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Preface to the Book Series

An integrated view of Physics of Lakes requires expert knowledge in different spe-
cialities which are hardly found in single scientists. Even in a team the overall
subject must be restricted; this has also been done here, as we only treat in this
book series the geophysical aspects of fluid dynamics. Being applied to very com-
plicated natural objects and phenomena, this science traditionally uses three main
complementary approaches: theoretical description, field observation and (numeri-
cal, laboratory and other kinds of) modelling. The present work extensively uses all
three approaches, this way providing to the reader an opportunity to build a coherent
view of the entire subject at once – from the introduction of governing equations to
various field phenomena, observed in real lakes. Several features, we believe, will
make the series of especial interest for a wide range of students and scientists of geo-
physical interest as well as specialists in physical limnology. Before plunging into
the main focus of lake physics we start with a detailed introduction of the main math-
ematical rules and the basic laws of classical physics; this makes further work with
equations and their solutions much easier for readers without solid knowledge in
the common trade of the background of mathematics and physics of continuous sys-
tems – biologists, chemists and ecologists. These sciences are today the most active
branches in limnology and are utterly needed for the development of modern soci-
ety; thus, an easily available physical background for them cannot be overestimated.
A feature of this treatise is a consolidated view expressed in its three books of a wide
panoramic overlook of various lake phenomena, inherent in physical oceanography
and a fairly thorough theoretical treatment of fluid mechanics. This way, the reader
will find here both the mathematical background and general physical laws and con-
siderations of natural phenomena with their driving mechanisms (waves, turbulence,
wind action, convection, etc.) and also a zoo of field examples from many lakes on
our Globe. Special attention is devoted to the dynamic response of lakes on their
free surface and in their interior, perhaps best coined as the climatology in response
to external driving mechanisms – wind action and seasonal input of solar energy.
These subjects reflect the many years of professional interests of the authors.

The content of the books and the manner of the presentation are, of course, sig-
nificantly influenced by the composition of the authors’ team. Being professionals
of slightly different branches of the same science (limnology, fluid dynamics and
oceanography), we tried to present lake physics in the most coherent way, extracting
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viii Preface to the Book Series

important kernels from all the mentioned fields. The differences in opinions, what
procedure might be the optimal approach in presenting a certain topic have occa-
sionally been quite extensive, requiring compromises, but we believe that the inter-
ference, rather than simple sum, of our knowledge contributed to an enhancement of
the present product than would have been reached otherwise. An additional joy for
us is national composition of our international team; translation of this Preface from
English into our native languages can be directly understood by more than 70% of
the Earth population.

The subjects of this treatise on Physics of Lakes, divided into three volumes,
cover the following topics.

VOLUME 1: Physics of Lakes – Formulation of the Mathematical
and Physical Background

It commences in the introduction with a general, word-only motivation by describ-
ing some striking phenomena, which characterise the motion of lake water on the
surface, in the interior of lakes and then relate these motions to the density distri-
bution. It lists a large number of lakes on the Earth and describes their morphology
and the causes of their response to the driving environment.

Because physics of lakes cannot be described without the language used in math-
ematics and only limited college knowledge calculus and classical NEWTONian
physics is pre-assumed, these subjects are introduced first by using the most simple
approach with utmost care and continuing with increasing complexity and elegance.
This process leads to the presentation of the fundamental equations of lake hydro-
dynamics in the form of ‘primitive equations’ to a detailed treatment of angular
momentum and vorticity. A chapter on linear water waves then opens the forum to
the dynamics in water bodies with free surface. Stratification is the cause of large
internal motions; this is demonstrated in a chapter discussing the role of the distri-
bution of mass in bounded water bodies. Stratification is chiefly governed by the
seasonal variation of the solar irradiation and its transformation by turbulence. The
latter and the circulation dynamics are built on input of wind shear at the surface.
The early theory of circulation dynamics with and without the effect of the rotation
of the Earth rounds off this first book into the dynamics of lakes. A chapter on turbu-
lence modelling and a further chapter collecting the phenomenological coefficients
of water complete this book on the foundations of the mathematics and physics of
lakes.

VOLUME 2: Physics of Lakes – Lakes as Oscillators

The overwhelming focus in this volume of the treatise is on linear waves in homo-
geneous and stratified lakes on the rotating Earth. It comprises 12 chapters, starting
with rotating linear shallow-water waves and demonstrating their classification into
gravity and ROSSBY waves for homogeneous and stratified water bodies. This leads
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naturally to the analysis of gravity waves in unbounded, semi-bounded and bounded
domains of constant depth: KELVIN, inertial and POINCARÉ waves, reflection of
such waves at the end of a gulf and their description in sealed basins as so-called
inertial waves proper. The particular application to gravity waves in circular and
elliptical basins of constant depth then builds further confidence towards the treat-
ment of barotropic and baroclinic basin-wide wave dynamics affected by the rotation
of the Earth. The classical analytical approach to the baroclinic motion in lakes
is done using the two-layer approximation. Recent observations have focused on
higher order baroclinicity, a topic dealt with in two chapters. Whole lake responses
are illustrated in barotropic and baroclinic wave analyses in Lake Onega1 and Lake
Lugano, respectively, with detailed comparisons of field data. The final four chapters
are then devoted to a detailed presentation of topographic ROSSBY waves and the
generalized CHRYSTAL equations and their identification by field observations.

VOLUME 3: Physics of Lakes – Methods of Understanding
Lakes as Components of the Geophysical Environment

Red line of this volume is the presentation of different methods of investigation
of processes taking place in real lakes. Part I is devoted to numerical modelling
approaches and techniques, applied to demonstrate the response of a lake to wind
forcing. Numerical methods for convectively dominated problems are compared, as
well as different numerical treatments of advection terms and subgrid turbulence
parameterisation. Methods and tools of field measurements are laid down in Part II,
including the presentation of principles of operation of commonly used current,
temperature, conductivity, pressure and other sensors, along with modern techniques
of measurement in the field. Basic rules of time series analysis are summarised.
Laboratory experimentation, presented in Part III, is introduced by an account of
dimensional analysis. Results of laboratory experiments on large-amplitude non-
linear oscillations, wave transformation and meromixis and convective exchange
flows in basins with sloping bottom are presented. Combined presentations of field,
numerical and laboratory approaches build a general view of present-day methods
of physical investigations in limnology.

Lake physics is a boundless subject embracing a great variety of questions. Some
materials on the seasonal water cycle, stratification and various mixing and stirring
mechanisms have been collected by us but are still not included in the treatise. It
may hopefully be summarised in the fourth volume.

Zürich, Switzerland Kolumban Hutter
Darmstadt, Germany Yongqi Wang
Kaliningrad, Russia Irina P. Chubarenko
June 2010

1 In today’s Russian, ‘Onega’ and ‘Onego’ are both in use. In this book we use ‘Onega’.



Vorwort zur Buchreihe

Eine übergeordnete Betrachtungsweise von Physik der Seen verlangt überdurch-
schnittliche Kenntnisse in unterschiedlichsten Spezialgebieten, die man kaum in
einer einzelnen Person vereinigt findet. Selbst innerhalb eines Teams muss das über-
geordnete Thema eingeschränkt werden; das ist auch hier getan worden, da wir
in diesen Bänden der Seenphysik nur geophysikalische Belange der Fluiddynamik
behandeln. Dieses Gebiet der Strömungsmechnik, hier angewendet auf ziemlich
komplizierte natürliche Objekte und Phänomene, verwendet traditionell drei unter-
schiedliche, aber komplementäre Vorgehensweisen: Theoretische Beschreibungen,
Feldbeobachtungen und (numerische, Labor oder anderweitige) Modellierung. Das
vorliegende Werk macht ausgedehnt Gebrauch von all diesen Methoden und gibt
dem Leser so die Gelegenheit, eine kohärente Sichtweise über das gesamte Gebiet
zu erarbeiten von einer Einführung in die Grundgleichungen bis zu den unter-
schiedlichsten Phänomenen, die man in realen Seen beobachten kann. Wir glauben,
dass verschiedene Merkmale dieses Werk von speziellem Interesse macht für eine
breite Leserschaft von Studierenden und Wissenschaftlern mit geophysikalischem
Interesse, wie auch für Spezialisten der physikalischen Limnologie. Bevor wir
jedoch eintauchen in das Zentrum der Seenphysik, starten wir mit einer detaillierten
Einführung in die mathematischen Voraussetzungen und die grundlegenden Gesetze
der klassischen Physik; dieses Vorgehen macht das Arbeiten mit Gleichungen und
ihren Lösungen wesentlich leichter für all jene Leser, welche keine gründlichen
Kenntnisse in der üblichen Anwendung der Mathematik und Physik von kon-
tinuierlichen Systemen mitbringen, in der Regel angewandte Biologen, Chemiker
und Ökologen. Diese Wissensgebiete gehören heute zu den aktivsten Gruppen der
Limnologie und bilden daher die Spezialwissensgebiete, die für die Entwicklung
der modernen Gesellschaft von großer Bedeutung sind. Eine leicht zugängliche
Darbietung des physikalischen Hintergrundes kann nicht überschätzt werden. Ein
Hauptzug dieses Werkes ist eine über drei Bände verteilte Betrachtungsweise,
welche eine Übersicht über verschiedene Phänomene in Seen schafft, welche der
physikalischen Ozeanographie zugeordnet sind und auf einer streng theoretischen
Handhabung der Methoden der Fluidmechanik beruhen. So findet der Leser hier
sowohl den mathematischen Hintergrund, die allgemeinen physikalischen Gesetze
und deren Anwendung auf die natürlichen Phänomene der Seenphysik mit ihren
Anregungsmechanismen (Wellen, Turbulenz, Windantrieb, Konvektion, etc.), wie
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auch eine ganze Palette von Feldbeispielen vieler Seen dieser Erde. Spezielle Beach-
tung findet die dynamische Reaktion von Seen auf ihrer freien Oberfläche und in
ihrem Innern, das Klima des Sees als Antwort der äusseren Antriebsmechanismen
Wind-Antrieb, jahreszeitlicher Eintrag der Sonnenenergie. Diese Thematik umfasst
die jahrelange Erfahrung der beruflichen Interessen der Autoren.

Der Inhalt der Bücher und die Art und Weise der Darstellung des Stoffes
sind offensichtlich stark von der Zusammensetzung des Autorenteams beeinflußt.
Als Repräsentanten von (leicht) unterschiedlichen Spezialgebieten derselben Wis-
senschaft (Limnologie, Fluiddynamik und Ozeanographie), haben wir uns bemüht,
die Seenphysik in kohärenter Weise darzustellen und wichtige Elemente aller oben
erwähnten Gebiete zu extrahieren. Meinungsunterschiede, wie ein Thema am opti-
malsten darzustellen sei, waren gelegentlich recht heftig und verlangten Kompro-
misse; wir glauben hingegen, dass die Interferenz unseres Wissens im Gegensatz zu
einer einfachen Summe mehr zur Qualität des gegenwärtigen Produktes beigetragen
hat als dies andernfalls der Fall gewesen wäre. Ein zusätzlicher Gewinn für uns ist
die internationale Zusammensetzung des Teams. Die Übersetzung dieses Vorwortes
aus dem Englischen in unsere Muttersprachen kann direkt verstanden werden von
mehr als 70% der professionellen angesprochenen Bevölkerung dieser Erde.

Der Inhalt dieser Abhandlung über Seenphysik, aufgeteilt in drei Bände, umfasst
die folgenden Themen:

BAND 1: Physik der Seen – Formulierung des mathematischen
und physikalischen Hintergrundes

Der Band beginnt in der Einführung mit einer allgemeinen, formelfreien Motivation
durch Beschreibung von gewissen, treffenden Phänomenen, welche die Bewegung
des Seewassers an der Oberfläche und im Seeinnern betreffen und ordnen letztere
der Verteilung der Dichte des Seewassers zu. Es wird zudem eine große Zahl von
Seen auf dieser Erde gelistet und ihre Morphometrie charakterisiert, einschließlich
der Beschreibung ihrer Verhaltensweise auf Grund der Reaktion auf die antreiben-
den Mechanismen.

Da die Physik von Seen nicht ohne die mathematische Sprache beschrieben wer-
den kann, und da nur gerade die einfachsten Kenntnisse der Hochschulanalysis und
der klassischen Physik vorausgesetzt werden, erfolgt eine Einführung in diese The-
men anfänglich in der einfachsten möglichen Art und mit gößter Sorgfalt; mit wach-
sender Gewöhnung und fortschreitender Komplexität wird dann aber schrittweise
auf eine elegantere Schreibweise übergegangen. Dieser Prozess führt so (i) zur
Darstellung der Grundgleichungen der Seen-Hydrodynamik in Form der primitiven
Gleichungen, die direkt den physikalischen Bilanzen entsprechen, und (ii) zu einer
detaillierten Behandlung des Drehimpulssatzes und der Wirbelbilanzgleichungen.
Ein Kapitel über lineare Wasserwellen öffnet danach das Forum für die Dynamik
von wassergefüllten Becken mit freier Oberfläche. Die Dichteschichtung ist Ursache
für große interne Bewegungen, was in einem Kapitel demonstriert wird, in welchem
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die Rolle der Verteilung der Masse in endlichen Becken untersucht wird. Schichtung
wird hauptsächlich durch die jahreszeitliche Variation der Sonneneinstrahlung und
deren Umformung durch Turbulenz gesteuert. Letztere sowie die Zirkulationsdy-
namik werden durch den Eintrag von Windschub an der Seeoberfläche gesteuert.
Die frühe Theorie der Zirkulationsdynamik mit dem, bzw. ohne den, Einfluß der
Erdrotation schließen dann den Themenkreis dieses ersten Bandes der Seendy-
namik. Ein Kapitel über turbulente Modellierung und ein weiteres Kapitel, das die
phänomenologischen Koeffizienten von Wasser behandelt, vervollkommnen diesen
ersten Band über die Grundlagen der mathematischen und physikalischen Behand-
lung der Physik von Seen.

BAND 2: Physik der Seen – Seen als Oszillatoren

Das hauptsächliche Thema in diesem zweiten Band der Monographie Physik der
Seen betrifft lineare Wellen in homogenen und geschichteten Seen auf der rotieren-
den Erde. Er umfasst zwölf Kapitel und beginnt mit linearen Wasserwellen auf der
rotierenden Erde. Es werden Klassifikationen eingeführt, welche die Schwerewellen
und ROSSBY-Wellen im begrenzten homogenen und im Schichtmedium charakter-
isieren. Dies führt in natürlicher Weise zur mathematischen Analyse von Schw-
erewellen im unbegrenzten und endlichen Medium mit konstanter Tiefe: KELVIN,
Inertial- und POINCARÉ Wellen, Reflektion solcher Wellen am Ende eines Golfes
und deren Beschreibung in vollkommen geschlossenen Becken als sogenannte
eigentliche Inertialwellen (inertial waves proper). Die Anwendung von Gravitations-
wellen in kreisförmigen und elliptischen Becken konstanter Tiefe führt in natür-
licher Weise zur interpretationsgerechten Behandlung von barotroper und barokliner
beckenweiter Wellendynamik auf der rotierenden Erde. Das klassische analytis-
che Vorgehen zur Beschreibung der baroklinen Bewegung in Seen wird mit der
Zweischichten-Approximation gemacht. Neuere Beobachtungen an Seen haben sich
jedoch auf das Erfassen der höheren Baroklinizität konzentriert. Diesem Thema
werden zwei Kapitel gewidmet. Beckenweite Dynamik wird anhand von barotropen
und baroklinen Studien des Onega Sees und Luganersees vorgenommen und mit
ausgedehnten in-situ Messungen verglichen. Die letzten vier Kapitel werden der
detaillierten Darstellung topographischer ROSSBY Wellen und den verallgemein-
erten CHRYSTAL Gleichungen und deren Identifikation anhand von Feldmessungen
gewidmet.

BAND 3: Physik der Seen – Methoden, die Seen als Komponenten
des geophysikalischen Umfeldes verstehen

Der rote Faden in diesem Band ist die Entwicklung unterschiedlicher Meth-
oden zur Charakterisierung von physikalischen Prozessen in natürlichen Seen.
Teil I ist numerischen Modellierungsmethoden und -techniken gewidmet, welche



xiv Vorwort zur Buchreihe

die Reaktion eines Sees auf die äusseren Windkräfte bestimmen. Numerische
Methoden für verschiedene, von Konvektion dominierten Problemen, werden
untereinander verglichen. Desgleichen werden unterschiedliche Schemata für die
advektiven Terme in den bestimmenden partiellen Differezialgleichungen und die
Subgrid-Parametrisierung der Turbulenz getestet. In Teil II werden Methoden
und Werkzeuge für Feldmessungen erläutert, und es werden die Arbeitsweisen
von üblichen Strömungs-, Temperatur-, Leitfähigkeits-, Druck- und anderen
Messgeräten vorgestellt bis hin zu den modernen Messtechniken, welche bei
Feldmessungen eingesetzt werden. Die Grundregeln der Zeitreihenanalyse und
statistischen Datenauswertung werden ebenfalls zusammengefaßt. Laborexperi-
mentiertechniken werden im Teil III dargelegt und auf die Grundlage der Dimen-
sionsanalyse abgestützt. Es werden Resultate vorgestellt von Laborexperimenten
betreffend nichtlineare Schwingungen mit großer Amplitude, und es wird ihre Insta-
bilität und Umwandlung durch Meromixis und konvektiven Austausch in Becken
mit geneigten Topographien entlang ihrer Küstenlinien behandelt. Kombinierte
Darstellung von Feldbeobachtungen, numerischen und Labormessdaten-Analysen
stellen heute ganz allgemein den methodischen Zugang zur Interpretation von
physikalischen Prozessen der Limnophysik her.

Physik der Seen ist ein sehr breites Gebiet, welches ein großes Spektrum von
Fragestellungen umfasst. Gewisse Besonderheiten des jahreszeitlichen Wasserzyk-
lus, Schichtung und unterschiedliche Mischungs- und Vermengungsmechanismen
sind von uns studiert und angegangen worden, aber in diesem Werk noch nicht
enthalten. Es ist zu wünschen, dass wir die Zeit und Energie aufbringen, diese in
einem vierten Band zusammen zu fassen.

Zürich, Switzerland Kolumban Hutter
Darmstadt, Germany Yongqi Wang
Kaliningrad, Russia Irina P. Chubarenko
June 2010
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Preface to Volume I

At an early planning stage of this book series – almost 10 years ago – the inten-
tion was to write a treatise on lake physics or physical limnology, designed to be
understandable by limnologists of all kinds, those with a basic training in physics
and mathematics: physical oceanographers, physicists, applied mathematicians and
engineers, as well as classical limnologists with principal training in biology, chem-
istry and ecology. This approach requested a layout of the fundamental mathemat-
ical and physical background in a form accessible with only basic tools of college
calculus as is generally taught in a two semester course in undergraduate analysis.
Analogously, the fundamental laws of classical physics – only mechanics and ther-
modynamics – could not be assumed to be fully known, perhaps once learned but
(partly) forgotten. Therefore, these basic axioms of classical physics also needed to
be laid out.

This is the reason why this first book contains after a brief introduction into
the subject of lakes on the Earth a chapter on mathematical prerequisites and a
further chapter on the thermodynamical laws of classical physics. These chapters
are primarily tutorial to those for whom the topic seems novel and others who feel
weak in the mentioned subjects and need to rehearse the perhaps new material.
These chapters lay the foundations of mathematics and physics and set the language
that is freely used in the ensuing developments.

The knowledge acquired in these fundamental chapters is in the subsequent
chapter on the fundamental equations of lake hydrodynamics applied to the laws
of conservation of mass, momenta, energy and species mass. This is done in the
conceptually most simple form, which, we believe, transmits the substantive con-
tent of these laws in an intellectually transparent form by using infinitesimal mate-
rial elements; this approach of derivation, we admit, becomes technically rather
involved when, e.g., applied to the energy equation and calls for more elegance,
which is introduced concurrently with the development by a transformation from
the Cartesian notation to a symbolic, coordinate-free notation of the governing equa-
tions. We think that this approach enlightens the learning process and is likely apt
for considerable removal of the anxiety of formal mathematics, which cannot be
avoided when deriving the ‘primitive’ equations used in the description of dynamic
and thermal behaviour in the physics of lakes. The same equations, incidentally,
are also applicable in physical oceanography and meteorology. The chapter ends

xxix
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with the presentation of two approximations: one is known as the BOUSSINESQ

approximation – it holds when the density variations are small – and the other is the
shallow-water approximation, in which the lake geometries and water currents are
large in the horizontal directions as compared to corresponding values in the vertical
direction.

For an inviscid fluid under so-called adiabatic conditions the global form of the
conservation law of angular momentum (Chap. 5) can be taken as a basis for a
number of elegant vorticity theorems which allow general inferences regarding the
behaviour of these idealised hydrodynamic processes. They give qualitative pic-
tures, which are slightly modified for viscous fluids under non-adiabatic conditions.
The role played by the rotation of the Earth is explicitly apparent in these vorticity
theorems, which provide a particularly deep understanding of the vorticity-laden
fluid motion.

Turbulence, considered in Chap. 6, entered the science of fluid mechanics when
REYNOLDS in 1883 performed his steady pipe flow experiments and demonstrated
that two characteristically different flow patterns exist in such motions, one in which
streak lines are essentially rectilinear (called laminar) and a second in which they
are torn and tangled with an apparent random structure (the turbulent flow). Tech-
nically, the turbulent flow is made accessible by restricting considerations to certain
mean behaviour, characterised by length and timescales, and accounting for the sub-
scale processes by parameterising the correlation products (which are averages of
products of fluctuation quantities) accordingly. The computational procedure to this
approach is achieved by introducing filter operations to the primitive equations. The
emerging class of turbulent equations then depends on the mathematical properties
of the filter operations and the degree of complexity of the parameterisation of the
correlation terms. The classes of theories depend on the filter properties and are
called Reynolds-averaged Navier–Stokes (RANS) or large eddy simulation (LES)
equations, and the complexity of the parameterisations of the correlation terms is
known as zeroth, first and higher order closure, also denoted gradient-type closure,
one or two equation models, e.g. k − ε closure and Reynolds stress models, etc. A
brief account on these turbulence parameterisations is given.

The approach to turbulent closure in the pre-computer time and occasionally
still today is to use the classical eddy viscosity and eddy diffusivity (for heat and
mass diffusion) if thought appropriate anisotropically for these to distinguish the
difference between the turbulent intensities in the horizontal and vertical directions.
We give an outline of this procedure from a more fundamental point of view and
delineate its applicability.

Whereas the above-treated subjects are fundamental to most processes in lake
physics (and physical oceanography, meteorology and geophysical fluid mechanics,
in general), the remainder of the book (Chaps. 7, 8 and 9) is devoted to special
topics, which are further studied in more detail in volumes 2 and 3. In geophysical
fluid dynamics, the fact that phenomena are taking place in a non-inertial frame
of reference makes the fluid motions a great deal richer than otherwise. Moreover,
flow properties in lakes, the ocean and the atmosphere are characteristically differ-
ent depending upon whether the fluid is homogeneous or stratified, and finally, all
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these motions possess some degree of randomness in their turbulent structure. In
the hydrodynamic response of lakes the cause for the pulsating nature of the current
and temperature fields is due to internal flow instabilities and due to the stochastic
nature of the driving wind.

Waves at the surface and in the interior of lakes are an important topic in phys-
ical limnology, because they are permanently generated by wind and have distinc-
tively different behaviour when the lake water is, respectively, homogeneous and
stratified. In Chap. 7 an account is given on linear water waves in constant depth
containers with free surface when the rotation of the Earth is ignored. Deep-water
and shallow-water linear waves and their dispersive and non-dispersive nature are
studied. The reflection properties at walls are explained. The eigen oscillations of
the water motion in a rectangular basin of constant depth terminate this introductory
chapter on linear water waves.

Since the density distribution in lakes varies continually with an annual period
and the dynamics of free and bounded water motions depends chiefly on the density
structure, Chap. 8 is devoted to distinctive physical implications of the mass dis-
tribution in a lake (or ocean). At first, typical vertical temperature profiles are dis-
cussed as they are transformed in lakes within the temperate belt of the Earth from
homo-thermal conditions in late winter/early spring to primarily vertically stratified
configurations generated by solar irradiation and possibly transformed by turbulent
mixing. The unstratified and stratified configurations give rise to the existence of
two different barotropic and baroclinic flow states, respectively. Moreover, the sign
of the vertical density gradient gives rise for the identification of stable and unstable
stratification of water masses. Depending on the stratification within a lake, either
internal wave dynamics or convective flow features are established and may thus
contribute to the transport of species and the ventilation of the deeper regions of a
lake. A detailed study of linear oscillations illustrates how the density distribution
affects these motions.

The vertical distribution of the horizontal current in open waters or a bounded
lake, presented in Chap. 9, belongs to the central challenges which were studied
by mathematicians and physical oceanographers in the first half of the 20th cen-
tury. The analytical methods designed by them were continued in the 1970s and
1980s and have found applications in rather sophisticated early computer software
of wind-induced motions of the free surface of lakes under stormy meteorologi-
cal conditions, known as storm surges. The chapter commences with the analysis
of steady flow in a narrow rectangular basin of constant depth subject to uniform
wind in its long direction, first for unstratified waters and then for two-layered
configuration. For homogeneous waters the wind shear stress at the surface gen-
erates downwind near-surface current, surface set-up and an upwind return flow
at depth. In the two-layer system the free surface set-up is counter-balanced by a
strong opposite slope of the interface of the layers. The surface current at the free
surface is again with the wind, but the return current is in the vicinity of the inter-
face. The corresponding downwind flow in the lower layer depends strongly upon
whether and how the interface and basal friction forces are operating. Details are
discussed.
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The role played by turbulent friction is studied in Chap. 9 by solving the so-called
EKMAN problem; this is the response of an infinitely deep homogeneous water mass
in a horizontally infinite ‘ocean’ subject to a constant uniform wind on a frame
rotating with constant angular velocity. This problem was first solved by EKMAN in
1905 on the assumption that the (eddy) viscosity is constant and only shear stresses
τxz and τyz (x, y horizontal, z vertical) would be significant.

This original EKMAN problem was later generalised in various respects. For
instance, the vertical eddy viscosity was assumed to vary with depth according to
prescribed functional relations (chosen to allow an analytical solution of the emerg-
ing problem) and the infinite depth ocean was replaced by a finite depth ocean.
Moreover, the horizontally infinite domain was replaced by a finite bounded domain,
and in a further generalisation the steady-state conditions were replaced by time
dependence to allow storm surge evolutions due to time-dependent wind. All these
formulations are based on the assumption that only τxz and τyz must be accounted
for in the construction of the solutions, and these solutions had been found by
HIDAKA in 1934 and by WELANDER in 1957. The solution procedures were, how-
ever, too complicated, even when computers were already available. In 1963 PLATZ-
MAN came forward with a very elegant approximation of the basal shear stress
and constructed first numerical solutions of the governing equations for the time-
dependent, wind-induced current and set-up problem. To various given North Amer-
ican storms between 1940 and 1959 he compared computed time series of the set-up
at various limnigraph stations around Lake Erie with the corresponding measured
time series and found surprising agreement. This linear and stress-approximated,
wind-induced current determination in homogeneous water is generalised in
volume 3 to non-linear stratified situations with modern high-powered numerical
techniques.

Chapter 10 of this first volume of Physics of Lakes gives a collection of the ther-
momechanical coefficients of water, in the temperature range T ∈ [0,∼ 30]◦C. This
chapter is technically useful as it provides quantitative information that is useful for
the entire book series.

Zürich, Switzerland Kolumban Hutter
Darmstadt, Germany Yongqi Wang
Kaliningrad, Russia Irina P. Chubarenko
June 2010
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ŵ . . . . . . . . . . . Scaled dimensionless vertical water velocity
w . . . . . . . . . . . Complex velocity (w = u + iv)
w = curl v . . . Vorticity vector
W . . . . . . . . . . Wind speed immediately above lake surface
W (|k|) . . . . . . Wavenumber function, defining the dispersion relation

(ω = W (|k|))
W . . . . . . . . . . Depth-integrated complex horizontal velocity: W = Qx + iQy

W(x, y) . . . . . Complex velocity for lake bottom EKMAN layer
W = skw L . Vorticity tensor (= − 1

2εω)
Wm(t) . . . . . . Horizontal wind velocity at shore near stations of Lake Erie

enumerated by m
x . . . . . . . . . . . Horizontal coordinate of a Cartesian system in three dimensions
x . . . . . . . . . . . Position vector in the present configuration
‖ x ‖ . . . . . . . . Norm of x: ‖ x ‖= √x · x
x . . . . . . . . . . . Dimensionless length coordinate (x = x/�)
X . . . . . . . . . . . Position vector in three-dimensional space of the reference

configuration
y . . . . . . . . . . . Horizontal coordinate of a Cartesian system in three-

dimensional space
y,Y . . . . . . . . Position vectors in the present and reference configurations



xliv Notations

z . . . . . . . . . . . . Vertical coordinate of a Cartesian system in three-dimensional
space

zhom . . . . . . . . Centre of mass of a homogeneous lake
zstrat . . . . . . . . Centre of mass of a vertically stratified lake
z . . . . . . . . . . . . Dimensional depth coordinate (z = z/h))
Zn(z) . . . . . . . Eigenfunction of the linear baroclinic internal oscillation of the

vertical fluid velocity in a constant depth basin

Greek Symbols

α . . . . . . . . . . . Heat transfer coefficient

αT = − 1

ρ

dρ

dT
Coefficient of thermal expansion

α′ . . . . . . . . . . . Wind factor (in the EKMAN problem)

β = d f

dφ
. . . . . Beta factor in the β-plane

γ . . . . . . . . . . . Friction coefficient
Γ . . . . . . . . . . . Symbol for circulation integral
δ . . . . . . . . . . . . Symbol for a small number
δi j . . . . . . . . . . KRONECKER delta (δi j = 1 if i = j and δi j = 0 if i = j).
δi j . . . . . . . . . . Components of the unit matrix
� = ∇2 = ∇ · ∇ LAPLACE operator, symbol for the difference of two numbers
�ρ . . . . . . . . . . Density difference
�πhom . . . . . . Change in gravity potential of a water column stratified in two

homogeneous layers
��hom . . . . . . Change in gravity potential of a water column stratified in two

homogeneous layers
ε . . . . . . . . . . . Symbol for a small positive number
ε . . . . . . . . . . . Specific internal energy
ε, εi jk . . . . . . . LEVI–CIVITÀ tensor, alternating symbol

εi jk =
⎧

⎨

⎩

1 : if i, j, k are an even permutation of 1, 2, 3
−1 : if i, j, k are an odd permutation of 1, 2, 3

0 : if i, j, k are no permutation of 1, 2, 3

ε = 4ν〈 IID′ 〉 Turbulent dissipation rate
ζ . . . . . . . . . . . Vertical displacement of an isolated water particle in a

stratified still fluid
ζ(x, y, t) . . . . Function defining the free surface of a lake or ocean:

(z = ζ(x, y, t))
ζ . . . . . . . . . . . Dynamic bulk viscosity
ζ = (curl v)z Vertical component of the vorticity vector, simply called

vorticity
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ζabs, ζrel . . . . . Vertical component of the absolute and relative vorticity vector
η, ηwater, ηair . Dynamic shear viscosity [kg m−1 s−1]
η . . . . . . . . . . . Specific entropy
θ . . . . . . . . . . . Empirical, later also absolute temperature [in degree CELSIUS

and KELVIN]
θ = k · x − ωt Phase of a wave with wavenumber k and frequency ω

θ = π
z

D
+ π

4
Phase angle (in the EKMAN problem)

κ . . . . . . . . . . . Thermal conductivity
κ . . . . . . . . . . . von Kármán constant (= 0.41)

κ = d2ρ

dθ2 〈 θ 〉
. Curvature of the density as a function of θ (turbulence theory)

λ . . . . . . . . . . . LAGRANGE parameter, eigenvalue of the stretching tensors
U, V

λ . . . . . . . . . . . Scalar parameter associated with the potential vorticity πλ
μ . . . . . . . . . . . Dynamic shear viscosity
ν . . . . . . . . . . . Kinematic viscosity (ν = η/ρ or ν = μ/ρ)
πα . . . . . . . . . . Production rate density of constituent α
πλ . . . . . . . . . . Potential vorticity associated with λ
〈π 〉bt . . . . . . . Depth-averaged barotropic potential vorticity
πεbt . . . . . . . . . . Barotropic potential vorticity in the shallow-water

approximation
πbc . . . . . . . . . Baroclinic potential vorticity
π

app
bc . . . . . . . . Approximate baroclinic potential vorticity
ΠV . . . . . . . . . Entropy production within the material body V
ρ . . . . . . . . . . . Mass density
ρ∗ . . . . . . . . . . Density of water at normal pressure and 4◦CELSIUS

ρ0 = ρ0(z) . . Density function of water varying only with z
ρE, ρH . . . . . . Epilimnion density, hypolimnion density
ρv . . . . . . . . . . Specific momentum density
σ . . . . . . . . . . . Singular surface, boundary surface

σc = νt

χ
(c)
t

. . . Turbulent SCHMIDT number

σθ = νt

χ
(θ)
t

. . . Turbulent PRANDTL number

σ = ρ − ρ∗
ρ∗

. Density anomaly

ΣV . . . . . . . . . Supply of entropy to the body V
τ . . . . . . . . . . . (Shear) stress tensor
τxy, τyz, τzx . . Shear stress components
τ s . . . . . . . . . . Shear stress field due to wind at the surface of a lake
φ . . . . . . . . . . . Latitude angle
φ = ϕ(x, t) . . Physical quantity, represented as a function ϕ(x, t) in the

EULERian representation
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φ = �(X, t) . Physical quantity, represented as a function Φ(X, t) in the
LAGRANGian representation

Φ∂V . . . . . . . . Flow of entropy through the surface ∂V of a material body V
φk . . . . . . . . . . Flux of turbulent kinetic energy
φε . . . . . . . . . . Flux of turbulent dissipation rate
χ . . . . . . . . . . . Thermal diffusivity

χ
(θ)
t , χ

(c)
t . . . . Eddy diffusivities of heat and mass, respectively

χ(X, t) . . . . . Motion, motion function
ψ . . . . . . . . . . . Stream function, transport stream function
Ψ . . . . . . . . . . . Force potential

Ψ = |Ω2|r̃2

2
. Potential of the centripetal acceleration at a distance |r̃ | from the

rotation axis
ω . . . . . . . . . . . (Circular) frequency
ω . . . . . . . . . . . Turbulent vorticity

ω = w

ρ
. . . . . . Vectorial vorticity per unit mass

ω = ε · W . . Dual vector of the skew-symmetric tensor W
Ω . . . . . . . . . . . Frequency, angular velocity of the Earth
Ω . . . . . . . . . . . Vector of angular velocity Ω

Miscellaneous Symbols

d(·)
dt

= (·)· . . . Material time derivative, keeping the LAGRANGian position

fixed
∂ (·)
∂ t

. . . . . . . . Local time derivative, keeping the spatial position fixed

δ(·)
δ t

. . . . . . . . . Total or material time derivative in a non-inertial frame

× . . . . . . . . . . . Multiplication sign (in general text)
× . . . . . . . . . . . Cross (vector) product between two vectors in

three-dimensional space, e.g. a × b
· . . . . . . . . . . . . Multiplication sign in general text
· . . . . . . . . . . . . Scalar multiplication of two vectors or two matrices, e.g.

a · b =̂ ai bi , A · B = ABT =̂ Ai j Bi j

φ, ϕ . . . . . . . . . Symbols for angles, e.g. geographical latitude
⊗ . . . . . . . . . . . Dyadic (tensor) product between vectors and tensors, e.g., a ⊗

b =̂ ai b j , A⊗ b =̂ Ai j bk , A⊗ B =̂ Ai j Bkl

[H ], [V ] . . . . . Scales for H and V , i.e. typical values for H and V
curl A . . . . . . . Curl operator (corresponding to the operator not in

German-speaking countries: curl A = ∇ × A =̂ εi jk Ak, j

div A = ∇ · A Divergence of A: div A =̂ Ai,i
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(div T )�, (div T )r Left and right divergence operators of T
grad A . . . . . . Gradient operator: grad A = ∇A =̂ Ai j,k

tr A . . . . . . . . . Trace of A = Aii

〈 v 〉T . . . . . . . . Temporal average of the pulsating function v(x, t) at fixed
x: 〈v〉T (x, t) = 1

T

∫ t+T/2
t−T/2 v(x, τ )dτ〈 v 〉s . . . . . . . . Spatial average of the pulsating function v(x, t) at fixed t

[[ f ]] = f +− f − Jump of f across a singular surface



Chapter 1
Introduction

1.1 Motivation

Limnology, the science of lakes, has been in the past primarily a field of activity of
the biological and chemical sciences with only limited interaction with physics. This
fact has its historical justification as the study of lakes has primarily been motivated
by questions of biological concern, and these are deeply rooted in the life sciences
among which biology and chemistry play an important role. A certain significance
of physics has nevertheless always been accepted – for instance, the seasonal vari-
ation of the temperature distribution in a lake has always been recognised to be the
result of solar radiation and wind action at the water surface. This as such is natural
and nearly self-evident, since all processes occurring in nature are interconnected
and cannot be divided into separate pieces. Lake physics, as a field of science by
its own, is, however, a very effective approach, rich in the variation of methods and
powerful in its effectiveness of explaining the observed phenomena. It often lies
in the background of the biological and chemical processes, not only affecting their
performances but also acting as their initiating nucleus. This makes it worth to study
lake physics, to understand the related phenomena and thus to gain a more integrated
view of the science of lakes.

The topic of this book is thus physics of lakes, commonly called physical limnol-
ogy. It embraces by and large the science of fluid dynamics of lakes and is therefore
sometimes also called hydrodynamics of lakes but includes special topics that lie
beyond common hydrodynamics. Such extensions are for instance the couplings
of the purely mechanical processes with the thermal fields, and, indeed, because
of the solar irradiation the lake water is heated from spring to summer but cools
in fall and winter. This seasonal variation of the thermal regime of a lake has an
obvious effect on the life cycle of all living creatures in the water bodies on Earth.
It has an equally dramatic effect in most lakes on the water motions because lakes
are often homo-thermal in winter, i.e. they have the same temperature and thus the
same density1 everywhere. The fluid motion, induced by the wind, the variations of

1 In lake waters the density is in many cases negligibly affected by the content of the minerals –
the salts. This is not so in the ocean, in fjords and lagoons, as well as in salty lakes. The density
structure is physically important.

K. Hutter et al., Physics of Lakes, Volume 1: Foundation of the Mathematical
and Physical Background, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-642-15178-1_1,
C© Springer-Verlag Berlin Heidelberg 2011

1
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the atmospheric pressure and the inflow and outflow of tributaries are quite different
in a lake with uniform water density from the corresponding motion when the lake
is stratified. It is evident that if the water motion is so different in the two cases, the
biochemical processes will also depend on it. Biology, chemistry and lake physics
are necessarily coupled via the different transports of the tracers such as nutrients,
oxygen, phytoplankta.

The fact that the water motion in lakes or the ocean under homogeneous and
stratified conditions is so different is manifested in the depth distribution of induced
water disturbances and their typical wave speeds. In a homogeneous water body
with free surface the largest displacements of the water occur at the free surface –
centimetres to at most metres – and the motion is attenuated as one moves from
the surface down to larger depth. The speed of propagation of such signals along
the surface is several tens of metres per second. This implies that typical timescales
of the re-occurrence of an event in a lake of 10–100 km extent are in the order of
one to several hours. Alternatively, it will be seen that in a water body with typical
stratification the largest vertical displacement of the water particles arises inside the
lake, not at the surface, namely at the location where the vertical density variations
are largest. For the same external wind forcing as in a homogeneous lake, these
vertical excursions of the water body at depth are several metres, much larger than
typical amplitudes of surface displacements in a homogeneous lake, and accompa-
nied surface traces are very small. Moreover, such signals typically travel with a
speed of several tens of centimetres per second so that re-occurrences of an event
in a lake of 10–100 km extent must be of the order of several days – not minutes to
hours as for a signal in a homogeneous lake. In this sense, adjustments of the current
regime in a homogeneous lake to changes in the external driving mechanisms may
be called fast, while those in a stratified lake are slow.

The solar irradiation enters a lake or the ocean as an electromagnetic wave at
various wavelengths. In the visible range we call it light, in the infrared range as
heat and ultra-violet radiation in the short-wave range. All are attenuated with
depth with a rate of extinction that, in the visible range, is affected by the turbidity
of the water. Obviously, since photosynthesis of the phytoplankta depends on the
availability of light and also the vitality of the zooplankta and many other living
species, expressed in their rate of reproduction, depends on the water temperature,
the heat and light budgets in the water are important qualifications that affect the
life cycles within natural waters. Since most microspecies in water follow more or
less the water motion – they essentially ride on the water particles and only perform
a comparably small motion relative to them – the slow and large vertical excursions
of the internal water particles in a stably stratified water body will expose the phy-
toplankta to a variable light field with a 24-h day–night period as well as periods
dictated by the internal oscillations due to the peculiar stratification. Since the peri-
ods of the waves depend on the density stratification as well as the geometry of a
lake basin, the living species in each lake have their own ‘physical climate’. More
precisely, this is to say that the physical processes of each lake affect the biological
and biochemical responses in their own way. Properly understanding lake physics
in the context of its biological impact is therefore important, because differences
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of otherwise identical situations may be due to such differences in the physical
conditions.

The above succinct description of physical processes in lakes should have made
it clear that the structure of the water temperature and consequently density governs
a large portion of the coupling between biology and physics. This variation is by
and large vertical; models that describe the seasonal variation of the temperature
and thus density fields are therefore one dimensional and express the formation and
destruction of a certain stratification as results of solar irradiation, destabilisation
by cooling and turbulence due to wind input. Biological coupling to this balance is
achieved by appending oxygen, nutrient species and light field balances, eventually
yielding a one-dimensional vertical model of the seasonal variation of the biophys-
ical fields through depth.

Such a one-dimensional vertical model possesses the potential to constitute a
fairly accurate description of the ‘global’ biophysical processes in lakes; however,
it ignores their horizontal spatial dependence, which is so conspicuously visible
in the differences of the pelagial – far from shore – and littoral – near shore –
biological processes. If these differences are to be accounted for in a biophysical
description, then a three-dimensional description is necessary in which the dis-
tinction between the behaviour in the pelagial and littoral zones can be accounted
for. Modern physical limnology operates to a large extent with full spatially three-
dimensional modelling.

These and similar subjects form the principal topics of this book. It is hoped that
the preceding description provided an intelligible outline of the major ideas that are
covered in this book. To be a bit more specific, let us give a more concrete descrip-
tion of a few phenomena that conspicuously influenced the early development and
then led – via the application of hydrodynamics championed in meteorology and
oceanography – to the modern understanding of physical limnology.

The physics of lakes has been a subject of human curiosity for many centuries.
We do not wish to give here an accurate historical account, but reports of the Jesuits
who inhabited the Wisconsinan shore of Lake Michigan in the 17th and 18th cen-
turies demonstrate a number of observations of the lake surface motion induced by
the position of the moon. Father LOUIS describes in 1672 the water-level oscillation
at the head of Green Bay and ascribes it to the variation of the gravitational attrac-
tion by the moon, but the phenomenon was only satisfactorily explained by HEAPS

et al. [10] in 1982 as a combination of the response to the semi-diurnal tide and a
resonance of the Green Bay to the free oscillations of the entire Lake Michigan.

Another exceptional incidence of lake physics is the so-called wonder of the
rising water at the medieval town Constance described by C. SCHULTHAISS in 1549
[19]. According to the report, the 5-km-long River Rhine connecting the upper and
lower Lake Constance was for about an hour not monotonously flowing from the
upper lake to the lower lake but oscillating forth and back between the two otherwise
dynamically separated lake basins for several times with a period of approximately
12 min, see Figs. 1.1 and 1.2. At that time, since no one was able to rationally explain
the phenomenon, the event was called a wonder. There are no historical records that
would indicate a repetitive occurrence of the phenomenon; however, HOLLAN et al.
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Fig. 1.1 (a) Wooden engraving of the city of Constance from 1570 with a bird’s-eye view from
east to west c© Archives of the city of Constance. The text is the description of the peculiar
event when the river Rhine seen in the picture must have flown forth and back between the upper
and lower Lake Constance with a period of approximately 12 min. The old text reads as follows
(according to HOLLAN et al. [11], and also provides an interpretation of medieval units. For the
numbered sites, see the map from approximate 1700 in Fig. 1.2):

The wonder of the rising water. ‘In the morning of this day, February 23 in 1549, the surface of
the lake rose and fell by about one ell (59 cm). At high water the level rose up to the corner of the
hospital 1, at low water it fell so far that the water was swirling around the bases of the piles of the
fishermen’s jetty 3. As soon as it had sunk this far it came surging back as if the waves had been
driven by the wind (though there was no wind). This happened four or five times in about an hour
as I saw myself. This continued until after noon, but decreased as time went on. The same thing
happened further down in the Rhine. Several people from Paradise 5 wanted to raise their fish traps
and found the Rhine was flowing on this day upstream towards the town and the Rhine bridge 4,
whereas it normally flows away from them. It also flowed backwards and forwards at the same
time as the lake at the landing place 2 and the fishermen’s jetty 3. This caused great astonishment
among the people, since there was nobody who had ever before heard of such a thing happening.’

HOLLAN et al. [11] converted the observed wave height of 1 ell into centimetres according to the
definition of the old unit mentioned by JÄNICHEN [14]. He reported that the unit of a short ell was
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[11] firmly believe that it could be explained as a resonance mode of the bight of
Constance of a seiching motion2 of the entire upper Lake Constance.

Seiches, the eigen-oscillations of lakes that are primarily initiated by the wind,
were among the first phenomena to which physicists focused their interest in the sec-
ond half of the 19th century. FOREL’s study of the surface seiches of LAC LÉMAN

and of other lakes – together with the measurements of SARASIN, a physics pro-
fessor at the University of Geneva – are well known and documented in FOREL’s
monographs [9] and many annual reports of the local chapters of the Swiss Academy
of Sciences (Jahresschriften der Naturforschenden Gesellschaft zu Zürich, Luzern,
Geneva). The physicists of the 19th century were also deeply involved with ther-
mometry of lakes and with lake morphology. The life climate of the lake was also
studied, but this biochemical activity was basically disjoint from the physics of lakes
or connections were thought to be weak and of qualitative nature. More precisely,
the question of the direct interaction of lake physics and lake biochemistry was not
raised or it was set aside.

This stayed and remained so for much of the first half of the 20th century and
even for sometime of its second half. Lake physics made considerable advances,
mainly because it is structurally essentially the same science as physical oceanog-
raphy, its bigger and elder sister. Prior to the 1960s, physical limnologists kept them-
selves primarily busy with explaining the surface traces of the water motion within
lakes. Stratification began to play a crucial role, as it was the key to the explanation
of the considerable motion of the water in the interior of the lake, while the free
surface remained essentially flat. Internal wave dynamics was recorded – probably
for the first time systematically by MORTIMER in LAC LÉMAN in 1953 [16], 1963
[17] when he collected the 1950 records of the time series of the water level at
eight stations around the lake and the Geneva waterworks intake temperature and
filtered from these the short periodic (barotropic) oscillations, Fig. 1.3 [16]. What
remained were long periodic variations of the water level at the sites that would be

�
Fig. 1.1 (continued) in use in Constance in 1534. It was defined by the following relation between
three linear measures:

1 Rute = 6 ells minus 1 Zoll,

where 1 Rute equals 3.5141 m and 1 Zoll represents the length of an inch, which is not precisely
known for that time. If we assume the actual definition of an inch, i.e. 1 Zoll = 2.54 cm, the
length of an ell results in 58.98 cm. Since the unit of 1 Zoll had the same small magnitude in
former times, it is apparent from the above equation that the derived value of an ell depends only
slightly on this quantity. For instance, if we introduce 1 badischer Zoll = 3 cm used in Constance
until 1877, one ell amounts to 59.07 cm, which differs negligibly from the previous value

2 The word ‘seiche’ derives from old French as spoken in the Roman part of Switzerland ‘sec’ and
means ‘dry’. It has been used in the 19th century (by FOREL [9] and earlier) in the region of Lake
Geneva to denote the surface oscillation of the water level along the shore, drying periodically a
strip of the shoreline. Today by ‘seiche’ a periodic lake oscillation is generally meant. According
to FOREL, the word ‘seiche’ characterising lake oscillations, is due to FATIO DE DUILLIER [4]
and occurred in his paper in 1730.



6 1 Introduction

Fig. 1.2 Map of the city of Constance and surroundings ca. 1700. Locations denoted by numbers:
1 Heilig Geist hospital, 2 landing place, 3 site of the fishermen’s jetty, 4 Rhine bridge, 5 site of
the former village of Paradise. The scale given in toise has been converted to kilometres using
the following definitions of former French linear measures quoted by WEISBACH [24] : 1 toise =
6 old feet, 1 old foot = 0.324839 m (reproduction of the map by courtesy of the Archives of the
City of Constance)

interpreted as the fundamental mode of the internal seiche in LAC LÉMAN. In the
subsequent years, especially in the 1970s and 1980s of the 20th century, internal
wave dynamics was the major concern of research by physical limnologists. This
research was, however, soon supplemented by analytical and numerical analyses of
the current and temperature distributions induced by wind. This latter problem still
constitutes one of today’s most important research topics of physical limnology. It
forms the cornerstone of explaining the transport of pollutants and nutrients in large
water bodies such as lakes and ponds and is the basis where lake physics and lake
biochemistry can be coupled together.

Another topic of even more central interest to the biological limnologists is
the description of the seasonal variation of the mass distribution within the water
body, i.e. the temperature distribution throughout the year, if the solar radiation, the
long-wave energy fluxes at the water surface and the wind forcing through the year
are prescribed, Fig. 1.4. The solution to this problem is very complicated because,
obviously, turbulence3 plays an important role. Needless to say that the latter is a

3 Turbulence arose from the recognition that the flow of water, e.g., in a pipe can have two distinct
appearances: (i) laminar flow, in which the flow is smooth and streaklines from a point source
are maintained as small filaments and (ii) turbulent flow, in which the filaments are torn apart and
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Fig. 1.3 LAC LÉMAN, 1950: fluctuations of smoothed water levels at eight stations, arranged in
counterclockwise order around the basin and compared with temperature at the City of Geneva
waterworks intake and with wind observations at Lausanne (reproduced from MORTIMER [16].
c© Gebrüder Bornträger, Berlin, Stuttgart)

notoriously difficult problem. Turbulent activity is imported into a lake mostly by
the wind stress at the free surface. It leads to the shearing of the uppermost water
layers and destabilises these layers. Intuition tells us that the turbulent activity can-
not in general penetrate to all depths but must attenuate with depth. There is likely

spread over larger regions of the domain of the fluid. For instance, the streakline of the smoke of a
still cigarette is smooth and narrowly confined for a certain distance and then suddenly torn apart
and wound in complicated gyres or eddies. Such eddies of many sizes are a typical characteristic
of turbulent flow, and they affect fluid mechanics of lakes substantially.
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Fig. 1.4 Temperature profiles at the deepest position in the Ammersee (Bavaria) as measured
between 15 April and 20 November 1996 and as computed by JÖHNK [15] (reproduced with
permission)

a maximum depth to which the turbulence can penetrate; it may be called the tur-
bocline. A process counteracting the destabilisation of the wind-induced turbulence
is the stratification due to near-surface absorption of solar irradiation. The more the
heat radiated into the lake, the higher the water temperature and the less dense the
corresponding water. This is also a process that is attenuated with depth, but contrary
to wind action, it stabilises the water masses. The arguments should make it clear
that the state of stability (or the potential of water overturning to occur or not) is
the interplay between input of momentum (i.e. motion) by wind and radiation by
the sun.

The answer to the question of how the water masses are distributed in a lake is of
utmost significance to biological limnologists both on timescales of internal wave
dynamics and on seasonal variation of the thermocline. This is simply so because it
is known that phyto- and zooplankta react very sensitively to the thermal conditions,
i.e. the climate of a lake. The surface with the largest vertical gradient in a temper-
ature profile, called the thermocline, separates the upper lake – epilimnion – from
the lower lake – hypolimnion – and the biological activity primarily takes place
in the vicinity of the thermocline – the metalimnion – and above (Fig. 1.5). The
availability of light, restricted to the upper layers, governs the photosynthesis of the
phytoplankton, and the amount of dissolved oxygen O2 and nutrients (phosphates,
nitrates, etc.) determines the growth rate of the phyto- (and hence zoo) plankton and
how they metabolise. Oxygen largely enters mechanically into the lake through the
free surface by wind action and turbulence, and the stratification (i.e. the density
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Fig. 1.5 Typical temperature
distribution in a lake during
summer, defining epi-, meta-
and hypolimnion and the
thermocline. The latter is the
location of the (absolutely)
maximum temperature
gradient
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difference between epi- and hypolimnion) determines how oxygen is transported
across the thermocline to the hypolimnion. It is obvious that the physical processes
share their role in determining whether a lake may be classified as aerobic or anaer-
obic and how the biochemical decay processes take place.

This brief introduction to physical limnology should provide to the novel reader
an adequate impression of what physical limnology constitutes. It aims at a detailed
understanding of the physical processes as they occur in lakes. They form the result
of the motion of the water masses in the gravity field of the rotating Earth under
external driving mechanisms such as the solar irradiation and the dynamical action
of the atmospheric processes, mostly exerted on lakes at their free surfaces as shear
tractions due to wind and atmospheric pressure. These processes ought to be anal-
ysed always with a view on their impact on lake biology and chemistry. In what
follows, the concepts will be presented in a form that discloses their significance
with regard to lakes at four different levels.

• Firstly, there are the laws of classical physics; they describe those parts of the
knowledge which are common to all material bodies. These laws are known as
the conservation laws of mass, momentum, moment of momentum, energy and
entropy. Still at this first level are those statements that characterise water as a
particular form of matter which distinguishes it from other materials (e.g. ice).

• Secondly, these laws will be applied to water bodies with free surface to elucidate
how the general laws of physics may be applied to situations pertinent to lakes.
At this level, a first, basic understanding will be established that explains why the
distribution of the water masses, i.e. the variation of the density within the water
body, is significant, what effects the wind may exert on a lake and how the solar
irradiation influences the thermomechanical state of a lake. Of such nature are
also first analyses of how waves propagate in a homogeneous and stratified water
body with free surface, and finally to what extent the rotation of the Earth affects
the physical processes, primarily waves and the general circulation, arising in
lakes.

• Thirdly, while the analyses at this second level attempt to build an understand-
ing by avoiding as much as possible complicated mathematical formulae, the
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latter can at last not be avoided. Mathematical models will be deduced from
the fundamental equations by simplification due to physical reasoning, and these
often allow the construction of analytical results, thus providing answers to the
‘what and why things happen in lakes’ and giving reasons of the effects that are
observed and expressed analytically. Frequently such analyses corroborate the
physical behaviour previously surmised by plausibility arguments. More often,
however, these analytical results provide only the basis for a proper understand-
ing of the quality of the processes and need to be known in detail to interpret
observational data.

• Once a general understanding has been reached, it is advisable to analyse at the
fourth level the full description exploring the three dimensionality of the pro-
cesses and the coupling with biological and chemical processes. The knowledge
gained with analytical models will greatly aid the interpretability of the results
obtained via computation and field measurements. In much the same way it will
also help when biology is coupled to lake physics.

Finally, a remark may be of help to the reader when trying to judge physical
limnology against limnology in general. Specifically, while a large number of phys-
ical processes can be explained without consideration of biological components, it
seems very difficult to draw correct biological inferences by excluding considera-
tions of physics. This means that the coupling is by and large one sided: the physics
affects in many respects the biological processes but much less vice versa. This
implies that lake physics can be studied ‘in isolation’ free from the peculiarities
of the biological processes. Future advances in the ecology of lakes will, however,
largely depend upon a deeper understanding of lake physics and its implementation
in biological modelling. These books are an attempt to lay the foundations to this
end, a fascinating interdisciplinary subject.

1.2 Lakes on Earth

A lake, by definition, is a large body of usually freshwater surrounded by land. The
main distinctive feature of a lake is the absence of an influence of the World Ocean.
However sometimes, large lakes are referred to as ‘inland seas’ and small seas are
sometimes referred to as lakes, for example, the Dead Sea. As the fates decree, the
largest lake in the world is called the Caspian Sea.4

Apart from this common feature – the separation from the World Ocean – the
Earth’s lakes enjoy a great variety of natural conditions. In order to illustrate this
diversity, we mention a few examples: Lake Tianchi in northeast China, the highest
volcanic lake in the world, is located at an altitude of 2,189.1 m above sea level
(a.s.l.), while the surface of the Dead Sea is the lowest point on the Earth’s surface
at an elevation of 417 m below sea level. More than 70 lakes in Antarctica are

4 Data in this section have been collected mainly by consulting sources in the Internet, e.g.
http://www.ilec.or.jp.



1.2 Lakes on Earth 11

buried below 3–4 km of ice, and large underground lakes were discovered recently
in Namibia and China. The deepest (1636 m) Lake Baikal in Siberia contains one-
fifth of the World’s freshwater resource, and Lake Eyre in Australia is dry most of
the time but becomes filled under seasonal conditions of heavy rainfall. Water from
Lake Constance is drinkable, while in the Dead Sea, depending on the position,
it is 5–10 times as salty as the World’s Oceans. The water near its bottom is so
saturated that salt precipitates out of the solution onto the sea floor. It is called
‘dead’ because its high salinity allows no fish or macroscopic aquatic organisms to
live in it. No one knows how any organism, cut off from air, sunlight or any apparent
source of life-sustaining energy, could survive below 4-km-thick ice in Lake Vostok
under crushing pressure of more than 360 times the atmospheric pressure at sea
level. The highest and the world’s second largest inland saltwater Lake Qinghai
in China (3195 m above sea level), despite its salinity, has an abundance of fish,
while warm tropical Lake Victoria – the largest lake in Africa and the second largest
freshwater lake in the World – has an extremely weak ecosystem. The enormous
depth of another tropical Lake Tanganyika (maximum depth 1470 m) contains so-
called ‘fossil water’ with almost constant temperature of about 23.3◦C throughout
the year, with a remarkable variety of fish fauna in the upper layer, much of it unique.
It never mixes throughout the entire depth because of stable water stratification and
soft climate conditions. At the same time, the always cold water of Lake Baikal is
ventilated throughout its depth due to specific mechanisms of thermal convection,
and only a few lakes may compete with Lake Baikal in biotic diversity.

All the fantastic variety of the Earth’s lakes, however, can be described in terms
of physical processes taking place in various large water bodies on the rotating
Earth under different boundary conditions. Which of the processes are of impor-
tance for a particular lake objectively depends on the lake size, its bathymetry, the
characteristics of its water masses and external conditions like the location, climate,
tributaries. Table 1.1 contains the main morphometric characteristics of the World’s
largest lakes: their areas, maximum depths, volumes and latitudes.

Figures 1.6 and 1.7 present these data graphically. For convenience, the shapes
are plotted at the same scale, and some lake volumes (in cubic kilometre) from
Table 1.1 are also recorded. The diagram of Fig. 1.7 shows the maximum depth (in
metres) and the latitudes of the largest lakes. The area of the circle is proportional
to the surface area (in thousands of square kilometre) of the corresponding lake.
Later in the book, we will refer to these figures when discussing different physical
processes taking place in lakes: wind-induced motions, internal waves, seasonal
variations of the thermocline, etc. For example, the dynamics of a very shallow
large lake like Lakes Chad (maximum depth 11m), Winnipeg (18 m) or Balaton
(12 m) can be completely changed by strong winds. On the other hand, in a very
deep lake, the water compressibility becomes important for mixing processes, even
though it is naturally very small. It was first shown for the deepest Lake Baikal, and
one may then expect this influence also in the Caspian Sea, Lake Vostok and Lake
Tanganyika.

It is convenient for the further description and investigation to select ‘the most
universal’ example of a lake for which one can find the widest range of physical
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Table 1.1 Morphometric characteristics of the largest lakes on Earth arranged according to their
surface area
Lake Continent Area ×103 km2 Max.depth m Volume km3 Latitude

Caspian Sea Europe 376 1024 78200 41◦ 50′ N
Superior N. America 82.4 406 11600 47◦ 45′ N
Victoria Africa 68 82 2700 1◦ 10′ S
Huron N. America 59.6 229 3580 44◦ 55′ N
Michigan N. America 57.8 281 4680 44◦ N
Aral Sea Asia 51.1 55 1020 45◦ 15′ N
Tanganyika Africa 34 1470 18900 6◦ 15′ S
Baikal Asia 31.5 1636 23000 53◦ 30′ N
Nyasa Africa 30.8 726 7725 12◦ 10′ S
Great Bear N. America 30.2 446 1010 66◦ N
Great Slave N. America 28.6 614 1070 61◦ 55′ N
Erie N. America 25.7 64 545 42◦ 15′ N
Winnipeg N. America 24.4 18 127 52◦ 20′ N
Balkhash Asia 22 26 112 46◦ 15′ N
Vostok Antarctica 19.6a 1000a 4900a 72◦ S
Ontario N. America 18.8 243 1710 43◦ 45′ N
Ladoga Europe 17.7 225 908 60◦ 55′ N
Chad Africa 16.3 11 44 13◦ 25′ N
Eyre Australia 15b 20 1b 28◦ 30′ S
Maracaibo S. America 14.2 250 9◦ 45′ N
Tonle Sap Asia 10 14 40 12◦ 50′ N
Onega Europe 9.8 127 295 61◦ 50′ N
Amadeus Australia 8.7 24◦ 45′ S
Rudolf Africa 8.6 73 360 3◦ 30′ N
Titicaca S. America 8.3 304 710
Volta Africa 8.3 74 165 7◦ 40′ N
Nicaragua N. America 8.1 70 108 11◦ 35′ N
Athabaska N. America 7.9 60 110 59◦ 10′ N
Issyk Kul Asia 6.3 702 1732 42◦ N
Reindeer N. America 6.3 60 57◦ 15′ N
Tung Ting Asia 6 10
Urmia Asia 5.8 15 37◦ 35′ N
Torrens Australia 5.7 8 34◦ 50′ S
Venern Europe 5.6 100 58◦ 55′ N
Edward Africa 5.4 58 0◦ 25′ S
Winnipegosis N. America 5.4 12 52◦ 20′ N
Mweru Africa 5.2 15 9◦ S
Gairdner Australia 4.7 0 34◦ 17′ S
Manitoba N. America 4.6 28 50◦ 55′ N
Qinghai Asia 4.6 33 36◦ 55′ N
Great Salt N. America 4.4 15 41◦ 10′ N
Dead Sea Asia 1 330 31◦ 30′ N
Geneva Europe 0.6 310 46◦ 25′ N
Balaton Europe 0.6 11 46◦ 50′ N
Constance Europe 0.5 252 47◦ 40′ N
Zürich Europe 0.09 143 47◦ 15′ N

a Estimation
b Seasonal maximum
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Fig. 1.6 Shapes of the largest lakes on Earth, plotted on a common scale, with their relative
volumes indicated in cubic kilometres
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phenomena. One of the key features here is vertical water stratification. Relatively
deep lakes at mid-latitudes typically have a well-pronounced stratification and, as a
consequence, experience wealthy internal wave dynamics. Mid-latitude lakes pos-
sess also a specific type of seasonal water mixing during the spring and autumn
transition periods, which relates to the nonlinear thermal expansion of water with
its 4◦C water density maximum.5 For lakes of the size of a few kilometres and
more, the Earth’s rotation becomes an important factor, increasing with latitude,
which supports their general cyclonic water circulation. Thus, the largest variety of
physical processes can be found in large lakes at mid-latitudes.

1.3 Lakes Characterised by Their Response to the Driving
Environment

Lakes are exposed to the atmosphere and the weather as it evolves through the
seasons. Thus they are subject to wind, solar radiation, atmospheric temperature,
the flux of tributaries, etc. All these exert some influence, and depending on their
relative ‘weight’ and the size and form of the lake itself, typical behaviors can be
identified. For instance, depending upon the location of the lake on the globe, differ-
ent climates prevail that determine the seasonal characteristics of a lake. Similarly,
the amounts of solar radiation, atmospheric temperature and wind are important
components for the characterisation of mixing. Furthermore, because of the bound-
edness of the basins, shores restrict and guide the motion of the water, implying
boundary-related processes, not envisaged in the open ocean. Finally, the various
distinct processes can also be typified by scale analysis. A brief outline of what is
meant by these characterisations is given below.

1.3.1 Seasonal Characteristics

In the course of a year, a large lake, situated at medium geographical latitude,
changes its temperature distribution drastically. This happens on the basis of both
seasonal and daily (diurnal) variations of the external activities, primarily wind and
solar irradiation. In summer, the upper water layer becomes warmer and less dense
due to solar heating so that a strong summer stratification is established with the
typical stable temperature profile: lighter water above heavier water throughout. The
hydrological autumn in a lake begins with the seasonal cooling from the surface
(compare also Fig. 1.4); it produces the upper homogeneous mixed layer, which
grows with time, usually also supported by a seasonal increase of the wind activity.
When mixing from the surface due to these mechanisms reaches the lake bottom,
the winter homothermy is established. With further cooling and mixing throughout

5 For pure water the density maximum is reached at 3.8◦C, but many parameterisations use 4◦C
instead.
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the entire depth, the temperature of the water column decreases simultaneously
throughout the entire depth down to 4◦C. At this temperature, the water density is
maximum, and further cooling from the surface makes the upper layer lighter than
the lower ones: the water column becomes again more and more thermally stably
stratified. So, the top layer continues to cool without thermally induced convective
mixing with lower layers. The water surface may eventually start to freeze, thus
blocking also wind-induced mixing and further cooling of deeper layers (which is
of importance for lake inhabitants). This phase, characterised by inverse stable tem-
perature stratification, is called winter stagnation. The spring begins with warming
up the surface so that the water again, as in autumn, becomes heavier; it then has
the tendency to fall to larger depth and to mix with the underlying water, called
now the spring circulation. The entire water body finally reaches again a uniform
temperature of 4◦C . Subsequently, and often supported by a few days with calm and
warm weather, a stable direct temperature profile is built, which becomes stronger
as the summer proceeds.

This seasonal behaviour does not hold for all lakes but is adequate for most deep
lakes in moderate climate zones, e.g. the Alpine lakes such as Lake Constance.
In Fig. 1.8, monthly averaged temperature profiles for Lake Constance are shown
through the year 1987. It allows to identify and corroborate the above explained
behaviour. The figure displays the results obtained by averaging temperature pro-
files, taken every 20 min in the middle of the north-western part of Lake Constance
at the depths from 3 to 139 m. The very profiles are shown as solid lines, the areas
of shading columns are proportional to their heat content and the intensity of the
shadowing is related to the density of the water. Thus according to data collected in
[2] in the year 1987, the water body of Lake Constance had a stable direct summer
stratification from April to September; an upper mixed layer, increasing in depth,
exists from October to December; January, February, and March are months of win-
ter stagnation when the water column is inversely stably stratified. During certain
time periods in late December and late March, conditions of winter homothermy
and spring circulation prevail when the entire water body throughout the whole
depth has the same uniform temperature (density), and any small wind or heat loss
generates deep mixing.

One easily recognises in many of these curves the transition from the (more or
less well) mixed upper layer (epilimnion; Greek: epi, above; limnon, lake) via an
intermediate layer with strong vertical temperature gradient (metalimnion; meta,
in-between) to a lower layer above the lake bottom with nearly constant tempera-
ture (hypolimnion; hypo, below). The (horizontal) surface in a lake with maximum
temperature gradient is called thermocline (from: thermal inclination).

1.3.2 Characteristics by Mixing

Lakes are often classified according to their scheme of circulation. If the mixing
reaches at any one time during the year the lake bottom, then it is called holomictic
(holo, entire; mictic, mixing). In deep lakes or in lakes with a lower layer containing
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Fig. 1.8 Monthly averaged temperature profiles for Lake Constance through the year 1987, taken
from thermistor recordings at the indicated station (Constance Data Band) [2]

increased salinity, the heavy water may, on occasion, not participate in the mixing
processes; in those cases the lake is called meromictic (mero, partly). In such waters
in which virtually no deep water exchange occurs, a shortage of available oxygen
usually arises.

The above described mixing and heating processes are typical of holomictic
lakes, especially for dimictic ones (di, two, double), which mix twice per year. The
classification of lakes according to their mixing behaviour goes back to works by
FOREL [9] and was extended and updated by FINDENEGG [6–8] and HUTCHINSON

and LÖFFLER [12] to its present used form. In general, one may differentiate three
classes: holomictic lakes, which are mixed once or several times during a year down
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to the bottom; meromictic lakes, which mix only to a certain depth, which chiefly
depends on how much a lake is exposed to wind; these lakes never (or only very sel-
dom) mix to the ground; and, finally, amictic lakes which never mix. Amictic lakes
for instance arise in Antarctica where a whole-year ice cover attenuates the energy
fluxes into the water body, and thus generation of turbulent intensity is blocked.

Holomictic lakes – they are the rule – are further differentiated according to how
often they mix during a year. At moderate latitudes, one often encounters dimictic
lakes, which experience a complete circulation in spring and in autumn; in spring
the inverse (but stable) temperature profile goes through a complete circulation and
then establishes a stable (and normal) stratification; in fall the opposite phenomenon
arises, namely the transition from a direct to an inverse temperature profile. If the
density maximum (i.e. the 4◦C temperature) is never crossed, then this lake is
monomictic, it mixes only once per year. If the temperature remains always below
the temperature corresponding to the density maximum, then one speaks of a cold
monomictic lake, in the reverse case of a warm monomictic one.

If in the course of a year several mixing events take place – e.g. because frequent
wind events trigger complete mixing in a shallow lake or because only a weak strat-
ification has formed and the air temperature is subject to strong variations (which
often occurs in the tropics) – then the lake is called polymictic (poly, many). If a lake
mixes in irregular intervals, e.g. in intervals more than a year, it is called oligomictic
(oligo, several).

Essential conditions which make the various states likely are the geographical
position (latitude, altitude), exposition to wind in connection with the lake surface
and depth and a possible chemical stratification. Some characterisations of such lake
types are illustrated in Fig. 1.9.
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Fig. 1.9 Lake types characterised according to how they mix. (a) Mono- and dimictic lakes are
characterised by the vertical temperature profile and how it varies near the surface; (b), (c) holomic-
tic and meromictic lakes are characterised by the fact whether the mixed layer may reach the bottom
or not (courtesy K. JÖHNK [15])
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The mixing type of a lake is the result of global external conditions such as
climate, location, water inflow and outflow, and lake morphometry. So, it is a very
conservative lake feature and difficult to influence. However, it can be changed if
some of these conditions are altered. For example, the hypersaline Dead Sea was
during the past 300 years a meromictic lake: the freshwater input from the Jordan
and Yarmuk rivers created a light (freshened) upper layer above the extremely salty
lake waters so that winter cooling or any wind could overcome such a strong strat-
ification. However, since the 1960, an increasing fraction of freshwater has been
diverted for irrigation, the thickness of the less-saline surface layer decreased and
since 1979 the meromictic structure is variable. The Dead Sea can now turn over
during winter depending on the strength, timing, duration of the river inflow, evapo-
ration, and cooling [1, 13].

Another – natural – change of mixing type occurs in Lake Constance of which the
seasonal circle for the year 1987 is given in Fig. 1.8. This lake is typically classified
as warm monomictic, the only one of this mixing type among European lakes to
the north of the Alpine chain. Its ‘winter homothermy’ typically meets its ‘spring
circulation’ so that the lake has its long winter holomixis from late December until
March with a water temperature of about 4.5 – 5 – 6◦C. However, it can on occasion
be completely ice covered; the last such extraordinary event was observed in winter
1962/1963 [3, 23]. Thus, this lake is actually oligomictic.

1.3.3 Boundary-Related Processes

In contrast to the large open ocean, various boundary-related processes are signifi-
cant for lake dynamics at large. For instance, strong wind that is steady for a certain
time may generate a wind set-up6 of the water masses, which after secession of
the wind induces an oscillating motion of which the periods are dictated by the
size, shape and bathymetry of the basin. Moreover, one encounters the generation
of boundary-related turbulence, internal wave reflection from the bottom slope,
down-sloping gravity currents, inflows of tributaries, etc., which are all essential
processes. At the scale of seasonal and diurnal lake dynamics, boundary-related
thermal processes are remarkable. They produce horizontal temperature gradients
between the littoral area7 (located near the shore) and the pelagial or limnetic (open
water, away from the bottom8 and not in close proximity to the shoreline) regions

6 Wind set-up is used to mean the inclination of the lake surface set-up under the action of a steady
(uniform) wind blowing along a lake surface.
7 Henceforth, we shall use the denotations ‘littoral’ and pelagial to denote these disjoint zones.
This is used in limnology, while in oceanography, ‘littoral’ means ‘a coastal zone between high
and low tide marks’.
8 The sediments, free of vegetation, that lie below the pelagial zone are referred to as the profundal
zone.
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and generate a specific littoral–pelagial water exchange. Such littoral–pelagial water
exchanges are the likely source of the ventilation of the deep layers in Lake Baikal
[20, 21, 25]. Effectively, in a diurnal circle, shallow waters near the coast expe-
rience faster heating during daytime and faster cooling at night. This process is
especially well pronounced in summer when one easily observes daily heating of
waters near shore. Actually, this horizontal inhomogeneity generates a weak diurnal
circulation (with the characteristic speed of units of millimetre per second) directed
offshore/onshore, which is physically similar to the sea/land or lake/land breezes in
the atmosphere of coastal land areas.

On seasonal timescales, namely during the spring and fall transition periods,
due to the different speeds of the cooling/heating processes in the littoral and pela-
gial regions, the horizontal temperature gradients become especially large and may
affect the entire lake dynamics. Indeed, when the upper mixed layer is formed in
a lake under autumn cooling (or during the spring circulation period), the littoral
waters become heavier than the surface limnetic water masses; they slowly sink
down the coastal slope beneath the upper mixed layer and generate a (more or less)
permanent cooled water cascade from the coastal zone into deeper and deeper lay-
ers of the pelagial region. Since this process may last for months, it then adjusts
to the Earth’s rotation so that general cyclonic circulation is typically reported for
large lakes in autumn, with velocities of the order of a few centimetres per second.
An even more conspicuous influence on lake-scale water dynamics and associated
exchange of water masses is exerted when water reaches the 4◦C barrier: it always
happens first near the coast. With ongoing cooling in autumn, one observes in a
lake an inversely and thus stably stratified area near the coast and, simultaneously,
a still mixing unstably stratified limnetic region. To accentuate this difference in the
structure of mixing, the three-dimensional surface in-between, where the water has
the maximum density, is called the structural front (or thermal bar in freshwater
lake).

It possesses a specific water circulation, see Fig. 1.10; when it is just formed,
the 4◦C densest water tends to sink down; the lake surface experiences an (very
small) inclination towards the bar, water from both sides flows to the barrier, sinks
and returns back in the deeper layers. With time, horizontal temperature/density gra-
dients between littoral and limnetic areas increase, driving the horizontal exchange
flows: offshore flow in the upper layers of the heated shallow region, onshore flow at
intermediate depths and again offshore cascading flow further down in the still cold
limnetic area. Thus, the lake body becomes divided into nearly separated littoral
and limnetic circulatory cells. This process is most profitable for the lake biota in
spring: being separated from the cold lake body, the littoral waters are warming up
much faster and thus providing favourable living conditions. This specific circula-
tion stops when the stratified volumes that move from opposite shores meet one
another in the middle of the lake; a stable stratification is then established all over
the lake. These processes definitely develop in lakes at mid-to-high latitudes, where
the water temperature in its seasonal cycle crosses the 4◦C point, at least near the
shore. It has been observed and described for the first time by FOREL [9] in Lake
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Fig. 1.10 Spring thermal bar and related structure of the field of currents. The dashed line on
the horizontal free surface and on the front cross-sectional area marks the 4◦C isotherm shell-
like surface. Under the same conditions of spring heating, mixing regimes in water columns are
different at both sides of the 4◦C isotherm; there is a stable vertical density stratification in the
shallow littoral region and an unstable stratification (vertical convective mixing) in the deep area.
This leads to the horizontal circulation shown by arrows. CORIOLIS forces, acting on the water
particles, drive their motion towards the right on the northern hemisphere and lead to a cyclonic
(anticyclonic) circulation in the littoral (limnetic) surface sub-regions, a pattern that is reverse in
the southern hemisphere (after TIKHOMIROV [22] with changes)

Geneva; it regularly crosses the Great Lakes of America [17] and Lake Baikal in
Siberia [20] twice a year; it lasts 1–1.5 months in spring and about the same time in
autumn in Lakes Ladoga and Onega in northern Europe [5, 18, 22].

1.3.4 Characterisation by Typical Scales

When approaching a physical description of a lake, one should quantify both the
very object and the phenomena in focus. Nowadays, many characteristics of partic-
ular lakes are available via data banks in the Internet (as for example, databank of
the International Lake Environment Committee Foundation; http://www.ilec.or.jp).
An obvious parametre connected with the topography of a lake is the ratio of a
characteristic depth to a typical horizontal distance. As such one often takes the
maximum depth to the square root of the surface area. Any one of these ratios is
called aspect ratio, and typical values are of the order of 10−3. Thus, the horizontal
scale is much larger than the vertical scale, and this suggests the obvious supposition
that the large-scale motions are also predominantly horizontal, with relatively large
horizontal and correspondingly small vertical velocities. This will later be made
mathematically formal by the so-called shallow-water approximation. For instance,
the aspect ratio for the large mountain Lake Constance is rather big – of the order
of 10−2. However, reducing this lake (the maximum length of about 60 km) to the
size of a desk (1.5 m), its maximum depth would be about 6 mm. Similarly, the
maximum depth of the World’s deepest Lake Baikal (1636 m) scaled to the size of
a desk is about 1.5 cm. However, unlike in the ocean, for many physical processes
in lakes the three dimensionality is very significant, primarily as a result of the
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influence of the sloping boundaries. In this connection it is also important to note
that typical values of the bottom slope in lakes are of the same order as the aspect
ratio, i.e. 10−3, i.e. 1 m of difference in depth per 1 km of horizontal distance, or
about 0.5◦. A bottom slope of 3◦ is already steep, susceptible to the development of
turbidity currents, and a slope of 6◦ is considered very steep since sandy sediments
slide down along it and internal waves can be reflected. Thus, the aspect ratio and
bottom slope in lakes are typically small parametres.

An important parametre in lake dynamics (as well as in the ocean) is the ROSSBY

number. It characterises how significant for a given process is the rotation of the
Earth. If the length scale for some motion is L and the characteristic velocity is U ,
then the time required to pass the distance L is L/U . If this time is significantly
smaller than the period of rotation of the Earth, the flow will hardly experience an
influence of the latter. The ROSSBY number measures this as it is the ratio of the
timescale of the rotation of the Earth, i.e. 24 h, to the timescale typical for the given
process. Denoting this ratio by R0, we obtain

R0 = 1/Ω

L/U
= U

ΩL
,

where Ω = 2π/(24 h) = 7.3 × 10−5 s−1. If R0 � 1, then the motion is of small
scale, and effects of the rotation of the Earth may be ignored.

A measure for the significance of the water stratification is the so-called BURGER

number S:

S = g
Δρ

ρ

D

f 2L2
,

where D and L are typical vertical and horizontal scales, Δρ/ρ is a charac-
teristic density difference, measured at the vertical scale of a motion D (for
instance, between the epi- and the hypolimnion), g is the gravity acceleration and
f = 2Ω sinφ is the CORIOLIS parametre. S may be interpreted as the ratio of
two squared velocities gΔρ/ρ D and f 2L2, respectively, or two squared lengths
S = (LD/L)2, where L D = 1

2 (gΔρ/ρ D)1/2 is called the ROSSBY radius of defor-
mation. Physically, it gives an estimate of the length scale of a motion, for which the
Earth’s rotation becomes the main driving force. Using the characteristic lake width
B as the scale of motion, we obtain a dimensionless parametre S

1/2 = R = LD/B,
indicating a potential influence of the rotation of the Earth on general lake circula-
tion. If R ≥ 1, planetary rotation is a significant factor for basin-scale motion.

There are many more dimensionless numbers that are defined in physical lim-
nology. The reader may in other contexts already have encountered the REYNOLDS

number RICHARDSON number and others. They all can be expressed as ratios of
quantities having the same physical dimension and expressing an order of magni-
tude of a physical quantity describing a subprocess of the system that is analysed.
The value of the dimensionless characteristic number then allows to estimate how
significant the two subprocesses are relative to one another. If, e.g., the characteristic
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number is very small or very large, then this expresses that one of the subprocesses
plays an insignificant role in comparison with the other. For instance, the FROUDE

number can be viewed as the ratio of the kinetic energy to the gravitational potential
energy. With ρ,U, g and D denoting density, typical velocity, gravity and depth
scale, respectively, one may write

Typical kinetic energy ∼ ρU 2,
Typical potential energy due to gravity ∼ ρgD,

and so

Fr = ρU 2

ρgD
= U 2

gD
.

Fr � 1 means that kinetic effects are much smaller than gravity effects and so
inertia plays an insignificant role in comparison to gravity forces. On the other hand,
when Fr � 1, it is reverse; gravity effects may be ignored but not inertia.

A large part of the working methods of physical limnology consists in establish-
ing equations that describe the processes in focus in mathematical terms. When
these equations are suitably scaled, i.e. written in dimensionless form by intro-
ducing for each physical variable, a typical order of magnitude and using this to
non-dimensionalise the equations, the equations will appear in a form in which
dimensionless characteristic numbers appear as parametres. If for some limnological
process some of these are very small or very large, approximations are suggested
which simplify the equations and make analysis and physical interpretation simpler.
We will encounter this in a number of situations.
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Chapter 2
Mathematical Prerequisites

Lake physics cannot be described let alone understood without tailoring the state-
ments in mathematical expressions and deducing results from these. We now wish to
lay down the mathematical prerequisites that are indispensable to reach quantitative
results. A systematic presentation will not be given because it is assumed that the
reader is (or once has been) familiar with the subjects and only needs to be reminded
of knowledge that may be somewhat dormant. Let us begin with mathematics.1

The objects in question are material bodies; these are the lake waters filling the
entire lake or parts of it, tracers or species that are mixed with the water as suspended
matter (plankton, sediments) or matter in solution (oxygen, phosphate, nitrate), etc.
Henceforth, when dealing with these subjects, we simply refer to them as material
bodies or bodies which occupy a certain region or volume of the three-dimensional
space, the space of the physical world. Euclidean geometry describes correctly all
the geometric, kinematic quantities that need to be considered when describing the
motion of bodies within this space, with which the reader is essentially supposed to
be familiar. In short, in such a space one can measure distances, lengths and angles.
Mathematical entities that arise in the formulation of physical laws are scalars,
vectors and tensors. These are mathematical objects defined by the mathematical
operations which one may perform among such objects.

1 The mathematical prerequisites and the knowledge of physics required to follow the ensuing
developments are those of a basic education in engineering or natural sciences at universities that
is generally acquired in two or three semesters of calculus, linear algebra, differential equations and
vector and matrix calculus. However, while the elements of these subjects are taught, they do not
lie in the centre of the syllabi of the mentioned fields of study. Likewise, as far as the background
of physics is concerned, only the fundamentals of classical physics are needed which are generally
taught at universities to engineers and natural scientists in a one or two semester course during
their basic education. To lay a common ground of this knowledge and to outline the ‘language’
used we shall repeat subsequently elements of both fields. There are many books on basic physics
and on calculus, and each university seems to teach these subjects from its own lecture notes. A
very popular set of physics books are The FEYNMAN Lecture Notes [8]. Well-known calculus
books are [2, 12, 15–17]. Readers familiar with the calculus of vectors and tensors – here only the
Cartesian tensor notation is used – may omit a careful reading of this chapter and directly pass to
Chap. 3. Nevertheless, a quick glance through this section may be helpful, since the notation used
throughout the entire text is introduced.

K. Hutter et al., Physics of Lakes, Volume 1: Foundation of the Mathematical
and Physical Background, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-642-15178-1_2,
C© Springer-Verlag Berlin Heidelberg 2011
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2.1 Scalars and Vectors

Scalars are quantities that behave like real or complex numbers; four operations,
addition, subtraction, multiplication and division, are defined for them, and we gen-
erally are so familiar with them that we use the mathematical operations without
further thought. In fact, addition (subtraction) and multiplication (division) obey the
commutative, associative and distributive laws. This means that if x, y, z are scalars,
then

x + y = y + x
xy = yx

}

commutative law,

(x + y)+ z = x + (y + z)
(xy)z = x(yz)

}

associative law,

(x + y)z = xz + yz, distributive law

also define scalars. Furthermore, there is a zero, 0, and unit, 1, scalar such that

x + 0 = x, 0x = 0, 1x = x,

x + (−x) = 0, x

(
1

x

)

= 1.

In these operations only the division by 0 is special, i.e. x( 1
y ) is defined only for

y = 0. Should y = 0, then we declare x( 1
y ) = ∞ if x = 0. If a set of scalars

possesses the property that any two or three scalars, which are combined accord-
ing to the above declared operations, yields a number of the set, then this set is
called a field. We speak of the field of the real numbers R or complex numbers C

because adding or multiplying two real numbers again yields a real number, etc. A
field is therefore also said to be a set of scalars that is closed under addition and
multiplication.

Vectors are quantities that behave like directed segments. Mathematically, we have
the following:

Definition 2.1 A vector space is a set of objects x, y, z called vectors that is closed
under vector addition and multiplication with scalars. One vector is distinguished,
called zero vector, and denoted by 0, and for each vector x, there is a vector −x,
called the negative of x. The following axioms are assumed to hold:
(A) For any vectors x, y, z we have

(A1) x + y = y + x, commutative law,

(A2) x + ( y + z) = (x + y)+ z, associative law,

(A3) x + 0 = x,

(A4) x + (−x) = 0.



2.1 Scalars and Vectors 27

(M) For each scalar λ and each vector x the multiple of x
with λ, denoted by λx, exists with the properties

(M1) λ(x + y) = λx + λ y,

(M2) (λ+ μ)x = λx + μx,

}

distributive law,

(M3) (λμ)x = λ(μx), associative law,

(M4) 1x = x.

�

This definition does not assign to vectors the property to have a length. To this end,
a further operation between two vectors must be defined.

Definition 2.2 The scalar product between two vectors x and y, denoted by x · y,
assigns to x and y a real number and obeys the following rules2:

(P1) y · x = x · y,

(P2) (x + y) · z = x · z + y · z,

(P3) (λx) · y = λ(x · y),

(P4) x · x > 0, when x > 0.

We use the dot between two vectors to denote the scalar product. �

In three dimensions the scalar product is defined in a slightly different form, one
that is likely more familiar to the reader (but also less general). All rules defined
above may, however, be corroborated.

Definition 2.3 With the scalar product the length or the norm of a vector can be
defined as

‖ x ‖= +√x · x,

and it is obvious that ‖ λx ‖=| λ | ‖ x ‖. �

Clearly, because of the property (P4), ‖ x ‖> 0 when x = 0 and ‖ x ‖= 0 if and
only if x = 0. As an exercise to familiarise himself, the reader may also prove the
following facts:

2 We restrict here considerations to real numbers. If x · y can be a complex number, then P1 is
defined as x · y = ( y · x)*, where * denotes the conjugate complex number.
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Problem 2.1 Using the definition of the norm, prove that

(1) ‖ x + y ‖2 + ‖ x − y ‖2= 2(‖ x ‖2 + ‖ y ‖2) (Parallelogram law)

(2) | x · y |≤‖ x ‖ ‖ y ‖ (Cauchy–Schwarz inequality)

(3) ‖ x + y ‖≤‖ x ‖ + ‖ y ‖ (Triangle inequality)
�

Definition 2.4 The scalar product of two vectors a and b in R
3 is a scalar (i.e.

real number) c given by the formula

c := a · b = |a| |b| cosϕab. (2.1)

In words: The scalar product c of two vectors a and b is the product of the lengths
of the two vectors |a| and |b|, respectively, times the cosine of the angle spanned by
the two vectors. �

In order to define the angle between two vectors, one may in imagination have to
move the two vectors to a common point of attack as shown in Fig. 2.1. Notice,
moreover, that in the above we have used the point · to symbolise the scalar product
and defined |a| to be the length of the vector a (and similarly for the vector b), and
we have introduced ϕab to denote the angle between the two vectors, see Fig. 2.1.
For an acute angle (−90◦ ≤ ϕ < 90◦) c is positive, while for an obtuse angle
(90◦ < ϕ ≤ 270◦) c is negative. It follows from (2.1) that if two vectors a and b are
orthogonal, then c = 0 since ϕ is then 90◦. Mathematically this statement may be
written as

a ⊥ b �⇒ a · b = 0, (2.2)

but (2.2) cannot be read in the opposite (⇐�) direction; if a · b = 0, then either a
or b is a zero vector or a is perpendicular to b. Thus the reverse statement is

⎧

⎨

⎩

a = 0 or
b = 0 or
a ⊥ b

⎫

⎬

⎭
⇐� a · b = 0. (2.3)

b

a

ϕab < 90° ϕab > 90° ϕab = 90°

a

b

a

b

c > 0 c < 0 c = 0

Fig. 2.1 Explaining the scalar product of two vectors c = |a||b| cosϕab
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Problem 2.2 Prove that Definition 2.4 satisfies the properties (P1)–(P4). �

For two vectors x, y, we call ‖ x− y ‖ the distance from the endpoint of x to the
endpoint of y and denote it sometimes by d(x, y). With the above definitions and
properties, it is easy to show that

d(x, y) > 0, when x = y,

d(x, y) = 0, if and only if x = y,

d(x, y) = d( y, x),

d(x, z) ≤ d(x, y)+ d( y, z).

The last relation says that the sum of the length of two triangle sides is always larger
than or equal to the third side.

Two vectors, x and y, are called collinear (to one another) if y = λx, λ = 0.
The two vectors are then parallel (or antiparallel) and the length of y is |λ| times
the length of x. If y = λx for any real λ, then x and y are not collinear. We also
call two non-trivial vectors, x and y, orthogonal if the scalar product between them
vanishes, explicitly,

x and y are orthogonal �⇒ x · y = 0.

If, in addition, the length of the two vectors is unity, ‖ x ‖= 1, ‖ y ‖= 1, and
x · y = 0, then these two vectors are called orthonormal. It is obvious that two
nontrivial vectors which are orthogonal cannot be collinear. Two non-trivial vectors
which are not collinear are called linearly independent. It can be proved that in a
vector space there is a set {b1, . . . , bn} of linearly independent vectors which is
maximal, i.e. possesses n elements b j ; the maximum number of such independent
elements n is unique and defines the dimension of the vector space; it can be finite
or infinite. Any independent maximum set {b1, . . . , bn} is called a basis, and an
arbitrary vector x can be represented as a linear combination of the basis elements

x = x1b1 + · · · + xn bn =
n
∑

j=1

x j b j .

Moreover, in a vector space with scalar product, there exist orthonormal bases
{ê1, ê2, . . . , ên} consisting of n elements with the properties that

êi · ê j =
{

1, i = j,
0, i = j.

If such a basis is constant, i.e. the same for all x, it is called Cartesian.
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Fig. 2.2 (a) Three-dimensional EUCLIDian space equipped with an origin O and an orthonormal
basis {êx , êy, êz}, defining a Cartesian coordinate system. Embedded in this space is a material
body with volume V and boundary ∂V ; the position P of a point is described by the vector x. (b)
The orthogonal projections of x onto the directions of the basis vectors defining the coordinates
x, y, z of x. (c) Parallelogram for the addition of vectors a and b, demonstrating that a+b = b+a

In what follows, we shall interpret the physical space as a three-dimensional
vector space. In particular, to describe the various points of a material body that
occupies a certain region V in this space, one chooses a particular point as the
origin O and selects a basis {êx , êy, êz} defining three non-co-planar directions,
see Fig. 2.2. The elements {êx , êy , êz} may be chosen to be orthogonal, and their
lengths can be chosen to be unity on a selected length scale (e.g. 1 m, 1 km). If they
are so chosen, the basis {êx , êy, êz} is called an orthonormal basis and the corre-
sponding coordinate system is called a Cartesian coordinate system. The position of

a body point P is then given by the vector
−→
OP which in Fig. 2.2 is written as x, and

inspection shows that

x = x êx + y êy + z êz, (2.4)

in which x, y, z are the components3 of x relative to the base vectors êx , êy and
êz , respectively. Alternatively, since x = x · êx , y = x · êy , z = x · êz , x , y and z
are the projections of x onto êx , êy and êz , respectively. As the reader has certainly
realised, vectors are drawn in the graphs as arrows and their symbols are set in bold

3 In a general basis, these components can be constructed parallel to the base vectors or orthogonal
to them. In a Cartesian system the two different projections coincide.
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type. Moreover, in (2.4) we have assumed that the vector x êx points in the direction
of êx and has a length which is x times the length of êx , etc., and we have used
the so-called parallelogram rule, according to which the vectors a and b are added
together by arranging their arrows in sequence and by connecting the point of origin
of the first with the end point of the second to obtain a+b. It is immediately seen that
this addition is independent of the order in which it is performed, so a+ b = b+ a,
see Fig. 2.2c.

The symbolic notation of vectors as bold faced letters, such as a, b, c, . . ., or as

italic letters with an overhead arrow
→
a ,

→
b,

→
c is standard, but some authors use fancy

notations, e.g. aa, bb, cc, . . .. In handwritten manuscripts,
→
a ,

→
b,

→
c or a , b , c , . . . are

used. Important is that vectors are differentiated symbolically from scalars (which
are simple real or complex numbers, and are generally italicised). There is, however,
also a different, very popular way of writing vectors, but it is less general and based
on a particular choice of a basis {êx , êy, êz}, for our purposes always chosen as an
orthonormal Cartesian basis. This notation for (2.4) would be

x=̂(x, y, z), (2.5)

i.e. one only writes down the Cartesian components as an ordered triplet. In (2.5) we
have not written an equal sign but ‘=̂’ instead to emphasise that the ordered triplet is
not identical to the vector but equivalent or, as mathematicians say, isomorphic to the
vector. For two vectors a and b we would write a=̂(ax , ay, az) and b=̂(bx , by, bz),
and we leave it as an exercise to the reader to prove, using simply the parallelogram
rule, that

a + b=̂(ax + bx , ay + by, az + bz). (2.6)

The elements ax , ay, az in (ax , ay, az) are called the components of the vector a
(with respect to the Cartesian basis {êx , êy, êz}).

There is yet another common rule of notation for vectors, and it is based on the
fact that a three-dimensional EUCLIDian space can be ‘spanned’ by three mutually
non-co-planar base vectors which may be selected to be orthonormal. Instead of
calling the three directions x, y, z, they may be called x1, x2, x3 or simply xi (i =
1, 2, 3). Instead of (2.4) we then can write

x = x1 ê1 + x2 ê2 + x3 ê3,

=
3
∑

i=1

xi êi
(1)=

∑

xi êi
(2)= xi êi , (2.7)

x =̂ (x1, x2, x3) or simply x=̂xi . (2.8)

In these equations the expression in the first line and the first expression in the

second line need no further explanation; the step indicated by ‘
(1)=’ simply omits
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the explicit mentioning that the summation is carried over the indices from 1 to 3

and in ‘
(2)=’ the summation is not even written down any longer and the convention

is used that over doubly repeated indices i the expression must be summed over i
from 1 to 3.

In the second expression of (2.8) the vector x is simply replaced by an unspecified
component xi , where one tacitly implies that with i any one of the three components
is meant.

The properties (P1)–(P4) provide us with the presentation of a very easy evalu-
ation of the scalar product of two vectors using the notation (2.5). To this end, let
a =

∑

i

ai êi , b =
∑

j

b j ê j . Then,

a · b =
⎛

⎝
∑

i

ai êi

⎞

⎠ ·
⎛

⎝
∑

j

b j ê j

⎞

⎠

(rules (P1)–(P3) are used)

=
∑

i j

ai b j êi · ê j
︸ ︷︷ ︸

δi j

=
∑

i j

ai b jδi j =
∑

i

ai bi

= a1b1 + a2b2 + a3b3. (2.9)

Here, we have introduced a new symbol δi j . Its meaning can be understood if the
reader recalls that for an orthonormal basis the vectors êi have unit length and are
orthogonal so that êi · ê j = 1 if i = j but êi · ê j = 0 if i = j . Therefore we define

δi j =
{

1 for i = j,
0 for i = j,

or (δi j )=̂
⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ . (2.10)

The symbol δi j is called KRONECKER delta, and (δi j ) is its matrix representation.
We shall later see that the KRONECKER delta may be interpreted as a (second rank)
tensor that is equivalent to the unit tensor. Symbolically, one therefore writes 1 and
not δ since 1a = a; in other words the unit tensor 1 maps every vector into itself
1 : a �→ a.

The last line in (2.9) provides us with the computationally useful formula to
evaluate the scalar product, namely if a and b are referred to a Cartesian basis

a=̂(a1, a2, a3), b=̂(b1, b2, b3), (2.11)

then to obtain the scalar product of the two vectors, one must multiply their corre-
sponding components a1b1, a2b2, a3b3 and add the results together. This rule can
best be remembered by the graphical arrangement
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b1

b2

b3 �
a1 a2 a3 a · b

�

(2.12)

The arrows indicate that the elements in the first, second and third positions, respec-
tively, must be multiplied together and then added.

The scalar product is one form of product connections between two vectors.
There are two more, and one is the vector product which is defined only for three-
dimensional vector spaces.

Definition 2.5 The vector product of two vectors a and b is a vector c with the
following properties:

• The direction of c is perpendicular to a and b and the three vectors form (in the
order a, b, c) a right-handed system of vectors.4

• The length of c equals |c| = |a||b| sin ϕab. �

The symbol used for the vector product is a cross, viz. c = a × b. For this reason,
the vector product is sometimes called the cross product. The following properties
are straightforward consequences of the above definition:

(1) a × b = −b× a,

(2) a × a = 0,

(3) (αa)× b = α(a × b), a × (βb) = β(a × b), (2.13)

(4) a × b = 0 �⇒
{

a = 0 or b = 0 or
b = βa, β = 0,

(5) (a + b)× c = a × c+ b× c.

Property (1) follows since for a right-handed system, {a, b, c}, {b, a, c} forms a
left-handed system of vectors, but {b, a,−c} would be a right-handed system, so
b × a = −c. Property (2) is trivial since sin ϕaa = 0. Property (3) follows, since
multiplying a vector with a positive scalar does not change its direction. On the
other hand, if the scalar is negative, the resulting vector changes the direction and
the orientation of the triad αa, b, c changes. Property (4) follows immediately once
(2) and (3) have been proved. The proof of property (5) is less trivial and left to the
reader as an exercise.

4 If the thumb, index finger and the middle finger of the right hand are stretched out such that they
form a triad of non-co-planar vectors such that thumb, index finger and middle finger are identified
with a, b, and c, respectively, then those ‘arrows’ form a right-handed system of vectors.
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To find the computational rule that must be applied to evaluate the vector product
of two vectors a and b, we refer these vectors to the basis ê1, ê2, ê3 of a Cartesian
coordinate system. This yields

a × b =
⎛

⎝
∑

i

ai êi

⎞

⎠×
⎛

⎝
∑

j

b j ê j

⎞

⎠

=
∑

i j

ai b j
(

êi × ê j
)

(properties 2 and 5 used). (2.14)

To evaluate this summation, the reader must convince him/herself that

ê1 × ê2 = ê3, ê2 × ê1 = −ê3,

ê2 × ê3 = ê1, ê3 × ê2 = −ê1, (2.15)

ê3 × ê1 = ê2, ê1 × ê3 = −ê2,

and, of course, ê1 × ê1 = 0 = ê2 × ê2 = ê3 × ê3. The double summation in (2.14),
when written out in long hand, involves a linear combination of the above nine terms
(three of which are zero). The remaining six can be condensed to three terms so that
after this condensation

a × b = (a2b3 − a3b2)ê1 + (a3b1 − a1b3)ê2 + (a1b2 − a2b1)ê3. (2.16)

In the notation (2.5), this becomes

a × b =̂ [(a2b3 − a3b2), (a3b1 − a1b3), (a1b2 − a2b1)] . (2.17)

This is the formula that holds when the vectors a and b are referred to a Cartesian
coordinate system.

