
Astrophysics and Space Science Library   456

C. G. Campbell

Magneto-
hydrodynamics
in Binary Stars
Second Edition



Magnetohydrodynamics in Binary Stars



Astrophysics and Space Science Library

Series Editor:
STEVEN N. SHORE, Dipartimento di Fisica “Enrico Fermi”, Università di Pisa,
Pisa, Italy

Advisory Board:
F. BERTOLA, University of Padua, Italy
C. J. CESARSKY, Commission for Atomic Energy, Saclay, France
P. EHRENFREUND, Leiden University, The Netherlands
O. ENGVOLD, University of Oslo, Norway
E. P. J. VAN DEN HEUVEL, University of Amsterdam, The Netherlands
V. M. KASPI,McGill University, Montreal, Canada
J. M. E. KUIJPERS, University of Nijmegen, The Netherlands
H. VAN DER LAAN, University of Utrecht, The Netherlands
P. G. MURDIN, Institute of Astronomy, Cambridge, UK
B. V. SOMOV, Astronomical Institute, Moscow State University, Russia
R. A. SUNYAEV, Max Planck Institute for Astrophysics, Garching, Germany

More information about this series at http://www.springer.com/series/5664

http://www.springer.com/series/5664


C. G. Campbell

Magnetohydrodynamics
in Binary Stars

Second Edition

123



C. G. Campbell
School of Mathematics
Statistics and Physics
Newcastle University
Newcastle upon Tyne, UK

ISSN 0067-0057 ISSN 2214-7985 (electronic)
Astrophysics and Space Science Library
ISBN 978-3-319-97645-7 ISBN 978-3-319-97646-4 (eBook)
https://doi.org/10.1007/978-3-319-97646-4

Library of Congress Control Number: 2018951221

© Springer Nature Switzerland AG 1997, 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Cover illustration: This artist’s concept shows an interacting binary star system known as a polar (or a
magnetic cataclysmic variable). The white star is a very dense, highly magnetic white dwarf in which the
magnetic poles of the star are not aligned with its rotation axis. The cool, low-mass red star is distorted
due to the strong gravity of the much more massive white dwarf. New research has provided the first direct
observational evidence that significant stellar activity in the red star (such as large starspots, prominences,
and flares) can be induced by interactions with the strong magnetic field of the white dwarf (blue lines),
a phenomenon dubbed hyperactivity. Credit: P. Marenfeld and NOAO/AURA/NSF

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-97646-4


To my family, Aileen, Graham, Helena and
Barney



Preface

Since the publication of the first edition, the area of magnetic fields in binary stars
has continued to expand. The number of known AM Herculis binaries has more
than doubled in the last 20 years, confirming the importance of these systems, and
many new intermediate polars have also been discovered. The second edition is
a major revision of the first, including new chapters covering the stellar magnetic
fields and accretion disc magnetic winds. The development of numerical simulation
techniques has enabled much progress to be made in understanding the nature of
magnetically influenced accretion flows. These have been applied to study accretion
streams in AM Her systems, disc disruption and curtain flows in systems containing
strongly magnetic white dwarfs or neutron stars, and for disc magnetic winds.
Dynamo simulations in rotating M dwarfs and in accretion discs have also been
performed. Analytic and semi-analytic studies have made significant progress, and,
when results are compared with those of the simulations, a clearer picture emerges
for the structure and behaviour of these important systems.

The theme of the book remains the redistribution of angular momentum by
magnetic stresses and the associated spin and orbital evolution. A comprehensive
description of MHD in binary stars is given, from the pioneering work up to the
latest results.

Chapter 1 contains a description of close binary stars and reviews the MHD
problems arising in these systems. Chapter 2 describes the basic theory of MHD,
considering the fundamental equations and their applications, including dynamo
theory. The descriptions of force-free magnetic fields and those of wave motions
have been extended. The theory of close binary stars is then presented, including the
Roche model, a new section on tidal theory, mass transfer and the classic viscous
accretion disc model. The essentials of spin dynamics are reviewed, in connection
with the response of primary stars to applied torques.

Chapter 3 reviews AM Herculis binaries, including tables of all the confirmed
systems and their main parameters. An extensive range of references is given, and
the associated MHD problems are discussed. Chapter 4 addresses the approach
to synchronism, involving inductive magnetic coupling. As well as the case with
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viii Preface

vacuum surroundings, the effects of a magnetosphere are now also investigated.
The resulting spin–orbit coupling can significantly affect the mass transfer rates and
the modifications are calculated for gravitational wave driving and magnetic wind
braking. The theoretically predicted synchronization time-scales are compared with
those that can now be estimated from observations of asynchronous systems, which
are in the process of evolving towards a synchronous state.

Chapter 5 considers the nature of the accretion stream, including the latest sim-
ulation results related to the extent of magnetic channelling for different magnetic
orientations of the primary. The accretion torque is considered for total and partial
magnetic channelling and for synchronous and asynchronous cases. Chapter 6
analyses how non-dissipative torques can balance the accretion torque, in two and
three dimensions, to produce synchronous states. Magnetic and gravitational torques
are considered. In Chap. 7, it is shown that even when a stable synchronous state
exists, certain conditions must be satisfied for the primary to attain such a state.
Formulae are given, in convenient forms, that can be used to compare theory with
the observations.

Chapter 8 reviews binaries containing accretion discs which have been partially
disrupted by the magnetic field of the accretor. These include the intermediate
polars, the X-ray binary pulsars and the accreting millisecond pulsars. Detailed
tables of these systems are given, together with an extensive range of references.

Chapters 9 and 10 have been completely rewritten. Chapter 9 addresses the
mechanism of disc disruption due to the primary’s magnetic field, together with
an analysis of the accretion curtain flow that transfers matter from the inner edge of
the disc to the stellar surface. This includes a review from the pioneering work up
to the results of the latest numerical simulations, and these are compared with the
results of analytic and semi-analytic studies. Chapter 10 considers the spin evolution
of the accreting star due to its interaction with the disc and curtain flows, including
an analysis of torque reversals.

Chapter 11 first reviews standard dynamo theory in accretion discs. The magne-
torotational instability is then discussed together with its non-linear development,
including MHD dynamos. The effects of a large-scale magnetic field on the radial
and vertical structures of the disc are investigated, using more recent calculations.

Chapter 12 considers the sources of the stellar component magnetic fields,
including dynamo operation in the secondary star. Simulations of dynamos in fully
convective stars are outlined. The latest observations relating to the structure and
strength of surface magnetic fields on rapidly rotating M dwarf stars are discussed.
These are particularly relevant to theories of the maintenance of synchronism in AM
Her binaries, and to theories of magnetic wind braking, together with tidal coupling,
which are relevant to mass transfer rates above the period gap and in explanations
of the gap. The possible effects of dynamo processes occurring during the common
envelope evolutionary phase on white dwarf magnetic fields are described, and the
effects of accretion on the surface magnetic fields of white dwarfs and neutron stars
are discussed.

Chapter 13 describes the basic theory of stellar magnetic winds, with particular
application to fast rotators. The theory is used to calculate braking torques on the
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secondary stars in binaries and hence calculate mass transfer rates in systems above
the period gap. The theory of the period gap, and why AM Her systems appear not
to be affected by it, is discussed.

Chapter 14 considers accretion disc magnetic winds, beginning with the launch-
ing and field source problems. Wind structure models are described, from the early
work up to the latest results. A detailed solution is presented for the structure of
the disc and the well sub-Alfvénic region of the wind. It is shown that the spin
rate of the accretor can affect the wind mass loss rate in the inner part of the disc,
leading to significantly enhanced values near the star. Finally, wind flow stability
is analysed, particularly in relation to potential field bending instabilities and the
possible quenching effects of turbulent viscosity.

An appendix is included containing basic data, vector identities, vector operators
in coordinate systems, special functions and derivations related to viscous force and
gravitational torques.

SI units are employed, but magnetic field values are often quoted in Gauss since
many astronomers and astrophysicists have a more immediate feel for magnitudes
expressed in these units. It should be remembered that 1 Tesla = 104 Gauss.

The book should be of interest to observers as well as to theorists, with many
useful formulae being included which can be compared to observations, and there is
a wide range of references. Although the main focus is on binary stars, much of the
material on accretion discs, stellar winds and disc winds has more general relevance.
The text is mainly aimed at research workers, but some material (particularly in
Chap. 2) could be useful for postgraduate courses in magnetic stellar astrophysics.

I am grateful to Michael Beaty for invaluable help with the LaTeX production of
the manuscript. I should like to thank the Physics Department at DurhamUniversity
for affording me the use of its facilities and for warm hospitality, with particular
thanks to Chris Done, Carlos Frenk, Alan Lotts and Martin Ward. I am indebted to
Ramon Khanna and Christina Fehling at Springer Nature for their kind support and
advice during the publication process.

Newcastle, UK Chris Campbell
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Chapter 1
Magnetism in Binary Stars

Abstract Magnetic fields are of fundamental importance in close binary stars
due to the angular momentum transport that can occur via the action of magnetic
stresses. The strongly magnetic AM Herculis stars and the intermediate polars are
believed to account for approximately 25% of all cataclysmic variables. In the AM
Her binaries an accretion disc cannot form and the accretion stream is magnetically
channelled to form at least one localized column above the white dwarf surface.
The strongly magnetic primary star usually spins in synchronism with the orbit,
even though it will experience a strong magnetically influenced accretion torque.
Partially disrupted discs form in the intermediate polars and an inner accretion
curtain flow channels matter on to the primary. The X-ray binary pulsars and the
accreting millisecond pulsars have magnetic neutron stars which partially disrupt
their accretion discs.

Sub-thermal magnetic fields lead to a magnetorotational instability in accretion
discs which is believed to be the source of the turbulent viscosity needed to account
for the inflow. Disc dynamos can generate large-scale magnetic fields which can lead
to radial transport of angular momentum, or its vertical removal via a channelled
wind flow, depending on the magnetic field geometry. Dynamos can generate
magnetic fields in secondary stars, and channelled wind flows lead to a braking
torque. This, together with tidal coupling, can cause orbital angular momentum
loss that is consistent with the mass transfer rates believed to occur in cataclysmic
variables above the period gap. These topics are outlined here.

1.1 Close Binaries

A close binary system is one in which the separation of the component stars
is sufficiently small for them to be strongly interacting. If the size of a stellar
component is a significant fraction of the orbital separation, then its outer layers will
be strongly distorted by the gravitational field of its companion. The rapid stellar
rotation occurring in such systems gives additional distortion due to centrifugal
force.

© Springer Nature Switzerland AG 2018
C. G. Campbell, Magnetohydrodynamics in Binary Stars, Astrophysics and Space
Science Library 456, https://doi.org/10.1007/978-3-319-97646-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97646-4_1&domain=pdf
https://doi.org/10.1007/978-3-319-97646-4_1


2 1 Magnetism in Binary Stars

The basic description of a binary system is based on a model proposed by Roche
(1873), which was formulated in connection with planets and their satellites. In
the application of this model to binary stars, the stellar components are treated as
point gravitational sources so, relative to a frame with horizontal axes rotating with
the line of stellar centres, a simple total potential results. This is the sum of the
point gravitational potentials plus the centrifugal potential. For circular orbits, time-
independent equipotentials can be found. Near the stellar centres these surfaces are
almost spherical, but further away they become pear-shaped. Critical surfaces result
when the apexes of the equipotentials due to each star touch. These surfaces contain
the masses of their respective stars and are referred to as their Roche lobes. The
point of contact, known as the inner Lagrangian point,L1, is an unstable equilibrium
position.

The Roche model gives a good approximation for the total potential surfaces in
a binary system. A large fraction of the mass of a main sequence star is contained
in its central regions and consequently its gravitational potential does not deviate
greatly from that of a point source in its outer layers. This remains true for tidally
and rotationally distorted stars, since the fractional density perturbations are greatest
in their outer, most tenuous layers and these only make a small contribution to the
potential. Work by Chandrasekhar (1933a,b) and Plavec (1958) showed that the
equipotentials of distorted stars in close binaries approach those of the Roche model
to a very good approximation. The gravitational potential of the compact star can be
taken to be monopolar. The more detached a star is from its Roche lobe, the weaker
its tidal distortion.

Wood (1950) suggested dividing close binary stars into two classes; one contain-
ing systems in which both stellar surfaces lie beneath their Roche lobes, known as
detached systems, and the other containing binaries in which at least one component
fills its Roche lobe. Kopal (1955) suggested dividing the latter class into two groups;
the first containing systems in which only one component fills its Roche lobe, known
as semi-detached systems, while in the second group both components fill their
Roche lobes to form contact binaries.

Most work has been focused on semi-detached systems in which a main sequence
star fills its Roche lobe and orbits with a more massive compact component, the
latter usually being a white dwarf or a neutron star. The main sequence component
is generally referred to as the secondary star, and the compact object as the primary
star. Systems with orbital periods of < 10 h have lower main sequence secondary
stars.

Strong interest in close binary stars began when photometric work by Linnell
(1950) on a new eclipsing variable, later designatedUXUrsaeMajoris, established it
as the first known representative of a new class of subdwarf binaries. Subsequently,
Walker (1956) discovered that Nova Herculis 1934 is an eclipsing variable (DQ
Herculis) consisting of a pair of subdwarfs with an orbital period of 4 h and 39min.
Further searches among stars of this type led to the discovery of the binary nature of
several other post-novae (e.g. GK Per/Nova Persei 1901; WZ Sge/Nova Sagittae
1913 and 1946). This supported the contention that nova outbursts occur only
among the components of close binary systems. The stars SS Cygni (Joy 1956)
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and U Geminorum (Mumford 1962), which exhibit more frequent outbursts of light
than classical or recurrent novae, were also found to be short period binaries. This,
together with the foregoing discoveries, suggested that all eruptive variables, with
the possible exception of supernovae, are binary objects.

Observations of close binaries led to theoretical models. Crawford and Kraft
(1956) realized that the secondary star in AE Aqr fills its Roche lobe. They
interpreted the observed emission lines as arising from gas passing from the
secondary to orbit around the white dwarf primary. Krzeminski (1965) suggested
that the cooler star in U Geminorum fills its Roche lobe, and that the hotter star is
surrounded by a rotating disc. A similar model had been proposed for DQ Herculis
by Kraft et al. (1962). This picture was later adopted as the standard model of short
period semi-detached binaries containing white dwarf primary stars, designated the
cataclysmic variables (Warner and Nather 1971; Smak 1971).

The lobe-filling secondary transfers material, through the unstable inner
Lagrangian region, to an accretion disc surrounding the compact primary. At
the point of intersection of the stream and the disc a shock is formed, producing
a bright spot on the disc. This manifests itself as a prominent hump in the optical
light curve of those systems in which emission from the rest of the disc is weak
(e.g. many dwarf novae in their quiescent states). Matter spiralling in through the
disc liberates its binding energy and is accreted on to the surface of the primary.
If the mass transfer time-scale greatly exceeds the thermal adjustment time-scale
of the secondary, then the star remains in thermal equilibrium and consequently
shrinks as it loses mass. However, material is kept in contact with the L1 point since
the secondary’s Roche lobe also shrinks as a result of orbital angular momentum
loss. This is driven by gravitational radiation losses, or by a magnetically influenced
wind flowing from the secondary together with tidal coupling to the orbit. Figure 1.1
illustrates the basic structure of a cataclysmic variable. A detailed description of
the observational techniques used in the study of cataclysmic variables is given in
Warner (1995).

Disc

Stream

L1

Secondary

Ωo

Fig. 1.1 The standard model of a cataclysmic variable, viewed down the rotational pole of the
system. The tidally and rotationally distorted secondary loses matter from the unstable L1 region.
The resulting stream feeds an accretion disc, centred on the white dwarf primary, through which
matter slowly spirals inwards
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In a standard cataclysmic variable the primary star is a non-magnetic white
dwarf, and the accretion disc extends down to its surface. Originally the designation
cataclysmic variable included dwarf novae, nova-like variables and old novae. This
was extended to include the AM Herculis binaries and the intermediate polars,
which contain strongly magnetic white dwarf primary stars. In the AM Herculis
systems the accretion disc is totally disrupted due to the influence of the primary’s
magnetic field, and a channelled stream results, while the intermediate polars accrete
from a partially disrupted disc via curtain flows. These magnetic systems are now
believed to account for approximately 25% of all cataclysmic variables. Some X-ray
binary pulsars and the accreting millisecond pulsars have strongly magnetic neutron
stars accreting material from a disrupted disc, and so these systems have a similar
accretion geometry to that of the intermediate polars.

1.2 Magnetic Fields in Binaries

The presence of a strong magnetic field can significantly modify the standard
structure of a close binary. A white dwarf or neutron star is capable of sustaining
a far stronger magnetic field than a main sequence star. Such compact objects
contain highly conducting degenerate matter and so are generally believed not
to require dynamo action to sustain their magnetic fields, which have very long
decay times (see Landstreet 1994 for a discussion of the fossil field theory for
white dwarfs, and Chap. 12 for further discussion). Hence the strongest source of
magnetism in binaries is usually the compact primary. Strong magnetic fields have
been detected via linear and circular optical polarization, resulting from cyclotron
radiation emitted by accreting gas. Photospheric Zeeman split spectral lines are
sometimes observed. X-rays are emitted from hot shocked gas in accretion columns,
and pulsation periods in the observed intensity result due to the rotation of the
primary.

The magnetic field effect is strongest in the AM Herculis systems. AM Her
was identified as an X-ray source by Hearn et al. (1976). Linear and circular
polarization were observed in the V and I spectral bands by Tapia (1977), of a
strength that indicated the presence of a high magnetic field. Many similar systems
were subsequently found and these objects now form an important class of close
binary stars. The primary stars are white dwarfs with strong magnetic moments.
The secondary stars are M or K dwarfs and the orbital periods range from 1.3 to
4.8 h, with the exception of one system having a period of 8.0 h. The magnetic
field completely prevents the formation of an accretion disc. Matter lost from the
L1 region of the secondary becomes channelled by the primary’s magnetic field
and converges to form an accretion column above its surface. Accreting supersonic
material passes through a standing shock at the top of the column and undergoes
compressional heating. The intensity of the radiations emitted from the hot post-
shock flow is observed to be modulated due to the changing orientation of the
column resulting from the primary’s rotation.
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One of the most striking features of the AMHer binaries is that the angular veloc-
ity of the primary appears to be the same as that of the orbit. This synchronization,
unique amongst close binaries, is most likely related to the strong magnetic field.
The magnetic field interacts with the accretion stream and the secondary star. It is
probable that the secondary star has a dynamo-generatedmagnetic field, since it has
at least a deep convective envelope and is rapidly rotating.

The X-ray binary pulsars were discovered by Giacconi et al. (1971). In these
systems a lobe-filling secondary transfers material on to a magnetic neutron star.
The magnetic moment is not as large as that of a white dwarf in an AM Her system,
so a partially disrupted accretion disc forms. After passing through the disc, material
is transferred via a magnetically channelled curtain flow to form accretion columns
above the neutron star. A range of spin behaviour of the neutron star is observed.
Magnetic interaction with the disc, as well as field channelling of material, will
generate a torque on the neutron star. A similar disrupted disc model is adopted
for the intermediate polars, in which the primary is a white dwarf with a surface
magnetic field typically an order of magnitude less than in the AM Her binaries.
The model is also used for the accreting millisecond pulsars.

Accretion discs require an anomalous form of viscosity to explain their mass
inflow rates. Turbulence has been employed to generate the necessary stresses
for the radial transport of angular momentum, but an instability to explain the
generation of such turbulence has not been found in a non-magnetic disc. However,
this apparent dilemma is believed to have been resolved by Balbus and Hawley
(1991) who showed that Keplerian discs are dynamically unstable in the presence of
a weak poloidal magnetic field. Subsequent work has shown that this magnetic shear
instability leads to the generation of turbulence and can result in a self-sustaining
dynamo. The resulting stresses due to the large-scale magnetic field can lead to
radial transport of angular momentum at least comparable to the viscous transport.
Hence magnetic fields are believed to play a fundamental role in accretion discs.
Also, a magnetic field of suitable geometry, together with a disc wind, can lead to
effective loss of angular momentum and make a major contribution to driving the
inflow. Wind outflows can develop into channelled jets in the inner region of the
disc.

It is likely that the secondary star in most close binary systems has a magnetic
field. Fast rotation and the presence of convection can lead to dynamo action and the
generation of large-scale magnetic fields. A magnetically channelled wind from a
tidally synchronized secondary is invoked to generate the orbital angular momentum
loss necessary to sustain mass transfer in systems with periods of P � 3 h. A
transition to gravitational radiation driving for P � 3 h may be related to the period
gap of width 2–3 h in which systems are not observed because the mass transfer
process, which is the main luminosity source, has temporarily ceased in binaries
evolving through this period range.
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1.3 Magnetohydrodynamics

The theory of magnetohydrodynamics describes the fluid mechanics of plasmas and
the behaviour of their magnetic fields. Maxwell’s equations for the electromagnetic
field are combined with the equations of hydrodynamics. For non-relativistic flow
speeds, the magnetic force can be expressed as a function of the field B and its
spatial derivatives, and this dominates the electric force. The electric field and charge
density can be eliminated from the equations, and so do not have to be explicitly
considered. Faraday’s law of induction, combined with the Lorentz transformations
and Ohm’s law, shows how B is affected by the fluid motions and diffused with an
associated dissipation of the electric currents. The momentum equation accounts for
the effect of the magnetic force on the motions, and the heat equation has a source
due to the dissipation of currents.

Simplified forms of the equations can be used in some problems. For example,
the diffusion term in the induction equation can be ignored if the diffusion time-
scale is much longer than the flow time-scale. In this case a useful picture emerges
in which the magnetic field lines are frozen to the plasma. Material is therefore
threaded on to field lines which are advected and distorted by the flow. In the other
extreme, the effect of the velocity term is small and the induction equation becomes
purely diffusive, so material can move freely across field lines. Kinematic theory
is appropriate when the magnetic force only has a small effect on the motions.
The velocity solution of the non-magnetic fluid equations can then be used in the
induction equation to calculate B.

Dynamo theory describes how magnetic fields can be generated and sustained
by fluid motions, in the presence of dissipation. Mean-field equations describe the
generation of poloidal and toroidal fields due to differential rotation and turbulence,
coupled with stratification. Certain conditions are necessary for dynamo action, and
various types of dynamos can be defined. Dynamo theory beyond the kinematic
approach has been developed to an increasing extent, to incorporate dynamical and
thermal effects.

Large-scale magnetic fields can have associated stresses that lead to the transport
of angular momentum. Such magnetic transport can occur in many different
situations in binary stars, including coupling between the stars, spin-orbit coupling,
accretion stream channelling, coupling between a disc and its accreting star, radial
and vertical transport of angular momentum in discs and braking due to magnetic
stellar wind flows.

1.4 Types of Problems

The synchronization problem in AM Her binaries involves a range of MHD
problems. An asynchronous primary, having a magnetic axis tilted to its rotation
axis, causes the tidally synchronized secondary star to experience a time varying
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magnetic field and shears due to magnetospheric motions. Electric currents will
be induced in the secondary and primary stars, as well as in the connecting
magnetosphere. Toroidal magnetic field will be created and the resulting magnetic
stresses will lead to torques on the stars and on the orbit. Magnetic spin-orbit
coupling causes the primary to approach synchronism on a time-scale less than
the lifetime of the binary. An over-synchronous primary leads to magnetic orbital
torques which can reduce the mass transfer rate.

Magnetic channelling of the accretion stream results in a 3D flow and an accre-
tion torque with components normal and parallel to the orbital angular momentum
vector. These must be balanced, in a stable way, if synchronous states are to exist.
A large-scale magnetic field generated in the secondary star can give a balancing
torque on the primary. Such a field could be produced by dynamo action. Distortion
of the primary by non-radial internal magnetic forces leads to a tidal torque which
can play a part in creating a synchronous state. Even if such a state exists, conditions
are necessary to attain corotation.

The problem of inner disc disruption in the intermediate polars, and in some
X-ray binary pulsars and the millisecond accreting pulsars, involves the MHD
interaction of the stellar magnetic field and its magnetospherewith the disc. Poloidal
field which penetrates the disc is sheared due to the differential rotation between
the disc and magnetosphere to create toroidal field and associated electric currents.
Magnetic heating of the disc inside the corotation radius leads to pressure increases
which cannot be balanced by the vertical gravity and disruption occurs over a narrow
radial region. Vertical pressure gradients in this region accelerate material through a
sonic point beyond which it flows through a channelled curtain to accrete on to the
star. The star and the disc can exchange angular momentum via magnetic torques
and this affects the stellar spin evolution.

Magnetorotational instability due to sub-thermal magnetic fields in Keplerian
accretion discs leads to the generation of turbulence. This, and the strong radial
shear, can result in dynamo action which creates large-scale magnetic fields. Fields
having quadrupolar symmetry result in the outward radial transport of angular
momentum which drives an inflow through the disc. If a dipole symmetry magnetic
field is generated then channelled wind flows may be favoured and these can be very
effective at removing angular momentum and causing disc inflows.

Dynamos are likely to generate a magnetic field in the secondary star, since it
has at least a deep convective envelope and is rapidly rotating. A magnetically
channelled stellar wind will cause magnetic braking and drive the secondary into
an under-synchronous state. Tidal torques will then spin the star up at the expense
of orbital angular momentum. This can drive mass transfer at rates consistent with
those occurring in CVs above the period gap. A change in the structure of the stellar
magnetic field due to the transition to fully convective stars, involving the vanishing
of a tachocline region connecting the radiative core to the convective envelope, may
explain the creation of the period gap.
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Chapter 2
Theoretical Prerequisites

Abstract The essentials of plasma physics are outlined in relation to the derivation
of the equations describing magnetohydrodynamics. The Maxwell equations are
then combined with the equations of hydrodynamics to derive the equations of
MHD, with viscosity and the associated energy transport equations included. The
main types of magnetic wave solutions are derived, and their relevance to different
types of flows is considered. Mathematical representations of the magnetic field
are given, with application examples. Magnetic diffusion processes and their related
transport coefficients are discussed, and then the basic theory of mean-field dynamos
is presented, including a classification of the various types.

The theory of close binary stars is presented, including the Roche model
and an outline of tidal theory. Mass transfer, due to Roche lobe overflow, is
considered and the driving mechanisms of gravitational radiation and magnetic
braking are described. The steady viscous accretion disc model is presented, and
the fundamental time-scales in discs are derived. The essentials of spin dynamics
are given, in relation to the response of compact stellar components to torques and
in the analysis of stability.

2.1 Introduction

This chapter contains the basic essentials of magnetohydrodynamics, binary star
theory and spin dynamics. In Sect. 2.2 the necessary conditions for classical fluid
dynamics to apply to plasmas are discussed. The equations describing the electro-
magnetic field are then combinedwith the equations of fluid mechanics, to first order
in v/c, to form the equations of MHD, and their general properties are discussed.
Hydromagnetic wave motions, which redistribute energy and momentum, are
derived, followed by convenient mathematical representations of the field B. The
decay of B fields and various types of diffusion processes are then considered. In
Sect. 2.3 the basic dynamo problem is formulated and the main types of mean-field
dynamos are defined.

Section 2.4 presents the theory of close binary stars. Firstly, the Roche model
is considered and the unstable nature of the inner Lagrangian point is analysed. A
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summary of tidal theory is given, related to the synchronization of the secondary
star. Mass transfer and the subsequent formation of an accretion disc are then
addressed. The classic steady viscous accretion disc model is presented, since
this acts as a basis for understanding magnetic modifications in discs. The time-
dependent disc equations are formulated and various important time-scales are
defined, and the principles of viscous diffusion and instability are discussed.

Section 2.5 considers rigid body dynamics, which is relevant to the response
of compact primary stars when they are subjected to torques. A highly magnetic
primary is likely to have some distortion from spherical symmetry due to non-
radial internal magnetic forces. Hence, in general, its angular velocity and angular
momentum vectors will not be parallel and full spin dynamics theory is needed
to analyse the motion. The relevant frame transformations are discussed. The spin
evolution of such stars is of central importance and accurate observations relating to
this are available in a variety of systems.

2.2 Behaviour of B Fields in Plasmas

2.2.1 Plasma Fluids

A plasma is a mixture of an electron gas and an ion gas. The electrons and ions
interact with each other through their Coulomb attractions and repulsions. A plasma
differs from an atomic or molecular gas in that its inter-particle forces can be longer
range than the short-range forces between neutral particles. A charged particle can
interact with many others at any instant. The presence of a large-scale magnetic
field can further complicate matters by introducing anisotropic properties. However,
if certain conditions are met, the bulk motions in a plasma can be described by
classical fluid mechanics, with additional effects due to a large-scale magnetic field.

If the ions result from atoms each losing Z electrons of charge magnitude e, then
the total charge density is

ρc = niZe − nee, (2.1)

where ni and ne are the number densities of ions and electrons, respectively. Any
local charge separation cannot be large, since this would result in a very strong
electric field rapidly restoring neutrality. It follows that

ne � Zni (2.2)

and ρc is small. This equation is referred to as the plasma approximation. Since
mi � me, where mi and me are the ion and electron masses, electrons are relatively
easily accelerated. A small local excess of electrons results in a restoring electric
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field leading to plasma oscillations about the neutral state with a characteristic
frequency

ωp =
(
nee

2

ε0me

) 1
2

, (2.3)

where ne is the unperturbed electron number density and ε0 the permittivity of free
space. This is referred to as the plasma frequency.

The length-scale associated with charge oscillations is lc ∼ ve/ωp, where ve is
a typical electron velocity. The electric field resulting from the charge imbalance
is limited in range to ∼ lc by the shielding effect of the electrons. In the absence
of perturbations charge neutrality would hold, with lc vanishing and the electrons
totally shielding the ions. However, the formation and maintenance of the plasma
state requires sufficiently high temperatures and hence charge fluctuations due to
the thermal motions of the electrons are always present. A fundamental shielding
length lc = λD, known as the Debye length, can be defined by taking ve to be the
mean thermal velocity of an electron. Hence

ve ∼ ωpλD =
(
kT

me

) 1
2

, (2.4)

where k is Boltzmann’s constant and the electron temperature Te = Ti = T for a
gas in local thermodynamic equilibrium. The use of (2.3) for the plasma frequency
ωp then yields

λD =
(
ε0kT

nee2

) 1
2

. (2.5)

This is the length-scale of local electric fields resulting from thermally induced
charge separation, and hence it gives an effective range for Coulomb collisions in
a plasma. On length-scales < λD thermal charge separation is significant and the
plasma approximation (2.2) does not hold.

Provided the macroscopic length-scale L satisfies L � λD, the electromagnetic
field may be divided into a large-scale, collective field and a small-scale, random
field. The large-scale field has the macroscopic charge density and current density
as its sources. The small-scale random field is essentially the sum of the unshielded
Coulomb fields of individual particles; it acts to keep the velocity distribution
function close to a Maxwellian form, and to inhibit the drift of electrons relative
to ions. The plasmas occurring in binary stars generally well satisfy L� λD, so the
macroscopic field equations can be employed.

In discussing plasma properties, a mean free path can be defined, using elemen-
tary kinetic theory, by

λ = 1

nπb2
, (2.6)
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where n is the number density of scattering particles and b is an effective collision
radius. The quantity πb2 is a collision cross-section. For elastic scattering, such
as electrons by ions, an estimate for b can be made by equating the Coulomb
interaction energy to the mean thermal kinetic energy, giving

b � Ze2

6πε0kT
. (2.7)

An estimate for the average value of b including long-range scattering, employing
the differential Rutherford cross-section, increases (2.7) by a factor of � 9/4.

If the plasma behaves like a nearly perfect gas, the Coulomb interaction energy
at the mean inter-particle distance of � n−1/3 must be small compared to the thermal
energy. This requires

Ze2n
1
3

4πε0
� 3

2
kT (2.8)

which, by the use of (2.7), is equivalent to

bn
1
3 � 1. (2.9)

The ratio of the mean free path to the Debye length can be found using (2.2)
and (2.5)–(2.7), noting that n = ni. The result is

λ

λD

�
(
6

π

) 1
2 1

(bn
1
3 )

3
2

. (2.10)

In the perfect gas regime (2.9) holds for bn1/3 and hence λ� λD. So, as expected in
this case, the mean free path is much greater than the Coulomb screening radius. It is
simple to show that the average collision radius b � λD, consistent with short-scale
interactions in a perfect gas, and that λD > n

−1/3. Hence the necessary ordering of
length-scales is

λ� λD > n
− 1

3 � b. (2.11)

A mean collision time can be defined for scattering of electrons by ions as

τei = λei

(vth)e
, (2.12)

where λei is the mean free path. This is the time-scale in which a sub-thermal
electron drift velocity relative to ions is randomized. Similar time-scales can be
defined for ion-ion and electron-electron encounters.
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In a fully ionized gas the presence of a magnetic field can introduce an anisotropy.
An electron spirals about a uniform field B with the gyration frequency

ωe = eB

me
, (2.13)

with a similar expression for ions. The gyration time-scale of ∼ 1/ωe can be
compared with the collision time-scale τei, given by (2.12). If ωeτei � 1 then an
electron performs a number of spiral turns before having its motion randomized by
collisions with the ion gas, and hence the field introduces a microscopic anisotropy.
This can result in a reduced conductivity across field lines. However, inside most
stars, with plausible values of B, ωeτei � 1 applies, but anisotropic conductivity
can occur in stellar magnetospheres.

The classical fluid mechanics approach can be applied to plasmas when the
macroscopic length-scale L is large compared to the particle mean free paths,
and the macroscopic time-scale is long compared to the collision times. A fluid
element of volume ∼ l3 can be defined with λ � l � L, so the gas within it
contains many colliding particles representing a continuous distribution of momenta
and is essentially uniform. The effect of collisions is then to randomize the
particle velocities about a mean velocity v, which is the bulk velocity of the
fluid element. Viewed in a frame moving with velocity v, the particles have a
velocity distribution very close to Maxwellian, and a temperature T can be defined
for the element. Small deviations, of order λ/L, from a Maxwellian distribution
yield the transport quantities of resistivity and viscosity. The centre of mass of
the fluid element has a local position r, at a time t , in a global frame. Such a
plasma can be regarded as a continuous fluid with velocity v(r, t) and mass density
ρ(r, t). Since the ion mass mi � me, it follows that ρ � nimi and the bulk
velocity v � vi to good approximations. Because L � λD, large-scale electric
and magnetic fields can be defined, with macroscopic charge and current density
sources. Magnetohydrodynamics (MHD) considers the motions, and equilibria, of
such an electrically conducting fluid and the behaviour of its B field.

The magneto-fluid equations can be derived by applying macroscopic principles.
They can also be derived from appropriately weighted integrals involving the
particle distribution function f (r,p, t). This function is a phase space, statistical
description, with f d3rd3p being the number of particles with position and momen-
tum in a given six-dimensional volume element d3rd3p at a time t . A separate f can
be defined for each species of particle. The phase space evolution of f is described
by Boltzmann’s equation

∂f

∂t
+ 1

m
p · ∇f + F · ∇pf = �, (2.14)

wherem is the particle mass, ∇p the gradient operator in momentum space, and F is
the force on a particle, excluding the short-range interactive forces associated with
collisions. The term � gives the effect of collisions.
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The number density of particles is

n =
∫
p
f d3p, (2.15)

where the integral is over all momentum space, and f vanishes as p → ±∞. Since
mi � me, the velocity of a fluid element is the mean ion velocity in the real space
volume element d3r, given by

v(r, t) =
〈
pi
mi

〉
= 1

n

∫
p

1

mi
pif d3p. (2.16)

The macroscopic fluid dynamic equations can be derived by taking appropriately
weighted integrals of the Boltzmann equation (2.14), for ions and electrons (e.g.
Battaner 1996). Extensive descriptions of astrophysical plasmas are given by
Kulsrud (2004) and by Chiuderi and Velli (2014).

In classical fluid mechanics two types of analysis of the flow properties are
possible. In the Eulerian representation fixed spatial points are considered and
a fluid quantity Q(r, t) has r and t as independent variables. Hence temporal
rates of change involve partial time derivatives. In the Lagrangian representation
fluid elements of conserved mass are followed and hence rates of change must
account for the effect of displacement due to the flow. The vector r now defines the
instantaneous position of a fluid element, so r = r(t) and the velocity v = dr/dt .
First order Taylor expansion gives a total differential change in Q(r(t), t) as

dQ = dr · ∇Q+ ∂Q

∂t
dt, (2.17)

and hence

dQ

dt
= ∂Q

∂t
+ v · ∇Q. (2.18)

This is referred to as the material, or Lagrangian derivative ofQ. The derivative also
applies to vector quantities; for example, the acceleration of the fluid is

a = dv
dt

= ∂v
∂t

+ (v · ∇)v (2.19)

and this must be employed in deriving the momentum equation. The Lagrangian
operator is therefore

d

dt
= ∂

∂t
+ v · ∇. (2.20)

Certain fluid properties become clearer when viewed using the Lagrangian picture.



2.2 Behaviour of B Fields in Plasmas 15

In the remainder of this section the macroscopic electromagnetic field equations
are combined with the fluid equations, in the non-relativistic regime, to obtain the
equations of MHD.

2.2.2 Maxwell’s Equations

Maxwell’s equations describing the macroscopic electric and magnetic fields E and
B are

∇ · E = ρc

ε0
, (2.21)

∇ × E = −∂B
∂t
, (2.22)

∇ · B = 0, (2.23)

∇ × B = μ0J + 1

c2

∂E
∂t
, (2.24)

where ρc is the charge density, J the current density, ε0 the permittivity, μ0 the
permeability and c = 1/(ε0μ0)

1/2 the speed of light. These equations are local
expressions of Gauss’s electric flux law, Faraday’s law of induction, the magnetic
flux law, and Ampere’s law with the addition of the displacement current term.

The fields E and B can be derived from scalar and vector potential functions.
Equation (2.23) enables B to be expressed as

B = ∇ × A, (2.25)

where A is the magnetic vector potential. Substitution of this in (2.22) gives

∇ ×
(
E + ∂A

∂t

)
= 0, (2.26)

which is satisfied by

E = −∇ψ − ∂A
∂t
, (2.27)

where ψ(r, t) is the electric potential. It follows from (2.25) and (2.27) that B and
E are unchanged by the transformations

Ã = A + ∇
, (2.28)

ψ̃ = ψ − ∂

∂t
, (2.29)
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where 
 is an arbitrary scalar function. The consequent freedom of choice in the
divergence of A enables separate equations to be derived relating A to J and ψ
to ρc.

Substituting (2.25) for B and (2.27) for E in the Maxwell equation (2.24), and
using the vector identity (A7), gives

∇2A − 1

c2

∂2A
∂t2

− ∇
(

∇ · A + 1

c2

∂ψ

∂t

)
= −μ0J. (2.30)

Eliminating E between (2.21) and (2.27) yields

∇2ψ + ∂

∂t
(∇ · A) = −ρc

ε0
. (2.31)

These equations involving A and ψ can be decoupled by choosing

∇ · A = − 1

c2

∂ψ

∂t
, (2.32)

which is referred to as the Lorentz gauge. The separated equations are then

∇2A − 1

c2

∂2A
∂t2

= −μ0J, (2.33)

∇2ψ − 1

c2

∂2ψ

∂t2
= −ρc

ε0
. (2.34)

If the sources J and ρc are known then these inhomogeneous wave equations have
formal integral solutions for A and ψ , incorporating retardation effects due to the
finite speed of propagation of the fields (e.g. Jackson 2001). The fields B and E then
follow from (2.25) and (2.27).

The electric and magnetic fields, E′ and B′, measured in a frame moving with
velocity v relative to the frame in which E and B are measured, are given by the
Lorentz transformations

E′ = (1 − γ )(v · E)
v2

v + γ (E + v × B), (2.35)

B′ = (1 − γ )(v · B)
v2

v + γ
(
B − 1

c2
v × E

)
, (2.36)

where

γ =
(
1 − v

2

c2

)− 1
2

. (2.37)
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The Lorentz force on a charge q moving with velocity vc in the presence of E
and B fields is

FL = q(E + vc × B). (2.38)

2.2.3 The Induction Equation

The magnetic fields present in binary systems interact with conducting plasma. This
plasma can consist of the secondary star, the atmosphere of a white dwarf primary,
the accretion stream and disc, wind material, and sometimes a magnetosphere.
The largest fluid velocities occur in the stream flow, the circular motions in
the disc and in the outer regions of winds. These have characteristic values of
v ∼ 106 m s−1 and hence fluid motions in binary stars usually satisfy v/c �
3×10−3 � 1. The inner regions of accretion flows on to strongly magnetic neutron
stars can have significantly larger speeds, but these become reduced as the star
is approached. Provided that v/c � 1 is satisfied, the theory of non-relativistic
magnetohydrodynamics is appropriate. The induction equation is fundamental in
this theory.

The equations of non-relativisticMHD are derived using the condition v � c and
working to first order in v/c. Since v, E and B are causally inter-related, a typical
velocity is v ∼ �/τ where � and τ are the length and time-scales for E and B. The
induction equation (2.22) then gives

E

B
∼ �

τ
∼ v. (2.39)

It therefore follows in the Maxwell equation (2.24) for ∇ × B that

|∂E/∂t|
c2|∇ × B| ∼ �E

c2τB
∼
(v
c

)2 � 1, (2.40)

so the displacement current can be neglected and

∇ × B = μ0J. (2.41)

Taking the divergence of (2.24), noting that ∇ · (∇ × B) = 0 and using (2.21) to
eliminate ∇ · E, gives

∇ · J = −∂ρc
∂t
. (2.42)

This expresses the conservation of charge. Equation (2.41) yields ∇ · J = 0
which implies that in non-relativistic MHD the electric currents flow in closed
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loops. Equation (2.42) then shows that the time derivative of the charge density
is ignorable, to first order in v/c.

The current density can be expressed as the sum of the ion and electron
contributions by

J = niZevi − neeve, (2.43)

where ni and ne are the ion and electron number densities, vi and ve the mean drift
velocities of ions and electrons, and e > 0. Using (2.1) for the total charge density
ρc, it follows that (2.43) can be written

J = ρcvi − nee(ve − vi). (2.44)

Noting that, since mi � me, the bulk velocity v � vi to a good approximation, and
hence the current density becomes

J = ρcv + ρe(ve − v), (2.45)

with ρe = −nee. It is noted that (ve − v) is the mean drift velocity of electrons
relative to the centre of mass of a fluid element, and hence

J = J′ + ρcv, (2.46)

where J′ = ρe(ve − v) is the electron current density measured in the fluid element
frame.

Expanding (2.37) for γ , and using (2.39) for E/B, it follows that the Lorentz
transformations (2.35) and (2.36) become

E′ = E + v × B, (2.47)

B′ = B, (2.48)

if terms of order (v/c)2 are neglected. The current density J is given by

J = σE′ + ρcv, (2.49)

where σ is the plasma conductivity and E′ is measured in a frame moving with the
local fluid velocity v. This expression for J follows from (2.46) with J′ = σE′ being
Ohm’s law in a fluid element frame, while ρcv is the contribution to J due to charge
advection by the flow. It follows from (2.21) for ρc and (2.41) for J that

ρc|v|
|J| ∼ μ0ε0

|v||E|
|B| ∼

(v
c

)2
, (2.50)
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where the last relation derives from (2.39) for E/B. Hence, to first order in v/c,
charge advection is ignorable in (2.49) so J = J′ = σE′ and the use of (2.47) for E′
then gives

J = σ(E + v × B). (2.51)

Combining Faraday’s law (2.22) with the curls of (2.41) and (2.51) gives the MHD
induction equation

∇ × (v × B)− ∇ × (η∇ × B) = ∂B
∂t
, (2.52)

where η = 1/μ0σ is the magnetic diffusivity.
Using the vector identity (A6), the induction equation (2.52) can be written as

dB
dt

= −B ∇ · v + (B · ∇)v − ∇ × (η∇ × B), (2.53)

where d/dt is the Lagrangian time derivative, measuring the rate of change moving
with the fluid velocity. The first and second terms on the right side of this equation
represent the rates of change of B in a fluid element due to compression and
stretching of the field lines by the motion, respectively. The last term gives the
diffusion of B, which has an associated dissipation of electric currents.

The relative importance of the convective and diffusive terms in the induction
equation (2.52) can be gauged using the typical length and time-scales � and τ . The
magnetic Reynolds number is defined as

Rm = �v

η
∼ |∇ × (v × B)|

|∇ × (η∇ × B)| , (2.54)

where v ∼ �/τ is a typical fluid velocity. The cases of large and small values of Rm

are of particular significance.
In the case Rm � 1 the induction equation becomes

∇ × (v × B) = ∂B
∂t
. (2.55)

There are several ways of showing that in this limit the magnetic field is ‘frozen’
to the plasma, so fluid elements are attached to field lines and flux freezing results.
One method is to represent B as

B = ∇α × ∇β = ∇ × (α∇β), (2.56)
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where α and β are referred to as Euler potentials. This satisfies ∇ ·B = 0 and, since
B ·∇α = B ·∇β = 0, α and β are constant on field lines and so can be used to label
these lines. The substitution of (2.56) in (2.55) gives

∇α × ∇ ∂β
∂t

− ∇β × ∇ ∂α
∂t

= ∇ × [v × (∇α × ∇β)]
= ∇ × [(v · ∇β)∇α − (v · ∇α)∇β]
= ∇(v · ∇β)× ∇α − ∇(v · ∇α)× ∇β, (2.57)

making use of the vector identity (A5). Hence

∇×
(
α∇ ∂β
∂t

)
−∇×

(
β∇ ∂α
∂t

)
= −∇×[α∇(v·∇β)]+∇×[β∇(v·∇α)], (2.58)

and so the induction equation becomes

∇ ×
(
α∇ dβ
dt

− β∇ dα
dt

)
= 0, (2.59)

where d/dt is the Lagrangian time derivative. Equation (2.59) has a family of
solutions, but the simplest is

dα

dt
= dβ

dt
= 0, (2.60)

corresponding to magnetic field lines moving with the fluid.
Another way of demonstrating the frozen field property of (2.55) is to consider

the magnetic flux through a contour c. This is given by


 =
∫
S

B · dS, (2.61)

where S is an open surface ending on c. If the contour and its surface are taken to be
always composed of the same fluid elements, then conservation of 
 is consistent
with the field being frozen to the plasma. Hence the material derivative d
/dt
should vanish if (2.55) is satisfied.

Denote the material contour at time t by c, and at time t + δt by c′. In the time
interval δt an arc length dl of c sweeps out an area dl × vδt . A closed surface can
be considered consisting of a surface S ending on c, a surface S′ ending on c′, and
the band joining c and c′. The total flux through this closed surface at time t + δt is

−
∫
S

B(r, t+δt)·dS+
∫
S ′
B(r, t+δt)·dS′+

∮
c

B(r, t+δt)·dl×vδt = 0. (2.62)
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The negative sign arises since the outward normal is required on S, and the total flux
of B through any closed surface is zero since ∇ ·B = 0. The change in flux through
the moving contour is therefore

δ
 =
∫
S ′
B(r, t + δt) · dS′ −

∫
S

B(r, t) · dS

=
∫
S

[B(r, t + δt)− B(r, t)] · dS + δt
∮
c

B(r, t) · v × dl

= δt
{∫
S

∂B
∂t

· dS −
∮
c

v × B · dl
}
. (2.63)

Dividing by δt , letting δt → 0 and using Stokes’s integral theorem, gives

d


dt
=
∫
S

(
∂B
∂t

− ∇ × (v × B)
)

· dS. (2.64)

Equation (2.55) then shows d
/dt = 0, which is consistent with frozen B.
Finally, it can be noted that the ideal induction equation (2.55) is identical to the

equation describing the evolution of the vorticity ω = ∇ × v in an inviscid flow,
with B replacing ω. Kelvin’s circulation theorem is consistent with the vortex lines
moving with the fluid (e.g. Batchelor 2005) and hence (2.55) is consistent with the
lines of B moving with the fluid. Like B, the vortex field satisfies ∇ · ω = 0.

In the general case, with diffusion present, (2.52) and (2.64) yield

d


dt
= −

∫
S

∇ × (η∇ × B) · dS, (2.65)

showing that the flux through a material contour changes due to diffusion of B.
When Rm � 1 the induction equation becomes

∇ × (η∇ × B) = −∂B
∂t
. (2.66)

For constant η this yields

η∇2B = ∂B
∂t
, (2.67)

which is a standard diffusion equation for B. The rate of dissipation of the electric
current in a fluid element can be found by considering the rate at which the electric
field does work on the electrons. This rate of work, per unit volume, is

Qm = (ve − vi) · (ρeE′), (2.68)
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where (ve −vi) and E′ are the electron mean drift velocity and the electric field both
measured in the centre of mass frame of the element, remembering vi � v. Since
E′ = μ0ηJ′ and J′ = ρe(ve − vi) while, to first order in v/c, J′ = J, it follows that

Qm = μ0ηJ2. (2.69)

The kinetic energy imparted to the electrons is dissipated due to collisions with
the ions, resulting in heating of the plasma. Hence (2.69) represents the rate of
dissipation of electric current per unit volume. In the absence of significant fluid
motions and external sources, (2.67) shows that a magnetic field with length-scale �
decays on a characteristic diffusion time-scale

τd = �2

η
∼ B2/2μ0

Qm
, (2.70)

where the last ratio derives from the Ampere law (2.41) for J and (2.69) for the
magnetic dissipation functionQm. This gives the time-scale on which the magnetic
energy density decays at a point due to dissipation of the current density.

It follows from (2.54) and (2.70) that the magnetic Reynolds number is

Rm = �2/η

�/v
= τd

τkin
, (2.71)

where τkin is the flow time-scale (kinematic time). When Rm � 1, then τkin � τd
and the flow distorts the magnetic field faster than it can diffuse. Conversely, when
Rm � 1, then τd � τkin and rapid diffusion prevents the flow from significantly
affecting the field. Separate magnetic Reynolds numbers can occur, involving vari-
ous velocity components and length-scales. Turbulent magnetic Reynolds numbers
can also be defined.

An expression for the rate of change of the magnetic energy density can be
derived from the Faraday induction equation (2.22). Taking the scalar product of
this with B and using the vector identity (A4), together with (2.41) for J, gives

∂

∂t

(
B2

2μ0

)
= −∇ · (E × H)− E · J, (2.72)

whereH = B/μ0. The use of (2.51) for J yields

E · J = μ0ηJ2 − (v × B) · J = μ0ηJ2 + v · (J × B). (2.73)

It is shown below that J × B is the magnetic force density Fm, so

∂

∂t

(
B2

2μ0

)
= −∇ · (E × H)− μ0ηJ2 − v · Fm. (2.74)
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The first term on the right hand side of this equation is the divergence of the Poynting
energy flux E × H. A positive divergence corresponds to magnetic energy flowing
away from a point, leading to a decrease in the energy density. The second term is
the dissipation of currents, always causing a decrease in field energy. The term v ·Fm

is the rate at which the magnetic force does work on the fluid motions, allowing an
exchange between magnetic and kinetic energy. This term can correspond to an
increase or a decrease in the magnetic energy density, depending on whether v is
antiparallel or parallel to Fm.

The concept of magnetic flux tubes is important. A flux tube is the volume
enclosed by the set of field lines which intercept a simple closed curve. Since no
field lines cross the surface of the tube, it follows from ∇ · B = 0 that for any
volume of it contained between two cross-sections as much flux enters one section
as leaves the other. Hence the flux
 through any section of the tube, given by (2.61)
with dS having the same sense as B, is constant. When Rm � 1 matter can flow
along flux tubes but not across them. The flux tubes can have infinitesimal or finite
cross-sections.

It is sometimes convenient to express the induction equation, or part of it, in terms
of the vector potential A. In the general theory of electromagnetism, A is related to
J by the inhomogeneous wave equation (2.33), subject to the Lorentz gauge (2.32).
In the non-relativistic approximation of MHD terms of order (v/c)2 are ignored.
The potentials A and ψ , like E and B, vary with length and time-scales � and τ , and
v ∼ �/τ . It then follows in (2.33) that

|∂2A/∂t2|
c2|∇2A| ∼ �2/τ 2

c2
∼ v2

c2
, (2.75)

and hence, to first order in v/c, the magnetic vector potential is related to the current
density by

∇2A = −μ0J. (2.76)

In this approximation, the delay effects due to the finite speed of propagation of the
fields is ignorable. The Lorentz gauge (2.32) has a ratio of terms given by

|∂ψ/∂t|
c2|∇ · A| ∼ (�/τ)ψ

c2A
∼ (�/τ)�E

c2�B
∼ (�/τ)v

c2
∼ v2

c2
, (2.77)

using (2.25), (2.27) and (2.39) to estimate the fields B and E. The Lorentz gauge
condition therefore becomes

∇ · A = 0. (2.78)

It will be seen that in axisymmetric problems it is particularly useful to express
the poloidal magnetic field in terms of a vector potential.
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2.2.4 Magnetic Force

The Lorentz force density on ions and electrons is

F = niZe(E + vi × B)− nee(E + ve × B). (2.79)

The use of (2.1) for ρc and (2.43) for J then gives

F = ρcE + J × B. (2.80)

The ratio of the electric to magnetic force is

ρc|E|
|J × B| ∼ ε0μ0

(
E

B

)2

∼
(v
c

)2
, (2.81)

where the first relation follows from (2.21) for ρc and (2.41) for J, and the second
from (2.39) for E/B. The electric force density is therefore negligible so

F = Fm = J × B, (2.82)

and the use of (2.41) gives the magnetic force per unit volume as

Fm = 1

μ0
(∇ × B)× B. (2.83)

Employing the vector identity (A2), (2.83) can be written as

Fm = 1

μ0
(B · ∇)B − ∇

(
B2

2μ0

)
. (2.84)

Hence Fm can be expressed in the Cartesian tensor form

Fmi = ∂Mij

∂xj
, (2.85)

where the summation convention is used and

Mij = 1

μ0
BiBj − B2

2μ0
δij (2.86)

is the Maxwell stress tensor. The BiBj /μ0 term represents a tension along the
magnetic field, while B2/2μ0 is a pressure.
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Writing B = B ŝ and ŝ · ∇ = d/ds, where s is the distance along a field line, then

(B · ∇)B = B2 d

ds
(ŝ)+ ŝ

d

ds

(
B2

2

)
= B2

Rc
n̂ + ∇‖

(
B2

2

)
, (2.87)

where Rc is the local radius of curvature of a field line, n̂ is a unit vector directed
at the centre of curvature and ∇‖ measures the spatial rate of change along B.
Substitution in (2.84) gives

Fm = B2

μ0Rc
n̂ − ∇⊥

(
B2

2μ0

)
. (2.88)

The magnetic force therefore results from curvature of the field lines, which are
stressed along their length, and from the variation of magnetic pressure across field
lines. A flux tube of infinitesimal cross-section acts like an elastic string, and also
has a pressure exerted on it by neighbouring tubes. The first term in (2.88) acts like
an elastic restoring force, while the second term makes a contribution if B varies
across field lines.

There are two non-trivial cases in which the magnetic force density vanishes. A
current-free region has J = 0 and hence zero Fm. Equation (2.41) for J then shows
that ∇ × B = 0 and hence a current-free field can be expressed as

B = −∇�m, (2.89)

where, by virtue of ∇ · B = 0, the magnetic scalar �m satisfies Laplace’s equation

∇2�m = 0. (2.90)

The second case of vanishing Fm arises when J is finite but parallel to B. This
case leads to the concept of a force-free field and (2.83) yields

(∇ × B)× B = 0. (2.91)

This condition is satisfied by

∇ × B = f (r)B. (2.92)

Taking the divergence of this equation, and using the vector identity (A3), shows
that

B · ∇f = 0, (2.93)
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so f (r) is constant along lines of B. The curl of (2.92), together with the vector
identities (A5) and (A7), yields

∇2B + f 2B = −∇f × B. (2.94)

In the degenerate case f = 0 and the force-free field becomes current-free.
In the case of an axisymmetric force-free field, the poloidal field can be

expressed as

Bp = ∇ ×
(
ψm

�
φ̂

)
= 1

�
∇ψm × φ̂, (2.95)

where 2πψm(�, z) is the poloidal flux through a circular contour of cylindrical
radius� at height z. It follows that

Bp · ∇ψm = 0, (2.96)

so that ψm is conserved along poloidal field lines.
The toroidal component of the force-free equation (2.91) yields

Bp · ∇(�Bφ) = 0, (2.97)

so �Bφ is also conserved along poloidal field lines. It then follows from (2.96)
and (2.97) that�Bφ can be expressed as a function

W(ψm) = �Bφ. (2.98)

The cylindrical components of (2.95) are

B� = − 1

�

∂ψm

∂z
, (2.99a)

Bz = 1

�

∂ψm

∂�
. (2.99b)

The toroidal current density can be expressed as

Jφ = − 1

μ0

[
∇2
(
ψm

�

)
− 1

� 2

ψm

�

]
. (2.100)

Using this, together with (2.99a) and (2.99b), in the poloidal components of the
force-free condition (2.91) leads to the Grad-Shafranov equation

∇2
(
ψm

�

)
− 1

� 2

ψm

�
= − 1

2�

d

dψm

(
W 2
)
, (2.101)
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where W(ψm) is given by (2.98). This shows how Bφ is related to ψm for an
axisymmetric force-free field. Such a field must have a twist, and this is associated
with a modification of the poloidal field from its current-free state.

The amount of poloidal field modification is related to the field winding ratio
|Bφ/Bp|, and in the formal limit Bφ → 0 the force-free equation (2.101) reduces to

∇2
(
ψm

�

)
− 1

� 2

ψm

�
= 0. (2.102)

By (2.100), this corresponds to the current-free limit Jφ = 0 and Bφ = 0 for an
axisymmetric field. It follows from the field component expressions (2.98), (2.99a)
and (2.99b) that the ratio of the right hand side to either of the terms on the left hand
side of (2.101) is ∼ B2

φ/B
2
p . Hence if |Bφ/Bp| � 1 occurs, then the right hand side

is small compared to either of the terms on the left hand side so the left hand terms
must nearly cancel and (2.101) reduces to (2.102) for the poloidal flux function.
This corresponds to |Jφ | � |Jp|, so Bp can be considered as essentially current-free
while a relatively small but finite Bφ field satisfies the force-free condition (2.97).

Formally, a force-free magnetic field has Fm = J×B = 0, with J exactly parallel
to B. In practice, the state of J parallel to B is approached when B2/2μ0 � P and,
if a flow is present, when v � (B2/μ0ρ)

1/2. These conditions correspond to v2A �
c2s and v2A � v2, respectively, where vA is the Alfvén speed (see Sect. 2.2.6) The
magnetic energy density then dominates the thermal and kinetic energy densities,
and the terms in the momentum equation are balanced by having J nearly parallel
to B to prevent the magnetic force term from dominating. A finite magnetic force
results because the large magnetic energy density, which is intrinsic to J × B as
a scaling factor, compensates for J being nearly parallel to B. The solution of the
force-free equation gives the structure of the magnetic field to a good approximation.
Strictly speaking, such fields should be referred to as nearly force-free but they are
usually just described as force-free. In force-free field situations the geometry of
the poloidal magnetic field largely determines the poloidal geometry of the flow.
In binary stars, force-free fields occur in the well sub-Alfvénic regions of magnetic
stellar and disc wind flows, and in magnetically channelled accretion flows. They
also occur in magnetically dominated, nearly corotating stellar magnetospheres.

2.2.5 The Magneto-Fluid Equations

The plasma motion is governed by the equations of continuity, momentum and
thermal energy. The equation of mass conservation can be derived by considering a
massM contained in a stationary volume V enclosed by a surface S. The mass flux
through a point is ρv, so ρv ·dS is the rate of flow of mass through dS. Equating the
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rate of change of the volume integral of ρ to minus the rate of mass flow through S
and then using Gauss’s divergence theorem gives the local condition

∇ · (ρv) = −∂ρ
∂t
. (2.103)

This expresses the fact that the density at a point increases if mass flows into the
surrounding volume element, while it decreases if there is a positive divergence of
mass flux. Expanding the divergence gives

ρ∇ · v = −
(
∂ρ

∂t
+ v · ∇ρ

)
, (2.104)

so it follows that the continuity equation can be expressed as

∇ · v = − 1

ρ

dρ

dt
, (2.105)

where d/dt is the Lagrangian time derivative. In general, a fluid element contracts
or expands as it moves with the flow, corresponding to negative and positive
∇ · v respectively. In the special case when fluid elements conserve their volume,
dρ/dt = 0. Equation (2.105) shows that such incompressible flows have ∇ · v = 0.

The equation of motion equates the rate of change of the linear momentum of a
fluid element to the sum of the forces acting on it. In an inertial frame, this gives

∂v
∂t

+ (v · ∇)v = − 1

ρ
∇P − ∇ψ + 1

μ0ρ
(∇ × B)× B + 1

ρ
Fv, (2.106)

where P is the pressure, ψ the gravitational potential, and the acceleration of the
element is the Lagrangian derivative of v given by (2.19). The first force term is
derived from the isotropic nature of the stress due to the gas or radiation pressure,
giving a stress tensor Sij = −Pδij . This yields a corresponding force per unit
volume of ∂Sij /∂xj = −∂P/∂xi = −∇P , and hence a force per unit mass of
−∇P/ρ. The second force follows from the conservative nature of the gravity field,
giving ∇ × g = 0, and hence a force per unit mass of g = −∇ψ . The gravitational
potential obeys Poisson’s equation

∇2ψ = 4πGρ. (2.107)

The last two terms in the momentum equation (2.106) are the specific magnetic and
viscous forces.

In a frame rotating with instantaneous angular velocity � the equation of motion
has apparent force terms which are part of the inertial acceleration. A particle has a
position in a Cartesian frame given by

r = xi x̂i , (2.108)
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where the tensor summation convention is employed. If the rotating frame is used,
then in inertial space the unit vector x̂i traces a circle about � at a rate

d

dt
(x̂i ) = � × x̂i . (2.109)

The inertial space particle velocity is therefore

dr
dt

= d

dt
(xi x̂i ) = vi x̂i + xi� × x̂i, (2.110)

where vi = ẋi are the velocity components relative to the rotating axes. The inertial
acceleration is then

d2r
dt2

= v̇i x̂i + 2vi� × x̂i + xi
[
d�

dt
× x̂i + � × (� × x̂i )

]
. (2.111)

Hence the accelerations in the inertial and rotating frames are related by

d2r
dt2

= r̈ + 2� × v + � × (� × r)+ d�
dt

× r. (2.112)

In a binary star orbital frame the time-scale for changes in � far exceeds any flow
time-scales and so the term (d�/dt)× r is ignorable. This leaves two terms that are
related to the Coriolis force and the centrifugal force . The latter can be expressed
as a gradient by noting that

(� × r) · (� × r) = [(� × r)× �] · r =
[
�2r2 − (� · r)2

]
, (2.113)

and hence

∇(|� × r|2) = 2�2r∇r − 2(� · r)∇(� · r)
= 2�2r − 2(� · r)�
= −2� × (� × r). (2.114)

The inertial acceleration of a fluid element can therefore be expressed as

d2r
dt2

= r̈ + 2� × v − ∇
(
1

2
|� × r|2

)
. (2.115)
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Substitution of this in the inertial frame equation of motion (2.106) gives the
equation of motion in the rotating frame as

∂v
∂t

+ (v · ∇)v = − 1

ρ
∇P − ∇

(
ψ − 1

2
|� × r|2

)
− 2� × v

+ 1

μ0ρ
(∇ × B)× B + 1

ρ
Fv. (2.116)

The second force term is the gradient of an effective potential, arising from the sum
of the gravitational and centrifugal potentials, while the third term is the Coriolis
force per unit mass.

The force due to ordinary molecular viscosity is usually too small to be
significant. However, the presence of turbulence can lead to a much larger effective
viscous force. Turbulence is a field of random macroscopic velocities superposed
on a mean laminar flow. The standard picture of hydrodynamic turbulence has an
inertial range in which the non-linear inertial terms cause a dissipation-free cascade
of energy from the larger to the smaller eddies, until scales are reached at which
the micro-viscosity operates. The micro-viscosity fixes the minimum scale at which
turbulent motions persist. The time-scale of the dissipative process is that of the
cascade, being typically the turn-over time of the larger eddies. The micro-viscosity
is replaced by a macro eddy-viscosity acting on the mean flow, with a macro length-
scale and a turbulent velocity replacing the mean free path and the thermal velocity,
respectively. Hence the turbulent viscous force per unit volume is expressed in the
Cartesian tensor form

Fvi = ∂sij

∂xj
, (2.117)

where

sij = ρν
(
2eij − 2

3
∇ · v δij

)
(2.118)

is the viscous stress tensor, with

eij = 1

2

(
∂vi

∂xj
+ ∂vj
∂xi

)
(2.119)

the rate of strain tensor. The viscosity coefficient ν is usually expressed as

ν = 1

3
vTλT, (2.120)

where vT and λT are the rms turbulent speed and the mixing length, respectively.
This turbulent form of ν has values which exceed those of the molecular form by
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several orders of magnitude, since λT greatly exceeds a typical molecular mean free
path. The use of (2.117)–(2.119) for Fv in (2.106) assumes subsonic turbulence, so
the associated density fluctuations are modest.

The viscous force can be expressed in vector operator terms by expand-
ing (2.117)–(2.119) and using the vector identity (A6). This gives, (see the
Appendix),

Fv = ρν∇2v − [∇2(ρν)]v + ∇
(

∇ · (ρνv)− 2

3
ρν∇ · v

)

+ ∇ × [v × ∇(ρν)]. (2.121)

It is often the case in stars and discs that the shears due to differential rotation
dominate those due to poloidal flows, so Fv is principally azimuthal. For an
axisymmetric flow, expressed in cylindrical coordinates (�, φ, z), with angular
velocity �(�, z), (2.121) yields

Fvφ = 1

� 2

∂

∂�

(
ρν� 3 ∂�

∂�

)
+ ∂

∂z

(
ρν�

∂�

∂z

)
, (2.122)

where� = vφ/� .
The rate of work done, per unit volume, by the viscous force on the fluid at a

fixed point is

v · Fv = vi ∂sij
∂xj

= ∂

∂xj
(visij )− sij ∂vi

∂xj
. (2.123)

The first term on the right hand side is the divergence of the viscous stress flow
vector visij . This represents an advection of viscous stress. By Gauss’s divergence
theorem, the volume integral of this term will vanish if the normal component of
visij vanishes on the surface of the region containing the fluid. This is usually the
case for astrophysical bodies. The second term represents a dissipation of energy
due to the work done by shears in deforming fluid elements, and hence is a source
of heat. The magnitude of this dissipation can be written

Qv = sij ∂vi
∂xj

= 1

2
sij

(
∂vi

∂xj
+ ∂vj

∂xi

)
= sij eij , (2.124)

where the second equality employs the symmetry of sij . It then follows from (2.118)
for sij and (2.119) for eij that

Qv = 2ρν

[
eij eij − 1

3
(∇ · v)2

]
. (2.125)

This is the viscous dissipation rate per unit volume.
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The heat equation is obtained by equating the rate of heat transfer in a fluid
element, evaluated following the flow, to its net energy losses and gains. The first law
of thermodynamics gives the rate of heat transfer per unit mass in a fluid element as

dQ

dt
= dE

dt
− P

ρ2

dρ

dt
, (2.126)

where E is the internal energy per unit mass, and the last term is the rate at which
work is done due to compression or expansion. In general, the state variable E will
be a function of P and ρ, so (2.126) gives

dQ

dt
= P

(
∂E

∂P

)
ρ

d

dt
lnP + ρ

[(
∂E

∂ρ

)
P

− P

ρ2

]
d

dt
ln ρ. (2.127)

The adiabatic exponents �1 and �3 are defined as

�1 =
(
d lnP

d lnρ

)
ad

(2.128a)

= γρ

P

(
∂P

∂ρ

)
T

, (2.128b)

�3 − 1 =
(
d ln T

d ln ρ

)
ad

(2.129a)

= 1

ρcV

(
∂P

∂T

)
ρ

, (2.129b)

where γ = cP /cV with cV and cP the specific heat capacities at constant volume and
pressure, given by

cV =
(
∂E

∂T

)
ρ

, (2.130a)

cP =
(
∂E

∂T

)
P

− P

ρ2

(
∂ρ

∂T

)
P

. (2.130b)

Setting dQ = 0 in (2.127), and using (2.128a) for �1, shows that dQ/dt can be
expressed as

dQ

dt
= P

(
∂E

∂P

)
ρ

(
d

dt
lnP − �1 d

dt
lnρ

)
. (2.131)
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The derivative (∂E/∂P)ρ can be related to (�3 − 1). From an equation of state
P = P(ρ, T ) it follows that E can be expressed as a function of ρ and T , then
setting dQ = 0 in (2.127) and using (2.129a) for (�3 − 1) yields

�3 − 1 = ρ
[
P/ρ2 − (∂E/∂ρ)T

]
T (∂E/∂T )ρ

. (2.132)

Since
(
∂E

∂T

)
ρ

=
(
∂E

∂P

)
ρ

(
∂P

∂T

)
ρ

, (2.133)

(2.132) gives

(
∂E

∂P

)
ρ

=
[
P − ρ2(∂E/∂ρ)T

]
(�3 − 1)ρT (∂P/∂T )ρ

. (2.134)

For reversible changes dQ = T dS, where S is the entropy per unit mass. Hence it
follows from (2.126) that

dE

dt
= T dS

dt
+ P

ρ2

dρ

dt
, (2.135)

which yields

T =
(
∂E

∂S

)
ρ

, P = ρ2
(
∂E

∂ρ

)
S

. (2.136)

Then using E(ρ, T ) = E(S(ρ, T ), ρ) and the Maxwell relation

(
∂P

∂T

)
ρ

= −ρ2
(
∂S

∂ρ

)
T

, (2.137)

gives

(
∂E

∂ρ

)
T

= P

ρ2
− T

ρ2

(
∂P

∂T

)
ρ

. (2.138)

It therefore follows from (2.134) that

(
∂E

∂P

)
ρ

= 1

ρ(�3 − 1)
, (2.139)
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which proves (2.129b), since cV = (∂E/∂T )ρ . Hence using (2.139) in (2.131) gives

dQ

dt
= P

(�3 − 1)ρ

(
d

dt
lnP − �1 d

dt
lnρ

)
. (2.140)

The heat equation is

ρ
dQ

dt
= L, (2.141)

where L represents heat sources and sinks. Using (2.20) for d/dt in (2.140)
allows (2.141) to be expressed as

∂P

∂t
− �1P

ρ

∂ρ

∂t
+ v ·

(
∇P − �1P

ρ
∇ρ
)

= (�3 − 1)L, (2.142)

where

L = ρε + μ0ηJ2 +Qv − ∇ · F. (2.143)

The first three terms on the right hand side of (2.143) are due to nuclear sources,
dissipation of electric currents and viscous dissipation, the latter being given
by (2.125). The last term is the divergence of the heat flux.

The heat flux F will depend on the energy transport mechanism. In an optically
thick region the radiative flux is given by

FR = −16σBT
3

3κρ
∇T , (2.144)

where σB is the Stefan-Boltzmann constant and κ is the Rosseland mean opacity.
When the magnitude of the radiative temperature gradient is super adiabatic
instability results and convection occurs, leading to a convective flux

Fc = ρcP vTλT�∇T e, (2.145)

where vT is the rms turbulent velocity, λT the mixing length, and �∇T is the
temperature gradient excess over the adiabatic value (see Cox and Giuli 1968 for
an account of radiative transfer and mixing length theory). The unit vector e is
antiparallel to the vertical gravity.

It is noted that for a perfect gas �3 = γ , so (2.139) then integrates to give the
thermal energy per unit mass as

E = P

ρ(γ − 1)
. (2.146)
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Since the thermal energy per unit volume is ρE ∼ P , the net heat flow time-scale
for a fluid element is τth ∼ P/|L|. The flow time-scale associated with the fluid
motion is τkin ∼ �/v, where � is its length-scale. The ratio of a term on the left
of (2.142) to |L| is therefore typically

|v · ∇P |
|L| ∼ vP

�|L| ∼ τth

τkin
. (2.147)

If τth � τkin, then net heat flows can be ignored on the gas flow time-scale and
the motion is essentially adiabatic. The ratio (2.147) then gives |v · ∇P | � |L|
and (2.142) is approximately satisfied by the vanishing of both its sides. Hence
dQ/dt = 0 and (2.140) yields

dP

dt
− �1P

ρ

dρ

dt
= 0 (2.148)

for adiabatic motions . For constant �1, this integrates to give the adiabatic relation

P = Kρ�1, (2.149)

whereK is a constant following the motion.
For a non-degenerate gas the equation of state is

P = R
μ
ρT + 4σB

3c
T 4, (2.150)

where R and μ are the gas constant and mean molecular weight. The second term
represents radiation pressure, which can become important in upper main sequence
stars and in the inner parts of some accretion discs. When radiation pressure is
ignorable, (2.128b) and (2.150) give �1 = γ. For a fully ionized plasma, μ is
given by

1

μ
= 3

2
X + 1

4
Y + 1

2
, (2.151)

whereX and Y are the fractions by mass of hydrogen and helium, respectively (e.g.
Cox and Giuli 1968).

2.2.6 Magnetohydrodynamic Waves

Disturbances introduced into a conducting fluid containing a magnetic field are
propagated away by the stresses in the field and fluid. If a stable equilibrium
state exists, perturbations propagate in the form of hydromagnetic waves. When
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gravitational and viscous forces are ignorable, and adiabatic motions are considered,
the momentum and heat equations become

∂v
∂t

+ (v · ∇)v = − 1

ρ
∇P + 1

μ0ρ
(∇ × B)× B, (2.152)

∂P

∂t
− γP
ρ

∂ρ

∂t
+ v ·

(
∇P − γP

ρ
∇ρ
)

= 0, (2.153)

where �1 = γ for a perfect gas. The simplest wave solutions arise in the high
magnetic Reynolds number case, in which the diffusionless form of the induction
equation, given by (2.55), applies. If the properties of the undisturbed medium vary
with a length-scale �, then these can be considered essentially uniform over a length-
scale λ0 � �. Wave solutions with wavelengths λ � λ0 will be considered here.

The equilibrium state has v = 0 and is taken to have a uniform magnetic field B0
and a uniform density ρ0. The sound speed is cs = (dP/dρ)1/2. The magnetic field
in the perturbed state can be written

B = B0 + B1(r, t), (2.154)

so B1 is the field perturbation. Similar expressions hold for other quantities. The
Alfvén velocity for the medium is defined as

vA = B0

(μ0ρ)
1
2

. (2.155)

Consider, first, a medium in which the sound speed cs is much greater than vA
and v. The motions are then essentially incompressible, so that ∇ · v = 0. Defining
a velocity

w = B1

(μ0ρ)
1
2

, (2.156)

then using (2.84) for the magnetic force, together with (2.154) and (2.156), the
momentum and induction equations can be written as

∂v
∂t

+ (v · ∇)v − [(vA + w) · ∇]w = −∇
(
P

ρ
+ B2

2μ0ρ

)
, (2.157)

∂w
∂t

+ (v · ∇)w − [(vA + w) · ∇]v = 0, (2.158)

where ρ is uniform. For a velocity

v = ±w, (2.159)
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the use of (2.158) in (2.157) leads to

P + 1

2
ρ(vA + w)2 = C, (2.160)

with C a constant, so the thermal and magnetic pressure gradients cancel. Then v
satisfies the equations

∂v
∂t

∓ (vA · ∇)v = 0, (2.161)

which have the general solutions

v = v(r ± vAt). (2.162)

These represent arbitrary waveforms moving with the Alfvén velocity vA, defined
by (2.155). Such Alfvén waves are non-linear solutions, since |B1| does not
necessarily have to be small relative to |B0|. It follows from (2.156) and (2.159),
relating v to B1, that the Alfvén wave has a net energy flux given by

(
1

2
ρv2 + B2

1

2μ0

)
vA = ρv2vA, (2.163)

showing that the kinetic and magnetic energies are transported along B0 at the
Alfvén speed vA with equal contributions.

Consider, now, the more general case in which cs is not necessarily large
compared to vA and v, so compressible motions can occur. Take small perturbations
about the equilibrium state, so the equations can be linearized. Equations (2.152),
(2.55), (2.103) and (2.153) then respectively yield

∂v
∂t

= − 1

ρ0
∇P1 + 1

μ0ρ0
(∇ × B1)× B0, (2.164)

∂B1

∂t
= ∇ × (v × B0), (2.165)

∂ρ1

∂t
= −ρ0∇ · v, (2.166)

∂P1

∂t
= c2s

∂ρ1

∂t
, (2.167)

where

c2s = γP0

ρ0
, (2.168)
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and the equilibrium state is uniform. Differentiating (2.164) with respect to time,
and using (2.165)–(2.167) to eliminate the time derivatives of B1 and P1, gives the
linear wave equation

∂2v
∂t2

= c2s ∇(∇ · v)+ 1

μ0ρ0
(∇ × [∇ × (v × B0)])× B0. (2.169)

For a region with B0 = 0 the magnetic force term vanishes in the momentum
equation (2.164), and it then follows that ∇ × v = 0. The vector identity (A7) then
gives ∇(∇ · v) = ∇2v and hence (2.169) reduces to a standard equation for sound
waves, having the adiabatic speed cs given by (2.168). The restoring force is purely
due to the gradient of the thermal pressure perturbation P1, giving a compressional
force and longitudinal modes with the displacement along the wave vector. The
presence of a magnetic field B0 leads to the modified linear wave equation (2.169)
and this allows three types of wave solutions, one of which does not involve pressure
perturbations and is the linear form of the foregoing Alfvén wave.

For an unbounded medium, plane wave solutions of (2.169) can be sought with
the form

v = u exp[i(k · r − ωt)], (2.170)

where u is a constant vector. The operator∇ can then be replaced by ik and the time
derivative ∂/∂t by −iω, so using (2.170) in (2.169) yields the time-independent
equation

ω2u = c2s (k · u)k + 1

μ0ρ0
(k × [k × (u × B0)])× B0, (2.171)

which, employing the vector identity (A1), can be written as

ω2u = v2A
[
(k · B̂0)

2u − (k · u)(k · B̂0)B̂0

+{(1 + c2s /v2A)(k · u)− (k · B̂0)(B̂0 · u)}k
]
, (2.172)

where B̂0 = B0/|B0| and vA is given by (2.155) with ρ = ρ0. Taking the scalar
product of (2.172) with k and then with B̂0 gives

(−ω2 + k2c2s + k2v2A )(k · u) = k3v2A cos θB(B̂0 · u), (2.173)

kc2s cos θB(k · u) = ω2(B̂0 · u), (2.174)

where

cos θB = k̂ · B̂0. (2.175)
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An incompressible solution exists with ∇ · v = 0 and hence k · u = 0.
Equations (2.173) and (2.174) show that for this mode

B̂0 · u = 0, (2.176)

so the fluid velocity is perpendicular to the equilibriummagnetic field. The equation
of motion (2.172) then yields the dispersion relation

ω = ±vAB̂0 · k = ±kvA cos θB, (2.177)

where the different signs of ω correspond to oppositely directed waves, when
substituted in (2.170). This is the linear form of the foregoing Alfvén wave solution.
The phase speed is

vp = ω

k
= ±vA cos θB, (2.178)

so propagation is not possible in directions perpendicular to B0. Noting that
k cos θB = kj B̂0j , the group velocity follows from (2.177) as

vg = ∂ω

∂k
= ±vAB̂0, (2.179)

showing that the energy is carried alongB0 at the Alfvén velocity vA, consistent with
the non-linear result (2.163).

Equations (2.165) and (2.170) give

− ωB1 = k × (v × B0) = (k · B0)v, (2.180)

since k · v = 0. The use of (2.177) for ω then shows that

v = ∓ B1

(μ0ρ0)
1
2

, (2.181)

in agreement with (2.156) and (2.159). It follows from (2.176) and (2.181) that

B0 · B1 = 0. (2.182)

The first order magnetic force for this mode is therefore

J1 × B0 = 1

μ0
(B0 · ∇)B1 = i

μ0
(B0 · k)B1, (2.183)

illustrating that the restoring force is purely due to magnetic tension in this
incompressible transverse Alfvén mode. The infinitesimal flux tubes act like elastic
strings, with the tethered plasma giving a mass per unit length. The magnetic tension
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gives the restoring force resulting from a transverse displacement from the current-
free unperturbed state.

Equations (2.173) and (2.174) yield two compressible magnetosonic modes, for
which k · u 
= 0. The elimination of (k · u)/(B̂0 · u) between these equations leads
to the dispersion relation

ω4 − (c2s + v2A)k2ω2 + c2s v2Ak4 cos2 θB = 0. (2.184)

The two solutions for ω2 have phase speeds

vf =
[
1

2
(c2s + v2A )+

1

2

{
(c2s + v2A)2 − 4c2s v

2
A cos

2 θB

} 1
2
] 1

2

, (2.185)

vsl =
[
1

2
(c2s + v2A)−

1

2

{
(c2s + v2A )2 − 4c2s v

2
A cos

2 θB

} 1
2
] 1

2

, (2.186)

and are referred to as the fast and slow magnetosonic modes, respectively. The
Alfvén mode phase speed satisfies vsl < vA cos θB < vf, and hence this mode is
sometimes referred to as the intermediate mode. It is noted that the expressions for
vf and vsl are symmetric with respect to the interchange of cs and vA, so it follows
that vsl < cs cos θB < vf holds. The cases vA < cs or vA > cs can occur, depending
on the value of the ratio B2

0/μ0P0.
The equation of motion for a plane wave disturbance can be written as

− ωv = − 1

ρ0

(
P1 + 1

μ0
B0 · B1

)
k + 1

μ0ρ0
(B0 · k)B1. (2.187)

This shows that the force acting on the gas is the sum of a longitudinal component,
acting along the wave vector k, and a transverse component, acting normal to k,
noting that ∇ ·B1 = 0 gives k ·B1 = 0. The transverse component is proportional to
cos θB . The longitudinal component involves the sum of the perturbations to the
gas pressure and the magnetic pressure. The first order perturbation to B2/2μ0
is B0 · B1/μ0. Using the plane wave solution (2.170) in the first order MHD
equations (2.164)–(2.167) shows that the perturbation in B2/2μ0 is related to the
pressure perturbation by

1

μ0
B0 · B1 = v2A

c2s

(
1 − c2s

v2p
cos2 θB

)
P1, (2.188)

where vp = ω/k is the phase speed of the wave. It then follows from the above
result of vsl < cs cos θB < vf that the bracket in the expression (2.188) is positive for
the fast mode and negative for the slow mode. Hence the fast mode motions have
perturbations B0 · B1/μ0 and P1 of the same sign, while in the slow mode these
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perturbations have opposite signs. So in the fast mode the magnetic and thermal
pressure perturbations act together, while in the slow mode they are in opposition.
The longitudinal force, shown in (2.187), is therefore larger in the fast mode than in
the slow mode.

The magnetic field perturbation, which follows from the induction equation, can
be expressed as

B1 = 1

γ

P1

P0
B0 − 1

ω
(k · B0)v. (2.189)

This is the sum of a compressive contribution, containing P1 and derived from the
term (∇ · v)B0, and a stretching contribution, derived from the term (B0 · ∇)v,
which is proportional to cos θB . Hence, in the slow and fast modes, the (B0 · k)B1
tension force term in (2.187) has a component along B0 due to the compression
and expansion of flux tubes, as well as a contribution along v due to stretching of
the field. In the Alfvén mode there are no gas and magnetic pressure perturbations,
leaving only the transverse force which becomes normal to B0 and parallel to v. It
can be shown that the fast mode propagates most energy in directions near to that of
the wave vector k, while the slow mode transports most energy in directions nearer
to B̂0.

A weak magnetic field limit can be defined by vA � cs, corresponding to
B2
0/2μ0 � P0 so the magnetic energy density is small compared to the thermal

energy density. The fast and slow mode phase speed expressions, given by (2.185)
and (2.186), can then be expanded in powers of vA/cs which leads to the first order
results vf = cs and vsl = vA cos θB . Hence, in this limit, the fast mode becomes
a pure sound wave and the slow mode becomes degenerate with the Alfvén mode.
So, to first order in vA/cs, there is a pure magnetic mode, the Alfvén wave, and a
pure non-magnetic mode, the sound wave. This separation can result in a well sub-
thermal magnetic field being dynamically significant. An example of this occurs
in Keplerian accretion discs, in which a sub-thermal magnetic field destabilizes the
flow and leads to turbulence. Such effects are particularly relevant to dynamo theory.

In the strong field limit of vA � cs first order expansion in cs/vA yields vf = vA
and vsl = cs cos θB . This result also follows from the interchange symmetry with
respect to cs and vA of the expressions (2.185) and (2.186) for vf and vsl, so it can be
obtained from the weak magnetic limit by exchanging cs and vA to give the strong
field limit. Hence, in this limit, the fast mode transmits energy nearly isotropically at
the Alfvén speed, while the slow mode has a group velocity of csB̂0 and so transmits
energy along the unperturbed magnetic field at the sound speed.

In the non-linear regime, like sound waves, the slow and fast magnetosonic
modes become their corresponding shock waves (e.g. Priest 2014). Standing slow
shock fronts can occur just above the surface of a compact accretor where the
incoming supersonic and sub-Alfvénic, magnetically channelled stream becomes
dissipated.
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2.2.7 Mach Numbers

The importance of the pressure gradient and magnetic force terms in the momentum
equation (2.106) can be gauged by defining the dimensionless Mach numbers

Ms = v0

cs
, (2.190a)

MA = v0

vA
, (2.190b)

where v0 is a characteristic fluid speed. These are acoustic and Alfvén Mach
numbers. If the characteristic length-scale for variations in the medium is �, then the
ratio of the inertial term to the thermal pressure term in the momentum equation is

|(v · ∇)v|
|∇P |/ρ ∼ v20

P/ρ
∼
(
v0

cs

)2

= M2
s . (2.191)

For highly supersonic flow Ms � 1, and hence the pressure gradient term is
ignorable along the flow direction. The physical reason for this is that the sound
speed determines how fast pressure disturbances propagate through the gas. The
magnitude of cs therefore limits the rapidity with which the flowing gas can respond
to pressure changes. For Ms � 1, the flow time-scale, �/v0, is much shorter than
the sound travel time, �/cs, so the gas does not have time to respond to pressure
changes. In energy terms, the kinetic energy density, ρv2/2, far exceeds the thermal
energy density of ∼ P when Ms � 1, so the flow is not significantly affected by
the pressure.

For a highly subsonic flow Ms � 1 holds and, to a good approximation, the
velocity terms are ignorable in the momentum equation. This corresponds to an
equilibrium state in which the relevant forces approximately balance. Because of
the vector nature of the momentum equation, it sometimes happens that v has
subsonic and supersonic components. Thin accretion discs are an example of this, in
which the poloidal velocity components are subsonic while the azimuthal velocity
is supersonic.

A similar argument applies for the effect of the magnetic force term in the
momentum equation. Then

|(v · ∇)v|
|(∇ × B)× B|/μ0ρ

∼ v20

B2/μ0ρ
=
(
v0

vA

)2

= M2
A, (2.192)

using (2.155) for the Alfvén speed vA. The cases with high and low values of this
ratio have important relevance.

When MA � 1 the flow is highly super-Alfvénic and the gas does not have
time to respond to spatial changes in the magnetic field (i.e. to the J × B force),
since the Alfvén travel time, �/vA, is much longer than the flow time, �/v0. The
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effect of the magnetic force is therefore ignorable in such flows. The velocity is
then determined by the non-magnetic equations and this solution for v can be used
in the induction equation to determine B. The hydrodynamic and hydromagnetic
problems are essentially decoupled in such kinematic situations. An example of
this occurs in the super-Alfvénic regions of magnetic stellar wind flows, in which
the weakly magnetically affected flow nearly conserves its angular momentum and
causes the poloidal magnetic field to have a more radial geometry.

When MA � 1 the flow is highly sub-Alfvénic and the magnetic force can
constrain its geometry, causing effective channelling. This leads to nearly force-
free field structures, as occur in magnetically channelled accretion streams and in
magnetically controlled inner regions of wind flows.

2.2.8 The Free-Fall Alfvén Radius

An estimate of where the magnetic field becomes dynamically significant (i.e.
MA ∼ 1) for accretion on to a magnetized star can be made for the idealized
case of spherically symmetric, radial inflow. The simplest case is that without
significant thermal pressure support, so the resulting supersonic radial velocity has
an approximately free-fall variation with distance r from the centre of the accretor.

Taking the star to have a dipole magnetic field, and ignoring angular variations,
gives

B � B0R
3
p

r3
, (2.193)

where Rp is the stellar radius and B0 the surface field. The free-fall radial velocity
has magnitude

|vr | =
(
2GMp

r

) 1
2

, (2.194)

whereMp is the stellar mass.
Ignoring field distortion, a free-fall Alfvén radius rA can be defined by equating

the kinetic and magnetic energy densities, so ρv2r = B2/μ0, where |vr | = vA.
Using this and the above equations, together with the mass conservation equation
Ṁp = 4πr2ρ|vr | to eliminate ρ|vr |, where Ṁp is the accretion rate, yields

rA = 3.5 × 106

(
B0

1012 G

) 4
7
(
Rp

104 m

) 12
7

(
Mp

1.4M�

) 1
7
(

Ṁp
10−9M� year−1

) 2
7

m, (2.195)
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where quantities are normalized with respect to parameters typical of accreting
magnetic neutron stars.

For highly conducting material, this gives an estimate of the radius at which
the stellar magnetic field starts to affect the accretion flow when this has velocities
close to free-fall values. For r � rA the flow is highly sub-Alfvénic and magnetic
channelling constrains its geometry.

2.2.9 Poloidal and Toroidal Representations of B

The magnetic field, being divergenceless, can be separated into poloidal and toroidal
parts as

B = Bp + BT = ∇ × [∇ × (
pr̂)] + ∇ × (
Tr̂), (2.196)

where
p and
T are the poloidal and toroidal scalars (Chandrasekhar 1961). These
magnetic field representations are often used.

In spherical polar coordinates (r, θ, φ) the components of the poloidal and
toroidal fields are

Bpr = 1

r2
L2
p, (2.197)

Bpθ = 1

r

∂2
p

∂r∂θ
, (2.198)

Bpφ = 1

r sin θ

∂2
p

∂r∂φ
, (2.199)

and

BTr = 0, (2.200)

BTθ = 1

r sin θ

∂
T

∂φ
, (2.201)

BTφ = −1

r

∂
T

∂θ
, (2.202)

where

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
. (2.203)

It is noted that these fields are generalizations of the canonical axisymmetric
poloidal and toroidal fields. Equations (2.197)–(2.199) and (2.200)–(2.202) show
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that only in an axisymmetric case will Bp lie in a meridional plane and BT be
purely azimuthal. Nevertheless, the generalized fields have similar useful analytic
properties to the axisymmetric fields.

It is seen from (2.196) that the curl of a toroidal vector is a poloidal vector, the
converse also being true since vector identities yield

∇ × Bp = ∇ ×
[{

−r∇2
(

p

r

)}
r̂
]
. (2.204)

The current density can therefore be written as

J = Jp + JT = 1

μ0
∇ × [∇ × (
Tr̂)] + 1

μ0
∇ ×

[{
−r∇2

(

p

r

)}
r̂
]
. (2.205)

In an insulator this shows, in general, that

∇2
(

p

r

)
= 0, (2.206a)


T = 0. (2.206b)

Since

∇2 = 1

r2

∂

∂r

(
r2
∂

∂r

)
− 1

r2
L2, (2.207)

it follows from (2.89), (2.197)–(2.199) and (2.206a) that in an insulator B can be
expressed as

B = ∇
(
∂
p

∂r

)
. (2.208)

It is often convenient to express 
p and 
T as expansions in a basis of radial
functions and spherical harmonics, so


p =
∞∑
l=1

l∑
m=−l

Ulm(r)Y
m
l (θ, φ)flm(t), (2.209)


T =
∞∑
l=1

l∑
m=−l

Vlm(r)Y
m
l (θ, φ)glm(t), (2.210)

where flm(t) and glm(t) are time dependences appropriate to the specific problem.
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Spherical harmonics are eigenfunctions of L2 since

L2Yml (θ, φ) = l(l + 1)Yml (θ, φ), (2.211)

(see Appendix). They are given by

Yml (θ, φ) = P |m|
l (cos θ)eimφ, (2.212)

where

P
|m|
l (μ) = (1 − μ2)

|m|
2

2l l!
(
d

dμ

)l+|m|
(μ2 − 1)l, (2.213)

with μ= cos θ , are associated Legendre functions obeying the differential equa-
tion (A32) and having the orthogonality relation (A35). If the problem has an
appropriate small dimensionless parameter, finite expansions involving the first few
terms in (2.209) and (2.210) can be used.

2.2.10 Decay Modes of B in a Conductor

In a plasma with no significant motions and a constant magnetic diffusivity,B obeys
the diffusion equation

η∇2B = ∂B
∂t
. (2.214)

In the absence of an externally applied field, B decays on the time-scale τd, given
by (2.70). Exact solutions of (2.214) can be found for the magnetic decay modes
in a spherical conductor. The magnetic field can be split into poloidal and toroidal
parts, as in (2.196). If the external medium is taken as a vacuum, only the poloidal
field extends beyond the sphere, so the decay of this component will be considered.

In spherical coordinates (r, θ, φ) the poloidal scalar can be expressed in harmon-
ics of the form


p = Ul(r)Yml (θ, φ) exp(−λ2t), (2.215)

where λ2 is the decay rate to be determined. The poloidal magnetic field is

Bp = ∇ × [∇ × (
pr̂)]. (2.216)
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Substituting (2.215) and (2.216) in (2.214) shows that Ul(r) must satisfy

d2Ul

dr2
+
[
λ2

η
− l(l + 1)

r2

]
Ul = 0. (2.217)

The solution of this equation, free of singularity at r = 0, is

Ul(r) = r 1
2 Jl+ 1

2

(
λ

η
1
2

r

)
, (2.218)

where Jl+1/2 is a Bessel function of the first kind of order l + 1/2, given by (A31).
In the surrounding vacuum η → ∞ and the solution of (2.217) which vanishes

as r → ∞ is

Ul(r) = A

rl
, (2.219)

where A is a constant. It follows from (2.197)–(2.199) that the continuity of Bp

at the surface requires Ul and dUl/dr to be continuous at r = Rs. Applying
these conditions, using the internal and external solutions (2.218) and (2.219) and
eliminating A, gives

RsJ
′
l+ 1

2

(
λ

η
1
2

Rs

)
+
(
l + 1

2

)
J
l+ 1

2

(
λ

η
1
2

Rs

)
= 0, (2.220)

where the prime denotes differentiation with respect to r . Using the recurrence
relation

x
dJν

dx
+ νJν(x) = xJν−1(x), (2.221)

with x = (λ/η1/2)r , (2.220) can be written as

J
l− 1

2

(
λ

η
1
2

Rs

)
= 0. (2.222)

Denoting the jth zero of Jl−1/2 as αlj = λljRs/η
1/2, (2.218) becomes

Ulj (r) = r 1
2 J
l+ 1

2

(
αlj
r

Rs

)
. (2.223)
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The corresponding magnetic decay times of these modes are τlj = λ−2
lj and

so (2.218) and (2.223) give

τlj = R2
s

α2lj η
. (2.224)

The length-scales of the corresponding magnetic fields are Rs/αlj . The higher
modes have shorter length-scales and hence their field components have higher
spatial derivatives, resulting in larger values of |J|. They therefore dissipate more
rapidly, in accordance with (2.69) for the magnetic dissipation rate Qm, and
consequently have shorter decay times.

2.2.11 Magnetic Diffusivity

The electrical conductivity of a fully-ionized, collision-dominated plasma is given
by Spitzer (1962) as

σ = 1.5 × 10−2 T
3
2

ln�
(ohm-metre)−1. (2.225)

The Coulomb logarithm is typically 5 < ln� < 20, having a weak dependence on
density and temperature. The magnetic diffusivity η = 1/μ0σ and using the Ohmic
conductivity yields

ηohm = 5.2 × 107 ln�T − 3
2 m2s−1. (2.226)

As discussed in Sect. 2.2.1, the conductivity becomes anisotropic if ωeτei � 1,
where ωe is the electron gyro-frequency and τei the collision time for scattering of
electrons by ions.

When the hydrogen plasma is partially ionized (2.226) for ηohm should be
multiplied by (1+ τei/τen), where the ratio of effective electron collision times with
ions and neutral particles is

τei

τen
= 5.2 × 10−11nn

ne

T 2

ln�
, (2.227)

with nn and ne being the number densities of neutral particles and electrons,
respectively. The diffusivity ηohm is used for non-turbulent plasmas.

In most cases the secondary stars in close binaries have masses � 0.8M� and
hence possess deep convective envelopes, becoming fully convective for Ms ≤
0.35M�. Equation (2.226) is then inappropriate for η, since the presence of
turbulence is believed to greatly enhance the diffusion of magnetic fields in plasmas.
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Due to the absence of a rigorous theory of stellar turbulence, the mixing length
approach is usually adopted to estimate η. If the turbulent eddies have an rms speed
vT and a length-scale λT, an eddy magnetic diffusivity can be defined as

ηT = 1

3
vTλT. (2.228)

This is analogous to the eddy viscosity coefficient given by (2.120). The
form (2.228) for ηT arises when the cascade picture of hydrodynamic turbulence is
combined with field freezing, provided the field does not react back on the dynamics
of the turbulence. The validity of such assumptions is discussed later, in the context
of dynamo theory. For a perfect gas equation of state, the convective heat flux is
given by

Fc = 10ρv3T
λP

λT

, (2.229)

(e.g. Cox and Giuli 1968) where λP is the pressure scale height. It follows that

vT =
(
λT

λP

L

40πr2ρ

) 1
3

, (2.230)

where L is the luminosity and the star is taken as non-rotating. The mixing length
is usually taken to be λP in the main body of the star. In a fully convective star a
different form for λT must be used near the stellar centre, since λP diverges there.

The secondary stars in close binary systems are expected to be synchronizedwith
the orbital motion, due to tidal effects (e.g. Campbell and Papaloizou 1983). Their
rotation periods are therefore typically P � 7 h, while a typical convective time-
scale in the stellar interior is τT ∼ λP /vT ∼ 4 months. Since P � τT in the inner
regions some modification should be made in the calculation of ηT, to estimate the
effect of rotation on convection. A Rossby number can be defined, as a measure of
the effect of rotation on the turbulence, as

RT = vT

��
∼ |(vT · ∇)vT|

|2� × vT| ∼ P

τT
, (2.231)

where vT is measured in the orbital frame. Goldreich and Keeley (1977) adopt the
local formula

ηT = η0GR, (2.232)

where

GR =
{
1, RT > 1,

R2
T , RT < 1.

(2.233)
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Both vT and λT are modified in (2.228) and using (2.230) for vT gives

η0 = 1

3
λP

(
λT

λP

) 4
3
(

L

40πr2ρ

) 1
3

. (2.234)

In turbulent accretion discs a simple prescription similar to (2.228) is often used
for ηT, with vT being a fraction of the sound speed and λT a fraction of the disc height
h. Hence

ηT = εTcsh, (2.235)

with εT < 1. A modification similar to (2.232) can be made for the effect of rotation.
Magnetic buoyancy is believed to play a role in the diffusion of the field in stars

and discs. The basic mechanism can be understood by considering a horizontal flux
tube with uniform field B surrounded by a gas with a locally weak magnetic field.
The vertical gravitational field g is taken to be uniform, and the medium is assumed
to be isothermal with temperature T . If Pin and Pex are the thermal pressures in
the tube and in the exterior medium, respectively, horizontal force balance across B
yields

Pex = Pin + B2

2μ0
. (2.236)

The gas equation and isothermality then give

ρex − ρin
ρex

= B2

2μ0Pex
. (2.237)

This implies ρin < ρex so the tube experiences a magnetic buoyancy force per unit
volume of

FB = (ρex − ρin)g = gρexB
2

2μ0Pex
. (2.238)

As the tube rises it will become curved and feel a force due to magnetic tension
of ∼ B2/μ0Rc, where Rc is its characteristic radius of curvature. This will be small
compared to FB if

Rc >
B2

μ0g(ρex − ρin) = 2Pex
gρex

= 2Pex
|dPex/dz| , (2.239)

where the last equality uses vertical equilibrium in the surroundings. Hence
magnetic tension is small if Rc > 2λP , where λP is the pressure scale height. In the
presence of turbulence the rising tube will experience a frictional force opposing
FB. Writing the resultant force density as ζFB, where ζ < 1, the tube velocity vB
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attained in moving a distance � can be found by equating the kinetic energy gained
to the work done, so

1

2
ρinv

2
B � ζFB� = ζg�ρexB

2

2μ0Pex
= �

λP

ζB2

2μ0
, (2.240)

giving

vB �
(
�

λP
ζ

) 1
2
(
B2

μ0ρin

) 1
2

=
(
�

λP
ζ

) 1
2

vA, (2.241)

where the Alfvén speed vA = (B2/μ0ρin)
1/2. Taking the magnetic field to be

dissipated over the length-scale � ∼ λP , which has an associated tube velocity
vB � √

ζvA, leads to a magnetic buoyancy transport coefficient

ηB = vBλP = ξ |B⊥|
(μ0ρ)

1
2

λP , (2.242)

where ξ = √
ζ , the subscript has been dropped from ρin, and B⊥ is the horizontal

field. The field is dissipated via small-scale turbulent reconnection causing a friction
between rising tubes. The detailed magnetic buoyancy instability was analysed by
Parker (1979).

Usually ηT and ηB are several orders of magnitude larger than ηohm. In cases where
poloidal field winding occurs, due to shears in the flow, an effective dynamical
diffusivity ηdyn is sometimes used to represent the limiting effects of instabilities
and reconnections likely to occur. The transport speed is of the order of a typical
dynamical speed, and a suitable mixing length is adopted. Tensor forms can be
adopted for the magnetic diffusivity in accretion discs, to account for the differing
radial and vertical length-scales.

2.3 Basic Dynamo Theory

2.3.1 Field Generation

The induction equation, given by (2.52), describes the evolution of a magnetic field
in a plasma with finite conductivity and fluid motions. In the absence of significant
motions (i.e. Rm � 1), the diffusive limit (2.66) holds. Without an externally
imposed field, this equation has decaying solutions with |B| decreasing on the
diffusion time-scale τd, given by (2.70). It is often the case with astrophysical bodies
that τd is shorter than their age, so internal motions are necessary to explain observed
magnetic fields which would otherwise have decayed to negligible values. This is
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especially true in turbulent bodies in which the diffusion of B is believed to be
greatly enhanced compared to that in Ohmic conductors, as discussed above.

This situation results in the need for a dynamo mechanism to generate B and
counter its dissipation. It was seen that the v × B term in (2.52) by itself (i.e.
Rm � 1) corresponds to the plasma being threaded on the field lines. With
significant diffusion (i.e. Rm ∼ 1) a fluid element can move across field lines, but
there is still some freezing effect with motions affecting the field structure. The
induction equation shows how this process operates. In general, the magnetic force
J × B affects the motions and a full non-linear MHD problem results. However,
the basic dynamo mechanism can be understood by just considering the induction
equation, which illustrates what types of motion are necessary for sustained field
generation.

