

Dans le cas d'un matériau élasto-viscoplastique avec la loi de frot-

tement de Coulomb, on obtient le :

Théoréme 2

Sous les hypothéses du théoréme 1, il existe une unique solution

{vuou} de (30)-(33) dans la classe fonctionnelle

o v 2 v
(45) {VIJGIJ} € L (0,T 3 Hx H) NL°(0,T 3 Vx V)

n
(46) {v‘;o;} € L7(0,T 3 H x H).

De plus cette solution {vuou} est limite de {veuceu}’ lorsque ¢ tend

(1)

N
vers zéro, dans l'espace L7(0,T ; H x H) faible étoile .

Dans le cas d'un matériau obéissant a la loi de Prandtl-Reuss
(élastique parfaitement plastique) et la loi de frottement de

Coulomb, on obtient 1le :

(1) Sur le dual X' d'un espace de Banach X non réflexif, on appelle

~

topologie faible &toile celle liée a la dualité entre X' et X, soit,
si fn € X', £f€ X' on dira que :

f > f, quand n > = , dans X' faible étoile

n

si fn(X)' > f(x) , quand n > ® , Vx ¢X.
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Théoréme 3

Sous les hypothéses du théoréme 1, il existe une unique solu-

tion {v,0} de (38)-(4l) dans la classe,

(47) {v,o} € 70,7 ; Hx ) n12(0,T 5 vx V)

o N
(48) {v',c'} € L (0,T ;3 Hx H).

De plus cette solution {v,0} est limite de {vu,cu}, lorsque  tend

N
vers zéro, dans l'espace L”(0,T ; H x H) faible &toile.

Démonstration du théoréme 1.

5.1. Unicité. Supposons qu'on ait deux solutions {v,s} et {v*,c*}

(1)

du probléme élasto-visco-plastique avec frottement régularisé

Choisissons dans (26) et (27) écrites pour la solution {v,o}
* * *

(resp v*,o ), T =0 etw-= -y (resptT =0 etw=vz=v) et

ajoutons membre 3 membre. Il vient en tenant compte de la monotonie

des applications T + B(t) et T + A (1)
wo -5 [/t(o-c’*) + v - "*'2] =0

ol 1'on a posé fl(r) = fi(r,r). I1 résulte de (49) et des conditions
*

o s, *
initiales que 0 = 0 et v = v

5.2. Existence.

Nous introduisons les notations

(50) L] = L)"i,jwi:jdx’ [r.q] = JQTij,jUik,kdx g

et un scalaire n positif.

(1) Dans ce paragraphe nous négligeons, pour alléger 1l'écriture, les

indices €,u.
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Si on remplace les équations (26) et (27) par les équations régulari-

sées elliptiquement

(510 o sr-0) + nfostoo] + 2 (Blo)o0) + = O RS

+ At 2=0,. .)dx > 0 rad
JQVl(Tu,J 13,579 2 ) VYrera

Gij,j(wi_vi)dx = (f,w-v), Yw e v,

(52) (v',w-v) + n[v,w-v:l - [
Q

on obtient un systéme d'équations paraboliques monotones qui posséde
(J.L. Lions [1]) une unique solution {vn,on} dans la classe

2 % [ 2 [ "'l
(53) {v o } €L (0,T 5 Vx V), {viso0} € L7(0,T 5 V' x V')

o= " .

ol V' (resp V') est le dual de V (resp V) quand on identifie H

"
(resp H) 3 son dual.

La méthode de démonstration consiste & obtenir des estimations sur
{v ,on} de maniére a pouvoir passer a la limite lorsque n tend vers
n .

zéro dans (51)(52).
Estimations I.

Choisissons 1 = T introduit par (11) dans (51) et w = O dans

=

(52) et ajoutons membre 3 membre. On obtient, en négligeant d'écrire
1'indice N,
1 1
Ao'y1,-0) + nfo,-0] + 5 (Blo),1 -0) + 2 (Madstgmady = (v'om)
- n[&,f] = -(f,v).

Les opérateurs B et A étant monotone, on a, grace a (11),

(B(c),To-c) = (B(a)-B(ro),ro—o) <0

(A(o),To—cr)I.1 = (X(o)—A(TO),TO—G)Fl 2 0.
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En intégrant sur (0,t) il vient alors
1 3 t t
(s4) 3 [J(i(o‘—ro) + | v ] + “J ([v,v] +[o,o])dt'if (f,v)dt' <
(o) [e]
t t
1 2 1 2
<3 Jolf(t')l dt! +-2-Jo|v(t')] at’

d'ol il résulte que

- "
{vn,cn} € borné de L (0,T 3 H x H)

(55)
nl/z{Vn,on} € borné de L2(O,T sV x V),

ces majorations étant indépendantes de €, u et n.

Estimations II.
Faisant t = O dans (51) (52) on obtient

(*(Gr'](o),r) =0 Y € zad ,

(56
) (vé(o),w) = (£(0),w), Ywev,

- . ~
ce qui entraine que o%(o) et v% (o) sont bornés dans H et H respec-
tivement.

~

Soit alors un scalaire h > 0 destiné 3 tendre vers zéro. Ecrivons

(51)(52) pour 1'instant (resp t + h) avec {w,t} = {v(t+h), o(t+h)},

(resp .{w,'r} = {v(t),0(t)}) et ajoutons membre 3 membre les égalités

obtenues

(57) A (o' (t4h) =o' (1), (t+h)=0(1)) + (v'(t+h)-v'(t),v(t+h)-v(t))+
+ n{[o(t+h)-0(t) ,0(t+h)-0(t)] + [v(t+h)-v(t), v(t+h)-v(t)]} <

< (f(t+h)-£(t), v(t+h)-v(t)).
On divise cette inégalité par h2, puis fait tendre h vers zéro. On

obtient alors que,
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oo n
{V'(t),GT;(t)} & borné de L (0,T 3 H x H)

1/2;
n

(58) ) N
1Vﬁ, 0%} € borné de L°(0,T 3 Vx V) ,

ces estimations étant indépendantes de €, u, n.

Quel que soit w € V nous avons

1 - -
(59) (vn,w) + Jncijeij(w) + nl:vn ,w] L‘ FNdeF
1
- fr onTwTdF = (f,w).

1
Il en résulte, compte tenu des estimations I et II que l'application

r

wevV-> L‘ chwTdI‘ = <g(0) ,w> L

1

est bornée dans L2(O,T AADN

Introduisons alors

v

n
(60) v, = {1 | T €V, Ty ° 0 sur Fl}

Z12 M i . ces Y
et 1'élément A(oc) de Vo, dual de Vo quand on identifie H et son

dual, par

(61) <A(o),m> = & (B(a),1) + % (M(0), tp),

N
Soit alors v €& Vo ; choisissons 1 = on + v , ce qui est loisible.

Alors

~n)
(62) d%(o',v) + n[o ﬂa + <A(o ),v> + f v .v.,. .dx = 0, ¥Yvev.
n n n Q ni 1j,] o}

Compte tenu des estimations I et II il en résulte que
2 Y
(63) . A(cn) ¢ borné de L°(0,T ; Vé) .

~

Passage 3 la limite.

I1 résulte des estimations précédentes que l'on peut extraire

de vn, on une sous-suite, encore notée vn, Gn telle que
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v, v& +~ v, v' dans Lm(O,T ; H) faible étoile
© n
o 0% >0, o' dans L (0,T ; H) faible étoile
n
A(Un) > X dans L2(O,T B Vé) faible
E(on) > £ dans L2(O,T ; V') faible.

Nous pouvons alors, en utilisant les méthodes exposées dans
J.L. Lions [i], passer d la limite dans

(o! -1 )+ nft .- + <A(o ),T-T1 > + J v_.T,. .dx
(68) ﬂ e T nLTn, To] ( n), 5  nitidLi

1 - - =
(vn,w) + n[vn,wl + fgonijeij(w)dx Jr FNdeF Jr onTwTdF 0

. 1
pour obtenir L

d4(o',r—T ) + <x,T-T > +J v,T.. .dx = 0O Yt € ILad
o o q 1'i3.3
(65)
1 - - - -
(v',w) + JQoij ij(w)dx J FNdeF <£,w>r 0 Yweuv.

['l 1

Choisissons alors

(66) w e, €D @

dans la 2e équation (65). Il vient

+ £

(67) v =L, L .
i7 74,5 7 4

ce qui prouve que oij 5 (S LQ(Q). Multipliant alors (67) par
b

W, € Hl(Q), et intégrant par parties sur Q (ce qui est licite) il

vient

1 - - -
(68) (Vi’wi) + f oijeij(w)dx f onNdP [ oTwTdF
Q Tl T
1
- f oijnjwidr = (f,w)
FQ

d'ol par comparaison avec (65)

f (cN-FN)deP + [ cTwTdF - <E,w>r + f oijnjwidr =0 Yw ev
I'l 1"1 1 I‘2
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ce qui implique facilement que

ON = FN sur Pl . cijnj = 0 sur FQ

(69)
<E ’W>I‘ = I cTwTdI' Vweéev.
1 r
1
I1 reste & montrer que X = A(o), ce qui s'obient par un raisonnement

n
de monotonie. Quel que soit T € L2(V) nous avons

T
(70) f (Ao ) - A(t), o_ -T)dt > O,
o n n =

d'ol, en utilisant (64) aménagée,

T T
(71) IO (A(T),T‘On)dt z_IO(A(cn),r—cn)dt

>

N

1 2 T T
(cn) + 5-(vn) - fo(f,w)dt - fo (o%,r)dr - n[bn,r1.

Prenant la limite inférieure des deux membres, utilisant la semi-

PPN 2 A
continuité inférieure de JQ(cn) + ]vn[ et (65), il vient

T
(72) J (x = A(t),0 '~ 1)dt > O.
o

N
Choisissant alors T =0 + Ay ol A > 0, u & L2(V), il vient aprés

division par A et passage d la limite A + O,

T
f (x -~ Mo),ul)dt > 0
o
ce qui implique

(73) A(o) = x ,
ce qui achéve la démonstration du théoréme 1.

Démonstration du théordme 2.

6.1. Unicité. Elle se démontre comme pour le théoréme 1.
6.2. Existence. Nous désignons par {ve, oe} la solution obtenue
au théoréme 1 et définie par

(74) tv .0} €12(0,T 5 V x W o (t) € Uag,
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I 1 - 1 _
(75) Wlolt=0.) + S (B0, )h10) + 2 (Mo )t Rl
+fV-(T.. =0 .. .)dx = 0 V. cWaa
0 €1 17,] €13,]
(76) v! - ¢ = f

€ ei],] i

Introduisons la forme linéaire Al(oe) sur VO par

N
< Al(os)’ T > = JF A(GE).TdF , Ve A
1
I1 résulte alors des estimations du n® 5 que
1 p 2 v
(77) = A, (o) & borné de L“(0,T ; V ).
€ 1 7¢e o

De plus

"
4 {Ve’ ce} € borné de L (0,T ; H x H)

- "
borné de L (0,T 3 H x H)

{v', o'} €
e’ e
2 © v
(78) A B(OE) 2 borné de L (0,T ; H)
O .. € borné de L (0,T ; H) (d'apres (76))
€17,]

N

L eij(vs) 4 borné de L(0,T ; H), (d'aprés (75)).

I1 résulte des estimations (77) et (78) que 1l'on peut extraire de

Vs, oe une sous suite, encore notée Ve, Oe’ telle que
N
({VE, cs} -+ {v,0} dans L (0,T 3 V x V) faible étoile
N
{vé,c;} + {v',0'} dans L7(0,T , H x H) faible étoile

(79) {
Blo) = g, dans L°(0,T s ) faible &toile

A(o) = 0 dans L2(O,T 3 V) fort.
S 1 7€ o
2 N
Formons alors, VYt € L°(0,T ; VO),
T
IO < Al(oe) - Al(r), g, - T dt > 0

et faisons tendre ¢ vers zéro en utilisant (79) ; il vient
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T
f < Al(T), o -1 dt> 0
]

d'ol 1l'on déduit que Al(o) = 0, d'ol

(80) ]0T| <g su T,.

Iy
Choisissons alors ré‘LQ(O,T s V), t(t) € QLad, |TT[ < g sur Fl ;

en tenant compte de

<A (c)sT -0 > < 0
1 7e €

1'égalité (75) donne

(81) U%(c;,r-og) + %-(B(oe),r—ce) + J v_.( )dx > 0

T, +=0 ..
o €1 13,1 "€33,3
et en intégrant sur (0,T) et utilisant (76)

T T
1 o 1 1 2 ,
(82) f T (Blo )70 )dt = wak(oe(T)) + Ejve(T)] - fo (o!,1)dt -

[e]

T T T
,T)dt - .T.. .dt - £, dt.
JO(S(G€) T) fovelle,] t IO( VE) t

I
T |+

Utilisant la semi-continuité inférieure de UQ(GE(T)) et IVE(T)[2

N

on peut passer 3 la limite inférieure des deux membres pour obtenir,

T
(83) 1lim inf J L (8o )0 at > 2 dio(m) + £ |vimy|? -
° u € € -2 2

T 1 T T T
- J d{(ﬁ',T)dt - —-J (g, ,t)dt - J v.T.. .dt - I (f,v)dt.
o LR R o Y 1Js] °

On peut passer a la limite dans (76) pour obtenir

84 v!' - 0,. . = f,
(84) 17,3 1

On en déduit alors pour (83) que

T 1 T
= (B(cg_),0-~0c )dt > - f d{(c‘,r—a)dt -
oM € € - o

T 1 T
- fo m (gl,T—c)dt - I vi(r. o )dt

(85) 1lim inf J

o 1 1i3,37713,3
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Utilisant alors la monotonie de l'opérateur B, il s'ensuit que

T
' 1
(86) JO [J{(o »T-0) + ;-(El,r—o) t (vt )]dt > 0

T ..
Js3 13,3

ce qui, par application d'un théoréme de Lebesgue, fournit

(87) U%(G',T‘G) + l-(E ,T-0) + (V. 3Tes .=C.. .) > 0
u vl 1°°13,] 13,1 —

Yt e Qiad, ITT| < g sur Tl.

Par ailleurs il est clair, compte tenu des estimations (78), que

=0 sur T N ON = FN sur Fl .

I1 reste donc seulement a montrer que El = RB(o). On utilise pour

cela la monotonie de l'opérateur B en procédant comme il a été fait
dans le n° 5 pour montrer que X = A(c). Ceci achéve la démonstration

du théoréme 2.

Démonstration du théoréme 3.

Elle utilise exactement les mémes techniques que celle du

théoréme 2 et les estimations obtenues aux n® 5 et 6 qui étaient

indépendantes de u.
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QUATRIEME CONFERENCE

PLAQUE EN FORTE FLEXION

SOUMISE A DES CONDITIONS UNILATERALES

1) Introduction.

Nous nous proposons 1l'étude de la déformation d'une plaque en
forte flexion soumise 3 des conditions 3 la frontidre unilatérales.

La théorie non lindaire des plaques en forte flexion qui conduit
aux équations dites de Von Karman est établie dans le livre de
Landau et Lifschitz [i] auquel le lecteur pourra se reporter. Une

étude générale de ces types de problémes a été faite par G. Duvaut

et J.L. Lions Eq avec certains types de conditions aux limites.
D'autres types de conditions aux limites conduisent 3 des problémes
unilatéraux non linéaires du type semi-coercifs (cf J.L. Lions et

G. Stampacchia [1]) et ont &té résolus par M. Potier [il. Lorsqu'on

applique 3 la frontiére de la plaque des forces situées dans le plan
de cette derniére on peut observer des phénoménes de flambement de

la plaque et sur le plan mathématique on est conduit 3 des problémes

de bifurcation (cf Do [i]).
Ici nous nous proposons de donner une introduction a ces types de
problémes en donnant les équations générales, la formule de Green

adaptée et la formulation variationnelle et les résultats d'existence

et d'unicité (limitée 3 des sollicitations assez faibles) dans le cas
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d'un probléme particulier simple. Pour les démonstrations nous ren-
verrons a l'article plus complet de G. Duvaut et J.L. Lions [11 cité

précédemment.

Probléme physique et équations.

Nous considérons une plaque mince qui dans son état non déformé

~

est assimilé 3 sa trace Q sur un plan Oxlx La région Q est supposée

5
ouverte et bornée dans 0x,%,. Sa frontiére 3Q est supposée réguliére

et constituée de deux parties Pl et FQ avec

(1) mes Fl >0 .

La plaque est encastrée le long de Tl. Le long de I', une butée rigide

2
interdit les déplacements vers les g négatifs (le repére 0%, X, Xy

est orthonormé direct). Nous désignons par {ul,uQE} le vecteur dé-
placement des points de la plaque et par {oaB} le tenseur symétrique
des contraintes planes, o et B prenant les valeurs 1 et 2. De plus

la plaque est soumise 3 une densité de forces surfaciques f(x) por-
tées par Ox3.
Les équations d'équlibre et de comportement des plaques en théorie

non linéaire s'écrivent,

2. .3 B¢, _
(2) DATE h Py (UQB F = f

B o

3 -
(3) szg Tup = 0
_ 1 93g 93¢

) ouB - aaByé [Eyé(U) t3 axY axd

au du

S L T =

(5) eaB(u) =3 (axg * 3% ) u {ul,uQ} s

ol h est 1'épaisseur de la plaque, D le module de rigidité 3 la
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flexion, auBYa des coefficients d'élasticité satisfaisants a
. a = a = a
(6) aBys$ Bayd ySaB
aaBYG eaﬁgys 3~ao€aeeae » Q= Cste > 0, Vsas = a4

Les conditions aux limites du probléme sont

_ 98
(7) £ = = 0 sur Fl
ol n = {nl,n2} est la normale extérieare unitaire a 3Q,
(8) u; T, = 0 sur Fl
(9) %ap"g =0 sur F2
(10 £g>0, F>0, E.F =0 sur F2

ol F représente la densité linéique de forces extérieures portées

et appliquées le long de I',. Nous serons amenés dans un

par Ox 9

3

premier temps d remplacer la condition (10) par une condition régu-

larisée

"

(11)

Ol O

£>0 => F
=

£ <0 -F

le coefficient positif ¢ étant donné. La condition (11) exprime que

la butée qui limite les déplacements EIP < 0 est élastique au lieu
2
d'étre rigide. Le cas rigide sera obtenu par passage a la limite

e + 0,

Formulation variationnelle.

A partir des équations (2) (3) (4) on établit (cf G. Duvaut

et J.L. Lions [ﬂ Bﬂ)la formule de Green suivante,
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. 98 3z 4y - &
(12) a(g,z) thcaB P 3R dx f hodBnB v zdl' +
o B T o

+ { F(E)zdl - f M(E) %E-dr + f fzdx
r r 0 Q

ol z = Z(Xl’x2) est une fonction régulidre sur Q, 3 (£,z) la forme

bilinéaire
2. .2 2, .2 2, .2 2.2
(13) a(g’z):D ag 8___z_+3__§_§__g._+v(3_£8_z+_3_§_3_z_)+
Q 3x2 ax2 3x2 axz 3x2 sz 3x2 ax2
1 1 2 2 1 2 2 1
2 2
vy 2E 3=z
+2(1-v) 3x13x2 9X_ 9X 1 dxldx2

1772

ol v est le coefficient de Poisson du matériau ; F(£) et M({) repré-

sent nt les densités linéiques de forces et de moments sur 3Q. Ce

sont des expressions linéaires par rapport 3 £ dont 1l'expression
n'est pas nécessaire ici.,

Introduisons les espaces

2= 1%(2), z={zz€n @, 22320 gurT,}
(14)
vo= P@)?, v vlvem@?, v=o sw T}

Les espaces Z et V sont de HIlbert quand on les munit des produits

scalaires respectifs de H2(Q) et de (Hl(Q))2. On montre (cf G. Duvaut
J.L. Lions [l]) que a(£,z) est coercive sur Z et que la forme bili-
néaire J{(e(u),e(V)) donnée par

(15) Acnio) = Inaijkhhijkkh , o) = {e (D},

est coecive sur V, grdce a 1'hypothése (1).

Si {g,u} est une solution régulidre du probléme (2)-(10) (resp

(2)-(9)(11) nous aurons
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> 0

(16) {g,ut e zx v, ‘Elr >
2

(17 alg,z-8) + hhe(w) + 3 1) M ,26)) 3f £(z-£)dx

Q
Vzez . z > 0
|I‘2—

18 Rew + Fue), e =0 ¥vev

ol on a posé

(19 M8 = B2 Xy ua) = u(z,2),

o B

(respectivement

(19) {g,u} €2 xV

(20) a(g,z) + h JQ(e(w) + %-M(E), M(E,z)) - f % g zdr=f f,zdx

T Q

2

V’z (A
1) A+ me, e =0 Yy ew.

Les propriétés (16)(17)(18) (resp (19)(20)(21)) constituent les

formulations variationnelles des problémes envisagés. On montre
qu'inversement les solutions de (16)(17)(18) (resp (19)(20)(21))
sont soluticns, au moins en un sens affaibli des problémes envisagés.

Résultats.
On démontre (cf G. Duvaut et J.L. Lions [l]) les théorémes

suivants :
Théoréme 1. Sous les hypothéses (1)(6) et
2
(22) f € L°(Q)
i1 existe au moins une solution us & satisfaisant (19)-(21).

Théoréme 2. Sous les hypothéses (1)(6)(22) il existe au moins une
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solution u, & satisfaisant (16)-(18). De plus il existe une sous

suite de u s ge qui converge vers u, § dans V x Z faible.

Théoréme 3. Si f est de la forme

(23) f=nf , f ¢ L2(Q), n>o0,

il existe une constante positive ng telle que sin :_no la solution

u, & est unique. Si alors on pose

24 = , =
(2u) u = nu g e,
on a
(25) lim un =0, lim En = go dans V x Z
o o
od EO est l'unique solution du probléme de plaque linéaire
g€z
(26) a (£,z-¢) 3[ £(z-g)dx Yz ¢ z.
Q

Les résultats analogues s'obtiennent avec la solution régularisée

v .
e’gs
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CINQUIEME ET SIXIEME CONFERENCES

RESOLUTION D'UN PROBLEME DE STEFAN

(Fusion d'un bloc de glace & 0°)

1) Probléme Physique : On considére un bloc de glace i 0° occupant la

région ouverte  de ﬁ?3 de frontiére T réguliére. On supppose
' composée de trois parties Fl, P2, F3 sans points communs et

dont la réunion compose I . On suppose de plus que F] et F3 n'ont

pas de frontiére commune et que FI est de mesure strictement

positive.

On cherche 1'évolution de ce bloc de glace lorsque sa frontiére Fl

est le siége d'un flux de chaleur, les parties F2 et F3 étant

respectivement de flux de chaleur nul et de température O0°. On
néglige la variation de volume due 3 la fusion et on suppose que

1'eau fournie reste en place. On désigne par $f(t) la surface de
fusion d'équation t = 2(x), inconnue i priori (x = (x]’XZ’X3))'

On désigne par k la chaleur latente de la glace.

2) Mise en é&quations : On cherche un champ de temp&rature 6(x,t) ,

X € 5', t e [p,T ] , T >o0, satisfaisant ,

(1) %% - A8 = o dans t > 2(x%)

(2) 8(x%,t) = 0 dans t g 2(x)



3
(4)
(5)
(6)

7)

grad 6 ¢ gard %

1
(o5
@

‘5; = b(e—el)a
3 % _
an °
6 = o
8(x,0) = o

= -k

(b >o

3) Formulation variationnelle

M

Suivant C. Baiocchi [C

t
u(x,t) = J 8(x,t) dt si
2(x)
(8)
u(x,t) = o si
On pose :
2 _ 1
H=1Q), V={vlveHB (@, v-=
(9
K={vlveVv , v > dans
a(u,v) = J grad u grad v dx ,
Q
(10)
(u,v) =Iuvdx, Vu,vev.
Q

pour

donné)

pour X € Q .

t

sur

sur

sur

on introduit :

L(v) = =k I

G. Duvaut

r.}

v dx
Q

(1) Soit A 1la normale 3 éﬁ(t) di_);igég vers la région oi 6 = O.

On écrit

que la flux de chaleur - gradfen a travers la surface :e(t) est la
chaleur nécessaire 3 la fusion du volume V_ de glace ol V_ est la

vitesse normale, mesurée sur n, de déplacement de ge(t).

3) .

> >
-grad 6 *n = k V, ,

D'otl :
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La fonction wu(x,t) satisfait 3 :

(11) u(t) € K, Vte [0,1]

(12) u=o0, gradu-=o0 pour t = &(x) ,
(13) u=o . pour t < %(x) ,
(14) -g_‘ti - Au = -k pour t > (x) ,
(15) - %}% =b(u - elt) sur l‘1 ,

(16) %‘1— =0 sur I‘2 .

On déduit de (11) - (16) que u satisfait :
u(t) € K, Ve e [O,T] P:P. »

arn) Qu',v=u)+a(u,v-u)+b J (u—elt)(v—u)dI' > L(v-u), Yvex,
] r,
u(x,0) = 0. (])

Variante :
Si on remplace la condition (4) par :
bis

)

(4 6 =9 sur r .,

1 1

les autres conditions &tant inchanges, on est conduit, pour u

défini par (8) , 4 la formulation variationnelle suivante :
on introduit Kl(t) par :

(18) Kl(t)={u|veV, v =0 t, v>,o‘ dans 0}

On a alors :

(]) On a posé :

(s3] Ko3)
rt
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u(t) e k() , Yt e [o1],
(19)4¢u' (£), v=u(t) + a(u(t), v-u(t)) » Liv-u(t)), Y v e K ()

u(o) = O.

4) Enoncé des résultats

Théoréme |

Pour tout b > o, donné, il existe. un unique u solution de (17)
dans la classe ,
. ' 2 . N - .
(20) Uy s Uy € L7(0,T ; V) L (0,T ; H) .
Propriété 1

$ by &b,

La solution u,  est telle que, VY o
(21) oL ubz(x,t) < ubl(x,t) N @t
oli (@) (x) est la fonction définie par :

22) 2®
2B

on 2

o dans @ , @=6] surI‘l,®=osurT3,

]
[e]
[
[
a}
—

Propriété 2

La solution ug  est telle que, Vite [O,T[ ,
du

osﬁhs@,

oi (H) est définie par (22).

Théoréme 2

I1 existe u unique solution de (19) dans la classe

ue 12(0,T; V) A L7(0,T ; H)



- 88 -

G. Duvaut

o' e 120,T ; H).

De plus uy tend vers u dans L2(0,T ; H)Y fort et dans

L2(0,T ; V) faible lorsque b tend vers + « ., De plus,

“é tend vers u' dans Lm[p x (O,Tjj faible étoile.

5) Démonstration du théoréme I

L'unicité est évidente. Pour 1'existence onprocéde par pénali-

sation, estimation i priori et passage 3 la limite.

i) Pénalisation : Soit € > o et soit B(v) défini par :

si v(x) 20

™

~
<

~
]
[e]

V veH.
o si v(x) <o

B(v)
On introduit alors ue(x,t) solution (cf. [2]) de

u, € L2(0,T s V), u; € L2(0,T ; H)

(23) (h;,v) + 3(u€’V) + %(B(ue),v)+b Jr(ue-elt)v dr=L(v), VveVv
1

[}

ﬁe(o) 0.

ii) Estimations 3 priori I : Choisissant v = ue(t) dans :

(23) on obtient (x) (page suivante)

4 lEEI +a(u) + l(B(u You) +b | u2 dl = L(u ) + 6.t b u_ dr
dt 2 3 € €'’ e VF € € 1 r, €
1 1

d'ol il résulte que :
(24) u_ € borné de L°0,T ; B n L2(0,T ; V) .

iii) Estimations i priori II : Soit ¢t € [O,T[ et h > o tel que

t +he [0,T] .
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Dans 1'égalité (23) écrite a l'instant t (resp. (t+h)) choisissons
v = u(t+h) - u(t) (respectivement v = u(t) - u(t+h)) et ajoutons

membre 3 membre les Egalités obtenues ; il vient, en posant :

(25) w(t) = u(t+h) - u(t) ,
(26) -(ﬂ,w)-a(u)—bf w2d1‘>,—6 th w dT .

Divisant (26) par -h2 et intégrant sur (0,t) , on obtient :

- 2 4t t t
ERE LGN aX) dt + b &2 dr de < 0.b & ar)ae +
2 h h h 1 h
o o’T o’T 2
11 |w(o)
2 h

Mais ue(t) étant dérivable en t , on a, lorsque h-> o ,

2

1y 12 ¢ ' ¢ '
0 lu (t)] + a(u'(1)) dt + b u'® 4ar dar g
€ € o ‘T €

(o]

t 1 1 9
[ 1 [
< el b Jo Ir ul dr dr + 3 Iue(o)| .

Appliquant (23) pour t =0 on a :
Iu;(o)l & Cste
d'ol il résulte immédiatement que :
. . B ® 2
(27) ul e borné de L (0,T ; H) M L°(0,T ; V)
Revenart 3 (23) on obtient :

(28) 18wy e borms de P01V (* .

(.) On a posé (u,v) = J uvdx , |u| = (u,u)l/2 , a(v)
Q

a(v,v).
(") L'espace V' est l@ dual de V quand on identifie H 3

son dual.
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iv) Passage & la limite : Il résulte des estimations (24) (27) (28)

qu'il .existe une sous suite, encore notée u_ s telle que :

u > u dans LZ(O,T ; V) faible ,

u' + u' dans L7(0,T ; H) faible &toile

u; + u' dans LZ(O,T ;3 V) faible

B(ue) + o dans L2(O,T s V') fort .
Soit alors v e LZ(O,T 3 K). Remplagons dans (25) la fonction
test par v(t) - ue(t) ; 11 vient, compte tenu de ce que RB(v)=o

et de la monotonie de B8 ,
duE
(29) (—), v - ue) + al(ue,v—ue) > L(v—us) + elt b J (v—ua) dr
dt F]
ol on a posé :
al(u,v) = a(u,v) + b J uv dl .
r
Intégrant sur (0,T) et prenant la limite inférieure des deux

membres, on trouve 3 la fin :

(30) (%%, v-u) + al(u,v-u) > L(v-u) + e]t b Jr (v=u) dT
Vvexk, \7’ce(o,'r).l
On vérifie immédiatement que u(o) est limite dans H faible de
ue(o). I1 en résulte, compte tenu de B(ue) + o dans

L2(0,T ;3 V') fort qui entrafne u(t) ¢ K, et de (30) que

u est solution de (17) .

Remarque 1

Si on analyse la démonstration du théoréme 1, on constate que
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les conclusions (20)ont pu €tre obtenues grace au fait que la forme

linéaire du second membre de (17), soit :

L.(t) (v) =L(v) +b 6, t J v dr
1 1 Fj
telle que :
L](t) € LZ(O,T s VY
(31) ’ 9
L](o) e H , L;(t) e L°(0,T ; V).

Les conclusions du théoréme 1 sont donc valables sous les hypothéses

générales (31) sur le second membre.

Démonstration de la propriété 1

i) Montrons que u(x,t) ¢ @ t .

Nous posons @
wix,t) = (u(x,t) - @ o7
et nous choisissons :
v =u(t) * w(x,t)
dans (17), ce qui est loisible car o £ w(x,t) < u(x,t).

I1 vient alors :

(u'"(t),w)+ a(u(t),w)+ b I' (u—elt)ow dx = -k I wdx < O

r, Q
d'otli :

(32) W'(t) , wt))sg O
car

I (u - elt) wdlr = J w2 ar > o,
l-‘l I‘]
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et

a( @, w =f 2QQ-wdl‘;O
r

on

1
du fait que o ¢ ® £ 6, d'aprés le principe du maximum ce qui

- 3
entralne —®-

an > 0.

Il en résulte alors de (32) que w(t) = O et par -"conséquent :

u(x,t) < @ t, p.p. dans Q x (0,T).

ii) Montrons que b] K9 b2 entralne ub1 < ub2 .

Pour simplifier 1'é&criture nous posons :

i=1 et 2.

Dans 1'inégalité (17) relative a u (respect. u2) nous

1

choisissons v = u - (u2 - u]) (respect. v = u, + (uz-u]) ) .

Ajoutant memb re 3 membre les deux inégalités obtenues, il vient :

(33) (w',w) + a(w,w) +j w[bl (ul—elt)—bz(uz—elt)] dr € 0

Ty

ol on a posé :

+
v o= (u] - “2)

(33)

DanM'intégrale sur I‘1 ne porte en fait que sur 1l'ensemble des

points de I‘] ol u, > uy . Mais alors, tenant compte de 1i)

on a

(34) ug -6t < ug-6tg O
ce qui entr@ine, compte tenu de o < b] < b2 .

(35) wl (u - 8,) = by(u, - 6] 2 0.

Intégrant alors (33) sur (0,T), on en déduit que :
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donc :

u £ u sur Q x (0,T) PP

7) Démonstration de la propriété 2

i) Démonstration de u'(t) >0 .

Soient t € [O,T[, et h>o telque t+h ¢ [O,T] .

Nous posons :

(36) w(x,t) = [u(x,t+h) - u(x,t)] .

Dans 1'inégalité (17) relative & l'instant t (resp. t+h)
nous choisissons v = u(t) - w(t) (resp. v = u(t+h) + w(t))

et ajoutons membre 3 membre les deux inégalités obtenues. Il

vient :

37) (w(E), w(t))') + a, (w(t)) $-b6 J w(t) dT 5 0 .

N

En intégrant (37) sur (0,T) on a :

t
1 lwe)[? + jo a,@(®) ¢ 3 lw@|?.

Mais :
(38) w() = [u(x,h) - u(x,0)] = [u(x,h):]_= 0,
d'ol il résulte que :
w(t) = 0
c'est-3-dire :

(39) u(x,t+h) - u(x,t) > 0

~
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et par conséquent :

u'(x,t) > 0 Y (x,t) € @ x (0,T) p.p.

ii) Démonstration de wu'(t) < @
Nous introduisons u.] (x,t) par :
(40) @) = @t - uxt ,
et nous savons que :
(41) o £ u](x,t) $ @ t , u;(x,t) K3 @ .
I1 résulte de la propriété 1 et de (17) que u(x,t) satisfait :
u(t) e i(t) ={vlvek, vs @ t},
(42) { (u'(t),v-u(t)+a(u(t) ,v-u(t)+bjr(u(t)-9] t) (v—u(t))dl‘a—kjév-u(t))dx
! Vv e IZ(t) ,
u(o) = 0.
Par le changement de fonction inconnue (40) et les propriétés (41)
et (42) on voit que u](x,t) satisfait :
u (8) € K(e)
(43) (u;(t).vl-ul(t))+a(ul(t)-®t,v]-u1(c))-b Lul(t) (vl—ul(t))dl‘ >
> Jﬂ(k+®)(vl-ul(t')/)dx , ',vvl e K(t) ,
uJ,(o) = 0.
Notre probléme est alors de montrer que u;(t) > 0. Soit un instant

t e [O,T[ et un nombre positif h tel que t+h ¢ [O,T]. Posons :

(44) wix,t) = [u (x,t4h) = u (x,)]"

et choisissons dans 1'inégalité (46) relative 3 l'instant t+h
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(resp. t) 1'élément v, par:
v, = u(t+h) + w(t)

(resp. par :
v, = u(t) - w(t)

ces choix étant licites. Si nous ajoutons membre 3 membre les

deux inégalités obtenues, nous avons :

(44)  (w',w) +a(w)+bf w? ar + ha (@, w) ¢ o.

T
Mais, compte tenu de la]définition de @ , il vient a(@®,w):20,
d'ol il résulte que :

w', w) g O
et en intégrant sur (O,t),

lww)|? ¢ [w@]* = o,

ce qui établit la propriété souhaitée.

8) Démonstration du thédofédme 2

8.1 - Unicité : Elle est immédiate. En effet si u(x,t) et

u*(x,t) sont deux solutions de (19), on choisit v = u*

(resp. v = u) dans 1'inégalité (19) relative 3 u (resp.

relative 3 u®) et on ajoute membre 3 membre les inégalités

obtenues, ce qui donne classiquement, en posant w = u - u*

(46) W', w) + a(w,w) g O

d'oll par intégration sur (0,t), w(t) = 0, c'est=i~dire
g
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u(t) = u* (t)
8.2 - Existence : Nous allons montrer que la solution uy de (17)
tend vers un é€lément u solution de (19) lorsque b tend

vers +® ., Pour cela nous utilisons les propriétés 1 et 2

établies précédemment et des estimations a priori sur U -

i) Estimations & priori

Nous choisissons, dans 1'inégalité (17), v = @t, ol

(@ a été défini par (40). Il vient :
2
N (o, @t - u) + atu, @-y) +b Jr(“b'ext) ar >

1
>/—kI(C}Dt:—ub) dx .
Q

puis :

48)  (u - @, uy-~@t) + a~@t) + b Jr (ub—elt)Z r ¢

< L%@ + k) (@t-ub) dx - a}@t, u, - @t).
Intégrant (48) sur (0,t), on obtient :
(49) % lub - .t]z + f: a(ub"®'t) dr + Iz
< cf - ®lldc
0

I (ub—e T)ZdI‘ dt g
T 1

ol C est une constante indépendante de b. Comme b est

-destiné i tendre vers +e , on peut supposer b > 1. Une
L. N 1 -
norme équivalente 3 la norme de v dans H (2) est donnée

par :

[lvl] = (a(v) + J v? dI‘)]/2
T .
1 i
puisque 1"] est de mesure strictement positive.
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I1 s'en suit que (49) donne :

1 2 1t 2 t 2.
(50) 3 Iub - @t]|” + -Z—J Hub-®‘r|| dt + (b-1) j I(ub—elr) dlrdt
[¢} 70T
< C.
DS |

ol C] est une constante indépendante de b.

On déduit de (50) que :
(51) u, € borné de L°(0,T ; B) NL2(0,T ; V)
t
2
(52) (b~1) J I (u,~0, )" dr dt ¢ C,
0 P]
Nous savons de plus d'aprés la propriété 2 que :

(53) u' € borné de Lm(ﬂ =x (0,T))

b
et d'aprés la propriété 1 que :

(54) ub(x,t) est une fonction croissante en b, majorée par e]t(l)

ii) Passage 3 la limite

I1 résulte des estimations précédentes que, lorsque h tend

vers +e, au moins pour une sous-suite :

(55) uy tend vers u dans LG(O,T ;s H) faible étoile
(56) up tend vers u dans L2(0,T ;3 V) faible

(57) ué tend vers u' dans L (2 x 0,T) faible étoile
(58) ub(x,t) tend vers u(x,t) dans [R ponetuellement en

(x,t) € @ x (0,T).

(]) D'apréds le lemme 2, elle est méme majorée par (:)t.
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De plus (54) implique que :
T 2 T 2
(59) J I (ub(x,t)) dx dt - J J (u(x,t))” dx dt
0‘Q 0‘Q
et donc :
(60) utend vers u dans 1°(0,T ; H) fort.
11 résulte également des estimations que :
(61) uy tend.vers u dans LZ(O,T ; LZ(FI)) fort

et d'aprés (52) nous avons donc :

(62) u -
I‘] ']t .

On voit alors immédiatement que :

(63) u(t) ¢ Kl(t)

Choisissons alors Vv € Kl(t) dans (17) ,

1 - - - _ ] -
(ub’ v UB) + a(ub, v uB) + b Ir (ub Blt)(elt ub)dF > =k JQ(V ub)dx.
1
L'intégrale sur P] étant négative, on a aussi ,
1 - - - -
(64) (ub,v ub)+ a(ub,v ub) > =k jg(v ub)dx, Yv e Kl(t) .
On peut alors dé&duire (19) de (64) comme il est indiqué dans

(]

Remarque 1

On peut obtenir 1'existence dans le théor&me 2 sans utiliser

la propriété 2 par un changement de fonction inconnue et utilisation

d'un résultat de H. Brézis [3].
Introduisons :

Kz(t) = {vilvz eV, Vzirl= (U o>V, > - ®t}
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u,(t) = u(t) - @t.
Compte tenu de la propriété 1 la fonction u, doit satisfaire
'y - - - -
(u2,v2 u2) + a(uz,v2 uz) > fé(H)+k)(v2 uz)dx, V’vz € Kz(t)
(65) uz(t) € Kz(t)
uy(0) = o .
On voit alors facilement que (65) possé&de une solution unique Eﬂ

dans la classe :

u, € L2(0,T s V), ué € LZ(O,T s H) .

Remarque 2 (1)

On peut également obtenir 1l'existence dans le théoréme 2 par

un procédé de pénalisation partielle. Introduisons & cet effet

1'opérateur de pénalisation B de H danc H défini par :

0 si v > 0

B(v)

[}

B(v) v si v < O
et l'espace affine :
Vl(t) ={vi|ve Vv, v =.e]t sur Fl 1.

Le scalaire ¢ é&tant positif, destiné i tendre vers zéro, soiti

ue(x,t) la solution de 1'&quation

(l) Cette remarque a été suggérée a 1'A. par J.L. LIONS.



- 100 -

G. Duvaut

ue(t) € Vl(t) , Yt e_[O,T] P.P-

(66)4(u’,v-u ) + a(u_,v-u) + -::—(B(ue),v-us)= —kfév-ue)dx, Yvev, ().

ue(o) = 0.

[}

Choisissant v (:)t dans 1'égalité (66) on obtient aisément les

majorations (?)
(67) u_ e borné de L7(0,T ; B) O 20,7 3 V)
Choisissant ensuite v = us(t) , te EO;I[ dans 1'égalité (66)

relative i l'instant t+h , h>o , t+h e [b,TJ , et v = ue(t+h)

-

dans 1'égalité (66) relative a l'instant t. Ajoutant membre i membre

les deux égalités et utilisant la monotonie de B on obtient que :
(68) u! ¢ borné de L°(0,T 3 ) NLP(0,T 5 V)
car u;(o) est borné dans H .

Les estimations (67) et (68) permettent alors de passer i la

limite € > o et d'obtenir 1l'existence dans le théoréme 2.

Remarque 3

Nous n'avons pas utilisé les raisonnements indiqués aux

remarques 1 et 2 pour démontrer l'existence dans le théoréme 2 car
nous avons préféré nous servir des propriétés | et 2 qui mettent

en éyidence certains caractéres physiques de la solution. Le

théoréme 2 montre de plus que la solution de (19) est limite de

(J) On utilise le fait que B((:)t) =0 et que B est monotone.



9

- 101 -

G. Duvaut

solution de (17) lorsque le coefficient b de transmission de la

paroi tend vers +» , ce qui traduit également un fait concret.

Remarque 4

Biea que nous ne 1'ayons pas énoncé comme théoréme, il est

évident d'aprés la démonstration du théoréme 2 que la solution u

de (19) satisfait aux propriétés 1 et 2 énoncées pour ug .

Conclusion

Les raisonnements que nous avons mis en oeuvre dans le cas de

la glace peuvent naturellement s'adapter i d'autres phénoménes de
fusion et complémentairement & des phénoménes de cristallisation.

La caractéristique de cﬁacun des cas est qu'initialement la tempé-
rature du milieu continu 3 transformer doit €tre uniformément soit

i sa température de fusion, soit 3 sa température de cristallisation.
Les conditions aux limites annexes peuvent étre diverses suivant les

conditions physiques extérieures.
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REMARKS ABOUT THE FREE BOUNDARIES OCCURRING IN

VARIATIONAL INEQUALITIES

David Kinderléhrer

1. This discussion concerns two variational inequalities
with interior constraints or obstacles. Each of these prob--
lems has given rise to questions about the smoothness of so-
lutions and the nature of the free boundary determined by
coincidence with the obstacle. The present theme is to show
how smoothness of the solution implies smoothness of the free
boundary provided that certain geométric conditions, which
vary from problem to problem, are satisfied. The emphasis,
therefore, is on formulation and illustration rather than
demonstration. Our applications are to a linear problem which
arises in the study of stationary fluid flow through a porous
medium and to a nonlinear problem related to minimizing a
functional in a set of functions constrained to lie above a

concave obstacle.

Notations

Q2 open connected set in R" with smooth boundary 3@

g smooth in a
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v smooth in Q@ and ¢ < g on 232 (the obstacle)
We may assume for the time being that g =0 since

our interest is restricted to interior properties.

K = Kw = {v e H1'm(n) :v>y in @ and v =g on 3q}

£cch (@)

Problem 1 Let a,, € HZ'S(Q), 1<4i,j <n, a,, = a,,, s>n and
y 1] - - 1) Ji

satisfy o

a4 £y Ej > v |g]2 for £ e R® and xe 2 .
. (
(1.1) ue X: Jaij u, o (vew)odx 2 f(v-u)dx V e K
Q

Q * J

' 2
Problem 2 Let af(p) = (a1(p),...,an(p)) e C (Rn) satisfy:
for each C -compact in Rp, there exists a v = v(€)y > 0

such 'that
“(a(p)-a(q)) (p-q) > v|p-q]|? for p,q e C

f [

(1.2) u e K: Iaj(Du)Dj(v—u)dx > Jf(v-u)dx veKk
]
Q

Q
The sblutions to problems 1 and 2 determine a coin-

cidence set
(1.3) I=1I( = {xe:ulx)=1y(x)}

whose boundary 23I, called the curve of separation, is the

free boundary we wish to study. To recapitulaté, we shall
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achieve this by exploiting the smoothness of u.

We begin with some very brief informal remarks- about
the regularity of the solutions to Problems 1 and 2. The
first results in this direction for Problem 1 are due to H.
Lewy and G.Stampacchia [14] who showed that

u e Hz'P(Q) when Ly e LP(Q), f=g=0,n<p< »,

Ly = -D.(a,, D, )
j i3 1

About the same time, Brezis and-Staﬁpacchia [5] considered
this problem for more general f and g and operators L.
It is possible to consider the solution u as the minimum
of supersolutions to the equation ILw = —Dj(aij Di w) which
lie above Yy in Q. This approach has been studied by H.
Lewy "and G.Stampacchia [15] and recently by U.Mosco and G.M.
Troianiello [20].

The smoothness of the solution to Problem 2 has been
associated to its existence. Again, H.Lewy and GStampacchia
[16] were able to prove that, for u satisfying (1.2),

u e Hz'p(Q) when ¢ € Cz(ﬁ), f=qg=0, all pel1,=).
For the special case of minimum area, we refer to M.Giaquinta

and L.Pepe [9]. In general, existence of solutions to

Problem 2 depends on the relatibnship among 99, a(p), and f.
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S.Mazzone has considered this question both from the point of
view of the coerciveness of a(p) and the geometrical rela-
tionship among 3@, a(p), £, [18];[19]. C.Gerhardt has also

treated this problem [7].

It is clear, by considering one dimensional examples,
that the solution u to (1.1) or (1.2) need not be in CZ(Q).
It was thought by some, including the author, that Hz'p
smoothness was the best generally possible even though for
important two dimensional examples ([10],[11]), the second
derivatives were bounded. However, J.Frehse [6] recently
2,

=56,.. i '
() for aij i3 By a different

showed that u ¢ H
ﬁéthod, this conclusion was obtained for general Problems
1 and 2 by H.Brezis and the author [4]. Independently, C.

Gerhardt [8] has obtained this result.

Thé smoothness of the curve of separation 3I has
been related to geometric conditions. We suppose henceforth
that n = 2. Lewy and Stampacchia [14] observed that if @
canvéx, ¥ (real) analytic and concave, and aij = Gij'
then 98I is an anadytic Jordan curve. Recently it has been

shown that this conclusion is valid under the assumptions

above about 9 and vy if
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The proof of this result [12] motivates the present work.
Questions related to linear analytic equations which share
some of the characteristics of the present work are discussed

by H.Lewy [171.

2. To show that a given curve is smooth, we shall show
it has a smooth representation as the boundary values of a
conformal mapping. We formulate a problem in complex varia-
bles. Let w be a simply connected domain in the z=x1ﬁm2
plane, which for our purposés we may as well assume to be a
closed Jordan domain, and I' ¢ 93w be an (open) Jordan arc.
Denote by G the upper semidisc {[t]| < 1, Imt > 0} in the

t = t1+it2 plane. We consider the conditions below:

w admits a conformal mapping

¢ : G > w with the properties

(2.1) 1
6 ¢ H '3(G)  for some q > 2 and

¢ is a1 : 1 mapping of -1 <t <1 onto T

Let F ¢ CZ(U), for a neighborhood U of w, w (U,

satisfy
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F
(2.2) = (z) #0 for a z €T
9z o] -_— o
Finally, let f ¢ B''"(4) satisfy
of
3% (z) = u(z) a.a.in w where
(2.3) b ’
[u(z)| < uolz-zol <1 for z ¢ v and some u_ > 0 .

Theorem 1 Suppose that @, F,f satisfy (2.1), (2.2), (2.3)

respecfively and that ¢(t°) =z Suggosé that

Then for n =1 or 2, there exists a ¢ # 0 such that

p(t)-¢(t ) _
(2.4) —-——-—;—"———c _f_c1]t-to|)"5'__x_x_G,)‘= 1- 2
(t-t ) d
[o]
Moreover, ¢ and c1 depénd continueugiy on
[ell o E] » and |[£]] , |
1 "9e) (v 57 (w)

Corollary 2.1 With the hypotheses and notations of Theorem

i)

f(z)-£(z )
(2.5 1lim ——————— = F (z )+F.(z )
' o Z [0}

22 2=z
(o} [¢)

[oRIoN!

s Z E W ,

where c¢ is defined in (2.4).
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It is of interest to know conditions for which n = 1.

Corollary 2.2 With the hypotheses and notations of Theorem

1, suppose that

(2.6) U-w contains a sector of positive angle with vertex
or
2, —=—

(2.7) f(uw I) € F(U-w) and l-gg- ()| + 122 ()| .

Then (2.4) holds for n = 1.
We remark that the validity of (2.4) for each

to e (-1,1) with the modulus of ¢ and c, independént of
t implies that ¢ ¢ c1'*(é r.BR) for each R < 1,
BR = {|t| < R}. This is a known fact in the theory of func-
tions and follows by estimating Cauchy's Integral of the
analytic function

o (E)-o (t )

t—t0

3. At this point we shall study the curve of separation
for some particular examples. The proof of Theorem 1 will be
given in §5. Rather than considering the most general condi-

tions, let us discuss the free boundary which arises as the
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water level in the stationary flow between two resevoirs
separated by a dam of non-homogenous porous medium. For de-
tails about the history and formulation of this problem we
refer to the lectures of C.Baiocchi in this volume. The
particular formulation here follows V.Benci [2]. To agree
with the literature, we introduce different notations.