There is a thumb rule which allows us to easily memorise formula (2.17). To this
end, we write the components of a and b in lines one over the other and repeat the
first two components at the end of the rows as follows:

a1 a2 a3 a1 a2
b1 b2 b3 b1 b2

Then we omit the first column and perform the product and sums as indicated by
the arrows

a2

b2

�
����
��� a3

b3

�
����
��� a1

b1

�
����
��� a2

b2

a2b3 − b2a3 a3b1 − b3a1 a1b2 − b1a2
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Products of downward pointing arrows have to be taken positive and those of upward
pointing arrows must be taken negative. The result in the third line lists the Cartesian
components of the cross product a × b.

The following problem deals with a vector product of two vectors that is very
important for many problems of fluid flow on the Globe. In ensuing flow-problem
formulations it will often arise. In the problem formulation, velocities and accelera-
tions of particles will arise. In anticipation of a careful treatment of these quantities,
we state that both are elements of vector spaces with their own scalar products.
Accepting this the problem reads as follows:

Problem 2.3 Consider the Globe as a sphere. Isolate an arbitrary point on the
surface of the northern hemisphere and let this point be the origin of a Cartesian
coordinate system in which the x-axis points towards east, the y-axis points towards
north and the z-axis points towards the zenith, see Fig. 2.3. Let φ be the angle of
geographical latitude. The angular velocity of the Earth can be represented as a
vector Ω parallel to the direction of the rotation axis of the Earth.

• Show that in the chosen coordinate system Ω has the representation
Ω=̂ (0, |Ω| cosφ, |Ω| sinφ).

• The Coriolis acceleration ac is defined as the vector product

ac = 2Ω × v, v = v(x, t), (2.18)

where v is the velocity vector at point x and time t as measured by an observer
on the Earth. Show that in this coordinate system

x (East)

z (Zenith)
y (North)

O

S

N

3

1

2
Ω

λ

φ

Fig. 2.3 Perspective view of the Earth modelled as a sphere. λ and φ are the geographical longitude
and latitude, respectively, and Ω is the angular velocity of the Earth [= 7.272 × 10−5 s−1]. The
local Cartesian coordinate system Oxyz fixed with the Earth has axes pointing towards east (x),
north (y) and the zenith (z). This is the standard coordinate system used in oceanography
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ac=̂
(

f̃w − f v, f u,− f̃ u
)

, (2.19)

in which we have chosen v=̂(u, v, w) and where

f = 2|Ω| sin φ, f̃ = 2|Ω| cos φ. �

Definition 2.6 Let Ω be the vector of angular velocity of the rotation of the Earth
and φ the angle of geographical latitude, positive (negative) on the northern
(southern) hemisphere. Then

f = 2|Ω| sin φ, f̃ = 2|Ω| cos φ (2.20)

are called first and second Coriolis parameters. �

Problem 2.4 Find orders of magnitudes for the components of ac and give reasons
why in most processes of physical limnology the contributions involving f̃ can be
ignored as compared to the others. If so, it follows that the second Coriolis param-
eter f̃ is far less important than the first, f . �

To solve this problem, only order-of-magnitude arguments are needed. Simple
observations from a boat or measurements show that horizontal components of the
water velocity are much larger than the vertical component. Typical values in lakes
are perhaps 10−1(m s−1), and 10−3(m s−1), respectively. On the other hand, f and
f̃ are of the same order of magnitude and vary from 0 to 1.46 × 10−5[s−1]. Thus
in (2.19) f̃w can be ignored relative to f v (except close to the equator where f
vanishes). Furthermore − f̃ u, the third component, has a magnitude of, perhaps,
1.46 × 10−5(m s−2) which is negligible when compared with the acceleration due
to gravity, g � 9.81(m s−2). These estimations are the reason why in later chapters
we shall often approximate the Coriolis acceleration by

ac=̂ (− f v, f u, 0) . (2.21)

It is easy to infer from Fig. 2.3 that this approximation corresponds to the neglect of
the component of the vector of angular velocity of the rotation of the Earth that lies
within the xy-plane.

Problem 2.5 Prove the rule (5) in (2.13) �

Forces are vectors. They have a material point of attack and point in a direction
along their line of action. In rigid bodies a force can be arbitrarily moved along its
line of action, but it is intuitively clear that in a deformable body the point of attack
is important. Referred to an origin of a (Cartesian) coordinate system, the force on
a body is thus defined by the position vector x of its point of attack and the vector k
defining the length and orientation of the force at the point of attack, see Fig. 2.4a.
Let us define now the moment of a force or more generally the moment of a vector
a bound to a line of action.
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O
O

O

x

x −→
O P= x

Ma
O

a
PP − point of attack

k

line of action(a () b)

Fig. 2.4 (a) Force k with point of attack P and line of action. (b) Explaining the definition of the
moment of a vector a relative to a point O ′ in three-dimensional space

Since forces in rigid bodies can be arbitrarily shifted along their lines of attack,
they are vectors and can be added and subtracted and multiplied with real numbers
in accordance with the rules listed in Definitions 2.1, 2.2 and 2.4. Physical quantities
defined as scalar or vector products of a force and another vector can also be formed
and may have a deeper physical meaning. The moment of a force or more generally
the moment of a vector relative to a point is one such quantity.

Definition 2.7 Let a be a vector bound to a line of action and having a point of
attack P. Let, moreover, O ′ be an arbitrary point in the three-dimensional space.
The moment Ma

O ′ of the vector a relative (or with respect) to the point O ′ is the

vector product of the vectors
−→
O ′P= x′ and a, see Fig. 2.4b,

Ma
O ′ = x′ × a. (2.22)

�

According to this definition, Ma
O ′ is a vector perpendicular to both vectors x′ and

a, and Ma
O ′ , x′, a in this order form a right-handed system of vectors. If the point

relative to which the moment of a force is computed is chosen to be the origin of the
Cartesian coordinate system, then

Ma
O = x × a

is the moment of the vector a relative to the point O .

Problem 2.6 The formula of the moment of a vector involves the point of attack but
of importance is alone the line of action. So prove

• that Ma
O ′ is independent of where the point of attack P is positioned along the

line of action.
• geometrically that if a and b are two vectors on different lines of action, but which

have one common point

Ma
O ′ + Mb

O ′ = Ma+b
O ′ .

[This is nothing else than the distributive law given in (2.13)]. �
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Given a number of vectors aj and their lines of action which may not mutually
intersect, we may for each define its own moment with respect to point O ′, M ′

j =
x′j × aj. Then we simply define the total moment (relative to O ′) as the sum of the
individual moments

M O ′ =
n
∑

i=1

x′j × aj =
n
∑

j=1

M ′
j.

If the vectors aj are identified with the forces kj, then the ‘reduction’ of these forces
to the point O ′ is given by the resultant force K ′ = ∑n

j=1kj and the resultant
moment M ′

O =
∑n

j=1x′j × kj.

Problem 2.7 Let O ′ and O ′′ be two points in the three-dimensional space and let
kj, xj ( j = 1, 2, . . . , n) be forces with their points of attack xj. Prove that

K = K ′′ = K ′ =
n
∑

j=1

kj, M O ′′ = M O ′ − r × K ,

where r =
−→

O ′O ′′. �

Thus, K is invariant under changes of reference points, but M is not.

2.2 Tensors

In the above we dealt with scalars and vectors; here we will briefly deal with tensors
of second order or second rank but we shall not have the occasion to deal with
tensors of higher order than rank 2. For this reason we mean in this text by a tensor
a second-rank tensor. The reader familiar with matrices may think of these when
second-rank tensors are meant.5

Definition 2.8 A tensor A is a linear transformation from the vector space V into
itself. Specifically, A assigns to an arbitrary vector a a vector denoted by Aa in
such a way that

A(αa + βb) = α(Aa)+ β(Ab),

for all scalars α, β and all vectors a, b. �

5 Some readers may feel the desire for complementary reading. Books on tensor analysis are, e.g.,
BETTEN [3], BLOCK [4], BOWEN and WANG [5] and KLINGBEIL [11]. Books on continuum
mechanics containing chapters on tensors are by CHADWICK [7], GURTIN [9], SPENCER [18],
HUTTER and JÖHNK [10] and LIU [13]. This is only a selection of many.
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Two tensors are equal if and only if their actions on an arbitrary vector are iden-
tical. The rules for additions, scalar multiplication and multiplication (or composi-
tion) of tensors are

(A+ B)a = Aa + Ba,

(αA)a = α(Aa),

(AB)a = A(Ba).

The zero tensor O assigns to a the zero vector, Oa = 0, and the identity tensor
1 assigns to a the vector a itself, 1a = a. The following properties can be easily
verified:

(i) A+ B = B + A,

(i i) α(AB) = (αA)B = A(αB),

(i i i) A(B + C) = AB + AC,

(A+ B)C = AC + BC,

(iv) A(BC) = (AB)C,

(v) AO = O A = O, A1 = 1A = A.

Associated with an arbitrary tensor A there is a unique tensor AT, called the
transpose of A, such that

a · (ATb) = (Aa) · b = b · (Aa).

If follows from this definition and the rules, previously defined and derived, that

(αA+ βB)T = αAT + βBT,

(AB)T = BT AT.

The inverse of A, if it exists, is denoted by A−1 such that

AA−1 = A−1 A = 1.

Having introduced second-rank tensors we can now introduce another product
between vectors, which neither yields a scalar nor a vector but a tensor of rank 2.

Definition 2.9 To a pair of vectors (u, v) we can assign a tensor, denoted by u⊗ v
and called the tensor product or the dyadic product of u and v; it is defined
through its action on an arbitrary vector a by

(u⊗ v)a = (a · v)u. �
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The reader may easily deduce the properties

(i) (αu + βv)⊗ w = α(u⊗ w)+ β(v ⊗ w),
u⊗ (αv + βw) = α(u⊗ v)+ β(u⊗ w),

(i i) (u⊗ v)T = v ⊗ u,

(i i i) (u⊗ v)(w ⊗ x) = (v · w)(u⊗ x),

(iv) A(u⊗ v) = (Au)⊗ v,
(u⊗ v)A = u⊗ (AT v).

Let {ê1, ê2, . . . . ., ên} be an orthonormal basis. Then for any p (= 1, . . . , n)we have

(êp ⊗ êp)a = (a · êp)êp = ap êp = a = 1a,

which implies

êp ⊗ êp = 1.

In this equation, summation over p from 1 to n is understood. Thus, the tensor
êp ⊗ êp is equal to the n × n-dimensional unit tensor.

We now wish to find the representation of A with respect to the orthonormal
basis {ê1, ê2, . . . . ., ên}. To this end, let Ai j be the components of the vector Aê j

relative to êi , so that

Aê j = Apj êp and Ai j = êi · (Aê j ).

Then, let Apq êp ⊗ êq and a be given and form

(A− Apq êp ⊗ êq)a = (A− Apq êp ⊗ êq)ar êr

= ar
(

Aêr
︸︷︷︸

Apr êp

−Apq(êr · êq
︸ ︷︷ ︸

δqr

)êp
) = ar

(

Apr − Apqδqr
)

êp = 0.

This implies, since {êr } is a basis,

A = Apq êp ⊗ êq

and so {êp ⊗ êq; p, q = 1, . . . ., n} is a basis for A, and Apq are the tensor com-
ponents with respect to this basis.

The above calculations also indicate that the vector Aa has the components
Aipap and that the components of AT are A ji if those of A are Ai j . Furthermore, if
A = Apq êp ⊗ êq and B = Brs êr ⊗ ês , then
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AB = (Apq êp ⊗ êq)(Brs êr ⊗ ês) = Apq Brs(êp ⊗ êq)(êr ⊗ ês
︸ ︷︷ ︸

δqr êp⊗ês

)

= Apq Bqs êp ⊗ ês .

This formula can be easily proved by recognising that (AB)a = A(Ba), for all a.
It follows that AB has the components Aiq Bq j relative to the basis {ê1, . . . ., ên}.

Many physical quantities such as mechanical stress, strain and strain rate behave
as tensors. They are indispensable tools in the ensuing analysis. The reader is there-
fore encouraged to familiarise himself/herself with their properties. In the subse-
quent analysis we need these representations for the three-dimensional vector space.

2.3 Fields and Their Differentiation

In ensuing chapters we shall encounter fields of scalar, vector and tensor-valued
physical quantities. By fields we mean mathematical objects which can vary in
space and time. If f is such a quantity, then f = f (x, t) is a field if its value
can be computed for all x in the region V of the body and for some time t in a
non-vanishing interval. f can mean the temperature and then constitutes a scalar
field, or the velocity field within the body in which case it is a vector-valued field.
In this latter case

v=̂ (u(x, t), v(x, t), w(x, t)) ,

i.e. each component of the vector v is a scalar field. Finally, f may be tensor valued,
and then f (x, t) defines a tensor field for all those points (x, t) of which evolution
of f (x, t) is meaningful.

We assume that the reader is familiar with the elements of differentiation of a
function of several variables. It is not our intention here to develop this theory,
we rather shall present some highlights with the intention to refresh the reader’s
memory.

Definition 2.10 A function of a single variable f (x) is differentiable in a closed
interval x ∈ [x1, x2] if it is continuous and possesses a continuous tangent. Then its
derivative is uniquely defined by

f ′(x) = d f

dx
= lim

Δx→0

f (x +Δx)− f (x)

Δx
. (2.23)

At x = x1 (x = x2) this definition applies for Δx > 0 (Δx < 0) only and delivers
the derivation from the right and left, respectively. �

The reader may use this definition to corroborate by proof the following rules of
differentiation of two differentiable functions f (x) and g(x):
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( f (x)+ g(x))′ = f ′(x)+ g′(x),
( f (x)g(x))′ = f ′(x)g(x)+ f (x)g′(x),
(

g−1(x)
)′ =

(
1

g(x)

)′
= − 1

g2(x)
g′(x),

(
f (x)

g(x)

)′
= 1

g2(x)

[

f ′(x)g(x)− f (x)g′(x)
]

,

( f (g(x)))′ = f ′(g)g′(x).

For instance

(

g−1(x)
)′ = lim

Δx→0

1

Δx

{
1

g(x +Δx)
− 1

g(x)

}

= lim
Δx→0

1

Δx

g(x)− g(x +Δx)

g(x +Δx)g(x)

= lim
Δx→0

1

g(x +Δx)g(x)
lim
Δx→0

{

−g(x +Δx)− g(x)

Δx

}

= − 1

g2(x)
g′(x).

The reader is equally supposed to know the derivatives of typical functions, e.g.

d

dx
(sin x) = cos x,

d

dx
(cos x) = − sin x,

d

dx
(xn) = nxn−1,

d

dx
(ex ) = ex .

These may simply be derived by using the definition (2.23) or, else, by consulting
mathematical tables, e.g. [1, 6]. We also assume that the reader is familiar with the
fact that in the graph of f (x) the derivative f ′(x) or d f/dx evaluated at x is the
slope of the function f (x) at x , i.e. the tangence of the angle between the x-axis and
the tangent to the curve at the point x .

A function may be repetitively differentiable, and then we write for its first-,
second-, etc., order derivative

d f

dx
,

d

dx

(
d f

dx

)

= d2 f

dx2
, . . . ,

d

dx

(
dn−1 f

dxn−1

)

= dn f

dxn
,

f ′ ,
(

f ′
)′ = f ′′ , . . . ,

(

f (n−1)
)′ = f (n) .

(2.24)

Next we wish to consider derivatives of functions of several variables. In prepa-
ration for these, let us first rewrite (2.23) slightly differently as follows:

lim
Δx→0

( f (x +Δx)− f (x)) = f ′(x)Δx . (2.25)

This equation may be interpreted to say that the limit of the difference of the two
function values on the left–hand side as Δx → 0 is proportional to Δx with a
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coefficient of proportionality which equals f ′(x). In this connection, f ′(x) is often
also called the gradient of f (x), and one writes f ′(x) = grad f (x).

Formula (2.23) and (2.25) also provide us with a formula for the second-order
derivative of a function f if this derivative exists. Indeed, simply by using (2.23)
repetitively, we may deduce an expression for f ′′:

f ′′(x) = lim
Δx→0

f ′(x +Δx)− f ′(x)
Δx

= lim
Δx→0

f (x + 2Δx)− f (x +Δx)

Δx
− f (x +Δx)− f (x)

Δx
Δx

= lim
Δx→0

f (x + 2Δx)− 2 f (x +Δx)+ f (x)

(Δx)2
.

Solving this for f (x + 2Δx) and replacing in the emerging equation Δx by Δx/2
yields6

lim
Δx→0

f (x +Δx) = 2 lim
Δx→0

[

f

(

x + Δx

2

)

− f (x)

]

+ f (x)+ 1
4 f ′′(x) lim

Δx→0
(Δx)2

= f (x)+ f ′(x)Δx + 1
2 f ′′(x)(Δx)2,

which is an approximation formula for a differentiable function f (x) in the neigh-
bourhood of the point x :

f (x +Δx) = f (x)+ f ′(x)Δx +O
(

|Δx |2
)

, (2.26)

in which O (|Δx |2) is a symbol that gives an order of magnitude for the error. It
is proportional to |Δx |2. As is known to a reader familiar with the properties of
analytic functions, the right–hand side of (2.26) comprises the first two terms of a
Taylor series expansion

f (x +Δx) =
∞
∑

n=0

f (n)(x)

n! (Δx)n . (2.27)

6 We use

lim
Δx→0

2

[

f

(

x + Δx

2

)

− f (x)

]

= lim
Δx→0

f ′
(

x + Δx

4

)

Δx

= lim
Δx→0

(

f ′(x)Δx + f ′′(x) (Δx)2

4

)

.
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For a function of several variables, e.g. a scalar-valued f (x), where x is the position
vector in three-dimensional space, the function f (x) may change differently in dif-
ferent directions. Thus we select the vectorial length increment Δx and generalise
(2.25) as follows:

Definition 2.11 Let f (x) be a scalar-valued function of the vector-valued variable
x. Then grad f is a linear transformation such that

lim|Δx|→0
( f (x +Δx)− f (x)) = (grad f ) ·Δx, (2.28)

in which grad f is called the gradient of f . �

When the left-hand side of (2.28) is computed, its result is a real number, since
f (x) is a scalar-valued function; so, the right-hand side must also be a scalar. Con-
sequently, since Δx is a vector, grad f must be a vector as the only scalar formed
by Δx that is linear in Δx is its scalar multiplication with another vector. Referred
to a Cartesian basis, we thus have

grad f =
∑

i

(grad f )i êi ; (2.29)

note here that grad f on the left-hand side is a vector, while (grad f )i on the right-
hand side is a scalar. There remains to find an interpretation of the components

grad f =̂ ((grad f )1, (grad f )2, (grad f )3) . (2.30)

To find these, we simply write down (2.28) for an increment in the direction of a
base vector ê j and use (2.29):

lim
Δx→0

(

f (x +Δx ê j )− f (x)
) =

∑

i

(

(grad f )i êi
) · ê jΔx

=
∑

i

(grad f )iΔx(êi · ê j
︸ ︷︷ ︸

δi j

) = (grad f ) jΔx .

This may also be written in the form

lim
Δx→0

f (x +Δx ê j )− f (x)

Δx
= (grad f ) j . (2.31)

The left-hand side is the definition of the derivative of f (x) in the direction of the
base vector ê j and is commonly written as ∂ f/∂x j and called the partial derivative
of f (x) in the direction of ê j . So, (2.30) can also be written as
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grad f =̂
(
∂ f

∂x1
,
∂ f

∂x2
,
∂ f

∂x3

)

. (2.32)

This result is sufficiently important to be highlighted by

Definition 2.12 Let f (x) be a scalar-valued differentiable function of the vector-
valued variable x. Then (2.31) defines its derivative in the direction of the base
vector ê j ; it is commonly written as

(grad f ) j = ∂ f

∂x j

and called the partial derivative of f (x) with respect to x j or the partial derivative
of f (x) in the direction of ê j . �

In much the same way we can also find an approximation formula for f (x + Δx)
to second order in Δx; it is structurally built as (2.26) and reads

f (x +Δx) = f (x)+ (grad f ) ·Δx +O
(

|Δx|2
)

, (2.33)

in which O (|Δx|2) again denotes the order of magnitude of the error if Δx does
not tend to the zero vector but has a finite value. A particular case of (2.33) is

f (x +Δx j ê j ) = f (x)+ (

grad f · ê j
)

Δx j +O
(

(Δx j )
2
)

= f (x)+ ∂ f

∂x j
Δx j +O

(

(Δx j )
2
)

. (2.34)

This is a formula that shall be used in subsequent chapters over and over again.
Let us give a geometric interpretation of the gradient of a function f (x) in the

three-dimensional space. To this end, consider the equation f (x) = c, where c
is a constant. It is easy to see that the equation f (x) = c defines a surface in
three-dimensional space. For instance, the relation

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 = R2

or (2.35)
(x − a) · (x − a) = R2,

in which a is a constant vector and x is variable, defines a sphere with centre at
x=̂(a1, a2, a3) and radius R, see Fig. 2.5. Thus, in this example, R2 corresponds to
the constant c in the equation f (x) = c and f (x) is (x−a)·(x−a). It is evident from
this example that by changing the value of the constant c, (2.35) describes concentric
spheres with centre at x=̂(a1, a2, a3) and different radii; making R larger leads to
larger spheres, like the various shells of an onion. Obviously, if we imagine to move
on one of the ‘onion shells’, we keep c in the equation f (x) = c constant; the value
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x1

x3

x2

P1

P2
grad f

Fig. 2.5 Perspective view of two concentric spheres with centres at a = 0. Thus their equations
read x ·x = R2

i (i = 1, 2). At any point P1 of the small sphere, the segment connecting P1 with any
point on the second sphere is smallest when it is orthogonal to the two surfaces. This is obviously
the radial direction which is given by grad f = 2x

of f (x) does not change, even though the value of x changes as one moves within
the shell surface. Alternatively, if we move x from one shell to its neighbouring
shell, the function value changes since c changes its value. However, while we may
move from a point of the first shell to any arbitrary point on the second shell, the
change Δc of the value c in the equation f (x) = c is the same. The shortest path
connecting a point of the first shell with one of the second shell is obtained if it is
orthogonal to the shell. If n is the unit vector orthogonal to the surface f (x) = c,
then

lim
Δx→0

( f (x +Δxn)− f (x)) = (grad f ) · nΔx
or (2.36)

∂ f

∂n
:= lim

Δx→0

f (x +Δxn)− f (x)
Δx

= grad f,

according to Definition (2.28). Thus, the vector grad f points in the direction per-
pendicular to the surface f (x) = c. Its length is a measure of how fast the value of
f (x) changes in the direction perpendicular to the surface f (x) = c.

Let us give a geometrically obvious application. So let x=̂(x1, x2) be the position
vector in the horizontal plane of a three-dimensional Euclidean space, and let x3 =
f (x1, x2) represent a surface. For instance,

f (x1, x2) = x3 (2.37)

may represent the bathymetry of Lake Constance and the topography of the sur-
rounding landscape, see Fig. 2.6a. Let us, moreover, agree that x3 = 0 identifies the
level of the lake surface and x3 > 0 the landscape and x3 < 0 the bathymetry.
Assigning a constant value to x3 defines the level lines of the topography and
bathymetry, respectively. Thus the gradient
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Fig. 2.6 (a) Bird’s-eye view of the bathymetry of Lake Constance ( c© MAISS (1992) [14]); (b) an
elliptical basin with parabolic bottom with lines of constant depth (solid lines) and lines of steepest
descent (dashed lines)

grad f =̂
(
∂ f

∂x1
,
∂ f

∂x2

)

defines at a point x=̂(x1, x2) the direction in which the value of x3 changes fastest.
These directions are the directions of steepest ascent. Limnologically more sig-
nificant are the directions of steepest descent, because cold and dense water will
approximately move along these lines.

Problem 2.8 Let x3 = f (x1, x2) describe the bathymetric profile of a lake. Deter-
mine the lines of steepest descent. �
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The solution of this problem is obtained if it is recognised that the vector (grad f )
defines in each point (x1, x2) the direction of steepest ascent. The lines of steepest
descent or steepest ascent are therefore the integral curves which in each point are
tangential to this direction; thus

dx1 = −dσ
∂ f

∂x1
(x1, x2), dx2 = −dσ

∂ f

∂x2
(x1, x2),

where dσ is this coefficient of proportionality. The above equations may also be
written as

dx1

dσ
= − ∂ f

∂x1
(x1, x2) = g1(x1, x2),

(2.38)
dx2

dσ
= − ∂ f

∂x2
(x1, x2) = g2(x1, x2).

The functions g1(x1, x2) and g2(x1, x2) are known if f (x1, x2) is prescribed. The
system (2.38) is a system of ordinary differential equations (ODEs) and can be inte-
grated if initial conditions are given. One can for instance prescribe the point on the
shore through which one wishes to construct the line of steepest descent. Therefore,
one may request

x1 = x (0)1 , x2 = x (0)2 , for σ = 0. (2.39)

Solving the ODE initial-value problem (2.38), (2.39) will yield the lines of steepest
descent; in a similar way, level-line maps are constructed.

As an example, consider the ellipse with parabolic bottom given by

x3 = x2
1

a2
+ x2

2

b2
− H0 = f (x1, x2).

Its directions of steepest descent are given by the differential equations

dx1

dσ
= −2x1

a2
,

dx2

dσ
= −2x2

b2

and possess the solution

x2

x (0)2

=
(

x1

x (0)1

)a2/b2

,

where (x (0)1 , x (0)2 ) defines a reference point on the selected line of steepest descent.
Figure 2.6b shows the lines of constant depth for an ellipse having a=10, b=5,

H0=1 and corresponding lines of steepest descent.
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Problem 2.9 Let v(x1, x2, x3, t) be the velocity field within a lake domain, and let
−h(x1, x2) = x3 be its bathymetric surface. If the bottom is impermeable to the
water, then there is no loss of water through the bottom and, consequently, the water
flow must at any point of the bottom surface be tangential to it or vanish. If n is the
exterior unit normal vector to the bottom surface, then this tangentiality implies

v · n = 0, on x3 = −h(x1, x2). (2.40)

Derive a differential equation for h expressing this. �

Let us derive the equation that guarantees the tangentiality of the velocity field to
the bottom surface. To solve this problem, we note first that

F(x1, x2, x3) := −h(x1, x2)− x3 = 0

defines the surface of the lake bottom, and its gradient is a vector orthogonal to it:

grad F=̂
(

− ∂h

∂x1
,− ∂h

∂x2
,−1

)

;

however, it does not have unit length; indeed

|grad F | = √

grad F · grad F =
√

1+
(
∂h

∂x1

)2

+
(
∂h

∂x2

)2

.

Thus

n=̂

(

− ∂h

∂x1
,− ∂h

∂x2
,−1

)

√

1+
(
∂h

∂x1

)2

+
(
∂h

∂x2

)2
(2.41)

is of unit length. If we write v

v=̂ (u(x1, x2, x3, t), v(x1, x2, x3, t), w(x1, x2, x3, t)) ,

we obtain

v · n = v · grad F

|grad F | = 0 �⇒ v · grad F = 0, (2.42)

or when referred to a Cartesian basis

∂h

∂x1
u + ∂h

∂x2
v + w = 0 at x3 = −h(x1, x2). (2.43)



50 2 Mathematical Prerequisites

This equation is a very important boundary condition arising in lake hydrodynamics.
It expresses tangency of the velocity field of the lake water to the bottom surface and
may for this reason be called condition of impermeability.

2.4 Gradient, Divergence and Rotation of Vector
and Tensor Fields

In the above the gradient field was defined only for a scalar field f (x). It is pos-
sible to define gradient fields for differentiable vector- and tensor-valued functions
v(x) and T (x), respectively. In the fundamental equations of lake hydrodynamics,
such expressions are needed and thus must be derived. We do it with the minimum
of mathematical requirement by reducing the problem of finding the gradient of
a vector- or a tensor-valued function to that of a scalar. So, let a be an arbitrary
constant vector. Then, a ·v is a scalar for which the gradient operator was defined in
formulae (2.25), (2.26), (2.27), (2.28), (2.29), (2.30), (2.31) and (2.32). With respect
to a Cartesian basis we may write

a · v = a1v1 + a2v2 + a3v3, (2.44)

and therefore, in view of the results (2.32)

grad (a · v) =̂
{
∂(a · v)
∂x1

,
∂(a · v)
∂x2

,
∂(a · v)
∂x3

}

=
{(

a1
∂v1

∂x1
+ a2

∂v2

∂x1
+ a3

∂v3

∂x1

)

,

(

a1
∂v1

∂x2
+ a2

∂v2

∂x2
+ a3

∂v3

∂x2

)

,

(

a1
∂v1

∂x3
+ a2

∂v2

∂x3
+ a3

∂v3

∂x3

)}

= (a1, a2, a3)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂v1

∂x1

∂v1

∂x2

∂v1

∂x3
∂v2

∂x1

∂v2

∂x2

∂v2

∂x3
∂v3

∂x1

∂v3

∂x2

∂v3

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.45)

where in the last expression the classical matrix–vector notation has been used. The
above result now suggests the definition of the gradient of a vector field v(x). It is
customary to define the right-hand side of (2.45) as a grad v(x).

Definition 2.13 Let v(x, t) be a differentiable vector-valued field, and let a be a
constant vector, both defined in a three-dimensional Euclidean space; then

grad (a · v(x, t)) =: a grad v(x, t) for any a (2.46)
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defines the gradient of v(x, t) and its representation in a Cartesian coordinate sys-
tem is given by a second-rank tensor

grad v(x, t) =̂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂v1

∂x1

∂v1

∂x2

∂v1

∂x3
∂v2

∂x1

∂v2

∂x2

∂v2

∂x3
∂v3

∂x1

∂v3

∂x2

∂v3

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.47)

�

We remark that a second possibility of defining the gradient operator would be by
the equation

grad (a · v(x, t)) = (grad 2v(x, t))a for any a, (2.48)

and its representation in a Cartesian coordinate system is easily shown to be given
by

grad 2v(x, t) =̂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂v1

∂x1

∂v2

∂x1

∂v3

∂x1
∂v1

∂x2

∂v2

∂x2

∂v3

∂x2
∂v1

∂x3

∂v2

∂x3

∂v3

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=: (grad v(x, t))T . (2.49)

It is obvious that grad 2v(x, t) = (grad v(x, t))T, where (·)T denotes the transposed
matrix. In the literature both forms are used. We shall employ the form defined in
(2.46) and not (2.48), but the reader is cautioned to be aware of the two possibilities
when consulting other books.

With the above defined gradient operator of a differentiable vector field, we may
now introduce further operators of this vector field. Two of them are simply obtained
by observing that the matrix representation of grad v(x) does not, in general, possess
symmetry properties. Such properties are defined for higher order tensors, and here
we confine attention to second-rank tensors. So, let T (x) be such a differentiable
tensor field. It is defined as a linear transformation and maps any vector a into a
new vector b, and depending on whether T operates on a from the left or the right
the resulting vector may be different:

b1 = T a = Ti j êi ⊗ ê j ak êk = Ti j akδ jk êi = Ti j a j êi ,

b2 = aT = ai êi Tjk ê j ⊗ êk = ai Tjkδi j êk = ai Tik êk .
(2.50)
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These results suggest the following definition:

Definition 2.14 Let T be a tensor and a and b two arbitrary vectors. Then, the
transpose of T is the tensor T T defined by the relation

a · (T Tb) = b · (T a). (2.51)

�

It is easy to show that if [T ] is the matrix representing T in a Cartesian coor-
dinate frame, the matrix of T T is obtained from [T ] by interchanging rows and
columns, i.e.

T=̂
⎡

⎣

T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤

⎦ �⇒ T T=̂
⎡

⎣

T11 T21 T31
T12 T22 T32
T13 T23 T33

⎤

⎦ . (2.52)

With the definition of the transpose T T of T , we now define a symmetric T and a
skew-symmetric T as follows:

Definition 2.15 A tensor T is called symmetric if T = T T. Alternatively, T is
called skew-symmetric if T = −T T. �

This suggests the following definition for an arbitrary tensor

Definition 2.16 Let T be an arbitrary tensor; then

sym T := 1
2 (T + T T), skew T := 1

2 (T − T T) (2.53)

are the symmetric and skew-symmetric parts of T , respectively, and

T = sym T + skew T (2.54)

can be additively decomposed by its symmetric and skew-symmetric parts. This
decomposition is unique. �

These definitions imply that (sym T )T = sym T and (skew T )T = −skew T
and thus justify the notation. The definitions may be applied to the gradient of a
differentiable vector field. Because of its importance later on, we write it in the
form of a definition.

Definition 2.17 The gradient of a differentiable vector field v(x, t) can be addi-
tively decomposed, viz.

grad v(x, t) = D(x, t)+W(x, t), (2.55)
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where

D(x, t) : = sym grad v(x, t) = 1
2

(

grad v(x, t)+ grad Tv(x, t)
)

,

W(x, t) : = skew grad v(x, t) = 1
2

(

grad v(x, t)− grad Tv(x, t)
) (2.56)

are its symmetric and skew-symmetric parts, respectively, viz. D = DT and
W = −WT. One often writes L = grad v.

�

Problem 2.10 Show that the representations in Cartesian coordinates of D(x, t)
and W(x, t) are given by

D(x, t) =̂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂v1

∂x1

1

2

(
∂v1

∂x2
+ ∂v2

∂x1

)
1

2

(
∂v1

∂x3
+ ∂v3

∂x1

)

∂v2

∂x2

1

2

(
∂v2

∂x3
+ ∂v3

∂x2

)

sym
∂v3

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.57)

W(x, t) =̂

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
1

2

(
∂v1

∂x2
− ∂v2

∂x1

)
1

2

(
∂v1

∂x3
− ∂v3

∂x1

)

0
1

2

(
∂v2

∂x3
− ∂v3

∂x2

)

skew 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (2.58)

in which the two matrices are symmetric and skew-symmetric, respectively. Prove,
moreover, that the decomposition is unique. �

With the symmetric and skew-symmetric parts of the gradient of a differentiable
vector field v(x, t) being defined, we now introduce two further operators, the diver-
gence and the rotation, also called curl. To define the former, let us recall the scalar
product of two second-rank tensors A and B given by

ABT
i = A · B = Ai j êi ⊗ ê j · Blk êk ⊗ êl = Ai j Blk êi ⊗ ê j · êk

︸ ︷︷ ︸

δ jk

⊗êl

= Ai j Bl j êi · êl
︸ ︷︷ ︸

δil

= Ai j Bi j . (2.59)

This suggests the definition for the trace operator.

Definition 2.18 Let A be a second-rank tensor and 1 the second-rank unit tensor.
Then, the trace operator, written tr [A], is defined as

tr [A] = 1 · A = δi j Ai j = Aii . (2.60)
�
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Note that the representation of tr [A] in a Cartesian coordinate system is the sum of
the diagonal elements of the matrix of A : tr [A] = A11 + A22 + A33, as shown in
(2.60). Furthermore, according to (2.47), (2.56) and (2.59)

tr [ABT] = 1 · ABT = δi j Aik B jk = Aik Bik,

tr [grad v(x, t)] = ∂vi

∂xi
= ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
,

tr [D(x, t)] = tr [grad v(x, t)],
tr [W(x, t)] = 0.

(2.61)

All these special applications of the trace operator have important hydrodynami-
cal interpretations if v(x, t) is the velocity field, as will soon be seen. However,
tr [grad v(x, t)] and W(x, t) are so significant that they carry their own names.

Definition 2.19 The divergence of the differentiable vector field v(x, t) is defined
by

div (v(x, t)) =̂ tr [grad v(x, t)]=̂∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
. (2.62)

�

To find the geometrical interpretation of the divergence of a differentiable vector
field, consider an infinitesimal stationary cube with side lengths dx1, dx2 and dx3
parallel to the coordinate axes of a Cartesian coordinate system, Fig. 2.7. Let f (x, t)
and v(x, t) be differentiable scalar and vector fields and think of v(x, t) to be the
velocity field of a fluid occupying the three-dimensional space which is carrying the
property f . The flow of the quantity f into and out of the cube through its bounding
surfaces is graphically displayed in Fig. 2.7 and can be recorded in tabular form as
follows:

In Out

faces ⊥ x1 f v1 dx2 dx3

(

f v1 + ∂( f v1)

∂x1
dx1

)

dx2 dx3

faces ⊥ x2 f v2 dx3 dx1

(

f v2 + ∂( f v2)

∂x2
dx2

)

dx3 dx1

faces ⊥ x3 f v3 dx1 dx2

(

f v3 + ∂( f v3)

∂x3
dx3

)

dx1 dx2

Adding all the contributions, counting a flow into the cube as positive, yields

−
(
∂ f v1

∂x1
+ ∂ f v2

∂x2
+ ∂ f v3

∂x3

)

dx1 dx2 dx3
︸ ︷︷ ︸

d Vol

= − (div f v) d Vol. (2.63)
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Fig. 2.7 Stationary cubic
volume element with side
lengths dx1, dx2, dx3 and
indicated flows of the
quantity f into and out of the
side faces of the cube. The
total flux of f into the
volume element is obtained
by adding all inflows and
subtracting all outflows
together

x3

x2

x1

dx3

dx1

dx2

fv
2

+
∂fv2

∂x2
dx2 dx3dx1

fv1 +
∂fv1

∂x1
dx1 dx2dx3

fv3 +
∂fv3

∂x3
dx3 dx1dx2

fv1dx2dx3

fv3dx1dx2

fv2dx3dx1

This must be equal to the growth of f per unit time (∂ f/∂t) d Vol so that

∂ f

∂t
+ div ( f v) = 0. (2.64)

Thus, div ( f v) may be interpreted as the loss per unit volume and unit time of the
quantity f at position x and time t . A positive value of div ( f v) therefore means
that the quantity is decreased at x and t , a negative value means that f is increased
and div ( f v) = 0 means that f is stationary.

In the above analysis, the divergence operator was defined for a differentiable
vector field. In the physical laws to be derived in Chap. 4, however, a divergence
operator for a second-rank tensor field is also needed. So, let T (x, t) be a differen-
tiable tensor field. Such a field is a linear transformation and maps any vector a into
a new vector: b = aT . Since b(x, t) is a differentiable vector field, its divergence is
well defined as follows:

div (aT ) = ∂

∂x1
(aT )1 + ∂

∂x2
(aT )2 + ∂

∂x3
(aT )3

= ∂

∂x1
(a1T11 + a2T21 + a3T31)+ ∂

∂x2
(a1T12 + a2T22 + a3T32)

+ ∂

∂x3
(a1T13 + a2T23 + a3T33)

= a1
∂T11

∂x1
+ a2

∂T21

∂x1
+ a3

∂T31

∂x1
+ a1

∂T12

∂x2
+ a2

∂T22

∂x2
+ a3

∂T32

∂x2

+a1
∂T13

∂x3
+ a2

∂T23

∂x3
+ a3

∂T33

∂x3
(2.65)
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for any constant vector a. This suggests the following definition of (div T ):

div (aT ) = a · (div T )r , (2.66)

which implies

(div T )r =̂
{(

∂T11

∂x1
+ ∂T12

∂x2
+ ∂T13

∂x3

)

,

(
∂T21

∂x1
+ ∂T22

∂x2
+ ∂T23

∂x3

)

,

(
∂T31

∂x1
+ ∂T32

∂x2
+ ∂T33

∂x3

)}

. (2.67)

We wish to add the following remark: There is a second combination of a and T ,
namely c = T a, defining a vector different from b. Repeating the above computa-
tion for the evaluation of div c suggests an alternative definition of the divergence of
T , namely

div (T a) = (div T )l · a, (2.68)

which leads to the representation in Cartesian coordinates

(div T )l =̂
{(

∂T11

∂x1
+ ∂T21

∂x2
+ ∂T31

∂x3

)

,

(
∂T12

∂x1
+ ∂T22

∂x2
+ ∂T32

∂x3

)

,

(
∂T13

∂x1
+ ∂T23

∂x2
+ ∂T33

∂x3

)}

. (2.69)

Comparing (2.67) and (2.69), it is seen that in the definition (div T )r differentiation
is with respect to the second right index, whereas in the definition (div T )l this
differentiation is with respect to the first left index. In the literature both definitions
are used to define the divergence operator; in the physics and engineering literature
the divergence of a tensor field T is mostly defined with (div T )l ; in the mathemat-
ical literature (div T )r is employed instead. It is also easily seen that there is no
difference between the two definitions if Ti j = Tji (for i, j = 1, 2, 3), i.e. if T is
symmetric. We shall mostly encounter symmetric tensors in this book for which the
two definitions (div T )l and (div T )r do not differ from one another.

To define the curl of a differentiable vector field, observe that in three dimensions
a skew-symmetric tensor possesses only three independent components, as, e.g.,
explicitly shown for W(x, t) = skw grad v(x, t) in (2.58). Thus, it must be possible
to assign to each skew-symmetric second-rank tensor a vector, its so-called dual
vector.

Definition 2.20 Let W be a skew-symmetric second-rank tensor and ε the epsilon
(third order) tensor defined by

ε = εi jk êi ⊗ ê j ⊗ êk (i, j, k = 1, 2, 3)
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with7

εi jk =

⎧

⎪⎨

⎪⎩

1 i jk = 123, 231 or 312,

−1 i jk = 132, 213 or 321,

0 if at least two of the three indices are equal;
then ω, the dual vector corresponding to W , and W are related by the formulae

ω := ε ·W and W = − 1
2εω. (2.70)

These are the transformation rules from one into the other. �

Problem 2.11 Show that the representations of ω and W in a Cartesian coordinate
system are

ω = εi jk Wkj êi , W = − 1
2εi jkωk êi ⊗ ê j (2.71)

or

ω=̂(W32 −W23, W13 −W31, W21 −W12) (2.72)

W=̂ 1

2

(

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

)

. (2.73)

�

An immediate application of Definition 2.20 and Problem 2.11 is obtained if W =
skw grad v(x, t).

Definition 2.21 Let v(x, t) be a differentiable vector field and W(x, t) =
skw grad v(x, t). Then

ω = ε ·W = curl v(x, t) (2.74)

is called the curl or the rotation of v(x, t). Alternatively, W(x, t) is called the spin
tensor of v(x, t). �

Problem 2.12 Show by using (2.58) and (2.72) that the coordinate representation
of curl v(x, t) is given by

curl v(x, t) = ω(x, t) =̂
[(
∂v3

∂x2
− ∂v2

∂x3

)

,

(
∂v1

∂x3
− ∂v3

∂x1

)

,

(
∂v2

∂x1
− ∂v1

∂x2

)]

7 One also says that the components of the ε tensor have value 1 when the indices i, j, k are evenly
permuted between 1, 2 and 3; they have value (−1) when the indices i, j, k are odd permutations
of 1, 2 and 3; and they have value 0 if i, j, k are no permutation of 1, 2 and 3.
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and corroborate that div [ω(x, t)] = 0 as well as curl [grad f ] = 0 for any twice dif-
ferentiable v and f . Furthermore, write coordinate representations of div [grad f ]
and grad [div (v(x, t))]. �

To find a geometrical, kinematic interpretation of curl v(x, t), consider a vector field
v(x, t) at a fixed time and its line integral around a simply connected closed path
(Fig. 2.8)

Γ =
∮

v · dl, (2.75)

where dl represents the vectorial differential arc length along the path. In the eval-
uation of (2.75) it is tacitly assumed that the line along which the integration is
performed never leaves the region of definition of v(x, t). The line integral of v
is called the circulation. If the circulation is zero, the vector field v is said to be
irrotational. If the surface bounded by the closed curve is ΔS and ΔS → 0 in such
a way that the length of the path enclosing ΔS also approaches zero,8 then the ratio
of the circulation Γ to the surface element ΔS

lim
ΔS→0

Γ

ΔS
= lim

ΔS→0

1

ΔS

∮

v · dl (2.76)

gives the circulation per unit area at a space point in the field. Its value depends in
general on the orientation of the surface element ΔS. The orientation is specified
by the unit normal n, where the rotation of dl along the closed curve l around n is
related in the right–handed sense as shown in Fig. 2.8. If n is oriented along the x1,
x2 and x3 axes in turn, then three different values are obtained for the circulation per
unit area. The three values form the components of a vector called the curl of v. If
n points in some arbitrary direction, then the circulation per unit area is equal to the
component of the curl in the direction of n. Thus,

Fig. 2.8 Area ΔS with unit
normal n bounded by a
closed curve � with the
vectorial arc element dl lying
in a vector field v. The three
vectors v, dl and n form a
right-handed basis

dl
v

n

ΔS

8 When shrinking this area to zero, it is tacitly assumed that the closed curve does not leave the
region of definition of v(x, t). A region for which this reduction can be done, starting with any
curve and reducing it to any point of the region, is called simply connected. An annulus in two
dimensions is not simply connected, but the exterior of a cavity in three dimensions is simply
connected.
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n · curl v = lim
ΔS→0

1

ΔS

∮

v · dl (2.77)

defines the curl of v. The value of this expression is a maximum when n and curl v
are parallel. Thus, the curl of v is a vector in the direction of n when n is oriented
so that the circulation per unit area is a maximum. The magnitude of the curl v is
equal to this maximum circulation per unit area.

It must still be demonstrated that the definition in (2.77) is consistent with that in
(2.74). To find the x1 component of curl v from (2.77), one calculates the circulation
per unit area around the surface elementΔS = Δx2Δx3 which lies in the x2x3-plane
as shown in Fig. 2.9. Since the element is small, the average of v along each side
can be taken as the value of v at the central point.9 Therefore,

(curl v)1= lim
ΔS→0

1

ΔS

∮

v · dl

= lim
Δx2,Δx3→0

1

Δx2Δx3

[

v
(1)
3 Δx3 − v(2)2 Δx2 − v(3)3 Δx3 + v(4)2 Δx2

]

, (2.78)

where v( j)
i denotes the xi component of the vector v at the point j and their values

can be found in terms of v at the central point P of the area from the first terms of a
TAYLOR series expansion. Thus, to orders linear in Δxi ,

v
(1)
3 = v3(x1, x2, x3)+ ∂v3

∂x2

Δx2

2
, v

(2)
2 = v2(x1, x2, x3)+ ∂v2

∂x3

Δx3

2
,

v
(3)
3 = v3(x1, x2, x3)− ∂v3

∂x2

Δx2

2
, v

(4)
2 = v2(x1, x2, x3)− ∂v2

∂x3

Δx3

2
. (2.79)

Substituting these values into (2.78), one obtains

(curl v)1 = ∂v3

∂x2
− ∂v2

∂x3
. (2.80)

Fig. 2.9 Area element with
side lengths Δx2, Δx3 and
indicated components of the
vector field v at each side
along the direction of the side
line. The x1 component of the
curl v is obtained by the line
integral of v along the
element sides divided by the
area element

n

v
(3)
3 (3)

v
(2)
2

(2)

v
(1)
3(1)

dl

v
(4)
2

(4)

(P )
v(x1, x2, x3)

Δx3

Δx2

x3

x2

x1

9 Strictly, according to the mean-value theorem, it is a point between the two edge points. The
difference to the value at the central point is, however, of higher order small.
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Similarly, the x2 and x3 components of curl v can be found:

(curl v)2 = ∂v1

∂x3
− ∂v3

∂x1
, (curl v)3 = ∂v2

∂x1
− ∂v1

∂x2
. (2.81)

Thus, the vector curl v in terms of its Cartesian components is given by

curl v =
(
∂v3

∂x2
− ∂v2

∂x3

)

ê1 +
(
∂v1

∂x3
− ∂v3

∂x1

)

ê2 +
(
∂v2

∂x1
− ∂v1

∂x2

)

ê3. (2.82)

Hence the two definitions (2.77) and (2.74) for the curl of a vector field coincide.

2.5 Integral Theorems of Vector Analysis

2.5.1 GAUSS Theorems

In Chap. 4, Sect. 4.2 on mass balances, GAUSS’ Divergence Theorem is derived.
It reads as follows: If f is a differentiable vector field in a given volume V with
bounding surface ∂ V with exterior unit normal vector n, then

∫

∂ V
( f · n) dA =

∫

V
(div f ) dV . (2.83)

Later, again in Chap. 4, Sect. 4.3, when discussing the Archimedean principle, a
similar formula was derived: If p is a differentiable scalar field in a given volume V
with boundary surface ∂ V and unit exterior normal vector n, then

∫

∂ V
pn dA =

∫

V
(grad p) dV . (2.84)

These integral theorems are derived in Chap. 4, framing them by physical moti-
vations paired with mathematical arguments. This is done so for motivating rea-
sons to tailor the mathematics. Incidentally, (2.83) implies (2.84) and vice versa.
Indeed:
(2.83)→ (2.84): Let f = p a, where a is a constant vector. Then, (2.83) implies

∫

∂ V
pa · n d A =

∫

V

(
∂ p

∂ x
ax + ∂ p

∂ y
ay + ∂ p

∂ z
az

)

dV .
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If we select here, in turn, a = {ex , ey, ez}, we obtain

∫

∂ V
p nx dA =

∫

V

∂ p

∂ x
dV,

∫

∂ V
p ny dA =

∫

V

∂ p

∂ y
dV,

∫

∂ V
p nz dA =

∫

V

∂ p

∂ z
dV,

(2.85)

from which follows
∫

∂ V
p(nx , ny, nz) dA =

∫

V

(
∂ p

∂ x
,
∂ p

∂ y
,
∂ p

∂ z

)

dV, (2.86)

which directly corresponds to (2.84).
(2.84) → (2.83): Choose p in (2.85) to be, in turn, the x , y, z components of f :
fx , fy, fz . Then

∫

∂ V
fx nx dA =

∫

V

∂ fx

∂ x
dV,

∫

∂ V
fy ny dA =

∫

V

∂ fy

∂ y
dV,

∫

∂ V
fz nz dA =

∫

V

∂ fz

∂ z
dV .

(2.87)

Adding these relations yields

∫

∂ V
fi ni dA =

∫

V

(
∂ fx

∂ x
+ ∂ fy

∂ y
+ ∂ fz

∂ z

)

dV,

which is isomorphic to

∫

V
f · n dA =

∫

V
div( f ) dV, (2.88)

which is (2.83).
In a similar and obvious way one may also prove the relations

∫

∂ V
(v × n) dA =

∫

V
(curl v) dV, (2.89)

∫

∂ V
(v ⊗ n) dA =

∫

V
(grad v) dV . (2.90)
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Both (2.89) and (2.90) can be proved by writing them in Cartesian component form,
e.g.

∫

∂ V
vi n j dA =

∫

V

∂ vi

∂ x j
dV . (2.91)

GREEN’s identities also follow from adequate application of the Divergence The-
orem. The first GREEN’s identity is obtained by choosing in (2.83) f = φv. This
yields

∫

∂ V
φv · n dA = ∫

V div(φv) dV

=
∫

V
{φ div v + v gradφ} dV .

(2.92)

If we substitute here v = gradψ and observe that div v = div gradψ = Δψ , where
Δ is the LAPLACE operator, then

∫

V
{gradφ · gradψ} dV = −

∫

V
φ Δψ dV +

∫

∂ V
φ
∂ψ

∂ n
dA, (2.93)

which is GREEN’s first identity.
If in (2.93) the roles of φ and ψ are interchanged, we obtain

∫

V
{gradψ · gradφ} dV = −

∫

V
ψ Δφ dV +

∫

∂ V
ψ
∂φ

∂ n
dA. (2.94)

Subtracting (2.93) and (2.94) from one another leads to

∫

V
{φΔψ − ψ Δφ} dV =

∫

∂ V

{

φ
∂ ψ

∂ n
− ψ ∂ ψ

∂ n

}

dA, (2.95)

which is GREEN’s second identity.

2.5.2 STOKES Theorems

Let f be a differentiable force field in R
3. Then, f · dx is the infinitesimal work

done by f if the point of attack of f is displaced by the vectorial displacement
increment dx.

Definition 2.22 The rotor or rotation of a vector (here force) field f is defined as10

10 The symbol for ‘curl’ in continental Europe is ‘rot’.
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curl f = ∇ × f

=̂
(
∂ fz

∂ y
− ∂ fy

∂ z
,
∂ fx

∂ z
− ∂ fz

∂ x
,
∂ fy

∂ x
− ∂ fx

∂ y

)

=̂εi jk fk, j = εi jk
∂ fk

∂ x j
.

(2.96)

�

Figure 2.10 shows a right angle triangle with side length 2dx and 2dy parallel to the
x- and y-axes of the rectangular coordinates and surface area dAz = 2dx dy. If the
point of attack of the force field is displaced in the indicated orientation, then the
work done by f along the margin of the triangle is given by

dWz = ∂ fx

∂ y
dy(−2dx)+ ∂ fy

∂ x
dx(2dy)

=
(
∂ fy

∂ x
− ∂ fx

∂ y

)

(2dx dy) = (curl f )zdAz .

(2.97)

If we generalise this two-dimensional situation to the infinitesimal triangle of
Fig. 2.10b with surface increment dA and orientation indicated by the normal vector
n, it is seen that this work can be composed as the sum of the work done by the force
field along the three triangles in the coordinate parallel planes (xy), (yz), (zx). (In
this process the work done along the coordinate parallel axes cancels out, because
these lines are traversed twice in opposite directions). Therefore,

dW = dWx + dWy + dWz

= (curl f )x dAx + (curl f )y dAy + (curl f )z dAz

= (curl f ) · n dA,

(2.98)

(a)

(x)

(y)

(z)

P

(x)

(y)

(z)(b)

fy + ∂fy

∂y dy

2dy

dAz

2dx
fx + ∂fx

∂x dx

fy + ∂fy

∂x dx + ∂fy

∂y dy

fx + ∂fx

∂x dx + ∂fx

∂y dy

n

dAx

dAy dAz

dA

Fig. 2.10 (a) Infinitesimal triangle in the (xy)-plane with sides 2dx and 2dy along the x- and
y-axes. Components of the force field f parallel to the x- and y-axes are indicated at the midpoints
of the triangle, explaining the evaluation of the work done by f around the triangle. (b) The work
done by f along an infinitesimal triangle with unit normal n can be evaluated by adding the work
of f along the triangles in the (xy)-, (yz)- and (xz)-planes
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where we have used the obvious geometric property

dA j = n j dA ←→ dA = n dA.

Consider next a closed double-point free curve C in a region of R
3 in which the

force field f is defined and span this loop by a smooth surface, which does not
leave this domain. This area is filled with a connected grid of infinitesimal triangles
as shown in Fig. 2.11. It is easy to see that the work done along the closed loop
can be calculated by evaluating the work around all triangles in the same orientation
as that spanned by C. The work done along the interior triangle sides cancels out
as these sides are traversed twice in opposite directions. The work done along an
infinitesimal triangle is given by dW = (curl f ) · ndA, and so, the total work
performed by f on the surface is given by

W =
∫

AC
(curl f ) · n dA =

∮

C
f · dx. (2.99)

This is STOKES’ theorem in R
3. It holds for any differentiable field v,

∮

C
v · dx =

∫

AC
(curl v) · dx (2.100)

and states that the circulation of a differentiable vector field around a closed double-
point free loop equals the flux of its rotation normal to and through the surface AC
spanned by C.

STOKES’ theorem has a number of corollaries:

• If we set in (2.100) v = φex , v = φey , v = φez , in turn, one obtains

∫

C
φ dx =

∫

AC
(curl(φ ex )) · n dA =̂

∫

AC

(
∂ φ

∂ z
ny − ∂ φ

∂ y
nz

)

dA,
∫

C
φ dy =

∫

AC
(curl(φ ey)) · n dA =̂

∫

AC

(
∂ φ

∂ x
nz − ∂ φ

∂ z
nx

)

dA,
∫

C
φ dz =

∫

AC
(curl(φ ez)) · n dA =̂

∫

AC

(
∂ φ

∂ y
nx − ∂ φ

∂ x
ny

)

dA,

Fig. 2.11 Surface AC
spanned by a smooth
double-point free closed
curve C. The work done by a
differentiable force field f
around C is composed of the
summation of the work
around all infinitesimal
triangles dAC

A
dA
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which, when combined, yields

∫

C
φ dx = −

∫

AC
(grad φ)× n dA. (2.101)

• If φ in (2.101) is the ith component of a vector field, then it also implies

∫

C
v ⊗ dx = −

∫

AC
(grad v)× n dA. (2.102)

• A further interesting formula is obtained by selecting

ei ×
∫

C
vi dx =

∮

C
v × dx = −

∫

AC
ei × grad vi
︸ ︷︷ ︸

−curlv

×n dA

so that

∮

C
v × dx =

∫

AC
(curl v)× n dA. (2.103)
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Chapter 3
A Brief Review of the Basic Thermomechanical
Laws of Classical Physics

3.1 Underlying Fundamentals – General Balance Laws

As far as physics is concerned, the required background knowledge is by and large
classical physics. Its basis is long-lasting human experience with the surrounding
physical world; it pertains to the properties of the space in which the physical objects
exist; it is concerned with the processes which these physical objects undergo and
searches for the reasons behind their occurrence. This experience must not depend
on the observer; it should be objective and ought to be expressed in an observer-
independent fashion, verified only by real physical experiments. To express this
knowledge, physicists use concepts (such as space, time, motion, energy), laws
(such as the law of gravity, NEWTON’s second law of motion, conservation of
energy) and postulates [for instance, that time progresses only in one direction from
the past to the future (monotonicity of the time) and that only events in the past can
influence those at present (principle of determinism), expressed sometimes by the
contradictorily sounding statement that ‘the future cannot be remembered’].

Some of these postulates are expressed in classical physics only as general ideas,
taken for granted, but not at all obvious from a more philosophical point of view.
For example:

• time is unidirectional, it can only proceed from the past to the present and future,
and it is homogeneous, i.e. it does not contract or extend;

• the universe, i.e. the physical space is homogeneous – has in all its points the
same properties, isotropic – has at a point the same behaviour in all directions
and can be assumed to be three dimensional;

• this space is filled with material bodies that are equipped with physical properties
such as mass, momentum. The interaction of such bodies manifests itself through
the appearance of forces. For a pair of bodies they are of the same origin, equal
in value and opposite in direction;

K. Hutter et al., Physics of Lakes, Volume 1: Foundation of the Mathematical
and Physical Background, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-642-15178-1_3,
C© Springer-Verlag Berlin Heidelberg 2011

67



68 3 A Brief Review of the Basic Thermomechanical Laws of Classical Physics

• the interaction of a body with a second (real physical) body is the only reason for
its acceleration relative to an inertial reference system1;

• there are favourable directions of all physical processes as they develop in the
universe: a gas has the tendency to fill the entire space available to it; a fluid
may form droplets and can only support pressures when it is at rest, but moves
otherwise, while a solid is at rest when it is subject to any equilibrated external
force system; a thermodynamic body reaches uniform temperature in thermal
equilibrium, etc.

Neither classical nor modern physics are able to provide more fundamental rea-
sons for these postulates and concepts; they are features of nature, must be viewed as
axioms and can only be replaced by other statements, equivalent to them. And some
of these postulates have been shown to be false in modern physics. Nevertheless
we will take them for granted here and use them in everyday practice of classical
physics without further notice. These general concepts define the basis of the lan-
guage in which our physical ideas are phrased. To quantify them, they must be com-
plemented by well-defined physical quantities, such as mass, momentum, energy,
in terms of which the physical processes are quantified. To give an example, energy
is a physical concept and is made concrete as kinetic, potential and internal energy
which are the physical quantities. Moreover, time is a fundamental concept; to mea-
sure it we need a clock by which intervals can be measured. Furthermore, a stick
with a length unit allows to measure distances. The fact that we apply the same clock
and the same stick with the same units in all inertial systems is the expression of our
tacit assumption that time and length in classical physics are absolute quantities.

To understand and describe the physical processes correctly, both physical con-
cepts and physical quantities are needed. The latter being measurable or derivable
from measurable quantities offers the possibility to establish dependencies between
them. Often, the mathematical relations defining these dependencies are called phys-
ical laws. Examples are the general balance laws and their specifications known as
the physical conservation laws treated below.

Except for the physics of radiation, physics of lakes makes use only of NEW-
TONian or GALILEan mechanics and thermodynamics. The development of the
respective laws embraced approximately four centuries and involved the most
prominent scientists. Without going into any depth it is probably fair to say
that it needed NEWTON (1643–1724), EULER (1707–1783) and CAUCHY (1789–
1857) until a clear understanding of the balance laws of mass, linear momentum
(NEWTON’s second law) and moment of momentum (EULER’s law of angular

1 In this list of qualitative properties, tacit knowledge of ‘obvious’ facts is assumed which actually
requires deep understanding. The concept of an inertial reference system is one of these concepts
of classical mechanics. It means that for a body in isolation that it cannot be decided whether it is
at rest or moves with constant velocity. Two such systems thus move relative to one another with
a constant velocity, and no such system can be found that would absolutely be at rest. All these
systems are called inertial reference systems and the inability to single out one as being at rest is
referred to as the classical principle of relativity.
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momentum) was safely established for a continuous body (CAUCHY’s law of
motion). The 19th century was the domain of the development of basic thermody-
namics. The first law of thermodynamics, now simply expressed as the conservation
law of energy, is attributed to have first been spelled out in 1841/1843 by R. MAYER

(1814–1878), and Lord KELVIN (1824–1907) introduced the concept of absolute
temperature, also called KELVIN temperature. Loosely speaking, this means that
temperature can be measured in a body as an ‘absolute’ quantity not influenced
in itself by the body in which it is measured. The second law of thermodynamics
traces back in its fundamentals to CARNOT (1796–1832), CLAUSIUS (1822–1888),
and DUHEM (1861–1961) and found its culmination in the 20th century with the
work of CARATHEODORY (1873–1950), TRUESDELL (1919–2000) and the many
researchers of the ‘Rational Thermodynamics’ school. The second law of thermody-
namics expresses the fact that all physical processes are irreversible, and reversibil-
ity is an idealisation that will never be realised. One form how this postulate of
irreversibility of all physical processes can be expressed is the concept of entropy,
introduced by CLAUSIUS, of which the production in a physical process is required
to be non-negative.

The thermomechanical physical laws, the fundamental laws of classical physics
that describe the processes which material bodies can undergo, are thus the follow-
ing statements:

• Conservation of mass of a material body; in a material body, mass can neither be
produced nor created.

• Conservation of linear momentum. This law is the second of Newton’s laws as
stated in Fig. 3.1. For Newton’s biographical sketch, see Fig. 3.3.

• Conservation of moment of momentum. This law was first spelled out by Euler;
for a biographical sketch, see Fig. 7.1.

• Conservation of energy or the first law of thermodynamics. This law expresses
the fact that the union of all energies of a material body is a conserved quantity,
i.e. cannot be produced.

• Balance of entropy states that its production in a material body is non-negative
for whatever process that is occurring in the body.

These laws must be accepted as such; they cannot be proved and therefore have
an axiomatic status, but they can be and have been verified over and over again
(as long as effects of relativity and quantum mechanics are negligible). None of the
statements in this list is made sufficiently explicit to the extent that they would allow
quantification as outlined above. This is the intention in the remainder of this chapter
and in the subsequent chapter. The presentation will provide examples of what was
meant in the introductory paragraphs when physical quantities were mentioned to
be needed, which can be related to one another to form dependences. The five laws
of the above list establish such dependences in a fashion of particular depth, because
these laws enjoy universal qualifications; within classical physics they are valid for
all processes, fast or slow, and all material bodies, be they gaseous, fluid or solid.

Before stating these laws, it is advantageous to first explain the concept balance
law in a general form; it is valid for processes in everyday life as well as in physics
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Fig. 3.1 Facsimile of p. 12 of NEWTON’s Principia, stating his three fundamental laws (in
Latin) (translation into English by Chandrasekhar [3])

LEX I: Every body continues in its state of rest, or of its uniform motion in a right line, unless
it is compelled to change that state by force impressed upon it.
LEX II: The change of motion is proportional to the motive force impressed and is made in
the direction of the right in which that force is impressed.
LEX III: To every action there is always opposed an equal reaction: or, the mutual actions of
two bodies upon each other are always equal, and directed to contrary parts
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x3

∂V

V

x1

x2

O

Fig. 3.2 Material body V with surface ∂V in the three-dimensional space equipped with orthogo-
nal Cartesian coordinates x1, x2, x3

and actually forms a triviality. To this end, we single out in physical space a material
volume2 V with boundary ∂V . Since this volume is supposed to be material, so is
its boundary. Trivial as this may be, we wish to emphasise it here, because in future
developments we shall often cut in imagination a body into smaller parts which
occupy certain volumes with bounding surfaces. These parts are obviously material,
may be represented as in Fig. 3.2, and they move with time. The body parts may be
a house or part of it, a lake or simply a certain fluid mass which we imagine to be
held together by an imaginary massless skin. Subsequently, we call this simply an
arbitrary body. The complement of this body in physical space is then the outside of
V , or its environment.

Let GV be any physical quantity (e.g. mass, momentum or energy) defined
for a body instantaneously occupying the volume V and consider its time rate
of change, dGV /dt . How can we describe this change of GV in V ? Quite natu-
rally, this change (a growth if it is positive) is given by the following individual
contributions:

• Flux of GV per unit time through the surface ∂V : FGV
∂V ;

• Supply of GV within V per unit time from the environment: SGV
V ;

• Production of GV within V per unit time: PGV
V .

2 A material volume is here understood to be a region in the three-dimensional physical space
that is continuously filled with matter and bounded by a surface through which no mass flows.
To denote this, we use the word ‘body’. We differentiate between ‘volume’ as a region in physi-
cal space that is fixed and ‘material volume’ or body that may move with time through physical
space.
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Adding these three contributions together, we thus are led to the following Concept
of a balance law:

Time rate of change of a physical quantity
in a material body of volume V

= Flux of this quantity through the boundary of the material volume

+ Supply of the quantity to the body within the volume V from the
environment

+ Production of the quantity within the volume V.

Here, ‘flux’, ‘supply’ and ‘production’ are understood to be those quantities per unit
time. When formulated mathematically as a balance equation for GV , this reads

dGV

dt
= FGV

∂V + SGV
V + PGV

V . (3.1)

We shall see that the five above-stated physical laws can be written in this form. This
is very convenient, because it makes the amount of knowledge which one must learn
rather economical. Let us give a few simple examples that make the understanding
of (3.1) more transparent.

Example 3.1 Let V be the downtown office in a German town or City of the
Deutsche Bank and let GV be all the money stored in coins, notes, computer accounts
of all the customers in this office. Then GV is changing in time: Customers will
enter the bank through the door; they carry money with them, and they may make
a deposit to or withdraw money from their accounts and leave again. This defines
FGV
∂V . It is positive if the customers have made a deposit and negative if they have

withdrawn money. On the other hand, one of their debtors may advise his debt
amount in another bank to an account at this downtown office; or an outside bank
may withdraw money from an account of an account holder by mutual agreement.
This corresponds to SGV

V , a source or a sink whose origin is external. Thirdly, the
downtown office of the bank may (illegally) print notes or press coins, or they may
destroy old bank notes which are a production or annihilation of money, PGV

V . So
we have been able to assign a definite interpretation to all the terms in (3.1). •

Example 3.2 Consider a microwave oven with a bowl of cauliflower to be heated.
Let GV be the heat content in the cauliflower and dGV /dt its time rate of change. In
the microwave oven the source of heat is the electromagnetic wave with a frequency
that agrees with the eigenfrequency of the water molecules. Because of a resonance
reaction the water molecules in the cauliflower start to oscillate as soon as the
microwave oven is turned on. Because the oscillation of the molecules is felt as
heat, the cauliflower becomes hot. This term in (3.1) is SGV

V . There is essentially

no heat flow by conduction across the surface of the cauliflower and so FGV
∂V ∼ 0.



3.2 Physical Balance Laws 73

And neither is there any internal heat production, PGV
V , unless the cauliflower is

radioactively contaminated or rotten. Alternatively, consider the cauliflower in a
pan that is filled with water and heated on a stove. In this case, almost all heat
growth is due to conduction across the surface, FGV

∂V . There is no production as

before, PGV
V = 0, but very small radiation as long as the water and cauliflower

have different temperatures, SGV
V ∼ 0. •

We shall come back to the formulation of balance laws at several places. In fact the
concept of balance laws is the most useful concept throughout the entire book.

Problem 3.1 The reader is encouraged to find his/her own real–world example of
a process forming a balance law. �

Before we apply the concept of balance laws to formulate the physical laws we
wish to introduce the following definition3:

Definition 3.1 A balance law whose production term vanishes, PGV
V = 0, is called

a conservation law. Similarly, a physical quantity GV whose production term van-
ishes is called a conserved quantity. �

In the above two Examples 3.1 and 3.2 the second defines a conserved quantity,
whereas the first does not, if the bank prints or destroys money.

3.2 Physical Balance Laws

All physical laws of mechanics and thermodynamics are conservation laws except
the second law of thermodynamics, which is a balance law with non-negative pro-
duction. This non-negative entropy production is the manifestation of the irre-
versibility of the physical processes. We shall not explicitly be involved with the
second law of thermodynamics by any constructive means in this book, but the other
conservation laws of mass, momenta and energy will be explicitly explained.

3.2.1 Balance of Mass

The mass of a body is conserved; this is a physical law holding by experience and
cannot otherwise be proved. Moreover, a body mass cannot be supplied by outside
sources, and neither can there be any mass flow through a material surface. So all
terms on the right-hand side of (3.1) vanish and the balance law of mass reduces to
the simple statement

3 This is not the only way in which a conserved quantity is defined in physics and mathematics.
We restrict the definition here to quantities of which the production vanishes.
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dMV

dt
= 0, (3.2)

where we have set GV = MV and MV denotes the total mass within V . So the
conservation of mass reads: The mass of a material body does not change.

3.2.2 Balance of Linear Momentum

The law of balance of linear momentum is the first dynamical law that enables us to
write down equations describing the motion of a body. It corresponds to Newton’s
second law (1687) [10] even though this is historically not strictly correct, because
the corresponding statements for continuous media were spelled out later by EULER

(1755) [5] (for a fluid) and CAUCHY (1823) [2] (for a solid continuum)4. Neverthe-
less it is convenient for us to think in terms of NEWTON’s law for which a colloquial
version reads as follows:

Newton’s second law: The time rate of change of the momentum of a body
equals the sum of all external forces that are acting on this body.

This is its correct modern formulation, but more popular is the following variant:
Mass times acceleration equals the sum of the external forces. In this form it is less
precise, correct for most cases but not for all. We shall encounter NEWTON’s second
law in many occasions when dynamics is involved. Firstly, simple examples will be
given in the next section.

NEWTON’s second law is a statement involving forces acting on a body, and
forces are vectors in the three-dimensional space; thus NEWTON’s second law cor-
responds to three scalar statements, one in each direction of the three-dimensional
physical space. To see that it possesses balance law structure we make the following
identifications:

GV = PV momentum of the body V ,

FP
∂V= K∂V sum of forces acting on the surface ∂V of V ,

SP
V = KV sum of volume forces acting on the volume V .

There is no momentum production inside the body, because momentum can be pro-
duced only by external forces (axiom). So the physical quantity is momentum; its
flux into the body – the momentum flux – comprises all the surface forces, and the
supply of momentum from outside is the sum of the volume forces:

dPV

dt
= K∂V +KV . (3.3)

We remark that we use PV to denote the momentum of a body with volume V as
is customary in physics even though PGV

V was used earlier for the production of GV

(Fig. 3.3). Since PV as a vector-valued quantity is written in bold face, confusion

4 For biographical sketches for EULER and CAUCHY see Fig. 7.1 and Fig. 4.10, respectively.
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Fig. 3.3 Godfrey KNELLER’s 1689 portrait of Isaac NEWTON (aged 46) (http://www.
library.usyd.edu.au/) and NEWTON’s Principia, the most important book on natural philoso-
phy published in the early modern period

Sir Isaac NEWTON (4 January 1643 – 31 March 1727) was an English physicist, mathemati-
cian, astronomer, natural philosopher, alchemist, and theologian who is considered as one of
the most influential people in human history. His 1687 publication of the PhilosophiæNatu-
ralis Principia Mathematica (usually called the Principia) is among the most influential books
in the history of science, laying the groundwork for most of classical mechanics. In this work,
NEWTON described universal gravitation and the three laws of motion which dominated the
scientific view of the physical universe for the next three centuries. NEWTON showed that the
motions of objects on the Earth and of celestial bodies are governed by the same set of natural
laws by demonstrating the consistency between KEPLER’s laws of planetary motion and his
theory of gravitation, thus removing the last doubts about heliocentrism and advancing the
scientific revolution.

NEWTON also built the first practical reflecting telescope and developed a theory of colour
based on the observation that a prism decomposes white light into the many colours that form
the visible spectrum. He also formulated an empirical law of cooling and viscous friction and
studied the speed of sound.

In mathematics, NEWTON shares the credit with Gottfried LEIBNIZ for the development of
the differential and integral calculus, but LEIBNIZ published his work first. For years there was
friction between the two countries over priority. Moreover, the science of fluxions (NEWTON’s
terminology) and differential calculus (LEIBNIZ’s terminology) differed in notation. Today
the latter is favoured. He also demonstrated the generalised binomial theorem, developed
NEWTON’s method for approximating the roots of a function and contributed to the study of
power series.

LAGRANGE once said that NEWTON was the greatest genius who ever lived, and once added
that NEWTON was also ‘the most fortunate, for we cannot find more than once a system of the
world to establish’. NEWTON himself had been rather more modest of his own achievements,
famously writing in a letter to Robert HOOKE in February 1676: ‘If I have seen further it is
by standing on the shoulders of Giants.’

The text is based on: http://en.wikipedia.org/
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should not arise. Furthermore, KV and K∂V represent the sum of external forces.
The external source for both should be clear by their very definition as flux and
supply terms. Finally, we have divided the external forces into two categories, KV

and K∂V, respectively. KV denotes those forces which apply at each material vol-
ume element, such as the gravity forces, and their sum constitutes the volume force;
alternatively, K∂V applies at the boundary and constitutes the surface forces. The
latter are often loads or reactive forces introduced when, in imagination, cutting a
body free from its surroundings.

It is the understanding of continuum mechanics that any part of the body is itself
a body and that NEWTON’s second law also applies to such material parts if at the
newly formed surface the corresponding action of the surface cut away is properly
taken into account at the newly formed surface. This leads to new definitions of K∂V

for the new surface, but equally also to a newly defined momentum PV and volume
force KV . According to this principle a body may be cut, e.g., into infinitesimal
cubic elements, and to each such element (3.3) may be applied. This will be done in
Chap. 4.

3.2.3 Balance of Moment of Momentum

Balance of moment of momentum is the second dynamical law that determines
the motion of a body of finite extent. More generally, it is also called the bal-
ance of angular or rotational momentum. NEWTON in his seminal work ‘Principia’
(1687) [10] did not principally deal with angular momentum. The historically first
encounter of the necessity of this second dynamical law is with L. EULER in 1750
[4, 11]. The law says that angular momentum is a conserved quantity for a material
body and can be changed only by external forces (axiom). In the restricted applica-
tion dealt with in this book we shall use the law as literally stated, namely ‘moment
of the momentum’,5 and the law of momentum is NEWTON’s second law. So, liter-
ally translating this, yields the following:

Euler’s law of moment of momentum: see EULER (1750) [4] and TRUES-
DELL (1964) [11]. The time rate of change of the moment of momentum of a
body equals the sum of all moments of the external forces that are acting on
this body.

With the identifications

GV = LV moment of momentum of the body V ,

FL
∂V =M∂V sum of all moments acting on the surface of the body,

SL
V =MV sum of all moments acting within the body V

5 The more general form of the balance law of angular momentum is based on the supposition that
angular momentum is composed of two contributions, namely spin and moment of momentum so
that its flux would equally be split into a flux of spin plus moment of flux of linear momentum,
and supply of angular momentum would be composed of supply of spin plus moment of supply of
linear momentum.
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and vanishing production, the balance of moment of momentum takes the form

dLV

dt
=M∂V +MV . (3.4)

We have here given a verbal form of the balance of moment of momentum. To
fill it with physical content a clear understanding of the term ‘moment’ must be
given. This has been done in Definition 2.7. Accordingly, the law (3.4) holds if the
respective moments are taken relative to an arbitrary fixed point in space. Because
the result can be shown to be independent of the point of reference one usually
chooses the origin of a Cartesian coordinate system. Moreover, MV and M∂V are
the external body and surface moments, i.e. the moments of the external body and
surface forces just as for NEWTON’s law. Moreover, (3.4) is understood to hold true
for any body part as was already the case for the balance of linear momentum.

Finally, let us observe and emphasize that the left-hand sides in (3.2), (3.3) and
(3.4) are state variables of the body defining ‘conditions’ to which the body is
subjected. Alternatively, the right-hand sides are ‘agents’ externally applied to the
body causing evolutionary changes. They may therefore be interpreted as process
variables. This same division into state and process variables characterises the next
physical law also.

3.2.4 Balance of Energy

This is the fourth of the physical principles of classical physics and it states that
energy, when consisting of all forms arising in a body, is conserved (axiom).
Because the various forms that may arise also involve thermal contributions, this
balance law yields an equation that, under usual conditions, allows us to determine
the temperature within a body. Temperature is, however, not the fundamental vari-
able6; this variable is the internal energy, and its change may be due to the internal
deformation of a body, the agitation of the molecules in the body – which is nor-
mally interpreted to constitute the temperature – electromagnetic actions, etc. It is
the expression of the first law of thermodynamics that kinetic energy and internal
energy together are conserved quantities.

It follows then that the time rate of change of the total energy (a state variable) is
balanced by external surfacial and bulk process quantities. These are also due to two
contributions – the mechanical work per unit time of the external forces, L∂V and
LV , and the non-mechanical contributions Q∂V and QV , respectively. If the origin
of the latter is due to thermal effects alone, then Q∂V is called the heat flow from
the environment to the body through its bounding surface and QV the heat supply
by radiation. Both are external and may thus be considered as process quantities.

6 Historically, temperature (or an empirical measure for the hotness of a body) has been introduced
prior to the internal energy. That the latter is the fundamental variable has been the recognition of
the first law of thermodynamics. So the true physical quantity expressing how much energy is
stored in a body as heat, deformation, electricity, etc. is the internal energy, while temperature is a
measure of the hotness.
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In summary we thus have the following:

First law of thermodynamics (also called the balance law of energy):
The time rate of change of the total energy (comprising kinetic and internal
energy) is balanced by the power of working of the (external) volume and sur-
face forces plus the (external) non-mechanical energy flow (heat flow) through
the surface of the body plus the external non-mechanical energy supply (radi-
ation) to the body volume.

Explicitly, let

GV = Ek
V + E i

V be the physical quantity in focus, the kinetic
plus internal energy within V ,

FE
∂V = L∂V +Q∂V be the flow of total energy through the boundary

∂V of V , the sum of the power of working
of the surface forces and the non-mechanical
energy (heat) flow from the environment to
the body,

SE
V = LV +QV be the body energy supply, the power of working of

the body forces plus the energy supplied by
radiation.

Then the first law of thermodynamics reads

d

dt
(Ek

V + E i
V ) = L∂V +Q∂V + LV +QV . (3.5)

The first law of thermodynamics says that heat can in principle be transformed into
mechanical energy or vice versa, but it does not say whether it is ‘easier’ to trans-
form heat into mechanical energy or vice versa. This non-symmetry is spelled out by
the second law of thermodynamics, and both laws were developed in the 19th cen-
tury when it was for the first time recognised that heat is a form of energy. Strangely,
this cognition came long after the realisation of the steam engine, which in fact does
nothing else than transforms heat into work. Its first construction is ascribed to the
French physicist DENIS PAPIN (1647–1712). However, it was Nicolas Léonard Sadi
CARNOT (1796–1832) who first wrote systematically about the production of usable
work from heat. He created a construct, the perfect machine and its performance in
perfect cyclic processes, now called CARNOT processes. They tell us the optimum
of this energy transfer from heat to work. In these processes, some heat is always
lost to the environment.

CARNOT’s scientific works were in large parts published only more than 40 years
after his death. This is the reason why most of today’s thermodynamicists ascribe
the merit of having spoken out for the first time the hypothesis of the equivalence
of heat and energy to Robert MAYER (1814–1878), a physician from Heilbronn
(Baden-Württemberg, Germany), see Fig. 3.4. Between 1841 and 1843 he published
two papers expressing the fact that in a material body the total energy was conserved.
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Note that the law (3.5) does not contain any potential energy, and in fact
potential energy does not belong to it. Potential energy can enter the first law of
thermodynamics under special circumstances only. For instance, some of the exter-
nal body and surface forces may be conservative7 and derivable from a potential.
Under such circumstances, one may show that

LV + L∂V = L′V + L′∂V −
d

dt
(U),

so that (3.5) may take the alternative form

d

dt
(Ek

V + E i
V + U) = L′∂V +Q∂V + L′V +QV . (3.6)

Here, U is the potential energy of the conservative forces and L′V +L′∂V is the power
of working of the body and surface forces to which no potential has been assigned.

3.2.5 Second Law of Thermodynamics

There is yet a fifth law of physics, the so-called second law of thermodynamics.
It expresses in mathematical form what experience has shown and proved to be
correct, namely that all physical processes are irreversible. In other words, if a
process to which a body is subjected takes place from time t1 to time t2 > t1,
then the second law of thermodynamics states that this process is accompanied by
a non-recoverable loss of energy, except, of course, if nothing happens at all. It also
means that a process obtained by traversing the given process backward in time is
not physically realisable, because the non-recoverable energy would have to be pro-
vided as an input. The second law gives the physical processes an orientation and is
tantamount to the assumption that all motion of a body is associated with dissipation
or loss of energy into heat that is eventually transferred to the environment. It was
CARNOT who first recognised this loss of mechanical energy when studying the
performance of heat engines. Julius Emanuel CLAUSIUS (1822–1888) introduced
a scalar-valued state variable, which he called entropy, which would measure the
amount of irreversibility that physical processes generate in a body. It needed almost
an additional century of research, involving the most prominent physicists8 of the
time, until the second law of thermodynamics was established as a balance law of
entropy as follows:

7 A force F is called conservative if the work done by the force along a trajectory from a point A
to a point B only depends on the positions of A and B and not on the trajectory connecting A and
B. It can be proved that such a force is derivable from a potential U such that F = −grad (U) and
LF = − d

dt (U).
8 Maurice Marie DUHEM (1861–1961), Max PLANCK (1858–1947), Constantine
CARATHEODORY (1873–1950), Lord KELVIN (1824–1907), Clifford TRUESDELL (1919–2000)
and many others.
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Second law of thermodynamics: Let

GV = HV be the entropy of the body V ,

FH
∂V = Φ∂V the flux of entropy through the surface ∂V of V ,

SH
V = ΣV the supply of entropy to the body V ,

PH
V = ΠV the production of entropy within the body V .

These quantities obey the balance law

dH
dt
= Φ∂V +ΣV +ΠV , (3.7)

and it is the expression of the irreversibility of the physical processes that the
entropy production

ΠV ≥ 0 (3.8)

is non-negative for all processes obeying the conservation laws of mass,
momentum, moment of momentum and energy as well as the material
equations.

According to this law, any process of a body obeying the conservation laws but
violating inequality (3.8) is unphysical and therefore physically unrealisable. The
above formulation of the second law, however, also involves an additional quality,
namely the material equations or constitutive relations. These are those statements
beyond the conservation laws of mass, momenta and energy which distinguish dif-
ferent materials from one another, e.g. water from ice or vapour. The second law of
thermodynamics is viewed as a statement which constrains the material behaviour
such that the entropy imbalance is never violated for any process satisfying the
physical conservation laws and the material equations.

An important achievement of thermodynamics of the 19th century is the discov-
ery of a ‘universally’ valid measure of the hotness of a material point. This ‘uni-
versal’ quantity is the so-called absolute or KELVIN temperature, and its existence
is a consequence of the second law of thermodynamics (Fig. 3.4). To explain it,
recall that temperature is measured by instruments, and these measure the volume
of a given mass of liquid (mercury thermometre), the pressure of a gas contained
in a fixed volume (ideal gas thermometre) or the electrical resistivity of a metal-
lic specimen. In these instruments, addition of heat to the thermometre changes
(monotonically) the volume of the liquid, the pressure of the gas and the electrical
resistivity of the metallic specimen, respectively. The instruments may be calibrated
such that volume, pressure and resistivity correspond to temperature, but even if
they exactly reproduce the freezing and boiling points of water at normal pressure,
there is no guarantee that they also reproduce the same values for the temperature
θ in-between. This is so because the value of θ depends on the material properties
of the fluid, gas or metal of which the thermometre is made. So, these thermome-
tres measure so-called empirical temperatures. The second law of thermodynam-
ics shows that all ideal gas thermometres measure exactly the same temperature in
the entire range of measurable temperature irrespective of which ideal gas is used.
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Fig. 3.4 Julius Robert von MAYER and Rudolf Julius Emmanuel CLAUSIUS (http://en.
wikipedia.org/, http://www-groups.dcs.st-and.ac.uk/)

Julius MAYER (25 November 1814 – 20 March 1878) was a learned German physician
and self-made physicist and one of the founders of thermodynamics. He studied medicine and
once travelled as a ship’s physician on a Dutch three-mast sailing ship to Jakarta. Although
he had hardly been interested before this journey in physical phenomena, his observation that
storm-whipped waves are warmer than the calm sea started him thinking about the laws of
nature, in particular about the physical phenomenon of warmth and the question: whether
the directly developed heat alone or the sum of the amounts of heat developed in direct
and indirect ways contributes to the temperature. After his return during February 1841
MAYER dedicated his efforts to this problem. MAYER was the first person to state the law of
conservation of energy, one of the most fundamental tenets of modern day physics. During
1842, MAYER described oxidation as the primary source of energy for any living creature.
His achievements were overlooked and priority for the discovery of the mechanical equivalent
of heat was attributed to James JOULE in the following year. He also proposed that plants
convert light into chemical energy. A truly original scientist, much of his work was belittled
or ignored by his contemporaries because of his stilted style of writing.

Rudolf Julius Emmanuel CLAUSIUS (2 January 1822 – 24 August 1888), a physicist of the
University of Berlin in 1844 with doctorate from the University of Halle in 1848 taught
physics in Berlin, Zürich, Würzburg and Bonn. His doctorate aimed at explaining the blue
colour of the sky, the red colours seen at sunrise and sunset, and the polarisation of light. His
first and most famous paper is on the mechanical heat Über die bewegende Kraft der Wärme
und die Gesetze, welche sich daraus selbst ableiten lassen, Annalen der Physik, 155 (1850)
[On the motive power of heat, and on the laws which can be deduced from it for the theory
of heat] and established his fame. This paper marks the foundation of thermodynamics, as
it states for the first time the basic idea of the second law of thermodynamics. CLAUSIUS

also formulated the second law in terms of a quantity expressing the nature of irreversibility
which he called ’entropy’. After 1875, CLAUSIUS concentrated on electrodynamics. He gave
a principle of conservation of energy in electrodynamics related to a force law of action at a
distance. Despite the difficulties in the theory, which resulted in a charge at rest on the Earth
being subjected to a force due to the motion of the Earth, it played an important role in the
development of electrodynamics.

The text is based on the article by J. J. O’Connor and E. F. Robertson (http://www-
groups.dcs.st-and.ac.uk/), the book I. Müller, A History of Theromodynamics, Springer 2007,
and http://en.wikipedia.org/
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The temperature measured by these thermometres is called absolute temperature
or KELVIN temperature. Lord KELVIN introduced it around 1850. It enjoys some
notion of universality among all ideal gas thermometres and is therefore sometimes
called universal temperature.

We shall not need in detail to work with the entropy inequality here. All equa-
tions that will be used will automatically fulfil it. We have stated it here to present
the complete set of all thermomechanical equations of classical physics. Interested
readers may consult the specialised literature.9
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Chapter 4
Fundamental Equations of Lake
Hydrodynamics

Having laid down in the previous chapters the foundations of NEWTONian mecha-
nics, classical thermodynamics and elements of mathematics, indispensable to any-
one dealing with lake physics, we shall now attempt to formulate the basic laws in
a mathematical form appropriate for direct use in the ensuing chapters.1

Firstly, the notion of kinematics will be introduced; this is the science of the
geometry of the motion of bodies in three-dimensional physical space; velocity,
acceleration and deformation are particular aspects of the geometry of deformable
bodies in motion. Subsequently, the focus will be on the mathematical specification
and physical interpretation of the balance laws of mass, momentum, moment of
momentum and energy. This entails in particular the introduction of the concepts of
the ‘stress vector’ and ‘stress tensor’, of which a clear understanding is vital if the
various forms of the balance of momentum are to be understood. The balance laws
of mass, momenta and energy are physical laws common to all bodies irrespective of
whether they are solids or fluids or gases. The characterisation of this distinction is
a matter of material science; we shall here not dwell upon a systematic presentation
of this so-called constitutive theory; we are rather satisfied with a typical character-
isation of a fluid and the presentation of the material equation of ideal and linearly
viscous fluids – so-called NEWTONian fluids. For both the material equations will
be derived and their response in hydrostatic equilibrium will be presented. Finally,
the first law of thermodynamics will be explained, and it will be shown how from
its application as a balance law the heat equation can be derived.

The subject content of the entire chapter is large; however utmost care is taken
to present the concepts as simple as possible, and indeed no further mathematics is
used than was introduced in Chap. 2.

1 There are many books on continuum mechanics and thermodynamics of continuous systems
where alternative presentations of these derivations are given, e.g. [1, 5, 6, 9, 15].

K. Hutter et al., Physics of Lakes, Volume 1: Foundation of the Mathematical
and Physical Background, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-642-15178-1_4,
C© Springer-Verlag Berlin Heidelberg 2011
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4.1 Kinematics

The purpose of Physics of Lakes is the investigation of the main physical processes
arising in the Earth’s lakes and the analysis of their causes and consequences in
order to reach an estimation of their importance for the physical and ecological
variabilities that may occur in a lake. This entails determination of the field variables
that are in focus. These are primarily the velocity and temperature fields, but also
other physical quantities such as the O2 content, the phosphate content of the water,
the concentrations of the phytoplankta and other field quantities. Because the motion
of the water is central, we focus in this section upon quantities defining the motion.

Basic to the description of the motion of water bodies is the notion of a material
particle. By this we mean a point in three-dimensional space, which carries along
with it the properties of the body under consideration: mass, momentum, energy
densities, etc. The particles are identified by their position vectors x. If a particle is
in motion, its position will continuously change with time. Thus, x can be viewed
as a function of its initial position, X and of time t , viz. see Fig. 4.1

x = χ(X, t), (4.1)

and this function – called motion or motion function – is assumed to be contin-
uously differentiable and invertible. This means that to a single X , there belongs
a single x and vice versa. Sometimes one simply writes x = x(X, t). Because
X = χ(X, 0) identifies the particle in its initial position, one may use X as the
name of the particle.

All particles of a body at time t = 0 define the body in its initial position.
All these points comprise what is called the reference configuration of the body.
Alternatively, all position vectors x are the unique maps of the material points X
of the body at time t and constitute the so-called present configuration of the body.

OR O

X1

X2

X3

{êX}

X

VR

∂VR

x1

x2

x3

{êx}

x

V
∂V

x = χ(X, t)

. .

Fig. 4.1 Body in its reference configuration (left) at time t = 0 and in its present configuration
(right) at an arbitrary time t > 0. A material particle in the former is represented by X and
referred to a Cartesian coordinate system OR X1 X2 X3; in the latter the particle’s position is x,
referred to Ox1x2x3, a second Cartesian origin and basis. The motion is the map X �→ x written
as x = χ(X, t). The two origins OR , O and the bases {êX } and {êx } are chosen to be distinct
in this figure, but in practice they are often the same. In those cases, of course, X and x are still
different vectors in general
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Notice that the reference configuration is fixed once and for all when it is chosen,
but the present configuration changes in general with time; the motion of a body
is steady if the present configuration does not change with time. The positions X
in the reference configuration are referred to an origin OR with Cartesian basis
{êX } so that X = ∑

α Xα êXα . Similarly, the locations x of the particles in the
present configuration are referred to an origin O with Cartesian basis {êx } so that
x =∑

i xi êxi . In Fig. 4.1 the two origins and bases are distinct; however, often they
are chosen to be the same. Under such restrictive assumptions, one may identify X
and x with (X1, X2, X3) and (x1, x2, x3) because the two vectors are in this case
referred to the same Cartesian basis.

With the motion defined in (4.1), we may now introduce the velocity and accel-
eration fields.

Definition 4.1 Let x = χ(X, t) be the motion of a material particle. Then velocity
and acceleration are the change of position per unit time and the change of veloc-
ity per unit time, respectively; mathematically, they are the first and second time
derivatives2 of the motion, keeping the particle fixed, viz.

v := ∂χ(X, t)

∂t
= v̂(X, t) (velocity)

a := ∂2χ(X, t)

∂t2
= â(X, t) (acceleration) .

(4.2)

�

These formulae define both fields as functions of the reference (initial) positions
and time. This is so because the motion is already defined as a function of these
variables. ‘Keeping the particle fixed’ means that the derivatives of the function
χ(X, t) must be so taken that the particle X is held constant during differentiation;
this corresponds exactly to the partial derivatives of χ(X, t) with respect to time as
expressed in (4.2).

The functions v̂(X, t) and â(X, t) are not convenient representations in fluid
mechanics. More adequate would be to express the velocity and acceleration as
functions of x and t . Such representations can be obtained if the function (4.1) is
inverted, i.e. if X is expressed as a function of x and t . If the inverse function is
denoted by χ−1, then3

x = χ(X, t) is equivalent to X = χ−1(x, t). (4.3)

2 We do not explicitly state here the degree of smoothness of a function; any needed degree of
smoothness is simply tacitly assumed to exist by stating and performing the operations of differen-
tiation. This is very often done so in topics where mathematics is applied. Functions are assumed
to be differentiable as many times as needed for the computations that are performed.
3 If x = Xn , then the inverse function is X = x1/n . Generally, for an invertible function f (x)
the graph of the inverse function is the image mirrored at the 45◦ line. Furthermore, it is tacitly
assumed that in performing this inversion, possible multi-valuednesses are automatically elimi-
nated by restricting considerations to principal values of the inverse function.
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Substituting (4.3) into (4.2) yields

v = v̂(X, t)
(4.3)= v̂(χ−1(x, t), t) = ṽ(x, t),

a = â(X, t)
(4.3)= â(χ−1(x, t), t) = ã(x, t).

The above two different representations of the velocity and acceleration – once as
functions of X, t and once as functions of x, t – raise the more general question,
how any field quantity, defined for a material particle,4 is best represented as a func-
tion of the particle’s initial position X and time t , φ = Φ(X, t), or as a function
of its present position x and time t , φ = ϕ(x, t). The two representations are so
different in approach and so significant that we shall list them here in the form of a
definition:

Definition 4.2 Let φ be a physical quantity of a particle.

• If φ = Φ(X, t), i.e. if φ is represented as a function of the reference position X
and time t, then this is called the Lagrangean representation.

• If φ = ϕ(x, t), i.e. if φ is represented as a function of the position x in the present
configuration and time t, then this is called the Eulerian representation. �

Because of the significance of these descriptions let us illustrate them by an exam-
ple. Imagine, we wish to measure the water current field in a certain region of a lake.
This can be done by deploying current metres at moorings fixed in space. Because
the moorings are for all time at the same position, the measured velocity compo-
nents represent the functions v j (x, t) and thus register functions in the EULERian
description. If, however, the velocities are inferred from registered positions of drift-
ing buoys, then one identifies the varying positions of the buoys with the varying
positions of a fluid particle and thus encounters the LAGRANGEan description. Of
course, identifying the motion of a buoy with that of a material fluid particle is still
a conjecture subject to criticism, but its supposition is quite common in physical
limnology.

The choice of representation – EULERian or LAGRANGEan – influences the oper-
ation of time differentiation keeping the particle fixed.

Definition 4.3 Let φ be a physical quantity. Its material time derivative is the time
rate of change of φ, holding the particle fixed. It is denoted by an overhead point φ̇,
or by the straight differentiation symbol, d/dt . �

4 Note that we define here a physical quantity for a particle even though a physical property (mass,
momentum, etc.) in Chap. 3 was only defined for a body. The difference in viewpoint is based
upon the tacit assumption that any part of a body – even infinitesimally small – equally constitutes
a body.
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With this definition, one obtains in the Lagrangean description

φ̇ = dφ

dt

∣
∣

X=fix =
∂Φ(X, t)

∂t
. (4.4)

The material derivative is here obtained simply as the partial derivative of the
function Φ(X, t) with respect to time t . In the EULERian description, one has
φ = ϕ(x, t), whereby x itself is given by the motion (4.1). Therefore, x is itself
varying with time (if the particle is held fixed), and the material time derivative has
to be obtained by employing the chain rule of differentiation of the function ϕ(x, t);
to be sure

φ̇ = ∂ϕ(x, t)

∂t
+
∑

i

∂ϕ(x, t)

∂xi
ṽi (x, t), (4.5)

in which we have set ∂χi (X, t)/∂t = ṽi (x, t) and where we have assumed that x
in the argument of ϕ(x, t) is given by its three components referred to a Cartesian
basis. Other forms of writing (4.5) are5

φ̇ = ∂ϕ

∂t
+ ∂ϕ

∂x1
v1 + ∂ϕ

∂x2
v2 + ∂ϕ

∂x3
v3 = ∂ϕ

∂t
︸︷︷︸

local

+ (gradϕ) · v
︸ ︷︷ ︸

convective derivative

, (4.6)

as already shown in Chap. 2. Here we have not repeated the independent variables x
and t , as they are implicitly clear. In the EULERian description the material (or total)
time derivative of a physical quantity – this is the time rate of change of a quantity
that is experienced along the trajectory of the particle – is composed of the local
derivative – this is the derivative function one can infer from a physical quantity
measured at a fixed mooring – and the convective derivative.

Let φ be the velocity field v; then its material time derivative is the acceleration
and application of (4.6) yields

ã(x, t) = v̇(x, t) = ∂v

∂t
+ (grad v)v. (4.7)

Written in component form of a Cartesian coordinate system, this yields

a1 = dv1

dt
= ∂v1

∂t
+ ∂v1

∂x1
v1 + ∂v1

∂x2
v2 + ∂v1

∂x3
v3,

a2 = dv2

dt
= ∂v2

∂t
+ ∂v2

∂x1
v1 + ∂v2

∂x2
v2 + ∂v2

∂x3
v3, (4.8)

a3 = dv3

dt
= ∂v3

∂t
+ ∂v3

∂x1
v1 + ∂v3

∂x2
v2 + ∂v3

∂x3
v3.

5 Here (and henceforth often), we have omitted the overhead tilde characterising the EULERian
description. This we shall regularly do when the functional dependencies are clear from the context.
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Introducing the matrix representation of the gradient [see Chap. 2, (2.47)]

grad v=̂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂v1

∂x1

∂v1

∂x2

∂v1

∂x3
∂v2

∂x1

∂v2

∂x2

∂v2

∂x3
∂v3

∂x1

∂v3

∂x2

∂v3

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.9)

the convective derivative takes the form

(grad v)v=̂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂v1

∂x1

∂v1

∂x2

∂v1

∂x3
∂v2

∂x1

∂v2

∂x2

∂v2

∂x3
∂v3

∂x1

∂v3

∂x2

∂v3

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎝

v1
v2
v3

⎞

⎠ , (4.10)

and (4.8) becomes

⎛

⎝

v̇1
v̇2
v̇3

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂v1

∂t
∂v2

∂t
∂v3

∂t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂v1

∂x1

∂v1

∂x2

∂v1

∂x3
∂v2

∂x1

∂v2

∂x2

∂v2

∂x3
∂v3

∂x1

∂v3

∂x2

∂v3

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎝

v1
v2
v3

⎞

⎠ . (4.11)

Formulae (4.7) and (4.11) list two forms of representation of the acceleration in the
EULERian description. The former gives the acceleration in symbolic notation when
the velocity field is given as a function v(x, t), the latter shows how it is evaluated
when it is referred to a Cartesian basis, i.e. (4.11) tells us how the three components
of the acceleration are computed when the components of the velocity field are given
in the EULERian description.