Consider, first, an axisymmetric situation so quantities are independent of φ in
the cylindrical coordinate system (�, φ, z). The magnetic field can then be split into
poloidal and toroidal components, as

B = Bp + Bφ φ̂. (2.243)

The velocity v can be resolved in a similar way. The poloidal magnetic field may be
expressed in terms of a toroidal vector potential by

Bp = ∇ × (Aφ̂), (2.244)

so ∇ · B = 0 is satisfied. The induction equation then splits into two components,
one for the time derivative of Bφ and the other for that of A.

The toroidal equation follows from taking the scalar product of (2.52) with φ̂/�

and employing the result

∇ ×
(

1

�
φ̂

)
= 0, (2.245)

together with standard vector identities. This gives

∂Bφ

∂t
+�vp · ∇

(
Bφ

�

)
= �Bp · ∇�− Bφ∇ · vp + η

(
∇2Bφ − Bφ

� 2

)
(2.246)

where � = vφ/� and η is taken as constant. It is noted that, due to axisymmetry,
vp can be replaced by v in this equation. After division by � , the left hand side
represents the rate of change of Bφ/� following the motion of a fluid element (i.e.
the Lagrangian derivative). The first term on the right hand side gives the rate of
change of the angular velocity along the poloidal field. When � varies along Bp the
shearing motion draws out Bp in the azimuthal direction. Hence this term represents
the creation of Bφ from Bp, being referred to as the �-effect. The second term,
involving ∇ · v, corresponds to a rate of change of Bφ due to compressibility in the
flow. Compression of a fluid element causes an increase in |Bφ |, due to azimuthal
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field lines being squeezed together, while an expansion dilutes the field strength. The
final term represents the diffusion of Bφ , this being a decay term with an associated
dissipation of poloidal electric currents.

The equation describing the evolution of A, the vector potential corresponding to
Bp, follows from substituting (2.244) in the induction equation, giving

∂A

∂t
+ 1

�
vp · ∇(�A) = η

(
∇2A− A

� 2

)
. (2.247)

After multiplying by � , the left hand side of this equation is the Lagrangian
time derivative of the poloidal flux function ψm = �A, while the right hand
side represents the diffusion of A. The poloidal flux, and hence Bp, therefore
decays in a fluid element due to diffusion, since (2.247) lacks a field creation term.
Although (2.246) contains a term corresponding to the creation of Bφ from Bp, this
term will decay with Bp and hence Bφ will also decay. This situation is summarized
in the theorem due to Cowling (1933) which states that ‘a steady axisymmetric
magnetic field cannot be maintained by dynamo action’.

Since many astrophysical bodies, such as stars and discs, are essentially axisym-
metric and magnetic fields of this symmetry were observed, Cowling’s theorem cast
serious doubts on dynamo theory for over 20 years. A suggestion for resolving the
problemwas made by Parker (1955). He noted that if small-scale convectivemotions
are present in a rotating body then rising plasma elements tend to rotate due to
the Coriolis force. With significant advection of the magnetic field, such twisting
motions convert toroidal field to a poloidal component. Falling elements rotate the
field in the opposite direction and there must be some asymmetry between the up
and down motions for a net effect. Stratification, with rising elements expanding
and falling ones contracting, was used to provide the asymmetry. Parker modelled
the net effect of many convective cells as a toroidal electric field

Eφ = αBφ. (2.248)

This is the so-called α-effect. The quantity α is a measure of the mean helicity of the
turbulence. Since the anticyclonic motions have odd symmetry about the equatorial
plane, α is an odd function of the vertical coordinate.

In astrophysical bodies turbulence is usually assumed to generate the α-effect.
The theory of mean-field electrodynamics can be used to formulate the effect, if
certain assumptions are made. The velocity and magnetic fields are expressed as
sums of mean and turbulent fluctuating parts, so

v = v0 + vT, v0 = 〈v〉, (2.249)

B = B0 + BT, B0 = 〈B〉, (2.250)

where the spatial average is over a volume large enough to contain many turbulent
eddies, but with a length-scale small compared to that of the mean fields. A local
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time average, or an ensemble average, can also be adopted. Substituting (2.249)
and (2.250) in the induction equation and taking averages, noting that 〈v0〉 = v0
and 〈B0〉 = B0 while 〈vT〉 = 〈BT〉 = 0, leads to the mean-field equation

∂B0

∂t
= ∇ × (v0 × B0)+ ∇ × E − ∇ × (η∇ × B0), (2.251)

where

E = 〈vT × BT〉. (2.252)

The fluctuating part of the induction equation is obtained by subtracting (2.251)
from the total equation for B, giving

∂BT

∂t
= ∇ × (v0 × BT + vT × B0)+ ∇ × G − ∇ × (η∇ × BT), (2.253)

where

G = vT × BT − 〈vT × BT〉. (2.254)

The electric field E is of crucial importance since it leads to the generation of
toroidal electric currents which are the source of the poloidal magnetic field. If
it is assumed that v can be specified independently of B, then (2.253) is a linear
relationship between BT and B0, while (2.252) shows that E is linear in BT and
hence in B0. Since the turbulent eddies are assumed to have length-scales much
smaller than that of B0, E should be expressible as a functional involving the local
value of B0. This takes the form

Ei = αijB0j + βijk ∂B0j
∂xk

, (2.255)

where the summation convention is used. If the first order smoothing approximation
is valid then the tensors αij and βijk can be calculated, if the statistical properties
of the turbulence are prescribed. This approximation involves ignoring the ∇ × G
in (2.253), and can be justified only if the turbulence does not significantly distort
the magnetic field, so that |BT| � |B0|. This is the case if the diffusion time is small
compared to the turnover time, τ0, for a turbulent eddy, or if the correlation time,
τcor, is much less than τ0.

For locally isotropic turbulence

αij = αδij , (2.256a)

βijk = βεijk. (2.256b)
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When τcor � τ0, mean-field theory yields

α = −1

3
τcor〈vT · ∇ × vT〉, (2.257a)

β = 1

3
τcor〈vT · vT〉. (2.257b)

The quantity 〈vT ·∇×vT〉 is referred to as the mean helicity of the turbulence.Mirror-
asymmetric turbulence is required to produce finite α. Turbulence that is statistically
isotropic, but non-mirror symmetric, is referred to as pseudo-isotropic. Gravity and
rotation are believed to be important in the generation of such turbulence.

The β coefficient given by (2.257b) can be found, in principle, if the spectrum
of the turbulence is known. This quantity is equivalent to a turbulent diffusivity ηT.
In the absence of a detailed knowledge of the turbulence, ηT is usually estimated
from the simple form (2.228). It should be noted that if the Lorentz force J × B is
significant in the momentum equation for v, then αij and βijk will depend on the
local value of B0.

The use of (2.256a) and (2.256b) for αij and βijk in (2.255) gives an electric
field

E = αB0 − ηT∇ × B0. (2.258)

Dropping the subscript zero from the mean fields and substituting E in the mean
field equation (2.251) yields

∂B
∂t

= ∇ × (v × B)− ∇ × (ηT∇ × B)+ ∇ × (αB), (2.259)

writing η + ηT as ηT for a dominant turbulent diffusivity. Steady, axisymmetric
solutions are now possible for the mean magnetic field.

2.3.2 Types of Mean-Field Dynamos

Two extreme types of dynamo can be identified, by considering the field creation
terms in (2.259). The equations for Bφ and A can now be written in the forms

∂Bφ

∂t
+�vp · ∇

(
Bφ

�

)
=�Bp · ∇�− α�A− 1

�
∇α · ∇(�A)

− Bφ∇ · vp + ηT�Bφ, (2.260)

∂A

∂t
+ 1

�
vp · ∇(�A) = αBφ + ηT�A, (2.261)
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where � = ∇2 −�−2. The first term on the right hand side of (2.260) is the rate of
creation of Bφ by the shearing of Bp, giving the �-effect. The α-effect terms in the
above equations generate toroidal and poloidal field

The magnetic Reynolds number, defined by (2.54), measures the ratio of the
magnitudes of the velocity and diffusion terms in the induction equation. Magnetic
Reynolds numbers for the � and α-effects can be defined as

R� = �0�
2

ηT
, (2.262a)

Rα = α0�

ηT
, (2.262b)

where subscripts zero denote characteristic values and � is the length-scale of the
field variation.

The axisymmetric dynamo equations (2.260) and (2.261) are usually solved in
a finite region enclosed by a surface S. If the external region is a vacuum then the
continuity of B requires Bφ to vanish on S, and A and its normal derivative must be
continuous.

The relative importance of the � and α-effects depends on the ratio R�/Rα .
There are two extreme types of dynamo possible. If R� � Rα then the �-effect is
negligible and (2.260) and (2.261) show that the α-effect acts not only to produce
A from Bφ , but also Bφ from A. This is referred to as an α2 dynamo. The dynamo
becomes self-sustaining when Rα attains a critical value.

The other extreme is when R� � Rα so the α-effect can be ignored in the
creation of Bφ from A, described by (2.260). However, the α-term in (2.261)
remains crucial in creating A from Bφ . In this α� dynamo the product

D = RαR�, (2.263)

referred to as the dynamo number, must attain a critical value for field maintenance.
If the poloidal flow is insignificant then (2.261) for A and (2.244) for Bp show that
|Bp| ∼ Rα|Bφ |, while (2.260) gives |Bφ | ∼ R�|Bp|. It follows that the critical
dynamo number is Dc ∼ 1 and

|Bφ |
|Bp| ∼

(
R�

Rα

) 1
2

> 1. (2.264)

If v� and � are symmetric, with vz and α antisymmetric under reflection in the
equatorial plane (i.e. z → −z), then the eigenfunctions of (2.260) and (2.261) fall
into one of the following groups;

dipole modes:

A(�,−z, t) = A(�, z, t), (2.265a)

Bφ(�,−z, t) = −Bφ(�, z, t). (2.265b)
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quadrupole modes:

A(�,−z, t) = −A(�, z, t), (2.266a)

Bφ(�,−z, t) = Bφ(�, z, t). (2.266b)

The foregoing kinematic dynamo theory ignores the effects of magnetic force
on the motions, so the velocity field is specified independently of the magnetic
field. A linear problem then results in which the magnetic diffusivity and the
α function can be determined if the turbulent velocity is specified. The theory
has had considerable success in giving dynamo solutions in a wide range of
situations, generating large-scale magnetic fields which are able to transport angular
momentum in suitable ways. However, a more rigorous and self-consistent theory is
required which incorporates dynamical and thermal processes. As will be shown,
significant progress has been made towards this aim, particularly in the case of
accretion discs, although a mean-field theory which incorporates dynamical and
thermal effects in a self-consistent way has yet to be formulated. A detailed review
of stellar dynamo theory is given in Mestel (2012).

2.4 Close Binary Stars

2.4.1 The Roche Model

The basic model of a close binary system is based on the orbiting two body system
due to Roche (1873), with the introduction of a much smaller third mass. Hence this
corresponds to a restricted three-body problem, with the two main bodies orbiting
about their centre of mass. The motion of the third particle is then determined by its
initial position and velocity, together with the gravitational force exerted on it by the
orbiting bodies. In the Roche model of a close binary the stellar components are the
massive bodies, while transferred material can be considered as low mass particles.
The stars are treated as gravitational point sources. This is essentially exact for a
spherical white dwarf or a neutron star, and is a reasonable first approximation for
main sequence stars since even a star of mass 0.2M� has a central density ρc ∼ 6ρ̄,
where ρ̄ is the mean density. Circular orbits are considered in the standard model,
this being consistent with observationswhich show that the eccentricities are usually
small. Tidal interactions circularize orbits on time-scales shorter than the binary
lifetime.

Since the mean free path of ions in the accretion stream is many orders of
magnitude smaller than the orbital separation, a hydrodynamical analysis of the
flow, including the pressure gradient, is appropriate. However, Lubow and Shu
(1975) showed that, provided the pressure gradient along the stream is small, the
locus of its centre can be described accurately by purely ballistic considerations. In
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thin accretion discs, in which self-gravity is small, the radial pressure gradient is
ignorable and consequently the azimuthal motion of material corresponds to that of
individual particle orbits. However, pressure gradients normal to the orbital plane are
important in streams and discs, opposing gravitational collapse due to the vertical
component of stellar gravity. Although the ballistic approach allows the following
basic model of a binary system to be formulated, ultimately hydrodynamics is
required to fully describe the structure of accretion streams and discs.

The orbital frame Oxyz is defined to have its origin O at the centre of mass,
its y-axis along the line joining the stellar centres and its z-axis along the orbital
angular velocity �o. The total potential, � , in this rotating frame is

� = − GMs

|r − rs| − GMp

|r − rp| − 1

2
|�o × r|2, (2.267)

where Ms is the mass of the main sequence secondary star and Mp the mass of
the compact primary, while rs and rp are the positions of the centres of mass of the
respective stars. The last term is the centrifugal potential. The equipotential surfaces
of � are therefore given by the equation

GMs

[x2 + (y − ys)2 + z2] 12
+ GMp

[x2 + (y − yp)2 + z2] 12
+ 1

2
�2

o(x
2 + y2) = K,

(2.268)

whereK is a constant. Close to the stellar centres these surfaces are nearly spherical,
but at larger distances they become pear-shaped. A critical surface occurs when the
stellar lobes meet on the line of centres. The point of contact is referred to as the
inner Lagrangian point, denotedL1, and the critical surfaces are known as the Roche
lobes. A particle placed at L1 experiences zero force since (∇�)L1 = 0. Figure 2.1
shows the critical equipotentials and coordinates used.

Fig. 2.1 The orbital frame
Oxyz, showing the critical
equipotential �c and the
inner Lagrangian point L1.
The system centre of mass is
at O, and the secondary and
primary centres of mass are at
rs and rp respectively

x

rp

z

Ωo

O

r

Ψc

rs
y

L1
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The stability of a particle at the L1 point can be investigated by considering a
small displacement �r. The equation of motion of a particle relative to the orbital
frame is

r̈ = −∇� − 2�o × ṙ. (2.269)

A small displacement from L1 then satisfies the equations

�ẍ + ω2x�x = 2�o�ẏ, (2.270)

�ÿ − ω2y�y = −2�o�ẋ, (2.271)

�z̈+ ω2z�z = 0, (2.272)

where

ω2x =
(
∂2�

∂x2

)
L1

= −�2
o + GMs

r31s

+ GMp

r31p

, (2.273)

ω2y = −
(
∂2�

∂y2

)
L1

= �2
o + 2GMs

r31s

+ 2GMp

r31p

, (2.274)

ω2z =
(
∂2�

∂z2

)
L1

= GMs

r31s

+ GMp

r31p

, (2.275)

and r1s and r1p are the distances of the L1 point from the secondary and primary star
centres.

Equations (2.270)–(2.272) show that small vertical motions are independent of
those in a horizontal plane. Since ω2z > 0, it follows that the vertical motions are
stable. The stability of the horizontal motions can be investigated by taking

�x = aeiωt , (2.276a)

�y = beiωt , (2.276b)

where a and b are constants, and finding the sign ofω2. Substitution in the equations
of motion (2.270) and (2.271) gives

ω4 − (ω2x − ω2y + 4�2
o)ω

2 − ω2xω2y = 0, (2.277)

which has roots

ω2 = 1

2
(ω2x − ω2y + 4�2

o)±
1

2

[
(ω2x − ω2y + 4�2

o)
2 + 4ω2xω

2
y

] 1
2
. (2.278)
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Since

�2
o = G(Ms +Mp)

D3 , (2.279)

whereD = r1s + r1p, it follows from (2.273) that

ω2x = GMp

(
1

r31p

− 1

D3

)
+GMs

(
1

r31s

− 1

D3

)
> 0, (2.280)

and (2.274) shows ω2y > 0. Hence ω2xω
2
y > 0 and (2.278) yields positive and

negative eigenvalues for ω2, the unstable negative case being

ω2 = 1

2
(ω2x − ω2y + 4�2

o)−
1

2

[
(ω2x − ω2y + 4�2

o)
2 + 4ω2xω

2
y

] 1
2
. (2.281)

This can be used to find the direction of the unstable eigenvector.
Substituting the displacement components (2.276a) and (2.276b) in the equations

of motion (2.270) and (2.271) relates the amplitudes a and b, giving the horizontal
displacement as

(�r)h = b
[
−i (ω

2 + ω2y)
2ω�o

x̂ + ŷ

]
eiωt . (2.282)

Using the eigenvalue given by (2.281) then yields

(�r)h = b
[
(ω2 + ω2y)
2�o

√
Q

x̂ + ŷ

]
eiωt , (2.283)

where

Q = 1

2

[
(ω2x − ω2y + 4�2

o)
2 + 4ω2xω

2
y

] 1
2 − 1

2
(ω2x − ω2y + 4�2

o). (2.284)

The direction of motion therefore follows from the components of (2.283) as

�x

�y
= ω2 + ω2y

2�o
√
Q
. (2.285)

It is noted that�x/�y > 0 results and, from Fig. 2.1, the relevant displacement has
�x < 0 and �y < 0, with (�r)h leading the motion of the line of stellar centres.
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It can now be shown that this direction lies well inside the critical lobe. The
change in � due to a small displacement from L1 in the z = 0 plane is

�� = 1

2
ω2x(�x)

2 − 1

2
ω2y(�y)

2. (2.286)

Along the critical lobe,�� = 0 and hence

(
�x

�y

)
c

= ±
(
ω2y

ω2x

) 1
2

, (2.287)

where the different signs yield the two intersecting tangents to the critical equipo-
tential in the z = 0 plane. The use of (2.273) for ω2x and (2.274) for ω2y allows the
ratios (2.285) and (2.287) to be expressed as functions of the dimensionless quantity

δ = εsεp

εs + εp , (2.288)

where

εs = M

Ms

( r1s
D

)3
, (2.289a)

εp = M

Mp

( r1p
D

)3
, (2.289b)

withM = Ms +Mp. Typically εs ∼ εp ∼ 0.2 and hence δ ∼ 0.1. Expansion to first
order in δ then yields

�x

�y
= 4

3

(
δ

2

) 1
2
(
1 + 17

36
δ

)
, (2.290)

and
∣∣∣∣
(
�x

�y

)
c

∣∣∣∣ =
√
2

(
1 + 3

4
δ

)
. (2.291)

It follows that

�x/�y

|(�x/�y)c| = 2

3
δ
1
2

(
1 − 5

18
δ

)
. (2.292)

This ratio is always less than unity, being typically 0.2, so the unstable mode lies
well inside the critical lobe. For δ = 0.1 the critical lobe makes an angle of θc =
tan−1(�x/�y)c = 56.7◦ with the line of stellar centres at L1 in the orbital plane,
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and the unstable eigenvectormakes an angle of θ = 17.3◦ leading the orbital motion
of this line.

It is noted that substituting the real solution for ω from the positive sign
case of (2.278) into (2.282) for (�r)h gives components �x and �y of different
amplitudes, oscillating with a phase difference of π/2. This is a stable mode,
corresponding to elliptical particle orbits about L1.

The distance of theL1 point from the centre of the compact primary, denoted r1p,
can be found from the condition (∂�/∂y)L1 = 0 together with the y-coordinates
shown in Fig. 2.1, noting that ys = (Mp/M)D. This yields

Ms

M
− r1p
D

+ Mp

M

(
D

r1p

)2

− Ms

M

(
1 − r1p

D

)−2 = 0, (2.293)

from which r1p can be found numerically. It follows from this equation that r1p/D
is a pure function of the mass ratio Ms/Mp and that, since r1s = D − r1p, r1s/D
is also a pure function of this ratio. The shapes of the Roche lobes depend only on
εs and εp and hence, from (2.289a) and (2.289b), are pure functions ofMs/Mp (e.g.
the critical angle θc = tan−1(�x/�y)c, with (�x/�y)c given by (2.291) together
with (2.288) for δ). A good accuracy fitted formula for r1p is given by Plavec and
Kratochvil (1964) as

r1p

D
= 0.500− 0.227 log

(
Ms

Mp

)
. (2.294)

A mean radius, RL, can be defined for the secondary star’s critical lobe as the
radius of a sphere of equal volume. Eggleton (1983) gives a formula for this radius as

RL

D
= 0.49q

2
3

0.6q
2
3 + ln(1 + q 1

3 )
, (2.295)

where q = Ms/Mp, accurate to � 99% for all q values. A simpler formula for RL,
valid for 0.1 � Ms/Mp � 0.8 to � 98% accuracy, is

M

Ms

(
RL

D

)3

= 0.1, (2.296)

due to Paczyński (1967). If the mean radius of the secondary star equals RL then it
fills its Roche lobe and material is in contact with L1.

The existence of the unstable mode for horizontal displacements from L1
indicates that a lobe-filling secondary star will lose mass through this region due
to thermal motions of gas particles. The higher speed particles moving towards the
L1 region will have sufficient kinetic energy to surmount the effective potential
barrier and escape from the star. However, Lubow and Shu (1975) argued that
the mass loss process is not simply due to such evaporation. By considering the
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hydrodynamic equations, they showed that a subsonic flow will develop inside the
secondary in its surface layers. This flow will pass through a sonic point at a distance
of� (cs/�oD)Rs from theL1 point. This bulk flow gives the mass loss from a small
region surrounding the L1 point.

Lower main sequence stars obey the approximate mass-radius relation

Rs

R�
� q Ms

M�
, (2.297)

with q ∼ 1.1 (Kippenhahn and Weigert 1990). Using this, together with the lobe
size expression (2.296), Rs = RL and �2

o = GM/D3, gives a mass-period relation
for a lobe-filling secondary as

(
P

h

)
� 9q

3
2

(
Ms

M�

)
. (2.298)

The equipotentials of� correspond to the zero-velocity surfaces of the restricted
three-body problem. These surfaces arise from the energy integral which is derived
from the equation of motion of a particle relative to the orbital frame, given
by (2.269). Taking the scalar product of this with ṙ removes the Coriolis force
and gives

d

dt

(
1

2
v2 +�

)
= 0, (2.299)

in which the conserved quantity is the energy per unit mass, E, so

1

2
v2 +� = E. (2.300)

The particle speed is therefore

v = [2(E − �)] 12 , (2.301)

requiring |�| ≥ |E|. The speed vanishes on the surface� = E, with E being fixed
by the particle’s initial position and velocity.

2.4.2 Tidal Theory

The secondary star in a close binary is usually assumed to be tidally synchronized.
It is natural to use the orbital frame to analyse the asynchronous motions. If a
spherical polar coordinate system (r, θ, φ) is used, with an origin at the centre of
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mass of the secondary and the φ = 0 line taken as the line of stellar centres, then
the gravitational potential of the primary can be expressed as

ψp = −GMp

D

[
1 − 2

r

D
sin θ cosφ + r2

D2

]− 1
2

. (2.302)

The mean radius of the secondary typically satisfies Rs/D � 1/3, and the tidal
torque can be expressed as a series in powers of (Rs/D)

2. Hence, as a reasonable
approximation,ψp is usually expanded to second order in r/D which yields

ψp = −GMp

D

[
1 + r

D
P 1
1 cosφ − 1

2

r2

D2

(
P 0
2 − 1

2
P 2
2 cos 2φ

)]
, (2.303)

where P |m|
l are associated Legendre functions. The first term gives zero force, while

the second yields a constant force on the centre of mass of the secondary which
is balanced by part of the centrifugal force to give a circular orbit. The remaining
centrifugal force has a potential which can be expressed as

ψc = −1

3
�2

or
2 + 1

3
�2

or
2P 0

2 . (2.304)

The remaining l = 2 part of the gravitational potential is the tidal potential

ψT = GMpr
2

2D3

[
P 0
2 − 1

2
P 2
2 cos 2φ

]
. (2.305)

The total perturbing force is

F = −∇(ψT + ψc) (2.306)

and this causes a distortion of the secondary star from its spherical shape with an
associated perturbation to its structure.

The perturbation in the density acts as a source which contributes to the external
gravity field. The corresponding potential must contain the same harmonics as the
tidal field, obey Laplace’s equation and vanish as r → ∞. The required form is then

ψex = α

r3
P 0
2 + β

r3
P 2
2 cos 2φ, (2.307)

where α and β are constants. Hydrostatic equilibrium in the secondary yields P =
P(ψ) and, for a baratropic equation of state, P = P(ρ) and hence ρ = ρ(ψ). A
single coordinate can then be defined as

rψ = r +
∑
l,m

clmal(r)P
|m|
l cosmφ, (2.308)
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which is constant on the equipotential surfaces of ψ . The Poisson equation for the
total potential in the secondary becomes

∇2ψ = 4πGρ(rψ)− 2�2
o. (2.309)

Transforming the derivatives, using rψ = rψ (r, θ, φ), then leads to an equation for
the distortion functions al(r) given by

d2al

dr2
+ 2

(
4πr2ρ

M(r)
− 1

r

)
dal

dr
+
{
2 − l(l + 1)

r2

}
al = 0, (2.310)

where the function M(r) is the mass contained in a sphere of radius r . Only the
function a2(r) is required.

Equation (2.310) can be solved numerically, for a given stellar model, subject to
the central condition a2(0) = 0. The potential in the secondary can be expanded as

ψ(rψ ) = ψ(r) + a2(r)ψ ′(r)
[
c1P

0
2 + c2P 2

2 cos 2φ
]
. (2.311)

where c1 and c2 are constants. Matchingψ and ∂ψ/∂r to the total external potential
at the stellar surface determines c1 and c2.

Secondary stars havingMs < 0.35M� will be fully convective and hence have
their pressure and density related by the polytropic equation

P = Kρ 5
3 , (2.312)

where K is a constant. The unperturbed density can be expressed in terms of an
Emden function θ(ξ) as

ρ(r) = ρcθ 3
2 , (2.313)

where θ(ξ) satisfies

d

dξ

(
ξ2
dθ

dξ

)
+ ξ2θ 3

2 = 0, (2.314)

and ξ = r/�, with � the Emden unit of length (e.g. Cox and Giuli 1968). The
boundary conditions are

θ(0) = 1, (2.315a)

(
dθ

dξ

)
ξ=0

= 0, (2.315b)

θ(ξs) = 0. (2.315c)
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The first condition follows from (2.313), while the second is a regularity condition.
The third condition corresponds to ρ vanishing at the first zero of the Emden
function at the stellar surface ξ = ξs.

The linearized momentum equation for asynchronous motions can be
expressed as

∂v
∂t

+ 2�o × v = −∇W + Fv, (2.316)

where

W = ψ ′ + P
′

ρ
, (2.317)

with the prime denoting perturbations. A turbulent viscous force, Fv, can lead to
significant dissipation of the asynchronous motions. Solutions of (2.316) for v have
a time dependence of exp(−λt), with the decay rate λ. The dissipation time-scale
is long compared to the asynchronous flow time-scales, so v evolves through quasi-
steady states. The quasi-steady form of (2.316) is obtained by ignoring ∂v/∂t and
Fv, giving inviscid solutions for v. In the absence of tides the only non-vanishing
velocity component is of the form uφ(�), with � = r sin θ , corresponding to an
arbitrary differential rotation. With tidal distortion, additional velocity components
arise with the forms v� (�, φ), vφ(�, φ) and vz(�, φ, z), so the horizontal motions
are two-dimensional. It can be shown that |v| → 0 as the L1 point is approached,
so the mass loss rate will not be affected by the presence of asynchronism (see
Campbell and Papaloizou 1983).

The imposition of a viscous force determines W in the steady form of (2.316)
as an eigenfunction, and hence determines uφ(�), with the decay rate λ as the
corresponding eigenvalue. A modification of the viscosity ν can be made, to allow
for the effects of rotation, using a form similar to (2.232).A standard form of viscous
stress tensor leads to a uniform rotation form for uφ(�). However, non-standard
forms of stress tensor can be postulated which lead to differential rotation states
(e.g. Wasiutynski 1946; Kippenhahn 1963; Tayler 1973). The dissipation causes the
tidal bulge to lag the motion of the line of stellar centres, and the resulting tidal
torque allows the star to exchange angular momentum with the orbit. The time-
scales for attaining synchronism, or a final non-synchronous state, are significantly
less than the lifetime of the binary system.

For Ms > 0.35M� a radiative core will exist and some asynchronous motions
may remain in this, depending on the strength of coupling to the convective
envelope. Tidal torques also tend to circularize initially elliptical orbits (e.g. Zahn
1977).
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2.4.3 Mass Transfer

If the secondary star fills its Roche lobe material will be in contact with the L1
point. As shown by Lubow and Shu (1975), a subsonic flow will develop inside
the secondary and attain the sound speed close to the L1 point. Hence the initial
velocity of material is � cs on leaving theL1 region, but matter rapidly gains speeds
of ∼ �oD, characteristic of orbital speeds. Since cs � �oD, the speed of material
at L1 can be taken as effectively zero in (2.301) which therefore yields

v = [2(�c −�)] 12 , (2.318)

for the subsequent speed, where�c is the critical potential value on the Roche lobes.
Matter is then trapped within the Roche lobe of the primary, since this is its zero-
velocity surface with �c = E.

The mass loss rate from the secondary can be expressed as

Ṁs = −ρL1cs�S, (2.319)

where �S is an effective cross-sectional area perpendicular to the line of stellar
centres, at a small distance �y into the secondary from the L1 point. This effective
area is determined by considering the density scale height normal to the line of
centres at y = yL1 +�y.

For a synchronous star, hydrostatic equilibrium is

− 1

ρ
∇P = ∇�, (2.320)

where� is the sum of the stellar gravitational potentials and the rotational potential.
In the tenuous outer layers of the secondary it is a good approximation to take � as
the Roche potential, since the main gravitational sources are the compact primary
and the central regions of the secondary. The scale height in the orbital plane, Hx ,
slightly exceeds the vertical scale height, Hz, due to the effect of centrifugal force.
However, since the difference is only a few per cent, the area�S will be essentially
circular with radius H � Hx � Hz.

To calculateH , consider the z-direction at x = 0, y = yL1 +�y. It is reasonable
to take the gas as isothermal in this direction. The gas equation of state and (2.320)
then give

c2s

ρ

∂ρ

∂z
= −∂�

∂z
, (2.321)

where

c2s = R
μ
T . (2.322)
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Using the fact that |z| is small for points in the star near L1 and that �y � y,
(2.267) for the Roche potential gives

∂�

∂z
=
(
GMs

r31s

+ GMp

r31p

)
z, (2.323)

along the required line, with r1s = ys − yL1 and r1p = yL1 − yp (see Fig. 2.1 for
coordinates). Equation (2.321) then has the solution

ρ = ρce−z2/H 2
, (2.324)

where ρc is the density in the central plane and the scale height is

H = √
2cs

(
GMs

r31s

+ GMp

r31p

)− 1
2

. (2.325)

This can be expressed as

H = f cs

�0D
Rs, (2.326)

where

f =
[(

2εsεp
εs + εp

)(
D

Rs

)2
] 1

2

, (2.327)

with εs and εp given by (2.289a) and (2.289b). The dimensionless factor f is a
slowly varying function of the orbital parameters, with f � 1. The mass loss rate is

Ṁs = −πρL1csH 2. (2.328)

The mass transfer process can only continue if the secondary remains in contact
with its Roche lobe. If the mass transfer time-scale of τM = Ms/|Ṁs| is significantly
larger than the stellar thermal time-scale of τth, then the secondary will adjust quasi-
steadily through thermal equilibrium states as its loses mass. However, the radius
of a main-sequence star in thermal equilibrium decreases as its mass decreases so,
unless the Roche lobe shrinks, stellar material will lose contact with the L1 region
and mass loss will cease.

To investigate the change in the Roche lobe size it is necessary to consider the
angular momentum of the system. The orbital angular momentum can be written as

Lo =
(
GD

M

) 1
2

MsMpẑ. (2.329)
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The angular momentum of the secondary is Ls = k2sMsR
2
s�o, where k2s ∼ 0.1.

Using (2.279) for�o, it follows that

Ls

Lo
= k2s

M

Mp

(
Rs

D

)2

, (2.330)

which is typically ∼ 10−2. The primary’s spin angular momentum is typically �
10−2Ls, so the stellar rotations only make a small contribution to the total angular
momentum.

Consider continuous mass transfer from the secondary to the primary with Lo

andM conserved. Differentiating (2.329) with respect to time then gives

Ḋ

D
= −2

(
1 − Ms

Mp

)
Ṁs

Ms
. (2.331)

Since Ṁs is negative it follows that, forMp ≥ Ms, the orbital separation increases.
The mean radius of the secondary’s Roche lobe is given by (2.296) which, together
with (2.331), yields

ṘL

RL

= −5

3

(
1 − 6

5

Ms

Mp

)
Ṁs

Ms
. (2.332)

Hence, for Mp > (6/5)Ms, the secondary’s lobe expands as the star loses
mass. However, a main-sequence secondary in thermal equilibrium contracts as
its mass decreases, obeying the approximate lower main-sequence mass-radius
relation (2.297). The secondary therefore becomes detached from its Roche lobe and
mass transfer ceases, if angular momentum is conserved. Continuous mass transfer
requires the orbital angular momentum to decrease with time, and there are two
main mechanisms for achieving this.

Gravitational Radiation This mechanism was proposed by Kraft et al. (1962) and
Paczyński (1967). Gravitational waves, a general relativistic effect, remove orbital
angular momentum at a rate

dLo

dt
= −32G

5c5

(
MsMp

M

)2

D4�5
o, (2.333)

(Landau and Lifshitz 1951). Faulkner (1971) calculated the resulting mass transfer
rate from a secondary in thermal equilibrium. Using (2.296), (2.297) and (2.329)
for the lobe-filling condition, the mass-radius relation and the orbital angular
momentum, together with (2.333), and Rs = RL, gives

Ṁs = −1.9 × 10−10 (1 − μ)2
(4 − 7μ)μ

2
3

M� year−1, (2.334)

where μ = Ms/M.



70 2 Theoretical Prerequisites

Magnetic Braking If the secondary has a magnetic field and a stellar wind then
rotational angular momentum is removed. Material flows along the open magnetic
field lines and the associated stresses lead to a braking torque on the star (see
Chap. 13). Since the secondary is kept close to orbital corotation by tidal torques,
the magnetic wind drains angular momentum from the orbit.

A simple expression can be obtained for the braking of the secondary by using
angular velocity observations of single stars and assuming them to be magnetically
braked. This law, due to Skumanich (1972), is

Rs�s(t) = 1012f̄ t−
1
2 m s−1, (2.335)

where 0.73 < f̄ < 1.78. Verbunt and Zwaan (1981) applied this to find Ṁs. Taking
the star’s spin angular momentum as

Ls = k2sMsR
2
s�s, (2.336)

and using L̇s = L̇o, yields

Ṁs = −1.9 × 10−7 k
2
s

f̄ 2

M

M�
μ

5
3

(4 − 7μ)
M� year−1. (2.337)

Alternative expressions for Ṁs are derived in Chap. 13, using fast rotator magnetic
wind braking theory.

The absence of an accretion disc in the AM Herculis binaries, and the magnetic
orbital coupling resulting from an asynchronous primary, lead to modifications of
the mass transfer rates (2.334) and (2.337). The modified expressions are derived in
Chap. 4.

2.4.4 Accretion Discs

Disc Formation and Luminosity

In the process of Roche lobe overflowmaterial is lost from the secondary through the
L1 region, at a distance r1p from the primary. Matter passing through L1 has a small
velocity component (� cs) along the line of stellar centres. Relative to the orbital
frame, the stream will experience a Coriolis force causing some initial deflection
from the line of centres. As material approaches the compact primary its central
force becomes dominant and the stream orbits around it, subsequently intersecting
itself. An estimate of the size of this orbit, occurring at the initial stage of disc
formation, can be made by considering the specific angular momentum of material.

In an inertial frame centred on the primary, the specific angular momentum of
material at L1 is r21p�o. Matter in the stream experiences the gravitational fields
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of the primary and secondary stars. The angular momentum of material about
the primary is not exactly conserved, since the stream deviates from the line of
stellar centres so generating a gravitational torque on the secondary, and angular
momentum can be exchanged with the orbit. However, for a free stream, the angular
momentum exchange is small (� 6%) because the stream does not make large
angles to the line of centres in the region of L1, in which its gravitational interaction
with the secondary is greatest. The angular momentum of material can therefore be
taken to be approximately conserved. The radius, Rc, of a circular orbit about the
primary then follows from

Rc

(
GMp

Rc

) 1
2 = r21p�o. (2.338)

Since �2
o = GM/D3, this yields

Rc

D
=
(
1 + Ms

Mp

)( r1p
D

)4
. (2.339)

This gives an estimate of the characteristic size of the initial orbit of material about
the primary. Taking the mean radius of the primary’s Roche lobe, R1, to be given by
an expression similar to (2.296), yields

R1

D
= 0.46

(
Mp

M

) 1
3

, (2.340)

and hence

Rc

R1
= 2.16

(
M

Mp

) 4
3 ( r1p
D

)4
. (2.341)

The radius Rc is always smaller than R1, being typically Rc = 0.4R1, so material
orbits the primary well inside its Roche lobe.

As matter is fed into the initial ring it spreads in the orbital plane, due to dissi-
pation and angular momentum transfer processes, to form a differentially rotating
disc. Internal friction causes material to spiral in through the disc, losing energy
and angular momentum. Dissipation heats the disc and energy is radiated from its
surfaces. The luminosity of the disc can be found from a simple consideration of
the rate of energy release as matter spirals inwards to accrete on the star. It is shown
below that the azimuthal velocity of disc material is close to a Keplerian distribution
with vK, given by (2.359), being highly supersonic. It will be found that the inflow
speed v� is well subsonic. Since the self-gravity is ignorable, and |v� | � vK, the
energy per unit mass in a thin disc is

E = 1

2
v2K − GMp

�
= −GMp

2�
, (2.342)
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where� is the distance from the centre of the accreting primary star. A ring of mass
dM therefore has energy

dE = −GMp

2�
dM. (2.343)

In a time interval dt this mass moves inwards through a distance d� releasing
energy at a rate

dĖ = GMp

2� 2

d�

dt
dM = GMpṀ

2� 2
d�, (2.344)

where the constant mass transfer rate Ṁ is positive and d� < 0. Since Ṁ = Ṁp,
the total rate of energy release is

Ė = 1

2
GMpṀp

∫ Rp

RD

d�

� 2 = −GMpṀp

2Rp
, (2.345)

using RD � Rp, where RD is the disc radius. The disc luminosity is therefore

LD = GMpṀp

2Rp
. (2.346)

This shows that matter releases one half of its gravitational accretion energy per
unit mass, GMp/Rp, in spiralling in through the disc. The other half is retained as
azimuthal kinetic energy, available for release through an inner boundary layer.

The Steady Viscous Disc

The classic model of a steady viscous disc was formulated by Shakura and Sunyaev
(1973). The internal friction is generated by viscosity, allowing angular momentum
transport radially outwards through the disc. Values of the viscosity, ν, characteristic
of a turbulent origin are needed to lead to the transport of matter through the disc at
the externally imposed rate.

In a cylindrical coordinate system (�, φ, z) centred on the accreting primary, the
components of the steady, axisymmetric momentum equation are

∂

∂�

(
v2�

2

)
+ vz ∂v�

∂z
− v

2
φ

�
= − 1

ρ

∂P

∂�
− ∂ψ

∂�
, (2.347)

v�

�

∂

∂�
(� 2�)+ vz

�

∂

∂z
(� 2�) = 1

� 2ρ

∂

∂�

(
ρν� 3 ∂�

∂�

)
, (2.348)

∂

∂z

(
v2z

2

)
+ v� ∂vz

∂�
= − 1

ρ

∂P

∂z
− ∂ψ
∂z
, (2.349)
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where � = vφ/� , ν is the viscosity coefficient, ψ is the gravitational potential,
and other symbols have their usual meanings. It is assumed that the viscous force
due to turbulence has the standard form given by (2.121). Since the dominant disc
shear is that due to differential rotation, the poloidal components of Fv are ignorable
compared to Fvφ , where the latter is given by (2.122). The vertical derivative term
in this expression is dropped here since, for vanishing ρ at the disc surfaces, it gives
zero net torque on rings of material. For thin discs the mass of the disc is very small
relative to the stellar mass and so self-gravity is negligible and ψ is the potential of
the compact primary star given by

ψ = − GMp

(� 2 + z2) 12
. (2.350)

The main body of the disc lies well inside the primary’s Roche lobe, so tidal
distortion due to the secondary is small, allowing an axisymmetric structure to be
considered.

The continuity equation (2.103) becomes

1

�

∂

∂�
(�ρv� )+ ∂

∂z
(ρvz) = 0. (2.351)

The equations of the disc surfaces can be written as

z = ±h(�). (2.352)

A thin disc will satisfy the condition

dh

d�
∼ h

�
� 1. (2.353)

The disc pressure and density are expected to have maximum values in the central
plane z = 0, and fall vertically with the length-scale h. The medium surrounding
the disc is taken to be essentially a vacuum, so surface conditions can be defined as

P(�,±h) = 0, (2.354a)

ρ(�,±h) = 0. (2.354b)

The continuity equation (2.351) and the thin disc condition (2.353) give

∣∣∣∣ vzv�
∣∣∣∣ � h

�
� 1. (2.355)
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The thin nature of the disc enables the equations to be simplified. The azimuthal
component of the momentum equation, given by (2.348), yields an order of
magnitude estimate for the inflow speed as

|v� | ∼ ν

�
. (2.356)

Firstly, the importance of the velocity terms in the vertical momentum equa-
tion (2.349) can be examined. Equation (2.355) gives

∣∣∣∣∣
∂

∂z

(
v2z

2

)∣∣∣∣∣ ∼
∣∣∣∣v� ∂vz∂�

∣∣∣∣ ∼ v2�

�

h

�
. (2.357)

Differentiation of the gravitational potential (2.350) gives, to first order in z/� ,

∂ψ

∂z
= v2K

�

z

�
, (2.358)

where the square of the Keplerian speed is

v2K = GMp

�
. (2.359)

It follows that

|v�∂vz/∂� |
|∂ψ/∂z| ∼

(
v�

vK

)2

, (2.360)

and similarly for the v2z inertial term.
The inflow speed can be estimated from (2.356) if the viscosity coefficient ν

is known. Ordinary molecular values of ν are far too small to give the required
inflow speeds, so a turbulent viscosity is used. In the absence of a rigorous theory
of turbulent transport coefficients, a parametrized form is adopted given by

ν = εTcsh, (2.361)

where cs is the isothermal sound speed

cs =
(
P

ρ

) 1
2 =

(R
μ
Tc

) 1
2

. (2.362)

The form (2.361) is the product of a mean subsonic transport speed and a mixing
length< h. The dimensionless parameter incorporates the speed and length factors,
so εT < 1. Using (2.361) for ν in (2.356) gives

|v� |
vK

∼ εT cs
vK

h

�
, (2.363)
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with

cs

vK
=
(R�T
μGMp

) 1
2

. (2.364)

Since εT(h/�)� 1 holds, (2.363) shows that the inflow speed v� is well subsonic.
Taking μ = 0.6, Mp = 0.6M�, � = 108 m and T = 104 K gives cs/vK = 1.3 ×
10−2, so it follows from (2.363) that

|v� |
vK

� 1. (2.365)

Equations (2.360) and (2.365) then show that the inertial terms, which involve the
subsonic poloidal velocity components, are ignorable in the vertical momentum
equation (2.349), which therefore becomes

1

ρ

∂P

∂z
+ ∂ψ
∂z

= 0, (2.366)

corresponding to hydrostatic equilibrium.
Consider, next, the radial momentum equation (2.347). Using (2.350) for ψ , the

gravity term can be written

∂ψ

∂�
= v2K

�
. (2.367)

Then

|∂(v2�/2)/∂� |
∂ψ/∂�

∼ |vz∂v�/∂z|
∂ψ/∂�

∼
(
v�

vK

)2

� 1, (2.368)

so these inertial terms, involving the subsonic poloidal velocity components, are
small and (2.347) becomes

v2φ

�
= v2K

�
+ 1

ρ

∂P

∂�
. (2.369)

It follows from (2.362) for cs that

|∂P/∂� |
ρv2K/�

∼
(
cs

vK

)2

. (2.370)
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However, the vertical equilibrium equation (2.366), together with (2.358) for ∂ψ/∂z
and (2.362) for cs, gives

cs

vK
∼ h

�
� 1, (2.371)

so, to first order in h/� , the radial momentum for a thin disc yields

vφ = vK =
(
GMp

�

) 1
2

, (2.372)

with a corresponding angular velocity

� = �K =
(
GMp

� 3

) 1
2

. (2.373)

The continuity equation (2.351) can be integrated vertically through the disc,
using the surface condition (2.354b) for ρ, to give

d

d�

∫ h
−h
�ρv�dz = 0. (2.374)

The thin disc condition (2.353) allows the radial differential operator to be taken out
of the integral, even though its limits depend on � . The integral is then a constant,
being related to the steady mass transfer rate through the disc by

Ṁ = −2π
∫ h

−h
�ρv�dz, (2.375)

where the factor of 2π arises from azimuthal integration.
The azimuthal momentum equation (2.348) describes how the inward advection

of specific angular momentum � 2� through the disc is balanced by its outward
radial transport due to the viscous torque. Combining this with the continuity
equation (2.351) gives

∂

∂�
(�ρv��

2�)+ ∂

∂z
(�ρvz�

2�) = ∂

∂�

(
ρν� 3 d�

d�

)
. (2.376)

Integrating vertically, taking ν as z-independent, yields

− d

d�
(Ṁ� 2�) = d

d�

(
2π� 3ν�

d�

d�

)
, (2.377)
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where

� =
∫ h

−h
ρdz (2.378)

is twice the mass per unit surface area. Radial integration of (2.377) gives

Ṁ� 2�+ 2π� 3ν�
d�

d�
= C, (2.379)

where C is a constant equal to the rate of angular momentum transport, being the
sum of material and viscous contributions. For a non-magnetic primary, the disc
extends to the stellar surface � = Rp. For material to accrete the star must be
rotating below break-up speed at its equator, requiring�p < �K(Rp). It follows that
� must turn over and decrease to �p through a boundary layer . If this layer has
width δ, then d�/d� = 0 at � = Rp + δ where δ � Rp. For a sharp turn over at
the outer edge of the layer,� will be close to its Keplerian value so (2.379) yields

C = Ṁ(Rp + δ)2�K(Rp + δ). (2.380)

Since δ � Rp, this can be written as

C = ṀR2
p�K(Rp), (2.381)

provided it is remembered that� > Rp + δ applies in the subsequent disc solution.
Using (2.373) for� in (2.379) then gives

ν� = Ṁ

3π

[
1 −

(
Rp

�

) 1
2
]
. (2.382)

For a thin disc, it follows from (A25) that the dominant elements in the rate of
strain tensor are

e�φ = eφ� = 1

2
�
∂�

∂�
. (2.383)

Hence (2.125) gives the viscous dissipation rate per unit volume as

Qv = 4ρνe�φe�φ = ρν
(
�
∂�

∂�

)2

. (2.384)

The viscous dissipation per unit area of disc surface is then

U(�) =
∫ h
0
Qvdz = 1

2
ν�(��′)2, (2.385)
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so the use of (2.373) for� and (2.382) for ν� gives

U(�) = 3GMpṀp

8π� 3

[
1 −

(
Rp

�

) 1
2
]
. (2.386)

Integration of this radially across the disc yields the luminosity LD, in agreement
with (2.346).

The inflow speed v� can now be found. Since �K is independent of z, the
azimuthal momentum equation (2.348) gives

v�
d

d�
(� 2�K) = 1

�ρ

∂

∂�

(
ρν� 3 d�K

d�

)
. (2.387)

This shows that if ν varies slowly with z, then so does v� . The mass transfer rate
integral (2.375) then yields

Ṁ = −2π��v� . (2.388)

The inflow speed follows by eliminating �/Ṁ between this and (2.382), so

v� = − 3ν

2�

[
1 −

(
Rp

�

) 1
2
]−1

, (2.389)

which justifies the estimate of |v� | ∼ ν/� used previously.
The thermal problem remains to be solved. In an optically thick disc with heat

transport via radiation, (2.144) gives the radiative flux through a z =constant
surface as

FR = −16σBT
3

3κρ

∂T

∂z
, (2.390)

where σB is the Stefan-Boltzmann constant and κ the Rosseland mean opacity.
The ratio of the advection term to the viscous dissipation term in the heat
equation (2.142) is ∼ |v · ∇P |/Qv ∼ c2s /v

2
K ∼ h2/� 2. Hence the advection term

is ignorable, to first order, and the steady heat equation gives a balance between the
divergence of the heat flux and the rate of viscous dissipation per unit volume. Since
the vertical derivative term dominates in ∇ · F, the heat equation becomes

∂FR

∂z
= Qv. (2.391)

Then, noting that FR(�, 0) = 0,

FR(�, h) =
∫ h
0
Qvdz = U(�), (2.392)
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where U(�) is the dissipation per unit surface area, given by (2.386). Equa-
tion (2.390) yields

∫ h
0
κρFRdz = 4σB

3
T 4
c . (2.393)

Approximating the integral as κcρchFR(�, h), and taking the optical depth as

τ = κcρch, (2.394)

gives

FR(�, h) = 4σB

3τ
T 4
c . (2.395)

The foregoing equations describing a thin steady viscous disc are;

v� = − 3ν

2�

[
1 −

(
Rp

�

) 1
2
]−1

, (2.396)

vφ =
(
GMp

�

) 1
2

, (2.397)

h = √
2
cs

vφ
�, (2.398)

cs =
(
Pc

ρc

) 1
2

, (2.399)

ρc = �

h
, (2.400)

Pc = R
μ
ρcTc, (2.401)

4σB

3τ
T 4
c = 3GMpṀp

8π� 3

[
1 −

(
Rp

�

) 1
2
]
, (2.402)

where (2.398) employs the mean value theorem using the average 〈zρ〉 = ρch/2
in the vertical equilibrium (2.366), and (2.400) uses 〈ρ〉 = ρc/2 in the column
density (2.378). These equations are valid for � > Rp + δ, where δ is the width
of the boundary layer through which � changes from �K to �p. Azimuthal kinetic
energy is dissipated in this highly sheared layer.

The standard disc model uses a simple mixing length prescription for the
viscosity due to turbulence. The mean transport speed is taken to be a fraction of the
isothermal sound speed and this is multiplied by a turbulent mixing length which is



80 2 Theoretical Prerequisites

a fraction of the disc height. The mixing length is several orders of magnitude larger
than the mean free path occurring in the microscopic form of viscous coefficient.
Hence the turbulent viscosity coefficient can be expressed as

ν = εTcsh, (2.403)

where εT < 1 for subsonic turbulence. This enhanced viscosity allows a thin disc
solution to be found consistent with the expected mass transfer rates.

Assuming that electron scattering opacity is small compared to the contributions
from free-free and bound-free transitions, the Rosseland mean opacity can be
approximated by Kramers’ law as

κ = 6.6 × 1018ρT − 7
2 m2 kg−1. (2.404)

The set of disc equations is then algebraic and their solution for the radial
structure yields,

h = 1.59 × 106
Ṁ

3
20
10

ε
1
10
T M

3
8
1

x
9
8 f

3
20 m, (2.405)

ρc = 2.41 × 10−5 Ṁ
11
20
10M

5
8
1

ε
7
10
T

f
11
20

x
15
8

kgm−3, (2.406)

Tc = 1.22× 104
Ṁ

3
10
10M

1
4
1

ε
1
5
T

f
3
10

x
3
4

K, (2.407)

τ = 30
Ṁ

1
5
10

ε
4
5
T

f
1
5 , (2.408)

ν = 1.57 × 1010ε
4
5
T

Ṁ
3
10
10

M
1
4
1

x
3
4 f

3
10 m2 s−1, (2.409)

v� = −2.35 × 102ε
4
5
T

Ṁ
3
10
10

M
1
4
1

1

x
1
4 f

7
10

m s−1, (2.410)

where Ṁ10 = Ṁp/10−10M�year−1,M1 = Mp/M�, x = �/108 m, and

f = 1 −
(
Rp

�

) 1
2

. (2.411)
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Equation (2.405) gives h/� � 1, consistent with a thin disc. The optical depth
vertically through the disc is given by (2.408) which yields τ � 1, justifying the use
of the diffusion approximation for the radiative transfer equation. Equation (2.410)
gives |v� | � cs, so the inflow speed is highly subsonic.

The foregoing steady viscous disc solution involves vertical integrations from
the central plane to the disc surface, so the details of the vertical structure are
not considered. This separation of the radial and vertical structures is facilitated
by the large difference in the radial and vertical length-scales of disc quantities.
The accretor is assumed to be essentially non-magnetic, so the disc extends down
to the stellar surface with accretion occurring through a boundary layer. The disc
is assumed not to contain any significant magnetic field and to be surrounded by
a vacuum. However, it will be shown that internal magnetic fields provide the
mechanism for generating turbulence in the disc, and that large-scale magnetic
fields are likely to be generated by dynamo action. Discs may have magnetically
influenced wind flows emanating from their surfaces, and these can be effective at
removing angular momentum and contributing to driving the inflow. Enhancedmass
loss may occur in the inner region of the disc.

If the accreting star has a significant magnetic moment then its field will interact
with the disc. A high stellar magnetic moment with an associated magnetosphere
can result in complete disruption of the disc, which occurs in the AM Herculis
systems, or in partial disruption as occurs in the intermediate polars, the X-ray
binary pulsars and the accreting millisecond pulsars. Disrupted discs are considered
in Chap. 9. A magnetic modification to the viscous disc due to a dynamo generated
large-scale field is presented in Chap. 11, while the effects of magnetic wind driving
are investigated in Chap. 14, with the vertical structure included in both cases.

Time-Dependent Viscous Discs

For a time-dependent, axisymmetric viscous disc, the azimuthal momentum and
continuity equations can be written

∂

∂t
(� 2�)+ v� ∂

∂�
(� 2�)+ vz ∂

∂z
(� 2�) = 1

�ρ

∂

∂�

(
ρν� 3 ∂�

∂�

)
, (2.412)

− ∂ρ
∂t

= 1

�

∂

∂�
(�ρv� )+ ∂

∂z
(ρvz). (2.413)

If � remains Keplerian at all heights in the disc, then ∂�/∂t = 0 and ∂�/∂z = 0
so (2.412) gives

�ρv�
d

d�
(� 2�K) = ∂

∂�

(
ρν� 3 d�K

d�

)
. (2.414)
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Vertical integration of (2.413) and (2.414) through the disc yields

− ∂�

∂t
= 1

�

∂

∂�
(��v� ), (2.415)

��v�
d

d�
(� 2�K) = ∂

∂�

(
ν�� 3 d�K

d�

)
, (2.416)

where � is the surface density function given by (2.378), and ρ(�,±h) = 0 is
used. Elimination of ��v� between (2.415) and (2.416), together with the use
of (2.373) for�K, leads to

∂�

∂t
= 3

�

∂

∂�

(
�

1
2
∂

∂�

(
�

1
2 ν�

))
. (2.417)

This is a viscous diffusion equation for �. For realistic disc models ν will depend
on � and hence the diffusion equation will be non-linear.

The viscosity has the effect of spreading material in the disc, at a rate which
increases with spatial gradients. If ν and � have radial length-scales of ∼ � ,
then (2.417) yields a characteristic viscous time-scale of

τv ∼ � 2

ν
. (2.418)

Using (2.373) for�K in (2.416) gives the instantaneous radial velocity as

v� (�, t) = − 3

�
1
2�

∂

∂�

(
�

1
2 ν�

)
, (2.419)

and hence

|v� | ∼ ν

�
. (2.420)

Employing this to eliminate ν in (2.418) shows that τv may be expressed as

τv ∼ �

|v� | , (2.421)

which is also the radial drift time-scale. The viscosity redistributes angular momen-
tum and mass radially through the disc on the time-scale τv. Density distributions
of length-scale � < � diffuse more rapidly with larger associated radial drift
velocities.



2.4 Close Binary Stars 83

Other time-scales relevant to discs are the dynamical time and the thermal time.
The dynamical time-scale associated with the Keplerian rotation is

τφ ∼ �

vφ
∼ 1

�K

. (2.422)

Deviations from vertical hydrostatic equilibrium are smoothed out on the dynamical
time-scale

τz ∼ h

cs
. (2.423)

Since cs ∼ (h/�)vK for a thin viscous disc, it follows that τz ∼ τφ .
The thermal time-scale τth gives the evolution time of perturbations from thermal

equilibrium. This can be estimated by noting that the thermal energy density in a
perfect gas is ∼ P = ρc2s , while the viscous dissipation rate per unit volume is
∼ ν�(��′

K)
2/h. Hence, since |��′

K| ∼ �K,

τth ∼ ρhc2s

ν��2
K

∼
(
cs

vK

)2
� 2

ν
, (2.424)

so that

τth ∼
(
h

�

)2

τv. (2.425)

Hence the thermal time-scale is much shorter than the viscous/inflow time-scale.
The dynamical time-scale can be related to the viscous time-scale by using the

viscosity prescription (2.361), together with cs ∼ (h/�)vK. Then

τv ∼ � 2

ν
∼ � 2

εTcsh
∼ 1

εT

(�
h

)2 �
vK

∼ 1

εT

(�
h

)2
τφ, (2.426)

giving

τφ ∼ εT
(
h

�

)2

τv ∼ εTτth. (2.427)

It follows that, since εT < 1, the ordering of the time-scales is

τφ ∼ τz < τth � τv. (2.428)

One of the main uses of time-dependent disc theory is in the analysis of waves
and instabilities. The significant differences between the various time-scales, shown
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by (2.428), means that different types of perturbations can be identified. Consider
an axisymmetric perturbation in the surface density function, so

� = �0(�)+ δ�(�, t). (2.429)

Substitution in the viscous diffusion equation (2.417) gives

∂

∂t
(δ�) = 3

�

∂

∂�

(
�

1
2
∂

∂�

(
�

1
2 δμ

))
, (2.430)

where μ = ν�. Since (2.428) shows that the dynamical and thermal time-scales are
short compared to the viscous time-scale, the disc can adjust quasi-steadily on the
viscous time-scale. Then the viscosity can be expressed in the form ν = ν(�,�),
with ν ∝ � 15/14�3/7 resulting from the foregoing model. Hence μ = μ(�,�), so

δμ =
(
∂μ

∂�

)
sd

δ�, (2.431)

with the subscript sd denoting the steady state. Then δ� can be eliminated from the
diffusion equation to give

∂

∂t
(δμ) =

(
∂μ

∂�

)
sd

3

�

∂

∂�

(
�

1
2
∂

∂�

(
�

1
2 δμ

))
. (2.432)

The diffusion coefficient is therefore proportional to (∂μ/∂�)sd. For positive
(∂μ/∂�)sd a perturbation decays on the viscous time-scale τv. However, if
(∂μ/∂�)sd is negative a perturbation in � will grow due to viscous instability.
More material will be fed into regions that are denser than their surroundings, and
the disc will tend to break up into rings on the time-scale τv. A steady flow therefore
requires (∂μ/∂�)sd > 0.

2.5 Spin Dynamics

In spin evolution calculations the compact white dwarf, or neutron star, is assumed
to act approximately like a rigid body, due to the action the strong internal forces
acting in these compact objects. A strongly magnetic primary star will experience
some distortion from spherical symmetry due to non-radial internal magnetic forces.
The essentials of the spin dynamics of rigid bodies are presented here.

The angular momentum of a rigid body of volume V rotating with instantaneous
angular velocity ω is

L =
∫
V

r × (ω × r)ρdV, (2.433)
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where ρ is the density and r is measured from the centre of mass, O . Expanding the
cross product gives

L =
∫
V

[r2ω − (r · ω)r]ρdV. (2.434)

In an inertial coordinate frameOxyz the components of L can be written

Lx = Ixxωx + Ixyωy + Ixzωz, (2.435)

Ly = Iyxωx + Iyyωy + Iyzωz, (2.436)

Lz = Izxωx + Izyωy + Izzωz, (2.437)

where

Ixx =
∫
V

(y2 + z2)ρdV, Iyy =
∫
V

(x2 + z2)ρdV,

Izz =
∫
V

(x2 + y2)ρdV (2.438)

are moments of inertia, while

Ixy = Iyx = −
∫
V

xyρdV, Ixz = Izx = −
∫
V

xzρdV, (2.439)

Iyz = Izy = −
∫
V

yzρdV (2.440)

are products of inertia. Equation (2.435)–(2.437) can be expressed in Cartesian
tensor form as

Li = Iijωj , (2.441)

where the repeated index is summed over. The inertia tensor Iij is symmetric
and (2.441) shows that, in general, L and ω are not parallel.

Since the inertia tensor is symmetric it corresponds to a real Hermitian matrix.
Such a matrix has a complete set of eigenvectors which therefore form a basis in
which an arbitrary vector can be represented. The matrix elements Iij will depend
on the basis used to represent the column vector on which I acts. The simplest
form of I results when its eigenvectors are chosen as the basis. This diagonalization
process involves the similarity transformation

I (diag) = X−1IX, (2.442)
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where the modal matrix X = (X1X2X3) with Xi the eigenvectors of I . This rotates
the frameOxyz to be coincident with the orthogonal eigenvectors. The inertia tensor
then has the form

I =
⎛
⎝I1 0 0
0 I2 0
0 0 I3

⎞
⎠ . (2.443)

The diagonal elements are the principal moments of inertia about the eigenvectors of
I which have directions denoted by the unit vectors e1, e2 and e3. These orthogonal
principal axes are fixed in the body. Relative to these axes, the angular velocity and
angular momentum are

ω = ω1e1 + ω2e2 + ω3e3, (2.444)

L = I1ω1e1 + I2ω2e2 + I3ω3e3. (2.445)

It is noted that ω and L are only parallel if the body is spherical or its spin axis is
coincident with a principal axis.

The motion of a rigid body is described by the angular momentum evolution
equation

dL
dt

= T, (2.446)

where the time derivative is measured in inertial space, and T is the torque. The
principal unit vectors of the body frame have inertial time derivatives given by

dei
dt

= ω × ei . (2.447)

Denoting the time derivative relative to the body frame by a dot, it follows that

dL
dt

= d

dt
(Liei ) = L̇iei + Liω × ei , (2.448)

and hence (2.446) can be written as

L̇ + ω × L = T. (2.449)

The orientation of a rigid body about its centre of mass is specified by three
angles. The Euler angles (α, φ,ψ) are usually chosen. The angles α and φ define
the orientation of one axis, say e3, relative to inertial axes, whileψ defines a rotation
of the body about the e3 axis from a standard position. Figure 2.2 shows how the
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Fig. 2.2 The rotation sequence generating an orientation with Euler angles (α, φ,ψ)

orientation (α, φ,ψ) can be attained by three rotations. Firstly, a rotation of φ about
the z-axis is generated by the matrix

Rφ =
⎛
⎝ cosφ sin φ 0

− sinφ cosφ 0
0 0 1

⎞
⎠ . (2.450)

Secondly, a rotation of α about the new y-axis is generated by

Rα =
⎛
⎝cosα 0 − sinα

0 1 0
sin α 0 cosα

⎞
⎠ . (2.451)

Finally, a rotation of ψ about the new z-axis is given by

Rψ =
⎛
⎝ cosψ sinψ 0

− sinψ cosψ 0
0 0 1

⎞
⎠ . (2.452)

The total rotation is then the matrix product.

R = RψRαRφ. (2.453)
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Equations (2.450)–(2.453) give the elements of the rotation matrix as;

R11 = cosα cosφ cosψ − sin φ sinψ,

R12 = cosα sin φ cosψ + cosφ sinψ,

R13 = − sinα cosψ,

R21 = − cosα cosφ sinψ − sin φ cosψ,

R22 = − cosα sin φ sinψ + cosφ cosψ,

R23 = sinα sinψ,

R31 = sinα cosφ,

R32 = sinα sin φ,

R33 = cosα. (2.454)

The components of a vectorV relative to the inertial frameOxyz are related to those
relative to the body frameOx̄ȳz̄ by

V̄i = Rij Vj , (2.455)

where the summation convention is used.
The instantaneous angular velocity can be expressed as the sum of the angular

velocities α̇, φ̇ and ψ̇ measured about the directions α̂, φ̂ and ψ̂ , so

ω = α̇ α̂ + φ̇ φ̂ + ψ̇ ψ̂ . (2.456)

It follows from Fig. 2.2 that the Euler angular velocities relative to the body
frame are

α̇ = α̇ sinψ e1 + α̇ cosψ e2, (2.457)

φ̇ = −φ̇ sin α cosψ e1 + φ̇ sin α sinψ e2 + φ̇ cosα e3, (2.458)

ψ̇ = ψ̇ e3. (2.459)

Equations (2.456)–(2.459) give the components of ω in the body frame in terms of
the Euler angles α, φ and ψ as

ω1 = α̇ sinψ − φ̇ sin α cosψ, (2.460)

ω2 = α̇ cosψ + φ̇ sin α sinψ, (2.461)

ω3 = φ̇ cosα + ψ̇. (2.462)
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The torque T in the angular momentum equation (2.449) will, in general, be a
function of α, φ, and ψ , so the components of this equation yield a set of coupled
differential equations. The solution of these gives the Euler angles as functions of
time, and hence the rotational motion of the body.

In spin stability problems the equation of motion is linearized about a given state.
Normal mode solutions can then be sought involving the Euler angle perturbations.
In the binary star problems to be considered the basic state is dynamical, so
independent normal modes may not always exist. However, the high rotation rates
occurring in close binaries can lead to essentially separate modes.
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Chapter 3
AM Herculis Stars

Abstract The AM Herculis binaries have white dwarf primary stars with the
strongest magnetic fields observed in the cataclysmic variables. They are unique in
having no accretion discs and primary stars rotating in synchronism with the orbit.
The accretion stream becomes magnetically channelled and reaches the primary by
one or more localized columns. Unlike other cataclysmic variables, a significant
fraction of AM Her binaries occupy the orbital period gap while undergoing mass
transfer. These properties pose a range of MHD problems.

Inductive coupling to a tidally synchronized secondary leads to a synchronization
torque, but the maintenance of a synchronous state requires non-dissipative torques
to act. The 3D nature of the channelled accretion stream results in an accretion
torque which has components parallel and normal to the orbital angular momentum
vector, leading to restrictions on the nature of the required balancing torque. Certain
conditions are necessary for the attainment of synchronism. Asynchronous rotation
of the primary can significantly affect the mass transfer rate, due to magnetic spin-
orbit coupling. The essential properties of the AM Her binaries are described here,
together with a list of the confirmed systems.

3.1 The Nature of AM Herculis Systems

3.1.1 AM Herculis

AM Herculis was identified by Wolf at Heidelberg in 1923 during a routine search
for variable stars. It was subsequently listed in the General Catalogue of Variable
Stars as an irregular variable with a range of magnitude 12 to magnitude 14. Over
five decades later the development of X-ray and polarization observations allowed
the nature of this extraordinary system to begin to be revealed. Berg and Duthie
(1977) suggested that AM Her could be the optical counterpart of the high galactic
latitude X-ray source 3U 1809+50. Further evidence was available fromHearn et al.
(1976), which indicated AM Her to be a soft X-ray source. These suggestions were
confirmed by Hearn and Richardson (1977). Szkody and Brownlee (1977) found
the visual light curve of AM Her to have a broad, deep minimum which repeated
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on a time-scale of 3.1 h. Linear and circular polarization were observed in the V
and I spectral bands by Tapia (1977a), of a strength an order of magnitude larger
than previously observed in any object. This suggested the presence of a strong
magnetic field, with B ∼ 108 G, assuming the fundamental cyclotron frequency to
be observed. Large variations of the polarization were found with a period of 3.1 h.

Models of AM Her involving an accreting magnetic white dwarf in a binary
system were discussed by various authors (e.g. Chanmugam and Wagner 1977;
Michalsky et al. 1977; Stockman 1977). The rotation of the white dwarf was taken
to be synchronous with the orbital period, based on the fact that all the observed
radiations had the same period of intensity variations. The short orbital period of
AM Her put it in the category of close binary stars. However, unlike the standard
cataclysmic variables, there was no evidence for an accretion disc around the
white dwarf. The large linear and circular optical polarization were consistent with
cyclotron radiation being emitted by accreting gas in a strong magnetic field. Highly
conducting matter would be channelled by the field, and the 3.1 h variations could
result from a localized radiating accretion column changing its orientation to the
line of sight due to the white dwarf’s rotation.

Matter is lost from the secondary star through the inner Lagrangian region and
falls towards the white dwarf primary. The gas in the accretion stream is ionized
and motion of the conducting stream across the primary’s magnetic field generates
electric currents and a magnetic force is exerted on the material. The infalling
matter experiences an increasingly strong magnetic field and ultimately becomes
channelled by it on to the surface of the white dwarf. The incoming supersonic
stream passes through a standing shock and settles on to the stellar surface through
an accretion column. X-rays are emitted in the hot post-shock flow; most of these
are reprocessed by the white dwarf’s surface and re-emitted as a softer X-ray
component. The basic theory of the accretion column on magnetized white dwarfs
was considered by King and Lasota (1979). The shock temperature is given by

Ts = 3.7 × 108
(
Mp

M�

)(
Rp

107m

)
K, (3.1)

where Mp and Rp are the mass and radius of the primary. Electrons in the ionized
stream close to the shock spiral around the magnetic field lines and emit strongly
polarized cyclotron radiation. The field strength results in this radiation being
emitted at optical and near infra-red wavelengths. Figure 3.1 is a simple illustration
of an AM Her system, for the case of single pole accretion.

Chanmugam and Wagner (1979) showed that the shocked gas in the
accretion column will be optically thick to the lowest cyclotron harmonics,
suggesting that the previously measured field strengths were too high since
they assumed low harmonics. Evidence for a lower field value was given by
Schmidt et al. (1981) who presented spectropolarimetry, obtained during a faint
state of AM Her, which showed strong circular polarization and absorption
features characteristic of hydrogen in a range of magnetic fields ∼ 10–20MG.



3.1 The Nature of AM Herculis Systems 93

A Stream

Ωo

L1

Fig. 3.1 An AM Herculis binary, showing the simplest case of single pole accretion. Material
lost from the L1 region of the secondary becomes channelled by the primary’s magnetic field and
accretes on to its surface through a localized column, A

A field structure more complicated than that of a centred dipole was also
indicated.

Young et al. (1981) observed AM Her in a low state and measured a 3.1 h period
in emission line velocities. Their observations indicated the secondary star to be an
M5 red dwarf, which is consistent with a lobe-filling star of a mass theoretically
expected for the observed orbital period.

3.1.2 Other Polars

Three new members of the class were discovered soon after AM Her; AN UMa
(Krzeminski and Serkowski 1977), VV Pup (Tapia 1977b) and EF Eri (Tapia 1979).
Many new systems were discovered in the ROSAT all-sky survey and there are,
at present, 121 confirmed systems, also referred to as the polars. Tables 3.1, 3.2,
and 3.3, shown in the Appendix below, list these systems with their orbital periods,
secondary masses estimated using the period-mass relation (2.298) for lobe-filling
lower main sequence stars with q = 1.1 and, where known, white dwarf surface
fields. Estimated values are given for cyclotron harmonic determined magnetic
fields, with some systems having two poles. Field values obtained from photospheric
Zeeman splitting are shown, where available. References are given for each system
related to orbital period and magnetic field measurements. It is noted that 28 AM
Her binaries, representing� 23% of the known systems, lie in the 2–3 h period gap,
usually unoccupied by accreting cataclysmic variables. A possible explanation for
this is discussed in Chap. 13. Themain features of the AMHer systems are discussed
below. Extensive reviews of the observational aspects of these systems are given by
Cropper (1990) and Warner (1995).
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3.2 Essential Features

3.2.1 Magnetic Fields

Two methods are used to estimate the surface magnetic field value on the white
dwarf. The first, and most frequently employed method, involves measurements
of the field at the cyclotron emission regions for those systems showing cyclotron
humps in their optical/IR spectra. The magnetic field at the emission region can be
determined from the spacings between the cyclotron harmonics (see Harrison and
Campbell 2015 for a detailed description of such measurements). The cyclotron-
determined fields are denoted by Bcyc in Tables 3.1, 3.2, and 3.3, with the
second values referring to field strengths at second poles, where available. The
second method involves the observation, during episodes of low accretion, of
photospheric Zeeman split absorption lines from the white dwarf. This method
has been used to measure the magnetic fields in several systems, as shown
in the tables. The mean field over the observable photosphere is calculated,
denoted B̄ph.

Observations suggest that the white dwarfs in some AM Her systems have mag-
netic fields more complicated than centred dipoles. Meggitt and Wickramasinghe
(1989) analysed the linear pulse and polarization data of EF Eri and found three
cyclotron emission regions on the white dwarf surface. A quadrupolar component
could be consistent with this data. A complex field structure is also indicated in CE
Gru (Wickramasinghe et al. 1991) and in DP Leo (Cropper and Wickramasinghe
1993). Beuermann et al. (2007) employed Zeeman tomography to observations
taken in the low states of EF Eri, BL Hyi and CP Tuc and found that truncated
multipole expansions give the best fit to the magnetic field data, rather than pure
dipole fields.

It is likely that the secondary star has a significant magnetic field. The star will
be largely or fully convective, and rapidly rotating due to the action of tides, so a
dynamo mechanism could generate a magnetic field. Surface magnetic fields with
values of ∼ 102 − 103 G are needed to give magnetic torques that may maintain
synchronism. Models of rotating M dwarfs give such field values via α� and α2

dynamos, and surface poloidal field values of several kG have been observed on
rapidly rotating M dwarfs (see Chap. 12). Secondary magnetic fields are believed to
channel winds from the star which lead to magnetic braking in systems above the
orbital period gap.

3.2.2 The Stellar Components

The masses of the white dwarf primaries are not well known, since their determi-
nations require accurate measurements of the radial velocities of both stars and the
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orbital inclination. A helium white dwarf obeys the mass-radius relation

Rp = 7.8 × 106
[(
Mp

MC

)− 2
3 −

(
Mp

MC

) 2
3
] 1

2

m, (3.2)

where the Chandrasekhar mass MC = 1.44M� (Nauenberg 1972). Hence, for
similar surface field strengths, the primary magnetic moments can vary significantly
for a range ofMp since they are proportional to R3

p .
The secondary stars in AM Her systems are M or K dwarfs. Using the condition

that the star fills its Roche lobe and obeys a main sequence mass-radius relation,
its mass can be estimated from the orbital period. Equation (2.298), with q = 1.1,
gives a mass range of 0.13 < Ms/M� < 0.46, with the one higher mass system
V1309 Ori having Ms = 0.77M�. Spectroscopic observations of the secondary
are difficult because most of the energy is emitted from the primary. When phase
resolved, high resolution red spectroscopy is available, the radial velocities can
be used for locating the position of the secondary in non-eclipsing systems. For
eclipsing systems, high resolution observations made during eclipses confirm the
expected nature of the secondary.

3.2.3 The Accretion Stream

The spectra of AMHer systems, in the UV, optical and infra-red, are rich in emission
lines. Phase resolved and high resolution studies of the optical spectra reveal lines
with multiple components, each with distinctive radial velocity variations. These
lines are thought to arise in the accretion stream. Cowley and Crampton (1977)
identified a broad base component, a narrower peak component and a very narrow
component in VV Pup. Most of the polars have such components. Schneider and
Young (1980) modelled these by assuming the broad component came from near
the accretion regions, and the narrower components from further away. A phase
shift between broad and narrow components was identified with curvature of the
stream. Mukai (1988) suggested that some of the narrow components from QQ Vul,
ST LMi and VV Pup arise in an initial part of the stream before it is channelled by
the primary’s magnetic field. Ferrario et al. (1989) obtained a reasonable fit to the
emission line data of V834 Cen, ST LMi, and UZ For with a model in which field
channelling becomes effective at a distance from the L1 point which is about a third
of its distance,A, from the primary. The streamwas broadened before converging on
the primary. Observations of the eclipsing system HUAqr by Schwope et al. (1997),
using Doppler tomography, also indicated a partially channelled stream. Analysis of
the data suggested that the initial, weakly channelled stream forms a tenuous curtain
of material above the orbital plane. The bulk of the stream subsequently lifts out of
the orbital plane.

Heerlein et al. (1999) developed a simple model for the accretion stream, taking
Gaussian profiles for the density variations perpendicular to the flow direction.
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Magnetic channelling was taken to become effective where the magnetic energy
density starts to exceed the kinetic energy of the flow, so occurring inside the
Alfvén radius. The model gave good results when applied to HU Aqr. Numerical
simulations have been performed to investigate the effect of the magnetic field on
the accretion stream. These are described in Chap. 5.

3.2.4 Synchronous Rotation of the Primary

Synchronous rotation of the primary with the orbit has always been assumed in AM
Her systems, based on the modulation of their emissions at single periods. However,
the periodic variations seen in the optical light curves, the X-rays and optical
polarization are due to the rotation of the accretion column with the white dwarf.
Observations of the relatively faint secondary star are necessary in order to measure
the orbital period. The first direct support for synchronism of the primary came
when Young and Schneider (1979) observed absorption lines from the secondary
in AM Her. Orbital periods were subsequently measured in other polars, either
from eclipses or ellipsoidal variations in the infra-red (e.g. Bailey et al. 1985). The
primary and orbital angular velocities were found to be the same, to the accuracy
limits of the methods employed. For the eclipsing system DP Leo, over a baseline
of 4 years, Biermann et al. (1985) obtained |ω|/�o < 2 × 10−6, where ω is the
synodic angular velocity of the primary and �o is the orbital angular velocity.
Cropper (1988) compiled data for twelve polars and found a tendency for the main
accreting pole to lead the motion of the line of stellar centres. However, Bailey et al.
(1993) showed that the longitudes of the magnetic poles in DP Leo andWWHor can
vary by up to 20◦ over several years. Beuermann et al. (2014) used phase resolved
orbital light curves of DP Leo over a 4 year period and found that the data was best
explained by an oscillation of the accreting poles about a synchronous state with a
period of � 60 year.

In addition to the asynchronous oscillations of DP Leo and WW Hor, five
other systems are known to have asynchronism of the white dwarf; V1432 Aql
(Littlefield et al. 2015b), BY Cam (Pavlenko 2006), V1500 Cyg (Katz 1991;
Schmidt et al. 1995), V4633 Sgr (Lipkin and Leibowitz 2008) and CD Ind (Ramsay
et al. 2000). These systems appear to be synchronizing on time-scales of typically
102 year � τsyc � 103 year. These observational estimates are compared to
theoretical synchronization times in Chap. 4.

3.3 MHD Problems

The synchronous rotation of the primary and channelling of the accretion stream
present problems of magnetohydrodynamics.The removal of asynchronousmotions
from the primary requires a synchronizing torque to act, and magnetic interaction
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with an orbitally synchronized secondary will be shown to generate such a torque.
Asynchronous motions of the primary induce electric currents in the conducting
secondary, in the magnetosphere and in the atmosphere of the white dwarf primary.
An inductive torque results on the primary, causing its spin to approach synchro-
nism. Magnetic forces result on the secondary and primary which lead to an orbital
torque, allowing angular momentum to be exchanged between the stellar spins and
the orbital motion. For an over-synchronous primary, this can lead to a lowering of
the mass transfer rate.

The accretion stream interacts with the white dwarf’s magnetic field, ultimately
being channelled by it. Magnetic torques resulting from the field stresses in the
stream cause angular momentum to be transferred continuously to the primary,
giving an accretion torque. This torque depends on the geometry of the stream,
and hence on the magnetic orientation of the primary relative to the secondary. The
torque will be time-dependent for an asynchronous primary.

The inductive magnetic torque, which removes asynchronous motions, cannot
balance the accretion torque to produce a synchronous state, since the former
vanishes at corotation. A non-dissipative torque is necessary and interaction of the
primary with a magnetized secondary generates such a torque. The secondary’s field
could be produced by dynamo action. Also, a gravitational torque will result if the
primary is distorted from spherical symmetry due to internal non-radial magnetic
forces. This may balance or exceed the accretion torque. The torque balance must
be stable to all perturbations.

Even if a stable synchronous state exists it is not clear that the white dwarf can
reach it while accreting material. Over-shooting could occur if the dissipation is
insufficient to remove the primary’s synodic rotational energy over one synodic
period, close to synchronism. The magnetic diffusivity of the secondary plays a
key role here. These problems are addressed in the next four chapters.

Appendix: Tables of Confirmed Systems

The following tables list the confirmedAMHerculis systems. The orbital periods are
known to high accuracy. There are a significant number of accreting systems with
periods lying in the 2–3 h period gap, usually unoccupied by accreting cataclysmic
variables. A possible explanation for this is given in Chap. 13. The secondarymasses
have been estimated using the approximate mass-radius relation for lower main
sequence stars, given by (2.298) with q = 1.1. Most secondaries lie in the M
dwarf mass range, with a large fraction being fully convective. A few longer period
systems have K dwarf secondaries.

The magnetic field values are mainly obtained from cyclotron harmonic obser-
vations. A few systems have fields determined by photospheric Zeeman splitting
observations, giving a mean surface field. Every system has at least one reference
related to detailed observations of its properties.
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Table 3.1 The AM Herculis binaries

Name P (h) Ms/M� Bcyc (MG) B̄ph (MG) References

V1309 Ori 7.983 0.769 27 41, 104

V859 Cen 4.765 0.459 44

AI Tri 4.602 0.443 32, 73 41, 83

J0649 4.392 0.423 26 41, 54

MQ Dra 4.391 0.423 60 105, 107

J2048 4.200 0.404 46

V1043 Cen 4.190 0.405 56 111, 120

HS0922 4.039 0.389 60, 81 69, 115

VY For 3.806 0.367 22, 41

J0227 3.787 0.365 100

J1424 3.732 0.359 52

QQ Vul 3.708 0.357 36 20, 38

J0749 3.600 0.347 54

V358 Aqr 3.491 0.336 73

J1007 3.477 0.335 94 41, 112

MN Hya 3.390 0.326 28 41, 47

V388 Peg 3.375 0.325 20 41, 117

J1422 3.369 0.324 52

V1432 Aql 3.366 0.324 41, 51

BY Cam 3.354 0.323 41 41, 58

V1500 Cyg 3.351 0.323 41, 76

J0733 3.338 0.321 33

J0837 3.180 0.306 42, 80

V519 Ser 3.175 0.306 114

V1033 Cen 3.156 0.304 15, 72

J1453 3.156 0.304 53, 62

AM Her 3.094 0.298 14 13 19, 75

CW Hyi 3.030 0.292 93

V4633 Sgr 3.014 0.290 48

J2319 3.011 0.290 98

J2250 2.904 0.280 68

HY Eri 2.855 0.275 18

WX LMi 2.782 0.268 61, 70 41, 122

EU Lyn 2.736 0.264 43

V349 Pav 2.662 0.256 29, 7 41, 67

PZ Vir 2.645 0.255 103

J0524 2.620 0.252 85

AP CrB 2.531 0.244 110 94, 113

V654 Aur 2.496 0.240 43

J1543 2.400 0.231 97
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Table 3.2 The AM Herculis binaries (Continued)

Name P (h) Ms/M� Bcyc (MG) B̄ph (MG) References

J0859 2.400 0.231 30 34, 41

QS Tel 2.332 0.225 47, 75 91

V516 Pup 2.285 0.220 39 41, 82

V381 Vel 2.234 0.215 52 35, 41

V1189 Her 2.232 0.215 34

UW Pic 2.232 0.214 19 41, 70, 74

J1503 2.223 0.214 130

J1333 2.208 0.213 103

HU Leo 2.187 0.211 102

J2218 2.160 0.208 4

MT Dra 2.145 0.207 84

UZ For 2.109 0.203 55, 28 6, 23, 30, 41

J0325 2.093 0.202 39

EU Cnc 2.090 0.201 42 127

HU Aqr 2.084 0.201 32 20 41, 90, 95

J1743 2.078 0.200 25

V1901 Aql 2.035 0.196 1

J0328 2.033 0.196 106

V2951 Oph 2.003 0.193 42 10

V1007 Her 1.999 0.193 50 36

V808 Aur 1.953 0.188 36, 69 96, 129

J1344 1.944 0.187 109

V1237 Her 1.939 0.187 43

J0810 1.936 0.186 130

AR UMa 1.932 0.186 155 41, 77

WW Hor 1.925 0.185 25 2, 41, 57

AN UMa 1.914 0.184 32 12, 41

EK UMa 1.909 0.184 48 9

J0357 1.900 0.183 88

ST LMi 1.898 0.183 19 41, 99

BL Hyi 1.894 0.182 18 8, 124, 128

MR Ser 1.891 0.182 27 27, 41, 126

FR Lyn 1.888 0.182 28

V884 Her 1.884 0.181 30 37, 41, 78

V2301 Oph 1.883 0.181 7 32, 41

CD Ind 1.848 0.178 12 41, 66

CE Gru 1.810 0.174 63

J1002 1.783 0.172 32 41, 64

EP Dra 1.744 0.168 15 41, 71, 87

J0953 1.729 0.167 5
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Table 3.3 The AM Herculis binaries (Continued)

Name P (h) Ms/M� Bcyc (MG) B̄ph (MG) References

RS Cae 1.702 0.164 119

J0706 1.702 0.164 39

V834 Cen 1.692 0.163 23 22, 39 7, 31, 41, 89

V379 Tel 1.684 0.162 20 60

VV Pup 1.674 0.161 31, 56 41, 45

EG Lyn 1.656 0.159 93

J1344 1.656 0.159 109

V393 Pav 1.647 0.159 16 110

HS Cam 1.637 0.158 8 41, 116

LW Cam 1.621 0.156 20 41, 118

BS Tri 1.605 0.155 13, 26

PW Aqr 1.570 0.151 61

EQ Cet 1.547 0.149 45 41, 92

J1944 1.532 0.148 21

J1321 1.531 0.147 50

J1312 1.531 0.147 123

J1745 1.503 0.145 55

EU UMa 1.502 0.145 43 67

V347 Pav 1.501 0.145 29, 7 41, 67

J0257 1.500 0.144 121

J0502 1.500 0.144 35 41, 49

DP Leo 1.497 0.144 31, 59 3, 11

CP Tuc 1.484 0.143 15 8, 41, 65

J1514 1.479 0.142 14

V379 Vir 1.474 0.142 7 24, 29

FL Cet 1.452 0.140 29 41, 79

IW Eri 1.452 0.140 30 41, 93

J1250 1.439 0.139 14

J0425 1.430 0.138 40

J0921 1.404 0.135 103

BM CrB 1.404 0.135 34

IL Leo 1.392 0.134 42 81

EF Eri 1.350 0.130 100 86, 108, 125

FH UMa 1.334 0.128 101

J0154 1.334 0.128 16

J0528 1.334 0.128 33

GG Leo 1.331 0.128 24 41, 67

EV UMa 1.328 0.128 35 56, 64

J1845 1.318 0.127 59

V4738 Sgr 1.300 0.125 67 17

CV Hyi 1.297 0.125 17
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Tables 3.1–3.3 Reference Number Key: 1. Afanasiev et al. 2015; 2. Bailey et al.
1988; 3. Bailey et al. 1993; 4. Bernardini et al. 2014; 5. Beuermann and Burwitz
1995; 6. Beuermann et al. 1988; 7. Beuermann et al. 1989; 8. Beuermann et al.
2007; 9. Beuermann et al. 2009; 10. Bhalerao et al. 2010; 11. Biermann et al. 1985;
12. Bonnet-Bidaud et al. 1996; 13. Borisov et al. 2015; 14. Breedt et al. 2012; 15.
Buckley et al. 2000; 16. Burwitz et al. 1993; 17. Burwitz et al. 1997; 18. Burwitz
et al. 1999; 19. Campbell et al. 2008; 20. Catalan et al. 1999; 21. Coppejans et al.
2014; 22. Cropper 1997; 23. Dai et al. 2010; 24. Debes et al. 2006; 25. Denisenko
and Martinelli 2012; 26. Denisenko et al. 2006; 27. Diaz and Cieslinski 2009; 28.
Dillon et al. 2008; 29. Farihi et al. 2008; 30. Ferrario et al. 1989; 31. Ferrario et al.
1992; 32. Ferrario et al. 1995; 33. Gabdeev 2015; 34. Gansicke et al. 2009; 35.
Greiner and Schwarz 1998; 36. Greiner et al. 1998a; 37. Greiner et al. 1998b; 38.
Halevin et al. 2002, 39. Halpern and Thorstensen 2015; 40. Halpern et al. 1998;
41. Harrison and Campbell 2015; 42. Hilton et al. 2009; 43. Homer et al. 2005;
44. Howell et al. 1997; 45. Howell et al. 2006; 46. Kafka et al. 2010; 47. Kato
2015; 48. Lipkin and Leibowitz 2008; 49. Littlefair et al. 2005; 50. Littlefield et al.
2015a; 51. Littlefield et al. 2015b; 52. Marsh et al. 2002; 53. Masetti et al. 2006; 54.
Motch et al. 1998; 55. Muno et al. 2003; 56. Osborne et al. 1994; 57. Pandel et al.
2002; 58. Pavlenko 2006; 59. Pavlenko et al. 2011; 60. Potter et al. 2005; 61. Potter
et al. 2006; 62. Potter et al. 2010; 63. Ramsay and Cropper 2002; 64. Ramsay and
Cropper 2003; 65. Ramsay et al. 1999; 66. Ramsay et al. 2000; 67. Ramsay et al.
2004; 68. Ramsay et al. 2009; 69. Reimers and Hagen 2000; 70. Reinsch et al. 1994;
71. Remillard et al. 1991; 72. Rodrigues et al. 1998; 73. Rodrigues et al. 2006; 74.
Romero-Colmenero et al. 2003; 75. Schmidt et al. 1981; 76. Schmidt et al. 1995;
77. Schmidt et al. 1999; 78. Schmidt et al. 2001; 79. Schmidt et al. 2005a; 80.
Schmidt et al. 2005b; 81. Schmidt et al. 2007; 82. Schwarz and Greiner 1999; 83.
Schwarz et al. 1998; 84. Schwarz et al. 2002; 85. Schwarz et al. 2007; 86. Schwope
and Christensen 2010; 87. Schwope and Mengel 1997; 88. Schwope and Thinius
2012; 89. Schwope et al. 1993a; 90. Schwope et al. 1993b; 91. Schwope et al. 1995;
92. Schwope et al. 1999; 93. Schwope et al. 2002; 94. Schwope et al. 2006; 95.
Schwope et al. 2011; 96. Schwope et al. 2015; 97. Servillat et al. 2012; 98. Shafter
et al. 2008; 99. Shahbaz and Wood 1996; 100. Silva et al. 2015; 101. Singh et al.
1995; 102. Southworth et al. 2010; 103. Southworth et al. 2015; 104. Staude et al.
2001; 105. Szkody et al. 2003; 106. Szkody et al. 2007; 107. Szkody et al. 2008;
108. Szkody et al. 2010; 109. Szkody et al. 2014; 110. Thomas et al. 1996; 111.
Thomas et al. 2000; 112. Thomas et al. 2012; 113. Thorstensen and Fenton 2002;
114. Thorstensen et al. 2015; 115. Tovmassian and Zharikov 2007; 116. Tovmassian
et al. 1997; 117. Tovmassian et al. 2000; 118. Tovmassian et al. 2001; 119. Traulsen
et al. 2014; 120. van der Heyden et al. 2002; 121. Vladimirov et al. 2014; 122.
Vogel et al. 2007; 123. Vogel et al. 2008; 124. Wickramasinghe et al. 1984; 125.
Wickramasinghe et al. 1990; 126. Wickramasinghe et al. 1991; 127. Williams et al.
2013; 128. Wolff et al. 1999; 129. Worpel and Schwope 2015; 130. Woudt et al.
2012.
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Chapter 4
AM Her Stars: Inductive Magnetic
Coupling

Abstract Mechanisms that could cause the magnetic white dwarf primary to spin
towards orbital synchronism are considered, and their effects on the mass transfer
rate are investigated. An asynchronous primary results in two inductive processes
due to its interaction with a tidally synchronized secondary star. With the primary
magnetic axis inclined to its rotation axis, the secondary experiences a time varying
magnetic field. A corotating white dwarf magnetosphere will impose tangential and
normal motions near the surface of the secondary leading to motions in its interior.
Both these effects lead to induced electric currents and associated perturbations to
the stellar magnetic field. Magnetic torques result on both stars and on the orbit,
allowing exchange of angular momentum.

The synchronization time of the primary is less than the lifetime of the binary,
for a wide range of degrees of asynchronism. The magnetic transfer of angular
momentum to the orbit can significantly affect the mass transfer rate occurring via
Roche lobe overflow, and modified forms of Ṁs are derived. The inductive torques
vanish at synchronism, and so cannot maintain a corotating state in the presence of
an accretion torque.

4.1 Introduction

The first problem to consider in the AMHer binaries is how the white dwarf primary
can approach synchronous rotation with the orbit. Spin angular momentum must be
removed from or added to the primary, depending on whether it is initially over
or under-synchronous, for corotation to be approached. A coupling mechanism,
with associated torques, is therefore necessary and magnetic interaction with the
secondary star can provide this. The white dwarf is likely to be surrounded by a low
density extended magnetosphere, which will be highly conducting and is expected
to be nearly corotating with the star.

The lower main sequence secondary is believed to be corotating with the orbit,
this being achieved by tidal interaction and viscous dissipation. In general, for a
tilted magnetic axis, if the primary is asynchronous the secondary will experience
a time-dependent magnetic field, and the effects of motions of the magnetosphere
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near its surface. Magnetic field will penetrate the secondary and the induced J × B
force will lead to motions in its surface regions where this force is comparable to
the gravitational and pressure gradient forces. The induced electric field will drive
currents in the star which are dissipated due to its electrical resistance. Currents
will also flow in the highly conducting magnetosphere surrounding the stars and
in the atmosphere of the white dwarf primary. Tables 3.1, 3.2, and 3.3 show that
the secondary masses lie in the range 0.13M� � Ms � 0.77M�, and so these
stars will have deep convective envelopes or be fully convective. Although there
is no rigorous theory of turbulence, it is generally believed, and observationally
suggested in the case of the sun, that it enhances the diffusion rate of magnetic fields
compared to Ohmic processes. The chaotic motions break up the magnetic field,
reducing its length-scale and allowing Ohmic dissipation to diffuse it at a greatly
increased rate (e.g. Cowling 1945; Parker 1979; Moffatt 1998; Mestel 2012). The
mean-field theory related to turbulence was discussed in Sect. 2.3.

The large-scale induced magnetic field in the secondary obeys the induction
equation

∇ × (v × B)− ∇ × (η∇ × B) = ∂B
∂t
, (4.1)

where η is the turbulent diffusivity, which has greatly enhanced values compared
to those of the Ohmic form. It is natural to use the orbital frame, in which v = 0
for a synchronized secondary. It is noted that the α-effect term ∇ × (αB), discussed
in Sect. 2.3 for a turbulent medium, is not considered here since the poloidal field
in the secondary has the primary as its source. It is likely that the rapidly rotating
turbulent secondary will have a dynamo-generated magnetic field. This possibility
is considered later in relation to the maintenance of the synchronous state. Surface
fields� 102 G are significant in this context. A secondary magnetic field is required
in order to have magnetic wind braking as the driving mechanism for mass transfer
in systems with orbital periods greater than 3 h.

Equation (4.1) illustrates that there are two causes of induction in a plasma. The
v×B term involves the generation of electric fields due to motions across lines of B,
while the ∂B/∂t term induces electric fields if there is an explicit time dependence.
There is conducting material in both stars and in the region surrounding them and,
in general, both inductive processes will operate. However, to clarify the effects of
these mechanisms, the case of vacuum surrounding with time dependent B will be
considered first. This will illustrate the effects of the ∂B/∂t term. Then the case with
a magnetosphere, but with steady motions, will be analysed to investigate the role
of the v × B term. The combined effects of these inductive processes can then be
assessed.
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4.2 Coupling with Vacuum Surroundings

4.2.1 Induction of Currents in the Secondary

The degree of asynchronism can be measured by the ratio ω/�o, where

ω = ωin −�o (4.2)

is the synodic angular velocity of the primary with ωin its inertial angular velocity
and �o the orbital angular velocity. Since the inductive torques are antisymmetric
about ω = 0, only the case with ω > 0 needs to be calculated. The case of
high asynchronism, (ω/�o ∼ 1), with vacuum surroundings, was considered by
Papaloizou and Pringle (1978), and by Joss et al. (1979). They estimated the torque
due to magnetic dissipation in the surface layers of the secondary. The rate of
magnetic energy dissipation in a layer of depth δ is

W � B2

2μ0
(4πR2

s δ)ω, (4.3)

with the skin depth δ = (2η/ω)1/2. The inductive torque has a magnitude W/ω, so
taking a dipolar field gives a dissipative torque

TD = − 4π√
2

(Bp)
2
0R

2
sR

6
p

μ0D6

( η
ω

) 1
2
k, (4.4)

where Rs is the mean radius of the secondary, (Bp)0 and Rp the surface polar field
and radius of the white dwarf, and D is the orbital separation. A synchronization
time can be defined as

τsyc = Iω

|TD| , (4.5)

where I is the moment of inertia of the primary. Papaloizou and Pringle (1978)
employed a turbulent form for η, while Joss et al. (1979) used an Ohmic form.
Typically ηT ∼ 106ηohm and ηohm yields τsyc ∼ 1010 year for ω/�o ∼ 1, so
synchronism could not occur in the lifetime of the system which is measured
by the mass transfer time-scale τM = Ms/|Ṁs| ∼ 2 × 109 year. Also, Ohmic
values of η cannot explain synchronism for higher orbital separations and lower
primary magnetic moments, so turbulent values are needed. Then, for ω/�o ∼ 1,
ηT = 5 × 108m2s−1 and typical system parameters, (4.4) and (4.5) yield τsyc ∼
107 year < τM . However, torque expressions such as (4.4) cannot be used for low
values of ω/�o since the field penetration then becomes large and |TD| must vanish
as ω → 0.
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A detailed analysis of the vacuum surroundings case was performed by Campbell
(1983, 1999), enabling the full asynchronous range 0 < ω/�o � 1 to be
investigated. The vector diffusion equation can be solved to find the induced B field
in the secondary and this can be matched to the resulting total exterior vacuum field
at the stellar surface. The stellar and orbital torques can then be calculated and the
synchronization process considered.

4.2.2 Solution of the Diffusion Equation

Consider a secondary of mass Ms and a primary of mass Mp in circular orbits
with separation D and period 2π/�o. Figure 4.1 shows the orbital frame with the
coordinates used in the analysis. The white dwarf is taken to have a centred dipole
field with magnetic moment m having orientation angles (α, β), and a synodic
angular velocity ω parallel to �o. The region between the stars is treated as a
vacuum.

The primary’s magnetic field Bp can be expressed in terms of a scalar potential
�m where, relative to the originO ′,

�m = μ0m

4πr ′3
r′ · m̂(t), (4.6)

with the unit dipole moment being

m̂(t) = sin α cosωt i′ + sinα sinωt j′ + cosα k. (4.7)

ω

O

x

α

β

m

Ωo

r

D

r

φ

z

θ

O

y

Fig. 4.1 The orbital frame, showing the coordinates used in the analysis. The centres of mass of
the primary and secondary stars are at O ′ and O, respectively (from Campbell 1983)
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It then follows, using the vector identity (A2), that

Bp = −∇�m (4.8a)

= − μ0m

4πr ′3
[
m̂ − 3(m̂ · r̂′)r̂′] . (4.8b)

The unit vector m̂ can be resolved into components parallel and perpendicular to
ω. This enables Bp to be expressed as the sum of a time-independent part B0 and a
time-dependent part Bt , so

Bp = B0 + Bt , (4.9)

where

B0 = − μ0m

4πr ′3
cosα

(
k − 3z

r ′
r̂′
)
, (4.10)

Bt = − μ0m

4πr ′3

[
m̂⊥ − 3

r ′
(m̂⊥ · r′)r̂′

]
, (4.11)

with

m̂⊥ = sin α cosωt i′ + sin α sinωt j′. (4.12)

The time-dependent component Bt induces currents in the secondary star which
are dissipated at the expense of the synodic rotational energy of the primary. Hence,
in the absence of other torques, ω tends to zero. The synchronization time-scale is

τsyc(ω) = ω

|ω̇| = Iω

|TD| , (4.13)

where TD is the dissipative torque and I is the moment of inertia of the primary, with
the star taken to be spherical. Except very close to synchronism, the time-scale τsyc
greatly exceeds the synodic period so

τsyc � 2π

ω
. (4.14)

It follows that ω is essentially constant over a synodic period because the response
time of the primary to the periodic variations of the torque far exceeds 2π/ω. It will
be shown that ω remains aligned with �o during the synchronization process. The
orbital motion acts as a large sink or source of angular momentum, so the compact
primary can exchange angular momentum with the orbit without significantly
affecting �o.
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The magnetic potential �m, given by (4.6), can be expressed relative to coordi-
nates centred on the secondary’s originO . The required coordinate transformations
are, from Fig. 4.1,

r ′ = (r2 +D2 − 2rD sin θ cosφ)
1
2 ,

x ′ = r sin θ sin φ,
y ′ = D − r sin θ cosφ,
z = r cos θ. (4.15)

Equations (4.6), (4.7), and (4.15) give the time-dependent part of �m, to second
order in r/D, as

�m =μ0m sin α

4πD3
rP 1

1 (2 cosφ sinωt + sinφ cosωt)

− 3μ0m sinα

8πD4 r2
[
P 0
2 sinωt − P 2

2

(
1

2
cos 2φ sinωt + 1

3
sin 2φ cosωt

)]
,

(4.16)

where P |m|
l are associated Legendre functions, given by (A34) as

P 1
1 = sin θ,

P 0
2 = 1

2
(3 cos2 θ − 1),

P 2
2 = 3 sin2 θ. (4.17)

On and within the surface of the secondary, where �m will be required, the radial
coordinate satisfies r/D � 1/3. The above second order expansion is therefore a
reasonable approximation, particularly since the magnetic torques have expansions
in powers of (Rs/D)

2, where Rs is the mean radius of the secondary.
The time-varying magnetic field of the primary induces a current density J in

the secondary. The resulting J × B magnetic force density will lead to motions,
especially in the outer layers of the star where it can be comparable to the
gravitational and pressure gradient forces. Such motions will have an inductive
effect via the v×B term in (4.1). However, for clarity, only the effects of the ∂B/∂t
term are considered here. The effects of induced motions are considered later.

