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Introduction 

I.1. Why is numerical analysis used in environmental science? 

I.1.1. Researchers handling their data 

“Environmental” research often involves sampling in the field or the 
automated acquisition of several parameters (i.e. chemical–physical, 
pedological, biological) in different stations and/or on different dates. Each 
station (or date) represents an observation/object that will be, therefore, 
defined by several abiotic or biotic descriptors/variables/parameters.  

The variation of one or two of these descriptors is easy to assess with a 
simple graphical analysis. For example, it is possible (1) to observe the 
monthly fluctuations of river discharges over a seasonal cycle at one 
estuarine station, (2) to determine which dates show similar discharges and 
are therefore similar concerning this parameter (for example flood and low-
water periods) or (3) to analyze whether there is a relationship between river 
discharges and another parameter such as turbidity (Figure I.1(A)).  

However, researchers rarely restrict themselves to gathering one or two 
parameters. Each supplementary parameter represents an extra dimension. 
Even though a graphical representation can still be obtained for three 
parameters (Figure I.1(B)), a multidimensional graphical representation is 
no longer possible beyond this number. Graphical analysis then becomes 
laborious since it involves the analysis of the two-dimensional (2D)  
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projection of all the combinations of parameters taken two by two in order to 
understand all the possible “relationships” between the parameters and the 
potential “similarities” between dates/stations in relation to these parameters. 
In this sense, numerical analysis will allow us to have an overview of the 
relationships between all the relevant variables and to determine how 
stations/dates are similar concerning the evolution of these parameters.  

 

Figure I.1. Graphic representation of data from the Charente estuary (fixed point with 
a salinity of 5). (A) 2D representation of turbidity in relation to river discharges. (B) 3D 
representation of turbidity in relation to river discharges and temperature  

The goal of environmental researchers will therefore consist of 
summarizing the information provided by their data sets:  

1) by reducing the number of dimensions (i.e. correlated variables may 
provide redundant information); 

2) by highlighting the similarities between parameters (e.g. 
positive/negative monotonic relationships and nonlinear relationships); 

3) by identifying general trends/structures in the observations (is there a 
particular structure – gradient, groups – of dates/stations?); 

4) to find out the causes behind these structures (i.e. which parameter(s) 
explain(s) the formation of groups or gradients?). 
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I.1.2. Why this book? 

The objective of this book is to present the most used numerical analyses 
that allow us to reach these goals. Obviously, it will not be exhaustive, due 
to the large number of analyses in place right now and the constant 
development in this field.  

There are two different schools of thought in relation to how these 
analyses are used: 

– the Francophone school [LEG 98], which follows parametric 
approaches and increments the analyses in the R software;  

– the Anglophone school [CLA 93], which favors non-parametric 
approaches and has developed the PRIMER software (see section I2.2 for 
the notions of parametric and non-parametric approaches). 

Most of the time, researchers and teachers follow one of these two 
schools of thought. Scientific literature shows how the Anglophone school’s 
adepts most often choose non-parametric analyses, even if their data would 
allow them to use more powerful parametric approaches in some cases, and 
how the Francophone school’s adepts use parametric approaches without 
questioning themselves about their relevance in relation to their data sets. 

The central concern of this book is thus to make both sets of analyses 
accessible, to make it possible to interpret them correctly and to provide 
some leads to help people find the most relevant analyses for the data sets 
used in relation to the scientific goals defined beforehand.  

A graphical approach that considers parameters two by two is a 
mandatory preliminary step if we want to understand data sets. It is highly 
recommended before and in tandem with multivariate analyses in order to:  

1) verify the quality of the data, i.e. to discover outliers and correct them 
if necessary (e.g. distinguishing between errors and extreme data); 

2) ensure that the general trends observed are plausible, that is to say the 
numerical approach is correct and its interpretation is valid;  
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3) ensure that all the relevant pieces of information are highlighted in 
relation to the data set and achieve the predetermined scientific goals.  

Using this kind of analysis allows us to have an overview of the results 
and enables us to summarize in one or two figures what would have required 
about 30 figures. The number of figures is actually limited for all internship 
reports and scientific publications. Moreover, these analyses can provide 
information that would not have been found by a simple analysis of 2D 
graphs.  

I.1.3. Why the R programming language? 

The R software is simultaneously a programming language and a 
workspace facilitating data treatment. It is used to manipulate data sets, draw 
graphs and carry out statistical analyses of these data.  

Among its advantages, R (1) is a “free” program that can be downloaded 
and installed on all computers, (2) works on several operating systems such 
as Windows, Linux, Mac OS, etc. Consequently, scientists employ it 
internationally and share their statistical knowledge by developing new 
functions or packages and by interacting through forums. This program is 
thus rapidly and constantly evolving. Numerous statistical analyses are 
available in R, both simple and complex (i.e. descriptive and inferential 
statistics, parametric or non-parametric tests, linear or nonlinear models, 
numerical ecology, multivariate analyses, signal treatment and spatial 
analyses). Very few commercial pieces of software can freely offer such a 
choice of analyses. All the parametric and non-parametric approaches 
presented in this work are incremented in R. Finally, R also offers several 
very useful graphical functions.  

This program is very effective in allowing us to carry out more so-
phisticated numerical analyses on the data (through a succession of functions 
or loops) and to reproduce them very quickly on other data sets by creating 
our own scripts.  

I.2. General types of multivariate analysis 

Multivariate analysis is an integral part of numerical ecology, i.e. the 
branch of quantitative ecology that deals with the numerical analysis of data 
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sets [LEG 98]. It makes it possible to treat databases in which each sampling 
element (for example stations/dates) is defined by several variables 
(descriptors) in one go. Multivariate analysis simultaneously combines 
statistical and non-statistical approaches. Two general types of 
multivariate analysis are distinguished allowing one to move from the 
description to the explanation of a data set (i.e. exploratory and explanatory 
analysis), while two kinds of approaches can be used in relation to their 
power and robustness (i.e. parametric and non-parametric approaches).  

I.2.1. Two general types of multivariate analysis  

I.2.1.1. “Exploratory” analyses 

The common goal of these analyses is to describe the structure of a 
data set. For example, they aim to determine how stations vary from one 
another based on the biological descriptors (e.g. phytoplankton species). 
There are three general kinds of analyses: 

– Cluster analysis 

This analysis aims to classify objects (e.g. date/stations) or descriptors 
(e.g. chemical–physical or biological variables) into groups of similar 
units. Thus, its goal is to identify discontinuities in a data set. The formation 
of these groups takes into account all the information contained in the data 
set. However, this kind of analysis will not allow us to obtain any pieces of 
information on the parameters that generate these groups on its own. If three 
groups of stations are highlighted by a classification, it means that the 
stations included in each of these groups are similar considering the set of 
parameters considered. However, we will not obtain any information about 
how and to what extent each parameter explains the difference between these 
groups.  

Example: Hierarchical clustering. 

– Multidimensional scaling  

This analysis aims to represent, in a reduced-dimension space (for 
example a plane), the similarities/differences between objects or 
descriptors. It considers all the information included in a data set as for  
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clustering analysis. It is based on the principle that environmental or 
biological data sets are structured in the shape of a gradient and that 
restricting objects into groups is difficult. Its ability to highlight groups or 
gradients makes it more powerful than clustering analysis. However, the 
possibility of using this analysis will depend on its ability to represent all the 
information included in a data set (e.g. 68 species) in a small number of 
dimensions (two or three). Finally, it exhibits the same shortcoming as 
clustering: it cannot provide information about how and to the extent to 
which each parameter generates the gradients/groups on its own. 

Example: Non-metric multidimensional scaling (NMDS). 

– Unconstrained ordination 

This analysis aims to identify and hierarchize the general trends in a 
data set in relation to the objects and the descriptors. These general 
trends are represented by a restricted number of axes that summarize the 
information. Thus, all the information included in the initial data set will not 
be expressed by the few axes considered. In addition, the gradients or groups 
of elements (e.g. stations) will be related to the parameters that generate 
them. If the stations are distributed along the first two axes, and if the former 
is well correlated to the nitrogen or phosphorous concentrations and the 
latter to temperature, this will mean that the structure of the stations is 
predominantly explained by the availability of nutrients and, secondarily and 
independently, by temperature. Its ability to rank the information included in 
the data set makes unconstrained ordination more powerful than cluster 
analysis or multidimensional scaling. However, these analyses depend on 
certain applicability conditions, which make them much less robust, 
especially for small data sets (i.e. a small number of objects in comparison 
with the number of descriptors). Refer to section I2.2 for the terms “power” 
and “robustness”.  

Example: Principal component analysis. 

I.2.1.2. “Explanatory” analyses  

These analyses aim to compare the structure of the data obtained 
through the aforementioned exploratory approaches with other data 
sets in order to explain this structure. For example, highlighting a gradient of 
stations based on phytoplankton communities requires us to explain this  
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gradient by means of environmental variables (for example chemical–
physical parameters, hydrodynamics and land use). There are two ways of 
achieving this.  

– A posteriori (or indirect) analysis 

This analysis aims to link the structure obtained (as it is) to potentially 
explanatory parameters, either through the passive projection of 
supplementary variables or by correlating the latter parameters with the axes 
of an exploratory analysis or by relating them with groups defined a priori 
(e.g. by qualitative factors based on preliminary cluster analysis). This is a 
passive approach.  

Example: Supplementary variables.  

– A priori (or direct) analysis 

The principle of this kind of analysis is to constrain the structure 
before the analysis by means of potentially explanatory parameters. This is 
an active approach. In order to become more effective, this analysis needs to 
limit the number of potentially explanatory variables to the relevant ones. 

Example: Canonical correspondence analysis. 

I.2.2. Power and robustness: inferential statistics applied to 
multivariate analysis 

I.2.2.1. Inferential statistics applied to multivariate analysis 

Some statistical tests are used in numerical analysis to verify in a 
significant way: 

1) whether the structures highlighted (e.g. groups) are different; 

2) whether certain descriptors can explain these structures; 

3) whether these structures are linked to certain environmental variables; 

4) the correspondence between structures highlighted by two different 
analyses. 
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Observation: This is the first time that the word “significant” has been 
used. Most numerical analyses can be interpreted only graphically (with 
some strict rules). In these cases, it is strongly advised to avoid describing 
the results obtained in terms of “significant” trend.  

In simpler terms, inferential statistics is based on tests that allow us to say 
whether the results are “significant”. In standard inferential statistics, these 
tests enable us to compare the estimators (i.e. means, variances and 
percentages) of a variable (e.g. temperature) between two or more 
populations based on random samples of them. The principle of parametric 
tests is to start from the hypothesis that the variable follows a known 
theoretical probability distribution (e.g. normal distribution) and, therefore, 
that the null hypothesis associated with the test follows this distribution. The 
problem of data tables is that they present several variables instead of just 
one. Thus, the statistical tests developed must integrate this 
multidimensional aspect and, consequently, the principle adopted will differ: 
the theoretical distribution upon which the test will be based will be 
calculated from random permutations of the initial data set, which generates 
randomness and, therefore, a distribution that corresponds to the null 
hypothesis (i.e. permutation tests).  

Example: SIMPROF test. 

I.2.2.2. Parametric and non-parametric approaches applied to 
multivariate analysis 

Obtaining all the data elements of a population is utterly unrealistic, 
e.g. all the oysters of the Arcachon bay (due to temporal and staff-related 
constraints, analysis requiring the death of the analyzed individuals, etc.). 
Therefore, research involves representative samples, namely samples that 
reflect the complexity and the composition of the studied population. These 
representative samples can only be obtained by random sampling, whereby 
all the individuals of the population stand the same chance of being part of 
the sample. However, sampling fluctuation means that two samples 
belonging to the same population may give different results concerning a 
given parameter and that two samples taken from different populations may 
yield identical values concerning this parameter. Only statistics can allow us 
to extrapolate the values obtained from a sample to the whole population. In  
classical statistical tests, two working hypotheses are made: a null hypothesis 
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and an alternative hypothesis. For example, if we are comparing two 
populations (e.g. considering temperatures), the null hypothesis (H0) 
assumes that sampling fluctuation accounts for the differences between the 
samples taken from the two different populations (i.e. no noticeable 
difference), while the alternative hypothesis (H1) admits that sampling 
fluctuation cannot explain everything (i.e. it is concluded that there are some 
differences). In most cases, environmental researchers aim to reject H0, 
namely to underscore a significant effect. Statistical tests allow us to decide 
in favor of one of these two hypotheses.  

The power of a test is its ability to reject H0 when H0 is false, that is to 
say to highlight a difference between two populations (based on the samples) 
when this difference is real. Robustness is its sensitivity to deviations from 
the hypotheses made, namely its ability to provide reliable results when the 
applicability conditions are not respected. Thus, for each kind of analysis 
(e.g. the comparison between the mean of two independent samples), there 
will be at least two tests: 

– A parametric alternative: More powerful but less robust, it will be 
more likely to reject H0 if H0 is false, i.e. to state that there is a difference 
between two samples if there is one  since it is based on a known theoretical 
probability distribution. However, it will be more sensitive to the 
applicability conditions of the tests. If the latter are not respected, the results 
might be wrong. 

– A non-parametric alternative: Less powerful but more robust, it will 
be less likely to reject H0 if H0 is false. However, it will present very few 
constraints in relation to the applicability conditions of the tests.  

In relation to the two general types of multivariate analysis, some 
analyses can be said to be parametric, while others can be named non-
parametric (Figure I.2). Parametric analyses will be more powerful in terms 
of the types of results provided, but they will be constrained by a certain 
number of applicability conditions. For example, this is true for 
unconstrained ordination, which allows us to hierarchize the information of a 
data set while also being constrained by the condition of data multinormality 
(i.e. each variable must follow a normal distribution). Other less powerful 
analyses will present no preliminary applicability condition. They are 
generally based on ranks (e.g. association coefficient ranks), rather than raw 
values. For example, this is the case for NMDS: only the similarities or 
differences between stations on a 2D plane can be analyzed without the 
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ability to hierarchize the information. However, it presents no applicability 
condition, with the exception that the representation quality indicator (i.e. 
stress) has to be good in order for the interpretation to be correct.  

I.2.2.3. Consequences: different analyses for “small” and “large” data 
sets 

Thus, the approaches used (parametric vs. non-parametric) will depend 
on the size of the data set (Figure I.2). In general terms, parametric types of 
analysis (e.g. unconstrained ordination, canonical analysis) will be suitable 
for “large” data sets, whose number of elements (for example stations/dates) 
is large and especially greater than the number of descriptors (e.g. chemical–
physical variables). On the other hand, non-parametric approaches, whose 
robustness is high, will be favored for “small” data sets (i.e. a small number 
of elements, which is smaller than the number of descriptors). Their power 
will be reduced (e.g. less information about ranking the significance of the 
descriptors in relation to the elements’ structuration will be available), but 
the numerical analyses used will not be biased by the weakness of the data 
set (the drastic applicability conditions linked to the mathematical principles 
of the parametric approaches on which these analyses are based will not be 
necessary).  

 

Figure I.2. Parametric and non-parametric approaches applied to multivariate 
analyses. Conditions in terms of power and robustness and consequences in terms 
of applicability on small and large data sets (number of objects vs. number of 
parameters) 
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In any case, less is more: non-parametric approaches can be applied to 
“large” data sets. However, if a parametric approach can be used to achieve 
the scientific goal, it is advisable to employ it in order to be able to obtain 
more information about the database processed (e.g. if applicable, an 
unconstrained ordination will provide information about ranking the 
significance of the descriptors in relation to the objects’ structure, whereas 
using a non-metric multidimensional analysis will give only the objects’ 
structuration, without providing any information about the role of the 
descriptors involved). Some analyses, however, allow us to adopt  
an intermediate approach that is more powerful than a non-parametric  
one and yet presents less constraints in terms of applicability conditions  
(e.g. permutational analysis of variance). Testing their suitability for a small 
data set is advised before moving on to a non-parametric approach.  

I.3. Choosing analysis types in line with the research objective 

In the best-case scenario, a sampling strategy or an experimental plan has 
been implemented to reach one or more specific goals. It is important to be 
already thinking about the kind of numerical analysis that will be carried out 
during the elaboration of the sampling process or of the experimental plan 
[SCH 84].  

We should never lose sight of the objectives while data are being 
processed, lest we start carrying out analyses for the sake of carrying out 
analyses, so that we end up not answering the questions asked at the 
beginning of the scientific study. 

Several analyses will allow us to answer the same question. What 
matters is to choose the most relevant analysis (or analyses), which provides 
as much information as possible insofar as the applicability conditions are 
respected. If several analyses are carried out, they must be complementary, 
since carrying out redundant analyses is useless.  

We should take a critical look at the analyses put forward in the 
literature. These analyses do not have to be necessarily open to criticism, 
but just because a researcher uses a specific analysis to achieve the same  
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goal, it does not mean that it is advisable to carry out the same analysis. His 
or her sampling strategy may be different (e.g. number of stations, types and 
numbers of parameters, etc.) and, consequently, the analyses that should be 
carried out may vary, for example, due to the applicability conditions.  

Similarly, when a database is taken from another study, we must make 
sure that the sampling strategy or the experimental plan adopted beforehand 
is suitable for the goals we have set.  

I.3.1. Is it possible to manipulate the results of the analyses with 
such tools?  

Numerical analysis remains first and foremost a tool that should be used 
rigorously in full knowledge of the data and, especially, the way in which it 
has been obtained. A researcher would not think (1) of using an oxygen 
probe that has not been previously calibrated or (2) of identifying living 
organisms without employing specific determination criteria listed in 
specialized identification keys. The false but widespread adage that 
“statistics can make data say anything or whatever we want” clearly shows 
that these analyses have been misread. 

I.3.2. “To make data say anything”: Which mistakes can lead us 
to interpret data incorrectly?  

Most analyses are based on strong hypotheses that affect the properties of 
the mathematical tools developed in relation to them. For example, 
unconstrained ordination starts from the principle that data follows the 
normal distribution for all the descriptors considered and that the 
interpretation that will be made is only and rigorously valid if this condition 
is respected. Respecting the applicability conditions, therefore, guarantees 
that the interpretation will be valid for all these analyses.  

Interpreting these analyses correctly by being aware of their limits is 
equally important: each of them presents its own interpretation rules, which 
derive especially from the properties of the mathematical tools used and 
from the hypotheses made beforehand. Thus, we must be aware of what we  
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can and cannot conclude with the analysis chosen. For example, we will not 
be able to interpret descriptors that are not adequately represented on the 
axes of an unconstrained ordination under any circumstances, since we run 
the risk of drawing the wrong conclusions.  

Another especially significant constraint of these analyses derives from 
the fact that they are only mathematical tools. The results they provide 
must be considered in a critical way by a researcher who remains an 
expert in his/her field. Empirical or bibliographic knowledge of the field is 
of great help to any interpretation. Highlighting a correlation between two or 
more variables does not guarantee a cause–effect relationship since 
relationships between variables are especially complex.  

– The correlation between two variables may be coincidental. Let us 
imagine that a strong correlation has been highlighted between the land use 
percentages of a drainage basin employed as agricultural land and forestland,  
and the quantity of nitrates in the downstream fluvial waters. If it is evident  
that high concentrations of nitrates can be explained in all likelihood by the 
significant presence of agricultural land, rather than large areas of forestland, 
in the drainage basin, only empirical knowledge of the field can lead us to 
the conclusion that the relationship between agricultural land and forestland 
is a mere coincidence in the geographical area considered.  

– Two variables can be independently explained by the same 
variable. The correlation between two variables can only result from the 
effect of a third one. Let us consider the example of two species, a benthic 
and a planktonic one for which abundances are strongly linked to 
temperature: high temperatures favor the benthic species, whereas low 
temperatures stimulate the planktonic taxa. From this correlation with 
temperatures, we may deduce a pronounced anticorrelation between the two 
species, even if there is actually no real negative relationship between them 
that might be explained by predation, competition, etc. Only in-depth 
knowledge about these two species allows researchers to identify whether 
this negative relationship is real or caused by the independent link between 
each of them and temperature.  

– A relationship between two variables may be positive or negative 
according to the scale considered. Temperature may be a parameter that 
affects the physiology of a species in a positive way on a small scale  
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(seasonal scale) and negatively on a long-term scale (decadal scale). For 
example, temperature is a positive factor acting on the physiology of 
poikilothermic species and, therefore, it controls their seasonal cycle. 
However, a long-term increase in temperature may amplify the thermic 
difference between summer maximum and winter minimum temperatures, 
thus becoming harmful to these species.  

– Several variables may account for the fluctuations of another 
variable (e.g. a species) and these independent variables may also be 
intercorrelated. An increase in temperature may cause a stratification of the 
water column and, consequently, a more rapid depletion of the dissolved 
nutrients with a negative effect on diatoms (planktonic microalgae). Even if 
certain species of diatoms may be favored by increasing temperatures, the 
temperature threshold, which may or may not lead to a stratification, will 
favor or hinder the development of this taxon.  

I.3.3. “To make data say whatever we want”: Does this imply that 
we choose the analysis that suits us out of several of them that 
provide different results? 

Of course not! A rigorous approach will allow for several analyses, but 
the results will be coherent, redundant or complementary. Choosing the 
analysis to consider will deal with the quantity and quality of the information 
provided in relation to the predetermined scientific goal, while avoiding 
presenting totally redundant analyses.  

A rigorous approach requires some choices to be made while preparing 
the data set and throughout the numerical analysis.  

– A data set may, for example, present missing data, which might be 
treated according to its type: an absence of data that represents the absence 
of a species may be replaced by 0, while an absence that represents a 
machine failure that prevents us from taking the measurement must be 
identified as missing data (written as NA in R language).  

– Data may require a transformation that is chosen in relation to its type 
and the requirements related to the analysis (e.g. standardizing units of 
measurement, “normalizing” data and reducing the range of variations).  
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– The objectives and the way data has been obtained will govern the 
choice of the association measure, which allows us to measure the degrees of 
similarity between objects or descriptors. For example, the coabsence of a 
species in two stations can be considered as a criterion of similarity between 
stations if this coabsence represents a specific phenomenon that we are 
trying to study (e.g. pollution), whereas it can be ignored if we do not want 
to give it too much weight (e.g. when the sampling method is biased by rare 
species). 

All of these choices will affect the relationships or similarities observed 
between objects (i.e. stations/dates) or descriptors. It is clear that, in order  
to reach a certain goal, these choices will be the same regardless of  
which analysis is carried out. Consequently, results will be coherent  
in all the approaches used, even if some analyses may provide some  
variants according to their specific characteristics and mathematical 
properties.  

I.4. The database used as an example in this book 

The data presented here will be employed throughout the text to show a 
practical application of the analyses used. For each objective described 
below, we will mention the chapters in which the relevant analyses will be 
carried out.  

Four drained marshes in the Charente-Maritime department (South-West 
France) have been sampled. These marshes have been created by man over 
the centuries for the development of agricultural activities (i.e. agriculture, 
livestock farming, oyster-farming, fish farming, salt production, etc.) and 
they have also been subjected to a progressive urbanization (sewage plants, 
houses). They represent a hydrographic artificial network of channels and 
ditches that range from 10 to several hundred kilometers in length. Human 
intervention, through them, aims to control lock gates on the coast to prevent 
saltwater from penetrating into the network with every incoming tide and to 
avoid the flooding of nearby land during winter floods. The water system is 
made of three types of channel: (1) large main channels, deeper than 1 m, in 
which water flowing in from other channels is drained before reaching the  
coastal waters; (2) ditches or tertiary channels – they are the narrowest type  
of channel and they are no deeper than 50 cm – which directly supply the  
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land nearby where anthropogenic activities develop; and (3) intermediate or 
secondary channels, which ensure that water is drained from ditches all the 
way up to the main channels.  

The data are available as an excel file (Data_Marsh_book.xls) on the 
Researchgate profile of the author (https://www.researchgate.net/profile/V_ 
David). Each of the databases described below is presented as a folder. 

The four marshes (A–D) have been sampled during the summer (in July): 
two drained marshes re-fed by the river nearby (the Charente) to prevent 
summer droughts, when farmland needs particularly high levels of water (R), 
and two unfed drained marshes whose water level can quickly decrease, in 
summer, when some ditches dry up completely. For each of these kinds of 
marsh, sampling was processed inland (I) and on the coast near sea lock 
gates (E). For each of the four marshes, four to six stations have been 
sampled (written as “a” to “e”) for different kinds of channels and different 
land uses on neighboring areas of influence. For each of the 19 stations, 
different parameters have been sampled and marked (see Table I.1). Each 
folder of the excel file must be imported in R using the read_excel() function 
of the readxl library: 

– Environmental parameters (folder “fext”): Station (variable “Station”, 
from A to D); type of marsh (variable “Type”, D or R); “position” (I for internal 
and E for external); land use on the neighboring area of influence (variable 
“use”, with Grassland, Farmland or Urban); types of channel (variable 
“Channel”, with “prim” for primary, “sec” for secondary and “ter” for tertiary); 
presence of macrophytes (variable “MP”, with “yes” if macrophytes are present) 
and surface of the drainage basin (variable “DB” in km2). The codes for  
the stations appear as a name arranged in a row with the type of marsh  
(from A to D) and the stations sampled in these marshes (from a to f).  

– Chemical–physical parameters (folder “CP”): Depth (“Depth”); solar 
radiations at the water surface (“Lumin”); optical depth (“Opt_depth”); water 
temperature (“Temp”); concentration of nitrites (“NO2”), nitrates (“NO3”) 
and phosphates (“PO4”); the ratio (NO3 + NO2)/PO4 (“N.P”); and turbidity 
(“Turb”). 

– Global biological parameters (folder “bio”): Chlorophyll biomass as 
an index of the phytoplankton biomass (“Chloa”), primary production in the 
water column (“P_phyto”), phytoplankton productivity–production/biomass 
(P.B) ratio. 
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– Phytoplankton abundance (folder “phyto”): The abundances of 68 
genera have been listed, but only the abundances of seven genera are 
provided in Table I.1. The whole 68 genera and their respective codes are 
listed in Table I.2. 

library(readxl) 
 
# Verify that the compatibility with your excel version ( put “,” as decimal 

separation for a French version in your Data_Marsh_book file for 
example…) and change the directory 

fext <- read_excel("~/R/Data_Marsh_book.xlsx",  col_types = c("text", "text", 
"text", "text", "text", "text", "text", "numeric"), sheet = "fext") # Import de 
first sheet “fext”  

rownames(fext)<-fext[,1]; fext<-fext[,-1];summary(fext) #To use the Code column 
as rownames 

fext$Station<-as.factor(fext$Station);fext$Type<-as.factor(fext$Type); 

fext$Position<-as.factor(fext$Position); fext$Land_use<-as.factor(fext[,4]); 

fext$Channel<-as.factor(fext$Channel);fext$MP<-as.factor(fext$MP) #To change 
the qualitative variables as factors 

fext[,-4]->fext # To eliminate de Land use column that had been replaced by 
Land_use 

as.data.frame(fext)->fext # To give the good format to the database 

summary(fext) # To verify the successful of the import and the kind of variables 

CP <- read_excel("~/R/Data_Marsh_book.xlsx, col_types = c("text", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric", "numeric", 
"numeric","numeric"), sheet = "CP");  

rownames(CP)<-CP[,1]; CP<-CP[,-1];summary(CP) 

bio <- read_excel("~/R/Data_Marsh_book.xlsx", col_types = c("text", "numeric", 
"numeric", "numeric"), sheet = "bio"); rownames(bio)<-bio[,1]; bio<-bio 
[,-1];summary(bio) 

phyto <- read_excel("~/R/Data_Marsh_book.xlsx",sheet=”phyto”);rownames(phyto) 
<-phyto[,1]; phyto<-phyto[,-1];summary(phyto) 
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Table I.2. Phytoplankton taxa listed throughout the study  
and abbreviations used for the following analyses  

Taxon Code
Cyclotella Cycl
Melosira Melo
Licmophora Licm
Fragillaria Frag
Achnan nium Achnm
Meridion Merid
Synedra Syne
Achnanthes Achn
Rhopalodia Rhop
Caloneis Calo
Gomphonema Gomp
Gyrosigma Gyro
Haslea Hasl
Navicula Navi
Pleurosigma Pleu
Amphora Amph
Cymbella Cymb
Cymatopleura Cyma
Epithemia Epit
Bacillaria Baci
Cylindrotheca Cyli
Nitzschia Nitz
Pseudonitzschia Pseu
Gymnodinium Gymn
Peridinien Peri
Gloecys s Gloe
Cystodinium Cyst
Gonyostomum Gony
Synura Synu
Closterium Clos
Dinobryon Dino
Netrium Netr
Cosmarium Cosm
Staurastrum Staut

Taxon Code
Staurodesmus Staud
Ac nastrum Ac 
Ankistrodesmus Anki
Crucigenia Cruc
Haematococcus Haem
Monoraphidium Mono
Oocys s Oocy
Pandorina Pand
Pediastrum Pedi
Scenedesmus Scen
Desmodesmus Desm
Tetrastrum Tetrs
Tetraedon Tetrd
Chroomonas Chroas
Cryptomonas Cryp
Chrysochromulina Chry
Chlamydomonas Chla
Tetraselmis Tetrl
Euglenes Eugl
Lepocinclis Lepo
Peranema Pera
Phacus Phac
Strombomonas Stro
Trachelomonas Trac
Anabaena Anab
Gomphospaeria Gompp
Chroococus Chro
Merismopedia Meris
Mycrocys s Mycr
Nostoc Nost
Plankto Plan
Oscillatoria Osci
Spirulina Spir
Diversecyano Cyan
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I.5. The structure of this book 

This book is organized into five chapters.  