Problem 4.1 Prove that another formula for the acceleration of the velocity field is

ã(x, t) = ∂v

∂t
+ grad

(v · v
2

)

− v × curl v. (4.12)

(This proof can most easily be performed by writing each term of the right–hand
side in Cartesian component form.) �

In texts on continuum mechanics the spatial gradient of the velocity field is often
denoted by L, grad v = L, and its Cartesian components Li j (i, j = 1, 2, 3) are
given in (4.9). Furthermore, L is a second-rank tensor and the scheme (4.9) is its
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matrix representation referred to a Cartesian coordinate system. It is evident that
this matrix is not symmetric, because its transpose is, in general, not the same as the
matrix itself.

Definition 4.4 Let L := grad v(x, t) be the spatial gradient of the velocity field.
The symmetric and skew-symmetric parts of L are defined as

D = 1
2

(

L + LT) = 1
2

(

grad v + (grad v)T
)

,

W = 1
2

(

L − LT) = 1
2

(

grad v − (grad v)T
)

. (4.13)

D is called the stretching or strain rate tensor with D = DT, while W is called
the vorticity tensor or spin tensor with W = −WT. Moreover

ω = ε ·W = curl v(x) (4.14)

is called the vorticity vector, or simply the vorticity. �

These quantities were already introduced in Chap. 2, (2.70), where also the compo-
nent representations

D=̂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂v1

∂x1

1

2

(
∂v1

∂x2
+ ∂v2

∂x1

)
1

2

(
∂v1

∂x3
+ ∂v3

∂x1

)

∂v2

∂x2

1

2

(
∂v2

∂x3
+ ∂v3

∂x2

)

sym
∂v3

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.15)

W=̂

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
1

2

(
∂v1

∂x2
− ∂v2

∂x1

)
1

2

(
∂v1

∂x3
− ∂v3

∂x1

)

0
1

2

(
∂v2

∂x3
− ∂v3

∂x2

)

skw 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (4.16)

and

ω=̂
[(
∂v3

∂v2
− ∂v2

∂x3

)

,

(
∂v1

∂x3
− ∂v3

∂x1

)

,

(
∂v2

∂x3
− ∂v3

∂x2

)]

(4.17)

were given, in which sym and skw indicate that the matrix elements must be sym-
metrically and skew-symmetrically repeated.

The motion function (4.1) also gives rise to the definition of a material (rather
than) spatial gradient. Let dX be a material line element in the reference configura-
tion and dx its image in the present configuration. Then according to (4.1), we have
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dx = F dX or dxi = Fiα dXα. (4.18)

The tensor

F = ∂χ(X, t)

∂X
= gradχ(X, t), Fiα = ∂χi (X, t)

∂Xα
(4.19)

is known as the deformation gradient. It maps vectors from the reference configura-
tion to the present configuration and is therefore also known as a two-point tensor,
which is expressed in coordinate form relative to both bases {êxi } and {êXα } in the
present and reference configurations, respectively, as

F = Fiα êxi ⊗ êXα . (4.20)

Every second-rank tensor may be product decomposed into two parts, one an orthog-
onal tensor and the other a positive definite symmetric tensor. This so-called polar
decomposition can also be carried out for the deformation gradient; it will yield a
closer interpretation of the local deformation that will be of importance later on.

The theorem reads as follows:
Polar decomposition theorem Every second-rank tensor F with det F = 0

permits two polar decompositions, namely

F = RU = V R, (4.21)

with the following properties:

• V and U are symmetric,

V = V T, U = UT. (4.22)

• V and U are positive definite,

x · V x ≥ 0, x · U x ≥ 0, ∀x ∈ R
3 (4.23)

and they have the same eigenvalues.
This part of the deformation gradient corresponds to a pure strain; U and V are
called the right and left stretch tensors, respectively.6 The denotation right and
left implies that U stands to the right and V stands to the left of R, no more!

• R is proper orthogonal

RRT = RT R = I, det R = +1. (4.24)

• The polar decomposition is unique.7 �

6 Note that we use ‘stretch’ to denote deformation associated with ‘strain’ and ‘stretching’ to
express ‘strain rate’.
7 The polar decomposition is unique for a tensor F which is non-singular. For details see [15,
Sect. 23], or any book on continuum mechanics, e.g. [8].
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The above described polar decomposition enables us to interpret the deformation
(Fig. 4.2) by stating that rotation follows stretch or stretch follows rotation. We now
prove the polar decomposition theorem. Readers not interested in this proof may
continue after formula (4.41).
Proof of the Polar Decomposition Theorem For the proof of this theorem, some basic
knowledge of linear algebra is necessary, which is assumed to be known. The proof
starts with the statement that C := FT F and B := F FT are symmetric and positive
definite transformations. C and B are called right and left CAUCHY–GREEN defor-
mation tensors, respectively. Based on this symmetry property these tensors must
possess spectral representations

C =
∑

α

λ(C)α eα ⊗ eα, B =
∑

i

λ
(B)
i ei ⊗ ei (4.25)

with real eigenvalues λ(C)α and λ(B)i , which are positive since B and C are pos-
itive definite. The vectors eα and ei are the eigenvectors in the reference and
present configurations, respectively; these can be directly interpreted as basis vec-
tors of R

3
Ref and R

3
Pres. On this ground, the right and left stretch tensors can be

defined by

U :=∑

α λ
(U)
α eα ⊗ eα, λ

(U)
α =

√

λ
(C)
α ,

V :=∑

i λ
(V )
i ei ⊗ ei , λ

(V )
i =

√

λ
(B)
i ,

(4.26)

where these are obviously symmetric and positive definite. This construction of the
stretch tensors is unique and leads to U2 = C and V 2 = B. The existence of inverse
tensors U−1, V−1 is also guaranteed:

Fig. 4.2 Polar decomposition of the deformation gradient, interpreted as the compositional process
of stretch followed by rotation or vice versa
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U−1 =∑

α

(

λ
(U)
α

)−1
eα ⊗ eα,

V−1 =∑

i

(

λ
(V )
i

)−1
ei ⊗ ei .

(4.27)

Thus, the first two points are verified.
With the right and left stretch tensors, we can now build orthogonal tensors R :=

FU−1 and R̄ := V−1 F. The orthogonality follows from

RT R = (

FU−1
)T(FU−1

) = (

U−T FT
)(

FU−1
)

= U−T
(

FT F
)

U−1 = U−TU2U−1 = I,

R̄ R̄
T = (

V−1 F
)(

V−1 F
)T = (

V−1 F
)(

FTV−T
)

= V−1
(

F FT
)

V−T = V−1V 2V−T = I .

(4.28)

Therefore one has

F = RU = V R̄. (4.29)

The uniqueness property of the polar decomposition follows from the fact that C and
B are unique (via the spectral decomposition) according to their definition; thus, U
and V are also uniquely defined. Since the deformation gradient F is not singular,
R and R̄ are also unique.

In order to show R = R̄, we use the orthogonality of R and write

F = RU = RU(RT R) = (RU RT)R

= V̄ R

!= V R̄,

(4.30)

where V̄ := (RU RT). As a result, one seemingly finds a further decomposition of

F for which B = V 2 = V̄
2

is also valid. Because B is unique so must also be V ;
both these transformations must therefore be identical, i.e. V = V̄ . Consequently,
it immediately follows that R = R̄.
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We still need to corroborate the following statements:

• U and V have the same eigenvalues:

λ := λ(V ) = λ(U) =
(

λ(B)
) 1

2 =
(

λ(C)
) 1

2
> 0. (4.31)

Of these there are exactly three which may have different values.
• Eigenvectors e(V ) of V and those of U (e(U)) are related to each other through

e(V ) = Re(U). (4.32)

• The eigenvalue equation or characteristic equation of U has the form

λ3 − IUλ
2 + IIUλ− IIIU = 0, (4.33)

where

IU := tr U, IIU := 1
2

(

I 2
U − IU2

)

, IIIU := det U (4.34)

are the principal invariants of the tensor U .

In order to prove the first expression, we start with the eigenvalue equation

(U − λ(U) I)e(U) = 0, (4.35)

which yields non-trivial solutions if det(U − λ(U) I) = 0. This is the characteristic
equation of U with which one can calculate the corresponding eigenvalues. If we
further use the relation

U = RTV R, (4.36)

which follows directly from the polar decomposition, it reads

0 = det(U − λ(U) I) = det(RTV R − λ(U) I)
= det

(

RT(V − λ(U) I)R)

= det RT det(V − λ(U) I) det R

⇒ det(V − λ(U) I) = 0,

(4.37)

since det R = 1. It follows from here that the eigenvalues of U and V are identical,
λ := λ(V ) = λ(U). Because U2 = C and V 2 = B and in view of their spectral
decompositions, one also has λ = (λ(C))1/2 = (λ(B))1/2. Thus the first point is
proved.



94 4 Fundamental Equations of Lake Hydrodynamics

Similarly, from the eigenvalue equation for U one concludes

0 = (U − λI) e(U) = (

RTV R − λI
)

e(U)

= RT (V − λI) Re(U),
(4.38)

or since R is non-singular, after multiplication from left with R,

(V − λI) Re(U) = 0. (4.39)

Thus, Re(U) is the eigenvector corresponding to the eigenvalue λ = λ(V ); moreover,
e(V ) = Re(U), and thus the second point is likewise proved.

Finally, we can corroborate the characteristic equation (4.33) of a tensor U , for
example, by explicitly calculating det(U − λI) = 0. In case one chooses {e(U)} as
the basis, U has diagonal form

U =
⎛

⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞

⎠ , (4.40)

with the eigenvalues λα , α = 1, 2, 3. From this we can immediately write the
characteristic equation with invariants IU , IIU and IIIU , which are related to the
eigenvalues as follows:

IU := tr U = λ1 + λ2 + λ3,

IIU := 1
2

(

I 2
U − IU2

) = λ1λ2 + λ2λ3 + λ3λ1,

IIIU := det U = λ1λ2λ3, qed.

(4.41)

This completes the proof of the polar deposition theorem. �
A geometric interpretation of the polar decomposition theorem follows from

Fig. 4.2 and formula (4.18), which now takes the form

dx = F dX = V R dX = RU dX . (4.42)

Accordingly, a material line element dX may first be rotated by R and subsequently
stretched by V , or it may first be stretched by U and subsequently rotated by R.
Which of these mappings is first thought to be executed is not important, but it is
physically obvious that the principal stretches on the one hand and the rotation on
the other hand must be the same. This fact is expressed in the above proof by the
fact that R and R̄ are the same rotation matrices and the V and U possess the same
eigenvalues.

This same property can also be stated in rate form. Indeed, differentiating (4.18)
with respect to time, dẋ = Ḟ dX , and using Ḟ F−1 = L and dX = F−1 dx yields

dẋ = dv = L dx = (D +W)dx, (4.43)
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stating that the velocity increment at a point is composed of a stretching increment
D dx and a rotation increment W dx. It is interesting to observe that the product
composition (4.42) valid for a finite deformation becomes an additive composition
(4.43) when expressed in rate form.

The above results also give a direct interpretation for any vectorial physical quan-
tity f that obeys the equation

d f
dt
= L f , f (x, t = 0) = f 0. (4.44)

It is easily shown that the solution of this initial value problem is given by

f = F f 0 = RU f 0. (4.45)

Its interpretation is as follows: As time proceeds, the value of f at time t = 0, f 0 is
stretched by U and rotated by R. We shall see that in a so-called barotropic fluid the
specific vorticity ω/ρ satisfies (4.44) and (4.45). Fluid dynamicists say that vorticity
is produced by vortex stretching and vortex tilting.

Much more could be said about kinematics; however, with the above presentation
a minimum amount of information is given that allows the deduction of the basic
principles.

We close this subsection on kinematics by deriving a formula expressing the
acceleration of a material point relative to two different bases, one at rest and
assumed to be inertial, {O, êi }, and the other one moving, {O∗, ê∗i }. Let r0 be the

position vector of the origin of the moving base in the rest base
−→
OO∗ = r0, v0

its velocity and assume that the starred basis with origin O∗ rotates relative to the
unstarred basis with angular velocityΩ , see Fig. 4.3. We shall refer to the unstarred
and starred systems as the absolute and relative systems, respectively. If a is a vec-
tor, then an absolute observer measures the time rate of change da/dt , while the
relative observer sees this change of a as δa/δt ; the two derivatives are related to
one another by

da
dt
= δa
δt
+Ω × a. (4.46)

If a is a vector that is fixed in the relative system, then δa/δt = 0 and da/dt =
Ω × a, which is immediately evident.8 Applying this rule to the position vector

x = r0 + r (4.47)

8 For readers not familiar with kinematics this formula may still be difficult to grasp. However,
if a is fixed in the relative system and parallel to Ω , then Ω × a = 0. Indeed, in this case for
an absolute observer, the vector a changes only its position but not its orientation (Fig. 4.4a). On
the other hand, if a is perpendicular to Ω , then the absolute observer sees a change of a in the
plane perpendicular to Ω and oriented perpendicular to a (Fig. 4.4b), which is also geometrically
obvious. The general case is shown in panel (c) of Fig. 4.4.
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Fig. 4.3 Absolute (inertial) system {O, êi } and, relative to it, relative (accelerated) system {O∗, ê∗i }
with velocity dr0/dt and angular velocity Ω

(a) (b) (c)

Fig. 4.4 To an absolute observer a vector a fixed in the relative system does not change if it is
parallel to Ω (a), but rotates around the axis of Ω if it is not parallel to Ω (b) and (c)

yields

dx
dt
= dr0

dt
+Ω × r + δr

δt
(4.48)

and

d2x
dt2

= d

dt

(
dr0

dt
+Ω × r + δr

δt

)

= d2r0

dt2
+
(
δ

δt
+Ω×

)(

Ω × r + δr
δt

)

= d2r0

dt2
+ δ2r
δt2

+ 2Ω × δr
δt
+Ω × (Ω × r)+ δΩ

δt
× r. (4.49)
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This formula suggests the following definition:

Definition 4.5 The various terms in (4.49) have the following denotations
d2x
dt2

absolute acceleration,

δ2r
δt2

relative acceleration,

d2r0

dt2
absolute acceleration of the origin O∗ of the moving system

2Ω × δr
δt

Coriolis acceleration, see Fig. 4.5

Ω × (Ω × r) centripetal acceleration,

δΩ

δt
× r Euler acceleration,

δr
δt
= vr relative velocity – velocity of a particle as recorded

by the moving observer. �

In geophysical applications such as meteorology, physical oceanography and
limnology, the absolute origin is identified by the centre of the Earth and the basis
{êi } is given as a non-rotating system of axes in Fig. 2.3 denoted by 1, 2, 3. The
relative system is fixed with the Earth with origin on the Earth surface and coordi-
nate axes fixed with the Earth, usually the xy plane tangential to the Earth surface
and the z-axis pointing towards the zenith. The Earth is approximated as a rigid
sphere rotating with constant angular velocityΩ about its axis connecting the south
with the north pole. Thus, the absolute acceleration of the relative coordinate system
equals d2r0/dt2 = Ω × (Ω × r0) and the Euler acceleration vanishes. It follows
that for the chosen Earth-fixed coordinate system the absolute acceleration takes the
form

d2x
dt

= δ2r
δt2

+Ω × (Ω × (r0 + r))+ 2Ω × δr
δt
. (4.50)

Because in this book the observer consistently moves with the Earth, we shall denote

δr
δt
= v(x, t),

δ2r
δt2

= dv(x, t)

dt
= ∂v(x, t)

∂t
+ (grad v(x, t)) v(x, t)

(4.51)
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Fig. 4.5 Gaspard-Gustave de CORIOLIS (1792–1843), a French mathematician, mechanical
engineer and scientist (photo from http://en.wikipedia.org/). A sketch of the FOUCAULT pen-
dulum (left) is the most explicit demonstration of action of the CORIOLIS force

Gaspard-Gustave de CORIOLIS (21 May 1792 – 19 September 1843) was born in Paris. In 1816
he became a tutor at the École Polytechnique, in 1829 a professor of mechanics at the École
Centrale des Arts et Manufactures. Upon the death of NAVIER in 1836, CORIOLIS succeeded
him in the chair of applied mechanics at the École des Ponts and Chaussées and to NAVIER’s
place in the Académie des Sciences. In 1838 he succeeded DULONG as Directeur des études
(director of studies) in the École Polytechnique. He died in 1843 at the age of 51 in Paris.

CORIOLIS is best known for his work on the supplementary forces that are detected in a rotating
frame of reference, and one of those forces nowadays bears his name. In 1835, he published
the paper that made his name famous, Sur les équations du mouvement relatif des systémes de
corps (On the Equations of Relative Motion of a System of Bodies). He showed that the laws
of motion could be used in a rotating frame of reference if an extra term called the CORIOLIS

acceleration is added to the equations of motion. It deals with the transfer of energy in rotating
systems like waterwheels. CORIOLIS discussed the supplementary forces that are detected in
a rotating frame of reference, and one of them would eventually bear his name. The term
‘CORIOLIS force’ was, however, not used until the beginning of the 20th century. Today, the
name CORIOLIS has become strongly associated with geophysical fluid dynamics.

CORIOLIS was the first to coin the term ‘work’ for the transfer of energy by a force acting
through a distance. In 1829 he published a textbook Calcul de l’Effet des Machines (Cal-
culation of the Effect of Machines). In this period the correct expression for kinetic energy,
1
2v

2, and its relation to mechanical work became established. CORIOLIS worked to extend the
notion of kinetic energy and work to rotating systems. His first paper, Sur le principe des forces
vives dans les mouvements relatifs des machines (On the Principle of Kinetic Energy in the
Relative Motion in Machines), was read to the Académie des Sciences. In 1835 he published
a mathematical memoir on collisions of spheres: Théorie Mathématique des Effets du Jeu de
Billard, considered a classic on the subject.

The text is based on: http://en.wikipedia.org/

so that

d2x
dt2
︸︷︷︸

absolute
acceleration

= dv

dt
︸︷︷︸

relative
acceleration

+ Ω × (Ω × (r0 + r))
︸ ︷︷ ︸

centripetal
acceleration

+ 2Ω × v
︸ ︷︷ ︸

Coriolis
acceleration

. (4.52)
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Problem 4.2 Show that for a frame fixed on the Earth

• the centripetal acceleration is numerically larger than the Coriolis accelera-
tion;9 in fact

– centripetal acceleration ∼ 2.4 × 10−2 (m s−2) for a location with the geo-
graphical latitude of 45◦,

– Coriolis acceleration ∼ 1.5 × 10−5 (m s−2) for a typical water velocity of
0.1 m s−1 in lakes;

• the centripetal acceleration is a vector directed at each point towards the axis of
rotation with magnitude |Ω|2r (see Fig. 4.6),

• the centripetal acceleration can be derived from a potential as follows:

Ω × (Ω × (r0 + r)) = −gradΨ, Ψ = |Ω|2r̃2

2
, (4.53)

• it is customary to regard the centripetal acceleration as part of the gravity vec-
tor. Convince yourself that common gravimetric measurements indeed include
this acceleration beyond the NEWTONian gravity force.10 So, instead of (4.52),
geophysical fluid dynamicists often use

d2x
dt2

= dv

dt
+ 2Ω × v (4.54)

as the expression of acceleration of material particles referred to an Earth-fixed
coordinate system. �

9 In the rotating framework, the two acceleration terms can be interpreted as the results of the
action of two forces – the centrifugal force and the CORIOLIS force. Although the former is the
more palpable of the two, it plays no role in geophysical flows, however surprising this may be to
the neophyte. The latter and less intuitive of the two turns out to be a crucial factor in geophysical
motions.
10 In the absence of rotation, gravitational forces keep the matter together to form a spherical
body. The outward pull caused by the centrifugal force distorts this spherical equilibrium, and
the planet assumes a slightly flattened shape. The degree of flattening is precisely that necessary
to keep the planet in equilibrium for its rotation rate. The centrifugal force is directed outwards,
perpendicular to the axis of rotation, whereas the gravitational force points towards the planet’s
centre. The resulting force assumes an intermediate direction, and this direction is precisely the
direction of the local vertical. Indeed, under this condition a loose particle has no tendency of its
own to fly away from the planet. In other words, every particle at rest on the surface will remain
at rest unless it is subjected to additional forces. The flattening of the Earth, as well as that of
other celestial bodies in rotation, is important to neutralise the centrifugal force. But this is not to
say that it greatly distorts the geometry. On the Earth, for example, the distortion is very slight,
because gravity by far exceeds the centrifugal force; the terrestrial equatorial radius is 6378 km,
slightly greater than its polar radius of 6357 km. The shape of the rotating oblate Earth is treated
in detail by STOMMEL and MOORE [13]. For the sake of simplicity in all that follows, we will call
the gravitational force the resultant force, aligned with the vertical and equal to the sum of the true
gravitational force plus the centrifugal force.
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Fig. 4.6 Centripetal acceleration in a rotating coordinate system, directed at each point towards
the axis of rotation with magnitude |Ω|2r̃

4.2 Balance of Mass

As seen in Chap. 3, the mass of a material body is a conserved quantity, i.e. no mass
within the body is produced nor does there any mass flow through the boundary of
a material body. Let us think a body to be made of an infinite number of material
volume elements dV = dx1dx2dx3, and let us isolate such a volume element. If the
actions of the surroundings of this element on it are duly accounted for, then we may
treat the element as a body by itself and apply the dynamical equations (i.e. the mass,
momentum and energy balances) to this element. This principle, expressing that any
part of a body is itself a body, is so intuitive and appears to be so natural that most
scientists apply it subconsciously and never mention it. However, one of its basis
is the continuity assumption of matter, according to which mass is continuously
distributed, and so it makes sense to define a mass density

ρ := lim
ΔV→0

Δm

ΔV
, (4.55)

which is the limit of the mass of a small volume element when its volume tends to
zero. We all know that, strictly, this continuity assumption of matter does not hold,
but the length scales over which it is violated are so small to be of no concern in
geophysical applications11 such as lake physics.

11 An obvious manifestation where the continuity assumption is violated or its application over-
stretched is BROWNian motion. The shivering motion of the molecules is visible under the micro-
scope. It is clearly the manifestation of the discrete structure of matter.
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Fig. 4.7 Material body V with boundary ∂V . A volume element dV is isolated at position x

With this continuity requirement one may write the mass of a body with volume
V as the sum of the masses of the volume elements (see Fig. 4.7), viz.

MV =
∫∫∫

V
ρ(x1, x2, x3, t)dx1dx2dx3

(∗)=
∫

V
ρ dV . (4.56)

Here, the summation is simply the volume integration of the function ρ(x1, x2, x3, t)
over the three coordinates of the Cartesian coordinate system, and it is symbolically
expressed as a triple integral. Since such a notation is heavy and actually not needed,

if computations are not explicitly performed, the step
(∗)= indicates the abbreviated

notation that is simple and uniquely understandable. Balance of mass for a material
volume (3.2) states that

ṀV = dMV

dt
= d

dt

∫

V
ρ dV = 0, (4.57)

where the volume V in (4.57) moves with the body as time proceeds.
There is another way of formulating the law of conservation of mass if instead

of a material volume a fixed volume in three-dimensional space is considered. This
is simply a spatial volume, and mass in this volume may grow according to (see
Fig. 4.8)

∫

Vfix

∂ρ

∂t
(x, t)dV . (4.58)

Here we have identified the volume by the index ( )fix to emphasise that this volume
always consists of the same spatial points. The growth of mass (4.58) within Vfix is
due to the mass flux through the surface ∂Vfix. The flow through the surface element
dA is given by ρ(v · n)dA, where v is the EULERian velocity field and n is the unit
normal vector at the surface element pointing to the exterior of the body. Summing
over the entire boundary surface yields
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ρv

Fig. 4.8 Spatial volume Vfix with boundary ∂Vfix, indicating the growth of mass at an incremental
volume element (∂ρ/∂t)dVfix as well as showing the flow of mass ρ(v · n)dA on a surface element
dA with exterior unit normal vector n

−
∫

∂Vfix

ρ(v · n)dA (4.59)

as the total mass flux through the boundary ∂Vfix into the volume. Because for posi-
tive v ·n this is a mass loss for the volume Vfix, the negative sign is inserted in (4.59).
The alternative form of the mass balance (4.57) is therefore written as

∫

Vfix

∂ρ

∂t
(x, t)dV = −

∫

∂Vfix

ρ(v · n)dA (4.60)

or alternatively as

ṀV =
∫

Vfix

∂ρ

∂t
dV +

∫

∂Vfix

ρ(v · n)dA = 0. (4.61)

Comparing (4.57) and (4.61) yields the formula

d

dt

∫

V
ρ dV =

∫

Vfix

∂ρ

∂t
dV +

∫

∂Vfix

ρ(v · n)dA, (4.62)

in which V is the material volume which momentarily occupies the same positions
as Vfix so that actually V = Vfix.

The above formula (4.62) can be used to state a very important mathematical
lemma, because it is valid for any function f . More precisely, it is no longer of
relevance that the quantity ρ represents the mass density. It can in fact be any dif-
ferentiable function f (x, t). So rewriting (4.62) in this form yields
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d

dt

∫

V
f dV =

∫

Vfix

∂ f

∂t
dV +

∫

∂Vfix

f (v · n)dA. (4.63)

This formula tells us how an integral over a material volume is differentiated with
respect to time. The function f can be a scalar or any component of a vector so
that (4.63) is valid also for a vector-valued function. In this form (4.63) is called
REYNOLDS’ transport theorem. It will be used later to derive local forms of the
balances of momenta and energy.12

So far, and in Chap. 3, the concept of the balance law was formulated for a body
as a whole. It was, however, already mentioned that any material part of a body cut
out of it (in reality or imagination) is equally a body no matter how large or small
it may be. More precisely, it is tacitly assumed or postulated that the physical laws,
balances of mass, momenta, energy and entropy hold for any body part. If such
a part is an infinitesimally small cube and the mathematical transformations are
performed such that in the limit as the cube’s volume tends to zero, the point form
of the balance law emerges. This point form is also called local balance law. This
will now be derived for the balance law of mass.13 So let us now use (4.60) for an
infinitesimally small cube with side lengths dx1, dx2, dx3 parallel to the coordinate
axes, see Fig. 4.9a. The left-hand side of (4.60) is then simply given by

∫

cube

∂ρ

∂t
dVcube = ∂ρ

∂t
dx1dx2dx3, (4.64)

in which x is a point in the interior of the cube. Let us now concentrate on the right-
hand side of (4.60). For an infinitesimal cube this surface integral constitutes the
sum of corresponding expressions evaluated over the six surface elements bounding
the cube. Consider first the two rectangular faces perpendicular to the x1-axis. The
integrand function ρ(v · n) is simply given here by −(ρv1)(x̄, t), where x̄ is a point
within the front surface element of Fig. 4.9b with area dx2dx3, and the flow is into
the cube for a positive v1 component. On the opposite side of the cube, ρ(v · n) is
given by the same expression (ρv1)(x̄+dx1 ê1, t), but it is now evaluated for a point
within its own surface. According to (2.34) an approximation of this is

12 This is the first place where a physical law has led us to a mathematical lemma. We will
encounter this situation again in this chapter when physical reasoning will allow us to come up
with GAUSS’ divergence theorem and a variant of it.
13 We apply in this chapter the balance laws of classical physics to infinitesimal cubes to derive
their local form. This appears to be a bit primitive; especially since in Chap. 2 the formulation of
the mathematical analysis was laid down to do this more elegantly. We do this because of didactic
reasons and take the risk to be accused to be unnecessarily primitive. For less-trained students the
‘volume element method’ is easier to understand. More important for us is, however, the fact that
the reader can openly follow how all quantities arising in the mass, momentum, energy and entropy
balance laws are expressed in the ‘volume element method’. We believe that the physics becomes
this way particularly transparent, even though formulae evidently appear somewhat clumsy.
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Fig. 4.9 (a) Infinitesimal cube fixed in space with side faces perpendicular to the (mutually orthog-
onal) coordinate axes x1, x2, x3, respectively, of a Cartesian coordinate system and side lengths
dx1, dx2, dx3 showing the growth of mass within it. (b) Mass flow through the surface elements of
the same cube

(ρv1)(x̄ + dx1 ê1, t) � (ρv1)(x̄, t)+ ∂(ρv1)

∂x1
(x̄, t)dx1

so that ρv · n in the three space directions is given by

−(ρv1)(x̄, t)+ (ρv1)(x̄ + dx1 ê1, t) = ∂(ρv1)

∂x1
(x̄, t)dx1,

−(ρv2)(x̄, t)+ (ρv2)(x̄ + dx2 ê2, t) = ∂(ρv2)

∂x2
(x̄, t)dx2, (4.65)

−(ρv3)(x̄, t)+ (ρv3)(x̄ + dx3 ê3, t) = ∂(ρv3)

∂x3
(x̄, t)dx3,
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in which errors are O[(dx1)
2, (dx2)

2, (dx3)
2]. The mass flow through the cube’s

faces is obtained by multiplying the above expressions with the area increments
dx2dx3, dx3dx1 and dx1dx2, respectively, as shown in panel (b) of Fig. 4.9 so that

−
∫

∂cube
ρ(v · n)dA = −

{
∂ρv1

∂x1
+ ∂ρv2

∂x2
+ ∂ρv3

∂x3

}

(dx1 dx2 dx3)cube

= −
{
∂ρv1

∂x1
+ ∂ρv2

∂x2
+ ∂ρv3

∂x3

}

dVcube. (4.66)

Thus, writing (4.60) down for the chosen infinitesimal cube yields, according to
(4.64) and (4.66), after division by dx1 dx2 dx3, the so-called local balance law of
mass

∂ρ

∂t
+ ∂

∂x1
(ρv1)+ ∂

∂x2
(ρv2)+ ∂

∂x3
(ρv3)

︸ ︷︷ ︸

div (ρv) [see(2.62)]

= 0, (4.67)

which symbolically may also be written as

∂ρ

∂t
+ div (ρv) = 0. (4.68)

If in the last three expressions of (4.67) the product differentiation is explicitly exe-
cuted, then one obtains

∂ρ

∂t
+ ∂ρ

∂x1
v1 + ∂ρ

∂x2
v2 + ∂ρ

∂x3
v3

︸ ︷︷ ︸

(grad ρ)·v
︸ ︷︷ ︸

dρ/dt [see(4.6)]

+ρ
{
∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3

}

︸ ︷︷ ︸

div v

= 0. (4.69)

In this equation we have indicated with braces how the various terms, which are
written in their first line in Cartesian component form, can be expressed symbol-
ically, and we have listed the reference equation number where the connection
between symbolic and Cartesian notations has been introduced. Thus, the local form
of the balance law of mass can also be written in the form

dρ

dt
+ ρ div v = 0. (4.70)

We now have two different versions of the local balance law of mass, namely
(4.68) and (4.70), and both allow significant inferences. They hold for arbitrary
continuous bodies, be they compressible or not. Two different classes of processes
are defined as follows:
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Definition 4.6

• A process for which ∂ρ/∂t = 0 for a non-vanishing time interval is said to have
steady density during this time interval.

• A process for which dρ/dt = 0 for a non-vanishing time interval is called a
density-preserving process. �

As seen from (4.68) and (4.70) this definition implies the following inferences:

(1) For a steady process the specific mass flux or the specific momentum ρv is
divergence free or solenoidal

div (ρv) = 0. (4.71)

(2) For a density-preserving process the velocity field is solenoidal

div v = 0. (4.72)

This equation is often called the continuity equation.

There are a few subtleties which we wish to emphasise here, because sloppiness
in the use of terminology has led and is still leading to confusion in this regard.
The above definition speaks of processes. One may, alternatively, call a material
to be density preserving, which would mean that the density of a material particle
does not change with time. This then means that the density is only a function of
the material particles, ρ = ρ̂(X), and once the particle is identified, its density
remains constant as it is followed along its trajectory. Riding in imagination on this
particle, no change in density is felt. The density-preserving property of a material is
a constitutive assumption, and if it holds, the velocity field is necessarily solenoidal,
i.e. divergence free [see (4.72)]. Now, tracing back the calculation which led from
(4.60) to (4.68), it is seen that we have demonstrated that

∫

∂Vfix

ρ(v · n) dA =
∫

Vfix

div (ρv) dV . (4.73)

This identity holds for any differentiable vector-valued function f , not just ρv, and
then corresponds to the divergence theorem.

Theorem 4.1 Divergence theorem (GAUSS theorem, for a biographical sketch, see
Fig. 4.10) Let f be a differentiable vector-valued function. Then

∫

∂Vfix

f · n d A =
∫

Vfix

(div f ) dV (4.74)

where Vfix, ∂Vfix may also be replaced by V , ∂V . ⊗

This important theorem has been the basis of Chap. 2, Sect. 2.5 for the integral
theorems of vector analysis. Here considerations of mass balance and assumptions
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of differentiability of the integrand field have been sufficient to prove its validity.
We think this is an elegant method of its derivation.

For a density-preserving fluid, ρ may be cancelled in (4.73) so that

∫

∂Vfix

v · n dA =
∫

Vfix

div v dV
!= 0, (4.75)

which owing to (4.72) must vanish. However, this simply states that the flow of fluid
volume into and out of the volume Vfix through the boundary is zero, or the volume
does not change (Fig. 4.10).

Definition 4.7 A material of which the volume does not change no matter how
small or large the volume may be and how it may be deformed is called volume
preserving. �

It follows: A density-preserving process or a density-preserving material is at
the same time volume preserving. Another technical term for volume preserving is
isochoric, so volume-preserving motions are also called isochoric.

The reader who is familiar with these concepts may have realised that the use of
the term ‘incompressible’ was carefully avoided. The common literature employs
in general the term incompressible when density preserving or volume preserving
is meant. Here, we wish to reserve this term to a specialisation the explanation of
which requires a somewhat lengthier introduction.

It is well known that the density of water varies with temperature, pressure, min-
eral composition (salinity) and possibly suspended material. Specialists have taken
great care in measuring all these dependencies to great accuracy. So one may assume
that functions of the form

ρ = ρ̂(T, s, p, . . .) (4.76)

are known; here T , s, p are temperature, salinity and pressure and the dots indicate
other possible variables.

Definition 4.8 An equation of the form (4.76) is called the equation of state or
thermal equation of state. An equation of state of the form

ρ̂(T, s, p, . . .) = constant

defines a density-preserving material. �

With the introduction of the equation of state, the property of incompressibility, how
we use it, can now be defined.

Definition 4.9 A material is called incompressible if the thermal equation of state
does not depend on the pressure explicitly
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Fig. 4.10 Left: Augustin-Louis CAUCHY around 1840. Lithography of Zéphirin BELLIARD

after a painting by Jean ROLLER. Right: GAUSS’ portrait published in Astronomische
Nachrichten 1828 (from http://en.wikipedia.org/)

Baron Augustin-Louis CAUCHY (21 August 1789 – 23 May 1857) was a French mathemati-
cian who was an early pioneer of analysis. He started the project of formulating and proving
the theorems of infinitesimal calculus in a rigorous manner. He also gave several important
theorems in complex analysis and initiated the study of permutation groups in abstract algebra.
Among approximately 800 research articles and five complete textbooks, there are works on
symmetric functions, symmetry groups and the theory of higher order algebraic equations,
the proof of FERMAT’s polygonal number theorem and papers on celestial mechanics. He
invented the name for the determinant, systematised its study, gave definitions of limit, conti-
nuity and convergence and founded complex analysis by discovering the CAUCHY–RIEMANN

equations. He presented a mathematical treatment of optics, hypothesised that ether had the
mechanical properties of an elastic medium and published classical papers on wave propaga-
tion in liquids and isotropic and anisotropic elastic media. Between 1830 and 1839 CAUCHY

published three versions of treatises in elasticity. He was a man of strong convictions and a
devout Catholic.

Johann Carl Friedrich GAUSS (30 April 1777 – 23 February 1855) was a German mathe-
matician and scientist who contributed significantly to number theory, statistics, analysis,
differential geometry, geodesy, geophysics, electrostatics, astronomy and optics. Gauss was
a child prodigy and he made his first ground-breaking mathematical discoveries while still
a teenager. He completed Disquisitiones Arithmeticae, his magnum opus, in 1798 at the age
of 21. He discovered a construction of the heptadecagon and invented modular arithmetic,
greatly simplifying manipulations in number theory. GAUSS proved the fundamental theorem
of algebra which states that every non-constant single-variable polynomial over the complex
numbers has at least one root. In 1831 GAUSS developed a fruitful collaboration with the
physicist Wilhelm WEBER, leading to new knowledge in magnetism (including finding a rep-
resentation for the unit of magnetism in terms of mass, length and time) and the discovery of
KIRCHHOFF’s circuit laws in electricity. He developed a method of measuring the horizontal
intensity of the magnetic field which has been in use well into the second half of the 20th
century and worked out the mathematical theory for separating the inner and outer sources of
the Earth’s magnetic field.

The text is partly based on http://scienceworld.wolfram.com/ and http://en.wikipedia.org/
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∂ρ̂

∂p
(T, s, p, . . .) = 0 �⇒ ρ = ρ̂(T, s, . . .). (4.77)

�

This definition makes a density- or a volume-preserving material automatically
incompressible, but not vice versa:

density
preserving

⇐⇒ volume
preserving

�⇒
×⇐� incompressible

Natural water is a material that is in general neither incompressible nor density
preserving, but it is in most applications nearly incompressible and nearly density
preserving. (In oceanography and limnology ρ varies seldom by more than 2%.)
This is another reason why often confusion arises. In this context the definition of a
Boussinesq fluid is helpful.

Definition 4.10 A fluid is called a BOUSSINESQ fluid if the density is treated every-
where as a material constant except in the gravity force, where it is given by the
equation of state. �

According to this definition the balance of mass (4.70) for a BOUSSINESQ fluid
reduces to (4.72) so that the velocity field is requested to be solenoidal and the
motion necessarily isochoric. This is an approximation that kinematically corre-
sponds to density or volume preserving but accounts via the equation of state for
variations of the density in the gravity (buoyancy) force. Within this BOUSSINESQ

approximation the assumption of incompressibility can be incorporated by introduc-
ing an equation of state which does not depend on pressure, e.g. ρ = ρ(T ).

The BOUSSINESQ fluid is a very popular approximation and has therefore been
thoroughly studied, including its rigorous mathematical derivation by an asymptotic
analysis, see, e.g., [6]. It is applicable to all those situations for which acoustic wave
phenomena can be ignored. Indeed, it is straightforward to prove that a BOUSSI-
NESQ fluid does not permit longitudinal waves to be propagated, while the propaga-
tion of transverse waves is preserved.

Finally we mention that in most applications the pressure dependence of the
equation of state is ignored. For very deep freshwater lakes such as Lake Baikal,
this is not justified; so the BOUSSINESQ assumption cannot be maintained and the
mass balance must in this case take the form (4.70).

Problem 4.3 Consider a density-preserving or BOUSSINESQ fluid for which the
velocity field v(x, t) is solenoidal: div v = 0 . Assume that v = V 0 exp [i (k ·
x − ω t)] is a plane harmonic wave with wavenumber k and constant amplitude
V 0 . Show that such a harmonic wave propagates in the direction of k and prove
that V 0 is necessarily perpendicular to k : V 0 · k = 0 . Therefore the velocity field
has vanishing component in the direction of k – there are no longitudinal velocity
components. The velocity field is necessarily transverse. �
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Remark: Acoustic waves are longitudinal waves. Therefore, sound waves can not be
modelled with a BOUSSINESQ or a density-preserving fluid. Waves in a BOUSSI-
NESQ fluid are necessarily transverse waves.

4.3 Balances of Momentum and Moment of Momentum,
Concept of Stress, Hydrostatics

As seen in Chap. 3, the momentum equation applied to a body is a balance equation
in which the time rate of change of the momentum of a body equals the sum of the
forces acting on the body, see (3.3). If we think of the body to be made of an infinite
number of material volume elements, as already done for the mass balance equation,
then the momentum of the body may be written as the sum of all momenta of the
mass elements with volume dV

PV =
∫∫∫

V
ρ(x1, x2, x3)v(x1, x2, x3)dx1 dx2 dx3 =

∫

V
ρv dV . (4.78)

Similarly, the force KV acting on the body is the sum of all volume forces acting
on the elements with volume dV . These volume forces are in almost all applications
the gravity forces and written as

KV =
∫

V
ρg dV, (4.79)

in which g is the vector of the Earth’s acceleration (and in the coordinate system of
Fig. 2.3 given by g=̂(0, 0,−g), where g � 9.81 m s−2), see Fig. 4.11.

O

ê1

ê2

x
ê3

∂V

V

ρgdV

ntndA

Fig. 4.11 Material volume V with boundary ∂V showing a volume element with its volume force
ρg dV and a surface force (traction) tn dA on the surface element with exterior unit normal
vector n
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The other types of forces that act on a body are its surface forces K∂V . These
forces can be understood if we recall the principle that any part of a body is itself a
body. We cannot define a body in reality without isolating it in imagination from its
surroundings. Indeed, if we speak of a lake, we isolate it from its neighbourhood by
defining its free surface as part of the boundary with the atmosphere and the bottom
surface as part of the boundary with the solid earth. River inlets and outlets may be
other parts. The surface forces K∂V are the sum of all forces acting at the boundary
∂V ; at the free surface these are the atmospheric pressure and the wind stress, and
at the bottom the normal pressure and the shear stresses due to the water motion.14

If the surface force per unit area of a surface increment with unit normal vector n
exterior to the body is denoted by tn, then

K∂V =
∫

∂V
tn dA (4.80)

is the total surface force acting on the body.

Definition 4.11 By definition, tn is a force per unit area, and since forces are vec-
tors, tn is called stress vector at the surface element with unit normal vector n or
traction vector. �

The equation of motion (3.3) may now be written as follows:

dPV

dt
= K∂V +KV , (4.81)

or

d

dt

∫

V
ρv dV =

∫

∂V
tn dA +

∫

V
ρg dV . (4.82)

Before exploiting this relation any further it seems adequate to explore the bal-
ance law of moment of momentum in an analogous fashion. To this end, the body is
again divided into its cubic infinitesimal elements. Such an element has momentum
ρv dV as seen above and so its moment relative to the origin is dL0

V = x × ρv dV ,
implying that the moment of momentum of all the elements of the body with volume
V is given by

L0
V =

∫

V
x × ρvdV, (4.83)

i.e. the sum (= integral) of the moment of momentum of all elements.

14 The reader may feel somewhat uncomfortable, because he/she is here confronted with a concept
that is not yet explained: pressure and shear stress. This is true; however, it is supposed that a vague
understanding of these notions is present; it will in fact be one goal of this chapter to define these
concepts rigorously.
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The surface tractions per unit area with unit normal n have also a moment relative
to the origin, namely

dM0
∂V = x × tn dA (4.84)

so that after integration over the boundary ∂V of the body V we have as contribution
to the total moment

M0
∂V =

∫

∂V
x × tn dA. (4.85)

Similarly, the volume force ρg dV of the volume element gives rise to the incre-
mental moment

dM0
V = x × ρg dV, (4.86)

and after summation over the entire body

M0
V =

∫

V
x × ρgdV . (4.87)

The balance law of moment of momentum (3.4) expresses that the time rate of
change of the moment of momentum of a body with respect to an arbitrary fixed
point equals the sum of all moments of external forces exerted on the body with
respect to the same point; thus

dL0
V

dt
=M0

∂V +M0
V (4.88)

or according to (4.83), (4.85) and (4.87)

d

dt

∫

V
(x × ρv) dV =

∫

∂V
(x × tn) dA +

∫

V
(x × ρg) dV . (4.89)

The two important laws are now (4.82) and (4.89). In ensuing developments we will
proceed from these.

Equation (4.89) and therefore the treatment of moment of momentum require
additional remarks. We call the law (4.89) the balance law of moment of momentum
and not the law of angular momentum. This is justified because each term in (4.89)
is the moment of a corresponding momentum term. More generally, we could add
terms as follows:

d

dt

∫

V
(x× ρv+ ρs) dV =

∫

∂V
(x× tn +mn) dA+

∫

V
(x× ρg+ ρ�) dV . (4.90)
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Here, s is the spin density, mn the couple stress traction and � the body couple
density. Statement (4.90) is the balance law of angular momentum of which the
elements consist of moment of momentum plus spin contributions. Theories with
the complexity (4.89) are sometimes referred to as BOLTZMANN continua and those
based on (4.90) as COSSERAT or spin continua. Here, we shall only be concerned
with (4.89).

4.3.1 Stress Tensor

Our intention will be eventually to write the balance laws of momentum (4.82) and
moment of momentum (4.89) for an infinitesimal cubic element to obtain the local
counterparts of these globally formulated laws. To this end, it is first necessary to
introduce the concept of the stress tensor. In the above, the stress vector tn was
introduced. It was said to form a vector on surface elements with unit normal vector
n, see Fig. 4.12a, and it was introduced on the boundary ∂V of a body V . Because
(according to our basic assumption) any part of a body is again a body, we may
apply the concept of a stress vector to the six surface elements of an infinitesimal
cube; Fig. 4.12b is showing one surface element. Now, since at any point x the value
of tn will depend on the orientation of the surface element to which it applies, tn
will, in general, be a function of x and n, tn = f (x, n). This is why an index n
was used in the denotation of the stress vector. It shall be shown below that this
dependence is linear, namely

tn = T n. (4.91)

(b)(a)

P
n

tn

x

σ

n

τ τ 23

τ 13

tn

2

1

3

Fig. 4.12 (a) The stress vector tn at a point in a body depends on the direction of the surface n.
(b) The projection of the stress vector on the surface normal direction is called normal stress and
denoted by σ ; the projection onto the surface element is called shear stress τ and it may be divided
into two components within the plane
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T is called the CAUCHY stress tensor and the law (4.91) is called CAUCHY’s lemma.
If tn=̂(tn1, tn2 , tn3) and n=̂(n1, n2, n3), then

T=̂
⎛

⎝

σ1 τ12 τ13
τ21 σ2 τ23
τ31 τ32 σ3

⎞

⎠ . (4.92)

So, referred to a Cartesian basis, T is equivalent to an array, called the matrix of
the stress tensor, and the multiplication T n in Cartesian component form has to be
understood as a matrix–vector multiplication as follows:

⎛

⎝

n1
n2
n3

⎞

⎠

⎛

⎝

tn1

tn2

tn3

⎞

⎠ =
⎛

⎝

σ1 τ12 τ13
τ21 σ2 τ23
τ31 τ32 σ3

⎞

⎠

⎛

⎝

σ1n1 + τ12n2 + τ13n3
τ21n1 + σ2n2 + τ23n3
τ31n1 + τ32n2 + σ3n3

⎞

⎠ .

(4.93)
� �

� �

Here tn and n are column vectors, i.e. the Cartesian components are arranged verti-
cally as columns. The resulting three elements of the column vector tn are obtained
as the sum of the products of the elements as indicated by the arrows.

It is also worth noting that the diagonal and off-diagonal elements of the
matrix of T are differently denoted by the letters σ : σ1, σ2, σ3 and τ : τ12, τ13, τ21,

τ23, τ31, τ32. This is so because these components belong to two different classes as
follows:

Definition 4.12 The diagonal elements of the matrix of the stress tensor are called
normal stress components and designated by the letter σ (with components σi ),
while the off-diagonal elements are called shear stress components and designated
by the letter τ (with components τi j ). �

The interpretation is given in Figs. 4.12 and 4.13. The stress vector on the top ele-
ment of the cube in Fig. 4.12b is projected onto the normal direction and onto the
plane of the surface elements. It may have any arbitrary orientation in the plane it
applies to. If a local coordinate system 1, 2, 3 is introduced as indicated in Fig. 4.12,
then τ has non-vanishing components in the x1- and x2-directions and these com-
ponents are τ13 and τ23, the second index indicating the surface normal direction.

For an infinitesimal cube cut out of a body, each of the six surface elements is
subjected to a stress vector with components as indicated on the three front elements
of Fig. 4.13. The corresponding components of the stress vector on the opposite
sides of the cube, which are not shown in the figure, are (to zeroth order in the side
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(1)

(2)

(3)

σ1

σ2

τ 31

τ 21

τ 12

τ 13
τ 32

τ 23

σ3

Fig. 4.13 Infinitesimal cube cut out of a body with faces perpendicular to the coordinate axes 1, 2,
3, respectively. Shown are the positively defined normal stress components σ1, σ2, σ3 and the shear
stress components τ23, τ31, . . . . The stress components not shown on the back faces are equal in
magnitude and opposite in direction

length of the cube)15 equal and opposite in direction to those on the front faces.
Thus the state of stress of the point P at the centre of the cube is given by the nine
components shown in (4.92). In writing these components down, conventions are
customary as follows:

Definition 4.13 The normal stresses σ1, σ2, σ3 carry the index of the direction into
which they point, and they are positive when they represent tension and negative for
pressure. The shear stress components are indexed as follows: The first index refers
to the direction into which the stress component points, and the second index gives
the normal direction of the surface. These shear stress components are counted
positive if both the shear stress component and the surface normal point into a
positive or a negative direction of the Cartesian basis. If one of the two is positive
and the other negative, then the corresponding shear stress component is counted
negative. �

The above computational rules tell us how the CAUCHY stress tensor looks like
when written in Cartesian component form, but the proof of (4.91) and (4.93) must
still be given. To this end, let us apply the balance law (4.82) to an infinitesimal tetra-
hedron with three planes parallel to the coordinate planes and one plane arbitrarily
inclined as shown in Fig. 4.14. If a typical side length of this tetrahedron isΔh, then
for continuous integrands the volume integrals in (4.82) are of order Δh3, while

15 What is meant here is that the value of the stress vector at the opposite cubic face is different in
value by an amount that is proportional to the size of the side length (TAYLOR expansion!).
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τ 21τ 12

σ1

σ2 τ 23

τ 32

σ3

τ 13

τ 31

(1)

P

(2)

Q

(3)

R

O = P

n tn

tn3

tn2

tn1

Δh

dA2
dA1

dA3

Fig. 4.14 Infinitesimal tetrahedron with three faces perpendicular to the coordinate lines 1, 2 and
3 and typical side length Δh. The stress components on the surface elements dA1, dA2 and dA3
are indicated as are those on the inclined element dA with surface normal n

the surface integrals are of order Δh2. Letting the size of the tetrahedron shrink to
zero such that its shape is preserved (which means Δh → 0), it is obvious that the
volume integral tends faster to zero than the surface integrals. Consequently, in this
limit it is sufficient to request that

lim
Δh→0

∫

∂tetrahedron
tn dA = 0, (4.94)

applied to the tetrahedron. Because the element is infinitesimal, the integral sign
may be omitted, and (4.94) becomes

3
∑

i=1

tni dAi + tn dA = 0, (4.95)

where tni are the stress vectors on the three coordinate surfaces with surface normals
pointing in the i th coordinate direction. The respective components are indicated in
Fig. 4.14. Analogously, dAi is that infinitesimal triangular surface of the tetrahe-
dron which is perpendicular to the i th coordinate direction. Writing down (4.95) in
component form, i.e. summing all forces in the 1-direction and equating the result
to zero yields
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tn1 dA − σ1 dA1 − τ12 dA2 − τ13 dA3 = 0. (4.96)

The area of the surface element dAi is the projection of the area of element dA
onto the plane perpendicular to the i th direction; it is easily seen that this equals
dAi = ni dA, where n=̂(n1, n2, n3). Substituting this into (4.96), the following
result is obtained:

tn1 = σ1n1 + τ12n2 + τ13n3,

tn2 = τ21n1 + σ2n2 + τ23n3, (4.97)

tn3 = τ31n1 + τ32n2 + σ3n3,

in which the second and third expressions have been obtained by writing the equa-
tions analogously to (4.96) in the x2- and x3-directions. This establishes the lin-
ear relation anticipated in (4.91). The result (4.97) is known in the literature as
CAUCHY’s lemma, as mentioned before.

The tetrahedral infinitesimal body sketched in Fig. 4.14 can also be used with
slight modification to demonstrate that CAUCHY’s lemma also generates NEWTON’s
third law, see Fig. 3.1. Indeed, if we move in imagination point P in this figure
along the 1-axis towards point O(= P ′), the tetrahedron degenerates to two parallel
triangles O Q R and P ′Q R. In this limit, (4.97) degenerates to

tn1 = σ1, tn2 = τ21, tn3 = τ31.

This states that the stress vector (tn1, tn2 , tn3) acting on P ′Q R equals the stress
vector (σ1, τ21, τ31) on OQR, which is exactly NEWTON’s third law.

Whereas this lemma is a consequence of the balance of momentum applied to
an infinitesimal tetrahedron, we now show that application of the balance law of
moment of momentum to an infinitesimal cube shows that of the nine stress compo-
nents of the CAUCHY stress tensor, only six are independent. To this end, application
of (4.89) to an infinitesimal cube with typical side length Δh shows that for con-
tinuous integrands the volume integrals are of higher order small than the surface
integrals so that angular momentum is satisfied in the limit as Δh → 0 if

lim
Δh→0

∫

∂cube
x × tn dA = 0. (4.98)

This equation says that the sum of the moments of all stress vectors acting on the
surface of the infinitesimal cube must vanish. If we choose as origin of the coordi-
nate system the centre of the cube, then summing all moments with respect to the
x3-axis yields (see Fig. 4.15a)

(τ21 dx2 dx3)dx1 − (τ12 dx1 dx3)dx2 = 0 �⇒ τ21 = τ12 (4.99)

and after cyclically extending this result for the other space directions

τ12 = τ21, τ23 = τ32, τ31 = τ13. (4.100)
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.

°
dx1 τ 12 τ 12

P

τ 21

τ 21

dx2

or

ττ

ττ

(b)(a)

Fig. 4.15 (a) Projection onto the x1x2-plane of an infinitesimal cubic element with those stress
components indicated which cause a moment about the axis through P perpendicular to the draw-
ing plane; (b) two material elements perpendicular to one another with shear stresses shown which
are equal

Fig. 4.16 Infinitesimal cubic element with the x1 components of the terms ρv(v · n)dA shown on
each surface element of the cube

Thus, the matrix (4.92) of the CAUCHY stress tensor is symmetric and possesses
only six independent components. This result is valid for any orientation of the
Cartesian basis. It follows that the shear stresses acting on material surface elements
which are perpendicular to one another are equal in magnitude and either directed
towards or away from the edge of the elements (see Fig. 4.15b).

4.3.2 Local Balance Law of Momentum or Newton’s Second Law

After this somewhat lengthy presentation of the properties of the stress tensor, let us
now apply the balance law of momentum, (4.82), for an infinitesimal cubic element
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with side lengths dx1, dx2, dx3. If the REYNOLDS transport theorem (4.63) is used,
then (4.82) takes the form

∫

cube

∂(ρv)

∂t
dV +

∫

∂cube
ρv(v · n)dA

=
∫

∂cube
T n dA +

∫

cube
ρg dV, (4.101)

where (4.91) has also been substituted. For the infinitesimal cubic element the vol-
ume integral does not have to be performed and the surface integral reduces to a
summation over the six cubic faces; therefore, (4.101) becomes

∂(ρv)

∂t
dV

︸ ︷︷ ︸

(1)

+
6
∑

α=1

ρv(v · n)dAα

︸ ︷︷ ︸

(2)

=
6
∑

α=1

T ndAα

︸ ︷︷ ︸

(3)

+ ρgdV
︸ ︷︷ ︸

(4)

. (4.102)

We shall exploit this equation in component form but shall explicitly demonstrate
the calculation only for the x1-direction (Fig. 4.17). The volume terms then become

(1) = ∂(ρv1)

∂t
dx1 dx2 dx3,

(4.103)
(4) = ρg1 dx1 dx2 dx3 (= 0 if the x1-direction is horizontal).

dx1

dx2

dx3

(1)

(2)

(3)

σ3dx1dx2

τ23dx1dx2

τ13dx1dx2

τ32dx1dx3

σ2dx1dx3

τ12dx1dx3

τ31dx2dx3

τ21dx2dx3

σ1dx2dx3

σ1 +
∂σ1

∂x1
dx1 dx2dx3

τ21 +
∂τ21

∂x1
dx1 dx2dx3

τ31 +
∂τ31

∂x1
dx1 dx2dx3

τ12 +
∂τ12

∂x2
dx2 dx1dx3

σ2 +
∂σ2

∂x2
dx2 dx1dx3

τ32 +
∂τ32

∂x2
dx2 dx1dx3

τ13 +
∂τ13

∂x3
dx3 dx1dx2

τ23 +
∂τ23

∂x3
dx3 dx1dx2

σ3 +
∂σ3

∂x3
dx3 dx1dx2

.

Fig. 4.17 Surface stress components at the six faces of the infinitesimal cubic element
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More elaborate is the evaluation of the other two terms. As for the second one on
the left-hand side of (4.102), contributions come from all six faces as indicated in
Fig. 4.16. The contribution from the two faces perpendicular to the x1-direction is

(2)1 = −(ρv1)v1 dx2 dx3 +
[

ρv1 + ∂(ρv1)

∂x1
dx1

] [

v1 + ∂v1

∂x1
dx1

]

dx2 dx3

�
[
∂(ρv1)

∂x1
v1 + ρv1

∂v1

∂x1

]

dx1 dx2 dx3 = ∂(ρv1v1)

∂x1
dx1 dx2 dx3.

Those from the faces perpendicular to the x2- and x3-directions are easily seen to be

(2)2 � ∂(ρv1v2)

∂x2
dx1 dx2 dx3, (2)3 � ∂(ρv1v3)

∂x3
dx1 dx2 dx3.

Here the sign � indicates that terms which are small of the fourth order in dxi have
been ignored. Thus

(2) =
[
∂

∂x1
(ρv1v1)+ ∂

∂x2
(ρv1v2)+ ∂

∂x3
(ρv1v3)

]

dx1 dx2 dx3. (4.104)

Finally, we must calculate the surface stress contribution (3). This is easily done
by summing all contributions with stress components in the x1-direction yielding
(see Fig. 4.17)

(3)1 =
(

σ1 + ∂σ1

∂x1
dx1

)

dx2 dx3 − σ1 dx2 dx3

+
(

τ12 + ∂τ12

∂x2
dx2

)

dx1 dx3 − τ12 dx1 dx3

+
(

τ13 + ∂τ13

∂x3
dx3

)

dx1 dx2 − τ13 dx1 dx2

=
(
∂σ1

∂x1
+ ∂τ12

∂x2
+ ∂τ13

∂x3

)

dx1 dx2 dx3 (4.105)

with analogous expressions for (3)2 and (3)3.
Substituting the results (4.103), (4.104) and (4.105) into (4.102) leads to the follow-
ing component form of the momentum equations
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∂(ρv1)

∂t
+ ∂

∂x1
(ρv1v1)+ ∂

∂x2
(ρv1v2)+ ∂

∂x3
(ρv1v3)

= ∂σ1

∂x1
+ ∂τ12

∂x2
+ ∂τ13

∂x3
+ ρg1,

∂(ρv2)

∂t
+ ∂

∂x1
(ρv2v1)+ ∂

∂x2
(ρv2v2)+ ∂

∂x3
(ρv2v3)

= ∂τ21

∂x1
+ ∂σ2

∂x2
+ ∂τ23

∂x3
+ ρg2, (4.106)

∂(ρv3)

∂t
+ ∂

∂x1
(ρv3v1)+ ∂

∂x2
(ρv3v2)+ ∂

∂x3
(ρv3v3)

= ∂τ31

∂x1
+ ∂τ32

∂x2
+ ∂σ3

∂x3
+ ρg3,

where the second and third equations are obtained by performing the analogous
computations in the x2- and x3-directions. In these equations the symmetry of the
CAUCHY stress tensor has not been made visible but can be easily accounted for by
setting τ j i = τi j (i, j = 1, 2, 3). Moreover, the basis of the Cartesian coordinate
system is usually so selected that the first two axes are horizontal and the third is
vertical. For such a case, one then has g=̂(0, 0,−g).

Definition 4.14 Equations (4.106) are often called the equations of motion, and
mathematicians call them to be in conservative form, because they are obtained
from the conservation law of momentum without performing any simplification and
have divergence form. �

An alternative form of the equations of motion is obtained if on the left-hand sides
of (4.106) the product differentiations are executed. Indeed, one has

LHS(4.106)1 = v1

(
∂ρ

∂t
+ ∂

∂x1
(ρv1)+ ∂

∂x2
(ρv2)+ ∂

∂x3
(ρv3)

)

︸ ︷︷ ︸

=0, see mass balance (4.67)

+ ρ
(
∂v1

∂t
+ ∂v1

∂x1
v1 + ∂v1

∂x2
v2 + ∂v1

∂x3
v3

)

︸ ︷︷ ︸

dv1/dt, see (4.6)

= ρ
dv1

dt
,

and, similarly, one can show that

LHS(4.106)2 = ρ
dv2

dt
, LHS(4.106)3 = ρ

dv3

dt
.
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Therefore, the equations of motion can alternatively be written as

ρ
dv1

dt
= ∂σ1

∂x1
+ ∂τ12

∂x2
+ ∂τ13

∂x3
+ ρg1,

ρ
dv2

dt
= ∂τ21

∂x1
+ ∂σ2

∂x2
+ ∂τ23

∂x3
+ ρg2, (4.107)

ρ
dv3

dt
= ∂τ31

∂x1
+ ∂τ32

∂x2
+ ∂σ3

∂x3
+ ρg3.

These equations are the component forms of the equations of motion that can also
be written in symbolic vector form. Obviously

ρ

(
dv1

dt
,

dv2

dt
,

dv3

dt

)

=̂ ρ dv

dt
, ρ(g1, g2, g3)=̂ρg, (4.108)

and the remaining terms in (4.107) involving the Cartesian components of the
CAUCHY stress tensor are defined to correspond to the divergence of the stress
tensor

div T =̂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂T11

∂x1
+ ∂T12

∂x2
+ ∂T13

∂x3
∂T21

∂x1
+ ∂T22

∂x2
+ ∂T23

∂x3
∂T31

∂x1
+ ∂T32

∂x2
+ ∂T33

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂σ1

∂x1
+ ∂τ12

∂x2
+ ∂τ13

∂x3
∂τ21

∂x1
+ ∂σ2

∂x2
+ ∂τ23

∂x3
∂τ31

∂x1
+ ∂τ32

∂x2
+ ∂σ3

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.109)

With this result (which can also rigorously be justified), (4.107) corresponds to

ρ
dv

dt
= div T + ρg, (4.110)

in which dv/dt is the acceleration referred to an inertial system, i.e. the absolute
acceleration. Similarly, by defining the dyadic product

ρv ⊗ v =̂ ρ

⎛

⎜
⎜
⎜
⎝

v1v1 v1v2 v1v3

v2v1 v2v2 v2v3

v3v1 v3v2 v3v3

⎞

⎟
⎟
⎟
⎠

the conservative form of the momentum equation (4.106) is given by

∂ρv

∂t
+ div (ρv ⊗ v) = div T + ρg, (4.111)
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from which (4.110) could be recovered by using product differentiation on the left-
hand side of (4.111) and accounting for mass balance (4.70). With this equation, the
derivation of the local form of the balance law of linear momentum is complete.

In summary, three different representations have been presented: (i) Equa-
tions (4.106), which are the three Cartesian components of the local balance of
momentum as conservation laws, (ii) the analogous equations in which balance
of momentum appears in the form ‘mass times acceleration equals the sum of
the forces’, (4.107), and (iii) the corresponding symbolic representations, (4.110),
(4.111).

In closing this presentation of the momentum equation, we mention that an analo-
gous analysis could also be performed for the balance law of moment of momentum.
We shall not perform these computations here, because, firstly, the result is simply
the statement that the CAUCHY stress tensor is symmetric, which has already been
proved, and secondly, because the computations performed with the mathematical
prerequisites used here would be unwieldy. So, the statement T = T T, in which the
superscript ( )T denotes the transpose of T , guarantees identical satisfaction of the
law of moment of momentum.

4.3.3 Material Behaviour

So far, none of the mechanical principles allowed us to qualify the body, to which
these principles were applied, as a solid or a fluid body. We now wish to make this
distinction and characterise a body as a fluid if it gives way to any non-vanishing
shearing deformation. Consider for instance the following idealised flow: A material
placed between two parallel plates and subject to plane motion is set in motion by
holding the bottom plate at rest while moving the upper plate with constant veloc-
ity U parallel to the plate, see Fig. 4.18a. If the material held between the plates

Fig. 4.18 (a) Steady shear flow between two parallel plates with an established linear velocity
profile. (b) The functional relation τ = τ(γ̇ ) is graphically represented; τ grows faster or slower
than linearly with γ̇ or is linear in γ̇ , denoted as dilatant, pseudoplastic and NEWTONian behaviour,
respectively
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offers some resistance to this motion, a velocity profile will be established which, in
steady motion, is seen to be linearly distributed across the gap, v1 = v1(x2) = γ̇ x2.
Of course, the motion of the upper plate relative to the lower plate can only be
maintained if identical and opposite forces parallel to the plates are applied. This
force per unit area is the shear traction τ , and experiments often show for steady
state that

γ̇ = τ

η(|τ |) , (4.112)

in which η is a phenomenological coefficient, called dynamic shear viscosity, which
may be a constant or a function of the absolute value of the shear traction τ . Graphi-
cal representations of relation (4.112) (written inversely as τ = τ(γ̇ )) are displayed
in Fig. 4.18b. Functions with negative second-order derivative are called pseudo-
plastic – oil and polymeric fluids behave like this. Curves with positive second-
order derivative characterise so-called dilatant fluids – honey and suspensions often
behave like this. Finally, so-called NEWTONian fluids are characterised by a linear
relationship between τ and γ̇ ; water and air are such fluids. They are denoted after
NEWTON, because NEWTON in his ‘Principia’16 [10] established such a relationship
when he studied falling bodies in water or in air.

We shall restrict attention in the subsequent chapters exclusively to NEWTONian
behaviour, because the media of concern here are water and – exceptionally – air.
For these, the numerical values of the molecular dynamic shear viscosities17 are
given by

ηwater = 1.0× 10−3 (kg m−1 s−1), ηair = 1.813× 10−5 (kg m−1 s−1). (4.113)

In actual applications, it is not the dynamic viscosity that is used or referred to
but rather the (molecular) kinematic viscosity defined by

ν = η

ρ
(m2 s−1), (4.114)

and for water16 and air it takes the values

νwater = 1.0× 10−6 m2 s−1, νair = 1.48× 10−5 m2 s−1. (4.115)

Physically, both kinematic and dynamic viscosities characterise the process of
momentum exchange between material particles moving relative to one another
with different speed. As long as this process is driven by molecular interactions, we
observe a decrease of viscosity with increasing temperature because the interaction

16 In the first and second editions this topic is not treated; NEWTON included the linear case in the
third edition (1726).
17 A more detailed description of the properties of water is given in Chap. 10.
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between molecules becomes weaker when the molecules move faster. This depen-
dence on temperature is rather strong. For instance, the viscosity of water drops by
a factor of 2 if the temperature increases from 0 to 25◦C. Likewise honey flows
much more easily when being heated in a hot water bath. On the other hand, the
dependence of the viscosities upon pressure is much weaker: As water is practically
incompressible, a very high pressure needs to be applied if one wishes to change
the distance between the molecules even only by a small amount. Under a pressure
change of 100 atm (approximately 100 bars = 107Pa) the viscosity of water changes
only by approximately 0.6%.

Molecular interactions are significant for the momentum exchange only for
small–scale, laminar flows. In geophysics, turbulent mixing is the driving mech-
anism for momentum exchange. In these processes the turbulent shear stress can
be related to the mean shearing in the same formal way as for the laminar, small–
scale processes, however with the molecular kinematic/dynamic viscosity replaced
by the turbulent counterpart.18 Numerical values for the turbulent viscosities are
much larger than those for the molecular counterparts, but their physical meaning
is just the same; they describe the momentum exchange between the fluid particles,
which are now not of molecular scale but of the scale of the flow structures, that
are dictated both by the geometry of the domain in which the flow takes place and
the resolution of the mean motion that one wishes to achieve. This sets in evidence
that neither temperature nor pressure plays any significant role in the numerical
determination of the viscosity in geophysical problems but rather the flow scales
that are to be resolved. This fact points at one of the most difficult problems that lies
at the basis of the physical description of flow properties in geophysical applications
in meteorology, oceanography and limnology.

The simple shear experiment discussed above does not yet yield a materially
constrained equation for the CAUCHY stress tensor, but only for a single component
of it restricted to a very special state of flow. In order to completely describe the
motion of a body, i.e. to obtain from the balance law of momentum a field equa-
tion that involves only the field variables ‘density’, ‘velocity’ and ‘temperature’,
the CAUCHY stress tensor must be expressed in terms of such variables. To find
such a representation, let us recall the statement that a fluid body gives way to any
shearing motion, however small. Without loss of generality we may thus additively
decompose the stress tensor T into a contribution that does not suffer any shear
stresses, T eq, and the remainder, which must possess the property that it is zero
when the body is at rest, T dyn, so that

T = T eq + T dyn. (4.116)

The two contributions are called equilibrium and dynamical or non-equilibrium
stress, respectively. The matrix of T eq can only possess diagonal elements, see

18 This relation has first been shown by PRANDTL (1925) [11]. Expositions of it are now contained
in almost every book on (environmental and geophysical) fluid mechanics.
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(4.92), and repeating the argument for an infinitesimal tetrahedron leading to (4.93)
yields for the resultant forces on the triangular surface elements parallel to the coor-
dinate axes

tn1 = σ1n1, tn2 = σ2n2, tn3 = σ3n3. (4.117)

However, the traction on the inclined face must equally be in the direction of the
unit normal n (or opposite to it). Thus, necessarily

tn1 = −pn1, tn2 = −pn2, tn3 = −pn3. (4.118)

The scalar p is a quantity called pressure or hydrodynamic pressure. Thermody-
namics shows that for a density-preserving fluid p is an independent field variable
determined by the field equations, while in a compressible fluid p is a function of
density and temperature, p = p̂(ρ, T ). If this dependence is being emphasised, p is
also referred to as thermodynamic pressure, and the equation p = p̂(ρ, T ) is called
the (thermal) equation of state.

Equilibrating (4.117) and (4.118) thus leads to

σ1 = σ2 = σ3 = −p, (4.119)

and the matrix of the stress tensor T eq takes the form T eq = −p1 or

T eq =̂
⎛

⎝

−p 0 0
0 −p 0
0 0 −p

⎞

⎠ = −p

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ . (4.120)

There remains the dynamical stress contribution T dyn. It should vanish for a state
of rest (or more generally an uniform velocity field) and in the linear case be propor-
tional to the spatial derivatives of the velocity field. Because T dyn is symmetric the
gradient of the velocity field grad v cannot form the appropriate deformation rate,
because grad v is not symmetric [see (4.9)]. However, the combination

D := 1
2

(

grad v + (grad v)T
)

, (4.121)

in which (grad v)T is the transpose of grad v, is symmetric. D is the strain rate or
stretching tensor and, referred to a Cartesian basis, has the component form (4.15).
It is customary to split D into two parts, the first proportional to the unit tensor and
the mean value of the sum of the diagonal elements of D, D(1) = 1

3 (div v)1 and
the second, D(2), the remainder, D(2) = D − D(1), called strain rate deviator or
stretching deviator. It then follows that

T dyn = ζ(div v)1+ 2η
(

D − 1
3 (div v)1

)

, (4.122)
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is a possible linear relation between T dyn and D; ζ and η are two phenomenological
coefficients, the dynamic bulk and shear viscosities. It is evident that for a density-
preserving fluid (for which the velocity field is solenoidal) and for a BOUSSINESQ

fluid (for which it is approximately solenoidal), (4.122) reduces to

T dyn = 2ηD, (div v = 0). (4.123)

On the other hand, it is very difficult to determine for any fluid or gas the bulk
viscosity ζ , one obvious reason being that it is small. This is motivation to request
that ζ = 0 so that (4.122) reduces in this case to

T dyn = 2η
(

D − 1
3 (div v)1

)

. (4.124)

We shall use these viscous stress relations only in the form (4.123) and then are led
to the following component relation

⎛

⎝

σ1 τ12 τ13
τ21 σ2 τ23
τ31 τ32 σ3

⎞

⎠

dyn

= 2η

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂v1

∂x1

1

2

(
∂v1

∂x2
+ ∂v2

∂x1

)
1

2

(
∂v1

∂x3
+ ∂v3

∂x1

)

∂v2

∂x2

1

2

(
∂v2

∂x3
+ ∂v3

∂x2

)

sym
∂v3

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(4.125)
In this form we tacitly assume that div v = 0.

Problem 4.4 The phenomenological parameters ζ and η are called bulk and shear
viscosities. Show that in a pure dilatant or contractant motion, in which the stretch-
ing D is proportional to the unit tensor 1, ζ may indeed be interpreted as a viscosity
of volume strain rate. Analogously, show that for simple shearing (4.124) reduces
to the simple law τ = ηγ̇ of the simple shear experiment introduced earlier, see
Fig. 4.18. �

We close this subsection by specialising the equations of balance of momentum
for two obvious special cases: (i) an ideal fluid and (ii) a Newtonian Boussinesq
fluid. These are defined as follows:

Definition 4.15

• An ideal fluid is defined as an inviscid fluid; it cannot support any shear stresses.
It may be compressible or volume–density preserving.

• A Newtonian Boussinesq fluid is defined by the constitutive relation for stress
of the form

T = −p(ρ, T )1+ 2ηD; (4.126)

p is the thermodynamic pressure and η the dynamic viscosity. �



128 4 Fundamental Equations of Lake Hydrodynamics

The momentum equation for an ideal fluid is given by the equation

ρ
dv

dt
= −grad p + ρg, (4.127)

or in component form

ρ
dv1

dt
= − ∂p

∂x1
+ ρg1,

ρ
dv2

dt
= − ∂p

∂x2
+ ρg2, (4.128)

ρ
dv3

dt
= − ∂p

∂x3
+ ρg3.

This is so, because div T = −grad p, as can easily be seen from (4.107) and (4.119).
Equations (4.127) and (4.128) are also called the EULER equations, because it was
Leonhard EULER who derived them for the first time.

The momentum equations for a NEWTONian BOUSSINESQ fluid are obtained by
substituting (4.126) into (4.110). This yields

ρ
dv

dt
= −grad p + div (2ηD)+ ρg, (4.129)

or for constant shear viscosity η, since div v = 0,

ρ
dv

dt
= −grad p + ηΔv + ρg, (4.130)

in which Δ is the so-called LAPLACE operator; in component form

ρ
dv1

dt
= − ∂p

∂x1
+ η

(
∂2v1

∂x1
2
+ ∂2v1

∂x2
2
+ ∂2v1

∂x3
2

)

+ ρg1,

ρ
dv2

dt
= − ∂p

∂x2
+ η

(
∂2v2

∂x1
2
+ ∂2v2

∂x2
2
+ ∂2v2

∂x3
2

)

+ ρg2, (4.131)

ρ
dv3

dt
= − ∂p

∂x3
+ η

(
∂2v3

∂x1
2
+ ∂2v3

∂x2
2
+ ∂2v3

∂x3
2

)

+ ρg3.

4.3.4 Hydrostatics

Because a fluid gives way to any shearing load, it can, when it is at rest, only sup-
port internal pressure but no shear stresses. It follows from (4.130) or (4.127) that
in equilibrium for which the acceleration vanishes, the balance law of momentum
reduces to a balance of forces. In a moving coordinate system the acceleration is
given by [see (4.49)]
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aabs = dv

dt
+ a0 + ω × (ω × x)+ 2ω × v + ω̇ × x. (4.132)

Here, dv/dt is the acceleration measured by an observer in the moving coordinate
system, a0 is the translational acceleration of the origin of the moving coordinate
system, ω is its angular velocity relative to the inertial system which we think to be
at rest and ω̇ is its time rate of change. If the fluid is at rest in the moving system,
then v = 0, dv/dt = 0 and the equation of motion reduces to

ρ (a0 + ω × (ω × x)+ ω̇ × x) = −grad p + ρg. (4.133)

This is the hydrostatic equation, but in this generality it is usually not written down;
it does neither possess meaningful solutions in this generality; for most applications
ω̇ = 0 and often a0 = 0 or ω × (ω × x) = 0 or both. We shall always restrict
considerations to the case ω̇ = 0. This is so because the moving coordinate system
in our case will be a system fixed on the globe and the angular velocity of the Earth
is treated as a constant. Writing (4.133) for ω̇ = 0 as

grad p = ρg − ρ (a0 + ω × (ω × x)) , (4.134)

it is immediately seen that this equation can be fulfilled only if its right-hand side can
be expressed as the gradient of a scalar quantity. Otherwise a hydrostatic equilibrium
cannot exist.

We will now assume that

ρg − ρ (a0 + ω × (ω × x)) = −grad Ψ, (4.135)

i.e. that such an equilibrium exists. Ψ is called the ‘force’ potential19 and the nega-
tive gradient of it delivers the force. With (4.135) we find from (4.134)

grad (p + Ψ ) = 0. (4.136)

This equation states that the sum p+Ψ must have everywhere in the fluid the same
value c so that the hydrostatic equation takes the integrated form

p + Ψ = c. (4.137)

Definition 4.16

• Surfaces of constant pressure are called isobars or isobaric surfaces.
• Surfaces of constant potential Ψ are called equipotential surfaces. �

19 For a frame of reference that is fixed with the rotating Globe, the gravity force possesses a
potential, and so does the centrifugal force, see Problem 4.2 and Fig. 4.6. Moreover it is usually
assumed that the motion of the Earth around the Sun is practically inertial for which a0 = 0.
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It follows from (4.137) that the isobaric surfaces are identical to the equipotential
surfaces. Let us illustrate the use of the hydrostatic equation by a few examples.

Example 4.1 Consider a density-preserving fluid confined to a container on a truck
moving with constant acceleration a0 along a horizontal street. Ignore the effects of
the rotation of the Earth. Then in a Cartesian coordinate system in which the basis
vectors ê1, ê2 are horizontal, while ê3 is vertically upwards, (4.134) becomes

grad p = −ρgê3 − ρa0 ê1,

from which it follows that

p = −ρgx3 − ρa0x1 + p0, (4.138)

where p0 is a reference pressure. Isobars are given by

x3 = −a0

g
x1 + p0 − p1

ρg
(4.139)

with constant p1. This shows that isobars are planes which are inclined relative to
the horizontal by an angle |α| = arctan a0/g. These planes are also the equipoten-
tial surfaces for the potential

Ψ = −ρgx3 − ρa0x1 + const. (4.140)

For a container at rest (a0 = 0), isobaric and equipotential surfaces are horizontal,
since

p = −ρgx3 + p0. (4.141)
•

This formula explains why the water in communicating vessels reaches the same
level in the two vessels (Fig. 4.19). The free surface experiences the same outside
atmospheric pressure, and since the density of the fluid is constant, the gravity poten-
tials in the left and right vessels at the same height have the same value.

p0 p0

ρhRhL

V

Fig. 4.19 Communicating vessels. If the density of the fluid of the two vessels is the same, the free
surface levels hL and hR are also the same
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Formula (4.141) also resolves the apparent PASCAL paradoxon according to
which the force due to the pressure exerted on the bottom plate of two vessels filled
with a fluid of constant density at equal levels is the same if the areas of the plates are
the same irrespective of whether the total mass of the fluid confined in the vessels is
the same or not (Fig. 4.20).

If the fluid or the gas at rest is not of constant density, then in an inertial frame
the hydrostatic equation yields in the three coordinate directions

∂p

∂x1
= 0,

∂p

∂x2
= 0,

∂p

∂x3
= −ρ(x3)g. (4.142)

The first two equations imply that the pressure can only depend on the coordinate
x3 so that necessarily ρ = ρ(x3). Thus, according to (4.142)3,

p = −g
∫ x3

x0
3

ρ(z)dz + p0. (4.143)

In limnology and oceanography x0
3 is usually identified with the lake surface at rest,

then p0 may be identified with the atmospheric pressure. It is also common to write

ρ = ρ∗(1+ σ), (4.144)

where ρ∗ is a constant reference density, e.g. ρ∗ = ρ(T = 4◦C), and σ is called the
specific density, sometimes called density anomaly. Then (4.143) takes the form

p = p0 + ρ∗g(x0
3 − x3)

︸ ︷︷ ︸

external pressure

− ρ∗g
∫ x3

x0
3

σ(z)dz

︸ ︷︷ ︸

internal pressure

, (4.145)

in which the contribution due to the constant reference density is called exter-
nal pressure, while the remainder is called the internal pressure due to density

h

Fig. 4.20 PASCAL paradoxon: The force excited on the bottom plate by the fluid pressure is the
same if the two plates have the same area, even though the total volume and therefore the weight
of the fluid is not the same
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variations.20 A fluid at rest with density variations is called a stratified fluid. If such
a fluid is subject to gravity forces alone, this stratification can occur in the form of
horizontal layers only, i.e. the density must be constant at a certain depth below the
free surface.

The hydrostatic equation can also be used to derive the formula for the ARCHI-
MEDEan buoyancy force. To this end, consider a stratified fluid at rest – i.e. a fluid
with variable density in the vertical direction – and imagine a body with volume V
completely submerged, maintained also at rest21 (Fig. 4.21a). The vertical uplift on
the body is referred to as a buoyancy force.

Actually, the formula for the ARCHIMEDEan buoyancy force can be proved sim-
ply by the following Gedanken experiment. If the body with volume V is removed
in imagination and the free volume is replaced by the surrounding fluid such that the
layering due to stratification is preserved, Fig. 4.21b, then the replaced fluid will be
in equilibrium with the surrounding fluid. This replaced fluid possesses the gravity
force

G

S

V V

ρ
SR

B

GR

S

(a) (b)

∂V∂V

p
p

V B

SR

S

G

(c)

Fig. 4.21 Explaining the ARCHIMEDEan principle. (a) In a (possibly stratified) fluid at rest a body
with volume V is submerged. Its centre of gravity is S and it has the gravity force G = ∫

V ρB g dV ,
where ρB is the density of the body. (b) Replacing in imagination the body by the fluid stratified
as the surrounding fluid, this fluid is subjected to the gravity force GR =

∫

V ρg dV with centre
of gravity S′ and is evidently in equilibrium with the surrounding fluid. Obviously, the buoyancy
force B due to the pressure of the surrounding fluid onto the interface must be equal and opposite
to GR with point of attack SR vertically above or at S′. (c) The submerged body is thus subjected
to G and B as indicated

20 It is not clear to us why the denotations are like this. The first term may be called external
pressure because, once ρ∗ is selected, it is known when the external pressure p0 and x0

3 are known,
thus quantities external to the lake. Alternatively, determination of the second term requires knowl-
edge of σ , an internal variable. We will see later that barotropic (for external) and baroclinic (for
internal) pressures, respectively, would be more adequate characterisations.
21 If the gravity force of the body and its buoyancy force are not in equilibrium, it is assumed that
the body is supported or hung so that it is maintained at rest.
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GR =
∫

V
ρ(x3)g dx1 dx2 dx3

︸ ︷︷ ︸

dV

, (4.146)

and it has a centre of gravity22 S′ that may be different from the centre of gravity
of the body S that was removed. Since the gravity force of this replaced fluid is in
equilibrium with the pressure distribution at the boundary, the buoyancy force must
in absolute value be equal to GR and opposite in direction, implying

B = −
∫

V
ρ(x3)g dV . (4.147)

This is the result proving the ARCHIMEDEan principle.

Theorem 4.2 (ARCHIMEDEan principle) The buoyancy force of a submerged body
in a still fluid is equal to the weight of the replaced fluid. Its centre of action is the
centre of gravity of this replacement fluid. ⊗

How is the buoyancy force computed? We present two different approaches of
proof, one involving computations and the other using direct arguments. Its source
is the pressure distribution exerted by the surrounding fluid on the boundary surface
∂V of the body. So, with the notation of Fig. 4.21a

B = −
∫

∂V
pn dA, (4.148)

where n represents the exterior unit normal vector of the surface of the body. When
the concept of integration is applied to the determination of the buoyancy force
(4.148), rather complicated calculations are required for the evaluation of the inte-
gral because the direction n of the curved surface changes from point to point. The
problem can be greatly simplified by resolving the total force F of the fluid pressure
on a submerged curved surface into its horizontal and vertical components FH and
FV, respectively, as shown in Fig. 4.22a.

The curved line AB represents schematically the profile of a curved surface sub-
merged in a fluid. The pressure may vary in any manner from pA at A to pB at B,
but the pressure on any element of area dA is normal to dA. The differential force
dF acting on dA is pdA, and the angle θ defines the slope of dA relative to the
system of horizontal plane. The force dF can be resolved into its horizontal and
vertical components

dFH = p sin θ dA, dFV = p cos θ dA, (4.149)

22 We use here the concept of centre of gravity. In general it differs from the centre of mass, but
for a unidirectional gravity force field the two definitions ‘centre of mass’ and ‘centre of gravity’
coincide.
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dFH

dF dFV A

B

dA

θ

x2

x3

x1

p1dA

A

p2dA

dA
A

C

B

D

x
(1)
3

x
(2)
3

x2

x3

x1
(b)(a)

Fig. 4.22 (a) Surface segment AB with areal element dA at which a normal force dF = p dA
applies. This force is decomposed into dFH and dFV. θ measures the inclination of the surface
element. (b) Body submerged in a still liquid. A and C mark the surface points farthest to the ‘left’
and ‘right’ and define the area A, the projection of the body onto the (x1, x2)-plane. B and D mark
the lowest and highest points in the x3-direction. The vertical column has horizontal cross-sectional
area dA

and their sums (integrals) will be the components FH and FV of the resultant force
on area AB; thus

FH =
∫ AB

p sin θ dA =
∫ AB

p(dA)V,
(4.150)

FV =
∫ AB

p cos θ dA =
∫ AB

p(dA)H,

where (dA)H and (dA)V are the projections of dA on the horizontal and vertical
axes, respectively.

The method of calculating the force on a curved surface applies to all shapes
of a surface and, therefore, to the surface of a totally submerged body ABC D in
Fig. 4.22b. The resultant horizontal pressure on the body at rest is equal to zero
because the horizontal components of the pressure on the vertical projection from
both sides are equal in magnitude and opposite in direction. On the two end surface
elements of a vertical prism of horizontal cross section dA are two vertical pres-
sure forces p1 dA and p2 dA as shown. The difference between the upward and
downward pressure forces is the buoyant force dB on the vertical prism:

dB = p2 dA − p1 dA = (p2 − p1)dA. (4.151)

Using the hydrostatic equation (4.142) or (4.143), it follows

p2 − p1 = g
∫ x (2)3

x (1)3

ρ(x3)dx3, (4.152)
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where x (1)3 and x (2)3 represent the vertical coordinates of the upper (ADC) and lower
(ABC) surfaces of the immersed body.

The total buoyant force B on the entire submerged body ABC D is obtained
by summing over all columns, thus integrating over dB. Therefore, by substituting
(4.152) into (4.151) and integrating over the horizontal area A yields

B =
∫

A
dB =

∫

A

∫ x (2)3

x (1)3

ρ(x3)g dx3 dA =
∫

V
ρ(x3)g dV, (4.153)

which is simply the gravity force acting on the fluid displaced by the submerged
body. Thus, the law of the ARCHIMEDEan buoyancy force is proved.

If the density of the fluid is constant ρ(x3) = const, it follows from (4.153) or
(4.147) that

B = ρgV, (4.154)

where V is the volume of the submerged body.
When a body floats on a surface separating two fluids of constant density ρ1 and

ρ2, respectively, as shown in Fig. 4.23a, (4.153) yields

B = ρ1gV1 + ρ2gV2, (4.155)

in which V1 and V2 represent the volumes of the body parts submerged in the fluids
of density ρ1 and ρ2, respectively.

Furthermore, for a body floating at the free surface of a fluid of constant density
ρ (Fig. 4.23b), if the air density is ρair, which is usually negligible, (4.155) becomes

B = ρairgV1 + ρgV2 � ρgV2, (4.156)

where V2 represents the submerged volume of the body in the fluid. The buoyant
force is consequently equal to the weight of the displaced fluid. Since the floating

Fluid 1

Fluid 2

V1

V2

ρ1

ρ2

Air

Fluid

V1

V2

ρair ≈ 0

ρf

(b)(a)

Fig. 4.23 Buoyant force of a body floating on a surface separating two fluids of constant density
ρ1 and ρ2 (a) and at the free surface of a fluid (b)
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body is statically in equilibrium, it follows that the buoyant force just balances the
weight of the body.

By combining (4.147), (4.148) and (4.134) with a0 = 0 and ω = 0 the above
proof of the ARCHIMEDEan principle also leads to the following formula

∫

∂V
p n dA =

∫

V
grad p dV (4.157)

for any function p which is differentiable in V . This is a well-known formula in
vector field theory and we think this proof of it is neat.23

Problem 4.5 Consider a cylindrical glass of water on a rotating plate positioned
such that the vertical rotation axis and the cylindrical axis of the glass coincide. Let
the angular velocity ω be constant and directed vertically upwards. Prove that the
free surface is an axisymmetric paraboloid. �

4.4 Balance of Energy: First Law of Thermodynamics

The balance of energy or the first law of thermodynamics was already stated in
Chaps. 2 and 3; it says that the time rate of change of the kinetic plus internal
energy of a body equals the power of working of the (external) surface and volume
forces plus the heat supplied to the body by external agents within the body plus that
flowing into the body through the boundary, see, e.g., (3.5). If we consider the body,
as before, being formed by infinitesimal elements, we have

Ek
V =

∫

V
ρ
v · v

2
dV, E i

V =
∫

V
ρε dV,

LV =
∫

V
v · ρg dV, L∂V =

∫

∂V
v · tn dA,

QV =
∫

V
ρr dV, Q∂V = −

∫

∂V
q · n dA.

(4.158)

23 The proof is not completely general as in (4.147), in which ρ is a function of x3 only. Nev-
ertheless, at two other situations we already had the occasion to prove theorems of mathematical
analysis by tailoring the arguments to physical reasoning. For instance, by the balance of mass for
a material volume and a volume fixed in space, but identical in size, the REYNOLDS theorem was
derived [see (4.63)]; moreover using the same conservation law of mass the divergence theorem
(GAUSS law) was obtained [see (4.73) and (4.75)]; and now the ARCHIMEDEan principle was used
to obtain (4.157), which is another form of GAUSS’ law. This physical tailoring of mathematical
facts is intentional here. The reader should be aware, however, of the fact that it does not replace a
clean mathematical proof of the statements.
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In these expressions

• 1
2ρv · v is the kinetic energy per unit volume,

• ρε the specific internal energy per unit volume,
• ρg · v the power of working of the volume forces per unit volume,
• v · tn the power of working of the surface tractions,
• ρr the external energy supply or specific radiation to the volume element and
• −q · n the flow of heat through the boundary of the body.

Substituting (4.158) into (3.5) yields

∂

∂t

∫

V
ρ
(v · v

2
+ ε

)

dV =
∫

∂V
(v · tn − q · n) dA

+
∫

V
(v · ρg + ρr) dV (4.159)

or after using the REYNOLDS transport theorem (4.63)

∫

Vfix

∂

∂t

(

ρ
v · v

2
+ ρε

)

dV

︸ ︷︷ ︸

(1)

+
∫

∂Vfix

ρ
(v · v

2
+ ε

)

(v · n)dA

︸ ︷︷ ︸

(2)

=
∫

∂Vfix

(v · tn − q · n) dA

︸ ︷︷ ︸

(3)

+
∫

Vfix

(v · ρg + ρr) dV

︸ ︷︷ ︸

(4)

. (4.160)

This form of the energy balance law will now be used for an infinitesimal cubic ele-
ment with side lengths dx1, dx2, dx3. In much the same way as done before for the
balances of mass and momentum, we may individually evaluate the four different
terms of (4.160). The reader may verify that the indicated terms take the following
forms:

(1) = ∂

∂t

(

ρ
v · v

2
+ ρε

)

dV, (4.161)

(2) =
{
∂

∂x1

[(

ρ
v · v

2
+ ρε

)

v1

]

+ ∂

∂x2

[(

ρ
v · v

2
+ ρε

)

v2

]

+ ∂

∂x3

[(

ρ
v · v

2
+ ρε

)

v3

]}

dV, (4.162)

(3) =
{[

v1

(
∂T11

∂x1
+ ∂T12

∂x2
+ ∂T13

∂x3

)

− ∂q1

∂x1

+ v2

(
∂T21

∂x1
+ ∂T22

∂x2
+ ∂T23

∂x3

)

− ∂q2

∂x2

+ v3

(
∂T31

∂x1
+ ∂T32

∂x2
+ ∂T33

∂x3

)

− ∂q3

∂x3

]
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+
[(
∂v1

∂x1
T11 + ∂v1

∂x2
T12 + ∂v1

∂x3
T13

)

+
(
∂v2

∂x1
T21 + ∂v2

∂x2
T22 + ∂v2

∂x3
T23

)

+
(
∂v3

∂x1
T31 + ∂v3

∂x2
T32 + ∂v3

∂x3
T33

)]}

dV

= {[(3)1]+ [(3)2]} dV, (4.163)

(4) = (v · ρg + ρr)dV, (4.164)

in which tn = T n has been used, where T is the Cauchy stress tensor with the
components Ti j (i, j = 1, 2, 3). Forming the equation (1) + (2) = (3) + (4) and
dropping the common factor dV then yields the local form of the balance law
of energy. It is obvious that with the above notation the resulting equation looks
unwieldy; not only a more compact notation will be more economical, but also the
emerging equation will become more transparent. The reader can easily verify by
recourse to the formulae (2.62) and (4.109) that

(2) = div
((

ρ
v · v

2
+ ρε

)

v
)

dV,
(4.165)

(3) = {v · div T − div q + [(3)2]} dV,

in which [(3)2] is the term in the second bracket of (4.163). To find a representation
for this term, consider the Cartesian matrix representations

grad v =̂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂v1

∂x1

∂v1

∂x2

∂v1

∂x3
∂v2

∂x1

∂v2

∂x2

∂v2

∂x3
∂v3

∂x1

∂v3

∂x2

∂v3

∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, T =̂
⎛

⎝

T11 T12 T13
T21 T22 T23
T31 T32 T33

⎞

⎠ (4.166)

and form the product (grad v)T T, which corresponds to the matrix product of the
matrices (grad v) and (T )T. It is then straightforward to see that [(3)2] is the sum of
the diagonal elements of this product matrix. With the Definition 2.18 of the trace
we thus have

[(3)2] = tr
(

(grad v) T T) , (4.167)

in which tr stands for ‘trace’. There is yet another way of writing (4.167), and it
uses the property that the CAUCHY stress tensor is symmetric, T = T T. To this end
we split (grad v) into its symmetric and skew-symmetric contributions

D := 1
2

(

grad v + (grad v)T
)

, D = DT,

W := 1
2

(

grad v − (grad v)T
)

, W = −W T ,
(4.168)

already introduced in (4.13), (4.14), (4.15), (4.16), so that
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grad v = D +W . (4.169)

D and W have the representations (4.15) and (4.16). Moreover, starting from [(3)2]
in (4.163) the reader may also demonstrate that

[(3)2] = tr
(

(grad v)T T) = tr (DT ) , (4.170)

while tr (W T ) = 0. Using (4.161), (4.164), (4.165) and (4.170) the local energy
equation (1)+ (2)− (3)− (4) = 0 takes the form

∂

∂t

(

ρ
v · v

2
+ ρε

)

+ div
((

ρ
v · v

2
+ ρε

)

v
)

+ div q − v · div T − tr (DT )− v · ρg − ρr = 0. (4.171)

This equation is the energy balance equation in conservative form. It can be con-
siderably simplified if the differentiations of the product terms in the first line are
performed according to the product rule of differentiation. The reader may then
show that (4.171) may also be written as follows:

(v · v
2
+ ε

){∂ρ

∂t
+ div (ρv)

}

︸ ︷︷ ︸

= 0, balance of mass (4.69)

+ v ·
{

ρ

(
∂v

∂t
+ (grad v)v

)

− div T − ρg
}

︸ ︷︷ ︸

= 0, balance of momentum (4.110)

+
{

ρ

(
∂ε

∂t
+ (grad ε) · v

)

︸ ︷︷ ︸

dε/dt

+ div q − tr (DT )− ρr

}

= 0

or

ρ
dε

dt
= −div q + tr (DT )+ ρr. (4.172)

This is the local balance law of internal energy. It states that the time rate of change
of the internal energy multiplied by the density is balanced by the heat flow, −div q,
the power of working expressed in terms of the CAUCHY stress tensor, tr (DT ), and
the radiating sources, ρr . We emphasise that there is no global counterpart to the
local balance law of internal energy, and this is the manifestation of the expression
that the first law is a law for the mechanical and thermal energies together and not
just one of the two.

The energy equation (4.172) is not yet in its most convenient form for application
in heat transport processes taking place in lakes. To arrive at a physically more
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transparent form, we split T into equilibrium and dynamical stresses, T = T eq +
T dyn, explicitly as follows:

T = T eq + T dyn = −p1+ 2η(E), E = D − 1
3 (div v) 1. (4.173)

Here p is the thermodynamic pressure and T dyn = 2ηE describes the viscous con-
tribution to the stress, η being the dynamic shear viscosity and E the deviator of the
stretching tensor. The parameterization (4.173) ignores the bulk viscosity, but the
fluid may still be compressible (for details, see Sect. 4.3.3). With the representation
(4.173) one may easily show that

tr (DT ) = tr
[(

E + 1
3 (div v)1

)

(−p1+ 2ηE)
]

= −p tr E
︸︷︷︸

0

− 1
3 p(div v)tr 1+ 2ηtr

(

E2
)+ 1

3 (div v)2η tr E
︸︷︷︸

0

= −pdiv v + 2ηtr
(

E2
)

= p
1

ρ

dρ

dt
+ 2ηtr

(

E2
)

= −ρp
d

dt

(
1

ρ

)

+ 2ηtr
(

E2
)

. (4.174)

Notice that the first term on the right-hand side of the last line can be interpreted as
the power of working of the pressure on the changes of the specific volume, while
the second term is the power of working of the viscous stress components and may
be justly called dissipation. Substituting (4.174) into (4.172) transforms the local
balance law of internal energy into the equation

ρ

(
dε

dt
+ p

d

dt

(
1

ρ

))

= −div q + 2ηtr E2 + ρr. (4.175)

At this point it is instructive to also write down a second form of the balance law of
internal energy. With the enthalpy function h defined by h = ε + p(1/ρ), (4.175)
also takes the form

ρ
dh

dt
− dp

dt
= −div q + 2ηtr E2 + ρr. (4.176)

Equations (4.175) and (4.176) are equivalent to one another. Moreover, in their
derivation it was carefully observed that the fluid may experience volume or density
changes, and we implemented a NEWTONian stress representation (4.173) with zero
bulk viscosity. To transform (4.175) into an equation for the temperature, constitu-
tive relations for the heat flux vector q and the internal energy must be given. We
choose

q = −κ grad T, ε = cv(T − T ∗), h = cp(T − T ∗), (4.177)
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in which T is temperature (measured in centigrades), T ∗ is a reference temperature,
κ is the heat conductivity and cv , cp are the specific heats at constant volume and
constant pressure, respectively. In (4.177) the representations for the internal energy
ε and the enthalpy h are a thermodynamic approximation as in these equations
the major influence is assigned to temperature changes. With (4.177), (4.175) and
(4.176) become

ρ

(

cv
dT

dt
+ p

d

dt

(
1

ρ

))

= div (κ grad T )+ 2η tr E2 + ρr. (4.178)

ρcp
dT

dt
− dp

dt
= div (κ grad T )+ 2η tr E2 + ρr. (4.179)

For a BOUSSINESQ fluid, density variations are ignored everywhere except in the
buoyancy force. In this case E � D and pd(1/ρ)/dt may be ignored. Thus, for a
BOUSSINESQ fluid

ρcv
dT

dt
= div (κ grad T )+ 2η tr D2 + ρr. (4.180)

This is the heat conduction equation usually written down in oceanography and
lake physics texts, but in most situations it is further simplified by ignoring the
dissipation 2η tr D2.

It is claimed, WÜEST et al. [16], that for deep lakes such as Lake Baikal, the pres-
sure term pd(1/ρ)/dt should not be ignored when density variations are significant.
Then the energy equation takes the form (4.178) or (4.179) with the dissipation
usually being ignored. Such a formulation deviates from the common equations of
a BOUSSINESQ fluid.