The induced electric currents are dissipated and the magnetic field obeys the
diffusive induction equation

∇ × (η∇ × B) = −∂B
∂t
, (4.18)
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where the turbulent subscript on η has been dropped. The magnetic field, being
solenoidal, can be expressed as the sum of generalized poloidal and toroidal fields
as in (2.196). Since the external field is of a poloidal nature, only that type of field
will be generated in the secondary. Hence B can be expressed in terms of a poloidal
scalar 
 as

B = ∇ × [∇ × (
r̂)]. (4.19)

The function
 can be expanded in a set of radial functions and spherical harmonics
as in (2.209), where, due to the periodic nature of the external primary field,
each harmonic has a time-dependence exp(iωt). By virtue of the synchronization
time-scale condition (4.14), ω can be taken as time-independent in the process of
solving (4.18). It is noted that in the following field expressions, involving general
harmonics, summations over the appropriate values of the indices l and m with
suitable coefficients, phases and complex conjugates needed to match the external
field will be taken. The poloidal scalar is


 = Gl(r)Yml (θ, φ)eiωt . (4.20)

Equations (4.19) and (4.20) give the magnetic field components as

Br = l(l + 1)

r2
GlY

m
l e
iωt , (4.21)

Bθ = 1

r

dGl

dr

∂Yml

∂θ
eiωt , (4.22)

Bφ = 1

r sin θ

dGl

dr

∂Yml

∂φ
eiωt , (4.23)

using the eigenvalue equation (2.211) for spherical harmonics. The components of
the curl are

(∇ × B)r = 0, (4.24)

(∇ × B)θ = − 1

r sin θ

[
d2Gl

dr2
− l(l + 1)

r2
Gl

]
∂Yml

∂φ
eiωt , (4.25)

(∇ × B)φ = 1

r

[
d2Gl

dr2
− l(l + 1)

r2
Gl

]
∂Yml

∂θ
eiωt , (4.26)

and the current density is

J = 1

μ0
∇ × B. (4.27)
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Taking η = η(r) in the diffusion equation (4.18), then using the field component
equations (4.21)–(4.26) and equating harmonics, gives the differential equation for
the radial functions as

d2Gl

dr2
−
[
iω

η
+ l(l + 1)

r2

]
Gl = 0. (4.28)

Specifying η and solving this equation gives the radial dependence of the poloidal
scalar 
 in the secondary star. The solutions in the outer region are found by
solving (4.28) with η → ∞. The inner and outer forms of 
 must then be matched
at the surface of the secondary to satisfy the boundary conditions.

The secondary star will be tidally and rotationally distorted. However, to make
the problem tractable, a spherical surface of radius Rs can be considered which
encloses the same volume as the secondary’s Roche lobe. The essential symmetries
of the problem are preserved and no additional properties are introduced by using
this simplification. The conditions at the secondary’s surface are that n̂·J = 0, where
n̂ is the unit normal, and that B is continuous. The radial current condition is met
by (4.24) giving (∇ × B)r = 0, while the field component equations (4.21)–(4.23)
show that the continuity of B requires

Gl and
dGl

dr
continuous at r = Rs. (4.29)

Consider, first, the free-space solutions of (4.28), for which η → ∞, so

d2Gl

dr2
− l(l + 1)

r2
Gl = 0. (4.30)

The general solution of this equation is

Gl = arl+1 + b

rl
, (4.31)

where a and b are constants. The solution rl+1 corresponds to the poloidal scalar
of the primary’s field, while the solution r−l corresponds to the poloidal scalar of
the outer field Bs resulting from the induced current source J in the secondary.
Equations (4.8a) and (4.19) show that the magnetic potential and free-space poloidal
scalar are related by

�m = −∂

∂r
. (4.32)
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Using (4.16) for �m in (4.32), and integrating, gives the poloidal scalar of the
primary’s field as


p = − μ0m sin α

8πD3 r2P 1
1 (2 cosφ sinωt + sin φ cosωt)

+ μ0m sin α

8πD4 r3
[
P 0
2 sinωt − P 2

2

(
1

2
cos 2φ sinωt + 1

3
sin 2φ cosωt

)]
.

(4.33)

The poloidal scalar defining the field Bs must then take the form


s =1

r
P 1
1 cosφ(α1 sinωt + α2 cosωt)+ 1

r
P 1
1 sin φ(α3 sinωt + α4 cosωt)

+ 1

r2
P 0
2 (β1 sinωt + β2 cosωt)+

1

r2
P 2
2 cos 2φ(γ1 sinωt + γ2 cosωt)

+ 1

r2
P 2
2 sin 2φ(γ3 sinωt + γ4 cosωt), (4.34)

where αi , βi and γi are constants.
Consider, now, the inner solution of the differential equation (4.28) for Gl , for

which η is finite. Systems with orbital periods P > 3.5 h will have secondary stars
containing a radiative core. However, all but one of these systems have P < 5 h so
the radiative cores will be small. This has a negligible effect on the synchronization
torque, so a turbulent form for η is justified. The simple mixing length theory
of Sect. 2.2.11 suggests that the variation of η through the star is not large so,
in the absence of a more rigorous theory of turbulence, η is taken as constant.
None of the physical essentials of the problem are lost in making this mathematical
simplification.

Making the substitution in (4.28) of

Gl =
( η
iω

) 1
4
u

1
2Fl(u), (4.35)

where u = i3/2(ω/η)1/2r , gives

d2Fl

du2
+ 1

u

dFl

du
+
[
1 − (l + 1

2 )
2

u2

]
Fl = 0. (4.36)

This is Bessel’s equation of order ±(l + 1/2). The solution of negative order is
singular at r = 0, so the required non-singular solution of (4.28) is

Gl = i 12 r 1
2 Jl+ 1

2

(
i
3
2

(
ω

η

) 1
2

r

)
, (4.37)
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where J
l+ 1

2
is a Bessel function of the first kind of order l + 1/2, given by

J
l+ 1

2
(u) = (−1)l

(
2

π

) 1
2

ul+
1
2
dl

(udu)l

(
sinu

u

)
. (4.38)

The required radial functions are then

G1 = −
(
2ir

π

) 1
2 1

u
1
2

[
cosu− sin u

u

]
, (4.39)

G2 =
(
2ir

π

) 1
2 1

u
1
2

[(
3

u2
− 1

)
sin u− 3 cosu

u

]
. (4.40)

The functionsGl can be expressed in the form

Gl(r) = Cl(r) exp[iδl(r)], (4.41)

so the poloidal scalar, given by (4.20), is then


 = ClYml exp[i(ωt + δl)]. (4.42)

The boundary conditions, specified by (4.29), require 
 and ∂
/∂r to be
continuous across the stellar surface. Matching a suitable linear combination of the
harmonics of 
, and their radial derivatives, to those of 
p + 
s with 
p and 
s

given by (4.33) and (4.34), yields the inner poloidal scalar as


 =C1P
1
1 cosφ[A1 sin(ωt + δ1 − δ1s)+ A2 cos(ωt + δ1 − δ1s)]

− 1

2
C1P

1
1 sinφ[A2 sin(ωt + δ1 − δ1s)− A1 cos(ωt + δ1 − δ1s)]

+ C2P
0
2 [B1 sin(ωt + δ2 − δ2s)+ B2 cos(ωt + δ2 − δ2s)]

− 1

2
C2P

2
2 cos 2φ[B1 sin(ωt + δ2 − δ2s)+ B2 cos(ωt + δ2 − δ2s)]

+ 1

3
C2P

2
2 sin 2φ[B2 sin(ωt + δ2 − δ2s)− B1 cos(ωt + δ2 − δ2s)], (4.43)

where the ω-dependent coefficients Ai and Bi are

A1 = −3μ0mR
2
s sin α

4πD3
(C1 + RsC

′
1)s

[
(C1 + RsC

′
1)

2
s + (RsC1δ

′
1)

2
s

]−1
, (4.44)

A2 = − RsC1sδ
′
1s

(C1 + RsC
′
1)s
A1, (4.45)
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B1 = 5μ0mR
3
s sin α

16πD4

(
C2 + Rs

2
C′
2

)
s

[(
C2 + Rs

2
C′
2

)2

s

+
(
Rs

2
C2δ

′
2

)2

s

]−1

,

(4.46)

B2 = − RsC2sδ
′
2s

(C2 + 1
2RsC

′
2)s
B1, (4.47)

with primes denoting differentiation with respect to r , and subscripts s surface
values. The functions Cl and δl can be found from (4.39)–(4.41).

4.2.3 The Dissipation Torque

The dissipation of energy in the secondary and the torque acting on the primary
can be simply related since, as will be shown, the angle α remains constant during
the synchronization process. The electric currents induced in the secondary are
dissipated, due to its finite diffusivity, with the total dissipation rate being

W = 1

μ0

∫
V

η(∇ × B)2dV, (4.48)

where the integral is over the stellar volume. It follows from (4.18)–(4.20) that

∇ × B = iω

η
r̂ × ∇
. (4.49)

The dissipation is at the expense of the synodic rotational energy of the primary.
The synchronization time-scale condition (4.14) means that the periodic time
dependence of the torque will not affect ω over a synodic period. Only the secular
variation of ω is then relevant and hence it is appropriate to consider the dissipation
averaged over a synodic period, given by

dE

dt
= −|ω|

2π

∫ 2π
ω

0
Wdt. (4.50)

Using (4.43) for
 in (4.49) to calculate ∇ ×B, performing the angular integrations
in (4.48) employing the orthogonality relation (A39) for spherical harmonics, and
taking the time-average given by (4.50), yields

dE

dt
= −πμ0ω

2

[
5

3
(A2

1 + A2
2)

∫ Rs

0

C2
1

η
dr + 64

5
(B2

1 + B2
2 )

∫ Rs

0

C2
2

η
dr

]
,

(4.51)

where Ai and Bi are given by (4.44)–(4.47).
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The radial integrals can be expressed in terms of functions evaluated on the stellar
surface. Substituting (4.41) forGl into the differential equation (4.28), and equating
the real and imaginary parts to zero, gives

d2Cl

dr2
−
[
δ′2l + l(l + 1)

r2

]
Cl = 0, (4.52)

d

dr
(C2
l δ

′
l )−

ω

η
C2
l = 0. (4.53)

Equation (4.52) requiresCl to vanish at r = 0, so integrating (4.53) through the star
gives

∫ Rs
0

C2
l

η
dr = 1

ω
(C2
l δ

′
l)s. (4.54)

Using (4.44)–(4.47) for the coefficients Ai and Bi together with (4.54) in (4.51),
and simplifying, gives the dissipation rate as

dE

dt
= −5μ0m

2R3
s sin

2 α

4πD6 ωf (ω, η), (4.55)

where the dimensionless function f is

f (ω, η) = 3

4
(C2

1δ
′
1)sF1 +

(
Rs

D

)2

(C2
2δ

′
2)sF2, (4.56)

with

F1 = RsC
2
1s

[
(C2

1 + RsC1C
′
1)

2
s + R2

s (C
2
1δ

′
1)

2
s

]−1
, (4.57)

F2 = RsC
2
2s

[(
C2
2 + 1

2
RsC2C

′
2

)2

s

+ 1

4
R2
s (C

2
2δ

′
2)

2
s

]−1

. (4.58)

The real and imaginary parts of (4.39) forG1 and (4.40) forG2 give the functions
Cl in (4.41), leading to

C2
1s =

√
2Rs

πas

[
cosh as + cos as − 2

as
(sinh as + sin as)

+ 2

a2s
(cosh as − cos as)

]
, (4.59)
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C2
2s =

√
2Rs

πas

[
cosh as − cos as − 6

as
(sinh as − sin as)

+ 18

a2s
(cosh as + cos as)− 36

a3s
(sinh as + sin as)

+36

a4s
(cosh as − cos as)

]
, (4.60)

where as is a dimensionless similarity variable, given by

as =
(
2ω

η

) 1
2

Rs. (4.61)

It is noted that as ∼ (τd/Psyn)
1/2, where τd is the characteristic diffusion time of

a magnetic field through the secondary, and Psyn = 2π/ω is the synodic rotation
period of the primary. The quantities (ClC′

l )s and (C
2
l δ

′
l )s occurring in f are found

from the real and imaginary parts of (4.39) and (4.40), and their relations to Cl and
δl in (4.41). Some differentiation and lengthy algebra yields

(C1C
′
1)s =

√
2

π

[
1

2
(sinh as − sin as)− 1

as
(cosh as + cos as)

+ 2

a2s
(sinh as + sin as)− 2

a3s
(cosh as − cos as)

]
, (4.62)

(C2C
′
2)s =

√
2

π

[
1

2
(sinh as + sin as)− 3

as
(cosh as − cos as)

+ 12

a2s
(sinh as − sin as)− 36

a3s
(cosh as + cos as)

+72

a4s
(sinh as + sin as)− 72

a5s
(cosh as − cos as)

]
, (4.63)

(C2
1δ

′
1)s = 1

π
√
2

[
sinh as + sin as − 2

as
(cosh as − cos as)

]
, (4.64)

(C2
2δ

′
2)s = 1

π
√
2

[
sinh as − sin as − 6

as
(cosh as + cos as)

+12

a2s
(sinh as + sin as)− 12

a3
(cosh as − cos as)

]
. (4.65)



120 4 AM Her Stars: Inductive Magnetic Coupling

The dissipation rate, given by (4.55), can be related to the torque exerted on the
primary by its interaction with Bs, the outer field whose source is the current density
induced in the secondary. This torque is

T = m × Bs(rp), (4.66)

where, from (4.8a) and (4.32),

Bs(rp) =
[
∇
(
∂
s

∂r

)]
r=rp

, (4.67)

and the position of the primary is rp = Di. From Fig. 4.1, the polar components of
Bs(rp) relative to Oxyz can be related to its Cartesian components in O ′x ′y ′z by

Bsr = −Bsy ′, Bsθ = −Bsz, Bsφ = Bsx ′ . (4.68)

The components of the torque are then

Tx ′ = m(m̂zBsr − m̂y ′Bsθ ), (4.69)

Ty ′ = m(m̂x ′Bsθ + m̂zBsφ), (4.70)

Tz = −m(m̂x ′Bsr + m̂y ′Bsφ), (4.71)

at (r, θ, φ) = (D, π/2, 0). Using (4.34) for 
s in (4.67) gives the required field
components as

Bsr = 1

D3

[
2α1 − 3

D
(β1 − 6γ1)

]
sinωt + 1

D3

[
2α2 − 3

D
(β2 − 6γ2)

]
cosωt, (4.72)

Bsθ = 0, (4.73)

Bsφ = − 1

D3

(
α3 + 12

D
γ3

)
sinωt − 1

D3

(
α4 + 12

D
γ4

)
cosωt. (4.74)

Using the components of m̂ from (4.7) together with (4.72)–(4.74) in (4.69)–(4.71),
and averaging over a period 2π/ω, gives

〈Tx ′ 〉 = 〈Ty ′ 〉 = 0, (4.75)

〈Tz〉 = −m sinα

D3

[
α2 − 1

2
α3 − 3

2D
(β2 − 6γ2 + 4γ3)

]
. (4.76)

Equation (4.75) shows that there is no tendency for secular changes in the tilt angle
α of the dipole momentm.
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The quantities αi , βi and γi in (4.76) can be expressed in terms of A2 and B2,
given by (4.45) and (4.47), by means of the boundary conditions at r = Rs. This
gives

α2 = RsC1sA2, α3 = −1

2
α2, β2 = R2

sC2sB2,

γ2 = −1

2
β2, γ3 = 1

3
β2. (4.77)

Substitution of these in (4.76) yields

〈Tz〉 = −5μ0m
2R3

s sin
2 α

4πD6

[
3

4
(C2

1δ
′
1)sF1 +

(
Rs

D

)2

(C2
2δ

′
2)sF2

]
, (4.78)

where the functions F1 and F2 are identical to those given by (4.57) and (4.58). The
quantity in square brackets is therefore the function f (ω, η), appearing in (4.55) for
the dissipation rate, and hence the synodic average of the total dissipative inductive
torque is

〈T〉 = TD = −5μ0m
2R3

s sin
2 α

4πD6
f (ω, η) k. (4.79)

The dissipation rate of the synodic rotational energy of the primary is therefore
related to this torque by

dE

dt
= ωTD. (4.80)

The vanishing synodic averages of the horizontal torque components are a
consequence of the intrinsic symmetry of the dipole field, and the initial condition
of ω parallel to �o. Equations (4.11) and (4.12) show that the time-dependent part
of the primary’s magnetic field has a vanishing z-component in the orbital plane.
The outer field Bs, resulting from the current distribution induced in the secondary,
also has this property. At the primary Bsθ = −Bsz = 0, so (4.69) and (4.70) give

Tx ′ = m cosαBsr , (4.81)

Ty ′ = m cosαBsφ. (4.82)

It then follows from (4.72) for Bsr and (4.74) for Bsφ that 〈Tx ′ 〉 = 〈Ty ′ 〉 = 0.
If ω were initially misaligned from �o part of the dissipation in the secondary

would be due to the component of ω in the orbital plane. This component would be
dissipated at a similar rate to that of the synchronization of ωz so, in the absence
of other torques, the horizontal components of ω would approach zero on the time-
scale τsyc given by (4.13).
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Fig. 4.2 The dimensionless primary magnetic torque function, for vacuum surroundings

Figure 4.2 is a plot of f (ω, η) against log(ω/�o), The torque decreases with
decreasing ω for ω/�o � 10−3.5 since, although the field penetration becomes
large, its time variation, and hence the induced current density, becomes small.
The torque decreases with increasing ω for ω/�o � 10−3.5 because at higher
frequencies the field becomes localized to a skin-depth δ � Rs beneath the stellar
surface, and δ → 0 as ω increases.

For an under-synchronous state ω < 0 applies and making the transformation
ω → −ω in (4.61) gives as → ias. Using this in (4.59), (4.60) and (4.62)–(4.65)
for C2

ls, (ClC
′
l )s and (C2

l δ
′
l)s, then employing the results in (4.56)–(4.58) yields

f (−ω, η) = −f (ω, η). Hence, as expected, the induction torque is antisymmetric
in ω.

4.2.4 Asymptotic Synchronization Times

The dimensionless quantity as, given by (4.61), can be expressed as

as =
√
2Rs�

1
2
o

η
1
2

(
ω

�o

) 1
2

. (4.83)
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Using the orbital, lobe-filling and mass-radius relations

�2
o = GM

D3 , (4.84a)

M

Ms

(
Rs

D

)3

= 0.1 (4.84b)

and

Rs

R�
= q Ms

M�
, (4.84c)

whereM = Ms +Mp, yields

as = 6.20× 102q
1
4 (Ms/M�)

1
2

(η/5 × 108 m2 s−1)
1
2

(
ω

�o

) 1
2

. (4.85)

It follows from (4.61) that

as = 2
Rs

δ
= 2

√
π

(
τd

Psyn

) 1
2

(4.86)

where τd is the magnetic diffusion time through the secondary, Psyn = 2π/ω, and
δ = (2η/ω)1/2 is the characteristic penetration depth of the magnetic field.

Asymptotic forms can be found for the dissipation torque TD = 〈T 〉 for δ � Rs
and δ > Rs. These regimes represent low and high magnetic field penetration into
the secondary, respectively, and corresponding expressions can be found for the
synchronization times.

Equations (4.84a), (4.84b), and (4.84c) enable P andD to be written as

P = 2πq
3
2

(
10

G

) 1
2
(
R�
M�

) 3
2

Ms (4.87)

and

D = 10
1
3 q

(
R�
M�

)
M

1
3M

2
3
s . (4.88)

These expressions will allow some formulas to be simplified by the elimination of
P and D.



124 4 AM Her Stars: Inductive Magnetic Coupling

Low Field Penetration

For as � 1 the primary’s magnetic field penetrates the secondary to a skin-depth
δ � Rs. Equations (4.56)–(4.65) and (4.79) yield

TD = ∓15
√
2π

8μ0

[
1 + 16

3

(
Rs

D

)2
]
(Bp)

2
0R

6
pR

2
s sin

2 α

D6

(
η

|ω|
) 1

2

, (4.89)

where the negative and positive signs apply for ω > 0 and ω < 0, respectively.
Using (4.84c), (4.87) and (4.88) to eliminate Rs, P andD leads to the synchroniza-
tion time

τsyc =
4.24 × 107q

7
4

(
k2p
0.2

)(
Mp

0.6M�

)(
Ms

0.2M�
) 1

2
(

M
0.8M�

)2 ( |ω|
�o

) 3
2

N1

(
Rp

8.67× 106 m

)4 (
(Bp)0
20MG

)2 (
η

5 × 108 m2 s−1

) 1
2

year,

(4.90)

where kpRp is the radius of gyration of the primary, and

N1 =
[
1 + 16

3

(
Rs

D

)2
]
sin2 α. (4.91)

For η = 5 × 108 m2 s−1, these expressions hold to good accuracy for as ≥ 10
corresponding to |ω|/�o ≥ 10−3. It is seen that for |ω|/�o ∼ 1, τsyc is less
than the lifetime of the system, which is given by the mass transfer time-scale
τM = Ms/|Ṁs| ∼ 2 × 109year. The torque expression (4.89) agrees with the
estimate (4.4), except for a numerical factor which results from taking the field
structure into account here.

High Field Penetration

For as < 1 the field penetration is essentially complete, with δ > Rs, and Taylor
expansion of f about as = 0 yields

TD = π

12μ0

[
1 + 48

35

(
Rs

D

)2
]
(Bp)

2
0R

6
pR

5
s sin

2 α

D6

ω

η
. (4.92)
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It follows that |ω| decreases exponentially on a time-scale

τsyc =
179q

(
k2p
0.2

)(
Mp

0.6M�

)(
M

0.8M�
)2 ( η

5 × 108 m2 s−1

)

N2

(
(Bp)0
20MG

)2 (
Rp

8.67 × 106 m

)4 (
Ms

0.2M�
) year, (4.93)

where

N2 =
[
1 + 48

35

(
Rs

D

)2
]
sin2 α. (4.94)

For η = 5 × 108 m2 s−1, these expressions hold to good accuracy for as ≤ 0.8
corresponding to ω/�o ≤ 10−5.

The period-mass relation (4.87) can be written in the form

(
P

h

)
= 8.8q

3
2

(
Ms

M�

)
. (4.95)

The radius of the primary can be found from

Rp = 7.8 × 106
[(
Mp

Mc

)− 2
3 −

(
Mp

Mc

) 2
3
] 1

2

m, (4.96)

whereMc = 1.44M� (Nauenberg 1972).

4.2.5 Comparison with Observations of Asynchronous Systems

Five AMHer systems are believed to have asynchronous primary stars, and analyses
of the observational data have been made to estimate synchronization times.

Staubert et al. (2003) used optical and X-ray data to estimate the asynchronism
of V1432 Aql as ω/�o � −2.8× 10−3, suggesting an under-synchronous primary.
A synchronization time-scale was estimated as τsyc � 200 year. This can be
compared with the theoretical time-scale given by (4.90), which is appropriate for
the estimated degree of asynchronism. The orbital period is P = 3.366 h and the
period-mass relation (4.95) yieldsMs � 0.32M�. The formula (4.90) can give the
estimated observational value of τsyc forMp = 0.4M�, N1 = 1.4, (Bp)0 = 50MG
and η = 5 × 108 m2 s−1. Other reasonable values of these parameters can give the
observationally estimated synchronization time-scale.

Pavlenko et al. (2013) analysed data collected from photometric observations
over an 8 year period of BY Cam. This gave ω/�o � 9.6 × 10−3 and τsyc �
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270 year. The orbital period and estimated secondary mass are P = 3.354 h and
Ms � 0.32M�. Estimates of the primary magnetic field give (Bp)0 � 41MG.
Using remaining parameters similar to those adopted above for V1432 Aql in (4.90)
yields a synchronization time in agreement with the observational estimate.

Myers et al. (2017) combined observations taken in 1996 with those taken over
the period 2007–2016 for CD Ind to estimate τsyc. The degree of asynchronism
was ω/�o � 1.1 × 10−2 and τsyc � (6.4 ± 0.8) × 103 year was obtained. The
orbital period and estimated secondary mass are P = 1.848 h andMs � 0.18M�.
The surface primary magnetic field is estimated as 12MG. Taking this field,Mp =
0.3M� and N1 = 1 in (4.90) gives τsyc = 5.7 × 103 year, consistent with the
observational estimate.

Harrison and Campbell (2018) suggested that V1500 Cyg, which was observed
to be asynchronous, may have synchronized, but further investigations are needed
to confirm this. A similar situation exists for V4633 Sgr (Lipkin & Leibowitz 2008).

4.2.6 The Magnetic Orbital Torque

There is a net force on the primary star, due to the spatial variation of the secondary’s
induced external magnetic field, given by

F = [∇(m · Bs)]r=rp , (4.97)

with

Bs = ∇
(
∂
s

∂r

)
, (4.98)

where
s is given by (4.34) and

m̂ · Bs = sin α cosωt (i′ · Bs)+ sinα sinωt (j′ · Bs)+ cosα (k · Bs). (4.99)

Substitution and time averaging over a synodic period gives the force components
at (D, π/2, 0) as

Fr = 3m

D4

[
α1 + 1

2
α4 − 2

D
(β1 − 6γ1 − 4γ4)

]
sin α, (4.100)

Fφ = 3m

2D4

[
α2 − α3 − 1

D
(β2 − 14γ2 + 16γ3)

]
sin α, (4.101)

with Fθ = 0. An equal and opposite force is exerted on the centre of mass of the
secondary. Adding the primary and secondary torques that result about the binary
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centre of mass gives the total magnetic orbital torque as

Tmo = −Dj′ × F = DFφk. (4.102)

Using (4.101) for Fφ in (4.102), with (4.77) for α2, α3, β2, γ2 and γ3, then
employing (4.45) and (4.47) for A2 and B2 leads to

Tmo = μ0m
2R3

s sin
2 α

πD6

[
27

16

(
C2
1δ

′
1

)
s
F1 + 25

8

(
Rs

D

)2 (
C2
2δ

′
2

)
s
F2

]
k. (4.103)

4.2.7 The Total Magnetic Torque

This leaves the secondary magnetic torque to be found. Using (4.49) for ∇ × B,
gives the torque as

Tms = ω

μ0

∫
V

ir

η
Br r̂ × ∇
dV, (4.104)

with

Br = 1

r2
L2
 = − 1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂


∂θ

)
+ 1

sin2 θ

∂2


∂φ2

]
. (4.105)

Using

θ̂ = cos θ sin φ i′ − cos θ cosφ j′ − sin θ k, (4.106)

φ̂ = cosφ i′ + sin φ j′ (4.107)

in r̂ × ∇
, (4.104) leads to

Tms = ω

μ0

∫
V

i

η

(
L2


) ∂

∂φ
dV k (4.108)

Employing (4.43) for 
, evaluating the angular integrals and time averages, yields

Tms = −3μ0m
2R3

s sin
2 α

4πD6

[(
C2
1δ

′
1

)
s
F1 + 5

2

(
Rs

D

)2 (
C2
2δ

′
2

)
s
F2

]
k. (4.109)

Adding (4.78), (4.103) and (4.109) gives

Tmp + Tmo + Tms = 0. (4.110)
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Hence the total magnetic torque is zero, corresponding to no angular momentum
being lost from the binary due to the action of these torques. Equation (4.110) gives
the spin-orbit coupling allowing angular momentum exchange between the stars and
the orbit.

4.3 Coupling with a Magnetosphere

4.3.1 Induction Effects

The previously considered vacuum surroundings case has magnetic coupling due
to the explicit time dependence of the primary’s magnetic field when the tilt angle
α is finite. However, when α = 0 the magnetic field is time-independent and the
coupling vanishes. With a magnetosphere there will be coupling even when α = 0.

It was pointed out by Chanmugan and Dulk (1983) and Lamb et al. (1983)
that the spinning motion of the magnetic primary creates a v × B electric field
within it. In a frame corotating with white dwarf, and its highly conducting
magnetosphere, the electric field will essentially vanish, so in the orbital frame the
Lorentz transformation to first order in v/c gives an electric field

E = −v × B, (4.111)

where v is the asynchronous velocity. The high magnetic field and low density of
the magnetosphere lead to an anisotropy in its conductivity, with high values along
B but low values across field lines. Since E · B = 0, the magnetic field lines are
electric equipotentials and there is a potential difference between points at different
latitudes on the surface of the primary. It follows that field lines that originate from
such points and that thread the secondary will project this potential difference on to
its surface, which will drive currents through the star. A circuit is set up connecting
the stars through the magnetosphere. The resulting J×B force density will generate
torques which allow stellar and orbital angular momentum to be exchanged and will
cause spin evolution towards the synchronous state.

Chanmugan and Dulk (1983) estimated the synchronizing inductive torque by
considering dissipation of electric currents via the resistance in the circuit. Their
torque is linear in ω, and its derivation assumed that inductive effects due to
interaction with the secondary only cause small perturbations in the magnetic field.
This assumption will be shown to be valid for sufficiently small values of ω/�o.

Lamb et al. (1983) pointed out that the field aligned currents will act as a
source of toroidal magnetic field, and the resulting BpBφ stellar surface stresses will
lead to magnetic torques. They estimated the primary torque, using dimensional
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considerations, to be

Tp � −f (Bp)
2
0

μ0

(
Rp

D

)6

R2
sD k, (4.112)

where f is a dimensionless factor which would incorporate the interaction of the
magnetic field with the convective secondary, involving the field winding ratio
|Bφs/Bps|. They anticipated that this twist would become limited for |Bφs/Bps| � 1
by reconnection processes and large-scale MHD instabilities, as it is in other
situations where field winding occurs. They assumed the torque to be approximately
independent of ω and estimated a synchronization time. This was significantly less
than a typical AM Her binary lifetime. A similar torque was estimated by Katz
(1991). However, a frequency independent torque, such as (4.112), could only occur
in a saturated higher ω regime. There is generally a dependence on ω, with |Tp| ∝ ω
as ω → 0.

Another estimate of the torque involving a magnetospheric interaction was made
by Kaburaki (1986). A spherical polar coordinate system (r, θ, φ) was used, centred
on the primary. The potential difference across the secondary was found, assuming
small perturbation of the primary magnetic field, and the resulting current was
calculated by estimating the resistance of the secondary. The torque on the primary,
due to the J × B force, can then be obtained and a synchronization time-scale
calculated. The θ -dependence of the magnetic field was not included, but this can
be incorporated in the Kaburaki model and the results can be expanded to first order
in Rs/D.

The tangential electric field in the surface layers of the primary is

Eθs = − 1

Rp

∂V

∂θ
= −vφsBrs = −ωRp(Bp)0 sin θ cos θ, (4.113)

where the cos θ dependence of Brs is now accounted for. This expression can
be integrated between θ values corresponding to the field lines which span the
secondary. For a dipole field, this gives the limits θi , with i = 1, 2, where

sin θi =
(
Rp

Ai

) 1
2

, (4.114)

and Ai is the distance from the primary of the point of intersection of the field line
with the orbital plane. This leads to a potential difference

�V = V (θ2)− V (θ1) = ωR2
p (Bp)0

Rp

D

Rs

D
, (4.115)

to first order in Rs/D. There is another such source of�V , having θj = π− θi , this
being a mirror image region below the equatorial plane.
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Applying Ohm’s law, taking the simplification of a uniform current density
through the secondary, gives a resistance of

R = 2
μ0

π

η

Rs
. (4.116)

Since the turbulent secondary is the main resistance in the circuit, the current is

I = �V

R
= π

2

(Bp)0

μ0

(
Rp

D

)3

R2
sD
ω

η
. (4.117)

The source below the orbital plane also gives a potential difference of �V across
the secondary, giving a total current of 2I through the star. The current density in a
surface layer of depth h in the primary is

Jθ = I

hRp�φ
, (4.118)

where the azimuthal interval �φ incorporates the field lines connecting to the
secondary star. The torque on the primary is then

Tp = −2
∫ h
0

∫ θ2
θ1

∫ �φ
0

Rp sin θJθ (Bp)0 cos θR2
p sin θdrdθdφ, (4.119)

noting that the regions above and below the equatorial plane make equal contribu-
tions and that the cos θ dependence of Brs is included. Evaluating this to first order
in Rs/D yields the inductive torque

Tp = −π (Bp)
2
0

μ0

(
Rp

D

) 1
2
(
Rp

D

)6

R3
sD

2ω

η
k. (4.120)

This result, derived using Kaburaki’s model, will be shown to agree well with the
low ω/�o limit derived from the more detailed analysis of Campbell (2005, 2010),
which allowed for inductive effects in the secondary and hence for modifications
of the stellar magnetic field. The derivation of the synchronization torque presented
below is based on this work.

4.3.2 Magnetospheric and Secondary Star Motions

With a magnetosphere there will be magnetic coupling for all values of α but, to
clarify the mechanisms involved, the case of α = 0 is considered. The orbital
frame is shown in Fig. 4.3, with the polar coordinates (r, θ, φ) used with an origin
at the centre of the secondary. The primary has a magnetic moment m parallel to
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Fig. 4.3 The orbital frame coordinates (from Campbell 2010)

its synodic angular velocity ω. A magnetosphere corotating with the primary has
velocity components, relative to the coordinates based on the secondary, given by

vmr = ωD sin θ cosφ, (4.121)

vmθ = ωD cos θ cosφ, (4.122)

vmφ = ω(r sin θ −D sin φ). (4.123)

The turbulent secondary will interact with the surrounding rotating magnetosphere
and motions will be induced in the star.

The unperturbed primary magnetic field can be written as

Bp = −∇�m, (4.124)

where

�m = μ0m

4πD3 r cos θ

[
1 − 2

r

D
sin θ cosφ +

( r
D

)2]− 3
2

. (4.125)

In and on the secondary r/D � 1/3 and so (4.125) can be expanded as a series
in r/D. Since the torques involve series in powers of (Rs/D)

2, it is a reasonable
approximation to take the leading order term which gives

�m = μ0m

4πD3 rP1, (4.126)
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where P1 = cos θ . This field corresponds to the leading order part of B0 in (4.10)
with α = 0.

For the reasons previously discussed, the secondary can be taken to be a sphere
of radius Rs with the same volume as its distorted form. Interaction with the
secondary will perturb the primary’s magnetic field and its magnetosphere. It will
be argued that quenching mechanisms will keep the perturbations moderate, so the
magnetosphere will remain close to corotation with the primary. Equations (4.121)–
(4.123) show that there will be tangential and radial motions near the surface of
the secondary, which depend on angular position. The azimuthal motions of the
magnetosphere, given by (4.123), will result in a difference between the synodic
angular velocity of the magnetosphere and that of the secondary star. A tidally
synchronized secondary will have v = 0, but magnetic forces associated with
interaction with the magnetosphere will cause some synodic angular velocity in
the outer layers of the star where the perturbation is largest. There will be a radial
gradient in � which decays with depth as the magnetic forces decrease. The sign of
� will be φ-dependent, as shown in (4.123).

The radial motions of the magnetosphere, given by (4.121), will result in material
flowing into the secondary or away from it, depending on the azimuthal position. In
an inflow regionmaterial will be carried inwards at the surface and become detached
from the field lines as it experiences turbulent η values in the star. This influx will
compress the surface layers and lead to a perturbation in the radial pressure gradient
causing a radial velocity, vr < 0, which decreases with depth. In an outflow region
magnetospheric material will flow away from the star, carried by the field lines to
which it is attached, causing an expansion. A perturbation will occur in the radial
pressure gradient and an outflow will result, so vr > 0 applies in the surface layers
of the star in such a region. The vθ component of the magnetospheric velocity, given
by (4.122), will induce vθ motions in the secondary. However, the essential effects
related to the magnetic torques are contained in the vr and vφ velocity components
and, to make the analysis tractable, the vθ component will not be included in the
solution. The extent of magnetic field penetration into the secondary, and hence the
force distribution, will depend on the degree of asynchronism of the primary.

Ideally, the dynamical equations should be solved to obtain the induced velocity
field. However, the essentials of the motions can be encapsulated by constructing a
simple representation which matches the surface magnetospheric velocity field. The
motions will decay with depth, as required, and depend on the asynchronism via the
surface matching. The radial velocity component affects the depth of penetration of
the magnetic field due to the advection terms it introduces in the induction equation.
This component is represented by the form

vr =

⎧⎪⎪⎨
⎪⎪⎩
vr(r), 0 < φ < π/2 and 3π/2 < φ < 2π,

0, φ = π/2 and φ = 3π/2,

−vr(r), π/2 < φ < 3π/2,

(4.127)
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where

vr(r) = ωRs

(
r

Rs

)k
, (4.128)

with k > 0. The surface value vr(Rs) = ωRs represents an average of the factor
ωD sin θ occurring in (4.121) for vmr over the interval 0 < θ < π . The azimuthal
zeros of (4.127) represent the φ-dependence induced by vmr , given by (4.121), by
representing cosφ as a square wave of unit height and corresponding zeros.

The angular velocity,� = vφ/r sin θ , is represented by the form

� =

⎧⎪⎪⎨
⎪⎪⎩

−�(r), φ1 < φ < π − φ1,
0, φ = φ1 and φ = π − φ1,
�(r), π − φ1 < φ < 2π + φ1,

(4.129)

where

�(r) = ω
(
r

Rs

)n
, (4.130)

with n > 0. This represents the azimuthal motions induced by vmφ , given by (4.123),
with the φ-dependence represented by a square wave of unit height with zeros at

φ1 = sin−1
(
Rs

D
sin θ

)
. (4.131)

Suitable values will be taken for k and n to represent the fact that the motions will
decay with depth in the secondary as the induced magnetic force weakens relative
to the gravitational and pressure gradient forces.

These forms for vr and � define four regions which arise for motions in the
secondary, due to the φ-dependence of the magnetospheric velocity. These are

Region I : φ1 < φ < π/2, with vr > 0, � < 0, (4.132)

Region II : π/2 < φ < π − φ1, with vr < 0, � < 0, (4.133)

Region III : π − φ1 < φ < 3π/2, with vr < 0, � > 0, (4.134)

Region IV : 3π/2 < φ < 2π + φ1, with vr > 0, � > 0. (4.135)

Field solutions must be found for these regions, subject to centre and surface
boundary conditions.
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4.3.3 Magnetic Field Equations and Boundary Conditions

For α = 0 there is no explicit time dependence and hence the induction equa-
tion (4.1) becomes

∇ × (v × B)− ∇ × (η∇ × B) = 0. (4.136)

The magnetic diffusivity is taken as

η = ηs
(
r

Rs

)m
, (4.137)

with m constant and ηs the surface value. The magnetic field can be expressed as

B = ∇ × [∇ × (
pr̂)
]+ ∇ × (
Tr̂), (4.138)

where 
p and 
T are poloidal and toroidal scalars. This gives the field components
as

Br = 1

r2
L2
p, (4.139a)

Bθ = 1

r

∂2
p

∂r∂θ
, (4.139b)

Bφ = −1

r

∂
T

∂θ
, (4.139c)

with

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (4.140)

The r-component, or the θ -component, of (4.136) together with the field
components (4.139a), (4.139b), and (4.139c) leads to the poloidal scalar equation

∇2
(

p

r

)
− vr

rη

∂
p

∂r
= 0. (4.141)

The first term represents the diffusion of poloidal field, while the second term
corresponds to the advection, stretching and compression of poloidal flux tubes by
the induced poloidal flow. The induced vrBθ electric field leads to a toroidal current
density Jφ which acts as the source of the poloidal field perturbation.
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The φ-component of (4.136) and the field components (4.139a), (4.139b), and
(4.139c) give the toroidal scalar equation

∇2
(

T

r

)
+ 1

rη

dη

dr

∂
T

∂r
− 1

rη

∂

∂r
(vr
T) = − 1

rη

d�

dr
sin θ

∂
p

∂θ
. (4.142)

The first two terms describe the diffusion of toroidal field, while the third term
corresponds to advection, compression and stretching of toroidal flux tubes by
the poloidal flow. The last term is a source of Bφ due to the radial shearing of
Bp. The induced poloidal current density Jp acts as a source of Bφ . The balance
between toroidal field creation, advection, compression, stretching and diffusion
determines the values of the ratio |Bφ/Bp|. The values of this ratio at the surface of
the secondary influence the amount of poloidal field winding in the magnetosphere.

It will be argued that (Bφs/Bps)
2 remains significantly less than unity due to

natural quenching processes. The magnetosphere will then adjust to a nearly force-
free state having

J × B = 0. (4.143)

For moderate field winding the magnetosphere will remain near corotation with the
primary, and Jφ will be ignorable relative to Jp. The poloidal magnetic field will
then be approximately current-free, with 
p satisfying

∇2
(

p

r

)
= 0. (4.144)

Equation (4.143) yields

Bp · ∇(r sin θBφ) = 0, (4.145)

so r sin θBφ is conserved along poloidal field lines, corresponding to Jp being nearly
parallel to Bp. Using (4.139a), (4.139b), and (4.139c) for the field components
in (4.145) gives the surface condition

[
(L2
p)

∂2
T

∂r∂θ
− ∂

2
p

∂r∂θ
(L2
T)

]
s

= 0. (4.146)
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4.3.4 The Poloidal Scalar

Equations (4.124), (4.126) and (4.139a) and (4.139b), relating Bp, �m and
p, give
the poloidal scalar for the unperturbed primary magnetic field as


p = − μ0m

8πD3 r
2P1. (4.147)

The poloidal magnetic field corresponding to this scalar penetrates the secondary
due to diffusion and is modified by the induced motions. The associated toroidal
current density is the source of the induced poloidal field. The external form of

p/r for the induced field must satisfy the Laplace equation (4.144) and vanish as
r → ∞. This gives a dependence of P1(cos θ)/r for the induced external 
p field,
and the total external poloidal scalar is the sum of the unperturbed and induced parts
giving


ex
p = −μ0mR

2
s

8πD3 ξ
2P1 + C

ξ
P1, (4.148)

where C is a constant and ξ is a dimensionless radial length given by

ξ = r

Rs
. (4.149)

The induced poloidal scalar inside the secondary must satisfy the poloidal
induction equation (4.141) and have the form


p = Af (ξ)P1, (4.150)

where A is a constant. Substitution of this in (4.141), using (4.127) and (4.128) for
vr and (4.137) for η, yields the poloidal radial equation

ξ2f ′′ − pεξαf ′ − 2f = 0, (4.151)

where

α = k −m+ 2, (4.152)

and

ε = R2
s

δ2s
, (4.153a)
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with

δs =
(ηs
ω

) 1
2

(4.153b)

with p = ±1 corresponding to vr > 0 and vr < 0. The condition of continuity of
Bp at r = Rs leads to the surface conditions of the continuity of 
p and ∂
p/∂r .
Applying these, using (4.148) and (4.150), gives the external and internal solutions


ex
p = −μ0mR

2
s

8πD3

[
ξ2 +

(
2f (1)− f ′(1)
f (1)+ f ′(1)

)
1

ξ

]
P1, (4.154)


p = −3μ0mR
2
s

8πD3

f (ξ)

[f (1)+ f ′(1)]P1. (4.155)

As synchronism is approached ε → 0 and the differential equation (4.151) yields
the asymptotic form f (ξ) ∼ ξ2, corresponding to 
p having its unperturbed
form (4.147) everywhere.

Equation (4.151) must be solved for f (ξ) in the outflow and inflow regions,
corresponding to p = ±1 respectively. Since η in a convective star has a radial
length-scale much longer than that of the induced vr function, it follows that
k − m > 0 is satisfied and consequently (4.151) has a regular singularity at
ξ = 0. Application of the Frobenius series method leads to two linearly independent
solutions having the asymptotic forms of ξ2 and ξ−1 near ξ = 0, with the first
solution giving the required non-singular behaviour at ξ = 0. This solution is
given by

f (ξ) =
∞∑
i=0

a(α−1)iξ
2+(α−1)i (4.156)

with

a(α−1)i =
(
pε

α − 1

)i
�[3(α − 1)−1 + 1]�[i + 2(α − 1)−1]

�[2(α − 1)−1]�[i + 3(α − 1)−1 + 1]�(i + 1)
, (4.157)

where � is the gamma function and a0 = 1 has been chosen. Taking the first 40
terms gives an accurate solution. Equation (4.151) can also be solved using a fourth
order Runge-Kutta numerical scheme, but the series solution is more convenient
to use.
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4.3.5 The Toroidal Scalar

Using (4.155) for
p in the source term of (4.142) yields the toroidal scalar equation

∇2
(

T

r

)
+ 1

rη

∂
T

∂r
− 1

rη

∂

∂r
(vr
T) = E

rη

d�

dr
f (ξ) sin θ

dP1

dθ
, (4.158)

where

E = 3μ0mR
2
s

8πD3

1

[f (1)+ f ′(1)]
. (4.159)

Noting that

sin θ
dP1

dθ
= 2

3
(P2 − P0), (4.160)

it follows that the source term contains the harmonics l = 0 and l = 2. Because the
harmonic l = 0 is independent of θ , it follows from (4.139a) and (4.139b) for Br
and Bθ that this will make no source contribution to Bφ since it would give a 
p

term with no θ dependence which would make no contribution to Bp in the source
term Bp · ∇�. Hence only the P2 term is relevant in (4.160) and 
T has the form


T = g(ξ)P2(cos θ), (4.161)

where

P2(cos θ) = 1

2
(3 cos2 θ − 1). (4.162)

Substituting (4.160), with the P0 term dropped, together with (4.161) for 
T

into (4.158), using (4.127)–(4.130) and (4.137) for vr ,� and η, leads to the toroidal
scalar radial equation

g′′ +
(
m

ξ
− pεξα−2

)
g′ −

(
6

ξ2
+ pεkξα−3

)
g = F(ξ), (4.163)

where

F(ξ) = γ nε μ0mRs

4πD3

ξn−m−1

[f (1)+ f ′(1)]
f (ξ). (4.164)

This equation has p = ±1 corresponding to vr > 0 and vr < 0, while γ = ±1
corresponds to � > 0 and � < 0 respectively. Equation (4.163) must be solved
subject to boundary conditions at ξ = 0 and ξ = 1. To avoid a singularity at ξ = 0,
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(4.139c) for Bφ together with (4.161) for 
T requires

g(0) = 0. (4.165)

The surface condition follows by substituting 
p and 
T from (4.150) and (4.161)
in the force-free surface condition (4.146), yielding

g′(1)− f ′(1)
f (1)

q(θ)g(1) = 0, (4.166)

where

q(θ) = 1

2

(
1 − 1

3 cos2 θ

)
. (4.167)

The function q(θ) is slowly varying, apart from an interval of � 30◦ centred on the
equator. However, the surface stressBrsBφs becomes small in this interval, vanishing
as cos2 θ at θ = 90◦, and it only makes a small contribution to the torque integral.
Hence only the intervals 0◦ < θ � 75◦ and 105◦ � θ < 180◦ are significant.
The function q(θ) has a variation of −2 < θ < 1/3 over these intervals, with an
average value of close to 〈q(θ)〉 = −1. This average value is used in the surface
condition (4.166), and this is consistent with the θ average which was adopted for
the surface values of the magnetospheric velocity components.

The inhomogeneous differential equation (4.163) can be solved by the method of
variation of parameters. This is equivalent to a solution given by the integral

g(ξ) =
∫ 1

0
G(ξ, s)F (s)ds, (4.168)

where the Green’s function is

G(ξ, s) =
{
u1(s)u2(ξ)/W(s), 0 ≤ s ≤ ξ,
u2(s)u1(ξ)/W(s), ξ ≤ s ≤ 1,

(4.169)

having

u1(ξ) = av1(ξ), (4.170)

u2(ξ) = bv1(ξ)+ cv2(ξ), (4.171)

with a, b and c constants, while v1(ξ) and v2(ξ) are linearly independent solutions
of the associated homogeneous equation

v′′ +
(
m

ξ
− pεξα−2

)
v′ −

(
6

ξ2
+ pεkξα−3

)
v = 0, (4.172)
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and the Wronskian is

W = u1u′
2 − u′

1u2. (4.173)

The Green’s functionG(ξ, s) must satisfy the centre and surface conditions.
Because α − 2 = k − m > 0, (4.172) has a regular singularity at ξ = 0 so

the Frobenius method can be used to find the fundamental solutions v1 and v2. The
roots of the indicial equation are

β1 = 1

2

([
(m− 1)2 + 24

] 1
2 − (m− 1)

)
, (4.174)

β2 = −1

2

([
(m− 1)2 + 24

] 1
2 + (m− 1)

)
, (4.175)

giving β1 > 0 and β2 < 0. The solutions are

v1(ξ) =
∞∑
i=0

b(α−1)i(β1)ξ
β1+(α−1)i, (4.176)

v2(ξ) =
∞∑
i=0

b(α−1)i(β2)ξ
β2+(α−1)i, (4.177)

with

b(α−1)i(β) =
(
pε

α − 1

)i
�[(2β +m− 1)(α − 1)−1 + 1]�[i + (β + k)(α − 1)−1]

�[(β + k)(α − 1)−1]�[i + (2β +m− 1)(α − 1)−1 + 1]�(i + 1)
,

(4.178)

where b0 = 1 has been chosen and β is β1 or β2. The solution (4.177) for v2(ξ)
is valid for k > 2|β2|. Lower values of k would lead to a solution containing a
logarithmic term, but this does not occur here because the short radial length-scale
of vr requires larger values of k. Accurate expressions result for v1 and v2 by taking
the first 40 terms in the series.

Equations (4.170) and (4.171) for u1 and u2 give the Wronskian as

W = ac(v1v′2 − v′1v2). (4.179)

A closed expression can be found for W . Writing U = v1v′2 − v′1v2, using v = v1
and then v = v2 in (4.172), multiplying the first equation by v2 and the second by
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v1 and subtracting yields

U ′ −
(
pεξα−2 − m

ξ

)
U = 0. (4.180)

The solution of this contains an arbitrary constant which can be determined by
equating the solution to another expression for U obtained by using the series
solutions for v1 and v2. Then cancelling a common factor of ξ−m, noting m =
1− β1 − β2, b0(β1) = b0(β2) = 1 and putting ξ = 0 yields the constant. This gives

W = ac(β2 − β1)ξ−m exp
[
pεξα−1/(α − 1)

]
. (4.181)

The Green’s function, given by (4.169), must satisfy the boundary conditions.
Equations (4.170) and (4.176) show that u1 satisfies the central condition (4.165).
The product ac cancels in the ratio u1u2/W , leaving b/c. This ratio is determined
by ensuring that u2, given by (4.171), satisfies the surface condition (4.166) and this
gives

b

c
= −

[
f (1)v′2(1)− qf ′(1)v2(1)

]
[
f (1)v′1(1)− qf ′(1)v1(1)

] . (4.182)

The solution (4.168) then becomes

g(ξ) = − γ nε

2(β1 + |β2|)
(
Rp

D

)3

RsB0

[
v1(ξ)I1(ξ)+

{
b

c
v1(ξ)+ v2(ξ)

}
I2(ξ)

]
,

(4.183)

I1(ξ) =
∫ 1

ξ

{
b

c
v1(s)+ v2(s)

}
sn−1fN(s) exp

[
−pεsα−1/(α − 1)

]
ds, (4.184)

I2(ξ) =
∫ ξ
0
v1(s)s

n−1fN(s) exp
[
−pεsα−1/(α − 1)

]
ds, (4.185)

with

fN(ξ) = f (ξ)

f (1)+ f ′(1)
. (4.186)

The integrals are evaluated numerically.
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4.3.6 The Magnetic Field Components

The magnetic field components are found from (4.139a), (4.139b), and (4.139c)
using (4.155) for 
p and (4.161) for 
T. This gives

Br = −3

2
B0

(
Rp

D

)3

fr(ξ) cos θ, (4.187)

Bθ = 3

4
B0

(
Rp

D

)3

fθ (ξ) sin θ, (4.188)

Bφ = −3

2

(
Rp

D

)3

fφ(ξ) sin θ cos θ, (4.189)

where

fr(ξ) = fN(ξ)

ξ2
, (4.190)

fθ (ξ) = f ′
N(ξ)

ξ
, (4.191)

fφ(ξ) = γ nε

(β1 + |β2|)
1

ξ

[
v1(ξ)I1(ξ)+

{
b

c
v1(ξ)+ v2(ξ)

}
I2(ξ)

]
. (4.192)

The radial dependences are calculated for the inflow and outflow regions, for a range
of degrees of asynchronism. The dimensionless quantity ε, given by (4.153a), can
be expressed as

ε = R2
s

ηs
�o

(
ω

�o

)
. (4.193)

Using (4.84c) and (4.87) to eliminate Rs and �o then gives

ε = 2 × 105(Ms/M�)
(ηs/5 × 108 m2 s−1)

ω

�o
. (4.194)

The condition for moderate perturbation of the magnetosphere is that the field
winding ratio satisfies (Bφs/Bps)

2 � 1, corresponding to |Jφ/Jp| � 1 and Bp

approximately current-free, with the magnetosphere close to corotation with the
primary star. Values must be chosen for k, n and m, corresponding to the power
law dependences of vr , � and η respectively. For a realistic range of values of these
quantities, and other parameters, it is found that the condition |Bφs/Bps| < 1 is
violated for ω/�o � 10−2. However, situations with |Bφs/Bps| significantly greater
than unity are likely to be unstable and are inconsistent with near corotation. For
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ω/�o > 10−2 the assumption of corotation leads to supersonic values of |vr | in
the surface layers of the secondary. This would lead to the formation of shocks and
high dissipation and it is expected that corotation of the magnetosphere would then
break down in the region of the secondary’s surface. Such processes would lower
the values of the shear and the induced poloidal flow speeds due to interaction with
the perturbed magnetosphere. To account for these processes, a quenching term can
be introduced into (4.194) to give

ε = 2 × 105(Ms/M�)
(ηs/5 × 108 m2 s−1)

(ω/�o)

[1 +N(|ω|/�o)s ] , (4.195)

where N and s are positive constants. The value of N is taken so the effects of
asynchronism begin to saturate as |Bφs/Bps| approaches unity. This quenching term
is equivalent to enhancing ηs by a factor of 1 + N(|ω|/�o)

s , corresponding to a
dynamically enhanced diffusivity.

A typical example is considered with Ms = 0.3M�, ηs = 5 × 108 m2 s−1,
q = −1, k = 6, n = 8, m = 0, N = 2 × 104 and s = 1. Figures 4.4
and 4.5 show the radial variations of Br for the inflow and outflow regions, for
two degrees of asynchronism. The inflow causes field to be accumulated in the
inner parts of the secondary, so fr(ξ) increases with decreasing ξ , as illustrated
in Fig. 4.4. The field strength is increased from its unperturbed values by the inflow
for all ξ , corresponding to an anti-skin depth effect at higher asynchronism. The
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outflow accumulates field in the outer parts of the secondary, so fr(ξ) increases with
increasing ξ , as shown in Fig. 4.5. The field strength is reduced from its unperturbed
values by the outflow for all ξ , giving a skin depth effect at higher asynchronism.
In both cases fr(ξ) is nearly independent of ξ in the inner regions, corresponding
to a nearly uniform Br . The unperturbed field B0 is independent of r across the
secondary, to lowest order inRs/D. The inflow leads to an enhanced uniform field in
the central region, and a non-uniform field in the outer regions. The outflow causes
a reduced uniform field in the inner region, and a non-uniform field in the outer
regions. As ω/�o → 0, so the inflows and outflows become small, the poloidal
field reverts to its uniform, unperturbed current-free state.

Similar behaviour occurs for Bθ in the inflow and outflow regions, as illustrated
in Figs. 4.6 and 4.7. The effects are larger for this field component since advection,
compression and stretching are more effective.

The variations of |fφ(ξ)| are shown in Figs. 4.8 and 4.9. The inflow enhances
the values of |Bφ | since its source Br is enhanced in these regions. Conversely, in
the outflow regions |Bφ | is reduced due to the lowered values of Br . The toroidal
field vanishes as ω → 0 since the shear creation term vanishes as synchronism is
approached.

The values taken for k and n, which are measures of the radial length-scales
of vr and �, ensure that the magnetically induced motions are localised to the
outer regions of the secondary where the perturbation to its structure is significant.
However, it is noted from the above results that the effects of the induced surface
region motions on the magnetic field are distributed throughout the star.
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The field winding ratio must satisfy the condition (Bφs/Bps)
2 � 1 to justify

ignoring |Jφ | relative to Jp in the magnetosphere. This corresponds to the perturbed
Bp being approximately current-free in the magnetosphere. The field component
equations (4.187)–(4.189) give

|Bφs|
Bps

= |fφs sin θ cos θ |(
f 2
rs cos2 θ + 1

4f
2
θs sin

2 θ
) 1

2

. (4.196)

A consideration of the values of frs and fθs for 0 ≤ ω/�o ≤ 0.1 shows that frs and
fθs/2 only differ by small amounts, so a small ratio can be defined as

ε̃ =
1
2fθs − frs
frs

. (4.197)

Using this in (4.196), and expanding to first order in ε̃, leads to a maximum value
for the winding ratio at

sin θ = 1√
2

(
1 − 1

4
ε̃

)
. (4.198)

The inflow regions have ε̃ < 0, while the outflow regions have ε̃ > 0. Using (4.198)
in (4.196) leads to the first order result

∣∣∣∣BφsBps

∣∣∣∣
max

= 1

2

|fφs|
frs

(
1 − 1

2
ε̃

)
. (4.199)

Figure 4.10 shows |Bφs/Bps|max as a function of ω/�o, for the inflow and
outflow regions. It is seen that (Bφs/Bps)

2 is sufficiently small everywhere on the
surface of the secondary to justify the approximation of nearly current-free Bp in
the magnetosphere.

4.3.7 Magnetic Torques

The electric current density induced in the secondary leads to a force distribution
over its volume. This results in a torque on the star and a non-central force on its
centre of mass. The magnetic torque is

Ts = 1

μ0

∫
V

r × [(∇ × B)× B] dV

= 1

μ0

∫
S

(r × B)B · dS − 1

μ0

∫
S

B2r × dS. (4.200)
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The second surface integral vanishes for a sphere, while the first gives

Ts = 1

μ0

∫
S

r sin θBrBφ dS ẑ, (4.201)

where dS = r2 sin θdθdφ.
It follows from (4.187)–(4.189), and the associated functions of ξ , that the field

components have the symmetry properties given by

B I
r (r, θ) = B IV

r (r, θ), B II
r (r, θ) = B III

r (r, θ), (4.202)

B I
θ (r, θ) = B IV

r (r, θ), B II
θ (r, θ) = B III

θ (r, θ), (4.203)

B I
φ(r, θ) = −B IV

φ (r, θ), B II
φ(r, θ) = −B III

φ (r, θ), (4.204)

where the superscripts refer to the azimuthal regions given by (4.132)–(4.135).
Evaluating the torque integral (4.201), using (4.202) and (4.204), leads to

Ts = −6

5
φ1
(Bp)

2
0

μ0

(
Rp

D

)6

R3
s

[
f I
r f

I
φ + f II

r f
II
φ

]
ξ=1

ẑ. (4.205)

This takes into account the change in the sign of � around the secondary, and the
contributions from the inflow and outflow regions.
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The magnetic force exerted on the centre of mass of the secondary is

Fs = 1

μ0

∫
V

(∇ × B)× B dV = 1

μ0

∫
S

BBrdS − 1

μ0

∫
S

B2dS r̂. (4.206)

There is an equal and opposite force on the centre of mass of the primary. These
forces only have components in the orbital plane, with the components normal to
the line of stellar centres leading to torques about the centre of mass of the binary
and a magnetic orbital torque

Tmo = DFsx ẑ. (4.207)

Equation (4.206) yields

Fsx = 1

μ0

∫
S

BxBr dS − 1

2μ0

∫
S

B2 sin θ cosφ dS, (4.208)

with

Bx = sin θ cosφBr + cos θ cosφBθ − sinφBφ. (4.209)

Evaluating the surface integrals, employing the azimuthal symmetry properties of
the components, leads to

Tmo =9π

32

(Bp)
2
0

μ0

(
Rp

D

)6

R2
s D
[(
f I
r
2 − f II

r
2
)

− (f I
r f

I
θ − f II

r f
II
θ

)

−3

4

(
f I
θ
2 − f II

θ
2
)

− 2
(
f I
rf

I
φ + f II

r f
II
φ

)
cosφ1 − 1

2

(
f I
φ
2 − f II

φ
2
)]
ξ=1

ẑ.

(4.210)

The stellar and orbital magnetic torques must balance since there is no magnetic
coupling associated with these torques outside the binary system, because the
poloidal field lines will be closed for moderate twisting. Hence the primary torque
can be expressed as

Tp = −(Ts + Tmo). (4.211)

Then the use of (4.205) for Ts and (4.210) for Tmo yields the inductive torque

Tp = −9π

32

(Bp)
2
0

μ0

(
Rp

D

)6

R2
sDF(ω, ηs)ẑ, (4.212)
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where

F(ω, ηs) =
[(
f I
r
2 − f II

r
2
)

− (f I
rf

I
θ − f II

r f
II
θ

)− 3

4

(
f I
θ
2 − f II

θ
2
)

−1

2

(
f I
φ
2 − f II

φ
2
)

− 2

(
cosφ1 + 32

15

φ1

π

Rs

D

)(
f I
rf

I
φ + f II

r f
II
φ

)]
ξ=1
.

(4.213)

It can be shown that F(−ω, ηs) = −F(ω, ηs), so the inductive torque is antisym-
metric in ω, as expected.

Figure 4.11 shows the torque function F(ω, ηs) for a range of ω/�o. The torque
saturates at a maximum value due to quenching effects for s = 1. It was seen that in
the inflow regions the poloidal magnetic field is enhanced relative to its unperturbed
state, so an anti-skin depth effect occurs for higher degrees of asynchronism. The
opposite effect occurs in the outflow regions where the field is everywhere lower
than in its unperturbed state, corresponding to a skin depth effect. The lowered
field penetration due to outflows in the secondary results in a lowered value of
|Bφs|, with the converse being true in the inflow regions. Without quenching,
F(ω, ηs) increases monotonically with ω since the anti-skin depth inflow regions
make a larger contribution to the torque integral than the skin depth effect outflow
regions. The quenching mechanism leads to a decrease in the rate of increase of
F(ω, ηs) with ω. A turn down results if s > 1 is taken, due to ε decreasing with
increasing ω/�o after reaching a maximum value. However, it is more likely that
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Fig. 4.11 The dimensionless primary magnetic torque function, with a magnetosphere
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the quenching process will saturate ε at a maximum value, as described by the
s = 1 case.

4.3.8 The Small Asynchronism Torque

A simplified expression can be obtained for F(ω, ηs) when ω/�o is sufficiently
small to give ε � 1. The unquenched form (4.194) is then applicable for ε. To first
order in ε, the solution (4.156) gives

f (ξ) = ξ2 + aα−1ξ
α+1, (4.214)

where

aα−1 = 2pε

(α − 1)(α + 2)
. (4.215)

Using this in (4.190) and (4.191) yields

fr(1) = 1

3

[
1 − 1

3
(α − 1)aα−1

]
, (4.216)

fθ (1) = 2

3

[
1 + 1

6
(α − 1)aα−1

]
. (4.217)

The inflow and outflow cases correspond to p = −1 and p = 1 in (4.215) for aα−1.
It is noted that to calculate fφ(ξ) to first order in ε, the square bracket term

in (4.192) is only required to zeroth order since it is multiplied by a first order
term arising from the d�/dr shear term. To zeroth order, the solutions (4.176)
and (4.177) give

v1(ξ) = ξβ1 (4.218a)

and

v2(ξ) = ξβ2 . (4.218b)

A first order evaluation of fφ then gives

fφ(1) = γ nε

3(β1 + 2|q|)(β1 + n+ 2)
, (4.219)
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with γ = −1 giving f I
φ(1) = f II

φ(1). To this order only the unperturbed form of Bp

is required to calculate fφ , so the inflow and outflow effects vanish. The unperturbed
form of Bp creates Bφ via a small shear.

Evaluating F(ω, ηs) to first order in ε and using the result in (4.212) leads to the
torque expression

Tp = −π
8
N
(Bp)

2
0

μ0

(
Rp

D

)6

R4
sD
ω

ηs
k, (4.220)

where

N =
(
cosφ1 + 32

15

φ1

π

Rs

D

)
n

(β1 + 2|q|)(β1 + n+ 2)
− 4

3(α + 2)
. (4.221)

This is in reasonable agreement with the expression (4.120) derived from the
model of Kaburaki (1986). The Kaburaki model assumed small perturbations of
the primary magnetic field, and the foregoing analysis shows this to be valid in
the regime of sufficiently small asynchronism. The torque expression (4.220) is
comparable to the small asynchronism vacuum case torque given by (4.92).

4.4 Orbital Evolution and Mass Transfer

4.4.1 Orbital Angular Momentum Evolution

The magnetic orbital torque affects the evolution rate of the orbital angular
momentum and hence the mass loss rate from the secondary via Roche lobe
overflow. The angular momentum evolution equations for the secondary, primary
and orbit are

L̇s = Tms + Ttid, (4.222)

L̇p = Tmp + Ta, (4.223)

L̇o = Tmo + Tgr − Ttid − Ta, (4.224)

L̇o = Tmo + Tbr − Ttid − Ta. (4.225)

The torque Ttid is due to tides, while Tgr and Tbr are due to gravitational waves
and magnetic wind braking. Equation (4.224) applies to systems with P � 3 h
and (4.225) to systems with P � 3 h.

The magnetic secondary torque Tms will cause some spin evolution away from
synchronism. However, a tidal torque will then operate and essentially cancelTms so
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the secondary is kept rotating close to synchronism with the orbital angular velocity
�o and consequently L̇s � 0 holds. Hence (4.222) gives

Tms + Ttid = 0, (4.226)

where the vector notation is dropped since all the torques are in the z-direction.
Using Tms = −(Tmp+To) and (4.226) to eliminate Tms and Ttid in (4.224) and (4.225)
yields

L̇o = Tgr − Ta − Tmp, (4.227)

and

L̇o = Tbr − Ta − Tmp. (4.228)

The orbital angular momentum can be written as

Lo = MsMp

(
GD

M

) 1
2

. (4.229)

Using this and the Roche lobe formula (4.84b) leads to the evolution equation

ṘL

RL

= 2
L̇o

Lo
− 2
Ṁs

Ms

(
5

6
− Ms

Mp

)
. (4.230)

Employing (4.84b) and the mass-radius relation (4.84c) gives

Lo = 10
1
6 q

1
2

(
GR�
M�

) 1
2 MpM

4
3
s

M
1
3

. (4.231)

This then yields

L̇o

Lo
=
(
4

3
− Ms

Mp

)
Ṁs

Ms
. (4.232)

Equations (4.231) and (4.232) give

L̇o = 0.49q
1
2

(
GR�
M�

) 1
2
(
4 − 7

Ms

M

)(
Ms

M

) 1
3

MṀs. (4.233)
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4.4.2 The Accretion and Magnetic Torques

The accretion torque and the magnetic orbital torque, for ω > 0, cause increases
and reductions in the mass transfer rates in AM Her systems compared to those
in cataclysmic binaries with accretion discs. The angular momentum carried by
material flowing from theL1 region of the secondary is transferred to the primary via
magnetic stresses acting through the accretion stream, leading to a large accretion
torque. This transfer of orbital angular momentum causes an increase in the rate of
shrinkage of the secondary’s Roche lobe and hence an increase in its mass loss rate.
This contrasts to systems with accretion discs in which the angular momentum is
fed back into the orbit via tidal torques at the outer edge of the disc, so the material
reaching the primary only exerts a small accretion torque.

For an over-synchronous primary, the magnetic orbital torque transfers angular
momentum to the orbit and slows the shrinkage rate of the secondary’s Roche lobe,
hence decreasing its rate of mass loss via the L1 region.

The time averaged accretion torque is

Ta = A2�Ṁp k, (4.234)

where A is the distance from the L1 point to the centre of mass of the primary. A
fitted formula for this is given by Plavec and Kratochvil (1964) as

A =
[
0.50 − 0.23 log

(
Ms

Mp

)]
D. (4.235)

Using the expressions (4.87) and (4.88) enables�o andD to be eliminated in terms
ofMs. Then (4.234) and (4.235) lead to

Ta = −1.47q
1
2

(
GR�
M�

) 1
2
[
0.50 − 0.23 log

(
Ms

Mp

)]2 (
Ms

M

) 1
3

MṀs, (4.236)

The magnetic primary torque for the vacuum case becomes

Tmp = − π

20μ0

1

q3

(
M�
R�

)3 (Bp)
2
0R

6
p

M3

M

Ms
f (as) sin2 α, (4.237)

while the torque in the magnetospheric case is

Tmp = − 9π

32μ0

1

10
5
3

(
M�
R�

)3 (Bp)
2
0R

6
p

q3M3

(
M

Ms

) 4
3

F(ω, ηs). (4.238)
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4.4.3 Modified Gravitational Wave Driving

The gravitational radiation torque is

Tgr = −32

5

G

c5

(
MsMp

M

)2

D4�5 k, (4.239)

(Landau and Lifshitz 1951). This can be expressed as

Tgr = −0.436G
7
2

q
7
2 c5

(
M�
R�

) 7
2
(
M

Ms

) 1
3
(
1 − Ms

M

)2

M. (4.240)

Substituting (4.236), (4.237) and (4.240) for Ta, Tmp and Tgr in the orbital angular
momentum equation (4.227) yields the mass transfer rate

Ṁs = −
4.68 × 10−10

[
μ

2
3 (1 − μ)2 − 5.73q

1
2Qvacf (as)

]

q4μ
4
3
[
4(4 − 7μ)− 3 {1 − 0.46 log[μ/(1 − μ)]}2] M� year−1,

(4.241)
where μ = Ms/M and

Qvac =
(
B0

40MG

)2 ( Rp

9.7 × 106 m

)6 ( M

0.7M�

)−4

. (4.242)

Figure 4.12 shows the dependence of |Ṁs|, normalised with respect to the
unmodified form of |Ṁgr|, on asynchronism. The unmodified form follows from
puttingQvac = 0, and dropping the second term in the denominator in (4.241). The
mass transfer rate is significantly reduced for a range of values of ω/�o around the
value at which f (ω, η) has its maximum. Outside this range |Ṁs|/|Ṁgr| exceeds
unity, this being due to the accretion torque term which extracts angular momentum
from the orbit, due to the absence of a disc, and hence enhances |Ṁs|. The stellar
surface near L1 can adjust on a dynamical time-scale so |Ṁs| can adjust quasi-
steadily on the much longer angular momentum evolution time-scale.

For an under-synchronousprimary the magnetic spin-orbit coupling increases the
inertial space angular momentum of the star. The orbit then loses angular momen-
tum and this enhances the accretion rate so aiding the approach to synchronism.

The mass transfer rate for the case of a magnetospheric primary torque is

Ṁs = − 4.61 × 10−10
[
μ(1 − μ2)−QmagF(ω, ηs)

]
q4μ

5
3
[
4(4 − 7μ)− 3 {1 − 0.46 log[μ/(1 − μ)]}2] M�year−1,

(4.243)
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where

Qmag = 1.79q
1
2

(
(Bp)0

40MG

)2 ( Rp

9.65 × 106 m

)6 (
M

0.74M�

)−4

. (4.244)

Figure 4.13 shows the ratio of this to the unmodified form. In this case
the reduced rate is maintained at higher degrees of asynchronism because the
magnetospheric torque does not turn down as the torque in the vacuum case does.

4.4.4 Modified Magnetic Wind Driving

Systems with orbital periods of P > 3 h are believed to be magnetically braked
via a channelled wind emanating from the secondary. The magnetic wind removes
spin angular momentum from the star and drives it towards an under-synchronous
state. Tidal coupling then operates and spins the star back towards synchronism at
the expense of orbital angular momentum. The full details of this are presented in
Chap. 13 and in Campbell (2001). The fast rotator magnetic wind theory of Mestel
and Spruit (1987) is applied to find expressions for the mass transfer rate.
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The secondary star is taken to have a magnetic field generated by a dynamo with
a dependence of the surface polar field on the rotation rate given by

B0s

B�
=
(
�s

��

) 7
4

, (4.245)

which leads to a braking torque of

Tbr = −2

3

(
2π

μ0

) 2
3

B
4
3�Ṁ

1
3�
(
Rs

r̄

) 4
3
(
B0s

B�

) 4
3
(
Ṁw

Ṁ�

) 1
3

R
8
3
s �

1
3
s , (4.246)

where Ṁw is the wind mass loss rate, taken as being related to the rotation rate by

Ṁw

Ṁ�
= �s

��
, (4.247)

and r̄ is the equatorial extent of the dead zone (see Chap. 13).
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Using (4.245) and (4.247) in (4.246), with saturation at a critical rotation rate of
�s = �c, yields

Tbr = −2

3

(
2π

μ0

) 2
3

B
4
3�Ṁ

1
3�
(
Rs

r̄

) 4
3
(
�c

��

) 8
3

R
8
3
s �

1
3
s . (4.248)

This can be expressed as

Tbr = −3.31 × 1024
q

13
6

(ζw)
1
3�

(
B�
1G

)2 (
Rs

r̄

) 5
3
(
�c

��

) 8
3
(

M

0.84M�

) 7
3

μ
7
3 .

(4.249)

Using this in the orbital angular momentum evolution equation (4.228) leads to the
magnetic vacuum case expression

Ṁs = −
1.1 × 10−8

[
Qbrμ

10
3 −Qmpf (as)

]

μ
4
3
[
4(4 − 7μ)− 3 {1 − 0.46 log[μ/(1 − μ)]}2] M� year−1, (4.250)
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Figure 4.14 shows the ratio |Ṁs|/|Ṁbr|, where Ṁbr is the unmodified form of Ṁs.
There is a significant reduction in |Ṁs| with consequences that are similar to the
foregoing gravitational radiation case.

The magnetospheric torque case yields

Ṁs = −
1.12 × 10−9

[
Q̃brμ

11
3 − Q̃mpF(ω, ηs)

]

μ
5
3
[
4(4 − 7μ)− 3 {1 − 0.46 log[μ/(1 − μ)]}2] M� year−1, (4.253)
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Q̃mp = 1

q
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Figure 4.15 shows that there is a significant lowering of the magnetically braked
mass transfer rate in this case.
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Fig. 4.14 The magnetically modified mass transfer rate due to vacuum torques, for magnetic wind
braking with P = 3 h,Mp = 0.4M�, and B0p = 80MG, relative to the unmodified form
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4.5 Summary and Discussion

The interaction of the magnetic field of an asynchronous primary with the tidally
synchronized secondary star can lead to a synchronizing torque. If the region
between the stars is treated as a vacuum, then the magnetic moment of the primary
must be inclined to its spin axis for an inductive torque to occur. A magnetic tilt
leads to a time-dependent field in the orbital frame which penetrates the diffusive
secondary and induces electric currents in the star which act as a source of magnetic
field. The induced field extends beyond the secondary and interacts with the primary
on which it generates a torque and a non-central force. The torque acts to spin the
primary towards synchronism, and has the form of a resonance curve. For larger
values of ω/�o the field only penetrates the secondary to a skin depth leading to
lower torque values. For smaller asynchronism the field penetrates deep into the
star but the lower frequency leads to a lower torque. The torque is maximised at
an intermediate value of ω/�o at which the induction and field penetration act
together to produce larger induced torques. All the observed AM Her systems
have a magnetic tilt, but the primary is likely to have a magnetosphere surrounding
the stars.

With a magnetosphere the time dependent induction effect will still occur, but
electric currents can flow between the stars as well as through them. The motion of
the magnetosphere relative to the secondary now introduces new inductive effects,
described by the v × B term in the induction equation. This term has effects even
when there is no explicit time dependence and hence magnetic torques are expected
to be induced in an asynchronous state even for α = 0. To illustrate these new
effects the time-independent case of α = 0 was considered, so the time dependent
inductive effects, generated by the ∂B/∂t term in the induction equation, are not
operable. Although for α = 0 there is no explicit time dependence, there is still
an asynchronous frequency ω. This is the synodic angular velocity of material
about a vertical axis through the primary, and this frequency occurs in the velocity
components of its corotating magnetosphere measured from orbital axes centred on
the secondary.

The magnetospheric magnetic field penetrates the diffusive secondary and the
angular velocity difference between the magnetosphere and secondary will induce
shearing motions in the surface regions of the star, caused by the induced magnetic
forces. The shearing of poloidal magnetic field, described by the Bp · ∇� term in
the induction equation, causes the creation of Bφ field from Bp. The magnetosphere
also imposes radial motions on the star, and the compression and expansion effects
will induce poloidal motions in its surface layers. These motions cause advection,
compression and stretching of the induced magnetic field and this balances the
effects of diffusion. For higher degrees of asynchronism the induced motions
approach supersonic speeds and the field twisting, measured by |Bφs/Bps|, becomes
larger. This will lead to shocks, associated dissipation, likely field instability and
a break down of corotation. Hence an effective quenching, limiting the growth of
|Bφ |, will occur. These processes can be modelled and they lead to a torque, via the
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BrBφ surface stresses. This torque has a maximum value at least as large as that of
the vacuum case torque.

Both inductive processes generate a magnetic orbital torque, allowing the stars
to exchange angular momentum and energy with the orbit. For an over-synchronous
primary, angular momentum is fed into the orbit and this can lead to a significant
lowering of the mass transfer rate due to a decrease in the shrinkage rate of the
secondary’s Roche lobe. The lack of an accretion disc means that the angular
momentum of material lost via Roche lobe overflow from the secondary is not
returned to the orbit via tidal interaction with the outer parts of a disc. Instead,
this angular momentum is transferred to the primary via magnetic channelling of
the accretion stream. This has the opposite effect to over-synchronous inductive
magnetic coupling, causing an increase in the mass transfer rate. However, an overall
lowering of the mass transfer rate occurs for a range of frequencies.

The primary’s magnetic field was taken as dipolar here, while there is some
evidence of multipole components in the field. However, such higher multipole
fields fall more rapidly with distance and, since the torque depends on B2, these
would only make significant contributions if they dominated the dipole component
at the stellar surface. There is no compelling observational evidence, or theoretical
reasons, to suggest dominant higher multipoles at the surface. However, even if
higher multipoles were dominant, this would not affect the nature of the inductive
processes considered.

Ideally the full MHD equations should be solved to determine the induced
motions in the secondary, and the modification of the magnetosphere due to
asynchronism of the primary. In particular, it was assumed in the analysis presented
here that the surface field winding ratio |Bφs/Bps| becomes limited at higher degrees
of asynchronism by the effects of instabilities and reconnection. However, if such
processes did not enhance the magnetic diffusivity of the secondary sufficiently
to limit field winding, then larger values of |Bφs/Bps| would result. This situation
would be similar to the cases of the stellar-disc interaction discussed in Sect. 9.6.2.
for systems containing discs around a magnetic star with a magnetosphere. The
growth of B2

φ would lead to inflation of Bp and ultimately to field line opening,
particularly for field lines originating nearer to the stellar magnetic poles than
to the equator. A channelled stellar wind is likely to result and, although the
inductive magnetic coupling would be reduced due to the reduction of flux linkage
to the secondary, the wind would result in a spin-down torque on the primary. The
investigation of such processes is likely to require numerical simulations.

Despite the uncertainties, the analytic and semi-analytic calculations presented
here suggest that magnetic coupling to the secondary can explain how the white
dwarf can attain synchronism in the absence of other significant torques. The
presence of the accretion torque requires the problems of the maintenance and
attainment of synchronism to be carefully considered. These problems are addressed
in the next three chapters.



162 4 AM Her Stars: Inductive Magnetic Coupling

References

Campbell, C.G., 1983, MNRAS, 205, 1031.
Campbell, C.G., 1999, MNRAS, 306, 307.
Campbell, C.G., 2001, MNRAS, 321, 96.
Campbell, C.G., 2005, MNRAS, 359, 835.
Campbell, C.G., 2010, MNRAS, 409, 433.
Chanmugan, G., Dulk, G.A., 1983, Cataclysmic Variables and Related Objects, Reidel, Holland,

101, 223.
Cowling, T.G., 1945, MNRAS, 105, 166.
Harrison, T.E., Campbell, R.K., 2018, MNRAS, 474, 1572.
Joss, P.C., Katz, J.I., Rappaport, S.A., 1979, Ap.J., 230, 176.
Kaburaki, O., 1986, Ap&SS, 119, 85.
Katz, J.I., 1991, ComAp, 15, 177.
Lamb, F.K., Aly, J.J., Cook, M.C., Lamb, D.Q., 1983, Ap.J., 274, L71.
Landau, L., Lifshitz, E., 1951, The Classical Theory of Fields, Addison Wesley.
Lipkin, Y.M., Leibowitz, E.M., 2008, MNRAS, 387, 289.
Mestel, L., 2012, Stellar Magnetism, Second Edition, Oxford University Press, Oxford.
Mestel, L., Spruit, H.C., 1987, MNRAS, 226, 57.
Moffatt, H.K., 1998, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge

University Press, Cambridge.
Myers, G., Patterson, J., de Miguel, E., Spain, H., Hambsh, F.J., Monard, B., Bolt, G., McCormick,

J., Rea, R., Allen, W., 2017, PASP, 129, 4204.
Nauenberg, P., 1972, ApJ, 175, 417.
Papaloizou, J., Pringle, J.E., 1978, A&A, 70, L65.
Parker, E.N., 1979, Cosmical Magnetic Fields, Oxford University Press.
Pavlenko, E., Andreev, M., Babina, Y., Malanushenko, V., 2013, ASPC, 469, 343.
Plavec, M., Kratochvil, P., 1964, BAICz, 15, 165.
Staubert, R., Friedrich, S., Pottschmidt, K., Benlloch, S., Schuh, S.L., Kroll, P., Splittgerber, E.,

Rothschild, R., 2003, A&A, 407, 987.



Chapter 5
AM Her Stars: Stream Channelling
and the Accretion Torque

Abstract The strong magnetic moment of the primary star results in a surrounding
magnetic field which completely prevents the formation of an accretion disc. Matter
lost from the L1 region of the secondary becomes channelled by the primary’s
magnetic field and hence, in general, forms a 3D accretion flow. The flow causes
distortions of the stellar magnetic field and the resulting stresses act through the
stream to transfer angular momentum to the star. The consequent accretion torque
depends on the orientation of the primary’s magnetic axis and has components
parallel and normal to the orbital angular momentum vector. These components
can have comparable magnitudes for a significant range of magnetic orientations.
The synchronous and asynchronous accretion torques are considered here, as well
as the effects of partial field channelling. For a dipolar magnetic field and moderate
degrees of asynchronism, the normal components of the accretion torque average to
zero over a synodic rotation period, while the parallel component has a conservative
averaged form for total field channelling.

5.1 Magnetic Field Channelling

Accretion discs do not form in the AM Herculis binaries. The effect of a strongly
magnetic accretor on a disc is considered in Chap. 9. Inner disruption occurs due
to magnetic heating causing an increase in the vertical gradient of the thermal
and radiation pressures which cannot be balanced by the increase in the vertical
component of the stellar gravity or the vertical magnetic force with decreasing
distance from the primary. The ratio of the disruption radius to the distance of the
L1 point from the centre of the primary is given by
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with

N = 1 − 0.46 log

(
Ms

Mp

)
, (5.2)

where γ /εm ∼ 1, q � 1.1, while (Bp)0,Mp and Rp are the surface polar field, mass
and radius of the primary and

ξ
3
2 = �p

�K(�m)
(5.3)

is the ratio of the stellar rotation rate to that of the inner edge of the disc.
Equation (5.1) typically gives �m � A, so discs would not be expected to form
in AM Her stars. This is confirmed by the numerical simulations of Zhilkin and
Bisikalo (2010) which showed that for a primary surface polar magnetic field of
� 5 × 106 G an accretion disc does not form.

Matter lost from the L1 region of the secondary forms an accretion stream which
interacts with the magnetic field of the primary. The ratio of the magnetic pressure
to the gas pressure can be estimated in this region. Assuming the white dwarf to
have a dipolar magnetic field, and taking its distance from L1 as A � D/2, gives

BL1 �
(
2Rp

D

)3

(Bp)0. (5.4)

The density of material leaving the L1 region can be estimated from the mass loss
rate

Ṁs = −πρL1csH 2, (5.5)

where cs is the isothermal sound speed and H is the density scale height perpendic-
ular to the line of stellar centres, just beneath L1. This height is given by (2.326) so,
with f = 1,

H =
( cs
�D

)
Rs, (5.6)

where � is the orbital angular velocity, with the previously adopted subscript
dropped here. Using (5.6) to eliminate H in (5.5) yields the density of material
in the vicinity of L1 as

ρL1 � |Ṁs|�2

πc3s

(
D

Rs

)2

. (5.7)
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The ratio of the magnetic pressure to the gas pressure is then given by (5.4) and (5.7),
together with the relations (2.296)–(2.298) connecting the orbital parameters, as
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This ratio has its strongest dependence on the magnetic moment of the primary,
being ∝ m2. For typical parameters, B2/2μ0 � P near the L1 point and hence
magnetic forces may affect the flow in this region.

Observations indicate that effective field channelling of material may occur at a
distance from the L1 region in some systems (e.g. Wu and Wickramasinghe 1993;
Schwope et al. 1997). Although the magnetic field may affect the motion of material
just inside L1, the emerging stream becomes supersonic and then the relevant ratio
becomes that of the poloidal kinetic energy density to the poloidal magnetic energy
density. This ratio becomes unity at the Alfvén point in the flow and inside this point
magnetic effects become strong and field channelling occurs.

A steady flow of highly conducting material obeys the induction equation

∇ × (v × B) = 0, (5.9)

which is satisfied by

v = κ(r)B. (5.10)

In the strongly channelled region the local distortion of the magnetic field, B′,
caused by the flow is small. Matter then flows very nearly parallel to the unperturbed
field, B0, and experiences a force per unit mass

F = 1

μ0ρ
(∇ × B′)× B0. (5.11)

In general, the channelled part of the accretion stream will lie out of the orbital
plane. There is a magnetic torque r × F per unit mass exerted on material and this
is transmitted to the white dwarf via the associated magnetic stresses. A torque also
results from the angular momentum flux of matter flowing on to the accretion pole,
but this is small since most of the angular momentum has been transferred to the
star via the magnetic field torques. Some angular momentum exchange between the
stream and the orbit can occur due to gravitational interaction with the secondary
star.

Numerical simulations of the accretion flow were performed by Zhilkin and
Bisikalo (2010). The primary was taken to have a dipole magnetic field having
orientation angles α = 30◦, β = 270◦, and a range of polar field strengths given by
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107 G ≤ (Bp)0 ≤ 108 G. This orientation has the horizontal component of the dipole
moment pointing away from the L1 point, so accretion onto the south pole would be
expected. Numerical solutions of the MHD equations were found, employing a 3D
code, using coordinates relative to the orbital frame . Termswere included in the heat
equation to simulate radiative heating and cooling, and a term describing magnetic
dissipation. The flow speed at the L1 point was taken to be the sound speed, with a
temperature TL1 = 4×103 K, and a mass transfer rate |Ṁs| = 10−9M� year−1 was
used. The region between the stars was taken to have initial values of ρ0 = 10−6ρL1 ,
T0 = 1.12 × 104 K and (vp)0 = 0, with B0 the unperturbed stellar field. It typically
took a time of � 5P for a steady state to be reached. The stream has a main core and
a surrounding lower density envelope. For (Bp)0 = 107 G the centre of the stream
initially lies in the orbital plane, but soon becomes field channelled and is directed
to the south magnetic pole, as expected. For a field strength of (Bp)0 = 108 G the
stream is strongly channelled, and hence vertically diverted, at the L1 point.

Zhilkin et al. (2012) considered the case in which the primary has dipole
and quadrupole components in its magnetic field. The magnetic axes of these
components were taken to be parallel, but tilted to the spin axis at an angle
α = 30◦. A range of azimuthal magnetic orientation angles was used, with
β = (0.75 − m) × 360◦ where 0 ≤ m ≤ 0.9 in increments of �m = 0.1. The
surface polar value of the dipole component was (Bp)0 = 28MG, while a surface
quadrupolar value of 10 times this was employed. The conditions at the L1 point,
and the initial conditions in the region surrounding the star, were the same as those
adopted in Zhilkin and Bisikalo (2010). Again, there is a main stream and a lower
density envelope. For all values of β, the stream initially flows in the orbital plane
but soon becomes magnetically diverted. The orientations m = 0 (β = 270◦) and
m = 0.5 (β = 90◦) correspond to the horizontal component of the magnetic
axis pointing away from and towards the L1 point, respectively. For m < 0.4
(β < 126◦) an accretion ring forms just beneath the magnetic equatorial plane,
with most remaining material accreting on to the north magnetic pole. At m = 0.4
the main flow accretes into the magnetic ring, with a smaller amount of material
reaching the north pole. The split flows become approximately equal at m = 0.5
(β = 90◦). For 0.6 ≤ m ≤ 0.7 (18◦ ≤ β ≤ 54◦) nearly all the flow passes to the
magnetic north pole. There is no compelling theoretical or observational reason for
a surface quadrupole field to dominate the dipole field, but this case illustrates the
effects on the accretion stream of a strong quadrupole field.

The simulations did not calculate the accretion torque on the primary. When
the magnetic force is sufficiently strong the stream will be diverted out of the
orbital plane into the strongly channelled region. This region will give the dominant
contribution to the magnetic torque exerted on the white dwarf. Most angular
momentum exchange with the orbit occurs in the flow region near L1, where the
gravitational coupling is largest. The flow at L1 will be super-Alfvénic or sub-
Alfvénic, depending on the combination of binary parameters.

The accretion torque is required for the synchronous and asynchronous cases.
In the synchronous case the magnetic field lines are stationary in the orbital frame
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and so, for steady mass loss from L1, the accretion torque is time-independent.
In the asynchronous case the geometry of the channelled stream changes, and
the accretion torque will be time-dependent. In general, the torque will have
components perpendicular and parallel to the orbital angular momentum vector. The
ratio of these components, as a function of magnetic orientation, is of particular
interest in relation to the maintenance of synchronism.

In Sect. 5.2 the angular momentum transfer is calculated due to a field-channelled
flow from the L1 region on to a synchronized white dwarf, for an arbitrary
orientation. Section 5.3 considers the resulting accretion torque and also applies this
to the case of small asynchronism. Section 5.4 considers partial field channelling of
the accretion stream in relation to the position of the Alfvén point.

5.2 Angular Momentum Transfer

The precise nature of the white dwarf’s magnetic field is unknown. It has been
suggested that in some cases the field may have higher multipole components (e.g.
Meggitt andWickramasinghe 1989; Beuermann et al. 2007). Numerical simulations
show that, with a sufficiently strong quadrupole component, the stream can split and
lead to more than one accretion region, as appears to be observed in some systems.
However, to investigate the effect of field channelling out of the orbital plane, a
dipole geometry was considered by Campbell (1986). By assuming that matter links
to the primary’s magnetic field at L1, an upper bound can be found for the angular
momentum exchanged with the orbit. By considering the distribution of magnetic
torque along the stream, cases of partial field channelling, and the associated angular
momentum transfer, can then be investigated.

Figure 5.1 shows the orbital frame, with the primary’s dipole moment having
orientation angles (α, β). Material is lost from the lobe-filling secondary through
the L1 region, with speed � cs � �D, at a steady rate Ṁs and is assumed to be
immediately channelled by the primary’s field. The case of a synchronized white
dwarf is considered in this section, so the lines of B are stationary in the orbital
frame. The accretion stream is centred on the field line passing through L1. For a
thin, steady stream the accretion torque is found by calculating the specific angular
momentum imparted to the primary along this line and multiplying it by Ṁp =
−Ṁs.

For a general orientation of the dipole moment m the unperturbed magnetic
field B will be a function of all three coordinates if described in the spherical
polar coordinate system (r, θ, φ). Since B is rotationally symmetric about m, the
natural coordinates to use are those of a spherical polar system (r, ψ, χ) with angles
measured with respect to a Cartesian frame having its vertical axis along m and so
having an orientation (α, β) in the orbital frame. Hence ψ is measured from m̂ and
χ from a vector m̂⊥ where, relative to the orbital frame,

m̂ = sin α cosβ i + sin α sin β j + cosα k, (5.12)
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Fig. 5.1 The orbital frame, showing the rotated spherical polar coordinate system (r, ψ, χ) (from
Campbell 1986)

and

m̂⊥ = cosα cosβ i + cosα sin β j − sin α k. (5.13)

In this system the unperturbed field B will only depend on r and ψ and the equation
of a field line will take its simplest form. The field B can be derived from a magnetic
scalar potential �m(r, ψ) through

B = −∇�m. (5.14)

By expressing the gradient operator in the two polar coordinate systems, it follows
from (5.14) that the unit vectors ψ̂ and χ̂ are related to θ̂ and φ̂ by

ψ̂ = ∂ψ

∂θ
θ̂ + 1

sin θ

∂ψ

∂φ
φ̂, (5.15)

χ̂ = − 1

sin θ

∂ψ

∂φ
θ̂ + ∂ψ

∂θ
φ̂, (5.16)

and hence

(
∂ψ

∂θ

)2

+ 1

sin2 θ

(
∂ψ

∂φ

)2

= 1. (5.17)
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Using the fact that cosψ = m̂ · r̂ and sin χ = −m̂⊥ · χ̂ , together with (5.12), (5.13)
and (5.16), it can be shown that ψ and χ are related to θ and φ through

cosψ = sin α sin θ cos(φ − β)+ cosα cos θ, (5.18)

sinψ sinχ = sin θ sin(φ − β). (5.19)

The field line passing through L1 lies in the plane containing m̂ and j. By its
definition, the unit vector χ̂ is constant over the plane of a field line and for the
required plane is, from (5.12),

χ̂ = 1

(1 − sin2 α sin2 β)
1
2

m̂ × j. (5.20)

Since sinχ = −m̂⊥ · χ̂ , (5.12), (5.13) and (5.20) give the constant value of χ over
the required plane from

sinχ = cosβ

(1 − sin2 α sin2 β)
1
2

. (5.21)

The magnetic potential for a dipole field is

�m = μ0m

4πr2
cosψ, (5.22)

so (5.14) gives the magnetic field components as

Br = μ0m

2πr3
cosψ, (5.23)

Bψ = μ0m

4πr3
sinψ. (5.24)

The equation of the relevant field line is found by integrating the relation

1

r

dr

dψ
= Br

Bψ
(5.25)

and applying the condition that the line passes through L1. This gives

r(ψ, α, β) = A sin2ψ

1 − sin2 α sin2 β
, (5.26)

where A is the distance of the L1 point from the centre of the primary.
For gas temperatures of ∼ 104 K, the thermal pressure gradient along the stream

has negligible effect on the speed of material since v/cs � 1. The equation of
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motion for the accretion stream can be written

r̈ = −∇� − 2� × ṙ + F, (5.27)

where �(r,ψ, χ) is taken to be the Roche potential. The specific magnetic force F,
given by (5.11), is perpendicular to ṙ and so, in this strong magnetic limit, does no
work on the material. The Roche potential �(r,ψ, χ) is found by using (2.267) in
the coordinates (r, θ, φ) and expressing the angular terms as functions of ψ and
χ . The required transformations are obtained by using the z-component of m̂⊥
expressed in (α, β) and in (θ, φ,ψ, χ), together with the angle relations (5.18)
and (5.19). The result is

� = −GMp

r
− GMs

D

[
1 − 2

r

D
Q1 +

( r
D

)2]− 1
2

+ GMs

D2
rQ1 − 1

2
�2r2Q2, (5.28)

where

Q1 = sin θ sinφ = sin α sinβ cosψ + sinψ(cosβ sinχ + cosα sin β cosχ),

Q2 = sin2 θ = 1 − (cosα cosψ − sinα sinψ cosχ)2. (5.29)

The angular momentum equation follows by taking the cross product of (5.27)
with r, and noting that ṙ lies in the plane of the relevant field line, so

d

dt
(r2ψ̇)χ̂ = −r × ∇� − 2r × (� × ṙ)+ r × F. (5.30)

The left-hand side of this equation represents the rate of change of specific angular
momentum of material, and it follows that the ψ-components on the right-hand side
must sum to zero. Equation (5.30) therefore splits into two parts; one representing
the rate of change of material angular momentum due to torques acting about the χ̂

direction, and the other representing the balance of torques about the ψ̂ direction.
The Coriolis force term can be split into its ψ and χ-components by expressing �

as �χ χ̂ + �‖, where �‖ is the component of � parallel to the plane of the stream.
Equation (5.30) then gives

1

sinψ

∂�

∂χ
ψ̂ − 2r × (�‖ × ṙ)− rFχ ψ̂ = 0, (5.31)

d

dt
(r2ψ̇) = −∂�

∂ψ
− d

dt
(r2�χ)+ rFψ. (5.32)
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The above equations must be integrated along the stream to calculate the total
specific angular momentum delivered to the white dwarf. This total consists of the
integral of the magnetic torque, per unit mass, plus the specific angular momentum
of material at the accretion pole. The magnetic torque can be expressed as a rate of
transfer of specific angular momentum by

rFψ χ̂ − rFχ ψ̂ = −dL
dt
, (5.33)

where, for a steady flow along the path specified by (5.26), d/dt = ψ̇d/dψ .
Equations (5.31) and (5.32) therefore become

(
dL
dψ

)
ψ

ψ̂ =
[
2r

(
r�r − dr

dψ
�ψ

)
+ 1

ψ̇ sinψ

∂�

∂χ

]
ψ̂, (5.34)

d

dψ
(r2ψ̇)+ dLχ

dψ
= − d

dψ
(r2�χ)− 1

ψ̇

∂�

∂ψ
. (5.35)

Integrating these equations along the stream gives

�L‖ =
∫ ψa
ψ1

[
2r

(
r�r − dr

dψ
�ψ

)
+ 1

ψ̇ sinψ

∂�

∂χ

]
ψ̂dψ, (5.36)

R2
p ψ̇a +�Lχ = (A2 − R2

p )�χ −
∫ ψa
ψ1

1

ψ̇

∂�

∂ψ
dψ, (5.37)

where ψ1 is the value of ψ at L1 and ψa is its value at the accreting pole. The field
line equation (5.26) gives these limits as

ψ1 = cos−1(sin α sin β), (5.38)

ψa = sin−1

[
Rp(1 − sin2 α sin2 β)

A

] 1
2

. (5.39)

The angular velocity of material, ψ̇ , can be found from the equation of
motion (5.27). Taking the scalar product of this with ṙ, integrating with respect
to time using the condition of essentially vanishing speed (i.e. cs � �D) at L1, and
noting that r is a function of ψ along the stream, gives

ψ̇ = ± [2(�1 −�)] 12[
r2 + (dr/dψ)2] 12

, (5.40)
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where the negative sign applies for 0 < β < π and the positive sign for π < β <
2π . It is noted that in the strong field limit the magnetic force makes no explicit
contribution to ψ̇ , since (5.11) shows F is perpendicular to B0 and hence to ṙ. The
term F acts as a perpendicular constraint force to the stream as it is channelled by
the magnetic field. Equations (5.21), (5.28) and (5.38) for χ , � and ψ1 give the
Roche potential in the plane of the stream as

�(r,ψ) = −GMp

r
− GMs

D

[
1 − 2

r

D
cos(ψ1 − ψ) +

( r
D

)2]− 1
2

+ GMs

D2
r cos(ψ1 − ψ)− 1

2
�2r2

[
sin2 α cos2 β + cos2 α cos2(ψ1 − ψ)

1 − sin2 α sin2 β

]
.

(5.41)

The unit vectors ψ̂ and χ̂ must be expressed in terms of their components in
the orbital frame Oxyz, in order to obtain the components of the specific angular
momentum transfer along these axes. Equations (5.12) for m̂ and (5.20) for χ̂ give
the Cartesian components of χ̂ . The components of ψ̂ are then found using ψ̂ =
χ̂ × r̂ and the angle relations (5.18), (5.21) and (5.38), together with the definition
ofQ1 in (5.29). The results are

ψ̂ = − sinα cosβ cos(ψ1 − ψ)
(1 − sin2 α sin2 β)

1
2

i+sin(ψ1−ψ)j− cosα cos(ψ1 − ψ)
(1 − sin2 α sin2 β)

1
2

k, (5.42)

χ̂ = − cosα

(1 − sin2 α sin2 β)
1
2

i + sin α cosβ

(1 − sin2 α sin2 β)
1
2

k. (5.43)

Using these relations together with the angular momentum equations (5.36)
and (5.37) gives the components of the specific angular momentum transfer as

�Jx = − (A
2 − R2

p )�χ cosα

(1 − sin2 α sin2 β)
1
2

− 2 sinα cosβ

(1 − sin2 α sin2 β)
1
2

∫ ψa
ψ1

r

(
r�r − dr

dψ
�ψ

)
cos(ψ1 − ψ)dψ

+ 1

(1 − sin2 α sin2 β)
1
2

∫ ψa
ψ1

1

ψ̇

(
cosα

∂�

∂ψ
− sin α cosβ cos(ψ1 − ψ)

sinψ

∂�

∂χ

)
dψ,

(5.44)

�Jy = 2
∫ ψa
ψ1

r

(
r�r − dr

dψ
�ψ

)
sin(ψ1 − ψ)dψ +

∫ ψa
ψ1

sin(ψ1 − ψ)
ψ̇ sinψ

∂�

∂χ
dψ,

(5.45)
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�Jz = (A2 − R2
p )�χ sin α cosβ

(1 − sin2 α sin2 β)
1
2

− 2 cosα

(1 − sin2 α sin2 β)
1
2

∫ ψa
ψ1

r

(
r�r − dr

dψ
�ψ

)
cos(ψ1 − ψ)dψ

− 1

(1 − sin2 α sin2 β)
1
2

∫ ψa
ψ1

1

ψ̇

(
sinα cosβ

∂�

∂ψ
+ cosα cos(ψ1 − ψ)

sinψ

∂�

∂χ

)
dψ.

(5.46)

Equations (5.26), (5.42) and (5.43) for r(ψ), ψ̂ and χ̂ give

r�r − dr

dψ
�ψ = A� cosα sinψ [sinψ sin(ψ1 − ψ)+ 2 cosψ cos(ψ1 − ψ)]

(1 − sin2 α sin2 β)
3
2

.

(5.47)

The required derivatives of the Roche potential are obtained from (5.21), (5.28)
and (5.38) for χ , � and ψ1 as

∂�

∂ψ
= −GMs

D2 r

[
M

Ms

r

D

cos2 α cos(ψ1 − ψ)
(1 − sin2 α sin2 β)

+W− 3
2 − 1

]
sin(ψ1−ψ), (5.48)

where

W = 1 − 2
r

D
cos(ψ1 − ψ)+

( r
D

)2
, (5.49)

and

1

sinψ

∂�

∂χ
= �2r2

sin α cosα cosβ

1 − sin2 α sin2 β
sin(ψ1 − ψ), (5.50)

with M = Ms + Mp. It is noted that (5.50) is purely centrifugal. Substitut-
ing (5.26), (5.40), (5.41) for r(ψ), ψ̇ and � and (5.47)–(5.50) in (5.44)–(5.46),
and evaluating the Coriolis integrals, gives the components of the specific angular
momentum transfer as

�Jx = A2�fx(α, β), (5.51)

�Jy = A2�fy(α, β), (5.52)

�Jz + R2
p� sin2 θa = A2�fz(α, β). (5.53)
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The second term on the left-hand side of (5.53) represents the additional specific
angular momentum of material about the z-axis at the accreting pole whenmeasured
in the inertial frame. The dimensionless functions fi(α, β) are

fx(α, β) =
(
Rp

A

)2 sin 2α cosβ sin2(ψ1 − ψa)
2(1 − sin2 α sin2 β)

−
∫ ψ1
ψa

Kx(α, β,ψ)dψ, (5.54)

fy(α, β) = cosα

(1 − sin2 α sin2 β)
5
2

J (α, β)+
∫ ψ1
ψa

Ky(α, β,ψ)dψ, (5.55)

fz(α, β) = 1 +
∫ ψ1
ψa

Kz(α, β,ψ)dψ, (5.56)

where

Kx = ±cosα sin3 ψ sin(ψ1 − ψ)(sin2ψ + 4 cos2 ψ)
1
2

(1 − sin2 α sin2 β)
5
2
√
2Q

W̄, (5.57)

J =3

4
(ψa − ψ1)+ 3

8
sin(ψ1 − ψa) cos(ψ1 + ψa)

+ 1

4
(sin3ψ1 cosψ1 − sin3ψa cosψa)

+ sin4 ψa sin(ψ1 − ψa) cos(ψ1 − ψa), (5.58)

Ky = ±A
D

sin α cosα cosβ sin2(ψ1 − ψ) sin5 ψ(sin2ψ + 4 cos2ψ)
1
2

(1 − sin2 α sin2 β)4
√
2Q

, (5.59)

Kz = ±Ms

M

sin α cosβ sin(ψ1 − ψ) sin3 ψ(sin2 ψ + 4 cos2 ψ)
1
2 (W− 3

2 − 1)

(1 − sin2 α sin2 β)
5
2
√
2Q

,

(5.60)
withW given by (5.49) and

W̄ = A

D

sin2ψ cos(ψ1 − ψ)
(1 − sin2 α sin2 β)

+ Ms

M

(
W− 3

2 − 1
)
, (5.61)

Q =Mp

M

(
D

r
− D
A

)
+ Ms

M

[
A

D
− r

D
cos(ψ1 − ψ)

]
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− Ms

M

[(
1 − A

D

)−1

−W− 1
2

]

− 1

2

[(
A

D

)2

−
( r
D

)2 (sin2 α cos2 β + cos2 α cos2(ψ1 − ψ)
1 − sin2 α sin2 β

)]
.