Chapter 1 (observing and preparing a data set): The goal of the first 
part of this chapter is to find out more about the data set, i.e. to establish its 
boundaries and make the necessary choices before any kind of treatment, in 
keeping with the goals of the study and the sampling strategy (sections 1.1 
and 1.2). It also describes the methods used to simplify data sets in order to 
remove redundant or uninformative variables (see sections 1.3 and 1.4). 

Chapter 2 (preliminary processing of the data set): This chapter aims 
to show how to calculate diversity indices (see section 2.1), how to 
transform the data set (see section 2.2) and how to choose the most suitable 
association measure for the data set (see section 2.3).  

Chapter 3 (clustering objects/variables): This chapter describes the 
most used clustering methods, explains how to apply them in relation to the 
data set and the objectives (see section 3.1) and shows how to define the 
groups obtained (see section 3.2). 

Chapter 4 (Gradient of objects/variables): This part describes the 
application of an unconstrained ordination as a parametric approach (see 
section 4.1) and the application of non-metric multidimensional scaling as a 
non-parametric approach (see section 4.2).  

Chapter 5 (understanding a structure): This part aims to present 
methods that directly compare structures with no hypotheses in relation to 
independent and dependent variables (see section 5.1), and to find 
quantitative and qualitative factors (see section 5.2) that account for the 
structures obtained in the previous chapters.  

Figure I.3 illustrates how the analyses presented in this book are used in 
relation to the properties of the data set employed. 
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Figure I.3. Diagram that allows us to choose the analyses  
presented in this book in relation to the data set and the goals 
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Observing and Preparing a Data Set 

This chapter aims to find out more about a data set, namely to establish 
its boundaries and to make the necessary choices before any kind of 
treatment, in keeping with the objectives of the study and the sampling 
strategy (sections 1.1 and 1.2). It also illustrates how to simplify data sets so 
as to remove redundant or uninformative variables for environmental factors 
(see section 1.3) and biological data (see section 1.4).  

1.1. Creating a database in relation to our predetermined goals 

During a sampling process, researchers take their samples in several 
sampling points (i.e. spatial sampling), on different dates (i.e. temporal 
sampling), or in both ways (i.e. spatiotemporal sampling). In the database, 
these stations or dates will represent the objects. For each object, researchers 
will sample different kinds of parameters in relation to their discipline and 
objectives: we may deal with ecological samples (e.g. fauna or flora 
sampling), environmental samples (temperature, wave height, current, etc.), 
or samples concerning the phylogenetics of a given species – i.e. 
morphological (for example wing length, size, weight, etc.) or molecular 
(e.g. DNA and proteins) features. If several replicates are available in each 
station or on each date, each one of them will represent a different object in 
the raw database, called a sampling element or sampling unit. Each 
element will be arranged by convention in a row in the raw database and is 
identified by a code that varies for each object, even if it has been taken as a 
sample at the same station/on the same date (e.g. the sampling of 20 oysters 
taken in one station: each oyster is listed in a row and, consequently, there 
will be 20 rows identified for the same station).  
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Descriptors or variables will be the characteristics measured or 
observed for each element of the sample, according to the kind of sampling. 
Variables may be:  

– quantitative (including measurable elements): 

- continuous: all values are allowed (e.g. temperatures and 
concentration of nitrates, Table I.1); 

- discrete: exclusively with integer values (e.g. number of 
phytoplankton cells per liter, Table I.1). 

– Qualitative (including values that express a quality): 

- nominal: without logical gradation (e.g. code “Marsh”, Table I.1); 

- ordinal: with logical gradation (e.g. “Type of channel”, Table I.1); 

- semiquantitative: grouped by type of values (e.g. classes of abundances); 

- binary: expressed as 0 or 1 (e.g. the presence or absence of 
macrophytes, Table I.1). 

On the one hand, one of the objectives of a specific work may involve 
understanding or predicting the variations of one or several variables, which 
will be called dependent or explained variables. On the other hand, 
independent or explanatory variables are those variables that have an 
influence or effect that we try to underline. For example, phytoplankton 
production (dependent variable) could be explained in relation to the 
concentration of nitrates (independent variable).  

Researchers may want to underscore the effect of one or several variables 
on one or several other variables through an experimental approach. In this 
context, control variables are parameters whose values are fixed by 
researchers, who try to determine their effect. On the other hand, variables 
that can take any possible value – especially the dependent variables – will 
be called random variables. For example, researchers may want to assess 
the impact of the concentration of a fertilizer (control variable) on the 
productivity of a cornfield (random variable).  

During field sampling, variables take random values (e.g. phytoplankton 
production, concentrations of nutrients, etc.) unless some of them are fixed 
on purpose by a researcher in his sampling strategy. For example, salinity 
may be either a control variable when samples are taken at fixed salinities, 
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for example at 0, 5, 15 and 25 in an estuarine system (Lagrangian sampling) 
or a random variable for a Eulerian sampling realized at fixed stations.  

1.2. Observing the database scrupulously 

This step is essential to direct the multivariate analyses that will be 
covered later on.  

1.2.1. Missing data 

The acquisition of a database is never perfect. Most of the time, raw data 
sets involve empty cells, which may be linked to a lack of data acquired in 
the field or bad-quality values due to an incorrect laboratory process. On the 
contrary, an empty cell in a flora or fauna database is often linked to the fact 
that a species has not been inventoried in the sample. The latter missing data 
correspond to an absence of the species and, consequently, to a value of 
zero, whereas the former missing values are actually missing and cannot be 
assessed. It will be expressed as NA (in R software). In any case, before 
downloading the database in R, filling all the empty cells is necessary and 
the previous issues (absence (0) vs. unassessed (NA)) must be tackled.  

Multivariate analyses will not take into consideration the rows where 
data are missing. Thus, it will be wiser to remove from the database those 
variables containing too many NA values (even if this action may sometimes 
seem frustrating). Otherwise, the result of the analysis would be based on 
such a small number of rows that the results would not be representative of 
the sampling.  

Sometimes it is possible, even if risky, to substitute the NA of some 
variables with values by replacing them (1) with the average of all the values 
of the variable, (2) with the mean between the previous and the following 
data in a process of seasonal monitoring and (3) by using methods that can 
regularize data with more precision by considering a larger spectrum of the 
data for a long-term temporal sampling process (e.g. splines). 

It is strongly advised to carry out this task diligently before downloading 
the file in R, so that we no longer have to deal with the new raw data table 
(apart from the regularization processes).  
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1.2.2. The heterogeneity of the variables 

The data set considered as an example includes most of the different 
kinds of variables: quantitative variables (continuous and discrete) and 
qualitative variables (nominal, ordinal and binary). The analyses employed 
for these several kinds of variables might differ and transformations may be 
necessary. 

On the one hand, quantitative variables are not necessarily expressed in 
the same units, which implies that there are differences in terms of their 
range of variation. In the chemical--physical (CP) database (Table I.1), some 
variables, such as optical depth, present very limited ranges of variation 
(from 0 to 0.47 m) and values, whereas others, like solar radiation, present 
high values and wide ranges of variation (from 133 to 2,129). These 
differences are linked to the differences in terms of units. A different unit 
would have entailed changes in the values for a same variable: for example, 
if optical depth had been expressed in centimeter, the ranges of variation 
would have changed between 0 and 47. Nonetheless, the wide ranges of 
variation and high values of a parameter will have more weight in 
multivariate analyses due to the effect of the association measures on the 
calculations formulae. Thus, a transformation will be necessary to 
eliminate the problem of heterogeneous units. In this case, the most 
suitable transformation will be standardization, which allows us to reduce all 
the variables to the same unit (see section 2.2.1). 

On the other hand, a database such as that of phytoplankton abundance 
presents homogeneous units (cells L–1). However, the variation ranges of 
abundances from one species to another may be very different (Table I.1): 
Nitzchia varies between 0 and 689,150 cells L–1, whereas Licmophora 
fluctuates between 0 and 69 cells L–1. Besides, while the former taxon is 
inventoried at all stations, the latter has been listed only once and with low 
abundance. First of all, the step that involves the removal of rare species 
might allow us to reduce the data set in order to eliminate taxa like 
Licmophora, which are not very present or abundant among the 68 taxa 
listed (see section 1.4). However, there will still be marked differences in 
terms of variation range among taxa with a significant presence. For 
example, the maximum abundances of taxa with a high presence, Nitzchia 
and Euglena (Table I.1), are separated by a factor of 10. A transformation is 
thus required, as is the case for the CP parameters to avoid giving too much 
weight to taxa with particularly high abundances. However, this type of 
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transformation will be different because (1) units are homogeneous, (2) 0s 
traducing an absence must be conserved as null values and (3) the 
transformation aims to reduce the range of variation; several transformations 
can be used in relation to the strength of the reduction that might be applied 
to the data set (e.g. square root and logarithm transformation; see  
section 2.2.2).  

Moreover, some analyses (i.e. unconstrained analysis) require 
multinormal data and some transformations, such as standardization, might 
allow us to respect these applicability conditions. However, we cannot 
expect any miracles.  

Besides, a homogenization of the data might sometimes be required 
through  data degradation, because the quantification mode has not been 
obtained with the same methods through the sampling process. For example, 
the abundances inventoried in the phytoplankton database could be reduced 
to a simple presence/absence base of the taxa (section 2.2.2.2).  

Finally, qualitative data cannot be used as they are in multivariate analysis. 
A transformation into binary variables will be required (see section 2.2.3).  

However, it is important to point out that all these database 
transformations or degradations involve a more or less significant 
distortion of the raw data and will not provide the same results yielded by 
an analysis carried out on the raw database. Thus, these choices must be 
made beforehand in relation to the objectives and the constraints required by 
the available databases. The several types of most common transformations, 
as well as the distortions involved, will be tackled in section 2.2.  

1.2.3. Dealing with replicates  

Occasionally, it is useful to summarize replicates (e.g. within a station) 
in order to obtain only one value (per station). Let us reconsider the example 
of 20 oysters sampled for each station. It may be useful for certain analyses 
to reduce the 20 rows to one value per station, i.e. the mean or the median, 
before carrying on the analyses. This is not the case for our database, since 
the replicates represent, for each marsh, different stations in terms of 
environmental factors, and since between-station variability within a single 
marsh is interesting in itself.  
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To illustrate how to carry out this operation, the “chemical--physical”  
data table will be reduced to one value per marsh. The functions group.by() 
and summarize(), belonging to the package [dplyr], allow us to retrieve for 
each marsh the medians for every variable of the CP parameters.  

library(dplyr) 
by_marsh<-group_by (CP, fext$Type) 
permarsh <- summarize (by_marsh, median(Depth), median(Lumin), 

median(Opt_Depth), median(Temp), median(NO2), median(NO3), 
median(PO4), median(N.P), median(Turb)) # Choosing the relevant 
variables and function 

colnames(permarsh)<-colnames(cbind(fext$Type, CP)) # Changing the name of the 
variables in order to simplify them 

View(permarsh) 
 

The file “permarsh” stores only one object per marsh, which corresponds 
to the median values of all the replicates per marsh.  

1.2.4. The number of objects and descriptors 

For the most powerful kinds of multivariate analyses (unconstrained 
ordination or canonical analysis), the number of variables (descriptors) 
should theoretically be 10 times smaller than the number of objects. 
However, it is usually acceptable for the number of variables to be merely 
smaller than the number of objects (see section 4.1.1) provided that the 
number of objects is large enough (not fewer than 10 objects). The 
dimension of a data table is verified with the function dim().  

dim(CP)  

[1] 19  9  # 19 objects / 9 variables 

Out of the four databases, the “chemical--physical” (CP), “environmental” 
(fext), and “biological without microphytoplankton” (bio) bases present fewer 
variables than stations sampled (9, 7 and 3 parameters, respectively, vs. 19 
stations). In contrast, the “microphytoplankton” (phyto) base presents a  
number of variables that is more than three times greater than the number of 
stations (68 taxa vs. 19 stations). Consequently, it will not be possible to carry 
out an unconstrained ordination on it as it is, unlike the others. For this base, it 
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would be more advisable to adopt a non-parametric approach (e.g. a non-
metric multidimensional scaling, see section 4.2) or to reduce the number of 
taxa by eliminating rare species (see section 1.4) before carrying out 
unconstrained ordination (see section 4.1). 

1.2.5. Managing double zeroes 

When we try to assess whether two stations or dates are similar in terms of 
CP or biological descriptors, it may happen that values are equal to 0 for two 
elements (stations/dates) for the same variable. If we consider CP parameters, 
0 has an actual value on the scale of the descriptor. A temperature of 0 °C, for 
example, is as meaningful as a temperature of 20 °C or –12 °C. The double 0, 
for both objects, adds a similarity between the two objects in relation to this 
parameter. Thus, it must be taken into consideration to assess the similarity 
between these objects. 

If we are dealing with a matrix such as a flora or fauna inventory (for 
example phytoplankton), 0 implies the absence of the species considered, 
whereas the copresence of a species can indicate similar conditions in terms 
of ecological niches, and presence/absence may oppose two niches, a double 
absence (double 0) may be the result of different things (rare and thus 
uncollected species, sampling outside ecological niches for the two species, 
etc.). This double zero, linked to the joint absence of the two species at the 
two stations, is usually discarded when we assess the similarity between two 
stations, especially if our aim is to characterize biological communities. 
However, this coabsence of species may be essential for assessing certain 
goals, for example when we are looking for pollution indices.  

The issue of whether we should consider or reject “double zeroes” during 
the analysis is thus of paramount importance, especially concerning the 
choice of association measures (see section 2.3).  

1.2.6. Goals/data sets compatibility 

The databases acquired in our example have the elements (stations) 
arranged in rows and the descriptors arranged in columns (CP parameters, 
phytoplankton taxa, etc.). 
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Figure 1.1. Database and Q, O, R, P analyses  
modes, or direct versus indirect 

The table that will be used to apply a multivariate analysis will be 
oriented in relation to the goals we have set beforehand. For example, a data 
set with stations arranged into rows and descriptors arranged into columns 
will allow us to determine the relationship (i.e. similarities/differences) 
between stations on the basis of the descriptors. If the matrix is transposed, 
i.e. if the descriptors are arranged into rows and the stations into columns, it 
will highlight the relationships between descriptors. In the literature, we 
refer to Q mode and R mode, respectively [LEG 98; Figure 1.1). The two 
issues are different and therefore the type of results will also be different . In 
the former analysis, groups or gradients of stations will be underscored, 
whereas in the latter approach groups or gradients of descriptors will be 
highlighted. When the objects consist of dates, we will refer to O mode and 
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P mode, respectively (Figure 1.1). The Anglophone school refers to direct 
mode when we are generally looking for similarities/differences between 
objects on the basis of descriptors, and to indirect mode when we are 
looking for relationships between descriptors (Figure 1.1).  

The association measures will vary in relation to the mode employed (see 
section 2.3). Determining our goal before we start carrying out analyses is 
important. Databases can be transposed with the function t() in R.  

PCtranspose<-t(PC) 
 

1.3. Reducing the number of environmental variables 

1.3.1. Why is it relevant? 

After being out in the field, researchers can often rely on a great number 
of environmental variables (or descriptors). Taking all these variables into 
consideration involves the risk of making the calculations complex and 
muddling the essential information conveyed by the database. Thus, it is 
important to detect the variables that play a minor role in the representation 
of the structure of the objects (stations/dates) and, consequently, to be able to 
choose whether or not to consider them or to discard them. Besides, some 
descriptors may be redundant if they are strongly correlated and they may 
give more weight to the information they provide. Finally, the smaller the 
number of descriptors in relation to the number of objects in the base, the 
more powerful the exploitable multivariate analyses. Here, we will use two 
methods. They may supplement each other in terms of information conveyed 
and interpretation of the final results: Escoufier’s method (see section 1.3.2) 
and Spearman’s correlation matrix (section 1.3.3).  

1.3.2. Escoufier’s method: reducing variables while keeping the 
maximum amount of information 

Escoufier’s method [ESC 70] allows us to extract a number of variables 
that is smaller than the initial one, so that the information kept and the 
structure of the objects obtained with these variables after a multivariate 
analysis resembles as closely as possible the same analysis carried out with all 
the variables. We obtain a database where variables are ranked in descending 
order in relation to the dependent variation of the initial table. The RV 
between-series correlation coefficient, which varies between 0 and 1, measures 
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cross relationships between tables: the initial database and the different 
simplified bases. The method proceeds step by step by determining first the 
variable with the highest RV, then it keeps this variable and adds the others, 
one by one, to determine which combination of the two improves the RV, and 
so on. 

Escoufier’s method can be used with the function escouf() available in 
the package [pastecs] by specifying the database (descriptors arranged in 
columns and objects in rows) and the argument VERBOSE = TRUE to 
display all the details in the results (i.e. the order in which the descriptors are 
integrated when the process calculates the RV: the highest one and then, one 
by one, those that improve it). Here, it is applied to the matrix of the CP 
variables, which contains nine variables that vary in terms of variation range 
and units for the 19 stations.  

library(pastecs) 

CP.esc <- escouf(CP, verbose=TRUE) 

summary(CP.esc) # Summary of the analysis with the RV’s for the descriptors in 
descending order of significance 

CP.esc$vr # Correspondences between the number of a variable of the initial base  
in its output order and its name 

CP.esc$RV # Correspondences between variables and related RV’s in their output 
plot (CP.esc, main="Escoufier’s vectors") # Graphic representation of the RV  

(in black) and RV’ (derivative of RV) 

This graphical representation of the Escoufier coefficients allows us to 
choose the number of variables considered. The best number corresponds to 
the break in the slope of the RV’ associated with the threshold beyond which 
the addition of variables no longer explains anything significant.  

CP.esc$level <- identify(CP.esc) #Click then on the base of the break in slope of 
the RV’ 

Level: 0.9312664 # The 5 variables considered out of the total 9 account for 93%  
of the variation explained by the raw table. 

CP2 <- extract(CP.esc) #Extraction of the variables selected from the database 

dim(CP2) #Dimensions of the new database (there are only 5 variables) 
names(CP2) #Names of the variables considered 
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This method has allowed us to keep five variables (out of the total nine), 
which include 93% of the information provided by the initial CP database 
(Figure 1.2). These are mainly nutrition-related variables for phytoplankton 
(N/P ratio, nitrites and phosphates), the depth of the water column and 
temperature. The database containing the variables selected is stored in the 
object “CP2”. This method enables us to compress the information of a table 
and to determine the variables that give us the largest amount of information 
about the structure of the objects (stations).  

 

Figure 1.2. Escoufier’s method. Evolution of the RV coefficients and RV scree plot 
allowing us to choose the variable number to be kept in order to explain the 
maximum amount of information of the initial database without multiplying the 
parameters for further multivariate analyses  

1.3.3. Spearman’s correlation matrix: understanding redundancies 
between variables 

Making correlations between descriptors considered two by two allows us 
to verify redundancies between variables. Spearman’s correlation is advised, 
since it highlights increasing or decreasing monotonic relationships, unlike 
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Pearson’s correlation, which only underlines relationships of a linear form. 
Besides, it constitutes a non-parametric approach that, unlike linear models, 
needs no applicability conditions. The function panel.cor.spearman(), found 
on a forum of the R software, is much more powerful than the function  
pairs() on its own. The use of the function panel.cor.spearman() in the 
argument upper.panel of the function pairs() displays results that are easier to 
interpret.  

panel.cor.spearman <- function(x, y, digits=2, prefix="", cex.cor) 
  { 
    usr <- par("usr"); on.exit(par(usr)) 
    par(usr = c(0, 1, 0, 1)) 
    r <- (cor(x, y)) 
    txt <- format(c(r, 0.123456789), digits=digits)[1] 
    txt <- paste(prefix, txt, sep="") 
    if(missing(cex.cor)) cex <- 0.8/strwidth(txt) 
    test <- cor.test(x,y,method="spearman") 
    Signif <- symnum(test$p.value, corr = FALSE, na = FALSE, 
                   cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1), 
                   symbols = c("***", "**", "*", ".", " ")) 
    text(0.5, 0.5, txt, cex = cex * abs(r)) 
    text(.8, .8, Signif, cex=cex, col=2) 
  } 

pairs (CP, lower.panel=panel.smooth, upper.panel=panel.cor.spearman) 

We can observe strong positive correlations (P < 0.001) between the N/P 
ratio and nitrates (rho = 0.87), and between nitrites and turbidity (rho = 0.76) 
(Figure 1.3). A strong negative correlation (P = 0.01) can also be observed 
between phosphate and luminosity (rho = –0.68). Optical depth is 
significantly and negatively correlated to temperature (rho = –0.54) and 
nitrites (rho = –0.50). Thus, the variables put aside by Escoufier’s method 
are redundant in relation to those that have been considered. This explains 
why the omission of these variables does not cause the global database to 
lose a lot of information. While interpreting data, it is advisable to keep in 
mind these redundancies between variables in order to better interpret the 
results. In some cases, it is preferable to consider all of them, since out of 
two redundant variables, one of them may turn out to be more explanatory 
than the other in relation to a database that needs to be explained (e.g. 
biological communities related to physical--chemical parameters).  
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Figure 1.3. Spearman’s correlation matrix between all the descriptors taken two by 
two. The size of the correlation coefficients is shown proportionally to their 
importance (stars represent the levels of importance according to conventional 
criteria). The graphs crossed two by two are added on the left. The variables kept 
with Escoufier’s method are shown in yellow (see section 1.3.2). For a color version 
of this figure, see www.iste.co.uk/david/data.zip 

1.4. Eliminating rare species 

1.4.1. Why is it relevant? 

When a flora or fauna database presents several different taxonomic units 
(in our case, 68 taxa), limiting the number of species to consider might be 
wise. A powerful analysis of the data might thus be carried out without being 
too influenced by species that in the end are not particularly substantial from 
an ecological point of view: their presence is actually severely limited, their 
abundances are low and these species, therefore, will not be important in 
characterizing the communities studied.  

To this end, some authors use techniques that allow them to eliminate 
rare species, i.e. those that exhibit values of 0 in several stations. However, 
some of these species may be significantly abundant in the stations where 
they are inventoried and may even dominate the community in one or a few 
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stations. The choice made and the ways used to eliminate rare species 
represent an essential, if complex, aspect: we must consider the number of 
stations where the species is present, as well as its relative presence in 
relation to the other species at these stations. We have to find a good balance 
between these two criteria, which is something that often depends on the 
data set used. Testing several methods on the same data set may allow us to 
get a better grasp of the role played by these two criteria. Here, we will use 
two techniques, out of the numerous methods available, for our 
phytoplankton data. 

1.4.2. The median value method 

The median value method has been used by Umaña-Villalobos  
[UMA 10]. According to this author, a rare species presents abundances that 
are smaller than the median values of all the species present.  

The medians of abundances are calculated for each taxon for all stations. 
The database is transposed beforehand, so that the taxa are arranged into 
rows and the stations into columns. Then, a box plot is created in order to 
observe the data (Figure 1.4).  

 

Figure 1.4. Dispersion of the medians of 68 phytoplankton taxa  
calculated for 19 stations. The median of the medians is equal to 0 
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medianglob <- apply(phyto, 2, median) # Vector with the medians by taxon 
boxplot (medianglob, xlab="Global median", ylab="Abundances (ind/L)") 

All the outliers in the box plots correspond to the taxa whose medians are 
greater than the global median (median of the medians by taxon), which in 
this case is equal to 0. Thus, they will correspond to non-rare species.  

subset(t(phyto),medianglob>median(medianglob))->phyto2 # Selection of the taxa 
whose medians are greater than the median of the medians 

dim(phyto2) 
phytoS<-t(phyto2) 

With this method, 15 taxa are considered as non-rare, with medians 
greater than the global median equal to 0. Therefore, this method would 
leave out 53 taxa.  

1.4.3. The abundance sorting method 

The “abundance sorting” method or ASM was adapted from Ibanez et al.  
[IBA 93] in the package [pastecs] by Grosjean and Ibanez [GRO 14]. It 
simultaneously takes into consideration the number of 0 present in the base 
for a given species, as well as the rare species (several 0) that are, however, 
abundant in some stations. A coefficient f, which ranges from 0 to 1, allows 
us to adjust the weight given to the frequency of the 0 values for a species  
(f = 0 if only this criterion is considered) and to the abundance of the species 
expressed in log.  

Grosjean and Ibanez [GRO 04] propose to use a value of f = 0.2 to group 
species in four classes: (A) abundant species with few null values, (B) 
species with many null values but locally abundant, (C) averagely abundant 
species (more than 50-60% of null values) with relatively low abundance, 
and (D) insignificant and scarcely abundant species with a large number of 
null values. The descriptor c (implying the value of f chosen) takes into 
consideration the percentages of values not equal to 0 and the log-
transformed abundances. A first extraction of the rare species with f = 0.2, 
followed by a second extraction from the result obtained with f = 1, allows 
us to exclude scarcely abundant species with large numbers of null values.  

In the data set used here, “rare species” will be those that are obtained at 
stage C and D. In our case, we used f = 0.4 as a threshold, since it takes into 
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consideration the abundance of the taxa with more precision and allows us to 
illustrate what we obtain at stage A and B (impossible in our data set with 
the recommended threshold of f = 0.2). These two stages correspond to the 
taxa that will be kept.  

The abundance sorting method (ASM) can be used through the package 
[pastecs] with the function abund() by specifying the data base (taxa 
arranged into columns and stations in rows) and the value of f. The function 
summary() of the result phy.abd will list  in descending order the importance 
of the taxa in the analysis: for each taxon, (i) the percentage relative to the 
most abundant species (expressed in log, e.g. Nitzchia being in this case the 
most abundant taxa in the database) and (ii) the percentage of values not 
equal to 0 for this taxon (e.g. Nitzchia being present in 100% of the stations). 
The function plot() enables us to represent graphically these results (in red 
and blue, respectively) as well as the curve of the cumulative differences 
between these two curves (in black), allowing us to determine the thresholds 
between the several stages. The function identify() makes it possible to 
establish the thresholds. Two thresholds are interesting: the boundary 
between stage A and B, and the one between B and C. The former threshold 
corresponds to the lowest point of the black curve: we can see the stage A 
taxa on the left. The end of the plateau corresponds to the second threshold: 
we can see the taxa of stages A and B on the left. Finally, the function extract() 
enables us then to retrieve the corresponding variables in the object phy. 

library(pastecs) 

phy.abd <- abund(phyto, f=0.4) 

plot(phy.abd, dpos=c(40,100),xlab="Taxa",main="Method PTA f=0.4" )  

phy.abd$n <- identify(phy.abd)# A small plateau is visible, click on the end of the 

plateau 

Number of variables extracted: 23 on a total of 68  

phy <- extract(phy.abd,phy.abd$n) #New database with 23 taxa 

This method keeps 23 taxa (Figure 1.5) while the “median value” method 
advises us to consider 15 taxa. The method used, therefore, affects the 
number of taxa considered (or the number of rare taxa excluded). However, 
the results obtained are very coherent from one method to the other. The 
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median method, which excludes the largest number of taxa, considers the 
same taxa as ASM.  

Afterward, the results obtained with the median value method, which 
considers 15 species, will be kept. This considerably reduces the number of 
flora descriptors to consider in a multivariate analysis, making this number 
smaller than the number of stations (19) and thus allowing the applicability 
of certain analyses.  

 

Figure 1.5. Abundance sorting method (ASM) for a threshold of 0.4. Non-rare taxa 
are shown according to their appearance numbers in the initial database on the right 
of the dotted red line. For a color version of this figure, see www.iste.co.uk/ 
david/data.zip  
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Preliminary Treatment of the Data Set 

The goal of this section is to illustrate how to calculate species richness 
and diversity indices (see section 2.1), how and why to transform the data set 
(see section 2.2) and how to choose the most suitable association measure in 
keeping with the scientific goals set beforehand (see section 2.3). 

2.1. Abundances, species richness and species diversity  

In this section, we will show how to calculate total abundance, taxonomic 
richness and the most common diversity indices by determining their 
specificity in relation to the complete phytoplankton database (“phyto”, 68 
taxa). All the results will be summarized in a table that presents for each 
station (row) the results of the indices at the 19 different stations. 

Indices<-as.data.frame(matrix (c(0),nrow=nrow(phyto), ncol=2)) # creation of the 
table 

     rownames(Indices) <- rownames(phyto) #Change the name of the rows  

     colnames(Indices) <-c("Ab", "RS") #Provide the name of the columns 

View(Indices) 

2.1.1. Total abundances 

Total abundances are calculated with the function apply() and the 
argument “sum”. 
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Ab<-apply(phyto, 1, sum); Indices$Ab<-round(Ab,0) # Total abundances rounded 
to units 

barplot(Indices$Ab, col="grey",border = "black", names.arg = toupper(names(Ab)), 
main = "Abundances", xlab = "Stations", ylab = "Abundances (ind/L)", 
axes = TRUE) #Barplot representing the total abundances per station 
(Figure 2.1) 

2.1.2. Species richness 

Species richness corresponds to the number of species found in an 
element (here, a station). We should refer to taxonomic richness, since we are 
dealing with phytoplankton taxa rather than species. Despite this difference in 
the level of determination, the richness results may be compared between 
stations, since it has been measured on the same taxonomic level and by the 
same person for all stations. Taxonomic or species richness can be found with 
the function specnumber(), which belongs to the library [vegan]. The results 
are then stored in the “Indices” tables. 

library(vegan) 
RS<-specnumber(phyto); Indices$RS<-RS #Taxonomic richness 

barplot(Indices$RS, col="grey",border = "black", names.arg = toupper(names(RS)), 
main = "Taxonomic richness", xlab = "Stations", ylab = "Taxonomic 
richness", axes = TRUE) #Barplot of the taxonomic richness per station 
(Figure 2.1(B)) 

Other species richness indices are also being put forward to overcome 
sampling-related problems, especially those concerning sample sizes, such 
as Magalef’s index and Odum’s index [GRA 05].  