4.5 Diffusion of Suspended Substances

Imagine that the lake water contains a number of substances either in solution or in
suspension and that the content of these substances varies in space and time. Such
substances are, for instance, minerals, oxygen O2, carbon dioxide CO2, phosphate,
nitrate and other chemical elements that are important for the ecological conditions
of the lake. Yet other substances can be algae or phytoplankta, which are distributed
in the water, however, now not in solution but in suspension. The typical character-
isation of the presence of such substances is that they arise in proportions relative
to the water which are small, i.e. the mass per volume of the mixture (of lake water
and tracer substances) of each of these tracers is small in comparison with the mix-
ture mass. We shall henceforth denote any such substance contained in the water a
tracer, a component or a constituent. A certain component can perform chemical
reactions with a number of other components. For instance, phytoplankta absorb
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CO2 by photosynthesis and the amount of CO2 that is absorbed depends, among
other things, on the CO2 content of the water and the amount of light available
through solar irradiation. Zooplankta prey on phytoplankta etc.

In this section we shall not go into any details of these biochemical processes
but only wish to derive the governing equations by which the transport of tracers in
a fluid is described. It is conceptually very easy and essentially only consists of a
statement of mass balance and a constitutive equation for mass flux, as we shall now
see.

Let ρα be the mass density of the tracer α (α = 1, 2, ..., ν) per unit mixture
volume and vα its velocity. Then, the balance of mass for an infinitesimal cube
consists of the following terms:

• Growth of the mass of tracer α in the element with volume dV = dx1dx2dx3

∂ρα

∂t
dV .

• Flux of mass of constituent α through the six surface elements of the cube

−
[
∂

∂x1

(

ραvα1
)+ ∂

∂x2

(

ραvα2
)+ ∂

∂x3

(

ραvα3
)
]

dV = −div
(

ραvα
)

dV .

• Production of mass of constituent α within the volume element due to biochemi-
cal reactions

παdV .

The first of these must equal the remaining two contributions so that

∂ρα

∂t
dV = −div

(

ραvα
)

dV + πα dV

or

∂ρα

∂t
+ div

(

ραvα
) = πα, (α = 1, 2, ..., ν). (4.181)

In this equation, πα is the production per unit time and unit volume of the mass of
constituent α. Here, it is assumed that a functional form for it is known and provided
by the lake biochemist.

Equation (4.181) holds not only for all tracer masses (α = 1, 2, ..., ν) but also
for the fluid in which they are suspended (α = ν+1). It is convenient to write down
the mass balance for the mixture as a whole rather than for the fluid in which the
tracers are ‘suspended’. Summing all constituent balance laws (4.181) from α = 1
to α = ν + 1, we obtain
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∂
∑ν+1

α=1 ρ
α

∂t
+ div

(
ν+1
∑

α=1

ραvα

)

=
ν+1
∑

α=1

πα, (4.182)

in which the expression on the right-hand side is the specific mass production of the
mixture. Since mass cannot be produced but only exchanged between the various
components, we necessarily have

ν+1
∑

α=1

πα = 0. (4.183)

Defining the mixture density ρ and the barycentric velocity v by

ρ =
ν+1
∑

α=1

ρα, v = 1

ρ

ν+1
∑

α=1

ραvα (4.184)

(4.182) takes the form

∂ρ

∂t
+ div (ρv) = 0. (4.185)

Mathematical models describing the dispersion of tracer masses in a liquid com-
monly operate with the balance laws of mass, momenta and energy of the mixture as
a whole plus ν mass balances for the constituents. This implies that the barycentric
velocity field, the mixture density and temperature as well as the constituent mass
fractions are the basic field variables. The latter are introduced as follows:

Definition 4.17 The mass fraction or the mass concentration of tracer α is
defined by

cα := ρα

ρ
�⇒ ρα = ρcα. (4.186)

�

With this definition, (4.181) is now written as

∂(ρcα)

∂t
+ div

(

ρα
(

vα − v))+ div
(

ρcαv
) = πα,

which, after performing the product differentiation, yields

cα
(
∂ρ

∂t
+ div (ρv)

)

︸ ︷︷ ︸

=0, see(4.185)

+ ρ
(
∂cα

∂t
+ (

grad cα
)

v

)

︸ ︷︷ ︸

dcα/dt

= −div
(

ρα
(

vα − v))+ πα
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or

ρ
dcα

dt
= −div jα + πα. (4.187)

Definition 4.18 The vector

jα = ρα
(

vα − v) (4.188)

is called the diffusive mass flux of tracer α. �

Equation (4.187) is called Fick’s second law [4]. It equates the time rate of change
of the mass of constituent α to the flux of this constituent through the body boundary
plus the rate of its production per unit volume and could equally have been derived
from the global law

d

dt

∫

V
ρα dV = −

∫

∂V
jα · n dA +

∫

V
πα dV . (4.189)

It is noted that the velocity used to evaluate the material derivative dcα/dt is v (not
vα) and that vα arises only implicitly in the definition of the diffusive flux jα . In
fact, it is the difference velocity (vα − v) by which the diffusive mass flux vector is
defined; it is the excess of the velocity with which the tracer α moves relative to the
mixture. It is not the purpose in diffusion theory to treat vα as an independent field.
On the contrary, one regards the motion of the mixture with velocity v as one of the
basic variables. Of course, such a procedure is meaningful only if the magnitude of
the difference velocity |vα−v| is small: |vα−v| � |v|. If a tracer particle is exactly
moving with the mixture velocity, then this slip velocity is exactly zero, and (4.187)
would take the form

ρ
dcα

dt
= πα, (4.190)

valid without diffusion. In general, however, there is a small slip between a tracer
α and the mixture so that a parameterisation of the diffusive mass flux vector is
needed.

There is not much intuition needed to recognise that if ink is inserted into a
container with still water, it will spread. It obviously flows from high concentration
to lower concentration and will, after sufficient time, be uniformly distributed in the
entire container. This observation may be a motivation to postulate a constitutive
relation for the diffusive mass flux of a single constituent in the form

j = −ρD grad c. (4.191)
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Geometrically, this equation says that the tracer at a point x in space moves into the
direction of steepest decent of the ‘topography c(x, t)’ and the size of this speed
is equal to the coefficient ρD, where ρ is the mixture density and D is called dif-
fusivity with dimension m2 s−1. Equation (4.191) is called Fick’s first law24 [4].
More generally, when there are several tracers present, a law such as (4.191) must
be formulated for each constituent

jα = −
ν
∑

β=1

ρDαβ grad cβ (α = 1, 2, ..., ν), (4.192)

where Dαβ (α, β = 1, 2, ..., ν) are now diffusion coefficients and one generally
supposes that Dαβ = Dβα . Moreover, it is a consequence of the second law of
thermodynamics that Dαβ is a non-negative definite ν×ν matrix, a statement which
we shall accept here without proof. Often, a diffusion process of a tracer α is not
affected by a corresponding process of the tracer β. This suggests that the diffu-
sive mass flux jα might in this case only be affected by the gradient of its own
concentration cα so that (4.192) reduces to

jα = −ρDααgrad cα (no sum over α). (4.193)

This is a simplification that is very often used in the parameterisation of diffusion
processes.

Substitution of (4.192) into (4.187) yields

ρ
dcα

dt
=

ν
∑

β=1

div
{

ρDαβ grad cβ
}+ πα (α = 1, 2, ..., ν). (4.194)

These are ν equations for the ν concentrations cα , in which the production terms are
considered to be known. The material derivative of cα

dcα

dt
= ∂cα

∂t
+ (

grad cα
)

v (4.195)

involves the mixture (or barycentric) velocity v which, together with the mixture
density ρ, is described by the equations of motion and the mass balance equation of
the fluid.

In a BOUSSINESQ fluid the density variations are very small25 and are thus
ignored in describing the diffusion problem so that (4.194) simplifies to

24 For a fundamental paper on diffusion, see also [3].
25 For lake and ocean water the relative density difference Δρ/ρ is generally between 10−2 and
10−3 and thus negligible. In the atmosphere, under usual conditions, Δρ/ρ seldom reaches values
10−1 or larger; this equally often justifies the application of the BOUSSINESQ assumption.
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dcα

dt
=

ν
∑

β=1

div
(

Dαβ grad cβ
)+ π̄α (α = 1, 2, ..., ν), (4.196)

in which π̄α = πα/ρ is the mass production of constituent α per unit time and unit
mixture mass. If the reduced diffusive mass flux parameterisation (4.193) is used

dcα

dt
= div

(

Dαα grad cα
)+ π̄α (α = 1, 2, ..., ν), (4.197)

This equation is formally the same as the energy equation (4.180), if in the latter
dissipation is ignored. Equation (4.197) allows a coupling of the various tracers
only through the production terms.

This completes the formal derivation of the basic equations generally used in lake
physics. In subsequent chapters they will no longer be derived but only referred to.

4.6 Summary of Equations

Because the derivation of the preceding equations is rather long and it is difficult
to isolate the significant statements, we shall now repeat the balance laws of mass,
momentum energy and tracer mass in their local form at one place. This will be
done in a form that is particularly useful for the applications which will follow in
the subsequent chapters. These balance laws are

(4.70)
dρ

dt
+ ρ div v = 0, (4.198)

(4.110) ρaabs = div T + ρg, (4.199)

(4.172) ρ
dε

dt
= −div q + tr (T D)+ ρr, (4.200)

(4.187) ρ
dcα

dt
= −div jα + πα, (4.201)

in which

(4.132) aabs = a0 + dv

dt
+ ω × (ω × x)+ ω̇ × x + 2ω × v. (4.202)

The equation numbers on the left-hand side refer to where the respective equations
have been stated in this form.

Equations (4.198), (4.199), (4.200), (4.201) and (4.202) shall be specialised for
a moving frame that is fixed on the Earth with the x-axis pointing towards east, the
y-axis pointing towards north and the z-axis pointing towards the zenith, Fig. 2.3.
This is the standard frame used in meteorology and oceanography. The translational
motion of this frame on the elliptical orbit of the Earth is ignored so that a0 ≈ 0.
Furthermore, the angular velocity of the Earth, from now on always denoted by Ω
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(since ω will be reserved for frequency), is assumed to be constant so that Ω̇ = 0.
Moreover, it is customary to absorb the centrifugal force into the gravity term, since

Ω × (Ω × x) = −grad

(
Ω2(x2 + y2)

2

)

. (4.203)

All this implies that

aabs = dv

dt
+ 2Ω × v, g −Ω × (Ω × x) → g, (4.204)

If we then also use (4.116) and (4.120) and write

T = −p1+ T dyn, (4.205)

the above equations (4.198), (4.199), (4.200) and (4.201) take the forms

dρ

dt
+ ρ div v = 0, (4.206)

ρ

{
dv

dt
+ 2Ω × v

}

= −grad p + div T dyn + ρg, (4.207)

ρ

{
dε

dt
+ p

d

dt

(
1

ρ

)}

= −div q + tr (T dyn D)+ ρr, (4.208)

ρ
dcα

dt
= −div jα + πα. (4.209)

A number of approximations that are common in limnology and oceanography
derive from these equations.

• In the free convection approximation use is made of the fact that ρ = ρ0(z) +
ρ′(x, y, z, t), where |ρ′| � |ρ0(z)|. Therefore the density is replaced by its static
counterpart ρ0(z) everywhere except in the gravity force, and dρ/dt is ignored.
This yields the system

div v = 0, (4.210)

ρ0(z)

{
dv

dt
+ 2Ω × v

}

= −grad p + div T dyn + ρg, (4.211)

ρ0(z)
dε

dt
= −div q + tr (T dyn D)+ ρ0(z)r, (4.212)

ρ0(z)
dcα

dt
= −div jα + πα. (4.213)

• The BOUSSINESQ approximation goes one small step further in the approxima-
tion and replaces in (4.210), (4.211), (4.212) and (4.213) ρ0(z) everywhere by
ρ∗, a constant reference value, viz.
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div v = 0, (4.214)

ρ∗
{

dv

dt
+ 2Ω × v

}

= −grad p + div T dyn + ρg, (4.215)

ρ∗ dε

dt
= −div q + tr (T dyn D)+ ρ∗r, (4.216)

ρ∗ dcα

dt
= −div jα + πα. (4.217)

A fluid obeying these equations is often simply referred to as a BOUSSINESQ

fluid.
• For wave studies the dissipative terms arising in the above equations are often

ignored. Equations (4.210), (4.211), (4.212) and (4.213) then reduce to

div v = 0, (4.218)

ρ0(z)

{
dv

dt
+ 2Ω × v

}

= −grad p + ρg, (4.219)

dε

dt
= r, (4.220)

ρ0(z)
dcα

dt
= πα (4.221)

and (4.214), (4.215), (4.216) and (4.217) become

div v = 0, (4.222)

ρ∗
{

dv

dt
+ 2Ω × v

}

= −grad p + ρg, (4.223)

dε

dt
= r, (4.224)

ρ∗ dcα

dt
= πα. (4.225)

In the oceanographic literature this reduction is often referred to as the adiabatic-
ity assumption,26 but it is obvious to the reader versatile in thermodynamics, it
has nothing in common with the classical adiabaticity assumption of thermody-
namics.

• If the specific radiation and all tracer mass productions vanish,

r = 0, πα = 0, for all α = 1, . . . , ν, (4.226)

26 In this assumption not only the diffusive flux terms in the momentum, energy and tracer mass
equations but also the power of working in the energy equation are omitted. Because of the omis-
sion of the diffusive terms the momentum, energy and tracer mass balance equations change their
type from parabolic to hyperbolic.
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and if ε = ∫ T
T0

c(T̄ )dT̄ , then
dε

dt
= c(T )

dT

dt
so that the energy and tracer mass

balance equations reduce to

dT

dt
= 0,

dcα

dt
= 0, for all α = 1, . . . , ν. (4.227)

The temperature and the tracer concentrations are materially constant in this case.
With the thermal equation of state

ρ = ρ̂(T, cα) (4.228)

we may now deduce

dρ

dt
= ∂ρ̂

∂T

dT

dt
︸︷︷︸

0

+ ∂ρ̂

∂cα
dcα

dt
︸︷︷︸

0

= 0, (4.229)

implying that the density is also materially constant. The above equations thus
take the forms

div v = 0, (4.230)

ρ0(z)

{
dv

dt
+ 2Ω × v

}

= −grad p + ρg, (4.231)

dρ

dt
= 0, (4.232)

which constitute a drastic simplification as compared to (4.218), (4.219), (4.220)
and (4.221). In a BOUSSINESQ fluid ρ0(z) is simply replaced by ρ∗. In the litera-
ture, (4.232) is sometimes claimed to be the result of the continuity equation, but
as the derivation shows, it follows from a reduction of the energy and tracer mass
balances and a special form of the thermal equation of state.

• The last transformation makes use of

p = p0(z)+ p′, ρ = ρ0(z)+ ρ′,
p0(z) = ρ0(z)g(z − h),

(4.233)

where h is a constant. This implies

dρ

dt
= ∂ρ′

∂t
− ρ∗ N 2

g
w, N 2(z) = − g

ρ∗
dρ0(z)

dz
(4.234)

so that the BOUSSINESQ approximated equations (4.230), (4.231) and (4.232)
take the forms
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div v = 0, (4.235)

ρ∗
{

dv

dt
+ 2Ω × v

}

= −grad p′ + ρ′g, (4.236)

∂ρ′

∂t
− ρ∗ N 2

g
w = 0. (4.237)

Note that for a particular ‘ground’ stratification the BRUNT–VÄISÄLÄ or buoy-
ancy frequency N (z) is a given prescribed function of z.

4.7 A First Look at the Boussinesq and Shallow-Water Equations

One of the prominent approximations which has fruitfully influenced the mathemat-
ical analysis of a large number of problems of geophysical fluid dynamics and led
to considerable enlightenment of the physical understanding of flow problems in
limnology, meteorology and oceanography is the so-called shallow-water approx-
imation. It takes account of the fact that many processes of the dynamics of the
atmosphere, the ocean and lakes have scales that are large in the horizontal and
small in the vertical directions. For instance, typical wavelengths of atmospheric
or water disturbances may be many kilometres, while the corresponding amplitudes
are at most 100 m, and usually much less. Similarly, horizontal velocity components
are generally large, while vertical velocity components are small. This suggests to
introduce aspect ratios

AL : = typical vertical length scale

typical horizontal length scale
,

AV : = typical vertical velocity scale

typical horizontal velocity scale
,

to suppose that AL � 1, AV � 1 and to look at the governing equations in the limit
as AL → 0 and AV → 0.

To compare the magnitudes of the various terms arising in the equations, e.g.
(4.206), (4.207), (4.208) and (4.209), for the processes of interest, we transform
them into dimensionless form by writing each physical quantity Ψ as Ψ = [Ψ ]Ψ̄ .
[Ψ ] is a typical value of the field Ψ for the processes under consideration, and Ψ̄
is its dimensionless counterpart, of necessity of order unity, if [Ψ ] is appropriately
chosen.

In the ensuing analysis, our intention will be to justify not only the shallow-
water equations but equally also the BOUSSINESQ assumption. Thus we start with
equations (4.206), (4.207), (4.208) and (4.209) in which all dissipation terms will
be ignored27 (adiabaticity!) and radiation and tracer mass productions will be
neglected. The equations then read

27 The more general case will be dealt with later.
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∂ρ

∂t
+ div (ρv) = 0, (4.238)

ρ

{
∂v

∂t
+ (grad v)v + 2Ω × v

}

= −grad p + ρg, (4.239)

ρ

{
∂ε

∂t
+ (grad ε) · v − p

ρ2

[
∂ρ

∂t
+ (grad ρ) · v

]}

= 0, (4.240)

ρ

{
∂cα

∂t
+ (grad cα) · v

}

= 0, α = 1, . . . , ν. (4.241)

In the coordinate system of Fig. 2.3 the angular velocity of the Earth is represented
by

Ω =
(

0, 1
2 f̃ , 1

2 f
)

, f = 2Ω sin φ, f̃ = 2Ω cos φ, (4.242)

in which f and f̃ are the first and second Coriolis parameters, respectively,
Ω = |Ω| and φ is the geographical latitude. Moreover, we shall choose

ε = cv(T − T0) (4.243)

with constant cv and constant T0. This implies that the energy equation is formulated
in terms of internal energy rather than enthalpy. In oceanography, it seems to be the
more popular approach.

We shall select the scales according to28

(x, y, z) = ([L]x̄, [L]ȳ, [H ]z̄) ,
(u, v, w) =

(

[V ]ū, [V ]v̄, [V ] [H ][L] w̄
)

,

(t, f, f̃ ) =
(

1

[ f ] t̄, [ f ] f̄ , [ f ] ¯̃f
)

,

p = ρ∗gz + ρ∗[ f V L] p̄, (4.244)

ρ = ρ∗ (1+ [σ ]σ) ,
T = T0 + [ΔT ]θ,

cα = [cα]c̄.

It is seen that horizontal and vertical velocities are scaled differently and time is
scaled with the CORIOLIS parameter. Furthermore, the scale for the vertical velocity

28 Note that time is scaled here with a typical value of the CORIOLIS parameter. This automatically
emphasises that processes are influenced by the rotation of the Earth. In problems where this is
not important, time is scaled with [H/V ] or [L/V ]. In those cases the choice [H/V ] leads to
the shallow-water equations, while [L/V ] need to be chosen for avalanche equations and gravity
currents, see [7, 12].
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is such that AL = [H ]/[L] = AV = A. This choice guarantees that the diver-
gence div v is preserved under non-dimensionalisation. Moreover, the pressure is
decomposed into a hydrostatic part ρ∗gz and a dynamic contribution ρ∗[ f V L] p̄.
Of particular importance is how the density is scaled. It is assumed implicitly that
density variations are small and for water ρ∗ ∼ 1000 kg m−3 and [σ ] ≈ 10−3.
Typical values for the scales are shown in Table 4.1.

Writing (4.238), (4.239), (4.240) and (4.241) in Cartesian component form and
using (4.242), (4.243) and subsequently non-dimensionalising the emerging equa-
tions with the aid of (4.244), it can be shown that these non-dimensional equations
take the following forms (the overbars are omitted):

[σ ]
R0

∂σ

∂t
+ div v + [σ ]div (σv) = 0, (4.245)

(1+ [σ ]σ)
{
∂u

∂t
+R0(grad u) · v +A f̃w − f v

}

= −∂p

∂x
, (4.246)

(1+ [σ ]σ)
{
∂v

∂t
+R0(grad v) · v + f u

}

= −∂p

∂y
, (4.247)

(1+ [σ ]σ)
{

A2
[
∂w

∂t
+R0(grad w) · v

]

−A f̃ u

}

= −∂p

∂z
− Bσ, (4.248)

(1+ [σ ]σ)
{[
∂θ

∂t
+R0(grad θ) · v

]

− C Bz + [σ ]p
(1+ [σ ]σ)2

[
∂σ

∂t
+R0(grad σ) · v

]}

= 0, (4.249)

(1+ [σ ]σ)
{
∂cα

∂t
+R0(grad cα) · v

}

= 0, (α = 1, 2, . . . , ν). (4.250)

All variables in these equations including the operators are dimensionless. The
dimensionless calligraphic parameters are listed in Table 4.2 with their common
nomenclature and orders of magnitude as obtained with the scales of Table 4.1.

Table 4.1 Physical parameters and typical orders of magnitude for the scales arising in (4.244)

[ f ] � 10−4 s−1 Coriolis parameter

ρ∗ = 103 kg m−3 Density

[σ ] � 10−3 Density anomaly

T0 � 10◦C Reference temperature

[ΔT ] � 10◦C Temperature range

[L] � 104 − 106 m Horizontal length scale

[H ] � 10− 103 m Vertical length scale

[V ] � 10−2 − 10 m s−1 Horizontal velocity scale

cp � 4200 m2 s−2 K−1 Specific heat at constant pressure (105 Pa)

cv � 4200 m2 s−2 K−1 Specific heat at constant volume

[cα] Scale for mass fraction of constituents
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Table 4.2 Dimensionless parameters

A = [H ]
[L] 10−5 − 10−2 Aspect ratio

R0 = [V ]
[ f ][L] 10−4 − 100 ROSSBY number

[σ ] 10−3 Density anomaly

B = g[σ ][H ]
[ f ][V ][L] ∼ 10−1 Buoyancy parameter

BOUSSINESQ number

C = [ f ][L][V ]
cp[ΔT ] ∼ 10−6 − 10−2 Pressure work parameter

Depending upon the orders of magnitude of the dimensionless parameters, various
versions of the field equations emerge. Of particular interest for us are A, [σ ] and
C. Their relative values suggest that approximations which will now formally be
defined.

Definition 4.19 A BOUSSINESQ fluid is defined by (4.245), (4.246), (4.247),
(4.248), (4.249) and (4.250), if the limit [σ ] → 0 is considered, while all other
dimensionless parameters are held fixed. �

Inspection of (4.245)–(4.250) shows that the mass balance equation reduces in this
approximation to the continuity equation, div v = 0, since it is supposed that with
[σ ] → 0, [σ ]/R0 → 0 also holds.29 Furthermore, the factor (1 + [σ ]σ) on the
left-hand sides of (4.246), (4.247), (4.248), (4.249) and (4.250) reduces to 1. This
reduction is tantamount to assuming that the density is kept constant in all those
terms of the physical balance laws which have the form ρdΨ/dt = . . . . However in
(4.249) there is a further reduction, namely in the pressure work term that involves
C. This term is also usually missing in oceanographic and limnological applications.

Problem 4.6 Consider Lake Baikal and perform a scale analysis, i.e. substitute
appropriate values for the scales and show that there are reasons for B ∼ 1 and
C ∼ 10−1 so that the pressure work term in the energy equation may not be ignored
in this case. Show, equally, that the same also holds true for the deep ocean. �

For all ‘regular’ cases it is, however, justified to ignore the pressure work term.
In this case the BOUSSINESQ approximated equations arise in their familiar form
as stated in (4.222), (4.223), (4.224) and (4.225) (with non-vanishing radiation and
tracer mass productions).

29 Actually, it follows from Table (4.2) that R0 ≤ 10−3, [σ ]/R0 is of order unity or larger. In such
a case, the term involving ∂σ/∂t in (4.245) should not be dropped. This situation is studied, e.g.,
in BEREZIN and HUTTER [2].
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Definition 4.20 The shallow-water equations are those physical balance laws of
mass, momentum, energy and tracer mass that emerge in the limit as the aspect ratio
A becomes infinitely small, A→ 0, while all other dimensionless scale parameters
are kept constant. This process is called the shallow-water approximation. �

Inspection shows that in (4.245), (4.246), (4.247), (4.248), (4.249) and (4.250)
the aspect ratio arises at two significant places:30 (i) linearly as a multiplier of the
second Coriolis parameter and (ii) quadratically as a multiplier of dw/dt . Invoking
the shallow-water approximation shows first that the second Coriolis parameter
disappears from all the equations. Tracing this back to its origin, the assumption
f̃ = 0 means that of the angular velocity of the Earth, the component tangential
to the Globe is ignored and only the component pointing towards the zenith is
accounted for, see Fig. 2.3. A second consequence of the shallow-water assump-
tion is that in the vertical momentum equation (4.248) the left-hand side vanishes,
thus reducing the vertical momentum balance law to a force balance between the
vertical component of the pressure gradient and the gravity (buoyancy) force; in
physical–dimensional variables

− ∂p

∂z
− ρg = 0. (4.251)

Definition 4.21 The reduction of the vertical momentum balance law to a balance
between the vertical component of the pressure gradient and the gravity force is
called the hydrostatic pressure assumption. �

It follows that the shallow-water approximation implies the hydrostatic pres-
sure assumption but not vice versa. Indeed when invoking the hydrostatic pressure
assumption the term A f̃w in the x component (east!) of the momentum balance
survives. The two assumptions are equivalent only when the frame of reference is
inertial. Alternatively, in a perturbative improvement of the shallow-water equations
the Coriolis effects involving f̃ are more important than the vertical accelerations
dw/dt .

Finally, (4.245), (4.246), (4.247), (4.248), (4.249) and (4.250) indicate when the
convective terms may be ignored. Their neglection is justified when the ROSSBY

number R0 is small. For long waves with small velocities, this is generally the case
but is not justified when large amplitudes are considered.

30 Equations (4.245), (4.246), (4.247), (4.248), (4.249) and (4.250) are already reduced by omitting
all dissipative terms. Written in full length, the aspect ratio would also arise quadratically in those
terms.
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Chapter 5
Conservation of Angular Momentum–Vorticity

We have expressed the fundamental physical ideas – that mass, momentum and
energy must be conserved – in the form of mathematical equations (balance laws)
and demonstrated that the balance of moment of momentum in its local expression
for a continuum requests that the (CAUCHY) stress tensor is symmetric, but beyond
this does not produce any further local equation. So, it appears that the conserva-
tion law of moment of momentum is superfluous. This is not so; correct is that
by requesting the CAUCHY stress to be symmetric and exploiting pointwise the bal-
ances of mass, momentum and energy then automatically also guarantee the balance
law of angular momentum to be identically satisfied. However, since physically, lin-
ear momentum is associated with the translational motion and angular momentum
with the rotatory motion, the rotational behavior can often better be identified if the
law of balance of angular momentum is explicitly employed.

Up to now, we did not actually use the information contained in the law of
conservation of angular momentum; however, lake, sea and ocean waters exhibit
rotatory motions of all scales, from basin-wide gyres down to the smallest swirls
and eddies (see Fig. 5.1). Conservation of moment of momentum imposes signifi-
cant constraints on natural flows. Fluid mechanics possesses a number of intricate
propositions related to the idea of conservation of rotatory motion to the water itself,
but equally also to ‘water structures’ like gyres, gravity currents and large streams.
In this chapter our intention is to analyse the phenomena ‘rotation’, ‘circulation’,
‘vorticity’ via a somewhat deeper approach and to use the inferences in the context
of lake or ocean dynamics.

5.1 Circulation

Our focus will be mostly ideal (inviscid) fluids, but not exclusively. We begin with

Definition 5.1 Let C be a closed, smooth, simple, i.e. double-point free material line
in R

3. The circulation of a flow field along C is then defined as the line integral

# :=
∮

C

v(x, t) · dx, (5.1)

K. Hutter et al., Physics of Lakes, Volume 1: Foundation of the Mathematical
and Physical Background, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-642-15178-1_5,
C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 5.1 Various vortical
motions visible due to
phytoplankton bloom in the
Baltic Sea on 02.08.1999
(satellite image from
http://visibleearth.nasa.gov/)

where v(x, t) is the velocity field, defined in a region encompassing C, and dx is the
line increment tangential to the line, and the time is held fixed. �

We emphasise that the closed curve C may be three dimensional. A direct impli-
cation of this definition is obtained, if the material time derivative of the circulation
is evaluated. Indeed,

#̇ = d

dt

∮

C

v · dx =
∮

C

(v̇ · dx + v · (dx)�)

=
∮

C

(v̇ · dx + v · (Ldx)) =
∮

C

(v̇ + LTv) · dx

=
∮

C

(

v̇ + grad

(
v2

2

))

· dx.

(5.2)

In this chain of transformations we have used the fact that L = grad v and LTv =
grad (v2/2), v2 = v · v, which can easily be demonstrated in component form:

(LTv) j =̂Li jvi = ∂vi

∂x j
vi = 1

2

∂

∂x j
(vivi )=̂

(

grad
v2

2

)

.
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Fig. 5.2 Simple closed curve
C, spanning an area AC . Note
there are an infinity of
surfaces spanned by C in R

3
n

In the next step of transformation we recall STOKES’ integral theorem; according
to it, one has (for a proof, see Chap. 2)

∮

C

ψ · dx =
∫∫

AC

curlψ · dA, (5.3)

in which ψ is any differentiable vector field in three dimensions and AC is any
smooth surface spanned by the closed curve C; see Fig. 5.2 with vectorial sur-
face element dA = nda. If we apply STOKES’ theorem to the vector field ψ =
grad (v2/2), we obtain

∮

C

grad

(
v2

2

)

· dx =
∫∫

AC

curl grad

(
v2

2

)

︸ ︷︷ ︸

0

· dA = 0. (5.4)

This vanishes, because the curl of any gradient field is identically zero. Applying
(5.4) to (5.2), we obtain

#̇ =
∮

C

v̇ · dx. (5.5)

This result holds for any differentiable vector field v(x, t) along any closed simple
smooth material curve C that can be shrunk to zero without leaving the region where
v̇ is continuously differentiable. The material need not be an ideal fluid, not even a
fluid. The result is formally interesting, because the total time derivative ‘outside’
the integral simply carries over to the integrand function in (5.5).

Let us now specialise (5.5) for an EULER fluid, i.e. an inviscid fluid of which the
momentum equation takes the form

v̇ = − 1

ρ
grad p + f . (5.6)

If we substitute this into (5.5), then we have

#̇ = −
∮

C

1

ρ
grad p · dx
︸ ︷︷ ︸

dp

+
∮

C

f · dx. (5.7)
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In the first integrand we have indicated that grad p · dx = dp is simply the incre-
mental change of p along C. In a barotropic ideal fluid p is a unique function of the
density p = p(ρ); thus dp/ρ can be viewed as the differential dP of a new function
P(ρ), the so-called pressure function; so,

∮

C

grad p · dx
ρ

=
∮

C

dp

ρ
=
∮

C

dP = 0, (5.8)

of which the integral vanishes, because C is closed, so that the initial and end points
of the integration are the same. Moreover, if we also assume that the body force
possesses a unique potential, i.e. f = −grad U , then with the same arguments we
have

∮

C

f · dx = −
∮

C

grad U · dx = −
∮

C

dU = 0. (5.9)

With (5.8) and (5.9) the right-hand side of (5.7) vanishes. This result is summarised
as

Theorem 5.1 (KELVIN’s circulation theorem, after Lord KELVIN, 1824–1907) In
any flow field of an ideal, barotropic fluid with conservative body forces, the cir-
culation, calculated for any material, closed, smooth curve, is temporally constant,
symbolically,

d#

dt
= d

dt

∮

C

v · dx =
∮

C

v̇ · dx = 0 ⇐⇒
⎧

⎨

⎩

ideal, barotropic fluid
with conservative
body forces

⎫

⎬

⎭
. (5.10)

�

This theorem and its derivation allow us to formulate a number of intricate corollar-
ies. To formulate these, we need the following definition:

Definition 5.2 A differentiable vector field ψ in a region of R
n, n � 3, is called

irrotational or vortex free, if throughout this region

curlψ = ∇ × ψ = 0. (5.11)

If the vector field ψ is the fluid velocity, then w = curl v is called the vorticity of the
flow field. �

With this definition, the corollaries of KELVIN’s theorem now read as follows:

(1) Consider an irrotational acceleration field, curl v̇ = 0, in an ideal, barotropic
fluid subject to a conservative body force. Then according to (5.8), (5.9), the
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conditions of KELVIN’s circulation theorem are satisfied. Therefore, # is con-
stant along material lines, but may vary from trajectory to trajectory.

(2) In a barotropic ideal fluid subject to a conservative body force the circulation is
a conserved quantity, #̇ = 0. Hence according to the above item, #̇ = 0 implies
curl v̇ = 0. So, if curl v = 0 in the entire flow field at the initial time, then
curl v = 0 at any later time. In words: An irrotational flow field in a barotropic
ideal fluid at an initial time remains irrotational for all time as long as the
velocity field remains differentiable, i.e. no discontinuities are formed.

We may interpret vorticity as the tendency to form vortices. In limnological and
oceanographic applications the dominant large-scale flows are the water currents
generated by wind, waves, density gradients, i.e. triggering mechanisms which, typ-
ically, generate horizontal water motions. The dominant component of the vorticity
vector is then

ζ := (curl v)z = k̂ · curl v = ∂v

∂x
− ∂u

∂y
, (5.12)

where k̂ is the unit vector in the z-direction, (u, v) are the horizontal velocity com-
ponents of the velocity field v; ζ is counted positive for counter-clockwise rotation
when viewed from above. This is the same sense as the Earth’s rotation in the north-
ern hemisphere. The assumption that the flow is basically two-dimensional holds
generally true, if the water flow in a lake or ocean extends over distances greater
than a few kilometres.

For a rigid rotation around the origin O of the Oxy coordinate system, the
velocity vector is tangential to circles, with linear speed vϕ = rω (positive for
counter-clockwise rotation), where ω is the angular velocity of this rigid-body
motion around the origin O . With reference to Fig. 5.3 the velocity components
are easily seen to be (u, v) = ω(−y, x), so that ζ = 2ω, according to (5.12). The
angular momentum of a parcel with density ρ at a distance r from O with respect
to O is given by ρ r2 ω.

Fig. 5.3 Rigid rotation about
the centre O with angular
velocity ω, the Cartesian
components being given by
u = −vϕ sin ϕ = −ω y,
v = vϕ cos ϕ = ω x
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A direct application of this last example is the planetary vorticity, experienced
by every body on the Earth. Everything on the Earth, including the oceans, the
atmosphere and the water in lakes, rotates with the Earth. The absolute velocity,
i.e. the velocity of an object on the Earth measured from an inertial frame, not par-
ticipating in the rotation of the Earth, is composed of the relative velocity (measured
by an observer on the Earth) and the planetary velocity, which is a rotation around
the NS axis with angular velocity Ω . This planetary velocity for any particle on
the Earth’s surface is a rigid rotation with vφ = (r cosφ)Ω and vorticity vector
ωplane = 2Ω k̂, with k̂ in the direction of the rotation axis. At the geographical
latitude φ, this vector has a component tangential to the Earth surface, f̃ , and a
component pointing towards the zenith, f , viz.,

ωplane = f̃ êy + f êz,

f̃ := 2Ω cosφ, f := 2Ω sinφ,
(5.13)

in which êy and êz are unit vectors tangential to the meridian and pointing towards
north and directed towards the zenith, respectively, as indicated in Fig. 5.4. More-
over, f and f̃ are the first and second CORIOLIS parameters. We have already seen
that in the shallow water equations, f̃ does not occur, so the first CORIOLIS param-
eter is more important, which is why oceanographers often identify the planetary
vorticity just with f and write ζplane = f . Its absolute value is zero at the equator
and increases towards the poles.

As another informative idealised flow situation, consider uniform flow in the
(x, y) plane along a step boundary as shown in Fig. 5.5. At the step a uniform
velocity profile encounters a zero velocity field. In an ideal fluid this discontinuity
will continue to the right of the step and form an idealised singular surface, called

(a) (b)

Fig. 5.4 (a) Diagram showing the derivation of the expression of the planetary vorticity of a fluid
parcel on the surface of the Earth at latitude φ. (b) Schematic diagram illustrating the variations of
the êz-component of the planetary vorticity with latitude; the circular arrows represent the value
of f in the direction êz (viewed from above) at different latitudes, redrawn from [1]
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(b)

Fig. 5.5 (a) Parallel flow of a viscous fluid across an abrupt step. Formation of a vortex sheet and
its transformation to a vortex layer, situation as established at an early time. (b) In steady state a
recirculation flow is established in the wake region

a vortex sheet. In a real, viscous fluid the velocity will diffuse into the wake region
with a velocity adjustment that gives rise to strong shearing, shown in idealised
form in Fig. 5.5a as a linear velocity profile within the vortex sheet of thickness
d(x). In this layer with linear velocity profile, the vorticity vector is perpendicular
to the flow plane and given by ζ = U/d(x). At the edge of the step, ζ = ∞, since
d = 0. Moreover, since d(x) grows with increasing x , the value of the vorticity
decreases with increasing x . In reality, because of the viscous effects a circulation
flow will be established in the wake region as illustrated in panel (b) of Fig. 5.5. Near
step-like boundary gyres may also occur, when the shoreline turns sharply to the
sides and a gyre forms in the shadow region carrying away the vorticity of the shear
flow.

Absolute vorticity is the sum of the relative and planetary vorticity,

curl vabs = curl vrel + 2Ω

=
(
∂w

∂y
− ∂v

∂z

)

êx +
(
∂u

∂z
− ∂w

∂x
+ f̃

)

êy +
(
∂v

∂x
− ∂u

∂y
+ f

)

êz

(5.14)
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in which the expression on the second line is written in the basis {êx , êy, êz} (see
Fig. 5.4). For plane motion or conditions for which the shallow-water approximation
is justified, the above relation reduces to

ζabs = ζrel + f, ζrel = ∂v

∂x
− ∂u

∂y
. (5.15)

Relative vorticity ζrel is usually much smaller than f , and it is greatest at the edges
of fast currents. To estimate orders of magnitudes for ζrel, consider the edge of some
along-shore current in a large lake under strong wind action, where the velocity
decreases by, roughly, 0.5(m s−1 km−1) = 5 × 10−4 s−1 = 0.43 cycles d−1 ∼= 0.5
cycle d−1 ∼= 1 cycle (2d)−1. Even this large value for ζrel is roughly a factor of 2
smaller than f . Typical values for lakes are of the order of 1 cycle per week, making
the neglect of the relative vorticity better justified.

All the above statements concern inviscid, barotropic fluids. An important ques-
tion is, however, how the circulation changes with time, when the fluid is non-
barotropic and viscous. In this case, expression (5.5) is still valid, but the accel-
eration via the balance of linear momentum and written in a non-inertial frame now
takes the form1

v̇ = − 1

ρ
grad p + 1

ρ
div T v + f − 2Ω × v, (5.16)

where T v is the dissipative viscous stress. Thus, (5.5) may be written as

#̇ = −
∫

C

1

ρ
grad p ·dx+

∫

C

1

ρ
(div T v) ·dx+

∫

C

f · dx

︸ ︷︷ ︸

(5.9)= 0

−
∫

C

2(Ω×v) ·dx (5.17)

for a conservative body force. The pressure term in (5.17) can be transformed using
STOKES’ theorem (5.3) as follows:

∫

C

grad p

ρ
· dx =

∫

AC

curl

(
grad p

ρ

)

· da = −
∫

AC

grad ρ × grad p

ρ2
· da. (5.18)

Therefore,

#̇ = −
∫

C

2Ω × v · dx +
∫

AC

grad ρ × grad p

ρ2
· da +

∫

C

1

ρ
(div T v) · dx. (5.19)

1 Strictly, the contributionΩ×(Ω×x) should be included on the right-hand side of (5.16). Instead,
we regard the pressure to be reduced by P$ = − 1

2$
2 r2⊥ · r2⊥, where r⊥ = r − (r · k̂)r .



5.1 Circulation 165

Evidently, there are three mechanisms which are responsible for the time rate of
change of the relative circulation: (1) the circulation due to the CORIOLIS force per
unit mass; (2) that due to the pressure per unit mass; and (3) the circulation due to
the viscous stresses per unit mass. The first term vanishes, if the frame of reference
is inertial (Ω = 0), the second term is zero if ρ = ρ(p) since then grad ρ is parallel
to grad p and the third term vanishes in an inviscid fluid. Let us take a closer look:

(1) Physically, the CORIOLIS effect can be better understood as follows
(PEDLOSKY [9]). Note that

− (2Ω × v) · dx = −2Ω · (v × dx) = −2Ω · nAv⊥dx, (5.20)

where nA is the unit vector parallel to v × dx and v⊥ =‖ v × dx
‖dx‖ ‖ is

the magnitude of the velocity component perpendicular to dx; see Fig. 5.6. The
rectangular area formed by v⊥ and dx represents the incremental area (Δ A)�
per unit time swept out by the moving material line C(t) at the point P . So, we
may write this as

(Δ A)� = ±v⊥dx, (5.21)

where the (+)-sign ((–)-sign) applies when (Δ A)� lies outside (inside) the loop
C2. Its projection perpendicular to Ω is given by

(� A$)
� = Ω · nAv⊥dx . (5.22)

Fig. 5.6 (a) Circulation loop showing at a particular point P the velocity vector v and the vectorial
line increment, nA is the unit vector parallel to v × d x and êx is the unit vector tangential to C
at P . v⊥ is the projection of v perpendicular to d x. Q is a point within C(t) lying on the surface
AC(t) spanned by C(t). (b) Material loop C shown at time t (dashed) and t +Δt (solid), Δt = 1,
showing the growth of AC(t) by the various (�A)�

2 To decide whether (Δ A)� lies outside or inside C(t), we choose a point Q inside C(t) and define
the vectors (see Fig. 5.6)

rx =
→

Q P, v⊥ = v − (êx · v)êx .
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Fig. 5.7 Lines of constant
pressure and lines of constant
density define the directions
of grad p and grad ρ. The
angle ψ , if different from
zero, gives a measure for
baroclinicity

Ψ

grad

(t)

grad  p

p = const.

ρ = const

ρ

Therefore,

−2(Ω × v) · dx = −2Ω(� A$)�

⇒ −
∫

C

2(Ω × v) · dx = −2$(A$)
�, (5.23)

where (AΩ)� is the projection of the area swept out by the closed curve C per
unit time perpendicular to Ω . Thus, in the presence of planetary vorticity Ω an
increase of the area leads to a decrease of the circulation.

(2) According to Fig. 5.7, grad ρ × grad p is positive, if the angle ψ between
grad ρ and grad p is less than 180◦. In this case the pressure term in (5.19) is
positive, contributing to a growth of the circulation.

(3) The contribution of the viscous stresses in (5.19) is evaluated here for a NEW-
TONian fluid without bulk viscosity. In this case

div T v = μ(div grad v − 2
3 grad (div v)),

so, if μ/ρ = ν is treated as a constant

∫

C(t)

1

ρ
(div T v) · dx = ν

∫

C(t)

(div grad v − 2
3 grad (div v)) · dx

≈ ν

∫

C(t)

(div grad v) · dx,
(5.24)

Then,

(Δ A)� lies

⎧

⎨

⎩

outside of C(t) if rx · v⊥ > 0.

inside of C(t) if rx · v⊥ < 0.

This definition works at least when C(t) lies in a plane and Q is in this plane.
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because div v is small. In this same approximation of near density preserving,
since curl (curl v) = grad div v − div grad v ≈ −div grad v we have

#̇frict ≈ −ν
∫

C(t)

curl (curl v) · dx = −
∫

C(t)

(curlw) · dx. (5.25)

For plane flow, for which the vorticity has a non-trivial contribution only in the
z-direction, this becomes

#̇frict = ν

∫

C(t)

(

−∂ζ
∂y

dx + ∂ζ

∂x
dy

)

. (5.26)

According to (5.25) the effect of the viscosity on the circulation is to reduce the
circulation around # by an amount proportional to the strength of the curl of
the vorticity.

5.2 Simple Vorticity Theorems

The ensuing analysis is facilitated, if we first define simple concepts connected with
vorticity. The concepts are analogous to those when flow tubes and flow filaments
are introduced.

Definition 5.3 A vortex line is an integral curve of the orientation field of the vortic-
ity vector field w = curl v, i.e. it is the solution of the ordinary differential equation

dx
dσ

= w(x, t),

σ = 0, x = x0,

⎫

⎬

⎭
(5.27)

where σ parameterises the vortex line through the point x = x0 and the time t is
held fixed. �

This definition allows us to form additional concepts. To this end, let C be a simple
double-point free, closed material curve C in a flow field with non-vanishing circu-
lation (# = 0). Consider now all those vortex lines which have their origin x0 on
the (closed) curve C. The area spanned by C is called the cross-section of the tube.
We are led then to the following.

Definition 5.4 (see Fig. 5.8)

(1) All vortex lines through a closed double-point free curve C form a vortex tube.
(2) A vortex tube with infinitesimal cross-section is called a vortex filament.
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Fig. 5.8 (a) A simple closed double-point free curve having with each vortex line one point in
common defines a vortex tube. (b) A vortex tube with infinitesimal cross-section is called a vortex
filament. (c) All vortex lines having one point in common with a generating curve form a vortex
surface

(3) All vortex lines having one common point with a generating (open or closed)
curve form a vortex surface. �

Let us now prove a number of simple lemmas. All these lemmas concern configura-
tions on the mantle surface of vortex tubes. We summarise them in the following.

Theorem 5.2

(i) The circulation of a flow field evaluated for a simply connected closed curve
C1 that lies on the mantle surface of a vortex tube is zero; see Fig. 5.9a.

(ii) For every closed curve that lies completely on the mantle surface of a vortex
tube and encircles it, the circulation has the same value, i.e. the vortex tube is
characterised by the value of its circulation; Fig. 5.9b.

(iii) Vortex tubes in ideal barotropic fluids cannot end in the interior of a fluid. They
must therefore be closed, i.e. torus-like, or they must end at boundaries of flow
fields.

(iv) Vortex tubes are material tubes. �

i

(a) (b) (c)

Fig. 5.9 (a) Circulation loop C1 completely situated on the mantle surface of a vortex tube, enclos-
ing a simply connected region. (b) Two circulation loops encircling a vortex tube, complemented
by a ‘cut’ along a boundary vortex line. The cut path is a circulation loop on the mantle surface of
the vortex tube encircling a simply connected region; this explains that #C1 = #C2 . (c) A vortex
tube assumed to end within the fluid. It has volume V and surface ∂V =M ∪A where M is the
mantle surface and A the tube cross-section spanned by the loop C
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Proof For statement (i), we evaluate the circulation around any closed double-point
free curve Ci that lies on the mantle surface of a vortex tube and can be shrunk to a
single point on this surface, as follows; see Fig. 5.9a,

#C1 =
∮

C1

v · dx =
∫∫

A1

w · n
︸︷︷︸

0

da = 0. (5.28)

In this chain of equalities we have employed the STOKES theorem and then have
used the fact that, on the mantle surface of a vortex tube, w = curl v and n are
perpendicular to one another.

To prove statement (i i), consider Fig. 5.9b showing two closed curves, C1 and C2,
enclosing the same vortex tube. If these curves are, in imagination, connected with
two neighboring vortex lines, then a closed line, completely on the mantle surface
of the vortex tube, is formed, of which the circulation as indicated in the graph must
vanish. Since the path along the two neighboring vortex lines is traversed in opposite
directions, these contributions cancel out so that

#C1 − #C2 = 0 ⇒ #C1 = #C2 . (5.29)

Since the choice of C1 and C2 is arbitrary, it follows that a vortex tube is charac-
terised by the value of its circulation.

To prove item (i i i) of the theorem, let us assume that the tube ends as shown in
Fig. 5.9c. Then, the portion of the vortex tube from a selected cross-section to its
end has finite volume V , and one may consider the divergence of the vorticity field,
divw = div curl v = 0, which vanishes identically for any differentiable field v.
Then, we may deduce the following chain of identities:

0 =
∫

V

divwdV
(1)=

∫

∂V=M∪A
w · ndA

(2)=
∫

A
w · ndA

(3)=
∮

C

v · dx = ΓC. (5.30)

Here, M is the mantle surface and A the cross-section as shown in Fig. 5.9c. The

volume integral of div w vanishes, since the integrand function vanishes. Step ‘
(1)=’

follows as a consequence of the divergence theorem. The integral over the mantle
surface,

∫

M
w · ndA = 0,

vanishes since w and n are perpendicular to one another on the mantle surface of

a vortex tube. This explains step ‘
(2)=’. At ‘

(3)=’ STOKES’ theorem is used for the
cross-sectional area spanned by C. However, this integral is not allowed to vanish,
since it is the circulation of the vortex tube.

It follows the assumption that the vortex tube ends within a barotropic ideal fluid
is faulty. Vortex tubes are either closed, torus-like objects as best manifested in
smoke rings, see Fig. 5.10, or they end at boundary walls.
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a

b

c

Fig. 5.10 Photographs of three well-known vortex phenomena. (a) Vortex at a turbine intake at
Arapuni in New Zealand (from E.N. da C.Audrade. New Scientist (1963)); (b) in October 1969
an explosion of gas created this vortex ring on the snow-capped volcano Mount Actna in Sicily
(copyright by Haroun Tazieff) (such rings are often created with cigarette smokes); (c) waterspout
or tornado over water (from http://www.srh.noaa.gov/)

To prove statement (iv) that vortex tubes are material tubes, we consider a cir-
culation loop on the mantle of a vortex tube as shown Fig. 5.9a. For this loop,
#Ci = 0. Since in a barotropic ideal fluid KELVIN’s theorem also holds, we also
have #̇Ci = 0. These two facts together prove the statement. They say that the value
of #Ci is carried with the material as the time proceeds, expressing exactly the fact
that vortex tubes are material tubes, if the fluid is barotropic and ideal.

One additional implication is that all differentiable flows of ideal and barotropic
fluids [these are the conditions that KELVIN’s theorem holds] which start from rest
are irrotational, since they are trivially irrotational, when they are at rest. This makes
also clear that this cannot hold in a flow involving shock discontinuities, since across
the shock differentiability is violated.

There are other theorems, e.g. about BERNOULLI surfaces, they are of lesser
significance here and will not further be touched upon.

5.3 Helmholtz Vorticity Theorem

A very important result that can directly be deduced from a transformation of the
momentum equation of an ideal fluid is the vorticity theorem due to HELMHOLTZ

(1821–1894). To derive it, we consider the EULER equations (valid for an ideal
fluid)
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∂v

∂t
− v × w + grad

(
v2

2

)

= − 1

ρ
grad p + f

and apply to it the curl operator; this yields

∂w

∂t
− curl (v × w) = −curl

(
1

ρ
grad p

)

+ curl f , (5.31)

in which w = curl v, as before. This equation is called the vorticity equation. We
also used the fact that curl grad (·) = 0. Recalling the vector identities

curl (a × b) = (grad a)b− (grad b)a − a div b− b div a,

curl (λb) = (grad λ)× b− λ curl b
(5.32)

(these can best be proved by using Cartesian index notation), using the first in v × w
and the second in grad p/ρ, viz.,

curl (v × w) = (grad v)w − (gradw)v − wdiv v,

curl

(
1

ρ
grad p

)

= grad

(
1

ρ

)

× grad p = − 1

ρ2
grad ρ × grad p

(5.33)

(here we used the fact that div w = 0 and curl grad p = 0), then (5.31) may,
alternatively, be written as

∂w

∂t
+ (gradw) v

︸ ︷︷ ︸

dw
dt

+w div v
︸ ︷︷ ︸

−w
ρ

dρ
dt

= (grad v)w + 1

ρ2
(grad ρ)× (grad p)+ curl f .

(5.34)

Note that the first two terms on the left-hand side of this equation are equal to dw/dt
and the last term can be transformed with the aid of the mass balance to −w 1

ρ
d ρ
dt .

All three terms together are also expressible as ρ d
dt (w / ρ). Thus, (5.34) also takes

the alternative form

d

dt

(
w

ρ

)

= (grad v)
w

ρ
+ 1

ρ3
grad ρ × grad p + 1

ρ
curl f . (5.35)

This is the first form of the HELMHOLTZ equation. It is often simply referred to
as the vorticity equation and holds in this form for an ideal, inviscid fluid. For a
barotropic fluid p = p(ρ) and grad p = (dp/d ρ)grad ρ, the term with the cross-
product on the right-hand side of (5.35) vanishes since grad ρ is parallel to grad p.
Moreover, if the specific volume force is conservative, f = −grad U , then the
HELMHOLTZ theorem may be summarised as follows:
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Fig. 5.11 Left: Hermann Ludwig Ferdinand von HELMHOLTZ (http://en.wikipedia.org/).
Right: Hans ERTEL, a pioneer in geophysical sciences, meteorology and hydrodynamics
(http://verplant.org/history-geophysics/)

Hermann Ludwig Ferdinand von HELMHOLTZ (31 August 1821 to 8 September 1894) was a
German physician and physicist who made significant contributions to many areas of modern
science. In physiology and psychology, he is known for his mathematical description of the
eye, theories of vision, ideas on the visual perception of space, color vision research, and on
the sensation of tone, perception of sound and empiricism. In physics, he is known for his
theories on the conservation of energy, work in electrodynamics, chemical thermodynamics
and on a mechanical foundation of thermodynamics. In analysis, he is known for the theorem
that a differentiable vector field can be split into irrotational and solenoidal parts, a theorem of
significance in mathematical physics. As a philosopher, HELMHOLTZ is known for his philos-
ophy of science, ideas on the relation between the laws of perception and the laws of nature, the
science of aesthetics and ideas on the civilising power of science. A large German association
of research institution, the HELMHOLTZ Gesellschaft (Association), is named after him.

Hans ERTEL (24 March 1904 to 2 July 1971) was a German natural scientist and a pioneer in
geophysics, meteorology and hydrodynamics. He developed into a capable theoretical physi-
cist early on and was capable to publish research results or theoretical approaches in this
subject already as a young man. ERTEL’s famous potential vorticity theorem of 1941–1943
belongs today to the basic work of modern geo- and astrophysics. The main areas of emphasis
in his research were physical hydrography (more than 60 works), theoretical hydrodynamics,
special hydrodynamics of the northern German seas and coasts, hydraulic nomography, hydro-
graphic cartography, the history of European weather and theoretical fluid mechanics. As a
member of the Deutsche Akademie der Wisschaften zu Berlin, East Germany (DAW, German
Academy of Sciences Berlin), ERTEL founded and led the Institute for Physical Hydrography
of this academy. In 1949, he was elected to be a full member of the DAW and was its vice
president from 1951 to 1961. The research on geo-ecology, which began under his leadership,
is considered to be pioneering work today.

The text is partly based on http://verplant.org/history-geophysics/ and http://en.wikipedia.org/.

Theorem 5.3 (Helmholtz’ vorticity theorem)3 Consider an ideal, barotropic,
compressible or density-preserving fluid exposed to a conservative force field. Let
v(x, t) be its differentiable velocity field, w(x, t) its vorticity field and ρ(x, t) the
density field. Then,

3 For a biographical sketch see Fig. 5.11.
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d

dt

(
w

ρ

)

= (grad v)
w

ρ
, (5.36)

or, if we introduce the vorticity per unit mass ω by w = ρ ω,

d

dt
(ω) = (grad v)ω. (5.37)

�
The proof is immediate from (5.35). This theorem can easily be explored with results
that have important theoretical implications.

As a first application, consider plane flow in the (x, y)-plane. Then,

grad v =

⎛

⎜
⎜
⎜
⎜
⎝

∂u

∂x

∂u

∂y
0

∂v

∂x

∂v

∂y
0

0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

and w =

⎛

⎜
⎜
⎜
⎜
⎝

0

0

∂v

∂x
− ∂u

∂y

⎞

⎟
⎟
⎟
⎟
⎠

, (5.38)

so that (grad v)w = 0. In this case, (5.37) reduces to

dω

dt
= 0 ⇒ ω = const on particle trajectories (5.39)

or since for plane flow ω = (ζ/ρ)k̂ ,

d

dt

(
ζ

ρ

)

= 0 ⇒ ζ

ρ
= const on particle trajectories. (5.40)

The vorticity per unit mass is a conserved quantity, a vector perpendicular to the
plane of motion that is carried along with the fluid particle.

The behavior is quite different in three-dimensional flow. In this case, the right-
hand side of (5.35) or (5.37) does not necessarily vanish. More specifically, (5.37)
can easily be integrated, the result being

ω(t) = F(t)ω(τ ) = F(t)ω0, (5.41)

where t is the present time, while τ is the initial time for which F = 1, and F is the
deformation gradient

F = ∂χ(X, t)

∂X
. (5.42)

To corroborate result (5.41), we take

ω̇ = Ḟω(τ ) = ∂ ẋ
∂X

ω(τ ) = ∂v

∂x
∂χ

∂X
ω(τ )

= (grad v)F(t)ω(τ ) = (grad v)ω(t),

which is (5.37), as expected.
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To interpret result (5.41) recall that for a continuous motion x = χ(X, t) the
material line increment dx at time t is related to the corresponding vectorial line
increment at the initial time, dX , according to

dx = FdX . (5.43)

This agrees formally with (5.41) and implies the following: The vorticity vectors per
unit mass, ω, change with time exactly as vectorial material line elements do. For
constant density, i.e. density-preserving fluids, this can also be expressed as follows:
When vortex filaments are stretched the specific vorticity increases, when they are
squeezed it decreases.

A further property can directly be obtained from (5.37) or (5.41) by decompos-
ing the deformation into strain (rate) and rotation (rate). Recall that the velocity
gradient,

grad v = D +W ,

D := sym(grad v),W = skw(grad v)
(5.44)

can be additively decomposed into its symmetric and skew-symmetric parts, and
that the symmetric part, D, called strain rate tensor or stretching tensor describes
the rate of strain at a point, while W is the vorticity tensor that describes the local
rotation and is related to the vorticity vector according to

W a = w × a for all a = 0. (5.45)

With decomposition (5.44), (5.37) reads

ω̇ = Dω +Wω. (5.46)

According to this formula, vortex lines change per unit time by the amount Dω
through stretching and by the amount Wω through rotation.

The same conclusion, now integrated in time, can also be drawn from (5.41). To
this end, recall the theorem of polar decomposition of F (see the polar decomposi-
tion theorem in chapter 4). According to this theorem the (non-singular) deformation
gradient F can be decomposed as follows (note, this is a product decomposition):

F = RU = V R. (5.47)

Here, U and V are called right and left stretch tensors and R is an orthogonal
transformation, RRT = 1; moreover, U2 = FT F and V 2 = F FT. It is shown
in kinematics of continuous motions that U and V describe the strain that has
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accumulated since the onset of the motion, while R describes the accumulated rota-
tion. So, according to (5.41) and (5.47)

ω = RUω0 = V Rω0. (5.48)

In the first representation the total change of a vortex filament is represented as a
stretch followed by a rotation; in the second this order is reversed (see Fig. 4.2).
In short one says: Vortex filaments in three-dimensional motions are deformed by
stretching and tilting.

The HELMHOLTZ vorticity theorem must also be applied to ideal fluids referred
to a permanently rotating frame of reference with constant angular velocity Ω . In
this case the EULER equations of a barotropic fluid subject to a conservative body
force take the form4

∂v

∂t
− v × w = −grad

(

P(ρ)+ v2

2
+U − |Ω|r̂

2

2

)

− 2Ω × v. (5.49)

Here P is the pressure function of the barotropic fluid, U is the potential of the spe-
cific body force, Ω r̂2/2 is the potential due to the rotation of the frame of reference
due to (Ω × x) × x, see (5.27), (5.72), (5.73), and the last term on the right-hand
side is the CORIOLIS force. For Ω = constant equation (5.49) can also be rewritten
as

∂v

∂t
− v × (w + 2Ω) = −grad

(

P(ρ)+ v2

2
+U − Ω2r̂2

2

)

, (5.50)

and if we take its curl, the term on the right-hand side vanishes and the left-hand
side becomes

∂(w + 2Ω)

∂t
− curl (v × (w + 2Ω)) = 0, (5.51)

in which we have added ∂(2Ω)/∂ t = 0.
The remainder of the computations now parallels that from (5.31) to (5.35) and

will not be repeated here. The result is

Theorem 5.4 (Helmholtz’ vorticity theorem in a permanently rotating frame)
Consider an ideal, barotropic, compressible or density-preserving fluid. Let v(x, t)
be its differentiable velocity field, w(x, t) its vorticity field, Ω the angular velocity
of the frame and ρ(x, t) the density field. Then

d

dt

(
w + 2Ω

ρ

)

= (grad v)

(
w + 2Ω

ρ

)

. (5.52)

4 Note, r̂ is the radial distance of the point in question from the axis of rotation.
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The sum w + 2Ω is called the absolute vorticity. �

The solution of equation (5.52) is, of course, again given by

(
w + 2Ω

ρ

)

(x, t) = F(x, t)

(
w + 2Ω

ρ

)

0
(5.53)

and interpretations of vortex stretching and vortex tilting are the same as before,
now applied to the absolute vorticity.

Let us now apply (5.52) to plane flow or flows for which the shallow-water
assumption is justified. Then f̃ = 0, ωabs = (ζ + f )k̂ and the right-hand side
of (5.52) vanishes. So,

d

dt

(
ζ + f

ρ

)

= 1

ρ

dζabs

dt
− 1

ρ2

dρ

dt
ζabs

!= 0, (5.54)

which, on using the mass balance equation ρ̇ = −ρ( ∂u
∂x + ∂v

∂y ) takes the form

dζabs

dt
+ ζabs

(
∂u

∂x
+ ∂v

∂y

)

= 0

or

d(ζ + f )

dt
+ (ζ + f )

(
∂u

∂x
+ ∂v

∂y

)

= 0. (5.55)

This equation can also be derived by different methods. The derivation from (5.52),
however, shows particularly clearly that (5.55) does neither contain any vortex
stretching nor vortex tilting since the right-hand side of (5.52) vanishes for the
derivation of (5.55). It is also clear where the second term on the left-hand side
comes from: It is due to density variations.

A further consequence of Theorem 5.4 is

Theorem 5.5 (Taylor–Proudman theorem) A steady slow flow of a density-
preserving fluid in a rotating system is (essentially) plane. The flow takes place in a
plane perpendicular to the axis of rotation. �

For the proof we note that Ω is constant; so, of the left-hand side of (5.52) only
the quadratic term (grad w)v/ρ survives, which is of higher order small. The right-
hand side reduces in first order to (grad v)(2Ω/ρ); so,

(grad v)Ω +O(2) = 0, (5.56)

where O(2) are terms of second order small. If we choose a Cartesian coordi-
nate system such that its z-axis is in the direction of Ω , then this equation can be
interpreted as ∂ v/∂ z ∼= 0, i.e. the velocity field remains unchanged in the direction
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of Ω . Changes or variations in the velocity field only occur in planes perpendicular
to Ω . The velocity field is essentially plane and perpendicular to Ω .

5.4 Potential Vorticity Theorem

Another theorem that is important in rotating fluids and has found applications in
meteorology and oceanography is the vorticity theorem due to ERTEL. It is known
as the Theorem of conservation of potential vorticity.5 To derive it, we start from
(5.52), HELMHOLTZ’ vorticity theorem for a barotropic ideal fluid referred to a
rotating frame. Moreover, we assume that a differentiable scalar function λ(x, t) is
given for which the evolution equation

dλ(x, t)

dt
= ψλ(x, t) (5.57)

holds, where ψλ(x, t) is a prescribed differentiable function. We now take (5.52)
and multiply both sides scalarly with grad λ. This yields

d

dt

(
w + 2Ω

ρ

)

· (grad λ) = (grad v)

(
w + 2Ω

ρ

)

· (grad λ). (5.58)

Alternatively, we may prove the vector identity
(
w + 2Ω

ρ

)

· d

dt
(grad λ) =

(
w + 2Ω

ρ

)

· grad

(
dλ

dt

)

−(grad λ) ·
(

grad v

(
w + 2Ω

ρ

))

.

(5.59)

It may most easily be proved using Cartesian index notation. When equations (5.58)
and (5.59) are added together, the two terms on the left-hand side can be combined
to yield

d

dt

(
1

ρ
(w + 2Ω) · grad λ

)

, (5.60)

while the right-hand side becomes

1

ρ
(w + 2Ω)grad

(
dλ

dt

)

=
(
w + 2Ω

ρ

)

· gradψλ, (5.61)

where (5.57) has been used. We now introduce

5 ERTEL, Hans (1904–1971) (see Fig. 5.11) published his potential vorticity theorem in 1942 [3]
with follow-up papers in the same year [4–6], but his work remained, relatively unknown until
TRUESDELL [12] proved that ERTEL’s vorticity theorem holds in average for any medium suffering
no tangential acceleration on any boundary and summarised the work in a survey in the Handbuch
der Physik [13]. HIDE [7] published a magnetic analogue of his potential vorticity theorem and
KATZ [8] and TREDER [11] applied it to relativity. A selection of papers is given by SCHRÖDER

and TREDER [10].
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Definition 5.5 Let w = curl v be the vorticity field of the velocity field of an ideal
barotropic fluid and λ(x, t) a differentiable scalar field. Let, moreover, Ω be the
constant angular velocity of the frame of reference. Then

πλ := 1

ρ
(w + 2Ω) · grad λ (5.62)

is called the potential vorticity associated with λ. �

Equating (5.60) and (5.61) yields the following.

Theorem 5.6 (Potential vorticity theorem, Ertel’s vorticity theorem) Let v be
the velocity field of an ideal, barotropic compressible or density-preserving fluid
and w+2Ω its absolute vorticity. Let, moreover, λ(x, t) and ψλ(x, t) be two differ-
entiable scalar fields which satisfy the evolution equation (5.57). Let, furthermore,
the potential vorticity πλ associated with λ be defined as in Definition 5.5. Then,
this potential vorticity obeys the evolution equation

dπλ
dt

=
(
w + 2Ω

ρ

)

· gradψλ. (5.63)

�
Note there is not only one single potential vorticity equation, but there are many;
each λ and ψλ, satisfying (5.57), gives rise to its own potential vorticity equation.

If ψλ is not a function of x, ψ = ψ(t), with grad ψλ = 0, then (5.63) implies
the following.

Theorem 5.7 (Potential vorticity corollary) Assume that the conditions of Theo-
rem 5.6 are fulfilled, but that, specially, ψλ is at most a function of the time. Then,
the potential vorticity is conserved along particle trajectories, in formulae

dλ

dt
= ψλ(t) ⇒ dπλ

dt
= 0. (5.64)

�
Obviously, for ψλ = 0 the same conclusion holds.

Let us give a number of examples:

(1) Consider flow of an ideal fluid parallel to the (x, y)-plane which itself is rotating
with angular velocity Ω = $êz . Select

λ = z, grad λ = êz, ψλ = 0, gradψλ = 0. (5.65)

Then, according to (5.62)

πλ=z = ζ + 2$

ρ
. (5.66)
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This potential vorticity agrees with the absolute vorticity per unit mass. With
(5.65) and (5.66), the conservation law of potential vorticity is the same as the
HELMHOLTZ vorticity theorem. Indeed, forming dπλ=z/dt = 0 yields

d

dt
(ζ + 2$)− ρ̇

ρ
(ζ + 2$) = 0 (5.67)

or when using the mass balance equation ρ̇/ρ = −(∂u/∂x + ∂v/∂y),

d

dt
(ζ + 2$)+ (ζ + 2$)

(
∂u

∂x
+ ∂v

∂y

)

= 0, (5.68)

which is the same as (5.55), if we set 2$ = f .
(2) Consider now a barotropic, density-preserving fluid in the shallow water

approximation for which f̃ = 0. Let

z = b(x, y, t) and z = b(x, y, t)+ H(x, y)+ ξ(x, y, t) (5.69)

be the basal and free surfaces, respectively, see Fig. 5.12, and choose λ and ψλ
as in (5.65) of example (1). Then, dropping the constant density in (5.66), the
potential vorticity equation (5.64)2 takes the form

d

dt
(ζ + f ) = 0. (5.70)

It is known that in a barotropic fluid the horizontal velocity components (u, v)
are independent of z. This implies that also ζ + f is independent of z. So, we
wish to average (integrate) (5.70) over depth,

b+H+ξ∫

b

d

dt
(ζ + f )dz = 0, (5.71)

Fig. 5.12 Vertical cut
through a lake or ocean,
indicating the free and
bottom surfaces. Note, ξ is
the surface elevation
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where ξ is the free surface deflection. Interchanging integration and differenti-
ation and using LEIBNIZ’ rule transform (5.71) into

d

dt

b+H+ξ∫

b

(ζ + f )dz − (ζ + f )|b+H+ξ

(
db

dt
+ d(H + ξ)

dt

)

+ (ζ + f )b
db

dt
= 0.

(5.72)
With the z-independence of (ζ + f ), (5.72) simplifies to

d

dt
((ζ + f )(b + H + ξ))− (ζ + f )

d

dt
(H + ξ) = 0 (5.73)

or, after a simple transformation, if b does not depend on time,

d

dt

(
ζ + f

H + ξ
)

= d

dt
〈π〉bt = 0. (5.74)

The function

〈π〉bt :=
ζ + f

H + ξ (5.75)

is called the barotropic (depth-averaged) potential vorticity. It is constant along
horizontal projections of the particle trajectories. Note that in the derivation of
(5.74) from (5.73) a division by (H + ξ) is used; this implies that (H + ξ)

should never become zero and requires that vertical shorelines are introduced
such that Hshore > max

along shore
(| ξ |), as indicated in Fig. 5.12. In lakes H �| ξ |,

over most part of the lake domain (except shallow shore regions). Ignoring the
latter, one may make use of the rigid lid assumption and drop in (5.75) ξ in
comparison to H . In that case the barotropic potential vorticity is

〈π〉rigid lid
bt = ζ + f

H
. (5.76)

There is a second, alternative way of deriving (5.75), using a different potential
vorticity, which equally leads to (5.74), (5.75). To see this, write (5.69) as

Fb := b(x, y, t)− z ≡ 0,

Fs := H(x, y)+ b(x, y, t)+ ξ(x, y, t)− z ≡ 0
(5.77)

and observe that H(x, y)+ z = c1 = const. Then choose

λε := H + z

Fs − Fb + ε =
H + z

H + ξ + ε =
c1

ε
, (5.78)
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where ε > 0 is a small positive constant, which is needed to make λε bounded
in the entire lake domain. (We formally keep ε in all formulae and take the
limit ε → 0 in the final formulae.) With (5.78) we may define for a density-
preserving fluid (ρ = const)

πεH = (w + 2Ω) · grad λε = (w + 2Ω) · grad

(
H + z

H + ξ + ε
)

and obtain with ψλε = 0, the result dπbt/dt = 0. In the shallow water approxi-
mation this reduces to

πεbt =
(ζ + f )

H + ξ + ε →
ε→0

ζ + f

H + ξ →
ξ→0

ζ + f

H
, (5.79)

which is the same as (5.76). In (5.79) we have regularised the problem by choos-
ing an adequate value for ε, while in (5.76) vertical shorelines were used to
regularise the formula.
As an example, consider a column of homogeneous water in a current encom-
passing the entire depth of a real basin. Assume that the column is spinning
(see Fig. 5.13) about its own axis, in the anticlockwise direction on the northern
hemisphere, i.e. it has positive relative vorticity. What will happen if the rotating
column moves into a region of greater depth? It will become longer and thinner,
the water will spin faster, i.e. its relative vorticity will increase (i.e. become
more positive). Looked at this from the point of view of angular momentum,
the angular momentum of each particle of the water is mr2ω. When the col-
umn stretches, the average radius r decreases and so, for angular momentum
to be conserved, the speed of rotation ω must increase. Because of the effect
of changes of the length H of the water column, the property that is actually
conserved is therefore not ( f + ζ ), the absolute vorticity, but ( f + ζ )/H , the
potential vorticity.
The above argument ignores f and is therefore unrealistic for water bodies
of greater extent. For large-scale motions in the ocean, away from coastal

small
average larger

large
average smallr

(vorticity)

v

2rm
r m

ω ω

ω

ω

Fig. 5.13 Production of relative vorticity by the changes in the height of a fluid column. As the
vertical fluid column moves from left to right, vertical stretching reduces the moment of inertia of
the column, causing it to spin faster. The angular momentum of a particle of mass m moving with
angular velocity ω in a circle of radius r is given by mr2ω (after [1], with changes)
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boundaries and other regions of large current shear, f is very much greater
than ζ . This means that ( f + ζ )/H is approximately equal to f/H , and it is
f that must change in response to changes in H , and as f is simply a function
of latitude, it can only be changed by the water changing its latitude. The fact
that conservation of f/H causes currents to swing equatorwards and polewards
over topographic highs and lows, respectively, is sometimes referred to as topo-
graphic steering; see Fig. 5.14. Lines of constant f/H are called isotrophs.
In studies of potential vorticity in the real ocean, H , the ‘depth of the water
column’, need not be the total depth to the sea floor. It may be the thickness
of the body of water under consideration, and so it could, for example, be the
depth from the bottom of the permanent thermocline to the sea floor. Thus,
the conservation of potential vorticity in fact couples changes in depth, relative
vorticity and changes in latitude. All three interact and (i) changes in the depth
H of the flow alter its relative vorticity ζ (see Fig. 5.13), while (ii) changes
in latitude require a corresponding change in ζ . As a column of water moves
equatorward, f decreases and ζ must increase.
The concept of conservation of potential vorticity may be used to derive infer-
ences of far-reaching consequences. For instance, in large basins of ocean scale,
the flow tends to be zonal if the water depth is constant or it follows the isotrophs
f/H =constant; this constant is equal to πbt when the rigid lid assumption and
| ζ |� f are imposed. Small deviations of the flow from the isotrophs, e.g.
due to wind, cause small changes in ζ , leading to a small meridional compo-
nent to the flow. If the depth is changing (say, a barotropic flow encounters a
subsurface ridge, Fig. 5.14a), the (meso-scale) flow tends to keep the isobath.
At larger scale, if the depth decreases, ζ + f must also decrease, which requires
that f decreases; as a result, the flow tends to turn towards the equator. If the
change in depth is sufficiently large, so that no change in latitude could conserve

Equator

x

z

y

H(x)

x

x

z

y

D(x)

xa) b)

Fig. 5.14 (a) Barotropic flow over a subsurface ridge is turned equatorward to conserve potential
vorticity. Top view of water flow parallel to the equator (redrawn, initially from DIETRICH et al.
[2]). (b) Turbidity flow, crossing a submarine canyon, divides into the sediment-rich heaviest part,
which rushes down-slope due to gravity, and the remainder of the flow, which keeps on moving
along the same isobath and even up-slope to conserve the vorticity of the initial flow
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potential vorticity, the flow will be unable to cross the ridge. This situation is
called topographic blocking.
Dynamics of a turbidity flow, crossing a submarine canyon, provides another
example of the influence of vorticity (Fig. 5.14b). Such flows usually have large
relative vorticity and carry lots of sediments. Having approached the canyon,
the flow divides into two currents: the sediment-rich heaviest part rushes down-
slope, while the remainder of the flow keeps on moving along the same isobath,
i.e. upwards in the canyon; see ZATSEPIN [14].

(3) This is an example for a flow state under baroclinic conditions. If we let

λ = ρ,
dλ

dt
= dρ

dt
= −ρ div v = ψλ,

gradψλ = grad

(
dρ

dt

)

= −grad (ρ div v).
(5.80)

The baroclinic potential vorticity may then be defined as

πbc = πλ=ρ =
(
w + 2Ω

ρ

)

· grad ρ, (5.81)

and the balance law of potential vorticity, (5.63), becomes

d

dt

[(
w + 2Ω

ρ

)

· grad ρ

]

=
(
w + 2Ω

ρ

)

· grad

(
dρ

dt

)

. (5.82)

So, in this case λ is strictly not conserved along particle trajectories, and neither
is the baroclinic potential vorticity.
In the ocean or a lake under summer stratification, the density can be decom-
posed as

ρ(x, y, z, t) = ρ0(z)+ ρ′(x, y, z, t). (5.83)

In the metalimnion, i.e. the vicinity of the thermocline we have ρ0 � ρ′.
Moreover, grad (dρ/dt) = grad (dρ′/dt) can be expected to be very small.
So, approximately in the shallow water approximation, for which f̃ = 0, the
baroclinic potential vorticity reduces to

π
app
bc ≈ ζ + f

ρ0

dρ0

dz
≈ f

1

ρ0

dρ0

dz
, (5.84)

where the further approximation on the far right follows from the inequality
| ζ |� f . So, the potential vorticity πapp

bc is approximately conserved.
Formula (5.84) is useful, because its far right approximation allows the
potential vorticity of various layers of a lake – epilimnion, metalimnion and
hypolimnion – to be determined directly from hydrographic data without
knowledge of the velocity field.
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Chapter 6
Turbulence Modelling

6.1 A Primer on Turbulent Motions

The first basic thoughts and experiments on turbulence are due to REYNOLDS [20]
who studied the flow of a fluid through pipes with circular cross-sections. He recog-
nised (by adding dye through a pipette to the fluid) that, basically, two flow regimes
exist. In one case, the so-called laminar flow, the dye forms a coherent thin filament;
in the second case, known as turbulent flow, the dye filament is torn very quickly
after it left the nozzle of the pipette and is spread over the entire cross-section of
the pipe; Fig. 6.1. If one slowly increases the discharge in the pipe, starting from
laminar conditions, one observes a sudden change from laminar to turbulent flow.
The critical quantity that characterises this change is the REYNOLDS number

Re = V D

ν
, if Re > 2000 then the flow is turbulent,

where V, D, ν are the mean axial velocity, the inner pipe diameter and the kine-
matic viscosity of the fluid. The velocity profiles, averaged over a time interval
(which eliminates rapid fluctuations), look like as shown in Fig. 6.1b. The tran-
sition from the laminar to the turbulent regime takes place between Re = 500
and 2000. Unless precursory measures are taken, the flow is always turbulent when
Re > 2000.

6.1.1 Averages and Fluctuations

In Fig. 6.1b the velocity profile for the turbulent flow was drawn for the temporally
mean velocity, because the actual velocity profile is fraught with strong fluctuations,
which appear to be random. Such fluctuations are seen in turbulent flows in time
series of the velocity at a fixed point (see, e.g. Fig. 6.2) as well as spatial variations
at fixed time. The time and space scales of these pulsations are for most applications
not relevant; one is rather interested in some average behaviour, for which space and
time scales extend over many typical ‘periods’ of the turbulent fluctuations. This

K. Hutter et al., Physics of Lakes, Volume 1: Foundation of the Mathematical
and Physical Background, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-642-15178-1_6,
C© Springer-Verlag Berlin Heidelberg 2011
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a) b) laminar flow

parabola

turbulent flow

logarithmic profile

Fig. 6.1 (a) Laminar and turbulent flow in a cylindrical pipe. To visualise the flow dye is added
to the water through a capillary pipette. The nozzle of this pipette is visible at the left end of the
photographs on the left (courtesy Royal Soc. London [20]). (b) Mean velocity profiles in a circular
pipe under steady laminar and turbulent conditions, respectively
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Fig. 6.2 Typical example of a measured signal. Upper panel: Time variations of the northward
component of current speed during the period of 100 h measured by ADCP in the middle of Lake
Constance at a depth of 2 m on 24–28 October 2001 (courtesy of Andreas Lorke, data delivered to
[2]). Lower panel: Water temperature in laboratory flume, measured with the time step of 5 ms
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suggests to additively decomposing the velocity into two contributions, the mean
value1 〈v〉 and the fluctuations v′,

v = 〈v〉 + v′. (6.1)

If the mean value 〈v〉 is taken as a temporal average, defined by

〈v〉T(x, t) := 1

T

∫ t+T/2

t−T/2
v(x, τ ) dτ, (6.2)

then this value depends on the large-scale time interval of averaging, T , and so does
the ‘subscale’ fluctuation velocity v′. It is also fairly obvious that the method of
splitting an oscillating variable into a mean value and a fluctuating quantity depends
on the exact mathematical properties of the averaging operator, often called filter.

6.1.2 Filters

The first filter used in describing the turbulent fluid behavior is essentially due to
REYNOLDS. For a biographical sketch, see Fig. 6.3. It is based on the assumption
that, on a local scale, the pulsations have the properties of a stationary random
process. If u(x, t) is the variable in question, it assumes a certain value with a given
probability. If ℘ is this probability, then u(x, t, ℘) denotes the probability density
with which the function u(x, t) assumes the value assigned to ℘. The statistically
most probable value of u(x, t) is obtained by integration over all probabilities,
namely,

〈u〉S(x, t) :=
∫ ∞

0
u(x, t, ℘) d℘, (6.3)

where
∫ ∞

0
d℘ = 1. (6.4)

This filter satisfies the following properties

1 The choice, how large these time and space scales are, is problem dependent. For problems of
geophysical fluid dynamics, meteorology, oceanography and limnology, they may be kilometers
and hours or days, in a technical application of aerodynamics or machine hydrodynamics, they
may be millimeters and milliseconds. So, the choice of mean values is always connected with
some subjective reasoning.
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Fig. 6.3 Left: Osborne Reynolds in 1903. Right: Ludwig Prandtl (http://en.wikipedia.org/)

Osborne REYNOLDS (23 August 1842 to 21 February 1912) was a mathematician with
degree from Cambridge University (1867) and prominent innovator in the understanding of
fluid dynamics. He was appointed professor of engineering at Owens College in Manchester,
the first professor in UK university history to hold the title of ‘Professor of Engineering’.
REYNOLDS most famously studied the conditions in which the flow of fluid in pipes tran-
sitioned from laminar flow to turbulent flow. His studies of condensation and heat transfer
between solids and fluids brought radical revision in boiler and condenser technology. He also
proposed a mathematical procedure which is now known as REYNOLDS averaging of turbulent
flows. This led to the ‘bulk’ description of turbulent flow as expressed in the REYNOLDS-
averaged NAVIER–STOKES equations. His final theoretical model, published in the mid-1890s,
is still the standard mathematical framework used today. Another subject which REYNOLDS

studied in the 1880s was the mechanical behaviour of granular materials.

Ludwig PRANDTL (4 February 1875 to 15 August 1953) was a German engineer, a pioneer
in the development of rigorous systematic mathematical analyses which he used to underlay
the science of aerodynamics. In the 1920s he developed the mathematical basis for subsonic
aerodynamics including transonic velocities. His studies identified the boundary layer, thin
airfoils and lifting-line theories. In 1901 PRANDTL became a professor of fluid mechanics
at the Technische Hochschule Hannover, where he developed many of his most important
theories. In 1904, now professes at the University in Göttingen, he delivered a groundbreaking
paper, Fluid Flow with Very Little Friction, in which he described the boundary layer, its
importance for drag and streamlining and the flow separation as a result of the boundary
layer, clearly explaining the concept of stall for the first time. In 1918–1919, he published
the LANCHESTER–PRANDTL wing theory. Considerable work was included on the nature
of induced drag and wingtip vortices and turbulence. Other works examined the problem of
compressibility at high subsonic speeds, known as the PRANDTL–GLAUERT correction. He
also worked on meteorology, turbulence, plasticity and structural mechanics.

The text is based on http://en.wikipedia.org/.
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6.1.2.1 Properties of the Statistical Filter

(i) Linearity: Let u, w be two quantities of a turbulent field and a a real number.
Then,

〈u + aw〉 = 〈u〉 + a〈w〉. (6.5)

(ii) Commutability with differentiations: The filter operation must commute with
any temporal or spatial differentiation

〈∂u〉 = ∂〈u〉, where ∂ ∈
{
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂t

}

. (6.6)

(iii) Invariance under multifold averaging

〈〈u〉〉 = 〈u〉

or more generally

〈〈· · · 〈u〉 · · · 〉〉 = 〈u〉. (6.7)

The reader may easily show that the statistical filter (6.3) satisfies all these three
properties. On the other hand, the reader can easily show that the temporal average
(6.2) does not satisfy property (iii).

In the following we shall now assume that the chosen filter satisfies all three
conditions. This hypothesis is called the ergodic hypothesis. It is often used in exper-
iments, when results are being exploited, even when no conditions of statistical and
homogeneous turbulence prevail. It is also convenient to verify and memorise the
following rules:
Computational rules of the statistical filter:

〈〈u〉〉 = 〈u〉,
〈u′〉 = 〈u〉′ = 0,

〈〈u〉v〉 = 〈u〉〈v〉, (6.8)

〈〈u〉v′〉 = 0,

〈uv〉 = 〈u〉〈v〉 + 〈u′v′〉.

In modern turbulence theory, models are being developed, which request the invari-
ance of the multifold filtering as well as those which negate it. Reynolds-Averaged
Navier–Stokes (RANS) models satisfy the conditions of the statistical filter; models
for which 〈u′〉 = 0 ←→ 〈〈u〉〉 = 〈u〉 do not. These models are summarised under
the name Large Eddy Simulation (LES) models.
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6.1.3 Isotropic Turbulence

Consider a fluid flow with a pulsating velocity field v(x, t). Assume that at a
fixed spatial point we measure the pulsating components of the velocity v =
(v1, v2, v3), v

′ = (v′1, v′2, v′3). Products of the fluctuating velocity components are
v′iv′j (i, j = 1, 2, 3) and their averages 〈v′iv′j 〉 are called correlations of the velocity
components. Symbolically we write

Q2 := 〈v′(x, t)⊗ v′(x, t)〉 (6.9)

and call Q2 the second statistical moment of the velocity field at x, if 〈·〉 is the
statistical filter. If Q2 has the property that

v′iv′j = 0 if i = j (i, j = 1, 2, 3),
(6.10)

〈(v′1)2〉 = 〈(v′2)2〉 = 〈(v′3)2〉 = 〈(u′)2〉

for any orthogonal triad, then Q2 is called isotropic. More formally expressed we
say that Q2 is invariant under any rotation or inversion of the coordinates. Taking
any nth-order statistical moment

Qn := 〈v′(x, t)⊗, . . . ,⊗v′(x, t)〉
︸ ︷︷ ︸

n-fold

, (6.11)

we may now define isotropic turbulence as follows:

Definition 6.1 A turbulent velocity field v is called isotropic, if all its statisti-
cal moments Qn are invariant under any rotation and inversion2 of the three-
dimensional coordinate system. �

In practice only a finite number of moments arises. One then says that a turbu-
lent field is isotropic, if all arising statistical moments are invariant under arbitrary
rotations.

One variable which is of special interest in turbulence is the so-called turbulent
kinetic energy. We introduce it via

Definition 6.2 The turbulent kinetic energy k is defined as

k := 1
2 〈v′ · v′〉 = 1

2

∑3
i=1〈v2

i 〉
(6.10)2= 3

2 〈(u′)2〉. (6.12)

The quantity 〈(u′)2〉1/2 is called the turbulent kinetic intensity. �

2 Henceforth, we shall no longer explicitly mention inversions, but when speaking of arbitrary
rotations we mean that inversions are included.
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Problem 6.1 To gain some experience with the above concepts, the reader is asked
to verify the following properties:

(1) Q2 = 2
3 k I,

(2) Q2n+1 = 0, (6.13)

(3) (Q4)i jkl = 〈u′2v′2〉 δi jkl + 1
2

(〈u′4〉 − 〈u′2v′2〉) (δikδ jl + δilδ jk)

�
We prove the first two statements:

(1) Let us denote the components of the Cartesian coordinates and velocity vectors
in the rotated coordinate system by x∗i and v′∗i , respectively. The invariance of
Q2 under any rotation implies

〈v′∗i v′∗j 〉 != 〈v′iv′j 〉 for (i, j = 1, 2, 3). (6.14)

If we consider as an example a rotation about the x3-axis by an angle π/2, then
the new and old coordinates are related by

x∗1 = x2, x∗2 = −x1, x∗3 = x3, (6.15)

and the new and old velocity components are connected by

v′∗1 = v′2, v′∗2 = −v′1, v′∗3 = v′3. (6.16)

Substitution into (6.14) yields

〈v′∗1 v′∗1 〉 = 〈v′2v′2〉 (6.14)= 〈v′1v′1〉,
〈v′∗2 v′∗2 〉 = 〈(−v′1)(−v′1)〉 = 〈v′1v′1〉, (6.17)

〈v′∗1 v′∗2 〉 = 〈v′2(−v′1)〉 = −〈v′1v′2〉, −→ 〈v′1v′2〉 = 0.

A similar choice, viz.,

x∗1 = x3, x∗2 = x2, x∗3 = −x1,
(6.18)

v′∗1 = v′3, v′∗2 = v′2, v′∗3 = −v′1,

now yields

〈v′∗1 v′∗1 〉 = 〈v′3v′3〉 (6.14)= 〈v′1v′1〉,

〈v′∗3 v′∗3 〉 (6.14)= 〈v′3v′3〉, (6.19)
〈v′∗1 v′∗3 〉 = 〈v′3(−v′1)〉 = −〈v′1v′3〉 (6.14)= 〈v′1v′3〉 −→ 〈v′1v′3〉 = 0,

〈v′∗2 v′∗3 〉 = 〈v′2(−v′1)〉 = −〈v′1v′2〉 (6.17)= 0.
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Summary of results (6.17) and (6.19) corroborates the correctness of statement
(6.10).

(2) We take the mirror operation

x∗1 = −x1, x∗2 = −x2, x∗3 = −x3

yielding v∗ = −v. So, according to (6.11) we have

Q∗2n+1 = (−1)2n+1〈v′(x, t)⊗ · · · ⊗ v′(x, t)
︸ ︷︷ ︸

(2n+1)-fold

〉 ,

so that Q∗2n+1 = Q2n+1 implies also Q∗2n+1 = (−1)Q2n+1, proving statement
(6.13)2.

(3) We leave the proof of (6.13)3 to the reader. ♦

Isotropic turbulence is an adequate description in the ocean and in lakes only in
special situations and at very small spatial scales. On length scales of metres to
kilometres, the horizontal and vertical velocity fluctuations have generally distinct
characteristics such that Q2 = 2

3 k I . In a homogeneous water mass this is so,
because the depth scales and the horizontal extents of the lake basins are different by
one to two orders of magnitude. In a stratified lake, buoyancy is responsible that the
depth scale of characteristic turbulent eddies is even more constrained than under
homogeneous conditions.

6.1.4 REYNOLDS Versus FAVRE Averages

The above calculations have all been done in preparation of the derivation of
averaged field equations. In this regard, the conservation law of mass points at
a subtlety, which we shall explain now. Therefore, consider the mass balance
equation

∂ρ

∂t
+ div(ρv) = 0, (6.20)

which, when averaged, takes the form

〈∂ρ

∂t

〉

+ 〈div(ρv)〉 = 0 (6.21)

or, in view of properties (6.6) and (6.8)5,

∂〈ρ〉
∂t

+ div(〈ρ〉〈v〉)+ div(〈ρ′v′〉) = 0. (6.22)
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Here, besides the mean fields 〈ρ〉 and 〈v〉, there appears an additional second
moment, 〈ρ′v′〉; its negative value, −〈ρ′v′〉, has the meaning of a surface mass
flux. One wishes to avoid this mass flux in order to assign to the averaged body
boundaries some notion of ‘averaged material surfaces’. There are generally two
situations, which are typical.

Case (1): Consider a density-preserving or a BOUSSINESQ fluid for which the vari-
ation of ρ is only accounted for in the buoyancy force. In this situation 〈ρ〉 = ρ =
constant, ρ′ = 0 and (6.22) reduces to

div〈v〉 = 0. (6.23)

There is automatically no turbulent mass flux.

Case (2): For a compressible fluid, (6.22) stays as it is. However, by introducing a
density-weighted average of the velocity vector, a ‘virtual’ mass flux can be avoided.
To prove this, we need

Definition 6.3 The density-weighted average { f } of a field quantity f is defined as

{ f } := 〈ρ f 〉
〈ρ〉 , (6.24)

so that

f = { f } + f ′′ (6.25)

is decomposed into the so-called FAVRE average { f } and the fluctuating deviation
f ′′ from it. �

Applying (6.24) to the velocity, the FAVRE average of the velocity may be inter-
preted as a barycentric velocity. Moreover, f ′′ is not the fluctuation ( f ′)′. The dou-
ble dash is simply a notation to distinguish f ′ from f ′′. It is easy to show that

{ f } = 〈 f 〉 + 〈ρ
′ f ′〉
〈ρ〉 , f ′′ = f ′ − 〈ρ

′ f ′〉
〈ρ〉 . (6.26)

Putting in (6.26)2 f = v, solving the emerging equation for 〈ρ′v′〉 and substituting
the resulting expression into the last term in (6.22) yields

∂〈ρ〉
∂t

+ div(〈ρ〉{v}) = 0, (6.27)

which is free of a mass flux term. It is obviously valid for compressible and density-
preserving fluids, since for ρ = constant, (6.27) simply reduces to divv = 0.
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6.2 Balance Equations for the Averaged Fields

6.2.1 Motivation

The purpose in geophysical fluid mechanics in studying turbulent motions in the
atmosphere, the ocean and lakes is to determine the distribution of the field vari-
ables such as velocity, pressure, temperature, tracer concentration. These fields are
certain averages of the true fields, which, in turbulent flows, are fluctuating. Turbu-
lent motion manifests itself often as a cascade of vortical structures, of which the
sizes are restricted by the extent of the domains where the motion takes place. In a
lake, bounded by its shores, the largest gyre that can occur is of the horizontal extent
of the lake basin. By fluid flow instabilities these gyres break into smaller ones of
cascading dimension to very small eddies. So, the sizes of these vortical structures
are from approximately 1 mm to several kilometres (in the ocean up to thousands of
kilometres). In a theoretical description the motion can only be resolved to a certain
length, usually twice the grid size by which the governing equations are discretised
in a numerical solution scheme. It is one of the fundamental facts of hydrodynamics
of water or air that on the smallest time scale (≈ 1 s) and on the smallest space scale
(≈ 1 mm) (below which dissipation turns into heat), the NAVIER–STOKES equations
are the adequate description of the fluid motion by which the turbulent eddies from
the smallest size through all sizes can be well reproduced. Comparison of turbu-
lent velocity fields with results from such Direct Numerical Simulations (DNS)
has corroborated this over and over again. It is, however, impossible in general to
resolve the dynamical processes to such small length and time scales. Averaging
the NAVIER–STOKES equations will filter out the pulsations on the small time and
space scales, but the loss of information is partly counteracted by the correlation
terms which must be parameterised in a way similar to material constitutive closure
relations.

We shall demonstrate this procedure for a BOUSSINESQ fluid or a fluid satisfying
the free convection assumption of which the governing equations are as follows:

• Continuity equation

div v = 0,

• Momentum equation

∂v

∂t
+ div(v ⊗ v)+ 2$× v = − 1

ρ
grad p + ν div gradθ + ρ

ρ0
g,

• Heat equation

∂θ

∂t
+ div(θv) = χ(θ)div gradθ + ϕ

ρcv
+ r

cv
, (6.28)
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• Thermal equation of state

ρ = ρ̂(θ) or ρ = ρ̂(θ, p) or ρ = ρ̂(θ, p, s),

• Tracer mass balance

∂c

∂t
+ div(cv) = χ(c)div gradc + φ(c).

In these equations {v, θ, ρ, c} are the velocity, temperature, density and concen-
tration fields; ρ0(z) is the reference density for the lake at rest, often taken to be
ρ∗ = ρ(4◦C), the density of pure water at 4◦C; furthermore, {ν, χ(θ), χ(c), cv}
are the (molecular) viscosity, the thermal and species diffusivities and the specific
heat at constant volume, while {Ω, ϕ, r, φ(c)} are the angular velocity of the Earth,
the dissipation rate density, the radiation density and the production rate density
of species c. Besides the CORIOLIS acceleration the momentum equation contains
here a buoyancy term. Moreover, the density is a field variable, which is determined
via the thermal equation of state for the density, which for not too deep lakes is
approximately given by a quadratic function of the temperature. For deep lakes as,
e.g. Lake Baikal or Lake Tanganyika, the pressure dependence of the density must
also be accounted for, and in lagoons and strongly mineralised lakes an additional
dependence is that on the salinity s, for which a diffusion equation must hold. In
all these cases the reference density ρ0 may be position dependent. It is assumed,
however, that {ν, χ(θ), χ(c), cv, ρcv} are all constant.

6.2.2 Averaging Procedure

Equations (6.28) are now subject to the statistical filter operation as this was done
for the balance of mass, (6.20), (6.21), and (6.22). In a first attempt this will be
done for a REYNOLDS averaging procedure. Treating {v, p, θ, c} as independent
variables, we choose3

v = 〈v〉 + v′, p = 〈p〉 + p′, θ = 〈θ〉 + θ ′, c = 〈c〉 + c′. (6.29)

If these decompositions are substituted into (6.28) and the resulting equations are
averaged, the results of the problem stated below are obtained.

Problem 6.2 Show that by averaging equations (6.28), the following averaged field
equations are obtained:

3 If mass balance says that the velocity field is solenoidal, then REYNOLDS averaging for v does
not have to be replaced by FAVRE averaging.
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• Continuity equation

div〈v〉 = 0,

• Momentum equation

∂〈v〉
∂t

+ div(〈v〉 ⊗ 〈v〉)+ 2Ω × 〈v〉

= − 1

ρ0
grad〈p〉 + ν div grad〈v〉 + 〈ρ〉

ρ0
g − div(〈v′ ⊗ v′〉), (6.30)

• Energy equation

∂θ

∂t
+ div(〈θ〉〈v〉) = χ(θ)div grad〈θ〉 + 1

ρcv
〈ϕ〉 + r

cv
− div〈v′θ ′〉,

• Tracer mass balance

∂〈c〉
∂t

+ div(〈c〉〈v〉) = χcdiv grad〈c〉 + 〈φ(c)〉 − div〈v′c′〉.
�

In these equations the singly underlined terms are the correlation products, which
can be identified with flux terms of momentum, energy and tracer mass, respectively.
It is customary to associate these with special names.

Definition 6.4

(i) The quantity

R := −ρ〈v′ ⊗ v′〉 (6.31)

is called Reynolds stress tensor; it was first introduced by REYNOLDS in 1894
[21].

(ii) The flux of energy

qt := ρcv〈v′θ ′〉 (6.32)

is called the turbulent heat flux vector.
(iii) The flux vector

j t := 〈v′c′〉 (6.33)

is called the turbulent species mass flux vector or simply the turbulent mass
flux vector. �
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Quantities (6.31), (6.32) and (6.33) must be parameterised in terms of the averaged
fields. Examples for these will be given below.

Equations (6.30) also contain two other averaged fields, 〈ρ〉 and 〈φ〉, which must
equally be expressed in terms of the independent averaged fields. We shall now
address the parameterisations of all these quantities in due order.

6.2.3 Averaged Density Field 〈ρ〉
We start with the equation of state in its simplest form ρ = ρ̂(θ). If we substitute
θ = 〈θ〉 + θ ′, assume that |θ ′| � |〈θ〉| and employ TAYLOR series expansion, we
obtain

ρ(〈θ〉 + θ ′) = ρ(〈θ〉)+ dρ

dθ

∣
∣
∣〈θ〉θ

′ + 1

2

d2ρ

dθ2

∣
∣
∣〈θ〉〈(θ

′)2〉 + · · · , (6.34)

so that after averaging

〈ρ(〈θ〉 + θ ′)〉 = 〈ρ(〈θ〉)〉 +
〈

1

2

d2ρ

dθ2

∣
∣
∣〈θ〉

〉

〈(θ ′)2〉 + · · · , (6.35)

in which 〈ρ(〈θ〉)〉 ≡ ρ(〈θ〉). This result is interesting: to lowest order 〈ρ(θ)〉 is
simply ρ(〈θ〉), but when temperature fluctuations are not small, then the second term
on the right-hand side of (6.35) with the autocorrelation 〈(θ ′)2〉 is also important.
This contribution may be written as

1
2κ〈(θ ′)2〉, κ := d2ρ

dθ2

∣
∣
∣〈θ〉, (6.36)

where κ is the curvature of the density as a function of temperature (which for a
quadratic equation of state ρ(θ), 0 ≤ ρ ≤ 30◦C can be taken as constant). If this
second-order term is not negligible, it must be expressed in terms of the original
independent fields. We conclude that the higher order approximation of the density
function has led to a new temperature correlation for which an additional closure
condition is needed.