(5.62)

In Eqs. (5.57), (5.59) and (5.60) the positive signs apply for 0 < β < π and
the negative signs for π < β < 2π . The integrals in the angular momentum
functions (5.54)–(5.56) are evaluated numerically and the ratio A/D is found
from (2.294) with r1p = A.

Having calculated the specific angular momentum transfer, the accretion torque
can be considered.

5.3 The Accretion Torque

5.3.1 The Synchronous Case

Since the primary accretes matter at a steady rate Ṁp, the components of the
accretion torque are

Tx = A2�Ṁpfx(α, β), (5.63)

Ty = A2�Ṁpfy(α, β), (5.64)

Tz = A2�Ṁpfz(α, β). (5.65)

Because matter is lost from L1 with a speed � cs � �D, it follows from energy
conservation that the functions fi(α, β) can only be evaluated at orientations for
which the channelled stream lies entirely within the primary’s Roche lobe. For
a given value of α, a critical angle βc will exist at which the primary’s field
line through L1 is tangent to its Roche lobe at that point. Hence, for total field
channelling, the calculation of the accretion torque can only be performed for
βc ≤ β ≤ π − βc and βc + π ≤ β ≤ 2π − βc. An expression can be derived
for βc(α) by performing a Taylor expansion of � , given by (5.41), along the field
line defined by (5.26). When β = βc it follows that (d2�/dψ2)L1 = 0, giving

βc(α) = sin−1

⎡
⎢⎢⎣
Ms
M

(
A
D

)2 [(
1 − A

D

)−3 − 1

]
+
(
A
D

)3
cos2 α

(
Ms
M

(
A
D

)2
Q̄+ 4

(
A
D

)3 + 8
Mp
M

)
sin2 α

⎤
⎥⎥⎦

1
2

, (5.66)
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where

Q̄ =
(
1 + 8

A

D

)(
1 − A

D

)−3

− 1. (5.67)

As the inclination of the magnetic moment to the orbital plane increases (i.e. as α
decreases) βc increases and hence the range of β for which the fully-channelled
calculation can be performed is reduced. A minimum value of α is reached when
βc = π/2 and so it follows from (5.66) that

αmin = sin−1

⎡
⎢⎢⎣
Ms
M

(
A
D

)2 [(
1 − A

D

)−3 − 1

]
+
(
A
D

)3

Ms
M

(
A
D

)2
Q̄+ 5

(
A
D

)3 + 8
Mp
M

⎤
⎥⎥⎦

1
2

. (5.68)

Taking P = 2.0 h, (2.298) gives a lobe-filling secondary with Ms = 0.2M�.
UsingMp = 0.6M�, (2.294) yields A/D = 0.61 and (5.68) gives αmin = 19◦. The
functions fi(α, β) were calculated for three values of α. The results are shown in
Figs. 5.2, 5.3, and 5.4 and Tables 5.1, 5.2, and 5.3.

Figure 5.1 illustrates that if αmin ≤ α ≤ π/2 then the accreting magnetic pole
lies above the orbital plane for βc ≤ β ≤ π − βc and beneath it for βc + π ≤
β ≤ 2π − βc. The situation is reversed for π/2 < α ≤ π − αmin. Figures 5.2
and 5.3 show that fx(α, β) and fy(α, β) are negative when the accreting pole is
above the orbital plane. For given values of α and β, it is seen that the magnitude
of fx is generally larger than that of fy . Equations (5.44), (5.51) and (5.54) show

fx(α, β)

1.0

0.5

0

−0.5

−1.0
α = 30◦

α = 50◦

α = 70◦

βπ 2π

α = 70◦

α = 50◦

α = 30◦

Fig. 5.2 The function fx(α, β) (from Campbell 1986)
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Fig. 5.3 The function fy(α, β) (from Campbell 1986)
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Fig. 5.4 The dimensionless function fz(α, β) (from Campbell 1986)
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Table 5.1 The torque
component functions for
α = 30◦, βc = 39.3◦ (from
Campbell 1986)

β (deg) fx fy fz fz/f⊥
βc −1.022 −0.312 1.370 1.282

50 −0.568 −0.293 1.168 1.827

60 −0.465 −0.279 1.106 2.038

70 −0.414 −0.270 1.064 2.154

90 −0.380 −0.265 1.000 2.157

100 −0.388 −0.268 0.969 2.054

110 −0.414 −0.276 0.936 1.881

120 −0.465 −0.289 0.894 1.632

130 −0.568 −0.308 0.832 1.288

180-βc −1.022 −0.334 0.630 0.586

Table 5.2 The torque
component functions for
α = 50◦, βc = 24◦ (from
Campbell 1986)

β (deg) fx fy fz fz/f⊥
βc −0.765 −0.226 1.680 2.107

30 −0.412 −0.212 1.338 2.888

40 −0.285 −0.191 1.204 3.509

50 −0.229 −0.176 1.137 3.942

60 −0.197 −0.165 1.092 4.242

70 −0.180 −0.158 1.057 4.417

90 −0.167 −0.154 1.000 4.398

110 −0.180 −0.162 0.943 3.903

120 −0.198 −0.171 0.908 3.478

130 −0.229 −0.185 0.863 2.935

140 −0.285 −0.205 0.796 2.265

150 −0.412 −0.234 0.662 1.397

180-βc −0.765 −0.258 0.320 0.396

Table 5.3 The torque
component functions for
α = 70◦, βc = 19◦ (from
Campbell 1986)

β (deg) fx fy fz fz/f⊥
βc −0.411 −0.119 1.872 4.381

30 −0.160 −0.102 1.299 6.844

40 −0.117 −0.091 1.192 8.050

50 −0.095 −0.083 1.131 8.960

60 −0.083 −0.077 1.088 9.608

70 −0.076 −0.074 1.055 9.992

90 −0.071 −0.071 1.000 9.952

110 −0.076 −0.075 0.945 8.849

120 −0.083 −0.080 0.912 7.913

130 −0.095 −0.087 0.869 6.732

140 −0.117 −0.098 0.808 5.304

150 −0.160 −0.113 0.701 3.575

180-βc −0.411 −0.141 0.128 0.294
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that Coriolis, centrifugal and gravitational terms contribute to fx(α, β), although
the Coriolis term is small since Rp/A � 1. The torque component Tx therefore
involves gravitational coupling of the stream to the orbit. Equations (5.45) and (5.50)
show that Ty does not involve any gravitational coupling, since ∂�/∂χ is purely
centrifugal in the required χ-plane. It can be shown that the Coriolis term gives
the major contribution to Ty . It is noted that for α = π/2, corresponding to the
accreting pole lying in the orbital plane, (5.54) and (5.55) show that fx and fy
vanish, as expected.

Figure 5.4 shows the variations of fz(α, β). Equation (5.56) illustrates that all
the orientation dependence of fz is contained in the integral of Kz. This integral
arose from the last term in (5.46) and is purely gravitational since the centrifugal
part of the term in ∂�/∂ψ cancels the term in ∂�/∂χ . In an inertial frame centred
on the white dwarf material at L1 has specific angular momentum A2�. For β 
=
π/2 or 3π/2, the orbit adds to or subtracts from this and the integrated resultant is
delivered to the white dwarf through the total magnetic torque. For β = π/2 or 3π/2
the gravitational coupling term Kz is zero and specific angular momentum A2� is
delivered to the primary about the z-axis, so that fz = 1. For βc ≤ β < π/2 and
βc+π ≤ β < 3π/2 the accreting magnetic pole lags the motion of the line of stellar
centres and the stream gains angular momentum about the z-axis from the orbit,
resulting in fz > 1. For π/2 < β ≤ π − βc and 3π/2 < β ≤ 2π − βc the accreting
pole leads the line of stellar centres and the stream loses angular momentum to the
orbit, so fz < 1. It is seen from Fig. 5.4 that for significant ranges of β centred on
β = π/2 or 3π/2, fz is not sensitive to changes in α at fixed β. This is because for
these ranges of β the gravitational coupling to the orbit, through the integral of Kz,
is weak.

Figure 5.5 shows the ratio of the vertical to the horizontal component of the
accretion torque, where f⊥ = (f 2

x + f 2
y )

1/2. It is seen that for α = 30◦,
corresponding to a high inclination of the accreting pole to the orbital plane, fz
and f⊥ are comparable over the range of β.

It is noted that the critical angle βc results from the condition of strong field
channelling at L1. This restriction can be removed by allowing material to become
field-channelled at some distance from L1. Provided this distance is a small fraction
of A, the curves in Figs. 5.2, 5.3, 5.4, and 5.5 can be extended to all β values but
will be less steep at their ends.

5.3.2 The Asynchronous Case

If the white dwarf primary is asynchronous with the orbit then its magnetic field
geometry will vary with time in the orbital frame and matter will be channelled
along moving field lines. Whatever the path taken by material, the transfer time
from L1 to the accretion pole is given by �t ∼ P , where P is the orbital period. It
follows that two relevant regimes of asynchronism can be distinguished, defined by
Psyn � P and Psyn � P , where Psyn is the synodic period of the asynchronism.
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Fig. 5.5 The ratio fz(α, β)/f⊥(α, β) (from Campbell 1986)

If Psyn � P , equivalent to ω/� � 1, then in the time during which a given flux
tube is in contact with the L1 region it can only be partly filled with material. As a
result matter will be accreted on to the primary in discontinuous streams, reaching it
at different times and along different paths. The analysis of the previous section can
therefore not be used to calculate the time-dependent accretion torque in this case.

If Psyn � P , or equivalently ω/� � 1 where ω = 2π/Psyn, then a given
magnetic flux tube of the primary will completely fill with material during its time
of contact with the L1 region. A flux tube will correspondingly rapidly empty as
soon as it becomes disconnected from the L1 source. Hence, at a given time, the
primary will experience a torque due to the single continuous stream along the flux
tube connecting it to L1. It then follows that the expressions for the components of
T given by (5.63)–(5.65) for time-independent orientations (α, β) can be used to
obtain the variation of T for time-dependent (α, β), provided that ω/� � 1. For
the present, the case is considered in which ω is parallel to � so α is constant and
β = ωt . The time-dependent accretion torque is then simply obtained by making
this substitution for β in (5.63)–(5.65). This case is applicable for ω/� � 10−2,
which covers the asynchronism regime of interest.

When considering the long term effect of the accretion torque on the primary,
and comparing it with the dissipation torque given by (4.79), a synodic average is
appropriate. This can be found by exploiting certain symmetry properties possessed
by the functions fi(α, β) defined by (5.54)–(5.56). First, consider magnetic orien-
tations of the primary whose corresponding accretion streams are mirror images
about the orbital plane z = 0. Figure 5.1 shows that, for fixed α, such paths are
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characterized by orientations β and β+π , while mirror points on them about z = 0
have angular positionsψ and π−ψ . It follows from (5.49), (5.57), (5.61), and (5.62)
that

Kx(α, β + π, π − ψ) = Kx(α, β,ψ). (5.69)

Defining the integral appearing in (5.54) for fx(α, β) as

Ix(α, β) =
∫ ψ1
ψa

Kx(α, β,ψ)dψ, (5.70)

it is then simple to show that

Ix(α, β + π) = −Ix(α, β). (5.71)

In a similar way it can be shown that the integral in (5.55) for fy(α, β) satisfies

Iy(α, β + π) = −Iy(α, β) (5.72)

for mirror paths about the orbital plane. Since the Coriolis terms in (5.54) and (5.55)
also possess the above antisymmetric property, it follows that

fx(α, β + π) = −fx(α, β), (5.73)

fy(α, β + π) = −fy(α, β). (5.74)

Consider, now, the x = 0 plane. Figure 5.1 shows that for βc ≤ β ≤ π − βc
mirror paths about this plane are characterized by β and π − β, while mirror points
have the same values of ψ . Equations (5.60) and (5.62) give

Kz(α, π − β,ψ) = −Kz(α, β,ψ). (5.75)

Writing the integral in (5.56) for fz(α, β) as Iz(α, β), it can be shown that

Iz(α, π − β) = −Iz(α, β). (5.76)

The corresponding result for βc + π ≤ β ≤ 2π − βc is

Iz(α, 3π − β) = −Iz(α, β). (5.77)

Since the asynchronous motion considered here has constant α and β = ωt , the
average value of an accretion torque component over one synodic period is given by

〈Ti〉 = 1

2π

∫ 2π

0
Ti(α, β)dβ. (5.78)
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Equations (5.56), (5.63)–(5.65) and (5.73)–(5.78) then show that

〈Tx〉 = 〈Ty〉 = 0, (5.79)

〈Tz〉 = A2�Ṁp. (5.80)

Hence the average value of the accretion torque for this type of asynchronism is

〈T〉 = A2�Ṁp k. (5.81)

This corresponds to the specific angular momentum of material leaving the L1
region being conserved over a synodic period in its transfer to the primary via 3D
magnetic channelling.

5.4 Partial Field Channelling

Observations suggest that effective field channelling of the accretion stream may
occur at a distance from the L1 region in some systems (e.g. Liebert and Stockman
1985; Wu and Wickramasinghe 1993; Schwope et al. 1997). An estimate of the
position of the Alfvén point, at which the flow speed equals the Alfvén speed, can
be made. This corresponds to the magnetic energy density becoming equal to the
flow kinetic energy density, so

B2

2μ0
= 1

2
ρv2. (5.82)

The mass transfer rate in the accretion stream is

Ṁp = πH 2ρv, (5.83)

taking the cross section of the stream to be approximately circular, with H the
density length-scale normal to the flow. If the initial part of the stream is not
magnetically channelled then after leaving L1 its centre will lie in the orbital plane,
leading the motion of the line of stellar centres, and cause large local distortions
of the primary’s magnetic field. Calculations in non-magnetic systems suggest that
the initial part of the stream is essentially straight and at a small angle to the line
of stellar centres (e.g. Lubow and Shu 1975). Hence the cross sectional area of the
initial stream can be taken to be approximately that of the L1 source, having an area
of A = πH 2 with H given by (5.6). The mass flux in the initial stream then follows
from (5.83) as

ρv = Ṁp�
2D2

π(c2s )L1R
2
s

. (5.84)
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Apart from close to the primary, the stream speed will be significantly less than
free-fall values since the gravity field of the secondary and centrifugal force partly
cancel the gravity field of the primary. Taking the speed to be a fraction f̃ of the
free-fall value gives

v = f̃
(
GMp

r

) 1
2

. (5.85)

The unperturbed magnetic field can be used to find an approximate expression for
the Alfvén radius, so

B � (Bp)0

(
Rp

r

)3

. (5.86)

Using (5.84)–(5.86), together with (2.296)–(2.298) to relate Ms, Rs, D and P ,
gives the Alfvén radius as a fraction of the distance from the primary as

RA

A
=

0.82

(
0.25
f̃

) 2
11
(
(Bp)0
60MG

) 4
11
(

Rp

8.67× 106 m

) 12
11
(
TL1

2 × 103

) 2
11

q
5
11N

(
Ms

0.2M�
) 6

33
(
Mp

0.6M�

) 1
11 (

M
0.8M�

) 15
33
(

Ṁp

10−10M� year−1

) 2
11

,

(5.87)

whereN is given by (5.2). For the observed range of primary magnetic fields, orbital
periods, which are related to the secondary mass, and likely primary masses, the
range 0.2 � RA/A � 1.5 results. This corresponds to late magnetic channelling of
the accretion stream up to total channelling from the L1 region.

For partial channelling, as the field strength increases its distortion will decrease
and effective channelling, in general out of the orbital plane, will ultimately occur.
The dominant contribution to the accretion torque should arise from the channelled
region, since this is where the generated magnetic stresses are greatest. An estimate
of the accretion torque in the case of a partially channelled flow can therefore be
made by considering the angular momentum transfer due to a section of the totally
channelled stream lying inside a radius Rm(α, β) < RA. This will give an estimate
of the relative magnitudes of the accretion torque components for varying degrees
of field channelling.

The dominant contribution to fx(α, β) arises from the second term on the right
hand side of (5.54), involving the integral of Kx along the stream. The major
contribution to fy(α, β) comes from the first term on the right hand side of (5.55).
This term arose from the Coriolis integral in (5.45) and hence the variation of its
integrand, denoted by K(α, β,ψ), is required along the stream together with the
variations of Kx and Kz. Although these integrands were expressed as functions of
ψ , in the present context the coordinate r/A must be used in their integration. It
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(from Campbell 1986)

follows that the variation of Kx(α, β,ψ(r))A(dr/dψ)−1 with r/A is required to
estimate the contribution made between r = Rp and r = Rm, and likewise for the
other two integrands.

Figures 5.6, 5.7, and 5.8 show the variations of the relevant functions with r/A.
Consider Rm = 0.5A; Fig. 5.6 illustrates that the section of the stream having r <
Rm, and hence r/A < 0.5, contributes only a few per cent to the total line integral of
KxA(dr/dψ)

−1. It therefore follows that, for such a partially channelled stream, the
values of fx will typically be reduced by an order of magnitude from those shown
in Tables 5.1, 5.2, and 5.3.

Figure 5.7 shows that the section of the stream having r < Rm typically
contributes ∼ 50% to the total line integral of KA(dr/dψ)−1. Hence, for Rm =
0.5A, the values of fy shown in Tables 5.1, 5.2, and 5.3 will only be approximately
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Fig. 5.8 The variation of KzA(dr/dψ)−1 with r/A along primary field lines passing through L1
(from Campbell 1986)

halved. The magnitude of fy will then generally exceed that of fx , this being the
reverse of the case of a totally channelled stream.

For Rm = 0.5A, Fig. 5.8 illustrates that the integral on the right hand side
of (5.56), for fz(α, β), will typically be reduced by at least an order of magnitude
from its value for total field channelling of the accretion stream. The deviations
of fz(α, β) from unity will therefore be significantly reduced from those shown in
Tables 5.1, 5.2, and 5.3. This is a result of the fact that most of the exchange of the z-
component of angular momentumwith the orbit occurs nearL1, due to gravitational
coupling to the secondary.

5.5 Summary and Discussion

The conclusions of the foregoing calculation can be summarized. For a stream
channelled from the L1 region, and high inclinations of the white dwarf dipole
moment, the horizontal components of the accretion torque can be comparable
to the vertical component. For slow asynchronous motions, with the primary’s
angular velocity parallel to �, the horizontal torque components average to zero
over a synodic period, while the vertical component averages to the conserved form
A2�Ṁp.

For a partially channelled stream the magnitudes of the horizontal torque
components are reduced. For a channelling radius of 0.5A the horizontal torque
component perpendicular to the line of stellar centres becomes a small fraction of
the vertical component. However, the torque component along the line of stellar
centres can remain significant for some magnetic orientations, since it does not
involve gravitational coupling to the orbit, being principally due to Coriolis torque.
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The distribution of this torque is fairly uniform along the stream so, even for a
channelling radius as small as ∼ 0.2A, Ty can be a significant fraction of Tz for
channelling well out of the orbital plane.

Observations of HU Aqr by Schwope et al. (1997), using Doppler tomography,
indicate the existence of an accretion curtain of tenuous material above the initial
stream. Closer to the white dwarf the whole stream lifts out of the orbital plane.
This suggests that the field linkage process is continuous, beginning near L1 but
only becoming strongly effective closer to the primary. The observations indicate
a channelling radius of at least 0.4A for this system, so the Ty component of the
accretion torque would be significant.

The channelling radius will vary significantly, depending on the primary’s
magnetic moment and the orbital separation, as the simulations confirm. The results
of this chapter have important consequences for the maintenance of synchronism,
which are discussed in the next chapter.
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Chapter 6
AM Her Stars: The Maintenance
of Synchronism

Abstract The problem of the maintenance of synchronism is addressed. Since the
inductive synchronizing torque vanishes at corotation, there must be another torque
present to balance the accretion torque. In general, a 3D torque is required and
the balance must be stable. Because the secondary star has at least a convective
envelope, and is rapidly rotating due to tidal synchronization, it is likely to have
a large-scale magnetic field generated by dynamo action. The interaction of such
a field with the magnetic primary can produce a torque which can balance the
accretion torque, with stable orientations. Certain restrictions can result related to
the surface polar strength and the orientation of the secondary’s magnetic field.

Another possible balancing torque results if the primary is distorted from
spherical symmetry due to non-radial internal magnetic forces, caused by the
electric current sources of its magnetic field. A tidal torque acts on the distorted star
and this can balance the magnetic torque to produce a synchronous state, if these
torques significantly exceed the accretion torque. This can occur if the secondary
has a surface magnetic field of a few kG. The effects of these torques in relation to
the orbital evolution are also considered.

6.1 Non-Dissipative Torques

Before the attainment of synchronism can be considered, the nature of the corotating
state must be investigated. The analysis of Chap. 4 shows that as the white dwarf
approaches corotation the dissipative inductive torque tends to zero. However, the
accretion torque, which is non-dissipative, remains finite and so for a spherical
primary a non-dissipative torque must act to cancel it. In this case the total torque
on the synchronous white dwarf vanishes and its angular velocity and angular
momentum are conserved, both being parallel to the orbital angular velocity�. If the
primary is non-spherical, in general, its inertial angular velocity ωin and its angular
momentum L will not be parallel. Since synchronism requires ωin = � then L will
precess about ωin and a finite torque will act. This torque must have the required
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form to generate the precession in L. It will be seen that the accretion torque alone
cannot satisfy this condition and hence a non-dissipative torque is again needed.

Early considerations of the maintenance of synchronism pointed out that a non-
dissipative magnetostatic torque would result if the primary’s field was excluded
from the secondary. However, this can only happen if the decay time of a magnetic
field in the secondary far exceeds the lifetime of the binary system. The magnetic
decay times given by (2.224) correspond to the dissipation of poloidal modes. The
longest-lived principal mode has l = j = 1 and has a decay time of

τd = R2
s

π2η
, (6.1)

where η = 1/μ0σ with σ the conductivity. The decay time is maximized by taking
an Ohmic diffusivity, given by (2.226) as

ηohm = 5.2 × 107 ln�T − 3
2 m2 s−1, (6.2)

where T is the temperature and ln� a shielding factor of typical magnitude 5 �
ln� � 20. Taking a mean temperature of 106 K, together with ln� = 6 and Rs =
2.3 × 108 m gives τd = 5.4 × 108 years. The binary lifetime is measured by the
mass transfer time-scale τM = Ms/|Ṁs|, which is typically ∼ 4 × 109 years for an
AM Her system. Hence τd < τM which invalidates a magnetostatic approach, since
the primary’s field would not be excluded from the secondary. In fact, as previously
noted, the low mass secondaries in AM Her systems will be largely convective and
η is then believed to be greatly enhanced, so shortening τd by several orders of
magnitude and making a magnetostatic torque even less valid.

Two mechanisms have been considered to generate suitable balancing torques.
Firstly, it was pointed out by Joss et al. (1979) that the secondary could contain
an intrinsic poloidal magnetic field and that this would extend to the primary and
generate a torque on it. The existence of such a field is very likely since turbulence
and rapid rotation are present and these can lead to dynamo action, as seen in
Sect. 2.3. Secondly, Joss et al. (1979) and Katz (1989) proposed that the white dwarf
could be distorted by a J×B force, where J is the current density source of its field.
Tidal interaction with the secondary’s gravitational field then leads to a torque on
the primary. These mechanisms are investigated in detail in this chapter.

Sections 6.2 and 6.3 consider balances between a non-dissipative magnetic
torque and the accretion torque, in two and three dimensions. The effects of
quadrupolar fields are discussed in Sect. 6.4. In Sect. 6.5 the three-dimensional
balance between a tidal torque, exerted on a magnetically distorted primary, and
a magnetic torque is analysed. Orbital torques and their evolutionary effects are
considered in Sect. 6.6.
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6.2 Accretion and Magnetism in Two Dimensions

The simplest case, in which both stars have dipolar fields with moments mp and
ms lying in the orbital plane, was considered in Campbell (1985). Figure 6.1 shows
the orientation angles used to define this situation. The vector ms is fixed in the
synchronous secondary star by dynamo processes, while mp can rotate with the
white dwarf. The primary is taken to be spherical. Since the accretion stream is
centred in the orbital plane, the torque components in the x and y directions, given
by (5.63) and (5.64), vanish. If matter becomes field-channelled at some distance
from the L1 point then fz(π/2, β), given by (5.56), is close to unity and the
accretion torque (5.65) can be written as

Ta = A2�Ṁpk, (6.3)

where k is a unit vector in the z-direction.
The magnetic torque exerted on the primary by the field of the secondary is

given by

Tm = −mpBsp sin(β − δ̄)k, (6.4)

where Bsp is the secondary’s magnetic field at the position of the primary, and δ̄ is
the tangent angle shown in Fig. 6.1. The components of Bsp are

(Bsp)x = μ0ms

4πD3 sin δ, (6.5)

(Bsp)y = − μ0ms

2πD3 cos δ. (6.6)

β

δ̄

mp

C

L1

δ
ms

x

y

Fig. 6.1 The dipole orientations in the orbital plane (from Campbell 1985)
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From the definition of δ̄, together with (6.5) and (6.6), it follows that

sin δ = 2 cos δ̄

(3 cos2 δ̄ + 1)
1
2

, (6.7)

cos δ = − sin δ̄

(3 cos2 δ̄ + 1)
1
2

. (6.8)

Equations (6.5)–(6.8) give the magnitude of Bsp as

Bsp = μ0ms

2πD3

1

(3 cos2 δ̄ + 1)
1
2

. (6.9)

The sum of the accretion and magnetic torques acting on the primary is

T = [A2�Ṁp −mpBsp sin(β − δ̄)]k, (6.10)

where its dipole moment is related to its radius and polar field by

mp = 2π

μ0
R3
p (Bp)0, (6.11)

with an equivalent expression forms. For a synchronous primary at orientation β =
βs the torque T must vanish. Equations (6.9)–(6.11) give this condition as

sin(βs − δ̄)
(3 cos2 δ̄ + 1)

1
2

= 10μ0A
2ṀpM

(Bs)0(Bp)0R3
pMsP

, (6.12)

where M = Ms +Mp, (Bs)0 is the secondary’s polar magnetic field and P is the
orbital period. The lobe-filling condition

M

Ms

(
Rs

D

)3

= 0.1, (6.13)

due Paczyński (1967), has been employed, where Rs is the mean radius of the
secondary. The torque balance condition (6.12) requires sin(βs − δ̄) > 0 and hence

δ̄ < βs < δ̄ + π. (6.14)

The linear stability of the synchronous state requires the sign of a torque
perturbation due to a perturbation of β about βs to be opposite to that of β ′ = β−βs .



6.2 Accretion and Magnetism in Two Dimensions 191

Hence
(
dT

dβ

)
βs

< 0 (6.15)

is necessary for stability. Applying this condition to (6.10) for the total torque T
gives cos(βs − δ̄) > 0 and hence

δ̄ < βs < δ̄ + π
2

or δ̄ + 3π

2
< βs < δ̄ + 2π. (6.16)

A stable synchronous state must satisfy (6.14) and (6.16) and so requires

δ̄ < βs < δ̄ + π

2
. (6.17)

It is clear from (6.12) that for a given value of βs the condition of vanishing
torque can be satisfied by choosing (Bs)0 and δ independently, subject to the stability
condition (6.17). For a given set of parameters there is only one stable synchronous
orientation βs , as illustrated in Fig. 6.2. Consider, as an example, an orbital period
P = 1.5 h, giving a lobe-filling secondary withMs = 0.14M�. ForMp = 0.6M�,
it follows that D = 4.2 × 108 m and A = 2.7 × 108 m, while Rp = 8.7 × 106 m.
The accretion rate is taken as Ṁp = 10−10M�year−1. For (Bp)0 = 3.1 × 103 T,
(Bs)0 = 6.4 × 10−3 T and δ̄ = 20◦, corresponding to δ = −100◦, (6.12) gives
βs = 76◦, which satisfies the stability condition (6.17).

It is of interest to calculate the period of small oscillations of the primary about
the synchronous state. An expression for this period can be found by equating the
rate of change of angular momentum of the primary to the restoring torque resulting
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Fig. 6.2 The synchronous torque balance in two dimensions, normalized by A2�Ṁp
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from a small angular displacement about βs . Expressing the primary’s moment of
inertia as I = k2pMpR

2
p , (6.10) for T and the synchronous condition (6.12) then give

the oscillation period as

P0 = 38.0

(
kp
0.42

)(
Mp

0.6M�

) 1
2
(

Rp

8.67× 106 m

)
tan

1
2 (βs − δ̄)

(
q
1.1

) 1
4
(

Ms
0.14M�

) 1
6
(

M
0.74M�

) 1
3
(

Ṁp

10−10M� year−1

) 1
2

year.

(6.18)

where 0.1 < k2p < 0.2. Taking k2p = 0.18, corresponding toMp = 0.6M�, and the
foregoing parameters, yields P0 = 46 year.

Beuermann et al. (2014) used phase resolved optical light curves of DP Leo,
and found that the data were consistent with the accreting poles oscillating about
a synchronous state with a period of � 60 year. The formula (6.18) can give this
period for a range of possible parameters.

It is noted from (6.4) that for an asynchronous primary with β = ωt the average
of Tm over a synodic period is zero. Hence such a torque does not play a part in the
approach to synchronism.

6.3 Accretion and Magnetism in Three Dimensions

6.3.1 Orientations with Zero Torque

The general case, in which the secondary’s magnetic moment has an orientation
(δ, γ ), was considered by Campbell (1989) and is shown in Fig. 6.3. A spherical
primary is considered, so synchronism at (αs, βs) requires zero torque, and such a
state must be stable to all angular perturbations.

z

k

x

α

β α̂

m̂p = ψ̂

Ω

y L1
δ
γ ms

Fig. 6.3 The dipole orientations in three dimensions (from Campbell 1989)
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The components of the secondary’s magnetic field at the position of the primary
are

(Bsp)x = − μ0ms

4πD3 sin γ sin δ, (6.19)

(Bsp)y = − μ0ms

2πD3 sin γ cos δ, (6.20)

(Bsp)z = − μ0ms

4πD3 cos γ . (6.21)

The magnetic torque on the primary is

Tm = mp × Bsp, (6.22)

where the unit vector m̂p is

m̂p = sin α cosβ i + sin α sin β j + cosα k. (6.23)

Equations (6.19)–(6.23) give the components of the magnetic torque as

Tmx = μ0mpms

4πD3
(2 sin γ cos δ cosα − cos γ sin α sin β), (6.24)

Tmy = μ0mpms

4πD3 (cos γ sin α cosβ − sin γ sin δ cosα), (6.25)

Tmz = μ0mpms

4πD3
(sin δ sinβ − 2 cos δ cosβ) sinα sin γ. (6.26)

The components of the accretion torque, Ta(α, β) are given by (5.63)–(5.65).
If matter becomes field-channelled at some distance from L1 it was seen that Taz
becomes effectively independent of (α, β). The horizontal components then only
vary by � 10% as β is varied over an interval of π/2. The simplest form for the
accretion torque containing these properties is then

Tax = A2�ṀpNx cosα, (6.27)

Tay = A2�ṀpNy cosα, (6.28)

Taz = A2�Ṁp, (6.29)

where the constants Nx and Ny are negative for 0 < β < π and positive for π <
β < 2π , and their magnitudes depend on the channelling radius.

The necessary condition for a synchronous state is that Tm and Ta cancel. The
torque component equations (6.24)–(6.29), together with the components of m̂
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from (6.23), then give the synchronous conditions

− cos γ m̂py + (2 sin γ cos δ +QNx)m̂pz = 0, (6.30)

cos γ m̂px + (QNy − sin γ sin δ)m̂pz = 0, (6.31)

− 2 sin γ cos δ m̂px + sin γ sin δ m̂py = −Q, (6.32)

where the characteristic ratio of the accretion and magnetic torques is

Q = 4πD3A2�Ṁp

μ0mpms
. (6.33)

Solving (6.30)–(6.32) yields the synchronous orientation of the primary in terms
of the components of its dipole moment unit vector as

m̂px = sinαs cosβs = QNy − sin γ sin δ

sin γ (Nx sin δ + 2Ny cos δ)
, (6.34)

m̂py = sinαs sin βs = − QNx + 2 sin γ cos δ

sin γ (Nx sin δ + 2Ny cos δ)
, (6.35)

m̂pz = cosαs = − 1

tan γ (Nx sin δ + 2Ny cos δ)
. (6.36)

However, since m̂p is a unit vector, the condition m̂p · m̂p = 1 must be satisfied.
Equations (6.34)–(6.36) then yield a quadratic equation forQ which has solutions

Q = − sin γ (2Nx cos δ −Ny sin δ)±
√
P

N2
x +N2

y

, (6.37)

where

P = (N2
x +N2

y − 1) sin2 γ (Nx sin δ+ 2Ny cos δ)2 − (N2
x +N2

y ) cos
2 γ. (6.38)

It follows from (6.33) for Q, together with (6.37) and (6.38) that, for given orbital
parameters, the orientation and surface polar strength of the secondary’s magnetic
field cannot be chosen independently if the primary is to experience zero torque.
This restriction did not occur in the simple two-dimensional case.

The values of Nx and Ny depend on where material lost from the secondary
becomes field-channelled.As seen in Sect. 5.4,Nx involves gravitational coupling to
the orbit and is more sensitive to the extent of the field-channelling region than Ny ,
which is due to the more evenly distributed Coriolis torque. If field channelling is far
from L1 (i.e. � A/3) then N2

x + N2
y < 1 and it follows from (6.37) and (6.38) that
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Q becomes complex. Hence, in such a situation, an orientation cannot be found at
which the magnetic and accretion torques cancel. However, if Q � 1 the magnetic
torque dominates and synchronous states are essentially possible.

6.3.2 Stability of the Synchronous State

Having found a synchronous state, its stability to small disturbances must be
established. A general perturbation consists of a twist about an axis through the
primary. Subsequently the star’s rotational motion is defined by an instantaneous
angular velocity ω where, relative to the orbital frame,

ω = α̇α̂ + β̇k + ψ̇ψ̂ . (6.39)

It follows from Fig. 6.3 that the components of ω are

ωx = −α̇ sinβ + ψ̇ sin α cosβ, (6.40)

ωy = α̇ cosβ + ψ̇ sin α sinβ, (6.41)

ωz = β̇ + ψ̇ cosα. (6.42)

Equations (6.24)–(6.29) give the components of the total torque acting on the
white dwarf as

Tx = −Cm cos γ sin α sin β + (CaNx + 2Cm sin γ cos δ) cosα, (6.43)

Ty = Cm cos γ sin α cosβ + (CaNy − Cm sin γ sin δ) cosα, (6.44)

Tz = Cm sin γ sin α(sin δ sin β − 2 cos δ cosβ)+ Ca, (6.45)

where

Cm = μ0mpms

4πD3 , (6.46a)

Ca = A2�Ṁp. (6.46b)

The equation describing the evolution of a perturbation in ω, relative to the orbital
frame, is

I (ω̇′ +�k × ω′) = T′, (6.47)

where I is the moment of inertia of the primary. Expanding (6.40)–(6.45) for ω and
T to first order about the synchronous state gives the components of the equation of
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motion (6.47) as

− sinβsα̈
′ −� cosβsα̇

′

+ [C̄m(cos γ cosαs sin βs + 2 sin γ cos δ sin αs)+ C̄aNx sin αs ]α′

+ C̄m cos γ sin αs cosβsβ ′ + sin αs cosβsψ̈ ′ −� sinαs sin βsψ̇ ′ = 0, (6.48)

cosβsα̈
′ −� sinβsα̇

′

− [C̄m(cos γ cosαs cosβs + sin γ sin δ sinαs)− C̄aNy sin αs ]α′

+ C̄m cos γ sin αs sinβsβ
′ + sin αs sinβsψ̈

′ +� sin αs cosβsψ̇
′ = 0, (6.49)

C̄m sin γ cosαs(2 cos δ cosβs − sin δ sinβs)α′ + β̈ ′

− C̄m sin γ sin αs(2 cos δ sin βs + sin δ cosβs)β ′ + cosαsψ̈ ′ = 0, (6.50)

where C̄m = Cm/I , C̄a = Ca/I and subscript s denotes the synchronous state.
The angular perturbations can be written as the product of an exponential time

dependence and constant amplitudes, so

α′ = a1 exp(iσ t), β ′ = a2 exp(iσ t), ψ ′ = a3 exp(iσ t). (6.51)

Substitution of these in (6.48)–(6.50) gives a system of equations for the amplitudes
and the vanishing of the determinant of their coefficients, for consistency, yields the
following characteristic equation for σ ,

σ 6 + C1σ
4 + C2σ

2 + C3σ = 0, (6.52)

where

C1 =C̄m sin γ sin αs(2 cos δ sin βs + sin δ cosβs)

+ C̄m
cos γ

cosαs
(1 + cos2 αs)−�2, (6.53)

C2 =C̄2
m
sin γ cos γ sin αs

cosαs
(2 cos δ sin βs + sin δ cosβs)+ C̄2

m cos2 γ

− C̄m�
2 sin γ sinαs(2 cos δ sin βs + sin δ cosβs), (6.54)

C3 = −i�C̄2
mQ cos γ cosαs. (6.55)



6.3 Accretion and Magnetism in Three Dimensions 197

Consider, first, the case with accretion absent, so thatQ vanishes and henceC3 =
0. Equation (6.52) then has the solution σ 2 = 0, which results from the fact that the
torques are independent of the Euler angle ψ . The two finite frequencies are given
by the roots of

σ 4 + C1σ
2 + C2 = 0. (6.56)

Solving this equation for σ 2, using (6.23) for the components of m̂ and the
synchronous state equations (6.30)–(6.32) withQ = 0, gives

σ 2 = −C̄m
cos γ

cosαs
+ �

2

2

⎡
⎣1 ±

(
1 − 4

C̄m

�2 cos γ cosαs

) 1
2

⎤
⎦ . (6.57)

If no rotation were present, in this case, (6.57) gives the single magnetic mode
frequency σm from

σ 2m = −C̄m
cos γ

cosαs
. (6.58)

From Eqs. (6.30)–(6.32), with Q = 0, it follows that two values of cos γ / cosαs
are possible, having the same magnitudes but different signs. The negative value
corresponds to mp aligned with the secondary’s field in the synchronous state, and
all perturbations result in stable oscillations with frequency σm.

Equations (6.39) and (6.51) give a general perturbation in the angular velocity as

ω′ = iσ (a1α̂s + a2k + a3ψ̂ s ) exp(iσ t). (6.59)

Equations (6.30)–(6.32), (6.50), (6.51) and (6.58) give

a2 cosαs + a3 = 0. (6.60)

Using this to eliminate a3 in (6.59) yields ω′ for the non-rotating magnetic modes as

ω′ = iσm[a1α̂s + a2{k − (k · ψ̂ s)ψ̂ s}] exp(iσmt). (6.61)

It follows that ψ̂ s · ω′ = 0 and hence the angular velocity of these modes is normal
to the synchronous direction of mp. Any displacement from equilibrium will result
in such an oscillation and so the state is stable.



198 6 AM Her Stars: The Maintenance of Synchronism

The presence of rotation results in two distinct types of mode, whose frequencies
are given by (6.57). The dimensionless quantity C̄m/�

2 can be written as

C̄m

�2 = 4.6 × 10−11q3

(
(Bp)0
20MG

)(
(Bs)0
102 G

)(
Rp

8.67 × 106 m

)(
Ms

0.2M�
)3

(
k2p
0.2

)(
Mp

0.6M�

)(
M

0.8M�
) .

(6.62)
Equation (6.58) gives σ 2m ∼ C̄m and hence it follows that σm/� ∼ 10−5, so the
frequency of magnetic oscillations is much less than that of the orbital motion.
Expansion of the square root term in (6.57) in the small ratio C̄m/�

2 then yields
the two mode frequencies, to high accuracy, as

σ 2+ = �2, (6.63)

σ 2− = −C̄m
cos γ

cosαs
sin2 αs. (6.64)

Substituting (6.63) for σ+ in the equations of motion (6.48) and (6.49),
using (6.58) for σm and dropping terms in (σm/�)2, gives

a1 = i sinαsa3. (6.65)

The equation of motion (6.50) yields

a2 = − cosαsa3. (6.66)

Hence the angular velocity perturbation for the σ+ mode is

ω′ = i�a3[i sin αs α̂s + ψ̂s − (�̂ · ψ̂ s)�̂] exp(i�t). (6.67)

It follows that ω′ · �̂ = 0 so ω′ lies in the z = 0 plane and rotates with frequency�
in the orbital frame. This is an inertial mode corresponding to perturbation twists
normal to �. In this mode the magnetic torque is ineffective since it produces
responses on a time-scale 2π/σm � P , where P is the orbital period.

The angular velocity perturbation for the σ− mode is found by using (6.64) for
σ− in the equations of motion (6.48) and (6.49), remembering that σm/�� 1. This
yields

a1 = 0, (6.68a)

a3 = 0. (6.68b)
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The mode therefore has

ω′ = iσ−a2 exp(iσ−t)�̂. (6.69)

This is the purely magnetic mode, given by (6.61), modified by rotation which
changes its frequency to σm sin αs and aligns it with the � axis. The existence of
this aligned magnetic mode can be seen directly from the equations of motion.
Using (6.30)–(6.32) with Q = 0 and (6.58) for σm, linear combinations of the
equations of motion (6.48)–(6.50) give

α̈′ + σ 2mα′ = −� sinαsψ̇ ′, (6.70)

β̈ ′ + σ 2m sin2 αsβ
′ = − cosαsψ̈

′, (6.71)

− σ 2m sin αs cosαsβ ′ + sin αsψ̈ ′ = �α̇′. (6.72)

If ψ ′ � β ′ then (6.71) implies that β ′ varies harmonically with frequency σ =
σm sin αs . With ψ ′ � β ′, (6.72) yields α′ ∼ (σm/�)β

′ and hence (6.70) gives
ψ ′ ∼ (σm/�)2β ′ � β ′ consistently. Because σm/� ∼ 10−5, for realistic secondary
star fields, it follows that the σ− mode exists to high accuracy.

For the synchronous state to exist the magnetic torque must balance the accretion
torque, or dominate it, since there is no three-dimensional orientation at which the
latter vanishes. It follows that Q = C̄a/C̄m � 1 is necessary for synchronism and
hence that C̄a/�

2 ∼ (σm/�)
2 � 1. It is therefore clear that the additional terms

due to accretion, occurring in the coefficients of α′ in the equations of motion (6.48)
and (6.49), do not affect the inertial mode given by (6.67). Similarly, the rotationally
alignedmode still exists, except that accretion modifies its frequency. The frequency
can be obtained directly from the equation of motion (6.50) which yields a harmonic
equation for β ′ when α′ and ψ ′ essentially vanish. Using the synchronous state
solutions (6.34) and (6.35) then gives

σ 2 = C̄m

[
sin γ (sin2 δ + 4 cos2 δ)+Q(2Nx cos δ −Ny sin δ)

Nx sin δ + 2Ny cos δ

]
. (6.73)

A stable synchronous state requires σ 2 > 0.

6.3.3 Stable Synchronous Orientations

The values ofNx andNy , which occur in the horizontal components of the accretion
torque, depend on where matter becomes field-channelled. The values used here
are Kx = ±1.05, Ky = ±0.30, where the negative and positive signs apply for
0 < β < π and π < β < 2π , respectively.
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Table 6.1 Stable
synchronous orientations for
magneto-accretion balance.
(from Campbell 1989)

γ δ Q αs βs

70 100 0.45 113.0 190.3

70 100 0.59 113.0 201.6

70 275 0.24 111.5 5.7

70 275 0.52 111.5 26.2

75 115 0.87 112.6 118.6

75 115 1.01 112.6 203.3

75 295 0.87 112.6 8.6

75 295 1.01 112.6 23.3

80 105 0.96 101.9 216.6

80 300 1.23 106.8 32.9

85 110 1.11 96.4 218.8

85 280 0.88 95.4 39.1

95 120 1.30 81.7 218.2

95 295 1.21 82.8 38.6

100 125 1.30 70.0 208.9

100 280 0.84 79.1 37.1

105 115 0.87 67.4 188.6

105 115 1.01 67.4 203.3

105 295 0.87 67.4 8.6

105 295 1.01 67.4 23.3

110 100 0.45 67.0 190.3

110 100 0.59 67.0 201.6

110 280 0.45 67.0 10.3

110 280 0.59 67.0 21.6

The simplest way of determining synchronous orientations is to choose (γ, δ) in
(6.37) to calculate Q, and then find (αs, βs) from (6.34)–(6.36). The sign of σ 2

follows from (6.73). A sample of the results are shown in Table 6.1. The values
of βs illustrate that stable synchronous states, in which the magnetic and accretion
torques balance, only occur with the accreting pole lagging the motion of the line of
stellar centres.

Observations of AM Her systems suggest some tendency for the accreting pole
to lead the line of stellar centres (Cropper 1988). The foregoing analysis shows that,
for dipolar fields, a balance between magnetic and accretion torques cannot produce
such observed orientations. The fact that only certain combinations of secondary
field strength and orientation allow cancellation of the accretion torque reduces
the likelihood of such a balance. Field-channelling far from L1 makes a magneto-
accretion balance in three-dimensions impossible since then N2

x + N2
y < 1 and

real values of Q, given by (6.37), do not result. However, the above restrictions
are essentially lifted if the magnetic torque dominates, which occurs for Q � 1.
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Equation (6.33) can be expressed as

Q = 0.63q
1
2

(
Ṁp

10−10M� year−1

)(
M

0.8M�
) 5

3

(
(Bp)0
20MG

)(
(Bs)0
102 G

)(
Rp

8.67 × 106 m

)3 (
Ms

0.2M�
) 2

3

. (6.74)

It follows thatQ ∼ 10−2 for (Bs)0 = 6× 103 G and then the magnetic torque alone
could produce essentially stable synchronous states with, for appropriate (γ, δ),
the accretion pole leading the line of stellar centres. Observations and theoretical
models of lower main-sequence stars indicate that the secondary star could possess
surface magnetic fields of several kG (see Chap. 12).

Dissipation has been ignored in the foregoing stability analysis. The typical
growth time of an unstable magnetic mode is ∼ 10 year. Small perturbations
about the synchronous state will be dissipated since they will induce currents in
the secondary star. The resulting damping time will be approximately the same
as the synchronization time for small ω/�, given by (4.93). This typically gives
τsyc ∼ 60 year, suggesting that the dissipation may be too weak to quench an
instability. However, these time-scales have a significant dependence on the system
parameters, so quenching may be possible in some systems.

6.4 Quadrupolar Magnetic Fields

Observations suggest that the white dwarf in some systems may have a quadrupolar
component in its magnetic field. The interaction of this with a dipolar secondary
field would generate a torque which has a characteristic magnitude, relative to that
of the dipole-dipole torque, of (Bq/Bp)(Rp/D), whereBq andBp are the polar field
strengths. Since Rp/D � 1, the situation Bq ∼ Bp generally results in a relatively
small quadrupole-dipole torque. However, for some orientations this torque would
not be ignorable. Also the situation Bq � Bp could make the torque significant,
although there is no compelling evidence for dominant quadrupolar surface fields.

The role of a quadrupole field was considered by Wu and Wickramasinghe
(1993). The secondary was taken to have a dipole moment ms perpendicular to
the orbital plane, and the primary to have a dipole and quadrupole field with an
angle θ between their symmetry axes. The primary’s dipole moment was taken to
be antiparallel to ms so the dipole-dipole torque vanished. The z-component of the
quadrupole-dipole torque is

Tz = −msBq

2

(
Rp

D

)4

sin 2θ sin φ, (6.75)
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where φ is the azimuth of the quadrupole symmetry axis, measured from the x-
axis of Fig. 6.3. A small tilt of mp results in zero horizontal torque. It was shown
that Tz has a magnitude sufficient to cancel the z-component of the accretion torque,
though detailed orientations were not found. This calculation requires the horizontal
components of the accretion torque to essentially vanish. As shown in Sect. 5.4, the
x-component of the accretion torque is ignorable if matter becomes field-channelled
far from L1. However, the y-component is significant unless channelling only
occurs very close to the white dwarf. Hence, this quadrupole analysis requires such
channelling.

6.5 Gravity and Magnetism

6.5.1 The Synchronous State

It was pointed out by Joss et al. (1979) that a small distortion of the white
dwarf would produce a significant gravitational torque due to interaction with the
secondary. Katz (1989) showed that an internal toroidal magnetic field, with an
associated poloidal current, can produce significant distortions of the white dwarf.
The difference in the principal moments of inertia of a prolate body was found to be

I3 − I⊥ = − 2π

3μ0

B2
0R

6
p

GMp
, (6.76)

where I3 is the moment about the symmetry axis. The resulting gravitational torque
was estimated and can be at least comparable to the accretion torque forB0 ∼ 107 G.
Internal fields of this magnitude, or even somewhat larger, are reasonable given that
the observed surface fields are 10MG � (Bp)0 � 100MG.

The detailed consequences of a distorted white dwarf were considered in
Campbell (1990). The primary is taken to have a magnetic moment mp, as shown
in Fig. 6.3, but to be a spheroidal body with its symmetry axis coincident with mp.
The moments of inertia about mp and orthogonal axes in the magnetic equatorial
plane are denoted by I3 and I⊥, respectively. Treating the secondary as a spherical
gravitational source, the torque it exerts on the primary is

Tg = 3GMs(I3 − I⊥)
D3 sin α sin βj × m̂p, (6.77)

where m̂p is given by (6.23). This expression follows from (A56) in the Appendix,
since cos θ = sin α sinβ, r̂ = j and e3 = m̂p.

If the secondary has a magnetic moment ms, as shown in Fig. 6.3, the primary
will experience a magnetic torque given by (6.22). It will also experience the
accretion torque given by (5.63)–(5.65). Since the primary is non-spherical, its
inertial angular velocity ω, with the subscript now dropped, and angular momentum
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Lwill not in general be parallel. It is therefore convenient to work in the body frame
coincident with the principal axes, thereby diagonalizing the inertia tensor. The
principal unit vectors are chosen so e3 = m̂p and hence e1 and e2 lie in the primary’s
magnetic equatorial plane. The Euler angles describing the orientation of the body
frameOx̄ȳz̄ relative to the orbital frameOxyz are (α, β,ψ). The transformation of
the components of a vector V in the orbital frame to those in the body frame is

V̄i = Rij Vj , (6.78)

where from (2.454), with β replacing φ, the elements of the rotation matrix are

R11 = cosα cosβ cosψ − sin β sinψ,

R12 = cosα sin β cosψ + cosβ sinψ,

R13 = − sinα cosψ,

R21 = − cosα cosβ sinψ − sin β cosψ,

R22 = − cosα sin β sinψ + cosβ cosψ,

R23 = sin α sinψ,

R31 = sin α cosβ,

R32 = sin α sin β,

R33 = cosα. (6.79)

In the synchronous state the angular velocity of the primary is ω = �, a constant
vector. In general, such a state cannot be one of zero torque since then L would be
conserved and ω would precess. Hence the synchronous orientation (αs, βs) must
be such that a torque acts to cancel the precession of ω, so resulting in a precession
of L.

Denoting the time derivative of a vector relative to inertial axes by d/dt , and that
relative to the body axes by a dot, in the body frame L obeys the equation

L̇ + ω × L = T, (6.80)

where T is the total torque acting on the primary. The angular momentum in this
frame is

L = I⊥(ω1e1 + ω2e2)+ I3ω3e3. (6.81)

In the synchronous state ω = � and hence

(
dω

dt

)
s

= ω̇s = 0, (6.82)
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so it follows from (6.81) that L̇s = 0. Equation (6.80) then gives

Ts = � × Ls (6.83)

for the synchronous torque. Equations (6.78), (6.81) and (6.83) yield the compo-
nents of this torque along the body axes as

Ts1 = �2(I3 − I⊥) sinαs cosαs sinψs, (6.84)

Ts2 = �2(I3 − I⊥) sinαs cosαs cosψs, (6.85)

Ts3 = 0. (6.86)

In general T will be the sum of the magnetic, gravitational, accretion and
dissipative torques. It follows from (6.22) and (6.77) that Tm and Tg satisfy (6.86),
since m̂p = e3. However, the accretion torque has a finite component in the e3
direction and so must be dominated by Tm and Tg if such a distorted primary is to
be synchronous. From the torque ratio (6.74), this requires a surface secondary field
of (Bs)0 � 103 G. The accretion torque is, accordingly, excluded in the following
analysis and the consistency of this assumption is subsequently checked. The effect
of the dissipation torque is considered in Chap. 7.

The components of Tm in the body frame are found from (6.24)–(6.26), together
with the rotational transformations given by (6.78) and (6.79), yielding

Tm1 = μ0mpms

4πD3 [sin γ cosψs(2 cos δ cosβs − sin δ sin βs)

+ sinψs{cos γ sin αs − sin γ cosαs(sin δ cosβs + 2 cos δ sin βs)}] , (6.87)

Tm2 = −μ0mpms

4πD3 [sin γ sinψs(2 cos δ cosβs − sin δ sin βs)

− cosψs{cos γ sin αs − sin γ cosαs(sin δ cosβs + 2 cos δ sinβs)}] ,
(6.88)

Tm3 = 0. (6.89)

The components of Tg are given by (6.23), and (6.77)–(6.79) as

Tg1 = 3GMs(I3 − I⊥)
D3 sin αs sinβs(cosβs cosψs − cosαs sinβs sinψs),

(6.90)

Tg2 = −3GMs(I3 − I⊥)
D3

sin αs sin βs(cosβs sinψs + cosαs sinβs cosψs),

(6.91)

Tg3 = 0. (6.92)
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It follows from the synchronous torque conditions (6.84) and (6.85) that

Ts1 sinψs + Ts2 cosψs = �2(I3 − I⊥) sin αs cosαs, (6.93)

Ts1 cosψs − Ts2 sinψs = 0. (6.94)

The torque component equations (6.87), (6.88), (6.90) and (6.91) then give

cosβs = − sin γ sin δ[
�2

C̄m

(I3 − I⊥)
I⊥ − cos γ

cosαs

]
sin αs

, (6.95)

C̄g

C̄m
= sin γ (sin δ sin βs − 2 cos δ cosβs)

sinαs sin βs cosβs
, (6.96)

where

C̄m = μ0mpms

4πD3I⊥
, (6.97)

C̄g = 3GMs(I3 − I⊥)
D3I⊥

. (6.98)

Synchronous states can be found by specifying�2, C̄m, (I3 − I⊥)/I⊥ and the orien-
tation (γ, δ) in (6.95), then choosing values of αs to determine βs. Equation (6.96)
then determines C̄g/C̄m.

The quantities C̄m and C̄g can be written as

C̄m = π

10μ0

MsR
3
p (Bp)0(Bs)0

MI⊥
, (6.99)

C̄g = 3�2Ms

M

(I3 − I⊥)
I⊥

, (6.100)

where M = Ms + Mp. For a lobe-filling secondary, choosing � fixes Ms, then
this and the chosen values of C̄m and (I3 − I⊥)/I⊥, together with the determined
ratio C̄g/C̄m, fixes C̄g and hence M via (6.100). The values of Ms and M then
giveMp. For a given white dwarf polar field (Bp)0, substitution in (6.99) yields the
secondary’s polar field (Bs)0.
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6.5.2 Stability of the Synchronous State

In order to test the linear stability of the synchronous state normal modes of
oscillation are sought, though it is not clear a priori that such modes exist here,
since the basic state is dynamical.

The equation describing the evolution of small perturbations in L about the
synchronous state, expressed in the body frame, is

L̇′ + � × L′ = T′
m + T′

g, (6.101)

where

L′ = I⊥(ω′
1e1 + ω′

2e2)+ I3ω′
3e3. (6.102)

Perturbations must be calculated in an inertial frameOXYZ and then expressed
in the body frame. To linear order, only the synchronous body frame is required. In
an inertial frame ω has components

ωX = ψ̇ sin α cosφ − α̇ sin φ, (6.103)

ωY = ψ̇ sin α sin φ + α̇ cosφ, (6.104)

ωZ = φ̇ + ψ̇ cosα, (6.105)

where φ = β + �t . Perturbation about the synchronous state α̇ = ψ̇ = 0, φ̇ = �,
and the use of the transformation (6.79) with φ replacing β, gives

ω′
1 = α̇′ sinψs − β̇ ′ sin αs cosψs, (6.106)

ω′
2 = α̇′ cosψs + β̇ ′ sinαs sinψs, (6.107)

ω′
3 = β̇ ′ cosαs + ψ̇ ′. (6.108)

From (6.22) and (6.77), the perturbations in Tm and Tg are

T′
m = mpe′

3 × Bsp, (6.109)

T′
g = 3GMs(I3 − I⊥)

D3 (S′j × e3s + Ss j × e′
3), (6.110)

where S = sinα sin β.
The components of the equation of motion (6.101) are found using (6.19)–

(6.21), (6.23), (6.78), (6.79) and (6.102)–(6.110). Suitable linear combinations
of the x̄ and ȳ-components are taken, using multiples of sinψs and cosψs , to
generate equations independent of ψs . The resulting equations, together with the
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z̄-component, are

I⊥α̈′ + (I3 − I⊥)� sin αs cosαsβ̇
′ + I3� sinαsψ̇

′

− Cm[sin γ sin αs(sin δ cosβs + 2 cos δ sin βs)+ cos γ cosαs ]α′

+ Cg[(cos2 αs − sin2 αs) sin2 βsα′ + sin αs cosαs sin βs cosβsβ ′] = 0,
(6.111)

I⊥� cosαsα̇′ + I⊥ sin αsβ̈ ′

− Cm[sin γ sin2 αs(sin δ cosβs + 2 cos δ sin βs)+ cos γ sin αs cosαs ]β ′

+ Cg[cosαs sin βs cosβsα′ + (cos2 βs − sin2 αs sin2 βs) sinαsβ ′] = 0,
(6.112)

− I⊥� sinαsα̇′ + I3 cosαsβ̈ ′ + I3ψ̈ ′ − Cm sin γ (sin δ sin βs − 2 cos δ cosβs)α′

− Cm[sin γ sin αs cosαs(sin δ cosβs + 2 cos δ sin βs)− cos γ sin2 αs ]β ′

+ Cg[sinαs sinβs cosβsα′ − sin2 αs cosαs sin2 βsβ ′] = 0, (6.113)

where Cm = I⊥C̄m and Cg = I⊥C̄g.
The angular perturbations can be written as the product of a constant amplitude

and an exponential time dependence, so

α′ = a exp(iσ t), β ′ = b exp(iσ t), ψ ′ = c exp(iσ t). (6.114)

Substitution in the equations of motion (6.111)–(6.113) yields a linear set of
equations for a, b and c. Vanishing of the determinant of their coefficients, for
consistency, gives the following characteristic equation for σ ,

σ 6 + C1σ
4 + C2σ

2 + C3σ = 0, (6.115)

where

C1 = −�2 + 2C̄mW − C̄g[cos2 βs + sin2 βs(cos2 αs − 2 sin2 αs)], (6.116)

C2 = −�2C̄m sin αs sin γ (sin δ cosβs + 2 cos δ sin βs)

−�2C̄g sin2 αs(sin2 βs − cos2 βs)+ C̄2
mW

2



208 6 AM Her Stars: The Maintenance of Synchronism

− C̄2
g sin

2 βs[cos2 αs cos2 βs − (cos2 αs − sin2 αs)(cos
2 βs − sin2 αs sin

2 βs)],
− C̄mC̄gW [cos2 βs − sin2 αs sin

2 βs + sin2 βs(cos
2 αs − sin2 αs)], (6.117)

C3 = −i (I3 − I⊥)
I⊥

�2C̄g sin2 αs cos2 αs sin βs cosβs, (6.118)

with

W = sin γ sin αs(sin δ cosβs + 2 cos δ sin βs)+ cos γ cosαs. (6.119)

It follows from the synchronous state condition (6.96) that C̄m ∼ C̄g. The ratio
C̄m/�

2 can be expressed, from (6.99) for C̄m, as

C̄m

�2 = 4.6 × 10−10q3

(
(Bp)0
20MG

)(
(Bs)0
103 G

)(
Rp

8.67 × 106 m

)(
Ms

0.2M�
)3

(
I⊥
I

)( k2p
0.2

)(
Mp

0.6M�

)(
M

0.8M�
) .

(6.120)

The quantity C̄m is of order σ 2m, where τm = 2π/σm is the characteristic response
time of the primary to the torque perturbations T′

m and T′
g. Consequently

C̄m/�
2 ∼ C̄g/�

2 � 1. (6.121)

Limits can be placed on the range of the solutions for σ from (6.115) by noting
that, if the inertial terms dominate the torque terms in the equations of motion, then
σ ∼ �, otherwise σ ∼ σm. Equations (6.116)–(6.119) then show that the linear term
in (6.115) is always negligible, due to the above small ratios, so the characteristic
equation becomes

σ 4 + C1σ
2 + C2 = 0. (6.122)

The σ 2 = 0 solution, which results from the ψ-independence of the torques, has
been cancelled.

The solutions of (6.122) give the normal mode frequencies as

σ 2 = 1

2
(−C1 ±�2

√
U), (6.123)
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where

U =1 − 4
C̄m

�2 cos γ cosαs + 2
C̄g

�2 (cos
2 αs − sin2 αs cos

2 βs)

+
(
C̄g

�2

)2

(cos2 βs + cos2 αs sin
2 βs)

2. (6.124)

Expansion to first order in C̄m/�
2 and C̄g/�

2 gives the solutions

σ 2+ = �2, (6.125)

σ 2− = − C̄m sin γ sin αs(sin δ cosβs + 2 cos δ sin βs)

+ C̄g sin2 αs(cos2 βs − sin2 βs). (6.126)

The nature of the modes can now be investigated. For σ+ = �, the use of the
angle perturbation (6.114) in the equations of motion (6.111)–(6.113) yields

− I⊥a + i(I3 − I⊥) sinαs cosαsb + iI3 sin αsc = 0, (6.127)

and

[(I⊥ − I3) sin2 αs + I3]b + I3 cosαsc = 0, (6.128)

where the torque terms have been dropped, since they are of relative order C̄m/�
2.

Because C̄m/�
2 ∼ 10−9, it follows from (6.95) that (I3 − I⊥)/I⊥ must be of this

order to allow synchronous solutions. Hence the above equations give

a = i I3
I⊥

sinαsc, (6.129)

b = − cosαsc. (6.130)

The angular velocity for the σ+ mode is therefore

ω′ = i�c
[
i
I3

I⊥
sin αs α̂s + ψ̂ s − (ψ̂ s · �̂)�̂

]
exp(i�t). (6.131)

It follows that ω′ · �̂ = 0 and, relative to the orbital frame, ω′ rotates with angular
frequency �. This is essentially the inertial mode corresponding to (6.67), since
I3/I⊥ is close to 1. The Euler angle perturbations vary with a period 2π/� which is
much shorter than the primary’s response time to the torque perturbations, so they
are ineffective in this mode.
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Equation (6.126) shows that the remaining mode frequency has the property
σ 2− ∼ C̄m � �2. The equations of motion (6.111) and (6.112) then yield

a = 0, (6.132a)

c = 0 (6.132b)

to high accuracy. Hence this mode has an angular velocity perturbation

ω′ = iσ−b exp(iσ−t)�̂, (6.133)

and is therefore aligned with �. This is the same rotationally aligned magnetic mode
as that given by (6.69). Its existence can be seen directly by combining the equations
of motion (6.112) and (6.113) to eliminate the α̇′ terms. If α′ and ψ ′ are small, this
gives a harmonic equation for β ′ with frequency σ−. Since any angular velocity
perturbation can be expressed as a superposition of an inertial mode and the aligned
mode, the sign of σ 2− determines the stability of the synchronous state.

6.5.3 Distribution of Synchronous States

To obtain an example of synchronous orientations, C̄m/�
2 = 1.5 × 10−9 is used.

Specifying (γ, δ) and using a distortion of (I3 − I⊥)/I⊥ = 10−9, orientations
(αs, βs) can be found satisfying (6.95). Taking P = 2.1 h, Ms = 0.2M� and
(Bp)0 = 2 × 103 T (2 × 107 G), (6.96) and (6.100) for C̄g/C̄m and C̄g determine
Mp and then (6.120) for C̄m/�

2 fixes (Bs)0. Stability can be tested using (6.126)
for σ 2−. Table 6.2 shows a sample of stable synchronous orientations.

It is seen that the surface magnetic field on the secondary is∼ 103 G, so justifying
neglect of the accretion torque. For given (γ, δ) synchronous states are possible for
a wide range ofMp. States in which the accreting pole leads the motion of the line
of stellar centres are possible, as well as those in which it lags. It is noted that,
for all other parameters fixed, (Bs)0 cannot be chosen independently of (γ, δ) if
synchronous states are to result. Equation (6.95) is invariant to the transformation
βs → −βs . However, (6.96) for C̄g/C̄m does not possess this invariance and hence
different values ofMp and (Bs)0 result. The synchronous state distribution generated
in this way is similar to that shown in Table 6.2, but with the south magnetic pole
accreting.

Table 6.3 shows synchronous orientations for (I3 − I⊥)/I⊥ = −10−9. This case
could correspond to the distortion caused by an internal toroidal field proposed by
Katz (1989), where, from (6.76), B0 ∼ 107 G.
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Table 6.2 Stable states for
(I3 − I⊥)/I⊥ = 10−9 (from
Campbell 1990)

γ δ αs βs Mp/M� (Bs)0/103 G

20 125 166.0 135.0 0.41 0.43

20 125 165.0 131.2 0.88 2.68

20 206 164.0 70.7 0.36 0.32

20 206 161.0 73.9 1.13 6.18

40 143 149.0 118.7 0.37 0.33

40 143 145.0 114.8 0.89 2.81

40 216 149.5 61.5 0.32 0.25

40 216 145.5 65.4 0.76 1.77

60 146 130.0 115.9 0.43 0.47

60 146 125.0 112.5 0.93 3.14

60 192 126.0 81.6 0.47 0.58

60 192 120.0 82.9 1.13 6.15

80 118 112.5 146.9 0.37 0.33

80 118 109.5 140.8 0.91 2.96

80 242 112.5 33.1 0.37 0.33

80 242 109.5 39.2 0.91 2.96

100 126 69.0 137.7 0.39 0.37

100 126 73.0 131.2 0.96 3.50

100 242 68.0 34.2 0.43 0.46

100 242 71.0 40.2 1.09 5.22

120 134 48.0 126.3 0.48 0.60

120 134 52.0 122.2 1.05 4.58

120 200 52.0 75.3 0.42 0.43

120 200 57.0 77.2 0.80 2.05

140 156 32.5 108.0 0.36 0.32

140 156 37.5 105.2 0.91 2.91

140 218 32.0 61.7 0.47 0.57

140 218 34.5 64.1 0.83 2.31

160 120 14.0 138.4 0.62 1.09

160 120 14.5 136.1 1.02 4.15

160 240 13.5 39.2 0.39 0.37

160 240 14.5 43.9 1.02 4.15

6.6 Orbital Torques

In the foregoing analysis the magnetic fields of the primary and secondary stars
were taken as dipolar, with corresponding moments mp and ms. King et al. (1990)
pointed out that there is a non-central force between the dipoles, and calculated the
resulting magnetic orbital torque.
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Table 6.3 Stable states for
(I3 − I⊥)/I⊥ = −10−9 (from
Campbell 1990)

γ δ αs βs Mp/M� (Bs)0/103 G

20 125 121.5 106.0 0.42 0.45

20 125 126.5 112.5 0.85 2.47

20 206 117.0 83.1 0.37 0.34

20 206 123.0 80.3 1.09 5.32

40 143 108.0 103.0 0.37 0.35

40 143 110.5 105.8 0.86 2.54

40 216 107.5 77.8 0.33 0.26

40 216 110.0 75.2 0.75 1.72

60 146 100.0 102.9 0.36 0.33

60 146 101.5 105.6 1.07 4.97

60 192 99.5 85.6 0.43 0.47

60 192 100.5 84.9 0.97 3.58

80 118 94.0 118.6 0.33 0.26

80 118 94.5 124.4 0.76 1.80

80 242 94.0 61.4 0.33 0.26

80 242 94.5 55.6 0.76 1.80

100 126 86.0 116.0 0.54 0.79

100 242 86.0 61.4 0.33 0.26

100 242 85.5 55.6 0.76 1.80

120 134 79.0 109.0 0.41 0.43

120 134 77.5 112.9 1.13 6.09

120 200 80.5 82.7 0.38 0.35

120 200 79.5 81.7 0.80 2.08

140 156 73.0 98.1 0.37 0.33

140 156 70.5 99.8 0.92 3.01

140 218 71.0 75.6 0.50 0.64

140 218 69.5 73.8 0.83 2.26

160 120 54.5 112.6 0.62 1.06

160 120 51.0 117.6 1.03 4.37

160 240 58.0 71.5 0.39 0.38

160 240 51.0 62.4 1.03 4.37

The primary’s magnetic field can be expressed as

Bp = ∇ ×
(
μ0mp × r
4πr3

)
= μ0

4πr3
[3(r̂ · mp)r̂ − mp]. (6.134)

The torque on the secondary is then

Tms = ms × Bp(rs) = μ0

4πD3 [3(n · mp)ms × n − ms × mp], (6.135)
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where n is a unit vector directed from the primary to the centre of the secondary.
Similarly the torque on the primary due to interaction with the secondary’s magnetic
field is

Tmp = μ0

4πD3 [3(n · ms)mp × n − mp × ms]. (6.136)

Equations (6.135) and (6.136) show that, in general, Tms + Tmp 
= 0. This result is
a consequence of a non-central force between the dipoles, arising from the spatial
dependence of their fields. The force on ms due to the primary’s field Bp, given
by (6.134), is

Fsp = [∇(ms · Bp)]r=Dn

= μ0

4πD4

[{3(mp · ms)− 15(n · mp)(n · ms)}n
+3(n · ms)mp + 3(n · mp)ms

]
. (6.137)

The force on the primary due to the secondary’s field is Fps = −Fsp. The non-central
terms in (6.137) lead to a magnetic orbital torque

Tmo = Dn × Fsp = 3μ0

4πD3 [(n · ms)n × mp + (n · mp)n × ms]. (6.138)

If follows from (6.135), (6.136) and (6.138) that

Tms + Tmp + Tmo = 0. (6.139)

Hence the total magnetic torque vanishes, corresponding to no magnetic coupling
beyond the binary system due to these torques.

The angular momentum evolution equations for the primary, secondary and orbit
are

dLp

dt
= Ta + Tmp + Tdp + Tg, (6.140)

dLs

dt
= Tbr + Tms + Tds + Ttid, (6.141)

dLo

dt
= Tgr − Ta + Tmo + Tdo − Tg − Ttid, (6.142)

where the non-dissipative magnetic torques obey (6.139). These evolution equations
apply to an asynchronous state, with all torques operable. The dissipative magnetic
torques, arising from the inductive processes considered in Chap. 4, satisfy

Tds + Tdp + Tdo = 0, (6.143)
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where Tdo is an orbital torque due to a non-central force between the stars.
The gravitational torque Tg occurs if the primary is non-spherical, and the tidal
torque Ttid results if the secondary has asynchronous motions with dissipation. A
magnetically influenced wind from the secondary generates the braking torque Tbr,
while Tgr is the orbital torque due to gravitational radiation losses. Adding (6.140)–
(6.142), then using the total torque conservation equations (6.139) and (6.143), gives

dLo

dt
+ dLs

dt
+ dLp

dt
= Tbr + Tgr. (6.144)

This shows that the total angular momentum of the system evolves under the
influence of magnetic wind braking and gravitational waves, both of which remove
angular momentum.

The tidal torque is believed to keep the secondary’s spin near to corotation with
the orbit, while the primary may be kept in synchronism by the foregoing locking
mechanisms. The stellar spin angular momenta are then given by

|Ls| = k2sMsR
2
s� (6.145a)

and

|Lp| = k2pMpR
2
p�, (6.145b)

where typically k2s ∼ k2p ∼ 0.2. The orbital angular momentum can be expressed as

|Lo| = MsMp

M
D2�. (6.146)

It follows that |Lo| � |Ls| � |Lp|, while, due to synchronous rotations, the angular
momentum evolution time-scales are the same. Hence |dLo/dt| � |dLs/dt| �
|dLp/dt| and (6.144) can be written

dLo

dt
= Tbr + Tgr, (6.147)

to a good approximation. This removal of orbital angular momentum drives
mass transfer (see Sects. 2.4.3 and 13.3.1) and the binary evolves on the time-
scale τM = Ms/|Ṁs|. Typically, for an AM Her system, τM ∼ 109 year. The
characteristic adjustment time of perturbations from synchronism of the primary
is given by (6.18), typically being P0 ∼ 40 year. Hence the corotating primary has
ample time to adjust to the orbital evolution.
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6.7 Summary and Discussion

The magneto-gravitational balance, unlike the magneto-accretion balance, can
produce synchronous states in which the accreting pole leads the motion of the line
of stellar centres, as well as other states. Both balances have the property that in 3D
situations the secondary’s surface magnetic field cannot be chosen independently of
its orientation, if synchronous states of the primary are to exist. In both cases these
restrictions are lifted if the magnetic torque dominates, so determining (αs, βs).
This requires (I3 − I⊥)/I⊥ < 10−9 and (Bs)0 ∼ 103 G, or larger distortions and
(Bs)0 > 103 G. Secondary surface fields of such values are expected to occur (see
Chap. 12). Observations of DP Leo by Beuermann et al. (2014), over two extended
periods, are consistent with the white dwarf oscillating about synchronism with a
period of � 60 year. The foregoing theory can account for such periods.

Cases in which the white dwarf has a quadrupolar component in its magnetic
field, considered so far, require field-channelling to only be operable very close
to the star. The accretion torque then only has a significant vertical component.
However, observations and simulations suggest channelling often occurs well before
material approaches the primary (e.g. Schwope et al. 1997).

References

Beuermann, K., Dreizler, S., Hessman, F.V., Schwope, A.D., 2014, A&A, 562, A63.
Campbell, C.G., 1985, MNRAS, 215, 509.
Campbell, C.G., 1989, MNRAS, 236, 475.
Campbell, C.G., 1990, MNRAS, 244, 367.
Cropper, M., 1988, MNRAS, 231, 597.
Joss, P.C., Katz, J.I., Rappaport, S.A., 1979, ApJ, 230, 176.
Katz, J.I., 1989, MNRAS, 239, 751.
King, A.R., Frank, J., Whitehurst, R., 1990, MNRAS, 244, 731.
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Chapter 7
AM Her Stars: The Attainment
of Synchronism

Abstract Even if a synchronous state exists, with a stable balance of torques,
certain conditions must be met if such a state is to be attained. The synchronous
state is a magnetic orientation corresponding to a minimum in a potential energy
well. As corotation is approached from an over-synchronous state, the primary must
be able to lose its remaining synodic rotational energy plus the energy gained via the
accretion torque over a synodic period to prevent over-shooting of the synchronous
state. Synodic energy is removed via dissipation of the magnetic field induced in
the secondary star, and synchronism can only be attained if the stellar magnetic
diffusivity is below a critical value η0. For values of η > η0, over-shooting of
the synchronous state will keep occurring since the primary cannot lose sufficient
rotational energy to become trapped in the energy well. A slightly asynchronous
state then results, with a variation of the angular velocity due to the periodic
imbalance of the torques. A stronger surface magnetic field on the primary favours
the attainment of synchronism by raising the value of η0. These restrictions do not
occur for an under-synchronous primary.

7.1 The Combined Effect of Torques

Having calculated the torques acting on the primary, their combined effect must be
considered. Even if a stable synchronous state exists, it is not clear a priori that this
state can be reached in the presence of accretion. It will be seen that the situations of
initially under and over-synchronous states are not symmetrical as far as attaining
corotation is concerned.

In considering the approach to synchronism it is valid to use synodically averaged
torques provided that the instantaneous synchronization time significantly exceeds
the synodic period. Hence

τsyc � 2π

|ω| (7.1)
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is necessary. The synchronization torques were calculated in Chap. 4 for the
vacuum surroundings, time-dependent case and for the steady aligned case with
a magnetosphere. The torques are of similar magnitude and both have a maximum
value attained at an intermediate value of ω/�o. They can differ at higher values of
asynchronism, but these differences do not affect the key results reached here and
so the vacuum case can be used.

The averaged dissipation torque, given by (4.79), can be written as

TD = ∓5π(Bp)
2
0R

3
sR

6
p sin

2 α

μ0D6 f (|ω|/η) k, (7.2)

where the negative and positive signs apply to over-synchronous and under-
synchronous states, respectively. In the absence of other torques, this dissipation
torque would synchronize the primary in a characteristic time

τsyc = k2pMpR
2
p |ω|

|TD| , (7.3)

where k2p lies in the range 0.1 < k
2
p < 0.2. In general τsyc is a function of the degree

of asynchronism.
The synodic average of the accretion torque is given by (5.81) as

Ta = A2�Ṁpk. (7.4)

If material becomes field-channelled far from L1 some angular momentum is fed
back into the orbit and the magnitude of Ta is reduced by � 6%. It was shown in
Sect. 4.4 that asynchronousmotions can lower or raise the value of |Ṁs|, for over and
under-synchronous states respectively. However, the frequency independent form
will be used here to illustrate the essential features of the torque balances, and
modifications to allow for the dependence on ω can be made when needed.

For simplicity, the case in which the dipole moment lies in the orbital plane was
considered by Campbell (1986). The system DP Leo is believed to have its main
accretion column close to the orbital plane (e.g. Biermann et al. 1985). However,
the conclusions reached here regarding the attainment of synchronism should have
general validity. When the primary’s dipole moment lies in the orbital plane, it
follows from (6.24)–(6.26) and (6.77), with α = π/2 and β = ωt , that the non-
dissipative magnetic and gravitational torques have zero synodic averages. The spin
evolution of the primary is therefore determined by the action of TD and Ta.

The magnitudes of TD and Ta are plotted, on a logarithmic scale, in Fig. 7.1 as
a function of the asynchronism ω/�o. Equations (7.2) and (7.4) show that only
in the over-synchronous case can the torques have the possibility of cancelling,
since in the under-synchronous case TD and Ta have the same sign. It is noted that
TD vanishes as ω tends to zero, while Ta remains finite. Hence in the absence of
a locking mechanism the primary cannot attain exact synchronism. The function
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log |Ta|

Fig. 7.1 The dissipation torque and accretion torque versus degree of asynchronism (from
Campbell 1986)

f (ω/η), shown in Fig. 4.2, has a single maximum so, in general, there will be two
finite values of ω at which TD + Ta vanishes.

The parameters used to plot Fig. 7.1 are Ms = 0.14M�, Mp = 0.4M�,
Rp = 1.08 × 107 m, and A = 0.6D. These values are consistent with a lobe-filling
secondary star, and employ (2.294) for A/D, the mass-radius relation (2.297) and
the period-mass relation (2.298) with q = 1.1. The primary’s polar magnetic field
and the accretion rate are taken as (Bp)0 = 1.4×103 T and Ṁp = 10−10M�year−1.
It is noted that the qualitative nature of the curves shown in Fig. 7.1 is independent
of the precise parameters used.

Figure 7.1 illustrates that a critical accretion rate, Ṁc, exists at which the
accretion torque line is tangent to the dissipation torque curve. If Ṁp exceeds Ṁc
then Ta exceeds |TD| whatever the degree of asynchronism and the primary is spun
up. The frequency-dependent accretion torque, due to the dependence of Ṁs on ω,
derived in Sect. 4.4, has a minimum corresponding to the maximum in f (ω/η). This
can be accounted for here by replacing Ṁp in (7.4) by the reduced form f̄ Ṁp, with
f̄ < 1. The critical accretion rate then arises when the minimum accretion torque
equals the maximummagnetic torque. The function f (|ω|/η) is given by (4.56) and
can be written as

f (ω/η) = f1(ω/η)+
(
Rs

D

)2

f2(ω/η), (7.5)

where

f1 = 3

4

(
C2
1δ

′
1

)
s
F1 and f2 =

(
C2
2δ

′
2

)
s
F2. (7.6)
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It follows from (4.56)–(4.65) that f1 and f2 are pure functions of ω/η. Their
maximum values are found to be 8.6 × 10−2 and 0.242, respectively. The factor
(Rs/D)

2 is weakly dependent on the stellar mass ratio, for a lobe-filling secondary,
so the maximum value of f is essentially independent of the binary parameters.
Equating the maximum value of |TD| to the minimum value of the accretion torque
gives

Ṁc =
N1

(
(Bp)0
14MG

)2 (
Rp

1.08 × 107 m

)6

f̄ q
7
2

(
M

0.54M�
) 8

3
(

Ms
0.14M�

) 4
3

M�year−1, (7.7)

where

N1 = 8.18× 10−10

[
0.86 + 2.42

(
Rs

D

)2
]
sin2 α. (7.8)

It is noted that Ṁc does not depend on η, because f is a function of ω/η and
changing η simply changes the value of ω at which the maximum in this function
occurs.

It follows from Fig. 7.1 that, for Ṁp < Ṁc, two synodic frequencies exist at
which TD cancels Ta. This is still the case for the frequency-dependent form of
accretion torque. It is clear that the frequency ω2 is unstable, since a small change
in ω about this state causes the primary to spin away from it. The smaller frequency
ω1 corresponds to a stable state. Hence, in the absence of a locking mechanism,
if the initial asynchronism is < ω2/�o, the primary will spin down to the slightly
asynchronous state with synodic period P1 = 2π/ω1.

An expression can be derived for ω2/�o, the value of the initial asynchronism
above which the primary will be spun away from corotation, since then Ta exceeds
|TD|. This is done by using the fact that, for Ṁp significantly less than Ṁc, the spin
rate ω2 lies in the regime of low field penetration in which the dissipation torque is
given by the asymptotic form (4.89). Equating this to (7.4) for Ta gives

ω2

�o
=
N2

(
(Bp)0
14MG

)4 (
Rp

1.08 × 107 m

)12 (
η

5 × 108 m2s−1

)

q
15
2

(
Ṁp

10−10M� year−1

)2 (
M

0.54M�
) 16

3
(

Ms
0.14M�

) 11
3

(7.9)
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where

N2 = 7.00× 10−2

[
1 + 16

3

(
Rs

D

)2
]2

sin4 α. (7.10)

In general, both the time-dependent induction effect and that due to motions induced
in the secondary will operate. The magnetic torque curve would then have a reduced
turn down at higher the values of ω/�o, or saturate at a constant value depending
on the relative strengths of the two effects. This would increase the value of ω2 or,
in the case of saturation, remove this restriction. Hence, for |Ṁs| < Ṁc, spin down
will occur for ω/�o � 0.1, with no restriction if the inductive magnetic torque
saturates.

The synodic period P1 of the slightly asynchronous state can be found by
utilizing the fact that, for Ṁp significantly less than Ṁc, the spin rate ω1 corresponds
to the regime of high field penetration in which the dissipation torque is given
by (4.92). Equating this to Ta gives

P1 =
N3

(
(Bp)0
14MG

)2 (
Rp

1.08 × 107 m

)6 (
Ms

0.14M�
) 2

3

q
3
2

(
Ṁp

10−10M� year−1

)(
M

0.54M�
) 8

3
(

η

5 × 108 m2s−1

) year, (7.11)

where

N3 = 5.16

[
1 + 48

35

(
Rs

D

)2
]
sin2 α. (7.12)

The synchronization time in the high field penetration regime is given by (4.93), and
is independent of ω.

The inequality (7.1) gives the condition for the validity of the synodic time
average. The synchronization time increases monotonically with ω, and only values
of ω � ω1 are of interest here. Condition (7.1) is therefore equivalent to τsyc/P1 �
1. Using the previously quoted orbital parameters, together with α = π/2, (4.93)
and (7.11) give τsyc/P1 = 22, showing that the time averaging is just valid in
this case. However, it is noted that τsyc/P1 is proportional to η2 and the value of
η is uncertain by at least an order of magnitude. It follows that, for fixed orbital
parameters, there is a minimum value of η below which τsyc/P1 < 1 so invalidating
the synodic averaging process when ω is close to ω1, although it will still be valid
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for ω � ω1. Equations (4.93) and (7.11) give this minimum diffusivity value as

η0 =
N4

(
(Bp)0
14MG

)2 (
Rp

1.08 × 107 m

)5 (
Ms

0.14M�
) 5

6

q
5
4

(
k2p
0.2

) 1
2 (

Ṁp

10−10M� year−1

) 1
2
(
Mp

0.4M�

) 1
2 (

M
0.54M�

) 7
3

m2s−1

(7.13)
where

N4 = 1.40 × 108
[
1 + 48

35

(
Rs

D

)2
]
sin2 α. (7.14)

In the absence of a locking mechanism, the spin rate of the primary will evolve
towards ω1 irrespective of whether η is below or above η0, or whether its initial
spin is under or over-synchronous. For η � η0 the primary will settle at ω1
in an essentially time-independent state. For η < η0 the primary will reach a
state in which its angular velocity varies about ω1 since TD + Ta will vary about
zero as the dissipation varies, and the star can respond to this. Without a stable
locking mechanism the white dwarf can never reach synchronism in the presence of
accretion.

7.2 The Effect of a Locking Mechanism

Mechanisms for locking the white dwarf in corotation were investigated in Chap. 6.
Assuming that a stable synchronous state exists, there are necessary conditions for
the primary to be able to reach this state while accretion is occurring. The locking
mechanism of Sect. 6.2 will be considered here and the conditions derived under
which the primary can attain corotation. These conditions have a general validity,
independent of the precise locking mechanism considered.

The sum of the accretion and non-dissipative magnetic torques on the primary is
given by (6.10) which, by using the synchronous condition T = 0, can be written as

T = A2�Ṁp

[
1 − sin(β − δ̄)

sin(βs − δ̄)
]
k, (7.15)

where βs is the stable synchronous orientation, and the angle δ̄ is shown in Fig. 6.1.
The work done in rotating the primary from some reference orientation β0 to a

general orientation β is

W(β) = −
∫ β
β0

T (β)dβ, (7.16)
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so (7.15) gives

W(β) = −A2�Ṁp

[
(β − β0)+ cos(β − δ̄)− cos(β0 − δ̄)

sin(βs − δ̄)
]
. (7.17)

It is clear that the form of W(β) is independent of the orbital parameters. The first
term in the bracket arises from the work done against the accretion torque, while the
second term derives from the work done against the magnetic torque. It is seen that
for β = β0 ± 2nπ , where n is an integer, the work done against the accretion torque
is ∓2nπA2�Ṁp, while no work is done against the magnetic torque for a complete
number of rotations of the primary.

Figure 7.2 is a plot ofW(β)/A2�Ṁp for βs = 76◦, δ̄ = 50◦ and β0 = βs − 2π .
The synchronous orientation occurs at local minima in W(β) and adjacent minima
differ in height by 2πA2�Ṁp due to the work done against Ta. Similarly, adjacent
maxima in W(β) differ in height by 2πTa = 2πA2�Ṁp and as a consequence of
this it is necessary to distinguish between the cases of an initially under-synchronous
and over-synchronous primary.

An Initially Under-Synchronous Primary In this case ω = β̇ is negative and
both the dissipation and accretion torques act to reduce |ω|. Since Ta and TD are
both positive a state in which they cancel cannot occur as ω tends to zero. The
synodic rotational energy of the primary will decrease until it is just sufficient to
allow the star to pass through a maximum inW(β), such as point B in Fig. 7.2. It is
then clear that after passing through B the primary cannot gain sufficient rotational
energy to allow it to reach the next maximum at A and hence β will oscillate in the
well, eventually settling at βs due to the action of the dissipation torque.

W (β)

A2ΩṀp
3
2
1
0
-1
-2
-3
-4
-5
-6

-7
-8
-9
-10

-11

−π

A

0 βs π 2π β

B

Fig. 7.2 The function W(β)/A2�Ṁp, showing the synchronous state βs (from Campbell 1986)
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An Initially Over-Synchronous Primary For an over-synchronous primary ω =
β̇ is positive and TD is negative. Figure 7.1 shows that forω1 < ω < ω2, |TD| exceeds
Ta and hence ω decreases. However, synchronism at βs can only result if a value
of ω exists such that when the primary has passed through a maximum in W(β)
(e.g. point A), at least its existing synodic rotational energy plus 2πTa is dissipated
before it can reach the next maximum (i.e. point B). The dissipation torque will then
vary significantly over a synodic rotation period, but the required synchronization
condition is approximately given by

4π(|TD| − A2�Ṁp) ≥ k2pMpR
2
pω

2. (7.18)

The value of ω satisfying (7.18) will lie in the regime of high field penetration, in
which TD is given by (4.92). The equality in (7.18) then gives a quadratic equation
for ω and, for given orbital parameters, the condition for its roots to be real places a
maximum value on the magnetic diffusivity of the secondary. To within a factor of√
2, the expression so obtained for this limiting value of η is the same as that for η0

given by (7.13). This is a result of the fact that (7.18) is essentially equivalent to the
condition τsyc � 2π/ω1.

If η � η0 synchronism cannot be attained in the presence of accretion since the
primary will always have too much synodic rotational energy to be dissipated in one
synodic cycle. Then, despite the fact that a stable synchronous state exists at βs , the
lowest value attained by ω will be ω1, as in the case when no locking mechanism
is present. If η < η0 then the primary will ultimately become trapped in the energy
well about βs and settle to the locked state.

7.3 Summary and Discussion

The form of W(β), and hence the above conclusions, will be unchanged for any
torque TB(β) balancing accretion which has a vanishing integral around one cycle. If
the balancing torque has a finite cyclic integral then the height difference of adjacent
maxima inW(β) would differ from that shown in Fig. 7.2. In the special case of the
cyclic integral of TB exactly cancelling that of Ta there would be no height difference
in adjacent maxima of W . Synchronism would then ultimately result whether the
primary was initially under or over-synchronous, without a limit on the value of η.
However, apart from such a special coincidence, there would be a limiting value of
η necessary to ensure that the primary becomes trapped in the energy well about βs .

It was shown in Sect. 6.3 that the characteristic ratio of the accretion torque to the
magnetic torque, denoted by Q, is given by (6.74). For primary fields of (Bp)0 �
7×107 G it follows that, for typical parameters,Q � 10−2. In such cases, η0, given
by (7.13), becomes sufficiently large that the condition η < η0 for the attainment
of synchronism is likely to be satisfied. As pointed out by Campbell and Schwope
(1999), it is conceivable that some AM Her systems may satisfy the conditions for
attaining synchronism, whilst others may not. In the latter cases small degrees of
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asynchronism would result. Observations indicate that most AM Her systems are
close to corotation, but several systems have significant degrees of asynchronism
(e.g. Pavlenko 2006; Lipkin & Liebowitz 2008).

Although the two-dimensional case, with accretion in the orbital plane, was
considered here, the conditions for attaining synchronism should be similar in the
general three-dimensional case. In particular, a limiting value of η will generally
result.
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Chapter 8
Binaries with Partial Accretion Discs

Abstract The intermediate polars have white dwarf primary stars with magnetic
moments strong enough to disrupt the inner region of their accretion discs. Matter
is channelled from the inner edge of the disc on to the star via an accretion curtain
flow. The vertical shear between the stellar magnetosphere and the disc leads to the
creation of toroidal magnetic field from the poloidal component, and the resulting
magnetic stresses cause angular momentum exchange to occur between the star and
the disc. Angular momentum is also transferred through the curtain flow. If the
magnetic field winding becomes sufficiently large, field lines can open and channel
wind flows from the disc and star. A range of spin behaviour can result for the
primary star. Some X-ray binary pulsars and the accreting millisecond pulsars have
magnetic neutron star primaries which disrupt the inner region of their discs, and so
these systems have similarities to the intermediate polars. The magnetic disruption
of the disc and channelling of the curtain flow pose MHD problems. The basic
properties of these systems are reviewed here

8.1 Introduction

The intermediate polars, some X-ray binary pulsars and the accreting millisecond
pulsars are believed to contain magnetic primary stars accreting from partially
disrupted discs. The primary magnetic moments are weaker than those occurring in
AM Her stars, so partial accretion discs can form. The accreting star has a stronger
magnetic interaction with the differentially rotating disc than with the synchronized
secondary. As a consequence, the spin behaviour of primary stars in these partial
disc systems is very different from that observed in the AM Her binaries, where the
absence of a disc enables orbital synchronism to be approached.
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8.2 The Intermediate Polars

8.2.1 Discovery and Classification

Charles et al. (1979) identified TV Col as an X-ray source with a spectrum like AM
Her, but lacking detectable polarization. There were several observed periodicities
and some uncertainty in their origin. This was resolved by the X-ray observations of
Schrijver et al. (1987) which showed the primary rotation period to be 31.8min, and
eclipse observations by Hellier et al. (1991) giving the orbital period as 5 h 29.2min.
Griffiths et al. (1980) discovered AO Psc. Photometry by Warner (1980) showed a
modulation of its spectrum with the orbital period of 3.6 h.

TV Col andAO Psc were the first twomembers of a class of cataclysmic variables
now designated the intermediate polars. Photometric and spectroscopic observations
led to a model in which a magnetic white dwarf accretes matter transferred from
the secondary star via a partially disrupted disc. An X-ray emitting region on the
white dwarf is carried around by its rotation, causing periodic illumination of some
region fixed in the binary frame (e.g. Hutchings et al. 1981; Warner et al. 1981;
Hassall et al. 1981; Patterson and Price 1981). In contrast to the polars, TV Col
and AO Psc showed no detectable polarization at optical wavelengths, indicating a
weaker magnetic field. A weaker field and the presence of a partial accretion disc
are consistent with the observed asynchronous rotation of the primary. Binaries
currently classified as definite intermediate polars are hard X-ray emitters and
multiperiodic. Table 8.1, shown in the Appendix below, lists the main systems in
this class.

The DQHerculis binaries are a subset of the intermediate polars. They have short
primary rotation periods and lack hard X-ray emission. The main systems are listed
in Table 8.2, shown in the Appendix below. These binaries played an important part
in the early work on the nature of cataclysmic variables. AE Aqr was shown by Joy
(1954) to be a spectroscopic binary. It was subsequently used by Crawford and Kraft
(1956) towards deriving the basic model of a cataclysmic variable. DQ Her is the
remnant of Nova Herculis 1934, and was identified byWalker (1954) as an eclipsing
binary with an orbital period of 4 h 39min.

8.2.2 Rotation Periods and Magnetic Fields

Tables 8.1 and 8.2 show the primary star rotation periods, PR, and their rates of
change, expressed as ṖR/PR. Examples of systems in which rotation period changes
have been observed are GK Per (Patterson 1991), FO Aqr (e.g. Osborne and Mukai
1989; Kruszewski and Semeniuk 1993), AO Psc (Kaluzny and Semeniuk 1988),
V1223 Sgr (van Amerongen et al. 1987), BG CMi (Patterson and Thomas 1993),
V647 Aur (Kozhevnikov 2014) and EX Hya (Vogt et al. 1980; Bond and Freeth
1988). The magnitude of typical errors in the quoted values of ṖR/PR is ∼ 10%. The



8.3 The X-Ray Binary Pulsars 229

DQ Her period change observations are: AE Aqr (de Jager et al. 1994), V533 Her
(Lamb and Patterson 1983), and DQ Her (Balachandran et al. 1983). Negative and
positive values of ṖR occur.

The white dwarf surface magnetic field values quoted in Table 8.1 are based
on circular polarization measurements using broad band polarimetry (Cropper
1986; Stockman et al. 1992). The polarization of BG CMi can be modelled with
an accretion arc covering a fractional area of ∼ 0.01 of the primary’s surface
and a polar field of (Bp)0 ∼ 3MG (Wickramasinghe et al. 1991). Polarization
measurements of PQ Gem (Rosen et al. 1993), and a similar accretion model, give
(Bp)0 ∼ 8MG. This suggests the intermediate polars have white dwarf surface
fields typically an order of magnitude lower than those in the AM Her binaries.

8.3 The X-Ray Binary Pulsars

8.3.1 Discovery and Classification

X-ray pulsations from a binary system were first discovered by Giacconi et al.
(1971) during observations of Centaurus X-3 with the Uhuru satellite. The binary
nature of Cen X-3 was revealed in a further analysis of the Uhuru data by Schreier
et al. (1972). This showed 2.1 d periodic variations of X-ray intensity with an
eclipse, and a sinusoidal variation of the 4.8 s pulsation period, also with a period of
2.1 d. Soon after, Tananbaum et al. (1972) discovered another X-ray pulsar, Hercules
X-1, which showed a periodic intensity variation with a 1.7 d binary period and an
associated sinusoidal modulation of the 1.24 s pulse period.

The large luminosities observed can be understood as resulting from the gravi-
tational energy released by matter transferred from a normal companion star on to
a neutron star. The radius of a neutron star is typically a factor of ∼ 10−3 smaller
than that of a white dwarf, so the potential well into which accreting material falls
is far deeper in these systems than in the standard cataclysmic variables.

Orbital parameters have been determined for several systems from pulse timing
analyses, using the Doppler effect due to the binary motion of the compact star.
Optical observations of the companion star then lead to accurate values for the stellar
parameters, confirming neutron star primaries. The pulse period histories reveal a
general tendency for spin-up in the X-ray binary pulsars, contrary to the general
spin-down of radio pulsars. This is consistent with X-ray systems accreting matter
through the magnetosphere. However, more recent observations have shown a wide
variety of pulse period changes in the X-ray pulsars.

X-ray pulsars can be classified into three catagories; (I) binaries with early-type
massive companions, (II) binaries with Be star companions, and (III) low mass
binaries. Class (I) can be divided into two subclasses; (Ia) short pulse-period systems
with very large X-ray luminosity, and (Ib) long pulse-period systems with moderate
X-ray luminosity (e.g. Corbet 1986). Some of the low mass binaries lack pulse
periods.
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8.3.2 Systems with Accretion Discs

The short pulse-period systems with early-type massive companions and the low
mass binaries are thought to have accretion discs around their neutron stars.
Observations of Her X-1 in the X-ray and optical bands give direct evidence for an
accretion disc (e.g. Middleditch 1983). Observational evidence of the neutron star
magnetic field was given by Trumper et al. (1978). They interpreted a prominant
emission line feature at 58KeV in the energy spectrum of Her X-1 as cyclotron
emission at the magnetic poles of the neutron star. The estimated surface field was
5× 1012 G. White et al. (1983) used cyclotron absorption features of 4U0115+63 to
obtain a surface magnetic field of 1012 G. Kii et al. (1986) proposed a magnetic field
8 × 1012 G for 4U1626−67 by simulating the observed energy dependence of the
pulse profile with a calculation of anisotropic radiative transfer in a strong magnetic
field. The nature of the pulse profiles indicates the presence of accretion columns
on the neutron star. Like the intermediate polars, partial discs are believed to be
present with material becoming field-channelled after disruption. Consequently, the
neutron star cannot become synchronizedwith the orbital motion, since its magnetic
interaction with the secondary star is much weaker than its coupling to the disc.

Table 8.3, shown in the Appendix below, gives a representative sample the X-
ray binary pulsars believed to contain strongly magnetic neutron stars (i.e. (Bp)0 ∼
1012 G) accreting from partially disrupted discs. The systems listed are those most
extensively observed. Typical rates of change of the neutron star’s spin period are
given, where available. The associated time-scales are generally shorter than those
listed in Tables 8.1 and 8.2, since neutron stars have smaller moments of inertia than
white dwarfs. The values shown are averages over various periods of observation
and give an estimate of spin change time-scales. Many variations to these values,
and their signs, are observed.

8.3.3 Neutron Star Spin Evolution

Pulse period monitoring of X-ray binary pulsars has been performed by various
satellites, which reveal a wide variety of changes. Schreier and Fabbiano (1976)
noted a secular trend of spin-up for Her X-1 and Cen X-3, from early observations.
These systems were subsequently observed to exhibit wavy fluctuations in their spin
rates, with time-scales of years. Also, short-term fluctuations of the pulse period on
a time-scale of days to months, including evidence of spin-down episodes, were
found in Her X-1 (Giacconi 1974) and Cen X-3 (Fabbiano and Schreier 1977) from
Uhuru satellite observations. Between 1971 and 1980 a spin-up rate of ṖR/PR =
−2.6 × 10−2 year−1 was observed for GX 1+4. A short time-scale spin-up episode
in this system, superposed on the constant decrease in PR, was noted by Doty et al.
(1981).
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From 1979 to 1988 the systems SMC X-1 and 4U1626−67 exhibited secular
spin-up at almost constant rates of ṖR/PR = −6.0 × 10−4 year−1 and ṖR/PR =
−2.0×10−4 year−1, respectively. Subsequently,Makishima et al. (1988) used Ginga
satellite observations to show that the spin-up rate of SMC X-1 was no longer
constant, but decreasing. Makishima et al. (1988) found a spin-down in GX 1+4.

Bildsten et al. (1997) analysed the data obtained from 5 years of continuous
monitoring of accretion powered pulsars. Because of the continuity and uniformity
over such a long baseline, shorter time-scale variations in spin behaviour can be
detected. This showed that Cen X-3 exhibits 10 to 100 day intervals at steady spin-
up and spin-down at a higher rate than the previously observed values, in which
the faster variations tended to cancel to give a smaller average. Rapid changes in
spin behaviour were found to be common. The system 4U1626-67 underwent a
torque reversal in 1991, changing from spin-up to spin-down (Chakrabarty et al.
1997), with the two rates being nearly equal. The system OAO1657-415 showed
a spin behaviour similar to that of Cen X-3 (Chakrabarty et al. 1993). A possible
explanation for these torque reversals is discussed in Chap. 10.

8.4 The Accreting Millisecond Pulsars

The accreting millisecond pulsars are short period binaries believed to contain a
magnetic neutron star accreting from a disrupted disc. The surface magnetic field of
the neutron star is estimated to be typically ∼ 109 G. The first of these systems to be
discovered was J1808, which exhibits outbursts lasting a few weeks during which
coherent pulsations are observed (e.g. Wijnands and van der Klis 1998). Three of the
known systems have ultra short orbital periods, implying very low mass secondary
stars which may be brown dwarfs (see Poutanen 2006 for a review). Table 8.4,
shown in the Appendix below, lists these systems with their orbital and spin periods.