Let R be the interior of a rectangle in the
z2 = X +ix2 plane and suppose that a,h,g are assigned

1

smeeth . .functions in R satisfying

afz) > ao >0 in R for some ¢, >0
(3.1) h(z) $# 0 ' in R
g(z) >0 on 3R

‘Although a,h, and g aré particular functions, their form
does not concern us here since we shall assume the conclu-

sions of [1],[2]. Denote by

K= {ve H1(9) : v>0in R and v = g on 3R}
suppose that
(3.2) weK: Ju D,w Di(Vfw)dx > fh(v-w)dx , VeK.

R R

2, :
We know that w ¢ Hloc(R) by [4]. Let
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I =1{z¢e¢R :w(z) =0} and

bl
]

{z e R:w(z) > 0} = R-I
According to [1],[2] the free boundary
' =3INnR

is a simple curve connecting two points on opposite parallel
sides of the réctangle 9R. Indéed, assuming that the sides

of 3R form angles of w/4 with the Xyr X, axes, we may

assert
(3.3) T : x, = glx,) ' |g'(x1)| <M are. ,

for an appropriate range of x1.

Theorem 2 Let T = 3I m R be the curve of separation of the

A
solution w to (3.2). Then T is a C curve.

Proof We shall verify the conditions (2.1), (2.2), (2.3) in
a neighborhood of any z e r. Let z = 0erl and p > 0
such that Bp(O)c‘R. First we verify (2.2) and (2.3). Observe

that

=D, (o D, w) = h in Q
(3.4) i .

Di w =0 in I

(since the C1 function w attains there its minimum) .Re-
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writing (3.4) we see that

in @

QI

b+~ ] D,a D, w = -
a i i
Let v be a solution to the equation

in B
e

Av = -

eIz

Sincé -h/a is smooth, v 1is in C3(B6). Define

f(z) = D1(w;v)—i Dz(w—v)
(3.5)
F(z) = —(D1v—1 D2v)
Then
9f _ 1 - - - 1
55 (2) = 5 A(w-v) o ) D, « D, win @ B

Let z €T B . Since D, w(z ) = 0 and D.w is
0 ) J o J

Lipschitz in Bp' we see that

lD5W(Z)- Djw(zo)| < const.[z-zol % € Bp' z e TnBy

Hence
9f
— (2z)| < const.|z-2z [ for 2z ¢ B, 2 €T A B
92 - o . [} o) [o]
Furthermere, % (z ) = - 1 Av(z ) = -h(z )/2a(z ) # 0 b
"3z o 2 o o ez, Y

(3.1).
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Hence, (2.2) and (2.3) are valid for each point z°~e I'nB_,
[

with constants independént‘of zo, and f, F defined by
(3.5).
To verify the condition (2.1), we employ a quasi-

conformal reflection. Supposé that

2 n By = {z : X, < g(x1), lz] < p}
Then

dlz) = x1+1(2g(x1)-x2)

maps o N Bp onto a portion of I and J(z) = z for z e T.

Furthermore
1
33, 3d g'(xq) M
2’03 || e | S — '
/1+g'(x1)2 Y14M2

Now let z = ¢(t) bhe a conformal mapping of G = {|t]<1,

Imt > 0} onto o n Bp = v and set

¢ (t) teG
J((t)) Imt <0, [t] <1

9 9 »*
T —— — -
hen N ¢ = vy ¢ where
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Iu‘-“ < 1
<J'(z{1)

—— | Imt < 0, |t] <1
/1+g'(1~:1)2

It follows by the "observation of Boyarskii", cf.[3] for

example, that

¢*eH1'q(Gr\BR) for a q@ > 2 and each R < 1.

Replacing t by R-j] + we may assume that the above holds
*
for R = 1. In particular, the restriction of ¢ to G,

‘namely ¢, is in H1'q(G).
Theorem 1 may be appliéd at each point zo € BpAaT

from which it follows that

¢eC1'A(GnBR) for » = 1- and each R < 1.

Lol [N]

It also follows that the iRrteger n = 1 gsince T satisfies an

exterior segment condition for each z ¢ r. (cf.(2.6)).

4, In this paragraph we state an application of Theorem

1 to Problem 2. For this we assume that
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Q 1is a strictly convex domain in R

Y strictly concave, in C3(5)

(4.1)
v <0 on 3Q, and Mmax ¢ > 0
Q

f =0
In this case it is known that 3I is a Jordan Curve.

Theorem 3 Under the hypotheses of (4.1), the curve of sep-

aration 3I associated to the solution u of (1.2)has a

Holder continuous_ tangent.

We refer to [13].

5. We remark on the proof of Theorem 1. It follows the
argument of Theorem 1 [13]. One notes that it is not neces-

sary to know that
lfa/le < consth—zol
used in [13] but only that
|f.| < const.|z-z |
z' - 0

that is, our (2.3).
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TORSION ELASTOPLASTIQUE D'ARBRES CYLINDRIQUES

PROBLEMES OUVERTS

H. Lanchon.Références [10] [11)

1. INTRODUCTION: (Les notations adoptées sont les mémes

que celles de G. Duvaut dans ses conférences 1.2.3).

1.1 Probléme concret

X
3 . La barre cylindrique occupe le domaine N
@’ de R®; des couples opposés sont exercés
sur ses deux bases 390 et 3Q;.
' . Les forces volumiques sont supposées nulles.

(;E_;/,;J «Aucun effort n'est exercé sur la surface
; latérale; (dans le cas d'une section multi-

20,

connexe, cette condition est encore vraie

sur la fronti&re latérale des cavités):

Jh’,l’-o-—-." _?xl L
%

que
.. .. =0
°1],J dans Q
0405 = 0 sur 9%,
Oz3 = 0, up = u, = 0 sur aQo
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=0; u, = - a(t)hxz; u, = a(t)hx1 sur th

033 1

P4
{(Une rotation globale est imposée 3 la base superieure.
a(t) est 1'angle de torsion. Par la suite, on supposera

h =1.)

De plus, ¢ et u doivent étre reliés par la loi de

comportement. Nous envisagerons ici les deux lois suivantes:

?r(o) £ 0 dans @ (critére de plasticité)

(A) Loi de Henchy ou (A)' Loi de Prandti-
Reuss

€15 (W = Ajjxn%n * *ij €15 (W = Aj5unkn

(bon modéle mathématique) (beaucoup plus réaliste

)‘ij (x) (’l‘ij - 955 (x)) € 0 dans vt €C

avec ! . J(o) = % 04594 - %(oii)2 - g2: critédre de Von Mises

(g constante > 0)
_1 Loz : e
. eij(u) = 2(ui,j + uj,i)' déformation linéarisée
1 +wv ) .
* Ajkn T TZET [6ix8jn * Sihéjk] E Sij%kn’
tenseur d'élasticité de la loi de Hooke.

. Ai] est la déformation plastique.
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s ¢ = %% , et la convention de sommation sur les

indices répétés est adoptée

= 9 - .
« C= {1 e R, Tij Tji,’}Tr) < 0}

Nous sommes intéressés par:

. 1'existence et 1'unicité de la solution (o,u);

. la détermination pour chaque valeur de a(t) des régions
élastiques et plastiques;

ﬁa‘= {x/x ¢ 2, F[o(x)) < 0},

(en effet dans 8a’ xij = 0)

P, = x/x 2, Flo)] = o}

Le probl&me (A)' avec Prandtl.Reuss conduit 3 un probl2me

quasistatique d'évolution.

1.2 Méthode et plan de 1'exposé

a, Formulation et résultats pour un problé&me général
avec Hencky: Pb(B) .

b, Résolution de (A) comme cas particulier de (B).

c) Formulation et résultats pour un probl&me général
avec Prandtl.Reuss: Pb(C) .

d) Etude de (A)' comme cas particulier de (C).
Identité des solutions de (A) et (A)' lorsque a(t) > O.

e) Généralisation aux cas des sections multiconnexes.

Problémes ouverts.
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L'exposé est fait en vue de:
. Souligner les résultats mathématiques importants.
. Montrer comment 1'on peut tirer partie d'une solution
abstraite pour obtenir des résultats concrets.
. Présenter les probl&mes ouverts.
(Par manque de temps, les points c), d) et e) ne seront

évoqués que tr&s bri&vement.)

2. PROBLEME GENERAL AVEC LA LOI DE HENCKY

2.1 Description du probl&me (B)

. Q:domaine arbitraire de R®.

r-AY .
» données: ( £ dans Q
F sur BQF
U sur aQU
. inconnues; (o,u) tels que,
Ny
(1) o0:;. = 0. dans Q
1 Ji } équilibre
(2) o.. . +f. =0 dans Q
1],)

(3) o;:n, = F, sur 3Q
1373 1 F} conditions aux limites
(4) wu; =0y sur 90y,
5) F) <o dans Q.
(6) eij(u) = Aijkhgkh + Aij Loi de comportement

(7) xij(rij - cij) <0 Y teC de Hencky
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avec:

(8) ¥’: R® + R convexe et continue (critdre de plasticité)
(9) Aijkh : borné , symétrique et coercif dans Q (tenseur
d'élasticité. Cf. G. Duvaut, 2€Me conférence).

2.2 Principe de Haar Karman et formulation variatiomelle

Enoncé du principe: si le probléme (B) a une solution

(c%uo), alors o° minimise la fonctionnelle

(10) JI(s)= %—j Pighh Cn) Tt dx _j 0’2) my Ve dr
n b0y

sur 1l'ensemble des champs de contraintes permis, c'est

3 dire,vérifiant (1), (2), (3), (5).

(I1 suffit d'écrire la différence J(o) - J(co) et de faire
une intégration par partie en tenant compte de (1) ... (9)
pour montrer ce principe.)

. Le choix des espaces fonctionnels et les hypoth&ses
sur les données étant faits pour donner une signification 2
(1) ... {10), on suppose:

f; € L*(n)
Fi € H[2a)
U e H/*[>n)

et 1'on pose:

a1y X = { c‘/p' e [1Y(a) ? et werifiant (1),(2),(8), 5) ""}
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00, solution éventuelle de (B) doit donc &tre solution du

Probl&me gBl)_: minimisation de J(o) sur X .

2.3 RéEsultats et conclusions pour le probléme (B)

.} est un convexe ferme de [L2@))?
‘A (0,1) = j{; Aijkhoikah dx est upe forme bilinéaire,

symétrique et coercive.

.j o,.n.U_dr est une forme linéaire continue sur X
0 A

D'oll le résultat classique (cf. réf. 2):

Théor2me_21: si} # & (ensemble vide) alors E R 2

unique tel que:

(12) J(oo) < J(o) Y o ek et, 0% est caracterisé par

o __ 0 )
(13)04(0 »O0=0") 3 ‘/Z;QU (olj ozj)njux dr ¥YoeX

Conclusions

Nous avons un résultat d'unicité pour le champ de con-
traintes solution de (B).

L'existence d'une solution (co,uo) de (B) ne sera
acquise que si ){# @ etydans ce cas, seulement si 1'on sait

associer 2 ¢° un champ de déplacements ul e H! (@) vérifiant

(4), par la loi de comportement (6), (7).
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3. RESOLUTION DU PROBLEME (A) COMME CAS PARTICULIER DE (B)

3.1 Application de 2 . Formulation et résolution
d'un nouveau probléme (A1)

. _ 2 9 = =
Ic13{- {c/o é[L @) °, %5 % %i %ij,j o

(o) € O p.p. sur @

Uijnj =0 p.p. sur BQL, Oz3 = O p.p. sur 390
et 30}
avec
_1 21 2 _,2_1D D _ 5,
Feo - 793395 " 6(911)° - 8" = 2933955 - &%
oD = g - trace g,
3
donc 0 el +X # ¢ + 3 une solution unique o° pour (Bl)'
_ Proposition_3.1: o¢° est tel que
o _ o _ o
(1) o..=0 p.p. sur Q excepté 013 0z1

(o) . (o I
et 0p3 = O35s

(2) Ugj,3 =0 p.p. sur Q

Idées de la démonstration: On introduit un ¢ qui

vérifie la proposition.de la mani&re suivante:
oij = 0 sauf opg = °3p’ (p = 1,2), défini comme dist-
ribution sur I par

<'¢’-6p3> =f9 ¢(x1?x2)6p3(x1’x2,x3)dx V de gb(z)
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(£ étant la section droite du cylindre).
Alors ceX et J(o) ¢ J(c°) = 6° = G ce qui démontre la pro-
position.

Remarque: ¢° est solution du probléme:

®e X, 3(c® <@ Voek, on

1}

(Bl) J{T {o/ceX , o.. = O excepté °p3 = °3p’

1)

(p = 1,2)}

Lemme_3.1: Y oe]fT, J ee Hé(z) unique tel que

6,2 = 0y33 6,1 = - 0yz DP.P. Sur z.

De plus |[grade]| < O.

A 3 . 2 = -
Démonstration: Gij € L2 (Q), Oij,j = 0 p.p. sur Q et Oz3 = 0

pP.p. sur 3q, et 39, impliquent

01 _ - -
1 ¢eH'(L) tel que 955 = 0y3 €t 9,1 = = 0,3

Oijnj = 0 sur aQL._)grad ¢ An =0 sur 3I,so0it ¢ = k (constate)

sur 3Z (dans le cas d'une section multiconnexe on aura

pareillement ¢ = k.

i sur chaque contour oLy de cavité).

Posons 6 = ¢ - k, alors 6 € Hé(z). (6 = k; - k =C; sur 3z

dans le cas multiconnexe).
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(x4) |llel|l? =L/Wgrad6|2dx étant une norme sur
z
Hé(z)/et le fait que |grade|? = g+ c%S,entrainent
1'unicité du 6 associé de cette mani&re 3 chaque o e](T.

Enfin: F (o) < 0 implique |grade| < g.

Conséquences du lemme 3.1: ; une bijection entre](T et
(15) K = {¢/¢ € H)(Z), |grad¢| < g}
et,pour deux éléments correspondants:

(16) J(o) = J (&) = Jr |grade|2dx - 4uaJ[%dx;
L z

E

LY ¢ UEED))

(A;): minimiser J,(8) sur K.

Lemme 3.2: 3 f, unique dans Hé(z) tel que:

(17) 2uafs dx = <o,£,> ¥4 € HY(2)

ol < , > est le produit scalaire associé a [[|.|||

(ceci n'est rien d'autre que le théor&me de représen—
tation de Riesz).

Alors:

(18) J(e) = |lle - £,111* - [II£ [l
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eUne expression équivalente du probl&me (A;) peut étre donnée:

Trouver ea € K tel que:

ey - €0 < llo - £,1Il Vée K

Théordme_3.1: Existence et _unicité _pour_ (A,):

S
g Ba € K unique qui minimise Ja(¢) sur K et)ea est

caractérisé par:

(19) <o, - ¢, ea-fa><0 Yoe K

(K est un convexe fermé de Hé(z) et 6 n'est autre que la

projection de fa sur K).

3.2 Propriétés de B4

+ K est 1'ensemble des fonctions Lipschitziennes,de
module g, de Hé(z). Ces fonctions sont donc uniformément
continues sur T et,nulles au sens fort sur 3I.

o K est compact pour la norme de la convergence uniforme;
ceci est une conséquence du théoréme d'Ascoli:
X = T est un compact de RZ.

Y

U ¢(%) est un compact de R.
b €K

K est un ensemble d'applicatioms équicontinues de X dans
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En conséquence K est uniformément compact dans‘f(x,Y),
(ensemble des applications continues de X dans Y) or il est
facile de montrer que K = K.

e Enfin, si ¢1 et ¢2 € K alors sup(¢1,¢2) et’inf(¢1,¢2)e K

Les résultats de H. Brézis et G. Stampacchia,

cf. réf. [4), nous permettent de conclure:

1

1 —
0, € C (),

(ensemble des fonctions continues 3 dérivées Lipschitziennes)
dans les deux cas suivants: si I est convexe et 3I Lipschitz-
ienne ou/si I est non-convexe mais avec une fronti&re plus
régulidre.

Nous pouvons alors définir proprement les parties

élastique et plastique de la section I.

(20) E, = {x/x €I, Igradea(x)l < g}, ouvert de I

(21) P {x/x € £, |grade (x)| = g}.

o

3.2.3 Propriétés_de f _dont 6 _est_la projection

sur KT o Tt
fOt
Proposition 3.2: Soit vy = 7, alors:

1, Y est la solution du probl&me de Dirichlet:

(22) Ay +2 =0 sur £ et vy =0 sur 3Z
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2, Yyew PmyancT@n '@, ¥2cp o
3) vy >0 sur

45 Jgrady| est borné sur I et ne peut atteindre son

maximum que sur J3L. -

Démonstration: par définition <¢,y> = 25 ¢dx Vo € Hé(z);
et ceci est la formulation variationnelli du problé&me de
Dirichlet mentionné en 1.
2) est obtenu par les théor@mes classiques de régularité
3) et 4) sont des conséquences directes du principe
du maximum, en effet: Ay = -2 < O montre que y est super-
harmonique et donc ne peut atteindre son minimum que sur la
fronti&re; ce minimum est O donc y > O dans L. De méme
Algrady|? = 2 gradAy grady + 2Ys g ¥sig = 2YsipYsiq 3 O
sur I; |grady|? est donc subharmonique et ne peut atteindre

son maximum, qui est fini puisque y € C!’!(¥), que sur JZ.

Posons M = sup|grady| et aj =
T

Efr

5.2.4 Propriétés de 8 _pour_0_s_ o € g, isolution

-------------- Pour 0 € o € o 6 = fa ce qui implique

o’ “a
que toute la section reste élastique.
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En effet, a ¢ a -> |grad f,l cg2f, e K06, = f; par
ailleurs: |grad fal < g dans I (cf. proposition 3.2, partie
4), donc E = L. Les propriétés de £, dérivent d'ailleurs
directement de celles de y et montrent que fa est bien 1la

solution classique du probléme élastique.

o a < o < + o
________________________ pour o < o < :

Proposition_3.4: Pour a < a < + @, P # @;(Cela

signifie qu'il y a une région plastique)et) par ailleurs:
Aea + 2o = 0 sur Ea et Saé C (Ea)
Démonstration: Posons

1
Zgn = {x/xe I t.q. |grad 6 (x)| ¢ g - H}

et, 3 tout Yedd (Zg ) associons:
n

by - Hwk_ sur Eg avec k = sup|grad v(x)|
n X z
¢1 = gn

6 sur LI — I
o

Alors ¢1e K ainsi que ¢2 = Zea - ¢>1; ces deux éléments
peuvent donc étre choisis comme fonctions tests dans (19) ce

qui entraine:

f grad( 6y - £ ) gradPdx = 0 vwe;b(zg )
by

n
gn
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Par passage 3 la limite lorsque n + =, nous obtenons:

J£ grad(e, - £ )grady dx = 0 Vwe:D(Ea)
o

D'ol la conclusion de la proposition.

1) ea converge uniformement vers 6_ € K

2) 6, est 1'enveloppe supérieure des fonctions de K.

3) 6,(x) = gé(x,d3r) olt §(x,d3r) désigne la distance
>de x 3 3I.

4, |grade_| = g. p.p. sur I; toute la section est

donc plastique.

Démonstration: (19) peut &tre écrit:

<0 ’eoc> ) <ea,¢>
o o

- <Y,0,> + <v;$> <0 Vée K,

Lorsque a + o, ea décrit un sous ensemble infinie de K. K
étant uniformément compact, 3 une sous suite BaA qui con-
(9

verge uniformément vers 6_ € K. On peut donc passer 3 la

limite dans 1'inéquation précédente compte tenu du fait que
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(23) <Y,$ - 8> €0 ¥ oek

L' unicité vient du fait que s'il existe 2 solutions:

65’) d ei’) alors 6_ = sup(eil),eiz)) € K et satisfait
<Y)e°° - e£p)> > 0;

d'od la contradiction.

(Les points 2, 3, 4 ne présentent pas de difficultés.)

Proposition_3.6: si a < a', alors 6, < 6. ' sur un

sous ensemble de mesure non nulle de I. En particulier
8, > O partout sur I,¥a > 0.

Demonstration: (i) eu(x) < ea'(x); en effet

soit I = {x/x e I, 8,(x) > ea'(x)}

et I = {x/x e I, ea(x) < ea'(x)}

En appliquant (19) aux deux fonctions test suivantes :

%, = inf{aa,ea'} et ¢, = sup{Ga,ea'}, nous obtenons
(a' - @) f [ea'(x) -9 (x)]dx 30
Z, ¢

ce qui implique ZO = ¢.
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(ii) si ea(x) = ea'(x) partout sur I, alors ea = 0_;
supposons en effet 6, = 6, # 0,, alors E = E ' # ¢ et
Aea = Aea' = - 2pa = - 2ua' sur Ea’ ce qui est impossible

puisque o = a'.

(iii) Pour a fini, 8, # 6, ; en effet si b, = 6, alors

<6, - ¢,6, - £f><0 ¥ ¢eK.

Soit alors

k sur I = {x/x € I, 0,(x) > k}

8, ailleurs

avec k € J0, M_(, M_ = sup 6_(x); ¢eK et 1'inéquation

00

X €12

z .
implique M_ - k 3 %EE YkelO, Mw[ ce qui est faux.

3.3 Apparition et propagation des zones plastiques

H. Brézis et M. Sibony (5) ont obtenu le résultat

de comparaison suivant: si

(24) XK' = {¢/¢ e Hé(Z), [¢] « 6, p.p. sur L} alors

K ¢ K' et les deux probl&mes:
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(P) ea € K; <ea - ¢’6a - fa> <0 V oK
. - N L - d
(P") 8, € K'; <o’ $, B, fa> <0 ¥ X'

s . = [}
ont méme solution: ea ea .

De 13 on peut montrer que

(25) E {x/x e L, ea(x) <0, (x)}

[¢]

(26) P

o {x/x € %, ea(x) =08_(x)}

Cette nouvelle définition de Ea et Pu est essentielle pour
établir les propriétés concCr@tes suivantes qui sont intuitives

et facile 3 démontrer.

Si Me Pa ep)si Q € 3L est tel que

IMQ| = &(M,31)
alors MQ ¢ Pa'
En particulier toute possibilité

Q d'iles plastiques est exclue.

3.3.3 Partition de I en zones d'influence

Soit I', 1'ensemble des points de I qui sont équi-
distants de au moins deux points de 3. T peut &tre facile-
ment déterminé pour chaque cas de section.

Nous pouvons prouver que Pa ne peut traverser I'; en
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effet la dérivée de 6, subit une discontinuité 2 la traversée
de T et ne peut donc &tre égal 2 8y qui appartient 3 ch
Ainsi les différents arcs de I partagent la section I en
différentes parties, chacune d'elles étant exclusivement
influencée par une partie determinée de 3I. Nous dirons donc
que Tic.z est la zone d'influence de azi cirsiV¥Me Tyo
il existe un unique Q &€ 3% tel que §(M,3I) = |MQ| et si
Q e azi (cf. figures ci dessous).

En conclusion:
La plasticité commence 3 apparaftre lorsque a = a, en un ou
plusieurs points de 3Z, elle se propage de proche en proche
34 partir de 13 et chaque composante connexe reéte enfermée

dans une zone d'influence. Pour o fini, il reste donc

toujours un voisinage élastique autour de T.

oz,
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3.4 Détermination du champ de déplacements solution

de (A)
Signalons simplement que pour chaque valeur de a on est
capable d'associer o® soit:
36 30
o _ o _ 0 __ '« o _ 0o _ _ a
cij = 0 excepté 013 = 037 3;; et 0,7 = 03, 3;;

un champ de déplacements u® par la loi de comportement
(6), (7),cf. [10),et ceci grdce 2 un résultat de H. Brézis
[9). Nous obtenons 1l'unicité 3 une translation globale
prés, paralldle a Oxz, ce qui est physiquement tout 2 fait
normal.

Pour cette détermination, la régularité de ea ainsi que
toutes les propriétés énoncées en 3.2 et 3.3 sont indispen-
sables or la plupart de ces propriétés sont obtenues gréce

au théoréme de comparaison de H. Brézis et M. Sibony [5].

Finalement le problé&me (A) est complétement résolu.

4.  PROBLEME GENERAL AVEC "PRANDTL-REUSS'" ET APPLICATION
AU PROBLEME (A')

e On trouvera dans G. Duvaut, J.L. Lions [7} la formul-
ation et les résultats pour un probléme au limite général du
type (B), mais cette fois avec la loi de comportement de
Prandtl-Reuss. Les résultats sont du méme style que ceux

. o - ; . . : .
obtenus en 2 mais, o est 1ci solution d'une inéquation qui
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contient 2 la fois o et ¢ = %%,et qui ne correspond pas 2
la minimisation d'une fonctionnelle.
Pour 1'application au probléme (A') nous procédons

comme en 3.1 pour montrer que 6® 2 la forme simple: 2. =0

ij
o )
sauf 0,3 et 0,5 et ne ?épend que de X, et x,. Les deux
différences mentionnées ci dessus apportent tout de méme
une difficulté supplémentaire car nous devons remplacer

1'argument J(o) < J(o°) par:

A G-6,5-6) <0

ce qui est plus délicat mais conduit 3 la méme conclusion.
¢ Le problgme (Ai) se formule alors comme suit: Trouver
(27) 8,(t) € K tel que <B (t) - £,(t), 68,(t) - ¢> < O

vV ¢ € K.

Ce probl2me est résolu par la théorie des opérateurs max-
imaux monotones et des semi groupes non linéaires de con-

traction [9].

« Si a(t) > 0, les solutions de (19) et (27) sont les
mémes, ce qui signifie que la loi de Hencky et celle de
Prandtl-Reuss donnent méme résultat. Ceci est obtenu grice
3 un nouveau théordme de comparaison de H. Brézis [6] qui

s'appuie encore sur H. Brézis, M. Sibony [S].
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5. GENERALISATION AU CAS DES SECTIONS MULTICONNEXES:
PROBLEMES OUVERTS.

5.1 Notations et nouvelle formulation

On désigne toujours par I la section du

C::> (:) cylindre mais par £* la partie multi-

connexe effectivement occupée par le
@ matériau.
Soient Zl, 22, ...Zq les sections des
2z:2%. q cavités.
Désignons encore par zZ, 1'extérieur de T.

Les résultats de 3.1 sont valables ici mais, comme
nous l'avons déjia signalé} 1'absence d'efforts sur la
fronti&re latérale se traduit par 6; = 0 sur 9L, = 3 et
6& = Ci (constante) sur 821 (nous affectons une étoile 2
ut ce qui correspond 3 la section multiconnexe I*).

En prolongeant,par Ci’e& sur chaque Zi (et désignant
encore par 6& la fonction ainsi prolongée) nous continuons
3 travailler sur la section I toute entidre et obtenons Che

comme solution unique du probl&me (Ai): Trouver

(28) e& € K*; <e& - ¢, ea - fa> <0 ¥ ¢ eK* oll

(29) K* = KN E

(30) E = {¢/¢ € Hé(z), ¢ = constante sur chaque

X i=1, ... q}

i)
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5.2 Résultats et probl®mes ouverts (R}) et (R3)

o K* a les mémes propriétés que K (cf. paragraphe 3.2.1).

eNous n'avions pas jusqu'ld ces derniers temps de résultat de
régularité pour 855 ce résultat étant simplement espéré

comme suit:
(RY) 6re %@

(Il semble cependant que pendant cette session de
Bressanone, C. Gerhardt ait obtenu ce résultat avec peut

&8tre quelques restrictions sur la forme des Zi)

.f&, projection de fa sur E est la solution élastique du

probléme.
eNous introduisons comme en 2.2.3,

Q

a; ——ee
sup|grad f?|
T

et montrons que pour o £ as toute la section I* reste

élastique.

eLorsque a + =, nous montrons que e;(x) tend vers:

(31) 6n(x) = g 8*(x,31),
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oll §*(x,3L) est en quelque sorte "une distance au bord"

généralisée définie comme suit:

(32) 6*(x,9L) ='inf{6(x,£i) + di}
ie {0,1 ..., q}

d; étant le plus court chemin’
entre 3r; et 3L, si 1'on con-
vient que la traversée de
chaque Zi donne une contrib-

ution nulle. Dans 1'exemple

de la figure ci contre, nous

avons
dy =0, dy =dyg, dy = dyz + dgy + 4y < dyp,
d3 = d + d40 S d30 . (dij = G[Ziﬁzj])

34
« Nous nous heurtons alors 3 un second probl&me ouvert:

y a t'il identité entre e; et,e;' solution de:

(=3) (33) %' € K*', <02’ - ¢, 6%' - £ > ¢ 0
¥ ¢ ek*’

(34) K*' =K'n E  cf. (24)?

(Ce résultat serait 1'équivalent de celui de H. Brézis,

M. Sibony.)
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En 1'absence de ces résultats (Ri) et (RE) nous avons
procédé par analogie avec le cas simplement connexe,pour
formuler un certain nombre de conjectures relatives 2
1'apparition et au développement de la plasticité dans
L*, L'analyse numérique de certains cas de figures non
nécessairement trivial a montré que ces conjectures étaient

-~ . PN . A
tout 3 fait vérifides [11]; ceci est surement un encourage-

ment pour la démonstration rigoureuse de (Ri) et (RE).

L'obtention de (Ri) et (RE) permettrait en outre de
montrer l'existence d'un champs de déplacements associé
a 63 et de comparer les résultats donnés par Hencky avec

ceux obtenus par Frandtl-Reuss.

Signalons enfin que 1'analyse numérique avec le convexe
K*' est plus aisée: les temps de calcul sont beaucoup plus

courts et les résultats plus précis.
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Résumé
Soit P un probléme de calcul des variations
(P) Minimiser 2£(Au) + L(w,u(w) ,Au(w))dw
Q
ol A est un opérateur différentiel linéaire (gradient, laplacien,....)

et A un opfrateur de trace (ex : Au=restriction de ud 5Q) ol L
est une intégrande normale convexe et ol £ est une fonctionnelle con-
vexe. Nous associons & P le probléme dual

*, .. . »* *
(P") Minimiser & (up) + L (w,Mp(w),p(w))dw

Q
~ * * .
ol & et L (w,.,.) sont les fonctions duales de £ et Llw,.,.)

ol M est l'opérateur différentiel adjoint de ~A (divergence, lapla-
cien,...) et ol W est 1'opérateur de trace pour lequel on a la for-
mule de Green<u,Mp > + < Au,p > + < \u, pp > = O. Nous é&tudions 1la

L * . . * o . oz
dualité entre P et P (infP = - infP , conditions d'extrémalité

. . - - * . .
liant des solutions u et p de P et P respectivement existen-

ce de 5). En particularisant Q=101 et A= é% on retrouve
les problémes de Bolza convexes étudiés par Rockafellar. D'autrepart

en particularisant & et L on retrouve la dualité pour les opéra-

teurs aux dérivées paftielles développée par R. Temam.
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INTRODUCTION

Y

1. Dans une série d'articles R.T. Rockafellar a étudié la dualité pour

les problémes de Bolza convexes, c-d~d pour les problémes du type :

T
(P) Minimiser [ f(x (0), x(T)) +f L(t,x(t),x(9)¥t] pour x € A
0

ol A est l'ensemble des fonctions absolument continues, £ une fonc-
tion convexe s.c.i. et L une intégrande normale convexe (2 et L
sont & valeurs dans ] - ©,+o ] ),

D'autre part R. Temam a développé la dualité pour des problémes de

cacul des variations, notamment le probléme de Plateau

Minimiser Ji+ (grad(u —uo))2 dw
u€ HB(Q) Q

et de nombreux autres exemples faisant intervenir des opérateurs aux

dérivées partielles (gradient, laplacien,...).

Nous allons donner une formulation commune de ces problémes, et ainsi
étudier la dualité pour des problémes de calcul des variations faisant

intervenir & la fois les intégrandes normales convexes et les opéra-
teurs linéaires aux dérivées partielles.

On va retrouver dans le cas général des développements usuels en

21 2 . N * . . *
dualité : construction d'un probléme dual P tel que infP= - inf P
et tel que les conditions d'extrémalité fournissent un systéme de con-

ditions nécessaire et suffisant d'optimalité. Le résultat le plus mar-

quant est, suivant 1'idée de T. Rockafellar (1,2) déjd reprise par
R. Temam (1,2), que 1l'existence d'une solution optimal du probléme

dual est liée & la stabilité du probléme primal vis 3 vis de certaines
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perturbations. Ce qui permet de ramener un probléme d'existence d& une
étude de stabilité.
. Pour obtenir un résultat d'existence sur P on échange les rd-

* . 2 2 .
les de P et P (ce qui est générallement possible).

. * . -
2. La dualité entre P et P repose dans sa formulation mé€me sur la
formule de Green. Dans la démonstration celle-ci intervient sous la
forme d'une propriété analogue au lemme d'Euler-Lagranga, lemme que

1l'on peut dans 1l'esprit de la dualité écrire ainsi
si x€ 1(0,T) et y€ L1(0,T) et si

Sup {[x (0) - a] y(0) +[x(T) - 81y(T) +(T [z(t)y(t) + x(£)y(¢)] dt}

yec®(0,1) ° .
est fini alors x(0) = a, x(T) =8 et z(t) = x(0) + ( x(t)dt.
(]

Cette analogie n'est pas fortuite puisque les relations d'extré-

malité obtenues par dualité coincident pour des Lagrangiens réguliers

avec les équations d'Euler.

3. Nous renvoyons pour une bibliographie compléte et un historique de
la dualité en calcul des variations aux articles de Rockafellar cités
et au livre de I. Ekeland et R. Temam ou on trouvera aussi de nom-
breux exemples d'applications & des problémes classiques.

»* *

NOTATIONS

On désigne par. 2 un ouvert borné régulier de R", TI(= 3)son
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bord. Pour 1 €N et ~ 1 <8§<o on note L?(Q,Rl) 1'espace des

fonctions &-sommables de Q dans ]Rl; Di(ﬂ) = Di(Q,ZRl) 1'espace des
fonctions C~ de Q dans RS & support compact; Di(-d) et Di(I‘)
les espaces Cw(ﬁ,]Rl) et Cm(l",]Rl) respectivement; Di(Q) les

~

distributions dans & valeurs dans R

1. Espaces fonctionnels, opérateurs, formule de Green

Nous donnons d'abord (A) 1le formalisme qui recouvre les trois

exemples principaux (B).

A On désigne par W un espace fonctionnel tel que
]D-m( Q)cuwc La(Q,Rm) ol a€[1, + »] (en général U sera un es-—
. = ~ 1SsP
pace de Sobolevy; I = H (Q), I = W (Q),...).
On désigne par A un opérateur différentiel linfaire défini pour

¢ = (¢19°-'s¢m) € Dm(ﬁ) par

k
a a —
= €
Ao i .. ¢J. avec &, Dk(Q) .

z a . -
=1, folen P a1 el

On suppose que pour u € W, Au appartient & LIE oi B est
donné dans [1, + [ .

On désigne par A un opérateur lindaire de W dans un espace
de Banach E tel que lbn ait Dg(I‘) CEC Dé(l") (injections continues).
On suppose que X vérifie

Ao, (@) =0 et A(D (@) = Dg(I‘).

Soit M 1l'ajoint de -A au sens des distributions.
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On désigne par P, 1'espace

P (pe e 1*y
o TIPS L sMpEL
ol a' et B' sont les exposants conjugués de o et B

(1/a" + 1/a =1; 1/8' + 1/8 = 1). On suppose que sur ]Po est défini

un opératewr lindaire u : P, — Dé(I‘) tel que la "formule de
.

Green" suivante :
pAu+§ uMp + < Au, up > =0
Q Q
est vérifiée pour (u,p) € Dm(ﬁ) x P_ et pour (uyp) ET x P avec

P={p€ P ; up € E'(dual de E)}.

B Exemples
excmple 1. Prenons pour W 1l'espace de Sobolev H1(Q), pour A 1'opé-

rateur gradient et pour A 1'opérateur de restriction & T. Si u€ H1(Q),

1/2(1‘). (On & donc o =f=2,

one u€1(n), Mue1?a,B?) et €N
m=1, k=n, E=H1/2(I')).

L'adjoint de -A est 1l'opérateur M = divergence. L'espace ]Po
est donc l'éspace

V= {pe1?a,RY), div p € 12(2)}.

Pour p € ]Po on peut définir le "flux sortant” ;_\: (ol v est

la normale extérieure & T. Il vient : P= {p€ ]PO .

wpe g =8 /2

(r)} = IPO =V, ‘
On a donc P = ]Po dans cet exemple.

Enfin, la formule de Green s'écrit ici
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S p.gradu +S udivp + < UI" -p.v>=0
- 1

(o UI‘ = lu est la trace de u sur T') et elle est vérifiée pour

(u,p) € HY(R) x V (cf. Temam (3) ou Lions-Magenes (1)).

exemple 1' : On peut échanger les r8les de W et P dans 1'exemple

précédent (ce qui n'est pas toujours possible). Prenons pour UI 1'es-—

pace V de 1l'exemple 1, pour A 1'opérateur divergence et pour A

1l'opérateur Au = u.v (= flux sortant). Il vient alors M=gradient et:
P, = {p€12(Q); grad p € 12(e,R™)} = 5 ().

u est ]:'opérateur de restriction, P= ]Po = H.I(Q) et la formule de

Green est la méme que dans 1'exemple 1.

exemple 2. Prenons pour W 1'espace Am des fonctions absolument
continues de [0,T] dans R" (donc o =]0,T[ et T = {0,T}), pour

%- , et pour X 1l'opérateur

A 1'opérateur de dérivation 3

au = (u(0), u(T)) & valeurs dans R" x RT. On vérifie alors que

M= - % que P_ =10, que u est l'opérateur d&fini par
up = p(0), --p(T)), que P= P_ et que la formule de Green se réduit
4 la formule d'intégration par parties pour les fonctions absolument

continues (avec % = dx/dt) :

T T
Y up+ { 4 p + (u(0)p(0) - u(T)p(T)) = O.
0] 0

exemple 3 Prenons pour W 1'espace
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u = {u € H(Q), Au € 12(R)}
”
pour A 1'opérateur A (laplacien). Sur W on peut définir 1'opéra-
teur de.trace A par

1/2 -1/2

Ml My e u'/2(r) x & /3(r)
(donca=8=2,m=k=1, E= H1/2(I‘) x H1/2(F), g =2)

L'opérateur M adjoint de - A e€st ~ A et :

P, = {p€ L (Q); Ap € 12(Q)}

Sur I’o on peut définir 1l'opérateur de trace u par (ef. Lions
Magenés (1))

-3/2 1721y

up=(§§,—p|r)€H (r) x H
D'ol, par définition (puisque E' = H—1/2(I‘) x H1/2(I‘))
P=tpe P ; ®er/2r) et I 1'/3(r))
On montre que P=UW et que 1l'on a la formule de Green
] S N U
SQ pdu QuAp+<u|I.,3”> <P|I‘Z§\:>-O

pour (u,p) € I x P (cf. Lions Magends (1))(et pour (u,p)€ D(RQ) x ]Po)

2. Fonctionnelles, énoncés des problémes

A) On désigne par L : Q x B x B*

+ ] —® , + o] une fonction bo-
rélienne telle que, pour presque tout w € Q, la fonction L(w,.,.)

est convexe s.c.i. propre (c-8-d L(w,.,.) # + « ). Autrement dit L

est une intégrande normale convexe au sens de Rockafellar(3).

. »* . 2
On désigne par L : Q x R" x Iik-»] - o , + o ] la fonction dé-

finie par
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ky

»
L (w,c,d) = Sup {ac + bd - L(w,a,b);(a,b) € R" x R

P *k .
C'est encore une intégrande normele convexe et L = L (cf. idem)

Notation : Si u et v sont des fonctions mesurables de Q dans

" et R* respectivement, on notera L(u,v) la fonction mesurable

w * Llw,u(w), v(w)) et L*(u,v) la fonction mesurable w-»L*(w,u(m),v(m)) .

L(u,v) Eourg L{w,u(w),v(w))dw .

Par exemple on &crira SL(u,v) ou g
Q

Q

B) On se donne une fonctionnelle L : E+]-o , + o] convexe s.c.i.

»* Lo s
propre (c-8-d £ % + ») et sa dusale £ : E' » ]-® , + » ] définie par
»*
2 (y) =Sup { <x,y > - 2(x); x € E}
Dans la pratique E sera souvent un espace fonctionnel (cf. exemple 1 :

E = H1/2(I‘)) et L sera de la forme

12(1y.

2(w) =§ £(E,0(E)) at pour w € H
/T
. *
S1 E est un espace de Sobolev on trouvera le calcul de & dans

Brezis (1).

C) Hypothése de finitude (Ho). On suppose qu'il existe ug €W et

p, € P tels que les guantités suivantes sont finies :

z(xuo),gg

Cette hypoth&se implique en particulier que pour presque tout

»
|L(u > Au),e (upo),S; |L(Mp_,p )]
w€ Q et tout (a,b) € Rr® x Rk on a
*
L(w,a,b) = a.MpO(m) + b, po(m) -1 (w,Mpo(w),po(w))

L*(w,a,b) > a. uo(w) + b. Auo(m) - L(w,uo(m),Auo(w))-
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On déduit de la premiére inégalité que si (u,v) € L:l X Lﬁ, on a
L(w,u{w), v(w)) > A(w) avec A€ L (Q),

donc que l'intégrale {n L(u,v) est bien définie & valeur dans ] -« ,+e ],

“ PN s . . oL ot
De méme on déduit de la deuxiéme inégalité que pour (p,q) ELIE X Lm

s * . . P
1'intégrale g L (q,p) est bien définie & valeur dans ] - o , + ] .,

D. Les considérations précédentes permettent de définir les problémes

suivants :

(P) Minimiser [2(Au) + g L(w) ,u(w) ,Au(w) )dw]
u€ I Q

(P*) Minimiser [2*(up) + g L*(w,Mp(w),p(w))dw] .
p €EP Q

exemple 1 d(,su’ite) Dans ce cas les problémes s'écrivent (compte tenu

du choix de W ,A,.. voir ci-dessus 1.B)

(P1) Minimiser [L(ulr) + g Llw,ulw), gradu(w))dw]
u € " () Q

(P;) Minimiser [2*(-—p.v) +§ L*(w,divp(w),p(w))iuﬂ
p € 12(2,R") ,aivp € 12 Q

exemple 2 (suite) Il vient

T
(P,) Minimiser [ £(u(0),u(T)) + ; L(t,u(t),a(t))dt]
0

2 4ea
m

T
(p:) Minimiser [ £¥(p(0), - p(T)) +L (t,0(t),p(t))at]
PEA

avee A = {x€ (0,7, R™) ; % € L1(0,T;R™)}

Ce sont les problémes de Bolza convexes étudids par Rockafellar (1,2).
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exemple 3 Il vient avec B = {u€ H (Q), Au € 12(Q)}

(P,) Minimiser [ t(u ’-3_\_1_) + S L(w,u(w), Au(w))dwl
3 LE B II‘ v Q v

(Pr

3) Minimiser [ z(%% , —p‘r) + {Q L*(u), - Ap(w),plw))dw]

pE€ B

3. Premiéres propriétés

Posons pour u€ W et p€ P

I(u) = 2(Au) +S L(u, Au)
Q
J(p) = ¥ (up) + j ¥ (Mp3p)
Q

A) Pour tout (u,p) € I x P on s

I(u) + J(p) = 2(Au) + F(up) + g (L{u,Au) + L*(Mp,p))
Q

> < Au, up > + g (u.Mp + A u.p)
Q
Donec I(u) + J(p) = O d'aprés la formule de Green. D'ol :

. . * . .
inf P + inf P = inf I(u) + inf J(p) =0
uEeEuw pEP

D'aprés 1'hypothése HO on a I(uo) < + o et J(po) < + o , Done :

. * .
- o< - inf P < inf P < + =,

B) Conditions d'extrémalité

L'égalité I(u) + J(p) = 0 a lieu si et seulement si
*
2(xu) + 2 (up) =<uyu, up>

S
5 (L{u,Au) + L*(Mp,p)) ={ (u.Mp +A u.p)
Q Q

La deuxiéme condition du systéme S est &quivalent & )
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L(w,ulw) Au(w)) + L (w,Mp(w),p(w)) = ulw) Mp(w) + Au(w) .plw)

pour presque tout ©w € Q@ . (puisque f > g et gf = Sg im-
pliquent f = g presque partout)

Notons 32(Au) (resp.al‘(up)) le sous gradient de l(respl*)
au point M1 (resp. up).

Notons au,Au L(w,u(w), Au(w)) le sous gradient de la fonc-
tion (a,b) » L(w,a,b) au point (u(w), Au(w)).

Notons aMp’p L‘(w,Mp(m),p(w), le sous gradient de la fonc-
tion (a,b) » L‘(w,a,b) au point (Mp(w),p(w)).

Le systéme (S) &quivalent & chacun des quatre systémes (équi-
valents) S1’3, S1’h, 82’3, S2’h formés & partir de deux des quatre
conditions suivantes

(1) xue a® y

(2) up € 3¢ (hu)

(3) (ulw), Aulw)) € 2 £ (w,Mp(w) ,p(w))

Mp,p
pour presque tout w € Q
(4) (Mp(w), plw)) € au,Au Llw,u(w), Aulw))

pour presque tout w €

Supposons que (w,a,b) + L(w,a,b) est différentiable par rapport

& (a,b) ; notons %§ et %% les dérivées partielles par rapport

(74

la deuxilme et la troisidme variable. Alors la conditions (L) s'derit
AL
p(w) = 3% (w,uw), Aul(w))

Mp(w) = %& (wyulw), Aulw))
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En éliminant p on trouve 1l'équation 'B'Euler" du probléme (P)

M %% (w,u(w), Au(w)) = 22 (u,ulv), tulw))

b
Par exemple dans 1'exemple 2 cette équation s'écrit

L
9x

d 9L

It 3 (t,x(t), x(t)) = (t,x(t), x(t))

C'est 1'équation d'Euler du probléme (P1) (ef. § 1.B et § 2.D).

4, Théoréme

D'aprés les paragraphes 3.A et 3.B ci-dessus on voit que pour

un couple (u,p) € L x P les propriétés sont équivalentes
i) le couple (u,p)vérifie le systime Si,j (i =1,2; J=3,4)
ii)  le couple (u,p)vérifie I(uw) + J(p) =0
iii) on a inf P + inf P* =0 et uet ; sont des solutions
optimales de P et P respectivement.
Nous allons voire que 1'égalité inf P + inf P* = 0 et 1'existence

. . * ez < casa g . s
d'une solution optimale de P sont lifes & la stabilité de P vis a

vis de certaines perturbations.

A. Fonction de stabilité

Pour (v,w) € LE x E on pose

y(vyw) = inf [&(w + Au) + ( L(w,u(w), viw) + Au(w))dw]
u€ur Q
En particulier v(0,0) = inf P : on dit que vy est la fonction de

stabilité de P(par rapport aux perturbations (v,w)).

Montrons d'abord & l'aide de HO et de la formule de Green que
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y(v,w) > - » , Il vient

(v + Au) + ( L{u,v + Au)
Q

* *
2 < W+, up, > -~ & (upo) + { [u.Mp0 + (v + Au).pO] —f L (Mpo,po)
Q

* »*
v.p " & (u-po) - g L (Mpo,po)

2 < w, ppo > 4+ g
Q

Q
D'ol : y(v,w) = < Woup >+ g v.p t+c (avec ¢ € R)
Q

D'autre part on vérifie (en utilisant la convexité de 2 et de

L(Wy.y.) et la linfarité de A et de A) que Yy est une fonction con-

vexe.

B) Enoncé

Théoréme : On fait 1'hypothése (H1) gue pour tout u € Lz il existe

v € LE tel que L(u,v) € L1(Q). Alors :

1) ona inf P = - inf P si et seulement si Y est s.c.l. en

* . . .
\(0,0). Dans_ce cas le probléme P a une solution optimale si et seu-

lement si vy est sous différentiable en (0,0).

2) 8i y est majorée dans un voisinage fort de (0,0) dans

. . * * . .
LE x E, alors inf P = - inf P et P & une solution optimsle.
.. . * P . —_—
3) Si inf P = - inf P, il est &quivalent de dire que (u,p)EW x P

2t as f ~. — —
vérifie 1l'un des systémes 81’3, S1,h’ S2’3, SE,& ou que u et p sont

des solutions optimales de P et P respectivement.

Démonstration Le point 3 ne fait que reprendre les considérations
du paragraphe 3.

Le point 2 résulte du point 1. En effet, si la fone-



- 164 -

J. M. Lasry

tion convexe Yy est majorée dans un voisinage (fort) de (0,0) elle est
continue (0,0) (pour la topologie forte) et sous-différentiable.

. *»
Reste le point 1% On calcule vy et on trouve pour

(p,r) € IE'X E'

i) si Mp€ Lz' et si up=r

ii) Y*(p,r) = k*(up) + L*(Mp,p) sinon Y*(p,r) =+ ®,

I1 en résulte que inf P* = inf y*. Comme inf Y* = - y**(O) d'une
part, et comme y(0a0) = inf P d'autre part, 1'égalité inf P+ inf P =0
a lieu si et seulement si +v(0) = y**(o), c'est 8 dire si et seulement
si y est s.c.i. en (0,0) (pour la topologie forte ou pour la to-
pologie faible).

Enfin comme inf e R, il est équivalent de dire que Y*atteind
son minimum ou que P a une solution optimale. Si y est s.c.i. en
(0,0), il est dquivalent de dire que Y* atteind son minimum ou que ¥y
est sous-différentiable en (0,0). On remarque qu'on a le résultat plus
précis
(p,r)€3y(0,0) = [PEP, r = up , p est une solution optimale de P*]
Le théoréme est démontré modulo le calcul de Y* qui est 1la partie
difficile de la démonstration (on trouvera ce calcul, dans le cas de
l'exemple 1, dans Berliocchi et Lasry (2). Le calcul dans le cas gé-
néral est a peu prés le méme).