It is now pretty clear, how 〈ρ〉 can be evaluated when ρ = ρ(θ, a) where a is
either p or s. The reader is asked to show this in the following problem:

Problem 6.3 Assume that the thermal equation of state is given as ρ = ρ(θ, a),
where a = p (Lake Baikal) and a = s (lagoons). Show that in this case

〈ρ(θ, a)〉 = ρ(〈θ〉, 〈a〉)+ 1
2κθ 〈(θ ′)2〉 + κθa〈a′θ ′〉 + 1

2κa〈(a′)2〉 + · · · (6.37)
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with

κθ := ∂2ρ

∂θ2

∣
∣
∣〈θ〉〈a〉, κθa = ∂2ρ

∂θ∂a

∣
∣
∣〈θ〉〈a〉, κa = ∂2ρ

∂a2

∣
∣
∣〈θ〉〈a〉. (6.38)

Depending upon the numerical values for κθ , κθa, κa some of the higher order terms
may be ignored. �

6.2.4 Dissipation Rate Density 〈φ〉
The dissipation rate density per unit mass for a density-preserving NAVIER–
STOKES fluid is given by

1

ρ
〈φ〉 =

〈 1

ρ
(t ′ · D)

〉

=
〈 1

ρ
(2ηD · D)

〉

= 2ν〈D · D〉

= 2ν〈D〉 · 〈D〉 + 2ν〈D′ · D′〉
= 4ν II〈D〉

︸ ︷︷ ︸

dissipation rate due
to the mean velocity

+ 4ν〈IID′ 〉
︸ ︷︷ ︸

turbulent
dissipation rate

, (6.39)

in which IIA = 1
2 trA2. As before, when evaluating 〈ρ〉 the dissipation rate density

consists of two contributions, the dissipation rate due to the mean velocity field plus
the turbulent dissipation rate. This latter term is again a correlation quantity and is a
very important variable in modern higher order turbulent closure conditions.

So far, we have encountered two scalar quantities. Because of their importance
in turbulence modeling we state them explicitly in

Definition 6.5

(1) The turbulent kinetic energy (density) k is defined as

k := 1
2 〈v′ · v′〉, (6.40)

(2) The turbulent dissipation rate (density) is defined as

ε := 4ν〈IID′ 〉. (6.41)

They are both correlations of the velocity fluctuations. �

6.2.5 Reynolds Stress Hypothesis

A very important concept of turbulence theory is the REYNOLDS hypothesis and
the introduction of the eddy viscosity. It may be determined from the idea that the
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state of turbulence of the velocity field is connected with the mean field through
its gradient; the larger the gradient of the mean velocity field, the larger will be the
generated turbulent activity. The fundamental idea goes back to BOUSSINESQ [3],
who in the situation of a simple shear flow wrote in analogy to the corresponding
laminar flow

τt = ρνt
∂〈v1〉
∂x2

, (6.42)

in which τt is the turbulent (REYNOLDS) shear stress, v1 the x1-parallel turbulent-
averaged velocity and νt, sometimes written as εt, is a turbulent kinematic viscos-
ity, also called turbulent exchange coefficient. This second denotation is due to
PRANDTL [18] who interprets the turbulent stress as an exchange of momentum
due to the pulsating velocity.4

It transpires from relation (6.42) that its generalisation into three dimensions
could be R = R̂(〈D〉), e.g. R = ρ2νt〈D〉 (it satisfies (6.42) under conditions of

simple shear).5 However, in view of definition (6.31) we have trR = −ρ〈v′ ·v′〉 (6.12)=
−2ρk. On the other hand, for a BOUSSINESQ fluid tr(〈D〉) = 0. It follows that one
must request that

−〈v′ ⊗ v′〉 = R
ρ
= − 2

3 k I + 2νt〈D〉

or

R = − 2
3ρk I + 2ρνt〈D〉. (6.43)

This parameterisation of the REYNOLDS stress tensor contains two modeling
parameters of turbulence, the turbulent kinetic energy, k plus the turbulent kinematic
viscosity, νt.

6.2.5.1 Turbulent Heat Flux qt and Turbulent Species Mass Flux jt

Here we may postulate that these vectors orient themselves on the gradients of the
mean temperature and mean concentration fields, respectively. This then suggests

4 Reading PRANDTL’s paper is highly recommended. A translation into the English language of
the significant paragraphs along with the German original is given on pages 466–468 in [7].
5 Note that for simple shear

〈D〉 =

⎛

⎜
⎜
⎜
⎝

0
1

2

∂〈v1〉
∂x2

0

1

2

∂〈v1〉
∂x2

0 0

0 0 0

⎞

⎟
⎟
⎟
⎠

and R =

⎛

⎜
⎜
⎝

0 τ12 0

τ12 0 0

0 0 0

⎞

⎟
⎟
⎠
.
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closure conditions analogous to FOURIER’s law of heat conduction and FICK’s first
law of mass flux as follows:

1

ρcv
qt := 〈v′θ ′〉 = −χ(θ)t grad〈θ〉, (6.44)

j t := 〈v′c′〉 = −χ(c)t grad〈c〉. (6.45)

The newly introduced scalar quantities χ(θ)t and χ(c)t are called eddy diffusivities of
heat and mass, respectively.

The above averaging procedure of the NAVIER–STOKES equations has brought
into evidence a number of new turbulent quantities, which can be grouped as

Group 1 : {k, ε, νt, χ
(θ)
t , χ

(c)
t } (6.46)

Group 2 : {〈(θ ′)2〉, 〈(a′)2〉, 〈θ ′a′〉} (6.47)

where a = s or a = p. Those in group 1 are scalar coefficients of which numerical
values need to be prescribed, whereas the variables in the second group arose when
the density function ρ(θ, a) was averaged to second order; see (6.32). In the lowest
order approximation, in which 〈ρ(θ, a)〉 ≈ ρ(〈θ〉, 〈a〉), these variables are of no
relevance.6 If we consider this case, there remain, however, still the five quantities
of the first group. They may, in general, be functions of 〈θ〉, 〈c〉 and all invariants
of 〈D〉, grad〈θ〉 and grad〈c〉, but it is customary in turbulence theory to assume
{νt, χ

(θ)
t , χ

(c)
t } to be functions of {k, ε, 〈θ〉, 〈c〉}, and in heterogeneous turbulence

also of the spatial coordinates; hence,

{νt, χ
(θ)
t , χ

(c)
t } = f cts(k, ε, 〈θ〉, 〈c〉, x). (6.48)

Moreover, it is also customary to introduce the ratios between the eddy viscosity
and the turbulent diffusivities of heat and mass

σθ := νt

χ
(θ)
t

, σc := νt

χ
(c)
t

(6.49)

and to call σθ turbulent PRANDTL number and σc turbulent SCHMIDT number. The
turbulent heat and mass fluxes can then be written as

〈v′θ ′〉 = − νt

σθ
grad〈θ〉, 〈v′c′〉 = − νt

σc
grad〈c〉. (6.50)

6 What is meant here is that no new turbulent closure must be given if the equation of state is
prescribed.
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As long as one chooses for {νt, σθ , σc} independent functional representations of
{k, ε, 〈θ〉, 〈c〉}, (6.50) is equivalent to (6.48). If, however, σθ and σc are assumed to
be constant, then the functional dependencies of χ(θ)t and χ(c)t are affine to that of νt.
This is a kind of similarity rule, sometimes not being experimentally corroborated,
but often employed. In this simple case, one then only needs to find a relation for

νt = ν̂t(k, ε, 〈θ〉, 〈c〉, x). (6.51)

If νt neither depends on 〈θ〉 nor on 〈c〉, then, apart from a dependence on x, (6.51)
reduces to

νt = ν̂t(k, ε, ·), or, even simpler νt = ν̂t(k, ·), (6.52)

where the dot stands for a possible x-dependence. If the parameterisations of νt on
k, ε (and x) or on k (and x) are known, one then only needs additional algebraic or
differential equations for k or k and ε to fix the turbulent viscosity. Depending upon,
which case prevails, one then speaks of one- or two-equation models. In early turbu-
lence modeling the turbulent viscosity was often assumed to be at most a function
of position.

6.2.6 One- and Two-Equation Models

The derivation of the REYNOLDS-averaged evolution equations (6.30) has naturally
led to two new quantities characterising the subgrid7 behaviour for the averaged
fields, the turbulent kinetic energy k and the turbulent dissipation rate ε. These two
quantities were then taken to determine the actual values of the turbulent viscosity
νt and diffusivities χ(θ)t and χ(c)t . PRANDTL in his seminal papers [18, 19] describes
the eddy viscosity as a function of the mean velocity gradient and a mixing length,
νt = �2 | ∂〈v1〉/∂x2 |, for simple shearing which in three-dimensional flows may be
extrapolated to have the form

νt = 2�2
√

II〈D〉 , (6.53)

(which was not proposed in this form by PRANDTL). This formula is dimensionally
correct, but it requires parameterisation of the mixing length �. This was done by
PRANDTL himself in his paper of 1933 [19], by postulating a balance law of the
form

∂�

∂t
+ div(�〈v〉)+ 2�

√

II〈D〉 + · · · = 0 (6.54)

7 The small-scale behavior on time scales, which are typical of the filtered variables, is also called
subgrid behaviour. This denotation is motivated by numerics, in which the choice of the mesh or
grid size delimits the reproduction of processes whose length and time scales are at least twice the
grid size. Processes with smaller scales are then operating on scales of subgrid size.
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for the mixing length. PRANDTL’s proposal is an example of a one-equation model.
If � is determined by (6.54), the turbulent viscosity and diffusivities are known via
the equations

νt = 2�2
√

II〈D〉, χ
(θ)
t = νt

σθ
, χ

(c)
t = νt

σc
(6.55)

and, since dimensionally, [k] = [ν2
t /�

2], one may also set

k = ck4�2 II〈D〉. (6.56)

In (6.55) and (6.56), σθ , σc and ck are fitting constants.
On the other hand, if one dispenses with the postulation of (6.53), then an addi-

tional scalar turbulent quantity remains undetermined, e.g. k and � or another vari-
able that can be related to k, ε and �. One is then forced to propose an evolution
equation for an additional quantity, which characterises the turbulent intensity. Such
quantities are, for instance, the

• turbulent dissipation rate, ε,
• turbulent kinetic energy, k,
• turbulent vorticity, ω,

where these and the turbulent length scale are dimensionally related by

[ε] = [k3/2]
[�] , [ω] = [k]

[�2] . (6.57)

Two-equation models have been proposed for the turbulent variable scales

(k, �), (k, ε), (k, ω).

They are called (k − �)-model, (k − ε)-model and (k − ω)-model, respectively. For
each of these, balance law-type evolution equations have been proposed. The most
popular one is the (k − ε)-model, [8, 9], and it has extensively been tested against
experiments. However, the (k−ω)-model has also gained popularity in geophysical
applications, [32, 33].

For all these models a direct connection with the turbulent viscosity must still be
established. This is obtained with the aid of dimensional analysis by appropriately
constructing the physical dimension of the quantity under question. For instance, it
can easily be shown that

[νt] = [k2]
[ε] = [k

1/2][�] = [k]
[ω1/2]

from which we may postulate the parameterisations
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νt = cμ
k2

ε
= c′μk1/2� = c′′μkω−1/2, (6.58)

in which the various cμ’s are constants adjusted by experiment.8

6.3 k–ε Model for Density-Preserving
and Boussinesq Fluids

In this section the most popular first-order turbulence model will be presented for
use in later chapters of the third volume of this treatise, the (k − ε)-model. This
model uses evolution equations for the specific turbulent kinetic energy, k, and the
specific turbulent dissipation rate, ε. The model will not be derived, but presented
and motivated. Basic for the model is relation, (6.58)1, or

νt = cμ
k2

ε
. (6.59)

Since dimensionally [νt] = [k]2/[ε], it follows that cμ is a dimensionless scalar,
which in the (k − ε)-model is taken to be a constant. For k and ε, evolution (partial
differential) equations of balance type are derived. These will also contain scalar
parameters and must equally be determined numerically by validating the model.

Historically, the (k − ε)-model has originally been developed in the 1970’s
by HANSALIC and LAUNDER [5], JONES and LAUNDER [8] and LAUNDER and
SPALDING [9]. It has, in the last decades, attracted great attention in the engi-
neering and the geophysical modeling community. RODI [22, 23] describes its
applicability in geophysics and the hydraulic engineering community, and WEIS

[31] and UMLAUF [29] put it into the proper perspective with other two-equation
models. A derivation using continuum mechanical principles is given in HUTTER

and JÖHNK [7]. For its derivation the reader is asked to consult the specialised
literature.

6.3.1 The Balance Equations

The REYNOLDS-averaged forms of the balance laws of mass, momentum, energy
and tracer mass are stated in (6.30). In the (k−ε)-closure scheme these are, however,
complemented by balance laws for the turbulent kinetic energy, k, and its dissipation
rate, ε. These equations have the form

8 Even though values for the cμ’s have been obtained by experiment, these constants exhibit some
notion of universality, i.e. their numerical values are assumed to hold for (nearly) all turbulent
processes.
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∂k

∂t
+ div(k〈v〉) = −div(φk)+ πk,

(6.60)
∂ε

∂t
+ div(ε〈v〉) = −div(φε)+ πε,

in which φk and φε are flux and πk and πε are production terms.
These equations are the local forms of the global statements.

d

dt

∫

ω

k dv = −
∫

∂ω

φk · n da +
∫

ω

πk dv ,

(6.61)
d

dt

∫

ω

ε dv = −
∫

∂ω

φε · n da +
∫

ω

πε dv ,

two forms, which are more convenient when numerical solutions are sought.
The essence of the (k− ε)-model, which makes it an improved description of the

turbulent dynamic parameterisation over the zeroth-order closure schemes, lies in
the postulation of these variables plus corresponding variables in (6.30) (the under-
lined terms).

6.3.2 Closure Relations

The flux terms in the (k − ε)-model, (6.30), are parameterised as stated in (6.43),
(6.44) and (6.45), viz.,

R
ρ
= −〈v′ ⊗ v′〉 = −2

3
ρk I + 2νt〈D〉,

qt

ρcv
= 〈v′θ ′〉 = − νt

σθ
grad〈θ〉, (6.62)

j t = 〈v′c′〉 = −
νt

σc
grad〈c〉,

in which (6.49), (6.50) have also been used to relate the turbulent thermal and
species diffusivities via the PRANDTL and SCHMIDT numbers to the kinematic tur-
bulent viscosity, νt, which is given in the form as stated in (6.59). With this choice,
the turbulent viscosity evolves now in time according to as k and ε evolve in space
and time according to their balance laws (6.60).

The flux terms in (6.60) are analogously parameterised, namely as

φk = − νt

σk
grad k, φε = − νt

σε
grad ε (6.63)

with two new PRANDTL numbers, σk and σε, to be numerically determined.
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The judicious selection of the production rate densities πk and πε is the heart of
the construction of the (k − ε)-model and goes beyond the goals of this book. We
shall only state the results and ask the reader to consult the specialised literature,
see, e.g. [7, 22, 23]. For a BOUSSINESQ fluid one gets

πk = div(ν grad k)+ 4νt II〈D〉 − ε + 〈ρ〉〈αθ 〉
ρ∗

νt

σθ
g · grad〈θ〉, (6.64)

πε = div(ν grad ε)+ 4c1k II〈D〉 − c2
ε2

k
+ c3

〈ρ〉〈αθ 〉
ρ∗

cμ
σθ

k g · grad〈θ〉, (6.65)

in which

〈αθ 〉 = − 1

ρ̂〈θ〉
∂ρ(θ)

∂θ

∣
∣
∣〈θ〉 (6.66)

is the coefficient of thermal expansion and

II〈D〉 = 1
2 〈D〉 · 〈D〉. (6.67)

In (6.64), (6.65) the divergence terms can be combined with the turbulent flux terms
(6.63). The second and third terms on the right-hand side of (6.64), (6.65) are the
classical production terms of the (k − ε)-model of density-preserving fluids, while
the last terms are due to the buoyancy effects of the BOUSSINESQ fluid.

For the postulation of the dissipation rate density 〈φ〉, we choose (6.39). More-
over, the radiation is taken as ρr = divI , where I is the POINTING vector. This
choice has the geophysical application in mind, where the radiation is essentially
due to solar irradiation. With the z-coordinate perpendicular to the Earth’s surface,
the dominant variation of the POINTING vector is vertical, so that with sufficient
accuracy we may set

ρr = divI ≈ ∂ Iz

∂z
, (6.68)

in which

Iz = I0exp

{∫ z

0
(kw + · · · )dz

}

, (6.69)

where z < 0, I0 is the value of the POINTING vector for z = 0 and kw ≈ 0.3 is
the extinction coefficient of clear water which, in lakes and the ocean, varies from
position to position; furthermore, the dots indicate additional possible influences by
a phytoplankton population, etc.
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6.3.3 Summary of (k − ε)-Equations

Upon substitution of the above representations into the balance laws (6.30) and
(6.60) the following field equations for turbulent motions in a BOUSSINESQ fluid
are obtained:

• Balance of mass

div〈v〉 = 0.

• Balance of momentum

∂〈v〉
∂t

+ div(〈v〉 ⊗ 〈v〉)+ 2Ω × 〈v〉

= − 1

ρ∗
grad〈p〉 + div (2(ν + νt)〈D〉)+ 〈ρ〉

ρ∗
g.

• Balance of energy

∂〈θ〉
∂t

+ div(〈v〉〈θ〉)

= div

((

χ(θ) + νt

σθ

)

grad〈θ〉
)

+ 4ν

cv
II〈D〉 + ε

cv
+ 1

ρ∗cv
divI .

• Balance of species mass (we write c for any cα)

∂〈c〉
∂t

+ div(〈v〉〈c〉) = div

((

χ(c) + νt

σc

)

grad〈c〉
)

+ 〈Φc〉. (6.70)

• Balance of turbulent kinetic energy

∂k

∂t
+ div(〈v〉k)

= div

((

ν + νt

σk

)

gradk

)

+ 4νt II〈D〉 − ε + 〈ρ〉〈αθ 〉
ρ∗

νt

σθ
g · grad〈θ〉.

• Balance of turbulent dissipation rate

∂ε

∂t
+ div(〈v〉ε)

= div

((

ν + νt

σε

)

gradε

)

+ 4c1k II〈D〉 − c2
ε2

k
+ 〈ρ〉〈αθ 〉

ρ∗
c3cμ
σθ

g · grad〈θ〉.

In these equations no expression has been proposed for the production rate density
〈Φc〉 of species c. Its postulation depends on the particular problem at hand, which
is the reason why it remains unspecified. For salinity we, however, have 〈Φ(s)〉 = 0.
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Table 6.1 Numerical values for the closure constants of the (k − ε)-model

cμ = 0.09 c1 = 0.126 c2 = 1.92
c3 ≈ 0 σk = 1.4 σε = 1.3

Moreover, it should also be mentioned that the buoyancy-related terms in the bal-
ance relations of turbulent kinetic energy and dissipation rate have formally been
derived for an equation of state ρ = ρ̂(θ). A contribution due to salinity has been
ignored.

To the many empirical constants which arise in the above equations, numerical
values must be assigned. These are collected in Table 6.1. The values for the con-
stants cμ, c1, c2, c3 and σk, σε have been obtained by simple model calculations (for
details, see [23]). Values for c3 ≈ 0 are very small, but not certain, which is why the
corresponding term in the ε-equation is usually ignored.

6.3.4 Boundary Conditions

The field equations (6.70) form a set of 7 + n (‘n’ for n species mass balances)
equations for the unknown fields v (3), p (1), θ (1), cα (α = 1, . . . , n), k (1), ε
(1) unknowns. They constitute a system of non-linear partial differential equations
for which boundary and initial conditions must be prescribed. The equations are of
parabolic type (they are of first order in the time variable and of second order in
the space variables (via the flux parameterisation)). Therefore, boundary conditions
must be formulated at the solid bottom and at the free surface for all diffusive-type
equations.

(α) Boundary conditions for momentum: The bottom surface is generally treated as
rigid and material; only for extremely shallow lakes with small depths [less than ≈
10 m, e.g. lagoons: Vistula (Poland–Russia), Kuronian lagoons (Russia–Lithuania),
Neusiedler See (Austria–Hungary), Lake Wuxi (China), Lake Chad (Africa), see
also Table 1.1], strong winds will cause sediment transport at the bottom. Excluding
these cases, the fixed bottom surface may allow a certain discharge of water, Qground

⊥ ,
into the ground and the velocity tangential to the bed may be either zero (no-slip
condition) or related to the basal shear traction. Let us introduce the notation

vs⊥ := vs · n,

vs‖ := vs − (vs · n)n = vs − vs⊥n,
(6.71)

ps⊥ := −n · tsn,

ts‖ := tsn− (n · tsn)n = tsn+ ps⊥n,

in which s is a label for a surface (s = b for the bottom surface) and n is the unit nor-
mal vector perpendicular to the surface and exterior to the lake domain. vs⊥, vs‖, ps⊥
and ts‖ are, in turn, the water velocity normal and parallel to the surface, and the
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surface normal pressure and the traction parallel to it. With notation (6.71), the basal
boundary conditions read (the superscript s = b stands for ‘bottom surface’)

〈vb⊥〉 = Qground
⊥ ,

(6.72)
tb‖ = −ρ∗cb

D|〈vb‖〉|〈vb‖〉.

For Qground
⊥ = 0 the bottom surface is impermeable for the water; this is the usual

case. Should groundwater accretion be substantial, then Qground
⊥ = 0 follows from

a groundwater model. ρ∗ is the water density at 4◦C and cb
D ≈ 1.5 × 10−3 is the

basal drag coefficient; cb
D →∞ corresponds to the no-slip condition, 〈vb‖〉 = 0 (this

must be so in order to have tb‖ bounded in this limit) and cb
D = 0 yields frictionless

sliding for which tb‖ = 0.
At the free surface, momentum is transferred by wind and atmospheric pressure.

Such traction boundary conditions are usually prescribed as follows:

ts‖ = ρacs
D | W‖ | W‖(xs, t),

(6.73)
ps⊥ = patm(x, t),

in which ρa ≈ 1.4 kg m−3 is the density of air at atmospheric pressure, cs
D ≈

1.2×10−3 is the drag coefficient and W‖ the wind velocity parallel to the water sur-
face, ordinarily 10 m above the water surface. Wind velocities measured at different
heights above the water surface affect differently the value of cs

D; adjustments are
then necessary. A dependence of the atmospheric pressure on the spatial coordinate
and time can often be ignored for lakes; in such cases the prescription of patm(x, t)
can be dispensed with (since for a constant atmospheric pressure its effect in the
momentum equation is zero). Only in storm surge situations grad patm(x, t) is = 0
and must be accounted for.

(β) Boundary conditions for the temperature: At the bottom surface one usually
requests that the surface temperature is prescribed, viz.,

〈θ(xb, t)〉 = [θ(zb, t)]static, (6.74)

where θ(zb, t) is the static temperature distribution for a certain stratification, pre-
scribed and held constant. The time dependence on the right-hand side of (6.74)
expresses a slow seasonal variation of the temperature due to stratification. Alterna-
tively to (6.74), one may also prescribe continuity of the heat flow across the bottom
surface

qb · n = Qgeoth
⊥ , (6.75)

where (6.75) is to be preferred over (6.74) in regions with strong volcanic activity
(e.g. in Iceland). When the thermal regime of the lake is coupled to the thermal
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regime of the ground, then continuity of both the temperature and the heat flow
across the basal surface is required9:

[[〈θ(xb, t)〉]] = 0, [[qb · n]] = 0 (6.76)

in which [[ f ]] := f + − f − is the difference of the values of f on the side of the
ground ( f +) and of the water ( f −).
This situation is, however, exceptional. It requires the solution of the heat equation
in a layer of solid ground, say 2–5 km thick, where the boundary condition at the
lower soil level would be a prescription of the geothermal heat.

The boundary condition at the lake or ocean-free surface is a radiation balance,
which is expressed as

〈q〉s · n = Qa
ir − Qw

ir + Q� + Qs. (6.77)

Here, Qa
ir and Qw

ir are the (black body) radiation of air above the surface and water,
while Q� and Qs are the latent and sensible heat fluxes between water and air. For
their explicit parameterisations, see the specialised literature, e.g. [7, pp. 582–584].

(γ ) Boundary conditions for species concentration: Boundary conditions for tracer
substances depend on the kind of biochemical–physical processes to which these
substances are subjected and whether biochemical interaction processes take place.
We therefore simply state here that, at the basal boundary and the free surface, either
the concentration or its normal derivative or a combination of these is generally
prescribed at the lake boundaries.

(δ) Boundary conditions for k and ε: These are rather difficult to postulate, because
the peculiar conditions of turbulence near boundaries are not physically transparent.
Commonly one wishes to prescribe numerical values for k and ε or their fluxes
(derivatives of k and ε perpendicular to the surface). Such values or formulae can
often only be obtained by consideration of the dynamics of the boundary layer.

At the bottom surface, where the flow is at most weakly turbulent, one may
assume that turbulence has died out, so that one may require

k = 0, ε = 0 at the bottom. (6.78)

However, close to solid walls the (k − ε)-model requires the introduction of wall
functions to properly describe the turbulent boundary layer. This means that (6.78)
is approximate and should be taken as a gross simplification of the correct behaviour.

At the free surface a physically appropriate postulation of the boundary
conditions is more complicated and also more critical. A fairly simple and also
physically rather transparent assumption is to request that there is no conductive

9 Strictly, (6.75) and (6.76) require that there is no water discharge into the ground and that dissi-
pative heat due to viscous sliding can be ignored.
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loss of turbulent kinetic energy and turbulent energy dissipation through the free
surface. With the gradient-type relations (6.63) this says

∂k

∂n
= 0,

∂ε

∂n
= 0 at the free surface. (6.79)

SVENSSON [26] alternatively establishes formulae which relate k and ε with
the surface wind shear stress and heat flow and the atmospheric boundary layer
thickness.

6.4 Final Remarks

In the previous sections some elements of the formulation of turbulence theory were
laid down. Even though our attempt to the subject was to present these elements
with a certain rigour, it has been restricted and certainly does not do justice to the
available present knowledge. The existing literature is vast, and various aspects,
both mathematical and physical, are treated.10 Here in this last section we limit
attention to only a few remarks concerning (i) higher order turbulence models,
(ii) large eddy simulations (LES) and direct numerical simulations (DNS) and
(iii) anisotropic turbulence closure conditions as employed by the early modellers
in physical oceanography and limnology.

6.4.1 Higher Order RANS Models

One limitation of the (k − ε)-model or any other two-variable turbulence closure
model is the gradient-type closure ‘philosophy’ expressed by (6.62), (6.63). If the
PRANDTL numbers arising in these relations are constant, it only allows an adjust-
ment of the turbulent viscosity, expressed as νt = cμk2/ε. With this procedure the
flux representations (6.62), (6.63) are so-called isotropic tensor and vector relations,
which do not allow the modelling of anisotropic turbulent flow states. Anisotropy is,
however, reality in most geophysical flows in the atmosphere, the ocean and lakes,
particularly when these are stratified.

An obvious generalisation could be to employ a second (or even higher order)
closure scheme, i.e. to formulate a transport equation for the REYNOLDS stress ten-
sor (deviator), but such schemes require six (five) additional transport equations for
the REYNOLDS stresses (deviators) and three equations for the turbulent heat flux
vector and additional three ones for each tracer substance, and possibly an additional

10 Let us suggest to the reader a selection of books exclusively or partly devoted to turbulence in
alphabetical order: BATCHELOR [1], FRISCH [4], HINZE [6], HUTTER and JÖHNK [7], LESIEUR

[10], LUMLEY [11, 12], MCCOMB [13], MONIN and YAGLOM [14, 15], PIQUET [17], ROTTA

[24], TENNEKES and LUMLEY [27], TOWNSEND [28]. We offer apologies for the omission of
certainly many others.
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equation for 〈(θ ′)2〉. These equations also involve higher order closure relations and
must then be numerically solved together with the other field equations. This is
computationally expensive. More economical are so-called non-linear or algebraic
REYNOLDS stress models and corresponding models for the heat flux, the tracer
fluxes and 〈(θ ′)2〉. Such models establish a closure condition for

RD = R + 2
3ρk I or A = RD − 2ρνt 〈D〉, (6.80)

in which RD or A must now depend not only on 〈D〉 but also on other variables,
e.g. 〈W〉 = skw grad〈v〉 = 1

2 (grad〈v〉 − (grad〈v〉)T), 〈D〉· and others. 〈W〉 is the
vorticity tensor and 〈D〉· the total time derivative of 〈D〉. These serve only as exam-
ples. A judicious determination of objective functional relations of the form

A = A(〈D〉, 〈D〉·, 〈W〉, 〈θ〉, 〈gradθ〉, . . .) (6.81)

requires techniques, which are analogous to thermodynamic constitutive procedures
employed in continuum mechanics.11 Apart from the references already mentioned
above, summarising overviews are given by HUTTER and JÖHNK (Chap. 12) [7]
and, from a different viewpoint, by SANDER [25].

Notice that for A = 0, the REYNOLDS stress tensor is given by (6.62)1.
Because with this choice the functional form of the REYNOLDS stress tensor is
affine (or collinear or parallel) to 〈D〉, a non-vanishing tensor A is sometimes called
the ‘anisotropy tensor’. However, as we shall see below, the classical approach to
anisotropic turbulence has taken a different route, which is also theoretically some-
what questionable. Future attempts to anisotropic turbulence will have to follow the
modern approach, which has just been briefly touched here.

6.4.2 Large Eddy Simulation and Direct Numerical Simulation

It was shown in this chapter how the REYNOLDS-averaged field equations could be
derived from the full balance laws of physics by applying to them a filter operation
〈(·)〉. Depending upon the mathematical properties of the filter operations, differ-
ent balance laws of the averaged physical laws can be obtained, but explicitly only
one such set, the REYNOLDS-averaged equation set (RANS), was presented. Recall
that these equations are founded on the supposition that repeated averages do not
lead to new results.12 This is the so-called ergodic property; it is an assumption,

11 We would like to warn the reader that questions of invariance under EUCLIDean transformations
forbid a direct use of 〈D〉· and 〈W〉 in relations such as (6.81). ‘Objective’ derivatives of 〈D〉 and,
similarly, ‘objective’ vorticity measures must be used in closure proposals for A; see [7].
12 In mathematical terms this means that 〈〈 f 〉〉 = 〈 f 〉, which implies that 〈 f ′〉 = 0. An operator
P on f with the property P P f = P f is also called a projection. So, REYNOLDS averaging is a
projection filter. If this projection property does not hold, then 〈 f ′〉 = 0, in general.



212 6 Turbulence Modelling

which is in general not satisfied in dynamic turbulent processes. Modern turbulent
theories, in which discrepancies with experiments are visible when RANS are used,
also employ a different filter operation, which does not fulfill ergodicity. Such an
approach is known under the ‘label’ Large Eddy Simulation (LES). It is still dictated
by the formulation of averaging the small-scale turbulent equations by employing
a filter operation to them, which does not obey ergodicity. The NAVIER–STOKES–
FOURIER–FICK equations as such remain untouched; they are believed to describe
all hydrodynamic phenomena, which for some processes can be formulated in terms
of these equations at all; this is today’s firm conviction. The problem lies in the fact
that different physical processes must be viewed simultaneously at different length
scales: e.g. large-scale motions which generate small-scale eddies at an obstruc-
tion. The range of length scales generally extend in geophysical fluid mechan-
ics over many orders of magnitude, from several kilometers down to millimetres.
When attempting to solve a problem numerically, the selected mesh size defines
the length scales of the eddies, which are not resolved by the mesh size. These
eddies must be parameterised and the turbulent stress tensor, which describes the
subgrid eddy momentum exchange, often takes the form of an algebraic REYNOLDS

stress parameterisation. From what has just been said, it is, however, no surprise
that the grid length of the mesh generally enters these tensor relations as a param-
eter. For further details, the reader is asked to consult the specialised (mentioned)
literature.

Since the NAVIER–STOKES–FOURIER–FICK equations are indeed believed to
describe all fluid flows correctly, their solutions will generate physically realisable
processes, provided the grid size of the mesh is smaller or at least not larger than
the so-called KOLMOGOROV length, below which the remaining turbulent energy
is dissipated into heat; this length is in lakes and the ocean of the order of 1 mm.
Such computations, known as Direct Numerical Simulations (DNS) are, of course,
uneconomical for realistic scenarios; they should, however, neither be underesti-
mated, because they can in simple test scenarios be used to judge whether other
simple LES or RANS formulations lead to similar results for a given problem, for
which corroborating measurements are available.

6.4.3 Early Anisotropic Closure Schemes

The pioneers in modelling dynamic processes in physical oceanography took a
pragmatic approach to anisotropic turbulence. This approach is still very much
in use today – we demonstrate its application in the EKMAN problem and its
extensions – however, the approach is in fact conceptually faulty (for details, see
Appendix A in WANG [30]), despite its apparent success, e.g. in the determination of
wind-induced currents. Because electronic computations were non-existent at those
times or in their early developments, considerations were restricted to the purely
mechanical equations of a BOUSSINESQ fluid, which is homogeneous or at most
vertically stratified. For this situation the governing equations of mass and linear
momentum are
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div〈v〉 = 0,
(6.82)

ρ∗ d〈v〉
dt

+ 2Ω × 〈v〉 = −grad〈p〉 + divρR + ρg,

in which the viscous term ν∇2〈v〉 has been ignored and

ρR := −ρ〈v′ × v′〉 (6.83)

is the REYNOLDS stress tensor. For this tensor, let us now choose the simplest
possible parameterisation, which takes into account the experimentally observed
anisotropy in the horizontal and vertical directions. It has been proposed in the form

ρR :=
⎛

⎝

txx txy txz

tyx tyy tyz

tzx tzy tzz

⎞

⎠ = ρ

⎛

⎜
⎜
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⎜
⎜
⎝
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∂u

∂x
νH
∂u

∂y
νV
∂u

∂z
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∂v

∂x
νH
∂v

∂y
νV
∂v

∂z

νH
∂w

∂x
νH
∂w

∂y
νV
∂w

∂z

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(6.84)

and was introduced in this form by MUNK [16]. So, the following expression enters
the momentum equation (6.82):

div(ρR) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂

∂x

(

ρνH
∂u
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)
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∂y

(
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∂y

)
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(
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∂u

∂z

)

∂
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(
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ρνH
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)
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(
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)

∂
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(

ρνH
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⎟
⎟
⎟
⎟
⎠

, (6.85)

with different horizontal and vertical exchange coefficients νH and νV. In the above
equations we have used the notation 〈v〉 = (u, v, w) to denote the Cartesian compo-
nents of the averaged velocity vector 〈v〉. At the early times (the 1930s – 1950s of
the last century) it was generally assumed that turbulent isotropy prevails in the hor-
izontal planes, while in the vertical direction turbulent processes work differently,
implying νH = νV. With such a choice, the vertical coordinate axis is distinguished
and must be one of the axes of the possible Cartesian axes.

The parameterisation of the REYNOLDS stress tensor according to (6.84) is actu-
ally conceptually faulty for at least two reasons. First, R = −〈v′ ⊗v′〉 is symmetric,
R = RT, by definition, but representation (6.84) is not symmetric. Second, and
more subtle: If a gradient-type relation is postulated, then one may write

R = R̂(〈D〉), (6.86)
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where 〈D〉 = sym grad〈v〉. Now, under an arbitrary rotation Q of the coordinate
system, R and 〈D〉 change as13

R∗ = Q R QT, 〈D〉∗ = Q〈D〉QT, (6.87)

in which Q is an orthogonal transformation, Q Q−1 = Q QT = 1, and QT is the
transpose of Q. Therefore, a parameterisation (6.86) must also satisfy

Q R̂(〈D〉)QT = R̂
∗
(Q〈D〉QT). (6.88)

It is one of the fundamental assumptions that the functional representation R̂
∗
(·)

does not depend on the orientation of the coordinates. This assumption reads

R̂
∗
(Q〈D〉QT) = R̂(Q〈D〉QT). (6.89)

This assumption may be called the assumption of turbulent objectivity. With it,
(6.88) takes the form

Q R̂(〈D〉)QT = R̂(Q〈D〉QT) (6.90)

and must hold true for all orthogonal transformations Q.
Functions, which satisfy (6.90) are so-called isotropic tensor functions of tensors

of second rank. It can be shown, see, e.g. [7], that the most general form of the
solution of (6.90) is

R = α01+ α1〈D〉 + α2〈D〉2 (6.91)

with scalar coefficients α j = α̂ j (II〈D〉, III〈D〉), where II〈D〉 and III〈D〉 are the prin-
cipal invariants of the deviator 〈D〉. Equation (6.84) is of the form (6.86), but it is
not expressible as (6.91). What does this mean? Well, it means that an anisotropic
representation of (6.86) violates the general transformation property (6.90), which
such a functional relation must obey. However, (6.88) still holds. Thus, MUNK’s
expression may just violate the assumption of turbulent objectivity. So, we shall
now reject the assumption of turbulent objectivity.

With the intention to come close to MUNK’s REYNOLDS stress proposal (6.84),
we shall now assume that R is given by (6.86) and derivable from a potential as
follows:

ρR = ρ
∂Φ(〈D〉)
∂〈D〉 , (6.92)

13 These transformations are the expression of the fact that for two observers, who are moving
relative to one another according to a rigid-body motion x∗(t) = Q(t)x + b(t), the REYNOLDS

stress and the mean strain rate tensors R, 〈D〉 and R∗, 〈D〉∗, respectively, transform as (6.87) for
any rotation Q.
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with the following potential

Φ = 1
2ηi jkl〈Di j 〉〈Dkl〉. (6.93)

Therefore, ρR is linearly related to 〈D〉 according to

ρR =M〈D〉, ρRi j = ηi jkl〈Dkl〉. (6.94)

The coefficient ‘matrix’ M = [ηi jkl ] consists of 3 × 3 × 3 × 3 = 81 entries.
Not all of them are independent. Their number can considerably be reduced by
symmetry requirements. First, sinceΦ is a scalar and 〈D〉 a symmetric second-order
tensor, 〈D〉may be identified by a six-dimensional vector ε̇. Furthermore, ρR is also
symmetric and is equivalent to the six-dimensional vector ρR:

ε̇ = (〈D11〉, 〈D22〉, 〈D33〉, 〈D23〉, 〈D31〉, 〈D12〉),
(6.95)

R = (R11,R22,R33,R23,R31,R12).

So, (6.93) and (6.94) read

Φ = 1
2 ε̇ · [M]ε̇, R = [M]ε̇, (6.96)

in which [M] is a 6 × 6 matrix with 36 entries. It follows that at most 36 entries
of M are independent. Moreover, because of the potential property (6.92), it is easy
to show that the matrix [M] is symmetric, so that at most 21 entries of [M] are
independent. In view of the transverse isotropy of the ocean or lake turbulence,
which we are now going to postulate, this number can still be reduced considerably.
Transverse isotropy means here that the turbulence behavior in the horizontal is
independent of any rotation of the coordinates about the vertical axis. Moreover, if
any of the coordinate axes are rotated by 180◦, invariance against this transformation
expresses that transverse isotropy includes orthotropy. If Φ∗ is the representation
which obtains when (6.93) is written in the rotated coordinates, then symmetry
relative to the coordinate transformation Q yields

1
2ηi jkl〈D〉i j 〈D〉kl = Φ

!= Φ∗ = 1
2ηi jkl Qim Q jn Qkp Qlq〈D〉mn〈D〉pq . (6.97)

For the choices

Q1 =
⎛

⎝

−1 0 0
0 −1 0
0 0 1

⎞

⎠ and Q2 =
⎛

⎝

−1 0 0
0 1 0
0 0 −1

⎞

⎠ (6.98)

which correspond to rotations of the coordinate axes around the z- and y-axes by
180◦, (6.97) yields for these two rotations
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η1123 = η2223 = η3323 = η1113 = η2213 = η3313 = η2312 = η1312 = 0,

η1123 = η2223 = η3323 = η2313 = η1112 = η2212 = η3312 = η1312 = 0.

A rotation about the x-axis by 180◦ does not yield additional new results. Thus, for
orthotropic turbulence, the matrix [M]

[M]orth =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

η1111 η1122 η1133 0 0 0
η2222 η2233 0 0 0

η3333 0 0 0
η2323 0 0

η1313 0
sym η1212

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6.99)

has only nine independent exchange coefficients. If we apply

Q =
⎛

⎝

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎞

⎠ (6.100)

to (6.97) (with [M] given by [M]orth) for an infinitesimal angle φ, corresponding to
cosφ ≈ 1, sinφ ≈ ε, it is easily shown that

η1313 = η2323, η1133 = η2233, η1111 = η2222,
(6.101)

η1212 = 1
2 (η1111 − η1122),

so that

[M]transverse
isotropic =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

η1111 η1122 η1133 0 0 0
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η2323 0
sym 1

2 (η1111 − η1122)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6.102)

or with the notation

a = η1111, b = η3333, c = 2η2323, d = η1122, e = η1133, (6.103)

[M]transverse
isotropic =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a d e 0 0 0
a e 0 0 0

b 0 0 0
c 0 0

c 0
sym. a − d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.104)
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Accordingly, transverse isotropic turbulence is in the context of (6.96) described by
five turbulent exchange coefficients. However, this number can still be reduced by
requesting that R is a deviator,

trR = 0 (6.105)

implying

a + d + e = 0, 2e + d = 0. (6.106)

The assumption trR = 0 is sometimes known as STOKES assumption. We con-
clude as follows: If the REYNOLDS stress tensor R obeys transverse isotropy in a
Cartesian system with horizontal–vertical coordinate axes, it is described by three
independent exchange coefficients. In particular, with the abbreviations

a − d = 2νH, c = 2νV (6.107)

the tensor R possesses the representation

R11 = 2νH〈D11〉 + (4νH − 3a)〈D33〉,
R22 = 2νH〈D22〉 + (4νH − 3a)〈D33〉,
R33 = −6(νH − a)〈D33〉,

(6.108)
R23 = 2νV〈D23〉,
R31 = 2νV〈D31〉,
R12 = 2νV〈D12〉,

in which we also used that tr〈D〉 = 0. From this, it easily follows that

divRx := ∂R11
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(6.109)

+ ∂
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divRy := ∂R12
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+ ∂
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+ ∂
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These relations do not reduce to MUNK’s expressions (6.85), not even when the
horizontal exchange coefficient is assumed to be constant.

However, when the momentum equations are subject to the shallow-water scal-
ing, it can be shown that, see [30],
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(6.112)

+ ∂

∂y

[

(3(νH − a))
∂w

∂z

]

divRz = 0.

In the derivation of (6.112) the assumption νH = const has been used. Rela-
tions (6.112) can neither be reduced to MUNK’s turbulence parameterisation in the
shallow-water approximation unless

∂
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[

(3(νH − a))
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]

= 0,
∂

∂y
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(3(νH − a))
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]

= 0. (6.113)
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Therefore, only when the vertical gradient of the vertical velocity component can be
ignored or when νH = a, MUNK’s assumption agrees with the transverse isotropic
turbulence without contradiction.

Let us close this section with a few remarks:

• Evidently, we have not been able to derive the anisotropic closure relation (6.85)
without contradiction from general invariance principles of physics. Postulate
(6.84) for the REYNOLDS stress tensor violates both the symmetry requirement
for ρR and the general transformation properties. Equations (6.87) and (6.88),
however, have extensively been used in interpretations of wind-induced ocean
and circulation dynamics, obviously with reasonable success.

• Even if we accept the anisotropic REYNOLDS stress parameterisation (6.108)
or its simplification (6.112), it still violates the transformation property (6.87)1
for all those orthogonal transformations, which go beyond those of transverse
isotropy, i.e. restrict the anisotropy even further. The transformations are valid
for all orthogonal transformations, and a linear relation of the form R =M〈D〉,
which obeys (6.87) for all Q’s, has necessarily the form R = 2νT 〈D〉 which is
isotropic.

• A correct anisotropic REYNOLDS stress relation must therefore be of the class
R = R̂(〈D〉, A j , . . .), in which A j , j = 1, 2, . . ., are anisotropy measures. The
simplest form of these are the algebraic REYNOLDS stress models, which were
briefly mentioned earlier.
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Chapter 7
Introduction to Linear Waves

Waves in open waters, such as the ocean, lakes, channels, arise in a variety of forms
and types and have various physical reasons for their formation. We will have the
occasion in a number of subsequent chapters (in volume 2) to investigate the impor-
tant types of waves in the geophysical context as they apply to lakes, the ocean and,
to limited extent, also to the atmosphere. Here, in this chapter, our intention is to lay
the foundations of the mathematical description and physical implications which
one may deduce from them.

At the heart such an analysis is the answer to the simple question, What is a
wave? An immediate and perhaps unbiased answer might be the transfer of infor-
mation from a point A in space to point B. The process of this transmission may
then be called ‘wave’. A beautiful statement, attributed to EINSTEIN, that expresses
the essentials of what is meant by waves is as follows1:

Irgend ein Klatsch, der, sagen wir, in Washington aufgebracht wird, gelangt sehr rasch nach
New York, wenn auch nicht eine einzige von den an der Weitergabe beteiligten Personen tat-
sächlich von der einen Stadt in die andere reist. Wir haben es vielmehr gewissermaßen mit
zwei ganz verschiedenen Bewegungen zu tun, der des Gerüchtes selbst, das von Washington
nach New York dringt, und der jener Personen, die das Gerücht verbreiten.

So, for a wave the transmission of the information is important and this motion
may be entirely different from the motion of the carrier medium. There may be a
connection between the two, there may be none; in fact there are physical situations
(e.g. electromagnetic waves in vacuo) for which a carrier medium does not even
exist. For acoustic waves and for surface water waves, however, the medium through
which the wave propagates is important, but the motion of the water or gas is distinct
from that of the wave itself. An evident example is certainly known to the reader:

1 ‘Any gossip which, say, is spread in Washington arrives very quickly in New York, even though
not a single person who participates in the spreading of the rumor really travels from one city to
the other. Rather, we are dealt here with two entirely different motions, that of the rumor itself,
which propagates from Washington to New York, and that of the people who are spreading the
gossip.’

We have seen the German quotation at an exhibition ‘TECHNORAMA’ in Winterthur, Switzer-
land, but were not able to trace the exact source of the quotation.

K. Hutter et al., Physics of Lakes, Volume 1: Foundation of the Mathematical
and Physical Background, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-642-15178-1_7,
C© Springer-Verlag Berlin Heidelberg 2011
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When fishing with a fish rod at the shore of a lake or pond, it sometimes happens
that a surface wave from a boat approaches the shore. The crest of this wave when
passing the fishline does not catch the line and carry it along; rather, the line with its
buoy performs a more or less violent oscillation induced by the passing wave that
is localised to the neighbourhood of where the line was before the wave passed and
that dies out rather quickly.

In the ensuing analysis we shall derive the classical wave equation and then
reduce it to its simplest form for which solutions will be constructed. Their prop-
erties will then give us the possibility to discuss key features that are typical of all
waves and whose knowledge is indispensable when water waves in the ocean or in
lakes are discussed.

7.1 The Linear Wave Equation and Its Properties

The literature on waves is abundant and due justice cannot be done by referencing
some books in a brief note. Almost every college physics book contains one to sev-
eral chapters on waves. Many books on fluid mechanics also have chapters on fluid
waves. We give here a selection of books which are likely held at many university
libraries: in alphabetical order: BATCHELOR [1], FEYNMAN et al. [2], LAMB [3],
LANDAU and LIFSHITZ [4], LAUTRUP [5], PHILLIPS [13], WALKER [16].

Books exclusively devoted to waves in general, water waves or ocean waves, are,
e.g. LEIBOVICH and SEEBASS [7], LIGHTHILL [8], LEBLOND and MYSAK [6],
MEI [10], MASSEL [9], STOKER [14], WHITHAM [18].

VAN DYKE [15] published a picture book on scientific photographs with many
snapshots of water (and other) waves. The Encyclopedia Britannica Educational
Corporation, 425 North Michigan Avenue, Chicago, 60611, distributes an educa-
tional film on Waves in Fluids, a 16 mm B&W sound film, 33 min in length with
film notes by A. E. BRYSON.

We will introduce the concept of a wave by looking at acoustic waves in a liquid
or in a gas. Physically, this wave type cannot be described in a BOUSSINESQ fluid;
but of course, sound propagates in water, which everybody may have experienced
when diving in a lake or the ocean and hearing within the water the sound of motors
from boats which may hardly be visible because they are too far away.

To derive the acoustic wave equation, consider a homogeneous infinite medium.
Assume it to be compressible and at rest with density ρ0, velocity v0 = 0 and
pressure p0 such that grad p0 = ρ0 g. Consider perturbations of these fields, so that

ρ = ρ0 + ρ′, v = v0 + v′ = v′, p = −ρgz + p′. (7.1)

The balance laws of mass and linear momentum (ignoring dissipative terms)

∂ρ

∂t
+ (grad ρ) v + ρ div v = 0,

∂v

∂t
+ (grad v) v = − 1

ρ
grad p + ρ g

(7.2)
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may then be written down in terms of the primed perturbation fields. When this is
done and all product terms of primed quantities are omitted – this corresponds to the
linear approximation – then (7.2), now expressed in terms of the perturbation fields,
takes the form:

∂ρ

∂t
+ ρ0 div v = 0,

∂v

∂t
= − 1

ρ0
grad p, (7.3)

in which, for simplicity, the primes have been omitted. Equation (7.3)2 can be dif-
ferently expressed, if the thermal equation of state is used. We assume for the simple
situation dealt with here that p = p (ρ); this is the thermal equation of state of a
so-called barotropic or elastic fluid first treated by EULER, Fig. 7.1. With this law
we have

grad p = dp

dρ

∣
∣
0 grad ρ = c2

0 grad ρ. (7.4)

Definition 7.1 The quantity c0, defined by

c2
0 :=

dp

dρ

∣
∣
0 [m2 s−2], (7.5)

is the speed of sound of a linear barotropic fluid. �

For water at 20◦C and normal pressure it is approximately 1450 m s−1. Differenti-
ating (7.3)1 with respect to time and substituting (7.3)2 and (7.4) leads to

∂2ρ

∂t2
= c2

0 div grad ρ. (7.6)

The operator div grad is the Laplacean operator, denoted by � or ∇2. In Cartesian
coordinates it takes the form

∇2 ρ = ∂2ρ

∂x2
+ ∂2ρ

∂y2
+ ∂2ρ

∂z2
, (7.7)

as can be easily checked by the reader. One may write (7.6) in terms of the pressure
rather than density. Using ρ = ρ(p), the reader may easily prove that (7.6) then
becomes

∂2 p

∂t2
= c2

0 ∇2 p, (7.8)

and it can equally, though not so easily, be shown that also the velocity v or its
potential φ, if v = gradφ, satisfies this same equation. Equation (7.6) or (7.8) is
called the classical linear wave equation. Thus we have shown the following.
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Proposition 7.1 Linear acoustic waves in a homogeneous fluid medium are des-
cribed by the wave equation

∂2Φ

∂t2
= c2

0 ∇2Φ, c2
0 :=

dp

dρ

∣
∣
0, (7.9)

where Φ stands for the density ρ, the pressure p, the velocity v or the velocity
potential φ. c0 is the speed of sound for a fluid at rest. �

Remark: In the above, no use was made of the balance law of energy, which may
be written as demonstrated in (4.175). If in that equation dissipation and heat con-
duction are ignored – in an EULER fluid these terms vanish by definition – and if no
radiation arises, then (4.175) (multiplied with the non-zero factor 1/(ρT ), where T
is the absolute temperature) may be written as

dη

dt
:= 1

T

(
dε

dt
+ p

d

dt

(
1

ρ

))

= 0.

In thermodynamics this is shown to be the material time derivative of the specific
entropy. It follows that in an acoustic wave of an EULER fluid the entropy for mate-
rial particles does not change. In this connection the following definition is useful:

Definition 7.2

• Processes in which heat exchange between material particles and the environ-
ment is absent are called adiabatic. They are characterised by a vanishing heat
flux vector.

• Processes for which the entropy does not change along particle trajectories are
called isentropic. If the entropy is constant throughout the region, the processes
are called homentropic. �

It follows from this definition that in an ideal fluid adiabatic processes are also isen-
tropic and vice versa. Moreover, in a viscous fluid in which dissipation and heat
conduction are ignored and in which no radiation is operating, the entropy remains
materially constant. If at time t0 the value of the entropy is the same for all material
particles, the speed of sound c0 as defined in (7.5) is then that evaluated for this
value of the entropy. This is the reason why one speaks in those circumstances of
the adiabatic speed of sound.

It is not difficult to see from the above derivation why acoustic waves cannot
be described in a BOUSSINESQ fluid. In such a fluid, the time derivative ∂ρ/∂t is
ignored in (7.3)1 (since div v = 0) implying that an equation of the form (7.9) can
never be derived.

Closer scrutiny is now required to see that (7.9) indeed describes waves.
Plane waves are obtained if all variables depend only upon a single variable of a
Cartesian frame, say x . This is the direction of wave propagation. Equation (7.9)
then takes the form
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Fig. 7.1 Right: Leonhard EULER. Portrait by Emanuel HANDMANN 1753 (http://en.
wikipedia.org/). Left: The graph theory originates with Leonard EULER’s 1736 paper ‘The
Seven Bridges of Königsberg’. Map of Königsberg in EULER’s time showing the actual layout
of the seven bridges, highlighted by ovals

Leonhard EULER (15 April 1707 to 18 September 1783) was a pioneering Swiss mathemati-
cian and physicist who spent most of his life in Russia and Germany. EULER’s early formal
education started in Basel. At the age of 13 he enrolled at the University of Basel and, in
1723, received his Master of Philosophy with a dissertation that compared the philosophies
of DESCARTES and NEWTON. In May 1727 EULER arrived in St. Petersburg, took a position
in the mathematics department of the Russian Academy of Sciences, just established by Peter
the Great, and settled into life in St. Petersburg. EULER swiftly rose through the ranks in the
academy and was made professor of physics in 1731 and head of the mathematics department.
Concerned about the continuing turmoil in Russia, EULER left St. Petersburg in 1741 to take a
post at the Berlin Academy. He lived for 25 years in Berlin, where he wrote over 380 articles.
In 1766, exposed to conditions of negligence by the emperor Friedrich the Great, EULER

accepted an invitation of Catherine the Great to return to the St. Petersburg Academy where
he spent the rest of his life.

EULER made important discoveries in fields as diverse as infinitesimal calculus and graph
theory. He also introduced much of the modern mathematical terminology and notation, partic-
ularly for mathematical analysis. He is also renowned for his work in mechanics. For instance,
he complemented NEWTON’s second law by the balance of angular momentum, the second
pillar of classical continuum physics. EULER worked in almost all areas of mathematics:
geometry, infinitesimal calculus, trigonometry, algebra and number theory, as well as contin-
uum physics, lunar theory and other areas of physics. He has been exceptionally productive; if
printed, his works, many of which are of fundamental interest, would occupy between 60 and
80 quarto volumes.

Some of EULER’s greatest successes were in solving real-world problems analytically and in
describing numerous applications of the BERNOULLI numbers, VENN diagrams, EULER num-
bers, the constants e and π , continued fractions and integrals. He demonstrated equivalence of
LEIBNIZ’s differential calculus and NEWTON’s method of fluxions and developed tools that
made it easier to apply calculus to physical problems. In the context of this book his work is
apparent through the EULER equations, the equations of motion of inviscid fluids.

The text is based on http://en.wikipedia.org/
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∂2Φ

∂t2
= c2 ∂

2Φ

∂x2
, −∞ < x <∞, (7.10)

whereΦ stands for ρ, p, φ, and the speed of sound c = c0 is a constant. The solution
of (7.10) will now be sought on the whole real line subject to the initial conditions

Φ(x, 0) = χ(x),
∂Φ

∂t
(x, 0) = Ψ (x). (7.11)

A general solution of the wave equation due to D’ALEMBERT is representable in the
form

Φ(x, t) = f (x − ct)+ g(x + ct) (7.12)

with differentiable f and g. Indeed, the reader may check by substitution of (7.12)
into (7.10) that both f and g satisfy the differential equation identically. These two
functions can be determined from initial conditions (7.11), namely

f (x)+ g(x) = χ(x),

c[− f (x)+ g(x)]′ = Ψ (x),
(7.13)

in which primes denote differentiation with respect to x . χ(x) and Ψ (x) are func-
tions which vanish sufficiently fast when x → ±∞. Integrating (7.13)2 yields

∫ x

−∞
[− f (ζ )+ g(ζ )

]′ dζ = 1

c

∫ x

−∞
Ψ (ζ ) dζ = : ψ(x),

�⇒ − f (x)+ g(x) = ψ(x). (7.14)

In the last step, f (−∞) = g(−∞) = 0 has been used, which is justified by the
assumed localisation of the initial conditions. From (7.13)1 and (7.14), we may now
deduce

f (x) = 1
2 [χ(x)− ψ(x) ],

g(x) = 1
2 [χ(x)+ ψ(x) ],

(7.15)

so that

f (x − ct) = 1
2χ(x − ct)− 1

2c

∫ x−ct
−∞ Ψ (ζ ) dζ,

g(x + ct) = 1
2χ(x + ct)+ 1

2c

∫ x+ct
−∞ Ψ (ζ ) dζ.

(7.16)

If these results are now substituted into (7.12) the final form of D’ALEMBERT’s
(1717–1783) general solution of the wave equation (7.10) subject to the initial con-
ditions (7.11) is obtained in the form

Φ(x, t) = 1
2 [χ(x − ct)+ χ(x + ct) ] + 1

2c

∫ x+ct
x−ct Ψ (ζ ) dζ. (7.17)
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An interpretation of this equation disclosing the wave character is obtained as fol-
lows: for constant argument ζ+ = x − ct , i.e. for an observer moving with the
speed of sound in the positive x-direction, the value of f (ζ+) remains constant;
f (x − ct) is therefore a wave propagating with the speed of sound in the positive
x-direction. Analogously, for a constant argument ζ− = x + ct the value of g(ζ−)
remains constant; g(x + ct) must therefore be a wave that propagates into the neg-
ative x-direction. Generally, wave solution (7.12) or (7.17) consists of two waves
propagating without change of shape with velocity c in opposite directions along
the x-axis.

Example 7.1 Consider a motion from an initial state of rest. Then Ψ (x) = 0, so
that the last integral term in (7.17) vanishes. Consequently, a given initial pertur-
bation χ(x) propagates with half the initial amplitude both to the right and to the
left, respectively, whereby, for a fixed time, the triangular signals cut in halves and
correspondingly shifted add up to form the total signal. Figure 7.2 shows how the
two left and right propagating waves develop from the initial triangular profile.
Once the perturbations have left the region of mutual interaction, they propagate
independently as triangles with half the initial height towards left and right. •

Problem 7.1 Consider the half line x > 0 and a wave that starts from rest from
infinity and approaches the wall at x = 0. Show that the solution of the wave
equation is again given by

Φ(x, t) = 1
2 [χ(x − ct)+ χ(x + ct) ], (7.18)

but that the reflection condition Φ(0, t) = 0 at x = 0 requires now

χ(ct) = −χ(−ct) �⇒ χ(x) = −χ(−x). (7.19)

The perturbation χ(x) for x > 0 must therefore be anti-symmetrically extended to
the half line x < 0. Show graphically how a triangular disturbance is reflected at
the wall. �

There is a second and more common way of solving the wave equation (7.10)
subject to initial conditions (7.11). It explicitly uses the fact that the initial value
problem (7.10), (7.11) is linear. Let θ be given by

θ = kx − ωt. (7.20)

Definition 7.3 θ = kx − ωt , in which k and ω are constants, is called the phase, k
the wavenumber and ω the (circular) frequency. �

It follows that sin θ and cos θ are solutions of (7.10), provided that

ω2 = k2c2 → c = ω

k
. (7.21)
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Fig. 7.2 Construction of the
D’ALEMBERT solution of the
wave equation. A triangular
perturbation Φ(x, 0),
released from rest, propagates
towards left and right with an
amplitude that is half the
initial amplitude
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Definition 7.4 A relation of the form

ω = W (k) (7.22)

is called dispersion relation and

c := ω

k
= W (k)

k
(7.23)

is called phase speed. �

Now, because of the relation

exp(iθ) = cos θ + i sin θ, (7.24)

also the exponential function eiθ is a solution of (7.10), it is simply complex
valued. Solutions that are physically meaningful must be real valued, and so we
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conclude that the physical solutions which can be extracted from the expression
Φ = Φ0exp (iθ) with possibly complex valued Φ0 are simply

Re [Φ0 eiθ ] and Im [Φ0eiθ ].

It is mathematically more convenient to perform the computations with the
complex-valued exponential functions rather than the trigonometric functions and
to isolate the real and imaginary parts at the very end.

The frequency and wavenumber must be related by the dispersion relation. It
follows that the expressions

Φ =
∞
∑

m=1

Amexp(iθm), θm = km x − ωmt (7.25)

or

Φ =
∫

A(ω) exp (iθ)dω, θ = kx − ωt, (7.26)

in which Am are complex constants and A(ω) is a complex-valued continuous
(square-integrable) function, are equally solutions of (7.10) as long as the phases θm

or θ satisfy the dispersion relation (7.21). Proceeding for the moment with (7.25),
exploration of the initial conditions (7.11) yields

Φ(x, 0) =
∞
∑

m=1

Amexp (ikm x) = χ(x),

∂Φ

∂t
(x, 0) = −

∞
∑

m=1

Am iωmexp (ikm x) = Ψ (x).

(7.27)

Alternatively, integral representation (7.26) leads to

Φ(x, 0) =
∫ ∞

−∞
A(ω)exp (ikx)dω = χ(x),

∂Φ

∂t
(x, 0) = −

∫ ∞

−∞
A(ω) iω exp (ikx)dω = Ψ (x).

(7.28)

Thus, (7.25) together with (7.27), or (7.26) with (7.28), also construct the solution
to the initial value problem (7.10), (7.11) for given functions χ(x) and Ψ (x).

Representations (7.27) are the famous Fourier expansions of the functions χ(x)
and Ψ (x), and for given χ(x) and Ψ (x) the coefficients Am can be determined.
The two functions are then expressed in terms of the so-called Fourier series.
Analogously, (7.26) is a Fourier-integral representation of the solution which is
complete if (7.28) are inverted for A(ω). It is not the purpose here to construct
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these inversions – we are satisfied to have made plausible that they can be found in
principle. As a result, however, we will henceforth, when encountering linear wave
equations, seek solutions by superposing exponential functions with phases whose
wavenumber and frequency satisfy the dispersion relation.

Returning to the three-dimensional case in Cartesian coordinates, i.e. according
to (7.7) and (7.9),

∂2Φ

∂t2
= c2

(
∂2Φ

∂x2
+ ∂2Φ

∂y2
+ ∂2Φ

∂z2

)

, (7.29)

we now seek solutions to (7.29) of the form

Φ(x, y, z, t) = Φ0 exp (i θ) = Φ0 exp( i (k · x − ω t) ), (7.30)

in which Φ0 is an amplitude of which the value is arbitrary for the homogeneous
equation (7.29). k is the wavenumber vector andω the frequency and θ = (k·x−ω t)
is the phase, as before. It possesses the following properties.

Problem 7.2 Prove that the surfaces of constant phases θ = constant represent
planes in R

3 (when t = constant). The wavenumber vector is perpendicular to these
planes and points in the direction to which the planes move with increasing time;
see Fig. 7.3. Moreover, the phase will be constant for an observer who moves with
the velocity

dx
dt
= c = ω

| k |
k
| k | . (7.31)

�

Because of the properties stated in Problem 7.2 the solutions of the form (7.30)
are called plane waves and c in (7.31) is called the phase velocity. This velocity
measures the velocity of an individual crest or trough or node of harmonic excitation
(7.30). Note also that

Fig. 7.3 Planes of constant
phase are perpendicular to the
wavenumber vector and move
for increasing time into the
direction of k

z

θ = constant

k

y

x
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dθ

dt
= ∂θ

∂t
+ dx

dt
· ∂θ
∂x
= 0, (7.32)

if c is given by (7.31). This means that the phase is constant for an observer moving
with the phase speed. Now, (7.30) implies the relations

gradΦ = (i k)Φ, div gradΦ = − (k · k)Φ = − | k |2Φ,
(7.33)

∂Φ

∂t
= (− iω)Φ,

∂2Φ

∂t2
= −ω2Φ,

so, upon substitution into (7.29), again the dispersion relation

ω = W ( | k | ) = c | k | = c k (7.34)

emerges, or when solved for c

c (k) = ω

k
= 1

k
W (k), (7.35)

so that, in general, the phase speed is a function of the modulus of the wavenumber
vector. In the present case of the classical wave equation the phase speed is constant
and thus independent of the wavenumber (or of the frequency). There are, however,
cases for which the phase speed does depend on the wavenumber. Such a case will
be encountered in Chap. 8. Indeed, consider (8.68),

L2
[
∂2w

∂z2

]

+ N 2∇2
Hw = 0, (7.36)

with

L = ∂2

∂t2
+ f 2, N = − 1

ρ∗
dρ0

dz
g, ∇2

H =
∂2

∂x2
+ ∂2

∂y2
,

and solve it for the vertical velocity component w by the method of separation of
variables. Writing

w(x, y, z, t) = Zn(z)wn(x, y, t), (7.37)

the following equation for wn is obtained:

Lwn − ghn∇2
Hwn = 0, (7.38)

where ghn are the eigenvalues of the vertical mode analysis (see (8.72)). Equation
(7.38) is also a linear wave equation and can be solved by the plane-wave represen-
tation (7.30), leading to the dispersion relation
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(ω2 − f 2) = ghn | k |2 → ω =
√

ghnk2 + f 2,

so

W (k) =
√

ghnk2 + f 2 (7.39)

and

c(k) = ω

k
= 1

k

√

ghnk2 + f 2. (7.40)

The phase speed is here an explicit function of k. This leads us to the following
definition:

Definition 7.5 If the phase velocity is not a function of the wavenumber, the wave
propagation is termed non-dispersive. Then W (k) = ck, where c is constant. If the
phase velocity is a function of the wavenumber, then the wave propagation is termed
dispersive and c(k) = k−1W (k). �

Dispersion has to do with spreading. So dispersive waves propagate with differ-
ent phase speeds at different wavenumbers. A signal comprising different FOURIER

components will therefore spread in time since to each frequency and wavenumber
there belongs its own phase speed.

A concept of great physical importance that is intimately connected with disper-
sion is the derivative of W (k), cgr = W ′(k).

Definition 7.6 The derivative of the frequency as a function of the wavenumber,
ω = W (k),

cgr := dW

dk
[m s−1 ] (7.41)

has the dimension of a velocity and is called group velocity. �

It is evident from the above definitions that for a non-dispersive wave the phase
and group velocities have the same values, c = cgr. Alternatively, they differ from
one another when the waves are dispersive. For instance, for (7.39)

cgr = ghnk
√

ghnk2 + f 2
= 1

k

√

ghnk2 + f 2 = c.

The group velocity is an important concept, because it is the velocity with which
a group of waves having distinct but nearly the same wavenumbers travels. Further-
more, it can be shown that the energy of a wave travels with the group velocity.



7.1 The Linear Wave Equation and Its Properties 233

To elucidate these facts, consider a particular value of k and the corresponding
value of ω = W (k) as reference values and perturb these slightly. Then, to k +�k
there belongs

ω +�ω = W (k +�k) = W (k)+ cgr |k �k +O(�k2)

� W (k)+ cgr�k.

The phase to this perturbed wavenumber is

θ+ = (k +� k)x − (ω +�ω) t = θ +� k(x − c̄grt), (7.42)

where θ is the unperturbed phase and c̄gr = �ω/�k. Similarly, we can perturb θ to
a smaller wavenumber, k −� k, and obtain analogously

θ− = (k −� k)x − (ω −�ω) t = θ −� k (x − c̄gr t). (7.43)

If we consider the two solutions

Φ+ = Φ0 exp (i θ+), Φ− = Φ0 exp (i θ−), (7.44)

add these together and substitute (7.42) and (7.43), then we obtain the combined
solution

Φ = Φ+ +Φ− = 2Φ0 cos (� k (x − c̄gr t) ) exp (i θ). (7.45)

This solution may be considered as one at the reference wavenumber k and reference
frequency ω with its amplitude modulated by the cosine function cos (� k (x −
c̄gr t) ). A snapshot of this solution is shown in Fig. 7.4. The unperturbed wave

Fig. 7.4 Snapshot of wave
solution (7.45) with beats.
The unperturbed wave travels
with the phase velocity, the
modulated amplitude with the
group velocity

π/Δk

Envelope

y

x−c̄grt
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exp (i θ)) propagates with the phase velocity, but the solution has beats, correspond-
ing to the changes in amplitude. The envelope travels with the group velocity. Each
lobe of the envelope may be interpreted as a group of waves and the velocity c̄gr
may be interpreted as the velocity of the group. Obviously, in the limit as �k → 0,
c̄gr → cgr.

7.2 Surface Gravity Waves Without Rotation

Having laid the foundations of linear wave analysis in the last section, we shall in
this section be concerned with an introductory account of linear surface waves in
homogeneous water. Rotation of the coordinate system will be ignored in a first
step as our intention is to elucidate how waves travel in such a fluid system without
rotation of the frame of reference. We will see that water waves are in principle
dispersive, but there is a non-dispersive limit, which is limnologically significant.
This is the long-wave approximation, called shallow water approximation (SWA).
However, we first treat the more general case which applies to all wavelengths.

Consider a layer of an ideal incompressible fluid referred to an inertial frame in
two-dimensional plane motion with free surface z = ζ(x, t); Fig. 7.5. In the absence
of the rotation of the frame of reference the linearised continuity and momentum
equations take the forms

div v = 0 and ρ
∂v

∂t
= − grad p′, (7.46)

in which p′ is the perturbation pressure such that the total pressure p equals

p = − ρgz + p′. (7.47)

By taking the divergence of the momentum equation (7.46)2 and substituting
(7.46)1, it is seen that

div grad p′ = �p′ = 0. (7.48)

Thus, the perturbation pressure must satisfy the LAPLACE equation. This is an inter-
esting result, because the LAPLACE equation is not a wave equation. Where do water

Fig. 7.5 Plane surface wave
in a layer of ideal
incompressible fluid

z = ζ(x, t)

H

z

x
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waves in a homogeneous fluid body then come from? It is the motion of the surface –
the boundary – that induces the waves as we shall soon see.

So, the boundary conditions are physically the crucial element. Let us begin at
the basal surface, which in Fig. 7.5 we chose to be located at z = −H , where H is
constant. Here the fluid velocity must be tangential to the surface, v · n = 0, where
n is the unit exterior normal, here −ez . Thus v · ez = 0 or

w = 0, at z = −H. (7.49)

At the free surface z = ζ(x, t) we assume vanishing surface traction; this means
that an outside (atmospheric) pressure and shear traction are assumed to be small or
absent. The traction on a surface with exterior unit normal n is given by t n. So the
traction-free condition reads t n = 0. The stress tensor t and the unit normal vector
n in two dimensions are given by

t =̂
(−p τ

τ −p

)

, n =̂

(

− ∂ζ

∂x
, 1

)T

√

1+
(
∂ζ

∂x

)2
, (7.50)

respectively, so that the stress boundary condition becomes

p
∂ζ

∂x
+ τ = 0,

− τ ∂ζ
∂x
− p = 0,

⎫

⎪⎬

⎪⎭

�⇒
{

p = 0,

τ = 0,
at z = ζ(x, t). (7.51)

Because field equation (7.48) involves only the pressure, the second condition will
not be needed. This is, in general, not so and is here due to the assumption that the
fluid is inviscid. The difficulty with the simple boundary condition (7.51)1 is that
the argument variable z is an unknown function of x and t, p = p(x, z = ζ(x, t)),
because the geometry of the free surface is an unknown that is part of the solution
of the problem. To linear approximation, a TAYLOR series expansion yields

p(x, z = ζ(x, t)) = p(x, 0)+ ∂p

∂z
(x, 0)ζ +O(ζ 2) = 0, (7.52)

which implies, in view of p = p0 + p′ and p0 = − ρgz,

p0(x, 0)
︸ ︷︷ ︸

0

+ ∂p0

∂z
(x, 0)

︸ ︷︷ ︸

−ρgζ(x,t)

ζ + p′ (x, 0)+ ∂p′

∂z
(x, 0) ζ

︸ ︷︷ ︸

O(ζ p′)

+O (ζ 2) = 0,

so that

p′ (x, 0) = ρgζ(x, t)+ higher order terms. (7.53)
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Thus, we have now expressed the original boundary condition (7.51), valid at the
unknown position of the free surface in terms of a new expression, (7.53), now valid
at the undeformed free surface, z = 0, and involving the free surface displacement
function ζ(x, t) explicitly. This transformation has, however, only been achieved
by linearising the statement and, therefore, restricting these displacements to small
values.

There is a further condition which must hold on a free boundary; this is the
kinematic equation of motion of the surface. To derive it, we start from the equation
describing the free surface,

Fs(x, z, t) ≡ ζ(x, t)− z = 0 (7.54)

and state that this equation holds for all time. So dFs/dt , which is the time rate of
change of Fs following the surface, must equally vanish,

dFs

dt
= 0, �⇒ ∂ζ

∂t
+ ∂ζ

∂x

dx

dt
− dz

dt
= 0, (7.55)

in which dx/dt = u and dz/dt = w are the x- and z-components of the surface
velocity. Thus, we have the final equation

∂ζ

∂t
+ ∂ζ

∂x
u − w = 0, at z = ζ(x, t). (7.56)

This equation is exact, but it has two complications: first, it is explicitly non-linear
through its middle term, second, it is also implicitly non-linear because the argument
z = ζ(x, t) is unknown. If we linearise it by employing a TAYLOR series expansion
in each term and then drop the terms which are of higher order small (i.e. products
of perturbation terms), we obtain

∂ζ

∂t
(x, t)− w(x, 0, t) = 0, at z = 0. (7.57)

The above somewhat lengthy analysis completes the formulation of the boundary
value problem; it comprises (7.48), (7.49), (7.53) and (7.57), which will now be
repeated at one place:

�p′ = 0, z ∈ (0, −H),

∂ζ

∂t
− w = 0,

p′ = ρgζ,

⎫

⎬

⎭
z = 0,

w = 0, z = −H,

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

−∞ < x <∞. (7.58)

This (linearised) boundary value problem is formulated in those variables that are
physically the most direct ones. In this sense all the variables are the most natural
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ones. Mathematically, it is more convenient to express every statement of (7.58) in
terms of the perturbation pressure. This can be achieved by writing down the vertical
component of the (linearised) momentum equation (7.46)2,

∂w

∂t
= − 1

ρ

∂p′

∂z
. (7.59)

Using this in (7.58) whereby the boundary conditions involving w are differentiated
once with respect to time yields the final form of the boundary value problem

�p′ = ∂2 p′

∂x2
+ ∂2 p′

∂z2
= 0, z ∈ (0,−H),

∂2ζ

∂t2
= − 1

ρ

∂p′

∂z
,

p′ = ρgζ,

⎫

⎬

⎭
z = 0,

∂p′

∂z
= 0, z = −H,

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−∞ < x <∞, (7.60)

which describes surface waves in a layer of constant depth of a density-preserving
fluid. The derivation was presented at this place, because it will in a similar fashion
be employed at several places later in this text.

Consider a plane-wave solution

(p′, ζ ) = (p0 (z), ζ0) ei (kx−ωt), (7.61)

in which p0 (z) and ζ0 are amplitudes, the former being obviously z-dependent; k is
the wavenumber and ω the frequency. Substituting expressions (7.61) into (7.60)1
shows that p0 (z) must satisfy the differential equation

d2 p0

dz2
− k2 p0 = 0

with the general solution2

p0 (z) = A cosh [k (z + H) ] + B sinh [k (z + H) ]. (7.62)

Imposing boundary conditions (7.60)3,4 yields

2 Definitions of the hyperbolic functions:

sinh x = ex − e−x

2
, cosh x = ex + e−x

2
, tanh x = sinh x

cosh x
= ex − e−x

ex + e−x
.
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A = ρgζ0

cosh (k H)
, B = 0 (7.63)

and (7.60)2 determines a relation between the frequency ω and the wavenumber k,
viz.

ω2 = gk tanh (k H). (7.64)

This is the dispersion relation of the linearised surface gravity waves on a liquid
layer of constant depth. It follows that surface gravity waves are generally disper-
sive, since the phase velocity cph = (ω/k2) k and the group velocity cgr = dω/dk,

cph =
√

g

k
tanh (k H)

k
k
,

cgr = 1

2

{√

g tanh (k H)

k
+
√

gk

tanh (k H)

H

cosh2 (k H)

}

k
k

(7.65)

differ from one another. Dimensionless representations of these speeds, valid for all
H , are

cph√
gH

=
√

tanh (k H)

k H
or

ω√
g/H

= √

k H tanh (k H),

cgr√
gH

= 1

2

{√

tanh (k H)

k H
+

√
k H

cosh2 (k H)
√

tanh (k H)

}

,

(7.66)

and these are graphically displayed in Fig. 7.6. Approximate expressions for the
phase and group speeds are obtained if these formulae are evaluated in the limit as
k → ∞. (Note: the wavelength l and wavenumber k are related by l = 2π/k.)
Since tanh (k H)→ 1 and cosh (k H) → ∞ as k → ∞, this limit yields

lim
k→∞

cph√
gH

= 1√
k H

,

lim
k→∞

cgr√
gH

= 1
2

1√
k H

,

lim
k→∞

ω√
g/H

= √k H ,

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

short-wave approximation,

valid for k H ≥ 2.
(7.67)

The short-wave group velocity is thus half the short-wave phase velocity and
both decay like 1/

√
k H as k → ∞. These limits are shown as dashed lines in

Fig. 7.6. The graphs indicate that for k H ≥ 2 the short-wave approximation (7.67)
is a valid approximation. In a layer of depth H , waves with wavelengths l � H/2
may, with sufficient accuracy, be considered as short.
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Fig. 7.6 (a) Dimensionless phase and group speeds plotted against dimensionless wavenumber
k H . (b) Dimensionless frequency ω/

√
g/H plotted against dimensionless wavenumber k H . In

both graphs long-wave and short-wave limits are also indicated

The other limit of long waves is obtained, if the limit k → 0 is considered.
Because tanh(k H)→ k H and cosh(k H)→ 1 as k → 0, this limit is given by the
formulae

lim
k→0

cph√
gH

= 1,

lim
k→0

cgr√
gH

= 1,

lim
k→0

ω√
g/H

= k H

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

long-wave approximation,

valid for k H ≤ 0.1π .
(7.68)
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The long-wave group velocity equals the long-wave phase velocity and both are
constant and equal to

cph = cgr =
√

gH , ω = √

gHk. (7.69)

This limiting behaviour is shown in Fig. 7.6 as thin solid lines. As implied by the
graphs this long-wave behaviour is sufficiently accurately described by (7.68) as
long as k H ≤ π/10, or l ≥ 20H . A surface wave with wavelength larger than
approximately 20 water depths may with sufficient accuracy be treated with the
equations of the long wavelength approximation. These results merit special men-
tioning in a rule.

Rule:

• In a homogeneous water layer of depth H waves with wavelengths shorter than
H/2 may mathematically be treated as short waves. For such waves the layer
behaves as if it were infinitely deep.

• Alternatively, waves with wavelengths larger than approximately 20 times the
water depth may mathematically be treated with the equations of the long-wave
approximation.

• Waves with wavelengths in the interval H/2 < l < 20H are intermediate and
suggest no approximation.

The long-wave approximation leads to equations which are known as shallow-
water equations. These will be dealt with to great extent in subsequent chapters,
because they describe with sufficient accuracy the most important problems in lake
hydrodynamics.

Let us now return to the general case of which the solution for the perturbation
pressure is given in (7.61), (7.62) and (7.63). Horizontal and vertical velocity com-
ponents, u, w and surface elevation ζ can be computed from the pressure by back
substitution into the original equations, e.g. (7.46)1, (7.58)3, (7.59). What obtains
reads as follows:

p′ = ρgζ0
cosh (k(z + H))

cosh (k H)
ei (kx−ωt),

ζ = ζ0ei (kx−ωt),

u = kg

ω
ζ0

cosh (k(z + H))

cosh (k H)
ei(kx−ωt),

w = kg

ω
ζ0

sinh (k(z + H))

cosh (k H)
e(i(kx−ωt)−iπ/2).

(7.70)

It is seen that the vertical velocity component lags behind the other three variables
by a quarter period. Short- and long-wave approximations will be discussed below.

Interesting physical insight is gained from evaluating the trajectories of the fluid
particles. These can be determined from the equations
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dx

dt
= Re (u(x, z, t))

dz

dt
= Re (w(x, z, t)) , (7.71)

where u and w are given in (7.70)3,4, subject to the initial conditions

x(t = 0) = x0, z(t = 0) = z0. (7.72)

Equations (7.71) and (7.72) form a system of two first-order ordinary differential
equations (ODF). They constitute an initial value problem that can easily numer-
ically be solved using software of ODF integrators. This is not what we are here
aiming for. Our goal is an (approximate) analytic solution of these equations. To
this end, we suppose that the particles do not move far away from their position
at rest (recall the discussion involving a wave passing a fish rope at the beginning
of this chapter!). We may then, for the integration of (7.71), treat x and z on the
right-hand sides as constants. Thus, we replace x and z by x0 and z0 to identify this
fact and then obtain

dx

dt
= Re (u(x0, z0, t)) ,

dz

dt
= Re (w(x0, z0, t)) (7.73)

and after integration

x − x0 =
∫ t

0
Re (u(x0, z0, τ )) dτ = f (x0, z0, t),

z − z0 =
∫ t

0
Re (w(x0, z0, τ )) dτ = g(x0, z0, t).

(7.74)

Equations (7.74) constitute the parameter representation of the trajectory through
the point (x0, z0). By eliminating the time between the two equations an explicit
form, I (x, z) = 0, of the trajectory through the point (x0, z0) can be obtained.

With (7.70)3,4 the specific forms of (7.73) for our example are

dx

dτ
= U0(z0)Re

(

e−iωτ
)

,
dz

dτ
= −iU0(z0)tanh (k(z0 + H))Re

(

e−iωτ
)

, (7.75)

in which

τ = − x0

cph
+ t, U0(z0) = kg

ω
ζ0

cosh (k(z0 + H))

cosh(k H)
. (7.76)

Straightforward integration of (7.75) yields

x − x0 = Re

{

i
U0

ω
e−iωτ

}

= U0

ω
sinω τ,

z − z0 = Re

{
U0

ω
tanh (k(z0 + H))e−iωτ

}

= U0

ω
tanh (k(z0 + H)) cosω τ,

(7.77)
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in which (x0, z0) is a fixed point in (x, z)-space and Re denotes ‘real part’. By
eliminating time from (7.77) and using the dispersion relation (7.64), the trajectories
of the particles are obtained as follows:

(x − x0)
2

(
ζ0 cosh (k(z0 + H))

sinh (k H)

)2
+ (z − z0)

2

(
ζ0 sinh (k(z0 + H))

sinh (k H)

)2
= 1. (7.78)

Equations (7.77) and (7.78) are the two forms of the trajectory representations
through (x0, z0); they disclose the following properties, some of which are also
graphically displayed in Fig. 7.7:

• Trajectories are ellipses with ratio of the vertical (b) and horizontal (a) principal
semi-axes

(
b

a

)2

= tanh2 (k(z0 + H)) ≤ 1. (7.79)

These ellipses are traversed in the clockwise direction, when the wave propagates
from left to right.3

• For z0 = 0 their aspect ratio is largest, namely tanh(k H), for z0 = −H it is zero,
i.e. ellipses collapse to a double line (a single line traversed twice).

• The size of the ellipses is described by U0(z)/ω, indicating a decrease with
increasing depth:

a(z = −H)

a(z = 0)
= 1

cosh(k H)
. (7.80)

Fig. 7.7 Particle trajectories
for fluid particles at various
depths as determined by
(7.78)

H

z

x

a
b

3 This can be inferred from (7.77).
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• In the limit as H→∞ the ellipses become circles whose radius decays exponen-
tially with depth:

lim
H→∞ a = lim

H→∞ b = ζ0ekz0 . (7.81)

Thus, the particle motion is effectively restricted to a ‘boundary layer of thick-
ness’ 1/k.

Another characterisation of the flow is provided by the streamlines; these are
defined as the integral curves of the tangential field to the velocity at a fixed time,
viz.

dx

dσ
= Re [u(x, z, t)], dz

dσ
= Re [w(x, z, t)], (7.82)

where σ is the curve parameter. With relations (7.70)3,4 this yields

dz

dx
= Re [w(x, z, t) ]

Re [u(x, z, t) ] =
sinh (k (z + H)) sin (kx − ω t)

cosh (k (z + H)) cos (kx − ω t)

= tanh (k (z + H)) tan (kx − ω t).
(7.83)

It follows from this formula that dz/dx → ∞ where u = 0 and that dz/dx = 0
where w = 0. So, for a given motion, streamlines are horizontal where the surface
inclination is largest, and they are vertical at positions of wave crests and wave
troughs.

Particle trajectories and streamlines can be made visible in an experiment, e.g.
by adding small buoyant particles to a fluid that are visible but still sufficiently
small to be dragged by the fluid without any slip. If such conditions prevail, pho-
tographs with long exposure time will trace the particles along their ‘journey’ and
thus record portions of the trajectories. If, on the other hand, the exposure time is
short, the particles will traverse a very short distance during this time. Their traces
will be essentially straight and tangential to the instantaneous velocity field. So such
photographs will indicate the streamline pattern.

Photographs with long exposure time have been taken by WALLET and RUEL-
LAN [17] at the Laboratoire Dauphinois d’Hydraulique, Grenoble, and are repro-
duced here in Fig. 7.8. Relevant at this moment is only the top figure on the left,
which shows the trajectories of buoyant particles during one period for a purely
harmonic wave coming from the left. It is seen that the trajectories are practically
ellipses, nearly circular at the free surface but thin close to the bottom. Some open
loops indicate a slow drift to the right near the surface and to the left near the bottom.
These results corroborate beautifully the property expressed earlier that the motion
of the wave itself and that of the particles may be vastly distinct from one another.
Here the wave moves with the phase velocity from left to right, while the particles
perform bounded motions along closed trajectories. The fact that the trajectories are
closed is, however, not a property of the physical system; it is here due to both the
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No reflection: pure progressive waves

85% reflection24% reflection

38% reflection 100% reflection: pure standing waves

53% reflection

71% reflection

Fig. 7.8 Particle trajectories in plane periodic water waves. Two wave trains of the same frequency
travelling in opposite directions are produced by a progressive wave coming from the left that is
reflected by a partially absorbent barrier. The top photograph on the left shows the pure progres-
sive wave with no reflection. Its amplitude is 4% of the wavelength and the water depth is 22%.
White particles suspended in the water are photographed during one period. Their trajectories are
practically ellipses traversed clockwise, nearly circular at the free surface and flattened towards
the bottom. As the reflection is increased, the orbits become increasingly flattened and inclined.
Complete reflection gives a pure standing wave in the last photograph, where the trajectories are
along streamlines. There, the upper and lower envelopes of the water surface show that the vertical
motion does not vanish at the nodes, where the horizontal velocity is nil, from VAN DYKE [15],
originally photographed by WALLET and RUELLAN [17] c© Houille Blanche

linearisation of the boundary value problem as expressed by (7.60) and the second
linearisation of the differential equations (7.71) determining the trajectories of the
fluid particles. If, for instance, this second linearisation is not implemented (x0, z0
on the right-hand side are replaced by x, z) and (7.75) are solved exactly, then the
trajectories are no longer ellipses and neither are they closed. However, the pho-
tographs demonstrate that the error due to these simplifications is rather small.

Problem 7.3 By using an available software of ODE integrations or by employing
his own program the reader may integrate (7.71) with u and w given in (7.70)3,4
exactly and demonstrate that for a harmonic wave from left to right, there is an
average drift of the particles, at the surface to the right and at the base to the left.
This drift can be made visible by plotting the trajectories for a number of selected
particles for a number of periods T = 2π/ω. �
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Fig. 7.9 Time series (7.84)
plotted for five different
positions x . The distances
x j − x j−1 ( j = 1, 2, 3, 4) are
plotted with the same ratio as
in field observations. Then
the angle γ is a measure of
the phase speed:
cotan γ = cph
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Finally, we end this analysis by illustrating the propagating wave by a graph
that is popular in physical limnology when analysing data taken from thermistor
chains, current metres or limnigraphs. Imagine for the present situation that a har-
monic wave of the surface elevation is observed along a channel at the positions
x0, x1, x2, x3, x4 and that these data can be represented as

ζ = ζ0 Re [exp (i(k (x − x0)− ω t))]
= ζ0 [ cos (k (x − x0)) cosω t + sin (k (x − x0)) sinω t ], (7.84)

where for x the above positions of the limnigraphs must be substituted. If we
now plot a chart of the five time series (7.84) at the positions x0, x1, x2, x3, x4,
one below the other such that the distances between consecutive time series are
x j − x j−1, j = 1, 2, 3, 4, then the plot of Fig. 7.9 is obtained. Connecting in this
graph the corresponding zeros between the individual time series yields the inclined
straight lines at a distance of T/2, where T is the period of the wave from which the
circular frequency ω = 2π/T can be deduced. The angle γ between the inclined
lines and the vertical in these plots is then a measure of the phase speed. Indeed,
in the units of time and distance of the graph, cotan γ = cph. The figure therefore
provides an explicit representation of the propagating wave.

7.2.1 Short-Wave Approximation

We have seen that the length scale, which appears in dispersion relation (7.64) and
typifies the character of the waves, is the fluid depth H . For short waves, relations
(7.67) give the asymptotic expressions for the dispersion relation

ω2 = gk (short waves) (7.85)
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and the phase and group velocities valid for k H � 1 (actually, it requires only
k H ≥ 2 as shown in Fig. 7.6). Since in this limit the cosh and sinh functions may
be replaced by 1

2 exp-functions, relations (7.70) take the forms

p′ = ρgζ0ekzei(kx−ωt),

ζ = ζ0ei(kx−ωt),

u = kg

ω
ζ0ekzei(kx−ωt),

w = kg

ω
ζ0ekze(i(kx−ωt)−iπ/2).

(7.86)

These are the perturbation pressure, surface displacement and velocities of the so-
called deep-water waves because H � k−1. From the exponential z-dependence of
the pressure and the velocity field it is seen that these quantities are confined to a
distance (in z) on the order of k−1 from the surface, so propagation is unaffected by
the bottom, if the water depth is approximately three times the wavelength or more.
This may be used as a definition.

Definition 7.7 Water waves in a homogeneous water layer are called deep-water
waves, if their wavelength is less than about one-half to one-third of the water depth.
These waves are dispersive and their dispersion relation is given by (7.85). �

As an application, consider the following example:

Example 7.2 The dominant waves which one sees on the ocean surface have peri-
ods 2πω−1 of order 10 s. By (7.85) a deep-water wave has a wavelength shorter
than 2πk−1 = 2πg/ω2 ∼ 160 m, its e-folding depth is k−1 � 25 m and its phase
speed is 15 m s−1! The deep-water approximation is therefore reasonable for such
waves when the depth is greater than 50 m. When such a wave approaches a shallow
shore region its frequency remains constant, but owing to the finite-depth-dispersion
relation the wave will become shorter and the phase speed decreases. It follows that
deductions about wavelength and phase speed made by observing waves on a beach
can lead to erroneous conclusions about their properties in deep water. •

7.2.2 Long-Wave Approximation

This approximation is obtained if k−1 � H , i.e. if the wavelength is much larger
than the water depth, and the dispersion relation was found in this limit to be

ω = √

gHk (long waves), (7.87)

with equal phase and group velocities; see (7.68). The waves obeying this limiting
dispersion relation are called shallow-water waves because wavelengths are much
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larger than H ; they are non-dispersive because the phase speed is independent of the
wavenumber. This speed depends on g and the water depth and is given as follows:

depth [m] : 100 500 1000 5000
speed [m s−1] : 30 70 100 200

Such waves travel forth and back in Lake Zürich (30 km long) in 45 min, Lake
Constance (60 km long) in 70 min and could cross the Atlantic ocean in 7 h. The
corresponding approximation to (7.70) is

p′ = ρ g ζ0 ei(kx−ωt),

ζ = ζ0 ei(kx−ωt),

u =
√

g

H
ζ0 ei(kx−ωt),

w =
√

g

H
ζ0 k(z + H) e(i(kx−ωt)−iπ/2),

(7.88)

i.e. the pressure perturbation and the horizontal velocity are independent of depth.
Since the density perturbation is zero, this is precisely the result which would be
obtained if the pressure were calculated from the hydrostatic equation. Thus, we
have explicitly demonstrated that in this linear wave approximation the long-wave,
shallow-water and hydrostatic pressure assumptions are equivalent. We also see
from (7.88)4 that the vertical velocity increases linearly with z from zero at the
bottom to ∂ζ/∂t at the surface.

We summarise (on this basis and in view of the rule stated on p. 240) as follows:

Definition 7.8 In a homogeneous water layer waves are called shallow-water
waves, if their wavelength is larger than about 20 times the water depth. These
waves are non-dispersive and their dispersion relation of the linearised theory is
given by (7.87). �

Comparison of the pressure formulae for general, deep and shallow-water waves,
(7.70)1, (7.86)1 and (7.88)1, respectively, shows that pressure perturbations are
attenuated with depth except in the shallow-water approximation. It follows that
data from a pressure gauge positioned at the bottom of a lake must be used with
care to interpret corresponding surface fluctuations. Such measurements will filter
out all short surface waves and, if not properly corrected, will give erroneous results
for intermediate wavelengths.

7.2.3 Standing Waves – Reflection

Consider two surface water waves that propagate in opposite directions. We assume
first that the two waves have equal frequencies and amplitudes. In the linear
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approximation, (7.70) still apply but must be written down for the forward as
well as the backward moving wave with exp (i (kx − ωt)) being replaced by
exp (i (kx + ωt)). Written down for the surface displacement ζ this yields

ζforward = ζ0 ei(kx−ωt), ζbackward = ζ0 ei(kx+ωt), (7.89)

so that their sum is given by

ζ = ζforward + ζbackward = ζ0 eikx (eiωt + e−iωt )

= 2 ζ0 eikx cosωt.
(7.90)

Applying this procedure to all variables of (7.70) and restricting the formulae to
the real parts show that the perturbation pressure, surface elevation and velocity
components are given by

p′ = 2ρgζ0
cosh (k (z + H))

cosh (k H)
cos kx cosω t,

ζ = 2ζ0 cos kx cosω t,

u = 2
kg

ω
ζ0

cosh (k (z + H))

cosh (k H)
sin kx sinωt,

w = −2
kg

ω
ζ0

sinh (k (z + H))

cosh (k H)
cos kx sinωt.

(7.91)

This is a standing wave, a notion we shall now define.

Definition 7.9 A wave is called standing, if within its domain of existence there are
finite dimensional sub-domains with time-independent boundaries at which at least
one of the field variables remains constant for all time. �

If the domain is one dimensional then the sub-domains are separated by points; in
two and three dimensions they are lines and areas, respectively. A single point in
two or three dimensions, at which some field variable has a constant value, does,
however, not define a standing wave. In such a situation one sometimes calls such
waves as quasi-standing. We shall encounter them when analysing waves in non-
inertial frames.

Solution (7.91) is a standing wave since p′, ζ andw vanish for kx = (2n+1) π/2,
so that the velocity field is purely horizontal at these points. Alternatively, when
kx = nπ then p′, ζ and w go through maxima and minima (i.e. their amplitudes
are largest), but u is zero. In this case of one spatial dimension for the surface
elevation ζ the locations of vanishing wave field are points. Alternatively, for the
variables p′, u, w the domain is two dimensional and the locations of vanishing
wave fields p′, u, w are (vertical) lines. When solution (7.91) is interpreted as a
wave field in a channel, in which the field variables do not show a dependence on
the cross-channel coordinate y, then the points of zero value of the surface elevation
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are lines across the channel. They are called nodal lines for the variable ζ . To the
left and right of these lines the surface elevation has opposite signs; they are called
to be in counter-phase.4 Figure 7.10 shows a graphical representation of standing
wave solution (7.91). It displays the sinusoidal variation of the surface deflection at
a fixed time as it varies along the channel. The wave height does not vary across
the channel so that nodal lines and, more generally, the lines of constant wave
height are straight lines across the channel. Projected onto the horizontal plane are
arrows, which indicate how the horizontal velocity component varies with position
and in conformity with the surface elevation (actually the double arrows (↔ ) are
indicative of the size of the velocity amplitude). As is seen, the horizontal velocity
vanishes in cross-sections where wave crests and wave troughs occur, and it goes
through maxima at nodal lines of the surface elevation. To contrast these locations
from those of the nodal lines, they are often denoted as anti-nodal lines. The divi-
sion of the (infinite) channel into sub-domains can be executed in this case in two
different ways. On the one hand, the rectangular boxes between two consecutive
nodal lines (N N ) separate the regions where surface elevations move consecutively
in counter-phase. The horizontal velocities vary from a maximum (minimum) at

L

N L

LN

L

L

N

L

L

N

N

N L
L

L

channel direction

backward motion

forward motion

Fig. 7.10 A standing wave without rotation in a uniform depth model (according to MORTIMER

[11, 12]). The figure shows the surface elevation (solid lines) and in counter-phase (dashed). Indi-
cated are the nodal (N N ) and anti-nodal (L L) lines. The lower, partly covered rectangle shows the
horizontal velocities as double arrows indicating their magnitudes. Vanishing longitudinal veloc-
ities (points) correspond to positions of anti-nodes for the surface elevations. Redrawn from C.H.
MORTIMER [11] with changes

4 It is often customary to call two periodic motions which are in counter-phase to be out of phase.
This is not precise, because any two motions, which are not in phase, are out of phase. However,
only a phase angle of 180◦(= π) characterises counter-phase behaviour.
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one nodal line to a minimum (maximum) at the neighbouring nodal line. On the
other hand, the sub-domains may be defined as the boxes between cross-sections
at anti-nodes (L L). Physically, this choice here is more appealing, because there is
never a mass exchange between these boxes.

To determine the particle trajectories for standing waves (7.91) the ordinary dif-
ferential equations (7.71) must be solved. If these equations are again linearised as
indicated in (7.73) integration is straightforward and yields

x − x0 = − 2gkζ0

ω2
sin (kx0) cosωt

cosh (k (z0 + H))

cosh (k H)
,

z − z0 = 2gkζ0

ω2
cos (kx0) cosωt

sinh (k (z0 + H))

cosh (k H)
.

(7.92)

It is easily seen from these relations that particle trajectories are straight segments
with inclination

tan (α) = z − z0

x − x0
= − cotan (kx0) tanh (k (z0 + H)). (7.93)

The last panel in Fig. 7.8 shows a photograph of particle trajectories of a stand-
ing wave and corroborates that these trajectories are straight segments which, in a
period, are traversed by the particles forth and back. This motion is also indicated
in Fig. 7.10 at the frontal vertical plane of the channel.

The streamlines for the standing wave solution (7.91) follow from the integration
of the differential equation

dz

dx
= w

u
= −cotan (kx) tanh (k (z + H)). (7.94)

The right-hand side is here the same as the right-hand side in (7.93). So, in this linear
case the streamlines are (very nearly) the integral curves of the particle trajectory
segments. They are shown in Figs. 7.10 and 7.11 and indicate very clearly that the
particle velocity is vertical at wave crests and troughs but horizontal at nodal lines.

The standing wave solution (7.91) was obtained as a result of the superposition
of a forward-moving wave plus a backward-moving wave with the same frequency
and amplitude. At the positions kxn = nπ , the velocity component u vanishes for
all cross-channel positions and all times, and so we may in imagination insert a
wall across the channel at these positions without affecting the motion. Thus, the
standing wave may equally be interpreted as a reflection of a forward-moving wave
at a wall, where the backward-moving wave is persistently created to accommodate
the zero-horizontal-velocity condition at the position of the wall.