The outbursts occur every few years. Ibragimov and Poutanen (2009) analysed
data obtained during the 2002 outburst of J1808. This indicated that the area covered
by the accretion hotspot on the neutron star surface changed during the outburst.
This is consistent with the accretion curtain width changing due to a movement of
the disruption radius in response to the varying accretion rate. Kajava et al. (2011)
investigated data taken during the 2008 outburst of J1808. A major pulse profile
change was accompanied by a large variation of the disc luminosity, and this may
be related to changes in the accretion geometry.

8.5 MHD Problems

The nature of the interaction of the primary star’s magnetic field and its associated
magnetosphere with the accretion disc, together with the curtain flow, pose MHD
problems. The stellar magnetic field is believed to penetrate the highly diffusive disc
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and vertical shears generate toroidal magnetic field from the poloidal component.
The resulting magnetic stresses modify the structure of the disc and the magneto-
sphere. In the outer parts of the disc, where the stellar field is weak, the magnetic
force is small and the disc structure will be essentially unperturbed. Closer to the
primary star the magnetic perturbation becomes significant and ultimately disrupts
the disc. The physical mechanism causing disruption needs detailed investigation.
After disruption material will be channelled by the magnetic field to form an
accretion curtain through which mass and angular momentum are transferred to
the star. Figure 8.1 is a simplified schematic picture of such a system. The observed
systems have the primary star magnetic axis tilted to its spin axis.

Chapter 9 investigates the inner disruption of the disc, which requires consider-
ation of a full MHD problem, including the thermal equations. The thin nature of
the disc, and its high magnetic diffusivity can enable the equations to be simplified,
aiding analytic progress. Numerical simulations have also increased our understand-
ing of the star-disc interaction, allowing cases of lower disc magnetic diffusivity to
be investigated. In these cases magnetic field line opening can occur, with stellar
and disc winds developing. For sufficiently low η values, episodic behaviour results
with an oscillating disruption radius. The disruption radius depends on the stellar
spin rate, since this affects the radial distribution of vertical shear in the disc. Any
disrupted disc solution must match to the inner curtain flow.

Chapter 10 considers the magnetic interaction of the primary star with the
undisrupted part of the disc. Magnetic stresses enable the disc and star to exchange
angular momentum, and disc solutions can be used to calculate the torque on the star.
Angular momentum is also transferred due to the magnetic channelling of material
accreting on to the star via the curtain flow. The combined effect of these processes
can be compared to spin behaviour observed in the intermediate polars and the X-ray
binary pulsars, previously outlined. In particular, a stable equilibrium state can be

m Bp

Ωo

Disc L1

Stream

Fig. 8.1 Schematic model of a compact magnetic primary star accreting material via a curtain
flow connected to a truncated disc. The disc is fed by a stream generated by Roche lobe overflow
from the secondary star. The idealized case with m parallel to �o is shown. The closed field line
configuration is valid for sufficiently large values of magnetic diffusivity in the disc
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found in which the disc torque balances the accretion torque. Perturbations about
this state can lead to spin-up and spin-down behaviour due to torque reversals. In
the cases in which field channelled stellar winds occur significant braking of the star
can result.

Appendix: Confirmed Systems

Table 8.1 Intermediate polars

Name P (h) PR (min) ṖR/PR (year−1) (Bp)0 (MG) References

GK Per 47.92 5.86 −2.2 × 10−6 58

V2731 Oph 15.42 2.13 18, 21

KO Vel 10.13 68.00 51

V1062 Tau 9.98 61.73 26, 35

NY Lup 9.86 11.55 16

V902 Mon 8.16 36.83 6

V2069 Cyg 7.48 12.38 38

J2133 7.19 9.52 5, 29

EI UMa 6.43 12.4 44, 46

J0457 6.19 20.38 7

XY Ari 6.06 3.43 32 1, 39,

J1509 5.89 13.50 12, 43

TX Col 5.72 8.72 37

V667 Pup 5.61 8.54 11

WX Pyx 5.54 26.00 53

TV Col 5.49 31.82 45

J1830 5.37 30.33 56

V709 Cas 5.33 5.20 14

PQ Gem 5.19 13.88 8 20, 25

FO Aqr 4.85 20.91 8.6 × 10−7 59

MU Cam 4.72 19.79 34, 54

HY Leo 4.42 69.17 50

V1323 Her 4.40 25.34 4

V2306 Cyg 4.35 12.00 60

SL Peg 4.19 29.60 10 44, 48

V405 Aur 4.14 9.08 23, 42, 55

V1033 Cas 4.03 9.40 5, 8

J1719 4.01 18.99 22, 43

DO Dra 3.97 8.82 3, 24

J0153 3.94 32.90 40

J1654 3.72 9.15 36, 52

J1649 3.62 9.97 43

(continued)
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Table 8.1 (continued)

Name P (h) PR (min) ṖR/PR (year−1) (Bp)0 (MG) References

AO Psc 3.59 13.42 −2.6 × 10−6 28

UU Col 3.46 14.38 10, 17

V2400 Oph 3.41 15.45 9, 47

V1223 Sgr 3.37 12.42 9.7 × 10−7 57

BG CMi 3.23 14.12 2.0 × 10−6 3 31, 41

V515 And 2.73 7.75 32

V647 Aur 2.73 15.53 2.8 × 10−4 33

J1740 2.08 12.15 30

EX Hya 1.64 67.03 −3.0 × 10−7 2

J1817 1.53 27.72 56

J1853 1.45 7.96 56

DW Cnc 1.44 38.60 13, 49

HT Cam 1.43 8.58 15, 19

V1025 Cen 1.41 35.78 27

Table 8.1 Reference Number Key: 1. Allan et al. 1996; 2. Andronov and Breus
2013; 3. Andronov et al. 2008; 4. Anzolin et al. 2008; 5. Anzolin et al. 2009; 6.
Aungwerojwit et al. 2012; 7. Bernardini et al. 2015; 8. Bonnet-Bidaud et al. 2007;
9. Buckley et al. 1995; 10. Burwitz et al. 1996; 11. Butters et al. 2007; 12. Butters
et al. 2009; 13. Crawford et al. 2008; 14. de Martino et al. 2001; 15. de Martino et al.
2005; 16. de Martino et al. 2006a; 17. de Martino et al. 2006b; 18. de Martino et al.
2008; 19. Evans and Hellier 2005; 20. Evans et al. 2006; 21. Gansicke et al. 2005;
22. Girish and Singh 2012; 23. Harlaftis and Horne 1999; 24. Haswell et al. 1997;
25. Hellier 1997; 26. Hellier et al. 2002a; 27. Hellier et al. 2002b; 28. Johnson
et al. 2006; 29. Katajainen et al. 2007; 30. Kaur et al. 2010; 31. Kim et al. 2005;
32. Kozhevnikov 2012; 33. Kozhevnikov 2014; 34. Kozhevnikov et al. 2006; 35.
Lipkin et al. 2004; 36. Lutovinov et al. 2010; 37. Mhlahlo et al. 2007; 38. Nasiroglu
et al. 2012; 39. Norton and Mukai 2007; 40. Norton and Tanner 2006; 41. Norton
et al. 1992; 42. Piirola et al. 2008; 43. Pretorius 2009; 44. Ramsay et al. 2008; 45.
Rana et al. 2004; 46. Reimer et al. 2008; 47. Revnivtsev et al. 2004; 48. Rodriguez-
Gil et al. 2001; 49. Rodriguez-Gil et al. 2004; 50. Rodriguez-Gil et al. 2005; 51.
Sambruna et al. 1992; 52. Scaringi et al. 2011; 53. Schlegel 2005; 54. Staude et al.
2008; 55. Still et al. 1998; 56. Thorstensen and Halpern 2013; 57. van Amerongen
et al. 1987; 58. Vrielmann et al. 2005; 59. Williams 2003; 60. Zharikov et al. 2002.
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Table 8.2 DQ Herculis binaries

Name P (h) PR (min) ṖR/PR (year−1) References

AE Aqr 9.88 0.55 5.4 × 10−8 2, 3

V533 Her 5.04 1.06 1.5 × 10−7 4, 6

DQ Her 4.65 1.18 −3.6 × 10−7 1, 5

Table 8.2 Reference Number Key: 1. Bloemen et al. 2010; 2. Hill et al. 2014; 3.
Mauche 2009; 4. Patterson 1979; 5. Saito and Baptista 2009; 6. Thorstensen and
Taylor 2000.

Table 8.3 Disc accreting X-ray binary pulsars

System P (days) PR (s) ṖR/PR (year−1) References

GX 1+4 304 114 −2.1 × 10−2 4, 12

4U0115+63 24.31 3.61 −3.2 × 10−5 1, 11

OAO 1657-415 10.44 38.0 −1.0 × 10−3 6, 13

SMC X-1 3.892 0.72 −6.0 × 10−4 5, 14

Cen X-3 2.087 4.84 −2.8 × 10−4 10, 14

Her X-1 1.700 1.24 −2.9 × 10−6 7, 15

LMC X-4 1.408 13.5 8, 9

GX 109.1−1.0 0.080 6.98 3

4U1626−67 0.023 7.68 −2.0 × 10−4 2

Table 8.3 Reference Number Key: 1. Baushev 2009; 2. Bildsten et al. 1997; 3.
Downes 1983; 4. Gonzalez-Galan et al. 2012; 5. Hickox and Vrtilek 2005; 6. Jenke
et al. 2012; 7. Leahy and Igna 2013; 8. Molkov et al. 2017; 9. Naik and Paul 2003;
10. Naik et al. 2011; 11. Nakajima et al. 2006; 12. Paul et al. 2005; 13. Pradhan
et al. 2014; 14. Raichur and Paul 2010; 15. Simon 2015.

Table 8.4 Accreting
millisecond pulsars

System P (h) PR (ms) References

J1814 4.28 3.18 9

J00291 2.45 1.67 4, 10

J1808 2.02 2.49 1, 13

J1900 1.39 2.65 5, 11

J0929 0.73 5.41 3, 12

J1751 0.71 2.30 7, 8

J1807 0.67 5.24 2, 6

Table 8.4 Reference Number Key: 1. Chakrabarty and Morgan 1998; 2. Falanga
et al. 2005; 3. Galloway et al. 2002; 4. Galloway et al. 2005; 5. Kaaret et al. 2005;
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6. Kirsch et al. 2004; 7. Markwardt and Swank 2002; 8. Markwardt et al. 2002;
9. Markwardt et al. 2003; 10. Markwardt et al. 2004; 11. Morgan et al. 2005; 12.
Remillard et al. 2002; 13. Wijnands and van der Klis 1998.
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Chapter 9
Disc Disruption and Accretion Curtains

Abstract The intermediate polars, some X-ray binary pulsars and the accreting
millisecond pulsars have magnetic primary stars accreting from a partially disrupted
disc via an inner magnetically channelled curtain flow. The stellar magnetic field and
the associated magnetosphere interact with the disc in a way which is affected by
the strength of its magnetic diffusivity. For sufficiently large η values, the stellar
poloidal field lines remain closed and linked to the disc. For smaller values of η
field line opening can occur and wind flows can result from the disc and the primary
star. Angular momentum can be transported in a variety of ways.

Field lines inside the corotation radius tend to remain closed and the disc
becomes disrupted as a result of vertical expansion due to magnetic heating.
Expanding material can be accelerated through a sonic point and then flow through
a magnetically channelled curtain region to accrete on to the star through a narrow
shock region. A detailed study of disc disruption and the curtain flow is presented
here.

9.1 Introduction

The discovery of X-ray pulsations from Cen X-3 (Giacconi et al. 1971) and Her
X-1 (Tananbaum et al. 1972) led to theoretical work to investigate the nature of
these systems. Pringle and Rees (1972) proposed a model for Cen X-3 in which a
strongly magnetic neutron star, rotating with the observed pulsation period of 4.8 s
and having a magnetic moment misaligned with its rotation axis, accretes matter
from a differentially rotating disc. They suggested that the magnetic field causes
disruption of the inner part of the disc and that accretion on to the star occurs
via a magnetically controlled flow connecting the inner edge of the disc to radially
localized columns surrounding the stellar magnetic poles. The hot compressed gas
in these accretion columns would emit radiation with an intensity modulated by the
stellar rotation, giving rise to the observed X-ray pulsations. A corotation radius was
defined at which the Keplerian angular velocity of the disc equals the stellar angular
velocity. They noted that, for accretion to take place, the inner radius of the disc
should lie inside the corotation radius. A similar oblique magnetic rotator model
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was proposed for DQ Her by Bath et al. (1974), but with the accretor being a white
dwarf rather than a neutron star. The inner radius of the disrupted disc was estimated
to be where the magnetic torque on the disc, due to its interaction with the stellar
field, becomes equal to the viscous torque.

The magnetic accretor model was developed further by Ghosh and Lamb
(1979a,b). They argued that the stellar magnetic field is likely to penetrate the thin
turbulent disc via instabilities and reconnection processes. An extended stellar mag-
netosphere was assumed to corotate with the star, so the vertical shear between the
surrounding gas and the differentially rotating disc material leads to the generation
of toroidal magnetic field from the poloidal component. A cylindrical coordinate
system (�, φ, z) can be used centred on the star. The disc surface magnetic stress
BφsBzs leads to torques which result in angular momentum exchange between the
disc and the star. Outside the corotation radius�co the star adds angular momentum
to the disc, while inside this radius angular momentum is extracted from the disc
and transferred to the star. Hence inside �co magnetic torques contribute to driving
the disc inflow. As in Bath et al. (1974), it was suggested that disc disruption occurs
where the magnetic torque becomes equal to the viscous torque. The disc flow was
taken to join the magnetically channelled flow through a narrow radial boundary
layer.

Some models took the stellar magnetic field to be completely excluded from
the disc and calculated the resulting external field structure (e.g. Aly 1980; Kundt
and Robnik 1980). However, it is generally believed that such configurations,
especially in the inner regions of the disc, are unlikely to be stable and numerical
simulations support this view (e.g. Goodson et al. 1997; Zanni and Ferreira 2013).
The simulations show that diffusion and reconnection cause penetration of the field
into the disc, as suggested by Ghosh and Lamb (1979a).

Much work has focused on calculating the torque on the star (e.g. Ghosh
and Lamb 1979b; Campbell 1987; Wang 1987; Campbell 1992; Armitage and
Clarke 1996; Matt and Pudritz 2005), making various assumptions to determine
the disruption radius. Other work has investigated the effect of the magnetic field
on the disc structure and perturbations to the magnetosphere due to its interaction
with the disc. The nature of the inner accretion flow has also been considered.
The spin evolution of the star is investigated in Chap. 10, after the disc structure,
magnetosphere and curtain flow have been considered here.

Beyond�co the magnetospheric field is significantly perturbed by its interaction
with the disc, but most of this region has a weak effect on the disc. Closer to �co,
and inside this radius, magnetic perturbation of the disc becomes significant.

Campbell (1992) investigated the effect of the ratio of magnetic to viscous torque
on the disc structure. A solution can be found in which the magnetic torque is
large compared to the viscous torque in the inner part of the disc if the magnetic
diffusivity, η, is taken as a physically unspecified function of � . However, if
parametrized turbulent or buoyancy forms are taken, so η depends on ρ and T ,
the vertical equilibrium cannot be satisfied. More general solutions were found by
Campbell and Heptinstall (1998a,b), using turbulent and buoyancy forms for η. If
no inner boundary condition is imposed, viscous heating causes the disc to expand
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vertically inside the corotation radius due to growing thermal and radiation pressures
which cannot be balanced by the vertical component of the stellar gravity or the
vertical magnetic force. The expansion occurs over a narrow region and this would
allow material to enter a magnetically controlled accretion flow and pass through a
sonic point. These investigations have the consequence that, for η dependent on ρ
and T , the disc ends where the magnetic torque starts to exceed the viscous torque
and they indicate that disc disruption may be thermally related.

Shu et al. (1994) proposed a model in which the main interaction of the stellar
magnetic field with the disc occurs in a small region centred on the corotation radius.
Disruption and subsequent field channelled flow on to the star were taken to occur
just inside �co, but just beyond �co the field lines become open and a significant
fraction of the accretion flow is lost via a magnetically influenced wind. Such a
large mass loss in the wind results in a much reduced accretion torque on the star.
The model was developed for application to T Tauri systems, in which the accreting
protostar has a relatively low spin rate, rather than for the compact white dwarfs
and neutron stars occurring in binary systems. However, the idea of some wind flow
occurring beyond�co, but having lower mass loss rates, has been investigated in the
context of magnetic accretors in binary stars.

Lovelace et al. (1995) suggested that if the field winding ratio |Bφs/Bps| at the
disc surface exceeds a critical value then the poloidal magnetic field lines will inflate
and become open. Bardou and Heyvaerts (1996) showed that, if the magnetosphere
adopts a nearly force-free state, field winding can cause significant field inflation.
This was further confirmed by Agapitou and Papaloizou (2000), who considered the
effects of larger values of the winding ratio.

Matthews et al. (2005) applied the condition that the vertically integrated
dynamical viscosity, and its radial derivative, vanish at the inner edge of the disc.
This enables a disruption radius to be found which depends on the stellar rotation
rate, and these conditions are consistent with magnetic stresses becoming dominant
over a narrow radial region. An analytic model was developed by Campbell (2010)
in which a modified form of the boundary conditions of Matthews et al. (2005) was
used, to allow for a small viscosity at inner edge, andmagnetic heating was included.
Allowance was also made for electron scattering opacity and radiation pressure. The
disc was found to end over a narrow radial region in which magnetic heating causes
increases in the vertical pressure gradient which cannot be balanced by the vertical
component of stellar gravity or the vertical magnetic force. This model allows self
consistent fitting of the disc flow to a magnetically channelled accretion curtain flow.

Numerical simulations have been developed to an increasing extent. Goodson
et al. (1997) and Goodson and Winglee (1999) showed how the magnetic diffusivity
in the disc can affect its interaction with the magnetosphere. Their numerical
simulations showed that, for values of η less than those characteristic of turbulence,
time-dependent fast collimated outflows can develop near the central axis of
the system. Numerical simulations by Romanova et al. (2002) and Romanova
et al. (2003) found that funnel flows develop inside �co and that these flows are
driven by vertical pressure gradients. Time-dependent, global numerical simulations
performed by Zanni and Ferreira (2009, 2013) resulted in disc disruption and curtain
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flow inside �co and a variety of outflows from the system which depend on the
magnitude of η in the disc. These simulations were applied to T Tauri systems,
but they should have relevance to the discs surrounding magnetic stars in binary
systems.

Detailed aspects of the magnetosphere and disc structures are discussed below.
Then the accretion curtain structure is considered, together with the consequences
for angular momentum transfer to the star. The non-axisymmetric case, of a tilted
magnetic axis, is reviewed. Finally, the propeller regime is discussed. This leads
naturally to the consideration of the stellar spin evolution in Chap. 10. The theory
described here has application to the disc accreting X-ray binary pulsars, the
intermediate polars and the accreting millisecond pulsars. [Sections 9.8.8 and 9.8.9
are derived in part from Campbell (2014), copyright Taylor and Francis, available
online at https://doi.org/10.1080/03091929.2013.830719].

9.2 The Magnetosphere

9.2.1 The Angular Velocity

The magnetosphere surrounding the disc consists of low density ionized material.
Most calculations take the central star to have a centred magnetic dipole moment
m aligned with its rotation axis, which is parallel to the orbital angular momentum
vector. Hence the system is axisymmetric, and is often taken to be time-independent.
The validity of the assumption of time-independence will be shown to be related to
the nature of the magnetic diffusion processes operating in the disc.

A cylindrical coordinate system (�, φ, z) can be used, centred on the star.
Motions of material in the magnetosphere obey the induction equation

∇ × (v × B) = 0. (9.1)

The toroidal and poloidal components of this yield

vp = κBp, (9.2)

�− κBφ
�

= α, (9.3)

where κ is a function of position and α is a constant on a field-streamline,
corresponding to its angular velocity. It follows that, for field lines frozen to the
star, α = �∗ the stellar rotation rate and hence

� = �∗
[
1 + vp

��∗
Bφ

Bp

]
, (9.4)

https://doi.org/10.1080/03091929.2013.830719
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with Bp > 0 and �∗ > 0. A steady corotating magnetosphere therefore requires

|vp|
��∗

|Bφ |
Bp

� 1. (9.5)

9.2.2 Poloidal Field Bending

The components of the unperturbed dipole magnetic field can be written as

B� = 3

2
B0R

3 �z

(� 2 + z2) 52
, (9.6)

Bz = −1

2
B0R

3 (�
2 − 2z2)

(� 2 + z2) 52
, (9.7)

where B0 and R are the primary star’s polar surface magnetic field and radius.
For convenience, the previously adopted subscript p used to denote primary star
quantities is dropped here.

The stellar magnetic field is modified due to its interaction with the disc. The
poloidal field is distorted by the inflow through the disc and via inflation due to
twisting caused by the vertical shear. The inflow leads to poloidal field bending,
with an associated current density given by

μ0ηJ = E + v × B. (9.8)

For a steady, axisymmetric flow Eφ = 0 and hence

μ0ηJφ = vzB� − v�Bz. (9.9)

This shows that the poloidal flow in the disc generates Jφ . This acts as a source of
Bp which modifies the current-free stellar dipole field. The toroidal current density
can be written, to a good approximation, as

Jφ = 1

μ0

∂B ′
�

∂z
, (9.10)

where B ′
� is the perturbation in B� . Since |vzB� | � |v�Bz|, it follows that

∂B ′
�

∂z
= |v� |

η
Bz. (9.11)

This represents a balance between the outward slippage ofBz due to diffusion and its
inward advection due to the radial flow. Integrating from z = 0 to z = h, assuming
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the inflow to be mainly viscously driven, then yields

∣∣∣∣B
′
� s

Bzs

∣∣∣∣ � |v� |
η
h � ν

η

h

�
. (9.12)

If the condition ν/η � 1 is satisfied, then moderate values of |B ′
� s/Bzs| result and

poloidal field bending due to the inflow is small.
The conclusion of small field bending, derived from the above simple analysis,

is consistent with the more detailed calculation of Lubow et al. (1994). They
considered a disc threaded by an externally imposed vertical magnetic field, with
an inflow driven by viscosity. The time-dependent induction equation was solved
for the poloidal flux function by numerical methods. A steady state is reached in
which the field bending is essentially determined by the ratio (ν/η)(h/�). Hence
for ν/η � 1 field bending due to the inflow was found to be small, consistent
with (9.12).

9.2.3 Poloidal Field Inflation

The other source of distortion of Bp is field line inflation. For a magnetically
dominated magnetosphere,

2μ0P

B2 � 1 (9.13)

will apply and the field will then be essentially force-free, with

(∇ × B)× B = 0. (9.14)

This condition, together with significant values of |Bφ/Bz| at the disc surface,
leads to a modification of Bp from its current-free state. The poloidal field can be
expressed as

Bp = ∇ ×
(
ψm

�
φ̂

)
, (9.15)

where ψm(�, z) is a magnetic flux function, being proportional to the poloidal flux
through a ring of radius � at height z. The use of this expression for Bp in the
force-free field condition (9.14) leads to the Grad-Shafranov equation

�
∂

∂�

(
1

�

∂ψm

∂�

)
+ ∂

2ψm

∂z2
= −1

2

d

dψm

(
I 2
)
, (9.16)
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where I (ψm) = �Bφ . Solving this equation, subject to boundary conditions, gives
the force-free field structure. The solution depends on the disc surface field winding
ratio |Bφs/Bzs|. If this ratio is small then Bp is nearly dipolar and Bφ is small. Hence
the field structure of the magnetosphere will be related to the structure of B in the
disc.

The significance of field inflation was investigated by Bardou and Heyvaerts
(1996). In order to consider numerical as well as analytic solutions for ψm, they
employed spherical polar coordinates (r, θ, φ). Equation (9.16) then becomes

∂

∂r

(
1

sin θ

∂ψm

∂r

)
+ ∂

∂θ

(
1

r2 sin θ

∂ψm

∂θ

)
= − 1

2 sin θ

d

dψm

(
I 2
)

(9.17)

and the poloidal field components are

Br = 1

r2 sin θ

∂ψm

∂θ
, (9.18a)

Bθ = − 1

r sin θ

∂ψm

∂r
. (9.18b)

Equation (9.17) was solved numerically, and analytically via a similarity solution.
The flux function ψm was taken to vanish on the central axis θ = 0 and as r → ∞.
The poloidal field was also constrained to be vertical at θ = π/2.

The analytic solution gives good agreement with the numerical results for a range
of values of |Bφs/Bzs|. A self-similar flux function can be written as

ψm(r, θ) = r−pf (μ), (9.19)

where p is a constant and μ = cos θ . Substitution of this in (9.17) gives the
separated equations

(1 − μ2)f ′′ + p(p + 1)f = −Cf (p+2)/p, (9.20)

II ′ = Cψ(p+2)/p
m , (9.21)

where C is a constant. The function f (μ) obeys the boundary conditions

f (0) = 1, (9.22a)

f (1) = 0, (9.22b)

f ′(0) = 0. (9.22c)

The first of these conditions is a normalisation, while the second and third
correspond to ψm(r, 0) = 0 and Br(r, π/2) = 0 respectively. Integration of (9.21)
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yields

�Bφ =
(
Cp

p + 1

) 1
2

ψ(p+1)/p
m . (9.23)

For moderate values of p, Bardou and Heyvaerts showed that

p = 1

[1 + (Bφs/Bzs)2] 12
, (9.24)

and hence p < 1 results. The poloidal field components are

Br = 1

sin θ
r−(p+2)f ′, (9.25a)

Bθ = p

sin θ
r−(p+2)f. (9.25b)

An analytic solution was found for small values of p, corresponding to |Bφs/Bzs| >
1. When (Bφs/Bzs)2 � 1 the poloidal magnetic field is nearly current-free and
inflation is small, with (9.24) yielding p � 1. The term involving I = �Bφ
on the right hand side of (9.16) or (9.17) can then be ignored, corresponding to
|Jφ| � |Jp|, and C = 0 can be applied to (9.20). The ignored Jφ component is the
source of perturbations to Bp, and hence these are small for small winding ratios.
However, a small but finite Bφ component exists so C cannot be ignored in (9.21).
This corresponds to the nearly force-free condition Bp · ∇(�Bφ) = 0. For an exact
dipole field p = 1 and C = 0, so it is seen from (9.24) that inflation causes Bp to
fall more slowly with increasing r than for a dipole field.

The poloidal field inflation effect was considered further by Agapitou and
Papaloizou (2000). The Grad-Shafranov equation, expressed in polar coordinates,
was transformed into a parabolic equation by including a term proportional to
∂ψm/∂t , which tends to zero as a steady state is reached. Larger values of |Bφs/Bzs|
can then be considered than previously. The computational domain had inner
and outer radii of rin and rout, and the boundary conditions ψm(rin, θ) = 0 and
ψm(r, 0) = 0 were employed. Two outer boundary conditions were also introduced;
a Dirichlet condition ψm(rout, θ) = 0 and a Neumann condition (∂ψm/∂r)out = 0.

The disruption radius was taken to be at the corotation radius, so cases with r <
rco were not considered. For moderate values of |Bφs/Bzs| > 1 field line inflation
occurs similar to that found by Bardou and Heyvaerts (1996). For |Bφs/Bzs| � 30
a deflation of field lines occurs, which is not sensitive to the location of the outer
boundary. In these larger field winding cases, Bp has a larger radial component near
the disc surface than that of the unperturbed dipole field. This gives a reduction of
the ratio |Bφ/Bp|, where Bp = (B2

r + B2
θ )

1/2.
The Neumann boundary condition case requires Bp to be radial at the outer

boundary, as might occur if a wind existed there. In this case |Bφ/Bp| < 1 was
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found near the disc surface, and this ratio was small beyond it. Generally, the force-
free condition kept |Bφ/Bp| ∼ 1, by an increase in Br accompanying an increase in
|Bφ/Bz|.

The work of Bardou and Heyvaerts (1996) showed that field line inflation is
usually small inside the corotation radius, and the field lines are closed there.
Large values of field winding can result in significant magnetic compression of
the disc. Large, oppositely directed values of Bφ above and below a thin turbulent
disc are generally believed to be unstable, leading to reconnection and associated
dissipation across the disc and hence to a reduction in the winding value. This can
be considered to be effectively equivalent to an enhanced magnetic diffusivity in
the disc, as described below. The results of the foregoing analytic and semi-analytic
studies of field line inflation are consistent with the field inflation effects seen in
numerical simulations of the interaction between the disc and the magnetosphere
(e.g. Goodson et al. 1997; Goodson and Winglee 1999; Zanni and Ferreira 2009,
2013). These simulations are described later.

9.3 Magnetic Diffusion in the Disc

Several processes are believed to contribute to the diffusion of the stellar magnetic
field in the disc. As in other astrophysical situations, turbulence can greatly
enhance diffusion compared to Ohmic processes. Magnetic buoyancy and small-
scale reconnection may also play a significant role. Because there is no rigorous
formulation of these complex processes, simplified representations are usually
employed to account for their effects. Due to the difference in the radial and
vertical length-scales in thin discs, an anisotropic representation may be applicable.
However, a simple scalar form is often used, consisting of the product of a mean
transport speed, a mixing length and a dimensionless adjustable parameter. For
turbulence, the form

ηT = εTcsh (9.26)

is used, with εT < 1. Magnetic buoyancy is represented by

ηB = εB |Bφs|
(μ0ρc)

1
2

h, (9.27)

with εB � 1 (see Sect. 2.2.11). This approach is similar to that adopted for the
kinematic turbulent viscosity coefficient.

Another possible contribution to the magnetic diffusivity of the disc arises here,
due to the large values that may occur for the field winding ratio |Bφs/Bzs| as the
result of vertical shearing of Bp. If this ratio reaches a critical value then instabilities
are likely to occur. These, together with the reconnection of oppositely directed Bφ
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field across the disc, may effectively reduce the growth rate of |Bφs/Bzs|. This can
be represented by an enhanced diffusion coefficient containing a dynamical mean
speed characteristic of Keplerian values, these being considerably larger than the
sound speed or the Alfvén speed used in the turbulent and buoyancy forms of η. The
dynamical diffusivity can be expressed as

ηdyn = εmvdynh, (9.28)

with εm ∼ 1 and vdyn typically taken as the Keplerian speed vK.

9.4 The Disc Equations

9.4.1 The Momentum Equation

The disc equations describe the dynamical, magnetic and thermal problems. The
thin nature of the disc allows some simplifications to be made. Because the disc
poloidal velocity is well subsonic, the poloidal inertial terms can be ignored in the
momentum equation. In cylindrical coordinates (�, φ, z), the three components of
the momentum equation can then be written as

v2φ

�
= ∂ψ

∂�
+ 1

ρ

∂P

∂�
+ 1

� 2ρ

∂

∂�

(
� 2B2

φ

2μ0

)
− BzJφ

ρ
, (9.29)

v�
∂

∂�
(� 2�)+ vz ∂

∂z
(� 2�) = 1

�ρ

∂

∂�

(
ρν� 3 ∂�

∂�

)
+ 1

μ0�ρ

∂

∂�
(� 2B�Bφ)

+ 1

μ0�ρ

∂

∂z
(� 2BφBz), (9.30)

∂ψ

∂z
+ 1

ρ

∂

∂z

(
P + B2

φ

2μ0

)
+ B�Jφ

ρ
= 0, (9.31)

where� = vφ/� and

Jφ = 1

μ0

(
∂B�

∂z
− ∂Bz
∂�

)
. (9.32)

Since the disc mass is negligible compared to the stellar mass,M , the gravitational
potential has the stellar monopole form

ψ = − GM

(� 2 + z2) 12
. (9.33)
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The continuity equation is

1

�

∂

∂�
(�ρv� )+ ∂

∂z
(ρvz) = 0. (9.34)

Some simplifications can be made by using the fact that many of the intrinsic
disc quantities have a radial length-scale much longer than their vertical length-
scale. Consider first the� -component of the momentum equation, given by (9.29).
It will be shown that B2/2μ0 � P holds in the disc. As in the non-magnetic disc,
the radial pressure gradient is ∼ c2s /� and hence is ignorable relative to the gravity
term v2K/� . Since Bφ varies on a radial length-scale of ∼ � , and B2

φ/2μ0 < P ,
the first magnetic term in (9.29) is ignorable. It follows from (9.32) for Jφ that the
second magnetic term in (9.29) is

BzJφ

ρ
� B2

z |v� |
μ0ηρ

� B2
z

μ0�ρ

ν

η
(9.35)

and, for ν/η < 1, this magnetic term is also ignorable relative to the gravitational
term. Hence (9.29) reduces to

vφ = vK =
(
GM

�

) 1
2 = ��K. (9.36)

This holds in the bulk of the disc. Deviations of� from�K occur as the disc surfaces
are approached, since � tends to the magnetospheric value of �∗, and near the
disruption radius at the inner edge where the disc joins the curtain flow. Since ρ
falls most sharply near the disc surface, the magnetic terms in (9.29) will only be
significant in a thin surface layer through which � tends to �∗. Except inside �m,
the disc angular velocity and diffusivity can be expressed as

�(�, z) =
{
�K = (GM/� 3)

1
2 , |z| < h−�,

→ �∗, h−� < |z| ≤ h, (9.37)

η =
{
η(�), z < h−�,
→ 0, h−� < |z| ≤ h, (9.38)

where � is a boundary layer width over which � changes to �∗ as η becomes
small. This gives a vertical step function idealization for �, with the vertical shear
concentrated near the disc surface. However, Bφ results throughout the disc since it
is a solution of the induction equation involving an integral over the disc sources.
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The φ-component of the momentum equation is given by (9.30). Multiplying this
be�ρ and combining it with the continuity equation (9.34) yields

∂

∂�
(�ρv��

2�)+ ∂

∂z
(�ρvz�

2�) = ∂

∂�

(
ρν� 3 ∂�

∂�

)
+ 1

μ0

∂

∂�
(� 2B�Bφ)

+ 1

μ0

∂

∂z
(� 2BφBz). (9.39)

This relates the divergence of the angular momentum flux to the viscous and
magnetic torques. Since |B� | ∼ (h/�)|Bz| and |∂Bφ/∂� | ∼ (h/�)|∂Bφ/∂z|,
the B�Bφ radial transport term is ignorable, leaving

∂

∂�
(�ρv��

2�)+ ∂

∂z
(�ρvz�

2�) = ∂

∂�

(
ρν� 3 ∂�

∂�

)
+ 1

μ0

∂

∂z
(� 2BφBz)

(9.40)

as the disc angular momentum equation.
This leaves the vertical component of the disc momentum equation, given

by (9.31). The last magnetic term is

B�Jφ

ρ
=
(
B�

Bz

)
BzJφ

ρ
�
∣∣∣∣B�Bz

∣∣∣∣ h�
ν

η

B2
z

μ0hρ
� B2

φ

μ0hρ
, (9.41)

using (9.35) for BzJφ/ρ and |B�/Bz| ∼ h/� . Hence, employing (9.33) for ψ , the
vertical equation becomes

�2
Kzρ + ∂

∂z

(
P + B2

φ

2μ0

)
= 0, (9.42)

giving equilibrium between the stellar gravity and a total pressure gradient. The
vertical gradient of the magnetic pressure acts to compress the disc, since B2

φ

increases with increasing |z|.

9.4.2 The Induction Equation

The poloidal and toroidal components of the steady induction equation are

v�Bz − vzB� + μ0ηJφ = 0, (9.43)

η

�

(
∇2Bφ − Bφ

� 2

)
+ 1

� 2

dη

d�

∂

∂�
(�Bφ) = −Bp ·∇�+∇ ·

(
Bφ

�
vp

)
. (9.44)
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The poloidal component relates Jφ to its source (v × B)φ , and this leads to
modifications of Bp from its current-free form. It was previously shown that
such modification, due to the subsonic poloidal flow, is small. The toroidal
equation (9.44) can be simplified. Since Bφ varies on a vertical length-scale of ∼ h,
its vertical derivatives dominate in the diffusion operator. The vertical derivative
term in Bp · ∇� exceeds the radial derivative by a factor of ∼ (�/h)2. Finally, the
advection and compression term is

∇ ·
(
Bφ

�
vp

)
∼ Bφs

�

v�

�
∼ η

�

ν

η

Bφs

� 2 ∼ h2

� 2

ν

η

η

�

Bφs

h2
� η

�

∣∣∣∣∣
∂2Bφ

∂z2

∣∣∣∣∣ . (9.45)

Hence this term is ignorable and the toroidal induction equation becomes

η
∂2Bφ

∂z2
= −�Bz ∂�

∂z
, (9.46)

representing a balance between the vertical diffusion of Bφ and its creation due to
the vertical shearing of Bz.

9.4.3 The Thermal Equations

The thermal equilibrium equation relates the divergence of the heat flux to the
energy generated per unit volume, since the heat advection term is ignorable, as
in the standard viscous disc. This gives

∂FR

∂z
= ρν(��′)2 + μ0ηJ

2, (9.47)

having viscous and magnetic contributions. The poloidal components of the current
density are

J� = − 1

μ0

∂Bφ

∂z
, (9.48a)

Jz = 1

μ0�

∂

∂�
(�Bφ). (9.48b)

It follows that |J� | ∼ (�/h)|Jz| � |Jz|. Then using (9.10) and (9.11) for Jφ
together with (9.48a) gives

|Jφ|
|J� | ∼ ν

η

∣∣∣∣BzBφ
∣∣∣∣ h� � 1. (9.49)



254 9 Disc Disruption and Accretion Curtains

Hence the radial component of J dominates and (9.47) becomes

∂FR

∂z
= 9

4
ρν�2

K + η

μ0

(
∂Bφ

∂z

)2

. (9.50)

The main body of the disc is optically thick in the vertical direction and hence
the radiative diffusion approximation holds to give the heat flux as

FR = − 4σB

3κρ

∂

∂z
(T 4), (9.51)

where the Rosseland mean opacity is taken as

κ = KρT − 7
2 + κes, (9.52)

with K a constant in the Kramers opacity, and the electron scattering opacity is

κes = 2 × 10−2(1 + X)m2 kg−1, (9.53)

where X is the fraction by mass of hydrogen.
Allowing for radiation pressure, the equation of state is

P = R
μ
ρT + 4σB

3c
T 4. (9.54)

9.4.4 The Reduced Disc Equations

It is useful to gather the foregoing reduced dynamical, magnetic and thermal
equations together as;

�(�, z) =
{
�K = (GM/� 3)

1
2 , |z| < h−�,

→ �∗, h−� < |z| ≤ h, (9.55)

∂

∂�
(�ρv��

2�)+ ∂

∂z
(�ρvz�

2�) = ∂

∂�

(
ρν� 3 ∂�

∂�

)
+ 1

μ0

∂

∂z
(� 2BφBz),

(9.56)

�2
Kzρ + ∂

∂z

(
P + B2

2μ0

)
= 0, (9.57)

1

�

∂

∂�
(�ρv� )+ ∂

∂z
(ρvz) = 0, (9.58)
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v�Bz − vzB� + μ0ηJφ = 0, (9.59)

η
∂2Bφ

∂z2
= −�Bz ∂�

∂z
, (9.60)

∂F

∂z
= 9

4
ρν�2

K + η

μ0

(
∂Bφ

∂z

)2

, (9.61)

FR = − 4σB

3κρ

∂

∂z
(T 4), (9.62)

κ = KρT − 7
2 + κes, (9.63)

P = R
μ
ρT + 4σB

3c
T 4. (9.64)

Parametrized forms of ν and η are usually employed. These simplified equations
enable analytic progress to be made.

9.5 The Toroidal Magnetic Field

The solution of the toroidal induction equation gives the field Bφ , and its form
will depend on the nature of the magnetic diffusivity. Although the approximate
equation (9.60) gives good accuracy, it is of interest to note that in special cases
exact solutions of the full equation can be found which allow for the effects of the
radial derivative terms. It was shown in Campbell (1987) that, for some cases of η,
such solutions are possible. The last term in the full equation (9.44), representing
advection and compression effects, makes the smallest contribution and so can be
dropped.

For constant η the toroidal equation then becomes

∇2Bφ − Bφ

� 2 = −�
η
Bp · ∇�. (9.65)

This equation can be transformed into a Poisson equation by multiplying by an
integrating factor exp(iφ), giving

∇2(Bφe
iφ) = −�

η
Bp · ∇�eiφ. (9.66)

The Poisson integral solution then leads to

Bφ = 1

4πη

∫ h
−h

∫ �D

�m

� 2
0 (Bp · ∇�)0G(�, z,�0, z0)d�0dz0, (9.67)
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with

G(�, z,�0, z0) = 2

b(a + b) 12
[
2aF

(π
2
, k
)

− (a + b)E
(π
2
, k
)

−(a − b) 
(π
2
, k2, k

)]
, (9.68)

where

a = � 2 +� 2
0 + (z − z0)2, (9.69a)

b = 2��0, (9.69b)

and

k =
[

4��0

(� +�0)2 + (z− z0)2
] 1

2

, (9.70)

with F , E and  being elliptic integrals of the first, second and third kinds (see
Appendix). The integral in (9.67) is over the disc, which is taken to be the major
source of the electric currents.

Another exact solution is possible if a quadratic dependence is taken for η. The
toroidal induction equation can then be expressed as

∇2(�Bφ) = −�
2

η
Bp · ∇�. (9.71)

This has a Poisson integral solution which can be written

Bφ = 1

4π�

∫ h
−h

∫ �D

�m

� 3
0

η(�0)
(Bp · ∇�)0W(�, z,�0, z0)d�0dz0, (9.72)

where

W(�, z,�0, z0) = F(π/2, k)[
(� +�0)2 + (z− z0)2

] 1
2

, (9.73)

where F is an elliptic integral of the first kind and k is defined by (9.70).
These exact solutions illustrate that, in general, the Bφ field has sources

distributed through the disc, including a source due to the radial shearing ofB� . It is
noted that Bφ does not vanish at the corotation point in this solution, which accounts
for the effects of the radial derivatives. The radial shearing term B�d�K/d� leads
to a small but finite value of Bφ at �co.



9.5 The Toroidal Magnetic Field 257

For thin discs, the approximate toroidal equation (9.60) can be used to good
accuracy. For sustainable field winding, corresponding to a dynamical form of
η, |Bφs/Bzs| � 1 applies and poloidal field line inflation will be small. This is
particularly the case for� < �co, which is the region of interest for disc disruption.
The toroidal current density Jφ is then ignorable in the disc and, to lowest order in
z/� , the poloidal field components (9.6) and (9.7) become

B� = 3

2
B0

(
R

�

)3
z

�
, (9.74a)

Bz = −1

2
B0

(
R

�

)3

. (9.74b)

The toroidal induction equation (9.60) must be solved subject to suitable
boundary conditions. For a force-free magnetosphere Bφ obeys the equation

Bp · ∇(�Bφ) = 0 (9.75)

and this becomes the surface condition at z = h. Since the vertical derivative
dominates, the condition reduces to

(
∂Bφ

∂z

)
z=h

= 0, (9.76)

Because Bφ is antisymmetric about z = 0, it follows that

Bφ(�, 0) = 0, (9.77)

applies in the central plane.
Integration of the toroidal equation (9.60) from z up to h, using (9.55) for�, the

z-independence of Bz and the surface condition (9.76), yields

∂Bφ

∂z
= �Bz

η
(�∗ −�K)H(z− h), (9.78)

where the Heaviside step function is

H(z− h) =
{
1, z < h,

0, z ≥ h. (9.79)

Then integrating (9.78) from 0 to z, using the central plane condition (9.77), gives

Bφ = �Bz

η
(�∗ −�K)z. (9.80)
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This solutions is valid down to the outer edge of the disruption region, through
which � changes from �K to �∗. A parametrized form is usually chosen for η.

9.6 Disc and Magnetosphere Models

9.6.1 Analytic and Semi-Analytic Models

A range of models have been presented for the magnetically modified structure of
the disc and of the magnetosphere. These investigations make, by necessity, various
assumptions about the disc magnetic diffusivity, η, and specify an initial structure
for the magnetosphere. It will be seen that η is of central importance to the outcomes
of these studies.

The model of Ghosh and Lamb (1979a) gave a detailed consideration of the
star-disc interaction. A dipolar stellar field was taken with its moment aligned
with the rotation axis. It was argued that the stellar magnetic field will penetrate
the disc via Kelvin-Helmholtz instabilities and turbulent diffusion, with magnetic
reconnection occurring. The surrounding magnetosphere was taken to be magnet-
ically dominated, without extensive poloidal flows, and corotating with the star.
The vertical shear between the magnetosphere and the differentially rotating disc
generates Bφ field from Bz, leading to a growth in the winding ratio |Bφs/Bzs|.
This growth was limited by mixing, diffusion and reconnection processes operating
across the disc.

The magnetic field lines were assumed to stay closed, and hence connect the
disc to the star. The magnetic torque felt by the disc, which is related to the BφsBzs
stress, results in angular momentum exchange between the disc and the star. The
disc was assumed to end in a radial boundary layer, over which its angular velocity
changes to the stellar value �∗. The disc flow becomes vertically diverted through
this layer into a magnetically influenced curtain flow, with accretion occurring in
narrow circular regions near the magnetic poles. Angular momentum is transferred
to the star via magnetic stresses operating along the curtain flow. The boundary layer
was modelled by assuming a radial dependence for the vertical mass transfer rate,
and that the magnetic diffusion can adjust in a suitable way.

Beyond the corotation radius the disc magnetic torque reverses sign and angular
momentum is transferred from the star to the disc. However, provided that the
viscous torque exceeds the magnetic torque, an inflow still results. For plausible
parameters, the positive and negative torques on the star can balance and this defines
an equilibrium period.

Wang (1987) reassessed the Ghosh and Lamb (1979a) model and found an
inconsistency in their expression for the winding ratio |Bφs/Bzs|. This arose from
their expression for the growth rate ∂Bφ/∂t , due to the vertical shear, being taken to
be proportional to Bφ . However, the induction equation shows that this rate should
be proportional to Bz due to winding of the poloidal field. Wang showed that the
Ghosh and Lamb expression for |Bφs/Bzs| leads to an increase in the ratioB2

φ/2μ0P
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with increasing distance beyond�co, and that this is inconsistent with their picture
of weak magnetic perturbation of the disc in this outer region. The stellar magnetic
torque expression derived in Ghosh and Lamb (1979b) is also affected by this error.
Nevertheless, the key features of the Ghosh and Lamb picture of a penetrated stellar
magnetic field being perturbed by differential rotation between the disc and the
magnetosphere, with disruption inside the corotation radius and angular momentum
exchange via magnetic stresses, remain a valid possibility for the case of a disc with
sufficiently high magnetic diffusivity.

In order to investigate the cause of magnetic disruption, Campbell (1992)
considered whether an inner region of the disc could exist in which the magnetic
torque dominated the viscous torque. With a dominant magnetic torque, and a
turbulent magnetic Prandtl number of ν/η ∼ 1, the stellar gravity term makes a
small contribution to the vertical equilibrium so the vertical gradients of P and
B2
φ/2μ0 balance. If the disc magnetic diffusivity is taken as an unspecified function
η(�), then a solution can be found for the radial structure of the inner magnetically
dominated region. The central density ρc decreases inwards and, for a moderate
dependence of η on� , the inflow speed rapidly increases inwards compared to the
unperturbed viscously driven form of v� .

Since η is expected to depend on disc quantities such as ρc and h, a buoyancy
related magnetic diffusivity of the form (9.27) was then used in the φ-component
of the induction equation. Because the vertical equilibrium yields Pc = B2

φs/2μ0,
this form of η has the same dependence on disc quantities as the turbulent form
given by (9.26). Matching of the resulting solution for Bφs to that obtained from the
magnetically dominated angular momentum equation gives a solution for ρc which
decreases rapidly with decreasing� . The vertical equilibrium and the gas equation
of state then yield Pc and Tc. The central temperature was found to increase rapidly
inwards.

Thermal equilibrium, with magnetic dissipation and radiative transfer with a
Kramers opacity, must then be satisfied with these forms for Pc, ρc and Tc. This
leads to a disc height h(�) which diverges inwards and strongly violates the thin
disc condition. Electron scattering opacity rapidly exceeds the Kramers contribution
with decreasing � . Employing a dominant κes still leads to a strong divergence of
h(�) and the radiation pressure exceeds the gas pressure. The slow increase of
B2
φs/2μ0 with decreasing � cannot balance the rapid increase of PR and vertical

equilibrium is impossible.
This analysis indicated that the disc will become rapidly thermally disrupted

inside �co where the magnetic torque starts to exceed the viscous torque. The
vertical expansion would enable material to surmount the potential barrier imposed
by the vertical component of the stellar gravity, and pass through a sonic point before
being accelerated through the curtain flow and accreted.

The disc disruption mechanism was investigated further by Campbell and
Heptinstall (1998a). The vertically integrated disc equations were considered,
using a turbulent form for η, allowing for magnetic and viscous terms, electron
scattering opacity and radiation pressure. The equations were numerically integrated
inwards from a starting point �D, satisfying �D � �co, where the disc has its
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unperturbed standard viscous structure. Magnetic effects become significant as �co

is approached.
Inside �co the magnetic torque grows and the dynamical viscosity ν� increases

to give a viscous torque which allows steady angular momentum balance, with the
sign of d(ν�)/d� changing from that of its unperturbed form. Dissipation heats the
disc and, as the radiation pressure starts to exceed the gas pressure, h(�) rapidly
increases with decreasing� . The magnetic torque approaches the viscous torque as
the disc expands. It was shown that the increase in ν�, due to the increase in the
magnetic torque, results in the disc becoming viscously unstable to short wavelength
perturbations.

Similar results were obtained by Campbell and Heptinstall (1998b), in which
a buoyancy form was used for η. Brandenburg and Campbell (1998) considered a
dynamical form for η, with vK as the mean transport speed. This results in more
moderate values of the winding ratio |Bφs/Bzs| and of ν� inside �co. Again, rapid
vertical disruption occurs accompanied by viscous instability. Campbell (1998)
derived an analytic solution for the inner part of the disc, including an expression
for the disruption radius, using a dynamical form for η.

These investigations indicated that disc disruption is due to magnetic modifica-
tion of the thermal balance in the disc. Without imposed inner boundary conditions
ν� can grow inside �co, leading to expansion and viscous instability. However,
ν� must subsequently decrease inwards so the magnetic stresses can dominate the
viscous stresses and a curtain flow can form.

Matthews et al. (2005) found a solution for the radial structure of the disc for
various mononomial power law opacities, but not including radiation pressure,
magnetic pressure or magnetic heating. A dynamical form was adopted for η. They
determined the inner radius of the disc by imposing the boundary conditions

(ν�)�m = 0, (9.81a)

[
d

d�
(ν�)

]
�m

= 0, (9.81b)

on the integral for the total angular momentum flux. These conditions correspond to
the viscous torque per unit radial length vanishing, so the magnetic torque accounts
for all the local angular momentum transport at the inner edge of the disc. The disc
remains thin as this inner radius is approached, so a disruption mechanism does
not arise. However, the conditions (9.81a) and (9.81b) enable an expression to be
derived for�m as a function of the stellar rotation rate.

Campbell (2010) found a solution for the radial structure of the disc which
includes the effects of electron scattering opacity, magnetic heating, magnetic
pressure and radiation pressure. A modified form of the inner boundary condition
(9.81a) was used, allowing for a small but finite value of ν� at the inner edge of the
disc. The disc expands due to magnetic heating and this allows material to make the
transition from a disc flow to a magnetically channelled accretion curtain flow. In
Campbell (2014) it was shown that matching the flows determines the width of the
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radial transition region and the position of the slow magnetosonic point. The details
of this are given in Sect. 9.8.

All the above studies assumed that the stellar poloidal magnetic field threading
the disc remains closed. Lovelace et al. (1995) noted that for η values characteristic
of turbulence, typically given by (9.26) with εT � 0.1, the winding ratio |Bφs/Bzs|
can become large if no other process limits its growth. They suggested that poloidal
field lines will inflate and at a critical value of the winding ratio they will become
open. This is most likely to occur in the outer regions of the disc, and wind outflows
may result if the slow magnetosonic surface is not too far above the disc surface. It
was also suggested that field lines originating near the stellar magnetic poles may
also open. However, no disruption of the inner disc was considered. A similar disc
and stellar wind model was proposed by Paatz and Camenzind (1996). Poloidal field
line inflation was confirmed by the work of Bardou and Heyvaerts (1996), and with
larger winding ratios by Agapitou and Papaloizou (2000), as previously described.

9.6.2 Numerical Simulations

Time-dependent numerical simulations of the star-disc interaction have allowed the
possibility of wind flows to be investigated. They show that this is particularly
related to the values of η in the disc. These simulations have been performed using
T Tauri parameters, rather than for those of the magnetic white dwarfs and neutron
stars occurring in binary systems. Nevertheless, the results should have relevance to
the binary star cases.

Goodson et al. (1997) solved the time-dependent resistive MHD equations for
the case of a rotationally aligned stellar dipolar magnetic field. The disc magnetic
diffusivity was taken as a constant, with a value significantly smaller than those
characteristic of turbulence.An initial structure was assumed for the magnetosphere,
with a density ρ(r) ∝ 1/r4 and values giving an Alfvén speed of typically a
few times free-fall values. An α disc model was used and an initial value was
assumed for the disruption radius�m. The Bφ field grows, due to vertical shearing
and the growing magnetic pressure of B2

φ/2μ0 causes Bp to become inflated.
Magnetospheric material moves with the inflating field lines and hence an outflow
results, separated from the ambient medium by a fast MHD shock. A strong vertical
flow develops near the rotation axis, with the density increasing in this region
and near the disc surfaces. Stellar field lines originating nearer the equator remain
closed, while those nearer the poles open. Hence, as suggested by Lovelace et al.
(1995) and by Paatz and Camenzind (1996), a configuration results with regions of
open stellar and disc field lines separated nearer the star by closed lines connecting
it to the inner part of the disc.

The inner part of the disc spirals in towards the star. Reconnection then results
in the inner field lines reverting to a nearly dipolar configuration, and the disc
unloads material on to the star via a curtain flow. Reconnection near the disc surface
mixes plasma from the disc with the magnetosphere. A second phase of expansion



262 9 Disc Disruption and Accretion Curtains

then occurs. A central highly collimated and hot jet, driven by material converging
towards the axis, is established. A weakly collimated, but magnetically channelled
and centrifugally launched, disc wind develops in the open field region of the disc.
The central jet narrows and the wind region expands with time. The jet and wind
regions are separated by denser regions of gas (plasmoids), formed during the rapid
inflation process, which flow outwards. There is episodic behaviour, with multiple
expansion phases. Each phase drives plasma into the jet and wind, with the jet
becoming fed by disc material. The inner edge of the disc oscillates with these
phases.

Goodson and Winglee (1999) proposed three types of disc-magnetosphere
configurations, based on their numerical simulation results. It was suggested that for
sufficiently large η, corresponding to the diffusion velocity exceeding the Keplerian
velocity, a steady, closed field configuration with no outflow results. Figure 8.1
shows this configuration, which is often adopted and corresponds to the original
configuration of the Ghosh and Lamb (1979a) model. For intermediate values of η
the diffusion velocity is less than vK but exceeds the inflow speed. This results in
larger values of |Bφs/Bzs| and a current sheet separates the stellar and disc regions
of open field lines. This configuration is subject to tearing mode instabilities, leading
to reconnection and some time-dependent behaviour. Figure 9.1 is a schematic
representation of this case. Finally, for a diffusion speed less than the inflow speed,
the periodic behaviour found in the simulations of Goodson et al. (1997) results.
The stellar and disc outflows remove angular momentum from the system. The inner
edge of the disc oscillates between maximum and minimum values, with accretion
occurring on to the star via a curtain flow when reconnection occurs as �m reaches
its minimum value. Figure 9.2 represents this case, with a typical configuration
shown at some time in the cycle. The closed field lines tend to be inflated from

vp // Bp

Bp Bp

m

v

Fig. 9.1 Structure of the magnetospheric magnetic field for intermediate values of η. Wind flows
occur along the open stellar poloidal field lines (not to scale)
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Fig. 9.2 Structure of the magnetospheric magnetic field for lower values of η. Stellar and disc
wind flows occur along open poloidal field lines, and plasma ejections occur in the regions
connecting oppositely directed open field lines (not to scale)

a dipole state, but return to the nearly dipolar form when �m reaches its minimum
value.

Romanova et al. (2002) performed numerical simulations of the aligned dipole
case. The time-dependent equations were solved, using an adiabatic equation to
replace the thermal problem, and a standard parametrized form was used for the
disc viscosity. Only numerical magnetic diffusivity was included. A large spherical
region was adopted, to minimize the effects of external boundaries, but only the
inner parts of this are relevant. The radial derivatives of P , ρ, T , (v − �∗ × r)
and rBφ were taken to vanish at the stellar surface. A low temperature disc was
embedded in a high temperature corona, with an inner edge initially located where
P + ρv2φ = B2/2μ0. To avoid rapid collapse of the disc, the corona was initially
taken to rotate with the same angular velocity distribution as the disc, and with an
angular velocity of �∗ inside the inner radius. The condition Bφ(r, 0) = 0 was
employed and Bp(r, 0) was taken as dipolar. The initial magnetospheric pressure
was taken to have a baratropic distribution P(ρ). Spherical polar coordinates were
used.

Two sets of simulations were run; the first taking the initial inner disc radius rm
to lie inside rco, and the second set with rm = rco. In the first cases Bφ increases and
Bp inflates, with field lines in the outer parts of the disc becoming open. The inner
field lines remained closed, and the magnetically affected part of the disc is thinner
than the outer disc. Magnetic braking occurs inside rco, but the disc inflow speed
becomes reduced when B2/2μ0 � ρv2φ and vertical funnel flow occurs.

In the second case, the simulations were run for more than 80 rotation periods of
the inner edge of the disc. The disc edge moved inwards, due to viscous transport of
angular momentum, and when B2/2μ0 � ρv2φ funnel flow developed, typically
after 10 rotations. The disc angular velocity became sub-Keplerian inside rco.
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The lines ofBp were dragged in due to the low values of η adopted. Periodic opening
and reconnection of field lines was observed, with an accompanying oscillation in
rm. Field loops were stretched and then released by reconnection allowing accretion
to occur via funnel flow on to the star. This behaviour is similar to that found by
Goodson et al. (1997), when lower values of η were used.

A high magnetospheric density was taken, with a slower fall off with increasing r
than in the simulations of Goodson et al. (1997). Consequently, the magnetosphere
never completely corotates with the star, and there is differential rotation near
the stellar surface. Vertical thermal pressure gradients accelerate material into the
funnel/curtain flow.

Zanni and Ferreira (2009) investigated the time-dependence of the aligned dipole
case. They calculated the initial disc structure using a standard parametrization for
the viscosity. A self-similar disc solution was found, using a polytropic equation,
with a constant aspect ratio of h/� = 0.1. A cooling term was included in
the energy equation, which balanced the heating due to the viscous and magnetic
dissipations. The initial magnetospheric structure was polytropic and spherically
symmetric. The specific entropy of the disc was taken to exceed that of the
magnetosphere, and the initial magnetospheric density was a factor 10−2 of the disc
central density.

The Bp field was assumed to be frozen to the star, so B × (v − �∗ × r) = 0,
and the initial dipolar structure of Bp was assumed to be maintained at the stellar
surface. The value of the magnetic torque, consistent with corotation at r = R∗, was
determined from the angular momentum equation which gives a value for ∂Bφ/∂r .
The lines of Bp linked to the disc were initially set into corotation with the �K(�)

distribution. The value of �(R∗, θ) was taken to match this, but was reduced to �∗
after two stellar rotation periods. Field lines which cross the central plane inside
the disruption radius were taken to have � = �∗. An extended magnetosphere
was used with R∗ < r < 30R∗, with conditions set at the outer boundary so that
no artificial torques were exerted on the star. The inner edge of the disc was set
where P = B2/2μ0. The viscosity and magnetic diffusivity parameters taken were
equivalent to εv = ν/csh = 1.0 and εT = η/csh = 1.5. These relatively large values
were chosen so a quasi-steady state could be reached.

The winding ratio |Bφs/Bzs| grows and reaches a maximum. Some field line
inflation occurs, with lines nearer the magnetic poles opening and a stellar wind
flow develops. The outer field lines threading the disc become open, but there is
an extensive inner region of closed lines. Curtain flow occurs near the truncation
radius, where � tends to �∗. There are similar time dependences in the accretion
rate and stellar wind flow, with the wind being initiated by pressure gradients. The
system reaches a steady state after about 15 stellar rotations. This case corresponds
to the magnetospheric configuration shown in Fig. 9.1.

Zanni and Ferreira (2013) performed further numerical simulations using a
smaller value of η, corresponding to εT = 0.1, and a range of viscosity parameters
εv = 0.07, 0.20, 0.67. As before, open field lines occur near the magnetic poles, and
well beyond�co in the disc. The disc truncates in an inner region of closed field lines
and a curtain flow forms. However, the outer region of the disc now develops a wind
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flow channelled along the open field lines. Also, episodic ejections of plasma occur
in the region between the open field lines, with this material being supplied mainly
by the disc, and being related to reconnection events. The enthalpy flux needed to
supply the initial stellar wind is a small fraction of the accretion power. Centrifugal
force subsequently drives the wind. A cyclic time dependence is observed, with a
typical recurrence time of two stellar rotation periods. This is a similar evolution
to that found by Goodson et al. (1997), for smaller values of η. This behaviour is
represented by the magnetospheric configuration shown in Fig. 9.2.

9.7 The Disc Disruption Mechanism

9.7.1 The Magnetic Field

A model which explains disc disruption, and fits to a curtain flow region, was
developed in Campbell (2010). A dynamical diffusivity is taken for the disc as

η = εmvK(�m)

(
�

�m

)n
h, (9.82)

with the dimensionless parameter εm ∼ 1, n is a constant and�m is the outer radius
of the disruption region. Taking n > 0 ensures that the surface ratio |Bφs/Bzs|
remainsmoderate. Poloidal field line inflation is then small, especially for� < �co,
and the components of Bp are given by (9.74a) and (9.74b). Equation (9.80) gives
the surface toroidal magnetic field as

Bφs = �Bz

η
γ (�∗ −�K)h, (9.83)

where the dimensionless parameter γ < 1 has been introduced to allow for a vertical
shear which is not entirely concentrated near the disc surface. The corotation radius
is related to the stellar rotation period by

�co =
(
GMP 2

4π2

) 1
3

, (9.84)

and a rotation fastness parameter ξ is defined by

ξ = �m

�co
=
(
�∗
�Km

) 2
3

, (9.85)

with �Km = �K(�m). Since disruption occurs inside�co, it follows that ξ < 1.
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9.7.2 Angular Momentum Transport

The disc angular momentum equation is given by (9.56). Assuming that there is no
significant mass loss from the surfaces for � > �m, vertical integration yields the
angular momentum transport equation

d

d�
(Ṁ� 2�+ 2π� 3�′ν�)+ 4π

μ0
� 2BφsBzs = 0, (9.86)

with the mass inflow rate given by

Ṁ = −4π
∫ h
0
�ρv�dz (9.87)

and

� = 2
∫ h
0
ρdz. (9.88)

The standard parametrization is employed for ν, so

ν = εvcsh, (9.89)

with εv < 1 and the isothermal sound speed

cs =
(R
μ
Tc

) 1
2

. (9.90)

The viscous torque per unit radial length is

Tv = d

d�

(
2π� 3�′ν�

)
, (9.91)

contributing an outward radial transport of angular momentum through the disc.
Using (9.55), (9.74b) and (9.82) for �K, Bz and η, the magnetic torque per unit
radial length becomes

Tm = 4π

μ0
� 2BφsBzs = π

μ0

γ

εm
B2
0R

6�
n+ 1

2
m

�n+ 9
2

[(
�

�co

)3/2

− 1

]
. (9.92)

For � < �co, this torque acts to remove angular momentum from the disc and
transfer it to the star. For � > �co, angular momentum is transferred from the star
to the disc. Well beyond �co magnetic perturbation of the disc becomes small and
it has its unperturbed structure.
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The angular momentum equation (9.86) can be integrated to obtain ν�, subject
to an inner boundary condition. It is anticipated that inside�m the disc flow will be
diverted vertically into a magnetically channelled curtain flow, over a narrow radial
region. As this region is entered the magnetic torque rapidly exceeds the viscous
torque so an appropriate boundary condition on ν� is

(ν�)�m = q Ṁ
3π
, (9.93)

with the dimensionless factor q � 1. This small but finite value of q will allow for
a finite density at �m, consistent with mass loading on to the field lines just inside
�m. The factor q can be determined as a function of the stellar rotation parameter
ξ , by consideration of the angular momentum balance across the boundary layer
connecting the disc to the accretion curtain (see Sect. 9.8.5).

Integrating the disc angular momentum equation (9.86), using (9.92) for the
magnetic torque and applying condition (9.93), yields

ν� = Ṁ

3π
f (x), (9.94)

with x = �/�m,

f (x) =1 − (1 − q)x− 1
2

+Q
[
x−(n+4) − (2n+ 7)

2(n+ 2)
ξ3/2x−(n+ 5

2 ) +
{
(2n+ 7)

2(n+ 2)
ξ

3
2 − 1

}
x− 1

2

]
,

(9.95)

where

Q = 2

(2n+ 7)

γ

εm

(
�A

�m

) 7
2

(9.96)

and

�A =
[

πB2
0R

6

μ0(GM)
1
2 Ṁ

] 2
7

. (9.97)

The radius �A, which arises naturally from the angular momentum transport
equation, is equivalent to an Alfvén radius. Its full significance will become apparent
later.
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9.7.3 Vertical Equilibrium and the Thermal Problem

The vertical equilibrium condition is given by (9.57). Integrating this from z = 0 to
z = h, using (9.64) for P together with P(�, h) � P(�, 0) and Bφs(�, 0) = 0,
yields

�2
K

∫ h
0
zρdz+ B2

φs

2μ0
= R
μ
ρcTc + 4σB

3c
T 4
c , (9.98)

where the subscript ‘c’ denotes central plane values.
Expressing the density as

ρ(�, z) = ρc(�)fρ(ζ ), (9.99)

where ζ = z/h, it follows that

� = 2
∫ h
0
ρdz = 2I1ρch (9.100a)

with

I1 =
∫ 1

0
fρ(ζ )dζ (9.100b)

and

∫ h
0
zρdz = I2ρch2 (9.101a)

with

I2 =
∫ 1

0
ζfρ(ζ )dζ. (9.101b)

Using (9.89) for ν, together with (9.100a) for �, gives

ν� = 2I1εvcsρch2. (9.102)

Employing this and the integral (9.101a) in the vertical equilibrium (9.98) yields the
disc height as

h =
[
I2
μ

R
�2

K

Tc
+ I1 εv

μ0

(μ
R
)1/2 B2

φs

ν�

1

T
1
2
c

− 8σB

3c

(μ
R
) 1

2 εvI1

ν�
T

7
2
c

]− 1
2

. (9.103)
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The last two terms in the square bracket give the effects due to magnetic force and
radiation pressure. Since Bφs is a known function of� via (9.82) and (9.83), while
ν� is given by (9.94) and (9.95), the expression (9.103) yields h as a function of�
and Tc.

Another expression relating Tc to h and � and can be found from the thermal
equations. Vertical integration of the thermal equilibrium equation (9.61) gives

Fs = 1

2
(��′

K)
2ν� +

∫ h
0

η

μ0

(
∂Bφ

∂z

)2

dz, (9.104)

relating the surface heat flux Fs = FR(�, h) to the sum of the viscous and magnetic
dissipation rates per unit area. Using (9.55) for�K and (9.80) for Bφ then yields

Fs = 9

8
�2

Kν� + η

μ0

B2
φs

h
. (9.105)

Vertical integration of the radiative diffusion equation (9.62), employing the
vertical average 〈κρF 〉z � κcρcFs, leads to

4

3
σBT

4
c = 1

2I1
κc�Fs, (9.106)

with the opacity taken as the sum of a Kramers form and that due to electron
scattering, so

κc = KρcT − 7
2

c + κes, (9.107)

with κes given by (9.53). Using (9.105) to eliminate Fs in (9.106), together
with (9.82) for η and (9.83) for Bφs, gives

8
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σBI1T
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⎦ ,
(9.108)

where κc� can be expressed as

κc� = 1

2I1

K

ε2v
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(ν�)2

h3T
9
2
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+ κes

εv
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) 1

2 ν�

hT
1
2
c

. (9.109)

The disc height equation (9.103) can be used with (9.108) and (9.109) to solve for
Tc(�).
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9.7.4 Solution of the Equations and Disc Structure

Before solving the equations, it is convenient to express them in a dimensionless
form. Dimensionless variables can be defined as

x = �

�m
, (9.110a)

T̄c = Tc

T0
, (9.110b)

h̄ = h

h0
, (9.110c)

where

T0 =
(

K

64
√
2π3σB

) 1
10
(
μG

R
) 1

4 M
1
4 Ṁ

3
10

ε
1
10
v �

3
4
m

, (9.111)

and

h0 =
(R
μ

� 3
mT0

I2GM

) 1
2

(9.112)

are the values that Tc and h would have in the absence of the stellar magnetic field
at the radius� = �m. Equations (9.108) and (9.103) then give

T̄ 4
c − κc�

[
c1
f

x3
+ c2

xn+7

(
1 − ξ 3

2 x
3
2

)2] = 0, (9.113)

with

κc� = c3 f
2

h̄3T̄
9
2
c

+ c4 f
h̄T̄

1
2
c

, (9.114)

and

h̄ =
⎡
⎢⎣ 1

x3T̄c
+ c5

(
1 − ξ 3

2 x
3
2

)2

x2n+7f T̄
1
2
c

− c6
f
T̄

7
2
c

⎤
⎥⎦

− 1
2

, (9.115)

where f (x) is given by (9.95) and the coefficients ci are dimensionless constants
depending on the system parameters.
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Equations (9.113)–(9.115) can be combined to give an implicit equation con-
necting x and T̄c, which can be solved numerically for a suitable range of system
parameters. The numerical results show that, for the cases of interest, the last two
terms in the square bracket in (9.115) make a modest contribution relative to the
first term in determining h̄. The last two terms, which are related to magnetic
compression and expansion due to radiation pressure, respectively, can then be
ignored to a first approximation to give

h̄ � x 3
2 T̄

1
2
c . (9.116)

Using this to eliminate h̄ in (9.114) and substituting the resulting expression for κc�
in (9.113) leads to

T̄ 10
c − c4 fF

x
3
2

T̄ 5
c − c3 f

2F

x
9
2

= 0, (9.117)

where

F = c1 f
x3

+ c2

xn+7

(
1 − ξ 3

2 x
3
2

)2
. (9.118)

Equation (9.117) is a quadratic in T̄ 5
c for which the positive root yields

T̄c =
[
c4

2

fF

x
3
2

+ 1

2

f

x
3
2

(
c24F

2 + 4c3
F

x
3
2

) 1
2
] 1

5

. (9.119)

This expression for T̄c can then be used in (9.115) to obtain a more accurate
expression for h̄. The dimensionless central density follows by eliminating ν�
between (9.94) and (9.102) to give

ρ̄c = ρc

ρ0
= f

h̄2T̄
1
2
c

, (9.120)

where

ρ0 = 1

6π

(μ
R
) 1

2 Ṁ

εvI1h
2
0T

1
2
0

. (9.121)

A condition, related to the power n occurring in (9.82) for η, can be derived for
disc disruption to occur at� = �m. An inwardly expanding disc requires

(
dh̄

dx

)
x=1

< 0. (9.122)
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The second term in the expression (9.115) for h̄ represents the effect of the vertical
gradient in magnetic pressure, and this is always small. The last term contributes
to expansion of the disc due to radiation pressure and hence inward expansion will
occur if the first term decreases with decreasing x, giving the condition that x3T̄c
increases inwards. Noting that the viscous dissipation and Kramers opacity make
small contributions to the disc structure near x = 1, and so the corresponding terms
involving the constants c1 and c3 can be dropped from (9.118) for F and (9.119) for
T̄c, the condition of d(x3T̄c)/dx < 0 at x = 1 then yields

n >
13

2
− 3ξ

3
2

(1 − ξ 3
2 )
. (9.123)

This is satisfied, for all relevant values of ξ , for n > −6.8. Since n > 0 is consistent
with moderate field winding, the disruption condition is always satisfied.

The disruption radius of the disc is given in terms of the corotation radius
via (9.85) as

�m = ξ�co. (9.124)

An expression can be found for the rotation parameter ξ by considering boundary
conditions at�m. The form (9.94) gives the condition (9.93) on ν� as

f (1) = q. (9.125)

Following the arguments of Matthews et al. (2005), the gradient of ν� should
essentially vanish at the inner edge of the disc where the viscous torque per unit
radial length becomes small, so

[
d

d�
(ν�)

]
�=�m

= 0 (9.126)

should apply. They also took the condition ν� = 0 at � = �m, while here ν� is
small but finite at �m. Since they did not include magnetic heating, their analysis
gave a truncated disc due to the inner boundary conditions used, but did not lead to
a disruption mechanism. Using (9.94) for ν�, the condition (9.126) becomes

f ′(1) = 0. (9.127)

Applying this to (9.95) for f (x) leads to

2
γ

εm

(1 − ξ 3
2 )

ξ
7
2

(
�A

�co

) 7
2 = 1 − q. (9.128)
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To a good approximation, this yields the solution

ξ =
[

{C2 + 4(1 − q)C} 1
2 − C

2(1 − q)

] 2
3

, (9.129)

where

C = 2
γ

εm

(
�A

�co

) 7
2

. (9.130)

This relates ξ to the rotation period of the star. Eliminating �co between (9.124)
and (9.128) gives

�m =
(
2γ

εm

) 2
7 (

1 − ξ 3
2

) 2
7
�A. (9.131)

The Alfvén radius can be expressed in the form

�A = 2.61 × 106

(
B0

108 T

) 4
7
(
R

104 m

) 12
7

(
M

1.4M�
) 1

7
(

Ṁ
10−9M� year−1

) 2
7

m. (9.132)

To illustrate the disc solution, the example of an accreting neutron star in an X-
ray binary is considered, takingM = 1.4M�, R = 104 m, B0 = 2 × 108 T, Ṁ =
4 × 10−9 M� year−1 and P = 2 s. The parameters and vertical integrals are taken
as γ = ε = 0.5, εV = 0.1, q = 0.1, n = 3, I1 = 0.7 and I2 = 0.4. Figure 9.3 shows
that the ratio of magnetic to viscous dissipation rapidly increases inside �co, while
Fig. 9.4 shows there is a corresponding increase in the temperature. The magnetic
dissipation, given by ηB2

φs/μ0h, rapidly increases with decreasing� mainly due to
the increase in |Bz| which acts as the source of Bφ . Figure 9.5 illustrates that the
disc expands due to the increased heating which leads to increases in the vertical
gradients of the gas and radiation pressures which cannot be balanced by the slower
increases in the vertical gravity and magnetic pressure gradient. Figure 9.6 shows
there is a sharp increase in the ratio of the magnetic to viscous torque, consistent
with the magnetic force becoming dominant in controlling the accretion flow as the
disc ends.

Figure 9.7 illustrates that the field winding ratio |Bφs/Bzs| remains moderate
everywhere, with (Bφs/Bzs)2 � 1, so justifying the assumption of small poloidal
field inflation. For � > �co perturbation of the disc is usually small, but a special
case arises which will be discussed in Chap. 10.
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9.8 The Accretion Curtain Flow

9.8.1 Background

Material at the inner edge of the disrupted disc still has significant angular
momentum which must be lost if accretion on to the star is to occur. The accretion
curtain flow allows angular momentum to be transferred to the star continuously
via magnetic stresses. Thermal expansion at disruption allows matter to make the
transition from the disc to the curtain flow and to pass through a sonic point. Inside
this point the stellar gravitational force tangential to the constraining field lines
accelerates the flow to nearly free-fall speeds. The highly supersonic flow must pass
through a standing slow magnetosonic shock before settling on to the stellar surface.
Strong compression and heating will occur.

A model for the structure of the curtain flow was presented by Koldoba et al.
(2002). It was assumed that the curtain flow is well sub-Alfvénic everywhere, so
the stellar magnetic field structure remains nearly dipolar. A polytropic equation
P = Kργ was adopted, with γ 
= 1. The ideal MHD equations were solved and it
was found that, for γ < 7/5, the Mach number |vp|/cs increases monotonically as
the cylindrical coordinate� decreases. The density ρ decreases initially, reaching a
minimum beyond the sonic point, and then increases monotonically. The angular
velocity was sub-stellar and nearly constant throughout the curtain flow. The
fastness parameter ξ = �m/�co was found to have a minimum value ξmin =
(2/3)1/3 at which the sonic point coincides with the disc surface at the curtain base.
Hence ξ must lie in the range ξmin < ξ < 1 for a trans-sonic curtain flow to occur
inside�co.
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The numerical simulations of Romanova et al. (2002) found that magnetically
channelled funnel/curtain flows developed at disruption. These flows were initially
driven by vertical pressure gradients, and matter passed through a sonic point. The
flow reached speeds of � 70% of the free-fall speed near the stellar surface. The
flow speed was well sub-Alfvénic throughout the curtain region. The simulations
of Zanni and Ferreira (2009) also found sub-Alfvénic curtain flows with a similar
structure.

An analytic model is presented below which describes the fundamental features
of the curtain flow, and allows the width of the disc transition region to be calculated
and related to the position of the sonic point. A strong magnetic regime, related to
the rotation period of the star, can be identified, in which matter can be transferred
from the disc to the curtain flow at a steady rate.

9.8.2 The Governing Equations

The structure of the curtain flow and the resulting accretion torque were considered
in Campbell (2012, 2014). Just inside �m the disc expands over a narrow radial
region which acts as the base of the field controlled curtain flow. The magnetic
diffusivity becomes small as the curtain flow is entered and the steady induction
equation is then given by (9.1). This gives

vp = κBp, (9.133)

�− κBφ
�

= �∗. (9.134)

A slow magnetosonic shock front will exist just above the stellar surface, leading
to vp, and hence κ , essentially vanishing as the flow ends. The poloidal field is
assumed to be frozen to the stellar material, and hence the field lines rotate with
angular velocity �∗. Conservation of mass and magnetic flux lead to the quantity

ε = ρκ = ρvp

Bp
, (9.135)

being conserved along poloidal field-streamlines. The steady, high magnetic
Reynolds number equations describing the curtain flow are similar to those
occurring in steady, axisymmetric wind theory (see Chap. 13). However, some
important differences arise here since the curtain flow will be shown to be sub-
Alfvénic as opposed to the trans-Alfvénic outflow of a magnetic wind. Since vp and
Bp are anti-parallel here for z > 0, κ and ε are negative.
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The total rate of transport of angular momentum, carried jointly by the gas and
magnetic stresses, is given by

ε� 2�− �Bφ
μ0

= −β, (9.136)

which is conserved along poloidal field-streamlines. Equations (9.134)–(9.136) give

� = �∗ − μ0|ε|β/� 2ρ

1 − μ0ε2/ρ
, (9.137)

Bφ = μ0β/� − μ0|ε|�∗�
1 − μ0ε2/ρ

. (9.138)

It follows from (9.135) for ε that

μ0ε
2

ρ
= ρv2p

B2
p /μ0

= v2p

v2A
, (9.139)

where vA is the poloidal field Alfvén speed. Hence v2p/v
2
A gives the ratio of the

poloidal kinetic energy density to the poloidal magnetic energy density. This ratio
will be shown to be of fundamental importance to the properties of the curtain flow.

The vertical optical depth of material sharply decreases from the disc to the
curtain region, so it is reasonable to take the curtain flow as isothermal with sound
speed a. Consideration of the rate of work done by the forces acting on the gas
yields the energy integral

1

2
v2p + 1

2
� 2�2 − GM

(� 2 + z2) 12
+ a2 ln ρ −�∗� 2� = E. (9.140)

This is the sum of the kinetic energy, the gravitational energy and the work done by
the pressure gradient and magnetic torque, per unit mass. The specific energy E is
conserved along poloidal field streamlines on which z = z(�).

9.8.3 The Poloidal Flow Speed

Firstly, the poloidal flow speed of material in the accretion curtain can be investi-
gated. Inside�m the disc inflow is vertically diverted, over a region of width δ, into
the field channelled curtain flow. It enters at a subsonic speed and is accelerated
by vertical pressure gradients until vp reaches the sound speed at a point above
the curtain base. The sonic point will be shown to be essentially the same as the
slow magnetosonic point. Figure 9.8 shows a schematic picture of the system.
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Fig. 9.8 A vertical cross-section of the curtain flow region connecting to the inner part of the disc.
The corotation radius, �co, the outer edge of the transition region, �m, its width δ and the sonic
point coordinate �sn are shown (from Campbell 2014)

At disruption the flow divides evenly between the upper and lower halves of the
disc, so only z > 0 needs to be considered. Matter is fed into the upper curtain
through its base at a rate

Ṁ

2
= 2π�m(ρvz)0δ, (9.141)

where the subscript zero refers to the base point (�0, h0) at which the flow is
essentially vertical. The disruption region is �m − δ ≤ � ≤ �m, with δ ∼ h0 �
�m.

The amount of poloidal field distortion caused by the curtain flow will depend on
the ratio of the kinetic and magnetic energy densities, given by (9.139). Evaluating
this ratio at the curtain base gives

(
v2p

v2A

)
0

=
(
ρv2z

B2
z /μ0

)
0

=
(
�m

�A

) 7
2
(
�0

h0

a

vKm

)
h0

δ

vz0

a
, (9.142)

where the last expression follows by using (9.74b) for Bz and eliminating Ṁ
between (9.97) for�A and (9.141) in order to express (ρvz)0 in terms of�A.

Equations (9.82) and (9.83) yield the field winding ratio at the curtain base as

(
Bφs

|Bz|
)
0

= γ

εm

(
1 − ξ 3

2

)
, (9.143)

then substituting for (1 − ξ3/2) from (9.131) for�m gives

(
�m

�A

) 7
2 = 2

(
Bφs

|Bzs|
)
0
. (9.144)
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It follows from the previous definitions that

γ

εm
< 1 (9.145)

holds and it will be shown that a minimum value exists for ξ . This ensures that
(Bφs/|Bzs|)0 � 0.2 and hence (9.144) shows that

�m

�A

< 1 (9.146)

is satisfied. Then, since (�0a/h0vK0)(h0/δ) � 1 and vz0/a � 1, (9.142) gives

(
v2p

v2A

)
0

� 1. (9.147)

Hence the initial curtain flow is well sub-Alfvénic, so the poloidal magnetic field
will only be slightly distorted from its current-free state and (9.6) and (9.7) can be
used for the components of Bp.

The density decreases from the curtain base to the sonic point and hence it
follows from (9.139) that the ratio v2p/v

2
A increases. The conservation of ρvp/Bp

gives

vz0

a
= |Bz(�0)|
Bp(�sn)

ρsn

ρ0
. (9.148)

The equation describing poloidal field lines is

dz

d�
= Bz

B�
, (9.149)

then using (9.6) and (9.7) for B� and Bz, integration subject to z(�0) = h0 gives
the field line equation

z2 = �
2
3
0

(
1 + h20

� 2
0

)
�

4
3 −� 2. (9.150)

Evaluating the field strength Bp = (B2
� + B2

z )
1/2 along a field line yields

Bp = 2|Bz0|�
2
0

� 2

[
1 − 3

4

(
�

�0

) 2
3
] 1

2

. (9.151)
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This shows that Bp increases monotonically as � decreases from the curtain base
to the stellar surface. Equation (9.139) gives the sonic point ratio

(
v2p

v2A

)
sn

= ρ0

ρsn

(
v2p

v2A

)
0

, (9.152)

and then using (9.142) for (v2p/v
2
A)0 together with (9.148) for vz0/a yields

(
v2p

v2A

)
sn

=
(
�m

�A

) 7
2
(
�0

h0

a

vK0

)
h0

δ

|Bz(�0)|
Bp(�sn)

. (9.153)

This is significantly less than unity and hence the curtain flow is well sub-Alfvénic
between the curtain base and the sonic point, justifying using the current-free stellar
field for Bp.

Using (9.151) to eliminate Bp in (9.135) for ρvp/Bp gives vp in terms of �
and ρ. Then employing this to eliminate vp, and (9.137) to eliminate �, in the
energy integral (9.140) yields an equation implicitly relating � and ρ. This can
be solved numerically, for calculated values of the Lagrangian invariants ε and β,
to obtain ρ(�) along poloidal field-streamlines in the accretion curtain. Initially
ρ(�) decreases with decreasing� , attains a minimum value inside the sonic point,
and then increases monotonically down to the boundary layer edge just above the
stellar surface. This is consistent with the density distribution found by Koldoba
et al. (2002), in which a non-isothermal equation was used relating P and ρ. The
poloidal flow speed is well sub-Alfvénic throughout the curtain region.

9.8.4 The Curtain Base Angular Velocity

The poloidal and toroidal equations (9.133) and (9.134) give the angular velocity in
the curtain flow as

� = �∗ − |vz|
�

Bφ

|Bz| . (9.154)

At the curtain base � = �0 with

�0 = �(�0, h0) = �∗ − vz0

�0

(
Bφs

|Bz|
)
0
. (9.155)

Using (9.143) for the disc surface field winding ratio |Bφs/Bz| at the curtain base
ensures that the fields are matched and gives

�0 = �∗

⎡
⎣1 − γ

εm

vz0

vKm

(
1 − ξ 3

2

)

ξ
3
2

⎤
⎦ , (9.156)
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using�∗ = ξ3/2�Km. This shows that�0 is slightly below�∗, It follows that matter
entering the transition regionmust change its angular velocity from its value at z = 0
to the value �0 at z = h0. This will be shown to have consequences for the angular
momentum transfer via the curtain flow. Sub-stellar values for � were observed in
the curtain flows arising in the numerical simulations of Romanova et al. (2002) and
of Zanni and Ferreira (2009).

9.8.5 Angular Momentum Transfer

The angular momentum transfer due to the curtain flow can now be considered. The
total angular momentum flux per unit poloidal magnetic field is given by (9.136).
Since this is conserved along field-streamlines, it can be evaluated at the curtain
base to give

β = |ε|� 2
0�0 + �0

μ0
Bφs(�0). (9.157)

Since ε = ρvz/Bz, the ratio of the magnetic term to the material term at the curtain
base can be expressed as

�0Bφs(�0)

μ0|ε|� 2
0�0

= 1

ξ
3
2

(
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vK
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0

= 1
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3
2

δ
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(
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|Bz|
)
0

(
�A

�m

) 7
2

= 1

2ξ
3
2

δ

�0
� 1, (9.158)

using (9.142) for (v2p/v
2
A )0 and (9.144) for�m/�A. It follows that

β = |ε|� 2
0�0

(
1 + 1

2ξ
3
2

δ

�0

)
. (9.159)

Using the mass conservation equation (9.141) to express (ρvz)0 in terms of Ṁ gives

|ε|� 2
0�0 = Ṁ� 2

0�0

4π�mδ|Bz0| . (9.160)

It is noted that β is positive.
It was seen that at � = �m the angular velocity � must change from �Km =

�K(�m) at z = 0 to �0 at the curtain base z = h(�0). Since �0 < �Km, the
transition from z = 0 to z = h0 involves a loss of angular momentum per unit
mass of � 2

m(�Km − �0). To account for this, consider the disc angular momentum
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equation

∂

∂�
(�ρv��
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∂z
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2�) = ∂

∂�

(
ρν� 3 ∂�

∂�

)
+ 1

μ0

∂

∂z
(� 2BφBz).

(9.161)

Integrating this over 0 < z < h0, noting that Bφ and vz vanish at z = 0, yields

�0(ρvz)0�
2�0 − �

2

μ0
BφsBzs = d

d�

(
� 3
∫ h0
0
ρν
∂�

∂�
dz−� 3

∫ h0
0
ρv��dz

)
.

(9.162)

The transition region of the disc has a radial extent of �m − δ ≤ � ≤ �m. Since
the flow is truncated and magnetically dominated at the inner edge, appropriate
boundary conditions there are

ρ(�m − δ, z) = 0 (9.163a)

and (
∂�

∂�

)
�m−δ

= 0. (9.163b)

At the outer edge
(
∂�

∂�

)
�m

= �′
K(�m) = −3

2

�Km

�m
. (9.164)

Integrating (9.162) over this region, applying these boundary conditions, gives

[
�m(ρvz)0�

2
m�0 − �

2
m

μ0
BφsBz0

]
δ = −3

4
� 2

m�Km(ν�)�m + Ṁ

4π
� 2

m�Km,

(9.165)

where

� = 2
∫ h0
0
ρdz (9.166a)

and

Ṁ = −4π
∫ h0
0
�ρv� dz. (9.166b)

Mass is transferred at the rate Ṁ into the outer surface at� = �m. Equation (9.93)
gives the vertically integrated dynamical viscosity condition

(ν�)�m = q Ṁ
3π
, (9.167)
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with q � 1. Using this, together with (9.141) for Ṁ to eliminate (ρvz)0, and the
result (9.158) in (9.165) yields

Ṁ� 2
m(�Km −�0) = qṀ� 2

m�Km. (9.168)

Then noting that�0 = �∗ can be used to high accuracy, and�∗ = ξ3/2�Km, (9.168)
gives the angular momentum balance condition

q = 1 − ξ 3
2 . (9.169)

This shows that the angular momentum change as material flows from z = 0 to
z = h0 is accounted for by viscous transport, and relates the factor q to the stellar
rotation parameter ξ . It will be shown that a minimum value of ξ is set by steady
flow conditions and this is consistent with (9.169), giving small values of q for the
valid range of ξ .

Having calculated the rate of angular momentum transfer through the curtain
flow, the accretion torque can be evaluated.

9.8.6 The Accretion Torque

The accretion torque on the star can be evaluated from

Ta =
∫
S

βBp · dS, (9.170)

where the area S consists of the regions where the upper and lower curtain flows
meet the stellar surface as ring accretion columns, and β is the angular momentum
flux per unit poloidal field. By symmetry, there will be equal contributions to the
torque from the columns above and below the equatorial plane z = 0. The surface
field ratio Bθs/Brs, evaluated where the centre of the thin accretion column meets
the stellar surface, is

Bθs

Brs
= 1

2
tan θa = 1

2
tan

[
sin−1

(
R

�m

) 1
2
]
, (9.171)

where θa is the angle the unit vector B̂ps makes to the vertical. For white dwarfs and
neutron stars,R/�m � 1 so θa is small andBrs � Bθs. Hence the accretion column
is nearly normal to the stellar surface and B̂ps is nearly parallel to ẑ. The magnetic
flux through the accretion column base is then

ψm = 2π�∗δ∗Bz∗, (9.172)
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where δ∗ is the width of the circular band of cylindrical radius �∗, forming the
column base. Hence evaluation of the integral (9.170) gives

Ta = 2βψm = 4π�∗δ∗Bz∗β. (9.173)

Conservation of magnetic flux through the accretion curtain gives �∗δ∗Bz∗ =
�mδ|Bz0| and so

Ta = 4π�mδ|Bz0|β = Ṁ� 2
0�0, (9.174)

using (9.159) and (9.160) for β, with the additional small term dropped since it
would only generate a second order term in (9.174). Noting that (9.156) gives�0 =
�∗ to high accuracy, and using �0 = ξ3/2�Km, (9.174) yields

Ta = ξ 3
2 Ṁ� 2

m�K(�m) ẑ. (9.175)

The reduction factor of ξ3/2 < 1 is due to the specific angular momentum
� 2

m(�Km −�0) that is transferred back to the disc via the viscous stress as material
flows from z = 0 to z = h0 in the transition region over which � changes from
�K(�m) to �0.

9.8.7 The Slow Magnetosonic and Sonic Points

Material enters the accretion curtain with a subsonic poloidal speed. The gas is
accelerated by pressure gradients along Bp until it reaches the slow magnetosonic
point. The poloidal speed is always significantly sub-Alfvénic and it will be shown
that this results in the slow magnetosonic and the sonic points essentially merging.
The energy integral, given by (9.140), is conserved along poloidal field-streamlines.
The curtain flow will be shown to have a thin cross sectional area, so the central
field line with equation z = z(�) can be considered. On this line (9.140) can be
written as

H(�, ρ) = E. (9.176)

Since dH = 0, this gives

dρ

d�
= −∂H/∂�

∂H/∂ρ
. (9.177)

The condition ∂H/∂ρ = 0 generally yields the slow and fast magnetosonic critical
points for vp. However, since vp < vA holds in the curtain flow, only the slow
speed vp = vsl will result. Equation (9.177) shows that, to avoid a singularity at
this critical point, ∂H/∂� = 0 is a necessary condition. This determines the sonic
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point coordinates. The Bernoulli integralH can be expressed as

H(�, ρ) = ε2B2
p

2ρ2
+ 1

2
�2∗� 2

(
�

�∗

)(
�

�∗
− 2

)
− GM

[� 2 + z(�)2] 12
+ a2 ln ρ.

(9.178)

Because v2p/v
2
A � 1, distortions of Bp will be small and the unperturbed, current-

free form can be used. It follows from (9.139) for ε and (9.159) for β, together
with (9.137) for �, that the angular velocity can be expressed as

� = �∗

[
1 −

(
1 + 1

2ξ
3
2

δ

�0

)(
v2p

v2A

)
� 2

0

� 2

][
1 −

(
v2p

v2A

)]−1

. (9.179)

The toroidal magnetic field is given by (9.138), (9.139) and (9.159) for Bφ , ε and β
as

Bφ = μ0|ε|�0�∗

[(
1 + 1

2ξ
3
2

δ

�0

)
�0

�
− �

�0

][
1 −

(
v2p

v2A

)]−1

. (9.180)

The first square bracket term in this expression is always positive and hence, to avoid
a singularity in Bφ , the denominator cannot vanish, so ensuring that v2p/v

2
A < 1 and

Bφ > 0.
Using (9.150) for z(�) and (9.179) for� in (9.178) forH leads to the derivatives

∂H

∂�
= − v2p

|B ′
p|
Bp

+ 2

3

v2
K0

�0

(�0

�

) 5
3

(
1 + h20

� 2
0

)− 1
2

−�2∗�

⎡
⎣1 − 2

(
v2p

v2A

)
+
(
v2p

v2A

)2
� 4

0

� 4

⎤
⎦
[
1 −

(
v2p

v2A

)]−2

, (9.181)

∂H

∂ρ
= a2

ρ
− v

2
p

ρ
− �

2∗� 2

ρ

(
v2p

v2A

)2 [(
1 + 1

2ξ
3
2

δ

�0

)
� 2

0

� 2
− 1

]2 [
1 −

(
v2p

v2A

)]−3

.

(9.182)

Using v2p/v
2
A � 1 and expanding (9.181) and (9.182) to second order in v2p/v

2
A yields

∂H

∂�
= − v2p

|B ′
p|
Bp

+ 2

3

v2
K0

�0

(�0

�

) 5
3

(
1 + h20

� 2
0

)− 1
2

−�2∗�

⎡
⎣1 +

(
v2p

v2A

)2 (
� 4

0

� 4 − 1

)⎤
⎦ , (9.183)
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∂H

∂ρ
= a2

ρ
− v2p

ρ
− �2∗� 2

ρ

(
v2p

v2A

)2 (
� 2

0

� 2
− 1

)2

. (9.184)

The conditions ∂H/∂ρ = 0 and ∂H/∂� = 0 apply at the slow magnetosonic point.
Using ∂H/∂ρ = 0 in (9.184) and solving for vsl gives

vsl = a
⎡
⎣1 − 1

2
ξ

3
2
v2
K0

(v2A)sl

a2

(v2A )sl

� 2
sl

� 2
0

(
� 2

0

� 2
sl

− 1

)2
⎤
⎦ (9.185)

This gives the slow magnetosonic speed and, since the last term is small, it follows
that vsl = a to high accuracy. Hence, because vp is well sub-Alfvénic, the slow
magnetosonic point and the sonic point essentially merge. The density reaches a
minimum value shortly after the flow has become supersonic.

9.8.8 The Sonic Point Coordinates

The condition ∂H/∂� = 0 determines the curtain flow sonic point coordinate�sn

from (9.183). This equation can be expressed as

∂H

∂�
= −v2p

|B ′
p|
Bp

+ dψ

d�
−�2∗�

(
v2p

v2A

)2 (
� 4

0

� 4 − 1

)
, (9.186)

where

ψ = − GM

[� 2 + z(�)2] 12
− 1

2
�2∗� 2 (9.187)

is the effective potential along the field line z = z(�). The first and last
terms in (9.186) are small compared to the middle term and hence the condition
∂H/∂� = 0 reduces to dψ/d� = 0 which is equivalent to

Bp · ∇ψ = 0. (9.188)

This corresponds to the components of the gravitational force and the centrifugal
force tangential to the poloidal field line cancelling at the sonic point.

Since the curtain flow cross section is thin, the flow close to a central poloidal
field in a meridional plane can be considered. Most of the mass will flow close to
this central line, with the density decreasing rapidly normal to the central line in this
plane. The field line given by (9.150) passes through the curtain base point (�0, h0).
The condition for this line to pass through the central plane point (�m − δ/2, 0) in
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the middle of the radial boundary layer is

�0 =
(
�m − δ

2

)(
1 + h20

� 2
0

)− 3
2

. (9.189)

First order expansion gives

�m

�0
= 1 + δ

2�m
. (9.190)

Using the field line equation (9.150) and �∗ = ξ 3
2�Km in (9.187) yields

ψ(�, z(�)) = −GM
�

1
3
0

(
1 + h20

� 2
0

)− 1
2 1

�
2
3

− 1

2
ξ3�2

Km�
2. (9.191)

The condition dψ/d� = 0, together with (9.190), leads to the sonic point
coordinates

�sn =
(
2

3

) 3
8 1

ξ
9
8

(
1 + δ

2�m

) 9
8

�0, (9.192)

zsn =
(
2

3

) 1
4 1

ξ
3
4

(
1 + δ

2�m

) 3
4
[
1 + h20

� 2
0

−
(
2

3

) 1
4 1

ξ
3
4

(
1 + δ

2�m

) 3
4
] 1

2

�0.

(9.193)

The condition �sn < �0 must be satisfied for the sonic point to lie above the
disc. Equation (9.192) gives this condition as

(
2

3

) 3
8 1

ξ
9
8

(
1 + δ

2�m

) 9
8

< 1. (9.194)

The quantity δ/�m will depend on ξ and a function can be defined as

b(ξ) =
(
2

3

) 1
3
(
1 + δ

2�m

)
. (9.195)

This leads to a critical value for ξ , given by (9.194) as b(ξc) = ξc, corresponding to
�sn = �0 and zsn = h0. The sonic point coordinates can then be expressed as

�sn =
(
b

ξ

) 9
8

�0, (9.196)



9.8 The Accretion Curtain Flow 289

zsn =
(
b

ξ

) 3
4
[
1 + h20

� 2
0

−
(
b

ξ

) 3
4
] 1

2

�0. (9.197)

The condition (9.194) then becomes

b(ξ) < ξ, (9.198)

ensuring that the sonic point lies above the disc surface.

9.8.9 Determination of the Curtain Base Width

The transition region between the disc and the curtain flow has radial and vertical
extents of �m − δ ≤ � ≤ �m and 0 ≤ z ≤ h0. Material enters the outer vertical
face of this region at � = �m and leaves it at the upper surface at z = h0. The
density is maximum in the central plane of the disc, and most material entering
the vertical face will have a nearly horizontal velocity. The mass flow rate into the
transition region is therefore

Ṁ

2
= 2π

∫ hm
0

�m(ρ|v� |)�mdz = 2π�mI1(ρc|v� c|)�mhm, (9.199)

where hm = h(�m), the subscript ‘c’ denotes central plane values and I1 is a
dimensionless factor incorporating the vertical integral of the mass flux, with I1 < 1.
An equal mass flow rate occurs through the upper horizontal surface at z = h0, given
by

Ṁ

2
= 2π

∫ �m

�m−δ
�ρ0vz0d� = 2π�mI2ρ0(�m)vz0δ, (9.200)

where I2 incorporates the horizontal integral, with I2 < 1. Equating (9.199)
to (9.200), using the fact that (v� c)�m is mainly viscously driven, δ � h and
I1 � I2, yields

vz0

a
= 3

2
εV
hm

�m

(
csρc

aρ0

)
�m

hm

δ
. (9.201)

It follows from this expression that the value of the curtain base flow speed vz0,
derived by mass conservation through the transition region, is well subsonic. This
must match the value calculated by consideration of the curtain flow just above
z = h0.
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The energy integral for a poloidal field line is, to a good approximation,

1

2
v2p + ψ + a2 lnρ = E, (9.202)

with the potential given by (9.187). Evaluating this at the curtain base and at the
sonic point, then equating these expressions leads to

ρsn

ρ0
= exp

[
−
(
1

2
+ 1

a2
(ψsn − ψ0)

)]
, (9.203)

with

ψsn − ψ0 = v2
K0

[
1 − 4

3

(
ξ

b

) 3
4 + 1

3

(
ξ

b

)3
]
. (9.204)

The conservation of mass and magnetic flux give

vz0

a
= |Bz0|
(Bp)sn

ρsn

ρ0
, (9.205)

where

|Bz0|
(Bp)sn

= 1

2

(
b
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) 9
4
[
1 − 3

4
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ξ

) 3
4
]− 1

2

. (9.206)

Equations (9.201)–(9.206) then yield

vz0

a
= 1

2

(
b

ξ

) 9
4
[
1 − 3

4
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4
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2
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(9.207)

with

f̃ (ξ) = 1 − 4

3

(
ξ
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) 3
4 + 1

3

(
ξ
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)3

. (9.208)

Equating (9.201) to (9.207) gives the condition for the continuity of vz0 across
the curtain base. Equation (9.201) can be written as

vz0

a
= 3

2
εV
hm

�m

⎛
⎝ρcT

1
2
c

ρ0T
1
2
0

⎞
⎠
�0

hm

δ
. (9.209)
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This typically gives vz0/a ∼ 10−2 and hence (9.207) must match this value. The
most sensitive dependence in (9.207) arises from the term (v2

K0/a
2)f̃ (ξ) in the

exponential. Since v2
K0/a

2 ∼ � 2
m/h

2
m � 1, values of vz0/a ∼ 10−2 can only be

obtained for f̃ ∼ a2/v2
K0 � 1. Then expression (9.208) for f̃ (ξ) shows that b(ξ)

must have a value close to ξ to ensure that f̃ is small. Writing

b(ξ) = ξ − ε̃(ξ), (9.210)

with 0 < ε̃(ξ)� ξ , satisfies this and b < ξ holds. Using

b

ξ
= 1 − ε̃

ξ
(9.211)

in (9.207) and (9.208) and expanding in ε̃/ξ leads to

vz0

a
= exp

[
−
(
1

2
+ 9

8

v2
K0
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ε̃2

ξ2

)]
. (9.212)

Equating this to (9.209) and solving for ε̃ gives

ε̃(ξ) = 2

3

a
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Eliminating b between (9.195) and (9.210) yields

δ

�m
= 2

[(
3

2

) 1
3 [ξ − ε̃(ξ)] − 1

]
. (9.214)

The δ-dependence contained in the logarithmic function in (9.213) is weak, and
since δ/hm � 1, it is a good approximation to use δ/hm = 1 to give an explicit
solution for δ from (9.213) and (9.214). Employing (9.131) for�m in (9.214) leads
to the boundary layer expression

δ(ξ) = 2

(
2γ

εm

) 2
7
[(

3

2

) 1
3 [ξ − ε̃(ξ)] − 1

](
1 − ξ 3

2

) 2
7
�m, (9.215)

where ε̃(ξ) is given by (9.213) with δ/hm = 1. Hence matching flows at the curtain
base has determined the transition region width as a function of ξ .
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Using (9.211) for b/ξ in (9.196) and (9.197) for the sonic point coordinates and
expanding to first order gives

�sn =
(
1 − 9

8

ε̃

ξ

)
�0, (9.216)

zsn =
(
1 + 3

4

� 2
0

h20

ε̃

ξ

) 1
2

h0. (9.217)

Since ε̃/ξ ∼ a/vK0 ∼ h0/�0, (9.217) yields

zsn �
√
3

2

(
�0

h0

) 1
2

h0. (9.218)

This shows that the sonic point lies just inside�0, but is well above the disc surface.
It is noted that in the formal limit of δ → 0, the condition (9.194) gives a

minimum value for ξ of

ξmin =
(
2

3

) 1
3

. (9.219)

For ξ → ξmin the sonic point would approach the curtain base and there would
be no potential barrier to the flow. The resulting high mass loss rate would not be
consistent with the steady rate Ṁ supplied by the disc. Conversely, for δ → 0 and ξ
well above ξmin, the mass loss rate would be insufficient to match Ṁ . The foregoing
analysis shows that the finite width δ, and the sonic point position, can adjust to
accommodate the steadymass transfer rate imposed by the disc. The minimumvalue
of ξ , given by (9.219), was also found by Koldoba et al. (2002) for sub-Alfvénic flow
along dipolar field lines. They concluded that transonic flow required ξ > ξmin, so a
sonic point exists above the disc surface.