RSMargalef<-(RS-1)/log(Ab) ; Indices$RSMargalef<-RSMargalef 

RSOdum<-RS/log(Ab) ; Indices$RSOdum<-RSOdum; head(Indices) 

View(Indices) #Two new variables have been added to the table 

t(Indices[,c("RSMargalef", "RSOdum")])->div1 

 barplot(div1, beside = TRUE, horiz = FALSE, col = c("grey", "white"), names.arg  
              = toupper(colnames(div1)), legend.text = TRUE) 
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Figure 2.1. Abundances A); taxonomic richness B); Margalef and Odum’s  
richness C); Shannon, Simpson and Hill’s diversity D); and Piélou and  

Simpson’s evenness or equitability E) for the 19 stations 
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In this case, the between-stations progressions are very similar for the 
classic taxonomic richness index, Margalef’s index and Odum’s index 
(Figure 2.1(C)).  

2.1.3. Diversity indices 

Species diversity indices take into consideration not only species 
richness, but also the evenness between species, namely the distribution 
throughout the stations of the number of individuals belonging to the 
species. For example, in a group represented by 10 species, if only one of 
them is highly abundant in relation to the others, the group is not very 
diversified, whereas if the species are well balanced in terms of abundance, 
the group will be more diversified.  

 The Shannon–Wiener index and Simpson’s index [GRA 05] are the 
two most used indices. While Shannon’s index is sensitive to the variations 
in importance of the rarest species, Simpson’s index is sensitive to the 
variations in importance of the most abundant ones. These indices are often 
associated with evenness indices to interpret them correctly. This gives more 
weight to rare species, if we consider Piélou’s evenness, or to the most 
abundant ones with Simpson’s evenness [GRA 05]. Hill’s index combines 
these two indices and provides a slightly more synthetic view [GRA 05]. 
Formulations of the indices can be found in all ecology books.  

library(vegan) 

H_Shannon<-diversity( phyto,index = "shannon"); Indices$H_Shannon<-
H_Shannon # Shannon-Wiener index, expressed as H 

J_pielou<- H_Shannon/log(RS); Indices$J_pielou<-J_pielou # Piélou’s evenness, 
expressed as J 

D_Simpson<-diversity(phyto,index = "simpson") ; Indices$D_Simpson<-
D_Simpson # Simpson’s index, expressed as D 

E_Simpson<-(1-D_Simpson-min(1-D_Simpson))/(max(1-D_Simpson)-min(1-
D_Simpson)); Indices$E_Simpson<-E_Simpson # Simpson’s evenness, 
expressed as E  
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D_Hill<-diversity(phyto,index = "invsimpson")/exp(H_Shannon);Indices$D_Hill<-
D_Hill # Hill’s index 

View(Indices); names(Indices) # The new variables have been added to the table 
 

 

# Graphic representations 

t(Indices[,c("H_Shannon", "D_Simpson", "D_Hill")])->div2 

barplot(div2, beside = TRUE, horiz = FALSE, col = c("black", "dark grey", 

"white"), names.arg = toupper(colnames(div2)), legend.text = TRUE) 

t(Indices[,c("J_pielou", "E_Simpson")])->div3 #Figure 2.1(D) 

barplot(div3, beside = TRUE, horiz = FALSE, col = c("black", "grey"), names.arg =  

               toupper(colnames(div3)), legend.text = TRUE) #Figure 2.1(E) 

Abundances fluctuate widely from one station to another: the total 
abundances of phytoplankton are very low at all stations, except for one 
station in marsh D (Figure 2.1(A)). Taxonomic richness and the diversity 
and evenness indices vary  more from one station to another within the same 
marsh than they do between marshes, except for station C, where 
abundances and richness are globally lower (Figure 2.1). The Shannon, 
Simpson and Hill diversity indices are very similar in terms of evolution 
within the marshes, except for stations D_B and D_D: Hill’s index yields a 
more important diversity in relation to the Shannon and Simpson indices. 
The evolution of Shannon’s evenness closely resembles that of the diversity 
indices, whereas Simpson’s evenness evolves in the opposite direction. The 
diversity of the stations seems to be sensitive to the variations in the 
abundances of rare species, instead of reacting to either taxonomic richness 
or the dominant species in the marshes of the Charente-Maritime department 
during the summer.  

For the rest of the analyses, the “Indices” database, which includes total 
abundance, richness and diversity indices, has been combined with the “bio” 
database, which lists phytoplankton biomasses, production and productivity. 

bio<-cbind(Indices,bio); head(bio)  
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2.2. Transformations 

Data must be transformed in most cases before any numerical type of 
treatment (see section 1.2.2) [LEG 98] (1) to overcome the problems related 
to heterogeneous units involving variation ranges of descriptors without  
any ecological consequences (see section 2.2.1); (2) to limit the very  
strong fluctuations of the variation range of units in homogeneous data, thus 
giving less weight to the variables highly present in the analyses (e.g. taxa, 
see section 2.2.2.1); (3) to degrade a data set in order to make it 
homogeneous in terms of sampling technique (see section 2.2.2.2); (4) to 
quantify qualitative data (see section 2.2.3); and (5) to normalize data (see 
section 2.2.4). However, these transformations are not trivial, and they 
involve distortions of raw data that may be more or less strong (see sections 
2.2.1.2 and 2.2.2.1). 

2.2.1. Quantitative data expressed with heterogeneous units (e.g. 
chemical physical data) 

2.2.1.1. Standardization/standard score 

Standardization or standard score transformation is the solution adopted 
to overcome the problem of data expressed in heterogeneous units. Standard 
score transformations, which involve dividing by the standard deviation of 
each descriptor, ensure that the descriptors are expressed in the same unit, 
i.e. standard deviation, while centering implies the mean value to be 0.  

For example, in the chemical–physical database, we can standardize data 
by using the function scale(). 

CPtrf<-scale(CP2); head(CPtrf)  
 

2.2.1.2. Consequences in terms of data distortion 

This transformation, just like any other, has certain consequences in 
relation to the distance between points projected into a multidimensional 
space. As an example, the group of stations is projected into a two-
dimensional space (optical depth in y and depth in x; Table I.1), with raw 
data (Figure 2.2(A)) and standardized data (Figure 2.2(B)) in the same 
variation range of y and x values.  
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Figure 2.2. Consequences of standardization on the distance between points  
in a plane formed by two variables. Example of the optical depth–depth  

relationship. The same variation ranges have been used for the x and y axes 

The distances between the points C_d, C_c and B_c can be considered as 
examples to observe the differences in projection between raw and 
transformed data. Let us notice that not only the distances C_d-C_c (solid line) 
and C_c-B_c (dashed  line) have changed, but also the proportions between 
them have evolved. The ratio C_c-B_c/C_d-C_c is much more important in 
transformed, rather than raw, data: point B_c is less close to C_c by 
comparison with C_d in the transformed data.  

The projection of the points has thus been distorted due to the 
standardization. The optical depth range was quite limited and, therefore, it 
has been widened by the transformation so that it can be compared to the 
depth range. The objective of the standardization is, thus, to express all the 
descriptors in the same unit: standard deviation. 

This transformation is required in order to avoid giving too much weight 
to the variables that present high variation ranges because of their units. 
However, it is important to be aware of the transformation performed in 
relation to further analyses and the interpretation of the results.  
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2.2.2. Quantitative data expressed with homogeneous units (e.g. 
flora and fauna) 

2.2.2.1. Reducing variation ranges 

Once the descriptors are all expressed with the same unit (for example 
phytoplankton abundance in cells L–1), simple transformations such as 
logarithm (log(x + 1), function log1p()), square root (function sqrt()) or 
double square root (function sqrt(sqrt())) are in this case the most appropriate. 
In this kind of transformation, variation ranges are reduced and the zero that 
represents the absence of a species remains a null value. The distortions created 
by these three transformations are not the same (Figure 2.3).  

We consider here the projection of the stations onto the plane formed by 
the abundances of Nitzchia, in x, and Cyclotella, in y. Raw data (Figure 
2.3(A)) allows us to see that maximum abundances are 100 times greater for 
Nitzchia. Station D_d is characterized by the highest abundances of Nitzchia 
and the absence of Cyclotella, whereas station A_f presents the highest 
abundances of Cyclotella and very low abundances of Nitzchia. Apart from 
these two extreme values, the abundances of the two taxa in other stations 
are much lower (except for Cyclotella in stations B_a and B_c). All the 
stations are superposed around 0 and the graphic representation is strongly 
affected by the two extreme values, which will consequently greatly 
influence the assessment of the differences between the stations.  

The gap between the different stations, as well as the proportions between 
two respective gaps on the plane (for example 1_f-B_a in green and A-f-B-c 
in red), changes gradually with the square root (Figure 2.3(B)), double 
square root (Figure 2.3(C)) and log(x + 1) (Figure 2.3(D)) transformations, 
with more marked differences and more reduced variation ranges for the last 
transformation. Thus, the distortions of raw data will be more accentuated 
with a log(x + 1) transformation than with a double square root 
transformation. Similarly, the distortions will be more marked with a double 
square root transformation than with a square root transformation. 
Consequently, choosing between these three kinds of transformation depends 
on the width of the variation ranges in the data. The constant goal is to be 
influenced as little as possible by the extreme values, while also minimizing 
the distortions as much as we can.  
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Figure 2.3. Raw Data (A). Consequences of a square root (B), double  
square root (C) and log(x + 1) (D) transformation on the distance between  

points in a plane formed by the abundances of two taxa, Cyclotella and  
Nitzchia. For a color version of this figure, see www.iste.co.uk/david/data.zip  

These three transformations are performed here on the simplified 
“phytoS” database, which only contains the 15 non-rare taxa. The 
preliminary graphical representation of the data dispersion with a boxplot 
function allows us to choose the most suitable transformation for the data set 
considered. Ideally, we should reduce the variation ranges without 
overwriting them too much.  
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phytosqrt<-sqrt(phytoS) ; boxplot(phytosqrt) #square root transformation and 

graphical representation of the dispersion 

phytodsqrt<-sqrt(sqrt(phytoS)) ; boxplot(phytodsqrt) #double square root 

transformation  

phytolog<-log1p(phytoS), boxplot(phytolog) # log-transformation 
 

2.2.2.2. Degradation of quantitative data into binary or qualitative data 

2.2.2.2.1. Degradation into binary data 

In some cases, we should consider only the presence or absence of 
species due to sampling anomalies or other aspects (section 1.2.2). Data are 
therefore recoded as 0/1: 0 for the absence of the species and 1 for values not 
equal to 0. This action can be performed on the raw database with the 
function decostand(), which belongs to the library [vegan]. Let us consider 
the example of the simplified “phytoS” base, which only includes 15 
phytoplankton taxa.  

library(vegan) 

phytoPA<-decostand(phytoS,method="pa"); View(phytoPA) 
 

2.2.2.2.2. Degradation into qualitative data 

Quantitative data can be degraded into qualitative variables for 
simplification purposes. Let us consider the example of the variable “surface 
of the drainage basin” (“DB”) in the database “environmental factors”. We  
will code that all the DBs that are bigger than 6,000 ha are large DBs 
expressed as “3”, those smaller than 2,000 ha as small DBs expressed as “1”, 
while the other medium ones are expressed as “2”. This variable will be later 
transformed into an ordinal qualitative variable (factor variable).  

fext$DB[fext$DB<2000]<-1;fext$DB[fext$DB>2000&fext$DB<6000] 

<-fext$DB[fext$DB>6000]<-3 

fext$DB<-as.factor(fext$DB) # Transformation into a factor variable 
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2.2.3. Qualitative data (e.g. environmental factors) 

Occasionally, it is useful to transform qualitative data into quantitative 
data in order to be able to incorporate them into multivariate analyses.  
This is the principle of a complete disjunctive table. Each qualitative 
variable takes different modalities. In a complete disjunctive table, a 
qualitative variable will be replaced by a number of binary variables 
proportional to the number of modalities that the qualitative descriptor in 
question can take.  

As an example, the “predominant land use on the DB” descriptor 
(designated by “use”; Figure 2.4) is a nominal qualitative variable with three 
modalities: “Farmland”, “Grassland” or “Urban”.  

 

Figure 2.4. Transformation of a qualitative variable into new binary  
variables, one for each modality of the descriptor. Example on the  

“land use” nominal qualitative variable 

In a complete disjunctive table, this variable will be transformed into 
three binary variables: “use.Farmland”, “use.Grassland” and “use.Urban”. 
Each variable will, in each row, take a value of 1 if the “Use” qualitative 
descriptor has taken this modality, or 0 if this is not the case. A complete 
disjunctive table can be created from a table of qualitative variables with the 
function acm.disjunctive(), which belongs to the library [ade4].  
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library(ade4) 

fext.disj<-acm.disjonctif(fext simple interlign) #All variables must be recognized as 
factors. Change the kind of variable for each one with as.factor() 
function   

head(fext.disj) 

2.2.4. Attempting to normalize data 

Transformations can also be used to ensure that the data concerning a 
variable follow the normal distribution or another theoretical distribution 
required for the application of certain numerical analyses (e.g. environmental 
variables before a principal component analysis, or abundances of species 
before the application of a linear model). Standardizations (see section 2.2.1.1) 
may in some cases normalize data, while logarithmic transformations may 
normalize abundance data (see section 2.2.2.1). However, most of the time we 
should not expect any miracles.  

2.3. Association measures and matrices 

The general term “association” describes any kind of measures or 
coefficient used to quantify similarities or differences between objects or 
descriptors [LEG 98]. There are several types of association measures, and 
their use depends on the analysis mode and the kind of variable.  

2.3.1. How to choose our measure? 

In direct mode, when we describe similarities between objects, 
similarity, difference and distance measures are used, whereas in indirect 
mode, when we describe how descriptors depend on each other, dependence 
coefficients are preferred: covariance or correlation. The formulas that allow 
us to calculate these measures and the resulting association matrices will not 
be explained here, so that we can concentrate mainly on the elements that 
play a significant role in how these coefficients and matrices are chosen in 
relation to the type of data and the goals of the study (Table 2.1):  
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– Similarity measures describe the degree of similarity between objects 
or descriptors. They vary between 0 (total difference) and 1 (total similarity) 
or between 0 and 100 according to the software.  

– Dissimilarity measures describe the degree of dissimilarity between 
objects or descriptors. They vary between 1 (total difference) and 0 (total 
similarity) or between 100 and 0 according to the software. The dissimilarity 
is equal to 1 or 100 minus the similarity for the same kind of coefficient.  

 

Table 2.1. Key table allowing the choice of association measure for the most 
classically used ones as well as the functions for their applications in R 

– Distances describe the degree of dissimilarity between objects or 
descriptors, and they vary between 0 (totally similar objects or descriptors) 
and infinity (totally dissimilar). However, distances can also be normalized, 
so that they vary between 0 and 1. Normalized or unnormalized distances 
may also be transformed into similarities [LEG 98].  

– Correlation coefficients describe the degree of similarity between 
descriptors and vary between –1 and 1.  

Mode Type of data
Double zeroes as 

similarity criterion Coefficients Characteristics R functions

Yes
Simple concordance 
dissimilarity

S=0.25 => 25% of coabsence or 
copresence

library(ade4); dist.binary(x, method=2)

Jaccard's dissimilarity S=0.25 => 25% of copresence library(ade4); dist.binary(x, method=1)

Sorensen's dissimilarity Double weight to copresence library(ade4); dist.binary(x, method=5)

Yes Euclidean distance Shortest geometrical distance, on 
standardized data

dist(x, method="euclidean")

Bray-Curtis dissimilarity
Abundance data, raw or 
transformed, abundance scaling, 
often used

library(vegan); vegdist(x, method="bray")

Chi-squared distance
More importance to the profile 
than to raw abundances , 
sensitive to rare species

library(vegan); dist(decostand(x,"chi.square"), 
method="euclidean")

Yes
Simple concordance 
dissimilaruty

S=0.25 => 25% of coabsence or 
copresence

library(ade4); dist.binary(x, method=2)

Jaccard's dissimilarity S=0.25 => 25% of copresence library(ade4); dist.binary(x, method=1)

Sorensen's dissimilarity Double weight to copresence library(ade4); dist.binary(x, method=5)

Pearson's linear correlation

Sensitive to the applicability 
conditions of linear models; 
assumes straight-line 
relationships

1-abs(as.dist(cor(x, method="pearson")))

Kendall or Spearman's 
monotonic correlation

No applicability conditions; 
based on ranks; does not assume 
any form of monotonic 
relationship

1-abs(as.dist(cor(x, method="kendall"))) OR 1-
abs(as.dist(cor(x, method="spearman")))

No Chi-squared distance
More importance to the profile 
than to raw abundances; 
sensitive to rare species

library(vegan); dist(decostand(x,"chi.square"), 
method="euclidean")
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Association measures must be chosen according to their properties in 
relation to the data set in question. This choice is made (Table 2.2) in 
relation to: 

– indirect or direct mode; 

– the kind of data (for example binary and quantitative); 

– how much weight we wish to give (or not give) to “double zeroes”. The 
association measures that take into consideration a “double zero” as a 
similarity criterion are called symmetric, whereas those who discard it are 
named asymmetric. Thus, we will use a symmetric coefficient for chemical–
physical parameters that consider zero as a value, whereas we will more 
commonly use an asymmetric coefficient for phytoplankton abundances for 
which zero represents the absence of a species; 

– certain properties that we may wish to consider or not when processing 
our data, e.g. giving more or less weight to copresence, profiles, differences 
in abundances, etc. 

2.3.2. Direct mode 

2.3.2.1. The case of symmetric coefficients: significant “double zeroes” 

2.3.2.1.1. Association matrix of the stations based on binary data 

The environmental factors of the marsh database appear now as a matrix of 
binary data called “fext.disj” because of a transformation through a complete 
disjunctive table. In this data table, it is important to take into consideration 
double zeroes and no data transformation is required since we are dealing 
with binary data. Thus, we will use the dissimilarity coefficient of simple 
concordance (Table 2.1; [SOK 58]) to create an association matrix with the 
function dist.binary() belonging to the library [ade4].  

library(ade4) ; MATfext<-dist.binary(fext.disj,method=2) 

MATfext   #Displaying the dissimilarity matrix of simple concordance 
 

2.3.2.1.2. Association matrix of the stations based on quantitative 
data 

The chemical–physical factors of the marsh database appear as a matrix 
of quantitative data that have been standardized to overcome the 
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heterogeneous unit-related problem (i.e. “CPtrf” object). In this data table, it 
is important to consider double zeroes, since zeroes represent ordinary 
values and do not imply that data are missing. The use of the Euclidean 
distance on the transformed data is thus advised in order to create the 
association matrix (Table 2.1). 

MATphys<-dist(CPtrf, method = "euclidean") 

MATphys   
 

2.3.2.2. The case of asymmetric coefficients: discarded “double 
zeroes” 

The fifteen most common phytoplankton taxa may be determined in two 
ways: either with a degraded presence/absence matrix (i.e. “phytoPA” 
object) or with a quantitative matrix transformed beforehand to avoid giving 
too much weight to the taxa that may be particularly abundant in certain 
stations (i.e. “phytoS” object). In both cases, a double zero represents the  
 
coabsence of a taxon in two stations and will not be considered as a 
criterion of similarity between the stations.  

2.3.2.2.1. Association matrix of the stations based on binary data 

The Jaccard distance ([JAC 08]; Table 2.1) will be used for the 
presence/absence matrix. 

library(ade4) 

matphyPA<-dist.binary(phytoPA,method=1) 
 

2.3.2.2.2. Association matrix of the stations based on quantitative 
data 

As for the taxon abundance matrix, we will use the Bray–Curtis 
dissimilarity coefficient (1957) on a log(x + 1) transformation.  

library(vegan)  

MATphyto<-vegdist(log1p(phytoS), method="bray") 
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2.3.3. Indirect mode 

In indirect mode, the analysis is based on the relationships between 
variables. A Spearman correlation matrix based on the complete chemical–
physical database can be built, for example, to establish the relationships 
between chemical–physical variables (“CP”, Table 2.1). This correlation 
matrix is then transformed into a distance matrix by considering the 
following formula: D = 1 – | C |, where D is the distance and C represents  
the Spearman correlation coefficient for each pair of variables. Thus, the 
relationships highlighted do not take into consideration the sign of the  
relationship: two variables with a low distance present a strong correlation 
that may be positive or negative. The as.dist() function allows us to 
transform the correlation matrix into a similarity matrix that can be used 
later on, whereas the function abs() enables us to obtain the absolute value of 
the Spearman coefficient.  

DISTphys<-1-abs(as.dist(cor(CP,method="spearman"))) 
 



3 

Structure as Groups of Objects/Variables 

Cluster analysis may be considered as a non-parametric approach, since it 
does not involve any applicability condition. Thus, it can be applied to both 
“small” and “large” data sets. However, on its own it will only provide the 
structures of objects or descriptors, without giving any information about 
what generates the groups observed (i.e. which descriptors account for the 
groups of elements? Which relationships are there among descriptors within 
one group?). The first part of this chapter introduces the most commonly 
used types of cluster analysis in environmental science (see section 3.1), 
while the second part presents the analyses that may allow us to obtain 
information about the descriptors that have generated the groups obtained in 
direct mode to complete the former analysis (see section 3.2).  

3.1. The most used types of cluster analysis 

These kinds of analyses involve looking for discontinuities in the whole 
of the data, namely grouping objects (direct mode) OR descriptors (indirect 
mode) similar enough to be able to be combined in the same group. There 
are several methods or algorithms, involving different decision criteria, that 
can compare elements two by two and create these groups [LEG 98].  

Clustering defines the multidimensional analysis itself, which aims to 
partition a set of elements (objects OR descriptors). A partition is a division 
of the set into subsets, so that each element belongs to only one subset. A 
cluster is the result of the analysis: it may be constituted by a single partition 
or several hierarchized partitions.  



36     Data Treatment in Environmental Sciences 

3.1.1. How to choose a clustering algorithm? 

Clustering algorithms are quite varied and the resulting partitions may be 
different in relation to the decision criteria used by one or the other. There 
are several kinds of methods. We distinguish between: 

– agglomerative clustering (elements are considered separately at first, 
and then linked step by step by adopting an increasingly broader bottom-up 
tree approach) or divisive clustering (top-down approach, considering all 
the elements at the beginning);  

– hierarchical clustering (subsets of elements that are classed in 
progressively larger groups) or non-hierarchical clustering (a unique 
partition that optimizes intragroup homogeneity);  

– exclusive clustering (an element belongs to only one group) or fuzzy 
clustering (each element has a probability of belonging to a certain group 
after the final partition). 

Clustering Method Type Advantages/Drawbacks Recommended 
for… 

H
ie

ra
rc

hi
ca

l 

Simple relationships 
through pairs of 
elements 

Single-linkage 
Rarely optimal; chain 
effect hindering well-
defined groups 

Good complement to 
analyses highlighting 
gradients; rarely used 

Complete-linkage
Rarely optimal; compact 
groups with a low level of 
similarity 

To simply increase 
the contrast among 
groups; rarely used 

Combined 
relationships through 
pairs of elements 

Unweighted 
means 

(UMGMA) 

Fusion of groups when 
similarity reaches the 
mean among groups 

Random or 
systematic sampling 

Weighted means
(WPGMA) 

Likewise, with adjustment 
according to the size of the 
groups 

Other types of 
sampling 

Minimizes the sum 
of intragroup squares Ward’s method 

Applicability conditions of 
principal component 
analysis 

Complementary to 
principal component 
analyses 

N
on

-
hi

er
ar

ch
ia

l 

Minimizes the sum 
of intra-group 
squares 

K-means 
clustering 

Number of groups given at 
the beginning and different
optimal numbers of 
possible groups 

Partition into the 
target number of 
groups 

Fu
zz

y Minimizes the sum 
of intra-group 
squares 

C-means 
clustering 

Number of groups given at 
the beginning and different
optimal numbers of 
possible groups 

Provides the 
probabilities for each 
element of belonging 
to each group 

Table 3.1. Key table that allows us to choose a clustering  
method: only the most classically used have been listed 
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Only the most common methods used in environmental science will be 
described here. We will emphasize their advantages, drawbacks and 
applicability conditions in relation to the type of data (Table 3.1). These 
methods involve polythetic – all the variables considered to partition 
elements, i.e. descriptors, are used on each level – and simultaneous 
clustering (the process is carried out only once based on well-defined 
decision criteria).  

3.1.2. Hierarchical clustering 

Hierarchical clustering is the most common and intuitive type of 
clustering. It can be applied in direct or indirect mode. 

3.1.2.1. The most used algorithms 

To illustrate the formation of hierarchical clusters, we will build them 
from a six-station reduced matrix (i.e. six stations of marsh A) in the 
simplified and log-transformed “phytoplankton” database.  

– Single-linkage hierarchical clustering [LUK 51] 

This is the simplest type of clustering, as its name suggests. The 
dissimilarities obtained in the Bray–Curtis dissimilarity matrix are ranked in 
increasing order: the lower the dissimilarities, the closer the stations  
(Figure 3.1(A)). Here, the closest stations are “c” and “d” and they converge 
on the tree at a dissimilarity of 0.104. Assigning another station to this group 
only requires that the station is the closest one to one of the elements of the 
group formed. This is the case for station “f”, which presents a dissimilarity 
of 0.186 in relation to station “c” in the group formed by “c” and “d”. 
Stations “b” and then “e” follow the same principle. We have to wait until 
the dissimilarity reaches 0.431 before station “a” may be close to one of the 
other four stations.  

– Complete-linkage hierarchical clustering [SØR 48] 

This type of clustering differs from the single-linkage algorithm in that an 
element will join a group of elements when it is linked to the most distant 
member of the group (Figure 3.1(B)). Stations “c” and “d” are the closest, 
with a dissimilarity of 0.104. However, a group formed by stations “e” and  
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“f” is created for a dissimilarity of 0.226, before station “b” is linked to the 
group “c-d” (0.238). The group “e-f” will then link itself to the group “c-d-
b” when the dissimilarity is equal to 0.341 and “a” to the other stations at a 
dissimilarity equal to 0.703. 

 

Figure 3.1. Schematic representation of the construction of hierarchical  
trees based on single-linkage A) and complete-linkage B) algorithms  

– Mean-linkage hierarchical clustering [SNE 73] 

There are several types of mean-linkage hierarchical clustering. They are 
based on calculations concerning mean similarities between elements or 
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groups, rather than the number of links between elements. For example, the 
Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithm 
deals with unweighted means, whereas the Weighted Pair Group Method 
with Arithmetic Mean (WPGMA) algorithm deals with weighted means.  

– Ward’s method [WAR 63] 

Ward’s method combines elements in order to minimize the sum of 
squares of the distances of each group from the centroid. In other words, its 
goal is to minimize intragroup variance. This method is very suitable for 
Euclidean distance matrices. Therefore, it should be avoided when we are 
dealing with asymmetric coefficients (for example Bray–Curtis 
dissimilarities), i.e. while studying the structure of biological communities.  

Two hierarchical clusters are proposed to reach two different goals as 
examples of use in Table 3.1: 

– To determine groups of stations in the database of the 
phytoplankton communities (direct mode). A hierarchical cluster is built 
from the Bray–Curtis dissimilarity matrix (“MATphyto”) created with the 
simplified and log-transformed phytoplankton taxa database. 

– To determine relationships between chemical–physical descriptors 
(direct mode). A hierarchical cluster is applied to the distance matrix based 
on the Spearman correlation matrix between chemical–physical variables 
(“DISTphys”). 

3.1.2.2. Creating clusters and displaying classifications 

Clusters are created with the function hclust() and the argument method 
that enables the choice of clustering algorithm. Then, hierarchical trees can 
be displayed with the function plot(). The argument hang = –1 allows us to 
range all the stations on the x-axis, so that the graph is more elegant. 

3.1.2.2.1. Direct mode: establishing groups of stations according to 
the phytoplankton communities 

Three algorithms out of those presented here can be used to establish 
groups of stations in the database of the phytoplankton communities: single-
linkage, complete-linkage and UPGMA. They are applied to the 
“MATphyto” Bray–Curtis dissimilarity matrix (Figure 3.2). Ward’s method 
should be avoided when we are using assymetric coefficients such as the 
Bray–Curtis dissimilarity. 
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#Application of clustering algorithms 
   cah.single.phy<-hclust(MATphyto, method="single") # Single-linkage 
   cah.complete.phy<-hclust(MATphyto, method="complete") # Complete-linkage 
   cah.UPGMA.phy<-hclust(MATphyto, method="average") # UPGMA 

#Graphic representation of the associated classifications  
   plot(cah.single.phy,hang=-1, main="Single linkage", xlab="Stations", ylab=" 

Bray-Curtis dissimilarity")  # Single-linkage 
   plot(cah.complete.phy,hang=-1, main="Complete linkage", xlab="Stations", 

ylab="Dissimilarités de Bray-Curtis") #Complete-linkage 

   plot(cah.UPGMA.phy,hang=-1, main="UPGMA", xlab="Stations", ylab=" Bray-
Curtis dissimilarity") # UPGMA 

 

Groups of stations can be determined by cutting the tree at a constant 
value of the association coefficient (here, a dissimilarity), such as 0.3 or 0.6. 
These three methods do not yield the same groups of stations due to the 
differences in the building algorithms.  