This complete reflection is an ideal situation that may not be realised, but its
effects are large; particle trajectories have changed from ellipses for propagating
waves to straight lines for standing waves. Partial reflection is achieved by walls
that absorb part of the energy of the incoming wave or, equivalently, which only
reflect a wave with smaller amplitude. This case may be described by the solution
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Fig. 7.11 Streamlines in a
standing gravity wave.
Particle trajectories are
straight line segments
tangential to the streamlines
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p′ = ρg ζ0
cosh (k (z + H))

cosh (k H)
[ei(kx−ωt) + λ ei(kx+ωt)],

ζ = ζ0 [ei(kx−ωt) + λ ei(kx+ωt)],
u = kg

ω
ζ0

cosh (k (z + H))

cosh (k H)
[ei(kx−ωt) + λ ei(kx+ωt)],

w = kg

ω
ζ0

sinh (k (z + H))

cosh (k H)
[e(i(kx−ωt)−i π/2) + λ e(i(kx+ωt)−i π/2)].

(7.95)

We shall not dwell upon the details of this solution which now depends on the
parameter λ ∈ [0, 1]. The result is that particle trajectories are still ellipses which
become thinner as λ moves from 0 to 1 for which the standing wave solution is
obtained. Experiments with partial reflection have also been conducted. Figure 7.8
shows the traces of the particle trajectories from pure propagation (top panel) to
standing wave (bottom panel) with increasing degree of reflection from top to
bottom.

It is a property of the standing wave solution (7.91) that walls can be inserted
at all positions kxn = nπ, n = 0,±1,±2, ...,±∞, without affecting the motion.
In this way the solutions of the unidirectional surface wave motion in rectangular
basins can be constructed. Figure 7.10 can be interpreted in this way. Walls are
thought to be erected here such that two modes, each with wavelength l = 2π/k,
fill the rectangle. Of course any countable number of modes can fit a channel of a
given length L if only kn = nπ/L .

This brings us in the next section to the study of oscillations in rectangular basins
of constant depth when effects of the rotation of the Earth are absent.



252 7 Introduction to Linear Waves

7.3 Free Linear Oscillations in Rectangular Basins
of Constant Depth

Consider a rectangular basin filled to depth H with a density-preserving fluid. Let a
Cartesian coordinate system be chosen such that its origin and axes are oriented as
shown in Fig. 7.12.

The governing equations of the free linear oscillations of a layer of water with
uniform density are given by (7.58), in which, however, the horizontal variables x
and y vary according to 0 < x < L , 0 < y < B.

Thus, the boundary value problem, analogous to (7.60), now reads

�p′ = ∂2 p′

∂x2
+ ∂2 p′

∂y2
+ ∂2 p′

∂z2
= 0, z ∈ (0,−H),

∂2ζ

∂t2
= − 1

ρ

∂p′

∂z
,

p′ = ρgζ,

⎫

⎪⎬

⎪⎭

z = 0,

∂p′

∂z
= 0, z = −H,

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0 < x < L ,

0 < y < B.
(7.96)

This constitutes a linear free initial boundary value problem – ‘free’, because there
is no external driving. A harmonic solution may be determined by choosing

p′(x, y, z, t) = p̄ (x, y, z) eiωt ,

ζ(x, y, t) = ζ̄ (x, y) eiωt ,
(7.97)

yielding the following time-independent boundary value problem

� p̄ = ∂2 p̄

∂x2
+ ∂2 p̄

∂y2
+ ∂2 p̄

∂z2
= 0, z ∈ (0,−H),

−ω2ζ̄ = − 1

ρ

∂ p̄

∂z
,

p̄ = ρgζ̄ ,

⎫

⎪⎬

⎪⎭

z = 0,

∂ p̄

∂z
= 0, z = −H,

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0 < x < L ,

0 < y < B.
(7.98)

This is a free boundary value problem involving a parameter ω, which is unknown
and must be determined in the course of the construction of its solution.

Definition 7.10 A free boundary value problem involving a parameter is called an
eigenvalue problem or a proper value problem. The free parameter is called the
eigenvalue or proper value and the solution functions are called eigenfunctions
or eigenmodes. �
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Fig. 7.12 Rectangular basin
with length L , width B and
constant water depth H . The
Cartesian coordinate system
is chosen with the origin O at
the corner and on the
undisturbed water level; x-
and y-axes are in the plane of
the still undeformed water
surface and z is vertically
upward

z y

O

L

H

x

B < L
B

An eigenvalue problem only possesses solutions if the eigenvalue assumes certain
distinct values. As one could surmise from the construction of the standing wave
solutions, the length, L , and the width, B, will fix the wavenumbers kx and ky of
wave solutions of the form exp [i(±kx x ± ky y ∓ ωt)] and the dispersion relation
(which relates ω and kx , ky) will then determine to each admissible pair (kx , ky) the
consistent frequency. In this connection, one may see the solution of an eigenvalue
problem as the quantised satisfaction of the dispersion relation.

Solutions to eigenvalue problem (7.98) have already been determined in the last
section. Indeed, formulae (7.91) may be regarded as standing wave solutions in the

rectangle of Fig. 7.12, if the wavenumber is chosen as kx n = nπ

L
, ky = 0 where

n = ±1,±2, ...,±∞. Thus,

p′(x, y, z, t) = 2 Pn
0 (z) cos

(nπx

L

)

cosωnt,

ζ(x, y, t) = 2 ζ n
0 cos

(nπx

L

)

cosωnt,

u(x, y, z, t) = 2 U n
0 (z) sin

(nπx

L

)

sinωnt,

v(x, y, z, t) = 0,

w(x, y, z, t) = −2 W n
0 (z) cos

(nπx

L

)

sinωnt,

(7.99)

in which

Pn
0 (z) = ρgζ n

0
cosh (kn (z + H))

cosh (kn H)
,

U n
0 (z) =

kn

ρωn
Pn

0 (z),

W n
0 (z) = tanh (kn (z + H))U n

0 (z)

(7.100)

and n=1, 2, ...,∞ are solutions of the surface water waves. All variables are inde-
pendent of y, i.e. the transversal direction of the rectangle. For each n solution (7.99)
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Fig. 7.13 Rectangular basin with length L , width B and constant water depth H . The left column
shows longitudinal eigenmode solutions for n = 1, 2, 3 while the right column shows analo-
gous transverse eigenmode solutions for m = 1, 2 (after MORTIMER with changes and additions
[11, 12])

is called a longitudinal (eigen)mode of the water motion in rectangle. Often one calls
the mode belonging to the mode number n the nth longitudinal mode. Figure 7.13
shows the spatial distribution of the first three modes.

Just as there are longitudinal oscillations in a rectangle, there may also be purely
transversal modes, which are given by
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p′(x, y, z, t) = 2 Pm
0 (z) cos

(mπy

B

)

cosωmt,

ζ(x, y, t) = 2 ζm
0 cos

(mπy

B

)

cosωmt,

u(x, y, z, t) = 0,

v(x, y, z, t) = 2 V m
0 (z) sin

(mπy

B

)

sinωmt,

w(x, y, z, t) = −2 W m
0 (z) cos

(mπy

B

)

sinωmt,

(7.101)

in which

Pm
0 (z) = ρgζm

0
cosh (km (z + H))

cosh (km H)
,

V m
0 (z) =

km

ρωm
Pm

0 (z),

W m
0 (z) = tanh (km (z + H)) V m

0 (z)

(7.102)

are the same functions as (7.100) but with indices m rather than n, and m =
1, 2, ...,∞. In the above equations the dispersion relations, similar to (7.64),

ω2
n = gkn tanh (kn H), kn = n π

L
, n = 1, 2, ...,∞,

ω2
m = gkm tanh (km H), km = m π

B
, m = 1, 2, ...,∞

(7.103)

allow only quantised solutions between the wavenumbers and frequencies. Exam-
ples of transverse mode solutions are also shown in Fig. 7.13.

We have discussed the above solutions not only because they are particularly
interesting but also because later when the rotation of the Earth is added as a further
complexity, they will be seen to be the non-rotational analogues of what then will
turn out to be the so-called KELVIN and POINCARÉ waves.

There are yet further eigenmode solutions for the rectangle in which the pressure,
surface elevation and velocity components vary in all space directions. In view of
the above longitudinal and transversal solutions it is not difficult to guess that a
possible solution for the pressure may be of the form

p′(x, y, z, t) =
{

P1(z) sin
(nπx

L

)

sin
(mπy

B

)

+P2(z) sin
(nπx

L

)

cos
(mπy

B

)

+P3(z) cos
(nπx

L

)

sin
(mπy

B

)

+P4(z) cos
(nπx

L

)

cos
(mπy

B

)}

cosωt. (7.104)
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Problem 7.4 Using the linearised momentum equation ρ ∂v/∂t = − grad p′, con-
struct the expressions for the u- and v-velocity components that are in conformity
with (7.104). Show, moreover, that the boundary conditions

u(0, y, z, t) = 0, u(L , y, z, t) = 0,
(7.105)

v(x, 0, z, t) = 0, v(x, B, z, t) = 0

imply P1(z) = P2(z) = P3(z) = 0. In summary, thus,

p′ = P4(z) cos
(nπx

L

)

cos
(mπy

B

)

cosωt,

u = P4(z)

ρ

nπ

L

1

ω
sin

(nπx

L

)

cos
(mπy

B

)

sinωt,

v = P4(z)

ρ

mπ

B

1

ω
cos

(nπx

L

)

sin
(mπy

B

)

sinωt

(7.106)

are the only admissible representations for p′, u and v. �

As p′ satisfies Laplace’s equation (7.96)1,�p′ = 0, it is easy to see that P4 obeys
the equation

d2 P4

dz2
−
(

n2π2

L2
+ m2π2

B2

)

︸ ︷︷ ︸

k2
n,m

P4(z) = 0, (7.107)

with the solution

P4(z) = αn,m cosh (kn,m (z + H))+ βn,m sinh (kn,m (z + H)). (7.108)

Boundary conditions (7.98)2,3,4 imply βn,m = 0 and

ω2
n,m = gkn,m tanh (kn,m H), k2

n,m =
n2π2

L2
+ m2π2

B2
, (7.109)

ζ = αn,m

ρg
cosh (kn,m H) cos

(nπx

L

)

cos
(mπy

B

)

cosωt. (7.110)

If we substitute all these relations back, then (7.106) and (7.110) take the following
forms:
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in which

Pn,m
0 (z) = ρgζ n,m

0
cosh (kn,m (z + H))

cosh (k H)
, (7.112)

ζ
n,m
0 = αn,m

ρg
cosh (kn,m H) (7.113)

and ωn,m satisfies the quantised dispersion relation (7.109). In (7.111) we have on
the left-hand side attached to p′, etc. the superscript n, m, p′n,m etc., because the
solution only belongs to the mode (n,m). Finally, using continuity equation (7.46)1

∂w

∂z
= −∂u

∂x
− ∂v

∂y
,

the vertical velocity component can be computed. We leave it to the reader to prove
that

wn,m = W n,m
0 (z)cos

(nπx

L

)

cos
(mπy

B

)

sinωn,mt, (7.114)

in which

W n,m
0 (z) = − kn,m

ρωn,m
tanh(kn,m (z + H))Pn,m

0 (z). (7.115)

Alternatively, (7.114) and (7.115) can also be obtained by using the vertical compo-
nent of the linearised momentum equation (7.46)2,

ρ
∂w

∂t
= −∂p′

∂z
.

Expressions (7.111), (7.112), (7.113), (7.114) and (7.115), together with the
quantised dispersion relation (7.109), define the true two-dimensional eigen-
oscillations of the surface gravity waves in a rectangle of constant depth. The inte-
gers n and m thereby characterise the longitudinal and transversal mode orders



258 7 Introduction to Linear Waves

and are referred to as longitudinal and transversal mode numbers. Notice that the
formulae also incorporate the purely longitudinal and transversal modes as follows:

n = 0, m = 0 �⇒ nth order pure longitudinal mode,
n = 0, m = 0 �⇒ mth order pure transversal mode.

The reader can easily check this property by comparing formulae (7.109),
(7.111), (7.112), (7.113), (7.114) and (7.115) with the earlier representations (7.99),
(7.100), (7.101), (7.102) and (7.103), respectively.

Formulae (7.111) and (7.114) imply that the shapes of the spatial distributions of
the variables p′, ζ, u, v, w do not vary with time, but are fixed once and for all when
the geometry of the basin is fixed. The sinusoidal variation in time changes the scale
and direction according to the variation of the sin- and cos-functions with time. This
is a property of standing waves: the spatial distribution of the shape of the eigenfunc-
tions is fixed and time independent. It will later be seen that this property is not main-
tained when the rotation of the Earth is taken into account. Figures 7.14 and 7.15
show the distribution of the surface elevation and horizontal velocity for the modes
with (n,m) = (1, 0; 0, 1; 2, 0; 0, 2; 1, 1; 2, 2; 2, 1; 1, 2; 3, 1; 1, 3; 3, 2; 2, 3).

Finally, the most general free wave solution in a rectangle of constant depth is a
linear combination over all modes with positive, entire m, n, such that m + n � 1.
Thus,

{p′, ζ, u, v, w} =
∞
∑

n>0,m>0

n+m�1

{

p′n,m, ζ n,m, un,m, vn,m, wn,m}

defines this most general solution, along which the variables on the right-hand side
are given by (7.111), (7.112), (7.113), (7.114) and (7.115). The quantities ζ n,m

0 can
be viewed as the free amplitudes that are in a forced problem related to the forcing.

7.4 Concluding Remarks

In this chapter an introductory outline to linear waves, in general, and to water
waves, in particular, was given. The subject was introduced with the example of
acoustic waves, which are the longitudinal waves in a compressible liquid. Spatially
one-dimensional waves were constructed with the method of D’ ALEMBERT and
then by an exponential – harmonic – representation. This latter solution technique
led to the notions of phase, wavenumber, frequency, dispersion relation, as well
as phase speed and group velocity and showed itself as the powerful plane-wave
solution technique for linear waves in general.

On this basis of the governing equations for a fluid in the BOUSSINESQ and
shallow-water approximations, surface gravity waves in a non-rotating frame were
studied, first in one spatial dimension and later in two. It was recognised that linear
surface water waves are dispersive – their group velocity depends on frequency; only
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Fig. 7.14 Distributions of the surface elevations and horizontal velocities for the different modes.
The first four panels repeat the longitudinal, (n,m) = (1, 0), (2, 0) and transversal, (n,m) =
(0, 1), (0, 2) modes already displayed in Fig. 7.13. The two panels in the bottom show the most
simple two-dimensional waveforms for (n,m) = (1, 1) and (n,m) = (2, 2)
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Fig. 7.15 Distributions of the surface elevations and horizontal velocities for the modes with (n,m)
as indicated. All modes are truly two dimensional

in their limiting form as long waves they are non-dispersive, while the dispersive
nature remains in tact in the deep-water wave limit.

Material particles in unidirectional harmonic linear water waves move in ellipti-
cal orbits; they are nearly circular close to the free surface of a water layer and have
decreasing amplitude and increasing aspect ratio from the free to the bottom surface.
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With reflection of such a wave from a wall, the elliptical eccentricity increases with
increasing degree of reflection. In a standing wave, where forward- and backward-
moving harmonic waves have the same strength, the orbits are linear (see Fig. 7.8).
This picture is only slightly altered by non-linearity, giving rise to the so-called
STOKES drift, but such cases were not treated in this chapter.

Linear water waves on a non-rotating frame become standing waves with quan-
tised frequencies, if the domain of their existence is fully bounded. Solutions were
constructed in a rectangular basin of constant depth. Frequencies and modes of the
water movements are in this case determined from a linear eigenvalue problem. The
standing character is given by the fact that these solutions may possess lines other
than boundary lines in the solution domain, along which the free surface elevation
function or a horizontal velocity component, vanish for all time. The existence of
these steady lines is typical for surface gravity waves in non-rotating frames.

On the Earth, which is a rotating non-inertial system, rotation will change this
behaviour. In fact the conditions will be delineated for which the assumption of a
non-rotating frame may lead to acceptable approximate behaviour.
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Chapter 8
The Role of the Distribution of Mass Within
Water Bodies on Earth

8.1 Motivation

Chapter 4 was devoted to the derivation and presentation of the governing equations
of fluid mechanics and thermodynamics as they apply to fluid bodies under motion.
The intention was to build a basic understanding of the mathematical description of
the physical laws of balances of mass, momenta and energy in a form sufficiently
general to all situations which one could possibly encounter in applications of phys-
ical limnology needed for this book.

The purpose of this chapter is different. It is assumed that the readers have
acquired a basic understanding of the physical laws, so that they can now be
employed. This will be done under very simple circumstances to isolate and high-
light the limnological implications as far as possible. Gravity, wind and radiation,
how do they reign the hydrodynamic processes in the ocean and in lakes? Radiation
by the Sun heats up the near surface water layers and so stratifies the water. Wind,
through the action of shear at the surface, destabilises this layer by turbulent mixing
and advective transport. The two processes establish a density field giving rise to a
spatially and temporally varying mass distribution. Consequently, the gravity force
as one of the driving elements is equally space and time dependent. So, while wind
and radiation are the primae causae of the density distribution, it is the latter that
causes a gravity force variation that is so critical in establishing the rich dynamic
response of the Earth’s water bodies. It is the purpose of this chapter to demonstrate
with easy but typical examples that the mass distribution within a water body plays
a significant role in establishing the dynamics of the physical processes in lakes
(and the ocean). Density variations are its manifestation as they are the cause for the
inhomogeneous distribution of the water masses. This is not to say that the motions
established in a homogeneous water mass are not important; these motions are dif-
ferent in their structure from the motions arising in a stratified fluid. For this reason
different nomenclatures have been introduced to characterise motions under the two
situations: one commonly calls processes arising in homogeneous water barotropic
processes, while those due to the very small variations of the water density are called
baroclinic processes. A justification for these denotations will be given later.

K. Hutter et al., Physics of Lakes, Volume 1: Foundation of the Mathematical
and Physical Background, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-642-15178-1_8,
C© Springer-Verlag Berlin Heidelberg 2011
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The ‘weather and climate’ in a lake is established by the input of momentum and
energy provided by outside sources. One of these sources is due to the rotation of the
Earth and manifests itself in the momentum balance as the CORIOLIS acceleration –
or with negative sign and multiplied by ρ – the CORIOLIS force. This additional
force is the cause that the water in large reservoirs on Earth does not stay motion-
less: the state of rest is not present among steady-state solutions on the rotating
planet.1 The most common steady-state motions arise when the CORIOLIS force
balances the pressure gradient; they are called geostrophic, and their significance
for the general water circulation depends on the scale: from a leading role in the
ocean to significant modifications in lakes. Important is that these forces prescribe
the structure of the current field in all water bodies of the Earth (except perhaps
small ponds). Momentum is also transferred from the atmosphere to the lake by the
wind via the shear traction exerted at the water surface. This shear traction drives
the water motion, primarily close to the water surface, however through diffusion
of momentum by viscous and turbulent shear, it is also transported to depth. Persis-
tent wind action causes circulation of the water masses, different for homogeneous
and stratified water bodies; gusty winds, or the fluctuating components of the wind
field, are responsible for the oscillating response. This separation in circulation and
oscillation is adequate for both homogeneous and stratified water bodies. In the
former the largest wave activities arise at the water surface and surface elevation
amplitudes are relatively small (when measured in water-depth scales), in the latter
the wave activity primarily arises inside the water body, is largest where the vertical
density gradients are large – i.e. in the metalimnion close to the thermocline – and
persists for long times with, generally, small attenuation. Because of the response
of the water masses for the two different situations at the free surface and within
the water body, barotropic processes are also referred to as external, and baroclinic
processes are called internal. There is another typical feature by which the two can
be characterised. Barotropic wave processes are considered to be fast, whereas on
timescales of these baroclinic ones they are slow. We shall analyse this difference
in later chapters at greater depth; here it may suffice to mention that the ratio of
the wave velocity of a barotropic wave signal to that of a baroclinic wave under
common summer stratification takes values of about 30–100.

Whereas the wind action brought into a lake by advective transport and turbu-
lence intensity is responsible for the destruction of a given stratification, integrated
heat flux through the water surface is generally responsible for its build-up. The
main heat fluxes at the water surface arise due to incoming solar energy, backward
infrared irradiation of the water body into the outer space, turbulent heat exchange
with the atmosphere and change of phase at the water surface. The solar irradia-
tion during daylight heats the near-surface water, supplying spectrally distributed
energy. Infrared radiation, which is proportional to the water temperature to the
fourth power, takes this energy away day and night. Turbulent heat exchange with

1 More specifically, CORIOLIS and centripetal accelerations together prevent such a rest state.
When centripetal accelerations are omitted, rest states are admissible.
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warmer or colder air (called also sensible heat flux) can be both positive and neg-
ative, depending on the relative temperature difference and on wind speed. Heat
flux at the surface, also arising due to possible phase change processes, called latent
heat flux, is the most difficult to quantify; commonly, only evaporation is taken into
account via various parameterisations. In summer, on average, the integral heat input
during daytime is larger than its loss during night; the upper layer water masses
are heated. Turbulence activity and advection transport this heat to larger depths,
establishing a mixing process between the warmer water at the higher levels and
the colder water at the lower ones. Since this turbulent mixing is dissipative, turbu-
lent energy is attenuated with increasing depth, so that mixing of the warmer upper
level water with the colder water below eventually ceases. This level is about at
the thermocline, but not exactly, so that the level of evanescing turbulent activity is
sometimes called the turbocline (e.g. [9]).

Conversely, integrated heat loss at the free surface in winter is, on average, larger
than the heat input through solar irradiation, implying that the lake water near the
surface cools in winter. Turbulence will again contribute to the mixing. As the net
balance of heat added to, and subtracted from, the lake varies with time, the lake’s
thermal regime will equally vary through the annual seasons, a process that is some-
times referred to as the seasonal variation of the thermocline. Figure 8.1 shows
the temperature profiles at monthly time slices through the year 1962/1963 for the

Vierwaldstätter See

T [◦C]

Fig. 8.1 Vertical temperature variations in the Vierwaldstätter See (Lake of the Four Cantons,
Switzerland) from March 1962 to July 1963, (from an internal report of the Laboratory of
Hydraulics, Hydrology and Glaciology at ETH Zurich)
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Vierwaldstätter Sea (in Central Switzerland). Obviously, every lake is subject to
its own wind and radiation scenario throughout the year. In the example of Fig. 8.1
conditions are such that the turbulence activity is strong enough that the entire water
column is mixed twice a year – in spring and in autumn (so-called dimictic lake2).
Such conditions are often referred to as spring/fall homothermy or overturn. This is
the case for many large lakes (e.g. Great Lakes of America, European lakes such as
Geneva, Constance, Ladoga, Onega) and it is ‘fortunate’ because the entire lake is
ventilated with O2 this way twice a year and thus naturally preserved from anoxia. In
the deepest lake in the world (1636 m), Lake Baikal, this seasonal overturn directly
mixes in spring and autumn the uppermost 250–300 m, and triggers forced convec-
tion in deeper layers, which finally ensures high concentration of oxygen (not less
than 9.5–10 mg l−1) in the deep layers [34]. As a result, there are few lakes in the
world to compete with this cold lake in biotic diversity.

There are lakes – they are rather deep and often located at low latitudes – in which
the turbulent mixing never reaches the bottom. These lakes are called meromictic
(mero, partly). In these cases, there exists generally no alternative mechanism that
would provide a ventilation of the deeper parts of the lake. Such lakes are then
usually oxygen depleted at depth and hostile to any oxygen-based life. An example
of this sort is tropical Lake Tanganyika – the second largest of the African lakes, the
second deepest (1470 m; next to Lake Baikal) and the longest (670 km) freshwater
lake of the world. It is meromictic, permanently temperature-stratified with strong
vertical oxygen concentration gradients. This warm lake, with water temperature
of about 23–25◦C throughout the year, is anoxic below a depth of 100–200 m, and
it contains the largest volume of anoxic freshwater in the world. Since there are
virtually no temperature changes in Lake Tanganyika, there are no driving forces
for vertical mixing and water exchange with the surface, and so at depth the lake is
oxygen depleted [5].

Alternatively, in shallow lakes which are exposed to strong winds the turbulent
mixing may reach the bottom several times through the seasons; they are generally
very well ventilated and offer a friendly environment to the living organisms. It is
seen that lake physics exerts here a dominant effect on the biological conditions that
may exist in a lake.

The above discussion suggests, but does not prove yet, that heating of a lake
through solar irradiation establishes a water body with warm and light water at the
top and cold and heavy water below it. If this structure is so for any two neigh-
bouring infinitesimally small layers, i.e. if an infinitesimally thin horizontal layer
of fluid is underlain by a heavier infinitesimally small layer of fluid throughout the
depth, then this water mass is called stably stratified. This situation simply prevails if
the density is monotonously increasing with depth. If, however, the density profile
is not strictly monotonous, then there are sublayers where heavy water would lie
above light water, which cannot be: immediate local mixing will arise until a new
monotonous density profile is established. The water body is then called unstably

2 For detailed classification of lakes due to their mixing regime, see Chap. 1, Fig. 1.9, or books of
HUTTER and JÖHNK [19], HUTCHINSON [16].



8.1 Motivation 267

(a) (b)

Fig. 8.2 Fingering: heavy lobes intruding in the lighter water below, accompanied with turbu-
lence: (a) visualisation from a laboratory experiment (photo from http://www.math.ualberta.ca/,
the experiment performed by J. CHOBOTER), (b) coffee cup experiment as described in the main
text

stratified. The mixing manifests itself locally by heavy lobes intruding the lighter
water below it. The process is called ‘fingering’, and individual vortices separate
with time and are incorporated in the lighter fluid below (see, e.g., [9, 37]). Turbu-
lence generally accelerates this process, see Fig. 8.2. A kitchen experiment visualis-
ing this can be made with a cup of hot coffee that is spoiled with sour milk. Once the
coffee has sufficiently cooled at the surface (it takes about 1–2 min only) the effect
of the downward convection is seen in the formation of cells, of which the darker
boundaries mark the locations of downward motion and convergence of horizontal
currents at the surface by the lobes whereas the paler cell interiors suffer an upward
convection and a horizontal divergence to maintain continuity.

In closing this introduction, we collect the various new terms in the following
definition.

Definition 8.1

• Barotropic or external processes in the ocean or in lakes and reservoirs with
free surfaces are those motions that are taking place under conditions of uniform
(constant) density distributions. Such motions are primarily generated by exter-
nal (atmospheric) forcing and manifest themselves with motion activity through-
out the depth of the water.

• Baroclinic or internal processes are those motions in a fluid body that are due
to inhomogeneous density distribution. They are primarily due to these varia-
tions – which are internal – and for their existence the water surface need not
be free, i.e. they even persist when the free surface would be covered by a rigid
lid. Amplitudes of variations of physical parameters are generally largest where
density gradients are biggest.

• Geostrophic motion is the motion that is generated by the balance between the
CORIOLIS force and the pressure gradients.

• A fluid mass at rest in a vessel with free surface and subject to gravity forces is
called stably stratified, if the density varies only with depth and is monotonously
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increasing with depth. Such a fluid mass is unstably stratified, if the density
varies with depth and possesses segments in which the density decreases with
depth. Such a fluid mass is neutrally stable if its density is constant.

• The turbocline is that depth in the ocean or a lake below which the surface-
induced turbulent activity vanishes. �

8.2 Processes of Surface Water Penetration to Depth

Observations reveal three general mechanisms of surface water penetration into
deeper layers of a lake:

1. Wind mixing and thermal convection from the surface.
2. Gravity currents along the bottom slope.
3. Converging currents in frontal zones.

(1) At the surface, wind mixing exists permanently at varied strength, and it
homogenises the upper centimetres to metres of a lake body. Mechanisms of mixing
are LANGMUIR circulation cells of various scales (see, e.g., [24]; [8]; [7]) and turbu-
lence generated by surface wave breaking. The processes of the seasonal upper-layer
lake cooling are thermal convection as shown in Fig. 8.2b and turbulent mixing. Both
processes homogenise the water in the upper layer, below which an abrupt tempera-
ture change arises, Fig. 8.3a. As time proceeds the turbulent eddies continue to erode
the thermocline. This process enlarges the upper layer depth, lowers its temperature
and continues as long as wind and convection supply energy for turbulent mixing.

Temperaturea)
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Fig. 8.3 (a) Temperature–depth profile and its development with time (shown dashed) as a conse-
quence of thermocline erosion by wind-induced and convective mixing. The solid sigmoidal curve
shows the temperature profile at the beginning. The labels 1, . . . , 5 mark thermocline positions at
consecutive time slices. The heavy dashed line shows the intermediate stage 2 with the well-mixed
layer above the thermocline and the smooth profile below it. (b) Motion of a gravity current down
the lake slope until the density of the current reaches the ambient density where it is layering and
spreading
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During the winter time this surface convection can penetrate several hundred metres.
One should understand, however, that the picture of vertical mixing is not uniform
in the horizontal direction. First, generation of various local winds over surrounding
topography and its natural spatial inhomogeneity and temporal variability predeter-
mine a stochastic component of the development of the mixing process in a lake.
At the same time, convective overturning intrinsically has a structure, dependent
on the spatial scale and intensity of the external forcing; this adds a certain regular
structure, manifested in formation of convective cells, rolls, thermals, chimneys, etc.
Fascinating is the similarity of the process at different space scales: convective cells
in a cup in the laboratory (see Fig. 8.2) are about 1 cm in diameter, the very regions
of descending flow (thermals) – only a few millimetres. In Lake Geneva, FER et al.
[11] report about ‘. . .“plumes” of relatively cold water, typically 5 m wide and 20 m
apart, . . . found in the near-surface convective mixed layer when air temperatures are
7◦C below the surface water temperature’. At larger scale, in the Mediterranean Sea,
there is a classical example of mixing in Gulf of Lions under cold and dry ‘mistral’
wind: ‘violent mixing’ occurs within the region of 30–50 km in diameter, extending
to depth of 2000 m (e.g. [30]). In the ocean, such narrow regions of intense vertical
mixing down to great depths, called convective chimneys, are also observed in the
Weddel Sea [12], the Ross Sea [21] and the Labrador Sea [25]. They are typically
5–15 km in diameter, reach 1500–2000–4000 m depth and persist for several days
[22], becoming unstable under the influence of the Earths rotation. Figure 8.4, taken
from SEND and MARSHALL [33], illustrates various stages of this convection pro-
cess, termed the deep ocean convection. Recently, chimney-like structures were also
reported in Lake Baikal (SHIMARAEV, personal communication).

(2) Along-the-slope gravity currents arise when denser waters originate for some
reason over sloping lake boundaries. Causes may be cold or turbid river inflow; tur-
bidity currents due to surface or internal wave breaking; more rapid autumn cooling
of the water in the near-shore zone than in the main lake body. Gravity currents
move along the bottom slope down to the level of the corresponding density, separate
from the slope and penetrate along the isopycnic surface very far into the lake; they
are usually very turbulent and dynamically separated from the surrounding layers
(Fig. 8.3b).

In this regard, river-induced density currents are important since they exist per-
manently. The way the incoming river water spreads in the lake does not only depend
on the initial momentum and the relative difference of the respective densities of the
river and the lake waters, which sometimes strongly vary with depth (since obser-
vations typically show strong sedimentation of fluvial material in the close vicinity
of the river mouth [1]. It is also dependent on the pre-existing circulation in the
lake near the river mouth: wind-driven currents, buoyancy processes, and internal
oscillations all play a substantial role in the spreading of water entering the lake. As
an example, we mention here an observation near the mouth of the river Rhine in
Lake Constance: during the flood in June 1991, the incoming water plunged down
to 60 m [2].

Thermally induced down-slope gravity currents are considered at present as a
very effective mechanism of water exchange between the shallow and deep parts of



270 8 The Role of the Distribution of Mass Within Water Bodies on Earth

plume
rim-current rim

mix

instability
eddy

(a)

(c)

(b)

(d) breakupinstability

cones

g’patch

rimeddy

chimney ~30−50 km

Fig. 8.4 Deep convection in the ocean. Stages of the development of a convective chimney: (a)
initial state of intense convective overturning within limited volume; (b) subsequent geostrophic
adjustment of the chimney via the formation of the rim current; (c) instability of the rim current,
its meandering and formation of eddies; (d) recession of the eddies and slumping of the dense
cone down to the level of their neutral buoyancy. Redrawn from SEND and MARSHALL [33], with
changes. c© American Meteorological Society, reprinted with permission

natural basins. During periods in winter favouring convection, a relatively uniform
heat loss from the water surface results in a spatial temperature variation where the
temperature of the shallow well-mixed waters at the edges of deep lakes or that of
continental shelves surrounding the oceans falls more rapidly than that of deeper
waters overlying the thermocline. As a consequence, water over shallow regions
becomes relatively dense and descends along the neighbouring slope as a gravity
current or cascade. COOPER and VAUX [4], who invented the term, had observed
the phenomenon of cascading water from the UK Celtic Sea shelf in the winter
of 1913/1914. Nowadays, winter cascading is widely reported in the ocean (see
IVANOV et al. [20] for a review), large seas (e.g. in Mediterranean, LEAMAN and
SCHOTT [26]) and lakes (e.g. [11]). In open waters far from shore, denser surface
water detaches from the slope below the upper mixed layer, forming either con-
vective plumes, or large isopycnal intrusions, or experiencing shearing into many
thinner layers. Figure 8.5 presents an observation of cascading cold water from the
near-shore zone and underwater slope of Lake Geneva made in January 2000 [11].
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Fig. 8.5 Isotherms derived
from CTD profilings
conducted between 12:00 and
15:00 (local time), 20 January
2000, in near-shore zone of
Lake Geneva. The contours
are in degree CELSIUS. The
profiling stations are
indicated by arrows. Vertical
moorings deployed during the
experiments are shown as
M4, M5, M6. From FER et al.
[11], with changes

intrusion

cascading

The very process of the cascading formation is quite difficult to describe: on the
one hand, it can be considered as a gravity current with very large entrainment
(e.g. in [11]), on the other hand it results from temperature differences along the
horizontal boundary, and thus is a sort of horizontal convective exchange flow (see,
e.g., [32, 35]). For the present discussion, thermally induced autumn gravity currents
are of special interest because of the deeper and deeper penetration of the surface
water when littoral water becomes colder and colder.3

(3) A hydrologic front in a lake, sea or the ocean is a region, where spatial gra-
dients of the main thermo-dynamical characteristics are much larger (one order of
magnitude at least) than those for a mean smooth distribution, typical for the given
area [10]. Many physical reasons can lie behind their formation in a lake: topo-
graphic effects, wind-induced transport, river inflow, coastal upwelling, and many
others. For all of them, however, one feature remains unchanged: every front is
associated with a zone of convergence of surface currents, and thus – by conti-
nuity – water must descend there. Among other kinds of fronts, investigated by
oceanographers in all natural basins, there is one of particular importance and inter-
est for limnology: the thermal bar, arising in every lake in which the water in its
seasonal cycle reaches the temperature of its maximum density, T∗. For pure water
under atmospheric pressure this temperature is 3.98◦C (sometimes simply stated as
4.0◦C), at the depth of about 900 m it is 2.13◦C. This shows that for deep lakes
the pressure dependence in the thermal equation of state should not be omitted.
In large lakes, thermal bars are formed during the spring and autumn periods of
transition when the thermal structure of the lake water body changes from a wintry-
homogenised to a summery-stratified regime, and vice versa; for this reason, the
thermal bar is sometimes called a structural front. To better understand its nature
and dynamics, let us lay down the reasoning in three steps.

3 From a point of view of direct application, it is obvious that determination of the directions of
steepest descent, orthogonal to the bathymetric lines will provide a first information about the
likely routes which such heavy littoral water might take when it dives to larger depths.
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First step: The dependence of water density on temperature. Physical reason for
the formation of this front is the non-linearity of the equation of state for water.
The coefficient of thermal expansion, α changes its sign at 3.98◦C. This means that,
when water is heated, say, from 2 to 6◦C, its density first increases, then it decreases;
when the same process is performed backwards, i.e. water is cooled from 6 to 2◦C,
the effect on density is exactly the same.

Second step: Mixing regime in the vertical water column. If now the vertical
water column is subjected to these direct and inverse processes, in both cases it
first will be convectively mixed (irrespective of whether by cooling or heating) and
afterwards density stratified.

Third step: Influence of the sloping boundary. Let us imagine now how this pro-
cess develops in a basin with sloping bottom. During the spring and fall periods
of transition, the temperature of the off-shore water body does not change as fast as
that of the near land water masses. So, say, during autumn cooling, water in the deep
off-shore lake areas (where the water temperature is larger than 4◦C) is homogenised
by vertical convective mixing, while the littoral zone (with a water temperature less
than 4◦C) under the same cooling conditions is (inversely) stratified. In spring, the
situation is repeated in the same very order: now under spring heating conditions,
the thermoinertial main-lake water body (with a temperature below 4◦C) is again
convectively mixing, while the shallow waters (above 4◦C) acquire (direct) summer
stratification. In both cases, under the same conditions at the surface all over the
lake (heating in spring or cooling in autumn) there are two regions in the basin
with principally different mixing regimes: in the deeper part the water is vertically
convectively mixing, while in the shallow part it is stably stratified. The interface
between these regions in the water body is a surface with the temperature of maxi-
mum density.

The thermal bar front develops in a lake in two phases, called the slow and fast
stages of the development. In the slow stage, cabbeling4 plays the main role in
the formation of the front: the lake water surface has a variable temperature, say,
smaller than 4◦C on-shore and larger than 4◦C off-shore, and there exists a line in
between with the 4◦C temperature of maximum density, Fig. 8.6a. Consequently, in
the absence of other motions, the water near this line will sink down along the 4◦C
surface, forming a convergence zone at the surface and a typical frontal division in
the lake body. In the fast stage, large-scale horizontal differences in the hydrostatic
pressure between deep and shallow parts become important; they drive basin-scale
horizontal exchange flows, Fig. 8.6b. At this stage, the frontal division is no longer
vertical, and the very front is associated with a leading edge of a subsurface jet,

4 Cabbeling, generally, is a physical process that is caused by the nonlinear terms in the expression
of the density as a function of salinity and temperature measured at constant pressure. In physical
oceanography, more specifically, cabbeling is a phenomenon that occurs when two water masses
with identical densities but different temperatures and salinities mix to form a third water mass
with a greater density than either of its constituents. This densification upon mixing is thought to
cause the mixed fluid to flow downwards, away from the zone of mixing, and so will allow new
source fluids to come in contact. For further reading, see, e.g. [29].
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Fig. 8.6 Stages of the development of the thermal bar under spring heating conditions: (a) slow
stage: when the process of cabbeling causes a converging flow region on the surface, the front
within the water body is close to the vertical and denser water cascades are developed along the
underwater slopes; (b) later fast stage: when horizontal pressure differences within the water body
become important, the front is S-shaped and cascading still goes on in deeper parts, where the
water temperature is still below T∗

transporting lighter littoral waters off-shore, above denser open-lake water masses
[3, 34, 36].

Thus, the thermal bar separates the lake body dynamically into the deep and
littoral parts, which have their own circulations and thermal structures. Observations
show (e.g. [36]) that, typically, a cyclonic circulation (counterclockwise rotating on
the northern hemisphere) is generally observed in the littoral belt, while anticyclonic
(clockwise rotating) motion prevails in the interior part. Important for the present
discussion is that the presence of the thermal bar in lakes indicates that there are
favourable conditions for surface water penetration to depth – by both cabbeling at
the front and denser water cascading along the slopes in the vertically mixing deep
part of a lake. Field observations show that this mixing is very effective in lake water
ventilation: all the dimictic lakes are well ventilated.

The above-described cascading and cabbeling mechanisms work only in upper
water layers, influenced by seasonal heat fluxes. A number of investigations on the
dynamics of the water motion in the deepest Lake Baikal revealed an additional
mixing mechanism, related to the water density anomaly, which supplies the lake
waters by oxygen, keeping them at no less than 75% saturation [13]. Free convection
from the surface can reach in Lake Baikal depths of 150–250 m only, and deeper
layers are permanently weakly stably stratified, being always above the tempera-
ture of maximum density. Most remarkably, it was found by biochemical analyses
that near-bottom waters (at about 900 m!) are significantly ‘younger’ than those at
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intermediate depth [14, 23, 38]. Recently, WÜEST et al. [39] reported about direct
observational evidence for deep-water renewal of the near-bottom layer in the deep-
est part (1461 m) by cold-water (about 3.2◦) intrusions, appearing most often in
June, when the thermal bar is observed in the lake. In this situation, the thermobaric
effect 5 is important. The temperature of maximum density decreases with the pres-
sure (i.e. with the depth), so that denser water, cascading from slopes during spring
heating (with a temperature below T∗ at the surface), should pass some potential
barrier at the level where the ambient water temperature equals ∼ T∗ – and flow
into the stably stratified deep region with T > T∗, being now colder and denser
than the surrounding water.

The above discussion makes it clear that general ‘mixing’ of waters in lakes
may be implemented via various mixing mechanisms. They are sometimes sub-
divided into ‘mixing’ and ‘stirring’ processes: the former act to smooth spatial
gradients, the latter to enhance them. This way, turbulent mixing, induced by any
external or internal source, always homogenises the water body, while wind action
may either homogenise it (via shear-flow instabilities or surface wave breaking) or
enhance spatial gradients when pushing large water masses with distinct character-
istics into another area. The same happens with solar radiation and heat exchange
through the lake surface: they may cause both convection and stratification in verti-
cal water columns, depending on the water temperature relative to the temperature
of maximum density, the sign of the heat flux or peculiarities of absorption of solar
radiation in the water. In the presence of sloping boundaries (which is always the
case in lakes!), vertical mixing becomes immediately linked with horizontal water
exchange, generating stirring processes (down-slope gravity currents, denser water
cascades, intrusions), which in turn may either homogenise or stratify vertical water
columns in open-lake areas. It is clear that mixing of a stably stratified water body
will make it less stable, until neutral conditions are reached.

8.3 Homogenisation of Water Masses Requires Energy

It is intuitively clear that homogenisation of the water in a stably stratified lake
requires energy. The centre of gravity of a stably stratified water column lies below
the centre of gravity when the water column is mixed and has uniform density. Qual-
itatively this is obvious, because in a stably stratified water column the heavy fluid
lies below the light fluid. So, homogenisation requires to lift the centre of gravity
of the stratified column to that of the homogenised body (which is at half the depth
of the column) [32]. This corresponds to an increase in the potential gravitational
energy of the water mass.

This description assigns the change in the position of the centre of mass
solely to the mixing of water of different densities that is established when the
water is homogenised. It is the sole process when, e.g. salt water at different salt

5 Thermobaric effect – influence of the pressure on the coefficient of thermal expansion of water.
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concentrations (and constant temperature) is mixed. When pure water or water at
constant salt concentration but non-uniform temperature is homogenised, the tem-
perature changes with the mixing. Because of the thermal expansion which above
4◦C is accompanied with a temperature rise, the centre of mass of a water column
also changes its position as a consequence of the thermal expansion of the water.
Both effects are significant in a lake and, depending upon the situation, may amplify
or counteract each other. We shall analyse the two effects separately.

8.3.1 Constant Density Layers

To quantify the change in potential energy due to homogenisation by mixing, i.e. to
give an order of magnitude involved in it, consider a rectangular basin 15× 60 km2

(about the size of Lake Constance) with constant depth.6 Let the fluid mass
be divided into two layers of constant density and sharp interface, as shown in
Fig. 8.7. This corresponds to an idealised division of the water column into epi-
and hypolimnion. As already mentioned above, the ensuing analysis will also be
performed under the assumption that the density variation is not caused by temper-
ature variations but by variations in salt concentration instead. This allows us in a
first step to ignore the thermal expansion of the water that is subject to temperature
variations. The influence of the thermal expansion will be dealt with in a second step.

With these prerequisites and with reference to Fig. 8.7 the homogenised density
ρM follows from the equation of mass conservation:

ρM(HE + HH) = ρE HE + ρH HH �⇒ ρM = ρE HE + ρH HH

HE + HH
(8.1)

Fig. 8.7 Two-layer model
having a light epilimnion
with density ρE and layer
depth HE and heavy
hypolimnion with density
ρH > ρE and depth HH. After
homogenisation the density is
ρM

. .

ρE
ρM

zstrat Δzhom

ρH
ρM

zhom
z

HE

HH

6 We select here a rectangular basin with constant depth to have the same horizontal area of the
lake at all depths. This allows in the ensuing analysis to work with water columns only and to omit
the influence of the variable lake area with depth. The more complicated case may be treated as an
exercise.
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and the centre of mass lies at

zhom = HE + HH

2
. (8.2)

The corresponding centre of mass of the layered configuration follows from a con-
dition of the static moment of the layered water masses with respect to the free
surface

ρE HE
HE

2
+ ρH HH

(
1
2 HH + HE

)

= zstratρM(HE + HH) (8.3)

and setting this equal to the static moment of the homogenised water masses as done
in (8.3) on the right-hand side. This yields, when solved for zstrat,

zstrat =
1
2ρE H2

E + 1
2ρH H2

H + ρH HE HH

ρE HE + ρH HH
. (8.4)

The centre of mass of the two-layer fluid is lifted by homogenisation by the amount

�zhom = zstrat − zhom = (ρH − ρE)HE HH

2(ρE HE + ρH HH)
, (8.5)

which is indeed positive when ρH > ρE. For HE = 10 m, HH = 100 m and (ρH −
ρE)/ρH = 10−3, (8.5) implies �zhom ∼ 4.5 mm. It follows that homogenising the
water masses of a typical alpine lake with a typical summer stratification requires
that its centre of gravity rises by a few millimetres.

The change in gravitational potential energy of the water mass of the column (per
unit area) is given by

�πhom = ρM (HE + HH)g�zhom
(8.1)= (ρE HE + ρH HH)g�zhom

= 1
2 (ρH − ρE)gHE HH. (8.6)

If we assume for simplicity that the epilimnion depth is constant but the hypolimnion
depth varies with position in the xy-plane, then the total change in gravitational
energy becomes

��hom =
∫

A

�πhom(x, y) dx dy = 1
2 (ρH − ρE)gHE

∫

A

HH(x, y) dx dy

︸ ︷︷ ︸

VH

.

Hence

��hom = 1
2 (ρH − ρE)gHEVH, (8.7)

in which A is the lake area and VH is the lower (hypolimnion) layer volume.
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Let us evaluate this change in potential energy for a lake reminiscent of Lake
Constance, i.e. a cube with dimensions (15 × 103, 60 × 103, 10 + 100)m, cor-
responding to 15 km width, 60 km length, 10 m epilimnion depth and 100 m
hypolimnion depth. A weak summer stratification amounts to a difference of the
water densities in the hypolimnion and epilimnion of 1 kg m−3; a strong stratifica-
tion would be about three times larger. Thus,

��hom = 1
2 × 1× 10× 10× (

15× 103 × 60× 103 × 100
)

= 4.5× 1012[kg m2s−2] = 4.5× 1012 J.

Here we have used g = 10 m s−2 for simplicity.7 The reader may vary the numbers
somewhat. The change in potential energy due to homogenisation for a lake of the
size of Lake Constance is thus of the order of 1012–1013 [J].

This energy is now compared with a typical magnitude of the power of working
of the wind input on the surface of a lake. The shear traction (stress) exerted on a
horizontal surface element is usually parameterised by the wind speed as follows:

τair = ρairc u2
wind, (8.8)

in which ρair = 1.4 kg m−3 is the density of the air under normal conditions (p =
105 Pa, T = 20◦C; we ignore variations), c is the dimensionless drag coefficient
and uwind the wind speed, measured usually 10 m above the water surface. Values
for c depend upon where, i.e. at which level above the water surface, the wind speed
is measured, and, to some extent, also upon the state of the water surface (i.e. its
waves) and the fetch both of which are correlated to the wind speed; here we are
only interested in a rough estimate. Then we may simply take c = 10−3, since
values lie around (0.7–2.0)× 10−3.

The power of working of the shear traction expended by the water motion is
given by

P = τairuwater = ρairc u2
winduwater. (8.9)

This is a local quantity evaluated via the local wind speed uwind and the local water
surface velocity uwater. To evaluate the power exerted on the entire lake surface the
distributions of the wind speed and surface water velocity fields must be known, but
this is never the case; so we shall assume an idealised, perhaps somewhat unrealistic
situation in which uwind and uwater are uniformly distributed, and choose uwater �
0.05 uwind. Then an order of magnitude of the total power of working is

P � 0.05ρairc u3
wind A, (8.10)

7 Whenever estimates are made, we shall set g equal to 10 m s−2 rather than 9.81 m s−2. This will
henceforth no longer be mentioned.
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Table 8.1 Shear stress power P evaluated for three different wind speeds using formula (8.10) and
the time required for homogenisation thom = ��hom/P, where��hom = 5× 1012 J

uwind u3
wind A P thom

[m s−1] [m3 s−3] [m2] [W] [d]
2 8 5.04× 105 115
5 125 9× 108 7.88× 106 7.34

10 1000 6.30× 107 0.92

in which A is the area of the lake surface. Table 8.1 gives values of P for various
wind speeds. A wind speed of 2 m s−1 is not exceptional, 5 m s−1 is a strong wind
and 10 m s−1 is a wind speed of an exceptional storm.8 The numbers of Table 8.1
show that the power of working exerted by the wind is respectable (recall that power
plants generate a few hundred megawatts (106W)). So, the wind in strong storms
attacks a lake of the size of Lake Constance with a total power comparable to the
power generated by one common unit of a power plant.

A further computation provides equally interesting information. Suppose that all
power due to the wind action at the lake surface is used without loss for rising
the centre of gravity by homogenisation. How long would a wind have to blow to
achieve this? If we take for��hom = 5×1012 J, and for the powers the values in col-
umn 4 of Table 8.1, then the values in the last column of Table 8.1 are obtained.9 A
wind with speed 2 m s−1 would have to last persistently for 115 days to homogenise
the water in the two-layer stratified water column, while a strong wind would need
only a day to achieve this. Irrespective of how realistic these numbers are in any
particular case – realistic times for homogenisation are certainly longer, because of
the dissipation and the transfer to wave activity and not to mixing – the numerical
values for thom teach us the following: Storms are very efficient in changing the
water mass distribution. They accelerate the mixing processes tremendously sim-
ply because the power of working of the shear tractions at the free surface grows
approximately with the third power of the wind speed.

Yet a further example of useful information is as follows: Compare the energy
needed to lift the centre of mass of a water column due to homogenisation with

8 Whether a storm is strong or exceptional depends on the regional meteorological conditions and
the number of recurrences. An objective scale is the BEAUFORT’s scale, according to which wind
speeds define the following conditions:

5− 8 m s−1, moderate wind,

10− 20 m s−1, strong wind,

20− 30 m s−1, storm,

> 30 m s−1, hurricane.

With this scale, a lake in a mountainous region would seldom be subject to a storm.
9 The times thom can be calculated according to thom = ��hom/P , however here the results are the
same if �πhom/P is evaluated instead. This is so because we assumed uniform wind and uniform
surface water velocity.
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the heat loss due to seasonal cooling. We use the same exemplary rectangular basin
located at mid-latitudes.

During the summer months the air temperature immediately above the water
surface is above that of the epilimnion water at the water surface. In autumn, and
through the winter months, this is reverse. This reversal of the temperature differ-
ence between air and surface water begins for Lake Constance, for example, about
in August. The flux of heat is then on average from the relatively warmer epil-
imnion water to the cooler air. The water becomes denser in this process, autumn
convection starts which eventually leads to the homogenisation of the water body.
In Lake Constance, e.g., this usually happens in January–February at a water tem-
perature of approximately 4–5◦. Table 8.2 shows some climatic data (averages
taken at Friedrichshafen over 50 years). Plotting the temperature difference �T
between air and surface against time shows a growing tendency from mid-August
to mid-January but not uniformly. Thus, the following estimates are made with
�Tmean = 4.7◦C.

The heat transfer per unit time from the water to the atmosphere can be parame-
terised according to NEWTON’s law as

q = α(Twater − Tair), (8.11)

where α is the heat transfer coefficient, and the amount of heat that is available at
mid-August for this transfer is

Q = cwm(Tsummer − 4◦C), m = ρAhth, (8.12)

in which cw is the specific heat of water, A is the area of the lake and hth is the
thermocline depth. For a lake with L = 60 km, B = 15 km, hth = 10 m, cw �
4.2 × 103 J kg−1 K−1 and Tsummer = 22◦C this yields Q � 6.8 × 1017 J, which
is about 10,000–100,000 times larger than the change in potential energy due to
homogenisation.

Alternatively, based on the mean value of �T , Q may be calculated as

Q =
∫ Jan

Aug
q A dt � Aα�Tmean�tc, (8.13)

Table 8.2 Monthly mean temperatures of the air and surface water for Lake Constance taken from
the ‘World Lakes Database’ (http://www.ilec.or.jp)

Tair Twater �T = Twater − Tair

August 17.6 22.0 4.4
September 14.3 16.5 2.2
October 8.9 13.4 4.5
November 4.2 9.2 5.0
December 0.5 7.4 6.9
January −1.0 4.3 5.3
Mean 4.7



280 8 The Role of the Distribution of Mass Within Water Bodies on Earth

where �tc is the 5-month period from mid-August to mid-January, and �Tmean is
the mean temperature difference in the same period, �Tmean = 4.7◦C. Thus,

α = Q

A�Tmean�tc
� 12.4 [J K−1 m−2 s−1]. (8.14)

So, slightly more than 10 J of heat is transferred from the water to the air per square
metre and per second when the difference of the water–air temperature is 1◦K.

Finally, let us estimate how long it would take with the above value of α to
transfer the same amount of heat that corresponds to the change in potential energy
by homogenisation, ��hom as given in (8.7). This time, we obtain the following
equation:

��hom =
∫ �t

0
q A dt � αA�Tmean�t,

from which �t = ��hom/(αA�Tmean) � 86 s is obtained, thus slightly more than
a minute.

8.3.2 Continuous Density Variation

The analysis, performed for a water column stratified in two layers of constant den-
sity, can also be performed for a continuously stratified fluid as shown in Fig. 8.8.
The mean density and the centre of gravity (or mass) are now derived by applying
the zeroth and first moments of the density function ρ(z) with respect to the free
surface, viz.

ρM H =
H∫

0

ρ(z) dz, ρM H zstrat =
H∫

0

ρ(z)z dz,

from which we deduce

ρM = 1

H

H∫

0

ρ(z) dz, zstrat =
H∫

0

ρ(z)z dz

/ H∫

0

ρ(z) dz, (8.15)

Fig. 8.8 Water column of
extent H with continuous
density distribution ρ(z)

z

ρ(z)

ρM

H
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as well as

�zhom = (zstrat − 1
2 H). (8.16)

These formulae can be simplified by introducing the density offset �ρ(z) from the
mean density ρM according to

ρ(z) = ρM +�ρ(z). (8.17)

Substituting this into (8.15) shows that

H∫

0

�ρ(z) dz = 0, zstrat

H∫

0

ρ(z) dz = ρM
H2

2
+

H∫

0

�ρ(z)z dz,

implying that the lifting of the centre of gravity is given by

�zhom = 1

H

H∫

0

�ρ(z)

ρM
z dz. (8.18)

With this result the change in potential energy can be written as

�πhom = ρMgH�zhom =
∫ H

0
�ρ(z)gz dz,

(8.19)

��hom =
∫

A

( ∫ H

0
�ρ(z)gz dz

)

dx dy,

for a water column of unit cross area and the entire lake, respectively. The reader
may easily check that application of the two-layer stratification reproduces the for-
mulae (8.5), (8.6) and (8.7).

Problem 8.1 Repeat the above analysis for a lake with variable bathymetry. Let
S(z) be the horizontal area bounded by the lake bottom at depth z. Derive alterna-
tive formulae to (8.18) and (8.19) that account for this topographic variation.

Consider a basin with power-law depth variation of S, see Fig. 8.9, for which
S(z) = S0(1 − z/H0)

n, n > 1, and estimate its influence on �zhom, �πhom and
��hom, respectively, for various values of n. �

Problem 8.2 The two-layer approximation with sharp interface is a relatively
rough representation of the stratification of a real lake. The piecewise linear
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Fig. 8.9 Variation of S/S0 as
a function of (1− z/H0) for
different values of n

S

S0

1

n = 1

2
3 · · · n = ∞

10 1 − z

H0

(a) (b)

ρE

h+

h−

ρH

Δρ

d

z ρ̄

dh1

Δρ
ρ

Fig. 8.10 (a) Three-layer density distribution with a constant-density upper layer and a constant-
density bottom layer, with linear connection over a transition layer of thickness d. (b) Sigmoidal
density profile connecting essentially constant-density epi- and hypolimnia with a smooth curve in
the metalimnia. ρ̄ is the density at the point of inflection of the profile, �ρ and d are the density
differences between the epi- and hypolimnion and the thickness of the metalimnion, respectively

(3 layer) density profile of Fig. 8.10a and the so-called sigmoidal density profile
of Fig. 8.10b are more accurate. They are given by the following density functions:

(i)

ρ(z) =

⎧

⎪⎪⎨

⎪⎪⎩

ρE, 0 ≤ z ≤ h+,

ρE + �ρ

d
(z − h+), h+ ≤ z ≤ h−,

ρH, h− ≤ z ≤ H,

�ρ = ρH − ρE, (8.20)

(ii)

ρ(z) = ρ̄ exp

(
�ρ

2ρ̄
tanh

(
2

d
(z − h1)

))

, (8.21)
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where ρ̄, �ρ, d, h+, h−, h1 are defined in the figure. Use an algebraic com-
puter software (e.g. MATHEMATICA or MAPLE) to determine �zstrat, �πhom
and ��hom. �

8.3.3 Influence of the Thermal Expansion

Let us now estimate the influence of the effect of thermal expansion to the posi-
tion of the centre of mass in a water column due to homogenisation. We consider
again the situation of Fig. 8.7 with two layers of constant density and assume that
the temperature is everywhere above 4◦C. Homogenisation increases the density
in the epilimnion and thus decreases the epilimnion temperature and thickness by
�HE, but lowers the density in the hypolimnion and correspondingly increases
the hypolimnion temperature and thickness by �HH. Figure 8.11 illustrates this
new situation. The position of the centre of mass of the two-layer column is still
given by formula (8.4), but according to Fig. 8.11 the corresponding position of the
homogenised column is given by10

zhom = 1

2
(HE + HH −�HH −�HE) . (8.22)

Because homogenisation results in the epilimnion in a temperature drop the
‘homogenised epilimnion thickness’ is smaller than in the stratified situation
(�HE < 0). Similarly, the ‘homogenised hypolimnion thickness’ is larger than in

.
.

ρE
ρM

zstrat Δzhom

ρH ρM

zhom

z

ΔHE+ΔHH

HE

HH

HE+ΔHE

HH+ΔHH

Fig. 8.11 Two-layer model as in Fig. 8.7. However, the thermal expansion in the homogenisation
process is now accounted for, expressed by �HE and �HH, respectively

10 Formula (8.22) treats �HE and �HH analogously as if both were positive even though for
(summer) stratification mixing leads to a temperature drop in the epilimnion for which a thermal
contraction is expected. This is the case provided the epilimnion temperature is above T∗ = 4◦C.
The sign of �HE will decide whether under given conditions a thermal expansion (positive) or
contraction (negative) will arise.
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the stratified situation (�HH > 0), since homogenisation yields a small temperature
increase. With (8.4) and (8.22) the centre of mass of the two-layer fluid is lifted in
homogenisation by the amount

�zhom = zstrat − 1
2 (HE + HH)+ 1

2 (�HH +�HE)

(8.5)= (ρH − ρE)HE HH

2(ρE HE + ρH HH)
+ 1

2 (�HE +�HH) . (8.23)

The first term on the right-hand side is the same as (8.5) and represents the effect
of mixing alone, the second bracketed term is due to thermal expansion and may
be positive or negative, depending upon the thermal stratification and thicknesses of
the epilimnion and hypolimnion layers.

To evaluate �HE and �HH, we use a parabolic parameterisation of the density

ρ = ρ∗
(

1− ε(T − T∗)2
)

, ε = 6.8× 10−6 [◦C−2], (8.24)

where ρ∗ and T∗ are the density and temperature of water at maximum density (i.e.
103 kg m−3 and 4◦C, respectively). Now, since the total epilimnion and hypolimnion
masses are conserved, one has

ρM(HE +�HE) = ρE HE, ρM(HH +�HH) = ρH HH, (8.25)

or, after substitution of (8.24)

�HE = ε
(TM − T∗)2 − (TE − T∗)2

1− ε(TM − T∗)2
HE (< 0),

(8.26)

�HH = ε
(TM − T∗)2 − (TH − T∗)2

1− ε(TM − T∗)2
HH (> 0),

in which the terms in parentheses hold true provided Tj > Tfreeze ( j = E,H,M). In
these equations TM is still not known. The equation from which it can be deduced
is the heat balance during mixing. It is assumed that no heat is lost during mixing.
This yields

cwρH HHTH + cwρE HETE = cwρM(HH + HE +�HH +�HE)TM, (8.27)

which can be approximated to

HHTH + HETE � (HH + HE)TM �⇒ TM = HHTH + HETE

HH + HE
. (8.28)

For HE = 10 m, HH = 100 m and TE = 12◦C, TH = 4◦C corresponding to
(ρH − ρE)/ρH � 10−3, (8.26) together with (8.28) implies �HE = −4.32 mm,
�HH = 0.36 mm and thus �HE + �HH � −4 mm. This is of the same order of
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magnitude – but different sign – as the elevation of the centre of mass is due to the
effect of mixing alone, as given in (8.5) or due to the first term on the right-hand
side of (8.23), namely 4.5 mm. Thus, considering the effect of the thermal expansion
will substantially reduce the change of the potential energy by homogenisation: In
summary, this result implies that in freshwater lakes levitation of the centre of grav-
ity by homogenisation is influenced by both mixing and thermal expansion. In the
situation treated above the two effects nearly neutralise each other. In a lagoon or
the ocean where salt concentration plays a role, the two effects compete differently
and the shift of the centre of gravity of a water mass may likely be more due to
mixing than thermal expansion.

8.4 Motion of Buoyant Bodies in a Stratified Still Lake

In this section we shall substantiate some statements concerning the stability and
instability, respectively, expressed in the introductory paragraphs of this chapter.11

To this end, we envisage a quiescent fluid mass stratified with a continuous density
profile ρ(z) as, e.g., sketched in Fig. 8.8. Moreover, we focus on a small body (a
particle, a plankton) or simply a certain volume of water that we think in imagination
is separated from the water in its vicinity by a massless skin just like a balloon. This
body – we shall call it henceforth simply particle – is, at a given depth, supposed to
be in equilibrium with its surrounding liquid. We choose this level as the origin of
a vertical coordinate ζ . If the particle is now displaced from its position ζ = 0 to
an arbitrary position above it, then the particle in its new position will no longer be
in equilibrium. As a result a motion will set in. The question is how the equation of
motion for this particle looks like. This, we will now attack.

(b)(a) z free surface

ζ

ρ(z) ζ ρ0gV

ρgV
ρ(ζ)

ρ0

Fig. 8.12 (a) Density profile ρ(z). The z-axis is vertical with origin on the still free surface. The
ζ -axis is equally vertical with ζ = 0 at the position where the isolated particle, shown as a circle,
is in equilibrium with the surrounding fluid. (b) Close-up of the position of the particle showing
the particle in its equilibrium position ζ = 0 and displaced by ζ . The forces that are indicated are
its gravity force and the buoyancy force

11 This topic is a fashionable subject in elementary physics courses of College Physics, see, e.g.,
[18] or in courses on Environmental Fluid Mechanics, Meteorology, etc. The influence of friction,
expressed in a hydrodynamic drag is, however, generally not treated.
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Figure 8.12 shows the particle with volume V in its rest position ζ = 0. It pos-
sesses the gravity force ρ0gV , since it is in equilibrium with the surrounding fluid
with density ρ0. (We imagine the extent of the particle to be so small that density
variations in the vertical over the particle length can be ignored.) When the particle
is displaced to the general position ζ its gravity force is still the same, even if it
is not wrapped in a massless skin, because during its motion the fluid inside this
hull has no time to adjust its temperature (and salinity) to those of the surrounding
fluid. At the position ζ the buoyancy force is, however, given by the pressure of
the surrounding fluid which has density ρ(ζ ). Thus according to the ARCHIMEDian
principle explained in Chap. 4 the buoyancy force is ρgV and is pointing upwards.

Writing down NEWTON’s second law ‘mass times acceleration equals the sum of
all external forces acting on the particle’ leads, when written down for the vertical
direction, to the equation

ρ0V
︸︷︷︸

mass

d2ζ

dt2
︸︷︷︸

acc

= ρ g V
︸ ︷︷ ︸

buoyancy force

− ρ0 g V
︸ ︷︷ ︸

gravity force

. (8.29)

Here friction is ignored and the mass is given using ρ0 to evaluate its gravity force,
but the buoyancy force is built with ρ. If we suppose ζ to be small – small on the
length scale over which the density changes appreciably – the density ρ(ζ ) may be
expressed in terms of its TAYLOR series expansion about ζ = 0 yielding

ρ(ζ ) = ρ0 −
(

−dρ

dz

)

0
ζ + higher order terms, (8.30)

where we have written

(
dρ

dz

)

0
= −

(

−dρ

dz

)

0
,

because (dρ(z)/dz) is negative for a stably stratified fluid mass. Here we have iden-
tified the density gradient by the index ( • )0 to express that it is evaluated in the
position ζ = 0. Substituting (8.30) into (8.29) and simplifying the resulting equation
yields

d2ζ

dt2
+ N 2ζ = 0, N 2 := 1

ρ0

(

−dρ

dz

)

0
g. (8.31)

Definition 8.2 N, having the dimension of a frequency, and given by

N 2 := 1

ρ0

(

−dρ

dz

)

0
g, [s−2], (8.32)
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is called buoyancy frequency or Brunt-Väisälä frequency after British and
Finnish oceanographers12 (Fig. 8.13). �

Substituting typical values of the vertical density gradient |dρ/dz| ∼ 10−3 −
10−1kg m−4 yields N = 10−3 − 10−2s−1. It is also obvious that N 2 characterises
stability of vertical stratification at a given location and

N 2 > 0, if

(
dρ

dz

)

< 0, N 2 < 0, if

(
dρ

dz

)

> 0. (8.33)

The former typifies a stable stratification, the latter an unstable stratification, as will
soon become more explicitly apparent.

For a linear stratification equation (8.31) is a second-order ordinary differential
equation with a constant coefficient N 2, of which the solution we are now going to
construct:

Case I: For constant N 2 > 0 (8.31) is the differential equation of the harmonic
oscillator, of which the general solution is given by

ζ = A sin(Nt)+ B cos(Nt), (8.34)

where A and B are constants of integration. A and B are determined by fulfilling
the initial conditions

ζ(t = 0) = ζ0,
dζ

dt
(t = 0) = V0 (8.35)

implying B = ζ0 and A = V0/N , so that

ζ = V0

N
sin(Nt)+ ζ0 cos(Nt). (8.36)

This solution can also be rewritten as

ζ = A0 sin(Nt + ϕ0), (8.37)

where

A0 =
√

(V0/N )2 + ζ 2
0 , ϕ0 = arctan

(
ζ0

V0/N

)

. (8.38)

12 Accounting also for the compressibility, the buoyancy frequency is

N 2 = g

ρ

(

−dρ

dz
+ g2

c2

)

,

where c is the speed of sound. This expression is useful for estimation of stability of the stratifica-
tion in homogeneous layers in a lake interior.
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Fig. 8.13 Left: Sir David BRUNT, father of meteorology, 1945 (http://www.scienceandsociety.
co.uk). Right: Vilho VÄISÄLÄ (http://www.ths.fi)

Sir David BRUNT (17 June 1886–5 February 1965) was a trained mathematician from Aberys-
twith (Wales) and Cambridge (England), where he held the Isaac NEWTON studentship, and,
after a brief spell in astronomy, primarily worked in meteorology. In 1916 he entered the
Meteorological Office (MO) of the United Kingdom where he was involved in the analysis
of variance of time series which led to his book The Combination of Observations 1917. His
research and part time teaching for many years at Imperial College (IC), London, led him to the
classic Physical and Dynamical Meteorology (1934). In 1934 he also left the MO to assume the
chair of meteorology at IC. He became physical secretary of the Royal Society of London in
which capacity he supervised the British expedition to the Halley Bay (Antarctica) during the
International Geophysical Year 1956–1957. BRUNT’s research began with periodogram analy-
ses in the 1920; subsequently, he moved to dynamic meteorology of the troposphere by careful
collecting data on pressure, temperature, wind and their analysis. He also did research on atmo-
spheric radiation and, later, the reaction of men to his atmospheric environment. BRUNT served
as president of the Royal Meteorological Society and the Physical Society. He independently
discovered the buoyancy frequency now named after him and VÄISÄLÄ. In Antarctica, as a
tribute to his merits as a supervisor of the British expedition there, the BRUNT Ice Shelf was
named after him.

Vilho VÄISÄLÄ (28 September 1889–12 August 1969) was a Finnish meteorologist. He was
inventor of meteorological instruments and an esteemed scientist in his field. After gradua-
tion in mathematics in 1912 from the University of Helsinki, VÄISÄLÄ began his 36 years of
employment at the Finnish Meteorological Institute in aerological measurements, specialising
in the research of the higher troposphere. Measurements were conducted by attaching a ther-
mograph to a kite. In 1917, he published his dissertation in mathematics The single-valuedness
of the inverse function of the elliptic integral of the first kind. His dissertation was the first
and is still said to be the only mathematical doctoral thesis written in the Finnish language.
VÄISÄLÄ participated in the development of radiosonde, a device attached to a balloon and
launched to measure air in the higher atmosphere. VÄISÄLÄ authored and co-authored over
100 scientific papers and a total of 10 patented inventions. In 1936 he started his own company,
manufacturing radiosondes and – later – other meteorological instruments. The formula for
the buoyancy frequency carries his name. In 1948 he became professor of meteorology in the
University of Helsinki.

The text is based on http://www.scienceandsociety.co.uk, the Obituary Notes of P. A. SHEPARD

of the Royal Astronomical Society, http://www.vaisala.com and http://en.wikipedia.org/.
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Thus, the particle oscillates about its equilibrium position with amplitude A0 per-
sistently in time. Because | sin(Nt + ϕ0)| ≤ 1 the oscillatory motion is bounded:
−A0 ≤ ζ ≤ A0. The fluid is stably stratified in the vicinity of ζ = 0 because the
particle simply oscillates about its equilibrium position with a period Tb = 2π/N .

Case II: For constant N 2 < 0 the differential equation (8.31) may be written as

d2ζ

dt2
− |N 2| ζ = 0 (8.39)

and possesses the solution

ζ = A exp (|N |t)+ B exp (−|Nt |). (8.40)

Subject to the initial conditions (8.35), it may be written as

ζ = 1

2|N | (V0 + |N | ζ0) exp (|N | t)− 1

2|N | (V0 − |N | ζ0) exp (−|N | t). (8.41)

Evidently as t → ∞ the first term on the right-hand side of (8.41) becomes
unbounded, whereas the second term is vanishingly small. Therefore, unless the
initial conditions are such that ζ0 = 0 and V0 = 0, the particle will move arbi-
trarily far away from its initial position. This obviously corresponds to an unstable
equilibrium.

We thus have reached the following result:

Result 8.1 The sign of N 2 is an indication of whether a fluid mass in the neighbour-
hood of ζ = 0 is stably or unstably stratified, where N 2 is evaluated according to
(8.32). Conversely, if a water mass is stably stratified then N 2 > 0. A fluid particle
displaced in a stratified fluid from its equilibrium position and left free will oscillate,
if N 2 > 0 with a period

Tb = 2π

N
= 2π

/
√

1

ρ0

(

−dρ0

dz

)

g, (8.42)

called buoyancy period. If N 2 < 0, the particle will never return to its original
position once it is displaced from its equilibrium position and so the initial unstable
stratification will be destroyed. ⊗

Typical values of the buoyancy period obviously depend on the values of the spe-
cific density gradients. Table 8.3 provides some values. It is seen that the buoyancy
periods for realistic stratifications are a few minutes or longer, and evidently the
period grows with decreasing stratification, approaching infinity when dρ/dz → 0.
Thus: The weaker the stratification the smaller the BRUNT–VÄISÄLÄ frequency and
the larger the buoyancy period.
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Table 8.3 Some values of the specific density gradient 1/ρ(−dρ/dz), the BRUNT–VÄISÄLÄ fre-
quency N and the buoyancy period Tb = 2π/N
1

ρ
(−dρ

dz
) [m−1] 10−6 10−5 10−4 10−3 10−2

N [s−1] 3.16× 10−3 10−2 3.16× 10−2 10−1 3.16× 10−1

[s] 1987 628 198.7 62.8 19.9
Tb [min] 33 10.4 3.3 1.04 0.33

Realistic ←− • −→ Very strong

stratification stratification

Problem 8.3 Assume a thermal equation of state of the form ρ = ρ(T ); express
the BRUNT–VÄISÄLÄ frequency in terms of the temperature and temperature gra-
dient (−dT/dz) and make a graph displaying the buoyancy period in terms of
(−dT/dz). �

8.4.1 Influence of Friction

The above analysis ignores friction. This is why an oscillation of such a buoyant
particle about its equilibrium position persists forever, once the motion has been
initialised. Let us ask the question of how friction will change the findings, in par-
ticular with regard to the buoyancy period and the motion of a particle when it is
being displaced out of its equilibrium position.

Returning to Fig. 8.12 we only need to complement the forces exerted on the
particle by a frictional force, see Fig. 8.14. We postulate that this frictional force
opposes the motion and is proportional to the particle velocity as follows:

Ffric = −ρ0cA
dζ

dt
, (8.43)

in which c is the drag coefficient and A a typical cross-section of the particle per-
pendicular to the motion (for a spherical particle with diameter D, A = D2π/4).
Thus, NEWTON’s second law for the particle, written for the vertical direction, with
the forces shown in Fig. 8.14 now takes the form

Fig. 8.14 Fluid particle in its
equilibrium position ζ = 0
and in an arbitrary position ζ
with acting forces, gravity
and friction opposing its
motion and buoyancy force in
the direction of the motion.
Shown is also the density
profile ρ(ζ ) of the ambient
fluid

ζ

ρ(ζ)

ρ0 gV

ρgV

ρcAζ̇

ρ0 =ρ(0)
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ρ0V
d2ζ

dt2
︸ ︷︷ ︸

mass×acc

= ρgV
︸︷︷︸

buoyancy force

− ρ0gV
︸ ︷︷ ︸

gravity force

− ρ0cA
dζ

dt
︸ ︷︷ ︸

frictional force

, (8.44)

or when using (8.30) as before

d2ζ

dt2
+ 2γ

dζ

dt
+ N 2ζ = 0, (8.45)

where

γ := 1

2
c

A

V
, [γ ] = [s−1] (8.46)

is the friction coefficient. It depends on the drag coefficient, the cross-section of the
particle perpendicular to the direction of the motion and the volume of the particle,
and it has the dimension of a frequency and is, for a given particle and a given
fluid, as the buoyancy frequency, a constant.13 Detailed analyses of solutions of
equations (8.45) can be found in almost any elementary physics book which treats
linear oscillations of solids or fluids, e.g. [31].

The linear ordinary differential equation with constant coefficients (8.45) has
solutions of the form ζ = Aeλt ; substituting this representation into (8.45) leads to
the characteristic equation

λ2 + 2γ λ+ N 2 = 0

with the solutions

λ1,2 = −γ ±
√

γ 2 − N 2. (8.47)

It follows that the most general solution of (8.45) has the form

ζ = A1eλ1t + A2eλ2t , (8.48)

in which A1, A2 are constants of integration which are determined by satisfying the
initial conditions

ζ(0) = ζ0,
dζ

dt
(0) = V0, (8.49)

implying

A1 = −λ2ζ0 − V0

λ1 − λ2
, A2 = λ1ζ0 − V0

λ1 − λ2
. (8.50)

13 Note however, through the ratio A/V this constant depends on the geometry of the particle.
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The qualitative behaviour of the solution (8.48) depends on the relative magnitudes
of γ 2 and N 2, which will now be discussed in due order.

Case I: N 2 > 0 and γ 2 > N 2. This is the case of strong friction in a stably strat-
ified fluid for which λ1,2 < 0, as can easily be inferred from (8.47). Hence both
exponential functions in (8.48) have negative exponents, implying that the solution
is exponentially decaying as t increases. The particle does not oscillate and simply
returns to equilibrium as shown in Fig. 8.15a.

Case II: N 2 > 0 and γ 2 < N 2. Case I is physically not realistic for natural water
because the friction is far too large. For the situation of case II, λ1 and λ2 are conju-
gate complex

λ1,2 = −γ ± i
√

N 2 − γ 2, (8.51)

in which i = √−1 is the imaginary unit. Thus (8.48) may now be written as

ζ = A1 exp

[(

−γ + i
√

N 2 − γ 2

)

t

]

+ A2 exp

[(

−γ − i
√

N 2 − γ 2

)

t

]

= e−γ t
{

A1 exp

(

i
√

N 2 − γ 2t

)

+ A2 exp

(

−i
√

N 2 − γ 2t

)}

, (8.52)

(a)

(b)

ζ

ζ

A1 + A2

t

t

Tb

Tb = 2π√
N 2 −γ 2

ζ=A1e
−|λ1|t + A2e

−|λ2|t

Fig. 8.15 (a) Solution of ζ(t) as given in (8.48) when λ1 and λ2 are both negative and damping is
above critical. (b) Corresponding solution (8.53) when damping is small
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which, on using EULER’s formula,14 can also be written as

ζ = e−γ t
{

c1 sin

(√

N 2 − γ 2t

)

+ c2 cos

(√

N 2 − γ 2t

)}

,

(8.53)
c1 = i(A1 − A2), c2 = (A1 + A2).

This solution is an exponentially damped oscillation and looks like the graph shown
in Fig. 8.15b. The periodic part of the solution has a circular frequency given by
√

N 2 − γ 2 and the buoyancy period of the damped oscillation is given by

Tb = 2π
√

N 2 − γ 2
= 2π

N

1
√

1− γ 2

N 2

� 2π

N

(

1+ 1

2

γ 2

N 2

)

+ higher order terms. (8.54)

The approximate value is appropriate if γ 2 � N 2. A typical value for γ 2 may be
Γ 2 N 2 with Γ 2 � 0.001, so that

Tb � 2π

N

(

1+ 1
2Γ

2
)

. (8.55)

It follows that the buoyancy period can be computed without making a considerable
error by neglecting the viscous damping.

How long does it take until the oscillating particle has essentially come to rest?
This rest state is theoretically never exactly reached, because the exponential func-
tion e−γ t arising in (8.53) never reaches the zero value except at t = ∞. A
typical quantity characterising the persistent attenuation of ζ with time is the so-
called e-folding time: This is the time it takes until the amplitude of oscillation
becomes e times smaller, i.e. the amplitude function e−γ t in (8.53) reaches the value
e−1 = 0.367. This requires

e−γ Tfold = e−1 �⇒ Tfold = 1

γ
= 1

Γ N
. (8.56)

For Γ 2 = 10−4 (a large value!) and N = 10−3, this yields Tfold = 105 s = 27.8 h.
It follows that the oscillations of buoyant particles in a stably stratified still ambient
fluid persist for a very long time. The lifetime of such motions is of the order of
several days.

Case III: N 2 < 0. Since also γ 2 > 0, both values for λ in (8.47) are real, and λ1 > 0
while λ2 < 0. It follows that ζ in (8.48) takes now the form

ζ = A1 exp [(−γ +
√

γ 2 − N 2)t]
︸ ︷︷ ︸

>0

+A2 exp [(−γ −
√

γ 2 − N 2)t]
︸ ︷︷ ︸

<0

.

14 eiθ = cos θ + i sin θ .
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Because the first exponent in this expression is positive, ζ will grow indefinitely as
t increases. This corresponds to instability. We have thus learned that friction has
not altered the fact that N alone describes the stability of the stratification. N 2 >

0 characterises a stable and N 2 < 0 an unstable stratification of the fluid. This
instability may be only local, i.e. N 2 < 0 may hold true only within a sublayer of the
water column. So, within this layer, mixing will occur until N 2 > 0 is re-established.
In this connection one sometimes speaks of locally unstable stratification.

8.5 Internal Oscillations – The Dynamical Imprint
of the Density Structure

In the last section we have seen that a buoyant particle in an otherwise still, stably
stratified liquid will, when being displaced out of its equilibrium position, oscillate
with the buoyancy period. Much richer motions of similar nature appear in the entire
stratified water body if its equilibrium is disturbed by some external influence. As
we have seen in the beginning of Chap. 7, this disturbance, propagating through
space and time by transference of energy and without motion of the medium as a
whole is called a wave. The subject treated in this section gives a first account of
internal waves in a stratified layer, a subject that is treated by many others in great
detail.15 In this section, our intention is to demonstrate that the stratified fluid itself
will perform internal oscillations after excitement, e.g. by wind; the vertical dis-
placements of the fluid particles in such motions depend on how the density varies
over depth. In fact, these vertical displacements (or the vertical velocities if the
latter are not determined) are directly coupled to the density distribution which is
conveniently expressed in terms of the BRUNT–VÄISÄLÄ frequency. In Fig. 8.16
the squared buoyancy frequency N 2 for an episode in Lake Zürich in 1978 is shown
as a function of depth; the insert shows a typical distribution of N 2. In Fig. 8.17
we have sketched idealised as well as realistic density distributions together with
the corresponding profiles of the BRUNT–VÄISÄLÄ frequency. We will see that the
amplitudes of the vertical oscillations are large, where the buoyancy frequency is
large, and they are very small at the water surface.

Our analysis will not be complete and will oversimplify the exact facts here and
there. The principal objective is to build a fundamental physical understanding; a
more complete analysis will follow in Volume II of this book series.

It is in principle very easy to see by direct observation that the interior of a strat-
ified lake is subject to permanent oscillations. One only needs to moor a thermistor
chain at a midlake position, say, such that its 11 thermistors16 lie primarily in the

15 A biased short list is LIGHTHILL [28], LEBLOND and MYSAK [27], HUTTER [17], [18].
16 Thermistor chains are usually 10, 20 or 50 m long and have 11 thermistors which are 1, 2 or 5 m
apart.
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Fig. 8.16 Squared
BRUNT–VÄISÄLÄ frequency
N 2 as determined from
measurement at a midlake
position in Lake Zürich,
taken on 15 September 1978.
The insert map shows its
schematic distribution. For
the selected ω-value waves
can only exist in the indicated
band, called waveguide
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Fig. 8.17 Profiles of density, ρ(z), and buoyancy frequency, N (z), for typical idealised and realis-
tic stratifications. (a) Two layers with constant density; N is a DIRAC pulse. (b) Three layers with
constant density; N consists of two DIRAC pulses. (c) Three layers with constant–linear–constant
density distribution; N is constant where the density profile is linear. (d) Piecewise linear density
profile generates a piecewise constant N -profile. (e) A so-called sigmoidal density profile connects
two constant density profiles with a smooth curve. The N -profile consists of a ‘hump’ where the
density varies appreciably. (f) Typical realistic density profile with corresponding N -profile. The
N -profile reaches a maximum at the thermocline location
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Fig. 8.18 Sketch of a mooring consisting of a ballast weight, a metallic cord and a buoy holding
the arrangement tight in the vertical. Within this cord a thermistor chain and its electronic recording
unit are mounted at a selected depth, which preferably extends over the metalimnion and somewhat
more. The time series on the right show how the isotherm-depth amplitudes vary in conformity with
the vertical temperature gradient. Amplitudes grow with growing temperature gradient

metalimnion and also record the temperature at the lower part of the epilimnion and
the upper part of the hypolimnion; such a situation is sketched in Fig. 8.18. Each
thermistor will record the temperature as a function of time, and from these time
series it is, in principle, an easy matter to construct isotherm–depth–time series.
These curves indicate at which depth at a certain time the water with a prescribed
temperature can be found. Because the water in a column moves up and down
and the individual water particles maintain their temperature, if thermal diffusion is
ignored, the isotherm–depth–time series is reminiscent of the vertical displacement
of the water at the mooring position.

Because for lakes the chemical composition of the water does not, in general,
affect the density, the thermal equation of state is ρ = ρ̂(T ), implying that surfaces
of constant temperature are also the surfaces of constant density, called the isopyc-
nal surfaces. So, isopycnal–depth–time series and isotherm-depth-time series are in
lakes often the same curves. This is not so when salt affects the density as is always
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the case for the ocean, and may also be important for largely contaminated lakes
such as reservoirs formed from strip mining excavations.17

Figure 8.18 shows a principal sketch of how isotherm–depth–time series looks
like, and Fig. 8.19 gives an example deduced from records in Lake Zürich. It is
evident that the oscillations are conspicuous in the metalimnion with largest ampli-
tudes at the thermocline level, that they are attenuated as one moves into the epi- and
hypolimnion. There are two aspects associated with these fluctuations. First, one
may ask how the period may be explained. From Fig. 8.19 we infer without even
performing a FOURIER transformation that these periods are on the order of hours
(perhaps from 1 to 50 h). The answer to this question will not be addressed in this
section. We only note here that the buoyancy frequency at the thermocline (which
is about 10−3 s−1, corresponding to a period of about 15 min in this example) gives
an upper limit to the internal wave frequencies. What we are concerned with here is
the second question, namely how the amplitudes of such oscillations are distributed
with depth. In fact we wish to prove and to quantify that, if the lake is stratified, the
metalimnion is the region of dynamic activity. For vanishing buoyancy frequency
this internal activity is simply null.

8.5.1 Fundamental Equations

The basic equations that govern the motion in a stratified lake have been derived in
Chap. 4 and will be written down here under the following restrictive and simplify-
ing assumptions:

• Linearisation: all convective terms in the momentum equation are ignored, and
in the energy equation only the contribution from the vertical convection is
accounted for. This means that all variables are considered to have small devi-
ations from their equilibrium values.

• Viscous stresses, heat conduction and dissipation are ignored.
• The vertical momentum equation reduces to the hydrostatic force balance.
• Non-inertial effects (CORIOLIS accelerations) are ignored.
• The fluid is vertically stratified.

The equilibrium state is considered here as a state of rest with vanishing velocity
veq = 0, stable density distribution, ρeq = ρ0(z), and pressure distribution peq =
− ∫ z

0 ρ0(z̄)g dz̄, where z is measured upwards from the mean (still) water surface.
Denoting perturbations by a prime (except for u, v, since their equilibrium values

17 The dynamically important quantity is in fact the density distribution and therefore the distribu-
tion of the isopycnal surfaces rather than the isotherm–depth–time series. In a situation in which
the thermal equation of state has the form ρ = ρ̂(T, s), where s is salinity, measurements of
temperature and salinity–time series will yield the density–time series from which the isopycnal
time series can be constructed.



298 8 The Role of the Distribution of Mass Within Water Bodies on Earth

>
81

11
A

u
g

.1
97

8
0.

G
M

T
16

21
20

15
10

31
26

5S
ep

t

D
at

e

8 12 16 20 24 28

16
0

21
20

15
10

31
26

5S
ep

t

8 12 16 20 24 28
<6

<6
<6

<6
<6

<6
<6

16
16

16
16

16

16
16

>1
6

>1
6

>1
6

14
14

14
14

14

14

1
4

1
2

12
12

12
12

12

12

1
0

10

10
10

10
1

0

10 9

9
9

9
9

9
8

7

9 8

8
8

8
8

8 7
7

7

7

7

7

Depth [m]

F
ig

.
8.

19
H

ou
rl

y
av

er
ag

ed
is

ot
he

rm
–d

ep
th

–t
im

e
se

ri
es

w
ith

in
th

e
de

pt
h

ra
ng

e
of

8–
28

m
an

d
pl

ot
te

d
fo

r
te

m
pe

ra
tu

re
s

fr
om

6
to

16
◦ C

.
(L

ak
e

Z
ür

ic
h

fie
ld

ca
m

pa
ig

n,
19

78
)

[1
5]

,
c ©

L
ab

or
at

or
y

of
H

yd
ra

ul
ic

s,
H

yd
ro

lo
gy

an
d

G
la

ci
ol

og
y

at
E

T
H

Z
ur

ic
h



8.5 Internal Oscillations – The Dynamical Imprint of the Density Structure 299

are zero), the balance laws of mass, momentum and energy take the forms (see
Chap. 4, (4.235), (4.236), (4.237))

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (8.57)

∂u

∂t
− f v = − 1

ρ∗
∂p′

∂x
, (8.58)

∂v

∂t
+ f u = − 1

ρ∗
∂p′

∂y
, (8.59)

0 = −∂p′

∂z
− ρ′g, (8.60)

∂ρ′

∂t
− ρ∗ N 2

g
w = 0. (8.61)

The first of these equations is the continuity equation expressing the conservation
of volume (or mass since our model equations are those of a BOUSSINESQ fluid).
Equations (8.58), (8.59) and (8.60) are the balances of momentum in the x-, y- and
z-directions; ρ∗ is a constant reference density (e.g. at the water temperature 4◦C).
The acceleration is ignored in (8.60). Under such circumstances it actually reads

∂p

∂z
= −ρg �⇒ ∂peq

∂z
+ ∂p′

∂z
= −ρ0(z)g − ρ′g,

explaining (8.60) and also justifying

∂p

∂x
= ∂p′

∂x
,

∂p

∂y
= ∂p′

∂y
,

∂p′

∂z
= −ρ′g.

Most difficult to understand in the above equations is probably (8.61); it follows
from the energy equation under the above-mentioned simplifying assumptions of
vanishingly small thermal diffusion, dissipation and radiation. The energy equation
then takes the form ρ∗cvdT/dt = 0; since for pure water18 ρ = ρ(T ), this is
equivalent to dρ/dt = 0, or in view of ρ = ρ0(z) + ρ′ and ignoring higher order
nonlinear terms,

dρ

dt
= ∂ρ′

∂t
− (−dρ0

dz
)w = ∂ρ′

∂t
− ρ∗

g

1

ρ∗
(−dρ0

dz
g)

︸ ︷︷ ︸

N 2

w = 0,

which explains (8.61). We emphasise that N is only a function of z.

18 This is an exact statement for an incompressible material for which ρ cannot depend on pressure.
However, water is only nearly incompressible. So, (8.61) is an approximation for the case that the
thermal equation of state does not depend on pressure.
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Equations (8.57), (8.58), (8.59), (8.60), (8.61) constitute five linear partial differ-
ential equations for the five unknowns u, v, w, p′ and ρ′. They do not in this form
provide easy access to extract a physical understanding from them. This access is
better achieved if a single equation is deduced for one of the five variables. We shall
choose the vertical component of the velocity vector, w, because it will directly
answer the initial question concerning the amplitude distribution of the oscillations
through the water column.

In what follows we shall now demonstrate the reduction of (8.57), (8.58), (8.59),
(8.60), (8.61) to a single equation for w. In a first step we differentiate (8.58) with
respect to time and substitute (8.59); analogously we do the same with the roles for
(8.58) and (8.59) interchanged. This yields

L[u] = − 1

ρ∗
∂2 p′

∂x∂t
− f

ρ∗
∂p′

∂y
, L[v] = − 1

ρ∗
∂2 p′

∂y∂t
+ f

ρ∗
∂p′

∂x
, (8.62)

in which

L [ · ] :=
(
∂2

∂t2
+ f 2

)

[ · ]. (8.63)

Second, from the continuity equation (8.57) we may deduce

L
[
∂2w

∂z2

]

= − ∂

∂z

(

L
[
∂u

∂x

]

+ L
[
∂v

∂y

])

(8.62)= 1

ρ∗

(
∂2

∂x2

(
∂2 p′

∂z∂t

)

+ ∂2

∂y2

(
∂2 p′

∂z∂t

))

. (8.64)

Third, (8.60) and (8.61) may be combined to eliminate the density perturbations,
yielding,

∂2 p′

∂z∂t
= −g

∂ρ′

∂t
= −ρ∗N 2w. (8.65)

Substituting (8.65) into (8.64) reveals the desired result, namely

L
[
∂2w

∂z2

]

+ N 2
(
∂2w

∂x2
+ ∂2w

∂y2

)

= 0. (8.66)

By introducing the two-dimensional Laplace operator

∇2
H [w] =

∂2w

∂x2
+ ∂2w

∂y2
, (8.67)

an alternative form to write (8.66) is therefore also

L
[
∂2w

∂z2

]

+ N 2∇2
H

[w] = 0. (8.68)
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This is a partial differential equation for w which is of second order in the space and
time variables (it involves only second-order spatial and temporal derivatives). We
wish to solve it subject to certain initial conditions and boundary conditions at the
lake surface and its bottom, which will be specified below only as far as needed to
quantify the vertical distribution of w.

8.5.2 Eigenvalue Problem for the Vertical Mode Structure
in Constant Depth Basins

Equation (8.68) involves as independent variables three space coordinates, x, y, z
and the time. If x, y are horizontal and z is vertical, then the z-coordinate is parallel
to the dominant direction of stratification. So, we may ask the question whether
(8.68) permits solutions w(x, y, z, t) for which the z-dependence separates from
the other variables in the form

w(x, y, z, t) = Zn(z)wn(x, y, t). (8.69)

Here we have introduced an index n for reasons that will shortly become apparent;
it also allows us to differentiate between the functionsw andwn . Substituting (8.69)
into (8.68) yields, on recognising that Zn does not depend on x, y and t , while wn

does not depend on z,

Z ′′n (z)L[wn(x, y, t)] = −N 2(z)Zn(z)∇2
H
wn(x, y, t) (8.70)

or upon division by ZnL[wn] and N 2(z),

1

N 2(z)

Z ′′n (z)
Zn(z)

︸ ︷︷ ︸

f (z)

= −∇
2
H
[wn(x, y, t)]

L[wn(x, y, t)]
︸ ︷︷ ︸

g(x,y,t)

, (8.71)

in which the prime denotes differentiation with respect to z. In (8.71), the left-hand
side is only a function of z, while the right-hand side is a function of x, y, t . Two
such functions can only be the same when they do not depend at all upon their
independent variables, i.e. are the same constant. We shall choose

f (z) = g(x, y, t) = − 1

ghn
(= const). (8.72)

This implies, on the one hand, that

L[wn(x, y, t)] − ghn∇2
H
[wn(x, y, t)] = 0 (8.73)
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and, on the other hand, that

Z ′′n (z)+
N 2(z)

ghn
Zn(z) = 0. (8.74)

Thus, we have derived via the separation of variables technique (8.69) from (8.68)
(that describes the motion of the vertical velocity component w) two equations
describing, on the one hand, its horizontal and temporal variability, and, on the other
hand, the vertical variability. This is a separation of one high-dimensional problem
into two problems of lower dimension (either three (x, y, t) or one dimension (z)).
This reduction has been bought at the expense of the introduction of a yet unknown
separation constant ghn , which must be determined along with the solution of the
problem.

In the ensuing analysis we shall set the construction of the solution of the hori-
zontal and temporal problem (8.73) aside and shall only deal with (8.74). This is a
second-order linear ordinary differential equation with variable coefficient which
can be solved provided boundary conditions at z = 0 (water surface) and at
z = −H (bottom) are prescribed. We shall for simplicity assume that the free
surface is immobile to vertical motions so that w(x, y, z = 0, t) = 0, implying
Zn(z = 0) = 0. This assumption is obviously not exact – there are nontrivial and
small displacements and thus velocities at the free surface – but in view of the
discussion in connection with Fig. 8.19 this approximation seems to be tolerable.
Physically, this means that the amplitudes of the surface displacements are negligi-
bly small in comparison to corresponding amplitudes of vertical displacements of
internal fluid particles in the metalimnion. This assumption is called the rigid lid
assumption. At a flat bottom the impermeability requirement simply demands that
w(x, y, z = −H, t) = 0 implying Zn(z = −H) = 0. Thus, we have to solve the
following boundary value problem:

Z ′′n (z)+
N 2(z)

ghn
Zn(z) = 0, 0 > z > −H,

Zn = 0, z = 0, (8.75)

Zn = 0, z = −H.

This problem is a so-called Sturm–Liouville eigenvalue problem for the eigenvalues
ghn and the corresponding eigenfunctions. The attribute ‘STURM–LIOUVILLE’ tells
the mathematicians certain properties which can rigorously be proved:

Theorem 8.1 (Properties of Sturm–Liouville problems)

• There is a countably infinite number of positive eigenvalues ghn which can be
ordered according to their size. This now explains the introduction of the index
n. It can be used as counting index for the different eigenvalues gh0, gh1, . . . ,
ghn.
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• The eigenfunctions belonging to different eigenvalues are orthonormal to one
another in the sense that

∫ 0

−H
N 2(z)Zn(z)Zm(z) dz =

{

1, n = m,

0, n = m.
(8.76)

For n = m the chosen value on the right-hand side is to a certain extent arbitrary.
It corresponds to a particular normalisation of the eigenfunctions.

• The set of eigenfunctions is complete, i.e. any (quadratically integrable) function
f (z), 0 ≥ z ≥ −H can be expanded in terms of these functions. ⊗

We shall not prove the first and third of these statements,19 but the second is
easily corroborated as follows: We multiply (8.75)1, on both sides with Zm(z) and
integrate the resulting equation from z = −H to z = 0. This yields

∫ 0

−H
Z ′′n (z)Zm(z) dz +

∫ 0

−H

N 2(z)

ghn
Zn(z)Zm(z) dz = 0.

Writing this equation down again with indices m and n interchanged,

∫ 0

−H
Z ′′m(z)Zn(z) dz +

∫ 0

−H

N 2(z)

ghm
Zm(z)Zn(z) dz = 0

and subtracting the two equations yields

∫ 0

−H
(Z ′′m Zn − Z ′′n Zm) dz +

∫ 0

−H

(
1

ghm
− 1

ghn

)

N 2 Zm Zn dz = 0.

Performing next an integration by parts of the first integral, viz.

∫ 0

−H
(Z ′′m Zn−Z ′′n Zm)dz=[

Z ′m Zn−Z ′n Zm
]0
−H−

∫ 0

−H
(Z ′m Z ′n−Z ′n Z ′m)
︸ ︷︷ ︸

0

dz
!≡ 0

and using the boundary conditions (8.75)2,3 shows this term to be zero. Thus, since
for m = n the eigenvalues are numerically different, we have that

∫ 0

−H
N 2(z)Zm(z)Zn(z) dz = 0 for m = n

19 A proof of the theorem can be found in many books on linear algebra – inner product spaces –
or in books on mathematical physics, e.g. [6].
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proving the second of (8.76). As for m = n, we are free to choose the numerical
value of the integral, because its integrand is positive. We choose (8.76)1 and thus
fix the numerical value of max−H≤ z< 0

[Zn(z)], qed.

It is advantageous to write the eigenvalue problem in non-dimensional form. So
we write

ζ = − z

H
, Zn(z) = WZn(ζ ). (8.77)

Then, (8.75) becomes

d2Zn

dζ 2
+ λ2

nZn = 0, λ2
n :=

H2 N 2

ghn
,

(8.78)
Z(0) = 0, Z(1) = 0.

In this case, the orthonormal relation of the eigenfunctions (8.76) becomes

W 2 H
∫ 1

0
N 2(ζ )Zn(ζ )Zm(ζ ) dζ =

{

1, n = m,

0, n = m.
(8.79)

8.5.2.1 Example a: Linear Stratification

This corresponds to N 2 = const or ρ(z) = Az+B. Such a stratification is not realis-
tic for lakes but it enjoys the property that differential equation (8.78)1 has constant
coefficients, analytical solutions can easily be constructed and the implications of
the eigenvalue problem (8.78) be discussed qualitatively.

For N 2 = const or λ2
n = const, the differential equation (8.78) possesses the

general solution

Zn = An cos(λnζ )+ Bn sin(λnζ ), (8.80)

and the first boundary condition implies An = 0, while the second yields

0 = Bn sin(λn) �⇒ λn = nπ, n = 1, 2, . . . ,

so that

Zn = Bn sin(nπζ), ghn = H2 N 2

n2π2
. (8.81)

We have thus indeed found a countably infinite number of eigenvalues ghn , which
can be ordered; increasing n in integer steps decreases ghn quadratically. The
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dimensionless eigenfunctions belonging to ghn are the trigonometric sin functions
and these are obviously orthogonal. Indeed, (8.79) becomes

W 2 H N 2
∫ 1

0
Zn(ζ )Zm(ζ ) dζ = Bm Bn N 2W 2 H

∫ 1

0
sin(nπζ) sin(mπζ) dζ

=
{

1
2 B2

n N 2W 2 H, n = m,

0, n = m,
(8.82)

from which the normalised amplitudes could be computed. The values of the
amplitudes Bn are, however, not uniquely determinable and neither is it important,
because we have, in the original problem formulation, not specified the driving
forces of the motion. So, (8.81) determines the shape of the vertical velocity dis-
tribution. For each integer n = 1, 2, 3, . . ., it is different as shown in Fig. 8.20a.
Each of the solutions is called a mode and because the equations are linear the most
general solution is a linear combination of all these modes:

Z(ζ ) =
∞
∑

n=1

Zn(ζ ) =
∞
∑

n=1

Bn sin(nπζ). (8.83)

In this expansion the coefficients Bn are related to the driving forces (which we have
not specified here).