9.8.10 The Strong Magnetic Regime

The condition (9.146) of �m < �A was shown to be consistent with small values
of Bφ/|Bp|, corresponding to strong magnetic channelling in the curtain flow. Since
�m < �co holds, then�m < �A will be satisfied if�A > �co. Using (9.84) for�co

and (9.97) for �A, the condition �A = �co then gives an upper limit to the stellar
rotation period of

Pmag = 6.4

(
B0

4 × 108 T

) 6
7 (

R
104 m

) 18
7

(
M

1.4M�
) 5

7
(

Ṁ
10−9M� year−1

) 3
7

s, (9.220)
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with the normalization corresponding to a typical X-ray binary pulsar. Then

P < Pmag (9.221)

defines a strong magnetic regime consistent with a thin, sub-Alfvénic curtain flow.
Equation (9.219) gives the minimum value of ξ consistent with steady flow and the
corresponding period can be expressed as

Pmax =
(
2γ

εm

) 3
7 (1 − ξ

3
2
min)

3
7

ξ
3
2
min

Pmag. (9.222)

Since γ /εm < 1, it follows that Pmax < Pmag, so steady mass transfer is consistent
with the system lying in the strong magnetic regime having ξ in the range

ξmin < ξ < 1. (9.223)

9.9 The Effects of Magnetic Tilt

9.9.1 The Tilted Dipole

Most investigations of the star-disc interaction have considered the case in which
the stellar dipole moment and angular velocity are aligned with the orbital angular
momentum vector. This idealization has enabled progress to be made in understand-
ing the nature of the interaction, but the observed systems havem tilted to �∗.

For a tilted dipole, withm inclined at an angle α to �∗, the unperturbed poloidal
magnetic field is given by

Bp = −∇�m (9.224)

where

�m = μ0m

4πr3
r · m̂ (9.225)

with

m̂ = sin α cos�∗t i + sinα sin�∗t j + cosα k. (9.226)

It follows that �m can be expressed as

�m = �‖
m +�⊥

m , (9.227)
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where

�‖
m = μ0m

4π

z cosα

(� 2 + z2) 32
(9.228)

and

�⊥
m = μ0m

4π

� sin α

(� 2 + z2) 32
cos(φ −�∗t). (9.229)

Hence Bp splits into two parts, corresponding to the components of m parallel and
perpendicular to �∗ = �∗k.

In and near a thin disc, |z|/� � 1 holds and first order expansion of �m leads
to

B‖
� = 3

2
B0 cosα

(
R

�

)3
z

�
, (9.230)

B‖
z = −1

2
B0 cosα

(
R

�

)3

, (9.231)

B⊥
� = B0 sin α

(
R

�

)3

cos(φ −�∗t), (9.232)

B⊥
z = 3

2
B0 sinα

(
R

�

)3
z

�
cos(φ −�∗t). (9.233)

When these fields diffuse into the disc they are sheared to create Bφ at a rate

�Bp · ∇� = �B� ∂�
∂�

+�Bz ∂�
∂z
. (9.234)

Since ∂�/∂z ∼ (�/h)∂�/∂� , it follows from (9.230)–(9.234) that the dominant
source of Bφ is B‖

z . Hence the major contribution to Bφ is axisymmetric and time-
independent, and only differs by a factor of cosα from the Bφ field of the aligned
case with α = 0. In the extreme case of α close to 90◦, the time-dependent part
of Bp can become a main source of Bφ in the disc. Apart from this case, the disc
disruption mechanism should be essentially the same as that found for the aligned
case.

9.9.2 The Non-axisymmetric Curtain Region Equations

For a tilted magnetic axis the time dependence can be removed by using a frame
corotating with the star. The equations are then steady, but non-axisymmetric.
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The momentum and continuity equations are

(v ·∇)v = − 1

ρ
∇P −∇

(
ψ − 1

2
�2∗� 2

)
−2�∗×v+ 1

μ0ρ
(∇×B)×B, (9.235)

∇ · (ρv) = 0. (9.236)

The steady induction equation in the curtain flow is

∇ × (v × B) = 0, (9.237)

and for an isothermal gas

P = a2ρ. (9.238)

Equation (9.237) is satisfied by

v = κ(r)B (9.239)

and then the continuity equation (9.236), together with ∇ · B = 0, gives

ε = κρ = ρv

B
(9.240)

as a conserved quantity along field-streamlines.
The momentum equation (9.235) can be expressed as

(∇×v)×v = −∇
(
1

2
v2 + ψ − 1

2
�2∗� 2 + a2 lnρ

)
−2�∗×v+ 1

μ0ρ
(∇×B)×B.

(9.241)

Then taking the scalar product with v leads to the energy integral

1

2
v2 − GM

(� 2 + z2) 12
− 1

2
�2∗� 2 + a2 lnρ = E (9.242)

giving the energy per unit mass, which is conserved along field-streamlines. It is
noted that the expressions (9.239) and (9.240) are similar to those occurring in the
aligned, axisymmetric case, given by (9.133) and (9.135), but with the total fields v
and B replacing the poloidal components vp and Bp.

The φ-component of the angular momentum equation can be written as

B · ∇
(
ε� 2(�−�∗)− �

μ0
Bφ

)
= ∂

∂φ

(
P + B2

φ

2μ0

)
. (9.243)
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This shows that angular momentum is exchanged between field lines due to an
azimuthal gradient of the sum of the gas and magnetic pressures.

9.9.3 Numerical Simulations for a Tilted Magnetic Axis

Romanova et al. (2003) considered the case of an inclined dipole field. The MHD
equations were solved using similar numerical techniques to those described in
Sect. 9.6.2 for the aligned case of Romanova et al. (2002). For an inclination
α � 30◦ matter flows to the star from the inner disrupted region of the disc mainly
in two streams, which follow paths to the closest magnetic pole. For 30◦ � α � 60◦
several streams can develop. For α � 60◦ two streams occur again, but flowing to
the star near the equatorial plane. The inner parts of the disc often become warped.
The vertical component of the accretion torque is weakly dependent on α, and is
positive. The horizontal components of the torque can lead to a slow precession of
the stellar symmetry axis.

Long et al. (2007) allowed for the star to have aligned dipole and quadrupole
moments, but tilted at an angle α to the stellar angular momentum vector. The MHD
equations were solved numerically for inclinations α = 0◦, 30◦, 60◦. The effect of a
quadrupolar field is to cause some material to accrete via a magnetic equatorial belt,
which is displaced into the southern hemisphere if a dipole component is present.
The pure quadrupole case leads to a smaller accretion torque than in the pure dipole
case, since the material can accrete directly through the quadrupolar magnetic belt.
For large inclinations most material accretes on to the magnetic poles. The accretion
torque is always positive.

Romanova et al. (2012) performed MHD simulations which allowed for turbu-
lence to be generated in the disc via the magnetorotational instability. A tilted stellar
dipole was considered. Interchange instabilities were observed, as well as spiral
waves. The disc became truncated and a curtain flow developed, transferring matter
to the magnetic poles. A positive accretion torque results.

9.10 The Propeller Regime

If the central star is rapidly rotating, with fastness parameter ξ > 1, then there is
a strong centrifugal effect and matter will be ejected from the system. This was
suggested as a spin down mechanism for neutron stars in X-ray binary pulsars
(e.g Illarionov and Sunyaev 1975). Wynn et al. (1997) suggested that a propeller
mechanism may be operating in the low accretion rate DQ Her binary AE Aqr.
Bult and van der Klis (2014) discussed the possibility that the accreting millisecond
pulsar J1808 may sometimes operate in the propeller regime during low accretion
states. Various estimates of the effectiveness of the mechanism have been made
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(e.g. Davies and Pringle 1981;Wang and Robertson 1985).More recently, numerical
simulations have enabled more progress to be made.

Ustyugova et al. (2006) performed MHD simulations in this regime, allowing
for parametrized turbulent viscosity and magnetic diffusivity in the disc. They
considered strong and weak propeller regimes. In the strong regime, intense wide
angle conical outflows develop from the disc in the vicinity of the neutral line of
the poloidal magnetic field. Magnetic jets emanate from the star, and these become
well collimated parallel to its spin axis. In the weak regime no disc outflows occur,
but there are weak flows parallel to the vertical axis. In all cases there is non-
stationary, quasi-periodic behaviour, and a spin-down torque is exerted on the star.
This behaviour is similar to that described above for the cases with lower disc η
values, but which have ξ < 1.

Larger values of m, �∗ and ν lead to enhanced wind and jet mass flow rates,
with reduced accretion rates. Expressions were derived for the mass flow rates as
power laws in m, ν and η. There is an optimal value for η, which maximises the
mass loss rates. Lower values of η lead to less mixing of the disc matter with the
magnetospheric magnetic field, with a consequent reduction in angular momentum
exchange between the disc and star. Higher values of η reduce the coupling between
the disc and magnetosphere. Both these effects reduce the wind and jet mass loss
rates.

Lii et al. (2014) performed numerical simulations for a disc having turbulence
driven by the magnetorotational instability. Their results were consistent with those
of Ustyugova et al. (2006).

9.11 Summary and Discussion

Investigations have made it clear that the nature of the magnetic diffusivity in
the disc is of central importance to the star-disc interaction. Various forms of η
have been considered, related to turbulence, magnetic buoyancy, reconnection and
instabilities. Another major aspect is the structure of the magnetosphere, which
is related to the coupling of the stellar magnetic field to the disc and hence
to diffusion mechanisms. It is often assumed that the magnetosphere has low
density material and is magnetically dominated and corotating with the star. Time-
dependent simulations assume an initial structure for the magnetosphere and can
follow how this evolves. Despite these uncertainties, analytic and semi-analytic
models, together with numerical simulations, have led to an improved understanding
of the types of interactions that may occur between the star and the disc.

The highest values of η correspond to the effects of dynamical instabilities and
reconnection processes, represented by η � vKh, and are considerably larger than
standard turbulent values. These cases lead to a picture of closed field lines threading
the disc being moderately wound by the vertical shear, and resulting in angular
momentum exchange between the disc and star via magnetic stresses. The disc
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becomes disrupted inside the corotation radius and a field channelled curtain flow
transfers material to the star.

For moderate values of η, typically with η � csh, which allow larger values of
the winding ratio |Bφs/Bzs| to be attained, inflation of the poloidal field can result
in opening of field lines near the stellar magnetic poles and in the outer parts of the
disc. A stellar wind flow can occur along the open field lines and the system may
reach a quasi-steady state. Again, disruption occurs inside �co and a curtain flow
results.

For smaller values of η, typically with η < 0.1csh, inflation and field line opening
occur but an outer disc wind flow now develops as well as a stellar wind. The
system remains time-dependent, with oscillations of the disruption radius between
minimum and maximum values. Reconnection occurs at the minimum values of
�m, with transfer of material to the star via a curtain flow before the cycle repeats.
Episodic ejections of plasma occur in the region between the stellar and disc open
field lines.

In all the diffusivity cases, the inner region of the disc has closed field lines and,
at least for some time intervals, curtain flows occur which transfer material from
the disrupted area of the disc to the star. The numerical simulations have used a
simple polytropic equation as an alternative to solving the thermal problem. These
simulations tend to lead to compressional heating and increased vertical pressure
gradients as the disc ends, allowing material to pass into the curtain flow. The
analytic model presented here can account for radiative transfer and dissipation, and
this also leads to vertical expansion caused by heating. This expansion takes place
over a narrow radial region which results from the rapid increase in the strength the
imposed magnetic field with decreasing distance from the star, and an associated
increase of the magnetic dissipation.

The analytic and numerical investigations give a consistent picture for the
structure of the curtain flow region. The work done by pressure gradients enables
material to surmount the potential barrier associated with reaching the sonic point,
which is essentially coincident with the slow magnetosonic critical point. Inside this
radius, the gravitational force tangential to the poloidal magnetic field exceeds the
tangential component of the centrifugal force and matter is accelerated up towards
free-fall speeds as the star is approached. The flow is slowed to subsonic values
by passing through a standing slow magnetosonic shock front close to the stellar
surface.

The steady analytic model shows that the condition of continuity of the azimuthal
magnetic field at the curtain base is consistent with a slightly sub-stellar angular
velocity of material in this region, as is observed in the numerical simulations. This
can result in some angular momentum being fed back into the disc via viscous
stresses, and hence the accretion torque is reduced from its conservative form.
Expressions can be found for the disruption radius and the width of the transition
region as functions of the stellar rotation rate. The width of the transition region
is connected to the position of the sonic point and this can adjust to allow the
mass transfer rate into the curtain region to match that supplied by the disc, for
a given stellar rotation rate. A minimum value results for the stellar angular velocity
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consistent with the condition of steady flow. The model of a thermally disrupted
disc feeding a narrow magnetically channelled accretion curtain is consistent
provided that the stellar rotation period does not exceed a maximum value which
is determined by the system parameters.

The effects of a tilted dipole, and an additional quadrupolarmagnetic component,
have been investigated. The mechanism of disc disruption is essentially the same as
in the aligned dipole case, but accretion on to the equatorial regions can occur for
larger tilt angles.

The propeller mechanism may operate in some systems that have a sufficiently
rapidly spinning accretor. Matter ejected via wind and jet flows can lead to
significant braking torques on the central star.
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Chapter 10
Disrupted Discs: Stellar Spin Evolution

Abstract The torques exerted on the magnetic primary star due to its interaction
with the accretion disc and curtain flow are considered. For sufficiently large values
of the disc magnetic diffusivity, η, the stellar field lines remain closed and connected
to the disc. A spin-up torque is exerted through the accretion curtain flow and
through magnetic stresses due to interaction with the region of the disc inside the
corotation radius,�co. The magnetic torque from the region of the disc outside�co

spins the star down. In the cases of closed field lines, an equilibrium spin period can
be found at which the torques on the primary cancel. The approach to this state is
analysed and a mechanism is found that generates torque reversals, as are observed
in the neutron star cases.

For smaller values of η, field line opening can occur and wind flows from the
star and disc can lead to spin-down torques on the primary. However, even in these
lower η cases, field lines tend to remain closed in the region of the disc inside �co,
but can become inflated.

10.1 Introduction

Torques are exerted on the magnetic star due to the interaction of its field
and magnetosphere with the differentially rotating disc. As previously discussed,
investigations indicate that there are three regimes arising for the star-disc system
depending on the disc magnetic diffusivity, η. The relation of these regimes to the
stellar torque is considered here.

If η is sufficiently high then the disc surface winding ratio |Bφs/Bzs| only attains
moderate values and the stellar field remains closed and connected to the disc.
Magnetic disc torques of opposite sign arise from the regions inside and outside
the corotation radius, �co. The curtain flow results in a spin-up torque on the star
transmitted via magnetic stresses operating through the flow. The total torque can
be positive, negative or zero, depending on the spin rate of the star.

For intermediate values of η the winding ratio can become sufficiently large for
the toroidal field magnetic pressure to cause poloidal field line inflation. Open stellar
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and disc field lines can result, with wind flows from the star contributing a negative
torque. A quasi-steady state may be reached.

When η has lower values field line opening occurs, but with outer disc winds as
well as stellar winds. In addition, plasma ejections result from the region connecting
the stellar and disc open field lines. These ejections can transport significant
amounts of angular momentum from the system and lead to a spin down torque
on the star. Episodic time dependence results, with the disc disruption radius �m

oscillating between minimum and maximum values. Accretion curtain flow occurs
when�m reaches its minimum value. The cyclic time dependence remains in these
cases.

Various models have been considered which calculate the stellar torques, with a
range of assumptions about η. The numerical simulations have tended to focus on
T Tauri systems, which contain magnetic protostars accreting from a disc. These
systems have significant differences from the binary star cases of magnetic white
dwarfs and neutron stars. The inner disc in T Tauri stars experiences a weaker
gravitational field than that felt by the inner disc regions around compact accretors.
The corotation radius in a T Tauri system is a much smaller multiple of the stellar
radius than in the binary star discs. Also, protostellar discs are partially ionized and
have ambipolar diffusion mechanisms. Nevertheless, the simulation results should
have relevance to binary systems.

10.2 Stellar Torque Models

Most calculations of the stellar torque have beenmade with the assumption of closed
field lines. Campbell (1987) used the solutions for Bφ given by (9.67) and (9.72) to
calculate the stellar magnetic torque, including the use of a modified form of �
which incorporates a turn-down towards �∗ as �m is approached. The disruption
radius was taken as �m = 0.5�A. Using an accretion torque of � 2

m�∗Ṁ , an
equilibrium state can be found at which the torques balance. This has a significant
dependence on the form adopted for the disc magnetic diffusivity η.

Wang (1987) used a magnetic buoyancy form for η and defined�m to be where
the magnetic torque dominates the viscous torque. Campbell (1992) employed
buoyancy and turbulent forms for η, and determined �m from the condition Tm =
2Tv. A dipole field was used in both investigations and equilibrium states result
with a fastness parameter, defined by ξ = �m/�co, typically lying in the interval
0.8 < ξeq < 1. A balance cannot be attained at lower values of ξ since the
negative contribution of the magnetic stellar torque is too weak to balance the
positive magnetic torque plus the accretion torque. The negative magnetic torque
derives from the disc region with� > �co and, for lower values of ξ , the values of
� 2BφsBzs in this region are insufficient to supply the required negative torque.

Wang (1997) considered the case of a dipole field having its magnetic moment
tilted to the stellar angular velocity vector. The stellar frame was used, so the time-
independent equations apply. The φ-component of B is the sum of an azimuthal
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component, due to the tilt of the magnetic axis, and a toroidal component generated
by interaction with the disc. The induction equation yields the toroidal component.
The angular momentum equation was azimuthally and vertically integrated through
the disc, and the stellar torques were found. An equilibrium balance can be found
provided that the tilt angle, α, does not exceed a maximum value of αmax � 67◦.

Torkelsson (1998) pointed out that a dynamo may be operating in the disc, and
that this could significantly affect the stellar torque. The ratio Bφ/Bz was taken
to be approximately constant for the stellar field interaction, and the ratio Bφ/B�
was also assumed to be constant for the dynamo field. For a quadrupolar symmetry
dynamo field, the B�Bφ stress contributes to driving the disc inflow. Assuming that
this effect dominates the viscosity, gives Bφ ∝ �−5/4 for the dynamo field, which
is a significantly slower decrease with distance than for the stellar source generated
Bφ field.

This idea was developed further by Tessema and Torkelsson (2010). They showed
that with such a dynamo operating the disc surface stress BφBz is made up of
several contributions, containing the two field source components. This stress can
be significant at larger distances from �co than in the absence of the dynamo,
and hence the spin-down contribution to the stellar magnetic torque may be larger.
Power law solutions were found for the radial structure of the disc, with magnetic
heating, radiation pressure and electron scattering opacity excluded. Inner boundary
conditions were applied, corresponding to the viscous stress or the viscous torque
per unit radial length vanishing at the outer edge of an inner boundary layer. It was
pointed out that a time-dependent dynamo could lead to variations in the stellar
torque, and that these might cause torque reversals on the star.

Agapitou and Papaloizou (2000) considered the effects of field line inflation on
the stellar magnetic torque. It was found that larger values of |Bφs/Bzs| greatly
reduce the magnetic torque due to a reduction of Bzs, caused by field line inflation,
and the loss of flux connection to the disc where the field lines open. Matt and
Pudritz (2005) also found significant torque reductions due to the loss of field
linkagewith the disc. Both these studies assumed that large amounts of field winding
can be sustained.

The numerical simulations of Romanova et al. (2002) took small values of η, but
had a higher density magnetosphere that did not corotate with the star. The vertical
shears are then reduced and the resulting moderate values of |Bφs/Bzs| allow the
maintenance of field line connection to the inner parts of the disc where the magnetic
torques largely determine the disc contribution to the stellar torque. An equilibrium
spin state can be reached with ξeq � 0.7.

In the simulations of Zanni and Ferreira (2009) a quasi-steady state is reached
after about 55 stellar rotation periods. There are inner closed field lines, but the
stellar magnetic torque is only � 10% of the accretion torque. The stellar wind can
contribute � 20% of Ta. Some time dependence remains and a torque balance is
never reached. In the lower η value case considered by Zanni and Ferreira (2013)
periodic time dependence occurs. Plasma ejections in the volume between the
stellar and disc open field line regions can advect a significant amount of angular
momentum from the system. This process can extract angular momentum from the
star, and the stellar wind can account for � 20 − 30% of Ta. The spin-down effects
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of plasma ejections and the stellar wind can balance the accretion torque during
the time intervals in which curtain flow occurs, when �m is minimum. Typically
ξeq � 0.6 in these intervals.

In the cases with lower η values, that lead to field line opening and wind flows,
a usable analytic theory has not yet been developed to calculate the torques and
stellar spin evolution. For the cases of higher and intermediate values of η, a closed
field line model gives a reasonable description of the stellar torque. Since the model
considered in Sect. 9.8 describes the disc structure, determines�m, fits to a curtain
flow and determines the accretion torque, it will be used below to calculate the stellar
torque. This is based on the analysis of Campbell (2011) and it leads to a mechanism
which may explain the torque reversals observed in X-ray binary pulsars.

10.3 Stellar Torques and Spin Evolution

10.3.1 The Stellar Torque

The magnetic torque exerted on the star due to its interaction with the disc is

Tm∗ = −4π

μ0

∫ �D

�m

� 2BφsBzsd�, (10.1)

where �D is the outer radius of the disc. Using (9.92) for � 2BφsBzs in (10.1) and
evaluating the integral, employing (9.97) to eliminate B0R3 in terms of�A, leads to

Tm∗ = −Ṁ� 2
m�K(�m)

γ

εm

(
�A

�co

) 7
2 1

ξ
7
2

[
ξ

3
2

(n+ 2)
− 2

(2n+ 7)

]
. (10.2)

Adding this to the accretion torque, given by (9.175), and employing (9.131) for
�m, using �m = ξ�co to eliminate �A/�co in (10.2), gives the total stellar torque
as

T∗ = Ṁ� 2
m�K(�m)

[
ξ

3
2 − 1

2(1 − ξ 3
2 )
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2

) 1
7
. (10.4)
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10.3.2 The Spin Evolution Rate

The angular velocity of the star obeys the spin evolution equation

I�̇∗ = T∗, (10.5)

where the moment of inertia can be expressed as I = k2R2M , with kR being the
radius of gyration. The evolution equation for the period is then

Ṗ

P
= − �̇∗

�∗
= − T∗

k2R2M�∗
. (10.6)

Using (9.84), (9.85) and (9.131) for �co, ξ and �m to relate P , and hence �∗, to ξ
yields
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(
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) 3
7
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� 3
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) 1
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7

. (10.7)

Substituting this, together with (10.3) and (10.4) for T∗, in (10.6) gives

Ṗ

P
= −

(
γ
εm

) 4
7
(

B0
2 × 108 T

) 8
7 (

R
104 m

) 10
7
(

Ṁ
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where

FP (ξ) = (1 − ξ 3
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with the normalization values being characteristic of a typical X-ray binary pulsar.
Equation (9.129) gives the spin parameter as ξ = ξ(C), with

C(P, Ṁ) = 1

μ0

(
4π2

G

) 5
3 γ

εm

B2
0R

6

M
5
3 ṀP

7
3

. (10.10)

The star will be spun up or spun down depending on the values of P and Ṁ . The
spin evolution time-scales are much longer than the adjustment time-scales in the
disc, so its structure can evolve through quasi-steady states as the stellar spin period
changes.
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10.3.3 The Equilibrium State

The equilibrium period occurs when Ṗ = 0, corresponding to FP (ξ) = 0.
Equation (10.9) then yields

ξeq =
⎡
⎣2n+ 3

4n+ 8
+
[(

2n+ 3

4n+ 8
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2
⎤
⎦

2
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It is noted that ξeq depends purely on the parameter n, this being related to the
length-scale � of the magnetic diffusivity via � = η/(dη/d�) = �/n. This length-
scale affects the distribution of the magnetic torque in the disc, and hence ξeq. The
equilibrium period follows from (10.7) for �∗ as
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Ṁ
4 × 10−9M� year−1

) 3
7

s.

(10.12)

Perturbations about the equilibrium state obey the linearized equation

I�̇∗1 = −3
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The perturbation ξ1 can be related to �∗1 by (10.7) which yields
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Equations (10.13) and (10.14) show that perturbations about the equilibrium state
of �∗ decay exponentially on the time-scale
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and hence the state is stable.
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10.3.4 The Approach to Equilibrium

As P evolves, ξ(P, Ṁ) changes and the disc structure evolves through quasi-
steady states. The disc temperature distribution is given by (9.119) and the height
by (9.115). The magnetic dissipation rate, given by the second term in (9.118),
vanishes at �co, increases outwards to reach a maximum and then decreases to
negligible values for� � 5�co. The maximum occurs at

xmax =
(
n+ 7

n+ 4

) 2
3

xco, (10.16)

and the temperature reaches a maximum close to this radius. The temperature
maximum increases as ξ approaches ξeq and this causes a local vertical expansion of
the disc close to xmax. Figure 10.1 shows the temperature distribution for values of
ξ approaching ξeq, while Fig. 10.2 shows the corresponding variations of the aspect
ratio. The system parameters used are those shown in (10.12), for a typical X-ray
binary system.

The temperature and aspect ratio are also calculated for a typical intermediate
polar system, having M = 0.6M�, R = 7 × 106 m, B0 = 4 × 102 T and Ṁ =
10−10M�year−1. The results are shown in Figs. 10.3 and 10.4 respectively. There
is a significant increase in the temperature maximum as ξ approaches ξeq, but no
sharp increase in the aspect ratio. This difference arises because the value of �co

in the neutron star case is typically a factor of � 10−2 smaller than in the white
dwarf case, with the neutron star magnetic field being a factor of � 5 × 103 larger
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Fig. 10.3 The disc central temperature for a white dwarf star accretor (from Campbell 2011)

in the region of �co. The density and temperature are larger in this region of the
disc for the neutron star case, and the central plane gas and radiation pressures are
larger. Although the vertical component of the stellar gravity is also larger, it is not
sufficient to prevent local expansion of the disc. In the white case, the stellar gravity
can prevent such expansion in this region.
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Fig. 10.4 The disc aspect ratio for a white dwarf star accretor (from Campbell 2011)

The local heating and expansion of the disc beyond�co, occurring in the neutron
star case, may result in some surface mass loss. The consequences of such an
outflow, developing as ξ approaches ξeq, can be investigated. The outflow will
have an associated small mass loss rate δṀ occurring from a narrow region near
�max = xmax�m, with xmax given by (10.16). The sharp increase in h/� as
ξ → ξeq, shown in Fig. 10.2, indicates that δṀ would be generated on a time-scale
significantly shorter than that for reaching equilibrium, given by (10.15). Hence the
stellar spin period P would be essentially constant over the development time of
δṀ , but the disc would still have time to adjust its structure quasi-steadily over
this time interval. A perturbation in ξ(P, Ṁ) at essentially constant P is related to
δṀ by

δξ = ∂ξ

∂Ṁ
δṀ, (10.17)

and (9.129) for ξ yields

∂ξ

∂Ṁ
= −2

3

C(1 − ξ 3
2 )

Ṁ(C2 + 4C)
1
2

. (10.18)

Hence ∂ξ/∂Ṁ < 0 and since δṀ < 0 it follows from (10.17) that δξ > 0.
It is noted that ξeq, given by (10.11), is independent of Ṁ . Before the mass loss

occurs ξ will be slightly below ξeq, with a deviation of

ξ1 = ξ(P, Ṁ)− ξeq (10.19)
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and hence ξ1 < 0. As ξ increases towards ξeq the perturbation δṀ will be generated
over a time interval � τ , where τ is the spin evolution time given by (10.15). The
change in Ṁ causes a short time-scale change of δξ to occur and ξ1 becomes

ξ1 = ξ(P, Ṁ)+ δξ − ξeq. (10.20)

Since δξ > 0, then ξ1 will become positive if

δξ > ξeq − ξ(P, Ṁ). (10.21)

The stellar torque, given by (10.3), will then become negative and the star will
change from a spin-up state to a spin-down state. This is consistent with (10.12)
for Peq, which shows that a reduction in Ṁ will cause an increase in the equilibrium
period, so the star will then spin down to this new state of torque balance. The period
difference δP corresponding to the difference (ξeq − ξ) is given by

ξeq − ξ(P, Ṁ) = ∂ξ

∂P
δP (10.22)

and then (10.10), (10.17) and (10.21) lead to the torque reversal condition

|δṀ|
Ṁ

>
7

3

|δP |
Peq

. (10.23)

For periods close to the equilibrium state, only a small reduction in Ṁ due to mass
loss near�max in needed to cause a torque reversal.

10.4 Summary and Discussion

There are various possibilities for the torques that can be exerted on the magnetic
star. If η is large enough for the stellar magnetic field lines to remain closed,
interaction with the disc leads to positive and negative torques. The accretion curtain
flow results in a positive torque. Equilibrium states of zero stellar torque tend to
occur with the fastness parameter in the interval 0.8 < ξeq < 1, with �m = ξ�co.
As ξ approaches ξeq a local expansion of the disc can occur beyond �co, for the
case of an accreting neutron star. A small mass loss rate from this region can lead
to torque reversals. Chakrabarty et al. (1997) found that the X-ray binary pulsar
4U1626-67 showed an abrupt torque reversal in 1990, switching to steady spin-
down after 13 years of spin-up. Bildsten et al. (1997), using frequently sampled
data, found spin-up and spin-down behaviour over short time-scales in Cen X-3
and other systems. Since the time-scale for reaching the equilibrium state is much
shorter than the mass transfer time, it is likely that many of the observed systems are
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close to equilibrium. Hence the spin periods will lie in the strong magnetic regime,
defined by (9.220) and (9.221).

If the winding ratio |Bφs/Bzs| can become large, due to low η values, then field
line opening can occur and reduce the flux linkage to the disc. However, stellar
winds flowing along the open field lines can carry angular momentum away and
lead to a significant braking torque on the star. Episodic mass ejections from the
volume between the stellar and disc regions of open field lines can also result in an
effective braking torque on the star. Simulations suggest that torques due to stellar
winds and mass ejections may be able to balance the accretion torque. The time
dependence of such disc-star states may be related to the observed torque reversals.

The minimum value derived for ξ , given by (9.219), indicates that slower rotation
states will not be steady, even in the cases of higher η values, since the mass transfer
rates in the disc and curtain flows cannot be balanced for ξ < ξc.
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Chapter 11
Intrinsic Magnetism in Accretion Discs

Abstract The generation of magnetic fields in accretion discs is addressed, together
with the effects of large-scale magnetic fields on the disc structure. Standard mean-
field dynamos are considered, which can generate large-scale magnetic fields in
discs. Toroidal magnetic field is generated by the shearing of the radial field, while
turbulence with Coriolis force and vertical stratification lead to the α-effect which
converts toroidal field to poloidal field. The magnetorotational instability can act
as a source of turbulence, since sub-thermal magnetic fields de-stabilize Keplerian
disc flows, drawing energy from the differential rotation via the magnetic coupling
of fluid elements. The validity of standard dynamo theory is discussed, in the
context of this powerful instability. MHD dynamos are considered in connection
with disc turbulence generated by the magnetorotational instability. An accretion
disc model is then presented, with a large-scale, dynamo generated magnetic field
of quadrupolar symmetry, including the determination of the radial and vertical disc
structures. Turbulence plays a dual role of contributing to the α-effect in the dynamo
and in partly driving the disc inflow via the outward viscous transport of angular
momentum.

11.1 Introduction

In a standard cataclysmic binary an accretion disc forms around a non-magnetic
white dwarf, and extends down to the stellar surface. The disc is fed by the stream
originating from the L1 region of the secondary star. In a steady state, matter will be
transported through the disc at the rate it is supplied by the stream and angular
momentum must be transferred outwards. Angular momentum transfer requires
coupling between rings of material and, as shown in Sect. 2.4.3, ordinary molecular
viscosity is far too weak to provide this. Hence some form of anomalous viscosity
must be invoked to explain mass inflow through the disc. The standard accretion disc
model of Shakura and Sunyaev (1973) employs a parametrized form of turbulent
viscosity to supply the necessary coupling. However, no instability has been found
which leads to turbulence in a non-magnetic Keplerian disc.
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The foregoing situation led to a search for an alternative coupling mechanism to
generate the anomalous viscosity in accretion discs. Magnetic fields present the most
plausible means of angular momentum transport, through the stresses they exert on
material. The possibility of magnetic angular momentum transport was suggested
early in the development of accretion disc theory (e.g. Lynden-Bell 1969; Shakura
and Sunyaev 1973; Eardley and Lightman 1975; Ichimaru 1977; Coroniti 1981).
These models are based on the notion that the disc contains small-scale magnetic
cells which are sheared by the differential rotation, resulting in reconnection of
oppositely directed fields and a magnetic torque. Such topological dissipation
produced by reconnection was discussed by Parker (1972). The associated magnetic
field has a turbulent configuration. However, Galeev et al. (1979) and Stella and
Rosner (1984) showed that magnetic buoyancy effects should transport the strong
toroidal magnetic field vertically through the disc in less than the radial inflow time
of material. Hence a dynamo mechanism is required to regenerate the magnetic
field. As seen in Sect. 2.3.1, differential rotation creates toroidal magnetic field from
poloidal field (the�-effect), but an α-effect is required to generate the poloidal field
from the toroidal component and give a self-sustaining dynamo. The α-effect might
be generated from the magnetic turbulence, but at the time of these early models
no mechanism had been found to create such turbulence. Hence such models were
subject to the same fundamental dilemma that existed in the non-magnetic turbulent
disc model.

Blandford and Payne (1982) developed a model of a hydromagnetic wind from
an accretion disc, as a means of removing angular momentum and driving the inflow.
This idea has been investigated by subsequent authors and is discussed in Chap. 14.
However, the mechanism relies on a source of poloidal field and hence, for binary
star discs, is likely to require a dynamo.

A major step towards explaining angular momentum transport in accretion discs
was taken by Balbus and Hawley (1991). They showed that a local magnetoro-
tational instability occurs in discs, which have an angular velocity decreasing
outwards, in the presence of a sub-thermal magnetic field. The global form of
this hydromagnetic instability was discovered by Velikhov (1959) in the context
of Couette flow and generalized by Chandrasekhar (1960, 1961). The instability
derives its energy from the strong radial shear in the disc. Balbus and Hawley
(1991) suggested that this may be a major source of turbulence in accretion discs.
Subsequent work confirmed such turbulent generation (e.g. Hawley and Balbus
1991, 1992; Brandenburg et al. 1995; Hawley et al. 1995; Fromang et al. 2007;
Davis et al. 2010).

Most studies of the consequences of the magnetorotational instability in accretion
discs employ a local box Cartesian model. While all these investigations confirm
that turbulence results from the instability, a reliable set of mean field equations to
describe the large-scale magnetic field and its sources has yet to be formulated. Tout
and Pringle (1992) developed a simple local model of an accretion disc dynamo,
incorporating the Balbus-Hawley instability, together with the Parker instability
and reconnection. The model gives rise to finite, but non-stationary, magnetic field
configurations.
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Having established a large-scale, mean magnetic field in the disc by a dynamo
mechanism, its effect on angular momentum transport and the large-scale structure
of the disc must be investigated. Campbell (1992) constructed a dynamical model
of a magnetic accretion disc, incorporating a turbulent α� dynamo. For a buoyancy
diffusivity, the magnetic stress dominates the viscous stress in the transport of
angular momentum, and only weak turbulence is required for the necessary dynamo
α-effect. More general solutions were found by Campbell and Caunt (1999),
allowing for a sum of buoyancy and turbulent diffusivities, and a model including
vertical structure was presented by Campbell (2003).

Section 11.2 reviews standard α� dynamo theory in thin discs, as a source
of large-scale magnetic fields. In Sect. 11.3 the magnetorotational instability is
described, in relation to disc turbulence, and hydromagnetic dynamos are discussed.
A magnetic disc model is presented in Sect. 11.4, with a field generated by an α�
dynamo, including the resulting radial and vertical disc structure.

11.2 Standard Mean-Field Dynamos in Discs

11.2.1 Turbulent α� Dynamos in Thin Discs

This section discusses the properties of thin disc, mean-field α� dynamos. It is
assumed that some form of turbulence generates the α-effect. It will be shown that
the standard mean-field dynamo equations have some consistency issues, related
to the nature of the magnetorotational instability. However, in the absence of an
alternative set of mean-field equations, the standard equations are still used to derive
possible large-scale magnetic fields in accretion discs. These dynamo models have
the merit that they can produce magnetic fields with associated stresses which can
lead to the angular momentum transport consistent with various disc models. It is
possible to compare the simple α-effect with turbulence simulation data, allowing
estimates of the associated parameters.

The toroidal and poloidal mean field equations appropriate to an α� dynamo
follow from (2.246) and (2.247) as

∂Bφ

∂t
= �Bp · ∇�+ η

(
∇2Bφ − Bφ

� 2

)
−�∇ ·

(
Bφ

�
vp

)
, (11.1)

∂A

∂t
= αBφ + η

(
∇2A− A

� 2

)
− 1

�
vp · ∇(�A), (11.2)

where

Bp = ∇ × (Aφ̂), (11.3)
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and the α terms have been dropped in (11.1) since they are negligible in this regime.
In thin disc dynamo models the poloidal advection and compression terms are
usually excluded, so the field equations to be solved in the disc are

∂Bφ

∂t
= �Bp · ∇�+ η

(
∇2Bφ − Bφ

� 2

)
, (11.4)

∂A

∂t
= αBφ + η

(
∇2A− A

� 2

)
. (11.5)

It is often reasonable to treat the surrounding medium as a vacuum, giving

Bφ = 0, (11.6)

∇2A− A

� 2 = 0, (11.7)

where (11.6) follows from axisymmetry. Equation (11.3) gives the poloidal field
components in terms of the vector potential as

B� = −∂A
∂z
, (11.8a)

Bz = 1

�

∂

∂�
(�A). (11.8b)

These are continuous across the disc surfaces z = ±h(�), while the continuity of
Bφ is satisfied by its vanishing on the boundaries.

The basic properties of dynamos in thin galactic discs, formulated by Parker
(1971), are relevant to binary star accretion discs. The key idea is that in a thin disc,
for which h(�)/� � 1, solutions of the toroidal and poloidal equations (11.4)
and (11.5) should exist which have a radial length-scale long compared to the char-
acteristic disc height. The vertical derivatives therefore dominate in the diffusion
terms, and local magnetic Reynolds numbers can be defined as

Rα = hα̃

η
, (11.9a)

R� = h2

η
�
d�

d�
, (11.9b)

where� is taken as independent of z, and the α-effect is described by the separable
form

α = α̃(�)f (ζ ), (11.10)
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with

ζ = z

h
, (11.11)

and f (ζ ) antisymmetric. The local dynamo number is given by

D = RαR�, (11.12)

which principally determines the field generation at a given radius.
Parker (1971) considered a thin disc of constant height h and sought local

solutions with the separable forms

Bφ = B0R�B̄(ζ ) exp[i(k� − ωt)], (11.13)

A = B0hĀ(ζ ) exp[i(k� − ωt)], (11.14)

where B0 is a constant, and ζ is the scaled z-coordinate defined by (11.11).
Substitution in (11.4) and (11.5) shows that the dimensionless functions B̄ and Ā
must satisfy the coupled vertical dependence equations

B̄ ′′ − (k̄2 − iω∗)B̄ = Ā′, (11.15)

Ā′′ − (k̄2 − iω∗)Ā = −Df B̄, (11.16)

where the primes denote differentiation, while the dimensionless wavenumber and
frequency are

k̄ = hk, (11.17a)

ω∗ = τdω, (11.17b)

with the vertical diffusion time being

τd = h2

η
. (11.18)

The function f (ζ ) occurring in (11.16) is the vertical dependence of α, in
accordance with (11.10). Matching the solutions (11.13) and (11.14) to an exterior
vacuum field leads to the boundary conditions

B̄ = 0, Ā′ ± |k̄|Ā = 0, on ζ = ±1. (11.19)
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The foregoing derivations assume that the modes have radial wavelengths satisfying
h � λ < � . Such modes will therefore have k̄ � 1. The radial derivatives of
R� and k are dropped in obtaining (11.15) and (11.16), the radial diffusion being
represented by the k̄2 terms.

Since f (ζ ) is antisymmetric the modes are of two types. The quadrupole modes
of even parity have

B̄(−ζ ) = B̄(ζ ), and Ā(−ζ ) = −Ā(ζ ), (11.20)

which imply that

B̄ ′(0) = 0 and Ā(0) = 0. (11.21)

The dipole modes of odd parity have

B̄(−ζ ) = −B̄(ζ ), and Ā(−ζ ) = Ā(ζ ), (11.22)

giving

B̄(0) = 0 and Ā′(0) = 0. (11.23)

The most readily excited modes of a given class are usually of long wavelength,
satisfying k̄ � 1. For this reason, Moffatt (1978) proposed the approximation of
setting k̄ = 0 in (11.15), (11.16) and (11.19). For steady modes, these equations
then give

B̄ ′′′ +Df B̄ = 0, (11.24)

Ā = K + B̄ ′, (11.25)

where K is a constant. Since (11.24) is a third order equation, the possibility
arises that the four boundary conditions on the original fourth order system may
be inconsistent. The boundary conditions on the steady quadrupole modes reduce
consistently to

B̄ ′(0) = 0, B̄(1) = 0 and B̄ ′′(1) = 0, (11.26)

with K = 0. An inconsistency arises for steady dipole modes because four
independent boundary conditions emerge for B̄. This is overcome by considering
a small but finite k̄ and using the expansions

Ā = k̄−1Ā−1 + Ā0 +O(k̄), (11.27)
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and

B̄ = B̄0 +O(k̄), (11.28)

where Ā−1 is independent of ζ . At zeroth order B̄ is again governed by (11.24). The
symmetry conditions (11.23) on ζ = 0 and the vanishing of B̄ on ζ = 1 imply that

B̄(0) = 0, B̄ ′′(0) = 0, and B̄(1) = 0, (11.29)

while the remaining boundary condition at ζ = 1, given by the second condition in
(11.19), yields

Ā−1 = −B̄ ′′
0 (1). (11.30)

The dynamo numbers for steady modes with k̄ � 1 can be expanded in the form

D = D0 +D1k̄ +D2k̄
2 +O(k̄3), (11.31)

whereD0,D1 andD2 all have the same sign. The quadrupole and dipole modes have
eigenvalues of opposite signs, being negative and positive respectively. At lowest
order (11.24) is solved subject to either (11.26), or (11.29), and the eigenvalue
problem yields D0. At first order the radial structure influences the solution via
(11.19), which expresses the match of the poloidal disc field to an external potential
field. At this order the external field links different parts of the disc. Radial diffusion
only becomes effective at second order through the k̄2 terms in (11.15) and (11.16).

Account can be taken of a slowly varying disc height h(�) and WKBJ
approximations have been used to allow for the effect of radial disc structure (see
Soward 1992a, and references therein). For most dynamo modes in a thin disc the
foregoing asymptotic analysis gives reasonable results. It should be noted that the
most readily excited oscillatory dipole mode has a radial length-scale comparable
to h, so k̄ is of order unity for this mode and a different analysis is required (see
Soward 1992b).

Simple forms for a turbulent η and the separable radial dependence of α,
occurring in (11.10), can be defined as

η = εTcsh, (11.32)

α̃ = εTcs, (11.33)

with εT = vT/cs, where vT is the rms turbulent speed, so εT < 1 for subsonic
turbulence. For a Keplerian disc, with a vertical equilibrium weakly affected by
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B, disc theory gives cs = h�K so substitution of (11.32) and (11.33) in (11.9a),
(11.9b), and (11.12) yields

∣∣∣∣RαR�
∣∣∣∣ = 2

3

α̃

h�K

= 2

3
εT, (11.34)

D = −3h3α̃�K

2η2
= − 3

2εT
. (11.35)

Taking the turbulentMach number εT as independent of� therefore gives a spatially
uniform dynamo number in this case. If the turbulent viscosity is ν � η, then a
viscously driven inflow has |v� | ∼ η/� . The poloidal advection terms in (11.1)
and (11.2) are then of the same order as the radial diffusion terms, and hence are
ignorable to a good approximation. This is a consequence of the vertical diffusion
time being much shorter than the radial inflow time.

Pudritz (1981) considered dynamo action in a turbulent Keplerian disc. Forms
for η and α̃ similar to (11.32) and (11.33) were used, so yielding a uniformD. The
total α function was taken as

α = α̃(�) z
h
, (11.36)

with a constant height h. Separable, steady state solutions of the toroidal and
poloidal equations (11.4) and (11.5) were found and matched to the solutions of
the vacuum equations, using the properties εT < 1 and h/� � 1. The quadrupole
solution, for z > 0, is

B� = βB(κ)λ(1−κ2)/4e−3λ/8 sin

(
3
√
3

8
(λ0 − λ)+ 2π

3

)
J1(κ

1
2 s), (11.37)

Bφ = B(κ)λ−(1+κ2)/4e−3λ/8 sin

(
3
√
3

8
(λ0 − λ)

)
J1(κ

1
2 s), (11.38)

Bz = −βB(κ)λ−κ2/4e−3λ/8 cos

(
3
√
3

8
(λ0 − λ)− 2π

3

)
J0(κ

1
2 s), (11.39)

where

β =
∣∣∣∣RαR�

∣∣∣∣
1
2

, (11.40a)

s = |D| 14 �
h
, (11.40b)

λ = |D| 13
∣∣∣ z
h

∣∣∣
4
3
, (11.40c)
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κ 1/2 is a dimensionless radial wavenumber, being equivalent to k̄ defined by (11.17a),
B(κ) is the field amplitude and J0 and J1 are Bessel functions. These are the most
readily excited modes, the critical dynamo number being Dc = 13.8. Consistency
of the model requires κ 1/2 < εT.

Stepinski and Levy (1990) considered a Keplerian disc in which

α = K̃�Kz, (11.41)

where K̃ is a constant. The magnetic diffusivity was taken as uniform, giving a local
dynamo number

D = D̃
(
h

�

)3

, (11.42)

with D̃ constant. The fields were expressed in the forms

Bφ = eγ t
∞∑
k=1

Bk(z)J1

(
αk
�

RD

)
, (11.43)

A = eγ t
∞∑
k=1

Ak(z)J1

(
αk
�

RD

)
, (11.44)

where RD is the disc radius, J1 is a Bessel function and, in general, γ is complex.
Solutions were sought for which �(γ ) = 0, resulting in oscillatory or steady
behaviour. Substitution of (11.41)–(11.44) in (11.4) and (11.5), radial integration
over the disc using the orthogonality property of J1 given by (A30), and truncation
of the summations at N gives a set of 2N ordinary differential equations containing
2N z-dependent functions. The problem can then be expressed in matrix form with
eigenvalues γ , and eigenvectors containing An and Bn. The critical values of the
global dynamo number, corresponding to �(γ ) = 0, yield quadrupole and dipole
solutions when the appropriate boundary conditions are applied. Two types of disc
surface boundary conditions were used, by considering the surrounding medium to
have high or low conductivity.

In the very high conductivity case the field is unable to diffuse beyond the disc,
so B is contained in |z| < h. This assumes that no wind flows occur from the disc
surfaces, which could allow poloidal magnetic field to extend into the surrounding
medium. The steady dipole modes are then the most easily excited.With a contained
field, the dipole and quadrupole modes both have a strong component of Bp across
the Keplerian shear surfaces, leading to the generation of Bφ in (11.4). However,
the dipole mode has its poloidal field lines crossing the central plane, while the
quadrupole mode does not. Hence the vertical spatial scale of Bp in the basic dipole
mode is larger than the corresponding scale in the quadrupole mode. The dipole
mode is therefore dissipated less rapidly and is the more easily generated mode
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in this case. The fields are localized to the inner parts of the disc, this being a
consequence of D, given by (11.42), having its largest values in this region. The
lowest order mode consists of a single structure centred in the innermost part of the
disc. The higher order modes have several structures with the field spreading out
further radially.

In the case of a vacuum exterior the steady quadrupole modes are the most easily
excited. The field structures are radially localized in a similar way to the dipole
modes that were generated with highly conducting surroundings. The result that the
quadrupolemodes are the most easily excited when the exterior has low conductivity
agrees with all the foregoing calculations, which made a variety of assumptions
about the spatial variation of the dynamo numberD. The reason for this is that with
a vacuum exterior the poloidal field lines extend beyond the disc. In a dipole mode
Bp is therefore nearly vertical through the disc, and so nearly parallel to the surfaces
of Keplerian shear. The shear term �B��′

K, which creates toroidal field in (11.4),
is consequently small and a relatively high dynamo number is required to sustain the
field. Conversely, in a quadrupolemode the lines ofBp do not cross the central plane
and hence there is a relatively large B� component crossing the Keplerian shear
surfaces, leading to generation of Bφ via radial shear at lower dynamo numbers.

The magnetic fields generated in this model differ in radial structure to those
found in Pudritz (1981), given by (11.37)–(11.39). The difference arises from
assumptions made about the spatial variation of the local dynamo number D(�).
Pudritz used forms for η and α̃ similar to (11.32) and (11.33) and hence found a
uniform D. Stepinski and Levy (1990) assumed the form (11.41) for α, together
with constant η, so obtaining D ∝ �−3. A uniform D produces a field of a global
nature, extending radially through the disc. A form D(�) with maximum values
produces a field with localized structures. Stepinski and Levy took the inner five
percent by radius of their disc to have uniform rotation. D(�) therefore has one
maximum near the disc centre, and most of the field is generated in this region.

Stepinski and Levy (1990) did not consider the effects of the disc inflow or the
possibility of wind mass loss from the disc surfaces in their dynamo equations and
boundary conditions. The inflow will affect the dipole modes and a wind flow is
consistent with field lines extending into the surrounding region even when it has
high conductivity relative to material in the disc. This changes the nature of the
dipole mode field structure. Such a situation will be considered in Chap. 14.

Dynamo action in Keplerian viscous discs was also considered by Rudiger
et al. (1995). They took a uniform D and solved the dynamo equations (11.4)
and (11.5) numerically. For a vacuum exterior their results agree with those of
Pudritz (1981), the steady quadrupole being the most easily excited mode with the
field structure extending radially. The case in which the exterior has a magnetic
diffusivity satisfying 0 < ηext < ηdisc was also considered. For ηext = 0.01ηdisc the
quadrupole modes are still the most readily generated, in fact occurring at lower
dynamo numbers than in the vacuum case. The condition ηext � 0.01ηdisc is required
to produce the dipole modes found by Stepinski and Levy (1990) to be the most
easily excited in the case ηext → 0.



11.3 Magnetohydrodynamic Dynamos 323

Rudiger et al. (1995) also solved the dynamo equations, for the case with a
vacuum exterior, but using an α-quenching term

α = α0

1 + (B/Beq)2
, (11.45)

where Beq = (μ0ρv
2
T )

1/2 is an equilibrium magnetic field obtained by equating the
turbulent kinetic energy density to the magnetic energy density. The field solution
has approximately quadrupolar symmetry, but with a radial structure differing from
that of the corresponding normal mode. The magnetic field strength has a radial
profile similar to that of Beq, having a maximum in the innermost part of the disc.
Typically B � 9Beq through the disc.

After the discovery of the local magnetorotational instability in Keplerian discs,
and investigations of its consequences, more recent work has focused on the nature
of magnetohydrodynamic dynamos and the effects of large-scale magnetic fields on
the disc structure.

11.3 Magnetohydrodynamic Dynamos

11.3.1 Weak Field Shearing Instabilities

Nearly two decades passed from the presentation of the classic disc model of
Shakura and Sunyaev (1973) without a satisfactory explanation for the source
of the turbulence required to give the enhanced viscosity employed in accretion
discs. A mechanism for generating this turbulence was presented by Balbus and
Hawley (1991) as the destabilization of the disc flow due to the presence of a sub-
thermal magnetic field. For an angular velocity which decreases outwards, the slow
magnetosonic mode becomes unstable, with free rotational energy being transferred
to magnetic energy and to turbulence. The instability is local and evanescent.
The global form of this magnetorotational instability was discovered by Velikhov
(1959) for Couette flow in the presence of a vertical magnetic field and generalized
by Chandrasekhar (1960, 1961). However, the relevance of a local form of the
instability to turbulent generation in accretion discs was not realized until the
work of Balbus and Hawley (1991) showed how it occurs in Keplerian discs and
elucidated its basically simple origin.

The basic nature of the instability can be understood by considering a differen-
tially rotating disc containing a vertical magnetic field. In a highly conducting disc
a fluid element will be essentially tethered by the magnetic field. If the element is
displaced radially outwards the magnetic field will try to keep it rotating with the
angular velocity of its ring of origin. Consequently, in its new position the element
will not be in centrifugal balance with the radial component of the accretor’s gravity.
For outwardly decreasing � the force imbalance will accelerate the element away
from its equilibrium position. There is a restoring force due to the elastic nature of
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the magnetic field, but at wavelengths longer than a critical value this is weak and
destabilization wins.

Balbus and Hawley (1998) pointed out that the destabilizationmechanism is most
easily illustrated by considering two fluid elements orbiting in an axisymmetric
disc which is threaded by a vertical weak magnetic field. Incompressible linear
perturbations are taken having a spatial dependence of exp(ikz). The components
of the displacement ξ then have the coupled equations of motion

ξ̈� − 2�ξ̇φ = −
[
d�2

d ln�
+ (k · vA)

2
]
ξ� , (11.46)

ξ̈φ + 2�ξ̇� = −(k · vA)
2ξφ, (11.47)

where

vA = B0

(μ0ρ)
1
2

ẑ. (11.48)

As well as being the leading order WKB equations for the local fluid displacement
in a magnetic disc, these also describe two orbiting mass elements connected by a
light spring with a stiffness constant of (k · vA)

2. The two particles are displaced
to neighbouring orbits, one to an outer orbit and the other to an inner orbit. The
consequent difference in angular velocities stretches the spring and a tension pulls
backwards on the inner mass and forwards on the outer mass. Hence the inner mass
loses angular momentumwhile the outer mass gains it. This causes the inner particle
to drop to a lower orbit and the outer particle to move to a higher orbit. The widening
separation leads to an increased tension and the process runs away. If the spring
constant is sufficiently large that the natural oscillation frequency is well above �
then stability will occur. A sufficiently strong spring constant suggests, from (11.46),
the stability condition

(k · vA)
2 > − d�2

d ln�
. (11.49)

The equations of motion (11.46) and (11.47) lead to the dispersion relation

ω4 − [κ2 + 2(k · vA)
2]ω2 + (k · vA)

2
[
(k · vA)

2 + d�2

d ln�

]
= 0, (11.50)

where

κ2 = 1

� 3

d

d�
(� 4�2). (11.51)
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The condition (11.49) arises formally from the dispersion relation (11.50) as a
requirement for the two roots of the quadratic for ω2 to satisfy ω2 > 0, so ω is
real. For small enough k there will always be instability unless d�/d� > 0.

A more formal derivation of the instability was given by Balbus and Hawley
(1991) The disc was taken to contain an initially weak poloidal magnetic field,
so its dynamical effect on the unperturbed state is negligible. Axisymmetric,
large wavenumber linear perturbations were considered which take the form
exp[i(k�� + kzz− ωt)], where the local spatial variations of the components of k
can be ignored since the� and z length-scales of the unperturbed disc structure are
long relative to the wavelengths of the perturbations in these directions. Adiabatic
perturbations were taken and the Boussinesq approximation was used, which
consists of ignoring pressure perturbations in all equations except the momentum
equation. The special case of vanishing radial field, B� , was addressed first.

The linearized equations of momentum, continuity, induction and heat lead to the
dispersion relation

k2

k2z
σ 4 −

[
K2 +

(
k�

kz
Nz −N�

)2
]
σ 2 − 4�2k2zv

2
Az = 0, (11.52)

where

σ 2 = ω2 − k2z v2Az, (11.53)

v2Az = B2
z

μ0ρ
, (11.54)

K2 = 2�

�

d

d�
(� 2�), (11.55)

N2
� +N2

z = − 3

5ρ
(∇P) · [∇ ln(Pρ− 5

3 )], (11.56)

with Bz, P and ρ denoting unperturbed disc quantities. In a Keplerian accretion
disc,

� = �K =
(
GMp

� 3

) 1
2

. (11.57)

Then K , given by (11.55), is real. A non-magnetized disc is stable to inviscid adia-
batic perturbations if N� andNz, given by (11.56), are also real. By solving (11.52)
for σ 2, it follows that σ 2 (and hence ω2) is real. Disc stability can therefore be
investigated by considering conditions in the neighbourhood of ω2 = 0, at which
σ 2 = −k2zv2Az. In this limit (11.52) becomes

(k2zv
2
Az +N2

z )k
2
� − 2N�Nzkzk� + k2z

(
d�2

d ln�
+N2

� + k2z v2Az
)

= 0. (11.58)
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Regarded as a quadratic for k� , this equation does not allow real solutions,
so assuring stability since ω2 could then not pass through zero, provided the
discriminant is negative. This stability condition can be expressed as

k4z v
4
Az + k2zv2Az

(
N2 + d�2

d ln�

)
+N2

z

d�2

d ln�
≥ 0. (11.59)

Since N2
z > 0, the inequality can only be satisfied for all non-vanishing kz if

d�2

d�
≥ 0. (11.60)

This is clearly violated in a Keplerian disc, so giving instability for values of kz less
than the critical value yielded from the equality in (11.59) as

(kz)crit = 1

vAz

∣∣∣∣ d�
2
K

d ln�

∣∣∣∣
1
2

= √
3
�K

vAz
, (11.61)

using N2
z � N2

� for a thin disc. The inclusion of a radial field, B� , in the
unperturbed disc does not affect the stability criterion, given by (11.60).

In a thin Keplerian disc K2 = �2
K and this term dominates in the coefficient of

σ 2 in the dispersion relation (11.52). The unstable root of this equation, together
with (11.53) for σ , leads to a time dependence exp(γ t) in which the growth rate is

γ =
⎡
⎣−�

2
K

2

k2z

k2
− k2zv2Az + 1

2

(
�4

K

k4z

k4
+ 16�2

K

k4z

k2
v2Az

) 1
2
⎤
⎦

1
2

. (11.62)

For kzvAz � �K first order expansion yields γ � √
3kzvAz. Differentiation

of (11.62) with respect to kz, using kz � k� , gives a maximum growth rate

γmax � �K√
2

at kz = �K

vAz
, (11.63)

so γmax is independent of the magnetic field. Balbus and Hawley (1998) showed
that the magnetorotational instability corresponds to the slow magnetosonic mode
becoming unstable. The instability is local and evanescent.

The foregoing analysis ignored dissipative effects. However, for sufficiently
small |Bz| the value of (kz)crit given by (11.61) will become so large that there will be
wavenumbers at which dissipation is important. This value of |Bz| can be estimated
for ordinary Ohmic dissipation, with the associated diffusivity

ηohm = 5.2 × 107 ln�T − 3
2 m2s−1, (11.64)
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as discussed in Sect. 2.2.11. The dissipation and growth time-scales are

τd = 4π2

ηohmk2z
, τg = 2π

γ
. (11.65)

Using typical values of γ ∼ �K and kz ∼ �K/vAz, the condition τd � τg for
negligible dissipation becomes

v2Az � ηohm
�K

2π
, (11.66)

which can be expressed as

B2
z

2μ0P
� ηohm�K

4πc2s
, (11.67)

where c2s = (R/μ)T . Taking ln� = 10, (11.64) and (11.67) give

B2
z

2μ0P
� 3.5 × 10−9

(
Mp

M�

) 1
2
(
T

104 K

)− 5
2 ( �

108 m

)− 3
2
, (11.68)

where Mp is the mass of the accreting primary star. This indicates that quite weak
initial fields can be considered for which the dissipation associated with the linear
instability is ignorable. For ρ ∼ 10−6 kgm−3, (11.68) yields |Bz| ∼ 10−6 T for the
field below which Ohmic dissipation becomes effective. Similar field values apply
to the case of thermal conductivity.

The maximum value of kz for instability is given by (11.61). A minimum value
for kz is set by the wavelength condition λz � 2h, where h is the disc scale height,
so (kz)min ∼ π/h. The validity of the local analysis requires λz � 2h and hence
kz � π/h. For a thin Keplerian disc with a weak magnetic field, h ∼ cs/�K, so the
range of kz for which the local instability is operable is

π
�K

cs
� kz <

√
3
�K

vAz
. (11.69)

This leads to B2
z /2μ0P � 1 which can be consistent with the negligible dissipation

condition (11.66).
The foregoing derivation of the magnetic shear instability is a local analysis,

and used the Boussinesq approximation. Papaloizou and Szuszkiewicz (1992) con-
sidered an axisymmetric, compressible, differentially rotating, non self-gravitating
fluid containing a poloidal magnetic field. They performed a global stability analysis
of axisymmetric, adiabatic modes by formulating a variational principle. The modes
have a time dependence exp(σ t) and the self-adjoint nature of the operators leads
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to real values for σ 2. Stability therefore requires σ 2 < 0 and, for a weak magnetic
field, this gives the condition

�(e · ∇�)(e · ∇�2)−
(
e · ∇P

ρ

)[
e ·
( ∇P
�1P

− ∇ρ
ρ

)]
≥ 0, (11.70)

where e is an arbitrary vector and the adiabatic exponent �1 is defined by (2.128a).
It follows that for e tangent to surfaces of constant pressure, or of constant entropy,
stability requires

(e · ∇�)(e · ∇�2) ≥ 0. (11.71)

For a thin disc this condition is essentially the same as (11.60), confirming the
Balbus-Hawley result that a Keplerian disc is unstable. Gammie and Balbus (1994)
showed that the field magnitude required for stabilization in a global problem may
depend on the detailed boundary conditions.

Dubrulle and Knoblock (1993) considered incompressible motions in a thin disc,
but allowed the basic state to have azimuthal as well as vertical magnetic field. With
the unperturbed velocities v� = vz = 0, together with B� = 0, the unperturbed
Alfvén speeds vAφ and vAz are necessarily independent of z. Axisymmetric pertur-
bations were considered with the separable form f (�) exp[i(kzz + σ t)], leading
to a second order radial eigenvalue problem. When vAz is constant the sufficient
condition for stability becomes

� 2 d

d�
(�2)− 1

� 2

d

d�

(
� 2B2

φ

μ0ρ

)
≥ 0, (11.72)

and this was found not to be sensitive to the boundary conditions imposed. In the
weak field limit, this result reduces to (11.60).

11.3.2 Non-linear Development of the Shearing Instability

Balbus and Hawley (1991) pointed out that there are two possible outcomes of
the magnetic shearing instability. Firstly, in the absence of sufficient dissipation,
the magnetic field will grow to the point where the minimum critical wavelength
exceeds the disc scale height. This occurs when the Alfvén and sound speeds are
comparable, the magnetic field being left in a dynamically important state but no
longer prone to shearing instability. The second, and more likely, possibility is that
reconnection dissipates the growing field and a state is reached in which the growth
rate of the instability is counterbalanced by dissipation at the smallest scales. Hence
classical turbulence results.
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Subsequent work strongly supported a turbulent outcome for the hydromagnetic
instability. Hawley and Balbus (1991, 1992) performed non-linear simulations in
both two and three dimensions. Their local analysis considered unstratified fluid in a
box with periodic shearing boundary conditions. For initial conditions appropriate to
axisymmetric modes, the three-dimensional case has a period of exponential growth
after which the solutions break up into a turbulent state.

Hawley et al. (1995) showed that the magnetic shearing instability also operates
in the presence of an irregular magnetic field. This field can sustain self-excited
turbulence, even in the absence of vertical stratification. In the fully turbulent state,
they found that the B�Bφ magnetic stress dominates the viscous stress so angular
momentum transport is largely magnetic. Stone et al. (1996) included density
stratification and found similar turbulence. They showed that the saturated state
is essentially independent of the initial magnetic field geometry. Fromang et al.
(2007) performed local box simulations with zero net magnetic flux. The net angular
momentum transfer increases with magnetic Prandtl number, and the turbulence
vanishes at a minimum value of ν/η.

Numerical simulations of the magnetorotational instability by Brandenburg et al.
(1995) gave rise to turbulence with a finite mean helicity. A self-sustaining α�
dynamo generates mean magnetic fields, leading to radial angular momentum
transport. The turbulence generated in simulations is highly anisotropic, and the
microscopic magnetic Prandtl number affects the saturation level of B. This and
more recent dynamo simulations are discussed below.

11.3.3 Validity of Standard Mean-Field Dynamos

The discovery of the significance of the magnetorotational instability to accretion
disc turbulence has brought into question the validity of the existing theory of mean-
field electrodynamics for dynamos. This theory was outlined in Sect. 2.3. The mean
field (with the subscript zero now dropped) obeys the equation

∂B
∂t

= ∇ × (v × B)+ ∇ × E − ∇ × (η∇ × B), (11.73)

where the electric field

E = 〈vT × BT〉. (11.74)

A key assumption made in the standard theory is that the turbulent velocity field can
be prescribed independently of the magnetic field, corresponding to a kinematic
dynamo in which the magnetic field has a negligible effect on the turbulence.
However, as pointed out by Balbus and Hawley (1998), in a fluid the pressure P is
the only non-magnetic stress that sets a scale. In the weak field limit of B2/2μ0 �
P , the Alfvén and slow magnetosonic modes become degenerate, and have no
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hydrodynamic analog (see Sect. 2.2.6). The dynamical effects of these purely
magnetic modes can never be ignored. The weak magnetic field enters the dynamics
only via the combination k · vA and this defines a characteristic wavenumber scale
of k ∼ �/vA at which magnetic effects become important. Provided that this scale
is not small enough for micro resistivity to become dominant, the magnetic tension
force is significant. The key assumption that vT can be specified independently of B
is then not satisfied.

Blackman (2010) noted that the effects of magnetic helicity should be incorpo-
rated in dynamo theory. Large-scale dynamos always involve some helical growth
of the large-scale field which is coupled to the helical growth of small-scale fields of
opposite sign and/or a compensating helical flux. The large and small-scale helicities
obey the evolution equations

∂

∂t
(A · B) = 2E · B − 2ηJ · B − ∇ ·

(
2�B + A × ∂A

∂t

)
, (11.75)

∂

∂t
(〈a · b〉) = −2E · B − 2η〈j · b〉 − ∇ ·

(
2〈ψb〉 +

〈
a × ∂a

∂t

〉)
, (11.76)

where a andA are the small and large-scale vector potentials, while ψ and� are the
small and large-scale electric potentials. The growth of the large-scale field involves
a finite E · B, which provides an equal and opposite source term for the large and
small-scale magnetic helicities as shown by (11.75) and (11.76). Standard mean-
field theory has focused on the large-scale equation (11.75), but does not use the
coupled equation (11.76) for the small-scale helicity.

More recent dynamo theory takes an α-function as

α = αkin + αmag = −1

3
τ [〈vT · ∇ × vT〉 − 〈b · ∇ × b〉], (11.77)

where Alfvén unit scalings are used to make the equation dimensionless (see
Blackman and Field 2004). The time evolution of α is directly coupled to the
evolution of the magnetic helicity. If A · B grows initially from αkin then 〈a · b〉
grows with an opposite sign which quenches α.

The formulation of a set of mean-field equations which incorporate the mag-
netorotational instability is a formidable and, as yet, unsolved problem. Most
information regarding the consequences of magnetically driven turbulence in
accretion discs has been derived from local box simulations, using various boundary
conditions. These can provide data which can be used to estimate α.
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11.3.4 Magnetohydrodynamic Dynamos

Studies of magnetohydrodynamic dynamos in accretion discs, which incorporate
the magnetorotational instability, have made been developed using semi-analytic
and numerical methods.

Tout and Pringle (1992) developed a model for a magnetic accretion disc
dynamo. The dynamo mechanism depends on the Balbus-Hawley instability,
together with the Parker buoyancy instability and reconnection. The authors
concentrate on a local description of the physical mechanisms involved, rather
than on detailed spatial dependences. Their toroidal induction equation is

dBφ

dt
= 3

2
�KB� − Bφ

τP
. (11.78)

This is the standard form for this equation, the toroidal field being created by the
radial shearing of poloidal field and diffused, in this case by the Parker instability.
The origin of this instability was discussed in Sect. 2.2.11, and the corresponding
magnetic diffusivity is given by (2.242). The Parker diffusion time is therefore

τP = h

ξvAφ
, (11.79)

where h is the vertical scale height, vAφ = |Bφ |/(μ0ρ)
1/2, and ξ < 1.

The Balbus-Hawley instability creates radial field from vertical and Parker
magnetic buoyancy diffuses the radial field. The radial equation, averaged over
wavenumbers, was taken to be

dB�

dt
= γ̄max�KBz − B�/τP, vAz/cs ≤ √

2/π, (11.80a)

dB�

dt
= γ̄BH�KBz − B�/τP,

√
2/π < vAz/cs ≤ √

6/π, (11.80b)

dB�

dt
= −B�/τP, vAz/cs >

√
6/π, (11.80c)

where

γ̄BH = γ̄max

[
1 − (1 − πvAz/

√
2cs)2

(1 − √
3)2

] 1
2

, (11.81)
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and γ̄max ∼ 0.71. Equation (11.80a) arises when the wavelength of the fastest
growing mode of the Balbus-Hawley instability is � 2h. From (11.63) this mode
has a vertical wavelength

λmax
z = 2πvAz

�K

, (11.82)

where vAz = |Bz|/(μ0ρ)
1/2. It then follows from (11.61) that

λmax
z = √

3λcrit
z , (11.83)

where the instability is cut off when λz < λcrit
z . Hence in this first case the range

of unstable wavelengths is λmax
z /

√
3 ≤ λz ≤ λmax

z , with λmax
z � 2h. The unstable

modes therefore all have growth rates near the maximum value of ∼ γ̄max�K, this
being taken as the average value in equation (11.80a). The associated inequality
vAz/cs �

√
2/π arises from λmax

z � 2h, together with the assumption of an
isothermal vertical structure which yields h�K = √

2cs. Equation (11.80b) gives the
intermediate regime, while (11.80c) arises when λcrit

z � 2h, so there are no unstable
wavelengths in the disc and the generation of B� ceases. Equation (11.81) is an
analytic fit to the results of Balbus and Hawley (1991).

The vertical equation was taken as

dBz

dt
= Bφ

τP
− Bz
τrec
. (11.84)

The Parker instability creates Bz from Bφ , while reconnection dissipates Bz. The
reconnection time-scale is

τrec = λrec

�vAz
, (11.85)

where λrec is the mean distance between patches of Bz of opposite sign and �−1 ∼
lnRm, with Rm the magnetic Reynolds number.

The authors first investigated the linear stability of the trivial solution B = 0.
They found this solution to be unstable with a growth time of order (2/3)�−1

K . An
equilibrium solution with finite B was then sought. The growth terms for Bφ and
B� involve the time-scale �−1

K , whereas the loss terms involve the larger time-
scales τP and τrec. Equilibrium can therefore only occur when the growth of B�
via the Balbus-Hawley instability is inhibited by the presence of strong Bz. The
equilibrium solution has B2

φ/2μ0 ∼ P and is shown to be overstable.
The non-linear evolution of the dynamo was investigated using numerical

integration. In all cases the magnetic field remains finite, but oscillates about the
equilibrium state. The cycle is largely controlled by how far Bz is from equilibrium.
For weaker Bz the Balbus-Hawley instability leads to a rapid growth of B� , and a
slower growth of Bφ . These lead to growth in Bz towards equilibrium and then B�
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and Bφ decay, followed by Bz. Although B� and Bφ escape from the disc on the
time-scale τP ∼ 4�−1

K , B� is converted to Bφ on the shear time-scale of ∼ 0.7�−1
K .

Hence in equilibrium Bφ ∼ 6B� .
Brandenburg et al. (1995) used numerical methods to simulate the non-linear

evolution of magnetized Keplerian shear flows in a local, three-dimensional model,
including compressibility and stratification. The Balbus-Hawley instability was
found to generate motions which regenerate a turbulent magnetic field which, in
turn, reinforces the turbulence.

Local Cartesian coordinates (x, y, z) were used, with origin at a cylindrical
radius�0 and unit vectors x̂ = 
̂ , ŷ = φ̂. The origin was taken to have the angular
velocity �0 = �K(�0) so, to linear order, the Keplerian shear flow in this frame is

v0y(x) = −3

2
�0x. (11.86)

The equations of momentum, induction, continuity and heat were solved in a local
box to obtain the deviations, v, from this flow. Equation (11.86) is consistent with
no systematic variation of quantities with x, since only dv0y(x)/dx occurs in the
governing equations. A standard form was adopted for the viscous force, and the
perfect gas equation was used. A simple form for the cooling rate was taken as

Q = −�0(E − E0), (11.87)

where

E = P

(γ − 1)ρ
(11.88)

is the thermal energy per unit mass, with E0 its initial value. An initial isothermal
stratification was assumed and the insulating boundary condition ∂E/∂z = 0 at
z = ±h was employed.

The velocity was taken to obey stress-free conditions at the upper and lower
boundaries, so

∂vx

∂z
= ∂vy

∂z
= vz = 0 at z = ±h. (11.89)

The magnetic field was taken to be purely vertical at these boundaries. Using B =
∇ × A, then gives the surface conditions Bx = By = 0 in terms of the vector
potential as

∂Ax

∂z
= ∂Ay

∂z
= 0 and Az = 0 at z = ±h. (11.90)
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Periodic boundary conditions were adopted in the y-direction. The quasi-periodic
condition

F(�x, y, z) = F(0, y + 3

2
�0t�x, z) (11.91)

was used for any quantity on the radial boundaries, where �x is the radial extent
of the box. This sliding condition accounts for the effect of the Keplerian shear in
the y-direction. The horizontal boundary conditions lead to vanishing vertical flux,
since

∫ ∫
Bzdxdy =

∫ �y
0

[
Ay
]�x
0 dy −

∫ �x
0

[Ax]
�y
0 dx = 0. (11.92)

This enables the field to decay to zero if the motions become too weak to sustain it.
The governing equations were solved using sixth-order compact derivatives, and

a third-order Hyman scheme for the time-stepping (Nordlund and Stein 1990).
Random velocity perturbations are taken, with an initial Mach number of vrms/cs =
0.002. The initial field was taken to be B = B0 sin(2πx/�x)ẑ with B0 satisfying
2μ0P/B

2
0 = 100.

The Balbus-Hawley magnetic shear instability generates turbulence. Energy
flows from the Keplerian motion into both magnetic and turbulent kinetic energies
in the ratio of ∼ 6 to 1. However, the energy transfer rates (=energy flux/energy
content) into these two reservoirs are approximately equal at ∼ 0.3�K. The
Lorentz force pumps half this magnetic energy into turbulent kinetic energy. Hence
three-quarters of the energy going from the Keplerian motion into turbulence first
passes through a phase of magnetic energy. The magnetic and turbulent energies are
subsequently dissipated and heat the disc. Poloidal magnetic field is regenerated at
a rate of ∼ 0.6�0, comparable to the growth rate of the magnetic shear instability.

The large-scale toroidal magnetic field is mainly of quadrupolar parity, and
exhibits cyclic behaviour. The ratio of the mean magnetic energy density to the
thermal energy density is B2/2μ0P � 0.1. The dynamo α-function was found to be
negative for 0 < z < h, contrary to standard theory which uses the Parker instability
and Coriolis force to generate α. As discussed in Brandenburg and Donner (1997),
the reason for this sign difference appears to be the strong effect of the magnetic
shear instability. Oscillatory quadrupole modes are then favoured, but the average
value of B�Bφ is still negative, as required for outward radial transport of angular
momentum.

The standard inner boundary condition of vanishing torque, described in
Sect. 2.4.4, leads to the stress equation

〈
ρv′�v′φ − 1

μ0
B ′
�B

′
φ

〉
= −ρν� d�K

d�
, (11.93)
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where primes denote turbulent components and the radial integration constant can
be ignored for� � Rp, with Rp the radius of the accretor. In the Shakura-Sunyaev
model the turbulent viscosity coefficient is expressed as

ν = εTcsh, (11.94)

with εT < 1. The value of εT found here fluctuates in time, with a mean value of
εT ∼ 10−2. Brandenburg et al. (1996) derived a parabolic fit for εT of the form

εT � ε0 + εB
B2
φ

B2
eq
, (11.95)

where Beq = (μ0ρc
2
s )

1/2 is the equipartition field with respect to the thermal energy
density and εB � 0.5.

The numerical simulations are consistent with a dynamo α-function above the
central plane of

α � −5 × 10−3�Kh. (11.96)

The turbulent magnetic diffusivity is

ηT � 8 × 10−3�Kh
2. (11.97)

The ratio of field components is typically |B�/Bφ | ∼ 10−2, characteristic of an
α�-type dynamo.

Ogilvie (2003) constructed covariant evolution equations for the mean Reynolds
and Maxwell tensors, including a linear interaction with the mean flow. Non-
linear and dissipation effects were modelled. The model explains the development
of statistically steady anisotropic turbulent stresses, using a local representation
of a differentially rotating disc. This agrees with the main results of local box
simulations.

Gressel (2010) also considered a local box model with zero net flux, but
with vertical stratification. A direct dynamo results from the magnetorotational
instability, but an indirect dynamo effect also appears related to the Parker instability
and buoyancy. The current helicity appears to play an important role in the
dynamo process. Davis et al. (2010) showed that vertical stratification leads to the
convergence of the turbulent energy density and stresses with increasing resolution.
The horizontal magnetic field has cyclic behaviour, with a period of about 10 orbits.
Including vertical stratification extends the range of the magnetic Prandtl number
for which turbulent generation occurs.

Beckwith et al. (2011) performed global simulations for a thin disc, using
an initially strong toroidal magnetic field. The fastest growing magnetorotational
modes are well resolved and the system loses memory of the initial conditions. The
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largest scales within the turbulence are controlled by the density and the effective
turbulent viscosity parameter was found to be εT ∼ 2.5 × 10−2.

Gressel and Pessah (2015) performed vertically stratified shearing box simula-
tions and found a dynamo scaling separation of ∼ 10. The α and η functions were
found to scale linearly with the shear rate, and the model gives support to the α�
mechanism in discs.

Improved numerical techniques should allow further progress to be made in
our understanding of the nature of magnetohydrodynamic dynamos operating in
accretion discs. The development of global models is particularly important.

11.4 Disc Structure with Large-Scale Magnetic Fields

11.4.1 Background

Having established that magnetohydrodynamic dynamos can generate large-scale
magnetic fields in discs, the effects of such fields needs to be investigated. Large-
scale magnetic stresses can transport angular momentum in discs and hence provide
a means of driving the inflow. Dipolar symmetry fields can only exert torques on
disc rings if the BφBz stress is finite at the disc surface. For an axisymmetric, steady
disc surrounded by a vacuumBφ vanishes at the surface and hence there will be zero
net torque with a dipole symmetry field. However, if a wind emanates from the disc
surface the conducting surroundings will give a finite Bφs and there will be a net
torque with angular momentum carried away from the disc by the wind, so driving
an inflow. This case is considered in detail in Chap. 14.

With a quadrupole magnetic field the B�Bφ stress can cause an outward radial
transport of angular momentum, even for vacuum surroundings. Since a self-
sustaining dynamo requires turbulence, there will also be a viscous torque on disc
rings. The relative contributions of the magnetic and viscous torques is of central
interest, as is the effect of the magnetic field on the disc structure. Because a
mean field induction equation that self consistently incorporates the effects of the
magnetorotational instability does not at present exist, the standard mean field
dynamo equations are used to find field solutions. It will be seen that an α�
dynamo can generate large-scale magnetic fields leading to stresses which play
a major part in driving the inflow. The �-effect, described by the Bp · ∇� term
in the induction equation, has a rigorous basis but, as discussed previously, the
α-effect due to turbulence has yet to have a completely consistent formulation.
Nevertheless, parametrized forms for α allow solutions to the found for the magnetic
field which can be used with the magnetohydrodynamic equations to find disc
solutions corresponding to physically consistent structures. It will be shown that the
magnetic fields generated by an α� dynamo naturally lead to the required angular
momentum transport and energy dissipation in the disc.
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The α function is required to be antisymmetric about the disc mid-plane, but its
sign above and below this plane is still not rigorously established. The case of α > 0
for z > 0 will be considered here since this leads to steady quadrupolar symmetry
magnetic field solutions. The case of α < 0 for z > 0 tends to facilitate oscillatory
quadrupolar and steady dipolar solutions. The period of oscillatory solutions is much
shorter than the inflow time through the disc, so the inflow in this case will be
essentially driven by the time average over an oscillation period of the B�Bφ stress.
Hence, quadrupolar solutions are of relevance to both cases for the sign of α, but the
simplest solutions result for the case of α > 0 for z > 0 and these will be considered
here.

Most studies of the effects of an intrinsic magnetic field on the disc have
either taken vertical averages and focused on the radial structure (e.g. Campbell
1992; Rudiger et al. 1995; Campbell and Caunt 1999) or ignored the radial
structure and calculated local vertical dependences (e.g. Rudiger and Shalybkov
2002). Parametric forms of turbulent and magnetic buoyancy diffusivities have been
considered. In Campbell (2003) a solution was found for the radial and vertical
structures of the disc, with a quadrupolar magnetic field generated by an α�
dynamo. The formulation below is based on this work.

11.4.2 Magnetic Disc Equations

A steady axisymmetric disc is considered around an accretor of massM and radius
R. For a thin disc self-gravity is ignorable, and the star is assumed to have a
negligible magnetic field. The surroundings are taken to be a vacuum. Cylindrical
coordinates (�, φ, z) are used, centred on the star. For a thin disc the ratio h/� is
small and here the frequently occurring ratio of (B� /Bφ)2 is also small. These two
small ratios can be used to simplify the equations.

Firstly, the � -component of the momentum equation can be considered. As in
the standard viscous disc, the subsonic poloidal velocity component terms are small
relative to the stellar gravity term and the radial thermal pressure gradient is also
ignorable. The radial magnetic force terms are small and hence the stellar gravity
balances the centrifugal force to give a Keplerian angular velocity distribution of

� = �K =
(
GM

� 3

) 1
2

, (11.98)

where � = vφ/� . This is applicable down to the outer edge of a boundary layer at
� = R + δ, of width δ � R, through which � decreases to the stellar value of �∗
so accretion can occur.

The continuity equation can be written as

∂

∂�
(�ρv� )+ ∂

∂z
(�ρvz) = 0. (11.99)
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Vertically integrating this equation between−z and z, using the antisymmetry of vz,
gives

∂

∂�

(
�

∫ z
−z
ρv�dz

)
= −2�ρvz. (11.100)

Since vz � |v� | and ρ decreases vertically, the vertical mass flux is ignorable
relative to the radial mass flow. The radial derivative is then zero and a � -
independent mass flow rate is given by

Ṁ(z) = −2π
∫ z

−z
�ρv�dz. (11.101)

Combining the continuity equation, with the ρvz term being ignorable, with the
φ-component of the momentum equation yields the angular momentum equation

∂

∂�

(
�ρv��

2�
)

= ∂

∂�

(
ρν� 3 ∂�

∂�

)
+ ∂

∂�

(
1

μ0
� 2B�Bφ

)
, (11.102)

relating the divergence of the radial angular momentum flux to the viscous and
magnetic torques. The term involving BφBz has been dropped, since it is small
relative to the B�Bφ term for a quadrupolar field.

The poloidal velocity terms and the magnetic force term involving B2
� are small

in the vertical component of the momentum equation, which therefore reduces to

�2
Kzρ + ∂

∂z

(
P + B2

φ

2μ0

)
= 0. (11.103)

The magnetic pressure gradient reinforces the thermal pressure gradient, since B2
φ

decreases with increasing |z|, giving forces that balance the vertical component of
the stellar gravity.

The induction equation, with a standard α term, describes the generation of
magnetic field in the disc. The toroidal and poloidal components of this equation
are given by (11.1) and (11.2), together with (11.3) which relates Bp to A. Noting
that the poloidal advection terms and the radial derivatives in the diffusion terms are
small, and that ∂�/∂z = 0, the poloidal and toroidal components reduce to

η
∂B�

∂z
= αBφ, (11.104)

and

η
∂2Bφ

∂z2
= −�B��′

K, (11.105)
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noting that the vector potential A has been eliminated here in terms of B� . The
poloidal equation (11.104) gives the balance between the creation of B� from Bφ
via the α process, and its vertical diffusion. The toroidal equation (11.105) expresses
the balance between the creation ofBφ by the winding ofB� , due to radial shearing,
and its vertical diffusion.

The advection of heat in the disc is small, so the steady thermal energy equation
relates the divergence of the radiative flux to the energy generation rate per unit
volume. The vertical derivative term dominates in the divergence, and the radial
component of the current density gives the main contribution to the magnetic
dissipation. Hence the thermal balance is

∂FR

∂z
= ρν (��′

K

)2 + η

μ0

(
∂Bφ

∂z

)2

. (11.106)

For an optically thick disc the radiative heat flux is

FR = − 4σB

3κρ

∂

∂z

(
T 4
)
, (11.107)

with the Rosseland mean opacity taken to have a Kramers form

κ = K̄ρT − 7
2 , (11.108)

where K̄ is a constant.
Accretion discs are considered in which the radiation pressure is small and the

gas equation of state is

P = R
μ
ρT, (11.109)

with μ the mean molecular weight.

11.4.3 Magnetic Field Generation

Taking η to be independent of z and combining the induction equation compo-
nents (11.104) and (11.105) to eliminate B� yields the dynamo equation

∂3Bφ

∂z3
+ ��

′
Kα

η2
Bφ = 0. (11.110)

The function α(�, z) must be antisymmetric in z and local box simulations of
magnetorotational instability induced turbulence suggest that α < 0 for z > 0 may
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apply (e.g. Brandenburg and Campbell 1997; Brandenburg and Donner 1997). This
can lead to an oscillatory quadrupole magnetic field with a period of

Pm �
(
�Kh

|α|
) 1

2 2π

�K

. (11.111)

This typically gives

Pm � �

|v� |
(
h

�

)2

=
(
h

�

)2

τv, (11.112)

where τv is the inflow time-scale. Hence Pm � τv so the magnetic field will oscillate
many times as matter flows through the disc. It follows that it will be the average
over a period Pm of the magnetic stress B�Bφ that effectively drives the inflow. For
simplicity, α > 0 for z > 0 is taken and steady quadrupolar fields result. This will
represent the situation with α < 0 for z > 0 with a time averaged magnetic stress
for an oscillatory quadrupolar field.

The α function is taken to have the separable form

α(�, z) = α̃(�)ζ = εcsζ, (11.113)

where

ζ = z

h
(11.114)

and ε < 1 is a rms turbulent Mach number with

cs =
(
Pc

ρc

) 1
2 =

(R
μ
Tc

) 1
2

(11.115)

being the isothermal sound speed in the mid-plane.
A turbulent magnetic Reynolds number can be defined as

Nα = α̃h

η
(11.116)

and is taken as constant. This is consistent with defining a turbulentmagnetic Prandtl
number as

Np = ν

η
(11.117)

where ν is the turbulent viscosity. It then follows that

η = εT

Nα
csh (11.118)
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and

ν = εTNp

Nα
csh, (11.119)

corresponding to the turbulent viscosity having a standard parametrized form forNp

constant.
The toroidal magnetic field can be expressed in the separated form

Bφ(�, z) = Bφc(�)fφ(ζ ), (11.120)

with Bφc(�) = Bφ(�, 0), 0 ≤ ζ ≤ 1 and

fφ(0) = 1. (11.121)

Using (11.113), (11.114) and (11.120) for α, ζ and Bφ in the toroidal field
equation (11.110) yields

f ′′′
φ − |K|3ζfφ = 0 (11.122)

with

K3 = −3

2

N2
α

ε

�Kh

cs
(11.123)

being the dynamo number. The dimensionless quantity |K| can be written as |K| =
h/�z, where �z is the vertical length-scale of B in the disc. Self-consistent, steady
disc solutions result for K constant, corresponding to �Kh/cs being independent
of � as in the standard viscous disc. Equation (11.122) must be solved for fφ(ζ )
subject to appropriate boundary conditions.

A quadrupolar symmetry field has Bz(�, 0) = 0 and so ∇ · B = 0 yields

Bz(�, z) = − 1

�

∂

∂�

(
�

∫ z
0
B�dz

)
. (11.124)

Since the radial and vertical length-scales of B� are ∼ � and ∼ h, it follows that

Bz �
z

�
B� c. (11.125)

Matching to a vacuum field at the surface, in which the potential function must have
comparable length-scales in the � and z directions in order to satisfy Laplace’s
equation, requires B� s ∼ Bzs and hence

Bzs ∼ B� s �
h

�
B� c. (11.126)
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Hence, to leading order in h/� , Bz is ignorable through the disc and B� becomes
ignorable at the surface. The boundary conditions for a quadrupolar field in a thin
disc surrounded by a vacuum are therefore

Bφ(�, h) = 0, (11.127a)

(
∂Bφ

∂z

)
z=0

= 0, (11.127b)

B�(�, h) = 0. (11.127c)

The first condition is necessary since a steady axisymmetric field in a vacuum
has Bφ = 0, while the second condition is a symmetry requirement and the last
condition is the leading order result derived above.

Using (11.98), (11.118) and (11.120) for �, η and Bφ in the toroidal induction
equation (11.105) yields

B�(�, z) = Nα

|K|3Bφc(�)f
′′
φ (ζ ), (11.128)

which can be expressed as

B� (�, z) = B� c(�)
f ′′
φ (ζ )

f ′′
φ (0)

= B� c(�)f� (ζ ). (11.129)

Using (11.120) for Bφ and (11.129) for B� in (11.127a), (11.127b), and (11.127c)
gives the boundary conditions

fφ(1) = 0, (11.130a)

f ′
φ(0) = 0, (11.130b)

f ′′
φ (1) = 0. (11.130c)

The differential equation (11.122), together with the boundary conditions, con-
stitutes a homogeneous boundary value problem with eigenfunctions fφ(ζ ) and
eigenvaluesK3.

Power series solutions can be found of the form

fφ(ζ ) =
∞∑
k=0

akζ
k. (11.131)
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Only even solutions are relevant for a quadrupolar field, and the two even linearly
independent solutions are

fφ1(ζ ) =
∞∑
k=0

( |K|3
64

)k
ζ 4k

�(k + 1)�(k + 3
4 )�(k + 1

2 )
, (11.132)

and

fφ2(ζ ) =
∞∑
k=0

( |K|3
64

)k
ζ 4k+2

�(k + 3
2 )�(k + 5

4 )�(k + 1)
, (11.133)

where � is the gamma function. The required solution is

fφ(ζ ) = c1fφ1(ζ )+ c2fφ2(ζ ), (11.134)

where c1 and c2 are constants. Because the solutions are even, it follows that
f ′
φ(0) = 0 is satisfied. The application of fφ(0) = 1 and fφ(1) = 0 determines
c1 and c2, leading to

fφ(ζ ) = π 1
2�

(
3

4

)[
fφ1(ζ )− fφ1(1)

fφ2(1)
fφ2(ζ )

]
. (11.135)

Then applying f ′′
φ (1) = 0 gives the condition

f ′′
φ1(1)fφ2(1)− fφ1(1)f ′′

φ2(1) = 0, (11.136)

which determines K3 as a set of eigenvalues for the quadrupole modes. Taking
the first 40 terms in the power series solutions gives high accuracy. Using these
in (11.136) and solving numerically gives the first eigenvalue, corresponding to
|K| = 2.324, with f� (ζ ) and fφ(ζ ) monotonically decreasing between ζ = 0
and ζ = 1. These dynamo field solutions are shown in Figs. 11.1 and 11.2.
The quadrupole magnetic field solution leads to consistent solutions for the disc
structure.

11.4.4 Angular Momentum Transport

Integrating the angular momentum equation (11.102) from −z to z yields
∂

∂�

(
1

2π
Ṁ(z)� 2�+� 3�′ν� + 2

μ0
� 2
∫ z
0
B�Bφdz

)
= 0, (11.137)
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Fig. 11.1 Vertical variation of the radial magnetic field (from Campbell 2003)
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Fig. 11.2 Vertical variation of the toroidal magnetic field (from Campbell 2003)

where Ṁ(z) is given by (11.101) and

�(�, z) =
∫ z

−z
ρdz. (11.138)

Equation (11.137) states that the term in brackets is independent of � , and so is
a pure function of z. This quantity represents the total rate of angular momentum
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transport through an annular area of the disc between −z and z. This rate is the
sum of the rate of material angular momentum transport due to the inflow which
is balanced by the outward radial transport of angular momentum carried by the
viscous and magnetic stresses. The total f (z) function is determined by applying
boundary conditions at the outer edge of the boundary layer above the stellar surface.
These conditions are taken as

�′ = 0 and B�Bφ = 0 at � = R + δ, (11.139)

with δ � R. Integrating (11.137) and applying these conditions, taking a sharp
turn-over so � is nearly Keplerian as� = R + δ is approached, yields

Ṁ(z)

2π

[
� 2�− (GMR) 12

]
+� 3�′ν� + 2

μ0
� 2
∫ z
0
B�Bφdz = 0. (11.140)

The density and inflow speeds can be expressed in the separable forms

ρ(�, z) = ρc(�)fρ(ζ ), (11.141)

v� (�, z) = v� c(�)fv(ζ ), (11.142)

where ρc(�) = ρ(�, 0) and v� c(�) = v� (�, 0). Both fρ(ζ ) and fv(ζ ) have
even symmetry so

fρ(0) = 1, f ′
ρ(0) = 0, (11.143)

fv(0) = 1, f ′
v(0) = 0. (11.144)

Using these forms in (11.101) and (11.138) gives

Ṁ(z) = Ṁ

I1

∫ ζ
0
fρfvdζ, (11.145)

and

�(�, z) = �s(�)

I2

∫ ζ
0
fρdζ, (11.146)

where

Ṁ = Ṁ(h) and �s(�) = �(�, h), (11.147)

while

I1 =
∫ 1

0
fρfvdζ (11.148a)
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and

I2 =
∫ 1

0
fρdζ. (11.148b)

The toroidal induction equation gives

B� = 2

3

η

�Kh2
Bφcf

′′
φ (ζ ). (11.149)

Using (11.120) and (11.149) to form B�Bφ , together with (11.145) for Ṁ(z)
and (11.146) for �(�, z) in the angular momentum equation (11.140) yields

3

2I2
� 2�Kν�s

∫ ζ
0
fρdζ = Ṁ

2πI1

[
� 2�K − (GMR) 12

] ∫ ζ
0
fρfvdζ

+ 4

3

� 2ηB2
φc

μ0�Kh

∫ ζ
0
fφf

′′
φ dζ. (11.150)

A separable solution arises by taking

4

3

� 2ηB2
φc

μ0�Kh
= C Ṁ

2π

[
� 2�K − (GMR) 12

]
, (11.151)

where C is a constant. This satisfies the second boundary condition (11.139) and
leads to self consistent disc solutions. Using (11.151) in (11.150) gives the radial
and vertical angular momentum equations as

ν�s = k1 Ṁ
3π

[
1 −

(
R

�

) 1
2
]

(11.152)

and

k1

I2
fρ = 1

I1
fρfv + Cfφf ′′

φ , (11.153)

where k1 is a separation constant. It will be shown that k1 < 1, so the radial equation
gives the standard viscous form for ν�s, but reduced by a factor k1 due to the
B�Bφ magnetic stress accounting for a fraction of the outward angular momentum
transport, so less viscous transport is required.
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11.4.5 Vertical Equilibrium

The thermal pressure and the temperature can be written as the separable forms

P(�, z) = Pc(�)fP (ζ ) (11.154)

and

T (�, z) = Tc(�)fT (ζ ) (11.155)

with

fT (0) = 1, f ′
T (0) = 0. (11.156)

The gas equation of state then yields

fP = fρfT . (11.157)

The vertical equilibrium equation (11.103) then becomes

�2
Kh

2ρcζfρ + Pc
(
fρfT

)′ + B2
φc

2μ0

(
f 2
φ

)′ = 0. (11.158)

Separability requires

Pc = AB
2
φc

2μ0
, (11.159)

with A constant. The radial and vertical equations are then

B2
φc

2μ0
= k2�2

Kh
2ρc (11.160)

and

A
(
fρfT

)′ +
(
f 2
φ

)′ + 1

k2
ζfρ = 0, (11.161)

where k2 is a separation constant. Integrating this from 0 to ζ leads to

fT (ζ ) = 1

Ak2fρ

[
Ak2 + k2

(
1 − f 2

φ

)
−
∫ ζ
0
ζfρdζ

]
. (11.162)
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The product Ak2 can be expressed in terms of ε, Nα and |K|. Eliminating B2
φc

between (11.159) and (11.160), noting that Pc = c2s ρc, gives

Ak2 = c2s

�2
Kh

2
. (11.163)

The use of (11.123) for cs/�Kh then yields

Ak2 = 9

4

N4
α

ε2K6 . (11.164)

11.4.6 Thermal Equilibrium and Radiative Transfer

It can now be shown that the thermal equations become separable. Integrating the
thermal equilibrium equation (11.106) from 0 to z, using FR(�, 0) = 0, then
integrating the magnetic dissipation term by parts and using the toroidal induction
equation (11.105) to eliminate ∂Bφ/∂z, gives

FR(�, z) = η

2μ0

∂

∂z

(
B2
φ

)
+ �′

K

2�

(
� 3�′

Kν� + 2
� 2

μ0

∫ z
0
B�Bφdz

)
. (11.165)

Employing (11.120), (11.145) and (11.151) for Bφ , Ṁ(z) and Bφc leads to the
separable form

FR(�, z) = 3Ṁ

8π
�2

K

[
1 −

(
R

�

) 1
2
][
C

2

d

dζ

(
f 2
φ

)
+ 1

I1

∫ ζ
0
fρfvdζ

]
.

(11.166)

Another separable equation for FR follows from the radiative transfer equa-
tion (11.107). Using (11.108) for the opacity, together with the separable forms for
ρ and T , gives

FR(�, z) = −32

45

σB

K̄

T
15
2

c

ρ2c h

1

f 2
ρ

d

dζ

(
f

15
2
T

)
. (11.167)

Equating these two expressions for FR, using (11.153) to eliminate fρfv , leads to
the radial and vertical thermal equations

32

45

σB

K̄

T
15
2

c

ρ2c h
= k3 3Ṁ

8π
�2

K

[
1 −

(
R

�

) 1
2
]
, (11.168)
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and

− k3

f 2
ρ

d

dζ

(
f

15
2
T

)
= k1

I2

∫ ζ
0
fρdζ + C

∫ ζ
0
f ′
φ
2
dζ. (11.169)

11.4.7 Radial Structure

The radial structure of the disc can be found by solving the foregoing separated� -
dependent algebraic equations. Firstly, Tc can be found by deriving two equations
for ρc in terms of cs. Equations (11.119), (11.138) and (11.141) for ν, � and ρ yield

ν�s = 2I2
εNp

Nα
ρch

2cs. (11.170)

Eliminating Ak2 between (11.163) and (11.164) relates h to cs by

h = 2

3

ε|K|3
N2
α

cs

�K

. (11.171)

Using this in (11.170) and equating the resulting expression for ν�s to the angular
momentum relation expression (11.152) for ν�s gives

ρc = 3Ṁ

8π

k1

I2

N5
α

ε3NpK6

�2
K

c3s
f, (11.172)

where

f = 1 −
(
R

�

) 1
2

. (11.173)

A second expression for ρc is found by using (11.115) for cs and (11.171) to
eliminate Tc and h in terms of cs in the thermal equilibrium equation (11.168),
leading to

ρc =
(
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. (11.174)

Equating this to (11.172), solving for cs and using (11.115) fixes Tc(�). Then h
and ρc follow by using this expression for cs in (11.171) and (11.172). Forming



350 11 Intrinsic Magnetism in Accretion Discs

ρch
2 in the vertical equilibrium equation (11.160) gives Bφc, and B� c then follows

from (11.149) for B� evaluated at ζ = 0. Finally, the inflow speed in the mid-plane
is found by using (11.101) for Ṁ(z) evaluated at z = h, which gives

v� c = − Ṁ

4πI1

1

�ρch
(11.175)

with the solutions for ρc and h substituted in.
The foregoing solutions for the radial structure can be normalized using typical

system parameters together with μ = 0.6 and K̄ = 1019 m2 K7/2 kg−2. The results
are
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Tc = 1.5 × 104
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v� c = −1.8 × 102
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Bφc = −8.8 × 10−2 N
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whereM1 = M/M�, Ṁ10 = Ṁ/10−10M� year−1 and x = �/108 m. This radial
structure solution has the same � dependences as that for the standard viscous
disc. However, a dynamo generated magnetic field is now incorporated so angular
momentum is transported by magnetic stresses as well as by viscous stresses.