For the “single-linkage” algorithm, a cut at 0.35 would yield four groups, 
three of which would include a single variable (C_d, A_a and C_a), while 
the fourth would gather the other stations (Figure 3.2). The “single-linkage”  
mathematical algorithm creates chain-reaction effects: stations converge  
toward the tree one after the other, following the principle by which it was 
built. Thus, this method makes it easier to highlight gradients rather than 
groups. Therefore, it is very often supplementary to unconstrained 
ordination. Otherwise, the “complete-linkage” algorithm regulates more 
strictly how the stations join the tree and, consequently, it allows us to 
underscore more distinct groups (Figure 3.2). This is the case for a 
dissimilarity of 0.6, which allows us to determine three groups, each of 
which includes at least two stations. Most of the time, these groups are too 
compact and do not actually correspond to a real ecological context. The 
UPGMA algorithm represents a good compromise between these two 
algorithms, but it requires a type of sampling that has to be either completely 
random or thoroughly systematic (Figure 3.2; [LEG 98]).  

3.1.2.2.2. Indirect mode: relationships between chemical–physical 
variables 

The four algorithms – single-linkage, complete-linkage, UPGMA and 
Ward’s method – can be applied here to the DISTphys distance matrix, built 
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from Spearman correlations between variables (see section 2.3.3), to 
establish relationships between chemical–physical variables.  

cah.single.CP<-hclust(DISTphys, method="single") ; plot(cah.single.CP, hang=-1, 
main=" Single linkage ", xlab="Stations", ylab="Distances") # Single -
linkage  

cah.complete.CP<-hclust(DISTphys, method="complete"); 
 plot(cah.complete.CP, hang=-1, main="Complete linkage", 
xlab="Stations", ylab="Distances") #Complete-linkage 

cah.UPGMA.CP<-hclust(DISTphys, method="average"); plot(cah.UPGMA.PC, 
hang=-1, main="UPGMA", xlab="Stations", ylab="Distances") # UPGMA 
linkage 

cah.ward.CP<-hclust(DISTphys, method="ward"); plot(cah.ward.CP, hang=-1, 
main="Ward", xlab="Stations", ylab="Distances") # Ward’s method 

As was the case for the analysis carried out in direct mode, these four 
algorithms do not yield the same results (Figure 3.2). Therefore, the questions 
arising are as follows: (1) which algorithm is most suitable for the data  
processed (see section 3.1.2.3) and (2) for which distance or dissimilarity  
value should the classification be cut  to obtain relevant groups of elements 
(see section 3.1.2.4). 

3.1.2.3. Choosing the most suitable clustering algorithm with cophenetic 
distances 

The cophenetic distance between two elements of a hierarchical tree 
represents the length that separates one of the elements from the closest node 
that links it to another element [SNE 73]. Therefore, it measures the concrete 
distances between two elements in a specific tree. A cophenetic matrix is a 
matrix that lists all the distances between the pairs of elements in a tree. The 
comparison between the base association matrix and the cophenetic matrix 
of the tree resulting from one of the algorithms allows us to take into 
consideration the actual associations between elements entailed by the 
algorithm used. The graphical representation of the cophenetic distances in 
relation to the association coefficients, all pairs of objects taken together, and 
the Pearson correlation coefficient allows us to then measure the relationship 
between the two matrices. This will enable us to assess the extent to which 
an algorithm can correctly represent the association between pairs of 
elements, and, consequently, to compare several algorithms in order to 
choose the one that closely represents the ecological situation [BOR 11].  
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Figure 3.2. Graphical representations of the four hierarchical agglomerations most 
used in environmental science to group stations based on their phytoplankton 
communities (15 taxa) in direct mode (on the left) and chemical–physical descriptors 
in indirect mode (on the right): single-linkage, complete-linkage, UPGMA and Ward. 
Ward’s method is not suitable for the treatment of abundances data as an assymetric 
coefficient has been applied 

The cophenetic matrix can be calculated with the function cophenetic() 
based on the tree built. The function cor() allows us to then calculate 
Pearson’s correlation between the cophenetic and the association matrix. 
These operations are carried out to determine which algorithm, out of the 
three employed, is the most appropriate when we want to establish groups of 
stations in the database of the phytoplankton communities (Figure 3.2).  
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coph.single<-cophenetic(cah.single.phy) #“Single-linkage” cophenetic matrix 
coph.complete<-cophenetic(cah.complete.phy) #“Complete-linkage” cophenetic 

matrix 
coph.average <-cophenetic(cah.UPGMA.phy) # “Mean linkage” cophenetic matrix 
cor(MATphyto, coph.single) # Pearson’s correlation coefficient 
cor(MATphyto, coph.complete)  
cor(MATphyto, coph.average)  

The best Pearson correlation is obtained for the UPGMA algorithm  
(r = 0.8432). For the following analyses, we will thus use the UPGMA 
algorithm, to build the hierarchical classification, since it is the one that 
closely represents the dissimilarities between pairs of elements in this case.  

3.1.2.4. Choosing which group number to consider: the similarity 
profile method (SIMPROF test) 

SIMilarity PROFile analysis (SIMPROF test) was developed by Clarke  
et al. [CLA 08]. It is a permutation test that employs a null hypothesis that 
should be tested to identify structures within the ecological communities of 
groups of elements that differ significantly concerning the descriptors 
database. It is based on an association matrix (Figure 3.3). It can also be 
applied to environmental parameters (for example chemical–physical 
variables).  

The null hypothesis corresponds to the absence of a multivariate structure 
in the descriptors database (Figure 3.3). The SIMPROF test examines whether 
the similarities observed between the elements are more or less marked than 
those obtained randomly. The similarities calculated for each pair of objects in 
the association matrix are arranged in increasing order: the shape of the curve 
of the similarities in relation to the similarity ranks represents the similarity 
profile of the initial database (points in bold in Figure 3.3). To test the null 
hypothesis, data are randomly permuted many times over (i.e. 999 or 9,999) in 
the initial base matrix, the association matrix recalculated each time, and then 
the random similarity profiles obtained. The set of randomly obtained 
similarity profiles is averaged, and the mean curve corresponds to the 
theoretical profile if the null hypothesis is true (i.e. lack of group structure). 
The ∏ permutation test statistic corresponds to the distance between the actual 
profile and the mean theoretical profile under H0. This same distance is 
calculated for all the theoretical profiles. A frequency plot of the distances 
from the theoretical profiles is drawn, and it looks like an unimodal curve. The 
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∏ statistic is compared with the theoretical frequency diagram. The more 
dissimilar it is from this diagram, the more H0 is rejected. In this respect, this 
test is very similar to a parametric test in which the test statistics are compared 
with a normal distribution. We obtain a P-value as a classical test (P-value < 
0.05, H0 rejected) and, therefore, we can observe a significant structure in the 
data (Figure 3.3). This operation is carried out again for each node of the 
hierarchical tree according to the algorithm we have chosen (for example the 
UPGMA algorithm is used for the 15 phytoplankton taxa database) in order to 
identify significant groups in our example.  

 

 

Figure 3.3. Schematic representation of the appropriate statistical  
approach in the analysis of the SIMilarity PROFile test (SIMPROF) 



Structure as Groups of Objects/Variables     45 

SIMPROF analysis can be carried out with the function simprof(), which 
belongs to the [clustsig] library. It requires us to specify the transformed 
database in the argument data, the association coefficient in the argument 
method.cluster and the clustering algorithm in the argument method.distance. 
The corresponding plot() function displays the various groups in different 
colors.  

library(clustsig) 

simprof.UPGMA <- simprof(data=log1p(phytoS), num.expected=10000, 
num.simulated=9999,method.cluster="average",method.distance="braycurt
is",sample.orientation="row") #These calculations may take some time 
(since the same operation must be carried out many times over) 

simprof.UPGMA ; summary(simprof.UPGMA)  

 simprof.UPGMA$significantclusters # 5 significant groups 
 

The SIMPROF test underlines here five significantly different 
communities. We can see how the results are slightly different from those 
yielded by a classical cut (for a constant value of dissimilarity), since this 
test is carried out for each node of the tree (Figure 3.4). With the SIMPROF 
test, stations A_c and C_a are put in the same group, whereas they belong to 
two different one-station groups in the classic five-group cut. Similarly, with 
the SIMPROF test, station C_b is isolated in a group aside, while it was 
joined to a larger group when we performed the classical cut.  

In R, the cutree() function does not involve the vector that indicates 
membership to the groups obtained with the SIMPROF approach, since it 
cuts classically at a constant level of dissimilarity, as is the case for a tree 
built with the hclust() function. Thus, this must be done by hand.  

simprof.phyto<-c(1,5,5,5,5,5,5,5,5,5,3,1,4,5,2,3,3,3,3) 
 

The groups obtained may be different for each SIMPROF procedure, 
since the results are based on theoretical distributions estimated with random 
permutations of the source data matrix each time. If the results vary too 
much each time, it is advisable to increase the number of random 
permutations performed to establish the theoretical distribution, so that this  
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distribution can become more stable (the num.expected and num.simulated 
arguments go, for example, from 1,000 and 9,999 to 100,000 and 999,999, 
respectively). These calculations will be longer, but the results will be more 
reproducible.  

 

Figure 3.4. Trees built by a UPGMA hierarchical agglomeration on a Bray–Curtis 
dissimilarities matrix created on the log-transformed database of the 15 
phytoplankton taxa. The SIMPROF analysis (on the right) highlights five distinct 
groups of stations based on phytoplankton communities. The results differ slightly 
from those of a five-group cut obtained by means of a classic method with a constant 
level of dissimilarities (on the left). For a color version of this figure, see 
www.iste.co.uk/david/data.zip  

3.1.3. k-Means non-hierarchical clustering 

The k-means non-hierarchical method employs the local structures of data 
to create groups by identifying high-density regions in the data [JAI 88]. The 
number of groups must be established at the beginning. This is a type of 
divisive non-hierarchical clustering that operates by minimizing the 
intragroup variance of raw data. Since the minimized variance is a sum of  
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squares of Euclidean distances, it is therefore more likely to be used for data 
where double zeroes are important. As the number of groups must be 
established at the beginning, it is then wise to optimize the number of groups 
before the analysis.  

This analysis is carried out on the “bio” database, which contains 12 
diversity index and phytoplankton production variables and whose double 
zeroes are important. The number of variables has been reduced beforehand 
with Escoufier’s method in order to eliminate redundant variables that do not 
provide a lot of information. In “bio_simp”, seven variables have been 
considered: the Shannon–Weiner, Simpson and Margalef diversity indices; 
taxonomic richness; taxonomic abundances; and phytoplankton production 
and productivity. Afterward, the database is standardized and, later on, a 
Euclidean distance matrix is calculated.  

bio_simp<-bio[,c(5,7,3,2,1,11,12)]; names(bio_simp); BIO.trf<-scale(bio_simp)  

MATbio<-dist(BIO.trf,"euc") 

In order to choose the optimal number of groups, we will try several k-
means partitions with different groups and observe the silhouette plots 
obtained. These plots allow us to determine whether stations are properly 
arranged in each group. The width of the silhouette varies between –1 and 1. 
The higher the value is, the more properly the station is arranged in the 
group. If the width is negative, the station in question is arranged badly. The 
method put forward is based on the mean silhouette of all the elements for 
different cuts (two-group cuts, three-group cuts, etc.). It takes into 
consideration that the maximum mean width corresponds to the best cut and, 
therefore, to the best number of groups obtainable. The next loop allows us 
to draw the silhouette graphs (function silhouette() in the library [cluster]) 
for partitions from two to 10 groups, following [BOR 11].  

library(cluster); par(mfrow=c(3,3)) 

for(i in c(2:10)) { 

 bio.kmeans<-kmeans(BIO.trf, centers=i, nstart=100) 

 plot(silhouette(bio.kmeans$cluster,MATbio),main="Silhouette - k means") 

   } 
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Ideally, we should find a limited number of groups (three to seven 
groups), with a minimum of groups including only one station and a 
maximum of stations well represented in each group. Here, this is the case 
for a four-group k-means partition that isolates station 18, but whose other 
groups gather between three and nine well-represented stations.  

bio.kmeans<-kmeans(BIO.trf, centers=4, nstart=100) #Specify the number of 
groups in the argument centers 

bio.grpe<-bio.kmeans$cluster; bio.grpe #Assigning stations to the group 

3.1.4. Fuzzy c-means clustering 

Together with the previous methods, which partition elements within 
groups that do not overlap, there is a number of clustering methods called 
“fuzzy”, which can be both hierarchical and non-hierarchical [BOR 11]. 
These methods are based on the principle that some elements may be shared 
by several groups in the final partition. 

This is the case for c-means clustering, which, in terms of principle and 
application conditions, closely resembles the k-means non-hierarchical 
clustering. However, it yields the probability that each element has of 
belonging to the different groups (the sum is equal to 1). According to the 
principle of fuzzy clustering, an element that is very likely to be part of one 
of the groups and very unlikely to be part of any other group clearly belongs 
to the group in question.  

c-Means clustering is applied to the “bio” simplified database and to the 
resulting “MATbio” Euclidean distance matrix. It is carried out with the 
function fanny(), which belongs to the library [cluster]. As was the case for 
k-means non-hierarchical clustering, it is necessary to establish the number  
of groups. Let us choose four groups, which seems the best compromise for 
the most similar non-fuzzy method in terms of algorithms (k-means).  

k<-4 

library(cluster) 

bio.fuz<-fanny(MATbio,k=k,memb.exp=1.5) 

summary(bio.fuz) 
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biofuz.m<-round(bio.fuz$membership,3)#Probability of belonging to the groups 

biofuz.g<-bio.fuz$clustering #Fixed group membership 

biofuz.g 

Stations like D_c and D_d are very likely to belong to a specific group 
(G1 and G4, respectively), whereas others are shared between several 
groups: A_a and A_c. These probabilities represent a bonus when it comes 
to interpreting a badly classed element, since they allow us to identify the 
several groups that share this element and to determine transitional elements 
between well-defined groups.  

3.2. Information on the descriptors that generate the groups 
obtained 

The drawback of these methods is that they only carry out partitions of 
elements, without giving us any information about the descriptors that have 
generated the groups, especially in direct mode. 

3.2.1. Simple graphical representation 

Some graphical representations allow us to characterize the groups in 
relation to the descriptors used for clustering. Let us consider, for example, 
the identification of groups of stations in the database of the phytoplankton 
communities. We have previously established five groups of stations thanks 
to the SIMPROF test (see section 3.1.2.4). The following graphical map
gives us an idea of the distribution of each taxon by element. Abundances 
are averaged by station. The darker the color of a given station is, the higher 
the abundances of this taxon are in relation to the other taxa. This graphical 
map requires the function vegemite(), which belongs to the [vegan] library 
[BOR  11]. 

library(cluster); library(vegan); library(RColorBrewer) 

finalclust.phy<-reorder.hclust(cah.UPGMA.phy,MATphyto) #Rearrangement of 
the stations according to the constraints of the cluster analysis 

dend<-as.dendrogram(finalclust.phy) 

or<-vegemite(log1p(phytoS), finalclust.phy, scale="Hill") 
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heatmap(t(log1p(phytoS)[rev(or$species)]), Rowv=NA, Colv=dend, 
col=c("white",brewer.pal (5, "Greens")), margin=c(4,4), ylab="taxa (means 
weighted by sites)", xlab="Stations") 

 

Figure 3.5. Graphical map of the abundances compositions of the species in relation 
to the groups of stations according to the UPGMA algorithm applied to the log-
transformed abundances. The abundances are weighted per station. The groups 
obtained with the SIMPROF test are represented  

The group G4, which contains only one element (C_d), is characterized 
by very high abundances of Euglena and Gymnodinium (Figure 3.5) while 
the group G5 is marked by very low abundances of the Gymnodinium, 
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Cylindrotheca, Monoraphidium and Cosmarium taxa; and the group G3 is 
characterized by fairly strong abundances of all taxa. Systematic or even 
strong abundances of Gymnodinium, Cryptomonas, Oocystis and Navicula 
are noticeable for G1. G2 presents strong abundances of Gymnodinium, 
Cylindrotheca, Cosmarium, Cryptomonas, Phacus and Scenedesmus in 
relation to the other taxa. 

3.2.2. Analysis of variance 

One-factor analysis of variance (ANOVA) allows us to explain a 
quantitative variable by means of a qualitative one. In this sense, it allows us 
to analyze descriptors that present significant differences between 
groups, e.g. the groups of stations that present different phytoplankton 
communities. ANOVA presents a parametric approach (classical ANOVA), 
non-parametric approaches (Kruskal–Wallis test and ANAlysis of 
SIMilarities (ANOSIM)), and an intermediate approach with less constraints 
in terms of applicability conditions (permutational ANOVA) than classical 
ANOVA. Section 5.2.1.7 describes in detail the application of these four 
general types of ANOVA as well as the verification of the relative 
applicability conditions. 

3.2.3. Determining indicator species 

Once groups of stations or dates have been created from databases 
concerning biological communities, it may seem interesting to determine the 
indicator species of each group identified. Here, we put forward two 
methods: considering an indicator species as a species specific to a given 
group and species fidelity to all the stations/dates of this group (IndVal, see 
section 3.2.3.1) or identifying species that contribute to the dissimilarity 
between groups (SIMPER, see section 3.2.3.2). 

3.2.3.1. Species specific to one group and “faithful” to its stations 
(“IndVal”) 

The IndVal (“Species Indicator values”) method was developed by 
Dufrêne and Legendre [DUF 97] to identify species regarded as indicators of  
groups, namely species that are specific and “faithful” to a given group. By  
specificity, we mean a species characterized by how it is only present in a  
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given group. By fidelity, we mean a species that is present in all the elements 
of this group. This method simultaneously combines mean abundances with 
their frequency of occurrence in the different groups. The highest IndVal 
(equal to 1) for a given group means that a species is only present in this 
group and in all the elements of this group. A threshold value of 0.25 
corresponds to a species that is present in at least 50% of the elements of the 
group and/or that its relative abundances reach at least 50%. This method is  
classically applied to raw abundances, even if they have been transformed 
for the previous analysis.  

This method can be applied with the function indval(), which belongs to 
the library [labdsv]. This function calculates the IndVals for each species 
and group, and the following script allows us to summarize in a table the 
maximum IndVal obtained by species together with its corresponding group 
(drawn from [BOR  11]. It also allows us to carry out a permutation test that 
can highlight significant IndVal indicator values.  

Here, this method is applied to determine whether there are indicator 
species for the five groups of stations created with the SIMPROF method 
considering the phytoplankton communities (allocating stations to the groups 
obtained in the object simprof.phyto). 

library(labdsv) 

indval(phytoS,simprof.phyto)->IV;IV 

gr<-IV$maxcls;gr #group of stations where each taxon has a max indval 

iv<-IV$indcls;iv  #group of stations with indval equal to the max indval 

pv<-IV$pval;pv #corresponding p-values 

tabIV<-data.frame(group=gr,indval=iv,pvalue=pv);tabIV #Table showing which 
groups the indicator species belong to and the corresponding p-value 

tabIV[order(tabIV$pvalue),] # Sorting the IndVal according to the p-value 
obtained with the permutation tests         

All taxa present IndVals greater than 0.25 for a group, which confirms 
that they are present in at least 50% of the elements of this group and/or that  
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their relative abundances reach at least 50% in it. It is important to highlight 
that, in this example, not all the groups present indicator taxa. Moreover, 
only two taxa constitute significant indicators of group 5 according to the 
related permutation tests: Scenedesmus (IV = 0.82; P-value = 0.04) and 
Monoraphidium (IV = 0.66; P-value = 0.045).   

These IndVal indicators could have been applied to the set of 68 taxa (i.e. 
by conserving the rare taxa).  

3.2.3.2. Similarity percentages (SIMPER) 

This analysis aims to determine how much each species contributes to the 
dissimilarity between stations [CLA 93]. It allows us to identify the most 
significant species in decreasing order, so that we can distinguish between 
the dissimilarity profiles observed between the types of a qualitative factor 
(i.e. membership in the groups highlighted). This analysis works on the 
Bray–Curtis dissimilarities database. Therefore, data must lend itself to this 
association coefficient (fauna or flora matrix). We consider in general those 
species that contribute to 75% of the dissimilarity between groups, taken two 
by two. This analysis is incremented with the function simper(), which 
belongs to the library [vegan].  

The analysis needs at least two elements per group.  

This type of analysis requires us to specify the transformed database as 
well as a qualitative variable that tells us which group the elements belong 
to. Here, it is applied to the simplified and log-transformed phytoplankton 
database to determine which taxa contribute to the dissimilarity between the 
groups highlighted by the SIMPROF. Groups 2 and 4, which present only 
one station per group, are first removed from the data set.  

library(vegan) 

fext$simprof.phyto<-as.factor(simprof.phyto) # Addition of the column allocation 
of the stations to the 5 groups to the “environmental factors” data set 

phytoS[simprof.phyto!=2&simprof.phyto!=4,]->phy # removing the stations 
corresponding to groups 2 and 4, which only present one station in the 
“phytoplankton” base 
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fext[simprof.phyto!=2&simprof.phyto!=4]->grpe # removing the stations 
corresponding to groups 2 and 4, which only present one station in the 
“environmental factors” base 

sim<-simper(log1p(phytoS),grpe $simprof.phyto) # For the 3 groups, we obtain 3 
sub-tables corresponding to the taxa that contribute to the dissimilarity 
between groups (1 and 5, expressed as Contrast 1_5, 1 and 3, expressed as 
contrast 1_3, 5 and 3, expressed as contrast 5_3). Here, we provide only 
the results for table 1_5. 

#As an example: comparison group 1 and group 5 
sim$'1_5'->tab1_5  

tab1_5$average # for the contribution to overall dissimilarity 

tab1_5$averall # The overall between-group dissimilarity 

tab1_5$ava # Average abundances for group 1 

tab1_5$avb # Average abundances for group 2 

tab1_5$ord # An index vector to order vectors by their contribution  

tab1_5$ord$cusum # Ordered cumulative contribution 

Each subtable corresponds to a comparison between groups taken 2 by 2. 
Here we only interpret the subtable comparing group 1 and group 5. For 
each subtable, taxa are sorted in relation to the decreasing significance of 
their contribution to the dissimilarity between the two groups. The cumsum 
column lists the cumulative dissimilarity for each taxon added, whereas the 
av.a and av.b columns list the transformed mean abundances between the 
two groups considered (a for the former – in this case, group 1 – and b for 
the latter – in this case, group 5).  

Ten taxa contribute to 75% of the dissimilarity between the stations 
belonging to group 1 and those of group 5. In decreasing order of 
significance, they are Trachelomonas, Monoraphidium, Nitzchia, Euglena, 
Scenedesmus, Strombomonas, Cryptomonas, Oocystis, Cosmarium and 
Cyclotella. All taxa are more abundant in group 5, except for Cryptomonas, 
which is more abundant in the first group. As for the other two tables, 10 
taxa contribute to 75% of the dissimilarity between the stations of group 1 
and those of group 3. In decreasing order of significance, they are as follows: 
Cylindrotheca, Trachelomonas, Euglena, Gymnodinium, Ankitrodesmium, 
Strombomonas, Nitzchia, Navicula, Scenedesmus and Cosmarium, with  
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higher abundance values in group 3, except for Cylindrotheca, Gymnodinium 
and Cosmarium. Ten taxa contribute to 75% of the dissimilarity between the 
stations of group 3 and those of group 5. In decreasing order of significance, 
they are as follows: Monoraphidium, Nitzchia, Cylindrotheca, Cosmarium, 
Cyclotella, Cryptomonas, Oocystis, Scenedesmus, Ankitrodesmium and 
Gymnodinium, with higher abundances in group 5, except for Cryptomonas 
and Ankitrodesmium.  

 

 



4 

Structure as Gradients of 
Objects/Variables 

A parametric approach (unconstrained ordination, see section 4.1), used 
for “large” data sets, has the advantage of providing on its own structures of 
objects and the descriptors that account for them, unlike a non-parametric 
approach (see non-metric multidimensional scaling (nMDS), section 4.2), 
suitable for “small” data sets, which only yields the structure of objects or 
descriptors in relation to the scientific goal determined beforehand. Besides, 
the axes of unconstrained ordination hierarchize the information (i.e. to 
determine the parameters that shape the structure of the elements in a 
predominant or secondary way), unlike a non-parametric approach, where 
the axes are meaningless. Thus, these two criteria make parametric 
approaches, through unconstrained ordination, the most powerful such kind 
of analysis.  

4.1. Parametric alternative: unconstrained ordination 

This aims to summarize the information included in a matrix with x 
variables or parameters, namely to deduce the general trends that emerge 
from it following certain axes [LEG 98]. The goal is to reduce the number 
of axes of a multidimensional matrix (i.e. each variable represents a 
dimension) to some axes that contain the main information. In order to 
illustrate the principle of this analysis in a simple way, let us consider the 
classic example of the camel, a three-dimensional (3D) object (Figure 4.1). 
Plane B would be more suitable than plane A if we wanted to reduce this 
object to a plane (two dimensions) that contains the main information. It 
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actually represents the Bactrian camel in profile and allows us to distinguish 
the two humps, whereas plane A, which represents the animal frontally, may 
as well be showing a dromedary camel. Plane B provides more information 
than plane A for the same reduced number of axes. 

 

Figure 4.1. Reduction of the image of a 3D object  
to a plane containing the maximum amount of information 

The main advantage of this analysis is that it allows us to hierarchize the 
information included in the source data matrix: the first axis extracted 
contains the most important information, the second axis the important 
information once the first axis has been extracted and so on. All the axes are 
therefore independent. Objects and variables will be represented according 
to these axes and each of them will take on an ecological meaning. 
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Therefore, this analysis is more powerful than a multidimensional scaling 
analysis, where only the position of the elements (object or variable, in 
relation to the mode used) is available, and whose axes are ecologically 
meaningless (see section 4.2). Be careful! This analysis can only be 
carried out in direct mode: objects (in rows) and parameters (in columns) 
are processed in different ways and according to their type while pieces of 
information are provided for both objects (e.g. stations) and parameters. 

Despite being tempting, this analysis presents applicability conditions 
that must be respected, which makes it less robust than multidimensional 
scaling. Thus, we refer to parametric multivariate analysis. Its mathematical 
principle is based on the fact that all variables follow the normal 
distribution (i.e. data multinormality), which is rarely the case! We could 
easily do without this condition if the database had 10 times more objects 
than variables. However, it is usually accepted for data sets that contain at 
least more objects than variables.  

4.1.1. Mathematical principle 

Its geometric principle is illustrated by the kind of unconstrained 
ordination that is most commonly used, i.e. principal component analysis 
(PCA) ([HOT 33]; Figure 4.2). This analysis uses the Euclidean distances 
between objects (the easiest type of distance to understand in geometric 
terms) to identify the factorial axes. Let us consider, for example, a matrix 
with three parameters – x, y and z – and 27 objects. Figure 4.2(A) shows the 
27 objects in a 3D space (x–y–z). If data follows the normal distribution for 
the three variables x, y and z, then the objects are distributed according to a 
3D ellipsoid (Figure 4.2(B)), namely a sphere elongated in relation to the 
multinormality of the variables considered. The center of the ellipsoid is the 
point of inertia of the point cloud. The length of the ellipsoid is the direction 
in which the point cloud stretches to its maximum and, consequently, where 
variance is the greatest: it is, thus, defined as the first principal component. 
This vector represents a simple linear combination of the variables x, y and z 
(Figure 4.2(C)). The second principal component goes through a plane 
perpendicular to the first component through the point of inertia of the 
ellipsoid (Figure 4.2(D)). This is the direction in which the cloud of the 
points projected on to this plane stretches as much as possible. It is also a 
linear combination of the variables x, y and z (Figure 4.2(E)). The plane 
formed by these two first components is called the principal plane (i.e. plane 
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B in the example of the camel shown in Figure 4.1). The first principal plane 
maximizes the distance between the points projected vertically on to this 
plane and the point of inertia of the point cloud (Figure 4.2(G)). According 
to the Pythagorean theorem, the vertical projection of the points called ei is 
therefore minimal. This allows us to say that the principal plane is the one 
that passes nearest to all the points and, consequently, preserves as well as 
possible the position of the objects in the original space (Figure 4.2(H)).  

 

Figure 4.2. Geometrical principle that governs how we obtain the factorial axes 
based on a 3D matrix while applying a principal component analysis. For a color 

version of this figure, see www.iste.co.uk/david/data.zip 
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The third component can only go in one direction in the case of a 3D 
matrix, since it will be perpendicular to the two first components when 
passing through the point of inertia (Figure 4.2(I)). The first component 
includes the greatest amount of information, the second one a slightly 
smaller amount of information, which is  different from the first one, etc. We 
refer to the independence of the information conveyed by the axes. The 
number of components that can be extracted will be equal to the number of 
initial variables. However, only the first few of them are used, since our aim 
is to summarize the information. The direction of the components (linear 
combinations of the variables x, y and z) is called “eigenvector” and their 
length “eigenvalue”. An eigenvalue represents the inertia expressed by an 
axis, namely the amount of information it conveys. If we use the Euclidean 
distance or if we are carrying out PCA, the inertia corresponds to the 
variance.  

4.1.2. Principal component analysis 

4.1.2.1. When should we carry out PCA? 

Since this kind of analysis is based on the Euclidean distance, double 
zeroes are important and should be considered in the initial database as a 
similarity criterion between two elements (e.g. chemical–physical variables, 
see section 1.2.5). Most of the time, data are heterogeneous in terms of units. 
Thus, it is important to standardize it to overcome the problems linked to 
differences concerning variation ranges (see section 2.2.1). When units are 
homogeneous, standardization requires some thought in relation to the goals 
of the study.  

PCA is applied in direct mode to quantitative or semi-quantitative 
data. Following the mathematical principles involved in its application, we 
assume that if there are relationships between the parameters, they are of a 
linear kind.  

Finally, as we have previously discussed, data should follow the normal 
distribution for all the parameters. However, a number of objects greater 
than the number of parameters can be accepted to overcome this problem.  