It is evident from the graphs in Fig. 8.20a that the oscillating activity of the ver-
tical velocity component lies inside the fluid layer, since all amplitude maxima are

(a)

(b)

0

0

1

1

ρ

ρ

ζ

ζ

N

N

H

H

Zn

Un

n = 1 2 3 4 5

Fig. 8.20 The five lowest order internal or baroclinic modes for a linearly stratified fluid layer of
depth H . The two left profiles in both graphs show the density and buoyancy frequency profiles.
(a) Vertical distribution of the vertical velocity component for the first five modes; the profiles
are the sinusoidal functions sin(nπζ). Arrows indicate the direction of motion modulo its sign.
(b) Same as (a) but showing the five lowest modes of the horizontal velocity component. Arrows
again indicate the direction (modulo its sign) of the flow
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arising within this layer. However, the trigonometric functions are not restricted in
this figure to a typical metalimnion, because a linear stratification encompassing the
entire layer depth was chosen. This latter quality will change when a more realistic
distribution of the BRUNT–VÄISÄLÄ frequency is chosen. That this is important
can convincingly be seen when N = 0 is selected, corresponding to no strati-
fication. Then, the boundary value problem (8.75) admits only the zero solution.
This demonstrates that (8.75) describes the baroclinic internal motion and not the
barotropic external counterpart.

An interesting and important question is what kind of horizontal motion is asso-
ciated with these vertical velocity profiles. It is not our intention here to describe this
horizontal velocity distribution in all its details. A simple analysis, however, allows
us at least to determine its vertical mode structure. To this end it suffices to consider
the continuity equation (8.57) which may be written as

∇H · vH = ∂u

∂x
+ ∂v

∂y
= −∂w

∂z
= −wn(x, y, t)

dZn(z)

dz
, (8.84)

where, on the right-hand side, the separation of variable representation (8.69) has
been substituted, and restriction to the nth mode has been implemented. The left-
hand side of (8.84) describes the horizontal divergence of the horizontal velocity
components. The divergence operator involves no differentiations with respect to
the z-variable. Therefore, the function dZn/dz describes the vertical variation of the
horizontal velocity components. So, if we write

u(x, y, z, t) = Un(z)un(x, t), v(x, y, z, t) = 0, (8.85)

and thus assume that the motion is in the x-direction only, then (8.84) and (8.85)
imply

∂un(x, t)

∂x
Un(z) = −wn(x, t)

dZn(z)

dz
, (8.86)

so that

Un(z) ∝ dZn

dz
∝ dZn

dζ
∝ cos(nπζ), (8.87)

where we have left the amplitude unspecified. The vertical distribution of the hori-
zontal velocity is proportional to the z-derivative of the vertical distribution of the
(negative) vertical velocity.

Problem 8.4 Prove that the conclusion (8.87) can also be derived when the motion
is three-dimensional, i.e. when

u(x, y, z, t) = Un(z)un(x, y, t), v(x, y, z, t) = Vn(z)vn(x, y, t),
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then

Un(z) ∝ Vn(z) ∝ dZn

dz
(z). �

For the five lowest order baroclinic modes these distributions are shown in
Fig. 8.20b. It is seen that each mode divides the water column into a number of sub-
layers. This number equals (n+1), which is the number of zeros of the Un(ζ )-profile
plus 1. The direction of the velocity in each of these sublayers changes whenever
a zero of the Un-profile function is crossed. This is indicated in Fig. 8.20b by the
arrows. For n = 1 this division yields an upper and a lower layer in which the
motion is to-and-fro, respectively, reminiscent of a forward motion in the epilimnion
and a return motion in the hypolimnion and vice versa. In the first higher baroclinic
mode (n = 2) there are three layers with horizontal velocities that are ‘to-fro-to’
as one reaches larger depths, etc. The general motion is a linear combination of
all these modes with an anticipated decrease of the significance of the higher order
modes. In fact, in real measurements, the fundamental baroclinic mode (n = 1)
is generally dominantly excited and clearly observed, the higher order baroclinic
modes are present usually with much lesser energy (and amplitude). Indeed, one
may, in field measurements, observe the lowest (n = 1) and first higher baroclinic
mode (n = 2), but has so far not been able to clearly identify any of the higher ones
(n > 3).

A further interesting property can be read off from Fig. 8.20b. For each mode
the volume flux, i.e. the integral of the horizontal velocity over depth is zero. So,
there is no net transport of fluid in the horizontal direction. This result is seen here
to be the property of the trigonometric function cos(nπζ). The volume flux to the
right adds up to the same value as the volume flux to the left. However this is so
even for stratifications different from that of Fig. 8.20; it simply follows from the
assumptions of plane motion, volume preserving and rigid lid. And it is equally
independent of the fact whether a baroclinic wave is the compound of a number of
modes.

There still remains an interpretation of the eigenvalues, given in (8.81)2. They
have the physical dimension of a squared velocity, and hn is a length whereby
the notation hn suggests a depth. So ghn = c2

n is the nth mode-shallow-water
velocity (as we shall prove later on). Table 8.4 gives numerical values of

√
ghn

for N = 10−2 s−1 and H = 100 m (appropriate for, e.g. Lake Constance). The
corresponding speeds cn = √ghn are of the order of 30 cm s−1 and less. Important
is that with increasing mode numbers the value of the velocity decreases propor-
tionally to 1/n. Later, we will learn that the velocities cn are the phase velocities of
the corresponding modes. It follows that the higher the baroclinic mode number is,

Table 8.4 Values for
√

ghn and hn according to (8.81) for H = 100 m and N = 10−2 s−1

n 1 2 3 4 5√
ghn [cm s−1] 32 16 10.6 8.0 6.4
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the slower will be the propagation of the corresponding wave. This fact suggests a
reason why higher order baroclinicity is principally difficult or virtually impossible
to observe. In reality these waves are damped by viscous effects. For equal dis-
tances travelled by two waves of different baroclinic mode numbers, n2 > n1, the
higher baroclinic wave (n2) goes through a larger number of cycles than the lower
baroclinic wave (n1) when travelling this distance and will therefore be subject to
more dissipation than the lower baroclinic wave. It is therefore likely that an internal
wave with an initially rich vertical structure consisting of many modes, each with
appreciable energy, will be quickly modified in which low-order baroclinic modes
survive, while the higher modes have essentially died out.

8.5.2.2 Example b: Constant Density Epi- and Hypolimnion, Linear
Stratification in the Metalimnion

A more realistic density profile that mimics the summer stratification is a profile in
which the epilimnion and hypolimnion have constant densities, ρE and ρH , respec-
tively, with ρE < ρH , which are connected in the metalimnion as shown in Fig. 8.21.
This yields zero buoyancy frequency in the epi- and hypolimnion and constant buoy-
ancy frequency in the metalimnion. The differential equation (8.78) must in this
case separately be solved for the epi-, meta- and hypolimnion (denoted for brevity
as regions I, II and III) with zero boundary conditions at the free surface (rigid lid
assumption) and at the base; the three solutions are then smoothly connected at the
interfaces between epi- and metalimnion and meta- and hypolimnion, respectively.

Region I (0 ≥ z ≥ −h+ or 0 ≤ ζ ≤ ζ+):

Because of the vanishing buoyancy frequency the differential equation (8.78)1 is
simply Z I

n
′′(ζ ) = 0 of which the solution is a linear function Z I

n = A+ Bζ , which,
in view of the rigid lid assumption, at ζ = 0, becomes

Z I
n(ζ ) = Bnζ, 0 ≤ ζ ≤ ζ+ (8.88)

with still undetermined constant Bn .

ρE

ρH

Nz ρ 00

d

−h+

−h−

−H

−h0

ζ

ζ0

ζ+

ζ−

Epilimnion I

Metalimnion II

Hypolimnion II

h0 = 1
2 (h+ + h−), d = 1

2 (h+ − h−)

1

Fig. 8.21 Constant epilimnion and hypolimnion densities, linearly connected in the metalimnion
of thickness d. The corresponding buoyancy frequency is piecewise constant with zeros in the epi-
and hypolimnion



8.5 Internal Oscillations – The Dynamical Imprint of the Density Structure 309

Region II (−h+ ≥ z ≥ −h− or ζ+ ≤ ζ ≤ ζ−):

In this region N is constant, (8.78)1 is a differential equation with constant coeffi-
cients and possesses the solution

Z II
n (ζ )=Cn sin(λnζ )+Dn cos(λnζ ), ζ+ ≤ ζ ≤ ζ− (8.89)

with two constants of integration, Cn and Dn .

Region III (−h− ≥ z ≥ −H or ζ− ≤ ζ ≤ 1):

The conditions are here the same as in region I; thus, Z III
n is linearly distributed in

ζ (or z) and must vanish at ζ = 1 (or z = −H ) implying

Z III
n (ζ ) = Fn(ζ − 1), ζ− ≤ ζ ≤ 1. (8.90)

The solutions (8.88), (8.89) (8.90) contain four still unknown constants which will
be deduced by requiring continuity of Zn and Z ′n at ζ = ζ+ (or z = −h+) and
ζ = ζ− (or z = −h−), respectively. These conditions imply the following four
equations:

Bnh+ = Cn sin(λnζ
+)+ Dn cos(λnζ

+),
Bn = λnCn cos(λnζ

+)− λn Dn sin(λnζ
+),

(8.91)
Fn(h

− − H) = Cn sin(λnζ
−)+ Dn cos(λnζ

−),
Fn = λnCn cos(λnζ

−)− λn Dn sin(λnζ
−).

By eliminating Bn and Fn two homogeneous equations emerge for Cn and Dn which
allow a non-trivial solution only provided that the determinant of this system van-
ishes. This yields the eigenvalue equation

tan(λnζ
+)− λnζ

+

1+ λnζ+ tan(λnζ+)
= tan(λnζ

−)− (ζ− − 1)λn

1+ λn(ζ− − 1) tan(λnζ−)
(8.92)

for the eigenvalue λn . It possesses a countably infinite number of solutions which
can be ordered according to the counting index n. Once (8.92) is satisfied, Bn,Cn

and Fn can be expressed in terms of Dn as follows:

Bn = −λn Dn{Λn(λn) cos(λnζ
+)+ sin(λnζ

+)},
Cn = −DnΛn(λn), (8.93)

Fn = −λn Dn{Λn(λn) cos(λnζ
−)+ sin(λnζ

−)}

with

Λn(λn) : = 1+ λnζ
+ tan(λnζ

+)
tan(λnζ+)− λnζ+

. (8.94)



310 8 The Role of the Distribution of Mass Within Water Bodies on Earth

Before we discuss this solution it is worth checking whether the result has any
chance to be correct. If we set h+ = 0 (ζ+ = 0) and h− = H (ζ− = 1) then the
linear stratification extends over the entire water column. The eigenvalue equation
(8.92) reduces in this case to tan(λn) = 0 or λn = nπ . Furthermore, Λn = ∞,
and therefore Dn = 0 (in order to have finite Cn). So the solution reduces to that
of the previous example, which we expected. For the general case, we, however,
have

Zn(ζ ) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Bn(λn)ζ, 0 ≤ ζ ≤ ζ+,

Cn(λn) sin (λnζ ), ζ+ ≤ ζ ≤ ζ−,

Fn(λn)(ζ − 1), ζ− ≤ ζ ≤ 1

(8.95)

with λn evaluated from (8.92) and the constants of integration given by (8.93) and
(8.94).

Problem 8.5 Write a program that determines the solution of (8.92), (8.93), (8.94),
(8.95) and generates graphs for the profiles (8.95). �

If the function (8.95) and its z-derivative are graphically displayed, then the pro-
files of vertical and horizontal velocity, Zn(ζ ) and Un(ζ ), of Fig. 8.22 are obtained.

ζ

(b)

(a) 0

0

1

1

ζ

ζ+

ζ+

ζ−

ζ−

ρ(ζ)

N

Zn

Un

I

II

III

I

II

III

n = 1 2 3 4

Fig. 8.22 The four lowest order internal modes for a stratification that has constant density in the
epilimnion (I) and hypolimnion (III) with linear connection of these two values in the metalimnion
(II). (a) shows the density distribution and the four lowest order modes of the vertical velocity
distribution. (b) shows the corresponding buoyancy frequency and the four lowest order modes for
the horizontal velocity. The arrows indicate the direction of the flow (modulo its sign). Figure is
only a sketch
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Qualitatively, the same results are obtained as shown in Fig. 8.20, but with quan-
titative differences which are important. The figure displays in the top panel the
density profile and the four first modes of the vertical velocity component. In the
bottom part of the figure, the corresponding buoyancy frequency and the profiles
of the four lowest order modes of the horizontal velocity are shown. Evidently, the
horizontal velocity in the respective sublayers that are separated by the zeros of the
function dZn/dζ changes its direction. The lowest order baroclinic mode consists
of two layers in which the horizontal velocity is to-and-fro with relatively large
values of the velocity both in the epi- and hypolimnion. Recall that the volume flux
in the upper layer (from the zero of the U1-function to the free surface) has the
same amount as the return flux in the lower layer. This implies that, roughly, the
ratio of the epilimnion velocity to the hypolimnion velocity is equal to the inverse
ratio of their depths. It is further evident that for the higher order baroclinic modes
the horizontal velocity is constant with depth in the top and bottom layers (since
N = 0 there) and that conspicuous oscillations with velocities forth and back,
etc. arise where N = 0. Because for each mode (n ≥ 2) the total volume flux
must vanish, the amplitudes of these harmonic oscillations in region II are large
in comparison to the values of the ‘tails’ in regions I and III. When trying to
identify the baroclinic modes from measurements via isotherm–depth–time series
and/or velocity measurements it is compelling that such instruments are moored
in the metalimnion and not in the epi- and hypolimnion. Instruments deployed in
the epi- and hypolimnion are not likely to reveal reliable information for n ≥ 2
or n ≥ 3.

This analysis has shown that the dominant activity of the internal oscillations is
seen in the metalimnion where the value of the buoyancy frequency is large. Rela-
tively strong currents in the epi- and hypolimnion may arise for the lowest modes
(n = 1, 2 and perhaps 3). They become rapidly small as n increases and are then
only large and possibly measurable in the metalimnion. It follows that thermistor
chains should, whenever possible, be moored in the metalimnion. Current metres
may, however, also be positioned in the epi- and hypolimnion.

8.5.2.3 Example c: The Constant Density Layer Approximation

As one could easily infer from the above discussion, the dominant mode is the
fundamental mode, and so, one may in anticipation of reproducing only the main
features of baroclinicity restrict the analysis to a model which only produces this
mode. Mathematically, this behaviour can be extracted from the model of Fig. 8.21
by letting the metalimnion thickness shrink to zero, d → 0, while maintaining the
strength of the stratification, N 2d, within it. The eigenvalue problem is still given
by (8.75) with N = 0 or its nondimensional form (8.78) with λn = 0 in regions I
and III, but in region II we now write

N 2

ghn
d = 1

ρ∗

(
ρH − ρE

d
g

)
1

ghn
d = 1

ρ∗
ρH − ρE

hn
,



312 8 The Role of the Distribution of Mass Within Water Bodies on Earth

which is kept constant in the limit as d → 0. In fact, we can write this limit in the
form

lim
d→0

{
N 2

ghn

}

= 1

ρ∗
ρH − ρE

hn
δ(z + hE), (8.96)

where hE = h+ = h− and δ(·) is the DIRAC delta function

δ(x) =
{

∞, x = 0,

0, x = 0,

∫ ∞

−∞
δ(x) dx = 1. (8.97)

Then, expression (8.96) ensures that, for a stratification with an infinitely thin met-
alimnion at z = −hE, the buoyancy frequency tends to infinity within the metal-
imnion, but elsewhere is equal to zero, and the strength of the stratification remains
unchanged

∫ 0

−H

{
N 2

ghn

}

dz = 1

ρ∗
ρH − ρE

hn
. (8.98)

The solutions for the vertical profile of the vertical velocity component in regions
I and III are still given by (8.88) and (8.90), or 20

Z I(z) = Bz,
(8.99)

Z III(z) = F(z + H),

which have to be continuously connected at z = hE, yielding

BhE = F(hE − H) → F = B
hE

hE − H
. (8.100)

Alternatively in the infinitely thin region II the differential equation (8.75) can for-
mally be written as

Z
′′
(z)+ 1

ρ∗
ρH − ρE

hn
δ(z + hE) Z(z) = 0, (8.101)

which when integrated from −(hE + 0) to −(hE − 0) implies

∫ −(hE−0)

−(hE+0)
Z ′′(z) dz + 1

ρ∗
ρH − ρE

hn

∫ −(hE−0)

−(hE+0)
δ(z + hE)Z(z) dz = 0

20 We omit the index n, because only a single mode does exist in this case, as will be demonstrated
shortly. Furthermore, here we prefer to use the dimensional forms of the equations.
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or

Z ′(−(hE − 0))
︸ ︷︷ ︸

Z I′ (−hE)

− Z ′(−(hE + 0))
︸ ︷︷ ︸

Z III ′(−hE)

+ρH − ρE

ρ∗hn
Z(−hE)
︸ ︷︷ ︸

Z I(−hE)

= 0. (8.102)

Substituting (8.99) and (8.100) transforms this equation into

B

[
hE

hE − H
− 1

]

= ρH − ρE

ρ∗hn
B hE,

from which the eigenvalue

hn = ρH − ρE

ρ∗
hE(H − hE)

H
= �ρ

ρ∗
hEhH

hE + hH
(8.103)

is determined. This corroborates that the index n can be dropped, also in hn = hi . It
is called the equivalent depth and is given by the product of the normed density dif-
ference between the hypolimnion and epilimnion and a depth which is the product of
the epilimnion and hypolimnion thicknesses divided by the depth of the total water
column. Thus, all oscillations within the metalimnion are lost when its thickness
becomes vanishingly small, and there remains only a mode that corresponds to the
fundamental mode before. Correspondingly, the horizontal velocities in the upper
and lower layers, given by Z ′, are uniformly distributed over the respective depths
as follows:

U I = B, U III = − hE

H − hE
B, (8.104)

and these obviously satisfy the equal flux condition

U IhE = −U III(H − hE). (8.105)

The constant-density-two-layer approximation is a very popular reduction of the
full model, because it is able to capture the essential ingredients of the internal wave
dynamics that can be observed in lakes. As we have already pointed out, higher
order baroclinic modes of a continuous stratification are difficult to identify by mea-
surements because they have appreciable signals only in the metalimnion which for
higher order modes have the tendency to die out quickly.

The computation can easily be formalised for an arbitrary number of layers, say
M , see Fig. 8.23. Denote the layers from top to bottom by j = 1, 2, . . . ,M . Let the
layer densities ρ j be constant and assume stable stratification for which ρ j+1 > ρ j

for all j . Denote the interfaces between the layers j − 1 and j by j − 1/2 and the
corresponding distance from the free surface by h j−1/2. With these definitions the
vertical variation of the vertical velocity component in the layers j −1 and j is then
given by linear functions as follows:

Z j−1 = A j−1 H + B j−1z,
(8.106)

Z j = A j H + B j z,
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Fig. 8.23 Water column of
depth H is divided into M
layers of constant density
with density jumps at the
interfaces between the layers.
The layers are enumerated
from j = 1 to j = M and the
interfaces have half integer
identifiers

free surface

bottom surface

z

H

M

1

j

(j − 1)

(j + 1)

ρj

ρj−1

ρj+1

j − 1/2

j + 1/2

hj−1/2

hj+1/2

where A j−1, A j and B j−1, B j are constants to be determined. (We have multiplied
the constants A j with H to make A j , B j to have the same dimension.) At the inter-
face between the layer j − 1 and the layer j the function Z is continuous,

Z j−1(−h j−1/2) = Z j (−h j−1/2) (8.107)

and the derivative Z ′ must satisfy a jump condition analogous to (8.102), namely

Z ′j−1(−h j−1/2)− Z ′j (−h j−1/2) = −ρ j − ρ j−1

ρ∗hn
Z j−1 (−h j−1/2). (8.108)

If the representations (8.106) are substituted into (8.107) and (8.108), two equations
emerge involving A j−1, A j , B j−1, and B j which, after some simple transforma-
tions, can be written in the form

⎛

⎝

A j

B j

⎞

⎠ =

⎡

⎢
⎢
⎢
⎢
⎣

1+ �ρ j−1/2

ρ∗
ζ j−1/2

ζn
−�ρ j−1/2

ρ∗
ζ 2

j−1/2

ζn

�ρ j−1/2

ρ∗
1

ζn
1− �ρ j−1/2

ρ∗
ζ j−1/2

ζn

⎤

⎥
⎥
⎥
⎥
⎦

⎛

⎝

A j−1

B j−1

⎞

⎠ ,

(8.109)
where

�ρ j−1/2 = ρ j − ρ j−1, ζ j−1/2 = h j−1/2

H
, ζn = hn

H
. (8.110)

The matrix is called transfer matrix and will be denoted by T j−1. Then

(

A j

B j

)

= T j−1

(

A j−1
B j−1

)

, (8.111)
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and repeated application yields

(

A j

B j

)

= T j−1T j−2 · · · T 1

(

A1
B1

)

(8.112)

as well as

(

AM
BM

)

= T M−1T M−2 · · · T 1

(

A1
B1

)

= T total

(

A1
B1

)

. (8.113)

Thus, we have been able to relate the final vector (AM , BM )
T to the initial vector

(A1, B1)
T.

Next we wish to impose the boundary conditions. At the free surface the rigid lid
assumption requires A1 = 0 and at the base the vanishing of the vertical velocity
component at z = −H implies AM − BM = 0. Thus

(Ttotal)12 − (Ttotal)22 = 0. (8.114)

This is an (M − 1)-order polynomial equation for the eigenvalue ζn . It possesses
(M − 1) solutions which can be ordered according to their magnitude. Once these
eigenvalues are computed, (A j , B j )

T can be determined from (8.112) by starting
from (A1, B1)

T = (0, B1)
T, which in turn, fixes the solution (8.106) for all j =

1, 2, . . . , N .

Problem 8.6 Apply (8.114) to the two-layer model and reproduce with the use of
the transfer matrix listed in (8.109) the result (8.103). �

Problem 8.7 Consider a three-layer model with constant densities in each layer
and derive the eigenvalue equation for the eigenvalues ζn. Show in particular that
there are two eigenvalues, ζ1 and ζ2, with two eigenmodes. �

8.6 Closure

The attempt in this chapter was to demonstrate to the reader that the distribution
of mass – i.e. the variation of the water density – within a water body on Earth
chiefly dictates how such water bodies behave and react to external forces. The
chapter was begun with a verbal description how gravity, wind and solar irradiation
may affect the response of a lake to these external sources. The non-linear depen-
dence of the mass density as a function of temperature exerts a dominant effect on
how water mass is distributed in a lake. The mere existence of density variations
dynamically gives rise to two different types of modes of motion: barotropic or
‘external’ processes, which are essentially imprinted to the lake domain by driving
processes at the boundaries, the free surface (wind, atmospheric pressure variation);
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and baroclinic or ‘internal’ processes, which owe their existence to the variation of
the buoyancy forces.

Solar irradiation and loss of heat at the surface, of course, also affect the
density distribution of the water; the non-linear behaviour of the thermal equa-
tion of state with its density maximum at 4◦C (for pure water at normal pres-
sure) gives rise to induced convective flow and related possible local mixing of
unstably stratified fluid layers and ventilation of the hypolimnion with oxygen-
rich surface water. Because the point of maximum density is also pressure and
salinity dependent and may even be lost at large salinity and pressure, shallow
and deep lakes show different responses to radiative heat input and free sur-
face heat loss. Formation of the thermal bar depends on it as does LANGMUIR

circulation.
Homogenisation of a stratified fluid mass in a basin requires energy, since the

centre of gravity of the homogenised body lies some millimetres above the centre
of gravity of the stably stratified fluid body with the same geometry. The energy
needed for this lift is gigantic, but the energy transfer by wind alone is by far larger
than the energy that is needed. Mixing, and therefore generation, of conditions of
unstable stratification is a prerequisite for its inception. These mechanisms are vital
for the so-called overturning process of the water masses of a lake and the associated
enrichment of the benthic boundary layer by oxygen.

The motion of the internal water masses in a lake was explained by looking
at an isolated small body confined by a virtual skin and in equilibrium with the
surrounding water. When experiencing a small displacement out of the equilibrium
position, this ’balloon’ either oscillates with the buoyancy or BRUNT–VIÄSÄLÄ

period if the surrounding water is stably stratified or leaves its unstable equilibrium
level with no return.

This gedanken experiment then leads naturally to the analysis of internal oscilla-
tions and their characterisation by the existing density structure which, on timescales
of the internal oscillations is thought to be frozen into the water performing the
oscillations. The linearised shallow water equations of a BOUSSINESQ fluid in a
constant depth fluid layer with vertical stratification and rigid lid boundary con-
ditions at the undeformed free and bottom surface define the linearised bound-
ary value problem for such waves. A separation of variables technique allowed
decomposition of the horizontal and vertical processes with a separation constant
serving as eigenvalue for the vertical problem. The emerging STURM–LIOUVILLE

eigenvalue problem determined a countable infinite ordered set of eigenvalues and
associated eigenfunctions, which depend on the vertical density variation. Solu-
tions were constructed for an n-layer (n ≥ 2) model with constant densities and
a three-layer model with linear stratification in each layer. The characteristic math-
ematical feature of these solutions is that the vertical eigenvalue problem is uncou-
pled from the horizontal wave problem, which can be attacked once the verti-
cal problem has been solved. Physically, the distinctive feature is that the ampli-
tudes of the vertical displacements of water particles are proportional to the verti-
cal density gradients, thus generally largest in the metalimnion at the thermocline
position.
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Chapter 9
Vertical Structure of Wind-Induced Currents
in Homogeneous and Stratified Waters

9.1 Preview and Scope of This Chapter

In this chapter the intention is to describe the vertical and (eventually) also horizon-
tal structure of the horizontal current in lakes which are subjected to external wind
forces. The water will be assumed to be homogeneous or stratified in two layers, and
the internal friction and the effects of the rotation of the Earth will play an important
role in the establishment of the current distribution.

The focus will be, first, on steady applied wind input into narrow one- and two-
layer fluid systems of finite horizontal extent and finite or infinite vertical extent for
which the effects of the rotation of the Earth can be ignored. The hydrodynamic
equations are formulated in a simplified form in which conditions of linearity are
fulfilled with sufficient accuracy, and it will be assumed that among all viscous
stresses only the vertical shear stress components are of significance, and these can
be parameterised by a linear NEWTONian rheology. Simple solutions are developed
for water movements in a narrow rectangular basin subjected to steady wind directed
along its length. Vertical structures of current are derived for one- and two-layered
systems. These solutions are constructed for constant vertical eddy viscosity; this
assumption allows analytical construction of solutions and therefore leads to a direct
physical understanding of the circulation pattern that is developed in one- and two-
layered fluid systems.

While the finite horizontal extent of the fluid system is an important prerequisite
for the establishment of the circulation pattern in one- and two-layered systems, the
structure of the vertical distribution of the horizontal current in a homogeneous layer
of fluid subject to steady uniform wind when both the internal friction and the rota-
tion of the Earth are taken into account is best seen when the horizontal extent is infi-
nite. The formulation of this problem for constant vertical eddy viscosity is known
as the EKMAN [12] theory (1905), and the vertical structure of the horizontal current
is established in the form of the so-called EKMAN spiral. A typical parameter of the
governing equations of this problem is the so-called EKMAN depth D = π

√
2ν/ f ,

where ν is the constant vertical eddy viscosity and f the CORIOLIS parameter. If a
fluid layer is infinitely deep, then the horizontal current due to steady, uniform wind
rotates anticyclonically with increasing depth and decreases exponentially such that
at a depth equal to D the angle of rotation is 180◦ relative to the surface current and

K. Hutter et al., Physics of Lakes, Volume 1: Foundation of the Mathematical
and Physical Background, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-642-15178-1_9,
C© Springer-Verlag Berlin Heidelberg 2011
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its magnitude is reduced by a factor exp (−π) = 0.0432. Moreover, the horizontal
current at the free surface is rotated cum sole1 by an amount of 45◦. On the other
hand, if the fluid layer is of finite depth H , then this EKMAN solution is modified
according to the H/D ratio. For H/D � 1 (effectively H/D > 1.5) the solution is
very close to the classical EKMAN solution. For H/D < 1 the rotation of the hor-
izontal current with depth is less conspicuous and decreases with decreasing value
of H/D. Furthermore, the angle of deviation of the direction of the surface water
current from the direction of the wind is less than 45◦, for H/D < 0.1 it is smaller
than 10◦. A similar effect is also exerted by a non-constant vertical distribution of
the vertical eddy viscosity, implying that appropriate consideration to the numerical
values of the viscosity and its spatial distribution is practically very important.

One key feature of the EKMAN problem in a fluid layer of infinite horizontal
extent is the fact that for uniform atmospheric pressure the absence of side bound-
aries prevents the free surface from any deformation. So, a first step to guarantee
solutions in regions of finite extent is to add in the horizontal momentum equation
a horizontal pressure gradient due to the weight of the non-uniformly displaced
fluid and to pretend that this surface displacement is known as a function of the
horizontal coordinates. The steady EKMAN problem can also be constructed for this
case, and the additional currents due to this pressure gradient are called gradient
currents. The next step is then the postulation that the vertical distribution of the
horizontal current thus constructed is adequate also in a finite lake domain with
variable bathymetry. The only missing link is then the complementation of these
equations with the depth-integrated continuity equation. What results is an elliptical
differential equation for the depth-integrated volume transport stream function. The
method has been applied to real lakes despite the fact that it is very difficult in
practice to find wind scenarios which are close to steady state. Results are presented
for Lake Erie as applied by GEDNEY and LICK [20], and comparison of the limited
results with observation is surprisingly good.

A last application of the ‘EKMAN solution procedure’ is its extension to
time-dependent wind input and therefore time-dependent lake response. Here, an
approach of solution due to PLATZMAN is presented. This approach is approximate
(as are all others). The gist of the approach is in this case to vertically integrate the
horizontal momentum equations. This generates a term τb/ρ, where τb is the shear
stress at the basal surface, which must be parameterised to transform the vertically
integrated continuity and horizontal momentum equations into an integrable system
of evolution equations. The various methods differ by the approach how the closure
for τb/ρ is achieved. The first proposal has been given by WELANDER in 1957
[52]; we present here in detail PLATZMAN’s [43] (1963) solution, who has applied
his method to a storm surge analysis of Lake Erie, of which an excerpt is presented.
Observed and measured surface elevation time series (set-up) at six limnigraph sta-
tions around Lake Erie show very good agreement (Fig. 9.1).

1 Cum sole [Latin: ‘with the sun’] – ancient expression of the rotation in the same direction as the
Sun moves during a day, i.e. clockwise in the Northern Hemisphere, anticlockwise in the Southern.
Convenient and still often used in geophysics since it shows how a moving body is turned by the
Coriolis force in both hemispheres. Opposite direction is ‘contra solem’ [Latin: ‘against the sun’].
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Fig. 9.1 Left: George W. PLATZMAN (http://news.uchicago.edu/). Right: Vagn Walfried
EKMAN (http://en.wikipedia.org/)

Vagn Walfried EKMAN (3 May 1874 – 9 March 1954) was a Swedish oceanographer. He
became committed to oceanography at the University of Uppsala on hearing Vilhelm BJERK-
NES lecture on fluid dynamics. During the expedition of the Fram, Fridtjof NANSEN had
observed that icebergs tend to drift not in the direction of the prevailing wind but at an angle
of 20 – 40◦ to the right. BJERKNES invited EKMAN, still a student, to investigate the problem
and, in 1905, EKMAN published his theory of the EKMAN spiral which explains the phe-
nomenon in terms of the balance between frictional effects in the ocean and the CORIOLIS

force, which arises from planetary rotation. On completing his doctorate in Uppsala in 1902,
EKMAN joined the International Laboratory for Oceanographic Research, Oslo, where he
worked for 7 years, not only extending his theoretical work but also developing experimental
techniques and instruments, e.g. the EKMAN current metre and EKMAN water bottle. From
1910 to 1939 he continued his theoretical and experimental work at the University of Lund,
where he was professor of mechanics and mathematical physics. He was elected a member of
the Royal Swedish Academy of Sciences in 1935. A gifted amateur bass singer, pianist, and
composer, he continued working right up to his death.

George W. PLATZMAN (19 April 1920 – 02 August 2008), meteorologist, who earned his
bachelor’s and master’s degrees in mathematics and physics from the Universities Chicago
and Arizona in 1940 and 1941, respectively, and a Ph.D. in meteorology from the University
of Chicago in 1947, joined the faculty of the University’s Meteorology Department in 1948.
He remained there when he retired as Professor Emeritus. PLATZMAN, one of the founders of
modern meteorology, transformed weather forecasting from qualitative guesswork to quanti-
tative science. He specialised in dynamic meteorology and oceanography, including numerical
weather prediction and storm surges, which are caused by wind and in the Great Lakes’ area
due to Hurricanes. He has pioneered weather forecast by computer, laid down the theory of
storm surges and participated in the development of advanced computer software to model
and forecast variations of surface elevation fields in the ocean and in lakes. He summarised
his research in seminal papers, e.g. articles on the ocean tides and the storm surge theory
and a comprehensive review of the ROSSBY wave. PLATZMAN’s personal interests included
collecting early printed editions of musical compositions by Fréderic CHOPIN. He established
the Rose K. PLATZMAN Memorial Collection at the University of Chicago Library in honour
of his mother.

The text is based on http://en.wikipedia.org/ and http://news.uchicago.edu/
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9.2 Hydrodynamic Equations Applied to a Narrow Lake
Under Steady Wind

In this section the linear viscous hydrodynamic equations are used to develop simple
solutions for water movements in a narrow rectangular basin subjected to steady
wind directed along its length. Vertical structures of the current are derived for
one- and two-layer systems, representing, respectively, a lake during conditions of
winter homogeneity and summer stratification. Simplicity is intended so that ana-
lytical solutions of the governing equations are achieved by linearisation, the use of
constant coefficients of the momentum viscosity, later somewhat relaxed, and the
neglect of the CORIOLIS force. The solutions illustrate some important facts about
the dynamics of wind-driven flows in a long narrow lake of constant depth.2 The
solutions provide insight into the current behaviour and may be guiding elements
for circulations in more complicated basins for which solutions must be sought by
numerical means.

9.2.1 Wind-Induced Steady Circulation in a Narrow Homogeneous
Lake of Constant Depth

Consider a rectangular basin of length � and depth h, subjected to a steady lon-
gitudinal wind stress τs of prescribed distribution along the length of the basin.
Atmospheric pressure pa is assumed to be uniform and constant over the water
surface and time. We take the axes Oxyz with O in the undisturbed lake surface (at
one end); Ox is directed along the length and Oz vertically downwards as shown
in Fig. 9.2. The y-axis is towards the reader, but since motions are assumed to be
plane, the Oy direction is under the stated assumptions not relevant.

Fig. 9.2 Rectangular basin.
Definition of wind shear
stress, velocity components,
u, w and Cartesian
coordinates x, y, z

u

w

x

z

0

x = 0

h

x = l

τs

2 The qualification of the basin to be ‘narrow’ is necessary since only under such a restriction the
Coriolis force can be ignored.
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Problem 9.1 Assuming that the motion is two-dimensional in the vertical xz-plane,
ignoring CORIOLIS and non-linear convective acceleration, retaining only vertical
shears and ignoring the other NEWTONian viscous stresses show that the dynamical
equations take the forms

−∂p

∂x
+ ∂τzx

∂z
= 0,

∂u

∂x
+ ∂w

∂z
= 0,

∂p

∂z
= ρg,

∂

∂x

∫ h

0
u dz = 0.

(9.1)

The equations on the left are what remains of the horizontal and vertical momentum
equations – they reduce to a force balance; the equations on the right are the conti-
nuity equation and the zero flux condition through any vertical cross-section due to
the incompressibility and steady flow conditions. Moreover,

τzx = ρν

(
∂u

∂z
+ ∂w

∂x

)

� ρν
∂u

∂z
, (9.2)

in which ν is the kinematic viscosity (here of the turbulent motion).3 �

For homogeneous water, ρ = constant and, therefore, by satisfying the surface
condition

p = pa at z = −ζ, (9.3)

where pa is assumed to be a constant, (9.1)3 may be integrated to give

p = pa + ρg(z + ζ ), (9.4)

so that

∂p

∂x
= ρg

∂ζ

∂x
. (9.5)

Hence, from (9.1)1 we deduce

∂τzx

∂z
= ρg

∂ζ

∂x
,

3 In turbulent motions (9.2) generally takes the form

τzx = ρνV
∂u

∂z
+ ρνH

∂w

∂x

and it is concluded that |νV ∂u/∂z| � |νH ∂w/∂x |. For a detailed explanation of turbulence, see
Chap. 6.
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which may be integrated to yield

τzx = ρg
∂ζ

∂x
z + A = ρν

∂u

∂z
, (9.6)

from which for constant ν it follows that

ρνu = 1

2
ρg
∂ζ

∂x
z2 + Az + B. (9.7)

The two constants of integration, A and B, may be determined by satisfying, first,
the bottom no-slip condition

u = 0 at z = h, (9.8)

which gives

0 = 1

2
ρg
∂ζ

∂x
h2 + Ah + B. (9.9)

Using this equation to eliminate B in (9.7) yields

ρνu = 1

2
ρg
∂ζ

∂x
(z2 − h2)

︸ ︷︷ ︸

‘set up current’

+ A (z − h)
︸ ︷︷ ︸

‘slope’ or ‘gradient’ current

. (9.10)

Second, to find A, note that (9.1)4 implies that the longitudinal velocity obeys
∫ h

0 udz = constant, which owing to

u = 0 at x = 0, x = � (9.11)

implies

∫ h

0
udz = 0. (9.12)

Equations (9.10) and (9.12) yield

A = −2

3
ρgh

∂ζ

∂x
. (9.13)

Therefore, from (9.6),

τzx = 1

3
ρg
∂ζ

∂x
(3z − 2h), (9.14)



9.2 Hydrodynamic Equations Applied to a Narrow Lake Under Steady Wind 325

and from (9.10)

u = g

6ν

∂ζ

∂x
(h − z)(h − 3z). (9.15)

The last two formulae show that the vertical shear stresses and the longitudinal
velocities have been found; however, they are expressed in terms of the set-up
∂ζ/∂x , which still must be determined. To find ∂ζ/∂x , the surface condition

τzx = −τs at z = 0 (9.16)

(note for a wind in the positive x-direction the surface shear stress is negative in the
chosen coordinate system) is inserted in (9.14) to give

τs = 2

3
ρgh

∂ζ

∂x
→ ∂ζ

∂x
= 3τs

2ρgh
. (9.17)

Substituting this result into (9.14) and (9.15) generates the further results

τzx = − τs

2h
(2h − 3z), u = τs

4ρνh
(h − z)(h − 3z). (9.18)

Next, the vertical velocity component is found from the continuity equation by inte-
gration; this yields

w = −
∫ z

h

∂u

∂x
dz

(+ w(z = h) = 0
)

, (9.19)

where the term in parentheses expresses the no-flux condition through the bottom
boundary. Inserting (9.18)2 into (9.19) allows evaluation of the integral. The result is

w = − τ ′s
4ρνh

z(z − h)2, τ ′s :=
dτs

dx
. (9.20)

With the velocity components u and w determined, the streamlines of the fluid par-
ticles can be computed by integrating the equation

dz

dx
= w

u
= −τ

′
s

τs

z(h − z)

h − 3z
, (9.21)

from which we deduce

−
∫

3z − h

z(z − h)
dz =

∫
τ ′s
τs

dx,
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whence

− ln
(

z(z − h)2
)

= ln
τs

C
,

and therefore

z(z − h)2τs = C. (9.22)

The choice of the value for the constant of integration, C , parameterizes the
streamlines.

Notice that the above solution, expressed by (9.18)1,2, (9.20) and (9.22), satis-
fies the requirement that the vertically integrated flow at any cross-section between
x = 0 and x = � vanishes; but it still does not automatically satisfy the boundary
conditions (9.11) locally for all depths. To satisfy completely the no-flow conditions
at each end, we need to define τs such that

τs = 0 at x = 0 and x = �. (9.23)

Practically, these conditions are no severe limitation of the wind stress τs since,
except for (9.23), the distribution of τs along the length of the basin is still arbitrary.
Finally, integrating (9.17)2 and satisfying the volume-preserving condition

∫ �

0
ζdx = 0

yields the elevation of the water surface in the form

ζ = 3

2ρgh

{∫ x

0
τs(x

′)dx ′ − 1

�

∫ �

0
dx

∫ x

0
τs(x

′) dx ′
}

= 3

2ρgh

{∫ x

0
τs(x

′)dx ′ − 1

�

∫ �

0
(�− x)τs(x) dx

}

, (9.24)

where the expression in the second line has been obtained by employing integration
by parts in the double integral. When τs is uniformly distributed over x , then τs(x) =
constant = τ0, and (9.24) reduces to

ζ = 3τ0

4ρgh
(2x − �). (9.25)

Summarizing, the non-dimensional forms of the stress, current, streamline and
elevation formulae take the forms
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τ̂ := τzx

(−τs)
= 1− 3

2
z,

û := u
(

hτs

4ρν

) = (1− z)(1− 3z),

ŵ := w
(

h2τ ′s
4ρν

) = −z(1− z)2, (9.26)

z(1− z)2 = Ĉ := C

τsh2
,

ζ̂ := ζ

h
= 3(τs)max

2ρgh

(
�

h

){
∫ x

0

τs

(τs)max
(x′)dx′ −

∫ 1

0
(1− x′) τs

(τs)max
dx′

}

,

in which x := x/� and z := z/h are the dimensionless length and depth coordinates
τ̂ , û, ŵ, and the streamlines are plotted in Fig. 9.3a, b as solid lines. Note, the wind-
driven flow near the surface and the counter-current at greater depths are formed
by two competing effects, which are best set in evidence by the formulae (9.10)
and (9.13). The first term on the right-hand side of (9.10) may be called the ‘set-up
current’ and is negative, i.e. against the wind. The second term is positive (note, A
is negative for positive set-up) and generally denoted ‘slope’, ‘gradient’ or ‘wind
drift’ current and varies linearly with depth.

The vertical shear stress is linearly distributed with depth and assumes at the
bottom half the value of the wind stress, but is oppositely directed. Furthermore, the
longitudinal return current assumes its maximum value (1/3)usurface = (1/3)usc at
(2/3)h, and the maximum vertical velocity is the 4/27 part of the scale velocity
wsc = (h2τ ′s/(4ρν) and is reached at the depth of (1/3)h. Moreover, û and ŵ are
independent of the length coordinate since the scale velocities

usc = hτs

4ρν
, wsc = h2τ ′s

4ρν
(9.27)

contain this dependence via τs and τ ′s, respectively. The formulae indicate that the
absolute values of u and w are determined by usc and wsc. This implies that for
prescribed τs, ρ and ν, the velocity components u and w grow linearly and quadrati-
cally with h. This is certainly unrealistic. So, the (turbulent) viscosity ν should vary
with depth and grow at least in proportion to h2 for u and w, to remain bounded as
h becomes large. This is consistent with the fact that the magnitudes of the coef-
ficients of eddy viscosity usually increase with the size of the region considered
([46], p. 104). The general character of the streamlines in the vertical xz-plane is
sketched in panel (b) of Fig. 9.3. They form closed loops, symmetric here relative to
the position x = 1/2 and are sketched in the figure for a symmetric wind stress dis-
tribution, which reaches a maximum midway between the basin ends. ‘Alternating’
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Fig. 9.3 (a) Vertical structure of the vertical shear τ̂xz and current components û and ŵ for no
slip at the bottom (δ = 0, solid lines) and perfect sliding at the bottom (δ = 1/2, dashed lines)
according to (9.26). (b) Streamlines as obtained with δ = 0 and the corresponding wind stress
distribution. The basin is narrow perpendicular to the plane of the figure and CORIOLIS forces are
ignored in the construction of the solution, adapted from HEAPS [23]

circulation cells which are counter-rotated would form if the wind shear stress τs(x)
would alter its sign in x ∈ [0, �].

This derivation follows HEAPS [23]. An alternative derivation has also been car-
ried out by BYE [4], using, however, a formulation for ν based on the PRANDTL

mixing length.

9.2.2 Influence of Bottom Slip on the Wind-Induced Circulation

The preceding solution for circulation in a homogeneous narrow lake assumes zero
slip at the bottom, see (9.8). Alternatively, a slip condition may be used in which the
shear stress at the bottom is expressed as

τxz = kρu at z = h, (9.28)
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in which k is the friction (drag) coefficient. For k = 0 the basal shear stress vanishes
and ideal slip conditions prevail; for k → ∞ the basal shear stress remains only
bounded if u → 0 at the base, which corresponds to the no-slip condition treated in
the last subsection.

The sliding friction law (9.28) is subject to criticism as it is well known that
measurements suggest k = c|u|, where c is now a dimensionless parameter. How-
ever, c is neither a constant under realistic conditions of turbulence. So, we take
(9.28) with constant k with dimension m s−1 as a first approximation for which an
analytical solution can be constructed. Improvements of the parameterisation of the
sliding law will be dealt with later on in this chapter.

Problem 9.2 Repeat the analysis of Sect. 9.2.1 if basal friction is prescribed by
(9.28) and show that formulae (9.26) for the dimensionless shear stress τ̂ , velocity
components û, ŵ and surface set-up ζ̂ can be written as

τ̂ = (1+ δ)− 3
2 z

(1+ δ) ,

û = (1− z)(1− 3z+ 4δ)− 2δ

(1+ δ) ,

(9.29)
ŵ = − z(1− z)(1− z+ 2δ)

(1+ δ) ,

ζ̂ = 3(τs)max

2ρgh(1+ δ)
(
�

h

){
∫ x

0

τs

(τs)max
(x′)dx′ −

∫ 1

0
(1− x′) τs

(τs)max
dx′

}

,

where

δ = 1

β + 2
, β = kh

ν
(9.30)

are non-dimensional parameters. �

The results (9.29) reduce for δ = 0 (or β →∞) to the earlier results and embrace
for

0 ≤ k <∞, 0 ≤ β <∞, 1
2 ≥ δ > 0 (9.31)

all basal conditions from no slip (β → ∞, δ = 0) to perfect sliding (β = 0,
δ = 1/2). The vertical profiles of the shear stresses and velocity components for
perfect sliding at the bottom are displayed in Fig. 9.3a as dashed lines. We observe

• For perfect slip the shear stresses τ̂ do not change sign with depth and vanish
at the bottom. For viscous sliding the profiles lie between the solid and dashed
lines.
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• The horizontal current û increases at the free surface by 1/3 to the value 4/3
and reaches the value −2/3 at the bottom with slope zero (vertical tangent). For
viscous sliding the position of the relative maximum of the return current lies at
z = (2/3)(1 + δ) (for δ = 1/2 this yields z = 1) and has a value between 0 and
−2/3.

• The absolute value of the vertical current between the surface and the bottom
becomes larger but the profile remains the same. In this case the maximum of the
absolute value of ŵ occurs at

zmax = 2

3
(1+ δ)±

√

4

9
(1+ δ)2 − 1

3
(1+ 2δ). (9.32)

For no-bottom slip, δ = 0, these maxima occur at zmax = 1/3 and zmax =
1, implying that ŵ|z=1 = 0 and dŵ/dz|z=1 = 0, while ŵ|z=1/3 = 4/27. On
the other hand, for perfect basal sliding ŵ|z=1 has a non-zero upward vertical
gradient (the second relative maximum is outside the fluid region zmax > 1). The
absolute maximum of ŵ inside the rectangular basin arises at zmax = 1 −√1/3
and takes the value ŵ|z=1−√1/3 = ŵ|z=0.426 = 4

√
3/27. This value is a factor√

3 larger than when the no-slip condition is applied at the bottom, and it lies
below the relative maximum of ŵ in the no-slip case.

From the above description and Fig. 9.3a it is quite easy to qualitatively guess the
distributions of τ̂ , û and ŵ for values of δ in the interior of the interval δ ∈ (0, 1/2).

9.2.3 Wind-Induced Steady Circulation in a Narrow Lake Stratified
in Two Layers

As one would expect, the circulation pattern induced in a layered fluid is quite dif-
ferent from that of a homogeneous fluid. Consider a narrow rectangular basin with
constant ρ1, h1 (epilimnion) and constant ρ2 > ρ1, h2 (hypolimnion) and assume
the interface between the two layers to be impermeable. We interpret this interface
as the thermocline and suppose it to be sharp, i.e. without thickness. (Remarks con-
cerning a diffuse interface will be given later in the book.) Notation and sketches of
the geometry in a configuration at rest and in motion are given in Fig. 9.4.

Problem 9.3 When considerations are restricted to plane flow in the xz-plane,
CORIOLIS forces and convective accelerations are neglected, and only vertical
shear stresses of the viscous stresses are retained, show that the balance laws of
mass and momentum in the two layers can be written as

−∂p(i)

∂x
+ ∂τ

(i)
zx

∂z
= 0,

∂u(i)

∂x
+ ∂w(i)

∂z
= 0,

(9.33)
∂p(i)

∂z
= ρ(i)g, (i = 1, 2).
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Fig. 9.4 Two-layered basin.
(a) Definition of the
geometry of the two-layer
basin, coordinates and
notation. (b) The two layers
are shown with deformed
surfaces (solid) and notation
of the wind shear stress, τs,
displacements ζ (1), ζ (2) and
velocities u(i), w(i)(i = 1, 2)
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h
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Moreover, volume preserving under steady conditions implies for each layer and all
x ∈ [0, �]

∫ h1

0
u(1)dz = 0,

∫ h

h1

u(2)dz = 0. (9.34)

Equations (9.33)1,3 give the horizontal and vertical momentum balance laws when
acceleration terms are ignored, and (9.33)2 expresses local volume preserving in
both layers. �

If we also assume constant vertical (eddy) viscosities ν(i)(i = 1, 2) in the upper
and lower layers, respectively, we have for linear (NEWTONian) behaviour

τ (i)zx = ρ(i)ν(i)
∂u(i)

∂z
, (i = 1, 2), (9.35)

in which contributions ρ(i)ν(i)[∂w(i)/∂x] have been ignored as in (9.2). Equa-
tions (9.33), (9.34) and (9.35) must be complemented by boundary and transition
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conditions at the free surface, the interface and the bottom surface. Because we are
restricting considerations to a linear theory, these are formulated at the undeformed
surfaces and read

(i) At the free surface

p(1) = constant (= pa), at z = −ζ1,

τ
(1)
zx = −τs(x), at z = 0,

}

(9.36)

expressing constant atmospheric pressure and prescribed steady wind shear
stress, a function of x .

(ii) At the interface between the upper and the lower layers we have

p(1) = p(2), at z = h1 − ζ2,

τ
(1)
zx = −τ (2)zx , at z = h1,

}

(9.37)

and this requests continuity of pressure and vertical shear stresses.4 We also
assume the two layers not to intermix at the interface but to slide on one another
according to the sliding law

τ (1)zx = k(1)ρ(1)
(

u(2) − u(1)
)

, at z = h1, (9.38)

where k(1) is a constant drag coefficient. For free slip between the fluids at the
interface we have k(1) = 0, implying vanishing shear stress τ (1)zx for no relative
slip (k(1) →∞), implying u(1) = u(2).

(iii) At the basal surface we impose a viscous linear sliding condition

τ (2)zx = k(2)ρ(2)u(2), (9.39)

where k(2) is a constant, and k(2) = 0 and k(2) →∞ correspond to perfect slip
and no slip, respectively.

The parameterisations (9.38) and (9.39) need further explanations. They are lim-
iting approximations for a diffuse metalimnion and a bottom boundary layer as
sketched in Fig. 9.5. Within the metalimnion of thickness hm the vertical shear stress
is approximately given by

4 Notice that the continuity requirement in (9.36) and (9.37) for pressure is requested to be satis-
fied at the actual interface position, while that for the shear stresses is applied at the undeformed
interface. Scrutiny of the solution of the formulated problem with both continuity statements (9.36)
and (9.37) applied at the deformed surface shows that non-linearities are avoided when the shear
stress continuity is requested to be fulfilled at the undeformed interface.
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Fig. 9.5 Constant depth
water mass with epilimnion,
metalimnion, hypolimnion
and bottom boundary layer,
all of constant depth. In the
layers the densities ρ and
kinematic viscosities ν and
the horizontal velocities are
constant or linearly
distributed as sketched. The
layer depths h(1), hm , h(2)

and hbl are assumed constant

Density  profile

bottom  surface

boundary  layer

hypolimnion

metalimnion

epilimnion

velocity  profile

h(1)

hm

h(2)

hb1

u(1)
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ρ(1),ν(1)

ρ , ν

u(2)

Free  surface

τzx = ρν
∂u

∂z
= ρν

u(2) − u(1)

hm
(9.40)

for a linear velocity profile. At the edge of the metalimnion this yields

τ (1)zx = k(1)ρ(1)
(

u(2) − u(1)
)

, k(1) := ν(1)

hm
, at z = h1. (9.41)

Direct measurements suggest that ν(1) grows with increasing local velocity gradient
∂u/∂z. For a metalimnion whose thickness becomes very small, one may estimate
that ν(1) is of the order hm . So, k(1) may be interpreted as the boundary limit

k(1) = lim
hm→0

ν(1)

hm
. (9.42)

Similarly, in the bottom boundary layer

τzx = ρν
∂u

∂z
� ρν

u(2)

hbl
, (9.43)

where in the far right, a linear velocity profile has been assumed. At the upper edge
of the bottom boundary layer (Fig. 9.5), we have

τ (2)zx = ρ(2)k(2)u(2), k(2) := ν(2)

hbl
, (9.44)
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and we may again identify the drag coefficient with the limit

k(2) = lim
hbl→0

ν(2)

hbl
, (9.45)

of a boundary layer with vanishingly small thickness. Of course, this interpretation
of the sliding law is rough, but it has a physical basis for its justification.

If we integrate the pressure equations (9.33)3 in both layers subject to the bound-
ary conditions (9.36)1 and (9.37)1 at the free and interface surfaces, we find

p(1) = pa + ρ(1)g
(

z + ζ (1)
)

,
(9.46)

p(2) = pa + ρ(1)g
(

h(1) + ζ (1) − ζ (2)
)

+ ρ(2)g
(

z − h(1) + ζ (2)
)

,

and consequently from (9.33)1 in both layers

∂τ
(1)
zx

∂z
= ρ(1)g

∂ζ (1)

∂x
,

(9.47)
∂τ

(2)
zx

∂z
= ρ(1)g

∂ζ (1)

∂x
+
(

ρ(2) − ρ(1)
)

g
∂ζ (2)

∂x
.

Integrating these two equations with respect to z in the respective layers, using
(9.35), enforcing the volume-preserving conditions (9.34), ensuring the shear stress
condition (9.37)2 and enforcing the slip condition (9.39) at the bottom surface,
yields the following expressions:

• for the shear stresses in the layers

τ (1)zx = −
{

gρ(1)h(1)
(

1− z(1)
)

G(1) + 2

3

(

1+ δ(2)
)

gρ(1)h(2)G(2)
}

,

(9.48)

τ (2)zx = −gρ(1)h(2)
[

2

3

(

1+ δ(2)
)

− z(2)
]

G(2),

• for the horizontal velocities in the layers

u(1) = g
(

h(1)
)2

6ν(1)

[

3
(

z(1)
)2 − 6z(1) + 2

]

G(1)

+gh(1)h(2)

3ν(1)

(

1+ δ(2)
) (

1− 2z(1)
)

G(2), (9.49)

u(2) = g
(

h(2)
)2

6ν(2)

(

ρ(1)

ρ(2)

)[

3
(

z(2)
)2 − 4

(

1+ δ(2)
)

z(2) + 1+ 2δ(2)
]

G(2),
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in which

G(1) = ∂ζ (1)

∂x
, G(2) = ∂ζ (1)

∂x
+ ρ(2) − ρ(1)

ρ(1)

∂ζ (2)

∂x
,

δ(2) = 1

β(2) + 2
, β(2) = k(2)h(2)

ν(2)
, (9.50)

z(1) = z

h(1)
, z(2) = z − h(1)

h(2)
.

The variables z(1) and z(2) are the non-dimensional variables in the upper and lower
layers, respectively, which both have the ranges z(i) ∈ [0, 1] (i = 1, 2), respectively.

In the expressions (9.48), (9.49) and (9.50) all boundary and transition conditions
are incorporated except the wind shear stress condition (9.36)2 and the slip condition
(9.38); these are now used to determine G(i) and ∂ζ (i)/∂x (i = 1, 2). The results
are as follows:

G(1) = τs

gρ(1)h(1)

(

1+ 2

3

(

1+ δ(2)
)

λ

)

, G(2) = − λτs

gρ(1)h(2)
, (9.51)

where

λ = β(1)
{

4

3

(

1+ δ(2)
) (

3+ β(1)
)

+
(

1+ 2δ(2)
)

αβ(1)
}−1

,

(9.52)

α = ρ(1)ν(1)h(2)

ρ(2)ν(2)h(1)
, β(1) = k(1)h(1)

ν(2)
. (9.53)

Combination of (9.50) and (9.51) yields the following expressions for the surface
and interface displacement gradients

∂ζ (1)

∂x
= τs

gρ(1)h(1)

[

1+ 2

3

(

1+ δ(2)
)

λ

]

,

(9.54)
∂ζ (2)

∂x
= − τs

gρ(1)h(2)

[

λ− h(2)

h(1)

(

1+ 2

3

(

1+ δ(2)
)

λ

)]

ρ(1)

ρ(2) − ρ(1) .

These show that the surface slope grows with the wind, whereas the interface slope is
inclined against the wind, see Fig. 9.4b. Moreover, when λ = 0 (β(1) = 0, k(1) = 0),
i.e. when the interface slip is ideal with vanishing shear, one has

∣
∣
∣
∣
∣

∂ζ (2)/∂x

∂ζ (1)/∂x

∣
∣
∣
∣
∣
= ρ(1)

ρ(2) − ρ(1) . (9.55)

By integration, this ratio also carries over to |ζ (2)/ζ (1)|; so, with (ρ(2)−ρ(1))/ρ(2) =
O(10−3)−O(10−2) we have
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∣
∣
∣
∣
∣

ζ (2)

ζ (1)

∣
∣
∣
∣
∣
= O(103)−O(102) (9.56)

for typical summer stratification. When the surface elevation is in the millimetres,
the interface (thermocline) displacement may reach metres and the thermocline may
cut the free surface at the downwind end of the lake. Such a case is, however, not
covered by this linear theory.

If the expressions G(1) and G(2) as obtained in (9.51) are substituted into (9.48)
and (9.49), the vertical structures of the vertical shear stresses and horizontal cur-
rents, in non-dimensional form, are obtained as follows:

τ̂ (1)zx = τ
(1)
zx

(−τs)
= 1− z(1) − 2

3
λ
(

1+ δ(2)
)

z(1),

(9.57)

τ̂ (2)zx = τ
(2)
zx

(−τs)
= λ

(

z(2) − 2

3

(

1+ δ(2)
))

,

û(1) = u(1)
(

h(1)τs

6ρ(1)ν(1)

) = 3
(

z(1)
)2 − 6z(1) + 2+ 2

3
λ
(

1+ δ(2)
)(

3
(

z(1)
)2 − 1

)

,

(9.58)

û(2) = u(2)
(

h(2)τs

6ρ(2)ν(2)

) = −λ
(

3
(

z(2)
)2 − 4

(

1+ δ(2)
)

z(2) + 1+ 2δ(2)
)

.

In these expressions, the only x-dependence is exhibited in τs(x). The dimensional
counterparts of (9.58) can now be used in the continuity equation (9.33)2 to obtain
the vertical currents by integration with respect to z. In this process the interfacial
and basal boundary conditions

w1 = w2 at z = h1,

w2 = 0 at z = h = h1 + h2
(9.59)

must be used. The result of this integration can, in non-dimensional form, be written
as

ŵ(1) = w(1)

((

h(1)
)2
τ ′s

6ρ(1)ν(1)

) = z(1)
(

1− z(1)
)(

z(1) − 2+ 2

3
λ
(

1+ δ(2)
) (

z(1) + 1
))

,

(9.60)

ŵ(2) = w(2)

((

h(2)
)2
τ ′s

6ρ(2)ν(2)

) = λz(2)
((

z(2)
)2 − 2

(

1+ δ(2)
)

z(2) + 1+ 2δ(2)
)

.
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The formulae (9.54), (9.57), (9.58) and (9.60) indicate that for a frictionless interface
(k(1) = 0 → β(1) = 0 → λ = 0) one has τ (2)zx = 0, u(2) = 0, w(2) = 0, indicating
no motion in the lower layer, but non-vanishing interface slope with larger absolute
value than for λ = 0. It follows that λ is an important non-dimensional parameter,
which controls the degree to which horizontal momentum is transmitted across the
interface from the upper to the lower layer.

Having determined the velocity components in the two layers, expressed in (9.58)
and (9.60), the streamlines may be determined by solving the ordinary differential
equations

dz(1)

dx
= 1

h(1)
w(1)

u(1)
= τ ′s(x)
τs(x)

(

N (1)
(

z(1)
))−1

,

dz(2)

dx
= 1

h(2)
w(2)

u(2)
= τ ′s(x)
τs(x)

(

N (2)
(

z(2)
))−1

,

(9.61)

N (1)
(

z(1)
)

=
3
(

z(1)
)2 − 6z(1) + 2+ 2

3λ
(

1+ δ(2))
(

3
(

z(1)
)2 − 1

)

z(1)
(

1− z(1)
) [

z(1) − 2+ 2
3λ

(

1+ δ(2)) (z(1) + 1
)] ,

N (2)
(

z(2)
)

=
−λ

[

3
(

z(2)
)2 − 4

(

1+ δ(2)) z(2) + 1+ 2δ(2)
]

λz(2)
[(

z(2)
)2 − 2

(

1+ δ(2)) z(2) + 1+ 2δ(2)
] ,

in which τ ′s(x) = dτs/dx . These differential equations are separable and possess the
solutions

τs(x)exp

{

−
∫ z(1)

0
N (1)(ξ)dξ

}

= C1,

(9.62)

τs(x)exp

{

−
∫ z(2)

0
N (2)(ξ)dξ

}

= C2,

where C1 and C2 are constants of integration.
Figure 9.6 displays the structure of the flow for the case of free slip5 at the bottom

(k(2) = β(2) = 0, δ(2) = 1/2). Panels (a) and (b) are schematic but panels (c) and
(d) are plotted for λ = 0.3 (this value is possible since 0 < λ < 3/(4(1 + δ(2)))
as β and α are varied from 0 to ∞). Figure 9.6a shows for a symmetric wind stress
the induced circulation cells in the epi- and hypolimnia. The free surface current
goes with the wind stress and leads to a circulation with return current above the
interface. This counter-current induces a current in the same direction just below the
interface, which forms a loop in the hypolimnion with return flow at the bottom that
goes with the wind. The two circulation loops are traversed with opposite rotations.

5 By free slip or ideal slip we mean frictionless slip for which τb ≡ 0.
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Fig. 9.6 Wind-induced steady flow in a narrow rectangular basin on a non-rotating frame:
(a) streamlines in the two layers for a steady symmetric longitudinal wind τs. The two gyres
rotate in opposite directions; (b) free and interface surface gradients (schematic); (c) upper layer
dimensionless vertical shear stress τ̂ (1)zx and velocities û(1), ŵ(1) plotted against normalised depth
z/h(1) =: z(1) ∈ [0, 1]. (d) Same as (c), but for the lower layer and plotted against normalised
depth (z − h(1))/h(2) =: z(2) ∈ [0, 1], adapted from HEAPS [23]

Note, moreover, that the current in the hypolimnion does not exist, if the interface is
frictionless (k(1) = 0, see (9.41)). Figure 9.6b sketches the positions of the free and
interface surface displacements. The slope of the free surface is with the wind, with
surface high and low at the downwind and upwind ends of the basin, respectively.
The corresponding pressure increase due to the weight of the displaced water is
counter-balanced by a downstroke of the interface and corresponding epilimnion
down-welling of the water at the downwind end of the basin. A pressure balance of
the displaced water masses reproduces (9.55) as the slope ratio of the two surfaces.

Panels (c) and (d) of Fig. 9.6 show the vertical structure of the shear stress and
current components for free slip at the bottom. The shear stresses are linearly dis-
tributed over depth with opposite signs in the two layers and (for free slip at the
bottom) reaching the value zero at the bottom. The vertical structure of the hori-
zontal current is parabolic of second order with sign changes within the layers in
accordance with the loop structure in panel (a). The vertical current is also poly-
nomial of third order and with no sign change within each layer, but in opposite
directions in the two layers, also in accordance with the loops of panel (a).

The preceding analysis transpires that the transfer of motion from the epilimnion
to the hypolimnion depends chiefly upon the frictional behaviour of the shear layer
spanning the thermocline. In the mathematical formulae this is expressed by the
sliding law (9.38) in which the interface shear stress is proportional to the difference
of the velocities in the hypo- and epilimnion close to the interface with constant
k(1). A simple linear model made clear that an order of magnitude for k(1) is given
by k(1) = νm/hm , where νm is the kinematic viscosity in the metalimnion and hm a
measure for its thickness.
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Shear instability in the thermocline, which must influence the values of νm and
hm (and hence k(1)), has, e.g. been discussed by MORTIMER (1961) [38], (1974)
[39]. It is known that turbulence and therefore active mixing will either increase or
subside at the thermocline level, and the dimensionless characteristic number, which
is a measure for this transition is the RICHARDSON number, defined by

Ri =
g
∂ρ

∂z

ρ

(
∂u

∂z

)2
. (9.63)

MILES (1967) [37] has shown for a linearly stratified fluid layer that a parallel sim-
ple shear flow with velocity u(z) is stable as long as Ri > 1/4, but will become
unstable as soon as Ri < 1/4. Even though the flow in a lake is locally only approxi-
mately simple shear flow, experience has shown that Ri = 1/4 marks approximately
the transition to instability. For the present model we may assume (see (9.42))

k(1) = k(1)(Ri ), where Ri = ghm
(

ρ(2) − ρ(1))

ρ(1)
(

u(2) − u(1)
)2
. (9.64)

An acceptable parameterisation for k(1) may be

k(1)(Ri ) =
(

k(1)max − k(1)min

)

f
(

R
scale
i

)

+ k(1)min,

R
scale
i =

Ri −
(

1
4 − ε

)

(
1
4 + ε

)

− Ri

,

(9.65)

f =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, 0 ≤ Ri ≤ 1
4 − ε,

exp

⎧

⎨

⎩
−
(

R
scale
i

σ scale

)2
⎫

⎬

⎭
, 1

4 − ε < Ri ≤ 1
4 + ε,

0, Ri >
1
4 + ε.

This parameterisation assigns to k(1) the value k(1)min when the RICHARDSON num-

ber Ri exceeds the value 0.25 by the amount ε; the value k(1)max is assumed, when
the RICHARDSON number lies between zero and a value smaller than 0.25 by the
amount ε and it connects these two values with a Gaussian curve having variance
σ scale. The graph of k(1) according to (9.65) is displayed in Fig. 9.7; it has four
parameters k(1)max, k(1)min, ε and σ scale. The first two are relatively easy to determine:

ε is a measure for the bandwidth of the transition from k(1)min to k(1)max and σ scale is a
measure of the skewness of the sigmoidal curve segment.

At Ri = 1/4, R
scale
i = 1; if we call that value of the function (9.65) fcrit, then

(9.65) implies
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Fig. 9.7 Drag coefficient k(1)

as a function of the
RICHARDSON number
according to the
parameterisation (9.65)
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1
4

ε )(

min
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(1)k

Ri

Ri
scale

Ri

Ri

fcrit = exp

(
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(9.66)
k(1)crit = k(1)max + k(1)min(1− fcrit),

a relation, which may help in the determination of the parameters.
MUNK and ANDERSON [40] gave an expression for the dependence of νm on Ri .

The assumption employed in the above analysis, namely that the interface is imper-
meable, is unrealistic when mixing occurs, since water is then exchanged between
the two layers. Such an exchange will increase hm , and there will be a return to
stable shear flows when Ri subsequently exceeds the value one-fourth, for details
see [6].

9.3 Ekman Theory and Some of Its Extensions

In the last section the simplest flow of a homogeneous fluid in a narrow rectangular
basin of negligible width and of constant depth due to a steady wind shear stress
applied at its surface was analysed when the effect of the rotation of the Earth was
ignored. Consideration is now given to the vertical structure of wind-induced motion
in infinitely large lakes or oceans, taking the rotation of the Earth into account.
The water is assumed to be homogeneous. EKMAN’s [12] basic solution for wind-
induced currents – called drift currents – in the open sea is presented. Subsequently,
the generalisation of that theory to account for steady and time-dependent motions
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in real basins is described. This generalisation basically concerns alterations of the
theory when the vertical eddy viscosity (assumed constant in EKMAN’s theory)
varies with depth, when finite depth and finite extensions of the basin are considered.

9.3.1 Ekman Spiral

9.3.1.1 Spiral Below Water Surface

Consider the currents produced in an ocean or lake of infinite extent, which are
generated under the following restricting assumptions:

• the water is homogeneous, ρ = constant;
• the horizontal pressure gradient vanishes

∇H p = 0,
∂p

∂x
= ∂p

∂y
= 0;

• the vertical velocity is zero, w = 0;
• the horizontal components of the extra stress tensor vanish

σ E
xx = σ E

yy = τ E
xy = 0;

• the vertical momentum balance reduces to the hydrostatic pressure equation;
• the vertical viscosity coefficient is constant, ν = constant;
• processes are steady: ∂(·)/∂t = 0.

With these assumptions, the horizontal momentum equations reduce to

1

ρ

∂τzx

∂z
= − f v,

1

ρ

∂τzy

∂z
= f u, (9.67)

and the closure relations for the shear stresses take the forms

τzx = ρν
∂u

∂z
, τzy = ρν

∂v

∂z
. (9.68)

Substituting these relations into (9.67) and observing that ρ and ν are constant yields

∂2u

∂z2
= − f

ν
v,

∂2v

∂z2
= f

ν
u. (9.69)

These two second-order differential equations of the real-valued variables u and v
can be written as a single second-order equation of the complex variable

w = u + iv, (9.70)
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where i = √−1. Indeed, adding i×(9.69)2 to (9.69)1 yields

d2w
dz2

= i f

ν
w = 2if

2ν
w = (i+ 1)2 f

2ν
w, (9.71)

or

d2w
dz2

= (i+ 1)2π2

D2
w, (9.72)

where

D := π

√

2ν

f
(9.73)

has the dimension of a length and is called the Ekman depth. Solutions of (9.72) are
only functions of z and have the form

w(z) = A exp

{
(1+ i)π

D
z

}

+ B exp

{

− (1+ i)π

D
z

}

(9.74)

with two constants of integration, A and B.

Infinite Depth

These constants follow from the boundary conditions

τzx + iτzy = ρν
∂w
∂z
= −iτs at z = 0,

(9.75)
w = 0 at z = h.

The first states that the constant wind shear stress τs acts in the y-direction and is
uniformly distributed over the entire free surface, the latter states that the bottom
surface is impenetrable. EKMAN looked at an infinitely deep ocean, h → ∞. For
this case, (9.75)2 implies A = 0, and (9.75)1 yields

w(z) = (1+ i)
Dτs

2πνρ
exp

{

− (1+ i)π

D
z

}

, (9.76)

which may, alternatively, be written as

w(z) =
√

2πτs

ρ f D
exp

{

−π z

D

}

exp
{

i
(π

4
− π z

D

)}

. (9.77)
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To derive this, we have used the identity (1 + i) = √
2exp (iπ/4). At the surface

z = 0 this yields

w(z = 0) = ws =
√

2πτs

ρ f D
exp

{
iπ

4

}

, (9.78)

or using EULER’s formula eiϕ = (cosϕ + i sinϕ),

ws = (u + iv) = Ws (cosπ/4+ i sinπ/4) ,
(9.79)

Ws =
√

2πτs

ρ f D
. (9.80)

Here, Ws is the strength of the surface current in terms of the wind shear stress. Since
the wind has been assumed to blow in the positive y-direction, the current at the free
surface is at 45◦ to the right of the wind (to the left on the Southern Hemisphere).
Moreover, it follows from (9.77) that the horizontal current decreases exponentially
with depth (as exp (−π z/D)), and its angle of deflection to the right of the wind is
given by π/2 − (π/4 − π z/D) = π/4 + π z/D. This angle increases with depth.
So, with increasing depth the current at a fixed xy-position rotates cum sole around
the vertical line at that position. Its modulus (absolute value) is given by

|w| = Wsexp
(

−π z

D

)

, (9.81)

and its angle to the right of the wind is given by

θ(z) =
(

π
z

D
+ π

4

)

. (9.82)

This current system is called the EKMAN spiral after EKMAN [12] who first
described it, see Fig. 9.1. Figure 9.8 displays in panel (a) this current system. At
the EKMAN depth, z = D, the modulus of the current relative to the current at the
surface takes the value

|w|z=D

Ws
= e−π ∼ 1

23
= 0.043, (9.83)

and its direction is opposite to the surface current. At the depth of twice the EKMAN

depth, z = 2D, the direction of the current is the same as that on the water surface,
and its modulus is

|w|z=2D

Ws
= e−2π ∼ 1

535
= 0.0019. (9.84)

If the velocities at increasing depth are projected onto the xy-plane (panel (b)
of Fig. 9.8) the tips of the current vectors trace a logarithmic spiral, which coils



344 9 Vertical Structure of Wind-Induced Currents in Homogeneous and Stratified Waters

W
IN

D

45°

1

2

–0.1 0 0.2 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

1.2

(c)

x

y

Q

τs

(b)

ws

(a)

0.4

Fig. 9.8 EKMAN spiral (a) plotted in perspective view, (b) shown in the projection into the hodo-
graph plane, tracing a logarithmic spiral, (c) plotted as components in the direction of the surface
current, (1), and perpendicular to it, (2). Shown as double arrow in (b) is also the vertically inte-
grated total volume (mass) flux Q, which is 90◦ to the right of the wind shear stress, constructed
from figures by Laska [35], c© Laboratory of Hydraulics, Hydrology and Glaciology at ETH Zurich

indefinitely around the origin of the xy-coordinate system. If the components of the
horizontal current in the direction of the surface current and perpendicular to it are
plotted against z, then the two curves in Fig. 9.8c are obtained.

The vertically integrated volume flux may be written as

Q = Qx + iQy =
∫ 0

−∞
wdz

=
√

2πτs

ρ f D

∫ ∞

0
exp

{

− π
D

z(1+ i)+ i
π

4

}

dz

= τs

ρ f
. (9.85)

This is also called the total transport; it is directed perpendicular to the wind stress
and to the right of it.
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At this point it should be asked what can be extracted from the EKMAN solution
from an applied point of view. Can the current rotation with depth and the decay
of the current modulus with depth be observed in measurements? Attempts towards
an answer of this question have been undertaken by many of the early physical
oceanographers, and below we follow the description of HEAPS [23] who has briefly
summarised it. HEAPS writes

Expressing the wind stress in terms of the square of the wind speed

τs = ρACDW 2, (9.86)

where W denotes the wind speed, ρA the density of air and CD a drag coefficient, it
follows from (9.78) that

|ws| =
√

2πρACD

ρ

W 2

f D
= πρACD√

2$ρ

W 2

D sinφ
, (9.87)

where$ is the angular frequency of the rotation of the Earth and φ the geographical
latitude. Therefore, the ratio of the surface current to the wind speed, the so-called
wind factor (α′, say), is

α′ = |ws|
W

= πρACD√
2$ρ

W

D sinφ
. (9.88)

On the basis of observations in various seas and oceans prior to 1939, EKMAN

derived the empirical relation

α′ = 0.0127√
sinφ

. (9.89)

Comparing (9.88) and (9.89) yields

D = A0W√
sinφ

(

A0 = πρACD

0.0127×√2$ρ

)

. (9.90)

The value of A0 depends critically on the choice of the drag factor CD . Thus,
measuring W in m s−1 and D in m, it transpires that A0 = 7.6 from SVERDRUP,
JOHNSON and FLEMING [50], p. 494 and DEFANT [10], p. 422, whereas A0 = 4.3
from POND and PICKARD [44], p. 88. Knowing τs and D in terms of the wind speed
from (9.86) and (9.90), the vertical structure of the current may be determined from
(9.77). POND and PICKARD [44], p. 89 give the illuminating Table 9.1 of values,
based on (9.89) and (9.90).
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Table 9.1 EKMAN depth as function of wind speed and geographical latitude according to POND

and PICKARD [44]

φ = 10◦ 45◦ 80◦
α′ = 0.030 0.015 0.013

W = 10 m s−1 D = 100 50 45 m
W = 20 m s−1 D = 200 100 90 m

Combining (9.73) and (9.90) gives a formula for the eddy viscosity in the
EKMAN spiral in terms of the wind speed as follows:

ν = $A2
0

π2
W 2. (9.91)

According to DEFANT [10], pp. 422–423, this formula with W in m s−1 holds for
W > 6 m s−1 with ρ$A2

0/π
2 = 4.3, while ν is proportional to W 3 for W <

6 m s−1. It follows from (9.86) and (9.91) that ν is directly proportional to τs.
Observations of the angle of deflection of the surface current from the wind direc-

tion have shown considerable deviations from the classical 45◦ result. The EKMAN

spiral is not a clearly observed distribution of current. The reasons may have to do
with the highly idealised nature of the EKMAN theory outlined above, specifically
in its assumption of

(i) no land boundaries,
(ii) infinitely deep water,

(iii) eddy viscosity uniform through the vertical,
(iv) steady-state motion,
(v) homogeneous water.

This much for HEAPS’ text. In what follows we shall, step-by-step, relax the under-
lying assumptions of the EKMAN problem, loosely following the above itemisation.

Finite Depth

Let us start by assuming a layer of a homogeneous fluid of infinite extent and con-
stant finite depth h that is subjected to a steady uniform wind. In this case, the
steady complex-valued drift current can also be determined by (9.74), but it is now
advantageous to write the general solution in the form

w(z) = A sinh

{
(1+ i)π

D
(z − h)

}

+ B cosh

{
(1+ i)π

D
(z − h)

}

, (9.92)

which is simply another linear combination of the fundamental solution of (9.72).
A and B are constants of integration to be determined by the boundary conditions
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ρν
∂w
∂z
(0) = −iτs (prescribed shear in the y direction),

w(h) = 0 (no slip).
(9.93)

The second of these implies B = 0 and the first yields A such that

w(z) = (1+ i)
Dτs

2πρν

sinh {(1+ i)a(1− z)}
cosh {(1+ i)a} , (9.94)

where

a = πh

D
, z = z

h
. (9.95)

Vertical structures of the current from (9.94) are illustrated in Fig. 9.9 for various
values of h/D. The spiral for h/D = 1.25 is very close to the EKMAN spiral for
the infinitely deep ocean h/D → ∞. The graph shows the important influence of
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Fig. 9.9 Vertical structure of the wind-induced current for the EKMAN problem in a basin of finite
depth h for h/D = 0.1, 0.25, 0.5, 1.25 marked in steps of 0.1h from the surface down to the
bottom. The thin dashed line connects the velocities at the free surface for h/D ∈ [0.1, 1.25]. For
h/D > 0.5, the rotation of the current through the EKMAN layer is nearly 45◦; for h/D < 0.5 this
angle of deviation is smaller, for h/D < 0.1 practically 0◦, adapted from HEAPS [23]



348 9 Vertical Structure of Wind-Induced Currents in Homogeneous and Stratified Waters

bottom friction in a fluid layer whose depth is smaller than the EKMAN depth D. As
h decreases, the angle of deflection of the current from the wind direction decreases
and the effect of the Earth’s rotation becomes smaller. For very small values of a,
TAYLOR series expansions transform (9.94) into

w(z) = ihτs

νρ
(1− z)

(
πh

D
� 1

)

. (9.96)

This says that the currents are in the direction of the wind independent of the rotation
of the Earth and they decay linearly with depth.

The thin dashed line in Fig. 9.9 connects the surface points of the spirals for
particular values of h/D. As the curve is traced, the angle between the Oy-axis and
the straight line connecting the origin O with one of its points defines the angle
between the direction of the wind and the surface current for that value of h/D.
This deflection angle can be shown to be given by

α = π

4
− arctan

{
sin(2a)

sinh(2a)

}

, (9.97)

and is given in Table 9.2 for a selection of h/D values. This table shows that for
h/D > 0.5 the deflection angle is practically 45◦; it only takes smaller values for
h/D < 0.5.

Finally, the total volume transport is given by

Q =
∫ h

0
w(z)dz = (1+ i)Dτs

2πρνh

1

cosh{(1+ i)a}
∫ 1

0
sinh{(1+ i)a(1− z)}dz

= τs

ρ f

{

1− 1

cosh{a(1+ i)}
}

. (9.98)

Clearly, as h →∞ (a →∞), we have α→ π/4 and Qx → τs/(ρ f ), Qy → 0, as
expected.

The physical understanding of this finite depth EKMAN problem also profits from
the following, alternative interpretation of the current structure. Under a steady cur-
rent, friction at the fluid bed generates an EKMAN spiral also above the bottom
surface. As the current decreases towards the bottom from the main stream flow,
it rotates counterclockwise, in the opposite sense to the wind-driven near-surface
EKMAN spiral. Problem 9.4 formulates the equations for this bottom spiral and the
reader is asked to verify its solution.

Table 9.2 Deflection angle of the surface current velocity from the direction of the wind for the
EKMAN problem in a finite depth basin

h/D 0.1 0.25 0.5 0.75 1.0 1.5

α 5◦ 21.5◦ 45◦ 45.5◦ 45◦ 45◦
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9.3.1.2 Spiral Above Bottom Surface

Problem 9.4 Let us focus at the lower part of an ocean or lake, say the hypolimnion,
and assume that there is an appreciable current at depth, which is sufficiently above
the bottom surface. Such an upper hypolimnion current might be generated by pres-
sure gradients, e.g. it may be considered to be induced by the set-up of a steady
wind and the accompanied inclination of the thermocline. In such a situation the
steady pressure gradient is primarily responding to the CORIOLIS acceleration via
the geostrophic balance

f (k × v) = −grad p.

According to this equation the so-called geostrophic current is along the isobars
with the pressure highs (lows) to the right (to the left) on the Northern Hemisphere.
So, we may think that the upper hypolimnion is subject to a geostrophic current
induced by the steady, uniform pressure distribution. How does this current change
with depth, in particular as the bottom surface is approached when the no-slip con-
dition applies? �

We approximate this problem by considering a half space [(x, y, z) ∈ R × R ×
R
+] of constant density ρ. Assume that the fluid is subjected to a constant pressure

gradient in the y-direction, ∂p/∂y = −ρνG (the coordinate system can be chosen
such that the x-axis is locally parallel to the isobar and the horizontal pressure gradi-
ent is perpendicular to it). The problem is to find the horizontal velocity distribution
for z > 0 that is induced by this constant pressure gradient.

Assume the velocity field to be given as

u = u(z), v = v(z), w ≡ 0. (9.99)

Prove that with this choice the continuity equation is identically satisfied and the
incompressible NAVIER–STOKES equations reduce to

d2u

dz2
+ f

ν
v = 0,

(9.100)
d2v

dz2
− f

ν
u + G = 0,

where ∂p/∂y = −ρνG. Let U = (ν/ f )G be the geostrophic current induced by G
and assume that (9.100) are to be solved subject to the boundary conditions

u = v = 0, at z = 0,

u = U, at z →∞, (9.101)
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i.e. z = 0 agrees with the horizontal bottom surface where the no-slip condition
is imposed, and the z-axis points upwards with the geostrophic current applied at
z →∞.

Introduce the complex-valued velocity

W = (u −U )+ iv (9.102)

and show that (9.100) and (9.101) are equivalent to the complex-valued two-point
boundary value problem

d2W
dz2

+ i f

ν
W = 0, 0 < z <∞,

W = −U, at z = 0,

W = 0, at z →∞.

(9.103)

Show that the solution of (9.103) is given by

W(z) = −Uexp
{

−(1+ i)
π z

D

}

, D := π

√

2ν

f
,

or u(z) = U
{

1− exp
(

−π z

D

)

cos
(π z

D

)}

, (9.104)

v(z) = Uexp
(

−π z

D

)

sin
(π z

D

)

.

The EKMAN spiral to this solution is displayed in Fig. 9.10. Accordingly, for small z,
close to the bottom surface the current is small and approaches the zero value at the
bottom surface 45◦ to the left of the geostrophic current U , which is perpendicular to
the pressure gradient G. Moreover, as one moves from large values of z towards the

Fig. 9.10 Vertical structure
of the steady bottom
boundary layer current for
z > 0 for the EKMAN

problem when a constant
uniform geostrophic current
U is prescribed in the
x-direction at large z (→∞),
adapted from LACOMB [32]

G 45°

U x

y
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bottom at z = 0 the velocity vector decreases and rotates contra solem clockwise)
until it approaches the bottom with zero value and rotated by 45◦.

The vertical structure of the current in a deep lake – deeper than the EKMAN

depth – therefore has an EKMAN layer near the surface with frictional depth D say,
and one near the bottom of frictional depth D′ say. When the total depth is small
and the layers overlap (h < D+D′) the respective spirals tend to cancel each other.

9.3.1.3 Non-constant Vertical Eddy Viscosity

The assumption of a constant viscosity is not realistic for the vertical distribution of
the horizontal wind-induced current in the free surface EKMAN layer. This layer is
almost always subjected to turbulence, i.e. fluctuating horizontal velocities which
give rise to turbulent shear stresses, in particular surface parallel shear stresses.
These are measurable in terms of fluctuations of horizontal velocity components
and the density. Alternatively, these stresses can also be expressed in terms of the
strain rate tensor D of the mean motion6 in the form τ = ρνt D, where νt is the
turbulent viscosity, often called eddy viscosity, to express its presence as a result of
the meso-scale turbulent eddies. Measurements show that in the ocean or in a lake
νt varies with depth with a near-zero value at the free surface, growing with depth,
reaching a maximum value at some depth, say at 0.2 × H and beyond this level
rapidly decreasing. On the other hand, the simplifications which led to EKMAN’s
equation remain valid; the only change is a different postulate for the vertical distri-
bution of the eddy viscosity.

EKMAN’s problem of wind-induced flow has been solved by MADSEN [36] by
assuming that the eddy viscosity increases linearly with depth from a value of zero at
the free surface, z = 0. The law of increase follows PRANDTL’s theory of turbulent
boundary layer [45], in which

ν = κu∗z, u∗ :=
√

τs/ρ, (9.105)

where κ = 0.41 is VON KÁRMÁN’s constant and u∗ is the friction velocity. Substi-
tuting (9.105) into (9.68) and the resulting expression into (9.67) yields

d

dz

(

z
dw
dz

)

= i f

κu∗
w, w = u + iv, z ∈ (0,∞). (9.106)

In an infinitely deep ocean this equation must be solved subject to the boundary
conditions

6 We write here D rather than 〈D〉, which was used to denote the strain rate tensor of the mean
velocity field. We do this for simplicity of notation.
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−ρκu∗z
dw
dz
= τs = τsx + iτsy, z → 0,

w = bounded, z →∞.
(9.107)

The first relates the vertical shear stress to the wind shear stress at the surface; the
second requires finiteness of the current at infinity. Note also that (9.107)1 requires
dw/dz to behave as ∼ z−1 when z → 0 approaches the free surface to make a
non-vanishing shear stress possible; this is equivalent to a logarithmic singularity of
w as z → 0.

Let

ξ = i f

κu∗
z → d

dz
= i f

κu∗
d

dξ
. (9.108)

Then (9.106) and (9.107) take the forms

d

dξ

(

ξ
dw
dξ

)

= w, ξ ∈ (0,∞),

−ρκu∗ξ
dw
dξ
= τs, ξ → 0, (9.109)

w = bounded, ξ →∞.

Equation (9.109)1 can be put into the standard form of BESSEL’s differential equa-
tion of zeroth order. It possesses the general solution

w = AI0(2
√

ξ)+ BK0(2
√

ξ), (9.110)

where A, B are arbitrary constants of integration and I0, K0 are the modified
BESSEL functions of zeroth order [1]. Since I0 exhibits an exponential growth as
ξ →∞, we have A = 0. The second constant, B, then follows from (9.109)2,

− κu∗ξ
dw
dξ
|ξ→0 = κu∗

√

ξ BK1(2
√

ξ) = τs

ρ
as ξ → 0, (9.111)

in which K1 is the first-order-modified BESSEL function of the second kind. Substi-
tuting for K1 its asymptotic expansion for small ξ [1], we obtain B = 2τs/(ρκu∗)
or

w = 2

ρκu∗
K0

(

2
√

ξ
)

τs. (9.112)

For uniform wind shear stress in the y-direction of the form τs = iτs,y and with
τs,y = ρu2∗ and ξ̄ = −iξ = f z/(κu∗), (9.112) can be shown [36] to be expressible
as



9.3 Ekman Theory and Some of Its Extensions 353

w = i
2u∗
κ

K0

(

2
√

ξ̄ei π4

)

= i
2u∗
κ

{

ker

(

2
√

ξ̄

)

+ i kei

(

2
√

ξ̄

)}

(9.113)

(see [1]), which possesses the asymptotic representation

w = u∗
κ

{π

2
+ ξ̄ ln ξ̄ + i(−2γ − ln γ )

}

as ξ̄ → 0, (9.114)

in which γ = 0.577... is EULER’s constant. Representation (9.113) agrees with
ELLISON’s [13] solution for the atmospheric boundary layer.

To examine the variation of the steady drift current with depth the solution given
by (9.113) is plotted in Fig. 9.11. The velocity vector is indicated at increments of
√

ξ̄ = 0.1, with the surface current given by
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Fig. 9.11 Vertical velocity structure of a pure drift current in an infinitely deep homogeneous sea
of finite lateral extent, comparing the spiral based on ν = κu∗z, (•) and the classical EKMAN

spiral, (+), from MADSEN [36], c©American Meteorological Society, reprinted with permission
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ws = u∗
κ

{
π

2
+ i

(

−1.15+ ln

(

30
κu∗
ks f

))}

(9.115)

from (9.114), and ks = 5 cm as roughness length, to avoid the singularity at ξ̄ = 0.
Note the extremely rapid decrease and rotation of the drift current with depth, a
consequence of the logarithmic velocity deficit near the surface. Note, moreover,
that according to (9.115), the deflection angle θs between the surface shear stress
and the steady surface drift current is given by

tan θs = π/2

−1.15+ ln

(

30
κu∗
ks f

) , (9.116)

where the deflection is to the right in the Northern Hemisphere. As can be inferred
from this and Fig. 9.11, θs is ∼ 10◦ and the velocity at

√

ξ̄ = 0.1 is approximately
one-third of its value at the surface with a deflection angle of θ = 25◦ as compared
to θs = 9◦. It is also evident from this figure that there is practically no motion at
the depth corresponding to ξ̄ = 1; so,

z = κu∗
f

(9.117)

can indeed be regarded as a measure of the extent of the frictional influence.
Interestingly, despite the considerable differences between the details of the

velocity structure predicted by the EKMAN solution with constant vertical viscosity
and this one, the two solutions share a common feature. The total mass transport
predicted by (9.113) is found to be

Q = Qx + iQy = 2u∗
κ

∫ ∞

0

{

−kei

(

2
√

ξ̄

)

+ i ker

(

2
√

ξ̄

)}

dξ̄

= u2∗
f

∫ ∞

0
{−βkeiβ + iβkerβ} dβ = u2∗

f
, (9.118)

which is identical to the result obtained from EKMAN’s theory as it should be since
the result is independent of ν.

The above solution of the complex-valued differential equation (9.106) exhibits
a logarithmic singularity at z = 0. To avoid it, a coordinate shift

z̄ = z + z0, where z0 > 0 (9.119)
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is applied. The two-point boundary value problem now becomes

(

(z̄ + z0)w′
)′ = i f

κu∗
w 0 < z̄ <∞,

ρκu∗ (z̄ + z0) = −iτs at z̄ = 0,

w = 0 at z̄ →∞.

⎫

⎪⎪⎬

⎪⎪⎭

(9.120)

Now, the singularity is avoided since z̄ = 0 is never attained. z0 > 0 is a roughness
length and of the order of millimetres, e.g. z0 = 1.5 mm.

HEAPS [23] writes ‘The results obtained by MADSEN, compared with those by
EKMAN’s theory show a more rapid decrease and rotation of the current vector
with depth: due to a steep logarithmic fall of the velocity component in the wind
direction, near to the surface and downwards from it. For a range of wind speeds,
MADSEN’s model gives an angle of deflection of the surface current to the right of
the wind stress about 10◦ and a wind factor of approximately 0.03. These values
agree with deductions made from surface drift experiments and observations of oil
spill trajectories (PEARCE and COOPER, [42], figure 1) [. . .]. MADSEN’s model
shows that the depth of the wind-induced motion (down to a level of practically no
current) is approximately 0.41u∗/ f , a length which corresponds to D in the Ekman
theory. Setting D = 0.41u∗/ f [. . .] [and using the definition (9.73) of the frictional
depth] yields an expression for the corresponding constant eddy viscosity in the
EKMAN theory:

ν = 0.008
u2∗
f
. (9.121)

(from HEAPS [23])’.
A linear increase of the eddy viscosity with depth cannot be realistic, since tur-

bulent intensity decreases with depth and may die out completely at large depth.
HEAPS continues that ‘SVENSSON [49] employed a turbulence model (using k − ε
closure condition7) to determine the vertical structure of current in the surface
EKMAN layer. A vertical eddy viscosity distribution of the form shown in Fig. 9.12b
was obtained, showing a linear increase in viscosity near the sea surface as in MAD-
SEN’s model, turning, however, into a decrease lower down. The depth of penetra-
tion of the motion was found to be approximately 1.0u∗/ f . The use of a constant
eddy viscosity

7 In the k − ε model the kinematic viscosity ν is parameterised according to

ν = cμ
k2

ε

where cμ = 0.09 is a dimensionless constant, k is the specific turbulent kinetic energy with dimen-
sion m2 s−2 and ε the specific dissipation rate of turbulent kinetic energy with dimension m2 s−3.
The model is complemented by postulating evolution equations for k and ε, so that the kinematic
viscosity can vary with time and position. For the presentation of the k − ε model, see Chap. 6.
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Fig. 9.12 (a) Eddy viscosity distribution with a surface wall layer. (b) Eddy viscosity distribution
from SVENSSON’s turbulence model, using k − ε closure condition

ν = 0.026u2∗ (9.122)

was found to give velocity and shear stress distributions in good agreement with
those obtained from the turbulence model [. . .]. An eddy viscosity decaying with
depth reflects the expected condition of diminishing turbulence intensity as distance
below the surface increases’, [23]. Theories prescribing different vertical variations
of the eddy viscosity and treating the EKMAN problem in a homogeneous fluid of
infinite or finite depth are summarised in Table 9.3. Accordingly, the eddy viscosity
either increases or decreases as the free surface is approached from below. HEAPS

[23] writes ‘While a decrease seems most likely on the weight of evidence so far
available, there appears to be little or no observational evidence to confirm this for
the full range of wind speeds. According to work performed by CSANADY between
1976 and 1982 (see Table 9.3) the surface EKMAN layer can be considered to consist
of a relatively thin layer at the free surface through which the eddy viscosity varies
linearly with depth from a small surface value νs and an outer layer through which
the eddy viscosity remains constant. Thus,

ν =

⎧

⎪⎨

⎪⎩

κu∗z + νs, 0 ≤ z <
h

κRe
,

u∗h
Re

+ νs,
h

κRe
≤ z ≤ h,

(9.123)

where h is the depth of the EKMAN layer and Re a REYNOLDS number lying
between 12 and 20’, implying that h/(κRe) ∈ [0.125, 0.208]. Then, with h =
0.4u∗/ f say, the eddy viscosity in the outer layer takes the value

ν = (0.02− 0.033)
u2∗
f
+ νs . (9.124)
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Table 9.3 Vertical distributions of eddy viscosity used by various authors for the solution of the
EKMAN problem in an infinite homogeneous fluid layer

Exponential decay with depth DOMBROKLONSKIY (1969) [11]
(h →∞) LAI & RAO (1976) [33]

WITTEN & THOMAS (1976) [54]
eddyν

z

Proportional to the height zB
above the bottom surface

THOMAS (1975) [51]

eddyν

h
zB

Proportional to z4/3
B FJELDSTAD (1930) [15]

Linearly distributed to a certain
depth (0.2h) from the surface,
then constant

CSANADY (1976)–(1982) [5–9]
PEARCE & COOPER (1981) [42]
BOWDEN et al. (1959) [3]
HEAPS & JONES (1984) [24]

0.
2hνeddy

h

According to HEAPS [23], ‘PEARCE and COOPER [42] have used (9.123) for
computations of wind-induced flows in shallow water of depth h (Fig. 9.12a)
employing a slip condition at the sea bed. BOWDEN et al. [3] proposed a similar
distribution of vertical eddy viscosity to account for the presence of the wall layer
adjacent to the sea bed in tidal flow; the corresponding theory was worked out by
HEAPS and JONES [24]. Generally, the profile of eddy viscosity is modified by a
wall layer at the sea surface and a wall layer at the sea bed. These layers have distinct
length and velocity scales when the corresponding EKMAN layers do not overlap.
At the bottom, the stress, and hence u∗, depends on the motion of the water.’

Practically, the construction of the current is determined by a patching together
of a near-surface PRANDTL layer in which, because of its thinness, the CORIOLIS

effects due to the rotation of the Earth are ignored and an EKMAN solution below
this viscous PRANDTL layer. The stress is assumed to remain constant through the
PRANDTL layer, but the eddy viscosity is taken as linearly increasing through this
layer. Consequently, if the uniform wind stress τs points in the positive y-direction,
the momentum equations in this layer take the forms

−ρ(κu∗z)
∂u

∂z
= 0,

(9.125)
−ρ(κu∗z)

∂v

∂z
= τs = ρu2∗,
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whence

∂u

∂z
= 0 → u = us,

∂v

∂z
= −u∗

κz
→ v = vs − u∗

κ
ln

(
z

z0

)

.

(9.126)

Thus, the velocity profile through the PRANDTL layer is logarithmic and parallel to
the wind shear stress; us and vs denote the components of the current at the free
surface (the top of the PRANDTL layer) taken at z = z0 > 0 to avoid the logarithmic
singularity. At the bottom of this PRANDTL layer, at z = z1, the velocity compo-
nents u1 and v1 are given by what is obtained as surface current of the EKMAN

problem (of finite or infinite) depth, e.g. (9.78) for the infinite depth case. This is so,
because the wind stress is transmitted through the PRANDTL layer without change.
Therefore, from (9.126),

us = u1, vs = v1 + u∗
κ

ln

(
z1

z0

)

. (9.127)

HEAPS remarks that this says that the surface current obtained with a PRANDTL

layer may be obtained from the surface current derived from the pure EKMAN theory
by adding a logarithmic contribution in the direction of the wind. Such an addition
increases the magnitude of the surface current and reduces its angle of deflection
from the wind direction.

CSANADY [9] proposed instead of (9.127)

us = u1, vs = v1 + u∗
κ

ln

(
z1

z0

)

+ 8.5u∗, (9.128)

but gives no justification for the last term of (9.128).