Remarque 1. Pour obtenir des résultats d'existence de solutions opti-

N 2 . ca s s * P
males pour le probleéme P, on étudie la stabilité de P . Plus préci-
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sément on cherche & appliquer le théoréme aprés avoir &changé les rdles
» 2q2 it " " .

de P et P : on utilise L =1L, a" = a, B" = B,... Cependant on ne

peut pas toujours échanger W et P ; c'est tout de méme possible dans

les exemples envisagés ici.

Remarque 2. Le point 2 du théoréme est le plus utile car c'est le plus

~

facile & appliquer.

§ 5. Exemples {suite et fin)

exemple 1. Dans le cadre de l'exemple 1 (cf. § 1 et 2) on trouve no-

tamment les problémes variationnels classiques de Neumann et de Diri-

chlet (on trouvers d'autres exemples dans Ekeland-Temam(1)).

On prend

L(m,x,y1,...,yn) B ao(w)x2 + xz(w) + % &ij(w)yiyj

. L EE.Za (E24+...+ 2 er" €Qq;a .€L(R);
avec I a; 3 Elij a (51 + £n), VEER , ¥uw € Q; al’j L (2);

L]
> s a, .=a. .3 z €12 .
ao(m) a al’J aJ’l z € L2(Q)
Les aij sont donc les coefficients d'un opérateur fortement ellip-—

tique dans Q.

On calcule 1'intégrande duale. Il vient

* * x * 1 .o 1 * ok
.o = - + .. LY.

Lo(w,x 5y seeeny,) W [ z(w) - x ] Tl le(w)ylyJ

ol 1les (bij(m)) sont les éléments de la matrice inverse de la matri-

ce (aij(“’))

Soient £1 et £2 les fonctionnels convexes sur HT/Z(F) :
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a?.
=
I
o
b
P
m
e
=

)
o
—
=4
-
I
o
2]
=
o
n
o

On vérifie sans difficulté que le point 2 du théoréme s'applique

aux problémes P, 1(Neumann) et P (Dirichlet) suivants
i)

1,2

(P1 1) Minimiser {21(u|r) + { {a w2 +uz+ = i gEL g&L
»1 ye nl(e) o ° i, M
(P1 2) Minimiser {2 (ulr) + g {a w2 +uz+ T oa.. éﬁL éEL
<y e Hli(p) @ ° 1d 90Xy Xy

On obtient les problémes duaux suivants
Minimiser — L (z - aiv p)2 + 1y P. P
L a % a ij 71 %
* .
(P1 i) pour p € L2(a,R"), div p € 12(0)
L]

si i=1, p.v=0; si i=2, pas de condition sur p.v.

Les relations d'extrémalité s'écrivent par exemple pour P,

ce qul donne en éliminant p le systéme elliptique usuel.

exemple 2 (suite, cf. § 1 et § 2).

On trouvera de nombreux exemples de problémes de Bolza convexes

dans T. Rockafellar (1 et 2).
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exemple 3. Nous allons voir dans un cas particulier comment appliquer
le formalisme général.

Soit 2z € L2(Q) donné. Considérons le probldme
ly - 2|2 + fr (252

pour y € H(Q), y=Ay dans Q, y >0 sur T.

Minimiser f

P Q

On introduit le Lagrangien L : 0 x R2->] - , + =]

(a - z(m))2 si a=">»
L(“’a&,b) =
+osi a#b
et le cofit frontidre & : HY(T) x L2(I') » [0, + = ]
lTwi i
o 51 v=20

2(v,w)
+ o sinon

On pose W = {u € HB/Q(Q); Ay € 12(Q)}.
Sur W est défini un opérateur lindaire continu de trace

Ju

}I"K) (cf. Lions-Magenes (1)). On

A ;W +HY(T) x L2(T) par Au = {(u
pose A=A : WL + L2(Q). Le probldme P s'derit alors (1'équation
¥y = Ay est "dans" L).

(P) Minimiser 2(\u) +j L(w,u(w), Au(w))dw pour u € U.

Q

Montrons que le point 2 du théoréme s'applique.
Soit vy : L2(Q) x HY(T) x L2(r') + ]- @ , + » ] 1la fonction de stabi-
1ité. La définition (§ 4.A) donne ici

inf g ly - 2|2 + g (&L + )2
Q T

Y(u,V,W)=
(pour yEW,y+v=20 sur I'y, y-Ay=w dans Q.
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Soit ¥y la solution du systéme
VoW
Yy-Ay=w dans Q, y +v =0 sur T.
On montre (cf. Lions Magends (1)) que (v,w) + Vo ow est .continue de
i ]
12(Q) x HY(T) dans UW. En reportant Voo dans la définition de vy on
L]
trouve :

y(u,v,w) < a + b(Hul2 + vl , + Iwn2) (avec a,b € R)

H1

Le probléme dual a donc une solution optimale. En calculant

Minimiser % g p? + ( [(R€§R)2 + (p - Ap)zl
T Q

(**) )
p € 12(Q), Ap € ), -3«\2’< 0

Enfin une condition nécessaire et suffisante pour que (u,p) soit
. * .
un couple de solution de P et P respectivement est que
i) y =2y
. 1
i) s(p-8p)=y+2
iii) y = 0 sur F,%§‘< 0 sur T

p _
g Y =0

; = o3
iv) p 23v
On montre sans difficultés l'existence d'une solution optimale de
. . . e e, *
P par les méthodes usuelles (on peut aussi étudier la stabilitd de P,
ce qui n'est pas non plus difficile). On peut aussi montrer 1'exis-

tence d'un état adjoint vérifiant les conditions 1i,ii, iii, iv
J p s s

par les méthodes plus classiques (que la dualité) de Lions (1).
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I INTRODUCTION

1. a ORIENTATION

Three intermingled themes run in all the following : variatiqnal
statements, the duality in paired linear spaces, the convexity of sets or
functions. These are precisely three leading themes of Optimization
Theory, as it has been developed for several decades ; in fact the study
of optimization problems started many progresses of modern convexity
theory, in which duality plays an essential part,

In Mechanics these three themes have been present for more than
two centuries, There is no need to recall the importance of variational
ideas in the development of Analytical Dynamics. Observe, however, that
these ideas often served as a mere scaffolding, to be removed before the
end of the construction, Lagrange equations arose from the variational
properties of a mechanical system subject to frictionless constraints
and conservative forces only ; but actually Analytical Dynamics has a
much wider scope, so that some modern treatises on the subject may deve-
lop it in the framework of Differential Geometry, without reference to
any properly variational fact, Variational calculus acted here in sug-
gesting some mathematical structure which eventually supplanted it. In

another domain a similar evolution took place quite recently when the
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variational approach of partial differential equations gave rise to the
theory of Variational Inequalities which have not much to do with extre-
mum problems,

The classical Calculus of Variations, developed in the context
of differentiability, automaticaliy involves the duality of linear spa-
ces, possibly without formalizing it. In Statics, for instance, it is
usual to characterize the equilibrium configurations of a "frictionless"
system with finite freedom, by equalling to zero the partial derivatives
of the potential energy. This induces to consider these partial deriva-
tives as the "components' of mechanical actions or "forces', in a genral
sense ; in fact this constitutes the correct way to formulate calculation
rules about forces, which are preserved under the change of variables ;
for example if some evolution of the system takes place, one obtains a
simple expression for the work or the power of forces, This benefit in
calculation (and also the possible connection with Thermodynamics) pro-
moted the use of energy methods in many domains ; however these methods
may have been a hindrance when they happened to prevent scientists from
considering phenomena which could not be described by means of potential
functions. Here again one improves by forgetting the variational stimulus
and considering respectively displacements and forces as the elements of

two linear spaces placed in duality by the bilinear form "work''., Such
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was already the underlying idea of the traditional method of virtual

work,

About convexity, on the other hand, it must be noted that
Mechanics was probably the first physical domain to make use of this con-
cept ; this was in formulating the equilibrium condition of a heavy solid
body lying on a horizontal plane : the vertical line drawn from the centre

of mass must meet the convex hull of the points of support. This is ty-

pically aresult concerning unilateral constraints. In fact the study of

dynamical problems for systems of finite or infinite freedom with unila-
teral constraints (e.g. the inception of cavitation in a perfect incom-
pressible fluid ; see MOREAU [7], [&], [9]) initially motivated the
part taken by the author in the development of convexity theory. It must
be stressed that convexity is involved in the theory of unilateral cons-
traints in an essential way ; it is not used as a convenience assumption
made to facilitate mathematical treatment, as it often happens, for ins-
tance, in Optimization,

These lzctures do not deal with dynamics, but only with equi-
librium or quasi-static evolution, i.e, evolution problems where inertia
is negligible, The motion of a system is studied when resistance pheno-
mena, such as friction or the resistance of a plastic system to yielding,

are taken into account. Here again convexity is involved from the stage
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of formulating the resistance law itself, Many mechanists feel that the
occurrence of convexity in this connection is essential, probably with
some thermodynamical significance.

Classical Coulomb's law of friction enters into our general
scheme of resistance laws admitting a (convex) pseudo-potential., It will
be objected that this law gives only a rather rough approximation of the
friction phenomena ; experimentally, when the sliding velocity increases
from zero the friction coefficient begins with decreasing, while the
existence of a superpotential would only allow it to increase. The au-
thor's position in this matter is the following.

Traditional physics almost always starts from linear laws as
first approximations to which improvements have possibly to be added by
taking terms of "higher order"” into account. The common habit of assu-
ming differentiabity in formulations is connected with the same tendency,
as the meaning of differentials is precisely to describe some "tangent"
linear mappings. On the contrary Coulomb's law of friction is radically
nonlinear and nondifferentiable ; nevertheless there is no doubt that
this law agrees with the fundamental features of the friction phenomenon
and as such it is always used in practice as the first approximation,
possibly subject to further improvements. For instance the augmented

friction when the sliding velocity is small or vanishes is frequently
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explained as a sort of welding which takes place between the bodies in
contact, and has to be broken when sliding occurs.

Let us suggest that, in plasticity as well as in friction, our
pseudo-potential formalism describes the primary phenomenon exactly as
in other domains of physics the primary phenomena admit linear formula-
tions, This causes no conceptual difficulty ; on the other hand, the
considerable amount of work which has been devoted in recent decades to
optimization techniques makes now available the computational methods
permitting to deal numerically with "subdifferential calculus’ and con-

vex analysis.

1, b SUMMARY OF CHAPTER 2

The preparatory Chapter 2 presents the elements of the duality
theory of convex functions and the subdifferentials of such functions.
The articulation of the concepts is sufficiently detailed but the proofs
of the main statements are not given, Except otherwise indicated the
reader may find them in MOREAU [10], a multigraph report. Some are also
given in the recent book of P.J, LAURENT [1], which devotes a chapter
to this subject. Of course, the book of R.T. ROCKAFELLAR [2], yet res-
tricted to finite dimensional spaces, supply much of the fundamental

informations.
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The setting is that of a pair of real linear spaces, say (X,Y),

placed in duality by a.bilinear form denoted as <.,.>. This duality is

spposed seEaratingl i.e, the two linear forms defined on X by
x—><{x,y> and x+w><x,y'> are identical only if the elements y and

y' of Y are equal, and the symmetric assumption is made whith exchan-
ging the roles of the two spaces. Therefore, if one of the two spaces

has a finite dimension, the dimension of the other is the same ; in this
case, every linear form defined on one of the two spaces can be represen-
ted in the preceding way and is continuous with regard to the natural to-
pology of finite dimensional linear spaces, The situation is more compli-
cated for infinite dimensional spaces, Recall in that case that each of
the two spaces, say X for instance, may be endowed with various locally

convex topologies which are compatible with the duality (X,Y) in the

sense that relatively to any of them, the continuous linear forms are
exactly the functions x= <x,y> with arbitrary y in Y. By the sepa-
ration assumption made above, these topologies are Hausdorff ; it is a
classical fact that among them the weak topology o (X,Y) is the coar-
sesf and the Mackey topology T (X,Y) 1is the finest., Observe that, by

usual separation arguments, the closed convex sets are the same relati-

vely to all these topologies,thus in the following we shall sometimes

refer to closed convex sets without specifying the topology. Same remark
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for the lower semi-continuous convex functions,

1. ¢ SUMMARY QF CHAPTER 3

Chapter 3 takes up Mechanics by the study of material systems
whose set of possible configurations, denoted by UL, is endowed with a
linear space structure. Such is in particular the case, due to the use
of linear approximation, in many practical situations where it is suppo-
sed that the considered system presents only "infinitely small deviations
from some reference state which constitutes the zero of the linear space
W . By:the bilinear form "work" the linear space U is placed in dua-
lity with another linear space ¥ whose elements represent, in a general
sense, forces applied to the system, An example in § 3. a shows why this
duélity may be supposed separating.

In this framework a statical law is a relation, arising from
the study of some of the physical processes in which the system is in-
volved, formulated between the possible configuration, say u € W, of
the system and some, say f € ¥, among the forces it experiences if it
happens to come through this configuration, Such a relation may depend

on time, The concept of a statical law which admits a potential function

is recalled.

At this stage it is stressed that the word constraint
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possesses in Mechanics a stricter sense than it receives, for instance,
in Optimization (observe that the French mechanical term is "liaison,
while "contrainte"” has other meanings), Describing a mechanical cons-
traint requires fundamentally more information than defining some set
of permitted configurations ; some precisions must be given about the

confining process, in the formulation of which the force of constraint

or reaction is involved, Paragraphs 3, ¢ and 3. d emphasize, in the

linear framework of this Chapter, that frictionless constraints, bila-

teral or unilateral, are statical laws, Precisely they come into the

general class of the statical laws which possess a superpotential, i.e,

the relations between u and f which can be written under the form

- f €3 ¢ (u), where ¢ denotes a convex numerical function,possibly
taking in some part of the space U the value + « . The classical laws
possessing a potential function also belong to this class, as far as the
potential function is convex,

If all the mechanical actions experienced by the system (possi-
bly excepting forces which vanish in any exp=cted equilibrium) are re-
presented by the conjunction of statical laws admitting time-independent
superpotentials, the equilibrium configurations trivially possess some
extremum properties in the space (L . Paragraph 3, f supposes that all

these mechanical actions have been grouped in order to be summarized as
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the conjunction of two statical laws admitting the respective super-
potentials ¢1 and ¢2 3 then u € U is an equilibrium configuration
if and only if there exists fl € F such that - fl €9 ¢1 (u) and

fl €0 ¢2 (u). The determination of f. priortothat of u is classically

1

called a statical approach to the equilibrium problem ; the duality theo-

ry of convex functions immediately yields some extremum formulation for
* *
this problem., This imnvolves the respective dual function ¢1 and ¢2

of and , generalizing the so-called complementary ener of
1 > g y gy

linear elastostatics, Similar correspondances between extremum problems

formulated in two paired linear spaces are a familiar feature in convex

optimization, as well is familiar the connection of such a pair of pro-

blems with a saddle-point property concerning some function called a

Lagrangian, In fact, Paragraph 3. g gives a simultaneous characteriza-
tion of u and fl as a saddle-point in the product space Ux§¥ . As
all the preceding pattern may usually be applied to each definite mecha-
nical system in several different ways, it is éble to generate a great
number of extremal or saddle-point characterization of equilibrium, The
foregoing concepts were first published as a short Note (MOREAU [11])
in which proofs were not given,

/ Paragraph 3, h illustrates the formalism by some examples of

one-dimensional systems, Paragraphs 3, i and 3. j emphasize the
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application to a lattice of bars ; this introduces two pairs of finite
dimensional linear spaces (X,Y) and (E,S), a linear mapping D from
*

X into E and the adjoint mapping D from S into Y : this is a
very common algebraic pattern in elastostatics. Various ways of exploi-
ting it are‘presented s in particular the last one is meant to prepare
for the evolution problem of elastoplastics, to be treated in Chapter 6,
More details about continuous media and the function spaces involved in

their study are given by B. Nayroles in his lectures,

1. d SUMMARY OF CHAPTER 4

This Chapter, devoted to resistance laws does not require a
linear space structure for the set of the possible configurations, In
fact it is a constant feature in Mechanics to associate with each con-
figuration of a system a real linear space Y ;s the elements of Y cons-
titute, in some sense, the values that may take the velocity of the sys-
tem if it comes through the considered configuration. A second linear
space ¥ 1is also associated with each configuration ; the elements of
§ form, in a generalized sense, the possible values of forces which may
be applied to the system at an instant it happens to have the considered
configuration. The spaces Y and ¢ corresponding to a given configu-

ration are placed in duality by a bilinear form : (v,f> denotes the
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power of the force f € § 1if the system possesses the velocity v € V.
In the special case of Chapter 3, it turns out that v may be identified
with Ll and the same ¥ is associated with every configuration,

We call in general resistance law a relation formulated between
the possible velocity v € V' and a force say f € § , arising from some
of the physical processes in which the system is involved, This is pro-
perly a resistance phenomenon if the relation is dissipative, i,e. if it
implies <v,f>< 0.

Here again, the case where it exists a function ¢ defined on

V", called the pseudo-potential of the resistance law, such that the

relation takes the form - f € 3 ¢ (v) deserves special attention. If,
in particular O € 3 ¢ (0), the relation is sure to be dissipative ; the

pseudo-potential is called in this special case a resistance function

and one may suppose without loss of generality, that ¢ (0) = O, An ele-
mentary example is that of viscosity laws : then ¢ 1is a quadratic form,
traditionally called the Rayleigh function.

The main application of these ideas concerns dry friction and
plasticity ; this corresponds to a function ¢ which is sublinear, i.e.
convex and positively homogeneous, Equivalently, ¢ is the support func-

tion of a closed convex subset of ¥ | denoted by -C , containing the

origin, An essential fact in such a case is that the considered
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resistance law, namely - f € 3 ¢ (v), neither defines f as a single-
valued function of v nor v as a single-valued function of f ; to

v = 0, in particular, correspond as possible values for f all the points
of C . This is a familiar feature of the Coulomb law for dry

friction or of the Prandtl - Reuss law for perfect plasti-

city. In their conventional formulation the? may, at first sight, look
like a piecing together of heterogeneous empirical data ; the present
formulation on the contraty reveals the strong mathematical consistency
of each of these lawa, The rest of these lectures is meant to display
the efficiency of such an approach. The reader will see, on the other
hand, in P, GERMAIN [1] how our pseudo-potential formalism may take
place in the more familiar setting of a textbook on Continuum Mechanics,

For what concerns Coulomb's law of dry friction it will be
objected that, in most practical problems, the normal component éf the
contact force, which enters here in the expression of ¢ as a constant,
is unknown, Our position is to consider this quantity as one of the sta-
te variables of the system,

Paragraph 4, d comes back to perfect constraints as they were

introduced by Chapter 3., In the present kinematical context, these cons-
traints are manifested as relations between the velocity of the system
and some force acting on it, namely the reaction of the constraint. These

relationstoo can be represented by means of pseudo-potentials and the
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same is true for the nonholonomic perfect constraints of traditional
Mechanics (actually an extreme case of friction) : we propose to refer

to such relations as velocity constraints,

Friction or plasticity. laws, as well as viscosity laws, exhibit
a very usual property : the corresponding dissipated power = (v,f> can
be expressed as a single-valued function of the velocity, classically

called the dissipation function, There is a priori no reason for this

funption to be related to the pseudo-potential if it exists ; paragraph

4, £ characterizes the resistance laws for which such a relation holds.
The chapter ends with remarks about viscoplasticity : adding

some viscosity to a resistance law of the plasticity or friction type

described above, amounts to replace the indicator function ¢C of the
1} 3

set C (the function taking the value O on this set and + o outside)

by a penalty function of the same set,

1, e SUMMARY OF CHRPTER 5

This is a purely mathematical part, The application of the
foregoing mechanical formalism to evolution problems requires, in parti-
cular, some investigations about the motion of a set.

By means of Hausdorff distance, the classical concept of the

variation of a function defined on a real interval is adapted to moving
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sets in a metric space ; the absolute continuity of such sets is similar-
ly introduced.

As convex subsets of a normed space may be described in terms

of their support functions, a special approach of méving sets is develo-

ped for this case, In the same setting of normed spaces and convex mo-

ving sets, Paragraph 5, c¢ establishes an intersection theorem which

formulatessufficient conditions for the intersection of two absolutely
continuous convex moving sets to be itself absolutely continuous.

The rest of the Chapter is restricted to Hilbert spaces.
Paragraph 5. b considers among other topics the distance from a moving
point tw z(t) to a moving convex set tr> C(t) ; if both are absolu-
tely continuous the distance is an absolutely continuous numerical func-
tion and some inequality involving derivatives is established, as a pre-
paration for the following.

Paragraph 5. ¢ introduces the sweeping process associated
with a moving convex set in the Hilbert space H. This gives a fundamen-
tal example of an evolution problem under unilateral constraint ; from
the mathematical standpoint this process features also as a constituent
of several more complicated situations ; in particular it will be met
again in the treatment of the elastoplastic problem of Chapter 6. The

author has already devoted several studies to this problem, mainly
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published as multigraph seminar reports (cf, MOREAU [17], [18], [20],
[21]). The method used in § 5. g to establish an existence theorem con-
sists in a regularization technique, equivalent in the present context
to representing the given moving convex set by penalty functions.

The Chapter ends with an algorithm of time discretization for

the.solution of the sweeping problem ; the convergence of this algorithm
is proved by using again regularization, but with a time-dependent

"penalty coefficient'.

1. £ SUMMARY OF CHAPTER 6

This final Chapt?r shows how all the foregoing operates when
applied to the quasi-static evolution problem for elastoplastic systems.
This involves a linear space Ul as configuration space and, according
to the conventional conception of elastoplasticity, the system is treated
as formed by two components : the "visible' or "exposed” component, deno-
ted by " x € U , and the "hidden" or "plastic” component denoted by
p € u . The elastic restoring force depends only on the difference x-p.
The component x undergoes perfect constraints and loads, both depen-
ding on time in a given way. The component p undergoes a resistance
related to its "velocity" ﬁ by a law of the type studied in & 4,

This is only perfect plasticity, but a very simple example suggests that
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strain hardening too could be taken into account by a similar pattern,

provided a sufficiently large space would be affected to the "hidden' or

"internal" variable p ; this point of view is adopted by several

’

authors.

Great simplification is brought by a notation trick by which
the configuration space !l and the force space ¥ are identified with
a single Hilbert space H ; the norm in H 1is related to the elastic
energy.

An existence theorem is proved by reduction to the sweeping

process of Chapter 5 ; thereby a time-discretization algorithm is
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2 DUALITY ANC SUBDIFFERENTIALS OF CONVEX FUNCTIONS

2, a POLAR FUNCTIONS

let X , Y be a pair of real linear spaces placed in separating
duality by the bilinear form (.,.>» Let f be a function defined, for
instance, on X, with values in R = [- o, + m]. Consider the affine
function defined on X by
(2.1) x P Lx,y> - p
with y fixed in Y, called the slope of this affine function, and p
fixed in R ; such is the general form of the affine functions which are
continuous for some, then for any, locally convex topology on X compa-
tible with the duality.

An usual guestion is that of determining wether this affine
function is a minorant of f ; a trivial necessary and sufficient con-
dition for that is
(2.2) p;Z sup [¢x,y> - £(x) ] .

x € X
*
Attention is drawn thereby to the function f defined on Y by
*
(2.3) f (y) = sup [(x,y> - £(x)]
x € X
called the polar function of f,

*
In particular the equality f (y) = + », for some y € Y,

means that f possesses no affine minorant having y as slope ; such is
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the case, for instance, whichever is y, if f takes somewhere in X
the value = o .

EXAMPLE, ILet A be a subset of X ; take as f the indicator function

¢A of A, i.e,
[o] if x€ A
¢, (x) =
A + oo if x f A .
Its polar function
. .
Yo )= sup [Kxy> -4, (0] = sup <x,y>
X €X x € A
is classically known under the (rather improper) name of the support
function of A, Take y different from zero in Y and o € R ; the af=-
fine function (2,1) is a minorant of ¢A iff the closed half space
{x €X : Lx,y>-p s; O} contains A, In view of condition (2.2) this
. .
is possible only if ¢A (y) { + e ; in such a case taking exactly
*
p = ¢A(y) yields a half-space which is minimal, with regard to inclu-
sion, among the half-spaces containing A ; but that does not mean this

half-space is necessary a "supporting half-space"_; its boundary hyper-

plane need not meet A, even when A 1is closed and convex,

2. b PAIRS OF DUAL FUNCTIONS
For the construction of the supremum in (2.3) one may equiva-

lantly consider only the values of x such that £(x) ¢ + » . Therefore,
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*
whichever is f, the function f belongs to the set, denoted by

I' (Y,X), of the functions on Y which are the pointwise suprema of col-

lections of affine functions like y P (x,y> -0, x € X, 0 € R , Using

Hahn-Banach's theorem, one proves that, besides the constant - » (it
is the supremum of an empty collection), the set T (Y,X) consists
exactly of the functions on Y, with values in ]— 0, + m], which are

convex and 1,s.c., for some locally convex topology on Y compatible

with the duality (Y,X), then 1,s,c. for all such topologies.

The spaces X and Y play here symmetric roles ; there is no
inconvenience in denoting in the same way by the star * the function
defined on X as the polar of a given function'on Y, Then the b?polar
of f 1is defired on X by

& (x) = sup [¢x,y> - £ )]

y €Y
The construction of this supremum may be equivalently be restricted to
4
*, *%
the values of y such that f (y) is finite ; that means f is the
supremum of the affine functions like (2,1), with p verifying equality
*%
in (2,2) ; they are the maximal affine minorant of £, so that f may
also be defined as the pointwise supremum of all the affine function of

the form (2,1) which minorize £, This supremum is equivalently charac-

terized as the greatest element of T (X,Y) minorizing f or I~ hull
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For instance, if A 1is a subset of X, the T - hull of the
indicator function wA is the indicator function of the closed convex
hull of A,

The preceding implies that if it is a priori supposed that

f €T (X,Y) and g € T (Y,X) one has the equivalence

Then f and g are said mutually polar or conjugate or dual functions. In

this way the star #* induceg a one-to-one correspondance between I (X,Y)
and T (Y,X) ; as the constant + » corresponde to the constant - s,
the correspondance is also one-to-one between the elements of T (X,Y)
and T (Y,X) other than these singular constants : these elements are

called the proper closed convex functions on X and Y,; the setsof them

will be denoted by Po (X,Y) and Po (Y,X) respectively,
From the definition of polarity it immediately follows
VXEX , VYEY : £(x)+ gly)> L{x,y>

called Fenchel's inequality.

REMARK ON TERMINOLOGY. Most of the words introduced by the preceding
definitions are the English transcriptions of French terms currently used
by French speaking people after the author's multigraph report of 1966

(MOREAU [10]), This involves but slight discrepancies from the book of

R.T. ROCKAFELIAR [2] : following the 1949 initiating paper of
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W. FENCHEL [1], Rockafellar prefers the locutions "conjugate function:'
to "dual functions”, It may be inconvenient to call also conjugate of f,
as he does, the function f* associated by (2,3) with some f which
does not necessarily belong to I (X,Y).As this so called "conjugacy" is
no more a symmetric correspondance, the author chose in the 1966 report,
to use in this connotation the térm polar function., Unfortunately, in the
meantime, Rockafellar applied the word polar to another kind of corres-
pondance (cf. Sec, 15 of his book) concerning nonnegative closed convex
functions vanishing at the origin, which generalizes some classical con-
jugacy of gauge functions (see § 2, h below) ; but there does not seem

to be much risk of confusion.

2. ¢ IMAGES OF PROPERTIES OR RELATIONS

Many properties or relations concerning functions defined, for
instance, on X, imply some propertiés or relations concerning the polar
of them., Here we restrict ourselves to a few of these "images by polari-
ty" considering exclusively functions f, fl’ f2, e which bflong to
} (X,Y) and denoting by g, 817 By een their polar (i.e, Aual) func-
tions,

Easy calculation 'yields :

1° Homothety. If o € R is a non zero constant, the identity
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Vx€X fl(x) = fz(c x)
is equivalent to
Vy€ey ) = e &y
y : gl y = g2 pe- y .

2% Multiplication by a positive constant. If A is a strictly positive

constant, the identity

vV x€X fl(x) A fz(x)
is equivalent to

Vy€ey : gl(y) = )\gz()\iy) ;
the right member is sometimes written as a yright product by A" .
notation g, = & AL

In particular a function g belonging to T (V,X) 1is the
support function of a subset of X (or equivalently the support function
of the closed convex hull of this subset) if and only if its dual f is
an indicator, i.e, this dual takes only the values O and + o . That
means f remains unchanged under the multiplication by any A > O ; in
view of the preceding, this is equivalent to g being positively homo-
geneous (i,e., sublinear, due to the assumed convexity of g). A more
special situation is that of a function g belonging to T (Y,X) which
at the same time is an indicator function and is sublinear : this hap-
pens if and only if f possesses the same properties ; in such a case

f and g are respectively the indicator functions of two mutually polar
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(closed, convex) cones, P and Q, i,e,

Il

Q fyey : vxepPrP , «(x,y>< 0}
and symmetrically

P fxex: vyeq , (x,y><0} .

1l

3° Translation, If a € X and a € R, the identity
Vx€X fl(x)=f2(x—a)+a

is equivalent to

Vyey : gl(y) = gly) +{a,y> - «a
4° Product spaces. Let (Xi,Yi), i=1,2, ..., n, be n pairs of real

linear spaces placed in duality by n bilinear forms respectively deno-

ted by (.,.>i. If x = (xl, x2, .y xn) denotes the generic element

of the linear space

X:XIXXZXU‘XXH
and y = (yl’ Yor «ves yn) the generic element of the linear space
Y:lesz...xYn
the bilinear form
6, ¥7> = X,y +£%,,¥,>, + oo +4x L,y >

places X and Y in duality. For each i, denote by fi’ g; a pair of
functions defined respectively on Xi and Yi and mutually polar with
regard to the bilinear form (. ">i' It is easy to see that the functions

f and g defined on X and Y respectively by
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!

£(x) = fl(xl) + f2(x2) + oo, + fn(xn)
gly) = g ly)) + 8,0y + ...+ g (V)
are mutually polar with regard to (.,.>.
The following result is less trivial (see proofs in MOREAU
[3] or [10]) :
59 Continuity. The setting is again that of single pair of linear spaces

finite and

(X,Y), The function f € T (X,Y) igAcontinuous at the origin for some

locally convex topology on X compatible with the duality (then for the
Mackey topology T (X,Y) which is the finest of them) if and only if the
dual function g € T,(Y,X) is inf-compact, i.e. for any k € R the
"level set” or "slice” fy €Y : g(y)< k! is compact for some (local-
ly convex) topology on Y compatible with the duality (then for the
weak topology o (Y,X) which is the coarsest of them), Note that, due to

the convexity of g, a sufficient condition for that is the existence of

some k > inf g such that this compactness holds.

Using translation (cf. 3° above) one concludes that the conti-
nuity of f at some point x0 € X is equivalent to the compactness of
the "oblique slices of g with slope xo", i.,e, the sets

Iy €Y & gy ~¢x_, y>< K

2, d INF - CONVOLUTION AND THE IMAGE OF ADDITION

Let us denote by ; the commutative and associative operation
extending classical addition to any pair of el=ments of E = [= o, + o]

by putting (- ) P e) =t (symmetrically the operations + extends
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classical addition by the convention (= &) + (+ @) = = o).

f be functions defined on the linear space X with

Let f,, f,

values in ﬁ ;3 the function f defined on X by
(2.4) £(x) = inf [£ (W) H £,(x - W] = inf [£(x - V) + £, (v)]

u€ X . v EX

is called the infimal convolute, or shortly inf-convolute, of fl and

f, ; it is denoted by fl \% f2 (or also f, O f as in ROCKAFELLAR [2],

2 18 £,

when there is no risk of confusion with the supremal convolute fl A fz,

which would be symmetrically defined by using "'sup” and +). This opera-

tion is commutative and associative ; if fl and f2 are convex, so is

fl v fz, etc. ..

Example 1, If fz is the indicator function of a singleton {a?, then
fl v fz is a translate of fl, namely the function

X - flfx - a) .

Example 2, If A is a subset of X and ||.|| a norm on this linear

space, then (4, V ||.l) (x) is the distance from the point x to_the

set A.
Example 3, If A and B are two subsets of X, the inf-convolute
wA v ¢B is the indicator function of the set

A+B = {x€X : 3a€A , 3IbEB , x = a+bl,

Coming back to the setting of the pair of spaces (X,Y) in dua-

lity, the computation of polar functions yields easily
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(£. v £.) e
1V 5 = v,

Suppose now that fl and f2 belong to T (X,Y) and that

g, and g, are their polar (i.e. dual) functions ; taking the polars
of both members of the preceding. equality leads to

** *
(2.5) (f1 v fz) (gl + gz) .

Addition + is a composition law in T (Y,X) ; (2.5) describes the com-
position law in T (X,Y) which is the image of it by the one-to-one

*
mapping ; this composition law is the T - hull of inf-convolution (cf.

8§ 2. b above) ; we denote it by Y ; it may be called T -convolution,

Of practical importance are the cases where fl vV £ happens

2
to belong to T (X,Y) so that the double star may be omitted in (2.5).
Let us just formulate here the two most usual of them,

It is still assumed that fl and f2 belong to T (X,Y).
1° Suppose that the set, denoted by cont f1, of the points where f1

is finite and continuous, for some topology compatible with the duality,

and the set

dom £, = {x € X : £_(X){ + o}
2 2
are such that
cont fl + dom f2 = X .
Then f1 v f2 is either the constant -~ or is finite and continuous

everywhere in X for the considered topology ; therefore
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fl v fz € I (X,Y), hence fl \Y f2 = fl v f2 .
20 Suppose that there exists a point Yo in Y at which both func-
tions gl and gy are finite, one of them continuous at this point (for

some topology compatible with the duality) ; then £, Vi, € T X,Y) ;

2
furthermore this inf-c¢onvolution is exact, i,e,, whichever is x, the
infimum in (2.4) is a minimum, Note that the hypothesis is equivalent to
the following : both functions x b fl(x) -{x, y0> and

x P fz(x) -<x, yo> are bounded from below and one of them is inf-

compact for the weak topology o (X,Y) (cf. § 2 c) .

2. e SUBGRADIENTS AND SUBDIFFERENTIALS

lLet f denote a function defined on X, with values in i 3 an
element y of Y is called a subgradient of f at the point x € X if
y is the slope of an affine minorant of f exact at the point x, i,e,
taking at this point the same value as f. This requires that the value
£(x) is finite and that the expected minorant has the form

uek <u-~- x,y> + £(x) .

Using condition (2.2) for an affine function to minorize £, one obtains
the following representation for the set, denoted by @ f(x), of the sub-
gradients of f at the point x

a f(x)=f{y€evy f*(y) -{x,y»>< - £(x)}
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This set is called the subdifferential of f at the point x., The con-

i *
vexity and the lower semicontinuity of f imply that 9f(x) is a con-
vex, possibly empty, subset of Y, closed for the topologies compatible
with the duality (Y,X). If df(x) is not empty the function f is said

to be subdifferentiable at the point x.

Trivially the function f possesses a finite minimum attained

a\'\d
at the point x if only if df(x) contains the zero of Y.
~

Recall that the function f 1is said weakly differentiable, or

Gateaux-differentiable, at the point x, relatively to the duality (X,Y),
if there exists y € Y (necessarily unique) such that for any u € X,

the function t b f(x + t u) of the real variable t possesses for

t = 0 a derivative equal to {u,y> ; the element y is called the weak
gradient, or Gateaux—gradient, of the function f at the point x, rela-
tively to the duality (X,Y). If in addition the function f is convex,

one easily finds that the subgradient df(x) consists of the single

element y. When X 1is a normed space, Y its topological dual, all this

a fortiori holds if f is Fréchet-differentiable at the pcint x,

Subdifferentiability finds its clearest setting when a pair of
dual, i,e, mutually polar functions f € Ig (X,Y) and g € To (Y,X) is

considered, Then, for x in X and y in Y the three following pro-

perties are equivalent :
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(2.6) y € af(x)

2.7) . x € dg(y)

(2.8) £(x) + g(y) = &x,y> = 0

observe that, by Fenchel's inequality, the = sign gbove may equivalen-

tly be replaced by s; . If these properti;s hold, the points x and y

are daid conjugate relative to the pair of mutually polar functions (f,g).
EXAMPLE., Take as. f the indicator fgnction wc of a nonempty closed convex
subset of X, Then the relation y € 2 wc(x) is trivially equivalent to

the following : the point x belongs to C and the set

fu€ex : ¢u-x, y>< 0} contains C. If y differs from the zero of

Y this set is a closed half-space whose boundary is a supporting hyper-

plane of the set C at the point x ; then one classically says that

Yy € Y is an outward normal vector at the point x of the convex set

C C X. Let us agree to take this locution in a weak sense, by considering

also the zero of Y as a normal vector at the point x if it belongs to

’

2 ¢C(x) ; thus the set 0 ¢c(x) will be called the outward normal cone
at the point x, This cone is empty if x ¢ C ; if x € C it contains at
least the zeio of Y and reduces to this single element, in particular,

when x 1is an internal point of C (i.e, every straight line drawn to

x 1intersects C along a segment to which x is interior). In terms of
O

*
the support function ¢c of C, condition (2,8) yields that if x
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belongs to C one has

agﬁc(x) = fy€y dl;(y) = <x,y> 1

*
fyevr : .0 <exy ]

t

REMARK, For a pair of spaces (X,Y) with finite dimension and convex
functions f, g which are differentiable, relations (2.6), (2.7), (2.8)
show that the correspondance between f and g reduces to the classical

Legendre transform,

Let us come back to the case of an arbitrary f and possibly
infinite dimensional spaces. By associating with every x € X the subset
3f(x) of Y one defines a multimapping (also called a multifunction, or
a multivalued mapping, or a set-valued mapping) from X into Y. Indepen-
dently of the formalization of subgradients and the "subd;fferential cal-
culus" (MOREAU [2] ; similar ideas were also present in Rockafellar's
Thesis, Harvard, 1963) this multimapping was considered in G.J. MINTY
[1] as the leading example of monotone, possibly multivalued, operator.
In fact whichever are x and x' in X, whichever are y in £ (x)
and y' in 9f(x'), if any, one finds easily

¢x-x',y-y> > o0

which is, by definition, the monotony property of the multimapping df.
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2, £ ADDITION RULE

The main calculation rule for subdifferentials concerns addi-
tion, If f1 and f2 are two numerical functions, defined for instance
on X, the inclusion

(2.9) afl(x) + afz(x) C a(f1 + fz)(x)

is trivial, If this inclusion holds as an equality of sets the functions

fl and f2 are said to possess the additivity of the subdifferentials

at the point x .,

Let us indicate two usual sufficient conditions for that :
1° If both functions fl and f2 are convex, one of them weakly diffe~
rentiable at the point x, inclusion (2,9) holds as an equality of sets,
2° If both functions fl and fz are convex and if there exists a
point xo in X at which one of them is continuous, with both values
fl(xo) and fz(xo) finite, inclusion (2.9) holds as an equality of sets
for every x in X, Continuity must be understood here in the sense of
some (locally convex) topology compatible with the duality (X,Y) : thus
the less stringent hypothesis is obtained by taking the finest of them,
i,e, the Mackey topology < (X,Y).
EXAMPLE, Make fl =f, a functiqn defined on X, with values in

]- e, + »] and fz = ¢C’ the indicator function of a non empty subset

C of X. The problem of minimizing the restriction of f 22 C 1is
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clearly equivalent to that of minimizing, over the whole of X, the func-

tion f + ¢C s a minimizing point x is characterized by

(2.10) 0€a(f + ¢C) (x)
a condition which is implied by

(2.11) 0 € 3f(x) + 2 ¢c(x) .

&
When the additivity of the subdifferentials holds, conditions (2,10) and
(2,11) are equivalent,

Such is the case for instance, by 1° above, if the set C is

convex, and the function f convex, everywhere weakly differentiable :

then (2,11), written as
(2.12) - — grad f(x) € 3 ¢C(x)
is a necessary and sufficient condition for x to be a solution of our
"constrained minimization problem". Make in particular X =Y = H, a
separated pre-Hilbert space with the inner product (.].) playing the
role of the bilinear form ¢(.,.>. Let a be an arbitrary element of H ;
define the function' f by

£(x) = é-(x—a | x=a) =-% IIx-a]|% .
Elementary calculation oroves that this function is convex and weakly
differentiable relatively to the duality (H,H), with

grad f(x) = x-a .

Then (2,12) yields a necegsary and sufficient condition for x to be
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the nearest point to a in C

(2.13) a-x€29 ¢C(x) H

such an x is denoted by projc(a) or proj (a, C), if it exists. Uni-
queness of this points results from f being strictly convex ; recall
on the other hand that if H is comglete; i,e, if it is a Hilbert space,

the existence of projc a 1is secured for any a € H.

2, g IMAGES BY LINEAR MAPPINGS
Let (F;G) be another pair of linear spaces, placed in separa-
ting duality by a bilineat form denoted by ¢.,.>>. Let A be a linear

mapping ¥rém F 3jato X, weakly continuous (i.,e. continuous from F

endowed with any topnlogy compatible with the duality (F;G), to X en-
dowed with the weak topology o (X,Y)). Weak continuity implies the exis-

*
tence of the adjoint (or transpose) of A, i.e, the linear mapping A

from Y into G such that
*
Vu€e€F , Yy€Y : <Au,y> = (u, A y>> .,
Let £ € T (X,Y) ; clearly the function
foA : uw f(Au)
belongs to T (F,G) ; one proves (see ROCKAFELLAR [3] ) that its dual

*
function (f o A) is the T - hull of the function defined on G Ez_

* *
(2.12) ve inf {f (y) :+ A y = v} .
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If in addition there exists a point in the range of A at

which f is finite and continuous (for some topology compatible with the

*
duality (X,Y)) then (f o A) equals the function (2,14) itself, Under

the same assumption, for every u € F, the subdifferential d(f o A) (u)

*
is the image of 9f(A u) C Y under the mapping A ; this may be expres-

sed by writing

*
(2.15) 3(f oA) = A odf oA .

2., h CONJUGATE GAUGE FUNCTIONS AND QUASI - HOMOGENEOUS CONVEX
FUNCTIONS
The setting is again that of a single pair of spaces (X,Y),.
Let A be a closed convex subset of X containing the origin ; denote
by B the polar set of A, i.e,
B = {yey : vxea , ¢x, o<1} .
Then A is, symmetrically, the polar set of B, It is easily seen that

the gauge function of A, namely the function a defined on X by

a(x) = inf {A € ]O, + ef :II-XEAg,

is the support function of B ; symmetrically the gauge function b of

B 1is the support function of A, We shall refer to this situation by

saying that (a, b) 1is a pair of conjugate gauge functions.

For sake of simplicity bet us restrict ourselves here to the
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case where both functions take only finite values ; this means that A

is absorbent in X (i.e. the origin is an internal pcint) and that it is
bounded relatively to the topologies compatible with the duality ; equi-
valently B possesses the same properties in Y. Such is the case, for
instance if X 1is a given normed space, Y its dual endowed with the
usual norm : the respective norms form a pair of conjugate gauge func-
tions and the corresponding mutually polar sets are the closed unit balls
of the two spaces,

One finds

(x'y>

b(y) = sup =

acX a
and the symmetrical relation (this can be extended to possibly infinite
valued conjugate gauge functions, under some notational precautions),

Consider on the other hand a mapping ¢ from [0, + | into
[0, + .] possessing the following properties : ¢ is convex, non de-
creasing, lower semi continuous and ¢ (0) = O (actually ¢ is conti-
nuous on the interior of dom ¢ = {E € [0, + el : #(E) £ + w}). Clas-
sically, with such a function is associated its Young conjugate 7y defi-
ned on [0, + o[ by

y (n) =sup En~-¢ E)

which possesses the same properties ; ¢ 1is, in turn, the Young conju-

gate of "y .,
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Examples :

1 1
1° $CE) = = &P , y (n) ==nt

p q
where p and q denote two constants in ]1, + m[ , such that
l/p + l/q =1,
20 o) it o< <A

P(E) =L E , y(n) =
+ o if A €N ¢ + o

where A € [0, + o[ 1s a constant,
Exclude the singular case where one of the two functions ¢
and 7y is the constant zero. Then one proves that the functions

f=¢goa B g =7y ob respectively defined on X and Y, i,e,

£(x) = ¢ (a(x)) , gly) = vy (b(y))

are a pair of dual functions.in the sense of the preceding paragraphs,

Each of these functions is said quasi-homogeneous (or gauge-

like in ROCKAFELLAR [2]) ; in fact in the special case where

Ep, the function f is positively homogenous with degree bp.

¢ E) =

o~

The functions defined in this way, for instance on X, may be characteri-
zed as follows : they are the elements of PO (X,v) such that the va-
rious sets f{x € X : f(x) < k} (the "slices" of f), for k R
are homothetic to A. (they are empty for k ( O),

Concerning the determination of the subdifferentials of these

functions, let us only indicate : Two points x € X and y € Y are
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conjugate relatively to (f,g) if and only if

¢ (a(x)) + y (b(y)) = a(x) bly) = <£x,y> .
The first equality may be interpreted by saying that the real numbers
a (x) and b (y) are conjugate points with regard to the pair of
Young conjugate functions (¢,y) ; if x and y are different from the
respective origins of X and Y, the second one expresses a property
of the "rays" (i,e., one~dimensional cones) they generate in .X and Y ;

such rays may be said conjugate relative to the pair of conjugate gauge

functions a and b,
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3 SUPERPOTENTIALS AND PERFECT CONSTRAINTS

3. a CONFIGURATIONS AND FORCES

In this Chapter is considered a mechanical system of® whose set
of possible configurations, denoted by»li,, is endowed with a linear space
structure, Such is traditionnally the case, due to the use of linear ap-
proximation, if the system presents only "small deviations” from a cer-
tain reference configuration which constitutes the zero of u .

The bdlinear form work places the linear space u in duality
with a linear space ¥ whose elements constitutes, in a general sense,
the possible values of forces experienced by the system, Precisely {u,f>
denotes the work of the force f € ¥ for the displacement u €U of the
system, For sake of clarity, we shall in some cases comply with the habit
of denoting a displacement by such a symbol as & u ; this symbol is
meant to recall that the considered displacement equals the difference
between two elements of L representing some configurations ; actually,
in the present frame work, due to the existence of the privileged confi-
guration "zero", configurations as well as displacements are elements of
U, thus have the same algebraic nature,

After replacing, if necessary, the considered spaces by some

quotients, it may be supposed that this duality is separating.
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EXAMPLE, Take as ¢§ a perfectly rigid body performing only 'infinitely
small" motions in the neighborhood of the reference configuration, From
this reference state, each possible configuration of the body may be des-
cribed by the correspording field of displacement vecters, say

u : x> :(x). Due to the rigidity of the body and to the fact that dis-
placements are, by approximation, treated as infinite]y small this field
possesses the property of equiprojectivity ; the totality of equiprojec-—
tive vector fields is well known to form a linear space of dimension 6 :
such is U in the present case., For sake of brevity let us accept only

as acting on o® finite families of forces in the sense of elementary

Mechanics. Such a family may be described as a vector field ¢ : x**'$(X)
taking the value zero everywhere except on a finite set of points and its
work for a displacement field u ceW is classically defined as the fini-
te sum w =32 u(x). z(x). For a fixed ¢ the mapping ur>w is clearly
a linear form on the space & ; on the other hand, the set & of the
possible ¢' s 1is naturally endowed with a linear space structure which
makes that, for a fixed u, the work w is a linear form of ¢, But the
space & clearly has an infinite dimension, so that this bilinear form
cannot place & and & in separating duality. The classical procedure
consists in treating as equivalent two families of forces, say ¢ and
¢', such that

Vuel 3 U x) = T ax). $'(x).
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The corresponding equivalence classes are called torsors, In other words,
if @0 denotes the linear subspace of & formed by the families of for-
ces which yield a zero work for any u € U , torsors are the elements of
the quotient space & / @0, with dimension 6. Such is § in the present
case ; the duality between & and § is then separating,

PRODUCT SPACES. Suppose the mechanical system ¢ consists in the con-
junction of n possibly interacting systems Of;, efz, ey d"n whose res-
pective configuration spaces are the linear spaces ?-ll,uz ey ?.(n B
Then the configuration space of of° is the product space Ul xUZ X ees
c. xun , naturally endowed with a linear space structure, Denote by ?i
the force space corresponding to the system d°i , a linear space placed
in separating duality with Ui by the bilinear form <.,_>i . A force f
exerted on the total system & is a n-tuple (f f , fn)

,

1 To0 e
fi € S‘i ; this is the generic element of the product space
. X an . The work of f for a displacement
, ..., u) of & is by definition the sum
2 n
u,f> = 2,<ui’ fi>i
i

in which we recognize the natural bilinear form placing the product spa-
ces U an ¥ in separating duality (cf. § 2, c¢).

This construction of 2 and § as the products of the respec-

tive spaces corresponding to subsystems of S is a customary procedure

in computation, It prepares alsc for the application of our general
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pattern to continuous media, as developed in B, Nayroles's lectures
then WU and § are some linear spaces of measurable functions, with
regard to a certain non-regative measure. The sum which above defines

the work is replaced by an integral,

3. b STATICAL LAWS

A statical law is a relation, denote it by 2, between the
configuration u € U that the system o may occupy and some, say
f € ¥, among the forces it may experience when it comes through this
configuration, Such a relation arises from the study of some of the phy-
sical processes in which th: system is involved,

Instead of relations as ®, one may equivekntly speak of multi-
mappings from one of the two spaces into the other ; for instance, toevery
u in U corresponds the (possibly empty) set, denote it by R(u), of
the elements f of ¥ wh..n are related to u by &%

In particular it may happen that the set R(u) consists, for
e .h u, of a single element ; then the statical law is described as a
single-valued mapping ur» f from U into ¥, If, in addition, there
exists a numerical function W :W - R such that this mapping is expres-
sed by

f = - grad W(u)

(weak gradient or "Gateaux differential” relative to the duality defined
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above) it is classically said that the considered statical law admits W
as potential,

The sir plest statical law imposes the value fo €EF of a cer-
tain force acting on the system, independently of the configuratiou u,
Such & constant mapping from W into ¥ evidently admits the potential
W expressed by

W) = =-<u, £> -

EQUILIBRIUM, Suppose that all the physical processes in which the system
d‘ takes part imply forces, acting on it, which eitber vanish in any ex-
pected equilibrium or are n forces fl, f2’."" fn respectively rela-
ted to the configuration u by n statical lawmsindependent of time,

denoted by fl’ R .y %n . Then the equilibrium problem consists in

o -

determining the values of u in U possessing the following property

there exist fl’ f2, N f4 in ¥ respectively related to u by the

relations %1, ? ﬁn and such that fl + f_ + ...+ f_ = 0.