4.1.2.2. Mathematical principle 

PCA considers objects in the space of the parameters according to the 
Euclidean distance. Eigenvalues and eigenvectors can be obtained by 
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working on the covariance matrix of the parameters (i.e. diagonalization). If 
we consider standardized data, as is often the case when we want to 
homogenize units, this operation is carried out on the correlation matrix 
(Figure 4.2). Each axis presents:  

– an eigenvalue that represents the variance explained by the axis, i.e. the 
quantity of information conveyed by the axis; 

– an eigenvector, i.e. the orientation of the axis in the space of the x 
parameters, which is nothing more than a linear combination of them. 

The coordinates of the objects on each component are obtained  
by combining the data with the eigenvectors, while the coordinates of  
the parameters are found by combining the vectors with the eigenvalues 
(Figure 4.3). As for the graphical representation of the results, objects and 
parameters are not represented in the same space: the graphs of the objects 
and those of the parameters are distinct. The correlation circle for the 
cloud of the parameters can only be obtained once data are standardized at 
the beginning (Figure 4.3). 

In R, there are several libraries that can be used to carry out a PCA 
([vegan], [ade4], etc.). The [FactoMineR] library, with the function PCA(), 
remains the function that beginners can understand more easily, since it 
allows us to rapidly access quality indicators that it is important to consider 
in order to analyze the results of the PCA correctly. Here, the analysis will 
be carried out on the “chemical physical” database, while discarding those 
variables that do not convey a lot of information, as defined in section 1.3 
(turbidity, luminosity, nitrates and optical depth). For now, the analysis will 
be carried out on the “CP” matrix by putting the discarded variables in the 
argument quanti.sup, which allows us to point out the supplementary 
variables that will be discussed later. These variables are not taken into 
consideration by the analysis, even if their projections are calculated. These 
variables are in the database CP. All the others parameters of CP are 
considered as “active” variables (considered for the analysis). 

The argument scale.unit allows us to standardize the data. TRUE must be 
specified even if the data have been previously standardized (in case of 
standardized data, naturally!), so that the correlation circle can be 
represented in the graph of the parameters. It is not recommended to draw 
the graphs from the beginning (graph = FALSE), so that we will not be 
influenced by the results before the analysis of the quality indicators of the 
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PCA. The argument ncp points out the number of axes that should be 
considered for the results. For now, all axes are considered, i.e. as many as 
the parameters.  

 

Figure 4.3. Mathematical development of the implementation  
of a principal component analysis. For a color version of this  

figure, see www.iste.co.uk/david/data.zip 



64     Data Treatment in Environmental Sciences 

library(FactoMineR) 

names(CP) # Initial chemical–physical database  

PCAphys<-PCA(scale(CP), scale.unit = TRUE, ncp = 5, quanti.sup = c(2,3,6,9), 
graph = FALSE) # Redundant variables are classed as supplementary 
variables 

PCAphys Aphys #To acceed to all the results available 

There are several tables that can account for the set of the results. We 
only have to call the object in which they are stored (i.e. PCAphys) followed 
by $ and the name of the results subset wanted. For example, PCAphys$eig 
lets us access the eigenvalues, PCAphys$var$coord the coordinates of the 
variables, etc. (see the available results by calling the object PCAphys). 

4.1.2.3. Quality indicators 

A) How many axes should we consider? 

Three indices based on the eigenvalues help us determine the number of 
axes we should consider: 

round(PCAphys$eig,2) # Values rounded to two decimal places with the round() 
function 

 

– eigenvalues greater than 1 which represents information more important 
than that provided by the mean of all variables. In this case, only the first 
two components; 
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– a percentage of explained variance equal to at least 50% (i.e. the 
summary of the information provided by the analysis will be greater than 
half of all). Here, the first two components already contain 64% of the 
information included in the database;  

– a break in the gradient of the eigenvalues or of the variance explained 
by the several axes  scree plot (the profiles of the two graphs are similar). 

par(mfrow=c(1,2)) 

barplot(PCAphys$eig[,1], main="Eigenvalues scree plot", xlab = "Components", 
ylab="Eigenvalues") 

barplot(PCAphys$eig[,2], main="Explained variances screeplot ", xlab = "Components", 
ylab="Explained variances") 

We can observe a first break in the gradient between the third and the 
fourth axis (Figure 4.4). Thus, the first two indicators yield two axes, 
whereas the “eigenvalue scree plot” criterion yields three axes. Therefore, 
we will follow the common result and consider two axes: axis 1, explaining 
37% of the total variance, and axis 2, explaining 27% of the total variance.  

 

Figure 4.4. Scree plot of the eigenvalues and the variance explained by the five axes 
of the principal component analysis carried out on the “chemical–physical” database 

Each axis considered must contribute some information. If we keep three 
axes and we realize later on that the third one does not convey any 
information (i.e. no variable is represented on this axis and no ecological 
meaning is found), keeping it is useless.  
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B) Which parameters can be interpreted? 

We use the cosine2 indicator to analyze the variables that can be interpreted 
on the first two axes. It represents the angle formed between the variable 
vector and the component in question. There are as many such angles as there 
are variables–axes pairs. For a given parameter, the sum of the cos2, all 
components taken together, is equal to 1. The greater the cos2 is (it varies 
between 0 and 1), the better the parameter is represented on the axis. The cos2 
on axes 1 and 2 will be analyzed independently from each other as well as on 
the principal plane (axis 1 + axis 2). If we arrange the cos2 on the principal 
plane in decreasing order, we can highlight the variables that are better 
represented by the consideration of the first two axes.  

quality <-round (data.frame (cos2axis1 = PCAphys$var$cos2[,1], 
cos2axis2=PCAphys$var$cos2[,2], cos2axis12 = PCAphys$var$cos2[,1] 
+PCAphys$var$cos2[,2]),2)  

quality[rev(order(quality$cos2axis12)),] #range by decreasing cos2 on the 
principal plane 

 

Only the variables N/P, depth, temperature and nitrites are well 
represented on the principal plane (cos2 greater than the arbitrary value 0.6): 
the variables N/P and concentration of nitrites on axis 1, and the variables 
depth and temperature on axis 2. The phosphate variable, which is badly 
represented, cannot be interpreted on the principal plane. 

The indicator pointing out how a parameter contributes to the 
construction of the axis allows us to give to the axis an ecological meaning. 
The sum of the contributions in the rows and columns is equal to 100.  

 

 



Structure as Gradients of Objects/Variables     67 

contrib<-round(PCAphys$var$contrib[,1:2],2); contrib 

 

The N/P ratio on its own contributes 39% of the construction of the first 
axis, whereas depth and temperature contribute 41% and 37%, respectively, 
to the construction of the second axis. Note that some variables may be 
badly represented on one axis or another but correctly on the plane because 
they are dependent on both axes. 

4.1.2.4. Representation and interpretation of the results of the PCA 

Here are the script lines that allow us to find out the coordinates of the 
parameters and those of the stations, as well as the graphical representations 
themselves.  

coordP<-round(PCAphys$var$coord[,1:2],2); coordP #Coordinates on the 
correlation circle  

coordS<-round(PCAphys$ind$coord[,1:2],2); coordS #Coordinates of the stations  

par(mfrow=c(2,2)) 

plot(PCAphys,choix="var",axes = c(1,2)) 

plot(PCAphys,choix="ind",axes = c(1,2)) 

On the correlation circle, the N/P ratio and the concentrations of nitrites 
are situated on the right part of the first axis: the more positive the  
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coordinates of the stations on this axis, the higher the availability of nitrogen 
nutrients compared with phosphate nutrients (N/P ratio). On the second axis, 
temperature (positive value on the axis) and depth (negative value) face each 
other: the shallower the channel is, the higher the water temperature is. Thus, 
we can give to the two axes an ecological meaning: availability of nitrogen 
nutrients versus phosphate nutrients for axis 1 and temperature for axis 2 
(Figure 4.5(A)).  

As for the stations, it is quite tedious to read the results in Figure 4.5(B). 
In order to understand the structure of the stations, the s.class() function, 
which belongs to the library [ade4], allows us to group objects in the shape 
of ellipsoids according to the categories of a qualitative variable. In this 
example, this function is applied to the marsh (four categories: A–D;  
Figure 4.5(C)) and the kind of marsh (re-fed or unfed, Figure 4.5(D)). 

 

Figure 4.5. Graphical representations of the principal component analysis applied to 
the “chemical–physical” database. A) Correlation circle. The supplementary variables 
are shown as dotted lines. B) Representation of the stations. C) Dispersion of the 
stations per marsh (A–D). D) Dispersion of the stations per type of marsh (drained 
unfed or re-fed)  
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library(ade4) 

s.class(PCAphys$ind$coord[,c(1,2)] , fac=fext$Station 

s.class(PCAphys$ind$coord[,c(1,2)] , fac=fext$Type  

Re-fed stations present higher availability of nitrogen nutrients and 
greater depth than unfed stations (Figures 4.5(C) and (D)). Marsh C is 
characterized by the lowest temperatures (Figure 4.5(C)). In the stations of 
unfed marshes (expressed as R), temperature dispersion is more important 
for station A than it is for station B (Figure 4.5(C)). In the case of the 
conservation of 3 axes, the same work had to be done on the plane formed 
by axis 3 vs axis 1 to interpret the third axis. 

4.1.2.5. Supplementary variables or individuals 

This analysis does not consider mathematically supplementary variables. 
However, their coordinates are projected onto the correlation circle (the 
dotted lines in Figure 4.5(A)). Here, the variables that had been discarded 
with Escoufier’s method in section 1.3 (i.e. turbidity, luminosity, nitrates and 
optical depth) are shown as supplementary variables.  

qualityvarsup <-round ( data.frame ( cos2axis1 = PCAphys$quanti.sup$cos2[,1], 
cos2axis2= PCAphys$quanti.sup$cos2 [,2], cos2axis12 = 
PCAphys$quanti.sup$cos2 [,1] + PCAphys$quanti.sup$cos2 [,2]),2) 

qualityvarsup 

 

Only nitrates present a cos2 value that guarantees a good representation 
on the principal plane (cos2 = 0.69). If we consider the representation of the  
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parameters on this plane, nitrates are well correlated to axis 1 and very close 
to the parameter N/P. This further confirms the ecological meaning given to 
axis 1.  

Supplementary objects may also be represented with the argument 
ind.sup in the PCA function. Refer to the help section of the function by 
entering ?PCA.  

4.1.3. Correspondence analysis  

4.1.3.1. When should we carry out correspondence analysis? 

Correspondence analysis (CA) is based on the χ2 distance, which is not 
affected by double zeroes (i.e. phytoplankton data, see section 1.2.5; [ROU 
67]). The main characteristic of the χ2 distance is the profile comparison. If 
a variable varies from another variable by the same multiplicative factor for 
each object, these two variables will be considered as identical. For example, 
if, for each station, the abundances of the genus Haslea are 10 times greater 
than those of the genus Caloneis, CA points out that Haslea and Caloneis 
are identical, since they show the same profile between stations. 

CA can only be carried out in direct mode and on data that are 
homogeneous in terms of units, quantitative, semi-quantitative or binary. 
Even though the extreme points are reduced by this type of distance, it is 
often necessary to transform data to avoid giving too much weight to 
variables with a wide variation range (see section 2.2.2.1).  

As was the case for PCA, data should follow the normal distribution for 
all the parameters. However, in order to get around this condition, we can 
accept a number of objects greater than the one of parameters.  

Finally, CA is based on the principle that if there is a relationship 
between the variables considered and some explanatory environmental 
variables, this relationship is unimodal. This condition is consistent with the 
fact that species show a relationship of this kind with environmental factors: 
an optimal response in terms of abundances in relation to fluctuations in 
temperature, turbidity, etc. (according to the principle of the species’ 
ecological niche). 
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4.1.3.2. Mathematical principle 

CA considers objects in the space of the parameters transformed into 
relative frequencies according to the χ2 distance (Figure 4.6). The data table, 
which shows the relative frequencies of the objects in rows and the 
parameters in columns, is transformed into a table of standardized relative 
frequencies. Afterward, the covariance matrix of the parameters is calculated 
(Figure 4.6). Eigenvalues and eigenvectors are obtained by working on the 
covariance matrix of the parameters (i.e. diagonalization). As was the case 
for PCA, each axis presents: 

1) an eigenvalue that represents the inertia explained by the axis, i.e. the 
amount of information conveyed by the axis; 

2) an eigenvector, i.e. the orientation of the axis in the space of the x 
parameters, which is nothing more than a linear combination them. 

Here, instead of talking of variance, we refer to the concept of explained 
inertia, since the χ2 distance is a weighted distance.  

The coordinates of the objects on each component are obtained by 
combining the data with the eigenvectors, whereas the coordinates of the 
parameters are obtained by combining vectors and eigenvalues (Figure 4.6). 
Unlike PCA, the results of the objects and those of the parameters are 
represented in the same space: we refer to the duality of the representation 
space. Here, the advantage is that we can make our interpretation in terms of 
influence: objects that are close to a parameter are influenced by it.  

As was the case for PCA, the [FactoMineR] library, with the CA() 
function, remains the most intuitive type of library, since it allows us to more 
easily access the quality indicators that it is important to consider in order to 
analyze the results of CA correctly. Here, we will use the log-transformed 
database containing the abundances of the 15 phytoplankton taxa to illustrate 
how this analysis is carried out (phytoS). 

The abundances are first of all log-transformed (log (x + 1)). As was the 
case for PCA, it is not recommended to draw graphs from the very beginning 
(graph = FALSE), to not be influenced by the results before the analysis of 
the quality indicators. The ncp argument specifies the number of axes we 
should consider for the results. As for now, we will consider all the axes, 
namely the same number of parameters minus 1.  
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Figure 4.6. Mathematical development of the application of a correspondence 
analysis. For a color version of this figure, see www.iste.co.uk/david/data.zip  

library(FactoMineR) 

names(phytolog) # Log-transformed database without the rare taxa (15 taxa) 

CA<-CA(log1p(phytoS), ncp = 14, graph = FALSE) 

CA #All the results available 

As was the case for PCA, there are several tables that can account for the 
set of the results. We only have to call the object in which they are stored 
(i.e. CA), followed by $ and the name of the results subset wanted.  

Objects 
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4.1.3.3. Quality indicators 

A) How many axes should we consider? 

Only two out of the three indices for PCA help us determine the number 
of axes we should consider:  

head(round(CA$eig,2)) 

 

– a percentage of explained inertia equal to at least 50%. Here, the first 
three components already contain 61% of the information of the database;  

– a break in the gradient of the eigenvalues or of the inertia explained by 
the axes scree plot. Here, the change actually occurs between the fourth and 
the fifth axis, even though it starts taking place to a small degree between the 
third and the fourth one (Figure 4.7). 

 

Figure 4.7. Scree plot of the eigenvalues and the inertia explained by the 14 axes of 
the correspondence analysis carried out on the “phytoplankton” database 
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par(mfrow=c(1,2)); 

barplot(CA$eig[,1], main="Eigenvalues scree plot", xlab="Axes", 
ylab="Eigenvalues") 

barplot(CA$eig[,2], main="Explained inertia scree plot", xlab="Axes", 
ylab="Explained inertia") 

Therefore, all the results seem to lead us to consider three axes: axis 1, 
which explains 24% of the total inertia; axis 2, which explains 21% of it; and 
axis 3, which explains 16% of it. As was the case for PCA, each axis 
considered must provide us with information. If we keep three axes and we 
realize later on that the third one does not provide us with any information 
(i.e. no variable is represented on this axis, no ecological meaning can be 
found), considering it would be useless. 

B) Which parameters can be interpreted? 

As was the case for PCA, we use the cos2 indicator to determine which 
variables (phytoplankton taxa) can be interpreted while we consider the first 
three axes of the CA.  

quality <- round( data.frame( cos2axis1= CA$col$cos2[,1], cos2axis2 = 
CA$col$cos2[,2], cos2axis3 = CA$col$cos2[,3], cos2axis123 = 
CA$col$cos2[,1]+CA$col$cos2[,2]+CA$col$cos2[,3]),2) 

quality[rev(order(quality$cos2axis123)), ] #The order() function allows us to sort 
in decreasing order according to the quality of the representation on the 
three axes added up (data not shown).  

Only eight taxa out of the total 15 are well represented on the three axes 
considered, with a cos2 boundary of 0.6 (arbitrary value): 

– On axis 1: Cosmarium, Clyndrotheca, Monoraphidium; 

– On axis 2: Gymnodinium, Ankistrodesmus; 

– On axis 3: Cryptomonas, Nitzchia, Euglena. 
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4.1.3.4. Representation and interpretation of the results of the CA 

Here are the script lines that allow us to find out the coordinates of the 
taxa and of the stations, as well as the graphical representations themselves. 

par(mfrow=c(3,2)); 

plot(CA, axes=c(1,2)) #Axis 2 versus Axis 1 

plot(CA, axes=c(1,3)) #Axis 3 versus Axis 1 

coordG<-round(CA$col$coord[,1:3],2); coordG  #for species 

coordGS<-round(CA$row$coord[,1:3],2); coordGS # for stations 

library(ade4)  

s.class(CA$row$coord[,c(1,2)] , fac=fext$Station) 

s.class(CA$row$coord[,c(1,3)] , fac=fext$Station) 

s.class(CA$row$coord[,c(1,2)] , fac=fext$Type) 

s.class(CA$row$coord[,c(1,3)] , fac=fext$Type)  

The three taxa Cosmarium, Cylindrotheca and Monoraphidium are 
typical of the positive part of axis 1 (Figure 4.8(A)). Gymnodinium and 
Ankistrodesmus are opposite each other on axis 2, the former among the 
positive values and the latter among the negative ones (Figure 4.8(A)). 
Cryptomonas is typical of the positive values of axis 3, unlike Nizchia and 
Euglena (Figure 4.8(B)). On axis 1, we can find the types of marshes 
opposite each other (Figures 4.8(E) and (F)): re-fed and unfed marshes are 
fairly influenced by Cosmarium, Cylindrotheca and Monoraphidium, unlike 
re-fed marshes. In re-fed marshes, the stations of marsh C are distributed 
distinctly along axis 1, unlike the other stations, and show negative values on 
axis 2. Therefore, they are influenced by Ankistrodesmus. The stations of 
marsh D have positive values on axis 2 and, consequently, they are 
influenced by Gymnodinium (Figure 4.8(C)). Stations C and A are 
substantially distributed on axis 3 (Figure 4.8(D)), influenced by 
Cryptomonas, Nitzchia and Euglena.  
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4.1.3.5. Special case: the horseshoe or Guttman effect 

Species, being controlled by environmental factors, tend to show a 
unimodal distribution in relation to them. Thus, environmental gradients 
often present a succession of species (Figure 4.9(A); [LEG 98]). These 
successions of unimodal distributions can be represented mathematically by 
a horseshoe shape formed by stations and species, and they result in a 
dependence between axes 1 and 2 (Figure 4.9(B)).  

 

Figure 4.9. Horseshoe effect: sequence of unimodal distributions of species  
along an environmental gradient (A), mathematical and geometrical  

consequences on the principal plane of the correspondence analysis (B) 

There are ways in which we can stop this dependence (i.e. detrended CA) 
and get rid of the horseshoe effect. However, they generate other types of 
mathematical bias, which is why they are being used less frequently [BOR 
11]. The best option remains to interpret this arched form as the presence of 
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an environmental gradient. Inertia is often very strong on the first axis 
(Figure 4.10), and this allows us to determine the environmental factor that 
originates this gradient with the analyses described in Chapter 5. 

 

Figure 4.10. Illustration of the horseshoe effect on a database presenting the 
presence/absence of 95 bird species inventoried in 208 lakes. The explained inertia 
scree plot shows well the predominance of the first axis. For a color version of this 
figure, see www.iste.co.uk/david/data.zip 

4.1.3.6. Supplementary variables and individuals 

As was the case for PCA, supplementary variables or individuals that are 
not involved in the extraction of the axes during the analysis may be 
considered. This technique allows us to project the same variables used for 
the CA (i.e. taxa), but not environmental or chemical–physical factors, since 
they are not expressed in the same units of measurement. Therefore, the 
distance used by the CA does not correspond to the one that should be used 
for these factors.  

4.1.4. Multiple correspondence analysis 

4.1.4.1. When should we carry out multiple correspondence analysis? 

Multiple correspondence analysis (MCA) is an extension of CA for 
qualitative variables, which are therefore subject to the same requirements 
(see section 4.1.3.1). Qualitative variables are transformed into binary 
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variables with a complete disjunctive table beforehand, and then they are 
processed as they were in CA.  

Here, we will carry out MCA on the “environmental factors” database. 
We do not need to create a complete disjunctive table beforehand, since the 
MCA() analysis  belonging to the library [FactoMineR] does that 
beforehand. For a more detailed explanation of the several stages shown 
below, readers should refer to the CA developed in section 4.1.3.  

library(FactoMineR) 

mca<-MCA(fext[,-8], ncp=5, graph=FALSE) #All variables must be qualitatives. 
The simprof.phyto column must be removed if necessary 

mca 

4.1.4.2. Quality indicators 

A) How many axes should we consider? 

The two indices that help us determine how many axes we should 
consider are as follows: 

– a percentage of explained inertia equal to at least 50%, here 55% for the 
first two axes; 
round(mca$eig,2) 
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– a break in the gradient of the eigenvalues or of the explained inertia 
scree plot; here, between the second and the third axis (Figure 4.11). 

 

Figure 4.11. Scree plot of the inertia explained by the nine axes  
of the MCA carried out on the “environmental factors” database 

par(mfrow=c(1,1)) 

barplot(mca$eig[,2], main="Scree plot of explained inertia", 
xlab="Components",ylab="Explained inertia") 

Therefore, all the results seem to lead us to consider two axes: axis 1, 
which accounts for 30% of the total inertia and axis 2, which accounts for 
25% of it.  

B) Which parameters can be interpreted? 

qualitymca<-round(data.frame( cos2axis1 = mca$var$cos2[,1], cos2axis2 =                               
mca$var$cos2[,2],cos2axis12 =(mca$var$cos2[,1]+mca$var$cos2[,2])),2) 

qualitymca[rev(order(qualitymca$cos2axis12)), ] 
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Ten of the 15 factors are well represented in the space formed by the first 
three axes of the MCA: the two types of marsh, the predominant land use as 
farmland in the neighboring area of influence, the three surfaces of the 
drainage basins, internal and external position and the four stations (>0.6). 

4.1.4.3. Representation and interpretation of the results of the MCA 
par(mfrow=c(2,2)) 

plot(mca,axes = c(1,2)) 

s.class(mca$ind$coord[,c(1,2)] , fac=fext$Station) 

plot(mca,axes = c(1,3)) 

s.class(mca$ind$coord[,c(1,3)] , fac=fext$Station) 
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In unfed systems (negative values on axis 1), marsh A is characterized by 
a marked use of the land as farmland in the neighboring area of influence 
and by median drainage basin surfaces (Figure 4.12), whereas marsh B is 
characterized by large drainage basins (Figure 4.12). In re-fed systems 
(positive values on axis 1), marshes C and D are characterized by a 
predominant use of grassland or urban land in the neighboring area of 
influence and by small drainage basins (Figure 4.12).  

 

Figure 4.12. Graphical representations of the MCA applied to the “environmental 
factors” database. Representation of the factors (●) and stations (▲) on the second 
axis versus the first axis. For a color version of this figure, see www.iste. 
co.uk/david/data.zip 
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4.1.5. Principal coordinates analysis 

4.1.5.1. When should we carry out principal coordinates analysis? 

Principal coordinates analysis (PCoA) [TOR 58] represents a 
generalization of unconstrained ordination. In this sense, it allows us to  
carry out an analysis with the distance or dissimilarity of our choice. 
Therefore, the applicability conditions depend on the chosen 
distance/dissimilarity. If we use a symmetric coefficient, the applicability 
conditions and the interpretation are similar to those of a PCA (see  
section 4.1.2), whereas, if we employ an asymmetric coefficient, they are 
similar to those of a CA (see section 4.1.3). PCoA is always carried out in 
direct mode, just like any other kind of unconstrained analysis, and it 
requires the number of objects to be greater than the number of 
parameters. 

PCoA can be carried out with the function cmdscale(), available as one of 
the core functionalities of the R programming language. We have to  
specify the association matrix based on the coefficient we have chosen  
and the number of axes we want to extract in the k argument. This analysis  
is applied to the log-transformed “phytoplankton” database processed with  
a Bray–Curtis dissimilarity matrix (MATphyto). The eig=TRUE argument 
provides access to the eigenvalues. We are dealing with an asymmetric 
coefficient, so the results will be interpreted as CA.  

PCoA<-cmdscale(MATphyto,k=(nrow(phytoS)-1),eig=T) 

PCoA #Different tables of available results 

The help section for the cmdscale() function describes this as a 
multidimensional analysis, but it is not the case; the latter is presented in detail 
in section 4.2. The principle of this kind of analysis is based on a representation 
in a low-dimensional space (in general two dimensions) of the distances from an 
association matrix, rather than on the extraction of axes that summarize the 
information. Eigenvalues are extracted from this analysis, which proves how 
this is an unconstrained ordination, instead of a multidimensional analysis as it is 
used in [BOR 11].  
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4.1.5.2. Quality indicators 

A) How many axes should we consider? 
round(PCoA$eig,2)->eig ;eig #Eigenvalues, some of them negative 

0.65  0.39  0.35  0.21  0.20  0.10  0.05  0.04  0.03  0.01  0.00  0.00  0.00  0.00 -0.01 -

0.02 -0.04 -0.05 -0.07 

Some eigenvalues are negative. We should remove them when we want 
to calculate the quantity of inertia explained by each axis. 

eig[eig>=0]->eigS ; eigS #Remove negative eigenvalues 

round(eigS/sum(eigS)*100,0) #Rounded-up explained inertia for each axis 

32 19 17 10 10  5  2  2  1  0  0  0  0  0 

As was the case for CA, only two indices help us determine how many 
axes we should consider: 

– a percentage of explained inertia equal to at least 50%. Here, the first 
two components already contain 51% of the information included in the 
database;  

– a break in the gradient of the eigenvalues or of the explained inertia 
scree plot. Here, the change actually takes place between the third and the 
fourth axis (Figure 4.13). 

  

Figure 4.13. Scree plot of the inertias explained by 14 axes  
of the PCoA carried out on the “phytoplankton” database 
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Therefore, all the results seem to lead us to consider two or three axes. In 
simple terms, the exploitation will be made on the first two axes. 

B) Which parameters can be interpreted? 

Since the cos2 are no longer available, the best way of determining the 
interpretable variables is still to observe the parameters (i.e. taxa) with 
maximum coordinates on axes 1 and 2 with the wascores() function.  

spe<-wascores(PCoA$points[,1:2],log1p(phytoS)) 

round(spe,2) 

 

Only seven taxa out of 15 are well represented on the principal plane 
formed by the first two axes with coordinates whose absolute value is equal 
to or greater than 0.08: 
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– On axis 1: Cosmarium, Monoraphidum, Oocystis and Strombidium; 

– On axis 2: Gymnodinium, Ankistrodesmus. 

Four taxa – Cosmarium, Monoraphidium, Oocystis and Strombidium – 
influence the stations situated among the negative values of axis 1 (Figure 
4.14(A)), Gymnodinium influences those situated among the positive values 
of axis 2, while Ankistrodesmus affects those situated among the negative 
value of axis 2 (Figure 4.14(A)).  

4.1.5.3. Representation and interpretation of the PCoA 

ordiplot(scores(PCoA)[,c(1,2)], type="t" ,xlab="Axis 1",ylab="Axis 2") 

 abline(h=0);abline(v=0)  

 text(spe,rownames(spe),cex=0.7,col="red") 

s.class(PCoA$points[,c(1,2)] , fac=fext$Station,  

s.class(PCoA$points[,c(1,2)] , fac=fext$Type 

The non-re-fed stations are more influenced by the presence of the 
Cosmarium, Monoraphidium, Oocystis and Strombidium taxa, unlike the 
stations of re-fed marshes (Figure 4.14(C)). The stations of marsh C are 
influenced by the presence of Gymnodinium, and marsh A is affected by  
the presence of Ankistrodesmus, whereas the stations of marsh A are 
distributed distinctly on axis 2 and are consequently influenced by both taxa 
(Figure 4.14(B)).  

Observation: The results are different from those of the CA applied to the 
same data matrix because of the distances/dissimilarities used: χ2 distance for 
the CA and the Bray–Curtis dissimilarity for the PCoA. The latter is not a 
mere profile analysis, and it also takes into consideration the differences in 
abundances when creating the association matrix.  
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4.2. Non-parametric alternative: nMDS 

This type of analysis aims to represent the distances between elements 
in a reduced space, generally a 2D space [KRU 78]. nMDS is based on the 
ranks between these distances, rather than on the distances themselves. 
Therefore, this analysis does not require any preliminary applicability 
condition, and we refer to a non-parametric multivariate analysis. On the 
other hand, its interpretation depends on its ability to reduce the whole of the 
information contained in a matrix that includes x variables to two (or three) 
dimensions. This kind of analysis allows us to highlight groups and/or 
gradients. In this sense, it is more powerful than clustering analysis, which 
focuses on underscoring groups of objects. However, this type of analysis 
presents the same drawback as clustering analysis, since it cannot provide 
direct information on the variables that structure the elements, unlike 
unconstrained ordination. However, a quality index, i.e. stress, allows us to 
determine the representation quality. If this index is bad, the analysis cannot 
be interpreted.  