9.3.2 Steady Wind-Induced Circulation in a Homogeneous
Lake on the Rotating Earth

The steady wind-driven currents analysed so far have been characterised by increas-
ing complexity of the original EKMAN problem. The infinite extent of the fluid
basin prevented horizontal pressure gradients from being formed because of the
absence of boundaries. Complexities were added by (i) replacing infinitely deep-
water domains by finite depth basins and (ii) replacing constant eddy viscosities
by functional relations accounting for their vertical variations. So-called gradi-
ent currents are established if the horizontal pressure gradient does not vanish,
gradH p = 0. In the present approximation

p = pa + ρg(z + ζ ) (9.129)
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with constant atmospheric pressure pa but variable free surface elevation, this
implies gradH ζ = 0. In steady state and with simplifications analogous to those
of the previous sections, the governing equations take the forms

− f v = −g
∂ζ

∂x
+ ∂

∂z

(

ν
∂u

∂z

)

,

f u = −g
∂ζ

∂y
+ ∂

∂z

(

ν
∂v

∂z

)

, (9.130)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

where (9.129) has been substituted. Equations (9.130)1,2 are the steady linearised
horizontal momentum equations, in which only the horizontal shear stresses are
accounted for and a NEWTONian viscous closure has been applied, and (9.130)3 is
the continuity equation which is the only field equation in which the vertical velocity
component arises.

With

w = u + iv,
∂ζ

∂n
= ∂ζ

∂x
+ i

∂ζ

∂y
, τs = τsx + iτsy (9.131)

equations (9.130)1,2 take the forms

i f w = −g
∂ζ

∂n
+ ∂

∂z

(

ν
∂w
∂z

)

, (9.132)

subject to the boundary conditions

−ρν ∂w
∂z
= τs, at z = 0,

w = 0, at z = h.

⎫

⎬

⎭
(9.133)

Here, τs is the prescribed surface wind stress, and w = 0 expresses the basal no-slip
condition. The boundary value problem (9.132) and (9.133) is linear and τs as well
as ∂ζ/∂n can be treated as externally prescribed quantities, at least momentarily.
Therefore, its solution is a linear combination of the external terms, viz.,

w = P(z)τs + Q(z)
∂ζ

∂n
. (9.134)

In this representation the functions P and Q only depend on the depth variable z,
but τs and ∂ζ/∂n can have x, y-dependences. So, w = w(x, y, z).

Problem 9.5 Prove by solving the two-point boundary value problem (9.132),
(9.133) that
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Q(z) = i
g

f

⎧

⎪⎪⎨

⎪⎪⎩

cosh
(

(1+ i)
π z

D

)

cosh

(

(1+ i)
πh

D

) − 1

⎫

⎪⎪⎬

⎪⎪⎭

,

(9.135)

P(z) = (1− i)D

2πρν

⎧

⎪⎪⎨

⎪⎪⎩

sinh
(

(1+ i)
π

D
(z − h)

)

sinh

(

(1+ i)
πh

D

)

⎫

⎪⎪⎬

⎪⎪⎭

,

where D = π
√

2ν/ f .
Hint: Because of the linearity of the problem, it is advantageous to solve two

problems: and (i) τs = 0, ∂ζ/∂n = 0 and (ii) τs = 0, ∂ζ/∂n = 0. �

As is evident from (9.134) and (9.135), the functions P and Q describe the verti-
cal distribution of the horizontal current due to the wind shear stress and the surface
gradient, respectively.

For τs = τsx the function P has already been discussed in connection with
Fig. 9.8; for a surface gradient in the y-direction, ∂ζ/∂x = 0 → ∂ζ/∂n = i∂ζ/∂y
and with τs = 0 the distribution of the horizontal current is shown in Fig. 9.13.
The fluid region is bounded along a line parallel to (but here identical with) the
x-axis. The figure shows the projection of the gradient current at all z-levels into the
hodograph plane. For a layer depth smaller than D, the surface current tends towards
the direction of the gradient ∂ζ/∂n, expressing the influence of the bottom friction.
The deflection angle between the current and the gradient direction decreases as
the basin becomes shallower. On the other hand, for depths larger that the EKMAN

depth, the surface current is practically equal to that obtained by a geostrophic
balance.

With the representations (9.134) and (9.135) we are now in the possession of all
ingredients to describe analytically the steady wind-induced currents in an enclosed

h = 0.25D

h = 0.50D

h = 1.25D

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5

u

v

0.6

Fig. 9.13 Vertical structure of the gradient currents in a basin of depth h nearly equal to or smaller
than the EKMAN depth D, according to LACOMB [32]
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lake or ocean basin. To this end, note that w(z) can be integrated over depth; this
yields

W =
∫ h

0
wdz = A

ρ f
τs + gh

f
B
∂ζ

∂n
, (9.136)

where A and B are depth integrals of P and Q and as such functions of h/D, or
when separating real ad imaginary parts

U = 1

ρ f

(

A1τsx − A2τsy
)+ gh

f

(

B1
∂ζ

∂x
− B2

∂ζ

∂y

)

,

(9.137)
V = 1

ρ f

(

A2τsx + A1τsy
)+ gh

f

(

B2
∂ζ

∂x
+ B1

∂ζ

∂y

)

,

with

U =
∫ h

0
udz, V =

∫ h

0
vdz. (9.138)

(U, V ), (A1, A2) and (B1, B2) are the real and imaginary parts of W, A, B, respec-
tively. Moreover, integrating the continuity equation over depth yields

∂ζ

∂t
+ ∂U

∂x
+ ∂V

∂y
= 0

steady flow→ ∂U

∂x
+ ∂V

∂y
= 0. (9.139)

Thus, the depth-integrated volume (and because of density preserving when multi-
plied with ρ, mass) transport is solenoidal. Equation (9.139)2 suggests the introduc-
tion of the transport stream function

U = ∂ψ

∂y
, V = −∂ψ

∂x
. (9.140)

Substituting these on the left-hand sides of (9.137) and solving the emerging equa-
tions for ∂ζ/∂x and ∂ζ/∂y gives

∂ζ

∂x
= f

g

(

β1
∂ψ

∂y
− β2

∂ψ

∂x

)

− 1

ρg

(

β3τsx + β4τsy
)

,

(9.141)
∂ζ

∂y
= − f

g

(

β1
∂ψ

∂x
+ β2

∂ψ

∂y

)

+ 1

ρg

(

β4τsx − β3τsy
)

,

where

β1 = B1/
(

(B2
1 + B2

2 )h
)

, β2 = B2/
(

(B2
1 + B2

2 )h
)

,

β3 = β1 A1 + β2 A2, β4 = β2 A1 − β1 A2.
(9.142)
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Differentiating (9.141)1 with respect to y and (9.141)2 with respect to x and sub-
tracting the two emerging relations lead to the equations

E[ψ] := ∇2ψ + γ1
∂ψ

∂x
+ γ2

∂ψ

∂y
= γ3, (9.143)

in which

γ1 = 1

β1

(
∂β1

∂x
− ∂β2

∂y

)

, γ2 = 1

β1

(
∂β1

∂y
+ ∂β2

∂x

)

,

γ3 = 1

ρ fβ1

[

β3

(
∂τsx

∂y
− ∂τsy

∂x

)

+ β4

(
∂τsx

∂x
+ ∂τsy

∂y

)

(9.144)

+
(
∂β4

∂x
+ ∂β3

∂y

)

τsx +
(
∂β4

∂y
− ∂β3

∂x

)

τsy

]

.

The derivation of (9.143) and (9.144), in slightly different form, is also given
by GEDNEY and LICK (1972) [20] and the coefficient functions can be found in
GEDNEY’s Ph.D. dissertation [19].

Equation (9.143) is a second-order partial differential equation for the volume
transport stream function ψ for applied wind shear stress. The coefficient functions
γ1 and γ2 depend only on h/D and horizontal derivatives of it and are known for
any lake since they can be derived from A and B, the depth integrals of P(z) and
Q(z). The term on the right-hand side of (9.143), γ3 is a linear combination of
the horizontal wind shear stress components and their x- and y-derivatives with
pre-factors which are again functions deducible from A and B. Therefore, for a
given basin, the left-hand side (9.143) is independent of the wind shear stress. This
only enters its right-hand side.

The elliptic equation (9.143) is solved subject to the boundary conditions along
the shore of the basin. For a lake for which the current due to river inflows and
river outflow is negligible in terms of the induced currents, one may assume that
the shoreline is impermeable. With the flow normal to the circumscribing lateral
boundary given by

ψ =
∫ s

0

(

U
dy

ds
− V

dx

ds

)

ds, (9.145)

where s is the arc length measured along the boundary from some fixed position on
it, and U, V are the transport components along the shore, vanishing flow normal to
the shore periphery then implies

ψ = 0. (9.146)



9.3 Ekman Theory and Some of Its Extensions 363

Equations (9.143) and (9.146) describe the boundary value problem

E[ψ(x, y)] = γ3(τs), (x, y) ∈ D ⊂ R
2,

ψ = 0, (x, y) ∈ ∂D,
(9.147)

which must be solved for a particular lake for given prescribed surface shear stress
distribution. Onceψ(x, y) is known, the surface displacement gradient can be deter-
mined from (9.141) and the horizontal transport components from (9.140). The hor-
izontal current w then follows from (9.134) and subsequently the vertical velocity
from the continuity equation (9.130)3

w = ∂

∂x

∫ h

z
udz + ∂

∂y

∫ h

z
vdz. (9.148)

This completes the solution. The method, however, calls for a number of remarks:

• HEAPS [23], whom the derivation follows, states: ‘The above method, first pro-
posed by WELANDER [52], has been used to study wind-driven currents in Lake
Ontario [2] and Lake Erie [20]. Consistent with the developments described
above, the eddy viscosity was assumed to be a constant. However, the use of
the method when vertical eddy viscosity varies linearly from zero at the bottom
to a maximum κu∗h at the surface has been investigated by THOMAS [51]. The
case in which vertical eddy viscosity decreases exponentially with depth from a
prescribed constant maximum at the surface has been investigated by WITTEN

and THOMAS’ [54].
• The method can also be applied to more flexible conditions, e.g. by changing the

bottom boundary condition to general slip and/or the use of an eddy viscosity
which may vary with depth. This will alter the functions P(z) and Q(z) and,
consequently A, B and the subsequent coefficient functions βi , (i = 1, . . . , 4)
and γi (i = 1, 2, 3), which depend on A and B. The conceptual procedure as
such would not change.

• The method is approximate not only by the mentioned simplifications but indi-
rectly and somewhat hidden by the fact that the functions P(z) and Q(z) in
(9.135) (or alternative variants of them) are constructed on the assumption of
a basin of infinite horizontal extent and constant depth. Their use in the construc-
tion of the elliptic boundary value problem is, therefore, strictly, not justified.
Moreover, the use of these functions in a lake domain with variable depth is,
strictly, neither permissible, but the method makes use of this assumption via
the coefficients βi (i = 1, . . . , 4) and γi (i = 1, 2, 3) and their x- and y-
derivatives. For weak variations of the bathymetry, the results might be accept-
able if one restricts attention to sub-regions of the lake, which are distant from
shore. However, no studies have been found by which errors would have been
identified.
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9.3.3 Wind-Driven Steady Currents in Lake Erie

In their application of the above solution technique to the steady distribution of
the vertical structure of the horizontal currents in Lake Erie, GEDNEY and LICK

[20] were confronted with the problem of solving the partial differential equation
(9.143) in a lake domain with N islands. This means that boundary conditions must
be fulfilled at exterior and interior boundaries. The solution procedure is strictly
based on the linearity of the problem and uses the fact that the surface gradient
∂ζ/∂n is known from (9.136) once W is determined. So

∂ζ

∂s
= cosα

∂ζ

∂x
+ sinα

∂ζ

∂y
, (9.149)

in which α is the angle between the x- and s-directions, is equally determined at any
point in the lake domain. Consider now the integral

∮

C (∂ζ/∂s)ds along any closed
double-point free curve in the lake domain. Then, it is clear that after a complete
revolution around a closed curve C , the surface elevation ζ must reach the same
value, implying that

∮

C

∂ζ

∂s
ds = 0, (9.150)

for otherwise ζ could experience a jump. This condition must, in particular, hold for
a closed path along the boundary of an island along which the transport stream func-
tion is constant. If this constant is inappropriately chosen, then condition (9.150)
will be violated.

To solve (9.147), the values of the stream function on each island boundary and
on the outer shore are selected by a composition from N linearly independent stream
functions

ψ = ψ0 +
N
∑

α=1

dαψ
α, (9.151)

where for N = 3 the stream function boundary and wind conditions are shown in
Table 9.4. In this table ψr (s) is the value of the stream function on the external

Table 9.4 Stream function boundary conditions

ψ i boundary condition

ψ i solution External shore Island 1 Island 2 Island 3 Wind cond.

ψ0 ψr (s) 1a 1a 1a τsx, τsy

ψ1 0 1 0 0 0
ψ2 0 0 1 0 0
ψ3 0 0 0 1 0
aNote, the stream function values for ψ0 at the island boundary can be any constant, the same for
all islands (here equal to 1) since the total stream function is determined up to a constant value
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boundary and specified by the river inflow and outflow (having value zero at
impermeable segments of the shore and a value equal to the unit-width discharge
at inflow or outflow segments with appropriate sign). The constants dα (α =
1, 2, . . . , N ) are determined such that (9.150) is satisfied along each boundary encir-
cling the island.

GEDNEY and LICK [20] solved (9.143) for the four different boundary conditions
by finite difference methods whose detailed implementation will not be repeated
here. Lake Erie was partitioned into two regions: (i) an island region with 0.802 km
square meshes and (ii) the remainder with 3.22 km square meshes, using second-
order symmetric finite difference schemes and non-symmetric schemes at boundary
grid points, see Fig. 9.14 which also shows the bathymetry and the island region in
relation to the entire lake. The entire discretised domain was occupied with 5050
grid points.

Numerical solutions for the stream function and velocities in Lake Erie were
constructed for a constant kinematic viscosity, ν = 0.0038 m2 s−1 and for a uniform
wind from W 50◦S (in standard notation SSW (220◦) of 10.1 m s−1 speed. This
speed was measured at 6 m above the lake surface and it led to a wind shear stress
magnitude

τ = 2.73× 10−3ρa W 2
a ,

where ρa and Wa are the density of air and the 6 m wind speed, respectively, in
which the drag coefficient was determined from independent measurements [53].
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Fig. 9.14 Lake Erie bathymetry with depth levels in metres as follows: A: 15.2 m; B: 18.3 m;
C: 21.6 m; D: 24.4 m, E: 33.5 m; F: 42.7 m, G: 51.6 m and H: 58.0 m. Morphologically, the lake
is divided into the West basin with mean depth 7.3 m, central basin with mean depth 18 m and
East basin with mean depth 24 m. The dashed rectangle outlines the island region enclosing two
islands plus three additional smaller islands collapsed numerically to one. Inflow and outflow river
locations with 5380 m3 s−1 discharge are also indicated, from GEDNEY and LICK [20]
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Figure 9.15 shows isolines of the stream function for the above wind conditions.
In the Northern and Southern portion of the central basin it shows a clockwise and
counterclockwise rotating volume transport gyre, respectively. In the Eastern basin,
the gyre structure is analogous, whereby the gyre in the North is ‘squeezed’ because
of the narrowing between the two basins. These gyres are evidently generated by
the bathymetric slopes along the shores, as it is well known that a constant bottom
slope causes a single gyre that intensifies the flow close to the boundary (Fig. 9.16).
The asymmetry of the gyres is evidently due to the different intensities of ∂h/∂y)/h
along the Northern and Southern shores.

Figure 9.17 displays lake velocity plots for the W 50◦S wind at depths 0.4 m
(a); 6.7 m (b); 9.9 m (c); 14.9 m (d) below the surface and 1.2 m (e) above the
bottom surface. The beginning of the arrow represents the actual location of the
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Fig. 9.15 Isoline plot of the steady volume transport stream function for Lake Erie for a uniform
steady wind from W 50◦S with 10.1 m s−1 speed. The ψ-boundary values at the islands are A,
−0.375; B, −0.087; C, −0.432, adapted from GEDNEY and LICK [20]
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bottom
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N

Fig. 9.16 Isolines of the steady volume transport stream function in a rectangular basin with con-
stant North–South bottom slope towards North (a) and towards South (b), respectively (schematic)
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Fig. 9.17 Horizontal velocity
plots at the depths 0.4 m (a);
6.7 m (b); 9.9 m (c), 14.9 m
(d) and 1.2 m above the
bottom surface (e). Each
panel has its own velocity
scale (see inserts). Wind
direction and geographic
North are also indicated as is
the length scale (top) and the
symbols for the measured
velocities on 24/25 May 1964
(bottom), composed from
figures of GEDNEY and
LICK [20]
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current represented by the arrow. The magnitude of the current is indicated by the
velocity scale in each panel. Panels (a) and (b) show that a top surface mass flux
is transported towards the Eastern and Southern boundaries. The subsurface return
current maintaining mass balance in the opposite direction (towards West) is shown
in panels (c) to (e). In the central and Eastern basins, surface currents at 0.4 m are,
in general, smaller in the centre of the lake than near the shore. This effect is likely
due to the relatively large subsurface return current down the centre of the lake,
which is opposite in direction to the surface current. Note also that comparison of
velocity plots with the volume transport stream function in Fig. 9.15 is difficult and,
generally, fairly inconclusive since horizontal velocities are local, while the stream
function is depth averaged.

GEDNEY and LICK [20] used measured velocity data from current metres
deployed by the Environmental Protection Agency of the USA (EPA) at the
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indicated positions (Fig. 9.17). Such a comparison is critical and perhaps even
questionable for steady conditions because steady episodes are unlikely in any lake
subjected to wind stress. The EPA data recorded in May 1964 consisted of readings
taken every 20 min. To compare the water current measurements with calculations,
GEDNEY and LICK summed the 20 min readings over a 24-h period to form a resul-
tant current. The resultant magnitude, divided by the number of readings, and the
orientation of the resultant current then ‘define’ the steady counterpart of the time
evolving current.

‘The procedure incorporated for determining what wind to use in the numeri-
cal calculations for a particular day was to take the average of both the direction
and magnitude of the 24-h resultant wind at each of the US Weather Bureau shore
stations. This average wind with its magnitude increased by a factor of 1.48 was
then used to determine the shear stress at the water surface. The 1.48 factor was
determined by comparing shore data with “over-the-lake” wind data taken by the
EPA’, GEDNEY and LICK [20]. This determined the 10.1 m s−1 speed with wind
direction from W 50◦S. ‘The current metre data for 24 May 1964, as measured at 10
and 15 m below the surface, is shown in Fig. 9.17c,d. Note that the positions of the
measurements are different from those of the calculated current vectors’. GEDNEY

and LICK note that ‘the agreement is markedly good in both magnitude and direc-
tion. The discrepancy between the magnitude of the measurements and calculations
at point 4 at 10 m is believed to be a measurement error since this metre became
erratic at a later date. The magnitude of the measurements in the region of point 5 at
first appears to be considerably different from the calculated values. However, the
agreement between the measurements and calculations is believed to be satisfactory
when one considers that the currents are changing rapidly with distance in the point
5 area’.

‘Also, in panels (c), (d) of Fig. 9.17, the current metre measurements are plotted
for a W 43◦S wind at a speed of 8.6 m s−1. These measurements were taken on May
25, 1964. The agreement is again quite good except for the measurement at point 6
in panel (d). [. . .]. The winds for these measurements differ from the May 24, 1964,
case by 1.5 m s−1 and 7◦ in direction. However, both sets of measurements agree
quite well with the calculations and with each other’, GEDNEY and LICK [20].

We close this example of application with the following remarks: Given the
unsteadiness of the natural wind input and the fact that a steady alternative of the
time varying wind velocities is in this case a construct whose validity as a steady
wind shear stress is not verified, the agreement between measured and computed
velocities is surprising. Beyond this, the model equations have their obvious short-
comings by way of their linearity, EKMAN-type vertical current distribution, slow
horizontal variation of the bathymetry and constant (eddy) viscosity. These facts
make it even a greater surprise that the agreement between measured and computed
velocities is as good as it is. If this is not accidental, one may conclude that the
steady circulation is a mode of response for a lake which, on time scales of a day
or so, is very robust against fluctuations around the mean wind input. This may be
a reason why lakes have their typical circulation structure, which can be observed
repeatedly.
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9.3.4 Time-Dependent Wind-Induced Currents in Shallow
Lakes on the Rotating Earth

9.3.4.1 Development of the Underlying Models

Early theoretical models for calculating time-dependent wind-induced currents have
been treated in much the same way as explained above for steady problems. The
same simplifying assumptions are invoked – linearity, hydrostatic pressure, only
vertical shear stresses are accounted, constant vertical eddy viscosity, no-slip bound-
ary condition at the bottom surface. Thus, re-introducing the time dependence in the
momentum equations, subject to the same simplifying assumptions as before, these
equations now take the forms (compare with (9.130))

∂u

∂t
− f v = −g

∂ζ

∂x
+ ∂

∂z

(

ν
∂u

∂z

)

,

∂v

∂t
+ f u = −g

∂ζ

∂y
+ ∂

∂z

(

ν
∂v

∂z

)

, (9.152)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0.

With the complex notation (9.131) the horizontal momentum equations (9.152)1,2
are given by

∂w
∂t
+ i f w = −g

∂ζ

∂n
+ ∂

∂z

(

ν
∂w
∂z

)

. (9.153)

Boundary and initial conditions to which this equation is subjected are the prescrip-
tion of the wind shear stress at the free surface, the no-slip condition at the bottom
surface and the condition of a state of rest at the start t = 0, viz.,

−ρν ∂w
∂z
= τs, at z = 0,

w = 0, at z = h,

w = 0, at t = 0.

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(9.154)

The linear initial boundary value problem has been solved for constant ν by con-
structing the GREEN’s functions of two different problems. The first gives the
dynamic response, w1(z, t) to unit wind stress in the x-direction, suddenly created
at t = 0 and maintained; with a constant vertical eddy viscosity, w1 satisfies the
equations
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∂w1

∂t
+ i f w1 = ν

∂2w1

∂z2
, z ∈ (0, h), t ≥ 0,

−ρν ∂w1

∂z
= 1, at z = 0, t > 0,

w1 = 0, at z = h, t > 0,

w1 = 0, at z ∈ [0, h], t = 0.

⎫

⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(9.155)

The second solution, w2(z, t) gives the response to a unit surface slope in the x-
direction, suddenly created at t = 0 and maintained; it satisfies the equations

∂w2

∂t
+ i f w2 = −g · 1+ ν ∂

2w2

∂z2
, z ∈ (0, h), t ≥ 0,

−ρν ∂w2

∂z
= 0, at z = 0, t > 0,

w2 = 0, at z = h, t > 0,

w2 = 0, at z ∈ [0, h], t = 0.

⎫

⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(9.156)

Analytical solutions for w1 and w2 have been constructed by FJELDSTAD (1930)
[15] and HIDAKA (1933) [26]. Because of linearity of the three problems (9.153),
(9.154), (9.155), (9.156), a solution to a general distribution of τs and ∂ζ/∂n is
obtained by superposing a succession of surface increments of differential wind
stress and surface slope making up the temporal variation of those quantities, see
Fig. 9.18,

w(z, t) =
∫ t

0
w1(z, t ′)∂τs

∂t ′
(t − t ′)

︸ ︷︷ ︸

solution to a single
stress increment

dt ′ +
∫ t

0
w2(z, t ′) ∂

2ζ

∂t ′ ∂n
(t − t ′)

︸ ︷︷ ︸

solution to a single
surface slope increment

dt ′,

(9.157)
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Fig. 9.18 Function τs(z, t) (here real valued) interpreted as a composition of incremental HEAVI-
SIDE steps. An analogous interpretation also holds for ∂ζ/∂n(z, t)
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in which it has been assumed that τs and ∂ζ/∂n, defined in (9.131), start from
zero values at t = 0. The under-braced terms are the contributions of differential
single-step responses of (complex-valued) shear stress and surface slope increments
at time t ′, respectively (which identifies w1 and w2 as the corresponding GREEN’s
functions). Adding these contributions over time from t ′ = 0 to t ′ = t yields the
total wind shear stress and surface slope contributions, which accumulate from time
0 to time t . Performing an integration by parts in (9.157) and imposing the initial
conditions w1,2(z, 0) = 0, τs(0) = 0, ∂ζ/∂n(0) = 0 gives

w(z, t) =
∫ t

0

{

τs(t − t ′)∂w1

∂t ′
(z, t ′)+ ∂ζ

∂n
(t − t ′)∂w2

∂t ′
(z, t ′)

}

dt ′. (9.158)

Vertically integrating (9.158) over depth yields for the complex-valued volume
transport the expression

W(t) =
∫ t

0

{

τs(t − t ′)∂W1

∂t ′
(t ′)+ ∂ζ

∂n
(t − t ′)∂W2

∂t ′
(t ′)

}

dt ′, (9.159)

where

W1(t) =
∫ h

0
w1(z, t)dz, W2(t) =

∫ h

0
w2(z, t)dz. (9.160)

Here, Wi and ∂Wi/∂t (i = 1, 2) are known and can be computed from the GREEN’s
functions wi (i = 1, 2). From the continuity equation (9.152)3 and the kinematic
boundary conditions

∂ζ

∂t
+ ∂ζ

∂x
u + ∂ζ

∂y
v − w = 0 at z = 0,

∂h

∂x
u + ∂h

∂y
v − w = 0 at z = h,

(9.161)

the linearised kinematic equation

∂ζ

∂t
+ ∂U

∂x
+ ∂V

∂y
= 0 (9.162)

can be derived, where W = U + iV . Equation (9.159) when substituted into (9.162)
comprises an integro-differential equation for ζ , which, in principle, can be solved
numerically proceeding step-by-step through time. At each step, a boundary con-
dition on ∂ζ/∂n must be satisfied along the lake shore by, e.g. requesting that the
component of W normal to the shore is zero. At each time, the vertical structure
of the horizontal current may then be determined from (9.157) as the calculations
advance. Finally, the vertical structure of the vertical velocity then follows from a
z-integration of the continuity equation (9.152)3.
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9.3.4.2 Alternative Integration Procedures

This integration method was suggested by WELANDER [52] but was never put
into practice. The obstacle seems to be the use of the integral equation; systems
of differential equations seem to be preferable. Such approaches generally start by
integrating (9.153) over depth, leading to

∂W
∂t
+ i f W = −gh

∂ζ

∂n
+ τs − τ̂b

ρ
, (9.163)

which may be complemented by the volume (mass) balance equation (9.162). Once
W(x, y, t) is numerically determined with the use of (9.162) and (9.163) (for the
methodology, see [47, pp. 112–168]), the vertical structure of the current can be
determined as above. However, (9.163) has a missing link, the parameterisation of
τb. The difficulty is that

τ̂b = −ρν
(
∂w
∂z

)

z=h

is given in terms of the horizontal shear at z = h and not in terms of W (and
perhaps τs and ∂ζ/∂n). An approximation of it could be τ̂b = −ρνW/h, but this
is not accurate. JELESNIANSKI [29] evaluates ∂w/∂z from (9.157) and finds for
τb a convolution integral involving the past history of τs and ∂ζ/∂n, see [23]. His
method has been applied very effectively by FORISTALL [16], [17] and FORISTALL

et al. [18] to evaluate the storm-generated currents in the Gulf of Mexico. A different
procedure has been employed by KIELMANN and KOWALIK [31].

The most elegant method has, however, been proposed by PLATZMAN8 [43]. He
treats the time derivative ∂(·)/∂t in (9.153) as if it were a real (or complex) number
and writes (9.153) for constant ν as

∂2w
∂z2

= 1

ν

(

i f + ∂

∂t

)

w+ g

ν

∂ζ

∂n
. (9.164)

Introducing

z̄ = z

h
, σ 2 = σ 2

0 + λ, σ 2
0 :=

i f h2

ν
, λ := h2

ν

∂

∂t
, (9.165)

(9.164) takes the form

d2w
dz̄2

− σ 2w = gh2

ν

∂ζ

∂n
. (9.166)

8 This is sometimes simply called ‘PLATZMAN’s integration method ’. PLATZMAN was a meteo-
rologist, Professor of Geological Sciences at the University of Chicago. For a biographical sketch,
see Fig. 9.1.
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Problem 9.6 Equation (9.166), in which σ 2 is treated as if it were a real or complex
number, must be solved subject to a prescribed surface shear stress τs at z = 0 and
the no-slip condition at z = h. Prove that with the boundary conditions (9.154)1,2,
(9.166) possesses the solution

w(z̄, t) = sinh [σ(1− z̄)]

σ cosh(σ )

hτs

ρν
+ 1

σ 2

{
cosh(σ z̄)

cosh(σ )
− 1

}
gh2

ν

∂ζ

∂n
. (9.167)

Prove, moreover, that an integration over depth from z̄ = 0 to z̄ = 1 transforms
(9.167) into

ν

h2

(

σ 2 + G(σ )
)

W = −gh
∂ζ

∂n
+ (1+ H(σ ))

τs

ρ
,

(9.168)
where

G(σ ) = σ tanh σ

1− 1

σ
tanh σ

, H(σ ) =
1

σ
tanh σ − sech σ

1− 1

σ
tanh σ

.

�

The solution (9.167) has been constructed as if (9.166) would be an ordinary dif-
ferential equation; however, (9.168)1 is not an explicit expression for w, but an
operator equation which one wishes to transform into a differential equation that
looks similar to (9.163). This can be achieved, if it is assumed that |λ| � σ 2

0 and
the functions G(σ ) and H(σ ) are expanded into TAYLOR series and truncated at the
linear terms. This then yields approximately

G(σ ) � G0(σ0)+ λG1(σ0),

H(σ ) � H0(σ0)+ λH1(σ0).
(9.169)

It is a straightforward matter to evaluate these functions:

G0(σ0) = σ 2
0 ξ0

1− ξ0
,

G1(σ0) = 1+ ξ0 − (2+ σ 2
0 )ξ

2
0

2(1− ξ0)2
,

(9.170)
H0(σ0) = ξ0 − η0

1− ξ0
,

H1(σ0) = (1− ξ0 − σ 2
0 ξ

2
0 )−

[

1− (1+ σ 2
0 )ξ0

]

η0

2σ 2
0 (1− ξ0)2

, (9.171)

in which

ξ := 1

σ
tanh σ, η := sech σ. (9.172)
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If the expressions (9.169) are substituted in (9.168)1 and the definitions (9.165) are
used, then

∂W
∂t
+ i f AW = −ghB

∂ζ

∂n
+
(

C+ D

i f

∂

∂t

)
τs

ρ
(9.173)

is obtained, in which

A =
1+ 1

σ 2
0

G0

1+ G1
, B = 1

1+ G1
,

C = 1+ H0

1+ G1
, D = σ 2

0 H1

1+ G1
.

(9.174)

Equation (9.173) is in the desired form. The four coefficient functions have been
plotted by PLATZMAN [43] as functions of σ0. These graphs show that |D| is small
in comparison to the moduli of the other coefficients for all values of σ0. So

∂W
∂t
+ i f AW = −ghB

∂ζ

∂n
+ C

τs

ρ
(9.175)

is an approximation which can be used for all practical applications. The distin-
guished feature of this equation is that it has been obtained without taking side
boundaries into account. In PLATZMAN’s [43] words: ‘An important step in delin-
eating predictive characteristics of this equation is the determination of frequencies
of free modes of vibration. In general, it is very difficult to do this if one requires that
boundary conditions be met on the sides of a basin of even the simplest shape.’ For
a rotating rectangular basin of uniform depth but without friction this problem has
been solved by RAO [48]: it is given in Volume II of this book series; for circular and
elliptical cylinders with constant depth the corresponding solutions are constructed
by LAMB [34] and GOLDSTEIN [21], also given in Volume II. Two limits are of
practical interest:

• For large depths, h → ∞, |σ0| � 1, we have A = B = C = 1 and (9.175)
reduces to

∂W
∂t
+ i f W = −gh

∂ζ

∂n
+ τs

ρ
. (9.176)

In this case τb = 0, which was to be expected.
• For small depths (|σ0| � 1, relating to a shallow lake), the explicit formulae

yield
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A = 5

2
σ−2

0 + 43

42
= 2.5σ−2

0 + 1.02,
(9.177)

B = 5

6
= 0.833..., C = 5

4
= 1.25

and (9.175) becomes

∂W
∂t
+ i f

(
43

42

)

W = −gh
∂ζ

∂n
+ τs − τ̂b

ρ
, (9.178)

where

τ̂b = 5ρν

2h

(
W
h

)

− 1

6
ρgh

∂ζ

∂n
− τs

4
. (9.179)

It is seen that (9.178) has been put into the form (9.163) with a basal shear stress
formula given by (9.179). Accordingly, τ̂b depends on (i) W/h with a coefficient
that is inversely proportional to h, (ii) the slope gradient with a coefficient propor-
tional to h and (iii) surface shear stress τs. The CORIOLIS acceleration is affected
only slightly by a factor 1/42.

An equation similar to (9.175) with coefficients (9.177) was derived also by
NOMITSU [41] more than 30 years earlier. PLATZMAN [43] writes ‘NOMITSU

obtained an approximate, two-dimensional rendition of the EKMAN equations by an
entirely different method, but his result is remarkably similar to (9.177). NOMITSU’s
procedure is based upon a series representation of the influence [GREEN’s] functions
for slope and wind transports, along the lines of FJELDSTAD’s [15] work. He found
that if only the leading term is retained in each series, the resulting approximate
total transport will satisfy an equation of exactly the form (9.175)’, but with the
coefficients (9.177) replaced by (index N for NOMITSU)

AN = 2.47σ−2
0 + 1, BN = 8

π2
= 0.81, CN = 1.27. (9.180)

‘Evidently none of the coefficients of NOMITSU’s equation differs from the cor-
responding coefficients of (9.177) by as much as 7%’. Incidentally, FISCHER [14]
used a prediction equation of the form (9.175) with (index F for FISCHER)

AF = 2.47σ−2
0 + 1, BF = 1.0, CF = 1.0. (9.181)

Equation (9.178) together with (9.162) can be applied to a particular lake to deter-
mine ∂ζ/∂n and W, incorporating thereby the effects of bottom friction. Once these
quantities are determined, the vertical structure of the horizontal current follows
from (9.158), while ζ follows from an integration in time. PLATZMAN [43] did
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apply this procedure to Lake Erie. JELESNIANSKI [29] generalised the method by
employing a slip condition at the bottom surface; he applied it to the computation
of hurricane surges.

9.3.5 The Dynamical Prediction of Wind Tides on Lake Erie

PLATZMAN’s [43] interest in the computation of wind tides on Lake Erie has been
stimulated (i) by the practical relevance that high and low water levels (on the East
and West shores, respectively) may cause considerable damage and hindrance to
shipping, (ii) by the existence of earlier, cruder analyses of the problem,9 (iii) by
the availability of satisfactory hydrographic and meteorological observations over a
long period and (iv) by the large amplitude of the principal wind tide, which at least
four times in a 20-year period has exceeded 3.5 m in the set-up between Buffalo and
Toledo, a distance of about 385 km. PLATZMAN’s work on the computation of wind
tides on Lake Erie is likely the first, in which high speed computers have been used
in a problem of this mathematical complexity.

9.3.5.1 Wind data and lake-level data

PLATZMAN decided to use exclusively wind data and lake-level data that were avail-
able at hourly intervals from anemometers located not more than 32 km from the
Lake shore which are maintained by the US Weather Bureau and by the Meteoro-
logical Service of Canada. This led to the selection of six stations: Toledo, San-
dusky, Cleveland, Erie, Buffalo (all USA) and Clear Creak (Canada), see Fig. 9.19a.
With the exception of the station at Sandusky the data available are wind speed and
direction, taken over a 1-min interval each hour. At Sandusky, the hourly wind data
are values averaged over a 1-h interval (which is probably more adequate for the
characterisation of wind-tide computations).

PLATZMAN used lake-level data from records of continuous stage recorders
maintained by the US Lake Survey and by the Canadian Hydrographic Survey; these
agencies provide a long and continuous period of records and are easily accessible.
The data were available as ‘hourly scaled values’ for each hour of the day, each
‘scaled value’ being the instantaneous water level (with an accuracy of about 3 mm).
Hourly scaled values are well suited for studies of annual and secular variations of
lake level. For lake-level surges produced by meso-scale atmospheric disturbances,
one must have recourse to the continuous record because the time scale of such
surges usually is less than 1 h. PLATZMAN, however, concludes that the middle
latitude cyclones cause lake surface fluctuations – referred to generally as ‘wind
tides’ – that have characteristic time scales of the duration of several hours. In a
way, PLATZMAN was left with no other choice since the water-level gages used are
located in stilling wells which suppress short-period wave action.

9 See, e.g. [22, 25, 27, 30].
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Fig. 9.19 (a) Locations (•) of six first-order weather stations that provided hourly wind data used
to compute wind stress. Areas in grey identify regions of predominant influence (λm > 0.5) in
wind stress analysis; (b) locations (�) of lake-level recorders (limnigraphs) for which continuous
records are available during at least 1 year in the 20-year period 1940–1959 and weather stations
(◦) of panel (a). Reproduced from PLATZMAN [43], c©American Meteorological Society, reprinted
with permission

According to PLATZMAN, ‘for the purpose of examining records of lake level
and wind, the 20-year period 1940–1959 was selected rather arbitrarily. During this
period, each of the 11 recording gages was in operation during the entire 20-year
period for at least 1 year. The locations of these gages are shown in Fig. 9.19b. Five
of these stations were in operation during the entire 20-year period; they provide the
main source of data and are located at Toledo, Cleveland, Buffalo, Port Colborne
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and Port Stanley’. Some of the gages are ‘sheltered’ behind breakwaters, within
docking slips, etc., which causes certain features (resonances, reflections) of local
nature and typical for the location and less for the global response to the wind tide.
These have been accordingly taken into account.

9.3.5.2 Characterisation of Lake Erie wind tides

‘IRISH and PLATZMAN [28] examined hourly scaled values of Buffalo and Toledo
lake levels for the 20-year period 1940–1959 and tabulated the dates of incidence
in which the difference in level between these stations exceeded 1.83 m (= 6 ft).
During this period 76 cases were found in which Buffalo lake level exceeded that at
Toledo by 1.83 m or more’, and three cases where it was reverse. Out of these cases
PLATZMAN selected 10 for computations for which ‘the relevant interval for numer-
ical computation was taken to be the 5-day period centred on the day of occurrence
of peak set-up. In all cases this interval spans the storm surge period and also induces
the principal resurgences if any occur’. The corresponding inclusive dates are given
in Table 9.5. PLATZMAN further states ‘that during the 24-h preceding the time
of peak set-up, most low-pressure centres move from Southwest to Northeast along
tracks that lie within a band about 1000 km (600 miles) wide, the right edge of which
coincides with the longitudinal axis of the Lake. Figure 9.20 shows such antecedent
tracks in the nine cases’ that were considered by PLATZMAN for computations.
For all these cases he plotted the observed Buffalo-minus-Toledo set-up time series
and compared these with the corresponding time series of the wind-speed squared
component along the major lake axis at Clear Creak, demonstrating in all but one
case very good coincidence. ‘Clear Creak was selected for comparison with the
set-up curves because of its good exposure to Southwest winds [. . .]’. In Fig. 9.21
an excerpt of the nine panels of PLATZMAN’s [43] Fig. 9 is given.

Table 9.5 Date and year of peak Buffalo-minus-Toledo set-up (based upon hourly scaled values)
and inclusive dates, for the 10 cases selected to provide wind data dynamical computation of lake
level. Reproduced from PLATZMAN [43] by permission of American Meteorological Society

Hour Peak set-up
Casea Date (EST) (feet / m) Inclusive dates

26 7 Oct 1951 19 7.6/2.32 5–9 Oct 1951
28 21 Dec 1951 18 9.5/2.90 19–23 Dec 1951
31 21 Feb 1953 12 10.8/3.29 19–23 Feb 1953
33 21 Sep 1954 19 9.4/2.87 19–23 Sep 1954
35 22 Mar 1955 18 12.9/3.93 20–24 Mar 1955
36 3 Nov 1955 10 8.1/2.42 1–5 Nov 1955
37 17 Nov 1955 08 12.9/3.93 15-19 Nov 1955
39 16 Nov 1956 10 8.9/2.71 14–18 Nov 1956
40 21 Nov 1956 15 11.1/3.38 19–23 Nov 1956
46 22 Jan 1959 05 7.1/2.16 20–24 Jan 1959
aThis number pertains to the case numeration used by PLATZMAN. They have no
other meaning than to identify the storm case studied by him. ETS = Eastern Standard
Time
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Fig. 9.20 Antecedent tracks of low-pressure centres in the nine cases selected by PLATZMAN for
numerical wind-tide computation. Each stream track is for a 24-h period and terminates on position
of low-pressure centre at time of peak set-up on Lake Erie. This position is shown by circle that
encloses the corresponding case number. Dotted line is mean track. Reproduced from PLATZMAN

[43], c©American Meteorological Society, reprinted with permission
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Fig. 9.19b. Reproduced from Fig. 14 of PLATZMAN [43] but differently arranged, c© American
Meteorological Society, reprinted with permission
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9.3.5.3 Wind stress analysis

A notoriously difficult problem for any realistic computation of wind-induced cur-
rents in lakes is the transfer of the measurements of the wind speed and direction
at a number of wind stations to wind shear stress values at any location on the lake
surface. A popular approach is to construct the surface shear stress as a linear com-
bination of ρakm |Wm(t)|Wm(t), where Wm(t) denotes the wind vector at time t at
anemometer station m. ρa is the density of air and km a dimensionless skin friction
coefficient, assumed to adjust the wind shear at the anemometer height through the
PRANDTL layer to the surface. Thus,

τ s(x, y, t) =
∑

m

λm(x, y)ρakm |Wm(t)|Wm(t) (9.182)

achieves this transfer, in which λm(x, y) is a second correcting factor which
accounts for corrections due to interpolation between land stations and arbitrary lake
surface position, obstacle effects, difference in roughness, fetch, etc. PLATZMAN

writes instead of (9.182)

τs

ρ
(x, y, t) =

∑

m

λm(x, y)Km |Wm(t)|Wm(t), Km = ρa

ρ
km, (9.183)

where Km is a dimensionless ‘stress factor’; moreover, he chose (rather arbitrarily)
the same value for all stations, Km = K , yielding

τs

ρ
(x, y, t) = K

∑

m

λm(x, y)|Wm(t)|Wm(t). (9.184)

Of special interest is the specification of the interpolation function λm(P), where
P denotes an arbitrary point (x, y). The function λm(P) may be regarded as the
‘influence’ at P of data at Pm . The following conditions are imposed upon λm

(a) λm(Pn) =
{

1 if m = n,

0 if m = n,
(b)

∑

m λm(P) = 1,

(c) λm(P) ≥ 0,

(d) limP→P∞(P) = wm .

(9.185)

Condition (a) means that interpolation at any data point Pn gives exactly the data at
Pn , the influence there of data at all other points Pm(m = n) being zero. Condition
(b) is needed to ensure correct interpolation of uniform data. Condition (c) prevents
data at any Pm from giving a negative contribution to the interpolated value at any
P; this excludes most types of polynomial interpolation. Finally, in (d) the notation
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P → P∞ signifies that if P approaches the point at infinity (P∞), wm is the weight
factor that expresses quality or confidence level of the data at Pm [. . .].’

‘Many functions may be synthesised to satisfy (9.185). The following construc-
tion gave reasonable results. Define with

am(P) ≡ (x − xm)
2 + (y − ym)

2 (9.186)

the square of the distance between P and Pm . Further, let

fm(P) ≡ wm

∏

n =m

an(P) (9.187)

be the product of all an(P) except am(P), with the weight factor wm of (d). Then,

λm(P) ≡ fm(P)
∑

k fk(P)
(9.188)

meets all four conditions (a)–(d). To see this, note first am(Pm) = 0 and am(P) = 0
when P = Pm , so fm(Pm) = 0; hence (9.188) meets (a). Condition (b) obviously
is satisfied by (9.188), and (c) is secured by the fact that am ≥ 0. To establish
(d), divide numerator and denominator on the right in (9.188) by the product of all
factors an(P); then

λm(P) =
fm(P)

∏

k ak(P)
∑

k fk(P)
∏

j a j (P)

=

1

am(P)

(

fm(P)
∏

k =m ak(P)

)

∑

k
1

ak(P)

(

fk(P)
∏

j =k a j (P)

)

(9.187)=
wm

am(P)
∑

k
fk(P)

ak(P)

. (9.189)

In the limit P → P∞, the definition (9.186) makes am(P)→ R2, where R(→∞)
is the distance between P and the centroid of the data point configuration. It follows
that in the limit P → P∞ the factors ak(P) approach equality for all k and may
be cancelled in (9.189); application of (b) to the denominator then leads at once to
(d)’.10

This is PLATZMAN’s [43] parameterisation of the function λm(x, y). ‘For each
data point Pm (that is, for each wind station) one may construct contours of the
function λm(P).’ The contour lines λm(P) = 0.5 for the six stations around Lake

10 This construction can be generalised by taking for am(P) any monotone function of the distance
between P and Pm , such that am(Pm) = 0 and am(P) approaches a limit independent of the
location of Pm as P → P∞.
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Erie are shown in Fig. 9.19a. The regions λm(P) ≥ 0.5 thus delineated show the
domain of predominant influence for each station.

9.3.5.4 Prerequisites of wind-tide computation

The prediction equations for the wind-tide computation are described in Sect. 9.3.1
of this chapter and comprise (9.175) and (9.177) which have been numeri-
cally solved by PLATZMAN in the lake domain for the volume transport vector
W(x, y, t) = (U + iV )(x, y, t); once these are known, (9.162) is numerically
integrated in time for the free surface elevation ζ(x, y, t). This latter function, in
particular, delivers the time series ζm(t) at the limnigraph stations around the Lake
and allows computation of the temporal evaluation of the set-up between the Buffalo
and Toledo stations. We omit the presentation of the numerical scheme, which is
outlined by PLATZMAN [43]. To this end, a square lattice for the finite difference
approximation has been judiciously chosen with grid size �s and time step �t .
These and the pertinent physical parameters are collected in Table 9.6. In addition,
the input consisted of the following wind data:

• Hourly wind speed and direction at each of the six wind stations;
• Stress factor Km for each wind station (adjusted to K = 4×10−6 for all stations).

Computations were done by PLATZMAN for the 5-day period centred on the day of
occurrence of maximum set-up for each of nine cases of storm events that generated
lake-level differences between Buffalo and Toledo larger than 1.83 m (6 ft). The
computation delivered time-dependent space-distributed fields of lake level, volume
transport vectors and surface current speed and direction. PLATZMAN’s [43] paper,
however, ‘only’ reports on lake-level time series at grid points closest to the limni-
graph stations.

9.3.5.5 Verification analysis

In what follows, we shall only present a small fraction of the results discussed by
PLATZMAN [43]. He showed this comparison for nine storm episodes. The subse-
quent figures display time series over 5 days of the set-up at selected water-level
stations; here ‘set-up’ means the surface displacement at a particular station above
the still water datum. PLATZMAN writes ‘For verification of computed wind tides,
one must compare computed and observed set-up. This comparison is shown for

Table 9.6 Parameter choices for the wind-tide computations in Lake Erie

Mesh size (7.5 min of arc of the meridian
of mean latitude 42◦10′N)

�s = 1388.4 m

Time step �t = 6 min
Gravity constant g = 9.8036 m s−2

Angular velocity of Earth $ = 7.2921× 10−5 s−1

Coriolis parameter f = 0.97902× 10−4 s−1

( f = 2$ sinφ for φ = 42◦10′N)
Vertical eddy viscosity ν = 4× 10−3 m2 s−1
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Buffalo-minus-Toledo set-up in Fig. 9.21 [which is a subset of PLATZMAN’s, [43],
Fig. 14] (heavy curves: observed set-up, light curves: computed set-up). Computed
set-up is on the whole in good agreement with that observed, notably in Cases 33, 35
and 37. Case 26 is somewhat anomalous’; agreement between observed and com-
puted set-up for the seven cases not shown here lies in between Cases 26 and 37.

PLATZMAN also examined the computed set-up at individual stations. For this
purpose, computed and observed set-up curves for the nine cases are shown in
PLATZMAN’s article in his figure 16a–i, of which we reproduce here just Case 35
in Fig. 9.22. ‘Six stations are represented in an arrangement such that the two on
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Fig. 9.22 Set-up, observed (heavy curves) and computed (light curves) for storm Case 35. The
5-day period is centred on the day of occurrence of maximum set-up, given in feet (1 ft = 0.3048 m);
for station positions, see Fig. 9.19b. Reproduced from Fig. 16e of PLATZMAN [43] but differently
arranged, c© American Meteorological Society, reprinted with permission
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the top are located at the Western end of the Lake (Monroe, Toledo), the two on
the bottom are at the Eastern end (Buffalo and Port Colborne), and the two in the
middle are located about midway between the Western and Eastern ends of the Lake
(Cleveland and Port Stanley), see Fig. 9.19b for the station locations. Since the two
latter stations are near the principal set-up node, the records there show only rela-
tively minor fluctuations and not much coherence’. Agreement between computed
and observed set-up is remarkable in this case and it is good in all other cases not
reproduced here. PLATZMAN also notes that ‘in Case 35, the computed set-up at
Buffalo is much more “ragged” than the observed. The same can also be seen at
other stations [. . .] and in other cases. There are two reasons for this. First, the
curves of computed set-up are drawn from half-hourly values, while the curves of
observed set-up are drawn from hourly values [. . .]. Second, the frequency spectrum
of computed set-up closely mirrors that of the hourly input winds. Since the latter
are 1-min values [. . .], they tend to be very ragged, and since only six stations are
used in the wind stress analysis, the interpolation procedure is not very effective in
reducing high-frequency components.’

9.4 Final Remarks

This chapter was devoted to the mathematical–numerical determination of the verti-
cal distribution of wind-induced currents in homogeneous lakes and lakes stratified
in two layers, when these lakes are subjected at their free surface to wind shear.
The theory has been constructed from simple to complex; nevertheless, the non-
linear cases, in which the complete three-dimensional bounded geometry of natural
lakes that are embedded in a topography influenced external wind field remained
untouched and are reserved for close inspection in Volume 3 of this monograph.
The key ideas, which made the high analyticity of the formulation possible, were
(i) omission of the temperature as an evolving field, (ii) the tacit acceptance of the
shallow-water assumption and (iii) restriction to linearity. Assumption (i) implied
that any stratification was considered to be ‘frozen’ into a vertical-layered structure;
(ii) meant that the entire lake was considered a boundary layer for which only the
shear stresses τxz and τyz survive and (iii) led to the omission of all convective
acceleration terms and the application of the free surface boundary conditions at the
undeformed surface. These assumptions are all physically transparent – at least they
provide a rough delineation of the validity of the emerging model equations. Math-
ematically, they imply that the differential equations for the horizontal current de-
couple from the vertical velocity component. Together with the vertically integrated
mass balance equation and adequate stress boundary conditions at the free surface
and the no-slip condition at the basal surface (which is assumed to be horizontal at
all positions of the basin, a prerequisite that the de-coupling of the horizontal and
the vertical problems is possible) form a well-posed initial boundary value problem.
The solution of this problem which, for a homogeneous water basin, was set up as a
set of linear integral equations as early as 1933, was, however, out of reach prior to
electronic computation. Further rather ingenious mathematical steps were needed to
transform the integral equation formulation into a system of differential equations.
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This was achieved in the 1960s of the last century – we have pointed out several
variants in the description of the storm surge problem for Lake Erie.

PLATZMAN [43] applied his formulation of the problem to several storm surges
as was described in the last subsection to this chapter. He employed early electronic
computation and demonstrated good agreement of the computed set-up time series
at limnigraph positions around Lake Erie with the measured ones. Good agreement
was also obtained in other cases of storm surge events. It is noteworthy that these
computations are among those activities, which did not only provide verification
of the model equations for storm surges but also acted as inception of the rapid
evolution of computational methods in meteorology and oceanography.
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Chapter 10
Phenomenological Coefficients of Water

This chapter is based on the work done by HUTTER and TRÖSCH [35] and exten-
sions of it. We shall list the phenomenological coefficients which describe water as
a heat-conducting viscous fluid. Such fluids are described phenomenologically by
the following coefficients:

ρ density,
ν, μ, ζ kinematic and dynamic viscosities,
cp, cv specific heats at constant pressure and constant volume, respectively,
κ, χ heat conductivity, thermal diffusivity.

Other parameters, e.g. the coefficients of thermal expansion, are derivable from
these fundamental coefficients. It is known that the viscosities, specific heats and
coefficient of thermal expansion are, in general, functions of the temperature, pres-
sure, density and the content of impurities, e.g. salts and suspended organic and
inorganic matter.

When studying the material properties of water, one quickly recognises that
‘water’ is not a fluid with uniquely defined properties. For one, both hydrogen and
oxygen have isotopes. The hydrogen atom exists in three different stable forms (pro-
tium, deuterium and tritium) and two radioactive ones (4H and 5H). The oxygen has
also five isotopes, of which two (14O and 15O) are radioactive ones. Thus, overall,
18 stable different kinds of water exist, with slightly different density, melting and
boiling temperatures, specific heats, surface tension, viscosity, electrical conductiv-
ity, etc. As a result, ‘pure water’ is a mixture of all of them presented in different
proportions. Moreover, investigations of the last decades have shown that water has
a clustered structure: individual water molecules are joined together via hydrogen
bonds so that water should not be considered as a collection of separate molecules
but as a united association of clusters. This cluster structure is the reason for many
important water anomalies, including the existence of the density maximum and the
sharp increase of its specific volume while freezing. Via its cluster structure and
isotopic composition, water has a certain ‘memory’: one can easily distinguish, say,
(i) rain water, just condensed from vapour, by its larger deuterium concentration or
(ii) water just melted out of ice by its large and ice-structured water clusters. We,

K. Hutter et al., Physics of Lakes, Volume 1: Foundation of the Mathematical
and Physical Background, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-642-15178-1_10,
C© Springer-Verlag Berlin Heidelberg 2011
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however, shall here not discuss these anomalous properties, but rather present the
material properties of ‘usual’ natural water and their dependency on temperature,
pressure, salinity and suspended matter.

10.1 Density of Water

Density measurements of water have been conducted separately for pure and natural
water. We shall differentiate between three forms of water: (i) pure water, (ii) natural
water and (iii) salt water. Pure water consists of distilled H2O molecules with a cer-
tain unspecified but small proportion of deuterium and tritium water; however, these
heavy water molecules are so few that they are assumed not to affect the density in
any measurably significant proportion. Salt water is pure water mixed with salt. The
salt in the ocean water is composed of several different minerals, mostly Na+ and
Cl− ions but also Mg++ and Ca++, SO−−4 , etc., and, depending on the proportions
of these the salts will differently affect the density function. In many applications
these variations of salt compositions are not very significant, because they exer-
cise an influence on the density that is too small to become observable in the lake
physics results. In such cases one defines a standard composition and uses salinity
as the variable characterising the salt content and measures it in terms of electrical
conductivity in a gross fashion. Finally, natural water is fresh water as it arises in
rivers and lakes. It also contains salts, but because their concentration is small, one
speaks of mineralisation rather than salinity. Differences of the mineralisation of
natural waters of different lakes are sometimes so large that the density function
needs separate calibration for such lakes (e.g. for Lake Baikal [59]). However, in
lakes, which often possess a small, nearly constant mineral content, which does not
affect the density function, also the pressure dependence may be ignored down to
200–300 m. In this case, there only remains the temperature that affects the value of
the density. For more information on principles of measurement of water tempera-
ture, electrical conductivity and density, as well as on other classifications of water
due to the salinity concentration, the reader is advised to read part ‘Observations
and measurements’ in Volume 3, of this treatize.

In the temperature range of Tf ≤ T ≤ 100◦C, where Tf is the freezing tem-
perature, the density is not a monotonous function of the temperature. For almost
all other substances an increase of the density is measured when the temperature
decreases. This monotonic behaviour holds for fresh water only for temperatures
above approximately 4◦C; as this temperature is crossed water shows an abnormal
behaviour. Pure water has a density maximum at approximately 4◦C (3.98◦C more
accurately), i.e. the density decreases when the temperature falls below this value.
This property has important implications for the state of the Earth and its living
populations. If this density maximum would not exist above the freezing point,
a lake would freeze in winter starting from the bottom with its lowest temper-
ature and eventually freeze through its entire depth. The solar irradiation would
be too small to melt the ice. The living creatures would be without nutrients and
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would mostly die. Instead, a lake freezes from its surface due to the non-monotonic
density–temperature relationship; the ice floats on the surface because of an addi-
tional density decrease at freezing from water to ice. The ice cover at the surface
forms an insulator of the cold from above for the entire lake below, which in winter
assumes a temperature between 0 and 4◦C. The density variation of pure water as
a function of temperature in the interval 0◦C ≤ T ≤ 40◦C is shown in Fig. 10.1.
Despite the fact that this non-monotonicity of the density as a function of tempera-
ture is obviously very small (the relative density change in the temperature range of
20◦C is of the order of 10−3) it is of immense significance.

Measurements of the density of pure water date back to the NAPOLEONian times
when the standard litre was introduced as the unit of volume into the metric system.
According to BOWMAN and SCHOONOVER [11], the first successful density mea-
surements date back to the beginning of the 20th century and have been collected
by TILTON and TAYLOR [65] from the US National Bureau of Standards. They give
tables for the density of ‘normal’ water as a function of temperature and account for
the content of air in solution, but ignore the influence of the pressure. This correction
was accounted for by BOWMAN and SCHOONOVER [11]. Their formula is

ρ =
{[

1− (T − 3.9863)2

508929.2

T + 288.9414

T + 68.12963

]

× 0.99973

}

× PL × AL,

PL = 1

1− c

(
Ba

760
+ I

1033
− 1

) = 1

1− c(p − 1)
,

AL = 1− (2.11− 0.053T )×
(

1− 1

1+ t

)

× 10−6. (10.1)

In this formula, T is the temperature in degree CELSIUS, c is a measure of com-
pressibility (= 47.7 ppm atm−1), Ba is the barometric pressure (measured in mm

Fig. 10.1 Density variation
of pure water as a function of
the temperature, obtained
with the formula of CHEN

and MILLERO [19] with
s = 0, p = 1 atm
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mercury column), I is the depth below the free water surface and p the absolute
pressure (measured in bar); finally, t is the time (measured in days) since the last
de-aeration. The value of the density computed this way is in CGS units, i.e. g cm−3.
The term in braces is the density formula by TILTON and TAYLOR in g cm−3, PL
is the correction factor that accounts for the compressibility and AL that for the
de-aeration. Formula (10.1) is valid for ‘normal’ water, i.e. water of a ‘mean’ com-
position of isotopes. A consequence of this composition is, according to BOWMAN

and SCHOONOVER, corroborated by modern experimentalists, but measurable only
at density differences of somewhat more than one-millionth part. The term in braces
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Fig. 10.2 Density of pure water as a function of the temperature and the pressure in the ranges
T ∈ [0, 30]◦C and p ∈ [1, 200] bar, corresponding to water depths between 0 and 2200 m, from
[23], c© Laboratory of Hydraulics, Hydrology and Glaciology at ETH Zurich, with permission
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of formula (10.1) can be approximated by a polynomial of the third degree. This
cubic approximation is said to be valid for T ∈ [0, 24]◦C and reads

ρ =
{[

0.059385T 3 − 8.56272T 2 + 65.4891T
]

× 10−6 + 0.99984298
}

×PL × AL. (10.2)

The values of ρ obtained with (10.2) differ from those of (10.1) at the sixth digit
only. Formula (10.2) without the factors PL and AL has been published by BÜHRER

and AMBÜHL [15].
An additional very complicated formula can be found in the ASME Steam Tables

[1]. The formulae shown in these tables are also said to hold for high temperatures
and pressures; they are for this reason not very accurate in the temperature range
T ∈ [0, 30]◦C and at pressures p ∈ [105, 107] Pa. The tolerance is approximately
0.1 per thousand (0.1 ppt).1

The density variation of pure water as a function of temperature and pressure
(without the account of dissolved air, AL = 1) is shown in Fig. 10.2 as computed
by the formulae (i) of the ASME Steam Tables, (ii) the TILTON and TAYLOR for-
mula and (iii) a formula of WILSON and BRADLEY [69], see later formula (10.3).
All three formulae show the typical non-linearity of the density function on the
temperature in the limnologically significant range, but the non-monotonicity of the
density function as a function of temperature for T ∈ [0, 4]◦C is not reproduced
by all formulae. The TILTON and TAYLOR and WILSON and BRADLEY formulae
do not show the density maximum for T ≈ 4◦C. Because in limnology change of
the convective flow regime due to the non-monotonicity of the thermal equation of
state is significant (e.g. see Fig. 1.9 in Chap. 1), the parameterisation of the density
function is of utmost importance in order that the associated flow instabilities and
convective processes can properly be captured.

10.1.1 Natural Water and Sea Water

Natural water and sea water are distinguished from pure water by the addition of
salts. So-called standard sea water contains the following ions (see [2]) in ppt:

K+ 0.388
Ca++ 0.400
Mg++ 1.272
SO−−4 2.649
Na+ 10.556
Cl− 18.980
H2O 965.675
Not identified 0.188

1 We shall use ‘ppt’ as the standard symbol for ‘parts per thousand’. So 1 ppt = 0.001.
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with mass proportions as indicated (they add up to 1000.008). The NaCl proportions
are obviously contributing the largest mass.

Density measurements with sea water have been conducted by KNUDSEN [43],
EKMAN [25], NEWTON and KENNEDY [53] and WILSON and BRADLEY [69].
Their measurements comprise the temperature interval T ∈ [0, 40]◦C and the salin-
ity interval s ∈ [0, 40] ppt. For higher salinity, see [37]. WILSON and BRADLEY

did not analyse the mineral composition and call their water ‘natural sea water’,
taken from the Atlantic Ocean, Bermuda Key West Region. They only state that
organic tracers were removed. For this sea water they derived the following density–
temperature–salinity–pressure formula:

1

ρ
= 0.70200+ N (T, s)

D(p, T, s)
, (10.3)

N (T, s) = 100(17.5273+ 0.1101T − 0.000639T 2

−0.0399986s − 0.000107T s),

D(p, T, s) = p + 5880.9+ 37.592T − 0.34395T 2 + 2.2524s.

In this formula, p is the pressure (measured in bar), T is the temperature (measured
in degree CELSIUS) and s is the salinity (measured in g cm−3). For s = 0, (10.3)
should generate the same results as formulae (10.1) and (10.2) and the formula of the
ASME Steam Tables [1]. Figure 10.2 shows that differences are particularly large
in the temperature range [0, 4)◦C. In particular, it seems to generate for all pressures
a monotonic behaviour of the density as a function of the temperature. The formula
is therefore not recommended for limnological applications when T ∈ [0, 4)◦C.

Today, the thermal equation of state that is universally accepted in limnology and
oceanography is the standard formula proposed by CHEN and MILLERO [19]. It
reads

ρ(T, s) = ρ1(T )+ ρ2(T )s, [kg m−3],
ρ1(T ) = 999.8395 + 6.7914× 10−2 T − 9.0894× 10−3 T 2

+ 1.0171× 10−4 T 3 − 1.2846× 10−6 T 4

+ 1.1592× 10−8 T 5 − 5.0125× 10−11 T 6,

ρ2(T ) = 8.181× 10−1 − 3.85× 10−3 T + 4.96× 10−5 T 2,

(10.4)

in which the temperature must be given in degree CELSIUS2 and the salinity in
grams of solved substance per kilogram of pure water. The values of the density
are listed in Table 10.1. A somewhat simpler formula in which the temperature is
expressed as a polynomial of third degree is

ρ(T, s) = 999.8395 + 6.7914× 10−2 T
− 9.0894× 10−3 T 2

+ 1.0171× 10−4 T 3.

(10.5)

2 In all subsequent formulae it is understood that the temperature is given in degree CELSIUS.
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Table 10.1 Properties of pure water in the temperature range of 0–35◦C

◦C, temp ρ, density cp, specific heat
αT, coefficient of
thermal expansion

ν, kinematic
viscosity

[◦C] [kg m−3] [J kg−1 K−1] [K−1] [m2 s−1]
0 999.8395 4217.4 −6.8× 10−5 1.78029× 10−6

1 999.89843 4213.8683 −5.00943× 10−5 1.72178× 10−6

2 999.93976 4210.58612 −3.27746× 10−5 1.66633× 10−6

3 999.96408 4207.54076 −1.60112× 10−5 1.61372× 10−6

4 999.97192 4204.71986 2.24665× 10−5 1.56375× 10−6

5 999.96378 4202.11143 1.59601× 10−5 1.51624× 10−6

6 999.94016 4199.70382 3.1221× 10−5 1.47102× 10−6

7 999.90151 4197.48579 4.6032× 10−5 1.42793× 10−6

8 999.84827 4195.44641 6.04165× 10−5 1.38685× 10−6

9 999.78086 4193.57514 7.43968× 10−5 1.34764× 10−6

10 999.69967 4191.8618 8.79937× 10−5 1.31018× 10−6

11 999.60508 4190.29657 1.01227× 10−4 1.27437× 10−6

12 999.49745 4188.86998 1.14117× 10−4 1.24011× 10−6

13 999.3771 4187.57294 1.26679× 10−4 1.2073× 10−6

14 999.24437 4186.39671 1.38932× 10−4 1.17587× 10−6

15 999.09957 4185.33292 1.5089× 10−4 1.14573× 10−6

16 998.94297 4184.37356 1.6257× 10−4 1.1168× 10−6

17 998.77486 4183.51098 1.73984× 10−4 1.08903× 10−6

18 998.59551 4182.73788 1.85147× 10−4 1.06235× 10−6

19 998.40516 4182.04734 1.9607× 10−4 1.03671× 10−6

20 998.20405 4181.4328 2.06765× 10−4 1.01203× 10−6

21 997.99242 4180.88805 2.17242× 10−4 9.88287× 10−7

22 997.77048 4180.40726 2.27513× 10−4 9.65418× 10−7

23 997.53844 4179.98494 2.37586× 10−4 9.43384× 10−7

24 997.2965 4179.61598 2.4747× 10−4 9.22143× 10−7

25 997.04486 4179.29562 2.57174× 10−4 9.01654× 10−7

26 996.7837 4179.01948 2.66705× 10−4 8.81883× 10−7

27 996.51319 4178.78351 2.7607× 10−4 8.62795× 10−7

28 996.2335 4178.58405 2.85276× 10−4 8.44358× 10−7

29 995.9448 4178.4178 2.9433× 10−4 8.26542× 10−7

30 995.64725 4178.2818 3.03237× 10−4 8.09317× 10−7

31 995.34099 4178.17348 3.12002× 10−4 7.92658× 10−7

32 995.02618 4178.09061 3.20631× 10−4 7.76539× 10−7

33 994.70295 4178.03133 3.29129× 10−4 7.60936× 10−7

34 994.37144 4177.99415 3.375× 10−4 7.45828× 10−7

35 994.03178 4177.97792 3.45749× 10−4 7.31191× 10−7

This formula was used by BÜHRER and AMBÜHL [15]; it describes the density of
water in the interval 0◦C < T < 30◦C accurate to six significant figures.

The ambient pressure is accounted for by a multiplicative factor according to

ρ(T, p) = ρ(T, p = 1 bar)× 1

1− p/Φ
, p in [bar], (10.6)
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in which the pressure must be expressed in bar, and the function Φ is given by

Φ(T ) = 19652.17 + 148.133 T − 2.293 T 2

+ 1.256× 10−2 T 3 − 4.180× 10−5 T 4.
(10.7)

A somewhat simpler description, which is adequate for lakes, uses instead of salinity
the electrical conductivity of water, κ; in terms of this one has

ρ(T, κ) = ρ(T ) (1+ βκ × κ20(T )) , (10.8)

in which the conductivity of water is given in µ S m−1 and referred to a standard
value of 20◦C,

κ20 = κ(1.72228− 0.0541369T + 0.00114842T 2 − 0.0000222651T 3). (10.9)

In this formula κ is the value of the conductivity measured at the temperature T [◦C].
IMBODEN and WÜEST [36] give for βκ the value

βκ = 0.705× 10−4µ S m−1. (10.10)

In limnology, the temperature range is between 0 and 30◦C; larger temperatures
virtually never arise. For computational purposes the rather complicated formulae
given above can then also be replaced by a quadratic equation

ρ(T ) = ρ0
(

1− α̃(T − T0)
2). (10.11)

The reference temperature is chosen as that of the density maximum, T0 = 4◦C with
the corresponding density ρ0 = ρ(4◦C); α̃ has the value

α̃ = 6.493× 10−6 [K−1]. (10.12)

If one also needs the coefficient of thermal expansion,

αT = − 1

ρ

dρ

dT
, (10.13)

then for (10.11) αT is given by

αT = 2α̃(T − T0)

1− α̃(T − T0)2
≈ 2α̃(T − T0). (10.14)

Table 10.1 and Fig. 10.3 display the variation of the coefficient of thermal expansion
as a function of temperature. One recognises that the temperature dependence of αT

is nearly linear, so that the approximation (10.14) is justified.
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Fig. 10.3 Coefficient of
thermal expansion for pure
water computed with the data
generated by formula (10.4)
of CHEN and MILLERO [19]
for s = 0 and p = 1 bar
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It should be recognised that the coefficient of thermal expansion does not change
sign at high pressure and high salinity. According to the CHEN and MILLERO for-
mula the zeros of the coefficient of thermal expansion are given by zeros of the
equation

(
dρ1

dT
+ dρ2

dT
s

)

− ρ1(T )+ ρ2(T )s

1− p/Φ(T )

p

Φ2

dΦ

dT
= 0. (10.15)

These zeros for various values of the pressure and salinity are graphically illustrated
in Fig. 10.4.

Fig. 10.4 Zeros of the
coefficient of thermal
expansion (or temperatures of
maximum density) for water
as a function of the salinity
for the selected hydrostatic
pressures (in bar), which
correspond to water depths of
0, 500, 1000 and 2000 m. The
stars indicate the
corresponding freezing points
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10.1.2 Suspended Matter

In the above, water was regarded as a fluid which is only loaded by minerals in
chemical solution. Here, we give estimates of density changes, if water also contains
tracers in solid particular form. The size of particles that can be kept in suspension
depends principally on the degree of turbulence which exists in the water body at
a particular position in a fluid at rest; the particles must be buoyant in order not to
fall or rise in the fluid. Very small, slightly non-buoyant particles can be kept in
suspension by the BROWNian motion.

Consider a mixture of water with a number of solid particles (distinguished by
the identifier) α of partial density ρα and true density ρ̄α . Then

ρα = nα ρ̄α (10.16)

where nα is the volume fraction of component α. The density of the compound
water plus suspended particles is then given by

ρ =
∑

α

nα ρ̄α. (10.17)

For the admixture of only one sort of particles, we obtain from (10.17)

ρ = n1 ρ̄H2O + n2 ρ̄2 = n1ρ̄H2O + (1− n1) ρ̄2. (10.18)

This simple formula is graphically interpreted in Fig. 10.5.
To estimate the influence of a suspended tracer, consider water with true density

of 1000 kg m−3 and a sediment with ρ̄2 = 2500 kg m−3. Then formula (10.18)
implies the following compound densities:

(1− n1) 10−4 10−3 10−2 10−1

ρ 1000.25 1002.5 1015 1150

Fig. 10.5 Determination of
the density of a binary
composition of water and a
suspended component of
constant true density ρ̄2
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This implies that the influence of suspended sediments on the density of the com-
pound fluid at a volume fraction of 1% or more exceeds the influence of the tem-
perature by far. This is important for the intrusion of river water that is loaded with
sediments into lakes.

10.2 Specific Heat of Water

One of the anomalous properties of liquid water is its specific heat. It is more than
twice as large as that of ice and 5–30 times larger than that of other substances.
Moreover, the specific heat of all substances increases with growing temperature –
except only that of water (in the temperature range 0–35◦C) and mercury.

The specific heat or the molecular heat capacity of water at constant pressure
shows both a dependence on temperature, which is weak, and a dependence on
pressure, which is stronger. This dependence can be written as (see [34])

cp = 4190.0+ exp (46.40− 0.156T ) [J kg−1 K−1], T [◦C], (10.19)

or when pressure p (depth) [bar] and salinity s [g kg−1] are taken into account

cp = 4217.4− 3.6608 T + 0.13129 T 2

− 2.210× 10−3 T 3 + 1.508× 10−5 T 4

+ s (−6.616× 10−2 + 9.28× 10−3 T − 2.39× 10−5 T 2)

+ p (−4.917× 10−1 + 1.335× 10−2 T − 2.177× 10−4 T 2)

+ s p 3.441× 10−3

+ p2 1.50× 10−4, (10.20)

see [19]. Table 10.1 lists numerical values and Fig. 10.6 displays the pressure depen-
dence of cp for pure water constructed with formulae of the ASME Steam Tables
[1]. It is evident that both pressure and temperature dependencies are rather weak,
namely less than 2% for T ∈ [0, 30]◦C and p ∈ [1, 500] bar.

10.2.1 Specific Heat of Salty Water

The specific heat of water of different salinities in [ppt] at normal atmospheric pres-
sure [105 Pa] has been compiled from different sources by POPOV et al. [57]. Their
table is reproduced below as Table 10.2. It shows cp in [kJ kg−1 K−1] at various
temperatures T ∈ [−2, 40]◦C and salinities s ∈ [0, 40] ppt. Note that most data are
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Fig. 10.6 Specific heat at constant pressure, cp , of pure water as a function of temperature and
pressure according to ASME Steam Tables [1]

taken from various experimental sources as indicated; they are printed in the table
in regular type. Numbers in bold type have been obtained by using the formulae

cp [cal g−1 K−1] = 1.005− 4.226× 10−4T + 6.321× 10−6T 2,

cp [cal g−1 K−1] = 1.005− 4.136× 10−3s + 1.098× 10−4s2 (10.21)

−1.324× 10−6s3.
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Table 10.3 Specific heat cv [kJ kg−1 K−1] at constant volume for saline water at atmospheric
pressure [105 Pa] and T ∈ [0, 40]◦C and s ∈ [0, 40] ppt, calculated by MILLERO and KUBINSKI

[49], as compiled by POPOV et al. [57]

T
s [ppt]

[◦C] 0 5 10 15 20 25 30 35 40

0 4.2149 4.1800 4.1461 4.1129 4.0804 4.0482 4.0165 3.9851 3.9540
5 4.2019 4.1673 4.1341 4.1016 4.0697 4.0382 4.0071 3.9765 3.9641

10 4.1873 4.1538 4.1215 4.0899 4.0589 4.0284 3.9982 3.9686 3.9392
15 4.1715 4.1391 4.1080 4.0777 4.0478 4.0186 3.9898 3.9614 3.9332
20 4.1543 4.1229 4.0929 4.0631 4.0341 4.0056 3.9773 3.9495 3.9221
25 4.1356 4.1053 4.0759 4.0470 4.0186 3.9906 3.9630 3.9357 3.9087
30 4.1152 4.0864 4.0580 4.0302 4.0026 3.9756 3.9488 3.9222 3.8957
35 4.0945 4.0659 4.0381 4.0106 3.9835 3.9568 3.9302 3.9038 3.8775
40 4.0724 4.0440 4.0163 3.9890 3.9618 3.9348 3.9079 3.8810 3.8541

Table 10.4 Specific heat cp [kJ kg−1 K−1] at different constant pressures for sea water at s ∈
[34.8, 35] ppt in the temperature range T ∈ [−2, 20]◦C as compiled by POPOV et al. [57] from the
indicated sources. Values are computed ones

T p
s [ppt]

T p s = 34.8 ppt
[◦C] 104 Pa 34.8 [21, 26] 35 [68, 12] 35 [68, 12] [◦C] 104 Pa [21, 26]

–2 1000 3.906 5 1000 3.894
2000 3.873 2000 3.869
3000 3.810 3000 3.823
6000 3.760 6000 3.785

0 1000 3.906 8000 3.752
2000 3.873 10 1000 3.890
3000 3.819 2000 3.865
6000 3.772 3.834 3.698 3000 3.823
8000 3.735 15 1000 3.886

10000 3.776 3.318 2000 3.860
2 6000 3.839 3.709 3000 3.820

2000 3.929 3.919 20 1000 3.881
4000 3.883 3.834 2000 3.856
6000 3.844 3.718

10000 3.788 3.343

Note: The pressure at the bottom of a water column of 1 m is approximately 104 Pa, so that numbers
in the columns for pressure are approximately the water depth in metres

Formula (10.21)1 is given by JÄGER and STEINWEHR [39] and (10.21)2 by KUWA-
HARA [45]. For T = 20◦C the figures identified by ∗3 are computed values by
POPOV et al. [57] using the formula by PONIZOVSKY et al. [56]

cp [cal g−1 K−1] = 1− 1.307× 10−2s [ppt]. (10.22)

POPOV et al. [57] give also tables for the specific heats at constant (higher than
atmospheric) pressure, cp, and constant volume, cv . Their data are taken from rel-
atively early sources prior to 1975 and are all calculated from formulae, given in
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DEFANT [21], EKMAN [26], WANG and MILLERO [68], BRADSHAW and SCHLE-
ICHER [12] and FOFONOFF [31]. Table 10.3 lists cv [kJ kg−1 K−1] for saline water
at normal atmospheric pressure and for T ∈ [0, 40]◦C and s ∈ [0, 40] ppt. This
table is based on MILLERO and KUBINSKI [49]. Table 10.4, on the other hand, lists
cp [kJ kg−1 K−1] for sea water at s = 34.8 ppt, T ∈ [−2, 20]◦C and a selection of
pressures. It is seen from these tables that variations of the specific heats are gener-
ally very small. The relative difference between the maximum value and minimum
value

�c = c(max)− c(min)

c(max)
= 12%

is no more than 12%. A comparison between Tables 10.2 and 10.3 for s = 0 ppt also
shows that differences between cv and cp are generally only a few percent, certainly
less than 5%.

10.3 Viscosity of Water

As a compressible fluid, water possesses two dynamic viscosities, a shear viscosity
and a bulk viscosity. If T is the CAUCHY stress tensor and D the stretching tensor,
then the stress-stretching relation for a NEWTONian fluid is given by

T = ζ(tr D)1+ 2μ
(

D − 1
3 (tr D)1

)

, (10.23)

in which μ is the shear viscosity and ζ the bulk viscosity. For volume-preserving
fluids, (10.23) reduces to T = 2μD, with only one phenomenological quantity, the
shear viscosity.

Values for the viscosities are determined with the aid of viscometers, in which
a controlled flow of the substance of which the viscosity is to be determined is
generated as a consequence of equally controlled applied forces. An ideal flow con-
figuration is POISEUILLE flow, the steady flow in an infinitely long circular pipe. In
reality such flows can, however, not exactly be generated, because of ‘defects’ of the
idealised situation, e.g. transients at flow initiation and entrance and exit conditions,
because of the finiteness of the pipe in the experimental set-up, etc. The POISEUILLE

flow formula must, therefore, be corrected for these effects, see [47]. This method is
restricted to volume-preserving fluids. WHITE and KEARSLEY [70] employ a dif-
ferent experimental set-up. They measure the period of a torsion pendulum, which
carries at its end a spherical shell whose spherical gap is filled with the fluid for
which the viscosity (μ) is to be measured. The oscillations of the pendulum generate
in the spherical gap an (asymptotically) periodic motion. The dissipation generated
by this motion (a function of μ!) requires a power of working input for the steady
maintenance of the oscillation, which can be measured via the externally applied
torque and which allows determination of the viscosity, see [42]. Channel flows in
specially formed canals have also been used to find values for the shear viscosities
[54] as have been free fall experiments of rigid bodies of well-defined shapes in a



10.3 Viscosity of Water 405

viscous fluid [38]. Further experimental methods for the measurement of the shear
viscosity of salt water have been reported by FABUSS [28] and STOKES and MILLS

[62].
It is known from the kinetic theory of a monatomic gas that the bulk viscosity of

such gases is zero, a fact which follows already from MAXWELL’s kinetic theory
of gases, see [18, 66]. Non-vanishing bulk viscosity must, therefore, be traced back
to the complexity (i.e. non-sphericity of the molecular structure). HALL [32] has
presented such a statistical model for the water molecule in the temperature interval
T ∈ [0, 180]◦C and his values for ζ are the only ones known to us.

10.3.1 Pure Water

An early formula for the shear viscosity of pure water is by POISEUILLE [55] and
reads

μ = 17.8

1+ 0.0377T + 0.00022T 2
(10.24)

in which T is in degrees CELSIUS and μ appears in millipoise3. Reliable values of
μ for pure water have been collected by DORSEY [22]. They are based on results
obtained by BINGHAM and JACKSON in 1917 [10] and were summarised in the
formula:

1

μ
+ 120 = 2.1482

{

(T − 8.435)+
√

80784+ (T − 8.435)2
}

. (10.25)

Here, T is given in degree CELSIUS and μ−1 is then obtained in 1/millipoise. No
pressure dependence is indicated, and so (10.24) and (10.25) are assumed to hold
for p = 1 bar. The measurements of WHITE and KEARSLEY [70] have corroborated
these formulae. Figure 10.7 displays the viscosities in the temperature regime T ∈
[0, 30]◦C, and Table 10.5 lists values as given by three different sources.

The pressure dependence of the dynamic viscosity of pure water has been param-
eterised from a large number of data by STEIN [60, 61]. HUTTER and TRÖSCH [35]
present the graph of Fig. 10.8; it is based on STEIN’s formulae. These authors also
report that for p ∈ [1, 200] bar, values for the dynamic viscosity vary by less than
1%. This justifies to ignore such dependencies in lake physics applications.

Experimental data for the bulk viscosity are sparse. The values computed by
HALL [32] in the temperature range T ∈ [0, 50]◦C are as follows:

T [◦C] 0 4 5 10 20 30 40 50
ζ [cpoise] 8.0 7.0 6.8 6.0 4.7 3.7 2.9 2.4

3 1 millipoise equals 10−3 poise. 1 [poise] = 0.1 [kg m−1 s−1].
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Fig. 10.7 Dynamic viscosities for pure water as functions of temperature as given by the sources
in the inset, from [35], c© Laboratory of Hydraulics, Hydrology and Glaciology at ETH Zurich,
with permission

and a graph of ζ is given in Fig. 10.7. Note that ζ does not vanish; its values are
rather about four times larger than those for the shear viscosity μ. This is due to the
non-sphericity of the water molecule.

10.3.2 Sea Water

First measurements of the dynamic viscosity for sea water go back to KRÜMMEL

and RUPIN (see [44]) and embrace the temperature regime T ∈ [0, 30]◦C and a
salinity s ∈ [0, 40] ppt. MIYAKE and KOIZUMI [51] determined the dynamic vis-
cosity of salt water for T ∈ [0, 30]◦C and s ∈ [0, 20] ppt with a mean error of
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Table 10.5 Dynamic viscosityμ of pure water in poise as a function of temperature T ∈ [0, 30]◦C,
given by (i) Handbook of Chemistry and Physics [33], (ii) CAMP [16] and (iii) STOKES and
MILLS [62]

T

Handbook of
chemistry
and physics Poiseuille Stokes and mills

0 1.7921 1.78 1.787
1 1.7313 1.72
2 1.6728 1.67
3 1.6191 1.61
4 1.5674 1.56
5 1.5188 1.52 1.516
6 1.4728 1.47
7 1.4284 1.43
8 1.3860 1.39
9 1.3462 1.35
10 1.3077 1.31 1.306
11 1.2713 1.27
12 1.2363 1.24
13 1.2028 1.21
14 1.1709 1.17
15 1.1404 1.14 1.138
16 1.1111 1.12
17 1.0828 1.09
18 1.0559 1.06 1.053
19 1.0299 1.04
20 1.0050 1.01 1.002
21 0.9810 0.99
22 0.9579 0.96
23 0.9358 0.94
24 0.9142 0.92
25 0.8937 0.90 0.8903
26 0.8737 0.88
27 0.8545 0.86
28 0.8360 0.84
29 0.8180 0.82
30 0.8007 0.81 0.7975

±0.25 ppt. Their experiments were conducted with ‘natural’ sea water (for unmen-
tioned salinity s = 34 ppt). FABUSS and KOROSI [30], as well as ISDALE et al.
[37, 38], use artificial salt solutions and include regimes T ∈ [0, 180]◦C and
s ∈ [0, 180] ppt.

A simple way to account for a salinity dependence of the viscosity of water is to
write the kinematic viscosity as

ν(T, s) = ν0(T )(1− αs), α = 2.5. (10.26)

Note that such a formula does not hold for the dynamic viscosity, since μ(T, s)
grows with growing s, while the kinematic viscosity decreases. More accurate
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Fig. 10.8 Dynamic viscosity of pure water as a function of the pressure for (a) T = 0◦C and
(b) T = 50◦C, composed from figures in [35], c© Laboratory of Hydraulics, Hydrology and
Glaciology at ETH Zurich, with permission

formulae have also been presented. While MIYAKE and KOIZUMI write the dynamic
viscosity as

μ(T, s) = μ0

1+ α(s)T + β(s)T 2
, (10.27)

where μ0 = μ(T =0, s), and α and β are salinity dependent, but only known in tab-
ular form. ISDALE et al. [37, 38] adjusted an empirical formula to their experiments
as follows:

log10

(
μ20

μ

)

= T − 20

T + 109

{

A
(

1+ a1s + a2s2
)

+ B
(

1+ b1s + b2s2
)

(T − 20)
}

, (10.28)

in which

μ20 = 1.002+ c1s + c2s2,

A = 1.37220, B = 0.000813,

a1 = −0.001015, b1 = 0.006102, c1 = 0.001550,

a2 = 0.000005, b2 = −0.000040, c2 = 0.0000093,

and T is the temperature in degree CELSIUS, s is the salinity in ppt of weight; μ is
obtained in (10.28) as cpoise.

Figure 10.9 summarises graphically results of the dynamic viscosity determined
by the indicated authors. It is recognised that the values of μ(T, s) differ from one
another more and more as the salinity increases. This may be a consequence of the
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Fig. 10.9 Dynamic viscosity of salt water as a function of the salinity s ∈ [0, 30] ppt (= o/oo) for a
selection of temperatures T ∈ (0, 5, 10, 15, 20, 25, 30)◦C, from [35], c© Laboratory of Hydraulics,
Hydrology and Glaciology at ETH Zurich, with permission

experimental method or the fact that different salt solutions were used. Unfortu-
nately, the papers do not report the exact composition of the solutions. For appli-
cation in computations we recommend the formulae by DORSEY [22] and ISDALE

et al. [38], since viscosities based on the formulae by MIYAKE and KOIZUMI [51]
deviate from those of DORSEY by no more than 5%.

10.3.3 Natural Water

Since the dynamic viscosity changes only slightly with the degree of mineralisa-
tion, computations according to DORSEY [22] or ISDALE et al. [37, 38] are likely
accurate enough. Deviations of numerical values for the shear viscosity from that of
pure water are less that 5 ppt. Caution may only have to be observed for problems
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of convection in the buoyancy-sensitive temperature regime T ∈ [0, 8]◦C. Here,
it is important that the value of the temperature at maximum density is correctly
reproduced.

10.3.4 Suspended Matter

The preceding analysis has not yet accounted for suspended matter also called par-
ticulate tracers. In what follows, we shall regard the material as a mixture of a
NEWTONian fluid (water) and rigid particles of compact form. If these suspended
particles are spheres and statistically homogeneously distributed, then also the vis-
cosity of the mixture – treated as a NEWTONian fluid – behaves as that of an
isotropic fluid. When the suspended particles are platelets or rods, then an anisotropy
of the viscous stresses is to be expected.

A first determination of the shear viscosity of a NEWTONian fluid with rigid
spherical inclusions goes back the EINSTEIN [23] with a correction in [24]. His
focus in this chapter – incidentally his Ph.D. dissertation at the University of
Zürich, published after his famous papers on special relativity, photoelectric effect,
BROWNian motion – was an estimation of the dimension of sugar molecules, which
are in solution in a NEWTONian fluid. The computations are based on the assump-
tion of STOKESian viscous flow around rigid spheres which are sufficiently far from
one another so that the influence of the flow on a particular sphere by the flow around
all other spheres can be ignored.

EINSTEIN’s computation of the slow viscous flow around the sphere led him to
the following formula for the dynamic viscosity:

μ = μ0(1+ 2.5n), (10.29)

in which μ, μ0, n are the dynamic viscosity of the mixture treated as a NEWTONian
fluid, μ0 is that of the bearer fluid, here water, and n is the volume fraction of
suspended particles in the mixture. (EINSTEIN’s second paper corrects the numeri-
cal value of the pre-factor of the volume fraction term.) Formula (10.29) has been
generalised in various directions. Most of these generalisations are written in the
form

μ = μ0 (1+Φ(n,Re, . . .)) , (10.30)

in whichΦ accounts for the suspended particles in a more subtle way than had been
done by EINSTEIN.

1. JEFFREY [41] assumed that particles are rotational ellipsoids and derived for
these the formula

μ = μ0(1+ ϕn), (10.31)
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with values of ϕ as shown in Table 10.6 for the indicated cases of the axis of
rotational symmetry.4 For prolate and oblate ellipsoids the limits ϕ correspond
to long rods and penny-shape particles; ϕ has nearly the same value for these
cases, namely ϕ = 2 and 2.06. Of course, to obtain in these two limits the same
values of the dynamic viscosity, different number densities of the particles are
applied.

2. TAYLOR [63] computed the dynamic viscosity for a NEWTONian mixture con-
sisting of two NEWTONian components, i.e. water with suspended air or oil bub-
bles of spherical geometry. For small concentrations of such suspended defor-
mationless particles the dynamic viscosity reads

μ = μ0

{

1+ 2.5n
μ′0 + 2

3μ0

μ0 + μ′0

}

, (10.32)

in which μ0 is the viscosity of the bearer fluid and μ′0 that of the bubbles. This
formula is interesting, because in the two limits μ′0 → 0 and μ′0 → μ0 one
obtains

μ′0 = 0 �⇒ μ = μ0

{

1+ 2
3 × 2.5n

}

,
(10.33)

μ′0 = μ0 �⇒ μ = μ0

{

1+ 5
6 × 2.5n

}

.

Both formulae do not reduce to (10.29). This is not a discrepancy, because in
(10.33)1 the bubbles are filled with an inviscid fluid and in (10.33)2 the bubbles
are filled with a fluid with the same viscosity as the bearer fluid. In EINSTEIN’s
case the particles are rigid; this corresponds in (10.32) to the limit μ′0 →∞ for
which case (10.32) reduces to (10.29).

Table 10.6 Values of ϕ for the dynamic viscosity (10.30) for ellipsoids with rotational symmetry
about the large and small semi-axes, respectively

ε = (a − b)/a ϕ

0 2.5
0.2 2.36
0.5 2.17
0.8 2.04
1.0 2.00

0 2.5
0.2 2.43
0.5 2.31
0.8 2.17
1.0 2.06

4 Formula (10.31) shows that the orientation distribution of the ellipsoids is statistically homoge-
neous, as the bulk viscosity is isotropic.
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3. Formulae (10.29), (10.31) and (10.32) have been derived on the basis of the
assumptions that (i) the particles have a well-defined rigid form, (ii) the particle
concentration is so sparse that the particles’ interaction can be ignored, (iii) con-
vective accelerations are neglected (STOKES flow with no OSEEN correction)
and (iv) the particles are effectively buoyant, i.e. buoyancy forces are small
and do not demix the suspension. Such prerequisites do practically not exist
for the transport of suspended matter. LIN et al. [46] account for the convec-
tive acceleration term in the momentum equation and find for this OSEEN-type
correction

μ = μ0

{

1+ n
[

5
2 + 1.34R3/2

e

]}

, (10.34)

where

Re = a2G

μ0/ρ

is the REYNOLDS number formed with the radius a of the spherical particle,
G is the modulus of the velocity gradient of the shear flow (= 1

2 J2, where
J2 =‖ gradv ‖). Unfortunately, formula (10.34) only holds for small REYNOLDS

numbers.
4. In the above formulae the volume fraction n is assumed small to the extent that

the particles do not interact. BATCHELOR [4–6] and BATCHELOR and GREEN

[8, 9] and others account for such interactions. For spherical particles they derive
a formula for the dynamic viscosity that is accurate to O(n2):

μ = μ0

(

1+ 2.5n + 7.6n2
)

. (10.35)

For a summary of more recent work, see [6]. Formula (10.35) is accurate for con-
centrations smaller than n ≈ 0.33. This value follows from (10.35) by requesting
that the third term is smaller than the second term to guarantee convergence. For
suspensions a value of the volume fraction of 0.33 is in the regime of dense
particle flow, in which particle dynamics is important, so that, dynamically, the
binary structure should not be ignored. The validity of (10.35) is certainly guar-
anteed for n ≤ 0.1, still larger than what one usually encounters in limnological
applications.

10.4 Molecular Heat Conductivity of Water

STEIN [60] presents an equation for the heat conductivity. A further formula is con-
tained in the ASME Steam Tables [1]. The formulae are relatively complex; they
show that the pressure dependence can be ignored for p ∈ [0, 200] bar. Table 10.7
lists values for the thermal conductivity κ as stated in the Handbook of Chemistry
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Table 10.7 Thermal conductivity κ of pure water as given in the Handbook of Chemistry and
Physics [33] and thermal diffusivities χ/(ρ cp) deduced from them

Temperature
Heat conductivity, κ

Thermal diffusivity χ = κ/(ρcp)

T [◦C] [cal s−1 m−1 K−1] [W m−1 K−1] [m2 s−1] × 10−7

0 1348 0.56544 1.341
10 1381 0.5783 1.380
20 1420 0.5956 1.427

and Physics [33] (column 2) and our equivalence in SI units (column 3) and com-
puted thermal diffusivities χ = κ/(ρ cp). Quadratic interpolation yields5

κ = 0.56544+ 6.094× 10−3T + 2, 220× 10−5T 2 [W m−1 K−1],
χ = 1.341+ 3.50× 10−3T + 4.0× 10−5T 2 [m2 s−1]. (10.36)

Figure 10.10 displays these functions in the temperature regime T ∈ [0, 25]◦C.
These results must hold for pure and mineralised water.

10.4.1 Heat Conductivity of Salt Water

POPOV et al. [57] have compiled measured and computed values of the heat conduc-
tivity of salt water with salinity s ∈ [0, 40] ppt. Table 10.8 is taken from their book
and references from which they took their information are stated in the last column.
Values for s = 0 ppt lie exactly on the graph of κ in Fig. 10.10. On the other hand,
the values in Table 10.8 show that a dependence of the heat conductivity on salinity
is insignificant.

Table 10.9 displays the heat conductivities of ocean water with a salinity of 35
ppt and pressures p ∈ [10, 1400] × 105 [Pa]. The data are taken from CASTELLI

et al. [17]. Temperatures, for which the figures apply, are shown in the upper row.
Finally, the thermal diffusivities of salt water at selected values of the temperature

[(0, 20)◦C] and salinity [(5, 35) ppt] have been given by MONTGOMERY [52]. The
values are listed in Table 10.10.

5 The heat conductivity and thermal diffusivity are defined by the equations:

ρcp
dT

dt
= κ∇2T + · · ·

and
dT

dt
= χ∇2T + · · · ,

respectively. Note that the transformation χ = κ/(ρcp) only conforms with these equations for
constant κ and cp.
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Fig. 10.10 Thermal conductivity and thermal diffusivity for pure water plotted against temperature
in the interval T ∈ [0, 25]◦C

Table 10.8 Heat conductivity of salt water κ [W m−1K−1] at atmospheric pressure [105 Pa] and
s ∈ [0, 40] ppt, as compiled by POPOV et al. [57] from the indicated sources

T
s [ppt]

References[◦C] 0 10 17.2 30 33.82 34.4 35 40

Measured

0 0.5667 0.561 [27]
0.5637 0.560 [27]
0.565 0.565 [67]

20 0.5935 0.5965 [67]
25 0.594 0.583 [29]

0.611 0.607 [27]
40 0.627 0.6235 [67]

Computed

0 0.566 0.563 [52, 58]
17.5 0.586 0.572 0.566 0.563 0.561 0.559 [21]

0.583 0.569 0.563 0.560 0.558 0.557 [3]
20 0.599 0.596 [52, 58]

10.4.2 Impurities

Contrary to the situation for saline water the functional dependence of the mixture
thermal conductivity in fluids with suspensions is rather well known. The reason
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Table 10.9 Heat conductivity κ [W m−1K−1] of ocean water at a salinity s = 35 ppt and for
pressures p ∈ [1, 140] × 106 [Pa] and as measured by CASTELLI et al. [17] and compiled by
POPOV et al. [57]

p [104 Pa] 1.82◦C 10.23◦C 20.22◦C 30.25◦C
100 0.555 0.558 0.571 0.570 0.558 0.585 0.600 0.598
2000 0.562 0.565 0.578 0.577 0.595 0.592 0.607 0.603
4000 0.569 0.571 0.585 0.584 0.603 0.599 0.614 0.611
6000 0.577 0.573 0.593 0.590 0.610 0.606 0.622 0.616
8000 0.583 0.585 0.599 0.598 0.616 0.613 0.628 0.624
10000 0.590 0.591 0.607 0.604 0.624 0.619 0.636 0.631
12000 0.596 0.595 0.613 0.612 0.629 0.626 0.642 0.638
14000 0.602 0.601 0.619 0.617 0.636 0.632 0.649 0.645

Table 10.10 Thermal diffusivity χ [m2 s−1] at atmospheric pressure [105 Pa] for T = (0, 20)◦C
and s = (5, 35) ppt as given by MONTGOMERY [52]

s [ppt]

T [◦C] 5 35

0 1.34× 10−7 1.39× 10−7

20 1.43× 10−7 1.49× 10−7

is that problems of heat conduction and problems of electrical conduction for solid
bodies are analogous and well known for the electrical problem.

Let κ0 be the heat conductivity of the bearer fluid and α κ0 that for the particles
in suspension. The heat conductivity, κ , of the mixture that is treated as a heat-
conducting fluid is then a function of α, κ = κ(α) and the shape and constitution of
the particles.

MAXWELL [48] solved this electrical conduction problem for rigid spherical
inclusions at small concentration to the extent that interaction of particles could
be ignored. He found

κ = κ0

{

1+ 3(α − 1)

(α + 2)
n

}

, (10.37)

where n is the volume fraction. Hundred years later, JEFFREY [40] improved this
formula to include second-order terms in the volume fraction

κ = κ0

{

1+ 3(α − 1)

(α + 2)
n + f (α)n2

}

, (10.38)

in which f (α) is plotted in Fig. 10.11 as a function of log10α, as obtained by JEF-
FREY [40]. BATCHELOR [7] in his review summarises additional results for elliptical
particles and spherical particles at any arbitrary concentration.
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Fig. 10.11 Coefficient f (α)
as a function of log10α

(courtesy of Royal Society of
London [40])
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Viscometer, 404
Viscosity

bulk, 404, 405
dynamic, 389, 406–412
kinematic, 389, 407
shear, 404, 405, 409

Viscous contribution
to the stress, 140

Viscous flow, 410
Viscous fluid, 83
Volume

force, 76
preserving, 107

Volume fraction, 398, 410, 412
Volume transport, 348, 361, 371

gyre, 366
vector, 382

Vortex stretching, 95
Vortex tilting, 95
Vorticity, 89

tensor, 89
vector, 89
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W
Warm monomictic, 17
Water

standard seawater, 393
anomalies, 389
cascade, 19
density maximum, 14
mineralized, 413
natural, 390
pure, 390, 395, 400, 405–409, 413
rainwater, 389
saline, 390, 403, 406, 409, 413, 414

Water waves, 222, 244
Wave, 221

backward moving, 250
crest, 250
forward moving, 250
frequency, 227, 230, 238
length, 238
number, 227, 230, 232, 238

vector, 230, 231
phase, 227, 230, 233
plane, 230
propagation

dispersive, 232
non-dispersive, 232

quasi-standing, 248
standing, 248, 249

gravity, 251
solution, 253

surface, 234
trough, 250

Wave guide, 295
Waves

deep-water, 246
dispersive, 234
linear acoustic, 224
non-dispersive, 234, 247
plane, 224
shallow water, 246, 247
standing, 247, 258
surface water, 253

Weather station, 377
Wind, 263

data, 376–378
factor, 345, 355
induced current, 212
mixing, 268
set-up, 18
stress, 380
vector, 380

Wind-tide, 378
computation, 382

Winter
holomixis, 18
homothermy, 14, 15, 18
stagnation, 15

Winter cascading, 270
Wonder of the rising water, 4
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