07t 2 n

According to the "principle of virtual work" and due to the way in which
F§ has been constructed as a quotient space placed in separating dua’ity
with 21, these values of u correspond in fact to the equilibrium con-

figurations of &, i.e, the configurations in ‘hich immobility is a mo-

tion compatible with our physical information about this system,

Equivalently, if Rl’ gy eeos Rn denote the multimappings

corresponding as above to the n statical laws, the equilibriuv.
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configurations are characterized by
0 € Rl(u) + Rz(u) +oiee + Rn(u).
Let us stress at last that the concept of statical law, as we
just defined it, is not restricted to the study of equilibrium problems.
In evolution problems also, statical laws will be considered, possibly

depending on time,

3, ¢ FRICTIONLESS BILATERAL CONSTRAINTS

The description of a constraint in Mechanics requires fonda-
mentally more information than merely defining a set of permitted confi-
gurations.This description always includes some indication concerning

the forces of constraint or reactions experienced by the system and im-

plied by the material process which restricts its freedom. Let us empha-

size that perfect, i.e. frictionless,constraints are a special type of

statical law.

Consider for instance the situation described in the language
of elementary Mechanics as follows : a certain particle s of the system
of is maintained bilaterally, without friction,on a given regular mate-
rial surface S. Let
(3.1) hx) = 0
be the equation of S, where ; denotes the generic element of a three-

dimensional frame of reference Eq, treated as a three-dimensional
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linear space, and h a smooth numerical function defined on E_, with

3
nonzero gradient, Let ;o denote the position of the particle s in
E3 when the system ©f presents the configuration corresponding to the
zero of Ll. For the configuration corresponding to some element u of
WU, this position is B and, due to our framework of small deviations
-> ->
and linearization, the mapping ? : u~»p - po is treated as linear
from U into E3 5 in all the following, this linear mapping is suppo-
sed continuous with regard to some locally convex topology compatible
with the duality (U, §), thus continuous for all such topologies. Simi-
larly, the linearization procedure replaces the function h by its
first order expansion in the neighborhood of ;o so that the condition
>
p € S takes the form
- -> -> —_— -
h(po) + (p - po) . grad h(po) =0
(scalar product and gradient are understood here in the sense of the
three-dimensional Euclidien space E3) i.e.
. —
(3.2) n(p) +(uw) . grad h(p) = 0 .
. -

Here arises the need of an additional hypothesdis concerning [

for the continuous linear form uw> Z(u), grad h(E;) not to be identi-
—

cally zero ; as the vector grad h(po) has been supposed different from
zero, the sufficient assumption we shall make in all the following is @

the linear mapping f' from U info the three-dimensional space of the

"physical" vectors is sur jective, One may express this by saying that the
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particle s of the system is regular regarding the use of ZL as the
configuration space of the system. Then the values of u satisfying
(3.2) constitute a closed hyperplane
(3.3) g = U+a ,
where a represents some known element of U and U denotes the linear
subspace with codimension 1

U = fuell : €. é;EE h(s;) = o} .

For the particle s to be maintained in S it must experience
in addition to other possible actions, the-force of constraint ﬁ, or
reaction, arising from this material surface. In the language of the pair
of spaces (Zl, ¥ ) the representation of this force consists, by defi-
nition, in the element r € § possessing the following property : for
any § u €U , to which corresponds in the "physical” space E, the

displacement § ; = ZYS u) of the particle s, the work of R equals
¢8 u, >, i,e,
(3.4 lBu, > = £6G w. R .

Let us make use now of the hypothesis that the constraint is
frictionless, By definition this means B is normal to the surface S
at the point p ; equivalently ﬁ yields a zero work for any displace-
meut vector § B which is tangent to S at this point. Due to the 1li-

nearization procedure which replaces the equation of S by (3.2), this

amounts to
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(3.5) VS u€Uu : L8 u, r> = 0 .

In other words r belongs to V, the subspace of ¥ orthogonal to U,

It will be supposed that conversely any value of r, i;e, of

E, satisfying this condition can be produced by the device enforcing the

constraint. Physically, this means first the constraint is bilateral :
the particle s shoul& more exactly be visualized as guided without
friction between two parallel surfaces infinitely close ‘to each other ;
secondly these surfaces are strong enough to exert arbitrarily large
normal reactions, We propose to summarize these facts by saying that the
considered perfect constraint is firm (cf, MOREAU [14], vol. 2, § 9. 2)
Except otherwise stated, firmness will always be implicitely assumed in
the following,

In short,all our information about the constraint is contained
in the two conditions u € & , r € V ; equivalently it may be said that
the pair (u,r) belongs to the subset £ xV of U xF and this indeed
constitutes a statical law in the sense defined by § 3. b, i.e, a relation
between the possible configuration u of the system and some of the
forces it undergoes.

This relation is subdifferential,

In fact consider the indicator function wg of the affine ma-
nifold described by (3.3) ; the subdifferential of this closed convex

function is easily found to be
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v if uvwe g

g if ufs

Therefore the relation (u,r) € £ x V 1is equivalent to

a $£(u) =

(3.6) -re€d ¢£ (u) ,
which is another way of con;eying the whole of our information about the
considered constraint, The minus sign in the left member is immaterial
as the right member is a linear space : this is only for sake of consis-
tency with further developments,

More generally, the system cf may be submitted at the same
time to several constraints of the preceding sort, respectively defined
by n closed hyperplanes £i = U.1 +a; i=1,2, ..., n. The set of

the permitted configurations is then O £i ; if this intersection is not
1

empty let us use again the notation &£ = U + a to represent it, where

U is now the intersection of the closed linear subspaces Ui’ each with
codimension 1, As the reaction r, implied by the i-th constraint be-
longs to Vi, the one-dimensional subspace orthogonal to Ui in ¥, the
sum r of the n reactions belongs to V, the subspace orthogonal to U
Conversely, any element of V possesses at least one decompostion into
a sum 3 Tis T, € Vi (this is merely the classical theorem of Lagrange
multipliers : the duality between QL and ¥ being separating, the bi-

orthogonal of a finitely generated subspace equals this subspace itself),

Therefore, each of the n perfect constraints being assumed firm, the
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Joint effect of them is fully represented by the same writing as (3.6)
and this is also trivially true in the case ‘i is empty,

Thereby we are induced to consider, in general, statical laws
expressed under the form (3,6), where § represents a closed affine
manifold whose codimension is not necessarily finite : we shall refer to

such statical laws as (firm) perfect affine constraints,

Note at last that, when studying evolution problems, a perfect
constraint described as above may be mov?ng : i,e, the affine manifold
§ may depend on time in a given way, Just keep in mind at such event
that the so-called displacements, labelled in the preceding by the symbol
8, merely express the comparison between possible configurations at a
definite instant ; traditionnally they are qualified as virtual in con-
trast with the real displacements which occur as a consequence of the
actual motion, In.most practical cases the subspace U which defines the
dimension and the direction of £ 1is independent of time ; only the

element a of U is moving ; we shall meet such a situation in Chap-

ter 6.

3. d PERFECT UNILATERAL CONSTRAINTS
With the same notations as in the preceding, suppose now that
the particle s of the system ¢f°, instead of being bilaterally main-

tained in the surface S, is only confined by some impenetrable block
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whose S constitutes the boundary. Suppose the function h chosen in
such a way that the region of E3 permitted thereby to the position ;
of s 1is defined by the inequality

h(®) > o .
Then, using the same linearization procedure as before, the set of the
permitted values of u is characterized by the inequality
(3.7) n(p_) + &(u). grad h(p ) > 0
whigh defines in {{ a closed half-space 9 with the affine manifold &
as boundary.

Here again, the description cf the mechanical situation requi-
res some information about the force of constraint i that the block
must exert on s to prevent penetration ; this information will rather
be formulated by means of the element r € § which represents the force
according to (3, 4).

First, this reaction vanishes when s does not touch the block,
i.e. when (3.7) holds as a strict inequality ; in other words one has the
implication
(3,8) u€ int9 = r=0

When, on the contrary, s 1lies in contact with the boundary S,
we still make the no-friction hypothesis, i.e, ﬁ is normal tg S. In
addition the unilaterality of’the contact imposes that the vedtor ﬁ is

directed toward the permitted region i,e, directed in concordance with
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the vector g—1;3 h(;). In terms of work this is expressed as follows :
any § ; such that § _I; . gra-é h(;)} o] y:!elds 8 ; ﬁ) 0. Now,
recalling the regularity assumption made about the mapping é", take as
8 ; the displacement of s in }E:3 associated as before with the ele-
ment 5 u of U by § _]; = Z (5 u). The contact between s and the
block means that (3.7) holds as an equality. Besides, due to the lineagi-
zation procedure, éﬁz h(p) 1is treated as independent of p. Then
§ p. grad h(p) > O holds if and only if £ (5 u)., grad h(S;)}o; by
putting u' = u + § u the latter is equivalent to ‘u' € 9 so that' fi-
nally, in view of (3,4), all our information about R comes to be equivas
lent to the following
(3.9) Vu'€9 : u'-u, r>20

Thi?; actually implies also (3,8) ; in fact, if u € int 9 the
difference u'~ u , for u' € 9 can be a non zero element of U.A with
arbitrary direction; hence r = O for the duality is separating.

In conclusion the geometric condition u € 9 of the_ constraint
is expressed jointly with (3.9) by writing
(3.10) -re€ad z/:%(u) .

Here as in § 3. ¢ let us make conversely the firmness assump-
tion ¢ the block is suppc;sed strong enough to exert any value of ﬁ
agreeing with the preceding requirements ; in other words any value of r

satisfying (3.9) is possible, Then relation (3,10) conveys all our
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information about the considered constraint.

More generally suppose the system QP subjected to n cons-
traints of the preceding sort, corresponding to half-spaces. %i ,
i=1,2, ..., n, Then the set of the permitted configurations is the
closed convex set C = O %i. As each of the reactions ri satisfies a

i
relation of the form (3,10), their sum r satisfies
-re€ad ¢% (u) + 2 ¢g (w) + ...+ wg (u) .
1 2 n

The right member is trivially contained in @ ¢C(u) ; actually this sum
of sets equals exactly 3 ¢c(u) because of the "unilateral" counterpart
of the multipliers theorem (as the duality (tln F) is separating, a
finitely generated convex cone in F is closed, thus equal to its bi-
polar)., In conclusion the conjunction of our n wunilateral constraints
is equivalent to the following statical law
(3.11) -r€a ¢C(u)

Hence we are induced to consider more generally the statical
laws defined in the same way by taking as C arbitrary closed convex

subsets of U : we call these laws (firm) perfect convex constraints.

Evidently the bilateral comstraimt studied in §& 3,-e are'a

‘spe¢ial case of this :.take as C a closed affine manifold,

3. e SUPERPOTENTIALS

We shall say that a statical law admits a function
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¢ € TO(QL,? ) as superpotential if this law consists in the following
relation between the configuration u and some force f
-f€a¢ (v

In particular, if a statical law admits some numerical function
W as potential, W ' is also a superpotential if and only if this func-
tion is convex, For instance the constant law f = fo (independent of u)
admits as superpotential the linear form u—> - (u, f0>.

Another fundamental example is that of a perfect convex cons-

traint, as presented in the preceding paragraph : (3,11) means that the
function $C is a superpotential for such a statical law ; by taking as
C a closed affine manifold, this includes, according to § 3. c, the tra-
ditional bilateral contraints,

Suppose the system subjected at the same time to a finite fami-
ly of statical laws admitting the respective superpotentials ¢1, ¢2, .
e ¢n . Then the sumof f =f_ + £_  + ... + fn of the corresponding

1 2

forces is related to u by
- A
f € ¢1 (u) + ¢2 (u) + ... + 2 ¢n (u) .
This relation implies
(3.12) -f €3 (¢1 + ¢2 + e + ¢n) (u)
but is equivalent to it only if some conditions ensuring the additivity
of subdifferentials are fulfilled ; according to § 2.f, the usual case

where such additivity holds is described as follows : 1° some of the
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functions ¢i are weakly differentiable everywhere in U, ; 2° there
exists a point u0 € U, at which the others, but possibly one, are finite
and continuous for some topology compatible with the duality (QL,?);

3% the last one is finite at ug .
EQUILIBRIUM, Suppose first that all the mechanical actions to which the
system is subjected (except possibiy those which vanish in any expected
equilibrium) are summarized under the form of a single statical law ad-
mitting a superpotential ¢ independent of time., Then, as explained in
§ 3. b, the equilibrium configurations are characterized by

0€23 ¢ (u) H

this is a necessary and sufficient condition for u to be one of the

points of 9, where the numerical function ¢ attains its infimum

(cf. § 2. e). Such values of u form a closed convex subset of U, pos-
sibly empty.

Suppose more generally that the considered mechanical actions
are described by the conjunction of n statical laws admitting as above
the respective superpotentials ¢1, independent of time, A necessary and
sufficient condition for u to be an equilibrium configuration is now

O€a2 ¢1 (u) + 2 ¢2 (w) + ... +2 ¢n (u) .
This implies O € 2 ¢ (u), with ¢ equal to the sum of the functions
H

¢i ;s therefore this sum attains its infimum at the point u. But the

converse may not be true, unless the additivity of subdifferentials
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holds, Actually such a reserve does not seem to be of great pratical
importance and B, Nayroles suggestsin his lectures a logical attitude
which would overcome the difficulty,

EXAMPLE, Make n = 2 and suppose that ¢1 = ¢, , the superpotential of

C
a perfect convex constraint. Then equilibrium is characterizd by
0€9 wc (u) + 2 ¢2 (w) .

This implies that u is a point in C where the restriction of the
function ¢1 to this set attains its infimum ; in the vocabulary of
mathematical programming, u is one of the solutionsof a "constrained"
minimization problem, But the converse may not be true, unless the addi-
tivity of subdifferentials holds ; particularizing the situation descri-
bed above, one finds that any of the three following conditions ensures
this additivity :
1° The function ¢2 is weakly differentiable everywhere in ?L, i e, it
is a potential in the classical sense,
29 There exists a point in the interior of C where the function ¢2
takes a finite value,
39 There exists a point in ?L at which the function ¢2 is finite and
continuous and which belongs to C.

Recall that "interior" or "continuous" may here be understood

in the sense of any locally convex topology compatible with the duality

W, £) : the weakest assumption is thus obtained by choosing the finest
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of these topologies, i,e, the Mackey topology T(U, §) ; this remark is

of course without object in finite dimensional cases.

3, f DUAL MINIMUM PROPERTIES

This paragraph is devoted to the equilibrium problem, in the
case where all the mechanical actions exerted on the system o (except
possibly those which vanish at any expected equilibrium) are expressed
as the conjunction of two statical laws respectively admitting the super-
potentials ¢17 and ¢2, independent of time, Of course, each of these
two superpotentials may in its turn describe the conjunction of several
laws ; in practical situations there are usually various possibilities of
classifying the mechanical actions into such two groups, so that the
statements presented below can generate a great number of different va-
riational properties, It may be imagined that ¢1 and ¢2 correspond
to two different sorts of mechanical action : for instance ¢1 is the
superpotential of a perfect constraint, while '¢2 represents "active
forces'.

An element u of U is an equilibrium configuration if and
only if there exist f € - 2 ¢1 (u) and f_ € -2 ¢2 (u) such that

1 2

fl + f2 = O, The determination of such f1 (or equivalently fz) prior

to that of u, is sometimes called a statical approach of the equilibrium

problem (we should prefer to call it sthenic, an adjective meaning
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"relative to forces'). Privileging ¢1, let us agree to call an equili-

brium force any value of f associated in this way with some equili-

1

brium configuration,

PROPOSITION 1, Let yl and y2 be the respective polar (i,e, dual)

functions of ¢1 and ¢2, relative to the duality (2, ) ; denote by

Ql the function £+ yl(- f) (it is the polar function of

Ql s u— ¢l (- u)). Then any equilibrium force minimizes the function

91 + yz over ¥ ; conversely, if fl is a minimizing point of this sum

and if $1 and Y, Ppossess the additivity of subdifferentials at this

point, f is an equilibrium force,

1

In fact if fl € § corresponds to some u € QG such that

-f €2 N (u)  and £, €2 ¢y (u) one has equivalently u € 3 Yy (fl)

and u € A Y1 (- fl) ; the latter is the same as - u € 3 $1 (fi) H

s
therefore
A
0EIN (2D +dy, (2D CA B+ (1)
Conversely, the assumption that fl is a minimiging point. of
A (\ :
Y, + Y, means that the zero of U, belongs to 2@ Yyt yz)(fl) ;5 if this
set equals 9 @ (£.) +3 y, (£.), one has
1 1 2 17’
0€a Yo (fl) -2 yl(-fl)
which precisely expresses the existence of some u associated with f1

in the preceding way.

As far as we can see this Proposition contains as special cases,
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all the extremal properties of "statical" type in elastostatics. Observe
in this connection that if ¢2, for instance, is the superpotential of
the perfect bilateral constraint defined by the affine manifold
£ =U+a (cf. § 3, e), its dual function is defined by

Yo (£) = '/’v (f) + (a,£> .
Thus minimizing Ql +y, over F is the same as minimizing Ql +(a,.>
over V, the linear subspace of ¥ ,orthogonal to U,

On the other hand, in the usual situations of linear elasto-
statics, one may take as ¢1 the potential of elastic forces, which is
a nonnegative quadratic form on . Célculating its dual Y1 (equal to
el’ since quadratic forms are even functions) yields a nonnegative qua-
dratic form defined on some linear subspace of ¥ and + e outside of
this subspace j; a special property of the quadratic case is that, if u
and - f are conjugate points with regard to ¢1, Y,» one has

¢, (u) =y, (£) = - 1 (u, > .
1 1 2
Thus, yl may be interpreted as "the expression of the elastic energy in
terms of the elastic force' and sometimes called the complementary
energy. This does not hold anymore in non linear elasticity ; however in
the very usual case where the elastic potential ¢1 is a quasi-
homogeneous convex function, there is still a relation between ¢1 (u)

and Ql (f), if f 1is the elastic force corresponding to u.
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3. g SADDLE - POINT PROPERTY
The notations are the same as in the preceding paragraph. De-
termining the equilibrium configurations of ¢/° as minimizing points of

¢1 + ¢2 (cf. § 3. e) and determining the equilibrium forces as minimi-

zing points of @1 + y2 may be considered as dual extremum problems.
This is a familiar feature of convex programming and it is habitual to

relate such a pair of problems to a saddle-point property for a function

called Lagrangian.

PROPOSITION., Define the concave-convex function L on the product spa-

ce U xF by

LCu,£) = ( u,f> +/y\l ) - ¢, (W)

with the convention + e — e = + o (Or equivalently the convention

+o0 —o = - o), A point u, € U, is an equilibrium configuration of o/ ,

with f1 € § as corresponding equilibrium force, if and only if the

element (uo, fl) of UsxF is a saddle point of L with finite va-

-
lue, i,e. L(uo, f.) is finite and for any u € U,and any f € F ,

1

(3.13) L(u, £) < Llu, £,) < Llu, £) .
In fact, suppose first that u0 is an equilibrium configura-

tion with fl as equilibrium force, i,e, -~ uo €A $1 (fl) and

t, €a ¢2 (uo) ; the former of these conditions means

o _ A A
(3.14) v £ETF Cu, £=£, 7+ (£)) < ¥ (£)

and the latter
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(3.15) VueUWU: (u- u,, £1> ¢2(u0)< d)z(u) .

Adding the finite number - ¢2(uo) to both members of (3,14) yields the
second of inequalities (3,13) ; adding the finite number sl(fl) to both
members of (3,15) yields the first one. The value L(uo, fl) is clearly
finite,

Conversely, supposing L(uo, f ) finite implies that Ql(fl)

1
and ¢2(uo) are finite ; then the preceding calculation may be effected
backward to deduce (3,14) and (3.15) from (3,13),

REMARK, Exchanging the roles of ¢1 and ¢2 would yield a quite dif-
ferent function L. Since, in practical situations, there are usually se-~
veral ways of classifying mechanical action into two groups corresponding
to ¢1 and ¢2, since, on the other hand the (2, f) pattern may usual
ly be applied in several ways (see § 3. j below), the preceding Proposi-

tion generates a pretty great number of saddle point characterisations

of the equilibrium in elastostatics,
-

3. h ONE - DIMENSIONAL EXAMPLES

We consider in this paragraph a system @ whose configuration
can be specified by a single numerical variable : it is for instance a
rectilinear bar or a string, as far as we are only interested in the

distance between its extremities, Denote by i% + e this distance ; in
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other words, e denotes the elongation of the bar by comparison with some
reference state in which the length was éf As we are only concerned
with static or quasi-static situations, the state of stress of the bar is
sufficiently described by the tension s. Classically, for the applica-
tion of the principle of virtual workto systems comprising the considered
bar, the expression of the work of the internal actions must be -~ s 3§ e,
Thus the pattern of the preceding paragraph appliesby taking for the li-
near space U a copy of the real line R, with e as generic element,
and for the linear space ¥ another copy of R, with s as generic
element ; these two one~dimensional linear spaces are placed in separa-
ting duality by the bilinear form <.,.>
(3,16) {e,sd = - e s .
This unpleasant minus sign merely comes from our complying with the com-
mon habit in solid mechanics of measuring the state of stress by a posi-
tive number when it is properly a tension, by a negative number when it
is a proper pressure., It has nothing to do with the fact that the consi-
dered "actions' are internal : in our formalism,stress is a 'force' like
any other mechanical action.

This framework permits the formulation of usual behavioral laws
of the rectilinear system,

10 Regular elasticity. Suppose that the behavioral law of the bar
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defines tﬁe tension s as a continuous strictly increasing function of
the elongation e, namely s = j(e) or equivalently s = #'(e), where
6 denotes a primitive of j ; observe that 6 1is then a convex function
Let e, be some definite value of e and s, = 6'(e0). The affine func-
tion
er (e - eo) st e(eo)
is tangent to 0 at the point eo ; now, with regard to the duality de-
fined by (3,16), the slope of this affine function is - So' In other
words the relation s = 6 '(e) may be written as
-~ s = grad 6(e) .,
This means that @ 1is a potential for the considered statical law (and
also, as usual, the expression of the potential energy) ; due to the con-
vexity of 6 it is also a superpotential., As we havé supposed the func-
tion 6' = j continuous and strictly increasing, it possesses an inverse
function j_l, defined on the range of j ; this range is en interval I,
possibly unbounded or not closed. The characterization 6f e and - s
as conjugate points
9e) +0° (- s) = (s, >
*
permits the calculation of @ by the formula
6*(— s) = s j_l(s) -6 [j_l(s)]

valid for any s in 1I. The function 6 takes the value + e outside
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of the closure of -I.

20 Elastic string, We agreed that 1% + e represented the distance bet-
ween the extremities of the considered one-dimensional system, If lb
denotes exactly the length at rest of an elastic string, the correspon-
ding staticallaw has the form s = j(e) where the function j takes now
the value zero for e < O . A primitive of j 1is a superpotential ; its
dual function 9* with regard to the bilinear form (3,16) takes the va-
lue + o on 10,+ e[ ; the values of 9*(- s) for s belonging to the
range of j are constructed as above if j is continuous and strictly

increasing on [0, + m[.

3% Inelastic string, This may be considered as a boundary case of the

preceding, Supposing that 1% is the proper length of the string and
that the breaking load is infinite, one finds the following superpoten-
tial for the relation between e and s
+ oo if e >0
6(e) = {
0 it e< o0 .
This is the indicator function of the closed convex subset C = |- ), O]

of 1&, so that the present law comes to be a perfect convex constraint.

As C 1is actually a convex cone (see § 2, c) the dual function BT is
the indicator function of the polar cone, i.e. the subset |- oo, O] of

¥ (it is the set of the possible values of - s).
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The reader will study other examples such as a cylindrical he-
1lix spring, enclosed in a guide tube to prevent buckling ; the length of
this spring cannot be less than the length it has when all the spires
come into contact. The corresponding behavioral law is equivalent to the
conjunction of a law of elasticity and of a perfect convex constraint.

This gives a very elementary model of an elastic solid with limited com-

pressibility, a type of material which was studied in generality by
W. PRAGER [1] ; the behavior of such a material can be formulated as a

’

statical law admitting a superpotential,

3. i AN EXAMPLE OF COMPOUND SYSTEM

Take as @Ff a lattice of bars (a truss) whose extremities are
articulated with one another through spherical joints, The joints are
represented by n points Al’ A, ..., An the nodes of the lattice, To
make the description simpler suppose that between each pair of nodes,
say Ai and Aj with i ( j to avoid repetition, there exists one of
the bars denoted by Bij’ thus % n (n~1) bars in all, The behavior of

each bar is treated as one-dimensional ; denote by Sij the tension of

the bar BiJ and by eij its elongation with respect to the "zero"

state.

Any configuration of the system ef is fully determined by the
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corresponding positions of the n nodes Ai relative to some three-
dimensional Cartesian frame ; these respective positions may be descri-
bed by the n three-dimensional displacement vectors ;i by which they
differ from the positions corresponding to the "zero' configuration of
the system. Thereby we are induced to consider as the configuration spa-
ce of ¢/ the 3 n-dimensional linear space X whose generic element x

. . -> ->
consists in the n-tuple (x e Xn).

>
1’ X2
Here again we restrict ourselves to linearized geometry, by
treating the displacements as infinitely small with regard to the
lengths of all the bars, Denote by ;ij (with i { j) the unit vector

of the oriented line AiA (taken, to fix the ideas, in the zero confi-

J

guration ; but this precision is immaterial since the bars present only

infinitesimal rotations). The elongation of the bar Bij is related to
u by
-> -> >
(3.17) eij = @y (xj— xi)
(three-dimensional scalar product).
> -> >

An external action is a n-tuple of forces (yl, Yor wees yn)
respectively exerted on the n nodes ; this n-tuple of three-
dimensional vectors, denoted by y, constitutes the generic element of

a 3 n-dimensional linear space Y., The bilinear form "work", placing the

spaces X and Y 1in separated duality will be noted ((.,.>> to
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prevent confusion in the following, and has the familiar expression

n -> ->
(3,18) Kx,y> = T x. .7y, .

joq 1§ i

In order to formulate the equilibrium problem for the consi-
dered system one has to specify the statical laws to which it is subjec-
ted. These statical laws are of two sorts:

Some of them concern external actions ; for instance given
loads may be applied to some nodes ; or some nodes may be submitted to
bilateral or unilateral constraints ; or also some nodes may be subjec-
ted to statical laws relating to their positions some of the forces they
experience, All this has to be described in the framework of the pair of
linear spaces (X,Y).

The other laws, said internal, concern the behavior of the bars
and are’formulated in terms of the elongations eij and the tensions
Sij : this induces to consider the % n(n-1)-dimensional linear space E
whose generic element, denoted by e, is the % n(n-1)-tuple of real
numbers eij’ i ¢ j, and the similar space S whose generic element is
s, consist;ng of the Sij’ i ( j. As explained in § 3. . h, the exp?ession
of the internal work in the bar Bij’ corresponding to avtension measured
by the real number S5 5 and an (increase of) elongation measured by the
real number eij is - eij Sij' Therefore the total internal work in the

bars corresponding to given e = (eij) and s = (Sii) is
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(3.19) (e,s> =- I

eij Sij
143

a bilinear form which places the two linear spaces E and S in sepa-
rating duality : keep in mind that it differs by the oresence of the
minus sign from the natural "scalar product” between two spaces whose
elements are such % n(n-1)-tuples of real numbers,

At the present stage, where plasticity is not taken into
account, the behavioral laws of the bars are relations between eij and
s. . formulated in the same ways as in § 3. h .This introduces, for each
(i,j), i ¢ j, a superpotential 9ij which is a closed convex functions
on R and the corresponding statical laws takes the form
(3,20) -85 €3 eij (eij) .

By the remarks made in § 2, ¢ about the product of linear spaces, the

function @ defined on E by

6(e) = z Bij (eij)
i<
permits to summarize the %‘n(n—l) relations (3,20) by writing
(3.21) -S€20 (&) .

3. j VARIOUS TREAMENTS OF THE EQUILIBRIUM PROBLEM
Let us pursue the study of the system described above. Conti-
nuously distributed external actions, such as gravity, are not taken into

account, so that the equilibrium condition of the system consists in the
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vanishing of the total force experienced by each of the n nodes, i.e.
for each value of i =1, 2, ..., n the following three-dimensional

vector equation

(3.22) y. o+ o .

) x ) %
s, .« - s, o =

17 (g B,y

On the other hand, equalities (3.17) define a linear mapping
from X into E which will be denoted by D. By definition the ad-

3
joint D of D is the linear mapping from S into Y defined by
*
Vx€eEX , Vs€ES (D %x,8> = («x, D s> .

Referring to the definitions of (.,.> and (.,.>, then identifying

*
the terms of each member yields that the element D s of Y consists

—
*
of the n-tuple of three-dimensional vectors (D s)i
—
* -> ->
(D" s), = % s..a.,.~ % .s..e@. .
i §>1 ij "iJ jCi Ji T gi

Therefore the equilibrium condition (3,22) takes the form
*
(3.23) y+D s = O

which of course is equivalent to the principle of virtual work, namely

(3.24) VXEX ¢+ Kx,y50+(Dx,8> = 0 .

1° The method of big spaces.,

We give this name to the method which consists in using the
pair (x,e), denoted by u as the element which specifies the configu-
ration of our system, Then, with the notations of § 3, a the configu-

ration space is U = X x E ; the corresponding ¥ is the space Y x S,



- 243 -

J. J. Moreau

whose generic element is the pair (y,s) denoted by f., These spaces are
placed in separating duality by the expre;sion of the total work
& x,y> + {e,s>, to be denoted by <u,f>,
Clearly the whole of the space Ul is not permitted to u, sincé
the pair (x,e) must belong to the following linear subspace of W
U = {(x,e) € XxE : e = Dx}

i,e., the graph of D, Let us show that this restriction of freedom may be

treated as.a perfect constraint.

In fact the equilibrium condition of the system is not the

vanishing of the element f = (y,s) but merely equality (3,23). Putting
v = {(y,s) YxsS : y+ D* s = 0}

we observe that V 1is precisely the subspace of ¥ orthogonal to U
this is the same as the equivalence between (3,23) and (3.24). Condition
(3.23) is equivalent to asserting the existence of some r in V such
that f + r vanishes, Interpreting r as the reaction associated with
the considered constraint agrees with our general definition of a per-
fect affine constraint,

Actually this conception may be related to a physical realiza-
tion of the constraint : considering X x E as the configuration space
amounts to regarding our system as the conjunction of the following sub-

systems : the nodes Ai’ whose respective configurations are described
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by the three-dimensional vectors ;i and the bars Bij’ whose respective
states are described by the elongations eij' The constraint whose geome-
tric effect is expressed by (3,17) merely consists in connecting the bars
with the nodes, However, our main motivation in developing the present
example is to prepare for the case of continuous media, (cf. B. Nayro-
les's lectures) ; in this case x is replaced by a field of displace-
ment vectors defined on a region of R3 and e 1is replaced by a field
of strain tensors ; then e = D x is the condition of geometric compa-
tibility between displacements and strains ; this restriction of freedom
may be formally considered as a perfect constraint in the same way as
above but it does not seem wise to try and visualize a mechanical reali-
zation for it,

Suppose that the statical laws concerning the external actions
experienced by the system (possibly including constraints acting on the
nodes) can be globally described in the framework of the spaces (X,Y)
by a superpotential Z € Po (X,Y) ; in other words the external force
y € Y is related to the "external' configuration x € X by
(3.25) -y€azg (=) ,
where the subdifferential is understood in the sense of the duality

(X,Y). Suppose on the other hand that the internal statical laws are ex-

pressed by (3,21), By the rules formulated in § 2, ¢ about product
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spaces, (3.21) and (3.25) are equivalently summarized as
-f€0 ¢ (W
in the sense of the duality between the big spaces with u = (x,e),
f = (y,s), and the superpotential ¢ defined by
* ¢ (u) = Z (x)+6 (e) .
The equilibrium of the system may then be studied by the me-

thods of &§ 3, e, f, g.

2° The elimination of (E,S)

As the configuration of the system is fully specified when
x € X is given, one may prefer to consider only X as the configuration
space, and Y as the force space, Then every mechanical action experien-
ced by the system must be described in terms of elements of Y : precisely
it is represented by the element y of Y such that for every displa-
cement § x of the system, the work of the considered action is
8§ x, y>>. In this way an internal stress s € S is represented by the
element ys of Y sgch that

VEé x€EX :{<8x,ys>>=<D8x,s> ,

i.e,
(3.26) y = D s .
Thus the statical law (3,21) is transcribed in terms of the pair of spa-

ces (X,Y) as follows
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(3.27) -y €D @6 ®x) .

If, in particular, there exists a point in the range of D at which ¢
is finite and continuous (for some topology compatible with the duality
(E,S)), the calculation rule (2,15) holds,so that (3,27) amounts to
(3.28) - Yg €D (6 o D) (x)

in the sense of the duality (X,Y) : this constitutes a statical law ad-
mitting the function f#o D as superpotential, In this way the techniques
of the foregoing paragraphs may be applied with regard to the pair of
spaces (X,Y).

3% The elimination of (X,Y)

The mapping D : X » E is not injective ; this means that the
element e = D x does not convey enough information to specify complete-
ly the configuration of the system, However one may wish to determine the
equilibrium values of e or s prior to that of x or y and in some
instances one may be interested in these elements only (in order to dis-
cuss strength, for example),

In the principle, the elimination is similar to that of the
preceding case., Suppose that all the external laws to which the system
is jointly submitted are summarized under the form
(3.29) x € P(y)

where P denotes a given multimapping from Y into X. Similarly suppose
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that all the internal laws are summarized as
(3.30) s = R (e)
where R denotes a given multimapping from E into S. A system of va-
lues of x, y, e, s defines an equilibrium state if and only if it sa-
tisfies e = D x and (3,23), (3.29), (3.30). Thus, as far as e and
s only are concerned, the equilibrium condition (i,e, a necessary and
sufficient condition for the existence of at lzast one pair (x,y) as-
sociated with (e, s) in_such a way that the preceding equilibrium condi-
tions hold) consists in the conjunction of (3.30) with
(3.31) e€D® (-D ) .
In the principle, (3,31) may as well be written under the form
(3.32) - s € Qe) ,
Now as far as the interesting unknown is e, the conjupction of (3.30)
with (3.32) is equivalently formulated as follows : there exist s, and
S, in S such that

s; €R (e)

s, €Q (e)

Formally we are reduced to the usual pattern of the equilibrium of a
system submitted to two statical laws, From this standpoint the relation

s € Q(e) should be considered as the "internal image" of the external
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statical law (3.29),

The reader is invited to apply this procedure to an external
law of the form-y € 3 Z (x), equivalently written as x € 3 é* (~y).
Here again the calculation rule (2,15), under some continuity assumption,
will yield an image in (E,S) which admits a superpotential,; As a first
example, take as external statical law a given load Yo €Y applied to
the system ; this may be written under the form (3,29) with

X ity =y,

P (y) =
g ity £y, .

Another primary example is that of a perfect affine constraint formulated

relatively to the pair (X,Y),

But it will be more in the spirit of this Chapter to operate

with the pair (E,S) in the following way :

Since we choose to deal only with informations formulated in
the framework of the paired spaces (E,S), we accept only to speak of
the state of the system in terms of e ; on the other hand, a mechanical
action experienced by the system will be taken into account only if it
can be represented by an element ¢ € S , in such a way that the work of
this action for every displacement of the system has the expression
{8 e, o>, Therefore, if in particular the considered action i$ an exter-

nal force y € Y treated as given, the corresponding o must be such
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that

(3.33) VE§XEX K8 x, y» = (D38 x, o>

Such a ¢ does not necessarily exist ; an evident condition forits
existence is that y belongs to, D* S, the image of S wunder the linear
mapping D* . The iinear subspace D* S of Y is the orthogonal, in the
sense of the duality (X,Y), of the subspace Ker D of X. Actually the
impossibility of representing in the (E,S) framework a load y which
would not belong to [f S does not make any hindrance, In fact suppose,
for sake of simplicity, that this load is the only external action exer-
ted on the system ; clearly by (3.23) or by (3.24), y € Dr S 1is a ne-

cessary condition for the existence of an equilibrium ; this is a fami-

liar fact ; only a family of external forces with zero resultant and zero
moment is compatible with equilibrium,

Another fundamental remark about the use of the (E,S) pattern

is that all the values of e are not permitted, since necessarily e

belongs to the subspace D X (the subspace of E consisting of the
"states of strain"which are "geometrically compatible"). On the other
hand, if s € S denotes the sum of all the elements of S representing

the mechanical actionsexerted on the system, the equilibrium condition is

not s = O, but the principle of virtual work, namely

V8§ xXx€EX : {(D§ x, s = O
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which means that s belongs to the subspace of S orthogonal to D X

*
(actually the kernel of D ),

In conclusion the equilibrium problem in (E,S) must be trea-

ted by considering the condition e € DX as a perfect constraint.

The reader will check that given external loads and external
perfect affine constraints are transcribed in the (E,S) language by
given forces and perfect affine constraints,

It is from this standpoint that the elastoplastic evolution

problem will be studied in Chapter 6,



- 251 -

J. J. Moreau

4 LAWS OF RESISTANCE

4, a VELOCITIES AND FORCES

A habitual procedure, when studying a mechanical system, is to
associate with each possible configuration of this system a linear space
-let us denote it by VP~ whose elements constitute, in a general sense,
the possible values of the velocity of the system if it happens to pass
through the considered configuration. Roughly speaking, Y may be inter-
preted as the tangent space at the corresponding point of the configura-
tion manifold byt this need not be made more precise here, This space is
of infinite dimension if the system has an iﬂfinite degree of freedom,

In the special framework of Chapter 3, where the configuration
manifold is treated as a linear space 1L, a motion of the system is des-
cribed by a mapping t+ u(t) from some interval of time into U.. The

velocity is naturally defined in this case as the derivative u(t) (ta-

ken in the sense of some topology on W) if it exists ; then ¥° = U, the
same for all the configurationms,

Let us come back to the general setting. With each configura-
tion is also associated a linear space -denote it by ¥ - whose elements
represent in a more or less abstract way, the mechanical actions which

may be exerted on the system when it happens to come through the consi-
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dered configuration : see the construction of the space of torsors in

8 3. a. By extension, the elements of ¥ are called forces. An essential
feature in the practice of Mechanics is that several forces are usually
applied to the system at the same time, This produces a fondamental dis-
symmetry between the roles played by ’U, and § .,

To any pair v € V), f € § corresponds the power of the force

f if the system possesses the velocity v, a real number denoted by

{v,f> ; this defines a bilinear form ‘which places V" and ¥ in duality.
In the linear framework of Chapter 3 where 2/" = u, there is
no inconsistency in considering the single space ¥ as the force space
associated with any configuration and in using the same bracket as above
to denote by <& u,f> the work of f € § corresponding to the displace-
ment § u € u, In fact, suppose this displacement results from a motion
t » u(t) with velocity U (derivative understood in the sense of some
topology compatible with the duality (u,, ¥ ) taking place during a time
interval [tl, tz], while f 1is constant in &, The general definition

of work as the integral of power yields

ty ta

I ¢a(t), £> dt = [ g; cu(t), £> dt =
t

1 tl

= <u(t,), £ = <u(t), £ =48 u, .
4. b PSEUDO - POTENTIALS

Let us agree to call a resistance law a relation) -denote it by
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R, formulated between the possible velocity v € 70 of the considered
system in the considered configuration and one, say f € ¥, of the for-
ces it experiences at the same instant, Such a law arises from the study
of some of the physical processes in which the system takes part,

It will be said that the law ® is dissipative if the follo-
wing implication holds
(4.1) vR £ = ¢v,i><0 ,
which makes it a resistance law in the usual sense,

It will be said that ® admits a function ¢ € I‘o()’-’, F) as

pseudo-potential if the relation ® is equivalent to

(4,2) -f€3 ¢ (v) .

Recall that any subdifferential relation is monotone ; then a
law ® of the form (4.,2) ensures the implication :
(4.3) vRE, vIRE' =D<v-v', -£><0

Make in addition the frequently verified hypothesis that zero
is among the valyes that the relation ® permits to f when v is
zero, i,e.
14,4 0€3 ¢ (0) .

hen (4,1) ensues from (4.3) : the corresponding resistance law is dissi-

pative. Observe that (4.4) implies that ¢ (0) is finite and constitutes

e minimal value of ¢ ; since adding a finite constant to ¢ does not
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affect the subdifferential, there is no loss of generality in supposing

here

(4.5) ¢ (0) = 0

then the function ¢ takes only nonnegative values.

In the following, we shall refer to the situation characterized

by (4.2), (4.4), (4.5) by saying that the pseudo-potential ¢ is the

resistance function of the considered law.

Recall that, a priori, the pair of linear spaces Vo,?' is
relative to a definite configuration of the system, so that the foregoing
concerns only this configuration., However in the usual linear case of
Chapter 3, by making vo = LL and considering the single force space ¢,
it will be possible to formulate resistance laws independently of confi-
gurations,

REMARK, The example developed in § 3, i, 3, j makes understand also
that the pattern of the present Chapter may usually be applied to a de-
finite mechanical situation in several different .ways.

A similar example is t! of a continuous medium, occupying in
the considered configuration a region () of the physical space., A first
possibility is to interpret as v the vector field defined on () by
the velocities of the various particles forming the medium : then the

linear space ¥? will consist of vector fields satisfying some assumptions
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of integrability, derivability, etc... But in some theories it will be
more convenient to consider v as the strain rate tensor field of the
medium, Or else, as in § 3, j, one may take for )ﬂ a "big space" whose
generic element is the couple of a velocity vector field and of a tensor
field presumeﬁ to be the strain rate field ; then the geometric compati-
bility between velocity field and strain rate field will be seen as a
constraint. To these various standpoints correspond natural choices for
the elements f forming the space ¥ : rates of distributed forces,
stress tensor fields, etc...

The same pattern will also be applied to formulate local laws
a point of the continuous medium being specified, one considers as v
tye linear space of dimension 6 whose elements are the possible values
of the local strain rate tensor é of the medium ; the associated ¥ is
the linear space formed by the possible values of the local stress ten-~
sor o ; the bilinear form which places these two spaces in duality is
the classical expression of the density of internal power., A local law,
i,e. a relation between the strain rate tensor and the stress tensor at
the considered point of the medium, will be formulated by means of a
local pseudo-potential, whicﬁ is a numerical function defined on 1”, This
being done for each point of the medium, it generates a behavioral law

of the medium as a whole, i.e, a relation between elements of two



- 256 -

J. J. Moreau

function spaces whose generic elements are the strain rate tensor field
and the stress tensor field, Under suitable integrability assumptions,
these two function spaces are placed in separating duality by the bili-
near form defined as the integral of the density of internal power, This
permits the descfiption of the considered behavioral law by means of a
superpotential which is an integral convex functional, The reader will
refer to B, Nayroles's lecture for more details about this mechanical
situation and to C. Castaing's lecture for more details about the func-
tional analytic aspect. The basic mathematical material may be found in

R.T. ROCKAFELLAR [1], [3], [4].

4, ¢ VISCOUS RESISTANCE
As a first example consider a relation ® of the form
(4.6) -f = Lv
where L denotes a linear mapping from V? into F . In all the phenomena

classified as viscosity effects it is always admitted that L is self-

adjoint (or "symmetric") with regard to the duality «.,.>, i.e., for any
v and v' in W
v, Lv'™> = Kv', Lv> |,
From this, one easily deduces that L v 1is the weak gradient

at the point v of the quadratic form ¢ defined on v by
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¢>(v):%(v,Lv>

This quadratic form is usually called the Rayleigh function of the consi-

dered viscosity law,
Making the additional assumption that the viscosity law is

dissipative yields that this quadratic form is nonnegative, thus convex,

And at any point v the weak gradient L v constitutes the whole of the
subdifferential & ¢ (v). This means that in the present case, the rela-
tion (4.6) méy equivalently be written as

- fE€EAG (V) .

Thus ¢ is pseudo-potential and, more precisely, resistance function of

the considered law,
The power of the force f associated with v in this way is
LV, > = =¢(v, Lvw = =~2¢ (v) ;
the negative of it is frequently called the dissipated power correspon-~

ding to v ; hence the name of dissipation function which is given in

the present case to the quadratic form vk 2 ¢ (v),

REMARK. Gyroscopic forces give an example of a law of the form (4.6)

with a linear mapping L which is not self-adjoint ; on the contrary
v, Lv> = =<v', L v .
Such a law admits no pseudo-potential unless L is the zero mapping ;

the dissipated power is essentially zero, so that (4,1) is satisfied :
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this law may be said dissipative,

4, d VELOCITY CONSTRAINT
Take back the framework of § 3, e, i.e. the example of the

firm perfect constraint whose geometric condition is wu € &, with

£ = U + a, a.possibly moving affine manifold., The linear subspace U is
supposed independent of time thus also V which is the subspace of ¥
orthogonal to U, This geometric condition may equivalently by written,
for every t,

VYV wWEV : Lu-a, w = 0

Supposing that the known function t+ a possesses a weak derivative é,

Co

this yields, by choosing w independent of t, that the velocity v =

satisfies

YVWEV : Cu-a,w = O
i,e.
(4.7) VEU + a

Recall on thé other hand that, by the definition of a firm perfect cons-
traint, the reaction r € § exerted on the system by the enforcing de-
vice may be an arbitrary element of V. Exactly like in § 3. b, this
fact may be expressed jointly with (4.7) by writing

(4.8) -r€dy, (v
<
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. .
where & denotes the affine manifold U + a

This constitutes a resistance law admitting the function ¢
g

as pseudo-potential., Let us call it a velocity comnstraint.

It is no place to explain how, in the general setting of a
configuration—depehding pair of spaces( )3 %) g - the usual differen-
tiability assumptions let any firm perfect bilateral smooth constraint
be expressed under the form (4,8). This form includes more generally the
relations between reaction and velocity classically known as non-

holonomic: perfect constraints ; the standard example of it consists in

the perfect rolling without sliding of solid bodies, actually an extreme

case of friction,

4, e FRICTION AND PLASTICITY
Suppose given a weakly closed non empty convex subset C of
¥ . Let us formulate a relation ® between v and f by the principle

of maximal dissipation namely : the values of f € # which this relation

associates with a given v € ?° are the elements of C which minimize
the power, i,e, minimize the function <{v,.>. In other words v ® f
means

fec

VErEC : Lv, £'> 2 v, £
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which is immediately found equivalent to
v £'EF: v, fi-f> 4 Yo (f)<¢:c £
i.e.
(4.9) -vEDD wc (£)
which in turn is equivalent to
*
(4,10). fEadrc (- v)
(cf. § 2, e ) and also to
*
(4.11) ¥ (- v) + ¥ (£) + {v, > = O
*
Denote by ¢ the function v+ wc (-v), i.e.
¢(v) = sup (-v, £> = sup (v, g> ;

fec g € -C
it is the support function of the get. -C.

Then (4,10) is transcribed as

-f€d ¢ (v) 3

this means that the considered resistance law admits ¢ as pseudo-

potential (or resistance function in the usual case where C contains

the origin of ¥ ; such is the condition for the present law to be dis-
sipative).
Relation (4,11) may equivalently be written as

fec

(4,12)
-&v, > = ¢ (v) s

in other words the values of f that the considered relation associates
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with a given v are those elements of C for which the dissipated
power =-{v, £> equals exactly ¢ (v).

The reader will check that all the preceding pattern applies
to Coulomb's law of friction between two solid bodies eq. and eg ,
when the pressure N, i.,e, the normal component of the reaction, is trea-
ted as known., Take as v the sliding velocity of Qf; with respect to:
QI& ; then lﬂ is the linear space of dimension 2 consisting of the vec-
tors whose direction is contained in the common tangent plane to the two
bodies at the point of contact (this space is not exactly the velocity
space for the considered system as a whole, but it is visibly isomorphic
to a subspace of_it). Take as f the tangential component of the reac-
tion that G/; undergoes from efl .so that § may be considered as the
same spacé as y% the bilinear form (.,.> reducing then to the conven-
tional Euclidian scalar product. The customary Coulomb law of isotro-

pic friction consists in taking as C the closed disk centered at the

origin, with radius equal to the product of N by the friction coeffi-

cient. But anisotropic friction may be described as well, by using convex

sets of different shape. See MOREAU [12] about the application of this
to discuss the sliding of a vehicle wheel when brake is applied : if the
inertia of the wheel is neglected, the resulting effect comes to be equi-

valent to some anisotropic fiiction which would take place directly
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between the vehicle and the ground,

However, the main domain of application of the preceding is
plasticitx. In its local form the classical law of perfect plasticity
(i,e, without strain hardening) is formulated as a relation between the

local valuesof the stress tensor o and of the plastic strain rate ép

Giving the yield locus defines a closed convex set C in the six-
dimensional space of the variable o ; among various equivalent formu-

lations, the considered law may be stated as a principle of maximal dis-

sipation which was precisely the starting point of this paragraph. From
the local law one obtains the global one by the functional analytic pro-
cedure described at the end of § 4, b,
In the study of plasticity as well as in that of friction,

an: essential feature is the occurence of a relation between the veloci-~
ty v and the force f which cannot be "solved" to define one of these
two elements as a function of the other : to the value zero of v cor-
respond. for f all the points of C and to a value of f corresponds
as values of v all the elements of the cone - 9 ¢C (f£). This causes
much trouble in traditional treatments ; our purpose in Chapter 6, will
be to show that such formulations as (4.9), (4,10) or (4,11) permit a

very efficient handling in this situation,
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4, £ DISSIPATION FUNCTION

The relation ® between v and f may equivalently be written
under the form

f€R (v)

where R denotes a multimapping from )ﬂ into ¥ ., Given v in ¥ ,
there is a priori no reason for all the values of f in the set R (v)
to yield the same value for the dissipated power - <v, f>, However this
precisely happens in many practical instances : in such cases,vthe dissi-
pated power appears as a single-valued numerical function of the variable

v, defined on dom R = {v € ¥ : R (v) # # ). Let us denote by D this

?

function, usually called the dissipation function of the considered law.