4.2.1. Mathematical principle 

The principle of multidimensional scaling is based on an iterative 
process. We have to choose the most intuitive number of dimensions, 
generally two axes, in order to be able to interpret the result on a plane 
(Figure 4.15). The elements are first randomly placed on this plane. Then, 
the Shepard diagram, which represents the distance between each pair of 
elements in relation to the distance in the association matrix, is built. 
Afterward, a regression line is adequately adjusted and the stress is 
calculated based on it (Figure 4.15). The position of the elements is slightly 
changed before recalculating the stress many times over (iterative process). 
The position kept is the one that yields the lowest stress. All of these 
operations, based on a random position of the elements at the beginning, are 
performed several times (by default, 20 times in R). The optimal position is 
obtained by choosing the operation that involves the least amount of stress 
(Figure 4.15). As its name indicates, nMDS is based on the ranks in the 
initial association and distance matrix on the plane of the final analysis.  
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Figure 4.15. Schematic representation of the  
implementation of multidimensional scaling 

A stress value of 0 represents a perfect adjustment. However, it may 
indicate that several solutions are possible, especially if the number of 
elements is low. An index value smaller than 0.05 gives an almost perfect 
representation of the elements in the space, a stress value between 0.05 and 
0.1 provides a good representation, whereas a stress value between 0.1 and 
0.2 must be considered more carefully, since certain elements run the risk of 
being badly represented. Finally, a stress value greater than 0.2 cannot be 
interpreted. Attention should be paid here, since no information is assigned 
to the axes, which was not the case for the factor analyses presented in 
section 4.1. 

nMDS can be applied with the metaMDS() function, which belongs to 
the library [vegan]. It requires us to specify at least, in the k argument, the 
number of dimensions desired to represent the elements in the space (two or 
three). nMDS can be carried out directly based on an association matrix or 
the transformed database. In the latter case, it requires to specify, in the 
“distance” argument, the association coefficient we have chosen to build the 
association matrix. Finally, in order to avoid another transformation of the  
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library(vegan) 

NMDSphyto<-metaMDS( MATphyto, k=2, autotransform=F) 

NMDSphyto 

NMDSphyto$stress  

The stress value obtained here is equal to 0.17. Therefore, we have to pay 
attention to the local structures, even if the result can still be interpreted. 
Then, the plot() function represents the nMDS plane. The s.class() function, 
which belongs to the library [ade4], identifies graphically in a 2D space the 
dispersion of the objects in the form of a qualitative variable. Thus, this 
function explores the data graphically. For example, Figure 4.16 represents 
the dispersion of the elements by marsh (four marshes: A–D) and by type of 
marsh (D or R). 

par(mfrow=c(2,3)) 

plot(NMDSphyto,type="n", main=paste ("Phytoplankton -stress", 
round(NMDSphyto$stress,2))) 

Psites<-scores ( NMDSphyto, display="sites")  
 text(Psites,labels=rownames(Psites)) 

library(ade4); s.class(Psites, fac=fext$Station) 

s.class(Psites, fac=fext$Type) 

We can realize that the stations of re-fed marshes vary more than those of 
non-re-fed marshes in terms of phytoplankton communities (Figure 4.16). 
Besides, these communities seem to vary a little from one type of marsh to 
another, since the stations of non-re-fed marshes are situated farther to the 
left than the stations of the re-fed ones.  

4.2.2.2. Based on a database (for example biological parameters) 

The second nMDS performed is applied to the “Biology” database, which 
includes seven variables corresponding to diversity indices and production/  
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productivity values – they have been previously standardized, since variables 
were expressed in different units (“BIO.trf”). The metaMDS() function can 
also be applied to a transformed or untransformed database. In this case, it will 
be necessary to specify the association coefficient required to establish the 
association matrix on which the nMDS will proceed (argument “distance”). 
Here, we use the Euclidean distance, since it is the most suitable for the data 
set. However, any distance or dissimilarity available with the vegdist() 
function, belonging to the library [vegan], can be used.  

#Performing nMDS  

NMDSbio<-metaMDS(BIO.trf, k=2, distance="euclidean", autotransform=F) 

NMDSbio$stress  

#Graphic representations 

plot(NMDSbio,type="n", main=paste ("Biology -stress", 
round(NMDSbio$stress,2))) 

Bsites<-scores(NMDSbio,display="sites") 
 text(Bsites,labels=rownames(Bsites)) 

s.class(Bsites, fac=fext$Station) 

s.class(Bsites, fac=fext$Type) 

The stress value is good (0.11) and, consequently, the nMDS graphical 
analysis can be interpreted. The stations of marshes A and B, which 
correspond to the non-re-fed marshes, are much closer to each other in terms 
of their diversity, production and productivity, unlike the re-fed stations, 
which are quite spread out (Figure 4.16).  

4.2.3. Indirect mode 

This type of analysis can also be carried out in indirect mode to highlight 
relationships between the variables (as was the case for clustering analysis).  
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Here, we use the “DISTphys” distance matrix to determine the relationships 
between the chemical–physical variables. 

#Performing nMDS  

NMDSphys<-metaMDS(DISTphys,k=2,autotransform=F) 

NMDSphys$stress 

 #Graphic representations 

par(mfrow=c(1,2))  

plot(NMDSphys,main=paste ("Chemical physics -stress", 
round(NMDSphys$stress,2))) 
 Physvar<-scores(NMDSphys, display="sites") 
 text(Physvar,labels=rownames(Physvar)) 

 

Figure 4.17. Representation of the plane resulting from a 2D multidimensional 
scaling in indirect mode to establish the relationships between chemical–physical 
parameters. The representation per group of variables obtained with the UPGMA 
cluster analysis has also been provided  

Once again, the stress value is acceptable and the graphic analysis carried 
out on the basis of the nMDS plane is reliable enough (Figure 4.17). Here,  
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the s.class() function allows us to observe how the groups obtained with the 
clustering analysis carried out on the same matrix lie on the nMDS plane. 
The variables that belong to the same group, because of the UPGMA 
clustering analysis that has been carried out, are in close proximity on the 
nMDS plane.  

 



5 

Understanding a Structure 

This chapter aims to provide certain tools that allow us to link a structure 
like those highlighted in Chapter 3 or 4 (i.e. groups or gradients) to other 
factors (e.g. environmental factors). This relationship can be analyzed in 
structures observed in direct mode (i.e. structure of elements on the basis of 
chemical–physical (CP) parameters and biological parameters).  

This relationship can be understood without any causal hypothesis, i.e. 
without a priori defining a specific set of variables as explanatory or 
explained (see section 5.1). This kind of analysis allows us, in particular, to 
investigate the similarities between a priori independent set of variables (e.g. 
climate vs. anthropogenic pressures). In this case, we can (1) compare how 
elements (e.g. stations/dates) are allocated to groups among several sets of 
variables (e.g. biological communities and CP variables through a χ2 test, see 
section 5.1.1), (2) correlate different sets of variables by means of their 
association matrix (Mantel’s test, see section 5.1.2) or the analysis of 
matrices of “raw” data with a parametric (large data sets, multiple factor 
analysis (MFA); see section 5.1.3.1) or non-parametric approach (small data 
sets, Procrustes analysis; see section 5.1.3.2). 

However, most of the time, this kind of analysis is used to explain a 
structure that has been previously highlighted, namely to determine which 
factors generate this structure (e.g. CP parameters structuring biological 
communities, see section 5.2). We can consider how these structures account 
for the observation of groups by choosing the structuring variables 
(qualitative or quantitative) with decision trees (section 5.2.1.1) and 
quantifying their action with analyses of variance (ANOVAs, parametric or  
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non-parametric, section 5.2.1.2) The quantitative factors that structure gradients 
may be analyzed with a posteriori correlations through permutation tests on the 
axes (see section 5.2.2.1.1) or by following the Bio-Env procedure (see section 
5.2.2.1.2) when we are dealing with small data sets. When we are dealing with 
large data sets, these factors may be analyzed with active regressions through 
canonical analyses (section 5.2.2.2). Structuring qualitative factors can be 
studied with permutational ANOVA (PERMANOVA) analyses (see section 
5.2.3.2) if we are dealing with small data sets, and with multivariate analysis of 
variance (MANOVA) and discriminant analyses (see section 5.2.3.1) if we are 
dealing with large data sets. 

5.1. Correlating a structure with one or more structures without 
causal hypothesis 

5.1.1. Correlating groups 

Building a contingency table between the groups obtained with two 
classifications (e.g. the “chemical–physical” and “phytoplankton” 
databases), and applying a χ2 test, allows us to determine whether the groups 
obtained are linked to one another [BRO 11]. The χ2 H0 null hypothesis 
assumes that there is no relationship between the two groups obtained and, 
therefore, between the two databases, while the H1 alternative hypothesis 
assumes that there is a relationship.  

The two classifications are first carried out with the UPGMA method: 
one of them on the Euclidean distance matrix obtained with the standardized 
“chemical–physical” database (MATphys), while the other on the Bray–
Curtis dissimilarity matrix obtained with the simplified and log-transformed 
“phytoplankton” database (MATphyto). 

par(mfrow=c(1,2)) 

cah.UPGMA.phys<-hclust(MATphys, method="average") 

clust.phys<-reorder.hclust(cah.UPGMA.phys,MATphys)  

plot(clust.phys, hang=-1, xlab="Groups of stations", ylab="Euclidean distances", 
main="Chemical physics") 

rect.hclust(clust.phys,k=5, border="red") 
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phys.grpe5<- cutree(cah.UPGMA.phys, k=5); phys.grpe5 #Each station is 
attributed to a group 

cah.UPGMA.phyto<-hclust(MATphyto, method="average") # UPGMA 

clust.phyto<-reorder.hclust(cah.UPGMA.phyto,MATphyto)  

plot(clust.phyto, hang=-1, xlab="Groups of stations", ylab="Bray-Curtis 
dissimilarities", main="Phytoplankton") 

rect.hclust(clust.phyto,k=5, border="red") 

phyto.grpe5<- cutree(cah.UPGMA.phyto, k=5);phyto.grpe5 

The two classifications are optimized by using five groups. Allocating the 
stations among the five groups can thus be done between the two matrices 
with the 2 test on the contingency table.  

table(as.factor(phys.grpe5),as.factor(phyto.grpe5))->table 

plot(table) 

chisq.test(as.factor(phys.grpe5),as.factor(phyto.grpe5)) 

Pearson's Chi-squared test 

data:  as.factor(phys.grpe5) and as.factor(phyto.grpe5) 

X-squared = 33.0741, df = 16, P-value = 0.007225 

The 2 test yields a P-value of 0.007, which allows us to reject the null 
hypothesis and to accept the alternative one, according to which there is a 
relationship between the two classifications, i.e. “chemical–physical” and 
“phytoplankton” databases. The representation of the contingency table can 
provide more information about this relationship (Figure 5.1). The groups 
obtained with the “chemical–physical” matrix are arranged into rows, 
whereas those obtained with the “phytoplankton” matrix are arranged into 
columns. Group 1 of the “chemical–physical” matrix (formed by stations 
A_a, A_c, B_b, B_c, B_d,C_a,C_b, C_c and D_d) is divided up among 
group 1 (A_a), group 2 (A_c, B_b, B_c, C_b, C_c), group 3 (B_d, D_d) and 
group 4 (C_a) of the “phytoplankton” matrix. Groups 2 and 3, obtained with 
the “phytoplankton” matrix, can be found in the same group. Group 4, which 
includes only one station, obtained with the “phytoplankton” matrix, 
corresponds perfectly to group 5, obtained with the “chemical–physical” 
matrix. Finally, group 5, obtained with the “phytoplankton” matrix, includes  
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“phytoplankton” matrices, by applying Mantel tests on the matrices 
considered two by two. Let us first recall how these association matrices 
have been obtained. 

library(ade4) 

MATphys<-dist(CPtrf, method = "euclidean")  

MATphyto<-vegdist(log1p(phytoS), method="bray")  

MATbio<-dist(BIO.trf, method = "euclidean")  

MATfext<-dist.binary(fext.disj[,c(6,8,9:19)], method=2)  

As is the case for any permutation test, the results vary slightly each time 
the test is carried out. The principle of a permutation test (already developed 
for the SIMPROF test, see section 3.1.2.4) is to build a theoretical 
distribution curve by permuting the raw data a large number of times. These 
permutations create some “randomness” in the database. For each 
permutation, the statistic of the test is recalculated and the distribution curve 
of these values, created randomly, represents the curve with which the value 
of the statistic obtained for the database will be compared. If the statistic 
falls outside a 95% probability of obtaining the result that has been obtained 
randomly (95% of the surface of the theoretical distribution), the alternative 
hypothesis is accepted, otherwise the null hypothesis is kept. Therefore, the 
result depends on random permutations, which will vary each time we carry 
out the Mantel test. If the results vary too widely each time, we only have to 
add the nrepet argument to stabilize them. nrepet corresponds to the number 
of permutations carried out to obtain the theoretical frequency curve. This 
analysis may take some time, but the results will be more reliable.  

mantel.randtest(MATfext,MATphys,nrepet=99999)->MT_FE_CP; MT_FE_CP 
#p-value=0,01* 

mantel.randtest(MATfext,MATphyto,nrepet=99999)->MT_FE_PHY; 
MT_FE_PHY#p-value=0,009** 

mantel.randtest(MATfext,MATbio,nrepet=99999)->MT_FE_BIO; MT_FE_BIO 
#p-value=0,57 ns 

mantel.randtest(MATphys,MATphyto,nrepet=9999)->MT_CP_PHY; 
MT_CP_PHY#p-value=0,01* 

mantel.randtest(MATphys,MATbio,nrepet=9999)->MT_CP_BIO; MT_CP_BIO  
#p-value=0,21 ns                              
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x11();par(mfrow=c(3,2)) 
plot(MT_FE_CP,main="Environmental f.-Chemical physics") 
plot(MT_FE_PHY,main="Environmental f.-Phytoplankton") 
plot(MT_FE_BIO,main="Environmental f.-Biology")  
plot(MT_CP_PHY,main="Chemical physics-Phytoplankton") 
plot(MT_CP_BIO,main="Chemical physics-Biology") 

Figure 5.2 shows, for each Mantel test carried out, a comparison between 
the statistic obtained with the raw database and the theoretical distribution 
curve obtained with 99,999 permutations. The results show that there are 
significant linear correlations between the “environmental factors” and the 
“chemical physics” matrices, as well as between these two matrices and the 
“phytoplankton” one. On the other hand, there seems to be no linear 
relationship between the “environmental factors”, “chemical–physical” and 
“biology” matrices.  

 

Figure 5.2. Comparison between the statistic of Mantel’s test obtained in the 
database with the theoretical distribution curve obtained for 99,999 permutations of 
the raw matrix for each test (matrices considered two by two) 
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5.1.3. Correlating different data tables 

5.1.3.1. Parametric alternative: Multiple Factor Analysis (MFA) 

The MFA is a type of multivariate analysis that allows us to carry out a 
correlative analysis between several data tables without any preassumption 
about the cause–effect relationships between one table and another [ESC 94]: 
all tables are considered the same without taking into consideration any causal 
relationship. Several kinds of data tables may be used: tables of standardized 
(i.e. standard-score transformed) or unstandardized quantitative variables, tables 
of qualitative variables, etc. However, the kinds of variables within one table 
must be the same. This analysis is a parametric multivariate analysis governed 
by the same applicability conditions as factor analysis.  

A principal component analysis (PCA; standardized or unstandardized) is 
carried out on each data table. Each PCA is then weighted, in order to give it 
the same amount of weight in the final analysis, by dividing each variable by 
the first eigenvalue of its PCA. Afterward, a global PCA is carried out on all 
the weighted PCAs.  

To illustrate this type of analysis, we will consider three data tables: the 
table of “environmental factors” transformed into binary variables with a 
complete disjunctive table (see section 2.2.3), the table of standardized CP 
variables (see section 2.2.1) and the table of standardized biological 
variables (see section 3.1.3). 

fextS<- fext.disj[,c(6,8,9:19)] names(fextS);dim(fextS) 

CPtrf<-as.data.frame(scale(CP));names(CPtrf);dim(CPtrf) 

BIO.trf<-as.data.frame(BIO.trf);names(BIO.trf);dim(BIO.trf) 

The MFA is carried out here with the MFA() function, which belongs to the 
(FactoMineR) library. The tab database corresponds to the three concatenated 
matrices, the group argument allows us to dissociate the tab column number 
corresponding to each group of variables, the ncp argument the one 
corresponding to the number of axes considered (a maximum for now, i.e. a 
number corresponding to the number of variables, 18), while the name.group 
argument the one corresponding to the name of the groups of variables.  
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library(FactoMineR) 

tab<-data.frame(fextS,CPtrf,BIO.trf); names(tab) 

gr<-c(ncol(fextS),ncol(CPtrf),ncol(BIO.trf)) 

mfa<-MFA(tab, group=gr, type=c("c","s","s"), ncp=25, name.group= 
c("fextS","CPtrf","BIO.trf") ,graph=TRUE, axes = c(1,2)) 

mfa 

There are several tables that can account for all the results. We only have 
to call the object in which these tables are stored (i.e. mfa), followed by $ 
and the name of the desired subset.  

The quality indicators are the same as for unconstrained ordination. 

head(round(mfa$eig,3)) 

 

Here, we use the same indicators used for PCA. Four axes present 
eigenvalues greater than 1. Three axes can explain on their own more than 
50% of the total variance (54%), while the break in gradient takes place 
between the second and third axis. The compromise between the three 
indicators tells us to keep three axes. 

Interpretable parameters 

quality<-round(data.frame(cos2axis1=mfa$quanti.var$cos2[,1], 
cos2axis2=mfa$quanti.var$cos2[,2],cos2axis3=mfa$quanti.var$cos2[,3],co
s2axis123=mfa$quanti.var$cos2[,1]+mfa$quanti.var$cos2[,2]+mfa$quanti.
var$cos2[,3]),2) 

quality[rev(order(quality$cos2axis123)),] 
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The parameters that can be interpreted present cos2 values (> 0.60 on the 
first three cumulative axes  (arbitrary threshold)). 
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library(ade4) 

x11();par(mfrow=c(2,2)) 

plot(mfa,choix="var",axes = c(1,2),cex=0.5) 

plot(mfa,choix="var",axes = c(1,3),cex=0.5) 

s.class(mfa$ind$coord[,c(1,2)] , fac=fext$Station) 

s.class(mfa$ind$coord[,c(1,3)] , fac=fext$Station) 

On axis 1, small drainage basins, re-fed marshes and optical depth 
(positive values) lie opposite average-sized drainage basins, the predominant 
use of land as farmland in the neighboring area of influence, water 
temperature and the Shannon diversity (negative values; Figure 5.3(A)). 
Axis 2 shows, among the positive values, internal stations, concentrations of 
nitrites, the N/P ratio and turbidity (Figure 5.3(A)). On axis 3, primary 
channels, the predominant use of land as urban land in the neighboring area 
of influence (positive values) lie opposite the predominant use of land as 
grassland in the neighboring area of influence and productivity (negative 
values; Figure 5.3(B)). The concentrations of nitrates present medium 
positive values between axes 1 and 2, while depth presents positive medium 
values between axes 1 and 3.  

Marsh A and marsh B (negative values) lie opposite marsh C and marsh 
D (positive values) on axis 1 (Figures 5.3(C) and (E)). Marsh D presents 
positive values on axis 2, unlike marshes B and C (Figures 5.3(C) and (E)). 
The stations of the different marshes are distributed along axis 3 (Figures 
5.3(D) and (F)). Therefore, the stations of marsh D, re-fed by the Charente, 
present small-sized drainage basins and are characterized by high 
concentrations of nitrates, high N/P ratios, high turbidities and low Shannon 
diversity of phytoplankton. The stations of marsh C, re-fed by the Charente, 
are situated in an external position and characterized by high optical depth 
and water temperature, and low nitrites and turbidities. The stations of marsh 
B, unfed by the Charente, present low concentrations of nitrates, a low N/P 
ratio, low turbidity, medium- or large-sized drainage basins and high 
Shannon diversity values of phytoplankton. Finally, the stations of marsh A, 
unfed by the Charente, present medium-sized drainage basins, a predominant 
use of land as farmland in the neighboring area of influence, low optical 
depth and high Shannon diversity of phytoplankton. For each type of marsh,  
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the stations are distributed along this gradient: “high phytoplankton 
productivity linked to a predominant use of land as grassland in the 
neighboring area of influence versus predominant use of land as urban land 
with low depth”.  

 

Figure 5.3. Global correlation circle of the multiple correspondence analysis of the 
second axis versus the first axis (A) and the third axis versus the first axis (B). 
Representation of the stations of the second axis versus the first axis (C) and the 
third axis versus the first axis (D). Dispersion of the stations per marsh of the second 
axis versus the first axis (E) and the third axis versus the first axis (F). For a color 
version of this figure, see www.iste.co.uk/david/data.zip 
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rvp<-mfa$group$RV 
rvp<-rvp[-4,-4] 
rvp[1,2]<-coeffRV(scale(fextS),scale(CPtrf))$p.value 
rvp[1,3]<-coeffRV(scale(fextS),scale(BIO.trf))$p.value 
rvp[2,3]<-coeffRV(scale(CPtrf),scale(BIO.trf))$p.value 
round(rvp,3) 

 

The rpv object accounts for the correlations between the sets of variables. 
The triangle in the bottom left-hand corner provides the correlation 
coefficients, while the triangle in the top right-hand corner provides the  
P-values. In this case, it seems that the environmental factors database is 
significantly correlated with the chemical–physical database, but not to the 
biological matrix, whereas the chemical–physical database is significantly 
correlated with the biological database.  

5.1.3.2. Non-parametric alternative: generalized Procrustes analysis  

Generalized Procrustes analysis allows us to carry out a correlative 
analysis between several data tables without any presuppositions about 
the cause–effect relationships between one table and another and without 
preliminary applicability conditions [GOW 75].  

This analysis represents a technique used to compare forms. It consists of 
rotating a configuration (e.g. a multidimensional scaling analyses) to a 
maximum similarity with another comparable configuration choosen as 
reference –the target matrix. A test is then conducted to analyse the non-
randomness (‘significance’) between the two configurations. As for nMDS, 
this type of analysis can be applied to small data sets. Procrustes analysis is 
carried out in R with the Procrustes() function while  the associated test is 
conducted with the protest() function, both available in the [vegan] library. 

We illustrate the procrustes analysis by comparing the association 
matrices of the biology and the Chemical-Physics databases to the 
Phytoplankton one (MATbio, MATphys and Matphyto, respectively). The 
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latter is used as the target matrix. Note that the association matrices had been 
built using different association coefficients (Euclidean distance for the 
Biology and the Chemical-Physics databases versus Bray-Curtis 
dissimilarities for the phytoplankton database). nMDS were first realized for 
each matrix as follows: 

nmds_phy<-metaMDS( MATphyto, k=2, autotransform=F) ; 
nmds_phy$stress  
[1] 0.1674129 
nmds_bio<-metaMDS( MATbio, k=2, autotransform=F) ; nmds_bio$stress 
[1] 0.1146576 
nmds_phys<-metaMDS( MATphys, k=2, autotransform=F) ; 
nmds_phys$stress 

[1] 0.146768 
 
x11();par(mfrow=c(3,1)) 
plot(scores(nmds_phy), main=paste("Phytoplankton - stress=",  
round(nmds_phy$stress,3)),type="n"); 
 text(scores(nmds_phy),labels=rownames(scores(nmds_phy))) 
plot(scores(nmds_bio), main=paste("Biology - stress=",  
round(nmds_bio$stress,3)),type="n"); 
 text(scores(nmds_bio),labels=rownames(scores(nmds_bio))) 
plot(scores(nmds_phys), main=paste("Chemical physics - stress=",  
round(nmds_phys$stress,3)),type="n"); 
 text(scores(nmds_phys),labels=rownames(scores(nmds_phys))) 

The stresses were acceptable for the three nMDS (Figure 5.4.), the 
procruste analysis could then be conducted. 

library(vegan) 
vare_phybio <- procrustes(X=nmds_phy,Y=nmds_bio ) #Procruste analysis of the 

biology database based on the phytoplankton database 
  test_phybio<-protest(X=nmds_phy,Y=nmds_bio, scores = "sites", permutations = 
how(nperm = 99999)) 
  test_phybio #Procruste tests 
Procrustes Sum of Squares (m12 squared):        0.9436  
Correlation in a symmetric Procrustes rotation: 0.2375  
Significance:  0.58785  
 
Permutation: free 
Number of permutations: 99999 
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vare_phyphys <- procrustes(X=nmds_phy,Y=nmds_phys ); #Procruste analysis of 
the Chemical-physics database based on the phytoplankton database 

  testphyphys<-protest(X=nmds_phy,Y=nmds_phys, scores = "sites", permutations = 
how(nperm = 99999)) 
  testphyphys 
Procrustes Sum of Squares (m12 squared):        0.8673  
Correlation in a symmetric Procrustes rotation: 0.3642  
Significance:  0.17573  
 
Permutation: free 
Number of permutations: 99999 

 

Figure 5.4. nMDS conducted over the three databases:  
Phytoplankton, Biology and Chemical-Physics 
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None of the rotated nMDS are significant since p-value is < 0.05. The 
rotated configurations can be represented as follows (Figure 5.5): 

  Rnmdsphybio<-as.data.frame(vare_phybio$Yrot) #Scores of the rotated 
nMDS for Biology database 
  Rnmdsphyphys<-as.data.frame(vare_phyphys$Yrot) #Scores of the rotated 

nMDS for Chemical-Physics database 
 
x11();par(mfrow=c(2,1)) 
plot(Rnmdsphybio,type="n", main=paste("rotated Biology -Procrust test 

p=",round(test_phybio$signif,4)));text(Rnmdsphybio,labels=rowna
mes(Rnmdsphybio),cex=0.8) 

plot(Rnmdsphyphys,type="n", main=paste("rotated CP -Procrust test 
p=",round(testphyphys$signif,4)));text(Rnmdsphyphys,labels=rowna
mes(Rnmdsphyphys),cex=0.8) 

 

Figure 5.5. Visualisation of the rotated nMDS for  
Biology and Chemical-physics databases 
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5.2. Explaining a structure  

5.2.1. The structuring factors of groups 

5.2.1.1. Decision trees 

A decision tree is a tool that represents a set of choices in the shape of 
a tree: the different possible “decisions” are situated at the end of the 
branches (the “leaves” of the tree) and are reached in relation to the 
decisions taken at each stage. There are several algorithms that can be used 
to build these trees (e.g. Classification and Regression Trees [CART]). They 
represent a supervised learning technique: a first set of data is used to build 
the tree, and a second set allows us to validate it (i.e. estimating the re-
substitution success rate obtained when using it). The tree can then be used 
to extrapolate the value of the explained variable to a different set of data 
(i.e. prediction). One of the input variables is chosen at each node. We will 
distinguish between classification trees, predicting which of the different 
modalities (or classes) a qualitative variable belongs to, and regression 
trees, which predict the values of a quantitative variable.  

The decision tree presented here correspond to the use of the CART 
algorithm [BRE 84]. This decision tree is binary in the sense that each node 
can only have two threads, and the segmentation criteria is the Gini index. 
This index is the statistical measure of the dispersion of elements in a given 
population, which corresponds to the relative mean absolute difference 
(mean absolute difference divided by the mean). Thus, it varies between 0 
and 1, the latter value indicates that the elements of the population are 
perfectly equal. The goal of this method is to find the variable and a 
threshold related to each node that minimizes intraclass inertia or maximizes 
interclass inertia. Its effectiveness depends on the size of the learning 
database: the higher the number of elements contained in the data set are, the 
more reliable the tree is. Concerning classification trees, the number of 
potentially explanatory qualitative variables with many classes should be 
limited, since they tend to be chosen the most, given that they create a 
phenomenon of overfitting. Therefore, they should not be considered, or 
their number of classes should be reduced.  

Here, we will only illustrate classification trees, since our objective is to 
explain how groups are formed (qualitative variables that are a priori or 
highlighted by cluster analysis) by quantitative or qualitative variables. The 
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decision trees that employ the CART algorithm (classification or regression) 
can be built with the rpart() function, which belongs to the [rpart] library.  