11.4 Disc Structure with Large-Scale Magnetic Fields 351

11.4.8 Vertical Structure

The vertical structure of the disc can now be calculated. An equation for fρ(ζ ) can
be found by using the vertical equilibrium equation (11.161), then employing the
thermal equilibrium equation (11.169) to eliminate f ′

ρ . This gives

f ′
ρ = − 1

Ak2fT

(
2k2fφf

′
φ + ζfρ

)
+ 2

15

f 3
ρ

k3f
15
2
T

(
k1

I2

∫ ζ
0
fρdζ + C

∫ ζ
0
f ′
φ
2
dζ

)
,

(11.182)
with

fT = 1

Ak2fρ

[
Ak2 + k2

(
1 − f 2

φ

)
−
∫ ζ
0
ζfρdζ

]
. (11.183)

This yields a non-linear, integro-differential equation which can be solved numeri-
cally for fρ(ζ ) once the constants k1, k2 and k3 are determined.

The disc surface conditions on fρ(ζ ) and fT (ζ ) must be formulated first. The
disc surface z = h is taken to be the photospheric base, where the density scale
height equals the photon mean free path, so

−
(

ρ

∂ρ/∂z

)
s

= 1

(κρ)s
. (11.184)

It will be shown that this leads to ρ having a small but finite value at z = h, and
falling rapidly beyond this. Hence all the significant electric currents are contained
in the main body of the disc and the surrounding region is a vacuum. Substituting
for κ , ρ and T in (11.184) gives

f ′
ρ(1)

fρ(1)
= − K̄ρ

2
c h
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2
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. (11.185)

The flux expression (11.166) gives the surface value as

FR(�, h) = 3Ṁ

8π
�2

K

[
1 −

(
R

�

) 1
2
]
. (11.186)

Taking the surface temperature as the effective temperature gives

FR(�, h) = σBfT (1)T 4
c . (11.187)
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Using the thermal equation (11.168) in (11.186), equating the resulting expression
for FR(�, h) to (11.187) and using this to simplify (11.185) yields

f ′
ρ(1) = −32

45

fρ(1)3

k3fT (1)
15
2

. (11.188)

Integrating the vertical angular momentum equation (11.153) from ζ = 0 to
ζ = 1 gives

k1 + CI = 1, (11.189)

where

I =
∫ 1

0
f ′
φ
2
dζ. (11.190)

Then putting ζ = 1 in (11.182) for f ′
ρ(ζ ) and using (11.189) yields
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Equating this to (11.188) gives

fρ(1) =
(
45
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) 1
2
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13
4 . (11.192)

Evaluating the vertical equilibrium equation (11.183) at ζ = 1 gives

fT (1) = (Ak2 + k2 − I3)
Ak2fρ(1)

, (11.193)

where

I3 =
∫ 1

0
ζfρdζ. (11.194)

Finally, (11.192) and (11.193) lead to the surface equations
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and
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. (11.196)
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The separation constants can now be determined. Evaluating the angular momen-
tum equation (11.153) at ζ = 0 gives

k1 = I2
[
1

I1
+ Cf ′′

φ (0)

]
. (11.197)

Using this with (11.189) to solve for k1 and C yields

k1 = I2[I1|f ′′
φ (0)| − I ]

I1[I2|f ′′
φ (0)| − I ] , (11.198)

C = (I2 − I1)
I1[I2|f ′′

φ (0)| − I ]
. (11.199)

Equations (11.151) and (11.173) give

ηB2
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μ0h
= 3Ṁ

8π
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Kf. (11.200)

Using ρch = �s/2I2 in the radial part of the vertical equilibrium equation (11.160)
leads to
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where the last expression follows from using (11.152) to eliminate ν�s. Equat-
ing (11.200) to (11.201), then using (11.198) and (11.199) for k1 and C gives

k2 = 9

8

Np(I2 − I1)
[I1|f ′′

φ (0)| − I ] . (11.202)

The thermal separation constant k3 can be found by eliminating FR(�, h)

between (11.186) and (11.187), then solving for Tc and equating this to the disc
solution for Tc and using (11.196) for fT (1). This leads to

k3 = k
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where
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The integro-differential equation for fρ(ζ ), given by (11.182) and (11.183) can
be solved numerically by an improvedEuler method. The solution is started at ζ = 0
by using the Taylor expansions

fρ ∼ 1 − 1

2

[
1

Ak2

{
1 − 2|f ′′

φ (0)|k2
}

− 2

15

k1

I2k3

]
ζ 2, (11.205)

fT ∼ 1 − 1

15

k1

I2k3
ζ 2. (11.206)

The series solution (11.135) is used for fφ(ζ ). The turbulence parameters ε,Nα and
Np are chosen and initial guesses made for the integrals I1, I2 and I3. Assuming a
Gaussian profile for fρ(ζ ) and using fv = 1 gives reasonable initial values for these
integrals. The angular momentum equation (11.153), together with (11.198) for k1
and (11.199) for C, gives

fv(ζ ) = fv(1)− [1 − fv(1)]
|f ′′
φ (0)|

fφf
′′
φ

fρ
, (11.207)

with

fv(1) = I1|f ′′
φ (0)| − I

I2|f ′′
φ (0)| − I . (11.208)

This yields fv(ζ ) once fρ(ζ ) is known, and the vertical equilibrium equa-
tion (11.183) gives fT (ζ ). The integrals are then evaluated numerically and
compared with the initial values used. Improved values are then employed and the
process is repeated until good agreement is found. Typically, only a few iterations
are needed.

Figures 11.3, 11.4, and 11.5 show the results for the vertical structure functions
fρ , fT and fv using ε = 10−2, Np = 0.1 and Nα = 0.15. As expected, all these
functions decrease monotonicallywith increasing ζ . It is noted that the surface value
fρ(1) is small, this being consistent with vacuum surroundings just beyond z = h.

11.4.9 The Nature of the Solutions

Table 11.1 shows the values of the main disc quantities, for the turbulent parameters
used above, while Table 11.2 gives these quantities for ε = 0.1, Np = 0.32 and
Nα = 0.57. A key quantity is the ratio of the magnetic to the viscous torque.
Equation (11.137) shows that the total transport rate of angular momentum through
a circular area of between −z and z, is radially conserved. At each radius the rate of
material transport of angular momentum due to the inflow is balanced by an outward
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transport rate carried by the viscous and magnetic stresses which have associated
torques. Taking z = h in (11.137), gives the viscous and magnetic torques over the
whole circular area as

Tv = � 3�′
Kν�s (11.209)
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Fig. 11.5 Vertical variation of the inflow speed (from Campbell 2003)

Table 11.1 Disc quantities for ε = 0.01, Np = 0.1, Nα = 0.15 (from Campbell 2003)

fρ(1) fT (1) fv(1) I1 I2 I3 k1 k2

0.03 0.37 0.20 0.47 0.63 0.24 0.27 0.16

k3 Tm/Tv B2
φc/2μ0Pc |B�c/Bφc| τD Ak2 (h/�)8

0.11 2.76 2.12 0.03 239 0.07 0.05

Table 11.2 Disc quantities for ε = 0.1, Np = 0.32, Nα = 0.57 (from Campbell 2003)

fρ(1) fT (1) fv(1) I1 I2 I3 k1 k2

0.06 0.41 0.63 0.55 0.62 0.22 0.71 0.08

k3 Tm/Tv B2
φc/2μ0Pc |B�c/Bφc| τD Ak2 (h/�)8

0.15 0.41 0.52 0.12 117 0.15 0.03

and

Tm = 2
� 2

μ0

∫ h
0
B�Bφdz. (11.210)

The ratio of these torques can be expressed as

Tm

Tv
= I

I2

[1 − fv(1)]
|f ′′
φ (0)|fv(1)

. (11.211)

The ratio of magnetic pressure to thermal pressure in the mid-plane can be
written as

B2
φc

2μ0Pc
= 1

2

ε2NpK
6

|f ′′
φ (0)|N4

α

[1 − fv(1)]
fv(1)

. (11.212)
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The ratio of the magnetic field components, |B�/Bφ |, has a maximum in the orbital
plane given by

∣∣∣∣B� c

Bφc

∣∣∣∣ = Nα

|K|3 |f ′′
φ (0)|. (11.213)

Tables 11.1 and 11.2 show that the magnetic and viscous torques are comparable
in both cases, so the B�Bφ stress plays a major part in driving the inflow. The two
key ratios of h/� and (B� c/Bφc)

2 are small, as required in the analysis. The optical
depth through the disc is

τD =
∫ h
0
κρdz, (11.214)

and satisfies τD � 1, so justifying the use of the diffusive radiative transfer equation.

11.5 Summary and Discussion

The angular momentum transport needed to explain the mass transfer rates occur-
ring in accretion discs requires a greatly enhanced form of viscosity, characteristic
of the values expected to result from turbulence. A suitable instability to drive the
turbulence has never been found in a non-magnetic disc. However, the presence
of a sub-thermal magnetic field leads to a coupling between fluid elements which
destabilises the slow magnetosonic mode, drawing energy from the Keplerian
rotation. This strong local magnetorotational instability leads to turbulence.

Local box simulations have been used to investigate the effects of the turbulent
motions. Initial conditions with and without a net magnetic field have been
employed, and turbulence results in both cases. Vertical stratification appears to
enhance the field creation process. Self-sustaining dynamos can occur, including
oscillatory solutions. Large-scale fields with a quadrupolar symmetry can lead
to outward radial angular momentum transport which can make a substantial
contribution to driving the inflow, at least comparable to that supplied by viscous
stresses. An effective viscous transport coefficient can be calculated and compared
with the standard theory. More global calculations are needed to assess the nature
of the transport coefficients.

A mean field dynamo theory which includes the effects of the magnetorotational
instability has yet to be formulated.
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Chapter 12
Stellar Magnetic Fields

Abstract The origins of the stellar magnetic fields in accreting binary systems are
considered. Observations and theoretical models suggest that the M and K dwarf
secondary stars should have dynamo generated magnetic fields, with surface values
up to several kG, including large-scale structures. Significant magnetic fields can be
generated in the fully convective secondaries, corresponding to the lower mass M
dwarfs, even though these stars do not have a tachocline region. Rapid rotation of
the tidally synchronized secondary together with strong convective motions leads
to effective α2 dynamo action. The higher mass M dwarfs and the K dwarfs have
radiative cores and hence will possess an over-shoot tachocline region connecting
the core to the convective envelope. This may affect the nature of the dynamo,
particularly if some differential rotation remains across this transition layer.

The magnetic fields of the white dwarf and neutron star primaries are believed to
be of fossil origin, but the binary formation process may have played a major role
in their determination. Also, accretion of material can cause the degenerate primary
to contract as it gains mass. This can lead to significant modification of the surface
field due to advection, within the lifetime of the system, depending on the efficiency
of magnetic buoyancy.

12.1 Introduction

Apart from accretion discs, the sources of magnetic fields in interacting binary
systems are the secondary and primary stars. The majority of accreting binary stars
are cataclysmic variables having orbital periods in the range 1.3 h < P < 8.0 h,
containing white dwarf primaries (e.g. Warner 1995). The lobe filling secondaries
in these systems have masses in the range 0.13 � Ms/M� � 0.80 and hence
consist of M and K dwarfs. Accreting neutron stars occur in the X-ray binary pulsars
and in the accreting millisecond pulsars, with some of the former systems having
higher mass secondaries. The secondary stars in cataclysmic variables either have a
significant convective envelope or are fully convective for Ms < 0.35M�. Tidal
friction is believed to have synchronized the secondary so it is rapidly rotating
(e.g. Zahn 1977; Campbell and Papaloizou 1983). Convection and rapid rotation are
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known to promote dynamo action and hence it is likely that the secondary stars have
significant magnetic fields generated by some form of dynamo. There are expected
to be similarities between the dynamos operating in single lower main sequence
stars and those in binary systems. However, the binary candidates have particularly
rapid rotation and may have little or no differential rotation, due to tidal effects.

In relation to AM Her systems, it was seen in Chap. 6 that surface magnetic fields
on the secondary of� 102 G can result in a significant torque on the magnetic white
dwarf primary that can lead to synchronous states. A secondary magnetic field is
also relevant to all cataclysmic variables above the period gap, which are believed
to have mass transfer driven by a combination of magnetic wind braking of the
secondary together with tidal coupling to the orbit. Suitable large-scale magnetic
fields are required for this.

The intermediate polars and the AM Her binaries contain white dwarf primaries
with polar surface magnetic fields of (Bp)0 > 106 G. Their large magnetic moments
result in fields which significantly modify the mass transfer process compared to
that occurring in CVs containing essentially non-magnetic accreting white dwarfs.
Magnetic modification either partially or totally disrupts the accretion disc and
material is channelled on to the white dwarf surface via a curtain flow or a confined
accretion stream.

The X-ray binary pulsars and the accreting millisecond pulsars contain magnetic
neutron stars with surface magnetic fields in the range 109 G � (Bp)0 � 1012 G.
Magnetically disrupted discs with inner accretion curtains form in these systems
and a range of spin behaviour of the neutron star is observed which is believed to be
related to this accretion process.

The subjects of stellar dynamos, and of magnetic field sources in white dwarfs
and neutron stars, cover a very extensive area of research. However, there are areas
of specific relevance to accreting binary stars which can be outlined here. More
recent studies have focused on magnetic field generation in fully convective M
dwarfs by dynamo action, and direct magnetic field measurements have been made
in a double M dwarf binary containing rapidly rotating fully convective stars. The
effects of accretion on the magnetic fields of white dwarfs and neutron stars have
been investigated for several decades. The accumulation of mass over periods less
than the lifetime of the system can cause contraction of the degenerate primary star
and significantly modify the structure of its surface magnetic field. The possible
magnetic effects of common envelope evolution have recently been investigated.
Dynamo action in a differentially rotating and convective envelope can generate
magnetic fields which can diffuse into the degenerate core of the giant star. The
resulting white dwarf can have its magnetic field enhanced by this process. These
areas are discussed below.
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12.2 The Secondary Star Magnetic Field

12.2.1 Observations and Background

Most secondary stars of interest here lie in the mass range 0.13 < Ms/M� < 0.80
and hence consist of M and K dwarf stars. Observations of the secondary star are
difficult since its luminosity is greatly exceeded by that of the accretion disc and/or
the accretion column (see Warner 1995, for a detailed account). Observations of
single stars of the same spectral range give indications of the magnetic activity that is
likely to occur in the binary cases. The observations of Hα equivalent widths and of
X-ray emissions fromM dwarfs are viewed as evidence of chromospheric magnetic
fields. FeH molecular line ratios (e.g. Reiners and Basri 2007) and Zeeman Doppler
imaging (e.g. Morin et al. 2008) are used to estimate magnetic field strengths and
field topology in rapidly rotating M dwarfs. Magnetic activity is believed to be
strongly correlated with rotation rate (e.g. Mohanty and Basri 2003; Browning et al.
2010).

Strong observational evidence related to magnetism in close binary secondary
stars was given by Kochukhov and Lavail (2017). An analysis was made of the
observations of the wide binary GJ65 AB which contains M dwarf components with
the rapid rotation periods of PA = 5.84 h and PB = 5.45 h, corresponding to the A-
component BL Cet and the B-component UV Cet. High spectral resolution circular
polarization measurements were taken, and Zeeman Doppler imaging inversion
techniques reveal the magnetic field topology. BL Cet has a large-scale surface
magnetic field with a maximumvalue of 0.84 kG and a mean value of 0.34 kG, while
UV Cet yields values of 2.34 kG and 1.34 kG for its maximum and mean fields.
The field of BL Cet has a dipolar component containing � 70% of the magnetic
energy, while the dipolar component of UV Cet contains � 92% of the field energy.
However, � 95% of the magnetic energy is in small-scale fields, with the stars
having similar total magnetic fluxes corresponding to average fields of 5.2 kG for
BL Cet and 6.7 kG for UV Cet. Both stars are near spectral type M5, and hence are
fully convective. This illustrates that fully convective, rapidly rotatingM dwarf stars
can have large-scale surface poloidal magnetic fields of kG strengths.

M dwarfs with masses ofMs ≤ 0.35M� will be fully convective, while stars with
Ms > 0.35M� will have a radiative core. A formula for the size of the radiative core
is given by Hurley et al. (2002), covering the range from a fully convective star of
mass Ms = 0.35M� to a fully radiative star of mass Ms = 1.25M�. This can be
combined with the approximate lower main sequence mass-radius relation (2.297)
to give a formula to estimate the fractional depth of the convective envelope which
spans the stellar mass range 0.35 ≤ Ms/M� ≤ 0.80. The result is

Rs − Rc

Rs
= 0.35

(Ms/M�)

[
1.25 − (Ms/M�)

0.9

] 1
2

, (12.1)
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where Rs and Rc are the radii of the secondary and its radiative core. For tidally
distorted stars in binaries these become the mean radii. The upper end of the mass
range corresponds to a K dwarf with Ms = 0.8M� for which (12.1) yields (Rs −
Rc)/Rs = 0.30, so there is a large radiative core. For an M dwarf withMs = 0.4M�
the formula (12.1) gives (Rs − Rc)/Rs = 0.85 and hence there is a small radiative
core. It follows that lower main sequence stars with and without radiative cores are
relevant to the consideration of secondary stars in interacting binaries. It is usually
assumed that tidal dissipation leads to the orbital synchronization of the secondary’s
spin well within the lifetime of the system, which is measured by the mass transfer
time-scale τM = Ms/|Ṁs|.

Secondaries having a radiative core are expected to have a magnetic field, as in
the solar case. The magnetic decay time of the longest lived mode in a spherical
conductor, with constant magnetic diffusivity η, is given by (2.224) as

τd = R2
s

π2η
. (12.2)

Allowing for spatial variations of η gives similar results. This can be used to estimate
the decay time of a magnetic field in a typical convective envelope, yielding τd ∼
30 year. A radiative core of significant size has τd ∼ 2 × 107 year. These times
are much less than the binary lifetime and hence magnetic fields in the secondary
must be generated and maintained by a dynamo process. Dynamo theory has been
largely developed for single main sequence stars, for which the magnetic decay time
is much shorter than the nuclear time. However, the main features of the single star
cases should be of relevance to binary secondary stars, especially for the cases with
high rotation rates.

12.2.2 Stars with Radiative Cores

The solar dynamo gives the classic case of a star with a radiative core and a
significant convective envelope, and has been extensively studied (see Ossendrijver
2003, for a review). In the standard model of the solar dynamo the over-shoot
region connecting the convective envelope to the radiative core is believed to be
of fundamental importance. This narrow region, of width δ � 0.04R�, and having
large radial shears, is referred to as the tachocline (Spiegel and Zahn 1992). The
shearing of poloidal magnetic field, described by the Bp · ∇� term in the induction
equation, generatesBφ field in the tachocline. This field accumulates until buoyancy
forces cause it to rise into the main convective envelope. The α-effect, described in
Sect. 2.3.1, converts Bφ to Bp and hence an α� dynamo is operating. Rotation and
convection are fundamental to the α-effect, and hence to magnetic activity. The
Rossby number is defined as

RT = vT

��0
∼ |(vT · ∇)vT|

|2�0 × vT| ∼ P0

τT
, (12.3)
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where the turbulent velocity vT is measured in a frame rotating with the stellar
angular velocity �0, � and τT are characteristic length and time-scales and P0 =
2π/�0. This number measures the importance of the Coriolis force to the dynamics
of the turbulent motions and is of fundamental relevance to all stellar dynamo
models.

Rudiger and Brandenburg (1995) noted that the basic model of the solar dynamo
has a magnetic diffusion time in the tachocline which is too short to allow for the
storage of Bφ for periods as long as the 22 year solar cycle. However, the inclusion
of poloidal flows connecting the tachocline to the main convective envelope can
alleviate this problem, with the dynamo cycle periods being determined by the flow
time-scale (e.g. Rempel 2006). Browning et al. (2006) modelled an α� dynamo
with simulations which included penetration by turbulent convection into the stable
core, with an imposed tachocline shear. This gives a large-scale Bφ consistent with
the parity observations of sunspots.

Secondary stars in interacting binaries that have a radiative core, and hence
an over-shoot region, may be expected to have dynamo action with similarities
to the solar case. However, the action of tides in the binary case may largely or
completely remove differential rotation. This can occur if a standard stress tensor is
used in the calculation of the turbulent viscous force, with orbital synchronization
being achieved well within the binary lifetime. However, if the radiative core
retained some asynchronism there would still be some shear in the tachocline region
connecting it to the synchronous convective envelope. This would depend on the
effectiveness of the coupling between the core and the envelope. Also, non-standard
forms of the stress tensor can lead to states of differential rotation (see Campbell
and Papaloizou 1983, and references therein). Even in the absence of shears, an α2

dynamo may operate to generate significant magnetic fields.

12.2.3 Fully Convective Stars

Secondary stars with massesMs ≤ 0.35M� will be fully convective and hence lack
a tachocline region. Again, single star dynamo models are available and these can
have relevance to the binary cases. Chabrier and Kuker (2006) considered a rotating,
fully convective star with no differential rotation. They employed 3D numerical
methods to solve the induction equation, retaining the α terms appropriate to an α2

dynamo. An α-quenching form given by

α = α0[
1 + (B/Beq)2

] 1
2

(12.4)
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was used, where Beq is the equipartition field defined by

B2
eq

2μ0
= 1

2
ρv2T . (12.5)

Vacuum surface conditions were employed. A local mixing length approximation
was adopted to allow for stratification in the computations of α and η. For rapid
rotation α becomes independent of the Rossby number, but η retains a dependence.
The computations were begun with a small-scale magnetic field of mixed parity,
containing non-axisymmetric parts.

The α2 dynamo generates a large-scale, non-axisymmetric B field which is
symmetric in z (i.e. quadrupolar). Dynamo action occurs for a Rossby number of
RT < 25. Field growth is limited by α-quenching to give B � Beq with values
of a few kG, consistent with surface fields observed in M dwarfs (e.g. Kochukhov
and Lavail 2017). Higher order multipoles can occur. The rotation rates used were
considerably slower than those occurring in interacting binary stars, and hence fields
of at least kG magnitudes may be expected for secondary stars.

Browning (2008) considered a 0.3M� fully convective star, rotating at the solar
rate. The 3D MHD equations were solved numerically using an anelastic spherical
harmonic code. The anelastic approximation filters out sound waves and fast
magnetosonic modes. Vacuum conditions were used at the stellar surface. Firstly,
the hydrodynamic equations were solved, with an initially uniform �. Convection
develops and differential rotation becomes established. The convective motions
consist of small-scale intermittent motions near the surface and weaker large-scale
flows in the interior.

A seed magnetic field was then introduced and the established flows act as
a dynamo, sustaining B against decay. The resulting B field has structures on a
range of spatial scales. Typically the magnetic field has larger length-scales in
the deep interior and smaller scales near the surface. The mean field has a strong
axisymmetric component and B2

φ � 0.2B2, so most energy is in the poloidal
component. The field polarity is stable on time-scales of � 20 year and strengths
of up to 10 kG can be attained. When equipartition is approached, the J × B forces
can reduce |∇�| to small values. The mean field is still sustained as |∇�| → 0,
so an α2 dynamo is operating. Lowering the Rossby number gives higher values of
B2/μ0ρv

2 and a B field with larger length-scales.
These studies indicate that dynamo action in fully convective secondary stars

should still be possible even if tides have removed differential rotation. The fast
rotation rates are particularly favourable for the α-effect and large-scale magnetic
fields could be generated in the secondary having at least kG values. The presence
of large-scale poloidal magnetic fields, which extend into the surrounding region,
is of particular relevance to binary systems. Reviews of stellar dynamo theory are
given in Mestel (2012) and Priest (2014).
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12.3 White Dwarf Magnetic Fields

12.3.1 Observations and Background

The magnetic cataclysmic variables consist of the intermediate polars and the
AM Hercules binaries. These are believed to account for � 25% of all CVs.
The white dwarf primary stars in these systems have surface magnetic fields with
polar strengths of (Bp)0 � 106 G, which places them in the strong magnetic field
class. White dwarfs in other CVs are likely to have magnetic fields, but they
must be significantly weaker since only the AM Her stars and the intermediate
polars exhibit detectable magnetic effects. The white dwarf fields in the AM Her
systems are measured via cyclotron harmonic observations or via photospheric
Zeeman splitting. These methods give information on the strength and the structure
of the field (e.g. Harrison and Campbell 2015). Because the intermediate polar
white dwarfs have weaker magnetic fields than those in the AM Her systems,
estimates of the field have only been made in a few cases, using circular polarization
measurements. The resulting fields are typically an order of magnitude lower
than those observed in the AM Her stars (see Warner 1995, for a review of
observational techniques). Indirect estimates of the magnetic field can be made
in intermediate polars by comparing theoretical predictions of the spin behaviour
of the white dwarf due to its interaction with the accretion disc with spin period
observations.

The main body of a white dwarf consists of non-degenerate ions and degenerate
electrons. A temperature can be associated with the ions, with typical values of �
107 K, while the electrons can be considered to be effectively at zero degrees Kelvin.
There is a thin, non-degenerate surface layer at a much lower temperature than
that of the ions in the core. The degenerate core has a high electrical conductivity
due to the long mean free paths of the electrons. The decay time of a magnetic
field in the core is typically τd � 1010 year (e.g. Wendell et al. 1987). Hence a
fossil field origin is generally believed to account for the strong fields observed in
white dwarfs, without the need for dynamo action. However, evolutionary processes
associated with the formation of interacting binaries may play a part in determining
the magnetic field.

Tout et al. (2004) considered the standard assumption that magnetic Ap and Bp
stars are the progenitors of strongly magnetic white dwarfs. The assumption of a
magnetic flux, estimated by

ψm = 4πR2B, (12.6)

being conserved during evolutionary contraction to the white dwarf state, with an
initial field in the range 102 G � B � 104 G, leads to fields in the observed strong
class range. Wickramasinghe and Ferrario (2005) pointed out that the magnetic field
decay time in a white dwarf exceeds the cooling time, which is consistent with a
fossil origin for B. Some contribution to B might be made by a dynamo operating
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during post main sequence evolution, before flux freezing occurs. They suggested
that white dwarf progenitors may not just be Ap and Bp stars, but also stars of mass
� 4.5M� containing magnetic fields not yet observed.

12.3.2 Field Enhancement Due to Common Envelope
Evolution

Wickramasinghe et al. (2008) considered data obtained from the Sloan Digital Sky
Survey. This consists of spectral observations of 1253 detached binaries, mainly
containing a white dwarf and an M dwarf star, identified and catalogued by Silvestri
et al. (2007). No magnetic white dwarf fields significantly above 106 G were
detected in this large number survey of non-interacting binary systems. From this,
the authors suggest that the origin of the strong magnetic field white dwarfs is linked
to the formation processes of interacting binary systems.

It is argued that the white dwarfs in cataclysmic variables must have been the
cores of giant star components. The orbital separation would decrease from a value
of ∼ 100R�, which accommodated the giant star, to ∼ R�, for the M dwarf to fill
its Roche lobe. Such evolution is believed to be facilitated by the interaction of the
stars with a common envelope (Paczynski 1976). The giant star fills its Roche lobe
and unstable mass transfer occurs on a dynamical time-scale. Accretion on to the
companion cannot occur on such a short time-scale, and instead transferred material
forms a common envelope surrounding the two dense cores. Angular momentum
and energy are transferred from the orbit to the common envelope, which is
gradually ejected. As the cores approach each other the orbital period decreases
and differential rotation is generated in the envelope. The envelope is expected to
be convective, since it consists of material from the giant star, and this together
with the differential rotation could lead to dynamo action. The resulting magnetic
interaction may enhance the processes that cause the ejection of the envelope. The
result of such evolution would be a strong B field surrounding the hot degenerate
core. Penetrated field would become frozen as the core cools and contracts. Closer
stellar cores could result in higher B fields, while wider separations may result in
much lower field white dwarfs.

These ideas for the enhancement of white dwarf magnetic fields were inves-
tigated further by Potter and Tout (2010). They pointed out that fossil fields
originating in Ap and Bp stars may not survive the convective phases of evolution.
Developing further the model of Wickramasinghe et al. (2008), the degenerate core
of the giant star was taken to be embedded in a simple, time-dependent common
envelope field, assumed to be of dynamo origin, having the form

B = Bz(t)ẑ, (12.7)
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with ẑ parallel to the orbital angular momentum vector. This induces a field inside
a spherical degenerate core of radius rc, having a magnetic diffusivity η(r, t) which
was taken to be separable. The diffusive induction equation was solved inside
the core, with the poloidal magnetic field scalar expanded in basis functions of
the form Sl(r, t)Pl(cos θ), where Pl are Legendre polynomials. A degenerate core
conductivity due to Wendell et al. (1987) was adopted. The continuity of B at r = rc
couples the core field to the inducing Bz(t) field. Values of rc = 0.01R� and
Mc = 0.06M� were taken, with an n = 1.5 polytropic model.

The extent to which the magnetic field is able to penetrate the degenerate core
depends on the lifetime of the common envelope. As the density increases towards
the centre of the core the conductivity rises rapidly, inhibiting further penetration of
the field. Typically, the field is confined to the outer 10% of the core by radius. An
envelope magnetic field maintained in a single direction produces a much stronger
white dwarf field than one that has rapid variations in its orientation. A constant field
B0 was applied for a range of time intervals. There is an initial growth phase, then
when the external field is removed the core field peaks and decays. The strength of
B that remains is proportional to the application time of the envelope field. Cooling
causes η to significantly decrease and this lengthens the field decay time, effectively
freezing B. An oscillatory Bz(t) gives smaller field penetration and a less effective
transfer of B from the envelope to the core compared to the constant applied field
cases. For energy transferred via orbital decay, over a time interval of 3.6×104 year
with a constant applied B, white dwarf surface fields of � 107 G can result.

12.3.3 Field Modification Due to Accretion

A typical decay time for a dipole mode magnetic field in a white dwarf is τd ∼
1010 year. With a stellar mass of Mp = 0.5M� and an accretion rate of Ṁp =
10−10M� year−1, the total mass transfer time is τM = Mp/Ṁp = 5 × 109 year.
Hence τd and τM are comparable. This has led to investigations of the effects of
accretion on the evolution of the white dwarf magnetic field. Assuming that accreted
matter is not lost, and that material is incorporated into the degenerate core, the star
will contract as its mass increases. Hence a slow radial inflow will occur, and this
may affect the magnetic field if its diffusion time-scale is not significantly shorter
than the inflow time-scale.

Cumming (2002) constructed a model for the global evolution of an axisym-
metric poloidal magnetic field, assuming spherical accretion of matter having the
same composition as the core. Magnetically confined accretion columns will be
much more localized, but it is assumed that accumulated material can gradually
flow around the surface. The induction equation was solved, incorporating a radial
velocity which was calculated from a series of stellar models with increasing masses
to simulate the contraction due to accretion. Two different surface conditions were
tested, one with an exterior vacuum and the other assuming that screening currents
effectively reduce the surface field to zero. The interior field solution is shown not
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to be sensitive to the choice of surface condition, so a vacuum surface condition can
be used.

The evolution of the magnetic field was followed during the accretion of 0.1M�
of material on to a 0.6M� white dwarf at a range of rates. For accretion rates
above a critical value of Ṁc � 3 × 10−10M� year−1, the surface field values are
reduced as the field is advected into the interior. Reductions by factors of � 0.1 are
possible for higher accretion rates. It was noted that a typical accretion rate in an
AM Her binary is Ṁp � 5 × 10−11M� year−1 < Ṁc, while a typical rate in an
intermediate polar is Ṁp � 10−9M� year−1 > Ṁc, and the intermediate polars
have surface fields smaller than those of AM Her primaries by a factor of � 0.1.
Hence it was suggested that intermediate polars may have white dwarfs with surface
magnetic fields that have been reduced by their higher accretion rates. There are,
however, significant uncertainties in such calculations due to the complex nature of
the problem. In particular, magnetic buoyancy can play a significant role in the field
evolution process.

12.4 Neutron Star Magnetic Fields

12.4.1 Background

The X-ray binary pulsars and the accreting millisecond pulsars have neutron star
primaries with surface magnetic field strengths believed to be in the range 109G �
(Bp)0 � 1012G. Neutron stars are believed to have an outer solid crust, with metallic
transport properties, and an inner fluid core. The core has a complex multi-fluid
structure, involving protons, neutrons and electrons. It is not known how the electric
current sources of the magnetic field are distributed in the star, but the decay times
of the regions are long so a fossil field origin for B is most likely. Like the cases of
binary white dwarfs, the possible effects of accretion on the topology and evolution
of neutron star magnetic fields have been investigated.

12.4.2 The Crustal Region

Konar and Bhattacharya (1997) explored the effects of accretion on magnetic field
decay in neutron stars. They assumed that the current sources of B are initially
confined to the outer crust. The crustal magnetic field undergoes Ohmic diffusion
due to the electrical conductivity of the lattice, with a long decay time in the absence
of accretion. When accretion is turned on, heating of the crust reduces σ by several
orders of magnitude and hence τd is reduced. However, as its mass increases the
neutron star contracts and newly accreted material adds to the crust while original
crustal material becomes assimilated into the superconducting core. The original
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current carrying layers are pushed into denser regions, with higher σ . This effect
slows down the magnetic field decay rate.

The evolution of the crustal field due to Ohmic diffusion and material motions
was investigated by solving the induction equation, incorporating an inward radial
velocity of

vr (r) = − Ṁp

4πr2ρ(r)
. (12.8)

The conductivity σ is a steeply increasing function of ρ, with a large increase
occurring in ρ inwards through the crust. The mass of the crust is determined by
the total mass of the star, and remains effectively constant for accreted masses of
�M � 0.1M�. Hence accretion causes the continuous assimilation of material
from the base of the crust into the core. The contraction of material shortens
the length-scales in the crust. A surface boundary condition matched the internal
magnetic field to an external dipole configuration, while a lower crustal boundary
condition ensured that the field which becomes frozen here moves inside the core.
The temperature of the crust was assumed to be uniform and constant during the
accretion phase. The induction equation was solved numerically, for a range of
accretion rates.

The magnetic field undergoes a phase of decay, first as a power law and then
exponentially, subsequently becoming stabilized as its current distribution becomes
assimilated into the highly conducting core. The duration of the exponential phase of
decay, and hence the value of B at which freezing occurs, are strongly dependent on
Ṁp. The higher the value of Ṁp the sooner freezing sets in, giving a higher residual
field. The decay proceeds faster at higher crustal temperatures. Higher accretion
rates ensure quicker material transport to higher densities, causing B to level off at a
higher value. Reductions in surface magnetic field strength by factors of ∼ 0.1–0.01
can occur due to the effects of accretion.

Cumming et al. (2001) found that magnetic buoyancy instabilities can prevent the
burial of the surface magnetic field by accretion. Payne and Melatos (2007) showed
that accretion columns that are strongly magnetically confined on the surface of a
neutron star can be stable at least for accreted masses of�M � 10−3M�. This may
affect the results of models that make the assumption of spherical accretion.

12.4.3 The Core Region

Passamonti et al. (2007) considered aspects of magnetic field evolution in the
superconducting core of neutron stars. The authors noted that it is usually assumed
that the core structure evolves through quasi-static states, with the magnetic field
evolving through Hall drift and Ohmic dissipation. However, they pointed out that
only a restricted range of magnetic field configurations are consistent with this
assumption and hence dynamical flows, having time-scales much shorter than the
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field decay time, are more likely to occur. A complex, multiple fluid problem arises
with associated equations describing the motions of the proton, electron and neutron
components. For core temperatures of � 1010K the proton fluid adopts a type II
superconducting state, and the magnetic field then penetrates the core as a dense
array of thin flux tubes. Advection effects are likely to have a significant influence
on the evolution time-scales of core magnetic fields.

A recent review of magnetic field evolution in neutron stars, with a particular
emphasis on accreting binary systems, is given by Konar (2017).

12.5 Summary and Discussion

Although direct measurements of magnetic fields on the secondary stars of interact-
ing binaries have not been possible so far, observations of similar single stars and of
the wide doubleM dwarf binary GJ65 AB strongly suggest that significant magnetic
fields will exist on secondary stars. The fields measured on the rapidly rotating, fully
convective components in GJ65 AB imply that secondary surface fields could have
values� several kG. The dynamo models support this conclusion and illustrate that
fully convective stars can have significant magnetic fields, even though a tachocline
region is absent. Dynamos of an α2 nature can be just as effective as α� dynamos
in rapidly rotating lower main sequence stars.

The large-scale poloidal magnetic fields found in investigations of stars with
significant convective regions are of the type suitable for producing locked syn-
chronous states in AM Her binaries, and for channelling magnetic winds which can
cause braking in cataclysmic variables above the period gap.

The strong white dwarf fields occurring in magnetic CVs are likely to be of
fossil origin, but the evolutionary stage at which flux freezing occurs is uncertain.
The absence of strongly magnetic white dwarfs in the large number of non-
interacting binaries in the Sloan Digital Sky Survey, containing white dwarf and M
dwarf components, may suggest a connection between the formation of interacting
binaries and strongly magnetic white dwarfs. The penetration of a strong magnetic
field, generated by a dynamo in the common envelope, into the degenerate core of
the giant star can result in a strongly magnetic white dwarf.

The higher accretion rates occurring in the intermediate polars may lead to some
reduction of the white dwarf surface magnetic field strength. Accreted material
increases the mass of the star and, provided that it becomes incorporated into the
degenerate core, contraction will occur. The radial motions can affect the magnetic
field structure and lead to a reduction in its surface values. Some models of this
effect can lead to a reduction by a factor of � 0.1. The models usually assume
spherical accretion, while the magnetic field channels material to localized regions
on the stellar surface. However, material may spread horizontally when a sufficient
amount has accreted on to the star.

The magnetic fields of neutron stars are believed to be of fossil origin, since they
have very long decay times. As with the case of binary white dwarfs, accretion may
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significantly affect the field topology and surface strength over the lifetime of the
binary. The core structure is complex and shorter time-scale motions could affect
the field.
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Chapter 13
Stellar Magnetic Winds

Abstract The tidally influenced secondary stars in interacting binaries are rapidly
rotating and possess convective envelopes or are fully convective. This makes the
generation of large-scale magnetic fields in such stars very likely, and magnetically
influenced wind flows from the stellar surface would then lead to magnetic braking.
The secondary would be spun down to an under-synchronous state and tides would
then operate to spin the star up at the expense of the orbital angular momentum.
This mechanism can account for the higher mass transfer rates occurring in binaries
above the period gap, and hence the theory of magnetic braking has important
application to interacting binaries.

The essentials of stellar magnetic braking theory are presented here, with
particular emphasis on the fast rotator regime. This is applied to derive mass transfer
rates in binaries with periods � 3.0 h, for a range of laws relating the secondary’s
surface magnetic field to its rotation rate. Explanations for the period gap, and why
AM Herculis binaries appear not to be affected by the gap, are discussed.

13.1 Introduction

The lobe-filling secondary stars in binaries with orbital periods� 10 h have masses
� 1M� and so will possess significant convective envelopes, becoming fully
convective forMs ≤ 0.35M�. Tidal synchronization means that these stars will be
rapidly rotating. As seen in Sect. 2.3, turbulence and rapid rotation favour dynamo
action, so such secondaries are likely to have a magnetic field. The observations and
theory related to magnetic fields in secondary stars were discussed in Chap. 12.

A hot expanding corona will lead to some mass loss, driven by thermal pressure
gradients and centrifugal acceleration. A small coronal mass flux, and a moderate
magnetic field, result in highly conducting material being channelled along field
lines which are only slightly distorted by the flow. Field distortion becomes large
when the kinetic energy density of the outflowing material becomes comparable to
the poloidal magnetic energy density, equality occurring at the Alfvén speed given
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by

vA =
(
B2
p

μ0ρ

) 1
2

. (13.1)

If this speed is reached before a magnetic coronal loop starts to close, then the field
is dragged out with the flow. The Alfvénic points, defined by (13.1), constitute the
Alfvén surface SA.

Within SA the stellar magnetic field tries to bring the gas into corotation with
the star. The magnetic torque imparts angular momentum to the flowing material,
at the expense of the stellar angular momentum, causing a braking torque on the
star. The open field lines constitute the wind zone, which accounts for the loss
of stellar angular momentum. Magnetic wind braking of a lobe-filling secondary
star in a binary system drives the star towards an under-synchronous state and the
resulting tidal torque then leads to a loss of orbital angular momentum. This process
is invoked to explain mass transfer in systems with orbital periods � 3 h, since
gravitational radiation losses are not sufficient to account for the larger accretion
rates believed to occur at these periods.

In Sect. 13.2 stellar magnetic wind theory is formulated. A simple field model is
presented and results are derived for the fast rotator regime. Section 13.3 applies this
wind theory to secondary stars as a means of driving mass transfer, and a range of
dynamo laws are considered, relating the stellar rotation rate to the surface magnetic
field. The origin of the period gap, and winds from AM Herculis stars are then
addressed.

13.2 Stellar Magnetic Wind Theory

13.2.1 Background

The basic wind theory for a rotating, magnetic star is formulated here. Parker
(1963) showed that a hot stellar corona cannot be contained by the pressure of the
surrounding interstellar medium, and so expands to generate a wind. Schatzman
(1962) pointed out that if a strong stellar magnetic field keeps the wind corotating
with the star by magnetic torques out to large distances, then far more angular
momentum per unit mass will be carried off than in a non-magnetic wind, in which
the gas conserves its angular momentum. The theory of a steady, axisymmetric
magnetic wind was formulated byMestel (1967, 1968) andWeber and Davis (1967).
Further work was done by many authors, including Pneuman and Kopp (1971),
Okamoto (1974) and Sakurai (1985). The braking of late-type stars was considered
by Mestel and Spruit (1987), including the fast rotator regime which is of particular
relevance to corotating secondary stars in binaries. While fundamental results are
common to these papers, specific models vary. The formulation presented here is
based on that of Mestel (1968) and Mestel and Spruit (1987).
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13.2.2 Angular Momentum Transport

Consider a star rotating with angular velocity �s about the z-axis in a cylindrical
coordinate system (�, φ, z), with its origin at the stellar centre. The unperturbed
magnetic field is taken to be dipolar with its moment along the z-axis, so the poloidal
field Bp is axisymmetric. The dead zone will consist of field lines emanating from
the stellar surface nearer to the equator than to the poles. The associated flux tubes
form closed loops trapping hot gas within them. These loops close sufficiently near
to the star so the magnetic pressure exceeds the gas pressure. The wind zone consists
of field lines emerging nearer the poles which extend further and are unable to trap
the hot gas. These flux tubes are pulled open by the flowing gas before it reaches the
Alfvén surface SA, so the outer poloidal field adopts a more radial structure. Angular
momentum transport occurs in the wind zone. The star is taken to be a spherically
symmetric gravity source, so in the absence of magnetic torques the wind material
would conserve its specific angular momentum� 2�.

The steady state momentum, induction and continuity equations are

(v · ∇)v = − 1

ρ
∇P − ∇ψ + 1

μ0ρ
(∇ × B)× B, (13.2)

∇ × (v × B) = 0, (13.3)

∇ · (ρv) = 0, (13.4)

where perfect conductivity is assumed, and ψ is the stellar gravitational potential
given by

ψ = −GMs

r
. (13.5)

The poloidal and toroidal components of the induction equation (13.3) yield

vp = κBp, (13.6)

�− κBφ
�

= α, (13.7)

where κ is a scalar function of position and α is a constant on each field-streamline,
corresponding to the angular velocity of the field line. These equations combine to
give

v = κB +�αφ̂. (13.8)

Since ∇ · Bp = 0, (13.4) and (13.6) lead to

Bp · ∇(ρκ) = 0, (13.9)
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so

ρκ = ρvp

Bp
= ε, (13.10)

where ε is constant on a field line, being the mass flow rate per unit poloidal flux.
The wind angular momentum transport equation can be found by considering

the azimuthal component of the momentum equation (13.2), together with the
continuity equation (13.4), which yields

∇ · (� 2�ρvp) = �

μ0
[(∇ × B)× B]φ = 1

μ0
Bp · ∇(�Bφ), (13.11)

relating the divergence of angular momentum flux to the magnetic torque. The use
of (13.6) for vp and (13.10) for ε in (13.11) gives

ε� 2�− �Bφ
μ0

= −β, (13.12)

where β is constant on a field line. This represents the total rate of transport
of angular momentum per unit poloidal flux tube, carried jointly by the gas and
magnetic stresses.

Equations (13.7), (13.10) and (13.12) combine to yield

Bφ = μ0β/� + μ0εα�

1 − μ0ε2/ρ
, (13.13)

and

� = α + μ0εβ/�
2ρ

1 − μ0ε2/ρ
. (13.14)

It follows from (13.10) that

μ0ε
2

ρ
= μ0ρv

2
p

B2
p

= v2p

v2A
, (13.15)

where vA is the Alfvén speed. For the expected wind mass loss rates and surface
magnetic fields, vp � vA holds near the star. The density decreases outwards so
μ0ε

2/ρ increases until it reaches unity at the Alfvén point PA where

vp = vA = Bp

(μ0ρ)
1
2

, (13.16)
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and

ρ = ρA = μ0ε
2. (13.17)

Equations (13.13) and (13.14) then show that Bφ and� will only be non-singular at
PA if

− β = α� 2
A ρA

μ0ε
= εα� 2

A =
(
ρvp

Bp

)
α� 2

A . (13.18)

This shows that the angular momentum transport per unit flux tube, carried jointly
by the gas and field, is equivalent to that which would be carried by the gas if it were
kept corotating with angular velocity α out to the Alfvén point PA.

The use of (13.17) for ε and (13.18) for β in (13.13) and (13.14) gives

Bφ = −μ0ε�
2
A α
(1 −� 2/� 2

A )

�(1 − ρA/ρ)
, (13.19)

and

� = (1 −� 2
A ρA/�

2ρ)

(1 − ρA/ρ)
α = [1 − (� 2

A BA/�
2Bp)(vp/vA)]

(1 − ρA/ρ)
α, (13.20)

where BA is the value of Bp at �A. For any realistic poloidal field, the quantity
� 2Bp is slowly varying along a field-streamline, while vp/vA and ρA/ρ decrease
rapidly towards the coronal base. It therefore follows from (13.20) that well inside
the Alfvénic point the rotational shear is small, since � � α. At the cornal base,
r = r0, and � = �s so

α = (1 − ρA/ρ0)

[1 − (� 2
A BA/�

2
0B0)(v0/vA)]

�s, (13.21)

showing that the constant α is very close to �s. Hence, near to the star, � � �s and
then (13.18) for β and (13.19) for Bφ show that the magnetic term in the angular
momentum transport equation (13.12) dominates the material term by a factor
(�A/�)

2. A nearly force-free field occurs in this region, with �Bφ approximately
conserved along poloidal field lines. Well beyond PA, where ρA/ρ � 1 and
vp/vA � 1, (13.20) gives � 2� � � 2

A�s, and material angular momentum
transport dominates, corresponding to the approximate conservation of material
angular momentum.

Outward angular momentum transport requires −βBp > 0 so, from (13.18),

ρvpα�
2
A > 0 (13.22)



378 13 Stellar Magnetic Winds

must hold. For outflows this implies α > 0 and hence �s > 0. Equations (13.20)
and (13.21) show that beyond the coronal base � lags �s. The consequent shear
generates Bφ and the resulting BpBφ stress gives a torque which acts to increase
�. The reaction to this torque causes a decrease in the angular velocity of the star.
The star spins down on the braking time-scale which far exceeds the wind flow
time-scale of ∼ �/vp. The flow can therefore be treated as evolving on the braking
time-scale through quasi-steady states, in which the magnetic torque acting on the
matter in a volume element at a fixed point is balanced by a divergence of the angular
momentum flux, as described by (13.11).

13.2.3 The Wind Flow

The wind speed is analysed by considering the component of the equation of motion
along the flow. The wind zone is taken to be isothermal with sound speed aw, so

P = a2wρ. (13.23)

Using this and the vector identity (A2), the momentum equation (13.2) can be
written as

(∇ × v)× v = −∇
(
1

2
v2 + a2w lnρ − GMs

r

)
+ 1

μ0ρ
(∇ × B)× B. (13.24)

Taking the scalar product of this with v gives

v · ∇
(
1

2
v2 + a2w ln ρ − GMs

r

)
= 1

μ0ρ
v · [(∇ × B)× B] . (13.25)

The use of (13.8) for v then yields

1

μ0ρ
v · [(∇ × B)× B)] = α�

μ0ρ
[(∇ × B)× B)]φ = αv · ∇(� 2�), (13.26)

which is the rate of work done by the magnetic torque, with the last equality follow-
ing from the angular momentum equation (13.11). Equations (13.25) and (13.26)
show that

1

2
v2p + 1

2
� 2�2 + a2w ln ρ − GMs

r
− α� 2� = E (13.27)

is constant on a field-streamline, where E is the total energy per unit mass. This
is a generalized Bernoulli integral for an isothermal flow. The continuity equation



13.2 Stellar Magnetic Wind Theory 379

enables (13.27) to be written as

∇ ·
[
ρv
(
1

2
v2p + 1

2
� 2�2 + a2w lnρ − GMs

r
− α� 2�

)]
= 0, (13.28)

where the quantity in square brackets is the total energy flux. Equation (13.11),
together with vp · ∇α = 0 and Bp · ∇α = 0, gives the last term as

− ∇ · (ρvpα� 2�) = −∇ ·
(
α

μ0
�BφBp

)

= −∇ ·
(

1

μ0
(v × B)× B

)
= ∇ · (E × H), (13.29)

where H = B/μ0 and the second and last equalities follow from (13.8) for v and
Ohm’s law with perfect conductivity, respectively. Hence (13.28) becomes

∇ ·
[
ρv
(
1

2
v2p + 1

2
� 2�2 + a2w ln ρ − GMs

r

)
+ E × H

]
= 0, (13.30)

where E × H is the Poynting flux of electromagnetic energy.
If the structure of Bp is supposed known, the use of (13.10) and (13.20) to

eliminate vp and � in (13.27) gives a relation of the form

H(�, ρ) = E (13.31)

between ρ and� on a field-streamline. The condition (13.18) on β ensures that Bφ
and� are non-singular, and it then follows that all non-singular solutions for ρ pass
through the Alfvénic point PA. The function H(�, ρA) is only finite at � = �A.
Equation (13.31) yields

dρ

d�
= −∂H/∂�

∂H/∂ρ
. (13.32)

The use of (13.7) and (13.10) to eliminate� and vp in the Bernoulli integral (13.27)
gives

H = ε2B2
p

2ρ2
+ a2w lnρ − GMs

r
+ 1

2

(
α� + εBφ

ρ

)2

− α�
(
α� + εBφ

ρ

)
.

(13.33)

Taking ∂H/∂ρ, and employing (13.19) for Bφ/ρ, yields

ρ
∂H

∂ρ
= −v2p + a2w − ε2B2

φ

ρ2(1 − ρ/ρA)
. (13.34)
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Then noting, from (13.17), that

ρA

ρ
= μ0ε

2

ρ
= μ0ρv

2
p

B2
p

=
(
vp

vA

)2

, (13.35)

gives

ρ
∂H

∂ρ
= v4p − (a2w + v2Ap + v2

Aφ)v
2
p + a2wv2Ap

(v2Ap − v2p )
, (13.36)

where vAφ = Bφ/(μ0ρ)
1/2. The condition ∂H/∂ρ = 0 gives vp equal to vsl or vf,

the slow and fast magnetosonic wave speeds (see Sect. 2.2.6). At these values of
vp it follows from (13.32) that ∂H/∂� = 0 is necessary for smoothly varying ρ,
defining the slow and fast critical points�sl and�f. Then (13.31) gives

H(�sl, ρsl) = H(�f, ρf) = E. (13.37)

These conditions suffice to fix the solution along each field-streamline in terms of
a non-dimensionalized coronal temperature, stellar rotation rate and magnetic flux.
These are, respectively,

�w = GMs

r0a2w
, (13.38a)

ν = α2r30

GMs
, (13.38b)

ζw = B2
0

2μ0(ρ0)wa2w
, (13.38c)

evaluated at the coronal base r = r0. Usually, the wind speed at the slow point is
close to the sound speed. The fast speed is approximately the local Alfvén speed
determined by the total magnetic field.

13.2.4 The Braking Torque

A magnetic braking torque is exerted on the star due to the outward transport
of angular momentum resulting from the wind flow. The total rate of angular
momentum transport is found by integrating −βBp over the coronal base surface
r = r0, from the poles to the limiting field lines that define the extent of the wind
region. Near the stellar surface Bp will be close to its unperturbed dipole structure,
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having the components

Br = B0
( r0
r

)3
cos θ, (13.39a)

Bθ = B0

2

( r0
r

)3
sin θ, (13.39b)

with the poles at θ = 0 and θ = π . The poloidal field strength is therefore

Bp = B0
( r0
r

)3 (
1 − 3

4
sin2 θ

) 1
2

. (13.40)

The rate of angular momentum transport is

− J̇ = −
∫
S0

βBp · r̂dS0, (13.41)

where J̇ is the stellar torque, and S0 is the coronal base surface. Hence

− J̇ = −4π
∫ θ̄0
0

(
Br

Bp

)
0
βBp(r0, θ0)r

2
0 sin θ0dθ0, (13.42)

where the limiting field line cuts the stellar surface at (r0, θ̄0), and the symmetry of
−βBp about the equatorial plane has been used. Equations (13.10) for ε and (13.18)
for β give

− β = εα� 2
A = ρ0v0α�

2
A

Bp(r0, θ0)
, (13.43)

where v0 = vp(r0, θ0), so (13.39a)–(13.41) yield

− J̇ = 4π�sr
4
0

∫ θ̄0
0
ρ0v0

(
α

�s

)(
�A

r0

)2 sin θ0 cos θ0dθ0

(1 − 3
4 sin

2 θ0)
1
2

. (13.44)

The factor (�A/r0)
2, which increases with field strengthB0, represents the enhanced

braking due to the magnetic torque. The magnetic field also plays a part in
determining the upper limit θ̄0 which reflects the extent of the dead zone.

The associated mass loss rate from the stellar surface is given by

Ṁw = −4πr20

∫ θ̄0
0
ρ0v0

(
Br

Bp

)
0
sin θ0dθ0, (13.45)
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and hence

Ṁw = −4πr20

∫ θ̄0
0
ρ0v0

sin θ0 cos θ0dθ0(
1 − 3

4 sin
2 θ0

) 1
2

. (13.46)

It follows from (13.44) for J̇ and (13.46) for Ṁw that

J̇

r20�sṀw
= I

K
= �, (13.47)

where

I =
∫ s̄
0
ρ0v0

(
�A

r0

)2 (
1 − 3

4
s

)− 1
2

ds, (13.48)

and

K =
∫ s̄
0
ρ0v0

(
1 − 3

4
s

)− 1
2

ds, (13.49)

with s = sin2 θ0, and α = �s has been used. The quantity � measures the effect of
the magnetic field in increasing the angular momentum loss rate for a given mass
loss rate. For an unconstrained spherically symmetric wind, � = 2/3. Magnetic
channelling can increase � by factors of up to ∼ 103.

13.2.5 A Simple Field Model

Well within the Alfvénic surface SA the magnetic energy density dominates the
kinetic energy density of the wind. The poloidal field Bp will therefore remain close
to its unperturbed structure, and channel the wind flow. Well beyond SA the kinetic
energy density of the flow dominates the energy density of the magnetic field. In this
region the field will be passive, being pulled out to follow the nearly radial wind.

The detailed construction of Bp requires solution of the poloidal trans-Bp

component of the equation of motion. This poses a formidable problem (e.g. Sakurai
1990; Mestel 2012). A simple field model was used by Mestel and Spruit (1987) in
considering the braking of late-type stars. The field structure, shown in Fig. 13.1,
represents the basic properties of the distortion in the flow regions. The poloidal
field is taken to be dipolar, with components given by (13.39a) and (13.39b), out to
a radius r̄ which corresponds to the equatorial boundary of the dead zone. Beyond
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ẑ

r̄

C

SA

Fig. 13.1 The simplified wind magnetic field (from Mestel and Spruit 1987)

r̄ , Bp is taken as radial, so

Bp = B̄
(
r̄

r

)2

r̂. (13.50)

The field has a cusp on the equator at r̄ and Bp(r, π/2) = 0 for r > r̄ . Close to
θ = π/2, Br varies rapidly with θ and changes sign across the equator. Away from
the equator Br is expected to vary slowly with θ .

Material in the dead zone is in hydrostatic balance and is taken to be isothermal,
with sound speed ad. Hence

P = a2dρ, (13.51)

and the force balance is

∇
(
GMs

r
+ 1

2
α2r2 sin2 θ − a2d lnρ

)
+ 1

μ0ρ
(∇ × B)× B = 0. (13.52)

Taking the scalar product with B then gives

GMs

r
+ 1

2
α2r2 sin2 θ − a2d lnρ = U, (13.53)
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where U is a constant along the field. It follows that the density along a field line is

ρ = (ρ0)d exp
[
−GMs

Rsa
2
d

(
1 − Rs

r

)
+ α2R2

s

2a2d

(
r2 sin2 θ

R2
s

− sin2 θ0

)]
, (13.54)

with the coronal base r0 = Rs, being the stellar surface. Since the wind is an energy
sink, a latitude-independent heat input at the coronal base should give a significantly
lower temperature for the wind zone than for the dead zone.When the cuspC is well
within SA, then |Bφ | � |Bp|, so the vertical continuity of the total pressure at C is

(
B2
p

2μ0

)
w

= Pd, (13.55)

using Pd � Pw. Taking B̄ = (B0/2)(Rs/r̄)
3, except at the equator θ = π/2 where

B̄ = 0, (13.50) becomes

Bp =
⎧⎨
⎩

±B0
2

(
Rs
r̄

)3 (
r̄
r

)2
r̂, θ 
= π/2,

0, θ = π/2,
(13.56)

with the positive sign applying above the equatorial plane. Using (13.51), (13.54)
and (13.56) for P , ρ and Bp in the cusp condition (13.55) gives

(
r̄

Rs

)6

= B2
0

8μ0(ρ0)da
2
d

exp

[
GMs

Rsa
2
d

(
1 − Rs

r̄

)]
exp

[
−α

2R2
s

2a2d

(
r̄2

R2
s

− Rs

r̄

)]
,

(13.57)

which determines r̄, the extent of the dead zone region.
As previously seen, the wind solution is fixed by applying energy conservation

at the slow and fast magnetosonic points on a given field-streamline, as described
by (13.37). The fast magnetosonic point is beyond SA and so lies in the radial
field domain, with r2Br = constant on a given field-streamline. The Bernoulli
integral (13.27) can then be written as

H(r, ρ) = ε2B2
A r

4
A

2ρ2r4
+ 1

2
α2r2 sin2 θ

[
�

α

(
�

α
− 2

)]
− GMs

r
+a2w ln

ρ

ρA

, (13.58)

and (13.20) gives

�

α
= 1 − ρAr

2
A /ρr

2

1 − ρA/ρ
. (13.59)
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The critical point conditions ∂H/∂r = 0, ∂H/∂ρ = 0 at (rf, ρf) yield

2V 2 = −γX2 (V
2 − 2VX2 + 1)

(VX2 − 1)2
, (13.60)

and

V 2 − δ = γV 2X2 (X
2 − 1)2

(VX2 − 1)3
, (13.61)

with dimensionless quantities,

X = rf

rA
, (13.62a)

V = ρA

ρf

1

X2 = vf

vA
, (13.62b)

γ = α2r2A

v2A
sin2 θ, (13.62c)

δ = a2w

v2A
. (13.62d)

The gravitational term has been dropped in (13.60) since it is small compared with
v2f term.

In the case of rapid rotation, which is appropriate to the secondary stars in
close binaries, centrifugal driving forces vA to well above aw, so that δ � 1.
Dividing (13.60) by (13.61) gives a quadratic equation for X2 containing the small
quantity δ in its coefficients. To leading order, this yields the finite root

X �
[
1

2δ
V (V − 1)(3 − V )

] 1
2

, (13.63)

which substituted in (13.60) gives V � γ 1
3 and hence, from (13.62b),

v3f � α2� 2
A vA. (13.64)

Equation (13.63) shows that V = vf/vA lies between 1 and 3 and, since δ � 1, then
X � 1. It therefore follows from (13.62b) that

ρA

ρf
= VX2 � 1. (13.65)
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Along a radial field-streamline the continuity equation gives

vA

vf
= ρf

ρA

(
�f

�A

)2

. (13.66)

The use of these results in (13.19) and (13.20) yields

�f(Bφ)f � −4πεα� 2
A

(
vA

vf

)
, (13.67)

� 2
f �f � α� 2

A

(
1 − vA

vf

)
. (13.68)

In the rapid rotation regime, the gravitational and thermal terms can be dropped in
the Bernoulli integral (13.27). Noting that�A/�f � 1, (13.27), (13.64) and (13.68)
give

H(�f, ρf) = v2A
[
3

2

(
vf

vA

)2

−
(
vf

vA

)3
]
. (13.69)

To determine the solution for rapid rotators, the flow must be made to pass
through the slow magnetosonic point. Except for very rapid rotators, the �-terms
can be dropped in (13.27) in the region closer to the axis in which the slow point
�sl will occur. Hence

H = ε2B2
p

2ρ2
+ a2w ln ρ − GMs

r
. (13.70)

In this region Bp is the dipole field (13.39a) and (13.39b), and on a field-streamline

sin2 θ = r

Rs
sin2 θ0. (13.71)

The conditions ∂H/∂ρ = 0, ∂H/∂r = 0 then yield

vp = aw, (13.72a)

rsl = GMs

3a2w
, (13.72b)

and so from (13.70)

H(�sl, ρsl) = a2w
[
−5

2
+ ln

(
ρsl

ρA

)]
. (13.73)
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Equation (13.72a) shows that the slow magnetosonic point coincides with the sonic
point, within the accuracy of the approximations made.

Finally, the condition

H(�f, ρf) = H(�sl, ρsl) (13.74)

must be applied. Since a2w = δv2A , (13.69) and (13.73) yield

3

2

(
vf

vA

)2

−
(
vf

vA

)3

= δ
[
−5

2
+ ln

(
ρsl

ρA

)]
. (13.75)

Noting that V = vf/vA, for δ � 1 it follows that V = 3/2 which, together
with (13.63) for X = rf/rA, gives

vf

vA
= 3

2
, (13.76a)

rf

rA
= 3

4

vA

aw
. (13.76b)

Then (13.64) and (13.68) give

vA = 0.54α�A, (13.77a)

�f = α

3

(
�A

�f

)2

. (13.77b)

Hence, for a fast rotator, centrifugal force drives the wind speed at the Alfvénic
point up to about one half of the corotation speed.

This leaves the rate of braking to be found. The Alfvén speed is given to a
reasonable approximation, applicable to slow and fast rotators, by

vA

aw
=
[(
vth

aw

rA

Rs

)2

+ α
2r2A

3a2w
sin2 θ

] 1
2

, (13.78)

where vth is Parker’s thermally driven wind. Then noting from (13.10), (13.17)
and (13.56) for ε, ρA and Bp that

μ0ε = μ0
ρ0v0

(Bp)0
= BA

vA
= B0

2vA

Rs

r̄

(
Rs

rA

)2

, (13.79)
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(13.78) gives the Alfvén radius expression

(
rA

Rs

)3

= ζw

(v0/aw)

(
Rs

r̄

)[(
vth

aw

)2

+ α
2R2

s

3a2w
sin2 θ

]− 1
2

, (13.80)

where typically v0/aw ∼ 0.15, and ζw is the wind zone parameter defined
by (13.38c).

From (13.18) for β, the flux of angular momentum along a field-streamline can
be expressed as

− βBp = ρvpα� 2
A . (13.81)

The cylindrical Alfvén coordinate �A = rA sin θ will vary between field lines.
However, a lower limit to the braking torque can be found by taking the flow beyond
r̄ to be spherically symmetric, with vp(r) having its equatorial variation. The Alfvén
surface SA is therefore approximated as a sphere of radius rA = �A at θ = π/2.
Equation (13.80) shows that rA varies slowly with θ , its most rapid variation being
near θ = 0 where the contribution to angular momentum transport is least. The
integral of (13.81) over SA is then

− J̇ = 4πα
∫ π

2

0
ρAvAr

2
A sin

2 θr2A sin θdθ, (13.82)

giving

− J̇ = 8π

3
(ρAvAr

2
A )αr

2
A . (13.83)

Since ρAvA = B2
A /μ0vA, then −J̇ can also be written as

− J̇ = 
2α

6πμ0vA
, (13.84)

where 
 = 4πr2ABA is the magnitude of the flux of open magnetic field lines that
form the wind zone.

It follows from (13.21) that α is very close to the stellar rotation rate �s and so,
for most purposes, α = �s can be used. Mestel and Spruit considered rotation rates
�s = k�� with 1 ≤ k ≤ 80, where �� = 2.5 × 10−6 s−1 corresponds to a period
of P� = 29 days. The magnetic field is assumed to be dynamo generated, with pole
strength B0 related to �s by the rotation law

B0 = (B0)�
(
�s

��

)n
. (13.85)
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The simplest model has (ρ0)d and ad both independent of �s. However, the
authors point out that it is difficult to see how this could be consistent with X-ray
observations of late-type stars, which show a luminosity LX ∝ �2

s (e.g. Pallavicini
et al. 1981). The variation of coronal emission is determined mostly by the variation
in density, with LX ∝ ρ20 so ρ0 ∝ �s. The X-ray luminosity is expected to depend
on B0, since this is a measure of the degree of activity of the star. The consistency
of using (13.85) with LX ∝ �2

s requires LX ∝ B
2/n
0 . The choice n = 1 is made,

leading to

ζd = (ζd)� [B0/(B0)�]2
(ρ0)d/(ρ0)d�

= (ζd)�
(
�s

��

)
, (13.86)

where

ζd = B2
0

2μ0(ρ0)da
2
d

(13.87)

occurs in (13.57), which determines the dead zone radius r̄ .
The cases ζd ∝ �s and ζd ∝ �2

s are considered, corresponding to (ρ0)d ∝ B0,
and (ρ0)d independent of B0, respectively. The rotation rate �s is varied from the
solar value (P = 29 day) to a value of 80�� (P = 9 h), for the cases (ζd)� = 4, 60,
taking stars of solar mass. The results are summarized in Table 13.1. In all cases the
value �s � 15�� marks a turn-over in the behaviour of r̄/Rs. For �s < 15�� the
centrifugal effect on the pressure in the dead zone, described by (13.51) and (13.54),
is weak, so r̄ increases with�s because the stronger field traps more gas. This effect
occurs in (13.57) for r̄ through the B2

0/(ρ0)d term, which increases with �s. For
�s > 15�� the centrifugal effect, described by the second exponential in (13.57),
dominates and r̄ begins to shrink.

Table 13.1 The dead zone extent (from Mestel and Spruit 1987)

(ξd)� = 4 (ξd)� = 60

�s/�� r̄/Rs (ξd ∝ �s) r̄/Rs (ξd ∝ �2
s ) r̄/Rs (ξd ∝ �s) r̄/Rs (ξd ∝ �2

s )

1 2.5 2.5 5.0 5.0

2 3.1 3.5 5.8 6.6

3 3.4 4.1 6.2 7.8

5 3.9 5.5 6.8 9.2

7 4.1 6.2 7.2 10.0

10 4.4 6.9 7.4 10.7

20 4.6 7.2 6.9 9.6

30 4.4 6.5 6.1 8.2

60 3.4 4.7 4.3 5.4

80 3.0 3.9 3.6 4.5
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Table 13.2 Equatorial
values of the ratio rA/Rs, with
(ξd)� = 60, (ξw)� = 120
(from Mestel and Spruit
1987)

�s/�� (rA/Rs)eq (ξw ∝ �s) (rA/Rs)eq (ξw ∝ �2
s)

1 12 12

2 15 19

5 20 36

10 25 52

20 29 72

30 31 88

60 35 127

80 37 149

The Alfvén radius rA is found from (13.80), using v0 � 0.15aw and the previously
determined value of r̄/Rs, for each �s. The wind zone parameter ζw is defined
by (13.38c), whereB2

0/(ρ0)w is taken to have the same�s dependences as B2
0/(ρ0)d

occurring in the dead zone parameter ζd. Since the wind zone has a lower density
and temperature that the dead zone, ζw > ζd is expected. The authors take ζw = 120
for the sun so that (13.80) yields rA � 12Rs, in agreement with observation (Pizzo
et al. 1983). The wind zone temperature is taken to be one half that of the dead zone.
The results are shown in Table 13.2.

The angular momentum loss rate is given by (13.83). The continuity equation
for radial flow gives ρAvAr

2
A = ρ̄v̄r̄2, while the constancy of ρvp/Bp along a field-

streamline yields

ρ̄v̄

(ρ0)wv0
= B̄

B0
= 1

2

(
Rs

r̄

)3

, (13.88)

where the last equality follows from (13.56) for Bp. The use of these results allows
−J̇ to be expressed as

− J̇ = 4π

3

[
(ρ0)�v0R2

s

]
��R2

sK(�s/��), (13.89)

where

K(�s/��) =
(
Rs

r̄

)(
rA

Rs

)2 (
�s

��

)q
, (13.90)

with q = 1 or 2. The case q = 2 corresponds to (ρ0)w ∝ �s ∝ B0, while
q = 1 occurs for (ρ0)w independent of �s. Table 13.3 shows values of K(�s/��).
Braking is more efficient when (ρ0)w ∝ B0, primarily due to the increase in mass
loss which more than compensates for the reduction in the Alfvén radius. The
smaller extent of the dead zone in this case, illustrated in Table 13.1, also enhances
the braking.
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Table 13.3 The function K(�s/��) (from Mestel and Spruit 1987)

q = 2, (ρ0)w ∝ B0 q = 1, (ρ0)w independent of B0
�s/�� K(�s/��) K(�s/��)
1 30.5 30.5

2 1.6 × 102 1.1 × 102

5 1.5 × 103 7.0 × 102

10 8.4 × 103 2.5 × 103

20 4.8 × 104 1.1 × 104

30 1.4 × 105 2.8 × 104

60 1.0 × 106 1.8 × 105

80 2.4 × 106 4.0 × 105

The braking laws predicted by (13.89) will be discussed in the next section, in
the context of the secondary stars in binaries. The fast rotator theory will be relevant
here, since for orbital periods of P � 9h synchronized secondaries have �s �
80��.

13.3 Stellar Magnetic Winds in Close Binaries

13.3.1 Orbital Angular Momentum Loss and Mass Transfer

A lobe-filling secondary star in a close binary system is expected to be kept near to
orbital corotation, by the tidal field of the primary star. Asynchronousmotions result
in internal dissipations which cause the tidal bulge to lag the motion of the line of
stellar centres. The resulting gravitational torque spins the star towards synchronism
(see Sect. 2.4.2 for an outline of tidal theory). It follows from the period-mass
relation (2.298) that for orbital periods of P ≤ 8 h a main sequence secondary will
have a massMs ≤ 0.80M�, and hence possess a deep convective envelope. The star
is fully convective forMs ≤ 0.35M�, corresponding to P ≤ 3.5 h.

A rapidly rotating star with a convective envelope is likely to have a dynamo-
generated magnetic field. As seen in Sect. 2.3, an α�-dynamo requires differential
rotation, as well as turbulence, to operate. The secondary may retain some rotational
shearing motions if a small radiative core is not completely synchronized, while the
convective envelope is. Some differential rotation may remain in the convective
region if the turbulent stress tensor has a non-standard form, allowing turbulent
motions to generate non-uniform rotation (Campbell and Papaloizou 1983). Alter-
natively, an α2-dynamomay operate. The generation of magnetic fields in secondary
stars was considered in Chap. 12, where it was shown that observations and
simulations indicate that rapidly rotating, lower main sequence stars are expected
to have large-scale magnetic fields generated by dynamo action.
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A magnetic secondary with a wind, generated by an expanding corona, would
be subject to the braking effect formulated in the previous section. There will, of
course, be some differences from the case of a single star. The presence of the
primary means that, even if the secondary had a magnetic field symmetric about its
rotation axis, the wind would not be axisymmetric due to the φ-dependence of the
total gravitational field. Most of the tidal and rotational perturbation to the spherical
structure occurs in the outer layers of the star where only a small fraction of the
mass is contained. Hence, deviations of the external gravity field from spherical
symmetry due to tidal distortion of the secondary will be small, but the gravity field
of the primary could still be significant. The presence of a stronglymagnetic primary
can introduce a further complication, this being discussed in the Sect. 13.3.7.

The fundamental effect of a magnetically influenced wind from the secondary
in a binary system will be the same as it is for a single star, namely the removal
of stellar angular momentum. However, the spin evolution of the secondary star
is affected by its tidal interaction with the primary. The synchronization process
involves the exchange of angular momentum between the secondary and the orbital
motion, via the tidal torque. The wind causes a spin down of the secondary, so
driving�s towards an under-synchronous state. However, tidal torques then become
operable and act to increase �s back to the orbital rate. The net effect is the
continuous removal of orbital angular momentum from the binary system.

The orbital angular momentum can be expressed as

Lo = MsMp

(
GD

M

) 1
2

, (13.91)

where M = Ms + Mp and D is the stellar separation. For a mass ratio range of
0.1 ≤Ms/Mp ≤ 0.8, the mean radius of the secondary’s Roche lobe obeys

M

Ms

(
RL

D

)3

� 0.1, (13.92)

(Paczynski 1967). Taking M as constant, (13.91) and (13.92) give an evolution
equation for RL as

ṘL

RL

= 2
L̇o

Lo
− 2
Ṁs

Ms

(
5

6
− Ms

Mp

)
, (13.93)

where Ṁs is the mass loss rate from the secondary due to Roche lobe overflow.
The orbital evolution time-scale is Lo/L̇o, which is comparable to the mass transfer
time-scale

τM = Ms

|Ṁs|
. (13.94)
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Validity of the condition of constantM over the binary lifetime therefore requires

|Ṁw| � |Ṁs|, (13.95)

where Ṁw is the wind mass loss rate.
A lower main sequence secondary star, in thermal equilibrium, has a mean radius

given approximately by

Rs

R�
= q

(
Ms

M�

)
, (13.96)

with q � 1.1 (Kippenhahn and Weigert 1990). For the secondary to continuously
transfer mass to the primary, RL must shrink at least as fast as Rs to keep matter
in contact with the L1 region. Equation (13.93) shows that for Mp > (6/5)Ms a
continuous decrease in RL requires L̇o < 0, since the last term is positive. Also,
|L̇o|/Lo must be sufficiently large to yield ṘL < 0 and |ṘL| ≥ |Ṙs|. The secondary
will remain in thermal equilibrium provided that τM � τth, where τth is the time-scale
for thermal adjustment.

A loss of orbital angular momentum is caused by magnetic braking in conjunc-
tion with strong tidal coupling, as outlined above, and by gravitational radiation
losses. Gravitational radiation orbital torques lead to the mass transfer rate

Ṁs = −1.9 × 10−10 (1 − μ)2
(4 − 7μ)μ

2
3

M� year−1, (13.97)

where μ = Ms/M and Rs = RL is taken (see Sect. 2.4.3). Over the range
of mass ratios of interest (13.97) gives |Ṁs| ∼ 10−10M�year−1. Observations
of optical and X-ray luminosities imply mass transfer rates of this magnitude
for systems with periods P � 3 h. However, longer period close binaries are
believed to have |Ṁs| ∼ 10−9M�year−1 which cannot be explained by gravitational
radiation losses. The foregoing magnetic braking mechanism can provide a way of
removing orbital angular momentum fast enough to explain the higher values of
|Ṁs|. Verbunt and Zwaan (1981) estimated the magnetic braking torque by using the
Skumanich (1972) spin-down law for single stars, assumed to be due to magnetic
braking. By taking this law to apply to a binary secondary star, they derived the
expression (2.337) for Ṁs. This yields sufficiently high values of |Ṁs| for P > 3 h
but, since its derivation makes no direct use of braking theory, the expression cannot
be related to the field structure of the secondary or to the details of the wind flow.

Campbell (1997) applied magnetic braking theory to find expressions for Ṁs.
The foregoing fast rotator theory is relevant here, since for P � 7 h it follows that
�s � 100��. Firstly, the effect of orbital evolution on the magnetic braking rate
must be considered. If the secondary is kept close to orbital corotation by tidal forces
then L̇o = J̇ can be used, where J̇ is the loss rate of stellar angular momentum via
magnetic braking. The tidal torque is dissipative and so will only be finite when there



394 13 Stellar Magnetic Winds

is some asynchronism. For a turbulent viscosity the tidal torque can be comparable
to the braking torque at small degrees of asynchronism, so �s can be taken to be
essentially the same as the orbital angular velocity �o. Hence

�2
s = �2

o = GM

D3 . (13.98)

The stellar angular momentum loss rate is given by (13.84) as

J̇ = − 
2�s

6πμ0vA
, (13.99)

where


 = 4πr̄2B̄ = 2πR2
s

(
Rs

r̄

)
B0, (13.100)

with the last equality following from (13.56) for Bp. Since the Alfvénic points occur
in the radial field region, the magnitude of the wind mass loss rate can be written as
|Ṁw| = 4πr2AρAvA. The use of this in (13.83) yields

J̇ = −2

3
|Ṁw|r2A�s. (13.101)

Equating this to (13.99) gives

r2A = 
2

4πμ0|Ṁw|vA
. (13.102)

The fast rotator theory result (13.77a) gives vA � 0.5rA�s, so (13.101) and (13.102)
lead to

J̇ = − 2

3(2πμ0)
2
3

|Ṁw| 13
 4
3�

1
3
s . (13.103)

Using (13.100) to substitute for
 in (13.103) then yields

L̇o = J̇ = −2

3

(
2π

μ0

) 2
3

B
4
3�Ṁ

1
3�
(
Rs

r̄

) 4
3
(
B0

B�

) 4
3
(
Ṁw

Ṁ�

) 1
3

R
8
3
s �

1
3
s , (13.104)

where B� is the coronal base polar value of the sun’s magnetic field, and Ṁ� is
the solar wind mass loss rate. For a more complicated field than dipolar, B� and
B0 would be essentially the mean surface values. As the orbit evolves, with a nearly
synchronous secondary having�s = �o, the stellar quantitiesRs, B0, Ṁw and r̄ will
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change as Ms and �s evolve. The total mass M can be taken as constant provided
that |Ṁw| � |Ṁs|.

The dead zone extent ratio r̄/Rs is determined by the solution of (13.57). This
equation can be written in the implicit form

r̄

Rs
=
(
ζd

4

) 1
6

exp

[
GMs

6Rsa
2
d

(
1 − Rs

r̄

)]
exp

[
−R

2
s�

2
s

12a2d

(
r̄2

R2
s

− Rs

r̄

)]
,

(13.105)

where

ζd = B2
0

2μ0(ρ0)da
2
d

. (13.106)

Eliminating D between the lobe-filling condition (13.92), with RL = Rs, and the
orbital equation (13.98) gives

R2
s�

2
s = 0.1G

(
Ms

Rs

)
. (13.107)

The mass-radius relation (13.96) shows that Ms/Rs is constant and hence Rs�s is
also constant as the orbit evolves. The virial theorem gives approximate scalings for
characteristic temperatures and densities in a star as T ∝ Ms/Rs and ρ ∝ Ms/R

3
s .

Taking the corona to follow these scalings yields

a2d ∝ Ms

Rs
, (13.108a)

(ρ0)d ∝ Ms

R3
s
. (13.108b)

For T0 independent of �s, (13.96) and (13.108a) lead to ad being constant during
evolution. The exponentiated coefficients GMs/Rsa

2
d and (Rs�s)

2/a2d in (13.105)
for r̄/Rs are therefore also constant. This leaves the factor ζ 1/6

d to be considered in
the determination of r̄/Rs. Using the dynamo law (13.85), with 1 ≤ n < 2, together
with (ρ0)d ∝ �s and ∝ Ms/R

3
s , (13.106) and (13.108a) give

ζ
1
6
d ∝

[
(Rs�s)

2�2n−3
s

(Ms/Rs)2

] 1
6

∝ �(2n−3)/6
s , (13.109)

where the last proportionality follows from the constancy of Rs�s and Ms/Rs. For
the above range of n, ζ 1/6

d is therefore weakly dependent on �s. Since this factor
occurs outside the exponentials in (13.105), and the exponentiated coefficients are
constant, the solution r̄/Rs will be very slowly varying as mass transfer occurs and
can therefore be taken as constant in (13.104) for L̇o.
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Consider, now, the variation of the wind mass loss rate. Since the radial field
region begins at r = r̄ , this can be written as

Ṁw = −4πr̄2ρ̄v̄. (13.110)

The conservation of mass and flux along a poloidal flux tube yield

ρ̄v̄ = ρ0v0
(
B̄

B0

)
= 1

2
ρ0v0

(
Rs

r̄

)3

, (13.111)

and hence

Ṁw = −2π

(
Rs

r̄

)
R2
s ρ0v0. (13.112)

The coronal base flow speed in the wind zone can be taken as

v0 = 0.15aw. (13.113)

Then, since Rs/r̄ is constant,

|Ṁw| ∝ R2
s

(
Ms

R3
s

)
�s

(
Ms

Rs

) 1
2 ∝

(
Ms

Rs

) 3
2

�s, (13.114)

using the foregoing scalings. BecauseMs/Rs is constant, Ṁw evolves with the orbit
as

Ṁw

Ṁ�
= �s

��
. (13.115)

The wind zone equivalent of ζd is

ζw = B2
0

2μ0(ρ0)wa2w
, (13.116)

giving the ratio of the magnetic energy density to the thermal pressure at the coronal
base. The use of (13.113) and (13.116) to eliminate ρ0v0 in (13.112) gives the solar
mass loss rate

Ṁ� = −0.15π

μ0

R2�B2�
aw(ζw)�

(
Rs

r̄

)
. (13.117)
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Using the lobe-filling condition (13.92), with RL = Rs, together with (13.96) for
Rs, enables the expression (13.91) for the orbital angular momentum to be written as

Lo = 10
1
6 q

1
2

(
GR�
M�

) 1
2 MpM

4
3
s

M
1
3

. (13.118)

Using RL = Rs and (13.96) in the Roche lobe evolution equation (13.93), leads to
the orbital evolution equation

L̇o

Lo
=
(
4

3
− Ms

Mp

)
Ṁs

Ms
. (13.119)

Equation (13.104) for L̇o, together with (13.118) and (13.119), enables expressions
to be derived for Ṁs, for various dynamo laws. Consistency requires |Ṁw| � |Ṁs|
and thermal equilibrium holds for τth � Ms/|Ṁs|. Hence it is necessary to derive
expressions for Ṁw and τth.

13.3.2 The Wind Mass Loss Rate and the Thermal Time-Scale

The wind mass loss rate follows from using (13.96), (13.107) and (13.117) for Rs,
�s and Ṁ� in (13.115) as

Ṁw = −1.9 × 10−11

q
3
2 (ζw)�

(
B�
1G

)2 (
Rs

r̄

)(
M�
M

)
1

μ
M� year−1, (13.120)

where μ = Ms/M . There is some suggestion that stellar dynamos may saturate
above a critical rotation rate �c. Assuming ρ0, and hence Ṁw, also saturates at �c,
gives

Ṁw = −2.4 × 10−13

(ζw)�

(
B�
1G

)2 (
Rs

r̄

)(
�c

��

)
M� year−1, (13.121)

applicable for �s > �c.
The Kelvin time-scale for thermal adjustment of the secondary is given by τth ∼

Eth/Ls, where Eth and Ls are the star’s thermal energy and surface luminosity. The
virial theorem can be used to find Eth, where, since the contributions of rotational
and magnetic energies are negligible,

Eth = −1

2
EG � 3

4

GM2
s

Rs
. (13.122)
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Taking the approximate main sequence mass-luminosity relation

Ls

L�
=
(
Ms

M�

)5

, (13.123)

together with (13.96) for Rs, yields the thermal time-scale

τth = 2.3 × 107

q

(
M�
M

)4 1

μ4 year. (13.124)

The self-consistency condition |Ṁw| � |Ṁs|, and the thermal equilibrium
condition τth � τM, can be investigated for each dynamo law.

13.3.3 A Linear Dynamo Law

In the case of a linear dynamo rotation law B0(�s) is given by

B0

B�
= �s

��
. (13.125)

Using (13.115) to eliminate Ṁw/Ṁ� in (13.104) leads to

L̇o = −2

3

(
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) 2
3 B

4
3�Ṁ
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3
s �

2
s . (13.126)

The mass transfer rate follows from using (13.96), (13.107), (13.117), (13.118)
and (13.126) to eliminate L̇o/L̇o in (13.119), giving

Ṁs = −7.7 × 10−10

q
5
6 (ζw)

1
3�

(
B�
1G

)2 (
Rs

r̄

) 5
3
(
M�
M

) 1
3 μ

1
3

(4 − 7μ)
M�year−1,

(13.127)

where μ =Ms/M , and the values�� = 2.5× 10−6 s−1 and aw = 1.2× 105 m s−1

are used. Since the gas can expand freely in the wind zone, its temperature should
be lower than that of gas in the dead zone. Taking a2d = 2a2w, (13.106) and (13.116)
give

ζw = 2ζd, (13.128)

for uniform ρ0. For (ζd)� = 8, the solution of (13.105) is r̄/Rs = 1.5. Then, using
q = 1.1, B� = 10−4 T,Mp = 1M� andMs = 0.4M�, (13.127) and (13.128) yield
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|Ṁs| = 4.2 × 10−11M�year−1. Using the same masses in (13.97) gives |Ṁs|gr =
1.1 × 10−10M�year−1, so the effect of gravitational radiation is stronger than that
of magnetic braking in this case. Field saturation reduces |Ṁs|.

Equations (13.120) and (13.127) give

|Ṁw|
|Ṁs|

= 2.5 × 10−2

q
2
3 (ζw)

2
3�

(
r̄

Rs

) 2
3
(
M�
M

) 2
3 (4 − 7μ)

μ
4
3

. (13.129)

Above the period gap, the range 3 h � P � 6 h is of interest for close binaries
and the period-mass relation (2.298) yields the corresponding secondary mass range
0.3M� � Ms � 0.6M�. Over this range ofMs, withM = 1.4M�, (13.129) gives
9 × 10−3 < |Ṁw|/|Ṁs| < 8 × 10−2, so justifying treatingM as constant.

The ratio of the mass transfer time-scale to the thermal time-scale follows
from (13.94), (13.124) and (13.127) for τM , τth and Ṁs as

τM

τth
= 55q

11
6 (ζw)

1
3�
(
B�
1G

)−2 (
r̄

Rs

) 5
3
(
M

M�

) 16
3

(4 − 7μ)μ
14
3 . (13.130)

For (ζw)� = 16 and the above mass range, this gives 4 � τM/τth � 38, with τM ∼
3τth corresponding toMs ∼ 0.3M�. Hence, for a linear dynamo law, the secondary
is in marginal thermal equilibrium close to the top of the period gap. However,
explanations of the gap require the secondary to be out of thermal equilibrium at
Ms ∼ 0.4M�, while (13.130) yields τM ∼ τth at this mass. Also, (13.127) gives
values of |Ṁs| that are at most comparable to |Ṁs|gr, and hence cannot explain the
higher mass transfer rates believed to occur above the period gap. It is noted that
|Ṁs| scales with B2� and B� = 1G (= 10−4T) has been used. There is some
uncertainty in B�, but values significantly higher than 2G are unlikely. A value
of r̄/Rs = 1.5 has been taken here. An essentially synchronized secondary in a
close binary has �s � 100��, and observations of rapidly rotating stars indicate
that matter can escape from the dead zone (Collier Cameron and Robinson 1989).
Presumably the high centrifugal force allows matter near r̄ to escape from the
magnetic constraint. This suggests that for the secondary star values of r̄/Rs nearer
to 1 than to 10 are likely, supporting the value of 1.5 used here. With the presently
available braking theory, it is therefore necessary to consider stronger dependences
of B0 on �s than linear if magnetic winds are to explain mass transfer rates above
the period gap.

13.3.4 An Inverse Rossby Number Dynamo Law

As the secondary star transfers mass to the primary its spectral type will change as
Ms decreases. The depth of the convective envelope will increase as Ms decreases
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towards 0.35M�, the mass at which the star becomes fully convective. This change
may affect the value of B0, in addition to the effect of a change in�s. There is some
observational evidence to suggest that B0 scales as the inverse turbulent Rossby
number R−1

T ∝ τT�s, where τT is the convective turnover time-scale (Saar 1991).
The rms convective speed in a region with no energy sources is given by simple

mixing length theory as

vT =
( |g|λTLs

2πr2ρcPT

) 1
3

, (13.131)

where λT is the mixing length, and Ls is the surface luminosity. Taking λT as a
pressure scale height gives

λT = λP = c2s

γ |g| , (13.132)

where cs is the adiabatic sound speed. Using P = (R/μ)ρT , with μ the mean
molecular weight and τT ∼ λT/vT, (13.131) and (13.132) yield the time-scale

τT ∝ r2T

M(r)

(
r2ρ

Ls

) 1
3

, (13.133)

whereM(r) is the mass within a radius r (noting tidal distortion will be small deep
in the convective envelope). Expression (13.133) gives the radial variation of τT
so, to compare characteristic values between stars of different masses, the simple
homologous scalings r2/M(r) ∝ R2

s /Ms, T ∝ Ms/Rs and ρ ∝ Ms/R
3
s can be used

at a given point. This gives

τT ∝
(
R2
sMs

Ls

) 1
3

. (13.134)

Using the mass-luminosity relation (13.123) then leads to

B0

B�
= τT�s

(τT)���
=
(
M4�
R2�

) 1
3 (
R2
s

M4
s

) 1
3 �s

��
. (13.135)

The rate of loss of orbital angular momentum follows from using (13.115) for
Ṁw/Ṁ� and (13.135) for B0/B� in (13.104), as

L̇o = −2

3

(
2π

μ0

) 2
3

q
16
9
Ṁ

1
3�B

4
3�R

8
9�

�
5
3�

(
Rs

r̄

) 4
3

R
16
9
s �

2
s . (13.136)
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The resulting mass transfer rate is

Ṁs = −7.7 × 10−10 q
1
18

(ζw)
1
3�

(
B�
1G

)2 (
Rs

r̄

) 5
3
(
M�
M

) 11
9 1

(4 − 7μ)μ
5
9

M�year−1.

(13.137)

The foregoing parameters give |Ṁs| = 10−10M�year−1 for this case, which is
comparable to |Ṁs|gr, at an orbital period of 4 h. Field saturation reduces |Ṁs|.
Hence the inverse Rossby number scaling produces higher mass transfer rates then
a simple linear scaling of B0 with �s, but still not high enough to explain values of
|Ṁs| ∼ 10−9M�year−1.

Equations (13.120) and (13.137) give

|Ṁw|
|Ṁs|

= 2.5 × 10−2

q
14
9 (ζw)

2
3�

(
r̄

Rs

) 2
3
(
M

M�

) 2
9 (4 − 7μ)

μ
4
9

. (13.138)

ForM = 1.4M� and 0.3M� ≤ Ms ≤ 0.6M�, together with (ζw)� = 16, (13.138)
yields 6.6 × 10−3 < |Ṁw|/|Ṁs| < 2.2 × 10−2, so justifying the constancy ofM .

The time-scale ratio follows from (13.124) and (13.137) as

τM

τth
= 55q

17
18 (ζw)

1
3�
(
B�
1G

)−2 (
r̄

Rs

) 5
3
(
M

M�

) 56
9

(4 − 7μ)μ
50
9 . (13.139)

The above mass range gives 1 < τM/τth < 22, so at Ms = 0.3M� the secondary
is marginally in thermal equilibrium. For B� = 2G this case is close to having the
required properties, but only without field saturation.

13.3.5 A Non-linear Dynamo Law

Consider the dynamo rotation law

B0

B�
=
(
�s

��

) 7
4

. (13.140)

Equation (13.104) then gives

L̇o = J̇ = −2

3

(
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3 Ṁ
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4
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�
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3�
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3
s �

3
s . (13.141)
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For a single star, of essentially constant mass, this corresponds to the braking
equation

I�̇s = −K�3
s , (13.142)

where I is the moment of inertia andK is a positive constant. The solution is

�s =
(

1

�2
0

+ 2K

I
t

)− 1
2

, (13.143)

and for �s � �0,

�s =
(
I

2K

) 1
2 1

t
1
2

, (13.144)

which is the Skumanich (1972) law. This case can therefore be compared with the
work of Verbunt and Zwaan (1981), which employed such a braking law and gave
the mass transfer rate (2.337).

Eliminating L̇o between (13.119) and (13.141) leads to the mass transfer rate

Ṁs = −6.2 × 10−8

q
7
3 (ζw)

1
3�

(
B�
1G

)2 (
Rs

r̄

) 5
3
(
M�
M

) 4
3 1

(4 − 7μ)μ
2
3

M� year−1.

(13.145)

At a period of 4 h, corresponding to Ms = 0.4M�, this gives |Ṁs| = 7.5 ×
10−9M�year−1. This is an order of magnitude higher than that derived from
the Verbunt and Zwaan formula (2.337). The dependences on μ differ in these
expressions, since (2.337) was derived using the observational fit (2.335) for Rs�s,
which is independent of stellar parameters.

The forms for |Ṁw|/|Ṁs| and τM/τth corresponding to the mass transfer
rate (13.145) are

|Ṁw|
|Ṁs|

= 3 × 10−4 q
5
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, (13.146)

and

τM
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= 0.7q
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For the mass range 0.3M� ≤ Ms ≤ 0.6M� these expressions yield the ratios
1.1 × 10−4 < |Ṁw|/|Ṁs| < 3.5 × 10−4 and 1.6 × 10−2 < τM/τth < 0.4, so M
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Table 13.4 The ratio τM/τth Ms/M� τM/τth |Ṁs|/M� year−1

0.3 0.27 4.2 × 10−10

0.4 0.51 9.5 × 10−10

0.5 0.74 2.0 × 10−9

0.6 0.86 4.2 × 10−9

is conserved to high accuracy, and the secondary is well out of thermal equilibrium
over the lower part of this mass range.

The values of |Ṁs| given by (13.145) are rather large, so the case of field
saturation at �c can be considered. The resulting mass transfer rate is

Ṁs = − 5.3

1013
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(13.148)

This, together with (13.121) for Ṁw, gives
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which yields 5 × 10−4 < |Ṁw|/|Ṁs| < 3.6 × 10−3. The time-scale ratio is
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(13.150)

Table 13.4 shows values of |Ṁs|/M�year−1 and τM/τth above the period gap,
using the foregoing parameters and�c = 80�� in (13.148) and (13.150). The mass
transfer rates are in good agreement with those implied by observations of systems
with P � 3 h. The values of τM/τth show that at Ms = 0.6M� the secondary is
marginally in thermal equilibrium. As Ms = 0.3M� is approached the star starts
to be driven out of thermal equilibrium, since it cannot fully adjust thermally as it
losses mass. This case therefore has the required properties for explanation of the
period gap.

13.3.6 The Period Gap

The cataclysmic variables are binaries containing a white dwarf primary and a
lobe-filling main sequence secondary. The majority of these systems have orbital
periods lying in the range 1.3 h � P � 8.0 h and their mass transfer rates span



404 13 Stellar Magnetic Winds

5 × 10−11 � |Ṁs|/M�year−1 � 3 × 10−9 (e.g. Warner 1995). There is an almost
complete absence of accreting systems with periods in the range 2 to 3 h. However,
the AMHerculis binaries appear to be the exception to this, and are discussed below.
As seen in the foregoing discussion, gravitational radiation losses can account for
the lower mass transfer rates occurring at periods � 3 h, and hence for systems
below the period gap. The foregoing analysis showed that magnetic braking can
explain the larger values of |Ṁs| observed at P > 3 h, provided that the dynamo
law relating B0 to �s is nearer to quadratic than linear. The gap is believed to
contain systems in which the secondary star is detached from its Roche lobe, so mass
transfer, which is the main source of luminosity via accretion on to the primary, is
absent. This poses the problem of why the secondary becomes detached.

The current explanation for the origin of the period gap involves magnetic
braking. It was seen in Sect. 13.3.5 that for 0.3 � Ms/M� � 0.7 the mass transfer
time-scaleMs/|Ṁs| can become� 109 year and hence be comparable to the thermal
time-scale τth. The secondary will then not have time to fully adjust thermally as it
loses mass. This results in an over-luminous and over-sized star for its mass. If,
at around a period of 3 h, something happens to sharply reduce magnetic braking,
then the orbital angular momentum loss will become controlled by gravitational
radiation. The time-scale for Roche lobe shrinkage due to this weaker process is
� τth, so the star contracts back to its thermal equilibrium radius faster than its
lobe shrinks and therefore becomes detached. The resulting low luminosity system
subsequently evolves through the period gap, driven by gravitational radiation
braking, until the secondary fills its lobe and resumes mass transfer at a period of
∼ 2 h.

Various mechanisms have been proposed to account for a sudden decrease in the
strength of magnetic braking at a period of ∼ 3 h. This period corresponds to a
secondary mass of ∼ 0.3M�, which is close to the mass at which a main sequence
star is expected to become fully convective. It has been suggested that when this
state is reached the stellar dynamo begins to operate in a different way, causing
a reduction in field strength and/or a change in field configuration, which results
in a lower magnetic torque (e.g. Spruit and Ritter 1983; Rappaport et al. 1983).
If the dynamo mainly operates at the interface between the radiative core and the
convective envelope (referred to as the tachocline), existing when Ms > 0.35M�,
then the disappearance of this interface at Ms ∼ 0.3M� would cause a reduction
in field strength. However, there is no compelling theoretical reason that this should
be the case. Observational evidence in support of this hypothesis would require
magnetic activity to decline abruptly in stars later than spectral type M5. The most
favourable evidence for this is that X-ray emission from stars later than M5 has
maximum luminosities that are at least an order of magnitude less than those of M
stars of earlier spectral type (Golub 1983). However, present data are not extensive
enough to prove that a sharp decrease in magnetic activity occurs close to M5. The
observations and theory related to lower main sequence star magnetic fields were
discussed in Chap. 12. Both fully convective and partially convective stars can have
a large-scale magnetic field generated by a dynamo.
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It should be noted that a reduction by a factor of 10 in the angular momentum
loss rate is sufficient to produce a period gap of the observed width (e.g. Spruit and
Ritter 1983). Equation (13.104) has |J̇ | ∝ B4/3

0 |Ṁw|1/3 so, with a coronal base density
(ρ0)w ∝ B0 and ignoring the small change in r̄/Rs generated in (13.104), it follows
that |J̇ | ∝ B5/3

0 . This theory therefore only requires a decrease in B0 by a factor of 4
to cause |J̇ | to drop by the required factor of 10.

Taam and Spruit (1989) argued that a sudden decline in magnetic braking when
the secondary becomes fully convective is more likely to be due to a change in
field configuration, rather than a sudden decrease in field strength. They pointed out
that the spectroscopic data, taken as a whole, indicate a steady decline in magnetic
activity through the M5 spectral type, rather than an abrupt decrease. They noted
that at high rotation rates the irregular variability that is observed may be evidence
for the dynamo operating in higher modes, generating fields with a smaller scale
structure than those occurring in more slowly rotating stars.

The authors hypothesise that when the secondary becomes fully convective
its dynamo process changes to produce fields of higher multipole structure. The
foregoing braking theory of Mestel and Spruit (1987) was employed, except with
the field inside r̄ having a radial dependence of r−m. Equation (13.89) is used to
calculate the angular momentum loss rate, for several values of m corresponding to
different multipoles. The function K(�s/��) is shown in Fig. 13.2. The angular
momentum loss rate declines by a factor of 2000 between a dipole field and an
asymptotically high order field at an orbital period of 3 h. This effect is mainly due
to a decrease in the fraction of the magnetic surface flux that extends out to the
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Fig. 13.2 The dimensionless angular momentum loss rate, K(�s/��), as a function of stellar
rotation period for different multipole orders (reproduced from Taam and Spruit 1989, DOI:
10.1086/167966, with the permission of R.E. Taam and the AAS)
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Fig. 13.3 The fraction of open field lines, f , as a function of stellar rotation period for different
multipole orders (reproduced from Taam and Spruit 1989, DOI: 10.1086/167966, with the
permission of R.E. Taam and the AAS)

Alfvén radius. This fraction of open field lines is

f =
(
r̄

Rs

)2 B(r̄)

B(Rs)
. (13.151)

The variation of f with period is shown in Fig. 13.3. With increasing multipole
order, r̄ moves closer to the stellar surface because the field strength decreases more
rapidly with distance. At high rotation rates, the pressure and the density in the dead
zone are strongly influenced by the centrifugal acceleration, which increases rapidly
with distance from the star. For higher order multipoles, the effect of the centrifugal
acceleration on f is therefore smaller than at low order, and fewer field lines are
open. It should be noted, however that at high rotation rates the point where gravity
and centrifugal force cancel is inside the dead zone. Hence the density of gas in
hydrostatic equilibrium increases outwards in the outer part of this zone. Instabilities
could then lead to the gas escaping from the field in the outer regions, so contributing
to the wind and increasing |J̇ | to some extent.

It should be noted that the mass transfer rates Ṁs discussed in this section are
average rates. Short-time scale variations in Ṁs can occur; for example AM Her
binaries have low states, lasting typically 2 to 3 months, during which |Ṁs| is well
below its average value.
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13.3.7 AM Herculis Systems

The tables of confirmed AM Her binaries shown in Chap. 3 suggest that the period
gap is not as significant for these systems as it is for binaries with essentially non-
magnetic accretors. These tables show that � 23% of the presently known AM Her
systems have periods in the 2–3 hr gap. Li et al. (1994) proposed an explanation for
this when, although fewer systems were known then, a significant fraction appeared
in the gap. They noted that at a distance of 2–3 stellar radii from the secondary
the primary’s magnetic field is likely to significantly affect the wind dynamics,
assuming typical binary parameters and a secondary polar surface field of 140G.
Both stars were taken to have dipolar fields with moments perpendicular to the
orbital plane. For stellar masses of Mp = 0.7M� and Ms = 0.4M�, the wind and
dead zones were found using the criteria of Sect. 13.2.5, so a dead zone occurs when
B2
p /2μ0 > P and a wind zone of open fields lines when P > B2

p /2μ0. Figure 13.4
shows the wind and dead zones in the plane containing the dipole moments. This
illustrates that the wind zones of the secondary are greatly reduced by the presence
of the primary’s magnetic field.

By considering a simple ring model, in which the surface segment between θ01
and θ02 is extended around the stellar surface, an estimate can be made for the
magnetic braking. The foregoing braking theory was applied, using a linear dynamo
law and a range of primary fields, to find −J̇ . The results are shown in Table 13.5,
where (Bp)0 is the primary star’s surface polar field and κ is an estimate of the ratio
of the total open flux of the secondary to the flux of a ring of angular width �θ =
θ02−θ01. It is noted that even for (Bp)0 = 0 the effect of magnetic braking is weaker

θ01

θ02

Dp

Ds

Cs

Wp

Cp

Ws

Fig. 13.4 The wind and dead zones in the plane of the dipole moments. Large dead zones, Dp and
Ds, occur (based on Li et al. 1994)



408 13 Stellar Magnetic Winds

Table 13.5 Reduction in
magnetic braking (from Li
et al. 1994)

(Bp)0 (MG) κ |J̇mb|/|J̇gr|
0 1.0 8.2 × 10−2

10 0.1 6.1 × 10−3

30 3.2 × 10−2 6.7 × 10−4

50 1.0 × 10−2 4.5 × 10−6

70 2.4 × 10−4 2.1 × 10−10

than that of gravitational radiation, as shown in Sect. 13.3.3 for a linear dynamo
law. However, the reduction in |J̇mb| for (Bp)0 > 30MG, illustrated in Table 13.5, is
sufficiently large that magnetic braking would still become negligible in this model
even for the stronger dynamo laws considered in Sect. 13.3. It follows that magnetic
braking would not be sufficient to drive the secondary out of thermal equilibrium
in the AM Her systems, which would therefore evolve via gravitational radiation
through the period gap with mass transfer continuing. This analysis assumes that
the dead zones remain effective at high rotation rates.