In the case of viscous resistance preseunted in § 4, c, the set
R (v) reduces to a single element for each v in ]ﬁ ;s hence the exis-
tence of a dissipation function is trivial, In fact we found
D(v) = 2¢ (v) .
In the case of friction or plasticity presented in § 4, e,
(4,12) proves the existence of a dissipation function expressed now, for
every v in dom @ ¢ , as
D (v) = ¢ (v) .,
Both preceding examples exhibit a close connection between the

superpotential, or resistance function, ¢ and the dissipation
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function D. Actually in both cases, the resistance function ¢ happens

to be positively homogeneous, with degree m ; this implies

-&v, > = m¢ (v), which may be considered as a generalization of
Euler's identity to "subdifferential calculus', Many practical resistance
functions possess such a homogeneity (e,g. usual iaws of M). More
generally :

PROPOSITION, Let ¢ be a resistance function (i.e. ¢ 1is the.‘m' udo-

potential of a resistance law, with 0 € 3 ¢ (0) and ¢ (0) = 0)

suppose 9 ¢ (v) # § whichever is v in V. For the existence of a

function h : R » R ensuring the implication

~f €3¢ (v) = -<v, £> = h(p (v))

(in other words, for the function h o ¢ to be dissipation function) it

is necessary and sufficient that ¢ has the quasi-homogeneous form

¢ =a o Jj, where j 1is an everywhere subdifferentiable gauge function

on w and a a convex differentiable mapping from [o, + o[ into

itself, with a (0) = O.

A sketched proof is given in MOREAU [ 13] , and for more de-
tails [16]. It may be remarked that the function h is then strictly
increasing, The dissipation function D = h o ¢ is not convex in gene-
ral, but only quasi-convex i,e, its "slices" {v € ‘V": D (v) < p} for

p € R , are (closed) convex sets ; all these sets are homothetic of
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J=1{ve) . jiv)< 1}, the set whose j is the gauge,
By the facts indicated in § 2, nh , the dual function of

*
@ o j 1is also a quasi-homogeneous function, namely ¢ =8 ok ,

¢

n

where pB is the Young conjugate of a and k the gauge function of
the polar set K of J.

In the case of plasticity or friction the function a is
identity , so that f is the indicator function of the subset [0,1]

of [0, +w[ and K=-C,

4, g SUPERPOSITION OF RESISTANCE LAWS

It is usual to take into account at the same time several
resistance laws in the same pair (¥?, §) of linear spaces, Let ¢1 and
¢2 the respective pseudo-potentiak of two such resistance laws,For every
v in yg, the set of the possible values of the sum of the two for-
ces is 23 ¢1 (v) + 2 ¢2 (v). This is contained in 4 (¢l + ¢2) (v). and,
in particular, if the functions ¢1 and ¢2 possess the additivity of
the subdifferentials, the conjunction of the two resistance laws amounts
exactly to the single following one
(4,13) - f€2 (¢1 + ¢2) (v) .

*
Suppose for instance ¢1(v) = wc(— v), i.e. the resistance
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denote the resistance function of some viscosity law (cf, § 4, ¢ ¢ it

V ——
ié a nonnegative 1l.s.c. quadratic form on the space V' ) ; choose a strict-
ly positive constant A and take more generally

1
¢2(v) = A q(v) = X>q(A v)

so that A may be interpreted as a viscosity coefficient. As a dondition

ensuring the additivity of subdifferentials make, for instance, the fol-

lowing assumption (cf., § 2. £) : the function ¢1 is continuous at the
origin, at least for the Mackey topology = (V, P by &2, c, 5°, this
means the convex set C is compact for the weak topology o (F,Y). Then
the resulting viscoplastic law may be expressed under the form (4.13).

Now the assumptions made imply, by § 2, d, that the polar

* *
function of ¢1 + ¢2 is the infimal convolute ¢1 v ¢2. As already
*
mentioned in Chapter 3, the dual q of the quadratic form q consists
in a positive definite quadratic form, defined on some subspace of ¥ |
and extended with the value + » outside of this subspace. By § 2.Cc ,
o . 1 * *
29, the dual of ¢2 is 5-a. On the other hand, the dual ¢1 of ¢1
is the indicator function of the set - C. Thus using the equivalence
between (2.6) and (2.7) (§ 2. e) the viscoplastic resistance law (4.13)
amounts to
€0 G Teq) (-1
v b oV a >

while the corresponding purely plastic resistance law would be written as
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VEDY o (-8 .

By definition, for every y €¢

1 * . 1 *
Yo 7xa)) = int (4 _o(2) + 5 a (y-2) ]
1 *
= inf — q (y-2)
z €-C

and, due to the assumed ':compactness of C, the infimum is a minimum,

Clearly this expression takes the value O for y € -C and it takes

. 1 %
strictly positive values otherwise ; it may be said that dr_c \% -X- q

is a penalty function for the set - C and the penalty coefficient 7\1—

is the reciprocal o:}’ the viscosity coefficient (other remarks about pe-
nalty functions will be given, for the special case of Hilbert space,
in §°5. d).

Due to quadratic forms being even functions, one may equiva-
lently speak of the set C instead of - C ; in short adding some vis-

cosity effects to a plasticity law is equivalent to replacing the indi-

cator function of the "rigidity set" cC, by a penalty function of this

set ; the smaller is the giscosity coefficient, the larger is the penalty

coefficient,
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5. ™MOVING SETS

5. a HAUSDORFF DISTANCE AND VARIATION

Let te> A(t) denote a multimapping or multifunction (i.e., a

set-valued mapping) from the compact interval [O,T] into a metric space
(E,d). As in the following the real variable t will be interpreted as
the time, we may refer to A as a moving set in E.

A natural way of formulating regularity assumptions about such

a multimapping consists in using the Hausdorff distance between subsets

of the metric space E,

If A and B are two subsets of E, we call the excess of A
over B the expression
(5.1) e(A,B) = sup d(a,B) = sup inf d(a,b)

a€A a€A bEB

The considered sets may be emp?y ;5 let us agree that "sup" and "inf" abo-
ve are understood in the sense of the ordered set ﬁ+ = [0, + a] : the
supremum of an empty qollection of elements of this ordered set is Q
and the infimum is + s . Expression (5.1) defines a non symmetric §£g££ H
it. satisfies the triangle inequality. Clearly e(A,B) = O if and only
if A is contained in the closure B of B.

The Hausdorff (improper) distance of A and B is then defi-
ned as the symmetric expression

h(A,B) = max {e(A,B), e(B,A)}
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with value in ﬁ+ . This is zero if and only if A and B have the sa-
me closure.

By means of Hausdorff distance, the classical concept of !2512:
tion may be applied to moving sets. Let [s,t] be a compact subinterval
of [O,T] ; for any finite subdivision of this interval, namely

S : s= To <7

1<...<Tn:t

put
n

V(8) = ) halr, D), Alt)))  €R,
i=1

The supremum of V(S) for S ranging over all the finite subdivisions
of [s,t] is called the variation of A on this interval ; notation
var (A ; s,t). From h satisfying the triangle inequality one easily
deduces that
(5.2) s< t< u=>var(A ; s,u) = var(A ; s,t) + var(a ; t,u) .
In particular if var(A ; O,T) { + e , the variation is also finite on
any subinterval of [O,T] ; in this case, introducing the non decreasing

’

function v from [0,T] into R,

(5.3) v(t) = var(A ; O,t)
yields
(5.4) s< t=> var(A ; s,t) = v(t) - v(s) .

The numerical function v is Lipschitz with ratié A if and
only if the multimapping A satisfies itself the Lipschitz condition,
with ratio A, i.,e., for any s and t in [O,T],

h(A(s), A(t)) <A |t-§
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The numerical function v 1is absolutely continuous on [O,T]
if and only if the multimapping A possesses itself the absolute conti-
nuity, as formulated by means of Hausdorff distance, i,e, : for any
€ > 0, there exists 7 > O such that the implication

z IT

Yy o,l ¢ nz,i h(A@,), At ) <e

holds for any finite family ]0&,11[ of non overlapping subintervals of
[0,T]. In this case the numerical function v is almost everywhere dif-

ferentiable ; the derivative, denoted by v , is a nonnegative element

1
of L (0,T ; R) which may be called the speed function of the moving

set A. Clearly

t

(5.5) s< t = h(a(s), At < { v(t) dt

s

Let us restrict ourselves now to the case where, for any t,
the set A(t) is closed ; then the non decreasing function v is cons-
tant over some subinterval of [O,T] if and only if the multimapping A
is also constant over this subinterval. This implies the existence of a
multimapping A from [0,v(T)] into E yielding the factorization

ACt) = 3 (v(t))
Evidently, for dﬁg Tt in [0,v(T)], one has
var(Jh 5 S, T) =T - O

so that & is Lipschitz with ratio 1.

5. b THE CASE OF CONVEX SETS IN A NORMED SPACE

Let E denote a real normed linear space and F its
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topological dual endowed with the usual norm. This constitutes a dual
pair as considered in Chapter 2 (keep in mind that the norm topology on
E 1is cgmpatible with the duality, but not the norm topology on F un-
less E is a reflexive Banach space).

Let _g and C' be’two non empty convex subsets of E ; as we
»
are to deal with distances, it is immaterial to suppose these sets clo-
sed or not. Let y and 7' be the respective support functions Qf C
and C' which are positively homogeneous elements of I‘O(F,E), vanishing

at the origin of F,

Denoting by B the closed unit ball of F , one finds

(5.6) ~e(c,c') = sup (y(y) - y'(y))
’ y€B
(with the convention o — e = = ).

This is easily proved by observing that, for p € R, the ine-
quality p > e(c,C') means that, if B(p) denotes the closed ball cen-
tered at the origin with radius p , the set C-' + ﬁ(p) contains C ;
express then this inclusion in terms of support functions. Another way
of proof-would start from the following formula giving the distance of
a point a of E to the set C'

(5.7) d(a,C') = sup [{a,y> - y'(y)]
y€B
In fact (cf. § 2.)

d(a,c') = @, V [.1) @)

Since the function [ is everywhere finite and continuous, since there
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exists at least one point where wc, takes a finite value (namely the
value zero), and since both functions are convex, the inf-convolute
¢C' v '1' is convex, everywhere finite and continuous (cf. § 2)
thus it equals its bipolar, i,e,
.(¢C, v I.l)(a) = sup [/a,y> ~ y'(y) - ¢B(y)]

yEF
= sup [Ca,y> ~ y'(y)]

y€B

which is equality (5.,7).

Equality (5.6) implies that the Hausdorff distance between the
non empty convex sets C and C' is finite only if dom y and dom y'
(i.e. the sets of the points of F where y and 7y' take finite va-
lues) consist in the same set denoted by D and then
(5.8) n(c,c') = sup |y(y) - y'(y)| .

yEBN:D

Note that D 1is a conic convex subset of F ; its polar cone in E is
the recession cone of C and C'. Recall that D equals the whole of
F if andonly if C and C' are bounded.

The expression (5,8) of the Hausdorff distance yields the
following :

Let t#& C(t) be a multimapping from [0O,T] into the normed
space E, with non empty convex values ; denote by y & y(t,y) the sup-
port function of C(t). This multimapping is absolutely continuous (resp.

Lipschitz with ratio A) if and only if the set D = dom y(t,.) is in-

dependant of t, with the existence of a finite non decreasing numerical
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function p [OJTI > R , absolutely continuous (resp, Lipschitz with
ratio A), such that for any y € D and any subinterval [s,t] of
[O,T] one has
[v(t,3) = v, < |y| () - p(s)
(].] denotes here the norm in F),
Equivalently there exists é , a nonnegative element of
Ll(O,T ; R) such that for any y in D, the numerical function
t+ y(t,y) 1is absolutely continuous and its derivative & satisfies for
almost every t
(5.9) [vet,y] <yl pt)
(resp, the same inequality with é = A), If such is the case one may
take as ﬁ the speed function of the moving set C.
Characterizing the regularity of the motion of a (closed) con-
vex set t ¥ C(t) by means of its support function y(t,.) is quite a
natural procedure, In fact an essential feature in locally convex topolo-
gical linear spaces is that a closed convex set equals the intersection
of all the closed half-spaces containing it, or equivalently the inter-
section of the minimal ones among these half-spaces, i,e, the half-spaces
which have in the present case the form f§x € E : {(x,y>< y(t,y) , with

|yl =1. Fixing here y yields a moving half space whose boundary hyper-
plane keeps a constant direction ; the derivative i (t, y) may be

interpreted as the speed of this moving hyperplane , or as

the speed of the moving half-space itself, Then (5,9) expresses a uniform
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ma joration of the speeds for the minimal half-spaces of all directions,
Example, Take as C(t) a convex set moving by trgnslation, i.e,
c(t) = Cy + w(t)

where Co denotes a fixed convex set and w a fonction defined on
[O,T] with values in E. Then, if Yo is the support function of C0

y(t,y) = yo(y) +(w(t),y> .
One concludes that the multimapping is absolutely continuous if (and
only if, in the case where C0 is boundéd) the function t e w(t) is
absolutely continuous. When E is a reflexive Banach space, the absolute
continuity of w 1is known to imply for almost every t the existence of
the strong derivative w (cf. KOMURA [1]) and this yields for the speed
v of C the ma joration

(5.10) v |w

(equality when c, is bounded),

5. ¢ INTERSECTION OF TWO MOVING CONVEX SETS

The practical use of the preceding concepts requires some cri-
teria of absolute continuity for multimappings. The object of this para-
graph is to establish the following one (already published in MOREAU
[22]7 or, for more details, [19]) :

PROPOSTITION, IlLet t & At and t P Bt denote two multimappings from the

compact interval [O,T] into the normed space E, with convex values,
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Suppose that for any t € [O,T] the set At has a nonempty intersection

with the interior of Bt and that the diameter of At N Bt is finite,

Then if the two multimappings are absolutely continuous (resp. Lipschitz)

such is also the multimapping t & At N Bt'

We shall decompose the proof into several lemmas which may be
of use by themselves,

ILEMMA 1, Let B B2 denote two convex subsets of the normed space E

1?

and A

1’ A2 two arbitrary subsets of E ; EBEE (e denoting the "excess'
as in § 5, a)
(5.11) e(A,, E\Bl)< e(a,, E’\BZ) + e(A, A)) + e(By, By) .

Let us prove first that for any a € E
(5.12) d(a,E\B,) < d(a,E\B,) + e(B,B,) .
Gne makes calculation easier by performing a translation reducing to the
case where a is the origin of E. Let g1 8, be the support functions
of B1 and 82 , defined on the dual F of E. Let p be an arbitrary
positive number satisfying the inequality P <§d(O,E\‘Bl), which means
that the open ball with center O and radius p 1is contained in B1 H
in terms of support functions this inclusion is equivalent to pfg gl(y)
for any y belonging to £ , the unit sphere of F, Now (5.,6) implies
Vyer : g < g,(y) + e(B,B,)

therefore p - e(Bl,Bz)fg gz(y) ; inequality (5.12) (trivial if

e(Bl,Bz) = + ) follows, From it one obtains (5,11) by taking suprema



- 276 -

J. J. Moreau

for a ranging over A then using the fact that the écart e satisfies

1)
the triangle inequality.

LEMMA 2, LEE A and B denote two convex subsets of the normed space

E ; suppose that B contains an open ball with radius p >0, with cen-

ter a belonging to A. Then

(5,13) V x€E : dx, anB < G +J—x;il)(d(x,A) + d(x,B)).

Proof : Denote indifferently by .] the norm in E or the dual norm
in F ; let £ and g be the support func?ions of A and B, Similar-
ly to (5.7) we have

d(x,A) = sup {Kx,u> - f(u) :u€F , |u <1}
and the corresponding expression for d(x,B). Define a positively homo-
geneous function ¢ on F x F by

¢Cu,v) =¢<¢x, usr v> = £f(u) - glv) .
For an arbitrarily chosen constant k > O this yields
(5.14) k(d(x,A) + d(x,B)) = sup {¢(u,v) : |u] <k , |v] <kl .

The hypotheses in the Lemma to be proved imply, by elementary
arguments, that the closure ;7§—§ of AN B equals the intersection
of the closures X and B of A and B. Then, the support function of
AN B is the dual function of ¢_ + ¢_, i,e, the I-hull of £V g ;
. A B

by the facts summarized in § 2, d, this I'-hull is the function fV g

itself, i.e,

(£ 7V g) (w) = inf {£(u) + g(v) : u+ v
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Using again the expression (5.7) for the distance from a point to a con-
vex set, this yields

(5.15) d(x, AN B) = sup {¢x,w> - (£ 7V g)(w) : |w] <1}

= sup {¢(u,v) ‘u + vlfg 1.

Let us make calculation easier by supposing that a translation
has been performed in E such that a = O ; then the hypotheses made
about A and B are expressed by ij O and g?} p l,] , hence

[u+vl] <1 2 ¢,v % -p |v] .
As ¢(0,0) = O and in view of (5,15) this implies

d(x,AN B) < sup {¢Cu,v) : |v] g-%l- , v €1 +%} .
After putting k =1 +~l§l in (5.14), the comparison of the sets over
which the suprema are taken yields (5,13),

REMARK, 1In the case where E is a Hilbert space one may use trigonome-

try to establish a slightly better inequality ; see MOREAU [19] .

LEMMA 3., Let A and B denote two convex subsets of E ; take «

and p in ]O, + e[ such that « { p { e(A, E B). Then, for any x

in E such that d(x,A) + d(x,B) < @ , one has

+ diam (A N B)

o - % (d(x,A) + d(x,B)) .

d(x,an B) <L

This results from (5,13) and from the inequality
[x - a]| < diam (AN B) + d(x,AN B) .
Bringing together these lemmas one obtains easily

IEMMA 4, Let T denote a topological space ; let t v At and t » Bt
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be two multimappings from T into the normed space E, with convex va-

les, Let s € T such that
diam (A_ N B_ ) { + e ,
s s

AN intBS;!;zS ,

lim e(At, As) =0 (resp, 1lim e(AS, At) = 0) ,
t->s t->s
lim e(Bt, Bs) =0 (resp. lim e(BS, Bt) = 0) .

t—>s t-~>s

Then

lim e(Aéﬂ Bt’ Aéﬁ BS) 0 (resp. 1lim e(Agﬂ BS, Ag\ Bt) = 0)
t>s t>s

and the two numerical functions t > diam (At N Bt) and t P e(At,E\\Bt)

are upper semicontinuous (resp. lower semicontinuous) at the point s,

Let us now complete the proof of the Proposition :
The hypotheses imply that the two multimappings t+» At

and t & Bt are continuous in the sense of Hausdorff distance. The fi-
nite numerical function t + diam (At 8 Bt) is continuous by Lemma 4

on the compact interval [O,TW , thus majorized by some constant R {( + w.
By the same lemma the numerical function tw—> e(At, E'\Bt) is continuous
on [0,T], with strictly positive values since A, N int B, £ @ , thus
minorized by some constant p > O. Choose a € lo,p[ ; the functions

t+ var (A ; O,t) and t & var (B ; O,t) being finite and continuous,
there exists & > O such that for ¢ and <t in [0,T], the condition

o -1l ¢ & ensures that h(A_, A ) and h(B_, B ) are less than 2.
(o2 T (o2 T 2

Then Lemma 3 implies
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.L__ + ’

which yields the expected majorations,

5. d DISTANCE AND PENALTY FUNCTION 1IN A HILBERT SPACE

Let H be a real Hilbert space ; denote by (‘I.) the scalar
product in i® and by |.| the norm. By means of this scalar product, H
may be identified by its dual ; in other words (,!,) is a bilinear form
on H x H which places H ‘in duality with itself and the norm-topology
is compatible with this duality.

Easy computation yields that the function

@+ xekix?

which clearly belongs to PO(H,H) equals its own dual (actually it can
\be Pproved that Q 1is the only fonction equal to its dual),

Let C be a non empty closed convex subset of H ; denote by
q the numerical function defined on H by

a0 = 5 [4x,01% = G 7 Q) (.

Elementarily this function is convex, everywhere finite, continuous,
Fréchet-differentiable with gradient
(5.16) grad q(x) = x - proj, x ,
where projC x denotes the nearest point to x in C. (All this is a
spe¢tal case of a theory in which the indicator function wc is repla-

ced by an arbitrary-element of T (H,H) ; see MOREAU [61.)
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Choose a strictly positive constant A ; then x b %-q(x) de-
fines whaf is commonly called a penalty function of the set C, i,e. a
finite function which takes the value O when x € C and rapidly
growing positive values when the distance from x to C increases. So
to speak, the smaller is the constant A , the greater is the penalty for
x of lying at a distance from C. The penalty function may be considered
as an approximation of wc in a sense which concerns also the subdiffe-

rentials as follows : Denote by A the multimapping x # 9 wc(x) from

H into itself, which constitutes a special case of maximal monotone

operator, In general, for a chosen A > O, the single valued, everywhere

defined mapping

-1
(5.17) AA = I - (IA+ A_A) ,

where I denotes identity, is classically called & Yosida approximation,

or Yosida regularization, of A ; it is Lipschitz with ratio 7% . Here
AA m;y easily be explicited ; by definition the equality

y=(0+A A)_l(x) means x € (I + A A)(y) or equivalently x-y € 3 ¥ (y)
for 3 y(y) 1is a cone so that the factor A may be omitted. This is
well known to characterize y as equal to proJc x ; hence (5,17) be-

comes

(5.18) Ay (x) :Tl (x - prOjC x) =>+grad q(x) .
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5, e MOVING CONVEX SET IN A HILBERT SPACE

With the same notations as in the preceding paragraph, suppose
t b C(t) is an absolutely continuous multimapping from [O,T] into H,
with non empty closed convex values ; put

att,x) = 2 [dex, cen]? .

Let t # z(t) be an absolutely continuous mapping from [O,T]
into H.

Classically the continuity of t b C(t) in the sénse of
Hausdorff distance and the continuity of t#+ z(t) imply the continuity
of the mapping

t & proj (z(t), C(t)) .

The proof of it is based on some ma joration of the square of the displa-
cement of the projection which implies nothing about the absolute conti-
nuity of this mapvoing ; however :

LEMMA 1. If t» C(t) and t#+ z(t) are absolutely continuous, on

[0,T] so is the numerical function k : t+ d(z(t), C(t)).

In fact, with the notation e of § 5, a, one has
d(z,c) = e(fzl, C)
so that, using the triangle inequality concerning the écart e , one ob-
tains finally, for arbitrary o and T in (O,T] ,
(5.19) ld(z(), c@)) - d(z(t), c(t))]

< d(z@), z(t)) + h(c), Clt))
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It just remains to apply the definition of absolute continuity,

This lemma implies that the function k possesses for almost
every t a derivative denoted by ﬁ(t) ; thus the function

1 2
tw» 5-(k(t)) = q(t, z(t))

possesses, for the same values of t, a derivative equal to k(t) k(t).

The absolute continuity of the multimapping C means that its

variation function v : t+& var (C ; O,t) is absolutely continuous,

thus possesses a derivative v(t) for almost every t. Similarly the
absolute continuity of the vector function t+ z(t) implies the exis-
tence of its strong derivative =z(t) for almost every t (by virtue of
H being a reflexive Banach space ; see KOMURA [1]).

Let us prove now the following, which will be of use in next
paragraph

LEMMA 2. For any t in [0,T] such that the derivatives z(t), v(t),

ﬁ(t) exist, one has
(5.20)  |k(t) k(t) - (2(t)] grad q(t, z(t))] < k(t) v(t) .

In fact for such a value of t the hypotheses imply the exis-

tence of
1im q(s, z(s)) - q(t, z(t)) = k(1) é(t) .
s > t s - t
Now
(5.21) a(s,z(s)) - q(t,z(t)) _ q(s,z(s)) - q(s,z(t)) +

s - t s - t
q(s,z(t)) - q(t,z(t))
+
s - t
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As the numerical function x# q(s,x) 1is convex on H, its
gradient at some point is also a subgradient ; this yields
(z(s) - z(t)|grad q(s,z(t)) < a(s,z(s)) - a(s,z(t))
< (2(s) - z(t)|grad q(s,z(s)) .
The mapping s » proj (x,"C(s)) is continuous, the mapping
.
x v proj (x, C(s)) is nonexpanding, thus the mapping
(s,x) » grad q(s,x) = x - proj (x, C(s))

from [0,T] x H into H is continuous ; hence one obtains the existence

of

q(s,z(s)) - q(s,z(t)) :

% (z(t) | grad q(t, z(t)) .

1lim

s>t
Therefore the last term in (5.21) possesses also a limit which may be
interpreted as the derivative at the point t for the function

1 2

(5.22) s+ q(s, z(t)) = 5 [a(z(t), c(s)] .
Writing the same inequality as in (5.19), but with constart =z , yields

|d(z(t), c(s)) = d(z(t), c(t)] < n(cis), c(t))

< Jvis) - v(v)]

so that the derivative of the function (5.22) has its absolute value ma-

jorized by k(t) v(t) s this completes the proof of (5,20),

5, f THE SWEEPING PROCESS
Suppose given an absolutely continuous multimapping t v C(t)

from [0,T] into the real Hilbert space H, with nonempty closed convex
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values ; denote by x & ¢(t,x) the indicator function of C(t).

We put the problem of finding an absolutely continuous (single

valued) mappin u [O,T] > H agreeing with some initial condition

(5.23) u(0) = a , given in C(0)

and whose derivative u satisfies for almost every t in [O,T]

(5.24) —u(t) € 3 ¢(t, ult)) .
Interpreting u as a moving point in H , we call it a solu-

tion of the sweeping process by the moving convex set C. The reason of

this naﬁe lies in the following mechanical image of condition (5.24) :
As 9 ¢(t,x) is empty when x ¢ C , this condition implies
u(t) € c(t) for almost every t, thus for every t, by virtue of our
continuity assumptions. Suppose, to make things clearer, that the moving
convex set C possesses a nonempty interior., As long as the point u(t)
lies in this interior, the subdifferential 9 ¢ (t,u(t)), i.e, the cone

of normal outward vectors at the point u(t) of the convex set (cf,

§ 2. e) reduces to the single element O ; then (5.24) implies that the
moving point u remains at rest, It is only when u is caught up with
by the boundary of C that it may take a nonzero velocity, so as to go
on belonging to C, and by (5.24) this velocity possesses an inward nor-
mal direction with regard to C. In other words, condition (5,24) governs
the quasistatic evolution of a material point u subject to the follo-

wing mechanical actions :
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1° some resistance acting along the line of its velocity and

opposite in direction ;

29 the moving perfect constraint whose geometric condition is

u € c(t) (cf. § 3, d).

Elementarily the initial value problem formulated above pos-
sesses at most one solution. Such uniqueness property holds more generally
with "evolution equations" of the form
(5.25) -u(t) € ACt, u(t))

where A(t,.) denotes, for each t € [0,T], a monotone multimapping (or

multivalued operator) from H into itself. In fact, monotonicity imme-

1’ u, absolutely continuous, are solution of

diately implies that if u
(5.25), the function
- -

te fu (t) - u, (1)

is non increasing ; therefore these two solutions are equal if they agree

with the same initial value.
Equations such as (5.25) have already been studied, but mainly
under hypotheses involving that the set
dom A(t,.) = {x € H : A(t,x) £ @}
is independant of t ; see réferences in BREZIS [1], Here, on the con-
trary, the problem becomes trivial if dom A ¢(t,.), namely C(t), is
constant :; thus the simple equation (5,24) furnishes the occasion of

focusing upon the difficulties which arise from the variation of the
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domain, In the same line must be'quoted H
1° H. BREZIS [2] who studied by a "double regularization" technique
the case

ACt,.) =3 ¢(.) + 3 ¢(t,.)
with ¢ € PO(H,H) independent of t and under some hypotheses invol-
»

ving the projection mapping x + proj (x, C(t)) ; they do no seem direct-
ly comparable with our absolute continuity assumption,
2° c. PERAIBA [1], [2] who succeeded in generalizing to the case
A=93 ¢ , with ¢ € TO(H,H) depending on time in a suitable way, the
author's regularization method (see MOREAU [17]).

Because of its insertion in this context we also choose a re-
gularization technique, i.e, the use of penalty functions, to prove, in
‘next paragraph, an existence theorem, Another advantage of doing so re-
fers to the application of equation (5.24) to elastoplastic mechanical
s&stens., developed in Chapter 6 below : as explained in § 4, g; when
the conside;ed convex is the rigidity set defining a law of plasticity,
the replacement of its indicator function by some penalty function comes
to take into account some additional viscosity. The reasoning used below
could then pe adapted to prove that the solution of an elasto-~visco~
plastic problem tends to the solution of the elastoplastic problem when
viscosity tends to zero, From the physical standpoint this may be as

important as the existence question itself,
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The existence theorem obtained will supply the‘needs of Chap-
ter 6. Actually a deeper insight into the sweeping process can be gained

from a discretization method (published as multigraph in MOREAU [18])

which consists in proving first the convergence of the "catching up
algorithm” (cf, § 5. h below) ; this method permits weaker hypotheses, by
replacing the concept of the variation of a multimapping by that of
retraétion : use inste;d of Hausdorff distance the "unilateral" écart e,
On the other hand, a generalization of the process can be defined in this
line for the case of a possibly discontinuous moving convex set C, pro-
vided its variation (resp, retraction) is finite,
On the application of the discretization method to equations

of the form (5.25), with A(t,.) = A ) - f£(t) see J. NECAS [1] .

5, g EXISTENCE THEOREM

The study of equation (5.24) is made greatly easier by the
following remark : the sweeping process associates the chain of the po-
sitions of the moving point u to the chain of the positions of the
moving set C in a way which does not depend on the timing. More preci-
sely, the change of variable in Lebesgue integral, along with the fact
that the set 9 ¢ 1is a cone, i.,e, the multiplication by a nonnegative

scalar sends it into itself, implies : Let 7w denote a non decreasing

absolutely continuous mapping from [O,T] onto an interval [O,T'];
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suppose C = C'ow , i. e,
(5.26) v t€ef[o,T] : Cc(t) = c'(w (t))

where C' is an absolutely continuous multimapping from [o,T'] into

H , with nonempty closed convex values ;let u' : [0,T'] » H be a solu-

tion of the sweeping process for C' ; then the mapping u = u' ow is

a solution of the sweeping process for é.

As explained in § 5, a, taking for 7 the variation fonction
v of the given multimapping C yields a factorization of the form
(5.26), with C' Lipschitz with ratio i. This reduces the existential
study of the sweeping problem fo the Lipschitz case, i.e, the case where
the speed function of the moving convex set belong to L (O,T s R), or
even is merely a constant.

Iet us now proceed to establisﬁ H
PROPOSITION, For any a in C(0) the sweeping problem, as formulated

in the preceding paragraph, possesses a (unique) solution.

let n be positive integer. Denote by u e [0,T] » H the
solution of the differential equation
(5.27) -u = n grad q(t, un(t))
for the initial condition
(5.2¢) u (0) = a .
n

In fact the expression (5.16) of grad q implies, under the hypotheses

made concerning t v C(t), that the mapping (t,x) v n grad q(t,x) is
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continuous .relatively to t and is Lipschitz with ratio n relatively
to x ; hence classically the existence and the uniqueness of u which
is a continuously differentiable function from [O,T] into H,

Observe that the construction of the ordinary differential i
equation (5.27) consists in replacing the right member A = 9 ¢ of
(5,24) by its Yosida regularization (5.18), with A =-£§ ; equivalently,
the indicator function of C 1is replaced by the penalty function n q :
thus the moving point un(t) is allowed to not belong to C(t) but then,
in view of the expression (5.,14) of grad q , it must have a velocity
directed toward its projection on C(t) ; the magnifude of this velocity
is proportional to the distance from un(t) to C(t) and proportional
to the penalgy coefficient n .

LEMMA 1. . If the speed function v of the moving set C belongs to

L2 (0,T ; R), the sequence of the derivatives ﬁn is bounded in

2 (o,1 ; W,
Denote by hn(t) the common value of
1,
5 lun(t), = |grad q(t, un(t)), = d(un(t), c(t)) .
Inequality (5,20) (§ 5, e, Lemma 2) yields, for almost every t ,
[hn(t) h (t) - (u (t) | grad a(t, un(t)))l < h (t) v(t)
hence, due to (5.27),
(5.29) h () B () + n (b (t)% < h_(£) v(t)
n n n n

As a € c(0), one has h (0) = 0, thus, by integration over [o,T] ,
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1 2 T .9 T .
= (h_(T))" + nf (h_(£)) dtg[ h (t) v(t) dt
2 n n n
(8] (0]
Denoting by ||.|| the norm in 2 (0,T ; R) as well as the norm in

L2 (0,T ; H), this yields

(5.30) gl < I
which proves the lemma,
]

REMARK, More may be obtained from inequality (5,29). Suppose only the
absolute continuity of ¢~ C(t) so that the derivatives v(t) and
ﬂn(F) exist for almost every +t. For the values of t such that
hé(t) ¥ 0 , inequality (5.29) implies

h (£) + n b (£) < V()
and this is al;o true when hn(t) = 0 (then ﬁn(t) = O since zero is
the minimal value of hn). The elementary treatment of this differential
‘inequality, with the initial condition hn(o) = 0 , yields :
(5.31) la (&) < vt
for almost every t.

In particular, if v € P ©,T ;R) , with 1< p< +o , the
same inequality as (5,30) holds for t’ norms.

From such majorations, there are many ways of establishing the
convergence of the sequence u to a function which is a solution of the
sweeping process, In view of our L2 framework, the most efficient
seems to make use of the following elementary property of Hilbert spaces,

due to M. CRANDALL and A. Ppazy - [1] .
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Consider a real Hilbert space with scalar product noted (.|.>

and norm noted ”.” . let (rn) be a sequence of positive real numbers ;

let (zn) be a sequence of elements bf this Hilbert space such that

: - - <
Vn , Vmn: (zn z |l rpz -r o z>S (o]
Then :
If rL is strictly increasing in n , Han is decreasing and

1lim zn exists.
n -

-

r. is strictly decreasing, Hzn” is increasing ; if in

addition I]z H is bounded, 1lim z exists,
_— n — L5 —_—

From this we are to prove

. 2 B
LEMMA 2, If v ¢ L (O,T ;R) the sequence un is strongly convergent

in 12 (0,1 3 H),

In fact, let m and n be two positive integers ; for any t

in [O,T] , the values of the functions um, ﬁm’ un, Gn satisfy

d 2 . .
(5.32) ot lum - unl = 2(um u u un) .

Denote by P, P the respective projections of um(t) and un(t) on

n
c(t) ; by (5.16) and (5.27) one has

- = m(um - pm) €9 ¢(t, pm)
and the same for n ; due to the monotonicity of 9 ¢ , this yields by
easy calculation

. 1 . .
u - =u | u -1a)
m n m n

=R

(u = u | u - un?fg -( n

Recall that um(O) = un(O) = a , integrate (5.32) over [0,T] , denote
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by {.|.> the scalar product of the Hilbert space 12 (0,T ; H) and
by ||.|l its norm ; this inequality implies
1 2 1 1
nglum(T)-un(T)l <-(;u -su ]um—un> .

m n

The sequence rn = %- is strictly decreasing ; the sequence
”un” is bounded according to Lemma 1 ; apply CRANDALL and PAZY's
R 2
result in L (O,T ; H).

Next :

LEMMA 3, f vE L2-(0,T s R) the sequence of functions u converges

uniformly on [0,T] to an absolutely continuous function u whose deri-

vative is the L? - limit of the sequence ﬁn ; this function is solution

of the sweeping process for the initial condition u(0) = a .

Furthermore, for almost every ¢,

(5.33) Jace)] < vee) .
In fact, denote by u the limit of ﬁn in L2 (0,T ; H) and

define u : [O,T] - H by

t
u(t) = a + J u(s) ds ,
o

so that u is absolutely continuous with a ;trong derivative equal to a
-

almost everywhere, Still denoting by ||.| the norm in 12 (0,T ; H), the

()

ineqhality

t
[ut) - u (0] = | [

(u(s) = u (s)) ds| </t ||Ja - a |
) . n n

shows that u is the uniform 1limit of un.

It remains to prove that u and a verify (5,24) almost
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everywhere, Put
pn(t) = proj (un(t), c(t)) .
Then, in view of (5.,16) and (5.27)
1
un(t) - pn(t) = grad q(t, un(t)) =-—u (t)

(5.34) ~u (£) €3 4 (t, p_(t)
and, in view.of (5.30), the functions p, converge to u in L?(O,T ; H).

The convergences in L2 (O,T ; H) imply the existence of N',
an infinite subset of N, such that for any t which do%not: belong to
a certain subset w of [0,T] with zero measure, the 1limit of P, (t)
in H, for v tending to infinity in N', is u(t) and the limit of
1.10 (t) in H 1is u(t). Asthe graph of the multimapping x®© 3 ¢ (t,x)
is closed in H x H , (5,34) implies that (5,16) holds for any. t ¢ w .
On the other hand (5.,33) follows from (5,31),

From this lemma, the proof of the formulated Proposition is
completed, by performing an absolutely continuous change a variable redu-
cing to the case v € I (0,T ; R), which a fortiori implies
ve1? 0,1 ; R).

REMARK. Inequality (5,33) is clearly preserved by such a change of va-
riable, so that in general for any solution u of the sweeping process
lace)| < vee)

By integration, this yields that the length of the path traveled by the

moving point u during an interval of time [tl,tz] is ma jorized by
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var (C ; t t2). This property becomes specially suggestive in the spe-

1’

cial case where C moves by translation i.e,

c(t) = Cc_+ w(t) ,
o

with w absolutely continuous, Then, in view of § 5, b, example,
t2 . t2 .

(5.35) [ Jut)| dtg[ [w(t)| at .

t

1 t1

The association of the function u , a solution of the sweeping process,
with the given function w defining the translation imposed to C , may

be visualized as a driving affected with play ; (5.35) expresses that

such a play makes the driven point travel a path which cannot be longer

than the path traveled by the driving device,

5. h DISCRETIZATION ALGORITHM
A method of "time discretization” for the approximate solution

of the preceding problem consists in choosing a subdivision of [O,T],

namely O = to < tl ST § tn = T and constructing a sequence
X xl, vy X of points of H such that xi constitutes an approxi-
n .
1
mation of wu(t,). Adopting ———— (x.- x, _.) as an approximation of
i ti— ti_1 i i-1

&(ti) induces to replace (5.24) by
(5.36) X7 % € (ti— ti-l) a ¢(ti,xi)
which is a recurrence condition of "implicit" type concerning the desired

sequence (an "explicit" method would consist in interpreting the same

quotient as an approximation of ﬁ(ti_l) ; but this yields an unworkable



- 295 -

J. J. Moreau
recurrence condition), As @ ¢(ti,xi) is a cone, the strictly positive
factor ti— ti—l in the right member of (5.36) may be omitted and this

condition equivalently amounts to

(5.37) x; = proj (xi C(ti)) .

-1’

Thus, starting with xo = a , the point sequence (xi) is cons-
tructed by successive projections on the sequence of closed convex sets
C(ti), It is as if the moving point u, instead of being swept along with
the moving set C was left behind except that, from time to time, it

catches up with this set intantaneously, by the shortest way. We propose

to call this the catching up algorithm,

The question is wether the step function x : [0,T] » H defi-

ned from this sequence by

t.]

(5.38) x(t) = x, for t€ Jt, .,
i-1 i

i
converges to the solution u of the sweeping process, for the same ini-
tial value a, when finer and finer subdivisions of [O,T] are consi-
dered.

A direct proof éf the convergence of this family of step func-
tions may be given, yielding another way to establish the existence of
the solution u  itself (cf, MOREAU [17], [18]). As this existence has
been bbtained above by a regularization, or penalty, technique we think

it interesting and unusual to study also the discretization algorithm by

some extension of the penalty method : the trick consists in making the
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penalty coefficient vary with t (cf, MOREAU [17]).

PROPOSITION, For any € > O there exists 7 > O such that the ma jo—-

ration

sup (ti— t, )<

1

1

(resp. there exists 7' > 0 such that the majoration

5 . ' [
sup var (c ; ti—l’ ti) (")
i .
ensures

v te[oT] : Jut) -x(4) (e .

Let p.: [O,T] *~R+ a nonnegative ruled function (actually it
will sufficein the following to take as p a step function). The classi-
cal theory of differential equations ensures the existence of
up : [o,T] - H, solution of

-u (t) = p(t) grad q(t, u_ (t))
p p

agreeing with the initial condition up(o) = a, Denote by hb the abso-
lutely continuous numerical function

h (t) = d(u_(t), C(t)) = |grad a(t, u (t))] .

3 P P
The same calculation as in § 5., g, proof of Lemma 1, yields the differen-
tial inequality
(5.39) hp +p hpgv ,

from which elementary techniques leads to :

LEMMA 1, 1If the speed function v of C 1is majorized by some constant

Mj} O , the function hp is majorized by the constant M J(p) , Where
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J(p) denotes the supremum over [O,T] of the numerical function k

defined on this interval by the differential equation ﬁ +p k=1 with

the initial condition k(0) = O.

o
Consider now another functiOQ/gimilar to P and the corres-
ponding %y and %y . The same inequality as in § 5. b, proof of Lemma
2, yields, for any t in [O,T],
1 2 t
= Ju () - u_(t)]° < ~(grad q(s,u (s)) - grad q(s,u_(s))]
2 'p (<2 0 P (o2
p(s) grad q(s,up(s)) - o(s) grad q(s,uo_(s))) ds .
The integrand is a scalar product in H, majorized by
(h +h)ph +o'h)=ph2+o‘h2+ (p‘+o')h h_.
p o p o p o p o
Now from Lemma 1 and inequality (5.39) one obtains
h h +p hzgm J(p)
p P p
‘h hh <M
hc'hp +p b o S J(0)

and two symmetrical inequalities. Adding them together and integrating

gives the proof of the following :

LEMMA 2. If the function ; is majorized by some constant M;Z O one

has, for every t in [O,T] ,

2 2
(5. 40) |up(t) - uo_(t)] L at M J) + I@)) .

If, in particular, ¢ is a constant m

1 =mT 1
Je)==0~-e )< .

By § 5. g, the solution u of the sweeping process is the limit of the

corresponding 25 when m (for instance an integer) tends to infinity ;
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thus (5.40) implies
(5. 41) Iup(t) - u(t)|2 < at w2 J@p) .
For the continuation take as p the step fuﬁction associated
with the subdivision
0=t ¢ty (... {t =T

as follows : denoting by mi the middle point of the interval

[t;s t5,,] » put
5 A if t.1< t « m,
(5.2) p(t) =
10 if om et
where A js a constant independent of i,
Denote by p the supremum of the ti+1 - 1:i s studying the

function k associated with p as in Lemma 1 yields :
LEMMA 3. If p is defined by (5.42) and A} 4 one has

1

Je) < — + g .
VA

Hint : the function K : t » max EL, k(t)! possesses for almost every

VA
t a derivative K(t), When t € ]ti’ mi[ one has

k() < -1 if K(t) >

K(t) = 0 if K(t) =

A=l

When t € [mi, ti+1] one has

K(t) = 1 it K(t) >——
JA

K(t) = O it K(t) = —=—
/A

From these lemmas we can proceed to the proof of the Proposition,
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Observe first that the two alternative statements of this Proposition are
equivalent since the variation function v of C is continuous on [O,T]*
thus uniformly continuous,

The statement concerning variations is visibly indifferent to
any (absolutely continuous) non decreasing change of variable ; we take
profit of this fact in supposing that a change of variable has been per-
formed reducing to the case where the speed function 6 of C is the
constant 1 (see § 5. a),

First step. Denote by w the following absolutely continuous non de-
creasing mapping from the interval [O,T] onto itself (mi denotes as

1B

before the middle point of [ti, t

i+1
t. it ¢, <t m,
W(t) - 1 1 1
2t -t if m <t< L
and put
Cr(t)) = cC'(t) .

In other words, on each interval of the form [ti, mi] the convex set

C! remains fixed, equal to C(ti) ; on the next interval [mi, ti+1] ,

1,

it runs through the same chain of configurations as C on [ti, ti+1

with a timing adjusted in such a way that C' catches up with C at the

instant ti+l' Call u' the solution of the sweeping process for the

moving convex set C' and the same initial value a as u ; in view of

the change of variable one has
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u'(t) = ulr(t)) .
By virtue of (5,31), the function u is Lipschitz with ratio 1 ; thus,
for any t € [0,T],
(5. 43) J[ut) = u'(p)] < -22 .

Second step, Put

a'(t,x) =+ dx,cen? .

ST

Defining p by (5.42), denote by up' the solution of
(5. 49) -Gp-(t) = p() grad q'(t, uwi(t))
agreeing with the initial condition uf; (0) = a, The integration of this
differential equation may be explicited : On each interval of the form
[m,, t, 1] the function p vanishes, so that
(5. 45) te[m, ti+1] = uP'(t) = up'(mi) .
For t ranging over an interval of the form ]ti, mi[ , p takes the cons+
tant value A and the function x+ q'(t,x) is independent of t, with
grad q'(t,x) = x - proj (x, C(ti))
so that, on this interval
(5, 46) up'(t) = uP'(ti) + [yi- up;(ti)] [1 - exp A(ti- t)]
where
v, = proj (up'(ti), C(ti)) .
Supposing A 4, it results from (5,41) and from Lemma 3

that, for any t € [o,T]

(5.47) larce) - w)®< et (= + B

JK

.
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Note that (5.45) and (5,46) yield

, , Alt- ty, )
1] — 1 p— - - ——
(5. 48) u (ti+1) = up(mi) = up(ti) + [yi up(ti)][l exp 5 ]

Third step. Let A tend to + e ; as all the ti- ti+1 are {0,
(5.48) shows that, for each i ( n , the difference W;(ti+1) - y; tends
to zero in H. As the mapping proj (., C(ti)) used in the definition

of ¥ is continuous, this proves by iteration that, for each i ¢ n,

) as defined by (5.38). Then (5.46)

the value u'(t, .) tends to x(t,
i+ i+

1 1

shows that uﬁ(t) tends to x(t) for any t in ]ti’ mi] and finally
also for any t in [mi, ti+1] by virtue of (5.46),

In view of (5,47) this pointwise convergence yields, for any
t € [o,T] ,

[x(t) - u(t)| </”Tp

which proves the Proposition, by comparing with (5, 43),
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6 QUASI-STATIC EVOLUTION OF AN ELASTOPLASTIC SYSTEM

6. a FORMULATION OF THE PROBLEM

The framework in all this Chapter is that of a éonfiguration
space W endowed with a linear space structure ; thus the practical gp—
plications of the following mainly concern systems whose displacements
are treated as "infinitely small",

According to the usual conception of elastoplasticity,every
state of the system is represented by two components which both are ele-
ments of U

The visible (or "exposed") component, denoted by x ; it is
the part of the system which undergoes external forces, called loads,
and may also be submitted to constraints.

The hidden (or "plastic') component denoted by 'p.

Strictly speaking, the configuration space of. the system is
then the product space WxU .

The difference x - p= e € U will be called the elastic
deviation,

Let us denote as before by § the linear space of forces,
placed in separating duality with Ul ; the forces experienced by the

component p are :
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1° The force s € F of "elastic restoring toward x' related to e by
(6.1) s = A (e) ,
where A denotes a given selfadjoint nonnegative linear mapping from
W into § .
2° The force of "plastic resistance” f € F related to the velocity ﬁ
(at any instant where this velocity exists) by the resistance law studied
in § 4. e.
(6.2) PEDY, (-8,
where C denotes a fixed nonempty closed convex subset of ¥

The forces experienced by the component x are

1° The reaction r € § of a perfect affine constraint (cf, § 3. ¢) ;

this const{gints maintains x at every instant in an affine manifold
which moves in a given way, say

(6.3) £ = U+ gt)

where U denotes a fixed closed linear subspace of [ and t* g(t) is
a given function of time, with values in ll,, which may be called the
guiding (or "driving"), Such a constraint constitutes the statical law
(6.4) -r€a ¢£ (x) .

2° The load c(t), a given time-dependent element of ¥ .

3° The force - s of "elastic restoring toward p"s Supposing in this

way that the elastic force acting on x is the negative of the elastic
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force acting on p merely means that the total power of the elastic
forces vanishes in any evolution which preserves the elastic deviation
X - p ; in other words the elastic energy depends on this deviation only.

The prollem is that of determining the evolution of x and p

in Ul , under the hypothesis that the motion is sufficiently slow for

inertia to be negligible,

Therefore, the dynamical equations amount to express the quasi-
equilibrium of x, namely
(6.5) r+c-s = O
and the quasi-equiliprium of p, namely
(6.6) s+f = 0 .