We will illustrate how it is used for the prediction of the groups of 
stations obtained with the SIMPROF test on the database of the biological 
communities based on chemical–physical variables and environmental 
factors (i.e. classification tree based on both quantitative and qualitative 
variables). The “group” variable and the potentially explanatory variables 
are first concatenated in the same “dat” data set. The “Marsh” and “DB” 
qualitative variables are not considered, since their number of classes is high.  

library(rpart) 

data.frame(SP=as.factor(simprof.phyto),CP,fext[,-c(1,6,8)])->dat 

The elements (i.e. stations) are split in two: a first “app” data set, which 
allows us to build the tree (e.g. all the stations apart from 1, 2, 7, 10 and 15), 
and a second “val” data set, which enables us to validate it (stations 1, 2, 7, 
10 and 15). These stations have been chosen randomly. Then, the tree is built 
with the “app” data set by specifying the qualitative variable that has to be 
explained; ~ the potentially explanatory variables (e.g. all by ~); the database 
in the data argument (e.g. all except for the variable explained in “app”) and 
the method in the method argument (e.g. “class” for a classification tree).  

names(dat) 

app<-dat[-c(1,2,7,10,15),] 

val<-dat[c(1,2,7,10,15),] 

model = rpart(app[,1] ~ ., data = app[,-1], method = "class"); model 

n= 14  
node), split, n, loss, yval, (yprob) 
* denotes terminal node 
1) root 14 7 5 (0.071 0 0.36 0.071 0.5) * 
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We considered 14 elements when building the tree (n = 14). The asterisk 
(or asterisks) indicates the terminal node (or nodes). Here, there is only one 
of them. This means that no tree has been built. In this case, we have used 
the default parameters of the rpart() function, which does not build the most 
complete tree on the grounds of effectiveness. More specifically, it does not 
build trees from a data set including 20 or fewer elements, and it requires a 
relative improvement of at least 1% of the quality of a partition to perform a 
split. Besides, a very deep tree, which makes no mistakes in the 
classification, is not suitable due to its substantial overfitting and will have to 
be pruned. When we are dealing with small data sets, we can modify the 
base parameters by adding the rpart.control() function to the control 
argument. This argument requires us to specify the minimum number of 
elements (for example 5) below which it can continue splitting (“minsplit” 
parameter) and the constraint on the splitting quality (“cp” argument; for 
example 0%).  

model2 <- rpart(app[,1] ~ ., data = app[,-1], method = 
"class",control=rpart.control(minsplit = 3, cp = 0)) 

model2 

n= 14  
node), split, n, loss, yval, (yprob) 
* denotes terminal node 
1) root 14 7 5 (0.071 0 0.36 0.071 0.5)   

2) Type=R 8 3 3 (0.12 0 0.62 0.12 0.12)   
              4) Land use= Farmland, Grassland 5 0 3 (0 0 1 0 0) * 

    5) Land use= Urban 3 2 1 (0.33 0 0 0.33 0.33)   
     10) Depth>=0.885 2 1 1 (0.5 0 0 0 0.5) * 
     11) Depth< 0.885 1 0 4 (0 0 0 1 0) * 
   3) Type=D 6 0 5 (0 0 0 0 1) * 

The tree built includes four leaves (four asterisks). For each branch, we 
obtain three values which correspond, in this order, to the number of 
elements included in the branch (e.g. six for branch 3), the number of 
elements that have been badly classified (e.g. zero for branch 3) and the class 
of the qualitative variable explained (e.g. class 5 for branch 3). Each branch  
is defined by a quantitative variable threshold or a qualitative variable  
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modality (for example Depth >=0.855 for branch 10, or class “re-fed type” 
for branch 2).  

printcp(model2) 
Classification tree: 
rpart(formula = app[, 1] ~ ., data = app[, -1], method = "class",  
    control = rpart.control(minsplit = 3, cp = 0)) 
 
Variables actually used in tree construction: 
[1] Depth    Land_use Type     
 
Root node error: 7/14 = 0.5 
 
n= 14  
 
       CP nsplit rel error  xerror    xstd 
1 0.57143      0   1.00000 1.28571 0.25612 
2 0.14286      1   0.42857 0.57143 0.24147 
3 0.00000      3   0.14286 0.71429 0.25612 

The prediction error at the root is equal to 50% (7/14) and three variables 
are employed for the tree: two qualitative variables – land use and marsh 
type – and one quantitative variable, i.e. depth.  

As the number of leaves increases, the performance of the model 
improves at first and then decreases because of overfitting. Therefore, we 
have to choose the complexity that minimizes the estimated error (xerror), 
i.e. in this case cp = 0.14286. To automate the process by which we obtain 
this value, 

OptimalModel<- prune( model2, 
cp=model2$cptable[which.min(model2$cptable[,4]),1]) 

OptimalModel 

n= 14  

node), split, n, loss, yval, (yprob) 

* denotes terminal node 

1) root 14 7 5 (0.071 0 0.36 0.071 0.5)   

2) Type=R 8 3 3 (0.12 0 0.62 0.12 0.12) * 

   3) Type=D 6 0 5 (0 0 0 0 1) * 
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library(rpart.plot) 

prp(OptimalModel,extra=1) 

In the graphical representation of the pruned tree (Figure 5.6), each node 
corresponds to one question (for example type “refed”?), the true answer is 
on the left, while the false answer is on the right. For each branch, this model 
lists the main attribution class (group 3 on the left and group 5 on the right) 
as well as the number of attributions in this class through the learning tree of 
the elements resulting from different classes (e.g. if we consider the  
left branch, one element resulting from group 1, zero elements from group 2, 
five elements from group 3 and one element from groups 4 and 5).  

 

Figure 5.6. Representation of the pruned classification tree explaining the 
preestablished groups of stations on the basis of the phytoplankton communities 
(with agglomerative hierarchical clustering). Only the “type of marsh” qualitative 
variable seems involved in the discrimination of groups 3 and 5  

The tree can then be validated with another data set (e.g. val), and the 
predict() function can assess the classes of the group variable in relation to 
the tree. A contingency table allows us then to compare the results obtained 
with the tree and the results known for each element. The re-substitution 
success rate is then calculated. 

prev = predict(OptimalModel, newdata = val[,-1], type = "class") 
mat = table(as.factor(prev), val[,1]) 
rate = sum(diag(mat))/sum(mat);rate 

[1] 0.6 
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In this case, the re-substitution success rate is good (60%). However, this 
rate depends on the class considered. We obtain a 100% re-substitution rate 
for class 5 and a much lower one for the others. 

prev = predict(OptimalModel, newdata = val[,-1], type = "class") 

mat = table(as.factor(prev), val[,1]) 

Finally, if this rate is good, the tree can be used to make predictions with 
the predict() function.  

This analysis may be used to simply select some structuring variables out 
of a set of potentially explanatory variables. For example, in this case the 
type of marsh represents the variable that best differentiates the groups 
determined on the basis of the phytoplankton communities, out of the set of 
the several qualitative and quantitative environmental variables considered. 

5.2.1.2. Analysis of variance 

ANOVAs allow us to explain a quantitative variable with one or more 
qualitative variables. In this sense, they allow us to analyze the 
environmental variables that present significant differences among the 
groups highlighted by cluster analysis, e.g. the groups of stations that 
present different phytoplankton communities. 

These analyses are all based on a null hypothesis, according to which 
sampling fluctuation accounts for the differences between the groups, i.e. the 
groups present no significant differences on a population scale, and an 
alternative hypothesis, according to which sampling fluctuation cannot 
explain everything, i.e. at least one of the groups presents a significant 
difference on a population scale. Hence, rejecting the null hypothesis or 
accepting the alternative one involves a test, carried out afterwards to 
highlight the differences between different groups (e.g. post hoc for classical 
ANOVAs). 

There are several alternative types of ANOVAs. They present different 
power and robustness (see section I.2.2 for these two notions) in relation to 
the mathematical principles of the tests used:  
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– classical ANOVAs are linear models with drastic applicability 
conditions, due to the use of the least squares method. Therefore, they are 
weak in terms of robustness but powerful;  

– the ANOVAs based on generalized linear models are a little more 
robust; 

– permutation ANOVAs, even more robust but less powerful; 

– non-parametric ANOVAs subject to no applicability condition but 
much less powerful. 

A specific alternative is chosen in relation to how powerful it is. It is 
advisable to use the most powerful test, i.e. the test that is most likely to lead 
us to reject H0. On the other hand, if the applicability conditions are not 
respected, a more robust alternative will be chosen.  

Here, these analyses will be illustrated in relation to the groups obtained 
with a SIMPROF analysis carried out on the phytoplankton communities 
(simprof.phyto vector). As an example, the ANOVA’s will be carried out for 
a chemical–physical parameter, i.e. the concentration of nitrates (CP$NO3; 
Figure 5.7). 

 

Figure 5.7. Concentrations of nitrates according to the different groups of  
stations highlighted by the SIMPROF test on the phytoplankton communities  

boxplot(CP$NO3~as.factor(simprof.phyto), xlab="Groups",ylab="NO3 (µMol/L)") 
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5.2.1.2.1. Parametric alternative: linear models 

Linear models assume that any relationship between the explained and 
the explanatory variable has a linear shape. The applicability conditions are 
applied to the residuals of the models (i.e. differences, for each element, 
between the raw value and the result given by the model), rather than to the 
raw data [AZA 13]: 

– the residuals of the model are standardized, i.e. homogeneously 
shared on both sides of the zero along the whole variation range of the 
variable explained; 

– the residuals must follow the normal distribution. However, linear 
models are robust when we consider more than 20–30 elements; 

– the variances of the residuals are homogeneous along the whole 
variation range of the variable explained. This is commonly the hardest 
condition to respect;  

– the residuals are independent. This hypothesis responds to a simple 
random form of sampling. Any type of spatial (with a non-random position 
of the stations) or temporal sampling (with a uniform-distance form of 
sampling) may create a spatial or temporal autocorrelation. If this hypothesis 
is not respected, the “space” or “time” variable may be introduced into the 
model as a variable including a pairing (as a random variable).  

Here, we will discuss classical linear models with the least squares 
method.  

The model is adjusted so that the sum of squared residuals between each 
raw value and the value given by the model for all the values of the variable 
explained is minimal (i.e. method of “least squares”; [AZA 12]). According 
to this method, the sum of squared residuals from the general mean of the Y 
quantitative variable to be explained is equal to the sum of squared residuals 
between the modalities of the X explanatory qualitative variable and the 
intramodality one (modality A + modality B, etc.; Figure 5.8). The statistic 
of the test corresponds to a Fisher statistic, which compares inter- and 
intramodality mean squares. The value obtained must be compared with the 
one yielded by the Fisher–Snedecor known theoretical probability 
distribution, which represents the distribution related to the null hypothesis. 
If the F falls outside 95% of the values of this distribution, then H0 is 
rejected and H1 is accepted, i.e. at least one of the modalities differs from 
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Figure 5.10. Graphs allowing us to analyze graphically the applicability conditions of 
the ANOVA linear model. Only the two graphs (A) and (B) must be analyzed: the 
residuals in relation to the predicted values (A) and the normal distribution curve (B)  

In our example, the P-value is equal to 0.0001. H0 is therefore rejected 
and the normality of the residuals is not respected.  

Levene’s test allows us to test the homogeneity of the variances with the 
leveneTest() function, which belongs to the [car] library. The null hypothesis 
assumes that the variances of the residuals are the same, whereas the 
alternative hypothesis assumes that this is not the case.  

library(car) 

leveneTest(AN$res, as.factor(simprof.phyto)) #Levene’s test on the residuals 
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In the example considered, the P-value yields 0.65. H0 is therefore kept 
and the homogeneity of the variances of the residuals is respected, as we can 
see in Figure 5.10(A).  

The most effective way to test the normality and homogeneity of the 
variances of the residuals is graphically (Figure 5.10), since the Shapiro–
Wilk test and Levene’s test are less effective on the residuals than on raw 
data [AZA 12].  

Thus, the applicability conditions are not respected in our example. If this 
had been the case, the P-value and the coefficient of determination of the 
model could have been retrieved with the summary() function. The 
coefficient of determination represents the quantity of variance explained by 
the linear model (R2). If we were dealing with a P-value of less than 0.05, 
which would lead us to conclude that at least one group is significantly 
different from the others  in terms of concentrations of nitrates, we could 
have carried out a multiple comparisons test with the pairwise.t.test() 
function to determine which groups were different. 

summary(AN) 

pairwise.t.test(CP$NO3, as.factor(simprof.phyto), p.adjust="bonferroni", pool.sd = T) 

tapply(CP$NO3, INDEX= as.factor(simprof.phyto), FUN=mean) #It allows us to 
retrieve the means by group 

When the number of qualitative factors increases, equations become more 
complex. These equations take into consideration the iteration number by 
type of the different factors, whether the factors are fixed (i.e. established by 
a researcher as part of his sampling strategy) and/or random (i.e. drawn by 
lot out of the set of possible factors, taking random values due to the 
sampling itself), whether the factors are crossed (i.e. each of them has a 
sense independently of the others) or hierarchized (i.e. the modality of the 
hierarchized factor B in factor A means nothing concrete as long as we do 
not know the modality associated with factor A), and whether the interaction 
between factors is considered or not (i.e. whether factor A evolves together 
with factor B or not). The implementation in R is trickier, since the help files 
sometimes provide the wrong information: consulting Azaïs and Bardet’s  
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manual [AZA 12] is recommended if we want to use it correctly. Besides, 
BIC models allow us to optimize the number of factors and interactions 
between significant factors [AZA 12], i.e. compromising between the 
number and the factor used and the coefficient of determination of the final 
linear model (namely, its explanatory power).  

5.2.1.2.2. Intermediate alternative: PERMANOVA 

PERMANOVA allows us to test the response of one (or more) 
variable(s) to one or more qualitative factors [AND 01]. Here, we only 
present the univariate case (see section 5.2.3.2 for the multivariate case). 
This analysis, based on an association matrix, is more robust than classical 
ANOVA in relation to the normality and homogeneity of the variances of the 
residuals [CHA 08]. However, it is sensitive on a non-equirepeated level (i.e. 
the number of elements by factors is different [AND 13]). 

 

Figure 5.11. Statistical development of a permutational analysis of variance. Two 
samples of the Y explained variable corresponding to the A and B modalities of an X 
qualitative factor are compared  
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The principle of PERMANOVA is quite similar to the one of least-
squares ANOVA based on the fact that the sum of squares can be calculated 
by using the distances between points in an n-dimensional space [AND 01]. 
For the case considered here, where one quantitative variable is to be 
explained, the distance matrix (i.e. the Euclidean distance) is calculated 
according to the same principle followed for several variables and in relation 
to the type of variable and the objectives (see section 2.3.1). The distance 
matrix lists the similarities/dissimilarities between elements (for example 
stations; Figure 5.11). For a Euclidean distance, the total sum of squares is 
calculated in the same way as the sum of the distances to the centroid (i.e. 
mean of the distances within the variables), the intramodality or residual sum 
of squares represents the sum for the set of modalities of the sums of squares 
to the centroid, while the intermodality sum of squares is the difference 
between the two previous sums ([MCA 01]; Figure 5.11). The mean squares 
can be obtained by dividing by the degree of freedom (modality number – 1 
for intermodality MQ and number of elements – group number for 
intramodality MQ). As was the case for least-squares ANOVA, the statistic 
calculated is a pseudo-F corresponding to the intermodality mean square 
over the intramodality mean square. This statistic is compared with a 
theoretical distribution of the pseudo-Fs in relation to H0 calculated by 
permuting the initial database many times over. If the pseudo-F falls outside 
95% of this theoretical distribution, H0 is rejected and H1 is accepted, i.e. at 
least one of the modalities of the factor differs from the others. The 
PERMANOVA provides then a pseudo-coefficient of determination 
(intermodality sum of squares/total sum of squares), yielding the quantity of 
the quantitative variable explained by the distance between groups of the 
qualitative factor.  

For different distances, the distance to the centroid is harder to obtain. 
Thus, other methods can be used.  

In our example, the analysis is carried out with a Euclidean distance 
matrix based on the concentrations of nitrates in 19 stations.  

dist<- dist(CP$NO3, method= « euclidean ») 
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The analysis needs to test the homogeneity of the  multivariate 
dispersions among groups. The betadisper test is performed with the 
betadisper() function, which belongs to the [vegan] library.  

betadisper(dist(CP$NO3), as.factor(simprof.phyto), type =  "centroid")->CA 

anova(CA) # It yields the result of the test 

In this example, the P-value yields 0.08 and implies that we should keep 
H0. The homogeneity of the dispersion among groups is therefore respected. 
The PERMANOVA can thus be carried out. 

The PERMANOVA is implemented in R in the [vegan] library with the 
adonis() function. Here, it is carried out on a simple one-factor plane – the 
groups of phytoplankton communities – for a quantitative variable, namely 
the concentration of nitrates. It requires us to specify the quantitative 
variable ~, the association measure chosen in the argument method and 
finally the permutation number used to calculate the theoretical distribution 
in the perm argument. All the coefficients available in the vegdist() function 
belonging to the [vegan] library can be used. The Euclidean distance is used 
as an association measure for the CP variables.  

adonis(CP$NO3 ~ as.factor(simprof.phyto), method = "euclidean", 
permutations=999)->PERMANOVA 

PERMANOVA #Results are presented as an ANOVA table 

hist(PERMANOVA$f.perms) # To obtain the distribution of the pseudo-f’s based 
on H0 

The P-value is equal to 0.003 and H0 is rejected, i.e. at least one of the 
groups presents a concentration of nitrates that differs from the others. The 
groups explain 74% (pseudo-R2) of the Euclidean distances among  
the groups. It is possible to test the differences between groups with the 
TukeyHSD() function.  
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TukeyHSD(CA)$group 

 
 

No P-value is smaller than 0.05. The post hoc test used here is not 
powerful enough to find significant differences among groups.  

Tukey’s tests should be considered carefully, since they are commonly only 
appropriate for a balanced plane according to classical linear models [AZA 12]. 

This is dealt with in section 5.2.3.2. The multifactorial  application is 
tricky since the mathematical formulas vary in relation to the same criteria as 
those of a multifactorial least-squares ANOVA (see section 5.2.3.2). 

5.2.1.2.3. Non-parametric alternative: the Kruskal–Wallis test 

This test has no preliminary applicability conditions, unlike classical or 
PERMANOVA, since the values of the quantitative variable (e.g. nitrates) 
are replaced by their rank. However, it is less powerful than the two previous 
analyses. It can be carried out with the kruskal.test() function, while the 
Nemenyi post hoc test can be carried out with the 
posthoc.kruskal.nemenyi.test(), which belongs to the [PMCMR] library.  

kruskal.test(CP$NO3 ~ as.factor(simprof.phyto)) 

In this example, the P-value yields a value of 0.02. Therefore, at least one 
of the groups presents concentrations of nitrates that differ from the others. 
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library(PMCMR) 

posthoc.kruskal.nemenyi.test( x = CP$NO3 , g = as.factor(simprof.phyto), 
method="Chisquare")    

No P-value is smaller than 0.05. The post hoc test used here, therefore, is 
not strong enough to detect significant differences among groups. In any 
case, examining Figure 5.7 is useful to highlight that the concentrations of 
nitrates look higher in groups 2 and 3 than in the other groups even if they 
are not significant. 

5.2.2. Quantitative factors that structure gradients 

5.2.2.1. Passive (a posteriori) correlations 

5.2.2.1.1. Correlations with permutation tests on the axes of a 
multivariate analysis  

These are correlations of factors to the axes of a multivariate analysis 
(unconstrained ordination or multidimensional scaling) carried out on the 
basis of the permutation tests put forward by Jari Oksanen. The variables 
used must be quantitative, continuous or discrete. They can be used to 
determine which external factors (e.g. CP variables) explain the structure 
observed in the analysis or, in case of non-metric multidimensional scaling, 
to determine the position of the variables used to obtain the position of the 
objects (e.g. the biological variables used to determine the structure obtained 
for the stations).  

These correlations are made with the envfit() function, which belongs to 
the [vegan] library. Each variable is correlated independently of the others. 
Thus, it is possible to test several variables at once to determine those that 
are significantly correlated to the first two axes and those that are not 
without any interference among them.  

Parametric alternative for unconstrained ordination 

These correlations can be applied based on the PCA carried out on the 
“biology” database. The “chemical–physical” database (CP) and  
the log-transformed and simplified “phytoplankton” (log1p(phytoS);  
 
 



Understanding a Structure     127 

variables are the variables tested for correlations. The PCA is carried out as 
it was before and the variables to be tested are concatenated in the same 
database (“EF”). 

PCA_EF<-PCA(scale(bio_simp),  scale.unit = TRUE, ncp = 7, graph = FALSE)  

EF<-cbind(CP, log1p(phytoS)) 

acpcor12<-envfit(PCA_EF$ind$coord[,c(1,2)],EF); acpcor12  

               Dim.1        Dim.2       r2           Pr(>r)    

Depth        -0.26837  -0.96332    0.2004    0.171    

Lumin     0.11947    0.99284    0.1547   0.249    

Opt_Depth  -0.43064  -0.90253    0.4985  0.006 ** 
Temp       0.41212    0.91113    0.1581  0.243    

…    

Cryp          -0.24639  0.96917     0.0687  0.591    

Eugl          -0.95104  0.30908     0.3571  0.021 *  

Phac          -0.50810  0.86130     0.2254  0.126    

Stro           -0.15191  0.98839     0.3260  0.033 *  

Trac            0.00515  0.99999     0.4074  0.017 * 

acpcor13<-envfit(PCA_EF$ind$coord[,c(1,3)],EF);acpcor13  

                 Dim.1         Dim.3        r2         Pr(>r)   
… 
NO3      -0.27527      0.96137    0.3674   0.018 * 
… 
Nitz       -0.66626    0.74572   0.3862     0.024 * 
… 
Eugl      -0.98763    -0.15682   0.3427     0.049 * 
par(mfrow=c(1,2)) 
plot(PCA_EF,choice="var",axes = c(1,2)); plot(acpcor12,p=0.05) 
plot(PCA_EF,choice="var",axes = c(1,3)); plot(acpcor13,p=0.05) 

Optical depth, anticorrelated to species diversity on axis 2, and  
the concentrations of nitrates, anticorrelated to productivity on axis 3 
(Figures 5.12(A) and (B)), are the variables that are significantly correlated 
to the axes for the CP variables. As for phytoplankton taxa, these variables 
are Euglena, correlated to high abundances and anticorrelated to the Shannon 
and Simpson diversity on the first axis, Strombidium and Trachelomonas,  
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correlated to phytoplankton production on the second axis, and Nitzchia, 
correlated to the medium abundances between the first and the third axes 
(Figures 5.12(A) and (B)). 

 

Figure 5.12. Correlation circle of the second axis versus the first axis (A) and  the 
third axis versus the first one (B) in the principal component analysis carried out on 
the “global biology” database. The variables that are significantly correlated to the 
axes of the analysis are shown in gray  

Why should we prefer this analysis to supplementary variables? 

Supplementary variables are parameters projected onto the axes of the 
analysis (especially on the correlation circle for a standardized PCA) 
without having been considered in the mathematical calculations related 
to the analysis to determine the structure of the objects on the basis of the 
parameters. Therefore, this is a passive projection that does not affect the 
results of the analysis. We have already discussed it in section 4.1.2.5. These 
variables allow us to compare a biological data set with a potentially 
explanatory data set (i.e. chemical–physical database). Readers should refer 
to section 4.1.2.5 for its implementation. 

Supplementary variables will be dealt with in the same way as active 
variables, for example with the Euclidean distances for PCA. Thus, 
supplementary variables must be appropriate for the kind of distance used. 
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We should not use this type of analysis to compare, for example, a structure 
based on abundances by means of a CA based on the 2 distance with a CP 
database, for which the Euclidean distance is the most suitable.  

Non-parametric alternative for multidimensional scaling 

These correlations are applied to the non-metric multidimensional scaling 
carried out on the “biology” database and interpreted previously in section 
4.2.2.2. One of the drawbacks of this analysis was that it did not provide the 
position of the variables on which the analyses were based, unlike 
unconstrained ordination. These correlations to the axes based on 
permutation tests allow us to locate these variables. The correlations 
corresponding to the biological variables are stored in the nmdscor object, 
while the potentially explanatory variables are stored in nmdscorexp (only 
the significant variables are considered here), so that we can represent them 
in different colors in the dispersion by type of marsh.  

nmdscor<-envfit(NMDSbio,BIO.trf);nmdscor 
                     NMDS1        NMDS2     r2                Pr(>r)     
H_Shannon  -0.99017      -0.13988     0.8385       0.001 *** 
RSOdum      -0.91167        0.41092    0.6305       0.003 **  
D_Simpson  -0.96039       -0.27866    0.8526       0.001 *** 
P_phyto        0.21207        0.97725    0.7044       0.002 **  
Ab                0.94219        -0.33508   0.5547       0.009 **  
RS                -0.64820         0.76147   0.3291       0.055 .   
P.B               -0.12342         0.99235   0.6047       0.001 *** 

nmdscorexp<-envfit(NMDSbio,cbind(CP,log1p(phytoS)));nmdscorexp 
                NMDS1       NMDS2     r2           Pr(>r)    

Depth         0.07443     -0.99723    0.4480  0.007 ** 

Opt_depth  0.32837     -0.94455    0.4774  0.004 ** 

Nitz        0.76707      -0.64156    0.3670  0.021 *  

Eugl        0.99522       0.09763    0.3557  0.029 *  

par(mfrow=c(1,1));s.class(scores(NMDSbio,display="sites"), fac=fext$Type, 
col=c("dark gray","black")) 

plot(nmdscor,p=0.05,col="red"); plot(nmdscorexp,p=0.05,col="blue") 
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Even if they are not meaningful, some interpretations can be done here 
for the axes of the nMDS: we thus describe the results using them. All the 
variables on which the analysis was based are significantly correlated to the 
axes of the nMDS plane, except for species diversity. The re-fed marsh 
stations vary more on axis 1, where abundances lie opposite the Shannon and 
Simpson diversity, whereas the unfed marsh stations vary more on axis 2, 
which presents a productivity and phytoplankton production gradient (Figure 
5.13). The re-fed marshes vary significantly on axis 2 as well. As for 
potentially explanatory variables, we consider depth and optical depth for CP 
variables negatively correlated to axis 2 and anticorrelated to productivity 
and phytoplankton production. As for phytoplankton taxa, Nitzchia is 
anticorrelated to the Odum species diversity and Euglena to the Shannon and 
Simpson diversity (Figure 5.13). 

 

Figure 5.13. Dispersion of the stations according to the type of marsh (re-fed or not) 
in the non-metric multidimensional scaling plane realized on the “biology” database. 
The significant correlated biological variables that have enabled this analysis are 
shown in red, while the significant correlated chemical–physical and phytoplankton 
variables are shown in blue. For a color version of this figure, see www.iste.co.uk/ 
david/data.zip  

5.2.2.1.2. Non-parametric alternative: the Bio-Env procedure 

This method tries to find in a potentially explanatory data set (e.g. 
chemical physics) the best combination of variables that can explain the set 
of variables that need to be explained (e.g. phytoplankton taxa; [CLA 93]). It 
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is based on Mantel tests that use Spearman’s correlation coefficients (based 
on ranks) between the association matrix based on the data set that has to be 
explained and different association matrices that consider variables of the 
explanatory data set. The bioenv() function is available in the library 
[vegan]. 

A dissimilarity matrix is first calculated from the matrix given in the 
comm argument with the association measure specified in the index 
argument (all the coefficients available in the vegdist() function belonging to 
the library [vegan] can be used). All the potentially explanatory variables 
specified in the env and upto arguments are standardized and introduced into 
a Euclidean distance matrix. The procedure involves looking for the best 
combination by using first the most explanatory variable in the Euclidean 
distance matrix, then 2, 3 and so on until variables that no longer improve 
the correlation are added (Figure 5.14).  

 

Figure 5.14. Schematization of the Bio-Env procedure 
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This method is used here on the log-transformed (log1p(phytoS)) 
database that we want to link to the CP variables.  

library(vegan) 
BIOENV<-bioenv(comm=log1p(bio_simp), CP, method = "spearman", index = 

"bray",upto = ncol(CP)) 
BIOENV 
Best model has 3 parameters (max. 9 allowed): 
Depth PO4 Turb 
with correlation  0.4686625  

summary(BIOENV) # It returns the result of all the correlations made 

The best correlation obtained involves depth, the concentrations of 
phosphates and turbidity, with a final Spearman’s correlation coefficient of 0.47. 

5.2.2.2. Active regression to the axes of an unconstrained ordination 

In the aforementioned methods, the supplementary variables (see section 
4.1.2.5) and a posteriori passive correlations (see section 5.2.2.1), as well as 
the structures of elements determined on the basis of active variables (i.e. 
biological variables in our example) are not affected by potentially 
explanatory variables. Therefore, these types of analysis are exploratory and 
descriptive.  

Canonical analysis, on the contrary, allows us to explore the relationships 
between two databases, one of them explained and the other explanatory: the 
two databases are used in the analysis [LEG 98]. This analysis combines a 
classical factor analysis/unconstrained ordination (PCA, correspondence 
analysis or another kind of analysis) and multiple regressions. The factor 
axes obtained with the unconstrained ordination carried out on the matrix 
that has to be explained are constrained by multiple regression to the 
potentially explanatory variables in order to obtain the canonical axes 
(Figure 5.15).  

Therefore, this analysis is strongly influenced by the potentially 
explanatory variables employed. If these explain badly the variables that 
have to be explained, which are processed through unconstrained ordination, 
the structure obtained by ordination runs the risk of being affected too much  
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and the explanatory power of the variables used by regression of being 
limited. Besides, these types of analysis remain multivariate analyses of a 
parametric approach and the sum of the explained and explanatory variables 
must be smaller than the number of elements (i.e. the stations in our case). 
These two problems can be overcome by carrying out a stepwise regression 
at the beginning. This type of regression is an automated procedure that 
allows us to optimize the models of linear regression by choosing only a 
combination of variables that contribute to the explanation by the relevant 
variables. This can be done in two ways: (1) with backward selections that 
choose first the most explanatory variable and then proceed by adding one 
after the other the variables that provide information, or (2) with backward 
selection that proceed the other way round by choosing at first all the 
variables and progressively eliminating those that provide the least amount 
of information. Neither of these methods is perfect and it is indispensable 
that researchers consider critically which variables must be taken into 
account for the model. Bidirectional selection is a combination of both 
methods (“both”) and remains the best compromise. Nonetheless, it is better  
to carry out a preselection of the potentially explanatory variables 
beforehand, according to the knowledge provided by the literature, since 
these approaches are nothing more than mathematical tools. 

 

Figure 5.15. Canonical analysis. (A) A redundancy analysis based at first on a 
principal component analysis as unconstrained ordination. (B) A canonical 

correspondence analysis based at first on a correspondence analysis  



134     Data Treatment in Environmental Sciences 

If the factor analysis carried out on the variables that must be explained is 
a type of PCA (based on the Euclidean distance), the corresponding 
constrained analysis will be called redundancy analysis (RCA) or PCA on 
experimental variables (Figure 5.15(A)). On the contrary, if the initial 
analysis is a correspondence analysis (based on the χ2 distance), the analysis 
will be a canonical correspondence analysis (CCA) on instrumental variables 
(Figure 5.15(B)). In other cases (i.e. other association measures), we will 
refer to constrained principal coordinate analysis or distance-based 
redundancy analysis (dbRDA). The potentially explanatory variables must 
be quantitative (continuous or discrete), since they constrain factor analysis 
through linear models.  