13.4 Summary and Discussion

Magnetic braking due to a wind from the secondary star, together with tidal coupling
to the orbit, provides a mechanism to explain the higher mass transfer rates believed
to occur in binaries above the period gap. If the nature of the dynamo generating
the secondary star magnetic field changes as a transition is made from partially
convective to fully convective stars, then a suitable change in magnetic braking may
be able to explain the existence of the period gap.

A better understanding of the nature of dynamos operating in lower main
sequence stars is needed, in order to relate the magnetic field to the rotation rate and
hence improve the calculation of the mass transfer rate due to magnetic braking.

The AM Her systems are particularly noteworthily, since they appear not to
be affected by the period gap. The effect of their strong magnetic fields on the
wind structure of the secondary star is a possible explanation for this, and further
investigation is needed.

References

Campbell, C.G., 1997, MNRAS, 291, 250.
Campbell, C.G., Papaloizou, J.C.B., 1983, MNRAS, 204, 433.
Collier Cameron, A., Robinson, R.D., 1989, MNRAS, 238, 657.
Golub, L., 1983, In IAU Colloquium 71., Activity in Red Stars, eds., Byrne, P.B. and Rodono, M.,

Reidel, 102, 83.
Kippenhahn, R., Weigert, A., 1990, Stellar Structure and Evolution, Springer.
Li, J., Wu, K., Wickramasinghe, D.T., 1994, MNRAS, 268, 61.



References 409

Mestel, L., 1967, in Plasma Astrophysics, ed. Sturrock, P.A., Academic Press, London.
Mestel, L., 1968, MNRAS, 138, 359.
Mestel, L., 2012, Stellar Magnetism, Second Edition, Oxford University Press.
Mestel, L., Spruit, H.C., 1987, MNRAS, 226, 57.
Okamoto, I., 1974, MNRAS, 166, 683.
Paczynski, B., 1967, AcA, 17, 287.
Pallavicini, R., Golub, L., Rosner, R., Vaiana, G.S., Ayres, T., Linsky, J.L., 1981, ApJ, 248, 279.
Parker, E.N., 1963, Interplanetary Dynamical Processes, Interscience, New York.
Pizzo, V., Schwenn, R., Marsch, E., Rosenbrauer, H., Muehlhaeuser, K.H., Neubrauer, F.M., 1983,

ApJ, 271, 335.
Pneuman, G.W., Kopp, R.A., 1971, SoPh, 18, 258.
Rappaport, S., Verbunt, F., Joss. P.C., 1983, ApJ, 275, 713.
Saar, S.H., 1991, in The Sun and Cool Stars: Activity, Magnetism, Dynamos., eds Tuominen, I.,

Moss, D., Rudiger, G., Springer, Berlin, 380, 389.
Sakurai, T., 1985, A&A, 152, 121.
Sakurai, T., 1990, CoPhR, 12, 247.
Schatzman, E., 1962, AnAp, 25, 18.
Skumanich, A., 1972, ApJ, 171, 565.
Spruit, H.C., Ritter, H., 1983, A&A, 124, 267.
Taam, R.E., Spruit. H.C., 1989, ApJ, 345, 972.
Verbunt, F., Zwaan, C., 1981, A&A, 100, L7.
Warner, B., 1995, Cataclysmic Variable Stars, Cambridge University Press.
Weber, E.J., Davis, L., 1967, ApJ, 148, 217.



Chapter 14
Accretion Disc Magnetic Winds

Abstract There is observational evidence that accretion discs in interacting bina-
ries have wind flows emanating from their surfaces, and that the flow tends to
become collimated parallel to the disc rotation axis. It is known that a differentially
rotating, turbulent disc can have a large-scale magnetic field generated by dynamo
action. Magnetically channelledwinds are effective at removing angular momentum
from accretion discs, provided that the initial flow is well sub-Alfvenic and the
poloidal magnetic field has a suitable geometry with a sufficient inclination to the
vertical at the disc surface.

Firstly, the wind launching and field source problems are considered, and wind
structure calculations are reviewed. A detailed analysis of the disc-wind system is
then presented, incorporating a dynamo generated magnetic field, with solutions
for the radial and vertical structures of the disc and for the sub-Alfvénic wind
region. The removal of angular momentum by the wind outflow can make a major
contribution to driving the disc inflow, together with viscosity. A significant amount
of mass can be lost from the inner region of the disc, due to enhanced wind mass
fluxes. Disc models having inflows driven purely by magnetic winds tend to be
subject to a field bending instability, but this can be quenched by allowing for a
temperature dependent turbulent viscosity.

14.1 Introduction

Wind outflows and collimated jets are associated with systems that accrete matter
via a disc. Winds were discovered in high state cataclysmic variables from the
presence of blueshifted absorption troughs and P Cygni profiles in the ultraviolet
resonance lines (Heap et al. 1978; Cordova and Mason 1982). Typical terminal
velocities in the wind lines are near the escape velocity of the primary. In eclipsing
systems the resonance lines that are seen in emission are only partially eclipsed, or
completely unocculted, indicating that the winds are vertically extended (Mauche
et al. 1994). Studies to interpret UV line profiles in high-state disc-dominated
cataclysmic variables indicate that the mass loss rates in the winds can be a
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significant fraction (� 10%) of the accretion rate, and that the winds are strongly
affected by the stellar rotation rate.

It has been suggested that a powerful disc wind may be responsible for the
observed behaviour of SW Sex stars (Honeycutt et al. 1986; Dhillon and Rutten
1995) and that the single-peaked emission line profiles seen in these systems, and
in other nova-like variables, are due to wind-induced velocity gradients in the line
emitting material (Murray and Chiang 1996). Knigge et al. (1997) suggested that
virtually all the lines in the UV spectrum of the typical high-state cataclysmic
variable Z Cam are formed either in the supersonic region of the wind or in the lower
velocity region near the wind interface with the disc photosphere. The extreme UV
spectrum of the dwarf nova U Gem in outburst appears to be dominated by strong
wind features (Long et al. 1996). Long and Knigge (2002) developed a method to
model observed UV wind features and hence relate these to the wind geometries
and mass loss rates. Froning et al. (2003) made a detailed analysis of the observed
wind features of the nova-like cataclysmic variable UX UMa.

Outflow features are also associated with accreting neutron stars in X-ray
binaries. Steady compact jets have been observed to emanate from the cores of these
systems, even at low accretion rates (Fender et al. 2003; Migliari and Fender 2006).

Given the foregoing observations of wind features in binary systems, together
with the association of winds and jets with young stellar objects (T Tauri stars) and
active galactic nuclei (AGN), extensive theoretical studies have been made of disc
associated winds. The high degree of collimation often observed in the outer wind
regions led to the suggestion that large-scale magnetic fields may be of fundamental
importance in the wind flow structure.

The pioneering model of Blandford and Payne (1982) showed that a magnetic
field of suitable geometry that threads the disc can play a vital role in the wind
launching process, and in determining the structure and properties of the wind.
Highly conducting plasma leaving the disc surface will be channelled by the
magnetic field, provided that its initial speed is well below the Alfvén speed. Gas
pressure gradients along the poloidal magnetic field will accelerate matter so that the
flow can reach the sound speed. The position of the sonic point affects the mass flux
flowing into the wind region, as does the temperature of matter at the wind base. As
will be shown below, the poloidal magnetic field inclination at the wind base affects
the position of the sonic point. Beyond this point material is accelerated up to the
Alfvén speed and then to the fast magnetosonic speed. Near and beyond the Alfvén
surface the field distortion due to the flow is increased, and magnetic stresses can
act to vertically collimate the wind. Hence such magnetically influenced winds can
explain the collimation frequently observed in disc outflows. The wind can remove
a significant amount of angular momentum per unit mass from the disc and so make
a major contribution to driving the inflow.

The theory of magnetic disc winds is considered in detail in this chapter,
including the launching process, the magnetic field source, the wind and disc
structures and the stability of the system. Accretion discs occurring in interacting
binary stars are of relevance here, rather than those occurring in T Tauri stars, which
are also believed to have wind flows. T Tauri discs are expected to have differences
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in their structure compared to those in binary systems, since they accrete on to
protostars having much larger radii than those of the compact white dwarfs and
neutron stars occurring in binaries. There are also expected to be differences in
magnetic diffusion mechanisms in the two types of discs. However, despite these
differences, many of the fundamental processes described here for binary star discs
should have relevance to magnetic winds in other disc systems. [Section 14.6.2 is
derived in part fromCampbell (2014), copyright Taylor and Francis, available online
at https://doi.org/10.1080/03091929.2013.870167].

14.2 Magnetic Wind Launching

14.2.1 The Critical Launching Angle

The model of Blandford and Payne (1982) treated the disc as an infinitely thin
boundary. The initial wind flow from the disc is channelled by the poloidal magnetic
field, having an inclination angle of i to the horizontal. The initial flow is subsonic
and well sub-Alfvénic. Fluid elements can be considered to be threaded on the
magnetic field lines and are subject to the stellar gravitational force and centrifugal
force. A cylindrical coordinate system (�, φ, z) can be used, centred on the
accretor. The footpoint of a poloidal magnetic field line is at � = �0, z = 0 and
rotates with the local Keplerian angular velocity of �0 = �K. Blandford and Payne
showed numerically that there is a critical value of i, given by ic = 60◦, such that
for i < ic the centrifugal force exceeds the gravitational force along Bp at the wind
base. Then fluid elements can freely leave the disc and be centrifugally accelerated
to form the wind flow. This simplified picture is shown in Fig. 14.1.

z = 0

z

Fg Fc

Bp

i

^

Fig. 14.1 Idealized picture of poloidal field inclination, showing the gravitational and centrifugal
forces acting on a fluid element

https://doi.org/10.1080/03091929.2013.870167
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The critical launching angle can be derived analytically. The axisymmetric wind
equations are the same as those considered in Chap. 13, but with the disc as the wind
base. Using α = �0 in the energy integral (13.27), together with (13.10) for ρvp/Bp

to eliminate vp in terms of Bp/ρ, gives the Bernoulli integral

H(�, ρ) = ε2B2
p

2ρ2
+ 1

2
� 2�2

0

(
�

�0

)(
�

�0
− 2

)
− GM[
� 2 + z(�)2] 12 + a2 ln ρ,

(14.1)

for an isothermal wind with sound speed a, along a field line with equation z =
z(�). For a well sub-Alfvénic flow � is close to �0 and (14.1) can be written as

H(�, ρ) = ε2B2
p

2ρ2
+ ψ + a2 ln ρ, (14.2)

where

ψ(�) = ψ(�, z(�)) = − GM

[� 2 + z(�)2] 12
− 1

2
�2

0�
2, (14.3)

is the effective potential along a field streamline andBp = Bp(�). The slow and fast
magnetosonic critical points are given by the conditions ∂H/∂� = 0 and ∂H/∂ρ =
0 and, for vp � vA, the slow point merges with the sonic point to high accuracy.
Equation (14.2) and ε = ρvp/Bp yield

∂H

∂�
= v2p

B ′
p

Bp
+ dψ

d�
. (14.4)

Noting that v2p |B ′
p|/Bp ∼ v2p/� � a2/� in the subsonic region, this term is small

compared to either term in dψ/d� and hence the sonic point condition becomes

dψ

ds
= B̂p · ∇ψ = 0, (14.5)

where s is the distance along a poloidal field line from its base.
The effective potential along a field line can be expressed as

ψ(s) = −GM
�0

[
�0

(� 2 + z2) 12
+ 1

2

(
�

�0

)2
]
, (14.6)

with

� = �0 + (1 + tan2 i)−
1
2 s, (14.7)

z = tan i(1 + tan2 i)−
1
2 s. (14.8)
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The sonic point condition (14.5), and expansion to second order in s/�0, then yields

s

�0

[
3

2
q(1 + 3q2)

s

�0
+ 4q2 − 1

]
= 0, (14.9)

where q = (1 + tan2 i)−1/2. This gives two roots for s/�0, and so for z/�0, as

z

�0
= 0 (14.10a)

and

z

�0
= 2

3

tan i(tan2 i − 3)

(tan2 i + 4)
. (14.10b)

Hence there are two points at which the gravitational force and the centrifugal force
along Bp cancel. The second solution is only valid for tan i >

√
3 and so for i >

ic with ic = 60◦. This is the sonic point, which will be shown to be an unstable
equilibrium point. The solution z = 0 expresses the fact that the gravitational and
centrifugal forces balance in the disc, independently of i. For i → ic the sonic point
merges with the z = 0 solution.

The stability of the balance points is determined by the sign of d2ψ/ds2.
Equations (14.6)–(14.8) give

d2ψ

ds2
= −GM

� 3
0

[
3

(
q + s

�0

)2

Q− 5
2 −Q− 3

2 + q2
]
, (14.11)

where

Q = 1 + 2q
s

�0
+ s2

� 2
0

. (14.12)

This gives

(
d2ψ

ds2

)
s=0

= GM

� 3
0

(tan2 i − 3)

(tan2 i + 1)
. (14.13)

It follows that for i > ic the mid-plane balance point is a minimum, since
d2ψ/ds2 > 0, and hence is stable. For i < ic this point becomes a maximum,
since then d2ψ/ds2 < 0, and hence is unstable. Using (14.8) and (14.10b) to obtain
s/�0 at the sonic point in (14.11), and expanding to leading order in s/�0, yields

(
d2ψ

ds2

)
sn

= −GM
� 3

0

(5 tan2 i − 8)(tan2 i − 3)

(tan2 i + 1)(tan2 i + 4)
. (14.14)

For i > ic the sonic point lies above the disc and is unstable, being a maximum
in ψ .
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The foregoing results show that for i > ic there is a potential barrier that matter
must surmount in passing from the minimum in ψ at z = 0 to the maximum at
z = zsn. Gas pressure gradients can do the work necessary to allow matter to reach
the sonic point, and beyond this the centrifugal force accelerates it outwards. For
i → ic the sonic point merges with the mid-plane equilibrium point, so there is no
potential barrier to the flow. For i < ic there is only one balance point, at z = 0,
and this is unstable. In this case the magnetically channelled wind can flow from the
disc surface with minimal thermal assistance.

It will be shown later that allowing for the finite thickness of the disc leads
to two sonic points above the disc, one for i > ic and the other for i < ic.
These correspond to two branches with different dependences on i and asymptotic
behaviour as i → ic.

14.2.2 Magnetic Sources and Poloidal Field Bending

The generation of a magnetically channelled wind, that can effectively remove
angular momentum from the disc, requires the presence of a large-scale poloidal
magnetic field of suitable geometry. Such a field must be maintained against
dissipative processes in the disc, and this requires an effective source. There are
two main sources that can be considered for such a field.

Firstly, for a binary star disc, the accretion stream that feeds the disc may be
able to supply magnetic field, advected from the secondary star. It was seen in
Chap. 12 that it is very likely that the secondary star has a large-scale magnetic field,
generated by a dynamo, with surface values of several kG. Poloidal magnetic field,
with a significant vertical component, might be advected by the accretion stream
from the L1 region to the outer edge of the disc. If this occurred, then a suitable
field source would exist where the stream meets the disc. The question then arises
as to whether this field can be advected inwards through the disc without significant
decay due to dissipative processes.

For an axisymmetric situation, the source of the poloidal magnetic field in the
disc would be an azimuthal current density, Jφ . This current source would dissipate,
due to the conductivity of the disc, at a rate per unit volume of μ0ηJ

2
φ . For a disc

of height h, and for significant field bending, the poloidal magnetic field varies with
a vertical length-scale of ∼ h and hence it follows that Jφ ∼ Bp/μ0h. The energy
density of the field, given by B2

p /2μ0, decreases with a decay time-scale of τd ∼
h2/η. This must be compared with the poloidal field advection time-scale needed
for the inflow to carry the field a distance � = �D − � into the disc, where �D

is the cylindrical coordinate of its outer edge. This time-scale is τv ∼ �/|v� |. If
the magnetic field is to reach the internal radius � without significant decay, then
the condition τd � τv must be satisfied. Using the above expressions for τd and
τv , shows that this condition requires a typical disc inflow speed to satisfy |v� | >
(�/h)(η/ν)εTcs for the advected magnetic field to reach a point having � � �D.
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This condition on |v� | employs a parametrized turbulent viscosity of ν = εTcsh,
with εT < 1 and cs the isothermal sound speed. A typical disc, with �/h = 50,
η/ν � 1 and εT = 5 × 10−2, gives the requirement that |v� | � cs. It will be shown
that the extraction of angular momentum by a disc wind can lead to values of |v� |
significantly larger than those occurring in the viscously driven case of |v� | � ν/� ,
but still well subsonic. Also, the consistency of thin accretion disc theory requires
subsonic inflows.

This estimate indicates that, even if a suitable poloidal magnetic field could
be supplied via the accretion stream, it would not survive dissipative processes
in its passage through the disc, since its inward advection would not be fast
enough. However, it was suggested by Rothstein and Lovelace (2008) that effective
advection of poloidal magnetic field may be possible due to the action of the outer
layers of the disc. It was argued that in the outer lower pressure region of the disc
B2/2μ0P > 1 could hold, so the magnetorotational instability would not operate
and hence this region would not be turbulent. The much lower values of η would
result in much longer magnetic decay times than those in the main body of the
disc. Assuming that most of the Jφ source of Bp is located in the non-turbulent
outer layers, then Bp could be effectively advected inwards before significant decay
occurred.

Although a magnetized accretion stream, together with effective field advection
through the disc, cannot be excluded as a possible field source, dynamo action in
discs is very likely to occur. It was seen in Chap. 11 that α�-type dynamos can
operate in accretion discs to produce large-scale magnetic fields. The radial shear,
turbulence and vertical stratification favour dynamo action. With the antisymmetric
α function negative above the midplane, steady dipole symmetry magnetic fields
can be produced which have the geometry required for an effective magnetic wind.
Campbell (1999), Rekowski et al. (2000) and Reyes-Ruiz (2000) showed that an
α� dynamo can produce steady dipole symmetry magnetic fields in accretion discs.
If a suitable poloidal magnetic field has been generated then it must be sufficiently
inclined to the vertical at the disc surface, directed away from the rotation axis, for a
significant wind mass flux to be produced. It was shown that inclination angles not
far from the critical value of ic = 60◦ are required.

If the disc is threaded by a nearly vertical magnetic field, then the inflow causes
this to bend outwards. The bending angle achieved depends on the balance between
inward field advection and outward slippage due to diffusion. Poloidal field bending
by the inflow was considered in Sect. 9.2.2., in the context of a poloidal magnetic
field originating from the accretor threading the disc. The ratio |v� |h/η determines
the field bending and, for a typical viscously-driven disc, this is small. However,
Campbell et al. (1998) showed that, for the case of a disc magnetic field generated
by an α� dynamo, poloidal field bending can be enhanced. The bending ratio
then becomes (|v� |h/η)g(K), where K3 is the dynamo number. If K3 is close
to its critical value, then the factor g(K) can significantly enhance poloidal field
bending. It will be shown below that, even if K3 is not close to its critical value, the
enhancement of |v� | due to wind magnetic braking of the disc can lead to values



418 14 Accretion Disc Magnetic Winds

z

z = h

^

vP // BP

v

Fig. 14.2 A dipole symmetry magnetic field, bent by the inflow through the disc (not to scale)

of |v� | significantly above those generated by viscosity. Figure 14.2 shows the
required geometry for the poloidal magnetic field to accommodate wind launching.

14.3 The Wind Structure

In the model of Blandford and Payne (1982) the disc was treated as a boundary of
ignorable thickness which is differentially rotating with a Keplerian angular velocity
distribution. Self-similar solutions were found for the wind structure, assuming a
polytropic relation between the pressure and density. The flow passes through a
sonic point and then through an Alfvén point. A similar approach was used by
Ferreira (1997), but with some consideration of the effect of the vertical equilibrium
in the disc in relation to mass loading into the wind.

Heyvaerts and Norman (1989) considered steady, axisymmetric winds from
accretion discs, with a poloidal field threading the disc of unspecified origin but
of the required geometry. They made a detailed study of the transfield equation,
which involves directions normal to the lines of Bp in meridional planes. They
concluded that axisymmetric MHD winds, with no closed field line topologies, tend
to collimate along the disc rotation axis. Non-singular solutions with a finite poloidal
current density lead to cylindrically collimated flows due to horizontal gradients
of B2

φ .
Pelletier and Pudritz (1992) analysed the wind structure for a disc containing

a poloidal magnetic field with a power law flux function ψm ∝ �n. The disc
viscosity and magnetic diffusivity were not included. Magnetic pinch forces tended
to collimate the wind flow parallel to the rotation axis.

Stone and Norman (1994) performed numerical simulations of wind flows from
a disc with ν = 0 and η = 0 threaded by a vertical magnetic field, with an
adiabatic equation of state. Firstly, the case of an initially sub-Keplerian disc with
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B2/2μ0P � 1 was considered. A strong Bφ field is generated and magnetic
pressure gradients result in highly collimated, jet-like outflows. The disc initially
collapses, due to magnetic braking, but this is halted due to the centrifugal barrier
that develops. With a Keplerian rotation profile and B2/2μ0P � 1, rapid collapse
of the inner disc again occurs due to magnetic braking. This effect can be reduced if
a larger difference is adopted between the disc density and that of its surroundings.
Finally, simulations were performed with � = �K and B2/2μ0P � 1. The disc is
then subject to the magnetorotational instability. Radially channelled streams result
in the surface regions of the disc, with high angular momentum material moving
outwards and material of lower angular momentum moving inwards.

A self-similar solution for the disc and wind structure was found by Li (1995). A
poloidal magnetic field was assumed to be advected inwards through a diffusive
disc. Zero disc viscosity was assumed, so magnetic stresses drive the inflow.
A polytropic equation of state was employed. Wind solutions result which pass
through the critical points and become collimated. The magnetic field strength is
a free parameter and a sufficiently strong field must be assumed for the initial flow
to be sub-Alfvénic. In order to bend such a field, and launch the wind, the required
inflow speed becomes supersonic. It will be shown below that such problems can be
overcome by the consideration of a dynamo-generated magnetic field.

Ogilvie (1997) considered a thin differentially rotating disc threaded by a
poloidal magnetic field of unspecified source. The idealized case of no magnetic
diffusivity or viscosity was analysed. A polytropic relation was taken connecting
the pressure and density. The poloidal velocity was initially ignored and isorotation
was assumed, so no Bφ field is produced. Because the source of Bp was not
specified, fields of different strengths can be considered. An asymptotic analysis
was performed, using the thin disc aspect ratio as a small parameter.

Firstly, the case of a weakly magnetized disc was considered, defined by
B2/2μ0P � 1. The angular velocity is then Keplerain to leading order, but is
altered to first order by the radial magnetic force. The magnetic field bends vertically
through the disc and joins to an external field which is straight for |z|/� � 1. For
a field inclination to the horizontal of i < 60◦, the sum of the gravitational and
centrifugal potentials reaches a maximum above the disc along a field line. This
maximum represents the slow magnetosonic point for the wind flow.

For strongly magnetized discs, having B2/2μ0P � 1, the disc angular velocity
differs from a Keplerian form at leading order in h/� . The disc is strongly
compressed by the vertical magnetic force, which dominates the vertical component
of gravity, so the vertical equilibrium becomes a balance between the vertical
pressure gradient and the vertical magnetic force. A slow magnetosonic point may
exist in the wind region, but only at a height z � h. Hence significant wind mass
fluxes are unlikely to occur in this strong magnetic regime.

The case of weak magnetization can be adapted to allow for viscosity, magnetic
diffusivity and an inflow, but only with the transport coefficients being a factor of
h/� smaller than those used in standard accretion disc theory. The main problem
that arises for such a model is that nearly all the accretion energy released is carried
away by the wind. The rate of dissipation in the disc is too small by a factor of
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∼ h/� to release the accretion energy, since ν and η are smaller by this factor.
Hence a disc with essentially no radiative emission results. However, such idealized
models can illustrate some of the essentials of the required poloidal field geometry
which are related to wind launching.

Ouyed and Pudritz (1997a,b, 1999) performed numerical simulations of mag-
netic disc winds, allowing for different initial conditions and following the time
development of the flow. The wind becomes super-Alfvénic and reaches terminal
velocities of the order of the Keplerian velocity at the disc base. Most of the
energy in the outflow is shared between the poloidal kinetic energy and the toroidal
magnetic energy. Initially, torsional Alfvén waves build up a radial gradient of
toroidal magnetic pressure that adjusts the structure of the coronal magnetic field to
give favourable launching angles. The flow is centrifugally ejected beyond the sonic
point. Beyond the Alfvén surface the poloidal magnetic field becomes collimated
parallel to the vertical axis due to the generation of a strong Bφ component. Some
time-dependence remains, with episodic jets and knot structures being generated.

Ogilvie and Livio (2001) presented a solution for the vertical structure of the disc,
incorporating the thermal problem with radiative transfer. This enables the wind
loading process to be considered in more detail. As in all the foregoing studies, an
unspecified source of poloidal magnetic field was assumed. A power law opacity
was taken and the local disc solution was matched to a simple atmospheric model.
Since the strength of the magnetic field is undetermined, strong and weak cases
can be considered. Sub-thermal magnetic fields are consistent with the generation
of turbulence via magnetorotational instabilities and wind launching is possible for
moderate values of B2/2μ0P < 1. The mass loss rate increases with the poloidal
field inclination, but the solution branch terminates before excessive mass loss
results. For a well sub-Alfvénic initial flow, the poloidal field is locally straight
in the subsonic wind region, consistent with a nearly force-free structure.

Fendt and Cemeljic (2002) considered time-dependent winds, but allowing for
some magnetic diffusivity in the wind region. This has the effect of reducing the
degree of collimation and increasing the wind terminal velocities. Tzeferacos et al.
(2009) construct self-similar solutions for varying degrees of disc magnetisation,
measured by B2/2μ0P . Steady collimated flow resulted for B2/2μ0P < 1.

Casse and Keppers (2002) solved the magnetic wind equations numerically,
without the assumption of self-similarity. They incorporated some disc structure
features, including a vertically varying form for η. The wind flow passes through
the critical points and becomes magnetically collimated. The numerical study of
Sheikhnezami et al. (2012) also considered a vertically varying η, but allowed for
different poloidal and toroidal diffusivities. Lower values of diffusivity resulted in
higher mass loading into the wind.

Zanni et al. (2007) considered a disc with zero viscosity but with a magnetic
diffusivity of the form η = αm(vA)z=0h exp(−2z2/h2). A cooling term was
included in the heat equation and a polytropic equation of state was adopted. Self-
similar solutions were considered, with a slightly sub-Keplerian rotation profile. The
magnetic diffusivity was incorporated into the poloidal component of the induction
equation, and a poloidal field was taken to thread the disc with B2

p /2μ0 � P in



14.3 The Wind Structure 421

the mid-plane. The surrounding atmosphere was taken to have an initial polytropic,
spherically symmetric structure. The computational domain was defined by 0 < r <
40r0 and 0 < z < 120r0, with r0 being the stellar radius. Zero gradients were taken
for P , ρ and vp ar r = 40r0. The simulations were run for a time of � 63PK(r0).
The outer parts of the disc did not attain equilibrium, but the relevant region was
well inside this.

Firstly, simulations for the case of αm = 1 were run. A quasi-steady wind
flow developed with a well ordered poloidal magnetic field. The wind flow passed
through well separated critical points. Simulations were then run for αm = 0.1. A
highly unsteady wind flow resulted, with a poloidal magnetic field having a wavy
structure. This behaviour was related to the lower values of η resulting in disc inflow
advection effects having a stronger influence than diffusion. The incorporation of an
anisotropic magnetic diffusivity resulted in less erratic behaviour.

Stepanovs and Fendt (2014) investigated the outflows generated from an inviscid
disc which has separate magnetic diffusivities for the poloidal and toroidal field
components. Numerical simulations were performed using spherical coordinates.
An input magnetic field was imposed, so the magnetization ratio B2/2μ0P could
be varied. If this ratio was taken to be uniform, then a self-similar structure resulted.
The disc structure was resolved, and the wind flow became centrifugally launched
beyond the sonic point. The disc angular velocity maintained a Keplerian profile.
Wind flows became collimated parallel to the spin axis. Some poloidal field bending
instability was observed, but this became stabilized for higher η values. Such
instabilities will be discussed later.

A review of the numerical simulation techniques used in magnetic disc wind
calculations is included in the review of Pudritz et al. (2007).

All the above studies assumed that the required magnetic field is advected
inwards from a source at the outer edge of the disc. However, as seen in Chap. 11,
accretion discs are believed to possess some form of dynamo process which
generates and maintains large-scale magnetic fields. Dynamo models can generate
a magnetic field of dipolar symmetry, which is suitable for wind launching and
angular momentum transport. Such a model was employed by von Rekowski et al.
(2003) to study wind outflows. An α2� dynamo model was used in the disc, with
a quenching term in α and a turbulent form for η. The α function was taken to
be negative above the disc mid-plane, so a dipole symmetry B field results. A
polytropic equation of state was used in the disc and wind regions, with a specific
entropy that is smaller in the disc. The equations were solved numerically, and the
outer boundaries did not have a significant effect on the computational domain.
When the dynamo generated magnetic field in the disc was sufficiently strong, a fast
magneto-centrifugal driven outflow developed in the inner parts of the disc, and a
slow pressure-driven outflow occurred in the outer parts.

A solution was found by Campbell (2003, 2005) for the radial and vertical
structures of the disc and the sub-Alfvénic region of the wind, incorporating a
dynamo to generate the magnetic field. The essential properties of the outer wind are
also considered. The possible development of inner jet solutions and the stability of
the disc-wind system can then be investigated. The analysis below is based on this
work.
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14.4 The Disc-Wind System

14.4.1 The Disc Magnetic Field

A dipole-symmetry magnetic field facilitates wind flows from the disc, with
an associated transport of angular momentum. An α� dynamo, with the anti-
symmetric α function negative for z > 0, leads to steady magnetic field solutions
that have dipole-symmetry. A simple step function form can be used for α, given by

α(�, z) =

⎧⎪⎪⎨
⎪⎪⎩

−α̃(�), 0 < z < h,

0, z = 0,

α̃(�), −h < z < 0,

(14.15)

with α̃ > 0 and parametrized by

α̃ = εcs, (14.16a)

cs =
(R
μ
Tc

) 1
2

, (14.16b)

where ε is an rms turbulent Mach number having ε < 1. A turbulent magnetic
Reynolds number can be defined as

Nα = α̃h

η
(14.17)

and hence the magnetic diffusivity can be expressed as

η = ε

Nα
csh. (14.18)

The radial derivative diffusion terms and most of the advection terms can be
ignored in the mean-field induction equation, giving the poloidal and toroidal
components as

v�Bz + η∂B�
∂z

− αBφ = 0, (14.19)

η
∂2Bφ

∂z2
= −��′

KB� . (14.20)

The poloidal component (14.19) represents a balance between field advection due to
the inflow, turbulent diffusion and the creation of poloidal field from toroidal field
due to the α-effect. The toroidal component (14.20) describes a balance between
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the vertical diffusion of Bφ and its creation due to the radial shearing of B� . The
magnetic terms in the� -component of the momentum equation are small relative to
the radial gravity term so, apart from in a boundary layer close to the stellar surface,
the disc angular velocity has the Keplerian form

� = �K(�) =
(
GM

� 3

) 1
2

. (14.21)

The elimination of B� between (14.19) and (14.20) yields

∂3Bφ

∂z3
+ ��

′
Kα

η2
Bφ = ��′

K

η2
v�Bz. (14.22)

To leading order in h/�0, Bz is independent of z in the disc, so Bz = Bzs(�0) with
a field line meeting the disc mid-plane at (�0, 0). The forms of α and η, together
with the very slow variation of h/�0, facilitate the separable solutions

Bφ(�, z) = Bφs(�0)fφ(ζ ) (14.23)

and

v� (�, z) = v� c(�0)fv(ζ ), (14.24)

where the subscript c refers to the central plane z = 0 and ζ = z/h. It follows that

fφ(1) = 1. (14.25a)

fv(0) = 1. (14.25b)

The substitution of the separable forms (14.23) and (14.24) in the toroidal field
equation (14.22) leads to

f ′′′
φ +Dfφ = −DFfv, (14.26)

where the dynamo number

D = 3�Kα̃h
3

2η2
(14.27)

and

F = v� cBzs

α̃Bφs
. (14.28)
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Self consistent solutions can be found for D and F independent of � . Suitable
boundary conditions for fφ(ζ ) are

fφ(0) = 0, f ′′
φ (0) = 0, (14.29a)

f ′
φ(1) = 0. (14.29b)

The first two conditions give the vertical anti-symmetry of Bφ and B� , while the
last condition arises from the matching of the disc field to the nearly force-free field
of the initial wind region. An axisymmetric force-free field satisfies

Bp · ∇(�Bφ) = 0 (14.30)

and, since the vertical derivative term dominates, this gives

(
∂Bφ

∂z

)
z=h

= 0 (14.31)

so the use of (14.23) for Bφ yields f ′
φ(1) = 0.

Equation (14.26) relates fv to fφ . These functions will also be related by the
angular momentum equation. It will be shown that most of the variation of fv(ζ )
occurs near the disc surface. The approximation fv(ζ ) � 1 can therefore be used
in (14.26) when solving for fφ(ζ ) and the solution can be employed in the relevant
equations to solve for fv(ζ ). The slow variation of fv(ζ ), apart from near ζ = 1,
can then be confirmed. Accurate solutions for fφ and fv result. With fv(ζ ) � 1, the
solution of (14.26) can be written as

fφ = y − F, (14.32)

where y satisfies the homogeneous equation

y ′′′ +K3y = 0, (14.33)

with boundary conditions

y(0) = F, y ′′(0) = 0, (14.34a)

y ′(1) = 0 (14.34b)

and

K = D 1
3 = h

�z
, (14.35)
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where �z is the vertical length-scale of Bφ in the disc. The solution of (14.33),
satisfying the boundary conditions, is

y(ζ ) = 2√
3

F

Q
eK/2

[
e−K(ζ−1) cos

(√
3

2
K + π

6

)

+eK(ζ−1)/2

{
cos

(√
3

2
Kζ − π

6

)
+ e3K/2 cos

(√
3

2
K(ζ − 1)+ π

6

)}]

(14.36)

with

Q = 1 + 2e3K/2 cos

(√
3

2
K

)
. (14.37)

The constant F is determined by the boundary condition fφ(1) = 1 as

F(K) = 1 + 2e3K/2 cos(
√
3K/2)

2eK [sinhK − 2 sinh(K/2) cos(
√
3K/2)] . (14.38)

Figure 14.3 shows the function fφ(ζ ). Using (14.16a) for α̃ and (14.18) for η
in (14.27) for D = K3 gives

�Kh

cs
= 2

3

εK3

N2
α

. (14.39)
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Fig. 14.3 The vertical variation of the disc azimuthal magnetic field (from Campbell 2003)
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This, together with (14.18) for η, and (14.20) with (14.23) connecting Bφ to B� ,
yields

B� = Nα

K3Bφsf
′′
φ = B� s(�0)

f ′′
φ (ζ )

f ′′
φ (1)

. (14.40)

The poloidal field inclination at the disc surface is defined by

tan is = Bzs

B� s
. (14.41)

The amount of poloidal field bending is determined by a balance between
the advective effect of the inflow and vertical diffusion. The field equa-
tions (14.19), (14.23), (14.26) and (14.28) lead to

∂B�

∂z
= v� cBzs

ηK3F
f ′′′
φ . (14.42)

Integrating this over 0 ≤ z ≤ h, using the boundary condition f ′′
φ (0) = 0, then

yields

Bzs

B� s
= 1

I

η

|v� c|h, (14.43)

where the dynamo number function I (K) is given by

I (K) = |f ′′
φ (1)|
K3F

= eK/2[e3K/2 − 2 cos(
√
3K/2 + π/3]

K[1 + 2e3K/2 cos(
√
3K/2)] . (14.44)

Equations (14.40) and (14.41) give

Bφs

Bzs
= K3

Nαf
′′
φ (1) tan is

, (14.45)

while it follows from (14.18) for η, together with (14.41) and (14.43) for the field
component ratio, that the central plane inflow speed can be expressed as

v� c = − εcs

NαI tan is
. (14.46)

It will be shown that the inflow speed is always subsonic, but is a larger fraction of
cs than in the standard viscously driven disc.
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14.4.2 The Sub-Alfvénic Wind Region Magnetic Field

The foregoing solution for the disc magnetic field must match to a field solution
for the initial part of the wind flow at the disc surface. For the magnetic torque to
be significant, the Alfvén surface must lie well beyond the disc surface, such that
� 2

A /�
2
s � 1, so magnetic stresses dominate. The magnetic field in the initial part

of the wind will then be nearly force-free, particularly in the region between the disc
surface and the sonic surface. The magnetic field then satisfies the equation

(∇ × B)× B = 0. (14.47)

The poloidal field can be expressed in terms of a flux function ψm by

Bp = ∇ ×
(
ψm

�
φ̂

)
= 1

�
(∇ψm)× φ̂, (14.48)

so ensuring that, for an axisymmetric field, ∇ · B = 0. The field components are

B� = − 1

�

∂ψm

∂z
, (14.49a)

Bz = 1

�

∂ψm

∂�
(14.49b)

and it follows that

Bp · ∇ψm = 0. (14.50)

Substituting the components (14.49a) and (14.49b) in the force-free field condi-
tion (14.47) leads to the equation

�
∂

∂�

(
1

�

∂ψm

∂�

)
+ ∂2ψm

∂z2
= −1

2

d

dψm
(W 2), (14.51)

where

W(ψm) = �Bφ. (14.52)

Then (14.50) and (14.52) give the force-free condition (14.30), used to determine
the disc surface condition f ′

φ(1) = 0.
The wind field must match the dynamo generated disc field at z = h for all � .

This can be achieved by taking a flux function of the form

ψm = C� 3
4 f (ζ ), (14.53)
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where C is a constant. It will be shown that, to a very good approximation, h =
K̄� can be used here where K̄ is a constant. The poloidal field components follow
from (14.49a) and (14.49b) as

B� = −�
h
C�− 5

4 f ′, (14.54a)

Bz = C�− 5
4

(
3

4
f − ζf ′

)
, (14.54b)

where f ′ = df/dζ , and hence
Bz

B�
= −3

4

h

�

f

f ′ + h

�
ζ. (14.55)

Since Bz/B� ∼ 1 and (h/�)ζ � 1 in the region of relevance, the last term
in (14.55) is ignorable. Hence (14.54a) and (14.54b) give

B� = −�
h
C�− 5

4 f ′, (14.56a)

Bz = 3

4
C�− 5

4 f, (14.56b)

and

Bz

B�
= −3

4

h

�

f

f ′ . (14.57)

Substituting the form (14.53) for ψm in the field equation (14.51) leads to the
separated equations

f ′′ − 15

16

h2

� 2 f = D̄f− 5
3 (14.58)

and

d

dψm

(
W 2
)

= −2
C

8
3 D̄

K̄2
ψ

− 5
3

m , (14.59)

where D̄ is a constant. Integrating (14.59) and using (14.53) for ψm yields

Bφ = −
(
3D̄

K̄2

) 1
2 C

�
5
4 f

1
3

. (14.60)

Matching the wind field to the disc field determines C and D̄.
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Using the scaling

f (1) = 1 (14.61)

and equating Bz from (14.56b) to the dynamo surface field Bzs gives

C = 4

3
�

5
4
s Bzs. (14.62)

Equating (14.40) for B� in the disc to the wind component given by (14.56a) at
z = h, then using (14.60) to eliminate Bφs, yields

f ′(1) = −Nα
K3

|f ′′
φ (1)|(3D̄)

1
2 . (14.63)

Another expression for f ′(1) follows from the surface value of the poloidal field
component ratio (14.57) as

f ′(1) = −3

4

1

tan is

h

�
. (14.64)

Equating these expressions for f ′(1) and using (14.45) for Bφs/Bzs gives

D̄ = 3

16

(
Bφs

Bzs

)2
h2

� 2
(14.65)

and hence (14.58) becomes

f ′′ − 15

16

h2

� 2 f = 3

16

(
Bφs

Bzs

)2
h2

� 2 f
− 5

3 . (14.66)

Using (14.62) for C and (14.65) for D̄ in (14.56a), (14.56b) and (14.60), gives
the wind field components as

B� = B� s

(�s

�

) 5
4 f

′(ζ )
f ′(1)

, (14.67)

Bφ = Bφs
(�s

�

) 5
4 1

f (ζ )
1
3

, (14.68)

Bz = Bzs
(�s

�

) 5
4
f (ζ ). (14.69)

The surface components can be found from the disc equations.
This leaves f (ζ ) to be determined by solving (14.66) subject to the boundary

conditions (14.61) and (14.64) for f (1) and f ′(1). The dynamo solutions will have
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a field winding ratio |Bφs/Bzs| < 1 and the wind region has f ∼ 1. Hence the last
term in (14.66) is ignorable to a good approximation and the solution is

f (ζ ) = cosh[k(ζ − 1)] − 3√
15

1

tan is
sinh[k(ζ − 1)], (14.70)

where

k =
√
15

4

h

�
. (14.71)

The smallness of D̄ corresponds to Jφ being small compared to Jp, so Bp is
approximately current-free, but Bφ is finite and satisfies the force-free condition
Bp · ∇(�Bφ) = 0.

The field line equations can be derived from

dz

d�
= hdζ

�
+ h

�
ζ = Bz

B�
(14.72)

and (14.55) for Bz/B� then gives

df

f
= −3

4

d�

�
. (14.73)

Using f (1) = 1, this integrates to yield the field line equation

f (ζ ) =
(�s

�

) 3
4
, (14.74)

with f (ζ ) given by (14.70). Equation (14.71) shows that k � 1 and using the
second order Taylor expansion of the solution (14.70) in (14.74) gives

�

�s
= 1 + 1

tan is

h

�
(ζ − 1)− 5

8

(
1 − 7

5 tan2 is

)
h2

� 2 (ζ − 1)2, (14.75)

valid for ζ � �/h. To first order in h/� , the field lines are straight in this region
and have the equation

�

�s
= 1 − 1

tan is

h

�s
+ 1

tan is

z

�s
. (14.76)

The field line curvature is a second order effect and it can be shown that it changes
sign from the disc to the wind region. The vertical length-scale of B� changes from
∼ h in the disc to ∼ � in the wind and the field line inflects so that it starts to bend
towards the vertical axis in the wind region. Numerical simulations of the wind flow
also show this inflection in the poloidal magnetic field.
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14.4.3 Angular Momentum Transport and Mass Conservation

Combining the φ-component of the momentum equation with the continuity
equation gives

∂

∂�0

(
�0ρv��

2
0�
)

+ ∂

∂z

(
�0ρvz�

2
0�
)

= ∂

∂�0

(
ρν� 3

0�
′)+ 1

μ0

∂

∂z

(
� 2

0BφBz

)
.

(14.77)

This relates the divergence of the angular momentum flux to the viscous and
magnetic torques. For a dipole symmetry magnetic field, the radial magnetic
transport term involving the B�Bφ stress makes a small contribution compared to
the BφBz stress term, so it has not been included in (14.77). A turbulent magnetic
Prandtl number is defined as

Np = ν

η
(14.78)

and then using (14.18) for η gives the turbulent viscosity as

ν = εNp

Nα
csh. (14.79)

The condition for a small mass loss rate from the disc surfaces is

4π� 2
0 ṁ

Ṁ
� 1, (14.80)

where ṁ is the wind mass flux through the sonic point and

Ṁ = −4π
∫ h
0
�0ρv�dz (14.81)

is the total mass flow rate through the disc. To leading order in h/� , (14.67), (14.69),
(14.70) and (14.75) for B� , Bz, f (ζ ) and the field line relation for �/�s show
that Bp = (B2

� + B2
z )

1/2 is conserved along Bp and, since ρvp/Bp is conserved, it
follows that ρvp is conserved. Hence the mass flux through the sonic point can be
expressed as

ṁ = (ρvp)sn = (ρvp)s = (1 + tan2 is)
1
2

tan is
(ρvz)s. (14.82)

If the small mass loss condition (14.80) is satisfied then the ρvz angular momentum
flux term is ignorable relative to the ρv� term in (14.77). Also, mass conservation
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in the disc gives

Ṁ(z) = −2π
∫ z

−z
�0ρv�dz, (14.83)

with the total mass transfer rate being Ṁ = Ṁ(h). The vertical integration of the
angular momentum equation (14.77) then gives

∂

∂�0

[
1

2π
Ṁ(z)� 2

0�+� 3
0�

′ν�
]

+ 2

μ0
� 2

0BφBz = 0, (14.84)

where the antisymmetry of BφBz has been used and

�(�0, z) =
∫ z

−z
ρdz. (14.85)

The viscous torque leads to an outward radial transport of angular momentum in
the disc, in the usual way. Themagnetic torque, involving theBφBz stress, facilitates
the vertical transport of disc angular momentum into the wind flow. The wind flow
angular momentum transport conservation equation at the disc surface is

ρvz

Bz
� 2

s �K(�s)− �s

μ0
Bφs = ρvz

Bz
� 2

A�K(�s), (14.86)

this being consistent with a trans-Alfvénic flow (see Sect. 13.2.2). For effective
angular momentum transport from the disc via the wind, the condition� 2

A /�
2
s � 1

is required and hence the magnetic transport term dominates in (14.86) to give

�0

μ0
BφsBzs = − tan is

(1 + tan2 is)
1
2

ṁ� 2
A�K(�0), (14.87)

where (14.82) has been used for (ρvz)s and the central plane coordinate �0 can
replace the disc surface coordinate �s to leading order. Using (14.87) to eliminate
Bφs in (14.23) for Bφ , and noting that Bz is independent of z to leading order in the
disc, gives the disc magnetic torque per unit radial length as

2

μ0
� 2

0BφBz = − 2 tan is

(1 + tan2 is)
1
2

ṁ� 2
A�0�K(�0)fφ(ζ ). (14.88)

It will be shown that is and ṁ� 2
A are very weakly dependent on �0, except close

to the stellar surface, and hence (14.88) can be incorporated into the disc angular
momentum equation (14.84) to give

∂

∂�0

[
1

2π
Ṁ(z)� 2

0�K +� 3
0�

′ν� − 4 tan is

(1 + tan2 is)
1
2

ṁ� 2
A�

2
0�Kfφ(ζ )

]
= 0.

(14.89)
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The standard condition at the outer edge of the boundary layer above the stellar
surface is

(
�′ν�

)
�=R+δ = 0, (14.90)

for a boundary layer width of δ � R. Integrating (14.89) and applying this condition
leads to

ν� =
[
Ṁ(z)

3π
− 8 tan is

3(1 + tan2 is)
1
2

ṁ� 2
A fφ(ζ )

][
1 −

(
R

�0

) 1
2
]
. (14.91)

The density can be expressed in the separable form

ρ(�0, z) = ρc(�0)fρ(ζ ), (14.92)

with the central plane conditions

fρ(0) = 1, f ′
ρ(0) = 0. (14.93)

Equations (14.24) for v� and (14.92) for ρ enable (14.83) to be written as

Ṁ(z) = Ṁ

I1

∫ ζ
0
fρfvdζ, (14.94)

with

Ṁ = −4πI1�0ρcv� ch (14.95)

and

I1 =
∫ 1

0
fρfvdζ. (14.96)

Equation (14.85) becomes

�(�0, z) = �s(�0)

I2

∫ ζ
0
fρdζ (14.97)

with

�s = 2I2ρch (14.98)
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and

I2 =
∫ 1

0
fρdζ. (14.99)

Using (14.97) for �/�s in (14.91) for ν� leads to the vertically dependent disc
angular momentum equation

1

I1

Ṁ

3π
fρfv − 8 tan is

3(1 + tan2 is)
1
2

ṁ� 2
A f

′
φ = 1

I2

[
Ṁ

3π
− 8 tan is

3(1 + tan2 is)
1
2

ṁ� 2
A

]
fρ.

(14.100)

Applying this at ζ = 0 gives

I1

[
1 − 8π tan is

(1 + tan2 is)
1
2

ṁ� 2
A

Ṁ

]
= I2

[
1 − 8π tan is

(1 + tan2 is)
1
2

ṁ� 2
A

Ṁ
I1f

′
φ(0)

]
.

(14.101)

Employing this in (14.100) yields the vertical dependence of v� as

fv(ζ ) = 1 − 8πI1 tan is

(1 + tan2 is)
1
2

ṁ� 2
A

Ṁ

[
f ′
φ(0)−

f ′
φ(ζ )

fρ(ζ )

]
, (14.102)

with (14.32) and (14.36) for fφ(ζ ) giving

f ′
φ(0) = KF

Q

[
1 − 2e3K/2 cos

(√
3

2
K + π

3

)]
. (14.103)

Equation (14.102) gives the surface value of fv(ζ ) as

fv(1) = 1 − 8πI1 tan is

(1 + tan2 is)
1
2

ṁ� 2
A

Ṁ
f ′
φ(0), (14.104)

since the force-free surface boundary condition gives f ′
φ(1) = 0.

For dynamo numbers havingK < π/
√
3 the horizontal componentsB� and Bφ

have magnitudes that increase monotonically from z = 0 to z = h. The poloidal
components B� and Bz are positive at the disc surface, consistent with conditions
for wind launching. This corresponds to the dynamo operating below its critical
state and then f ′

φ(0) > 0 so (14.104) gives fv(1) < 1. It will be found that fv(1) is
well below unity, consistent with fv(ζ ) vanishing over a narrow region connecting
the disc inflow to the wind outflow. It is noted from (14.102) that in the absence
of magnetic wind angular momentum transport, and with ν independent of z,
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fv(ζ ) = 1, corresponding to ∂v�/∂z = 0. Hence magnetic stresses lead to a
decrease in |v� | with increasing |z|, consistent with |v� | → 0 just beyond z = ±h
where the wind outflow begins.

14.4.4 The Disc Vertical Equilibrium

The vertical equilibrium in the disc is given by

�2
Kzρ + ∂

∂z

(
P + B

2
� + B2

φ

2μ0

)
= 0, (14.105)

which expresses the balance of the compressive force of stellar gravity and the
magnetic pressure gradient against the expansion force due to the gas pressure
gradient. The thermal pressure can be expressed as

P(�0, z) = Pc(�0)fP (ζ ), (14.106)

with the central plane conditions

fP (0) = 1, f ′
P (0) = 0. (14.107)

Integrating (14.105) from 0 to z and using (14.23), (14.40), (14.92) and (14.106) for
Bφ , B� , ρ and P gives

Pc(fP − 1)+ B2
φs

2μ0

(
N2
α

K6 f
′′
φ
2 + f 2

φ

)
+�2

Kh
2ρc

∫ ζ
0
ζfρdζ = 0. (14.108)

This equation is separable if

Pc = AB
2
φs

2μ0
, (14.109)

where A is a constant. It then follows that

B2
φs

2μ0
= k1�2

Kh
2ρc, (14.110)

and

A(fP − 1)+ N2
α

K6 f
′′
φ
2 + f 2

φ = − 1

k1

∫ ζ
0
ζfρdζ, (14.111)

where k1 is a separation constant.
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The gas equation of state is

P = R
μ
ρT (14.112)

and T can be expressed as

T (�0, z) = Tc(�0)fT (ζ ), (14.113)

with the central plane conditions

fT (0) = 1, f ′
T
(0) = 0. (14.114)

It follows from (14.112) that

fP = fρfT . (14.115)

Using this in (14.111) and solving for fT gives

fT = 1

k1Afρ

[
k1A− k1

(
N2
α

K6 f
′′
φ
2 + f 2

φ

)
−
∫ ζ
0
ζfρdζ

]
. (14.116)

The product k1A can be found by noting that Pc = c2s ρc, so (14.109) and (14.110)
yield

k1A = c2s

�2
Kh

2 = 9

4

N4
α

ε2K6 , (14.117)

where the last result follows from the dynamo relation (14.39).

14.4.5 The Disc Thermal Equations

Since thermal advection due to the disc inflow is small, thermal equilibrium
gives the divergence of the radiative flux as the sum of the viscous and magnetic
dissipations, so

∂FR

∂z
= ρν(�0�

′
K)

2 + η

μ0

(
∂Bφ

∂z

)2

, (14.118)
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noting that the vertical derivative term dominates in ∇ · FR and J 2� makes the main
contribution in the magnetic dissipation. Vertical integration from 0 to z leads to

FR(�0, z) = 9

8
�2

Kν� + ηB
2
φs

μ0h
Im(ζ ), (14.119)

where

Im(ζ ) =
∫ ζ
0
y ′2dζ, (14.120)

with y(ζ ) given by (14.36).
For an optically thick disc, the radiative transfer equation is

FR = − 4σB

3κρ

∂

∂z

(
T 4
)
. (14.121)

Using (14.98) for �s to eliminate ρch in (14.110) for Bφs, together with η = ν/Np,
gives

ηB2
φs

μ0h
= k1

NpI2
�2

Kν�s. (14.122)

Substituting this in (14.119), and using the integral expressions for � and Im(ζ ),
yields

FR(�0, z) = 1

I2
�2

Kν�

[
9

8

∫ ζ
0
fρdζ + k1

Np
Im(ζ )

]
. (14.123)

The opacity is taken to have a Kramers form

κ = K̃ρT − 7
2 , (14.124)

where K̃ is a constant, so (14.121) becomes

FR(�0, z) = −32

45

σB

K̃

T
15
2

c

ρ2c h

1

f 2
ρ

d

dζ

(
f

15
2
T

)
. (14.125)

Equating this to the separable form (14.123) gives the radial and vertical thermal
equations as

32

45

σB

K̃

T
15
2

c

ρ2c h
= k2�2

Kν�s (14.126)
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and

− k2

f 2
ρ

d

dζ

(
f

15
2
T

)
= 9

8

∫ ζ
0
fρdζ + k1

Np
Im(ζ ), (14.127)

where k2 is a separation constant.

14.4.6 The Disc Radial Structure

The separated radial equations can be solved algebraically to obtain the radial
structure of the disc. Firstly, the temperature Tc(�0) can be found by deriving two
expressions for ν�s as functions of Tc. Using (14.79) for ν and (14.98) for �s gives

ρch = Nα

εNp

ν�s

2I2csh
. (14.128)

Substituting for this and using (14.16b) for cs in the energy equation (14.126) yields

ν�s = 4

3
I2

(
6σB

5K̃

R
μ

) 1
3 ε

2
3N

2
3
p

N
2
3
α k

1
3
2

T
17
6

c h

�
2
3
K

. (14.129)

Another expression for ν�s can be found by using (14.98) for �s to eliminate ρch
in (14.95) for Ṁ. Then employing (14.46) for v� c and (14.79) for ν leads to

ν�s = Np

2π

I2

I1
ṀI tan is

h

�0
. (14.130)

Equating this to (14.129) then gives Tc(�0).
The disc height follows from (14.117) as

h = 2

3

εK3

N2
α

(R
μ

) 1
2 T

1
2
c

�K

. (14.131)

The density ρ can be found by using (14.130) to eliminate ν�s in (14.128) to give

ρc = 1

4π

(μ
R
) 1

2 Nα

ε

I

I1

Ṁ tan is

�0T
1
2
c h

. (14.132)

The central inflow speed is given by (14.46) as

v� c = −
(R
μ

) 1
2 ε

Nα

T
1
2
c

I tan is
. (14.133)
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This leaves the radial dependences of the magnetic field components to be found.
Using (14.128) to eliminate ρch in (14.110) for B2

φs, and then (14.79) for ν gives

B2
φs = μ0

k1

I2

Nα

εNp

�Kh

cs

ν�s

h
�K. (14.134)

The use of (14.39) for �Kh/cs and (14.130) for ν�s/h then yields Bφs(�0).
Equation (14.40) for B� , evaluated at ζ = 1, gives

B� s(�0) = Nα

K3 f
′′
φ (1)Bφs(�0) (14.135)

and (14.41) for tan is gives

Bzs(�0) = tan isB� s(�0). (14.136)

Normalizing the above disc solutions, using parameters typical for a white dwarf
accretor, yields

Tc = 7.2 × 103
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6
17
10
(tan is)

6
17

x
12
17

K, (14.137)

h = 5.8 × 105
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ρc = 8.8 × 10−6 N
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v� c = −104
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B� s = 3.1 × 10−2N
1
2
α

(
I

I1

) 1
2 k

1
2
1

K
3
2

|f ′′
φ (1)|M

1
4
1 Ṁ

1
2
10
(tan is)

1
2

x
5
4

T, (14.141)

Bφs = −3.1 × 10−2
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1
2
10
(tan is)

1
2

x
5
4

T, (14.142)

Bzs = 3.1 × 10−2N
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1
2
10
(tan is)

3
2

x
5
4

T, (14.143)

whereM1 = M/M�, Ṁ10 = Ṁ/10−10M�year−1 and x = �0/108m.
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An expression can be derived for tan is. Using (14.45) for Bφs/Bzs and (14.143)
for Bzs to eliminate BφsBzs in the wind angular momentum equation (14.87) gives

ṁ� 2
A = Ṁ

3π

I

I1
k1|f ′′

φ (1)|(1 + tan2 is)
1
2 tan is. (14.144)

Using this to eliminate ṁ� 2
A /Ṁ in the vertical part of the disc angular momentum

equation given by (14.101), leads to

tan2 is = 3

8

1

k1|f ′′
φ (1)|

(I2 − I1)
I [I2f ′

φ(0)− 1] . (14.145)

14.4.7 The Disc Vertical Structure

The vertical structure of the disc can now be found. Equations can be derived
for the vertical dependences of the density and temperature, given by fρ(ζ ) and
fT (ζ ). Differentiating the vertical equilibrium equation (14.116), using the toroidal
dynamo equation (14.26) with fv(ζ ) � 1 to eliminate f ′′′

φ , and the thermal
equation (14.127) to eliminate f ′

T , gives

f ′
ρ = − 1

k1AfT

[
2k1

{
fφf

′
φ − N

2
α

K3 (F + fφ)f ′′
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}
+ ζfρ
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20
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f 3
ρ

f
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[∫ ζ
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]
, (14.146)

with fT given by (14.116) as

fT = 1

k1Afρ

[
k1A− k1

(
N2
α

K6 f
′′
φ
2 + f 2

φ

)
−
∫ ζ
0
ζfρdζ

]
. (14.147)

Equations (14.146) and (14.147) constitute a non-linear integro-differential equation
for fρ(ζ ). The solution can be used in (14.147) to determine fT (ζ ). Surface
conditions must now be formulated and expressions found for the separation
constants k1 and k2.

The disc surface is taken to be the photospheric base, consistent with connection
to an optically thin isothermal wind along poloidal field-streamlines. Equating the
density scale height to the photon mean free path at z = h gives

− ρs

(∂ρ/∂z)s
= 1

(κρ)s
. (14.148)
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Using the Kramers opacity and the separable forms for ρ and T then yields

− f
′
ρ(1)

fρ(1)
= K̄ρ2c h

T
7
2
c

fρ(1)2

fT (1)
7
2

. (14.149)

Taking the surface temperature as the effective temperature and then using (14.123)
for the radiative flux at z = h, gives

σBT
4
c fT (1)

4 = 9

8
�2

Kν�s

[
1 + 8

9

k1Im(1)

NpI2

]
. (14.150)

Using the thermal equation (14.126) to eliminate �2
Kν�s and employing the result

in (14.149) gives

f ′
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[
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fT (1)
15
2
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Another expression for f ′
ρ(1) follows from (14.146) evaluated at ζ = 1 as

f ′
ρ(1) = − 1
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[
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where f ′′
φ (1) = −IK3F has been used from the dynamo equation (14.44). All

the relevant solutions have 2k1N2
αIF (F + 1) � fρ(1) and hence this term can be

dropped. Then equating (14.152) to (14.151) to eliminate f ′
ρ(1) gives

fT (1)
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2

fρ(1)2
= 19

20
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]
. (14.153)

The vertical equilibrium equation (14.147) evaluated at ζ = 1 gives

fT (1) = 1

k1Afρ(1)

[
k1A− k1(N2

αI
2F 2 + 1)− I3

]
, (14.154)

where

I3 =
∫ 1

0
ζfρdζ. (14.155)
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Equations (14.153) and (14.154) then yield the surface values
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This leaves the separation constants k1 and k2 to be determined. A first expression
relating these constants can be found by using the solution for h in (14.130) for ν�s

and then equating the resulting expression to (14.91) for ν� evaluated at ζ = 1.
Then using (14.144) and (14.145) to eliminate ṁ� 2

A and tan is leads to
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where
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The quantityQ1 is weakly dependent on�0, except close to the stellar surface.
A second expression relating k1 to k2 is obtained by considering two expressions

for fT (1) and equating them. Using the solution for h in (14.130) and substituting
the resulting expression for ν�s in the surface flux expression (14.150), then solving
for Tc and equating this to the disc solution for Tc yields
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Using (14.158) to eliminate k1 in (14.145), employing the resulting expression
for tan is in (14.160) and equating the result for fT (1) to (14.157) leads to an
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expression for k2. This can be simplified by noting that all the relevant solutions
have k1(N2

αI
2F 2 + 1) � k1A − I3 and k1Im(1)/NpI2 � 1, corresponding to

magnetic compression making a small contribution in the disc vertical equilibrium
and magnetic dissipation being small relative to viscous dissipation. The reduced
expression for k2 and (14.158) for k1 give the results
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The vertical structure solutions can now be found. Equations (14.146)
and (14.147) form a non-linear integro-differential equation for fρ(ζ ), with the
constants depending on the integrals I1, I2 and I3. Initial guesses are made for the
values of these integrals and an improved Euler method is used to solve for fρ(ζ ).
Taylor expansions near ζ = 0 yield

fρ ∼ 1 − 1
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fT ∼ 1 − 1

5k2

[
3

8
+ 1
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k21

Np
f ′
φ(0)

2

]
ζ 2. (14.165)

The solution for fρ(ζ ) is used in (14.147) to obtain fT (ζ ).
The vertical dependence of the inflow speed can be determined by eliminating

ṁ� 2
A /Ṁ by using (14.144) in (14.102), yielding

fv(ζ ) = 1 − 8

3
I |f ′′

φ (1)|k1 tan2 is
[
f ′
φ(0)−

f ′
φ(ζ )

fρ(ζ )

]
(14.166)

with tan is given by (14.145). The functions fρ(ζ ) and fv(ζ ) are then used to
evaluate I1, I2 and I3 numerically and the results are compared with the values
previously used. Suitable adjustments are made to the values of the integrals to
be used and the procedure is repeated until good agreement is found. The solutions
shown here are for the typical turbulent parameters ε = 0.1,Nα = 0.22 andNp = 9.
Figures 14.4, 14.5, and 14.6 show the vertical structure functions fρ , fT and fv . The
function fv(ζ ) is not far below unity for ζ < 0.8, so justifying using fv � 1 in the
induction equation. There is a rapid decrease in fv near ζ = 1, consistent with v�
passing through zero just beyond z = h where the wind outflow begins.
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Fig. 14.4 The vertical variation of the disc density (from Campbell 2005)
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Fig. 14.5 The vertical variation of the disc temperature (from Campbell 2005)

Using a range of the turbulence parameters ε and Nα gives solutions of the same
qualitative nature for the vertical dependence of the disc magnetic field, the disc
structure and the inflow speed. Table 14.1 shows the essential results for the above
case of turbulence parameters. The magnetic wind makes a major contribution to
driving the inflow, with the Alfvén surface lying well above the disc. This results
from only a small wind mass loss from the main body of the disc. The optical depth
through the disc is large, so justifying the use of the radiative diffusion equation.
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Fig. 14.6 The vertical variation of the disc inflow speed (from Campbell 2005)

Table 14.1 Disc and wind quantities for ε = 0.1, Nα = 0.22 and Np = 9 (from Campbell 2005)

fρ(1) fT (1) fv(1) is Tm/T v �A/�0 4π� 2
0 ṁ/Ṁ |Bφs/Bzs|

0.43 0.70 0.45 58.0◦ 1.04 3.09 3.14 × 10−2 0.91

B2
φs/2μ0Pc τD I1 I2 I3 k1 k2 |v�c|/cs

3.43 × 10−2 10.39 0.73 0.79 0.38 1.81 × 10−2 0.27 0.53

The central inflow speed is significantly above purely viscously driven values, but
still well subsonic. This gives sufficient poloidal field bending for wind launching.

14.4.8 Disc-Wind Coupling

The sonic point in the wind flow is determined by the condition Bp · ∇ψ = 0, with
ψ given by (14.6) and the field line equation by (14.76). Two solutions result as

zsn = 3

(3 − tan2 is)
h (14.167a)

and

zsn = 2

3

tan is(tan2 is − 3)

(tan2 is + 4)
�s. (14.167b)
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The first solution replaces the z = 0 solution, given by (14.10a), when a non-
vanishing value of h is allowed for. The second solution is the same as (14.10b),
but with �s replacing �0. The solution (14.167a) is valid for is < 60◦, while the
solution (14.167b) applies when is > 60◦. Cases are considered here for which the
first branch solution is valid, since this leads to disc winds with suitable mass fluxes.

The conservation of energy integral gives

H(�, ρ) = 1

2
v2p + ψ + a2 lnρ. (14.168)

Using H(�s, ρs) = H(�sn, ρsn) then gives the density at the sonic point in terms
of its value at the disc surface as

ρsn = ρs exp
[
−
{
(ψsn − ψs)

a2
+ 1

2

}]
. (14.169)

Expansion of (ψsn − ψs), to leading order, along a field-streamline gives

ρsn = ρs exp
[
−
{
�2

Ksh
2

2a2
tan2 is

(3 − tan2 is)
+ 1

2

}]
. (14.170)

The mass flux through the sonic point is

ṁ = ρsna. (14.171)

The Alfvén point cylindrical coordinate �A can be found from the wind angular
momentum equation (14.144) as

� 2
A = Ik1

3πI1
|f ′′
φ (1)|

Ṁ

ṁ
(1 + tan2 is)

1
2 tan is. (14.172)

These connections indicate that, for a magnetic field generated in the disc by a
dynamo, the wind structure adjusts to the conditions set by the disc in terms of ṁ
and the surface magnetic field. This property was also shown in the simulations of
disc magnetic winds, with a dynamo generated field, performed by von Rekowski
et al. (2003).

14.5 Enhanced Mass Loss Near the Star

Throughmost of the disc the mass loss via the wind is small, so the mass transfer rate
can be taken to be conserved at the source value Ṁ fed by the accretion stream at the
outer edge of the disc. The field inclination is, which affects the position of the sonic
point and hence ṁ, is constant to high accuracy through most of the disc. However,
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it was shown in Campbell (2010) that the boundary condition near the stellar surface
�0 = R has an influence on is in a small inner region of the disc. For accretion to
occur, the star must be rotating at a sub-Keplerian rate at �0 = R and hence the
disc angular velocity must decrease through a boundary layer of width δ � R to the
stellar value �∗. An ansatz form representing this behaviour is given by

�(�0) = �K(R)

[(
R

�0

) 3
2 − (1 − ξ)

(
R

�0

) 3
2(1−ξ)

]
, (14.173)

where

ξ = �∗
�K(R)

. (14.174)

This form satisfies the conditions

�(R) = �∗ and �′(R) = 0, (14.175)

and has boundary layer behaviour for 0.6 � ξ < 1. Using this in the vertically
integrated disc angular momentum equation leads to a modified form of ν�s given
by

ν�s = Ṁ

3π

{
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[
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+ 8ξ

(1 − 4ξ)

I |f ′′
φ (1)|

I1F1F2
k1 tan2 is

[
1 −

(
R

�0

) 1
2
]}
, (14.176)

where

F1 = 1 − (1 − ξ)
(
R

�0

) 3ξ
2(1−ξ)

(14.177a)

and

F2 = 1 −
(
R

�0

) 3ξ
2(1−ξ)

. (14.177b)
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Equating (14.176) to (14.130) for ν�s yields
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where

F3 = F1 − ξ
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) 1
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The modified form of gravitational-centrifugal effective potential in the wind
region, corresponding to � being given by (14.173), is

ψ = −GM
�s

⎡
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(
� 2

� 2
s

+ z

� 2
s
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2

+ 1

2
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� 2
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⎦ , (14.180)

with

β = (1 − ξ)
(
R

�s

) 3ξ
2(1−ξ)

. (14.181)

Application of the sonic point condition Bp · ∇ψ = 0, using (14.76) for the field
line equation, yields the sonic point coordinates as

�sn =
[
1 + 2β

(3 − tan2 is)

]
�s + tan is

(3 − tan2 is)
h, (14.182)

zsn = 2β tan is
(3 − tan2 is)

�s + 3

(3 − tan2 is)
h. (14.183)

It is noted that, since the star will have been spun up by accretion, relevant
values of ξ will be nearer to 1 than to 0 and then the deviation of � from �K is
only significant in a region close to the stellar surface (i.e. �0 � 3R). Hence the
modified equations for tan is and the sonic point coordinates are only applicable in
this inner region of the disc. The remainder of the disc has its previously derived
structure, with constant is and a small wind mass loss. This main region of the disc
is essentially decoupled from the conditions at the stellar surface, and hence from
the stellar rotation rate.

The quadratic equation (14.178) can be solved for tan is and the resulting
variation with �0 is shown in Fig. 14.7, for ξ = 0.95 . A sharp decrease in tan is
occurs near �0 = R. Figure 14.8 illustrates that ν�s, and hence η�s, decreases as
the stellar surface is approached. This results in increased poloidal field bending,
which lowers the sonic point. Conversely, the reduction in � to below �K values
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Fig. 14.7 The variation of magnetic poloidal field bending for modified� (from Campbell (2010))

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 1  1.5  2  2.5  3  3.5  4  4.5

0 R

3π
Ṁ
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Fig. 14.8 The variation of (3π/Ṁ)ν�s for modified � (from Campbell 2010)

reduces the centrifugal force felt along the field lines which raises the sonic point via
the β terms in (14.182) and (14.183). These competing effects result in a lowering
of the sonic point, and a consequent increase in ṁ, over a narrow region which is
typically inside� = 3R. In this region conservation of mass gives

dṀ

d�0
= 4π�0ρsvzs = 4π�0ṁ sin is. (14.184)
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The ratio of the wind mass loss rate Ṁw to the source accretion rate Ṁ = Ṁ(�D),
where�D is the disc radius, is

Ṁw

Ṁ
= Ṁ − Ṁ(�0)

Ṁ
= 4π

Ṁ

∫ �D

�0

�0ρsna sin isd�0. (14.185)

Calculating ρsn from (14.170), using the modified forms of ψ and the sonic point
coordinates, leads to

Ṁw
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(14.186)

with

F4 = 1 + 2(1 − ξ)
tan is

�0

h

(
R

�0

) 3ξ
2(1−ξ)

, (14.187)

and the integral is evaluated numerically. Figure 14.9 shows the variation of the
integrand in (14.186), illustrating that the enhanced wind mass loss rate occurs over
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Fig. 14.9 The variation of the integrand in the Ṁw/Ṁ integral for modified � (from Campbell
(2010))
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Fig. 14.10 The variation of the wind mass loss rate to the accretion rate for modified � (from
Campbell (2010))

a narrow region in the inner part of the disc that is influenced by the stellar rotation
rate. Figure 14.10 shows the ratio Ṁw/Ṁ , illustrating that a significant amount of
mass can be lost in this narrow region of enhanced wind flow.

14.6 Wind Flow Stability

14.6.1 Poloidal Field Bending Effects

Having established that steady solutions can be found for magnetically channelled
wind flows from accretion discs, the issue of stability must be investigated. A simple
analysis of the purely magnetic case, ignoring viscosity, was made by Lubow et al.
(1994). The disc structure was not calculated, but the basic conservation equations
were employed. The vertically integrated disc angular momentum equation and a
simplified wind angular momentum equation, assuming corotation out to the Alfvén
point, were combined. A power law, self-similar form was used relating the poloidal
magnetic field at the Alfvén point to that at the wind base by

BpA = Bz(�0)

(
�0

�A

)n
, (14.188)
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with n > 1, together with vA � �A�K(�0). Then combining the angular momentum
equations and using the conservation of ρvp/Bp along Bp yields

ṁ = ρccs h
�0

(
cs

vzA

) 4
n−1
( |v� c|
cs

) n+1
n−1

. (14.189)

This represents the wind mass flux causing the disc inflow via angular momentum
extraction.

Assuming an isothermal vertical structure and a parabolic field line leads to

ṁ = ρccse− 1
6 tan2 is . (14.190)

This is the wind mass loss rate due to the flow of photospheric material along
sufficiently inclined poloidal magnetic field lines which have been bent by the
advective effect of the inflow. The authors analyse the stability by considering plots
of the two forms of ṁ/ρccs, with the intersection of the curves giving solutions.
They note that a small increase in |v� c| leads to a higher value of ṁ, via the
curve of (14.190), than is required to maintain the increase in |v� c|, via the curve
of (14.189). The increase in ṁ causes an increase in the extraction of disc angular
momentum by the wind, leading to a further increase in |v� c|. Hence instability
results.

The field bending instability can also be demonstrated by relating the perturba-
tions in is and ṁ to the perturbation in |v� c|. Equating (14.189) to (14.190) and
taking perturbations gives

δis = − 6 cos2(is)sd
(n− 1) tan(is)sd

δ|v� c|
|v� c|sd (14.191)

and

δṁ = 2ṁsd

(n− 1)

δ|v� c|
|v� c|sd , (14.192)

where the subscript sd refers to steady state quantities. It follows that δ|v� c| > 0
gives δis < 0 and δṁ > 0. So a small increase in |v� c| causes an increase in poloidal
field bending and an increase in the wind mass flux, corresponding to instability.

The model is greatly simplified. It assumes an isothermal vertical structure and
does not allow for a perturbation in η or in vzA, which would result from changes
in the disc structure. Also, realistic discs will have a finite viscosity. Nevertheless,
the model illustrates that an increase in |v� c| can have a de-stabilizing effect and
this will be shown to have relevance to a more detailed analysis which allows for
perturbation of the disc structure and coupling to the wind.

Cao and Spruit (2002) considered an inviscid disc threaded by a poloidal
magnetic field. The Bz component was arbitrary, and the ratio Bφs/Bzs was related
to the radial momentum balance. The wind magnetic torque was incorporated, and
the magnetic diffusivity was included in the poloidal component of the induction
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equation. A short wavelength WKB perturbation analysis was performed. The cases
of large magnetic torque exhibited the poloidal field bending instability, but this
could be quenched for the weaker torque cases.

14.6.2 Perturbation of Magneto-Viscous Discs

The disc-wind solution of Sect. 14.4 allows a detailed investigation of stability using
perturbation theory. This analysis is based on the work of Campbell (2001, 2005 and
2014).

Vertical integration of the time-dependent continuity equation gives

∂�s

∂t
= −I1

I2

1

�0

∂

∂�0
(�0�sv� c) , (14.193)

where the vertical integrals I1 and I2 are given by (14.96) and (14.99). The
dynamical, thermal and magnetic time-scales are all much shorter than the disc
angular momentum adjustment time-scale τam. Hence quantities such as BφsBzs
will evolve quasi-steadily on the time-scale τam, so explicit time derivatives can be
ignored in all the time-dependent equations except the continuity equation. Vertical
integration of the disc angular momentum equation yields

v� c(�0, t) = − 3I2
I1�

2
0�K�s

∂

∂�0
(� 2

0�Kμs)+ 4I2
μ0I1

BφsBzs

�K�s
, (14.194)

where

μs = ν�s. (14.195)

The magnetic stress term can be expressed in terms ofμs and v� c. Equation (14.45)
gives

BφsBzs = Nα

K3 f
′′
φ (1) tan isB

2
φs. (14.196)

Using (14.41), (14.43), (14.98) and (14.110) to eliminate tan is and B2
φs yields

1

μ0
BφsBzs = Nα

Np

|f ′′
φ (1)|
K3I

k1

I2
�2

K

μs

v� c
. (14.197)

Substituting this in (14.194) gives

v� c = − 3I2
I1�

2
0�K�s

∂

∂�0
(� 2

0�Kμs)+ S k1�Kμs

v� c�s
, (14.198)
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where

S = 4
4Nα
I1Np

|f ′′
φ (1)|
K3I

. (14.199)

Equations (14.193) and (14.198) give the mass conservation equation, incorporating
the inflow speed driven by viscous and magnetic angular momentum transfer.

Using (14.79) for ν and (14.117) for cs/�Kh to express h and Tc in terms of μs,
then using this in the thermal equation (14.126) leads to

μs = C̄� 15
14 k

1
7
2 �

10
7
s , (14.200)

where C̄ is a constant. The separation constants k1 and k2, given by (14.162)
and (14.163), depend on Ṁ via Q1 andQ2. Using the result

Ṁ = 2π
I1

I2
�0|v� c|�s (14.201)

in these expressions gives

k1 = C1�
7
12
0 |v� c| 7

12�
7
12
s , (14.202)

k2 = C2�
17
6

0 |v� c| 176 �
17
6
s , (14.203)

where C1 and C2 are constants. Employing these expressions to eliminate k1
in (14.198) and k2 in (14.200) gives

|v� c| = 3I2
I1�

2
0�K�s

∂

∂�0

(
� 2

0�Kμs

)
+ S̃ �

7
12
0 �Kμs

|v� c| 5
12�

5
12
s

, (14.204)

with

μs = C̃�
31
21
0 |v� c| 1742�

11
6
s , (14.205)

where S̃ and C̃ are constants. The incorporation of k1 and k2 allows for the effects
of perturbations to the coupling between the radial and vertical structures of the disc
to be accounted for.

Taking Eulerian perturbations of the continuity equation (14.193) gives

∂

∂t
(δ�s) = I1

I2

1

�0

∂

∂�0

(
�0
[
((�s)sd δ|v� c| + |v� c|sdδ�s

])
. (14.206)
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Taking perturbation of (14.204) and (14.205) leads to

δ|v� c| = − 7

10

(
1 − 29

12
U

)(
1 + 7

10
U

)−1 |v� c|sd
(μs)sd

δμs

+ 77

20

(
1 + 7

10
U

)−1
I2

I1�
2
0�K (�s)sd

∂

∂�0

(
� 2

0�Kδμs

)
, (14.207)

and

δ�s = 7

10

(
1 + 1

84
U

)(
1 + 7

10
U

)−1
(�s)sd

(μs)sd
δμs

− 17

20

(
1 + 7

10
U

)−1
I2

I1�
2
0�K|v� c|sd

∂

∂�0

(
� 2

0�Kδμs

)
, (14.208)

where

U = S̃�
7
12
0 �K(μs)sd

|v� c|
17
12
sd (�s)

5
12
sd

. (14.209)

It can be shown that

U = (Tm/Tv)sd

1 + (Tm/Tv)sd , (14.210)

where Tm and Tv are the magnetic and viscous torques per unit radial length. The
ratio (Tm/Tv)sd is constant through the main body of the disc, so U is constant and
it has the range 0 < U < 1.

Using (14.207) and (14.208) to eliminate δ|v� c| and δ�s in (14.206) leads to

7

10

∂

∂t
(δμs)− 17

40

I2

I1

νsd

�0|v� c|sd
∂

∂t
(δμs)− 17

20

I2

I1

νsd

�0|v� c|sd�0
∂

∂�0

(
∂

∂t
(δμs)

)

= νsd

�0

∂

∂�0

(
17

10

I1

I2

�0|v� c|sd
νsd

Uδμs + 3

�0�K

∂

∂�0

(
� 2

0�Kδμs

))
. (14.211)

Noting that (14.95), (14.98) and (14.130) for Ṁ, �s and ν�s give

νsd

�0|v� c|sd = INp tan(is)sd
h

�0
� 1, (14.212)
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it follows that the second term in (14.211) is small relative to the first, so the equation
reduces to

∂

∂t
(δμs)− 17

14

I2

I1

νsd

�0|v� c|sd�0
∂

∂�0

(
∂

∂t
(δμs)

)

= 45

7

νsd

�0

[(
1 + 17

45

I1

I2
Ũ

)
∂

∂�0
(δμs)+ 2

3
�0

∂2

∂� 2
0

(δμs)

]
, (14.213)

where

Ũ = �0|v� c|sd
νsd

U. (14.214)

This equation describes the evolution of δμs and it incorporates perturbations to
the viscous and magnetic torques, including the effects of poloidal magnetic field
bending due to changes in |v� c| and η. Perturbations in the thermal balance are
accounted for, including viscous and magnetic dissipations and coupling of the
radial and vertical structures.

The field bending instability of Lubow et al. (1994), discussed in Sect. 14.6.1,
resulted because a positive perturbation in |v� c| caused an increase in the bending
of the poloidal magnetic field, via the advection term in the induction equation.
This lowers the sonic point which leads to an increase in the wind mass flux and
hence an increase in the angular momentum loss rate. Consequently |v� c| is further
increased and so instability results. However this analysis neglects perturbations to
the thermal balance and the dependence of η on Tc and h. The foregoing analysis
allows for these effects.

Firstly, the global stability is considered, with δμs varying on a length-scale of
∼ �0. The second term in (14.213) is then small relative to the first and hence the
equation reduces to

∂

∂t
(δμs) = 45

7

νsd

�0

[(
1 + 77

45

I1

I2
Ũ

)
∂

∂�0
(δμs)+ 2

3
�0

∂2

∂� 2
0

(δμs)

]
. (14.215)

The unperturbed viscous coefficient can be expressed as

νsd = 3

2
Np
Nα

K3

(
h

�0

)2

sd

� 2
0�K. (14.216)

The perturbation δμs can be written as

δμs = q(�0)e
σ t , (14.217)
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where σ is a constant, which in general is complex. Using this and (14.216)
in (14.215) yields

x
d2q

dx2
+ a dq

dx
− bσx 1

2 q = 0, (14.218)

with x = �0/R,

a = 3

2

(
1 + 17

45

I1

I2
Ũ

)
(14.219a)

and

b = 7

45

1

Np

K3

Nα

(�0

h

)2
sd

(
R3

GM

) 1
2

. (14.219b)

Equation (14.218) can be written as

d

dx

(
xa
dq

dx

)
− bσxa− 1

2 q = 0. (14.220)

The inner and outer disc edges are at x = 1 and x = xD, with xD � 1. For
homogeneous boundary conditions σ is real and perturbations will be stable for
σ < 0. Multiplying (14.220) by q and integrating through the disc gives

bσ

∫ xD
1
xa−

1
2 q2dx =

[
xaq

dq

dx

]xD
1

−
∫ xD
1
xa
(
dq

dx

)2

dx. (14.221)

Themaintenance during perturbation of the standard conditions ofμs → 0 as�0 →
R and μs → constant for�0 � R gives q(1) = 0 and q ′(xD) = 0, so

σ = −1

b

[∫ xD
1
xa
(
dq

dx

)2

dx

][∫ xD
1
xa−

1
2 q2dx

]−1

. (14.222)

This gives σ < 0, and hence stability.
The differential equation (14.218) for the radial dependence of the perturbation

δμs can be solved analytically. Making the transformation

q(x) = xβf (u) with u = cxγ , (14.223)

in (14.218), where β, γ and c are constants, leads to the equation

d2f

du2
+ 1

γ
(γ + 2β + a − 1)

1

u

df

du
+
⎡
⎣b|σ |u 3

2γ −2

γ 2c
3
2γ

+ β(β + a − 1)

γ 2u2

⎤
⎦ f = 0.

(14.224)
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The choices

γ = 3

4
, β = 1

2
(1 − a) and c = 4

3
(b|σ |) 12 (14.225)

simplify (14.224) to

d2f

du2
+ 1

u

df

du
+
(
1 − w

2

u2

)
f = 0, (14.226)

where

w = 2

3
(a − 1) and u = 4

3
(b|σ |) 12 x 3

4 . (14.227)

This is Bessel’s equation of orderw, and hence it follows that the general solution is

q(x) = x− 3
4w[c1Jw(u)+ c2Yw(u)], (14.228)

where Jw and Yw are Bessel functions of the first and second kinds, while c1 and c2
are constants. It is noted that the solution applies in the disc region 1 < x < xD, so
the singularity in Yw at x = 0 is excluded.When homogeneous boundary conditions
are imposed at x = 1 and x = xD, a discrete set of eigenfunctions qn(x), with
eigenvalues σn, result for the decay modes. The principal mode has a decay time of
the order of the inflow time-scale through the disc, this being much longer than the
dynamical and thermal time-scales.

The stability of short wavelength local perturbations can be investigated by
expressing δμs as

δμs = Aeik�0est , (14.229)

where A, k and s are constants, with k�0 � 1. The second term in (14.213) must
now be retained, since it has a radial length-scale � �0. Substitution of (14.229)
for δμs in (14.213) yields σ = �(s) as

σ = −30

7

νsd

� 2
0

k2� 2
0

[
1 + 51

28

(
I2

I1
+ 17

45
Ũ

)
U

Ũ

][
1 +

(
17

14

I2

I1

U

Ũ

)2

k2� 2
0

]−1

,

(14.230)

showing that local perturbations are stable.
This quenching of the poloidal field bending instability can be understood by

considering the connections between the perturbations. Equations (14.39), (14.43)
and (14.46) for �Kh/cs, Bzs/B� s and v� c enable the magnetic diffusivity to be
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expressed as

η = 2

3

I 2K3

Nα�K

v2� c tan
2 is, (14.231)

and it follows that

δη = 2
ηsd

|v� c|sd δ|v� c| + 4ηsd
sin 2(is)sd

δis. (14.232)

Also, using (14.18) for η and (14.39) for�Kh/cs together with (14.231) to eliminate
h and η yields

Tc = μ

R
N2
α

ε2
I 2v2� c tan

2 is (14.233)

and hence

δTc = 2
(Tc)sd

|v� c|sd δ|v� c| + 4
(Tc)sd

sin 2(is)sd
δis. (14.234)

For δ|v� c| > 0 and δis > 0 (14.232) and (14.234) yield δη > 0 and δTc > 0.
This is consistent with a reduction in poloidal field bending due to an increase in
η. Hence the field bending instability is quenched. The wind structure can adjust
on a dynamical time-scale, with the Alfvén point position changing in response to
a perturbation in the wind mass flux ṁ. The wind can adjust through quasi-steady
states on the longer angular momentum adjustment time-scale.

The perturbation in η, which relieves poloidal field bending, results from the
increases in temperature and disc height caused by the increased dissipation. Since
the viscous dissipation is significantly larger than the magnetic dissipation, it is the
presence of viscosity which mainly causes the increase in η due to the increase in
Tc, and this quenches the field bending instability.

The foregoing analysis can be used to consider the purely magnetic case, for
which the turbulent magnetic Prandtl number Np = 0. Using (14.202) to eliminate
the vertical equilibrium separation constant k1 in the expression (14.145) for tan is
and taking perturbations gives

δis = − 7

48
sin 2(is)sd

(
δ|v� c|
|v� c|sd + δ�s

(�s)sd

)
. (14.235)

Now U = 1, and ν = 0, so the viscous terms vanish, and μs becomes μs = η�s.
Then eliminating δμs between (14.207) and (14.208) yields

δ�s

(�s)sd
= 12

17

δ|v� c|
|v� c|sd . (14.236)
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Using this to eliminate δ�s in (14.235) leads to

δis = −1

4
sin 2(is)sd

δ|v� c|
|v� c|sd . (14.237)

Hence δ|v� c| > 0 gives δis < 0, corresponding to an increase in poloidal
field bending. Equations (14.234) then yields δTc > 0. Equation (14.170) for ρsn
and (14.171) for ṁ give

ṁ ∝ �s exp

[
−
(
�2

Kh
2

2a2
tan2 is

(3 − tan2 is)
+ 1

2

)]
. (14.238)

Then since δ�s > 0 and δis < 0, this gives δṁ > 0 corresponding to instability.
This result is in agreement with that of Lubow et al. (1994), despite their simplifying
assumptions. However, since discs are turbulent, ν will not be ignorable and stability
can result due to the effects of viscosity reducing the field bending effect.

14.7 Summary and Discussion

Observations strongly indicate that accretion discs have winds emanating from their
surfaces, with enhancedmass loss from the inner region and collimation of the outer
wind parallel to the spin axis of the disc. The foregoing analytic and numerical
investigations show that, with a suitable magnetic field, centrifugally driven wind
flows are possible. The flow passes through a slowmagnetosonic point, then through
an Alfvén point and a fast magnetosonic point. Provided that the Alfvén point is
well beyond the slow point, disc angular momentum is effectively removed and this
makes a significant contribution to driving the disc inflow. The slow magnetosonic
point and the sonic point are then essentially coincident. Beyond the Alfvén surface
the wind becomes collimated parallel to the disc spin axis, consistent with the
observations.

The MHD equations, describing the disc and wind structures, can naturally
incorporate an α�-type disc dynamo to generate a suitable magnetic field. The
combined magnetic and viscous torques lead to inflow speeds that are sufficient
to give the required poloidal field bending for effective wind launching, but still
remain subsonic.

The matching of the disc angular velocity with the stellar rotation rate at the
stellar surface leads to a local modification of the disc-wind structure. Poloidal
magnetic field bending increases as the star is approached and an enhanced wind
mass loss rate occurs over a narrow region in the inner part of the disc. This could
explain the increased mass loss rates observed from the inner regions of discs.

Viscosity plays important roles in partly driving the inflow and in quenching the
field bending disc-wind instability which occurs in disc models having the inflow
driven purely by magnetic wind torques.
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Appendix A

A.1 Physical Constants and Solar Parameters

Speed of light c = 2.998× 108 m s−1

Electron charge e = 1.602× 10−19 C
Electron mass me = 9.109 × 10−31 kg
Proton mass mp = 1.673× 10−27 kg
Boltzmann constant k = 1.381× 10−23 JK−1

Gas constant � = 8.314× 103 m2 s−2 K−1

Stefan-Boltzmann constant σB = 5.669 × 10−8 JK−4 m−2 s−1

Gravitational constantG = 6.67 × 10−11 Nm2 kg−2

Permittivity of free space ε0 = 8.854× 10−12 farad m−1

Permeability of free space μ0 = 4π × 10−7 henry m−1

Solar massM� = 1.989 × 1030 kg
Solar radius R� = 6.960 × 108 m
Solar luminosity L� = 3.90× 1026 J s−1

A.2 Vector Identities

E × (F × G) = (E · G)F − (E · F)G. (A1)

∇(F · G) = (F · ∇)G + (G · ∇)F + F × (∇ × G)+ G × (∇ × F). (A2)

∇ · (�F) = �∇ · F + F · ∇�. (A3)

∇ · (F × G) = G · (∇ × F)− F · (∇ × G). (A4)
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∇ × (�F) = �∇ × F + (∇�)× F. (A5)

∇ × (F × G) = (G · ∇)F − (F · ∇)G + F∇ · G − G∇ · F. (A6)

∇ × (∇ × F) = ∇(∇ · F)− ∇2F. (A7)

A.3 Operators in Orthogonal Coordinates

A.3.1 Spherical Polar Coordinates

B = Br r̂ + Bθ θ̂ + Bφ φ̂. (A8)

∇� = ∂�

∂r
r̂ + 1

r

∂�

∂θ
θ̂ + 1

r sin θ

∂�

∂φ
φ̂. (A9)

∇ · B = 1

r2

∂

∂r

(
r2Br

)
+ 1

r sin θ

∂

∂θ
(sin θBθ )+ 1

r sin θ

∂Bφ

∂φ
. (A10)

(∇ × B)r = 1

r sin θ

[
∂

∂θ
(sin θBφ)− ∂Bθ

∂φ

]
, (A11)

(∇ × B)θ = 1

r sin θ

∂Br

∂φ
− 1

r

∂

∂r
(rBφ), (A12)

(∇ × B)φ = 1

r

∂

∂r
(rBθ )− 1

r

∂Br

∂θ
. (A13)

A.3.2 Cylindrical Coordinates

B = B� 
̂ + Bφ φ̂ + Bz ẑ. (A14)

∇� = ∂�

∂�

̂ + 1

�

∂�

∂φ
φ̂ + ∂�

∂z
ẑ. (A15)

∇ · B = 1

�

∂

∂�
(�B�)+ 1

�

∂Bφ

∂φ
+ ∂Bz
∂z
. (A16)
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(∇ × B)� = 1

�

∂Bz

∂φ
− ∂Bφ
∂z
, (A17)

(∇ × B)φ = ∂B�

∂z
− ∂Bz
∂�

, (A18)

(∇ × B)z = 1

�

[
∂

∂�
(�Bφ)− ∂B�

∂φ

]
. (A19)

A.4 Viscosity Expressions

A.4.1 Viscous Force in Vector Operator Form

Equation (2.121) for the viscous force density Fv follows from the tensor expres-
sions (2.117)–(2.119). These give

Fvi = ∂

∂xj

(
ρν
∂vi

∂xj

)
+ ∂

∂xj

(
ρν
∂vj

∂xi

)
− 2

3

∂

∂xi
(ρν∇ · v). (A20)

The first term is

∂

∂xj

(
ρν
∂vi

∂xj

)
= ∂

∂xj
(ρν)

∂vi

∂xj
+ρν ∂2vi

∂xj∂xj
= (∇(ρν) ·∇)v+ρν∇2v. (A21)

The second term is

∂

∂xj

(
ρν
∂vj

∂xi

)
= ∂

∂xj

(
∂

∂xi
(ρνvj )− vj ∂

∂xi
(ρν)

)

= ∂

∂xi

(
∂

∂xj
(ρνvj )

)
− ∂vj

∂xj

∂

∂xi
(ρν)− vj ∂

∂xj

(
∂

∂xi
(ρν)

)

=∇ [∇ · (ρνv)] − (∇ · v)∇(ρν)− (v · ∇)∇(ρν). (A22)

The last term in (A20) is a gradient, so its addition to the first two terms gives

Fv =ρν∇2v + ∇
(

∇ · (ρνv)− 2

3
ρν∇ · v

)

+ (∇(ρν) · ∇)v − (v · ∇)∇(ρν)− (∇ · v)∇(ρν). (A23)

Use of the vector (A6) then yields

Fv =ρν∇2v + ∇
(

∇ · (ρνv)− 2

3
ρν∇ · v

)

+ ∇ × [v × ∇(ρν)] − [∇2(ρν)]v. (A24)
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A.4.2 Rate of Strain Tensor in Cylindrical Coordinates

e�� = 1

�

∂

∂�
(�v� ), e�φ = 1

2

(
�
∂

∂�

(vφ
�

)
+ 1

�

∂v�

∂φ

)
,

e�z = 1

2

(
∂v�

∂z
+ ∂vz

∂�

)
, eφφ = 1

�

∂vφ

∂φ
,

eφz = 1

2

(
1

�

∂vz

∂φ
+ ∂vφ
∂z

)
, ezz = ∂vz

∂z
. (A25)

A.5 Orthogonal Functions

A.5.1 Bessel Functions

Bessel’s equation is

d2y

dx2
+ 1

x

dy

dx
+
(
1 − ν2

x2

)
y = 0. (A26)

For ν a non-integer the general solution is

y = AJν(x)+ BJ−ν(x), (A27)

where A and B are constants and Jν(x) is a Bessel function of the first kind of order
ν. For ν = n, an integer, Jn(x) and J−n(x) are linearly dependent. The general
solution of (A26) in this case is

y = AJn(x)+ BYn(x), (A28)

where Yn(x) is a Bessel function of the second kind, which is singular at x = 0.
The functions Jn(x) are given by

Jn(x) =
∞∑
m=0

(−1)m

m!(m+ n)!
(x
2

)n+2m
. (A29)

This set of functions has the orthogonality relation

∫ a
0
Jn

(αm
a
r
)
Jn

(αl
a
r
)
rdr = −a

2

2
Jn+1(αm)Jn−1(αl)δml, (A30)

where αm and αl are zeros of Jn.
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Bessel functions of order n+ 1
2 , where n is an integer, are expressible as

J
n+ 1

2
(x) = (−1)n

(
2

π

) 1
2

xn+
1
2
dn

(xdx)n

(
sin x

x

)
. (A31)

A.5.2 Associated Legendre Functions

The associated Legendre equation is

d2y

dx2
− 2x

(1 − x2)
dy

dx
+
[
l(l + 1)

(1 − x2) − m2

(1 − x2)2
]
y = 0. (A32)

Solutions, Pml (x), finite at x = ±1 only occur for l and m as integers. The general
solution is

y = APml (x)+ BQml (x), (A33)

where the second solutionQml (x) is singular at x = ±1.
Due to the form l(l + 1) in (A32), negative values of l lead to the same set

of functions as positive values, so l > 0 is used. The functions P−m
l and Pml are

linearly dependent and the choice P−m
l = Pml can be made. Legendre functions,

free of singularity, are given by

P
|m|
l (x) = (1 − x2) |m|

2

2l l!
(
d

dx

)|m|+l
(x2 − 1)l, (A34)

where |m| ≤ l. Their orthogonality relation is
∫ 1

−1
P

|m|
l (x)P |m|

n (x)dx = 2

(2l + 1)

(l + |m|)!
(l − |m|)!δln. (A35)

Spherical harmonics are defined as

Yml (θ, φ) = P |m|
l (cos θ)eimφ. (A36)

Noting that x = cos θ and using the operator L2 defined by (2.203), gives

L2Yml = −
[

1

sin θ

d

dθ

(
sin θ

dP
|m|
l

dθ

)
− m2

sin2 θ
P

|m|
l

]
eimφ

= −
[
(1 − x2)d

2P
|m|
l

dx2
− 2x

dP
|m|
l

dx
− m2

(1 − x2)P
|m|
l

]
eimφ

= l(l + 1)P |m|
l eimφ, (A37)
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where the last equality follows from (A32). Hence Yml obey the eigenvalue equation

L2Yml = l(l + 1)Yml . (A38)

It follows from (A35) and (A36) that spherical harmonics have the orthogonality
relation on the unit sphere of

∫
4π
Yml Y

−r
n d� = 4π

(2l + 1)

(l + |m|)!
(l − |m|)!δlnδmr , (A39)

where the differential solid angle d� = sin θdθdφ.

A.6 Elliptic Integrals

Elliptic integrals of the first, second and third kinds are;

F(φ, k) =
∫ φ
0

dα

(1 − k2 sin2 α) 12
, (A40)

E(φ, k) =
∫ φ
0
(1 − k2 sin2 α) 12 dα, (A41)

 (φ, p, k) =
∫ φ
0

dα

(1 + p sin2 α)(1 − k2 sin2 α) 12
. (A42)

Complete elliptic integrals have φ = π/2.

A.7 Gravitational Torque on a Spheroid

If the primary star is non-spherical, due to non-radial internal forces, then it will
experience a torque resulting from interaction with the secondary’s gravitational
field. The simplest way of finding this torque is to calculate the torque a distorted
primary exerts on the centre of mass of the secondary, and then use the fact that the
gravitational torque on the primary is equal and opposite to this.

The case of distortion symmetric about an axis is considered. This principal axis
is taken to be along the e3 direction. Figure A.1 shows a mass element in the primary
at position r′ relative to its centre of mass O . The centre of mass of the secondary is
at P . The gravitational potential at P is

U = −
∫
Mp

Gdm

(r2 + r ′2 − 2rr ′ cos θ ′) 12
. (A43)
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Fig. A.1 Coordinates for
calculating the gravitational
torque on the primary Ms

r

e3

θ

θ

r

P

O

dm

This can be written as

U = −G
r

∫
Mp

dm

[1 − 2(r ′/r) cos θ ′ + (r ′/r)2] 12
. (A44)

Since the orbital separation significantly exceeds the mean radius of the primary, it
follows that r ′/r � 1 in the above integrand over the range of integration. Binomial
expansion of the integrand to second order in r ′/r , noting that O is the primary’s
centre of mass, then enables the potential to be expressed as

U = −GMp

r
− G

r3

(
IO − 3

2
I

)
, (A45)

where

IO =
∫
Mp

r ′2dm, I =
∫
Mp

r ′2 sin2 θ ′dm. (A46)

IO is the moment of inertia of the primary about O , while I is the moment of
inertia aboutOP . It is simple to show that IO is related to the principal moments of
inertia by

IO = 1

2
(I1 + I2 + I3). (A47)
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For a symmetric body I1 = I2 = I⊥, the moment of inertia about any axis in the
equatorial plane. Hence

IO = I⊥ + 1

2
I3. (A48)

The moment of inertia about OP can be written as

I = λ2I1 + μ2I2 + ν2I3, (A49)

where λ, μ and ν are the direction cosines ofOP along the principal axes, given by

λ = x

r
, μ = y

r
, ν = z

r
, (A50)

taking the positive z-direction along e3. It follows that

I = I⊥ + (I3 − I⊥) z
2

r2
. (A51)

Equations (A45), (A48) and (A51) give the potential as

U = −GMp

r
− G(I3 − I⊥)

2r3
+ 3G(I3 − I⊥)

2r5
z2. (A52)

Since the gravitational force on Ms at P is −∇U , the torque exerted on the
primary is

Tg = Msr × (∇U)P . (A53)

Noting that z = r cos θ , where θ is the angle betweenOP and e3, gives

Tg =Ms

(
∂U

∂θ

)
P

r̂ × θ̂ . (A54)

The unit vector θ̂ is related to e3 by

sin θ θ̂ = cos θ r̂ − e3. (A55)

The use of this and (A52) in (A54) yields

Tg = 3GMs(I3 − I⊥)
D3 cos θ r̂ × e3, (A56)

whereD is the orbital separation.
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transfer, 154, 167–175, 183
transport, 77, 266–267, 345–346, 432

angular velocity
disc, 251, 337, 423, 447
spin, 86

Bernoulli integral, 286, 379, 384
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Boltzmann’s equation, 13
bulk velocity, 13, 18
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249, 281, 430
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Legendre functions, 467
Lorentz force, 17
Lorentz force density, 24
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magnetic dissipation, 22
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dynamo, 417, 422–426
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enhanced magnetic wind, 450
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mass transfer, 393, 398, 402
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Maxwell’s equations, 15
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neutron star
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effects of accretion, 368
magnetic buoyancy, 369
magnetic field decay, 368
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Ohmic conductivity, 48

period gap, 404–408
plasma, 10

approximation, 10
frequency, 11

Poisson equation, 65, 255
poloidal field bending, 245, 418
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Poynting energy flux, 23
principal axes, 86
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radiation pressure, 35
radiative flux, 34
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Roche model, 57
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rotation matrix, 88, 203

secondary star
α� dynamo, 363
α2 dynamo, 364
asynchronism, 66, 363
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magnetic decay time, 362
M dwarf, 360
radiative core, 362
resistance, 130
Rossby number, 362
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sonic point
curtain flow, 287
disc winds, 414, 446
L1 region, 62

specific heat capacities, 32
spherical harmonics, 468

thermal time-scale, 398
tidal potential, 64
tidal torque, 66
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equilibrium period, 306
neutron star magnetic field, 230
period monitoring, 230
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spin evolution, 305
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