To illustrate the preceding formulation by a practical example,
the reader may take back the situation of a lattice of bars, presented in
§ 3. i, j . If the behavior of each bar is elastoplastic, the % n(n-1) -
uple of their respective elongations, nemely the element e € E , has to
be written as a sum, say e' + p ; here e' denotes the "elastic part”
of e, related to the tension s € S by a linear elasticity law such as
(6.1) ;'p denotes the 'plastic part” of e : its "velocity" p is rela~
ted to s by relations of the form (6.2), (6.6). At this stage one may
avoid ‘the explicit consideration of the linear mappings D and Df by

using the third procedure of § 3. j , namely the elimination of (X,Y) :
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then the sum e' + p is interpreted as the "visible" configuration, to
be denoted here by x ; finally write simply e instead of e',

’

The same pattern applies to an elastoplastic continuous medium,

occwying a domain () of the physical space. Then elements e, e', p, s
are some tensor fields defined on () ; the spaces E and S are some
function spaces., The corresponding quasistatic evolution problem may be
treated in the line of the following paragraphs, but with some compli-
cations which will not be investigated in this lectures { the difficulty
arises from the fact that, with regard to the Hilbert norm defined by
means of the elastic energy (see § 6, b) the convex C possesses an
empty interior, Then the theorem on the absolute continuity of intersec-
tions (§ 5. c) will be applied relatively to some I-norm ; thé absolute
continuity of the considered intersection will finally hold with regard
to the Hilbert norm too, as this latter is majorized by the I?-norm(mul-
tiplied by a constant).

Observe that the continuous medium problem is studied by
G. DUVAUT and J.L. LIONS, [1], Chap, 5 . Their method is that of va-
nishing viscosity, basically similar to the regularization technique we
used in § 5, g ; but they must restrict themselves to the special case
where the "load", denoted here by c, is identically zero ; thus the mo-

tion is only caused by the "guiding" g. Paragraph 6, ¢ below explains

why this special case is more tractable : it corresponds to a set
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(C-c-g) N V which moves by translation, so that the intersection theo-
rem is not required for proving its absolute continuity (cf. § 5. b).

We shall not deal in the present lectures with systems governed
by behavioral laws of Henﬂ@’s type ; the reader will refer to H. Lanchonk
lectures on this subject. Hencky's law is also studied in the book of
DUVAUT and LIONS, by methods involving the du#lity of convex func-
tionals.

In order to help the reader to visualize the formulated problem
let us finally present a very simple model in which the dimension of u
equals 2, The considered system consists of two particles x and p
moving in the plane W . The particle x is guided without friction on
the material straight line U + g(t), a line which remains parallel to

the fixed line U and moves in

p
e a given way. The particle p will
be visualized as a plot, whose
® U+g
g(t) contact with the plane U is
affected by a given friction., The
U

two particles are connected by a

O 4

spring whose length in the state
of zero tension is zero. In addition, a given force c(t) is applied to

X. One studies motions during which the various forces equilibrate each
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other at any instant ; in particular the friction resistance undergone

by p must exactly counterbalance the spring tension.

Investigating this elementary model raises an important obser-

vation : though the friction between p and the underlying plane has the

characteristics of perfect plasticity, the behavior of the component x

exhibits strain hardening. In fact suppose the line U + g is fixed, for

instance with g identically zero ; suppose the friction of p is iso-
tropic, i.e. it obeys elementary Coulomb's law, Clearly any motion during
which the spring is strained enough for the point p to yield (this im-
poses a definite value for the distance between x and p) necessarily
brings this point closer to the line. Therefore this evolution léaves

the system in a state for which the elastic domain, i.e. the set of the
values of the load ¢ ‘which may be applied without causing yield, is

larger than before.

Such an example suggests that strain hardening can be described,

in practical situations, by including in the definition of the hidden

component p a sufficient number of internal state variables and postu-

lating that the behavior of such a p is governed by a law similar to
that of perfect plasticity. This has been developed, in our framework of
convex pseudo-potentials, by Q.S. NGUYEN [1] (see also, for the use of

internal state variableswithout convexity, J. KRATOCHVIL and J. NECAS [lb.
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6. b THE HILBERT SPACE NOTATION
Let us restrict ourselves for sake of simplicity to the usual

case wﬁere the self-adjoint linear mapping A : UL - % introduced by the
elasticity law (6.%? is one-to-one. Then one makes the treatment of the
problem much easier by the notation trick which consists in interpreting
the one-to-one mapping A as an identification of the spaces W and ¥F.
Denote by H this single space ; the symmetric bilinear form defined on
UxW by

(u, u")=>Lu, A u> = Lu', A >
becomes an inner product in H, which will be denoted as (u'| u). As the
quadratic form

u\-—>21‘<u, Auw> = El- (u| w

represents the elastic energy, it is nonnegative, thus positive definite

due to A being one-to-one. This means that a pre-Hilbert norm |,| is

defined on H by
Ju] = /@] w .

Let us make the assumppion that H is complete relatively to

this norm, i,e. it is a Hilbert space.
This of course is automatically satisfied in finite dimensional
jcases, In the case of continuous media also, one is accustomed to formu-

late the problems in suitable function spaces for this assumption to hold,
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Observe that the inner product (.I_) in H and the identi-
fication map A : ¢/ »F are connected in such a way that subdifferential
relations of the form - f € 3 ¢(u) may equivalently be understood in the
sense of the duality (U, ¥ ; <.,.>), with u€ll and £ € F, or in the
sense of the duality (H,H ; (.I.)) with u and f elements of H,

Let us write the formulation of the problem in these notations,
Denote by V the subspace of H orthogonal to U ; observe that (6.1)
becomes s = e ; eliminate r by (6.,5) and f by (6.6) ; fhe preceding

conditions take the equivalent form

(6.7) XxXEU+g
(6.8) SEV+ecC
(6.9) X=p+ s
(6.10) PED Yo () .

Given the compact time interval [O,T], the problem is that of

determining the three functions t+> x , t—»> p , t+— s , with values in

H, absolutely continuous on this interval (this makes the derivative ﬁ

exist for almost every t) satisfying conditions (6.7) to (6,10) for al-

most every t, and some initial conditions
(6.11) x (0) = xo , s (0) = CI

Let us make now some assumptions about the data.

ASSUMPTION 1, The given functions tr—> g and tv> c are absolutely
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continuous on [0,T] . In addition, we visibly lose no generality in sup-

posing that c takes its values in U and that g takes its values

in V.

ASSUMPTION 2 . The initial data x, and 'so satisfy the conditions
X € U + g(0) , sO €V + c(0)

evidently required by (6.7) and (6.8), and the condition

(6.12) s, €C

required by (6.10). In fact (6;10) makes  that for almost evefy t, the
set 3 ¢c(t) is non empty, thus s(t) € ¢, and the latter must also be
true for every t in [O,T], by continuity,

Observe also that (6.8) with (6,10) requires the moving affine
manifold V + ¢ to meet the convex set C for almost every t, thus for
every t by the continuity of c. This may equivalently be written as
(6.13) c € projU c .

The mechanical meaning of this netessary condition is clear : a load c¢
(recall that we supposed . ¢ € U) which does not satisfy it cannot be
counterbalanced by the forces r € V (the reaction of the affine perfect
constraint) and s € C, As the law of plastic resistance (6,10) only per-
mits s € C, this means that if, starting from a configuration defined by

some values of x and p, the system experiences a load c¢ which does

not verify (6.13), its evolution cannot be quasi-static, Of course, there
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are in this situation other necessary conditions, namely x-p € V + ¢,

a consequence of (6.8) and (6,9).

For mathematical convenience, we shall suppose that the set C

possesses a nonempty interior ; then let us agree to replace (6.13) by

the stronger following condition.

ASSUMPTION 3, For any t in [0,T] the affine manifold V + c(t)

intersects the interior of C,

Without discussing here the physical meaning of this assumption,
let us call it the "safe load hypothesis'',

In addition, we shall avoid some technical job of covering the
interval [O,T] and piecing together local solutions, by making also a
last inessential hypothes;s H

ASSUMPTION 4, The set C 1is bounded,

Then :

LEMMA, Assumptions 3 ggg 4 and the absolute continuity of the function

t— ¢ 1imply the following : there exists a strictly positive real cons=-

tant p and an absolutely continuous mapping h : [O,T] - H such that,

for every t € [0,T], one has h(t) € CN (V + c(t)) and the closed ball

with center h(t) and radius p is contained in C,

Qutlined proof : Using the notation e of § 5, a, arguments similar to

that of § 5. ¢ prove that the numerical function
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t—> e (V + c(t) , H\C)
is continuous on [O,T], with strictly positive values, thus strictly mi-

norized by some constant p > O. The set

. N Cp ={x € H : dlx, H\C) 2 p}

is closed and convex, with nonempty interior. For every t in [O,T],

ghe affine manifold V + c(t) intersects the interior of CP. The multi-

mapping t+—> V + c(t) is absolutely continuous, implying by § 5. ¢ the

absolute continuity of the moving comnvex set tv> CP N (v + c(t)). Take

as h a solution of the sweeping process by this moving non empty closed

convex set (cf. § 5. f),
/"

6, ¢ NEW UNKNOWN FUNCTIONS

Conditions (6.,7), (6.8), (6.9) may be written as

x-g€U
c-8€C
(x-g)+(c~-8) = p+c=~-g ;

this may equivalently be expressed bf means of the orthogonal projectors
relative to the complementary orthogonal subspaces U and V

X~-g = projU (p+c-g)

c-s = projy (Pp+c-¢g)

or, as we have supposed ¢ € U and g€V ,
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x-c-g

PrOJU p
projv P = Cc+g-38 .
Let us define two new unknowns y and 2z by
(6.14) y = s-¢c-g = - prko P
(6.15) zZ = X~-c-¢g = projU p
which implies
(6.16) P = 2-Y% .
Due to Assumption 1, the functions t+r—>y and ¢tr> 2z are absolutély
continuous if only if such are th*As and tv+— p,
Under this‘change of unknowns, conditions (6,7) to (6,10) equi-
valently amount to
z - y€a ¢c (y+c+g)
(6.17)
z €U R y€eEv
to be satisfied for almost every t in [O,T].

Let us first draw a consequence of (6,17).

PROPOSITION, If conditions (6,17) are verified for almost every t, the

function tw> y satisfies for these values of t

€6,18) -yea 4’(c-c—g)n v (y)

in other words this function is a solution of the sweeping process by the

non empty closed convex moving set tv> (C-c(t) - g(t)) NV .,

In fact the second line of (6.17) implies - z € U , thus
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- 2z2€9 ¢V (y). Elementary calculation concerning translation in the

space H yields

9 §o (y+c+g) = 2 "’c-c—g y) .
On the other hand

Ycocg) NV = ¥ccgt ¥y
thus

2 2

(‘{’C-c-g )+ ?’V(y) ce d’(c—c-g) N V('Y? :

Therefore (6,18) follows from the first line of (6,17),
REMARK, As ¥y and § essentially belong to V, it is indifferent to
understand the subdifferential in (6.18) in the sense of the duality bet-

ween H and itself or in the sense of the duality between the Hilbert

subspaces V and itself,

COROLLARY 1, If two solutions of (6,17) agree with the same initial

condition y(0) = Yo they coincide in what concerns the function t— y,

As explained in § 5. £, this uniquenes$ property follows from

the multimapping @ $(C—c—g) AV being monotone.

In view of the definition (6.14) of y this Corollary is equi-

valent to

COROLLARY 2, If two solutions of the system of conditions (6,7) to

(6.10) agree with the same initial condition s(0) = So’ these two solu-

tions coincide in what concerns the function ¢t s,
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By the way, (6.12) implies under Assumption 1 that the func-
tion tv> s related to y by (6,14) verifies, for almost every t,
(6.19) -s€-g+23 wc AW+ e) (s) R
an evolution "equation" analogous te that of the sweeping process, An

algorithm of time discretization would also be available for the numeri-

cal solution of it.

6, d EXISTENCE THEOREM

Let us proceed to the proof of :

PROPOSITION, Under Assumptions 1, 3, 4, whichever is Yo in

‘v (c - c(0) - g(0)), whichever is z, in U, there exists at least onme

pair of functions t+~> y and t+ 2z, absolutely continuous from [O,T]

into H, satisfying (6.17) for almost every t and the initial conditions

y(0) = Yo z(0) = z .

First step. Under the hypotheses made there exists an absolutely conti-
nuous function, let us already denote it by t~> y , satisfying (6,18)
for almost every t and the initial condition y(0) = Yqe In fact this
function is the solution of the sweeping process, for this initial condi-
tion ., by the moving convex set tw> (C - c(t) - g(t)) N V. The existence
theorem of § 5, g apply because tr> C - c(t) - g(t) is absolutely con-

¢

tinuous (see § 5, b about a translating convex set), thus the considered
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intersection is also absolutely continuous, by virtue of Assumptions 3
and 4 and the intersection theorem of § 5. ¢, Defining y in this way,
one has y(t) € V for every t, thus 9 ¥y (y) = U. The additivity of

the subdifferentials holds for the functions ¢C—c— and wv since, by

g
Assumption 3, V + ¢ + g intersects the interior of C (recall that

g € V) so that there exists a point at which both functions are finite
and the function wc-c—g is continuous ; then (6.18) implies for almost
every t he existence of at 1east one element of U, which will be al-
ready denoted as z(t), such that

(6.20) z(t) - y(t) € 2 Vooag¥(E)) = 2 Y (y(E) + e() + g(£)).
This is the first of conditions (6,17).

Second step. For a value of t such that (6.20) holds the point z -y
is a conjugate of the point y + c + g relatively to the pair of dual
functions v, namely the support function of C, and wc (see § 2, e,
Example), This may be written as

(6.21) y(z-y)-(z-3]|y+c+g) =0

which implies that for almost every t, the closed convex set

(6.22) B (t) = {w€H : p(w) - (wy+rcsg) = 0}

fwe H : pw) - (wy+crg) <0}

i

possesses a nonempty intersection with the affine manifold U - &(t). As

vy 1s a numerical function independent of t and as tr> y+c+g 1is a
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continuous mapping from [0,T] into H one observes that t— & (t) is

a measurable multimapping from [0,T] into H (the measurability theory

of multimappings is due for a part to C. CASTAIﬁG ; see his lectures ;
see also, for an exposition of some basic facts in the case of a separa-
ble space, R,T. ROCKAFELLAR [4]). Such is also the multimapping

t> U-y(t), as the function t— y belongs to Ll(O,T ;s H) ; thus the
intersection of the two multimappings is measurable too, Since for al-
most every t this intersection is nonempty, it possesses a dense col-
lection of measurable selectors, Denote by t+—> p(t) one of these se-
lectors ; as p(t) € U - y(t), by putting 2z(t) = p(t) + y(t) one has
z(t) € U and (6.20) holdsfor almost every t. If we succeed in proving
that 5, thus 2, belong to Ll(O,T s H), the primitive z of z ad-
Jjusted to the initial value z(0) = L3 will constitute with the function
y determined above one of the desired solutions of (6.17).

Third step. As tw—> p(t) is mgasurable it just remains to prove that the
numerical function te-> lﬁ(t)l is majorized by an element of Ll(O,T;R).
By the lemma of § 6, b there exists a strictly positive constant P and
a continuous function h : [O,T] - H such that for every t one has
h(t) € V + ¢(t) and the ball with center h(t) and radius p 1is com-
tained in C. This inclusion of convex sets is equivalent to the follo-

wing inequality between their support functions
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(6.23) VweHR : plw + G)w<y (w .
The definition (6.22) of & (t) may be transformed by writing
(w] y+e+g) = (w|h) + (wiy|y+c+g=h) - (¥|y+cig~h)
Recall that p + y € U, that ¢ - h€ V , that g€ V , that y € V ,
that ¢ € U ; then
(§]y+c+g) = (5!h) - (§|y+g—h) .
Therefore, in view of (6,23), p € 3 (t) implies
1ol < 2 Glyren) < 151 [yse-n] <215
p p p
where M denotes a majorant of the continuous functions tv> ]y+g—h|
over the compact interval [O,T]. As a solution of the sweeping process,
the function tw> y is absolutely continuous, thus the function t+> &
belongs to L1 (0,T ; H) ; this completes the proof,
By the definitions of y and 2z, it follows

COROLLARY. Under Assumptions 1, 2, 3, 4 the evolution problem for the

considered elastoplastic system possesses at lzast one solution ; this

solution is unique in what concerns the function tw g ,
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Introduction

Au cours de ces six exposés on va développer ou seulement

évoquer quatre idées principales :

1°) la premidre est que la structure algébrique d'un probld-
me de Mécanique en constitue la nature profonde, indépendamment des
considérations d'analyse fonctionnelle proprement dite : je crois qu'on

attache actuellement une importance excessive & celle-ci au détriment

de notions vraisemblablement plus importantes.

2°) la seconde est que les structures de dualité sont deve-
nues 1'arme la plus puissante du Mécanicien et que la mise en équations
d'un probldme devrait &tre toujours effectuée & 1l'aide du principe des
travaux virtuels. Celui-ci, trés vieille connaissance des mécaniciens,
conduit directement et sans difficultés a4 des problémes improprement
qualifiés de "faibles". Dans le cas ol 1'on suppose les fonctions ré-
gulidres celles-ci satisferont, certes, certaines équations aux déri-
vées partielles et certaines conditions aux limites, mais nous n'avons
aucune raison d'accorder i celles-ci une signification physique plus
grande qu'aux équations "variationnelles", c'est & dire de dualité,

fournies par le principe du travail virtuel.

3°) la troisiéme idée est que nous traitons bien souvent des
problémes académiques : nous supposons eneffet connues les données né-
cessaires d la formulation d'un probléme bien posé. Les situations pra-
tiques sont fort différentes et présentent le plus souvent un manque
4'information considérable en égard aux données des problémes théori-
ques. Ainsi en est-il du probléme d‘&volution élastoplastique ol dans
la pratique on ne connait ni les conditions initiales ni les efforts
exercés au cours du temps, mais seulement certains encadrements des uns
et des autres. On peut encore essayer d'obtenir des résultats. D'une fa-
con générale le défaut d'information devrait &tre systématiquement &tu-

dié par la théorie.
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4°) La quetridme idée est qu'il y a peut &tre encore bien
des "idées regues" & reconsidérer dans la conception du rdle de la Ma-
thématique dans les théories physiques. En particulier on peut se de-
mander si la cohérence d'une théorie nécessite vraiment 1'"existence

des solutions", et si la relation de préordre habituelle entre &qua-

tions :

"1'€quation A est plus forte que 1'équation B si toute solu-

tion de A est solution de B"

est bien celle qui convient & la mathématique d'une théorie physique.

J'incline & penser que non et pour des raisons qui seront
exposées dans le chapitre III : essentiellement parce que toute mesure
expérimentale est entachde d'erreur; et aussi parce gue, les solutions
"exactes" &tant inaccessibles au calcul, il me semble plus objectif de
les oublier au profit des "solutions approchées", l'approximation &tant
4 définir en liaison avec l'imprécision numérique ou expérimentale.

Ce chapitre III souffre de plusieurs défauts : une rédaction
qui pourrait &tre améliorée, et qui sera sans doute entiérement refon-
due dans un article ultérieur; le manque d'un résultat sur 1'élimination
qui m'a obligé, temporairement, 4 le pallier & l'aide de la proposition
9. On pourra aussi utiliser, plutdt qﬁe 1'expression pesante : "suite
de solutions arbitrairement approchées" (abrégée par s.s.a.b.), l'ex~
pression plus *égére et plus imagée de "suite approximaate".

Quelques exemples seraient, en outre, souhaitables. J'ai ce-
pendant voulu saisir 1'occasion du C.I.M.E. pour exprimer un certain
nombre de réflexions sur ce genre de probléme, essentiellement pour at-
tirer 1l'attention sur leur importance.

Dans le premier chapitre (1 exposé) on expose le th&me algé-
brique couramment rencontré en Mécanique des Solides. Dans le second
(2 exposés) on utilise ce théme pour étudier les divers problémes varia-
tionnels qui peuvent &tre formulés iorsque les lois d'effort sont sous-

‘différentielles. La lecture en suppose une connaissance relativemeﬁt bon-
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ne de la théorie des fonctions convexes (cfr. lectures de J.J. MOREFAU
et de J. CASTAING. Dans le troisidme chapitre (2 exposés) on essaie de
construire une algdbre (au sens large de ce terme) des lois sous-dif-
férentielles et pour y parvenir on introduit la relation de préordre
"agpproximative" destinée & remplacer la relation usuelle entre &qua-
tions.

Tout bien considéré on s'apercevra aisément que les deux clés

de ce qui va nous intéresser sont

1°) 1'égalité éventuelle d'une inf-convolution 4 une T'-convo-
lution
2°) 1'égalité éventuelle du sous-différentiel d'une somme

4 la somme des sous-différentiels

Remarque - Le sixiéme exposé oral traitait de "1'adaptation" des corps
élastoplastiques, phénoméne essentiel puisqu'il permet le calcul des
structures malgré le manque d'information dont nous parlions précédem~
ment.,

Comme ce sujet fait 1'objet d'une publication dont j'achéve
la rédaction avec un autre chercheur, il m'était bien évidemment in-
terdit d'y consacrer ici un chapitre particulier. Au demeurant celui-ci

aurait nui 4 1'unité du sujet traité.
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CHAPITRE [

STRUCTURE ALGEBRIQUE DES PROBLEMES DE MECANIQUE DES SOLIDES

Dens ce chapitre nous définissons le cadre algdbrique le plus
souvent rencontré dans les probldmes puisqu'il correspond au cas ol dé-
placements et déformations sont supposés trés petits et ol la géométrie

du solide est donnde., Notons que celle-ci est 1'inconnue de certains pro-

blémes d'optimisation.

Nous nous proposons d'aboutir & ce cadre algébrique non pas en
le déduisant des équations habituelles de la Mécanique, mais en le cons-
truisant au fur et & mesure de 1'établissement de celles-ci, ce qui sera
beaucoup plus instructif. Afin d'alléger 1'exposé nous nous référerons &
1l'exemple des plaques en flexion. Nous prions aussi le lecteur de ne pré-
ter & ce qui suit aucune ambition dogmatique, mais de le considérer comme
un rassemblement de quelques idées simples qu'il pourra admettre ou reje-
ter selon ses propres convictions épistémologiques.

Enfin nous employons souvent ‘les termes "déplacement", "défor-
mation" ou "contrainte" en guise de raccourcis pour les termes "champ de

déplacements", de déformation ou de contraintes.

§ 1. DEPLACEMENTS ET EFFORTS

Considérons une plaque plane dont nous voulons &tudier ce qu'il
est convenu d'appeler les "déformations de flexion"; nous rapportons 1'es=-
»Y pace euclidien & un repére orthonormé

> > > .
(0,x,y,z) en sorte que, dans son &tat de
référence, la plaque occupe un domaine
compact: € du plan (xOy); @ désigne 1l'in-

térieur de Q. On suppose que le déplace-

0 ment ﬁ;ﬁ'd'un point M, de la plaque est
_—_——FT—_——-i]' un vecteur "vertical" u(Mo);, u étant une
fonction réelle définie sur Q.
1 Le choix des fonctions u admissibles.

* n'a pas besoin d'8tre précisé complétement.
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Disons seulement que nous faisons, pour le moment, abstraction des condi-
tions d'appui de la plaque et que nous nous donnons un espace de configu=
ration U, espace vectoriel réel de fonctions réelles definies
sur Q. Pour fixer les idées nous pouvons prendre, ce qui ge révilera peut-
8tre maladroit, U = C2(Q), & titre d'exemple.seulement. )

Une fois choisi l'espace de configuration U, ou espace des dé=-
placements, on peut définir des efforts exercés sur la plaque. On peut
considérer, par exemple, des efforts définis par des densités surfaciques,

linéiques ou par des forces concentrées. Ainsi une densité surfacique
Meq~»pMeR

définit un effort ¢ dont le travail virtuel sera la forme linéaire sur U :

@) ueuU> << ub > = J u(M) ¢(M)am
MeQ

La Mécanique fondée sur le Principe du travail virtuel ne de=-
mande que la connaissance du travail virtuel <<,,¢>> développé par un ef-
fort ¢; c'est & dire que la notion d'effort exercé sur un systéme se con-
fond avec celle de fonctionnelle linéaire sur un espace vectoriel U qui
est, dans le cas général, l'espace vectoriel tangent & une certaine varié
té de configuration (en général l'espace des vitesses), et qui, dans 1'hy:
pothése des déplacements infiniment petits, se confond avec elle.

Ainsi donc 1l'espace des efforts envisageables est le dual algé-
brique U* de 1l'espace de configuration U. C'est un peu trop grand pour
étre aisément manipulable, et on se restreint i un sous-espace vectoriel
¢ de U*-

On est alors dans la situation suivante : deux espaces vecto-
riels 1'un de configuration U, 1l'autre des efforts ¢, mis en dualité par
une forme bilinéaire <<.,.>> qui est le travail virtuel, et coincide avec
C) lorsque ¢ € ¢ est défini par une densité surfacique de forces.

Bien slir on peut aussi envisager beaucoup d'autres types d'ef-
fort : des couples répartis ou concentrés, par exemple, pourvu qu'on soit

capable de définir leur travail virtuel.
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D'une fagon abstraite nous appellerons "€lément mécanique" le

triplet des deux espaces et de la forme bilinéeire qui les met en dualité :
- (Uy <<uye>>, @)

Bt nous supposerons toujours que cette dualité est séparante.
Soient maintenant ¢j,..., o, des efforts exercés sur la plaque :

ils sont en équilibre, par définition, si leur somme est nulle':

) 1+ eee 9 =0

puisque, la dualité séparant ¢, ceci équivaut & dire que la somme de leurs

travaux virtuels est nulle.

§ 2.10IS D'EFFMS

Dans les problémes de Mécanique les efforts sont quelquefois
donnés explicitement, comme les actions de pesanteur, mais plus souvent

par des lois. Par exemple

1°) Loi de résistance élastique : on se donne une application

linéaire de U dans ¢

¢ = =k(u)

2°) Loi de liaison affine parfaite : on se donne une variété

affine uj + V de U et 1'on pose que

ueu +V
o]

et qu'il y a un effort de liaison associé pouvant prendre n'importe

quelle valeur dans 1'orthogonal ve.

3°) Loi fonctionnelle - Une telle loi fait intervenir le temps.
Par exemple au "mouvement'" t + u(t) on fait correspondre l'effort
t
¢(t) = r(t,8) u(g) ae

. ~ -0
ol r est une fonction donnée.
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Oublions pour 1l'instant ce dernier exemple pour observer les

deux premiers; les généralisant nous poserons la

Définition : on appelle loi d'effort sur 1'élément mécanique & une multi-

application A de U dans ¢
VueU-»A(u)c@
A(u) étant éventuellement vide.
Lorsque A(u) se réduit, pour tout W, 3 un seul élément, A est

une fonction ordinaire, comme dans le premier exemple. Le second, par op-

position, fait bien intervenir une multi-application en posant :

A(u) = ¢ si u/¢u0+v

o

A(u) =V si ue u v

Nous allons voir en effet que cette définition d'une liaison parfaite cor-
respond bien & 1l'usage des mécaniciens.

En effet un probléme usuel de Mécanique est le suivant : on se
donne n lois d'effort Ajy..., A , et on cherche a4 résoudre 1' "équation

d'équilibre”
€) 0en(u) + .o +4 (v
c'est 4 dire le systéme :

Vi €{ly..., n} ¢ieAi(n)

®

O0=1¢; + s00 + ¢n

Si par exemple A; d&finit une liaison affine parfaite 1'équation
C)n'admet évidemment de solution que dans la variété affine correspondan=-
te.

L'écriture (:) conduit & définir la somme de deux lois d'effort

comme somme de deux multi-applications :
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(Al + Az)(u) = Al(u) + Az(u)

Remarque

Revenons maintenant & 1'exemple 3°). Il ne reléve £videmment pas
de la définition d'une loi d'ef£9rt sur 1'élément mécanique & . Vais con-
sidérons un élément mécanique & = (6, <Re5.2%, ¢)

~

ol U est un espace de fonctions du temps & valeurs dans U
$ e

st un espace de fonctions du temps & valeurs dans o

et 4 a0 b8 [ << B(6), 36) > at
teT

T désignant l'intervalle de variation du temps. Alors une loi fonction-
nelle sur fi pourra 8tre définie comme une loi d'effort sur é .

Ainsi, moyennant le rempladement de 1l'espace des configurations
par celul des mouvements et les remplacements correspondants, nous pour-
rons faire entrer les lois de comportement dans le cadre des lois d'ef-

fort.

§ 3. DEPLACEMENTS SOLIDIFIANTS ET TORSEURS. PREMIER EXEMPLE D’ELEMENT
MECANIQUE QUDTIENT

Les déplacements u € U qui sont des "déplacements" au sens des
transformations géométriques sont les fonctions affines du couple (x,y)=M
Onles nomme encore "déplacements solidifiants". Ils constituent un sous-
espace vectoriel US de U. Pour le mécanicien il est équivalent de suppo=-

ser la plaque indéformable ou d'imposer la liaison parfaite :
©

a4 laquelle on associe donc l'effort de liaison ¢S’ arbitraire dans Ug°.
Supposons donc que la plaque soit soumise & la liaison d'indé—“
formabilité précédente, donc & l'effort de liaison ¢y et aussi d d'aytres

efforts ¢, seee, ¢, de somme ¢. Le systéme composé de
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¢1+"'+¢~n+¢s=o

o
o5 € Ug

~ z

est équivalent d 1'équation

® 41 % e+ 4 e U

Considérons 1l'espace quotient @/Us° =% , et notons 1'appli=-
cation canonique de ¢ sur ¥ . L'élément t, = £(¢i) e B est dit "tor-

seur associé & 1'effort ¢". Comme &L est linéaire, 1'équation d'équilibre

(B équivaut

® tp+ .+t =0

o7

qui est du type @. Cette ressemblance conduit & considérer la dualité

jéfinie entre U_ et 6 par
(u,t) € US x® — (u/t) = <<U,$>>

ol ¢ est un 81ément arbitraire deo%_l(t). (® est alors 1'équation d4'é-
quilibre pour 1'"&1&ment mécanique quotient" (US, (./4), 6 ), vpar lequel
nous pouvons remplacer 1'é1ément mécanique initial.,

Nous reviendrons, d'une fagon plus systématique, sur cette no=
tion de quotient et en particulier nous verrons ce qu'il advient d'une loi

“

d'effort par passage au quotient.

§ 4, DEFORMATIONS ET CONTRAINTES

Soit ueg U un champ de déplacements quelconque pour la plaque.
On sait dire s'il est ou non solidifiant mais on ne sait pas encore défi-
nir a quelle déformation ilAc‘orrespond. D'un point de vue global nous pours
rons dire que deux champs u et u' de-U correspondent & la méme déformation
de la plaque -s'ils différent d'un déplacement solidifiant; autrement dit le
point de vue global permet de définir un état de déformation de la plague

tomme un élément de 1'espace quotient U/Us'
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Etant donné un systéme matériel quelconque la Mécanique élémen-
taire considére d'habitude des efforts "extérieurs" ou "intérieurs" au
systéme. Ces derniers ont pour propriété essentielle de ne pas travailler
dans les déplacements solidifiants, c'est-d-dire d'€tre de torseur nul,
et d'8tre donnés par des lois indépendantes de ceux-ci. Pour ménager la
signification usuelle de 1'expression "efforts intérieurs", nous emploie-

rons 1l'adjectif "interne" et nous poserons la

Définition : Une loi d'effort A est dite interne i 1'élément mécaniqwefsi

1°) A est & valeurs dans US° (torseur nul)

2°) A est invariante par déplacement solidifiant

Vueu Vv eu A(u+v) = A(u)

s

Ceci signifie qu'une telle loi ne dépend que de la déformation.
Cette définition constitue la tentative de caractérisation des efforts in-
térieurs la plus poussée qu'on puisse effectuer sous le seul point de vue
global; elle ne permet pas de rendre compte de la notion de matériau et
de loi constitutive : cette notion est essentiellement locale. C'est pour=
quoi il faut introduire une définition locale de la déformation et des ef=
forts intérieurs.

Nous avons donc & identifier tout d'abord 1l'espace quotient
U/Us’ parfaitement abstrait, & un espace vectoriel de champs définis sur

Q. Considérons 1'opérateur différentiel

2u 3%u ‘
ax2 IXJy
grad grad u = } = u,i,j
u_ 9%u |
Xy o2 |

I1 associe 4 tout u e U (on a supposé par exemple U = C2(2)) un

champ de tenseurs symétriques

Me Q= grad grad u(M) ¢ Ea (espace vectoriel de dimension 3)
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et
@ u<._U3<——-> grad grad u = 0

Une des représentations possibles du quotient U/US est donce
1l'espace vectoriel des champs grad grad u., C'est évidemment la plus sim-
ple et elle est utilisde dans la théorie des plagues minces; mais nous sa4
vons qu'elle peut &tre insuffisante pour la définition des lois constitu-
tives; admettons-le pour l'instant. Elle signifie que le tenseur de cour-
bﬁre est une information suffisante pour la connaissance de la déforma-
tion locale de la plaque.

On admet alors que l'effort O développé par le matériau peut

8tre défini & 1'aide d'un champ de tenseurs symétriques s par

(®) <<U, ¢ >> = = ( (grad grad u)(M).s(M) dq
"
Q

ol le point signifie le double produit contracté des tenseurs

ab = T a;. b.i
i,j=1,2 *9 I

s est appelé un champ de contraintes. On note que b € USO.
Ceci conduit & introduire un espace vectoriel réel E de champs
de tenseurs symétriques définis sur Q et tel que 1l'opérateur de déforma-

tion
D = grad grad

soit une application de U dans E (par exemple E = (C°(g)3)

& introduire un autre vectoriel S de champs de tenseurs symétri-

ques définis sur @, telle que la forme bilindaire

(e4s) € E x Se> < e,5>= j e(M).s(M) dg
Q

existe, quitte éventuellement, & &teindre la signification de 1'intégrale,
E est 1l'espace des champs de déformation, D(U) — E celui des

champs de déformations intégrables. S est l'espace des champs de contraind
tes,
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-~ <e,s> est le travail du champ de contraintes s dans le champ
de déformation e; le signe - correspond & la convention de signe qui con-
siste & considérer comme positives les contralntes de tractlon. Dans le
cas de la plague S est un champ de "tenseurs de flexion".

L'opérateur déformation D est une application de U dans E : il
adnet un transposé Dt, application de S dans le. dual algébrique u* de U

par définition
s €5 » Dts = u* : <<u,Dts>> = <Du,s> V ueldl
On note que
’set — D% e U.°
On supposera que S a été choisi en sorte que
® ' p%(s) 5 Ug°

autrement dit que tout &lément o, € US peut &tre représenté par au moins

un champ de contraintes s e S, c est 4 dire, d'aprés

Q:) -Dts = ¢m

Supposons la plaque soumise & un effort quelconque ¢ et & 1l'ef-

fort ¢m représenté par s : ils sont en équilibre si
¢+ o =

c'est 4 dire, compte~tenu de @:), si

ib ¢ = Dts

qui est 1'équation d'équilibre,

Notons que
s € ker (Dt) <= v u << u,Dts>> =0 <= V u- <Du,s> = 0

ce qui montre que le noyau ker (Dt) est 1'orthogonal de D(U).
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Le diagramme ci-dessous résume la situation, parfaitement sy-

s . P
métrique sl est remplacée par

ker D = USC U << 4y e>> ) DUSO = Dt(S)
D [p°
t o
D(U)c. E <oy S > ker D = D(U)

Une loi d'effort C sur 1'élément mécanique (E, <.,.>, S) est
une loi constitutive si elle est définie localement par une multi-applica=
dépendant de M, de 83 dans lui-méme; par définition :

tion PM’

s eCle) <= VYMea s(M) e FM(e(M))

La loi constitutive C définit sur 1'é1ément mécanique

(U, <<.,.>>, 8) la loi d'effort interne A :
A= D‘b oCoD

Du point de vue global seule la loi A est observable., Pour at-
teindre C c'est & dire pour effectuer des mesures susceptibles de fournir
FM il faudrait découper la plaque en morceaux infiniment petits.

§ 5, LIAISONS: DEPLACEMENTS ET DEFORMATIONS IMPOSES

En général une telle plaque est soumise & des conditions d'ap-
pui qui emp@chent tout ddplacement d'ensemble. Nous supposerons que la

plaque est fixée par son bord; soit

90 = 9;02 U 320 U 330

une partition de la frontidre 3Q.
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- Sur 3;0 le bord est libre
- Sur 3,0 le bord est simplement appuyé ce qui correspond &

1'équation de liaison
= 1,©
& Y0 T Y /0,0

ol u® est un élément donné de U

- Sur 330 le bord est enqéstré, ce qui correspond aux équations

de liaison

- (o] -
@ Yasa T % /a0 et o o sur 93

Nous supposons donc que les équations de liaison sont affines
et qu'il en existe une solution particulidre u® dans U. Alors les solu-
tons du systéme (:) + (1% constituent une variété affine u® + V de U,

c'est & dire que ces équations se résument &

(i) uegu’® +V

V est 1'espace vectoriel des déplacements virtuels compatibles

awec les liaisons. Au niveau des déformations CED entraine

q:) e = Du® + D(V)

et si les liaisons interdisent tout déplacement solidifiant, c'est & dire

si, comme nous le supposerons toujours désormais

anS={o}

alors @ et @ sont €quivalents. Du® est une "déformation imposée",
u® un "déplacement imposé&". Notons cependant qu'on peut envisager aussi
une déformation imposée e°® qui ne soit pas de la forme PBu®, par exemple

une déformation d'origine thermique.
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§ 6. EQUATIONS D'EQUILIBRE DE LA PLAQUE

P . 2 t .
Précisons maintenant 1l'opérateur D lorsque l'effort ¢ qui ap-

paralt dans 1'équation d'équilibre :

d:) Dts = ¢

est défini par une densité surfacique de force p, une densité linéique de
force f définie sur 3Q, et d'une densité lin€ique de couple e définie sur

9Q , en sorte que

63) <<U,¢>> = p(M) u(M)dn + [ f(M)u(M)ag + c(M) %%(M)di

MeQ IMedn IMea

¢ désigne 1l'abscisse curviligne de la frontiére.
Considérons tout d'abord un champ s ¢ S, et deux fois continfi-

ment dérivable sur Q. Nous pouvons écrire :

grad grad u.s = u div div s - div (u.div s) + div (grad u.s)
ou grad u.s est le produit contracté du vecteur grad u par le ten-

seur s

Dans ces conditions nous pouvons écrire

<Du,s> = IQ (grad grad u).s

( u div div s + { (grad u.s - u div s).n
Q AN

n désignant le vecteur unitaire normal extérieur & la frontiére. Notons

t le vecteur unitaire tangent a4 celle~-ci en sorte que sur la frontiére

_ ou au
grad u = 3E t + o™ n

Alors f
. . 9u au .
<Du,s> = [Q u div div s + 30 5E-t.s.n + [BQ Sn BeSen -fenu.dlv é.n
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On peut transformer le second membre en intégrant par parties

%% t.s.n = = u %E (tomen)
N 1]

et introduire le rayon de courbure algébrique p de la frontiére :

a _n an __t
9E  p 9E P
ce qui donne finalement
O .. { 1 3s
18 <Du,s> = u div div s - u{div s.n + —(n.s.n.-t.s.t)+t.sg.n
Q |\ e
+ L
on
3.
En identifiant 17 et 18 on trouve donc
(19.1) div div s = p
Q:) div s., + % (nes.n = t.s.t) + t. %% .n=7f

N.S.n = ¢C

qui sont les &quations d'équilibre, équivalentes & CED , d'un champ de
contraintes régulier s et d'un effort q>défini par p, £ et c.

Si f (nul sur 3;02) et ¢ (nul sur 9;Q U 3,Q) définissent 1l'ef-
fort de liaison tandis que p définit 1'effort domné&, alors on peut écrire
les équations d'équilibre du champ de contraintes s et de 1l'effort donné,

compte tenu des liaisons

div div s = p sur
é’ div s.n + L (nesen = tes.t) +t 8 .n=0
P 23
sur 99
n.s.n =0 sur 910 3,0

L'écriture des conditions aux limites a longtemps posé des pro-
blémes aux mécaniciens, et surtout pour le bord libre 3;Q. L'emploi des
méthodes de travail virtuel résoud aisément cette difficulté.

Si s n'est pas un champ régulier 1'équation (19.1) conserve un
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sens en considérant la distribution div div s. Par contre les équations
sw la frontisre n'ont plus de signification en général : la "trace" de s
sur 3% peut fort bien n'8tre pas définie. C'est 14 que réside un des a-
vantages majeurs de la Mécanique du travail virtuel pour laquelle 1'équa-
tion @ a un sens précis.‘

C'est pourquoi le mécanicien envisagera toujours des problémes
pesés par la méthode du travail virtuel, qui donne une formulation varia-
tionnelle directe. Au contraire 1'écriture d'édquations différentielles
ddt &tre évitée le plus souvent possible, du moins dans une premiére ap-

proche d'un probléme de Mécanique des Solides.

§ 7. SITUATION. DE REFERENCE POUR UN PROBLEME DE MECANIQUE DES SOLIDES

Les liaisons que nous avons imposées & la plaque sont parfai-
tes : l'effort de liaison défini par f et par ¢ développe un travail vir-
tuel nul dans un déplacement virtuel compatible avec les liaisons; autre-
ment dit cet effort de liaison appartient & V°. On peut remplacer ¢ par l¢

quotient F = ¢/V® et 1'é1ément mécanique % par 1'élément quotient
(V, <<.yu>>, F)

avec une définition évidente de <<,,.>>, C'est la méme démarche qu'au pa-
ragraphe 3. Notons A la restriction & V de 1'opérateur D. Si 4, assigne
1l'application canonique de ¢ sur F : At =4 o Dt, et 1'on retrouve un

schéma analogue & celui du paragraphe 5

n
o
2]

\ <<eye>> F

e® + A(V)¢c E <ege> S > ker (At) = (a(V))°

On a AtS = F parce que V ne contient aucun déplacement solidifi+

ant. On posera I' = A(V) J = ker (At).
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Supposons donné un effort £ € F, et connue une solution parti-

culiére s° de 1'équation d'équilibre

alors on peut se contenter d'étudier 1'élément mécanique :
(Ey <eye>, 9)
soumis

1°) & la liaison parfaite e = e® + I', 1'effort de liaison as-
socié étant un élément quelconque T de J.

2°) & 1l'effort donné s°

Q7

3°) & une loi constitutive C

~

On a alors i résoudre le systéme

e €e® + I (équation de liaison)
(:) ses®+J (équation d'équilibre)
s & C(e) (1loi constitutive)

Par ailleurs on peut considérer V comme un espace de paramétra-
ge de I' et F comme une représentation du quotient S/J. Autrement dit
1'é1ément (V, <<,,.>>, F) apparait comme &lément mécanique quotient de

1'é1ément (E, <.,.>, S).
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CHAPITRE 11

PROBLEMES D'EQUILIBRE POUR DES LOIS CONSTITUTIVES
DE TYPE SOUS-DIFFERENTIEL

§ 1. HYPOTHESES GENERALES - EXEMPLES

Soit (U, <<.,.>>, ¢) un élément mécanique. On dit qu'une loi

d'effort

u€U » Alu)C o

est sous-différentielle, s'il existe une application f de U dans §=(—w,+€]

telle que
(l) A = - 3f

Nous supposerons toujours que f est un élément de PO(U); autre-
ment dit, pour les topologies localement convexes compatibles avec la dua=

1ité entre U et ¢ :

- f est 1'enveloppe supérieure de ses minorantes affines continues

pu, ce qui est équivalent:

- f ne prend pas la valeur -», et f est convexe et semi-continue in-
férieurement (cfr. J.J. MOREAU, (l], et son exposé sur les fonctions con-
vexes & cette Bcole d'été).

© On a alors 1l'équivalence des quatre lignes suivantes regroupées

flans une méme accolade :

-6 € 3f(u) (2.1)
u €9t (=4) (2.2)
‘(2) £u) + f*(_¢) + <<y, ¢>> = 0 ﬂ2.3)

fu) + f*(—¢) + <<u,¢>> ¢ 0 (2.4)
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o ¥ désigne la fonction conjuguée de f,(2.3) exprime que (u, -¢) est un
couple de points conjugués par rapport au couple de fonctions conjuguées
(ou duales) (f£,£*).

Celles-ci satisfont 1'inégalité suivante, & la base des théoré-

mes d'extremum classiques :
(3) V(u,ct») E€Ux? £lu) + £5(=¢) + <<u,¢>> 3 0

d'oll résulte d'ailleurs 1'équivalence de (2.3) et (2.L4).

Venons-en maintenant & quelques exemples usuels,

1.1 Effort ¢° donné : Vu eU : A(u) =%}

f = <<,,=¢%>> £ o=y

ol wB désigne, comme d'habitude la fonction indicatrice d'un ensemble B :
0 si xgB

+o  si x%B

1.2 Liaison unilatérale convexe parfaite - On se donne un con=

vy (x) =

vexe fermé T de U (information cinématique), dans lequel on impose & la
configuration u de.rester, La généralisation naturelle de liaison unila-
térale sans frottement est alors donnée par la loi d'effort sous-diffé-
rentielle suivante (cfr, J.J. MOREAU (2))

£ =y, o=,

qui exprime que l'effort est nul si u est intérieur i C, dirigé suivant
une normale rentrante si u est sur la frontiére.

Comme cas particuliers :

= {u°} . (v=1{0}) alors "D*C = <<u®,.>> ‘et A(u) = ¢

Q
I

C=u® +V alors q;*c = << u®,.>> + ‘pvo et A(u) = Vo @
o 2
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1.3 Lois de type rigide plastique - C'est le cas dual du pré-

cédent; soit T un convexe fermé de l'espace ¢. On prend-:

Selon que U est un espace de configuration ou de vitesses on obtient la

: *
plasticité de HENCKY ou de PRANDTL-REUSS. Dans le second cas y r est la
fonction "puissance de dissipation plastique", et dans le premier 1' "éner-

gie dissipée".

1.4 Lois différentielles - f est une fonction faiblement diffé-

rentiable. Alors :
ug U +=—» 3f(u) = {grad £ (u)}

C'est en particulier le cas de 1'élasticité ol 1'on suppose pré-

cisément 1'existence de la fonction "énergie potentielle f" telle que

¢ = - grad

La plupart des "lois de résistance" sont aussi de type sous-dif-

férentiel (cfr. J.J. MOREAU (3)).

~

1.5 Lois constitutives = Revenons i cette notion de loi consti=-

tutive; on considére 1'81ément mécanique (E, <.,.>, S) ol E est 1'espace
des déformations, S celui des contraintes, <e,-s> le travail virtuel. Une

loi constitutive de type sous-différentiel s'écrira donc sous la forme

(4) fle) + £%(s) - <e,s> = 0

5 * : z N cms p s
ou f et f sont conjuguées par rapport & la forme bilinéaire <.,.>.
La relation entre la forme globale (h) de la loi et sa forme lo=

cale éera étudiée pius loin au paragraphe 3.
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§ 2, PROBLEVE D'EQUILIBRE ET THEOREMES D‘EXTREMM

A la fin du chapitre I nous avons vu que la situation de réfé-
rence &tait la suivante : 1'élément mécanique (E, <.,.>, S) est soumis
1°) & la liaison parfaite d'équation e & e®+I, i laquelle est

associé la contrainte inconnue de liaison -t & J = I°.
2°) & une contrainte donnée -s°,
3°) & une loi constitutive que nous supposons ici de la forme 4 .

~

On cherche a équilibrer ces trois lois de contraintes, d'ailleurs

toutes de type sous-différentiel si I est fermé pour les topologies compa~r

tibles avec la dualité, ce que nous supposerons.

Notonsj ,/1 et /2 les fonctionnelles :

(e,8) E x S 4= I(e,s) = f(e+e®) + f*(s+s°)- <e+e®,s5+s%»

{5) e €E - ﬁ(e) = f(e+te®) - <e+e®, 5%

s S > fz(s)

1 est dite "énergie de déformation",-/z "énergie complémen-

*
f (s+s°) - <e%,s>

taird' Le probléme d'équilibre s'éerit :

Probléme I : Trouver (e,1) € I x J tel que j(e,r) =0

Mais est positive d'apres (3). Par conséquent elle est minimum
si (e,7) est solution. D'autre part la restriction de a1 xJ est la

somme des restrictions de fl aIetde ¥, &aJ, puisque <e,1> = 0,

(6) V(s,r) €I xJ f(s,r) = ;1(6) + fz(r)

Par suite toute solution du probléme I est solution du
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Probléme II - Minimiser la restriction de; i3I xJ

et ce probléme est &quivalent & la réunion des deux problémes partiels

suivants :
Probléme III - Minimiser la restriction de }1 al (i.e. min.,jl + wI)
Probléme IV - Minimiser la restriction de JZ 3J (i.e. min. jz + !,UJ)

Nous allons étudier 1'équivalence éventuelle de ces divers pro=-
N

bldmes. Notons que’ 1 et ;2 appartiennent respectivement & FO(E) et &

I‘O(S). Plus encore :

Proposition 1 - 71' et iz sont un couple de fonctions conjuguées.

En effet, en utilisant les ré&gles de calcul classiques :

% * *
j 1 = {f(e°+.) = <e®+.,s°>} {f = <.,8%) = <e%,.>

* ’
Floow) - e =§

Si nous considérons maintenant 71 + ¥, que minimise le problé-

me III, sa fonction duale est, par définition

(j1+w1)¥= fzyﬂ%

et 1'on sait que cette "TI'-convolution" est la TI'-régularisée de 1'inf-con-

volution (cfr. J.J. MOREAU (1) ch. 9)

H¥

Nous allons revenir sur les cas classiques d'égalité entre la T

et 1'inf-convolution; supposons qu'elle ait lieu; alors :

Proposition 2 - Les trois assertions suivantes sont &quivalentes
RS P ERIOENE PRERIC)
®  (f12e)0 = (F1 7

]



- 348 -

B. Nayroles

(9) inf (e,7) =0
(e,1) € I x4J

En effet on a

inf ( }1 +4)(e) = int (?1(e) +u(-e)) = ((fl v u;)(0)
eeE eeE

et d'autre part

int (41 v vl == (f22 v
e E

D'ol en utilisant aussi les résultats analogues sur yz + oyt

ot Ixj(e,r) KO TRRBICING 29 1 ©)=(f27)(0)-(fo2 ;) 0)

ce qui démontre 2a proposition.

C'est un résultat trés puissant qui permet de considérer comme
pratiquement inutile tout résultat d'existence, puisqu'il affirme’l'exis—
tence, beaucoup plus intéressante, de "solutions arbitrairement appro-
chées" c'est 4 dire de couples (e,T) rendant }/arbitrairement petite.