 Several libraries that allow us to carry out canonical analyses are 
available in R. The library [vegan] is more complete in the sense that it 
allows us to carry out permutation tests that yield the significance of the 
model obtained and the number of significant axes to keep. This can be done 
with the cca() function for CCA (see section 5.2.2.2.1), with the rda() 
function for RDA (see section 5.2.2.2.2), and with the capscale() function 
for general constrained principal coordinate analysis (see section 5.2.2.2.3). 

The advantage of these analyses is that they allow us to quantify the 
variance or inertia explained by potentially explanatory variables. 
Permutation tests enable us to determine if this explanatory power is 
significant, as well as the number of axes to keep. 

In this kind of analysis, if the potentially explanatory variables belong to 
different subsets (e.g. CP variables and phytoplankton taxa), a variance 
partition enables us to determine the part of variance (or inertia) explained 
by each of the groups considered independently as well as the common part 
linked to the relationship between these two (or more) subgroups of 
variables (see section 5.2.2.2.4). 

5.2.2.2.1. Canonical correspondence analysis  

CCA is used here on the simplified and log-transformed phytoplankton 
database (15 taxa, “phytoS”; [TER 87a]) on which correspondence  
factor analysis has already been applied (see section 4.1.3). The CP  
variables  represent the potentially explanatory variables. The number of CP 
variables to consider to optimize CCA is first determined by  
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applying a bidirectional stepwise regression (“both”). The cca() function, 
which enables us to carry out the CCA belongs to the library [vegan] but can 
also be found under the same name in the library [ade4] with different 
arguments. Therefore, we have to start by detaching the library [ade4], since 
it masks the functions related to the CCA of the library [vegan]. The cca() 
function requires us to specify the database on which the correspondence 
analysis is carried out, followed by a tilde, a point and the file in which the 
constraining variables (“CP”) are stored, or to specify the relevant variables, 
separated by +, instead of the period.  

library(vegan) 
detach("package:ade4", unload=TRUE) 
cca <- cca(log1p(phytoS) ~ ., CP) #The model to consider for stepwise regression, 

i.e. all the variables included in “CP” 
step.forward<-ordistep(cca(log1p(phyto) ~ 1, CP), scope=formula(cca), 

direction="both", pstep=1000) #We should look at the last model given 
Step: log1p(phyto) ~ NO3 + NO2     

The best model put forward here corresponds to the one that only keeps 
the concentration of nitrates and nitrites among the set of CP variables. 
Therefore, the CCA is carried out based on this model and stored in 
“ccasimp”.  

ccasimp<-cca(log1p(phytoS)~NO3+NO2, CP) #The model to consider for CCA 

R2<-RsquareAdj(ccasimp)$r.squared;R2 #Calculating the inertia explained by the 
final model  

[1] 0.2864178 

anova.cca(ccasimp,step=1000) # Significance of the global model 

Model: cca(formula = log1p(phytoS) ~ NO3 + NO2, data = CP) 
         Df ChiSquare     F Pr(>F)     
Model     2   0.13446 3.211  0.001 *** 
Residual 16   0.33501 
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The final model explains significantly 29% of the total inertia of the 
phytoplankton database (permutation test of the regressive model,  
P = 0.001***). 

anova.cca(ccasimp,by="axis",step=1000) # Significant axes 

Model: cca(formula = log1p(phytoS) ~ NO3 + NO2, data = CP) 
         Df ChiSquare      F Pr(>F)     
CCA1      1   0.08244 3.9371  0.001 *** 
CCA2      1   0.05203 2.4850  0.010 **  
Residual 16   0.33501                 

summary(ccasimp) #Global view of the results. Here, we only provide the results 
necessary to calculate the percentage explained by the axes, namely the 
accumulated constrained eigenvalues 

Accumulated constrained eigenvalues 
Importance of components: 
                                             CCA1     CCA2 
Eigenvalue                        0.08244   0.05203 
Proportion Explained     0.61306   0.38694 
Cumulative Proportion      0.61306   1.00000 

Only the first two axes are significant (permutation test, P < 0.05) and 
explain 0.61  0.29 = 20% of the inertia for axis 1 and 0.39  0.29 = 11% for 
axis 2 (“accumulated constrained eigenvalue – proportion explained”  R2 
for each axis). 

Two graphical representations can be used: one of them allows us to 
highlight the relationships between explained (“phytoplankton”) and 
explanatory (CP variables; scaling 1) variables, while the other enables us to 
analyze more specifically the position of the elements (here, the stations; 
scaling 2). 

plot(ccasimp, scaling=1) 

plot(ccasimp, scaling=2)  

scores(ccasimp, display="sites")->SC #Retrieval of the coordinates of the  
elements (stations) 

library(ade4) 
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s.class(SC,fac=fext$Station) # Representation of the dispersion of these elements 
per marsh 

 

Figure 5.16. Graphical representation of the canonical correspondence analysis 
carried out on the simplified and log-transformed phytoplankton database. The 
representation of the first scaling highlights the relationships between explanatory 
and explained variables. The representation of the second scaling underlines the 
structure of the elements. Dispersion of the stations according to the marshes 
sampled. The axes in bold of the first and second scaling correspond to the 
correlations of the explanatory variables (arrows)  
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On axis 1, Phacus (positive values) is opposed to Cylindrotheca and 
Monoraphidium (negative values; Figure 5.16). The phytoplankton taxa that 
are well represented on scaling 1 are Ooocystis, Strombomonas and 
Ankitrodesmus on the negative values of axis 2, and Navicula on the positive 
values. The concentrations of nitrates are very well linked to axis 1: the 
higher their values are, the more abundant Phacus is (Figure 5.16). The 
lower the values of these CP parameters are, the higher the abundances of 
Cylindrotheca and Monaraphidium are. On axis 2, high concentrations of 
nitrates correspond to high abundances of Oocystis, Strombomonas and 
Ankitrodesmus, while low concentrations of nitrites correspond to high 
abundances of Cryptomonas and Navicula (Figure 5.16). Cosmarium 
occupies an intermediate position between the two axes, favored by high 
concentrations of nitrites and low concentrations of nitrates. The stations of 
marsh D are very markedly distinct from those of the other three marshes, 
with high concentrations of NO3: they present high abundances of Phacus. 
The stations of marsh C are situated in the positive part of axis 2, namely 
they show low concentrations of nitrites and lower abundances of 
Cryptomonas and Navicula. Finally, the stations of marsh B and marsh A are 
nearby in the negative values of axis 1 and present high abundances of 
Cylindrotheca, Monoraphidium and Cosmarium (Figure 5.16).  

5.2.2.2.2. Redundancy analysis 

RDA is carried on the basis of the PCA performed on the simplified and 
standardized “biology” database. The explanatory variables used here 
correspond to the CP and phytoplankton (phytoS) data sets.  

library(vegan) 

bdd<-cbind(CP,phytoS) #Grouping the two explanatory databases used 

 rda <- rda(scale(bio_simp) ~ ., bdd) #The model to consider for stepwise 
regression, i.e. all the variables included in “bdd” 

step.forward<-ordistep(rda(scale(bio_simp) ~ 1, bdd),scope = formula(rda), 
direction="both",pstep=1000)       #We have to look at the last model 
given 

Step: scale(bio_simp) ~ Nitz + Opt_Depth + NO2  
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The best model put forward here corresponds to the one that only keeps 
the abundances of Nitzchia, optical depth and the concentrations of nitrites 
among the set of variables considered. Therefore, RDA is carried out based 
on this model and stored in “rdasimp”.  

rdasimp<-rda(scale(bio_simp)~Nitz + Opt_Depth + NO2,bdd) #The model to 
consider for RDA 

R2<-RsquareAdj(rdasimp)$r.squared;R2 #Calculating the inertia explained by the 
final model  

 [1] 0.4722248 

anova.cca(rdasimp, step=1000) # Significance of the global model as for CCA 

Model: rda(formula = scale(bio_simp) ~ Nitz + Opt_Depth + NO2, data = bdd) 
         Df Variance      F Pr(>F)     

Model     3   3.3117  4.4894  0.001 *** 

Residual 15   3.6883  

The final model explains significantly 47% of the total variance of the 
“biology” database (permutation test of the regressive model, P = 0.001***). 

anova.cca(rdasimp,by="axis",step=1000) # Significant axes as for CCA 

Model: rda(formula = scale(bio_simp) ~ Nitz + Opt_Depth + NO2, data = bdd) 
         Df Variance      F Pr(>F)    

RDA1      1   2.0084  8.1679  0.008 ** 

RDA2      1   0.8340  3.3919  0.022 *  

RDA3      1   0.4693  1.9084  0.136    

Residual 15   3.6883  

summary(rdasimp) #Global view of the results. Here, we only provide the results 
necessary to calculate the percentage explained by the axes, namely the 
accumulated constrained eigenvalues as for CCA 
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Only the first two axes are significant (permutation test, P < 0.05) and 
explain 0.61 × 0.47 = 29% of the variance of axis 1 and 0.25 × 0.47 = 12% 
of the variance of axis 2 (“accumulated constrained eigenvalue – proportion 
explained” × R2 for each axis). 

Two graphical representations can be used: one of them allows us to 
highlight the relationships between the explained (“biology”) and the 
explanatory (CP parameters and phytoplankton; scaling 1) variables, while 
the other enables us to analyze more specifically the position of the elements 
(here, the stations; scaling 2). 

plot(rdasimp, scaling=1) 

plot(rdasimp, scaling=2)  

scores(rdasimp,display="sites")->SCrda #Retrieval of the coordinates of the 
elements (stations) 

library(ade4) 

s.class(SCrda,fac=fext$Station) # Representation of the dispersion of these 
elements per marsh 

On axis 1, the Shannon and Simpson diversity and productivity (positive 
values) lie opposite the total abundances (negative values; Figure 5.17). The 
Nitzchia taxon is well represented among the negative values of this axis: the 
higher the abundances of this taxon is, the higher the total abundances and the 
phytoplankton production are. Axis 2 presents the highest taxonomic 
diversities and phytoplankton productions. These two indices seem well 
explained by the higher concentrations of nitrites and the low values of optical 
depth. The stations of unfed marshes (marsh C and marsh D) fluctuate widely 
on axis 1, namely in relation to the fluctuations of Nitzchia: they present the 
strongest fluctuation in the abundances of this taxon and, therefore, in 
diversity and productivity. In unfed marshes, the stations of marsh C seem less 
rich in nitrites and taxa and less productive (positive values on axis 2) than 
those of marsh D (negative values on axis 2; Figure 5.17). 
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Figure 5.17. Graphical representation of the redundancy analysis carried out on the 
standardized and simplified biology database. The representation of the first scaling 
highlights the relationships between explanatory and explained variables. The 
representation of the second scaling underlines the structure of the elements. 
Dispersion of the stations according to the marshes sampled. The axes in bold of the 
first and second scaling correspond to the correlations of the explanatory variables 
(arrows) 
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5.2.2.2.3. Constrained principal coordinate analysis or dbRDA 

This analysis represents a generalization of constrained factor analysis. In 
this sense, it allows us to carry out at the beginning factor analysis with the 
distance or dissimilarity of our choice. Thus, the applicability conditions 
depend on the distance/dissimilarity chosen. 

Constrained PCA is carried out here on the log-transformed and 
simplified phytoplankton database on which CCA has been used (see section 
5.2.2.2.1) but using Bray-Curtis dissimilarities. The CP variables (see 
section I.4.2) are the potentially explanatory variables used here. The results 
are slightly less detailed than those obtained with CCA, since they are fairly 
similar. The same explanatory variables are kept through stepwise 
regression.  

library(vegan) 

dbRDA <- capscale(log1p(phytoS) ~ ., CP, dist="bray") 

step.forward<-ordistep(capscale(log1p(phyto) ~ 1, CP),scope=formula(dbRDA), 

direction="both",pstep=1000) 

Step: log1p(phyto) ~ NO3 + NO2 

dbRDAsimp<- capscale(log1p(phytoS)~ NO3+NO2 , CP, dist="bray") 

R2<-RsquareAdj(dbRDAsimp)$r.squared;R2 

[1] 0.2865351 

anova.cca(dbRDAsimp,step=1000) #As for CCA and RDA   

anova.cca(dbRDAsimp,by="axis",step=1000)# As for CCA and RDA          

summary(dbRDAsimp) #As for CCA and RDA, we have to consider the proportion 
explained in the part accumulated constrained eigenvalues 

dbRDA explains significantly 29% of the inertia of phytoplankton with 
two axes (0.60  0.29 = 17% for axis 1 and 0.40  0.29 = 12% for axis 2). 
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plot(dbRDAsimp, scaling=1) 

plot(dbRDAsimp, scaling=2) 

scores(dbRDAsimp,display="sites")->SCdbrda 

library(ade4); s.class(SCdbrda,fac=fext$Station) 

Cosmarium, Monoraphidium and Cylindrotheca taxa are well represented 
among the positive values of axis 1 and anticorrelated to nitrates. Therefore, 
they are more abundant when the concentrations of nitrates are low. 
Strombomonas and Ankitrodesmus taxa are positively linked to axis 2, as are 
the nitrites. Thus, they are more abundant in relation to high nitrites 
concentrations, unlike the Gymnodinium taxon (Figure 5.18). 

 

Figure 5.18. Projection of the dbRDA carried out on the simplified phytoplankton 
database constrained by the chemical–physical variables (scaling 1) 

5.2.2.2.4. Variance partitioning 

In a canonical analysis, we can estimate the variance (or inertia) 
associated with subsets of variables. For example, when we carry out RDA 
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(see section 5.2.2.2.2), the explanatory variables corresponded to two types 
of variables: CP variables (optical depth and concentrations of nitrates) and 
phytoplankton taxa (Nitzchia). Variance partitioning allows us to quantify:  

1) the pure part in the explanation of the structure of the stations based on 
the biological variables explained by the CP parameters; 

2) the pure part explained by the phytoplankton taxa; 

3) the mixed part between the two sets of variables linked to the 
relationship between the two data sets. 

Variance partitioning can be performed for several submatrices, even if in 
this case we only use two of them. It can be carried out with the varpart() 
function belonging to the library [vegan]. It requires us to specify the initial 
database and then the two potentially explanatory matrices. 

PHYS<-CP[,c("Opt_Depth","NO3")] 

PHYTO<-phytoS[,c("Nitz")] 

library(vegan) 

varpart(scale(bio_simp),PHYS,PHYTO)->VP 

VP 

plot(VP) 

 

Figure 5.19. Variance partitioning carried out on the redundancy analysis performed 
on the global biological database. The potentially explanatory variables have been 
classed into two subgroups: “chemical–physics” and “phytoplankton” 
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The CP base explains purely 12% of the variance of the biology base, 
while the phytoplankton base explains 16% of it. A mixed part between the 
two explains 5% of it. Sixty-six percent remains unexplained by these two 
data matrices (Figure 5.19).  

5.2.3. Qualitative factors that structure gradients 

5.2.3.1. Parametric alternative: MANOVA and discriminant function 
analysis 

A MANOVA-like test must be carried out beforehand in order to 
determine whether the modalities of the qualitative variable can be identified 
in a significant way on the basis of the quantitative variables considered 
(section 5.2.3.1.1) before performing discriminant function analysis (DFA; 
sections 5.2.3.1.2 and 5.2.3.1.3). 

5.2.3.1.1. Multivariate analysis of variance 

MANOVA [HAN 87] is a statistical test that allows us to determine 
the effect of one or more qualitative variables in a matrix of quantitative 
variables. It represents an ANOVA extrapolated to multivariate analysis. It 
constitutes a parametric test that can be applied to data compatible with the 
Euclidean distance, i.e. double zeroes are significant. The applicability 
conditions are the following: homogeneity of the variances, independence of 
the objects and normality of the data. The alternative hypothesis assumes 
that at least one of the modalities of the qualitative factor responds 
differently to the quantitative variables. There are several tests: Pillai’s trace 
is the most robust in relation to the applicability conditions and the normality 
of the data in particular.  

Here, MANOVA is carried out on the standardized matrix of CP data (see 
section I.4.2) to test one by one the qualitative variables available in the 
“environmental factors” database (“fext”). The manova() function is 
available in the base version of R. The summary() function allows us to 
specify the test chosen, which in this case is Pillai’s trace.  

m1 <- manova(as.matrix(scale(CP)) ~ fext$Station) 

summary(m1, test = "Pillai") #P-value=*                    

m1 <- manova(as.matrix(scale(CP)) ~ fext$Type) 
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summary(m1, test = " Pillai ") #P-value=*                  

m1 <- manova(as.matrix(scale(CP)) ~ fext$Position) 

summary(m1, test = " Pillai ") #P-value=ns 

Only the “Marsh” and  “Type” variables present a result for which the 
null hypothesis is rejected  (P-value < 0.05, MANOVA and Pillai’s trace 
test): at least one of the marshes differs from the other based on at least one 
of the CP parameters. Thus, the two types of marsh (re-fed or not) differ on 
the basis of CP parameters.  

5.2.3.1.2. Classical DFA 

DFA [TER 87b] is a type of constrained factor analysis that aims to 
determine the quantitative variables that allow us to separate as well as 
possible the point clouds corresponding to the modalities of a qualitative 
variable. It uses optimization based on the principle of a PCA to look for 
axes (at most the variable number –1) on which the projections of the clouds 
are separated as well as possible (Figure 5.20). Being based on the same 
principle as a PCA, it is subjected to the same applicability conditions; in 
particular, double zeroes must be considered as a factor of similarity 
between objects (see section 4.2.2.1). It can be carried out with the 
discrimin() function, among others, which belongs to the library [ade4], by 
specifying the result of a PCA performed with the library [ade4]: the 
dudi.pca() function.  

 

Figure 5.20. Principle of discriminant function analysis: example of the optimization 
of an axis that best discriminates the two point clouds (re-fed or unfed marshes) in 

the plane formed by these two variables: temperature and concentrations of nitrates  
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library(ade4) 

acp<-dudi.pca(scale(CP), nf=ncol(CP),scan = F) 

dis <- discrimin(acp, fext$Station,nf=ncol(CP),scan = F) 

dis 

Discriminant analysis 
call: discrimin(dudi = acp, fac = fext$Station, scannf = F, nf = ncol(CP)) 
class: discrimin  

 
$nf (axis saved) : 3 
 
eigen values: 0.9864 0.8308 0.2054 
 
  data.frame nrow ncol content                           
1 $fa        9    3    loadings / canonical weights      
2 $li        19   3    canonical scores                  
3 $va        9    3    cos(variables, canonical scores)  
4 $cp        9    3    cos(components, canonical scores) 
5 $gc        4    3    class scores           

The analysis has kept three discriminant axes. The dis$fa table provides 
the canonical weights that yield the linear combinations of the variables on 
the basis of which we can calculate the contributions of each variable to the 
axes as follows.  

FDA1= abs(dis$fa[,1])/sum(abs(dis$fa[,1]))*100 

FDA2= abs(dis$fa[,2])/sum(abs(dis$fa[,2]))*100 

FDA3= abs(dis$fa[,3])/sum(abs(dis$fa[,3]))*100 

contribAFD=data.frame(var=colnames(CP),FDA1,FDA2, FDA3) 

round( contribAFD,0) 
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par(mfrow=c(2,2)) 

s.class(dis$li,fac=fext$Station,xax=1,yax=2,col=c(1:4)) 

s.label(dis$fa) 

s.class(dis$li,fac=fext$Station,xax=1,yax=3,col=c(1:4)) 

s.label(dis$fa[,c(1,3)]) 

The first two axes discriminate on their own four marshes (Figure 
5.21(a)): only marsh A and marsh B overlap slightly. Axis 3 does not 
contribute anything as for the discrimination of these two marshes (Figure 
5.21(c)). The concentrations of nitrates contribute the most to the 
construction of the first axis (61%). Temperature (31%), depth (22%), and 
the concentrations of nitrates (19%) and phosphates (18%) contribute 
essentially to the construction of the second axis. 

Therefore, the explanatory model can be simplified by only keeping those 
variables that contribute essentially to the construction of these two axes: the 
concentrations of nitrates and phosphates, depth and temperature. The 
dispersion of the stations per marsh is also as good as it is for the model that 
incorporates all the variables (Figure 5.22).  

Afterward, it is possible to use the model obtained to predict to which 
modality the qualitative variable (here, the marsh) belongs based on the data 
of the variables obtained (i.e. CP variables).  
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Figure 5.21. Discriminant function analysis carried out to determine which chemical–
physical variables allow us to discriminate the marshes: dispersion of the stations 
according to the second discriminant axis in relation to the first discriminant axis (A) 
and according to the third discriminant axis in relation to first discriminant axis (C). 
Canonical weights of the variables on the second discriminant axis in relation to the 
first discriminant axis (B), and on the third discriminant axis in relation to the first 
discriminant axis (D)  

 

Figure 5.22. Discriminant function analysis carried out to determine which chemical–
physical variables allow us to discriminate the marshes by only keeping the four most 
discriminant variables: dispersion of the stations according to the second discriminant 
axis in relation to the first discriminant axis (A). Canonical weights of the variables on 
the second discriminant axis in relation to the first discriminant axis (B) 
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5.2.3.1.3. Discriminant correspondence analysis 

Discriminant correspondence analysis is identical to DFA and based on 
the same mathematical principle, except for the fact that it relies on a 
correspondence analysis rather than on a PCA. Therefore, it is a type of 
constrained analysis that aims to determine the quantitative variables for 
which double zeroes are not a determining criterion in the assessment of the 
similarities between objects. It searches by optimization new axes (at most 
the number variable –1) for which the projections of the clouds are separated 
as well as possible based on a CA (Figure 5.20). Thus, it is subjected to  
the same applicability conditions as correspondence analyses (see  
section 4.1.3.1). It can be carried out with the discrimin.coa() function 
available in the library [ade4]. It will be performed here based on the 
simplified and log-transformed “phytoplankton” database (phytotrf, see 
section 4.2.3.2).  

The analysis has kept two discriminant axes that isolate the stations of the 
four marshes (Figure 5.23(A)). Cosmarium (15%), Strombomonas (13%), 
Gymnodinium (12%), Scenedesmus (11%) and Cryptomonas (10%) taxa 
contribute essentially to the construction of discriminant axis 1. 
Cylindrotheca (19%), Cosmarium (15%), Trachelomonas (11%) and 
Gymnodinium (10%) taxa contribute essentially to the construction of axis 2. 
The stations of marsh C are influenced by the Cosmarium and Gymnodinium 
taxa, the stations of marsh D are influenced by the Cryptomonas, 
Strombomonas and Scenedesmus taxa, while those of marsh A by the 
Cylindrotheca and Trachelomonas taxa (Figures 5.23(a) and (b)).  

library (ade4) 

afcD<-discrimin.coa(phytotrf, fext$Station, scan = FALSE) 

summary(afcD) 

afcD 

FDA1= abs(afcD$fa[,1])/sum(abs(afcD$fa[,1]))*100 

FDA2= abs(afcD$fa[,2])/sum(abs(afcD$fa[,2]))*100 

contribafcD=data.frame(var=colnames(phytotrf),FDA1,FDA2) 

contribafcD 
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par(mfrow=c(1,2)) 

s.class(afcD$li,fac=fext$Station,xax=1,yax=2,col=c(1:4));s.label(afcD$fa) 

 

Figure 5.23. Discriminant correspondence analysis carried out to determine which 
phytoplankton taxa allow us to discriminate the marshes: dispersion of the stations 
according to the second discriminant axis in relation to the first discriminant axis (A). 
Canonical weights of the variables on the second discriminant axis in relation to the 
first discriminant axis (B) 
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5.2.3.2. Intermediate alternative: permutational MANOVA or 
PERMANOVA 

This analysis allows us to test the simultaneous response of one or 
more variables to one or more qualitative factors [AND 01]. This type of 
analysis is being used more and more in ecology due to: 

– its robustness: this analysis is not based on any hypothesis on the 
distribution of the variables. It can even be applied to qualitative variables, 
provided that they are transformed into binary variables with a complete 
disjunctive table (see section 2.2.3) and we choose a suitable association 
measure (see section 2.3.1). However, this analysis needs to test the 
homogeneity of the multivariate dispersions among groups. It is much more 
robust than the analysis of similarities and the Mantel test in relation to the 
heterogeneity of the dispersions [AND 13]. Moreover, it is sensitive, just 
like these two tests, to unbalanced planes ; 

– its flexibility: this analysis is based on association matrices. This makes 
it more powerful than MANOVA (see section 5.2.3.1), since the association 
measure can be chosen in relation to the goals and the composition of the 
database. 

We have already described the principle of PERMANOVA in relation to 
a unifactorial approach (section 5.2.1.2.2). It can be applied to a wide range 
of experimental planes or complex sampling, just like parametric ANOVAs. 
Moreover, unlike the other non-parametric approaches, it allows us to test 
the effect of the interactions between factors and to approach variance 
partitioning.  

The PERMANOVA is implemented in R in the library [vegan] with the 
adonis() function. The betadisper test, which allows us to test the 
homogeneity of the dispersions, can be carried out with the betadisper() 
function belonging to the library [vegan]. It requires us to enter the 
transformed database, a tilde and the factor(s) considered separated by * in 
order to specify the interaction calculations, the database in which the factors 
are presented in the data argument, the association measure chosen in the 
method argument and, finally, the permutation number used to calculate the 
theoretical distribution in the perm argument. All the coefficients available 
in the vegdist() function of the library [vegan] can be used.  

This analysis has been previously used on a simple plane (see section 
5.2.1.2.2). Here, it is carried out for phytoplankton abundances. In this case, 
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we have chosen the Bray–Curtis dissimilarity as association measure, which 
is the most suitable for the data. Marshes and position (internal and external) 
represent the explanatory qualitative factors chosen. They are crossed 
factors.  

perm<-adonis(phytotrf ~ Marsh*Position, data=fext, method = "bray", 
permutations=9999) 

perm 

Permutation: free 
Number of permutations: 9999 
 
Terms added sequentially (first to last) 
 
                Df  Sumsofsqs  MeanSqs    F.Model           R2   Pr(>F)    
Station        3     0.62667   0.208889      2.5931    0.34151  0.0015 ** 
Residuals  15     1.20832   0.080554                     0.65849           
Total          18     1.83498                                      1.00000           
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The type of marsh (drained or re-fed) explains significantly 17% of the 
dissimilarities between the stations on the basis of the phytoplankton 
communities (P-value = 0.003; PERMANOVA). Even if the position of the 
marshes (internal or external) does not seem a significant factor (P-value = 
0.386), the interaction between type and position explains significantly 12% 
of the dissimilarities between stations on the basis of the phytoplankton  
communities (P-value = 0.013): the dissimilarities between types of marshes 
are not the same according to the position of the marshes. For each 
significant factor, the PERMANOVA can be carried out once again in order 
to understand the differences between the two types of factors (see section 
5.2.1.2.2).  

The different planes (i.e. crossed factors versus hierarchized factors, 
mixed models versus fixed models) are incremented like in ANOVA. Refer 
to the help section of the function for its application.  



 

Conclusion 

Always keep in mind the goals 

It is very easy to fall into the trap of numerical analysis once we have 
dived in: one analysis leads to another, then another and so on. Readers 
should regularly recall their objectives by wondering whether the analysis 
being carried out provides any information in relation to the objectives of the 
study. The same data set allows us to achieve different goals. If, for example, 
our analysis aims to highlight a structure of the stations on the basis of 
biological communities and to underline the relationships between this 
structure and the environment, a canonical analysis is more suitable than a 
principal component analysis on the environmental variables (even if the 
latter analysis may be carried out for certain reasons, e.g. to explore some 
relationships and, therefore, certain redundancies between environmental 
variables).  

In theory, the type of numerical analysis should have already been 
defined when the sampling strategy or experimental plan conceived is 
implemented in order to avoid unpleasant surprises at the end, i.e. lack of 
data for a more powerful parametric analysis, unsuitable sampling or 
experimental plan, etc.  

Finally, it is very important to specify clearly in our material and method, 
for all kinds of analysis, the consistency between the numerical analysis 
carried out and the goal, so that the reader can get a good grasp of the 
consistency between the scientific and the statistical process.  
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Rigorousness in the analyses 

Numerical analyses must be used rigorously. We have to be aware that 
the mathematical principles on which these analyses are based are strict. If 
they are not respected, the analyses will be biased and, in this case, we can 
actually interpret data in any possible way… For example, if a small number 
of objects compared to the number of variables are available, parametric 
approaches should be avoided. Similarly, an association measure must be 
chosen in relation to the data set and our objectives (i.e. double zeroes). 

Enhancing data without exaggerating   

Naturally, numerical analyses allow us to enhance data and to sum up the 
information of heavy data sets in a few graphs. However, excessive data 
manipulation is another trap we should avoid if we do not want to hear that 
we are interpreting data our own way, whereas the goal of the analyses is to 
remain as objective as possible in relation to a large multivariate data set.  

Several analyses enable us to achieve the same goal, even if a data set 
already directs us toward certain kinds of analysis. Nonetheless, several 
options are available: several classification algorithms, several types of 
multivariate analysis, etc. For some of these, there are analyses that allow us 
to account for the analysis that is most suitable for the data set (e.g. 
cophenetic matrix for classification algorithms). For others, we will have to 
try several types of analysis and choose the most informative (rather than 
convenient!). It is useless to present several analyses that provide the same 
information. This only multiplies the number of analyses and confuses the 
reader. If we are led to choose several analyses, it is essential that they 
complement each other. Finally, if we have to choose between two 
redundant analyses or approaches, we should favor the simpler one.  

Some types of analysis need not be illustrated in the results 

Some analyses are only presented in the material and method, since they 
correspond to a preliminary stage, such as the elimination of rare species. 
However, it is important to specify these analyses as well as their results in 
our material and method.  
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