Rappelons maintenant, dans une méme proposition, deux cas
classiques d'égalité de 1'inf-convolution et de la T'=convolution (efr.

J.J. MOREAU (1) ch. 9).
Proposition 3 - Soient (f,f*), (g,g*) deux couples de fonctions duales.

1°) 5i l'ensemble cont. (f) des points ol f est finie
et continue et 1l'ensemble dom. (g) des points ol g est fi=~

nie satisfont

]
=t

dom. (g) + cont. (£)

alors fVvg=FfYg
2°) 8'il existe un point a de E ol f est finie et con-

tinue et oll g est finie, alors

f-kvgll:f*lg*




- 349 -

B. Nayroles

et cette inf-convolution est exacte c'est & dire que 1'inf’

est un min. :
vses . s'es (ffvg*)(s)=t*(s-s") +g*(s')

= min {f‘(s-t) + g*(t])
tesS

On peut &videmment inverser les rdles joués par E et S, f et f*,
g et g*- Le second cas foﬁrnit, outre 1'égalité cherchée, un résultat
d'existence supplémentaire. Appliquons cette proposition aux couples de
fonctions duales (Jl, 72), (wI, wJ). Supposons par exemple que la con-

dition 1°) soit satisfaite; alors

0 e-dom'(wl) + cont 1/1

puisqu'en général cont. (wI) est vide (sinon I = E). Alors :

. ' JTGI T € cont, (Yl)

de sorte que nous sommes aussi dans le second cas. Pour l'application de la
proposition 3 & la recherche des cas de validité des hypothéses de la pro-
position 2, il suffit donc de s'intéresser au second cas.

Si celui-ci a lieu nous avans. :

«
( +w)=ivw'=min(f()
1 I 2 J ®J 2\ T

de sorte que, outre le résultat d'équivalence fourni par la proposition 2
nous avons celui de 1l'existence d'au moins.une soluuon pour le problume IV.

En regroupant les résultats qui précé&dent :

Théoréme 1 - S'il existe un point de .I ol f(e®+.) est finie et continue
: . L LK . . .
(resp. un point de J oll £ (s°+.) est finie et continue),

alors ¢ °

inf J’(e,‘r) =0
(e,1) IxJ -~
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et en particulier les problémes I et II sont équivalents,
De plus le probléme IV (resp. III) admet au moins une so-

lution.

L'unicité des solutions sera assurée dés que seront strictement
convexes les fonctionnelles 1 et .

Les problémes III et IV, et le théoréme d'équivalence I corres-
pondent aux "principes variationnels" les plus fréquemment rencontrés. On

voit qu'ils dérivent tous de la méme structure mathématique.

§ 3, FORMULATION DES PROBLEMES DE POINT-SELLE

Nous avons dit que les problémes III et IV &taient duaux 1l'un
de 1'autre : cela signifie qu'ils sont les problémes d'extremum associés
3 un probldme de point-selle. Rappelons rapidement de quoi il s'agit :

Soient (E, <.,.>, 8), (X, (./.), ¥Y) deux couples d'espaces vec=

toriels en dualité et L un Lagrangien :
<esy)6 ExY » L (egy)
fonction selle du couple (e,y), c'est & dire

V e €E L(e,.) est concave

Vy €Y L(.,y) est convexe
On considére le probléme suivant :

Probléme P.S. Trouver (e},y)), point-selle de L, c'est & dire solution de

la double inéquation

View ez xy  Lleny) € Lleryn) < Lew)
On a V (e,y) €E x Y : L(e,y) s sup L(e,z)
zeY
d'ou Vy ey inf L(e,y) ¢ inf sup L(e,z)

(=13 ekl zZ€Y
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et enfin

(9) sup inf L(e,y) € inf sup L(e,y)
y6Y ee€E e¢d yeY

Supposons maintenant qu'il existe un point-selle; alors
inf sup L(e,y) € max L(e1,y) = L(e1,y*) = ‘min L(e,y, ) ¢ sup inf L(e,y)
e¢E yeY veY e¢E yeY e€E
de sorte que, par comparaison avec (9), on obtient

(10) L(e1,n ) = min sup L(e,y) = max inf L(e,y)
e¢k yeY yeY ec€b

Théoréme - Si le probléme de point-selle admet (e;,y;) pour solution alors
on a 1'8galité (10) et ey} et y; sont respectivement solu-

tions des probldmes P (primal) et D (dual) suivants :

Probléme P : Trouver e; ¢ E tel que

sup L(ej,y) = min sup L(e,y)
Ye¥ ek  yeY

Probléme D : Trouver y; & Y tel que

inf L(e,y1) = max inf L(e,y)
egl veY egE

Utilisons maintenant les transformations de Fenchel partielles :

o(e,x) = (-Le)*(x) = sup ((x/y) + L(e,y))
- y Y
x(s,y) = (L)%(s) = sup (<e,s> = L(e,y))
¥ e E
On a

sup L(éay) = (I>(e,0)
yey -

(11) inf L(e,y) = - x(0,y)

e€E
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Par suite le probléme primal consiste & minimiser ¢(e,0) et le

probléme dual & maximiser -~ x(O,y). On démontre aisément la :

Proposition 4 - Si L appartient & PO(E x Y) les fonctions ¢ et x sont con:

juguées pour la dualité :
(E xX , <up>+(/0), 8xY)

et les solutions du probléme de point-selle sont celles de

1'équation de conjugaison :

(12) o(e,0) + x(0,y) = 0

Revenons maintenant aux problémes variationnels &tudiés précé-

demment, et prenons
E=X S=Y (o/0) = <aye>
¢1(e,x) = }’1(6+X) + ¥ (e)

Le probléme III est de minimiser ¢;(e,0) : c'est donc le pro~ ~

bléme primal associé au probléme de point-selle pour le lagrangien

(13) Li(e,y) = wI(e) - }Z(Y) + <e,y>

La duale de &; est

x1(s,y) = }’z(y) + WJ(s-y)

et comme J est un espace vectoriel .

x1(0,y) = Xz(y) +v5(y)

de sorte que le probldme dual est le probléme IV, Par ailleurs le problé-

me de point-selle pour L est &quivalent & celui de résoudre 1'équation

de conjugaison

(Jr + v+ (Jor vty = 0
c'est & dire au problime L.
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On peut choisir aussi, pour le probléme III, 1& "fonction de

perturbation"
oy (e,x) = yl(e) + (e + x)
d'oll le lagrangien L, et la fonction duale ¥,
(11) L(ew) = file) = vy3) + ey
x2(s,y) = ?2(5 - y) +v(y)

ce qui conduit encore au probléme IV comme probléme dual, mais & un pro-

bléme de point-selle différent mais lui aussi équivalent au probléme I.

D'ol le

Théordme II - Le probléme I est équivalent & chacun des deux problémes de

point-selle :

Trouver (e;,s;) solution de
(e,s) ExS Ll(el,s) I3 Ll(el!sl) $ Ll(e,sl)
Trouver (ej,s;) solution de

(e,s) E xS LZ(el!-s) f L2(el ’-Sl) \< Lz(ea‘sl)

oll L, et L, sont définis aux lignes (13) et (lh).

Le probléme de point-selle associé & L; présente l'avantage
d'8tre en pratique sans contrainte puisqu'il peut &tre remplacé par le

problémé de point-selle pour le Lagrangien :

(u,s)€ U xS + L' (u,s) =~ Yz(y) + <Du,y>
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La fonciionnelle de REISSNER

Dans ce qui précéde nous avons supposé connue une solution

particuliére s® de 1'équation d'équilibre

ol ¢ est donnée dans F (cfr. chap. I, §7). En pratique il n'est pas
toujours commode de trouver une telle solution particulidre. On peut
remédier & cet inconvénient en considérant tout d'abord le probléme

primal III' suivant, évidemment équivalent au probléme III :
Probléme III' - Minimiser sur V la fonctionnelle
v > ;I(Av) + <e%,s% = j'l(v)

On remarque :

X'I(V) = £(Av + e°) = <AV, 4°>
de sorte que, s° &tant en équilibre avec ¢

y'l(v) = £(Av + e°) = <<v,¢>>

et s° n'apparaft plus. Introduisens la fonction de perturbation :

o(vye) = £(Av + €° + €) = <<v,¢>> (¢ € E)
Elle conduit au Lagrangien
L(v,s) = <Av + e%,8> ~ <<v,¢>> =~ g(s)
et & la fonction duale
x(pss) = +g(s) - <e%,5> + ¢ o () (pe F)
{¢-A"s})

(vi, s1) est un point selle de L si et seulement si

o(v,0) + x(0,s8) =0
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clest & dire

¢-ATSI=O

£(avy + e%) + g(sl) = <avy + e%,51> =0

clest & dire que (Avy, s;-s°) est solution du probléme I. Le probléme
de point selle pour L est donc équivalent au probléme I, On note qu'il
donne directement les quantités les plus intéressantes d savoir le
champ des contraintes et celui des déplacements. L est la "fonction-

nelle de REISNNER",
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§ 4, INTEGRANDES CONVEXES ET LOIS CONSTITUTIVES

Soit @ un domaine de Rm; E et S sont des espaces de champs me-

surables définis sur @, & valeurs dans Rn, et sont mis en dualité par

(e,s)‘ Ex S+ <eys>= f e(M).s(M)aQ
Mef

qu'on suppose définie sur E x S. e(M).s(M) désigne le produit scalaire

n
dans R »
Nous considérons le cas ol la loi constitutivesest donnée loca-

lement par une loi sous-différentielle : en tout point M de 2 on se donne
un couple de fonctions duales f£(M,.) et g(M,.) telles que la loi consti-

tutive se définisse par
(25) Vico £O,e(m) + g(M,s() - e(1).s(M) = 0

On définit alors, formellement pour 1l'instant, les fonctionnel-

les

ee¢E » F(e) f£(M,e(M))an

e

g(M,s(M))an

s €S - G(s) (

ce qui pose le probléme de mesurabilité pour les intégrandes. Supposons

que F et G existent : elles sont alors convexes. Par intégration terme &

terme (15) entraine
(16) Fle) + c(s) -ge,82=0
Inversement (16) entraine que (15) est vérifiée presque partout

sur  puisque

(lﬂ V(e.s) €E xS VMeQ - £(Mye(M)) + g(M,s(M))
- e(M).s(M) 3 0



- 357 -
B. Nayroles

D'ol la

Proposition 5 - Si pour tout couple (e,s)é& E x S les fonctions

M~ f(M,e(M)) M > g(M, s(M))
Sont dvales
alors (16) est équivalente 3

(15')  £On,e(m) + g,s(M) = e(M).s(M) =0 p.p. sur ¢

I1 reste encore une question en suspens : les fonctions F et G
sont-elles duales 1l'une de l'autre ? Par intégration terme i terme de (17)

on a :
(18) V(e,s) € E xS F(e) + G(s) = <e,s > 3 0
et en particulier, par exemple

F(e) 3 sup (< e,s > - G(s))
s S

de sorte que F et G sont des fonctions convexes "sur-duales",

La théorie des intégrandes convexes donne des conditions suffi-
santes d'existence de F et G, et des conditions suffisantes pour qu'elles
soient duales. Le lecteur pourra se reporter & R.T. ROCKAFELLAR ({l), (2)4
[3)) et aux exposés de C, CASTAING sur cette question. Contentons-nous

ici de citer deux résultats d'usage courant en Mécanique, et tirés de (l).

Proposition 6 - (Existence de F et de G) Les tonctionnelles F et G sont
‘ bien définies dé€s que l'une des fonctions f ou g posséde

les trois propriétés suivantes :
1°) VMeﬂ ‘Vaé- R f(Ma) > -
2°) VM.e Q {ae€ Rn/f(M,a) < +o} est d'intérieur non

vide

3°) Va € r" M > f(M,a) est mesurable
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Définition - Soit X un espace de champs mesurables définis sur Q. On dit
que X est décomposable s'il poss&de les deux propriétés

suivantes :

1°) X contient toutes les fonctions mesurables bornées

nulles hors d'une partie de mesure finie de Q.

2°) Quels que soient x €X et A une partie de mesure

finie de 2, partie dont on note Xy la fonction caractéris-

tique, le champ x X appartient & X.

Théoréme III - (Dualité de F et de G) : Si E et S sont décomposables, si
f et g satisfont les hypothéses de la proposition 6, et

s'il existe au moins un couple (e,s)€ E x S tel que
F(e) < += G(s) < +o

alors F et G sont duales,

§ 5. UN EXEYPLE D'ELASTICITE NON LINEAIRE COMPORTANT POUR CAS LIMITES LE
COMPORTEMENT RIGIDE-PLASTIQUE ET LE MATERIAU A BLOCAGE

Appliquons les résultats précédents & un exemple type, d'ailleuns
largement présenté par J.J. MORFAU dans (3), ou par B. NAYROLES dans (1)
et (2]. N

On considére une loi constitutive du type &tudié au paragraphe
précédent, les fonctions f et g étant cependant un peu particuliéres.,

Tout d'abord on définit en tout point M de Q une sorte d'inten-

~

sité de déformation & 1l'aide d'une jauge
ae R - j(M,a)

fonction convexe, positivement homogéne de degré 1, et que nous supposons
de plus finie et positive, nulle & 1l'origine seulement. Autrement dit le
convexe dont j(M,.) est la jauge, & savoir

A(M) = {a € R / j(M,a) ¢ 1}
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est borné et son intérieur contient O. Rappelons que, inversement
. . 1
j(M,a) = inf {)\ 6 JO, +m[ / Te GA(M))
Une fois définie l'intensité de déformation on pose que la den-

sité d'"énergie Blastique" est la fonction

1 p

(19) MeEQ a R+ f(Ma) = 5 (3(M,2))

p est une constante, pour 1l'instant p é’)l, +w{ ce qui corres—

pond & un comportement &lastique au sens propre du terme.

5.1 Calcul de g(M,.)

Le calcul de la fonction duale de f(M,.) (qui est continue puis-
que finie partout sur R") est classique; on peut se reporter i J.J. MOREAU
((1), en. 14, et (3)) et & R.T. ROCKAFELLAR (4). On considdre 1'ensemble
polaire de A(M)

B(M) = {b €R" / Wa €A(M) . a.bg 1}

dont la jauge k(M,.) est dite jauge conjuguée de j(M,.). B(M) est lui aus-

si borné et posséde O comme point intérieur. On va montrer tout d'abord

que
k(ﬁ,b) = sup e%i?;7~= sup a.b
a.b>0 I\ a.b>0
j(M,a)=1

Or la fonction

b == sup a.b
a.b>0
j(M,a)=1

est positivement homogéne et strictement positive hors de 1'origine. Il

suffit donc d'établir que :
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sup  a.b g1 <> k(M,b) g1
a.,b>0
j(M,a)=1
Or
b
sup ab gl <= [a'e A(M) ab < j(M,a') < beA(M)
a.b>0
5(m,8)=1 = x(Mpld
Ceci étant acquis calculons
. p
S 1l ..
g(M,b) = sup f(a.b -= {J(M,a)} )
n 1Y
a R
vaut O si b = 0., Si b n'est pas nul alors on a :
1,p
sup (a.b - —-(J(M a)) )= sup sup {Aa'.b - = AF)
a#0 J(M a')=l x>0 p
' >0
=  sup 1 (at.p)? = 1 k(M b)
j(ma’)=1 ¢ q
a'.b>0
ol : 1,1, 1
P q

et par suite on a, pour tout b :

{20) g(M,b) = = (x(M,b))%

0

1 1 . .
;l.lp et %,.,q constituent 1l'exemple le plus classique de

"duales de Young".

5.2 Intégration - Si pour tout a € R® 1a fonction f(.,a) est
mesurable les hypoth&ses de la proposition 6 sont évidemment satisfaites
puisque dom f(M,.) = R". Les fonctionnelles F et G sont donc définies sur

n'importe quels espaces E et S de champs mesurables.
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D'autre part F(0) = 0 = G(0)

de sorte que F et G sont sommables pour tout couple d'espaces décomposa-

bles E et S. Cependant un choix optimal des espaces E et S peut &tre en-

. P
visagé :

Proposition 7 - Soient E' et S' les ensembles de champs mesurables défi=
nis par
e € E <=> F(e) < += s € 8 <= G(s) < +=

E' et S' sont des cOnes convexes et

v (e,s)eExs <e,s> = I ‘e(M).s(M)an e [—m, +L
Q

La convexité de F et de G et leur quasi-homogénéité entrainent

que E' et 8' sont des cOnes convexes, et d'autre part

VY (e,s) € E' x ' <e,s> & F(e) + G(s) < +=

~

achéve la démonstration.

Si 1l'on peut &tablir que <e,s> ne prend pas la valeur -= sur

E'x S8' le choix optimal est donc

E=E'+ (-E') S = 8"+ (=8")

D'ailleurs, dans la plupart des cas usuels E' et S' seront des
espaces vectoriels, par exemple lorsque, pour tout M/j(M,.) est une nor--
me sur RT (i.e. A(M) est &quilibré).

Le cas le plus simple est celul ou il existe deux constantes
strictement positives o et B telles que
(21) V (M,2) € 2 xR o la] < j(m,a) < 8la]

auquel cas le choix optimal précédent donne

B=r = (LP(0)® s =g = (1%a))"
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espaces qui ont le mérite d'étre bien connus ..., et surtout d'étre des
Banach réflexifs ce qui assure 1l'existence des solutions pour les pro-

blémes précédents lorsque I et J sont fermés.

Dans le cas des -plaques, par exemple, n = 3. L'opérateur de d4é-

formation est D = grad grad, ce qui conduit & prendre pour U un sous-es-
pace du Sobolev He’p(Q), et pour espace des charges son dual topologique.

Si, par exemple la plaque est encastrée sur son contour on prendra
U = H02’P(Q) o = H %)

et les problémes posés précédemment admettront une solution unique pour
toute charge ¢ @ e ’q(Q), et seulement pour des charges appartenant &

cet espace.

5.3 Cas limites (p=1l, p= +=)

Les considérations de 1'alinéadsont maintenant fort classiques,
et les résultats d'existence et d'unicité sont faciles 3 obtenir lorsqu..e
X 3 )l, +o( et lorsqu'on dispose des inégalités (21}. Sans ces derniéres
on peut encore espérer construire des espaces fonctionnels adéquats, et
obtenir 1l'inf-compacité faible des fonctionnelles }j et ’>2, donc 1'exis+
tence des solutions pour les problémes posés : ce sera surtout une affaire
de technlque mathématique.

Nous allons plutdt nous occuper du cas (p =1,q = +»), qui‘est,
8:un échange prés des rdles joués par E et S, le méme que celui (p = +=,

g = 1). Le premier représente un comportement rigide-plastique, le second
un comportément unilatéral du type "matériau & blocage"

Nous allons fixer le choix des applications
Me o A(M) Meqaw B(M) = A(M)°

et supposer que (21) a lieu, pour simplifier, Enfin, pour p er]l, + m(
nous preﬁons comme précédemment

£ (na) = = (j00,2))° g, (4b) = 2 (k01,0))°
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Nous avons évidemment
lim f (M,a) = j(M,a)
2SI
et d'autre part la duale de j(M,.) est la fonction indicatrice du convexe

B(M) :

0 si b€ B(M)

Yp(u)(®) =

+o si b€ B(M)
Or précisément on voit immédiatement que, pour tout b de RP

.1 1
qﬁf E{k(M’b)}‘ = "’B(M)(b)

Pour p=l on trouve donc le comportement rigide plastique comme

limite du comportement &lastique.
Si pour tout a€& RY la fonction j(.,a) est mesurable alors les

fonctionnelles

F()=f J(M,e())a0 ; c(>=f b (s(M) an
e o i(M,e s . B) (8

sont définies pour tout champ mesurable e ou s, en vertu de la proposition

6.
D'autre part la double inégalité (21) entraine 1'équivalence

n
Fle) < 4+ <= e {LI(Q)} = F(e) < B |]el]

l,n

pour tout champ mesurable e, Comme de plus j(M,.) est la fonctinn d'appui

de B(M) les indgalités (21) s'écrivent aussi bien

(22) VM € 3(0,0:) CB(M) € 3/(0,6)

ol zi(o,r) désigne la boule de centre O et de rayon r dans R®. Par suite

on a les équivalences :

G(s) < +» <= 1p,p, sur Q a(M) € B(M) <= Gs) = Q
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et les implications

- n
G(s) =0 = s €& [L (Q))

n
SG[L (Q)} =>V)\" [O’H-;(ﬁm_,n] G(xs) =0

C'est & dire que l'ensemble convexe des champs mesurables

<

C=G"(+=)

n
2st contenu dans (Lm(Q)) , et 1'on a, dans cet espace

& ce cGop

Ceci conduit donc au choix optimum
n - n
(23) E = (1(2) s = [t7(2)]

qui ne sont pas réflexifs, comme il est bien connu.

On sait. (cfr. NAYROLES (1), DUVAUT et LIONS (1)) que les problé-
mes variationnels admettent des solutions en contrainte dans (Lm(ﬂ)) mais
que les solutions Sn‘ﬂéformation ne sont assurées que dans l'espace bien
mal connu (Lm(Q)') .

Ceci n'est pas génant car on peut obtenir avec le seul choix de
(23) suffisamment de renseignements pour que l'existence des solutions de-
vienne  pratiquement sans intér@t mécanique. C'est ce que nous allons voir
maintenant.

Tout d'abord E et S sont décomposables, F(0) = 0 = G(0), de sor-
te que F et G sont duales. D'autre part F est continue* sur E = (LI(Q))
puisque finie partout et majorée par B sur la boule de centre 0 et de
rayon 1. . n n
Si donc on se donne e° € (Ll(n)) et s° ¢ (Lw(Q)} le probléme
I pcut ne pas admettre de solution dans le produit de ces espaces mais,

d'aprés le théorime 1 nous avons :

* - .. . .,
pour la topologie de la norme, ici compatible avec la dualité
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inf f(e,s) =0
(e,s)g IxJ

c'est & dire que le probléme I admet des solutions arbitrairement appro-

chées, ou que le

Probldme I' : Trouver (e,s)g I x J

j(e,s) <e

admet des solutions pour tout € strictement positif.

Compte~tenu de 1l'impossibilité qu'il y a, d'une part de calculer
la solution exacte, d'autre part de faire aucune mesure de précision infi-
nie, ce résultat remplace avantageusement tout théordme d'existence pour le
probléme 1, puisqu'il apporte, en plus, une présomption d'accessibilité

numérique des solutions approchées.
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CHAPITRE 111

OPERATIONS ET OPERATIONS REGULARISEES SUR LES ELEMENTS
MECANIQUES ET LES LOIS DEFFORT SOUS-DIFFERENTIELLES

Nous avons déja parlé, trés bridvement, d'une opératibn sur les
lois d'effort, 1'addition, et d'une opération sur un &lément mécanique,
dui est le passage au quotient. Nous allons maintenant définir les 6péra—
tions d'usage courant et signaler dans quelles circonstances elles inter=
viennent, C'€était 1'objet d'une note ancienne (B. NAYROLES (3]); iei nous
nous occuperons plus particuliérement des lois sous-différentielles; ce
sera le second aspect de ce chapitre.

Les opérations que nous effectuerons sur des lois sous-diffé-
rentielles donneront, sous des hypothéses assez généralement vérifiées,
des lois sous-différentielles. Dans le cas contraire une régularisation
de ces opérations permettra, en dehors de toute hypothése, d'obtenir 1le
méme résultat. Cette régularisation, qui.constitue un changemént de la
mathématique utilisée habituellement en Mécanique des Solides, est-elle’
justifiée sur le plan de la Physique ? Ce sera le premier aspect de ce
chapitre. En bref la régularisation en question se présente & deux occa-

sions :

1°) Soient (V, <.,.>, W) un &lément mécanique, f une fonction
* . .
convexe sur V, & valeurs dans )-w, +w), f sa polaire. On considére la

loi d'effort définie par 1l'équation
(1) f(v) + f*(—w) + <v,w> =0

Peut-on le remplacer, sans dommage pour la Physique, par 1'é-

quation

(2) f**(/v) + f*(-w) + <v,w> =0 ?
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2°) Soient -w & 3f1(v)
-w g 3f,(v)

deux lois d'effort sur 1'é1lément mécanique précédent. Peut-on remplacer

leur somme
(3) -w &0y (v) + af,(v)
Par (V) -v € 3(f; + ) (v)

sans dommage pour la Physique lorsqu'aucun critdre comnu d'additivité des
sous-différentiels n'est satisfait ?

Je m'efforcerai de convaincre le lecteur que la réponse peut
gtre positive. Dans un cas comme dans l'autre cette "régularisation" con-
duit & un "affaiblissement” du probléme posé initialement, en ce sens que
toute solution de (1) ou de (3) est respectivement solution de (2) ou de
(h\. On considére généraiement qu'un tel affaiblissement d'un probléme
est justifié s'il facilite la recherche des solutions et si 1'on dispose,
a-posteriori, de théorémes permettant d'affirmer que les solutions faibles
ainsi trouvées sont aussi des solutions fortes. C'est en général le but
des théorémes de régularité des solutions.

Ce n'est pas ce genre de justification que j'espére apporter
mais plutdt la suivante : 1'&quation (l) n'a pas plus de signification
physique que 1'&quation (2), et de méme (3) ntest pas ‘fondamentalement
plus justifide que (h),nEn sorte que la substitution de (2) a (l) et de
(3\ a (ﬁ’ n'apparait pas comme un changement du probléme mécanique. La se-
conde justification est d'ordre pratique puisque cette substitution permet
de construire une algébre des lois sous-différentielles, indépendante des
ponditions d'équivalence stricte des &quations (1) et (2) et (3) et (h);

et que la théorie devient singuliérement plus simple.

§ 1. LOIS MATHEMATIQUEMENT OU PHYSIQUEMENT EQUIVALENTES

1.1 Inadéguation de la mathématique utilisée en Mécanique clas-

. . ' L. . "~
sigue - Le processus de mise en oeuvre d'une théorie physique est en gé-
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néral le suivant : un moddle mathématique ayant &té construit le physi-
cien en demande les données & l'expérience; puis il pose un certain nom-
‘bre de problémes dont les solutions seront fournies par un travail mathé-
matique comprenant classiquement deux parties; une de mathématique pure
qui est la recherche de théorémes sur 1'existence et d'autres propriétés
des éventuelles solutions; une autre d'analyse numérique et qui fournit
des résultats approchés. Enfin ces résultats sont confrontés & 1'expérien=
ce.

Or dans ce processus l'imprécision intervient inévitablement &
la fois dans les mesures expérimentales et dans le calcul numérique, tan-
dis que le travail de mathématique pure en est exempt. Le résultat en est
qué la mathématique d'une théorie physique donne, le plus souvent, une
description beaucoup trop fine des phénoménes par rapport a ce que 1l'ex-
périence et le calcul peuvent atteindre. Par exemple lé notion de "champ
de déplacements" défini en chaque point n'a qu'une signification physique
indirecte; aucune mesure ne peut donner la valeur du champ en un point mais
fournit une valeur qui peut &tre interprétée, par exemple, comme une valeur
moyenne ou comme une borne supérieure du champ sur un domaine w dont la
petitesse dépend de la finesse du capteur. Introduire un champ de dépla-
cement continu signifie seulement que si 1'on augmente indéfiniment la
précision de la mesure la suite des résultats expérimentaux converge vers
une certaine valeur qui est celle du champ de déplacements en un point
précis. Cela signifie aussi que le calcul numérique de cette valeur peut
&tre entrepris sans qu'une petite erreur sur la position du point entraine
une erreur importante sur la valeur calculée., Mais la continuité joue un
r0le essentiel en ce qu'elle permet & la valeur locale d'étre la limite
d'une valeur moyenne, ou d'une borne supérieure, c'est 4 dire la limite
d'un résultat de mesure quand la précision croit indéfiniment. A l'inverse

si 1'on se donne l'équation de liaison sur la frontiére

u =
/319

la question de savoir si la partie 3;Q de frontiére concernée est fermée
ou non est sans signification physique car aucune mesure ni aucun calcul

n'a la précision infinie qui permettrait de distinguer 3,2 de ses points
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adhérents : la description mathématique est ici trop fine.

En résumé la mathématique employée en Mécanique classique des
milieux continus fournit un schéma a'une prékision infinie alors que 1l'ex-
périence ou 1'approche numérique, si fines soient-elles, n'ont qu'un "pou-
voir séparateur" 1limité, de sorte que certaines distinctions leur échap-
peront toujours. J'emploie ce terme de "pouvoir séparateur" par analogie
avec celui d'un instrument d'optique.

Certaines difficultés de la théorie, je pense tout particuliére-
ment aux problémes de traces, sont liées a cette trop grande finesse du
schéma mathématique et devraient disparaftre si la mathématique utilisée
était plus adaptée & la Physique des problémes; ce sont des "difficultéé
parasites".

I1 n'est pas facile (la Mécanique statistique en donne peut &tre
un exemple ...) de créer une mathématique qui tienne compte de 1'impréci-
sion expérimentale et numérique puisque ceci demanderait de connaitre une
fois pour toutes de quelle nature seront ces imprécisions. Je n'ai pas la
prétention de le faire ici et mon but essentiel est d'attirer 1l'attention
du lecteur sur la nécessité de rechercher dans cette direction et de con-
sidérer 1'imprécision, et d'une fagon générale le défaut d'information,
comme un aspect essentiel de toute la Physique, aspect totalement ignoré
par la Mécanique classique., Je me contenterai donc de deux suggestions
gui sont seulement proposées & l'assentiment du lecteur, en attendant 4'é-

tre remplacées par quelque chose de plus &laboré et de mieux fondé,

1.2 Principe d'adhérence

Nous allons supposer que la limitation du'pouvoir séparateur"
de 1'expérience ou du calcul numérique peut &tre traduite en termes topo-
logiques. Comme, de toute fagon, il s'agit de confronter-les résultats
numériques et les résultats expérimentaux, c'est, s'ils sont comparables,
le pouvoir séparateur le plus faible qui définit 1'imprécision. Notré hy-

pothdse, fort critiquable, est la suivante :

fiypothdse : Il existe, pour 1'élément mécanique (V, <.,.>, W) un couple
| ({V’ t W) de topologies compatibles avec la dualité, possér
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dant la propriété suivante :
quelle que soit la mesure effectuée (de précision fi-
nie arbitraire) il existe un voisinage V x W de 1l'origine

tel que deux couples (vy,w;) et (vy,w,) satisfaisant

(vi = vy, w1 -w) & VxVW
ne peuvent €tre distingués par cette mesure,

Par raccourci nous dirons que €V x{w est plus fine que le pouvoir sé-
parateur de l'expérience.

Dans la formulation de cet &noncé nous n'avons parlé que du
pouvoir séparateur de l'expérience, pas de celui du calcul numérique, et
pour deux ralsons : la premidre est que 1'énoncé est déja suffisamment
lourd et qu'il ne servirait & rien de le compliquer par les considérations
analogues évidentes sur 1'imprécision numérique. Ensuite le "pouvoir sé-
parateur" du calcul est le plus souvent supérieur & celui de 1l'expérience,

L'hypothése est essentiellement discutable sur ce point que v
et t;W sont compatibles avec la dualité ... Le reste est beaucoup plus

naturel.

Une conséquence de cette hypothése est la suivante :

Principe d'adhérence - Deux lois d'efforts sont "physiquement équivalen-

"

tes" si leurs graphes ont méme adhérence pour la topologie

produit ‘V x{ W

En effet, d'aprés 1l'hypothése précédente, aucune expérience ne
pourra mettre ces deux lois en contradiction.
Considérons par exemple la relation de liaison pour une plaque

simplement appuyée sur une partie 3;Q de la frontiére :

u/819 =0

et choisissons V = H2(Q) pour espace des déplacements, W = Heﬁ pour espace
des’ efforts. La relation de liaison définit dans ‘r un sous-espace vecto-

riel V1 et la loi d'effort est wvj(v) + va (~w) + <v,ﬁ> =0
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Sans nous préoccuper de savoir si 90 est une partie fermée de
3 (ce qui est essentiel dans la théorie classique), nous pourrons écri-

re que cette loi d'effort est physiquement &quivalente &

wvloo(v) + Wvlo(-W) + <v,w> =0

On évite ainsi les difficultés liées & la continuité de 1'opérateur trace,

~

On peut aussi éviter celles qui sont lides & son existence en posant
v, ={veC{R)/ v=0 sur 3;Q}

et en prenant 1'adhérence V;°° de V| dans g;qui peut raisonnablement af-
firmer que cette fagon de procéder soit moins physique que la mise en

équation classique ?

1.3 Solutions approchées

La seconde de mes suggestions est de n'accorder i l'existence
d'une solution théorique’aucune signification physique d&s qu'elle ne peut
&tre exactement calculée. A quelques exceptions prés, par exemple si 1'in-
connue est un nombre entier, on ne sait calculer que des solutions appro-
chées, Ce qui sera confronté & 1'expérience étant une solution approchée
il est beaucoup moins important d'établir l'existence d'une solution

"exacte" que de répondre aux questions suivantes :

1°) Peut-on donner une définition mathémat’ que, physiquement
acceptable, des solutions approchées ?

2°) Celles-ci ayant été définies peut-on montrer 1l'existence de
solutions arbitrairement approchées et construire un algorithme permet-

tant leur calcul ?

Le choix de la réponse au 1°) comporte une responsabilité phy-
sique considérable; une réponse positive & la seconde constitue le seul
ttéoréme d'existence intéressant pour la théorie physique, méme si la tech-
nique mathématique permet quelquefois de 1'obtenir par 1'intermédiaire
d'un théoréme d'existenge de solutions exactes. Précisément 1'habitude est,

de définir une solution approchée comme un point d'un voisinage, pour une
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certaine topologie, d'une solution exacte. Pour fixer les idées considé-

rons l'équation

(5) o =o

oti Yest une fonction & valeurs dans R et définie sur un espace vectoriel
harmé X. Supposons, pour simplifier encore, que cette dquation admette 1'u
nique solution X e On peut définir d'au moins deux fagons différentes une

solution x, approchée & ei prés, g‘désignant un réel strictement positif
“ .

par (6) ||¥‘- xoll < e
ou par (7) I j(i‘t‘)l <&

et ces deux définitions donnent les ' mBmes’suites de 8.8, a.b..si, par exemple:
(Q Ju>0 JB>O VXGX a[h-xd[<|f&ﬂ¢”kﬁ”

ce qui est un cas trivial. Mais si jvest seulement continue alors

Iim ||x, =x || =0 == 1im |¥(x.)| =0

e i o P i
tandis que nous avons 1l'implication inverse si la seconde des inégalités
(8) a lieu.. les définitions (6)‘et (7) ne sont pas équivalentes et c'est
au physicien de dire quel sens il faut donner & 1'approximation des solu-
tions.

Soit d'une fagon générale une partie A de X : il existe une in-

finité d'équations dont A est l'ensemble des solutions, et qui sont donc

mothématiquement équivalentes; si la résolution ne peut &tre qu'approchée

il importe que le physicien ait défini la nature de cette approximation

pour que le probléme physique proposé soit correctement posé. C'est exac-.
tement le contraire qui se produit habituellement puisque les mathémati-
ciens s'attaquent aux "équations de la Physique", sans que les critéres
d'approximation les accompagnent ; alors ils ne peuvent travailler que sur
les solutions exactes dans une premiére &t{ape; que proposer, dans une se-
conde étape, des suites de solutions approchées en un sens que le physi-

cien pourra ou non accepter,.
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Si au contraire on se donne au,dépaft toute équation avec son
critére d'approximation le travail proposé au mathématicien est totalement
différent. En particulier la notion d'équivalence de deux équations, plus
gééralement celle d'équation conséquence d'une autre peut &tre remplacée
par une notion d'équivalence physique, ou de conséquence physique qui de-
vra &tre exprimée mathématiquement. C'est ce qui va &tre fait maintenant;
la construction que je propose n'est vraisemblablement pas la meilleure et
sa mise au point laisse beaucoup 4 disirer. Mais cette &cole d'été cons-
tituait une trés belle occasion d'évoquer cetté question, & mon avis es-
sentielle pour un progrés réel de la Mécanique; je n'ai donc pas su résis-

ter & 1l'envie de présenter, méme prématurément, mes quelques idées sur le

sujet.

1.4 Equivalence approximative

On consid@re un espace vectoriel topologique X (on notera t; sa
tpologie) et 1l'ensemble x des équations (ou systémes d'équations) dont
l'inconnue est un point de X. Soient E; et E, deux &léments de x et A; et
A, leurs ensembles respectifs de solutions. On définit habituellement sur
X la relation de préordre partiel

aér

El »E = Aech

qui s'énonce ou bien "E, est conséquence de E;" ou bien "E, est plus fai-

ble que E;". Lorsque
E, « By E, > Ey

on dit que les équations E; et E, sont &quivalentes; et cetle relation-
d'équivalence est systématiquement employée lorsqu'il s'agit d'étudier lesg
solutions "exactes" c'est 4 dire les ensembles A; et A,.

Lorsque 1'intér&t se porte non sur les solutions exactes mais
s les suites de solutions approchées ces relations de préordre et d'équi-
valence deviennent sans intéré€t.

Jn va maintenant considérer l'ensemble ; des équations sur X
qui sont données avec la définition de leurs "suites de solutions arbi-

tralrement approchées", que nous écrirons, en abrégé, s.s.a.b.. Pour sim-



B. Nayroles

plifier l'exposé on identifiera deux éléments de ;( possédant les mémes
ss.a.b. (cfr Remarque.l). Une nremidre idée est de définir E comme plus
faible que E si toute s.s.a.b. de E est s.s.a.b. de £ . En fait nous
élargirons cette définition en utilisant la topologie de X avec, comme
motivation, l'utilisai;ion d'une topologie plus fine que le pouvoir sépa-

rateur de l'expérience.

Définition 1 - Soient ﬁl et EZ; nous dirons que E~:1 est "approximativement

plus forte que E,", et nous noterons
E:l - E:Z

si pour tout voisinage V ae 1l'origine dans X et & toute
’l,
S.S.a.b, (xil) de E; il existe au moins une s.s.a.b. (xiz)

de E, satisfaisant
2 1
. X, o+
2 ;7€ x 1+ VW

On dit que E; est "approximativement équivalente" &

E» et on note f!l > }~32 si
. . défr . . .
E} » B, <= (E;+ E, et E, + E;)

Proposition 1 - La relation 4> est une relation de préordre partiel sur ;(,
En effet +> est transitive puisque, pour tout Vil existe
\H et Vo voisinages de l'origine, tels que Vl’ +IV2C'UZ
alors

{x,°e xil +1’; et xi3§ xi2 +v;} = xi3e xil +v

I
et d'autre part la relation +> est réflexive
V E €3 E+ E

Remarque 1 - La définition de x donnée précédemment est plus intuitive que
mathématique; on peut la préciser en considérant XN espace des suites d'é-

léments de X : alors X peut s'identifier & 1'ensemble ¢ des parties ¢ de
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XN. Ainsi E peut &tre définie per 1'ensemble ¢ de ses s.s.a.b..
Sur lespace vectoriel XN on 'peut choisir la topologie T pour leg-
quels les voisinages de 1l'origine sont les ensembles de la forme 1’“ oﬁl’

est un ©® -voisinage de 1'origine sur X, c'est 4 dire
Tv. ()6 X/ v x, €U

Alors la définition 1 équivaut &
E, + B <= 1€ 9,

ol $2 est 1'adhérence de ¢, dans XN pour la topologie T. La relation 4'"é-

quivalence approximative" correspondante est alors

Ep <t ﬁ2 > 91 = ¢

c'est & dire que nous retrouvons, aprés un long détour, le principe d'a-

dhérence.

Remarque 2 - On aurait pu compliquer la définition 1 en considérant non
pas une topologie d'espace vectoriel sur X, mais une structure uniforme

lquelci)nque et en particulier la topologie discrdte; en prenant pour s. s.a.a.
de toute équation les suites de peints qui en sont solution on aurait alors la
relation d'ordre usuelle comme cas particulier de la relation d'ordre ''ap-
proximative", C'est peut &tre une satisfaction pour 1l'esprit...

On considére encore des "systémes d'équations" dont les solutions
gat, par définition, solutions de chacune des Equations. On va construire

la notion correspondante pour les €léments de E :

Définition 2 - Soient E; et E, appartenant & ):, ¢1 et ¢, leurs ensembles
de s.s.a.b. respectifs. On appellera systéme E1 L ﬁz 1'é1ément

de ; dont l'ensemble des s.s.a.b. est E& n $é.

Cette opération dépend malheureusement de la topologie choisie

sur X, mais, ainsi définie, elle permet d'obtenir la proposition 2. En ef=-

fet :
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De 1l'implication
(31201 et 92> )M 3" 1N ' =8 1N,
on déduit 1la

Proposition 2 - La relation —+—  est compatible avec la loi L,
| Autrement dit

(I:jl — ﬁ'l et ﬁz ~>E'2) = fll EZ = E'I l IT]'Z

1.5 Suites convergentes et quasi-solutions

I1 est utile de considérer les suites convergentes; par ailleurs
1a notion d'unicité de solution, fondamentale dans la mathématique employde
usuellement, doit €tre remplacée par une notion de convergence des s.s.a.t.,
que nous étudierons plus loin. En outre 1'introduction de la notion de

"quasi-solution" permettra d'utiliser les outils mathématiques tradition-

nels,

Définition 3 - Nous dirons que E est définie numériquement s'il existe
une application de X dans (O, +m) telle que les s.s.a.b:

de E soient par définition les suites (xi) telles que

Z‘Lim j/(xi) =0
100

Ce sera le cas pour les lois d'effort sous-différentielles.

Proposition 3 - Soit 1; une topologie d'espace vectoriel métrisable sur X;
on considére E définie numériquement par ¥, et E' approxi-
mativement plus forte que E. Alors 3 toute suite (resp. de
Cauchy) (x'i) s.s.a.b. de E' correspond au moins une suite

(resp. de Cauchy) (Xi) s.s.a.b. de E et telle que

lim (x. = x'.) =0
5 i i
1%

Considérons en effet une base 1’; de voisinages de O avec

Vi Vs
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Pour tout k il existe une s.s.&sb. (yik) de E telle que
v . k
i . - A}
Vi ;€ ’v‘k

et comme E est définie numériquement il existe une application de N dans I
telle que
Vke n Vi I(k ky ¢
(9) , > I(xk) (r;)) €%
I(k+1) > I(k)

Considérons alors l'application N. de N dansJN définie par
.(10) J€ N> N(j) = mex (k€x / I(k) g j})

I et N ont les propriétés suivantes, immédiates

'(ll) . X est croissante
(12) ' Yiew (TomM() g3
(23) D Vrker @oDx) =x

De 1C on déduit que

Veiew V5,100 N(3) 3 &

de sorte que N(j) tend vers 1l'infini avec j.

On considére alors la suite

. N(j)
> X. = .
I TS

En vertu de (9) et (l2)on a :

N(J) 1
SRS ()]

et comme N(j) tend vers 1'infini avec j)(xj) est une s.s.a.b. de E,
D'autre part on a

NG

Vi o= X5 € n(j)
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et comme N(j) tend vers 1'infini avec j, lim (xj - x'J.) = 0, ce qui dé-
g
démontre la proposition pour (x'i) s.s.a.b. de E.

Si de plus (x'i) est une suite de Cauchy il est immédiat de mon=
trer que la suite (Xi) ainsi construite en est une autre. En effet soit T
un voisinage arbitraire de 1l'origine : il existe trois voisinages de 1'o-

rigine, 'm,?);, VS tels que

TV e

et par hypothése, ou d'aprés ce qui précéde

J i Vj > 1 Vk P x'., - x'ke 4}’1

dJ

1i, Vs x - v, e,

d

3, Vk;i3 X' =X eV

k

d'ol

VJ 7 max (i1, iz, i3) Vk 3 max (iy, i, i3)

X5 =X e1f1+'lfz+?f3c'lr

La notion de quasi-solution va nous permettre, dans nombre de
N

a ,
cas usuels, de ramener 1'étude des s.s.a.,b. convergentes & ceélle des solu-
’ (23

tions, au sens usuel, d'une &quation.

Définition 4 ~ Soit E numériquement définie par? . On appelle quasi-solu=-

tion de E tout x& X tel que :

V’lr, voisinage de O Ve >0 Jxé X +‘U' f(x) S E

Le rapport entre les quasi~solutions de E et ses s.s.a.b.
convergentes est précisé par les trois propositions suivantes, de démons-

tration immédiate :

Proposition 4 - Soit (xi) une s.s.a.b. de E convergeant vers x : x est

] quasi-solution de E.
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Proposition 5 ~ Si Xest métrisable toute quasi-solution est li-

| mite d'une s.s.a.n.

Proposition 6 - Si 6est métrisable et si }est continue, les trois as=-

sertions suivantes sont équivalentes

w1

est solution de f(x)‘ =0
. X est quasi-solution de i:

. X est limite d'une suite de s.s.a.b. de E

Essayons d'imaginer ce qui Yeut tenir lieu, dans la mathémati-
que "approximative" que nous proposons, des habituels théorémes d'exis-

~
tence et d'unicité. On peut rechercher, pour E, des résultats du type sui=-

vant :

Existence - Selon les besoins on recherchera un résultat plus ou moins
fort :

. I1 existe une s.s.a.b., c'est & dire que 1l'ensemble ¢ associé
3 E n'est pas vide

. I1 existe une s.s.a.b. de Cauchy, ce qui revient & 1'existence

d'une quasi-solution si X est un Banach,

Unicité - 1'une des 's.s.a.b. est une suite de Cauchy, et quelles que
. ] 3 - A =
soient deux s.s.a.b. (xi) et (x i) 1lim (xi x i) 0

~

I1 faut faire une remarque & ce sujet : soit get ﬁ’ ' deux to-
pologies d'e.v.t. sur X, f étant & base dénombrable et plus fine gque ‘é ',
elle méme plus fine que le pouvoir séparateur de 1'expérience. On pourra
souvent transformer des systémes d'équations en utilisant 1'équivalence

approximative pour ﬂ ' et obtenir une &quation

J"‘“O

imt les s.s.a.b. seront définies par

lim P(xi) =0

Si 1'on ne s'intéresse alors qu'aux s.s.a.b. convergentes pour

{ . si}est continue pour ©, il suffit, d'aprés la proposition 6 de
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éﬂ})zc
considérer les solutions de V’. Les énoncés proposés pour tenir lieu de

S

théorémes d'existence et d'unicité se raménent alors i ceux-ci.

§ 2, APPROXIMATION ET REGULARISATION DES LOIS SOUS-DIFFERENTIELLES

Soit (V, <.,.> W) un &lément mécanique sur lequel est donnée la

loi d'effort

(l) £(v) + £F(-w) + <v,w> =0
On pose
j«v;w) = f(v) + f*(—w) + <v,w> >0

et 1'on se propose de justifier, d'un point de vue physique, la définition

des solutions approchées & e prés de (1) par

(av) }(v,w) e

d'ol suit naturellement la définition des s.s.a.b. par

(1&') %i: ;’(Vi’wi) =0

Eliminons tout de suite le cas ol 1l'une des fonctions est une
indicatrice : (lh) équivaut alors & (l). Nous ne pouvons évidemment pas-
ser tous les autres cas en revue et nous étudierons le plus délicat : ce=
lui od f et £* sont définies par des intégrales. Je pense qu'il suffit
d'ailleurs d'étudier le cas de 1'élasticité linfaire, tout a fait exem~
plaire, pour se donner un semblant de conviction. C'est donc, en fait,
1'é1€ment mécanique (E, <.,.>, S) des chapitres précédents qui est en cau-
se, ainsi que la théorie des intégrandes convexes,

Considérons tout d'abord 1'élément mécanique (‘p,., fp) de di-
mension finie p; g; est 1l'espace euclidien de dimension p mis en dualité

avec lui-méme par le produit scalaire usuel., La loi de contrainte est

(15) s=ke

ol k est une application lindaire symétrique définie positive de ZP sur
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lui-méme. On considdre alors les fonctions duales
f(e) = 1 e.ke *(s) T S.8
R 2 2
et 1'identité
R . _ _
(16) V(e,s) € gp x % f(e) + £ (s) - e.s =% (e=k ls).k(e-k ls)

de sorte que (15) gquivaut &

[
(@]

f(e) + f*(s) - e.s =
L'inégalité
(17) fle) + £¥(s) - e.s <€

équivaut, compte~-tenu de (16) et m désignant la plus petite valeur propre

s[</££—

m

ce qui constitue une définition physiquement acceptable des solutions ap~

de k

Ie-k—l

prochées & & prés de (15).
On considére maintenant (E, <.,.>, S) ol E et S sont des espaces
de champs définis sur un ouvert 9 de Rn, a valeurs dans €pe On suppose en

outre que la fonction
X€Q + k(x)

gt les espaces fonctionnels E et S satisfont les hypothéses de ROCKAFELLAR

gn sorte que les fonctionnelles

e €E > F(e) ! fx,e(x))de
Q

[
se¢ S =+ G(s) J g(x,s(x)an
Q
existent. Alors 1'inégalité

(18) F(e) + G(s) - <e,s> g ¢
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entraine que sur toute partie o mesurable de @

f (f(x,e(k)) + g(x,s(x)) - e(x).s(x))an < ¢
Q

c'est 4 dire que sur tout ensemble ) de mesure finie
2
-1 2 €
f le =k 7s| adq < wE R
Q

Xew

Or toute mesure de déformation ou de contraintes ne peut se fai-
re que sur un ensemble non réduit & un point; si cette mesure ne peut don-
ner, comme c'est probable, qu'une valeur moyenne sur un domaine y, alors
pair € suffisamment petit, elle ne pourra distinguer les solutions [l) de
celles (1&) qui donne donc une définition physiquement acceptable de 1'ap-
proximation. Par ailleurs la notion méme de milieu continu est macroscopi-
que c'est & dire que la déformation et la contrainte n'ont de sens que
sous un symbole d'intégration, c'est & dire par leur valeur moyenne.

Revenons maintenant 3 1'équation (1) posée au début de ce para=-
graphe, J'admettrai, jusqu'd peeuve du contraire, que (lh) définit de fa-
gon physiquement acceptable ses solutions approchées & ¢ prés, et (1h')

ses suites de solutions arbitrairement approchées. Nous pouvons alors dé-

montrer la

Proposition 7 - On considére 1'équation (l) dans laquelle f est une fonc=-
tion convexe sur V, f sa polaire. Elle est approximative=

ment équivalente &

2 f**(v) + f*(-w) + <v,w> =0
\

pour laquelle les s.s.a.b. sont définies par
. * ke *
1lim (f (v.) + f (-w.) + <vi,wi>) =0

et ceci pour toute topologle ﬁ f produit d'une topolo

gle i localement convexe et compatlble avec la dualité

sur V par une topologie gquelconque sur W.

Eliminons d'abord le cas trivial ou f n'admet pas de minorantes
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affines continues : alors £ vaut - partout, £* vaut + 1'infini partout
et ni (l) ni (2) n'admettent de s.s.a.b., : elles sont donc approximative-
ment équivalentes et mémes &quivalentes au sens usuel. Si tel n'est pas

le cas alors £** est aussi la régularisée s.c.i. de f pour gV’ Comme pour
tat w € W la fonctién linéaire <.,w> est continue pour ﬂV’ f**-;.,w> est

la régularisée s.c.i., de f =<,,w>, c'est & dire

(19) VV EV **(v)- <v,w> =sup inf (f(v') - <v',w>)
. ]
Vo ' Uy
ol 'v: désigne un quelconque voisinage de v pour ﬁ v

Des inégalités

< f(v) + f*(-w) + <v,w>

0 ¢ f**(v) + £5(-w) + <V,W> g

’a a
on déduit que toute s.s.a,¥. de (1) est s.s.a.¥. de (2) ; done

(A+()

Inversement soit 'v-un fV voisinage de l'origine et (vi ,wi)
are s.s.a.b. de (2). On a, d'aprés (19)

. ke - . 1
1] | 1 =
VIG N V'ng ;6 v+ ¥ vt )+ <vlwe> g f (v;) + <viw> + 5
La suite (v'i,wi), ainsi construite satisfait donc
. , \ * . tL)
Vle N v 3 €v; * r et f(v i) + £ ( wi),+ <v'owo>sf (vi)
+ f*(-w.) + <YL ,W.> + B3
i i1 1

et donc, puisque (vi,wi) est s.s.a.b. de 2

. *
lim (i‘(v'i) + f (-wi) + <v'i,wi>) =0
1>
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ce qui démontre la proposition

Notation = Soit A une loi sous ~différentielle (resp. l'inverse d'une loi

sous-différentielle) :
A=-of (resp. A” = 2g(-.))

ol f(resp. g) est convexe sur V (resp. W) - On appellera

loi régularisée de A la loi

A=- o™ (resp. A" = 3g**(-.))

§ 3, ADDITION DES LOIS SOUS-DIFFERENTIELLES

On a défini 1'addition de deux lois d'effort A; et A; sur

(Vy, <, 5 W) par

(A1 + 8,)(v) = A (v) + By (v)
Lorsque A; et A, sont sous-différentielles :

A} = - 3f) Ay = - 3f,
leur somme s'écrit
(3) ~we af(v) + afy(v)
équation plus forte que
(1) —v e alf) + 1) (v)

La proposition suivante (cfr. J.J. MOREAU (1) ch. 10) donne une condition

suffisante d'équivalence

Proposition 8 - Si f} et f, sont convexes et s'il existe un point ol les
deux fonctions sont finies, l'une d'entre elles y &tant con~
tinue (pour une topologie compatible avec la dualité) alors

tout .
pour tout v de V af 1 (v) +73f,(v) = a(f) + ) (v)
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Ce résultat trés général s'applique & de nombreux cas mécani-
ques, mais ne couvre pas tous lés besoins. Par exemple si f] et f; sont

deux indicatrices de sous-espaces vectoriels de V, disons V; et V, :

our v V. : Wy (V) + 3y, (v) = V° + V,°

P vVEVINT v, Yy, 1 2
awvlqu(v) = (‘{1 NVv;)°oV° +V,°

et en général la somme V}° + V,° n'est pas fermée, Oubliant 1l'aspect sthé.
nique des liaisons les mécaniciens ont toujours traité la somme de ces

deux liaisons parfaites comme la liaison parfaite :

‘PVI n VZ(V) + W(V‘n V‘L)O(-W) =0

par application du principe du travail virtuel.

Notre but est de montrer qu'on peut toujours remplacer 1'équa~
tion (3) par 1'équation (4). Nous verrons méme que cette dernidre est en
général approximativement plus forte que la premiére pour un choix natu-
rel des s.s.a.b. de (3), alors qu'elle est plus faible au sens mathémati-
que usuel. _

La difficulté est de défipir les s.s.a.b. de (3); en effet dire
que (v,w) est solution de (3) signifie qu'il existe un triplet (v,w,w;) so-
lution du systime (3.1), ou encore qu'il existe un quadruplet (v,w,w;,w,)

solution du systéme (3.2). Ecrivons ces deux systémes en posant

pour k=1,2 }l;(v,w) = fk(v) + fk*(—w) + <vyw>
1(vn) =0 4 =0
(3.1) jz(v,w-wl) =0 (3.2) iz(v,wz) =0

woEwW o+ Wy
On peutr définir les s.s.a.b. de 1'équation w = w; + w, pour une
p qQ 1 2 P

topologie ‘W sur W par

llm(wi - wl,i - w2,i) =0

les s.s.a.b. des autres équations sont d&finies an paragraphe 2.
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On peut alors utiliser la définition 2 des s.s.a.b. d'un systdme
pour définir celles de 1'équation (3) et ceci nous donne deux définitions

a-priori différentes

Deux définitions.des 's.s.a.,b. de 3

On dira que (vi’wi) est s.s.a.b, de (3) au sens 1 s'il existe

une suite (wl,i) telle que (vi,w. ’wl,i) soit s.s.a.b. de (3.1).

i
On dira que (vi’wi) est s.s.a.b., de (3) au sens 2 s'il existe

une suite (wl,i’wz,i) telle que (vi’wi’wl,i’wz,ib) soit s.s.a.b. de (3.2).
On aurait évidemment pu introduire encore d'autres systémes équi-
valents aux précédents. Nous limitant & ceux-ci nous &tablissons la propo-

sition suivante, passablement rassurante.

Proposition 9 - Les deux définitions précédentes sont équivalentes pour tout
|  couple ( {V,fw) de topologies d'espace vectoriel,

Soit en effet (v,,w.,w, .) une s.s.a.b. de (3.1). Pour tout voi-
1?71°1,1
sinage ” Xﬂ/de 1'origine il existe donc des suites (vil), (fV‘iZ),
(10'12), ('Wi il)’ (’wi iz)’ et un voisinage &quilibre W' de 0 dans W tels
i} L]

que
M' +W' CW
. 1 1y - : 2 o 2_ 2y =
lim ?l(vi ’wl,i) 0 lim jz(vi wil-v g ) =0
1 s 2
(20) Vi € Vi vi "vi + v
2 ' 1 + ' 2 ]
wi é wi + 'hr wl,i ewl,i w wl,i ewl’i +&r
Nous allons montrer que la suite (Vi oV ’wl,i ’w2,i)’ ol w2’i est
défini par
W, . S W. = W
2,1 i 1,1
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Alors
; 1 1y =0 = 14 2 2
llmgl(vi Wy g ) =0 llm?z(vi Vo i )
2 = (o 2 _ 2 ! ar
et Vai T Wa,s T pPewp) Gy - 2)e WD
Enfin

lim (w; = vig T wg,i) =1lim0 =0

de sorte que (vi,w. ’wl,i’w2,i) est s.s.a.b. de (3.2).

i
Inversement soit (A ,w.,w. .,w. .) une s.s.a.b. de (3.2). Alors
'H" i 1,i*°2,1

quel que soit '”’x il existe ', voisinage équilibré de O dans W, et

des suites (Vil), (viz), (wl,il)’ ("’2,12)' (wi3), (wl’f), (w‘2’i3) tels que

W:+W+M +W¢W

: 1 1y = : 2 2y =
lim ;I(Vi Wy g ) =0 1lim fz(,vi v 5 ) =0

a) lim(wi3 - wl’i3 - w2’13) =0
(21) vilé"i+1r Vizévi+v'
Vi€Vt w Vo 12 €Va 3 *'w"
wide vy + W VitV t u Vo1 €V U
Posons
wi2 = wi3
w1,12= wis - w2,12

Nous avons

(22) w2 - W, =w.3-wié\w'c’w'
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2. = (w.3—y 3w -3 3_ 2
Vi, T Y, T (T, gy ) ey Vo, i 0 vy 3%)
+ v, .
("1,1 "’1,1)
2 _ X 3 _ 3_ 3 ' [} ]
Y1,i° TY1,1 € VT T Vo it Vg P W

.

Maintenant 1'équation (21,4)) entralne

d i, Vi, wid-w 3w .3e1i7

7 o i 1,1 2,1

En posant donc

pour i< i . w, 2 =w

our i3 1 W, . .
p 7 "o 1,i 1,1

On a, d'aprés (23)

Vi El’iZG Vit e W LA + A cw gt w’

et d'aprds la seconde ligne de (21)

: 1 1y =0 = 13 2= 2)
1lim ;l(vi ’wl,i ) =0 = lim fz (Vi ,Wl’i )

de sorte que (vi,wi,wl i) est s.s.a.b. de (3.1), ce qu'il fallait démon-
L]

trer.

.

Proposition 10 - Soient f; et f, dans I‘O(V). Alors (’4) est approximative-

ment plus forte ‘que (3) pouf toute topologie{V d'espace
vectoriel sur V et pour toute topologie gw compatible avec

la dualité. De plus si (vi’wi’wl,i’WZ,i) satisfait
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1im k(vi,wl’i) =0

(2’4) lim ;2(vi,w2’i) =0
1lim (wi - wl,i - w2,i) =0

alors (vi,wi) adhérente 3 l'ensemble des s.s.a.b. de (I})

En effet la proposition T nous apprend que, pour les topologies

de 1'énoncé (h) est approximativement équivalente &

* *
(25) (£f1 4+ ) (v) + (£, 9 £57) (=w) + <v,w> =0
et, par définition

* %« . * *
(26) (017 £,%) (=) = inf (£, %(=w) + £,%(=wyp))
W =W
I1 suffit de comparer (25’ a (3). Soit (vi,wi) une s,s.a.b. de
25). En vertu de [26) il existe une suite (w, .,w, .) telle que, pour
(5) n Vv () 1,i*72,1 que, p

tout i :

d'od

°s j 1wy 5) +}2(Vi"’2,i) < )y + (07 8" (o)

1
+ V. W.> +
1 1 1

Comme %1 et ¥, sont positives on en déduit que la suite
(vyaWy Wy joVp satisfait @1&); elle est donc a fortiori s.s.a.b. de
L] E]

(3.2) et (vi,wi) est s.s.a.b. de 3 . Par suite

() <= (25) ~p=b (3)

Montrons maintenant la seconde partie de la proposition. On a,

&'apres QES% %{2% , et quels que soiemt VisWy g0V
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* * '
0 g (f1+ fz)(vi) + (£ V£, )(-wl,i - ) * Vg, v iy 52 Ji

avec ,‘gi = jl(vi,v{-wl’i) + Jz(vi,i-wg’i)

Par suite si (v W5 sV ) satisfait (2L )la suite

1 1’W

(v 10Y1,4 2 l) est s.s.a.b. de (25), comme

lim (wi—w ) =0

1,i™"2,i

pour tout”voisinage de O dans'W il existe une valeur i0 telle que

iyi = w.’-wl,i—WQ’ieV

Prenant alors

Kl
"
=

. our i<i
i i P o
V.= oW, o, o+ W, W-*W our iz i
1 1,1 2,1‘ i p L)

la suite (vi,v-ri) ainsi obtenue est bien s.s.a.b. de (25).

Utilisons maintenant les propositions 2 et 7; il vient la :

Proposition 11 - Si f; et f, sont des fonctions convexes, & valeurs dans
)-m, +°°] pour toutes topologies tv,% W compatibles avec

la dualité 1'équation
5 *¥
-we d(f + £ )(v)

est approximativement plus forte que 1'équation

-w € af1(v) + 3f,(v)

Ceci nous permet de remplacer la seconde par la premidre en en-

courani deux risques :

1°) d'agrandir 1'ensemble des solutions, ce qui nous indiffére

dans la mesure ol celles-ci ne sont ni physiquement observables ni numéri-
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quement calculables.

2°) de restreindre l'ensemble des s.s.a.b.

Notation - Soient A} = - 3f; , A, = - 3f, deux lois sous-différentiel-
les; on appellera somme régularisée de ces lois la loi sous-
différentielle

~ *k *¥
Ay + Ay =« 3(f, + £ )

On a, d'aprés ce qui précéde

Ay + Ay =4 + A

Proposition 12 ~ L'addition régularisée est commutative et associative. -

En effet elle se raméne & l'addition des I régularisées de f),

f,, I3 ete...

Application au probléme général

Revenons au probléme général posé au chapitre II. Sur 1'élément
mécanique (V,<.,.>,W) on se donne trois lois d'effort sous-différentielles,

A, Ay, Az, 4 savoir

1°) Effort donné w° : Ay = -3f] avec f] = <oymv >
e?)' 2°) Liaison affine parfaite : A, = -3f, avec fp =y
vO+I
3°) Loi constitutive : A3 = - 3f3

On suppose que f, et f3 appartiennent & FO(V). Le probléme 4'é~

quilibre s'écrit :
g.l) ' 0€& (af, + afy + af3)(v)

équation approximativement plus faible

(4‘) 0€alfy + 5, + £3)(v)
Celle-ci admet toujours des s.s.a.b, puisque *

inf ((£), + £, + £3)(v)) + (£} + 1, + £3) (0) =0
VeV
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Toute suite (vi Wy = 0) telle que

1im (f1+ f2 + f3)(vi) = inf (f; + £ + f£3)(v) (d'ol viev°+I)
vV

est s.s.a.b. de 2§ et il lui correspond deux suites (w, .) (w, .) telles
P 2 3,1

o1
que

& I°
w2’1e
. * .
Lim (£30w) + £37 (=g ;) # <0y ) =0

i + . .
lim (wo oi + w3’1) =0

pour toute topologie sur W compatible avec la dualité,
Ceci n'ajoute rien & la connaissance pratique de 1'équation (2‘);
mais nous avons seulement voulu montrer que ‘2‘) possdde autant de signifi=-

cation physique que (27') et que le probldme ainsi posé est satisfaisant.

§ q SOME GAUCHE DE DEUX LOIS D’EFFORT

C'est 1'opération symétrique de 1'addition, obtenue en inversant

les roles de V et de W. Nous la noterons par le symbole de la Tl-convolutioxz.
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Par définition

(AL L A) =47 + 4

au second membre le signe + désigne 1l'addition des multiapplications.
Lorsque A] =.3f; Ay, ==3f, avec f; et f, dans F&(V)

on a la relation
Al & Ay +4— =3(f; V £,)

ce qui justifie la notation.

Un premier exemple est la loi d'élastoplasticité’de Hencky :
A=4) LA

oll A, est une loi d'élasticité linéaire et A, une loi du rigide-plastique

parfait.
Un second exemple est :

oy = I 3y
u®+v. {u®}
d'emploi courant, comme on vient de le voir.
D'une fagon générale la somme de deux lois d'effort correspond
ice que les rhéologistes et les électriciens nomment le "montage en paral-

18le", tandis que la somme gauche correspoend au "montage en série".

§5. QUOTIENT DROIT ET QUOTIENT GAUCHE

Les deux opérations de quotient sont les plus intéressantes de
cette algdbre et,bien qu'elles soient d'usage courant depuis le début de
la Mécanique, leur formalisation n'est que trés récente (cfr. J.J. MOREAU
(h) et NAYROLES (3]). Elles correspondent; comme tout passage d'un ensem-
ble & un ensemble quotient, 3 une perte d}information : les informations
ainsi perdues étant jugées ou bien parfaitement inutiles, ou bien trop
lourdes & prendre en compte., C'est d'ailleurs une attitude courante, quoi~

que souvent inconsciente, des physiciens de restreindre 1'information sur
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~

un phénoméne & un petit nombre de variables, faute de pouvoir méme savoir
qelle serait l'information totale.

Commengons par définir les deux quotients : ils sont symétriques
1'un de l'autre par échange des_rales de V et de W. Nous nous contentefons
donc d'étudier, dans cet alinéa, quelques propriétés du quotient droit
qu'il suffira de transposer pour obtenir celles du quotient gauche. Dans

le paragraphe suivant nous en verrons quelques applications.

Définition 5 - Soient % = (V, <.y.>, W) un élément mécanique, U un sous-
espace vectoriel fermé de V (resp....),ﬁz 1l'application
canonique de W sur son quotient ¢ = W/U° (resp....). On ap-
i;elle élément quotient droit (resp. gauche) de'& par U°

1'élément mécanique
a = (U, <<.,.>>, 0) (respe..)
oll la forme bilin&aire <<.,,>> est définie par :

(u’¢)& Uxo - <<U,¢>> = <u,w> W‘a -l(¢)

(resp...)

Les (resp...) sont, pour abréger le texte, laissés & la diligen-
ce du lecteur. On note que la forme bilinéaire est bien définie puisque,
u appartenant a4 U, <u,w> ne dépend que de u et de ¢.

Le quotient droit intervient si 1'on admet que le déplacement u
reste dans U et si 1'on considére comme équivalents deux efforts qui dé-
veloppent le méme travail virtuel dans tout déplacement virtuel ueg U. C'est
exactement ce qui se produit lorsque 1'élément mécanique 5 est ‘soumis i 2

deux lois d'effort

1'une de liaison : v (v) + . % (-w,) =0
U U 2
&)

1'autre (éventuellement une somme) w€& A(v)
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Le systéme (2’) est évidemment équivalent &

Qoaw 20
(30) €U

Considérons maintenant 1'immersion de U dans V. c'est 1l'appli~

\ H

cation transposée ae,Q , par définition de la forme bilinfaire <<.j;.>>;

notons-la donc Q T. Alors (38) équivaut &

@q) LoroDiw a0

Définition 6 - Soit A une loi d'effort suri . On appelle loi quotient de
. y T . .
| A 1la loi .9, oAo Q qui est une loi d'effort sury.

Proposition 12 - Le quotient droit est distributif par rapport & 1'addi-

tion :

3 o (A} + Ay) ofLT=20A1 02T+900A2 oaT

La démonstration est immédiate. Venons-en maintenant & 1'étude

des lois quotients de lois sous-différentielles.

Proposition 13 - Soient f une fonction définie sur V, & valeurs dans )-°°,
+m)’ et f;sa restriction & U . La polaire de celle-ci, pour

la dualité entre U et ¢ vaut

Yoeo YueQ ) 556 =(r+4)"

En effet nous avons
b
£ (

U ¢) = sup {<<u,¢>> - E‘U(u))

uel

v WGQ -l(¢) }U*(d’) = sup (<usw> - f(u))
ueU >

¥ weDlo) £,%6) = sup (cuyw = (£ + ) (w)
ueV
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On en déduit la
Proposition 14 - Sous les hypothdses de la proposition 13 la loi
¢e—an(u)
est la loi quotient de la loi sous-différentielle

v & - a(f + yy)(u)

En particulier si f est convexe, finie et continue en un

point de U :

Qo-3r02T =_ 32

U

La notion d'equlvalence approximative nous a permls de rempla-
cer dans tout les cas of + aq; par 3(f + vy ). Nous régulariserons donc ce

quotient en remplagant :2 o=-203f o 51 par la loi plus forte - BfU

§ 6. DEUX UTILISATIONS PRATIQUES DU QUOTIENT DROIT

5.1 Approximations cinématigues

La mécanique des milieux continus s'intéresse tout d'abord au
milieu tridimensionnel; puis, comme il est en pratique bien difficile de
résoudre numériquement les &quations obtenues, on essaye de tenir compte,
lorsque 1l'occasion s'en rencontre, des faibles valeurs de certaines don-
nées pour obtenir une théorievsimplifiée, par exemple celle des plaques.

Une méthode utilisée bien souvent, et qui peut s'appliquer &

de trés nombreux cas mathématiques est la suivante. On part de 1'équation

4 e =0

ou € est le petit paramétre, puis on fait un développement limite par rap-

(ou du systéme)

port 8 € ¢

IR ACK chi s ez fro
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et on considére, selon la qualité de l'approximation désirée, les équa-

:}o(x) =0
2{(3(X) + e;?l(X) =0

ce qui donne des "théories lindarisées au premier ordre, au second ordre

tions

etc...". Cette méthode a été particuliérement préconisée par J.M. SOURIAU;
mais elle est d'usage constant, et vraisemblablement ;rés ancien,

L'ennui est que les résultats théoriques obtenus sur le probléme
initial peuvent devenir inapplicables aux probiémes linéarisés, certaines
des propriétés de'y étant perdues au cours de la lin&arisation.

La Résistance des Matériaux a ceci de particulier que les approxi-
mations utilisées conservent la structure algébrique examinée au chapitre I.
Ces approximations peuvent &tre de trois types : cinématique (théorie de
Kirschoff pour les plaques et les coques, &léments finis "déplacements etc.)
sthénique (théorie'de Reissner pour les plaques et les coques, &léments fi-
nis "forces") ou mixte (théorie des poutres en flexion, éléments finis
mixtes). ‘

Les approximations de type cinématique consistent & supposer (&
une approximation prés) que le déplacement v reste dans un sous-espace vec-
toriel U de V : pour ne pas perdre la structure algébrique le mécanicien
posera cette hypothdse, non pas en termes d'approximation, mais comme 1'in-
troduction d'une loi de liaison parfaite. Alors il travailiera sur 1'é1é-
ment mécanique quotient ( U, <<.,.>>, ¢). Si les efforts dérivent d'un
potentiei f il minimisera donc non pas f mais sa restriction a V.

on pourra consulter VALID (1), BREUNEVAL ({1), (2), (3)) & pro-
pos de 1'application de la. technique de linéarisation précédente aux ap~
proximations cinématiques dans les coques. Dans SOUCHET (l) on trouvera

un exposé clair de la théorie de REISSNER pour les plaques, ainsi évidem-

ment que dans REISSNER lui-méme ((1), (2)).
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5.2 Probléme de Saint-Venant (MAISONNEUVE (1))

Ici c'est la perte d'information qui est elle-méme recherchée et
qui va nous conduire & un quotient droit. On considére une milieu continu
tridimensionnel qui occupe le domaine
Q dont 3Q désigne la frontiére. Il est
soumis & divers efforts, dont certains
sont des efforts extérieurs appliqués
sur une partie 31Q de la frontiére.

Avec SAINT-VENANT et MAISONNEUVE, .
on souhaite, pour des raisons qui n'ont

as lieu d'@tre ici précisées, ne s'in-
P s

téresser qu'au torseur des efforts ap-

pliqués. (suite page T2)

§ 7. UNE UTILISATION PRATIQUE DU QUOTIENT GAUCHE : LA SOUS-STRUCTURATION

’

Le quotient gauche intervient dans les approximations de type
sthéniques de la méme fagon que le quotient droit dans les approximations
cinématiques : il n'y a donc pas lieu de développer ce point. Une autre oc=-
éasion d'utiliser le quotient gauche est la sous-structuration.

Le calcul des grandes structures, c'est & dire dépendant d'un
grand nombre de paramétres de liberté, ne peut &tre entrepris d'un seul
coup si l'ordinateur utilisé ne possdde pas une mémoire de taille suffisan-
te. Pour calculer ces structures on les découpe en sous-structures que 1l'on
calcule séparément, puis qu'on assemble ensuite. L'intérét de 1'opération
est de réduire le nombre de paramdtres de liberté dont dépend une sous—
structure au nombre de paramétres nécessaires & 1'@criture des conditions

de liaison avec les autres sous=-structures.

Soit par exemple S; une sous-structure représentée par 1'élément

»
mécanique (Vi, <.,.>, W), et constituée par un solide continu. Supposons la
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reliée au reste S» de la structure en un
+ b seul point P : 1'équation de liaison
a.‘—"l{(-!) égalera le déplacement a = vi(P) de S;
au déplacement v,(P) de S,.

S) est soumise & des efforts wy,.s.,
L et & 1l'effort =V exercé par S, sur
,"2 S1 en P3 w_ est ici une force concen-
trée en P.

Pour le calcul de la structure compléte nous aurons & disposer
du renseignement suivant : quel est l'éffort L qui cor;espond au déplace=-
ment a du point P de S), compte tenu des efforts wi,..., L ?

On note que dans ce probléme deux champs de déplacement v et v'
de V sont &quivalents s'ils prennent la méme valeur en P. Parallélement
1'effort de liaison L appartient 3 un sous-espace vectoriel ¢ (ici de di-
mnsion 3) de W, et que ¢° est précisément 1'ensemble des v V qui s'annu-
lent en P. Autrement dit le renseignement demandé porte sur 1'é€1lément quo-

tient gauche

( U =vi/e° , <<.p,0>>, 0)

Soient A la somme des lois d'effort donnant les Wiseous W, 90
1'application canonique de V; sur |/ . Donnons-nous -'ws et supposons le en

dquilibre avec A :

0 €& —v + A(v)
est 1'équation qui donne v de fonction de LA Elle s'écrit aussi
(32) ve A (wy)

qui entraline

(33). Qe &ont ) =2oar 08 (v

ce qui donne les a =g (v) cherchés en fonction de ws. £T est encore 1'im-

mersion de ¢ dans Wj.
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Inversement
a & -20 A_lo Q T (ws)

.entraine qu'il existe v solution de (32)et appartenant & ‘Q_l(a).,\

Si donc on ne désire utiliser que les informations sur 1'élément
qwtient on devra remplacer la loi A par sa loi quo-tient, inverse inféri:eure
de 20 A_l [¢] 3 T.

On note que la transformation d'une loi d'effort par quotient
gaiche est distributive par rapport & 1l'addition gauche (notée %) mais pas
par rapport & 1'addition. Dans ce qui préc.éde il fant donc que A soit -la
somme de toutes les lois d'effqrt exercés sur la sous-structure et qui ne
sont pas des lois normales & ¢° 3 on peut en effet vérifier aisémeut que si
A] est normale & &° (c.'esi‘";,E dire ﬁ.ne loi d'effort donnant une force appli-
quée & P en fonction du déplacement de ce point) et si A, est une loi d'ef-

fort quelconque sur (V, .,. , W) alors

(Qo (a1 +8) 0@ =(Roar o) + (Roa oY)



- 401 -

B. Nayroles

Additum - (Suite et fin du § 6, ch. IV, oubliées i la suite d'une erreur

de mise en page).

Soit ‘5 = (V, <.,4>, W) 1'é1ément mécanique constitué par le
golide envisagé. L'ensemble U des champs qui solidifient 3;Q est un sous-
espace vectoriel de V, que nous supposerons fermé. U° est l'ensemble des
efforts appliqués & ‘8 et qui ne travaillent pas dans les déplacements qui
solidifient 312 : W/I°® = ¢ peut donc &tre considéré comme 1'espace des
torseurs des efforts appliqués & 919.

Si 1'on se donne

1°) la somme w1 de tous les efforts appliqués au solide excep-
tés ceux qui s'exercent sur 9:Q.

2°) le torseur ¢ des efforts exercés sur 99

1'équilibre du solide s'éecrit

w1l +wy =0
. -1

w2 €2 (¢)

Supposons que w] soit donné par la loi sous-différentielle
-w1 € °9f(v) (f € I‘O(V))

le systéme précédent équivaut &
wo € 3f(v)
-1

w6 @ (¢)

dont la donnée est ¢, les inconnues v et wy. Il n'est pas déterminé : pour
. . . . -1 . .
le déterminer on va choisir, avec Maisonneuve, 1'é1ément de2 (¢) qui mi-
. . * ~ g
nimise 1'énergie complémentaire £ , c'est & dire remplacer le systéme pré-

cédent par
Vo é af(v)
(3%) ¢ € Q)

f*(wz) = min *w)

w€ 970
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Boit (V,w,) une solution de ce systdme. On a
o€ a(f* +y_ ] (w2)
Wy + u°

c'est 8 dire, en supposant que les sous~-différentiels s'ajoutent

J ueU u € at* ()

de sorte que (u,w,) est solution du systéme (3L). Si f* est faiblement

différentiable on en déduit que v€ U/ de sorte que résoudre le systéme
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ON COMPLEMENTARY VARIATIONAL
INEQUALITIES

W. Velte

1. Introduction

Pgirs of complementary variational principles are well
known in various fields of applications.In elasticity, for
example, the equilibrium state of an elastic medium can be
characterized by the principle of minimal potential energy
as well as by Castigliano's principle of complementaryenergy.
In electrostatics, the electrostatic field can be characterized
by Dirichlet's principle as well as by the complementary
principle of Thomson .. The method of Trefftz [8] (see also
Michlin [5] ) 1is a counterpart of the method of Ritz and
uses a complementary variational principle for the under-
lying self-adjoint élliptic boundary value problem.

A systematical approach to complementary variational
principles beginning with Friedrichs [3] (see also Courant
and Hilbert [1] ) was developed by several authors, consider-
ing also inequalities as constraints. Bibliographies are found
in Robinson [6] and Sewell [7] .

In the following, we give a simple approach to pairs
of complementary variational principles and complementary
Variational inequalities for a certain class of non-linear
elliptic boundary value problems. It is related to problems
considered by Fichera [2] and to the class of problems
studied by Lions and Stampacchia [4] . The classical examp~-
les cited below (involving no inequalities as constraints)

are covered as special cases.
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2. The variational problem

Let E denote a linear space. In our examples (section 5)
E will be a real Hilbert space. But in order to formulate
pairs of complementary extremal problems and complementary
variational inequalities it is sufficient to have the follow-
ing situation: '

Let E be a real Banach space (or, more general, a linear,
locally convex space) , E' the dual of E and < , > the
pairing between E and E' . Let be given a symmetric bilinear
form a( , ): EXE = R , non-negative on E and positiv on
some linear subspace VCE:

) a(u,v) = a(v,u) u,ve E
(€)) a(u,u) >0 ueek
(3) a(u,u) =0 ueV,uto

In our examples a( , ) will be a bilinear form corre-
sponding to a linear elliptic differential operator, and V
will be a linear subspace of functions which satisfy certain
linear, homogeneous boundary conditions. The linear variety

%) M = { ue E/ u-u eV }

with given element u, then corresponds to the set of functions
which satisfy certain inhomogeneous boundary conditions.

We are interested in problems, for which besides of the
(homogeneous or inhomogeneous) boundary 9onditions there are
constraints given in the form ‘u e K1 , where Kﬂc:E is a
convex set. Then the set K of admissible functions is given

by

(5) K = MnK,

Clearly, K is a convex set, too.
Firstly, we shell consider for given f e E' the follow-

ing variational problem:
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Problem 1. Find the solution U of the extremal problem
(6) J@) = a(u,u) - 2<f,u> -» min , u-¢ K
respectively of the equivalent variational inequality .

(7) a(u,v=u) - <f,v-u> > O Yveck.

We are not concerned here with the problem of the
existence of a solution. Existence holds under additional
assumptions (see for example Lions and Stampacchia [4] ).
The solution is, however, unique by assumption (3) .

Secondly, consider a function F( ): E - R which
is bounded from below and convex. Suppose that F( ) has for
any u € E a derivative f(u) € E' 1in the sense of Gateaux.
Then

(8) Fw) - F(u) > <f(u),v-w u,v € E

Problem 2. Find the solution u of the extremal problem
(9) J(u) = a(u,u) + 2F(u) = min , ue K
respectively of the equivalent variational inequality

(10) a(u,v=u) + <f(u),v-u> > O YveKk .

Again, we are not concerned here with sufficient con-
ditions for the existence of a solution. For sufficient
conditions see [#], for example. We simply suppose, that a
solution exists. Uniqueness follows from (3) and (8) .
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3. Error estimate in energy norm

Since Problem 1 is only a special case of Problem 2
with F(u) = - <f,u> we can treat both problems in the
form (9) .

Let U denote the solution of (9) resp. of (10) . In
general, it will be not possible to give the solution 1
by explicit terms. Then, if u e¢ K is any numerical approxi-
mation to u , the question arises how to obtain an error
estimate.

In the theory of variational methods for quadratic
extremal problems without inequalities as constraints the
role of error estimates in energy'norm is well known (see,
for example, Michlin [5] ) . Therefore, it seems quite natu-
ral to look for an error estimate in energy norm in the case
of variational inequalities, too .

The energy norm is given by
(11) lu] = a(u,w)’/? .

This is, by assumption (2) and (3) , a norm in V and a half-
norm in E.

Proposition 1. Let U ¢ K denote the solution of (9) resp.
of (10) and let u € K be any numerical approximation to u.
Then

(12) lu-312 = J@) - J(@) .
Proof. The solution u ¢ K satisfies theivariational in-
equality (10) for all v ¢ K . Hence, with v = u ,
lu-T]2 < |u-T|° + 2a(T,u-T) + 2<E(@),u-T> .

Using (8) and rearranging the terms on the right hand side,
one obtains immediately

Tu-T12 < Ju-T)2 + 2a(T,u-17) + 2F(u) - 2F(T)

J(u) - J(W) .
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Corollary 1. Let d be a lower bound for J(u), d.< J(U) ,
then from (12)

13) Iu--ﬁl2 = J) -4 .

Naturally, the question arises how to obtain. a lower
bound 4 which is sufficiently close to J(u). In the next
section a systematical approach to a lower bound will be
given in terms of complementary extremal problems involving
complementary variational inequalities.

4, Complementary variational problems

Since by assumtion the bilinear form a( , ) is non-
negative, one has a(u-v,u=-v) > 0 or

14) a(u,u) > -a(v,v) + 2a(v,u) u,v e E,
and (8) may be written in the form
(15) F(u) > F(v) + <f(vyu=~-v> u,veE .

Consider the functional J(u) a(u,u) + 2F(u) . From (14)
and (15) one has for any ue¢ K and any v € E

Ju) > - a(v,v) + 2a(v,u) + 2F(v) + 2<f(v),u~v>
= J(v) + 2 { a(v,u=-v) + <f(v),u-v> } .
Hence,
(16) J(u) = J(v)
provided, that the inequality
“1?7) a(vyu-v) + <f(v),u-v> = O

holds. Since we wish to obtain a lower bound for - J(u) for
any u e¢ K , we require the inequeality to hold for any u € K.

Therefore, we introduce the set K., of all elements
v € E satisfying the complementary variational inequality

(18) a(v,u-v) + <f(v),u-v> = O YueK.



- 414 -

W. Velte

Remark. In the case of Problem 1 the set Kc consists of
all elements satisfying the variational inequality

(19) a(vi,u=-v) > <f,u-v> VueK.

Note the similarity between the variational inequality (10)
and the complementary variational inequality (18). The roles
of u and v are interchanged. The solutions v of (18), however,
are not restricted to be in K and are in general not unigue.

Proposition 2. Let u ¢ K denote the solution of the varia-

tional problem (9) and v any element in K, . Then

(20) lv-T1° <= J@) < J3() . .

Proof. For any two elements u e K, v ¢ Kc the inequality
(18) holds. Hence, with u = u ,

Iv—ﬁlz élv—ﬁ|2 + 2a(v,u-v) + 2<f(v),u-v>
= |v-5|2 + 2a(v,8-v) + 2F(T) -2F(v)

= J@@) - J(v) .

Theorem 1. Suppose the variational problem
J(u) = a(u,u) + F(u) - mnin , uek
has a solution u € K . Then

(21) {u} = KnK,
and

(22) min J(u) = J@) = max J(v) .
uelk v G‘Kc

Further, for any two elements u ¢ K , Ve Kc one has

@3 4%Y - g2 < -2+ v-T% 2T - I .

Proof. En element w ¢ E is solution of (10) if and only if
weKnK . But (10) has only one solution. Hence (21) .
For any pair ue K, v ¢ E satisfying (17) one has from
(16) J(u) = J(v) . Since u e K n K, one has J() > J()
for any u ¢ K , and J(U) > J(v) for any v € K, . Hence (22).
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Inequality (23) follows from
Y _ 12 = - D+ v-DI2 = u-T)° + v -T2

together with (12) and (20) .

One can modify Theorem 1 in different ways, if the func-
tional J( ): E -» R is considered as restriction of an
other functional. In the following we consider only one ex-
tension. '

Let ¥( , ): EXE - R denote the functional given by
(24) ¥(v,w) = a(v,v) + 2F(w) .

Clearly, J(u) = P(u,u) for any u e¢ E . We now use (14) and
(15), written in the form
a(u,u) > =-a(v,v) + 2a(w,u)
and
JF(u) > Fw) + <£(w),u-w> .

For any ue K and any v,w ¢ E follows

J(u) = alu,u) + 2F(u)
=>TP(v,w) + 2 {a(v,u—v) + <f(w),u-w>}

Hence,
(25) J(u) = V(v,w)
provided, that the inequality

(26) a(v,u=v) + <f(w),u-w> 0

=
holds. This time, we introduce the set K of all pairs

(v,w) ¢ EXE satisfying the variational inequality

(27) a(vi,u-v) + <f(w),u-w> = O YVueK.

Proposition 3. Let u € K denote the solution of the varia-
tional problem (9) and the pair v,w any solution of the
variational inequality (27). Then

28)  |v-1l® = J@ - U(v,w)
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Proof. From (27) with u=1u

lv-T12 < [v-1|2 + 2a(v,a-v) + 2<£(w), T~ w>
1912 = |v|® + 2F(@) - 2F(w)
= J@) - ¥(v,w)

Theorem 2. Suppose the variational problem
J(u) = alu,u) + 2F(u) - min , uek

has a solution u ¢ K . Then

min J(u) = J@@) = max _, P(vw) .
uek (v,w)eKc
Minimum and maximum are attained for us=v=w=u . For any

u ¢ K and any pair (v,w) e ﬁc

HBEY - F)2 < u-T12 4 v-T1° 5 I@) - W)
Proof. The theorem follows immediately from (12) and (e8) .

Corollary 2. Choose w ¢ K . Then
Jw) = J@) = ¥(v,w)
for any v ¢ E satisfying the variational inequality

(29) a(vou=v) + <f(w),u-w> = O YueK.

Remark. In general it will be easier to find solutions v

of inequality (29) with given w ¢ K rather than solutions
of inequality (18). Therefore, in comparision with Theorem 1,
Theorem 2 and Corollary 2 are easier to apply.



- 417 -

W. Velte

5. Applications

Examg&e 1.
(1)»Consider a bounded region () C:RN with points x=5(x1;...,xN)

and smooth boundary [ consisting of two parts r% and ré .

Consider
_ du du ) du
atu,v) = ) ®jxox, ox, 0 (W = -2 a%; (830,

(j,k=1,...,N) with sufficiently regulag_coefficients. Let
E =H'(O) , i.e. the completion of ¢ with respect to
the norm

2 2
lully = Cllall3 + 2 Nou/akg2)72
(u,v)o and lluHc) denoting inner product and norm in L2((1) .

Further, let

V = {u ¢ H' /u=0 on fa }

K={ueH1/u=O on [, and uz0 onl-ai .
Suppose

a(u,v) = a(v,u) u,v € g

a(u,u) = O ue H

a(u,u) = cIIqu uelV (c>0) .

Then, for given f ¢ L2(f1), the extremal problem
J(u) = alu,u) - 2(f,u)o - min , ueK

has a unique solution u . From u ¢ K and variational in-
equality (7) we have (see [4], p.510)

_ : du ou _

L(u) = £ in v 3a=20 and uzy =0 on I_2 ,
at least in the sense of weak solutions and traces. n denotes
the conormal with respect to L(u) .

(ii) The set K, consists of all elements v e H' satis-
fying the complementary variational- inequality

a(vyu-v) - (fLu-v) =0 YueK.
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The inequality is satisfied if

L) =2 n O, L=0 onl,, grvg%drio.

Example 2.

(i) Consider the following boundary value problem for the
stationary temperature distribution (absolute temperature)

in a bounded region D_CR5 with smooth boundary [ consisting
of three parts r,l y I, and I-3 : ’

Au=0 ) in
_ ' du _ du 4
u=« onl,, =0 onl, , 3FZ+Bu =0 onr3
(X=0 , B=0 ) , i.e. given constant temperature on l_,] , no
heat flow across r2 and energy loss by radiation on I—B
according the law of Stefan - Boltzmann. The absolute tempe-
rature is always non negative.

Let E = H'(()) as in Example 1 , and let

V = { ue H / u=0on M |
K={ue i / u=xon [, ,u=0 onl_2ul—5}
a(u,v) = Sgradu grad v dx .
Assume o
a(a,u) = ¢ ||ull? YueV (c=0).

Then the extremal problem

J(w) = a(u,u) + 2 S G(u)al - min , uek
with : 5
il 5
£Bu for ux>0
G(u) = { >
0 for u<O

has a unique solution U ¢ K . (Note, that the functions
in H' have boundary values in Lg([_) .) *The corresponding

variational inequality is given by
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“a(u,v-u) + Sg(u)(v-—u)dr =0 VveK
M5
where Bu4 for u >0
g(u) = G'(u) = {
(0] for u<oO

From u ¢ K and the variational inequality one has Au= 0O

in () . Hence, by the maximum principle for harmonic func-;
tions, u(x) = O in () . Therefore from the variational
inequality

Ad =0 in L, FHF =0 onl_zg %%fﬁu4=0,onr5.

1

(ii) The set Kc consists of all functions v € H' satis-
fying
a(vyu-v) + _(g(v)(u-v)dl = 0 Yuek.
rB
The inequality is satisfied if
Av=0 in O , %—XEO on I, , %+g(v)20 onra,

gg(v)v ar .

o)
oér,g%dr > a(v,v) + |_3

(iii) The set. ’f{'c consists of all pairs (v,w) ¢ X i
satisfying the inequality

a(v,u-v) + rfg(w)(u-w)dr = 0 Yuek.
3

The inequality is satisfied if

Av=0_ 4in (O , %l 0 onT,, %I!l+g(w)20 on l_5 ,

v

n

qugg%dr > a(v,v) + I_gg(w)wdl— .



- 420 -

W. Velte

Literature

[1] Courant und Hilbert , Methoden der Mathematischen
Physik, vol.I, Springer—Vg}lag Berlin,
Heidelberg, New York 1968 .(3.Auflage)

[2] Fichera,G., Problemi elastostatici con vincoli unilateri:
il problema di Signorini con ambigue condizioni
al contorno. Mem. Accad.Naz. Lincei, Ser.8,
vol.? (1964),pp. 91 - 140 .

[3] PFriedrichs,K., Ein Verfahren der Variationsrechnung,
das Minimum eines Integrals als das Maximum
eines anderen Ausdruckes darzustellen.
Nachrichten Ges.Wiss. Gottingen (1929),pp.13-20.

[4] Lions,J.L.and Stampacchia,G., Variational inequalities.
Comm.Pure Appl.Math. vol.20 (1967),pp.493-519.

[5] Michlin,S.G., Variationsmethoden der Mathematischen
Physik. Akademie-Verlag Berlin 1962 .

[6] Robinson,P.D., Complementary variational principles.
In: Nonlinear functional analysis an applica-
tions. Ed. L.B.Rall. Academic Press New York,
London 1971 . pp.507-576.

[7] Sewell,M.J.,Dual approximation principles. Phil.Trans.
Roy.Soc. (London) vol.265 (1969),pp.319~351.

[8] Trefftz,E., Ein Gegenstiick zum Ritzschen Verfahren.
Verhandl 4.2.Internationalen Kongref fiur
Technische Mechanik (1926),pp.131-138.

Stampa: Editoriale Grafica - Roma - Tel. 5890154




	New Variational Techniques in Mathematical Physics
	Copyright Page
	Contents
	Problèmes a' Frontière Libre Liés a' Questions D' Hydraulique
	Bibliographie

	Integrales Convexes Duales
	Introduction
	I - Théorèmes de dualité des intégrales convexes
	II - Théorèmes de fermeture
	Bibliographie

	Etude De Problemes Unilateraux En Machanique Par Des Methodes Variationnelles
	Premiere Conference
	Generalities - Elasticite Avec Frottement
	1) Généralités
	2) Un problème d'élasticité avec frottement
	References


	Deuxieme et Troisieme Conferences
	Probleme Dynamique En Elasto-Viscoplasticite Et Plasticite Parfaite Avec Conditions De Frottement a La Frontiere
	1) Position du problème
	2) Mise en équations
	3) Formulations variationnelles
	4) Résultats
	5) Démonstration du théorème 1
	6) Démonstration du théorème 2
	7) Démonstration du théorème 3
	References


	Quatrieme Conferrence
	Plaque En Forte Flexion Soumise a Des Conditions Unilaterales
	1) Introduction
	2) Problème physique et équations
	3) Formulation variationnelle
	4) Résultats
	References


	Cinquieme Et Sixieme Conferences
	Resolution D'un Probleme De Stefan
	1) Problème Physique
	2) Mise en équations
	3) Formulation variationnelle
	4) Enoncé des résultats
	5) Démonstration du théorème 1
	6) Démonstration de propriété 1
	7) Démonstration de la propriété 2
	8) Démonstration du théorèm 2
	9) Conclusion
	Bibliographie



	Remarks About The Free Boundaries Occuring in Variational Inequalities
	References

	Torsion Elastoplastique D'arbres Cylindriques Problemes Ouverts
	1. Introduction
	1.1 Problème coneret
	1.2 Méthode et plan de l'exposé

	2. Probleme General Avec La Loi De Hencky
	2.1 Description du problème (B)
	2.2 Principe de Haar Karman et formulation variationnelle
	2.3 Résultats et conclusions pour le problème (B)
	Conclusions

	3. Resolution Du Probleme (A) Comme Cas Particulier De (B)
	3.1 Application de 2. Formulation et résolution d'um nouveau problème (A1)
	3.2 Propriétés de (Image)
	3.3 Apparition et propagation des zones plastiques
	3.4 Détermination du champ de déplacements solution de (A)

	4. Probleme General avec "Prandtl - Reuss Et Application Au Probleme (A' )
	5. Generalisation Au Cas Des Sections Multiconnexes: Problemes Ouverts
	5.1 Notations et nouvelle formulation
	5.2 Résultats et problèmes ouverts (Image) et (Image)

	References

	Dualite En Calcul Des Variations
	Résumé
	Introduction
	1. Espaces fonctionnels, opérateurs, formule de Green
	2. Fonctionnelles, énoncés des problèmes
	3. Premières propriétés
	4. Théorème
	5. Exemples (suite et fin)
	Bibliographie

	On Unilateral Constraints, Friction and Plasticity
	1. Introduction
	1. a Orientation
	1. b Summery of Chapter 2
	1. c Summery of Chapter 3
	1. d Summery of Chapter 4
	1. e Summery of Chapter 5
	1. f Summery of Chapter 6

	2. Duality and Subdifferentials of Convex Functions
	2. a Polar Functions
	2. b Pairs of Dual Functions
	2. c Images of Properties or Relations
	2. d Inf - Convolution and the Image of Addition
	2. e. Subgradients and Subdifferentials
	2. f Addition Rule
	2. g Images by Linear Mappings
	2. h Conjugate Gauge Functions and Quest - Homogeneous Convex Functions

	3. Superpotentials and Perfect Constraints
	3. a Configurations and Forces
	3. b Statical Laws
	3. c Frictionless Bilateral Constraints
	3. d Perfect Unilateral Constraints
	3. e Superpotentials
	3. f Dual Minimum Properties
	3. g Saddle - Point Property
	3. h One - Dimensional Exemples
	3 i An Example of Compound System
	3 j Various Treaments of the Equilibrium Problem

	4. Laws of Resistance
	4. a Velocities and Forces
	4. b Pseudo - Potentials
	4. c Viscous Resistance
	4. d Velocity Constraint
	4. e Friction and Plasticity
	4. f Dissipation Function
	4. g Superposition of Resistance Laws

	5. Moving Sets
	5. a Hausdorff Distance and Variation
	5. b The Case of Convex Sets in a Normed Space
	5. c Intersection of two Moving Convex Sets
	5. d Distance and Penalty Function in a Hilbert Space
	5. e Moving Convex Set in a Hilbert Space


	Point de vue Algébrique Convexité er Integrandes Convexes en Mécanique des Solides
	Introduction
	Chapter I Structure Algebriwe des Probelmes de Mecanique des solides
	1. Deplacements et Efforts
	2. Lois D'efforts
	3. Deplacements Solidifiants et Torseurs, Premier Exemple D'element Mecanique Quotient
	4. Deformations et Contraintes
	5. Liaisons; Deplacements et Deformations Imposes
	6. Equations D'equilibre de La Plaque
	7. Situation de Reference Pour un Probleme de Mecanique des Solides

	Chapter II Problemes D'equilibre Pour des Lois Constitutives de type Sous-Differentiel
	1. Hypotheses Generales-Exemples
	2. Probleme D'equilibre et Theoremes D'extremum
	3. Formulation des Problemes de Point-Selle
	4. Integrandes Convexes et Lois Constitutives
	5. Un Exemple D'elasticite non Lineaire Comportant Pour cas Linites le Comportement Rigide-Plastique et le Materiau a Blocage

	Chapter III. Opérations et operations Régularisées sur Les Elements Mécaniques et les lois D'effort sous-Différentielles
	1. Lois Mathematiquement ou Physiquement Equivalementes
	2. Approximation et Regularisation des Lois Sous-Differentiells
	3. Addition des Lois Sous-Differentielles
	4. Some Gauche de Deux Lois D'effort
	5. Quotient Droit et Quotient Gauche
	6. Deux Utilisations Pratiques du Quotient Droit
	7. Une Utilisation Pratique du Quotient Gauche : La Sous-Structuration

	Biblioraphie

	On Certain Convex Sets of Measures and Phases of Reacting Mixtures
	On Complementary Variational Inequalities
	1. Introduction
	2. The variational problem
	3. Error estimate in energy norm
	4. Complementary variational problems
	5. Applications
	Literature




